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Preface 

The theoretical analyses of magnetohydrodynamic fluxes and heat transfer in non-

Newtonian liquids owing to stretching sheet are provided in this thesis. Fluctuating 

thermal conductivity, variable wall temperature, and viscous dissipation are among 

the theoretical considerations. The problems in the nonlinear regimes of free, forced, 

mixed, or bioconvection involving any liquid are extremely difficult to solve 

analytically or numerically. The nonlinearity of linked systems of ordinary differential 

equations is what makes these issues so difficult. The addition of temperature-

dependent thermal conductivity, changeable wall temperature, and viscous dissipation 

to the equation will only make the situation more complicated. Many of these difficult 

challenges are addressed in the thesis. The thesis is divided into seven chapters. 

The first chapter serves as an introduction and motivation for the research effort 

presented in the thesis. A review of relevant literature is provided to demonstrate the 

importance of the issues under consideration. 

The second chapter provides a brief overview of non-Newtonian liquids, their 

characteristics, and applications. Basic equations of mass, linear momentum, and 

energy conservation, density of nanoparticles and motile microorganisms of non-

Newtonian liquids, approximations employed, and dimensionless parameters 

associated in the issues examined in the thesis are also covered in this chapter. 

A theoretical examination of Casson fluid boundary layer flow and heat exchange 

above a linear stretching sheet under the effect of magnetic fluid is reported in 

Chapter 3. By changing the equations into a system of ordinary differential 

equations using similarity transformations as a tool, analytical and numerical 

solutions for the momentum and energy equations may be achieved. 

In chapter 4, the thermal boundary layer in Casson fluid is subjected to a flow 

and heat transfer study before being permitted to flow through a pervious linear 

stretching membrane with variable wall transfer and radiation. The mathematical 

expressions for flow and heat conduction over a stretched membrane are partial 

differential equations, which are transformed into ordinary differential equations 

via similarity transformations. To get the solution to the energy equation, the 

regular Perturbation approach is used. The effect of Prandtl number, Casson fluid 
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parameter, suction parameter, and fluid thermal radiation parameter on the flow 

and heat exchange are described. 

In the presence of gyrotactic microorganisms, the combined effects of a magnetic 

field and a convective boundary state on Casson fluid bioconvection and 

nanoparticle concentration over a linear stretching sheet with changing wall 

temperature and thermal radiation impact are discussed in Chapter 5. The 

governing equations for nanoparticles, microorganisms, momentum, temperature, 

and concentration are simplified using similarity transformations. A growing 

system of connected nonlinear differential equations is solved using a differential 

transformation technique and an in-built shooting method (ND Solve). 

A study of bioconvection of magnetohydrodynamic boundary layer flow, heat, 

and mass exchange of Casson fluid containing gyrotactic microorganisms over a 

linearly extending surface is discussed in Chapter 6. The Using Oberbeck-

Boussinesq approximations and similarity transformations, physical partial 

differential equations are turned into a system of linked nonlinear ordinary 

differential equations. The differential transform approach is used to derive 

Taylor's series solutions for the momentum, energy, diffusive concentration of 

nanofluid, and microbe concentration equations, which are compared to numerical 

solutions. A variety of non-dimensional factors' impacts on bioconvection fluid 

flow and heat transmission are investigated. 

The study of Bioconvection in flow and heat transfer analysis owing to Casson 

fluid and gyrotactic microorganisms via a porous media in the presence of a 

magnetic field with viscous dissipation is presented in Chapter 7. Using 

Oberbeck-Boussinesq approximations and similarity transformation, the 

associated governing equations of the physical situation are deformed into a set of 

non-linear ordinary differential equations. To get Taylor's series solutions for 

momentum, energy, nano particle concentration, and microbe density, the derived 

coupled equations are solved using the Differential transform technique. Chapter 

8 presents the concluding remarks and scope for our future work.   
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CHAPTER 1 

1. INTRODUCTION 

Non-Newtonian fluids in various geometries are briefly discussed in this 

chapter. The necessity of boundary layer nanofluid flow for a Casson fluid, 

magnetohydrodynamic fluxes, viscous dissipation and suction and injection effects, 

stretching sheet and bioconvection are all explored for heat and mass exchange. It also 

provides a comprehensive literature review based on the topics covered in the 

following chapters. The study's goals, motivations, and scope of the research are also 

described. 

1.1 OBJECTIVES: 

The goal of this thesis is to find a solution to nonlinear boundary value issues 

that arise in the analysis of fluid and heat flow across an extending sheet. The thesis' 

research aims are listed below. 

1. To be used to create various mathematical models for the influence of various 

physical characteristics on fluid and heat flow scenarios. 

2. To use analytical and numerical approaches to derive information from a 

theoretical analysis of non-Newtonian fluid flow and heat flow properties without 

having to undertake experiments. 

3. To recognize the impact of various physical parameters on heat exchange process, 

which helps us in improving the quality of output. 

4. To obtain analytical and numerical solutions in order to get qualitative and 

quantitative information from non-Newtonian flow characteristics by solving the 

system of coupled non-linear boundary value issues that govern fluid and heat 

transmission owing to stretched sheet. 

5. To provide formulae in terms of mathematical expressions and numerical 

solutions to analyze energy transmission in the non-Newtonian liquid flow issues. 
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The main goal of this thesis is to offer a theoretical analysis of flow, heat transfer, 

nanoparticle concentration, and microbe concentration in non-Newtonian fluid 

boundary layer flow. 

1.2 MOTIVES: 

Theoretical investigation of the effects of non-dimensional parameters on 

energy transmission, nanoparticle density, and motile microbe density in non-

Newtonian liquid streams, with or without magnetic influence, will be an important 

factor in manufacturing, biotechnological production, and other physical engineering 

applications. The information gathered from the analysis will aid in the 

comprehension of theoretical scientific foundations, which will help to improve the 

quality of production or materials in the industries. Our findings would be extremely 

useful in a variety of technological and biotechnological processes, including 

aerodynamic extrusion of plastic sheets, biodegradable plastic sheets, continuous 

stretching in the food industry, manufacturing processes, rolling and extrusion, and 

boundary layer flow in condensation processes. Its goal is to gather useful data on 

various cooling parameters related with industrial manufacturing processes. 

Boundary layer theory is a crucial subject for mathematicians, physicists, and 

engineers to understand the importance of boundary value problems in fluid dynamics 

and aerodynamics. This theory also aids in the comprehension of a variety of physical 

events that we see on a daily basis. The investigation must also consider the type of 

the fluid to be studied. 

Visco-elastic materials are classified according to their degree of viscosity or 

elasticity. Essentially, these fluids are complex in nature and may be distinguished 

from viscous solids, such as rubber, which are more elastic than viscous, and elastic 

liquids, such as molten polymers and polymer solutions, which are viscous but not 

elastic. Stress in elastic materials is explicitly dependent on strain. When a force is 

applied to an elastic material, it deforms, and in the absence of applied force, the 

material returns to its earlier shape. As a result, it's possible to say that elastic 

materials have memory, or that they may remember their initial shape. In visco-elastic 

fluids, on the other hand, the tension is relational to the rate of deformation, and if the 

applied tension is removed, the strain rate becomes zero. As a result, when fluid 
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deforms, it forgets to return to its original place. To put it another way, fluids don't 

remember anything. Soap and polymer solutions are examples of viscoelastic fluids, 

which have both elastic and viscous properties. To characterize the behaviour of non-

Newtonian fluids, we can utilize a variety of fluid models. Various models have 

different fluid characteristics and importance in various physical situations. 

1.3 SCOPE: 

The study of fluid properties, heat exchange analysis, concentration of 

nanoparticles and microorganism’s concentration encourages the understanding of 

useful applications of applied mathematics. The interesting aspects of fluid dynamics 

have made tremendous advantages in various fields. The work done in this thesis has 

wide-ranging applications such as: 

i. Analytical and numerical techniques are adapted which would be used as 

ready-made formulae to find velocity, temperature & concentration 

distribution in the nanoparticles and the microorganisms. 

ii. The mathematical analysis of different physical models would provide 

interesting information on various heat controlling parameters associated with 

the polymer and biotechnological industries. 

iii. Being known the effects of heat controlling parameters, it would be possible to 

improve the quality of the products in the industries. 

iv. The knowledge on the effects of Casson fluid, magnetic field, porosity to be 

gained from this study is helpful in understanding improvement of the quality 

of the products in the industries. 

v. Exact analytical solutions to be obtained in this study would enrich the 

mathematical foundations in applied mathematics. 

vi. The better approximate solutions to be obtained will have significance in the 

field of computational fluid dynamics. 

vii. Copper wire drawing, annealing, and tinning. 
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viii. Plastic film and artificial fibers are continuously stretched, rolled, and 

produced. 

ix. Material extrusion and heat-treated materials that move on conveyor belts or 

between feed and wind-up rollers. 

x. A limitless metallic sheet is cooled. 

xi. In the condensation process, a boundary layer runs along a liquid sheet. 

1.4 Literature Survey: 

1.4.1 Due to the stretching of the sheet, Newtonian fluid flows 

Sakiadis [140]-[142] were the foremost to conduct a conceptual study of 

boundary-layer stream induced by a stretched surface moving at a persistent velocity. 

For the laminar flow considered and applied successfully integral approach, accurate 

as well as approximate solutions are achieved. Blasius [27] and Erickson et al. [55] 

attempted to expand on Sakiadis [140]-[142] work by exploring heat and mass 

transport owing to stretched surfaces. The solutions to boundary layer flow owing to a 

semi-infinite plane surface are clearly distinguishable than those of boundary layer 

flow due to ambient fluid characteristics (Blasius,[27]) and are significantly unlike 

those of boundary layer stream due to a semi-infinite plane surface. 

Crane [43] was the first to investigate stable boundary layer flows by 

extending and shrinking a surface linearly. The continuous boundary layer stream of 

an incompressible viscous liquid was studied using an analytical method. The linear 

stretching surface travels in its own flat with a linearly increasing velocity as it 

advances away from a static point. 

Gupta and Gupta [65] examined mass and energy exchange in a flow caused 

by an extending sheet distributing from a thin slit, as well as fluid particle 

temperature, concentration, and distribution profiles. Chakrabarti and Gupta [1] 

focused on the hydromagnetic stream and energy exchange near an extending slab and 

found a comparable shift in speed and heat exchange when unchanging suction was 

applied to the wall. By converting the energy condition into a differential condition, 

Anderson et al. [19] were able to find a solution. Carragher [31] used Crane's [43] 
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problem to examine heat transmission and determined the Nusselt number for the 

complete range of Prandtl number values. 

The power law distinction was used in Grubka and Bobba's [63] heat transfer 

analysis of surface temperature. Gupta and Sridhar [64] conducted a theoretical 

investigation of viscoelastic influences in the non-Newtonian liquid stream via 

absorbent media. It has been demonstrated that in some cases, a fluid experiencing 

peripheral deformation does not exhibit shear inspissation. The viscoelastic boundary 

layer stream across an extending sheet with suction and energy transmission was 

investigated by Siddappa and Abel [151]. They were able to derive analytical 

estimates for the coefficient of skin friction and the thickness of the boundary layer. 

The coupled heat exchange owing to extending sheet was explored by Dutta and 

Gupta [52]. For a variety of Prandtl numbers and stretching speed, a distinction in slip 

temperature with reserve from the slot was discovered. It was discovered that as the 

stretching speed increases, the surface temperature drops for a certain Prandtl number. 

Dutta [51] found an analytical result to the heat exchange issue of cooling a 

thin extending slip in a viscous flow involving suction or blowing. The sheet 

material's local velocity was supposed to be relational to its reserve from the split. The 

solution's convergence criteria were also created. Chen and Char [36] examined the 

impact of power law surface temperature and power law heat flux fluctuations on the 

energy exchange properties of a steady, linearly stretched surface that was suctioned 

or blown. Rudraiah et al. [133] investigated oscillatory convection in a viscoelastic 

liquid passing over a pervious sheet heated from below. This issue pertains to the 

thermal procedures used to produce some heavy crude oils. Soewono et al. [152] 

looked into the reality of solutions to a nonlinear boundary value issue that occurs in 

flow and heat exchange over a spreading sheet with adjustable thermal conductivity 

and temperature reliant on sources of heat or sinks. When a flat surface spreads 

radially, Karahalios [76] discovered an accurate substitute solution to the time reliant 

on the Navier-Stokes equation, up to the second order of approximation; the 

components of velocity were presented in a series. 

Vajravelu [159] investigated convective flow and heat exchange at an infinite 

vertical extending surface in a viscous heat-causing fluid. On the stream and heat 

exchange, the effects of free convection, suction, and injection were investigated. The 
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related momentum, energy equations of stream and heat exchange were numerically 

solved using adjustable step length finite difference approach. Many intriguing 

behaviors were shown by the numerical outcomes for stream and heat exchange 

interpretations. 

The viscid boundary layer stream above a quadratically extending sheet 

was initially explored by Kumaran and Ramanaiah [81]. Skin friction and stream 

line pattern were plotted using stretching constraints. Magyari and Keller [99] 

studied heat and mass transmission in the boundary layer on an exponentially 

extended steady sheet involving an exponential temperature distribution both 

theoretically and numerically. Under Reynolds analogy, Magyari and Keller [97]-

[98] investigated the steady boundary layer stream caused by pervious extending 

surfaces with a changing temperature distribution. Further the authors have 

investigated classical hydrodynamics free laminar jets, which may be recognized 

as boundary layer streams provoked by unceasing surfaces submerged in 

motionless incompressible liquids and expanded at specified values of velocities. 

By offering an analytic result to the stream issue, it was discovered that in the 

restrictive scenario of a vanishing adjacent mass flux, this stretching encouraged 

flow may be transformed into the well-known wall jet using an appropriate 

scaling transformation. Wang [164] investigated the flow caused by an extending 

flat boundary with partial slip, and the results are good in agreement with some 

similarity solutions of Navier-Stokes equations. 

Using the rate of stretching parameter at the sheet, Andersson [17] 

explored slip flow over a linearly expanded surface. The Navier-Stokes equations 

have an exact analytical solution for all Reynolds numbers that is formally valid. 

The self-related boundary layer stream of a Newtonian fluid across a porous 

continuous plane surface stretching with inverse linear velocity was studied by 

Magyari et al. [100]-[101]. It was demonstrated that in order to generate the right 

similarity problem from pseudo similarity, a logarithmic expression in the wall 

coordinate 𝑥 should be enhanced to the standard definition of the stream function. 

The inflated-curvature outcomes of this issue fit into single constraint member of 

numerous results, which may be described in the form of Airy's function, 

according to innovative analytical results of a recognized boundary value issue. 
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An exact similarity outcome of the Navier Stokes issue was investigated 

by Mahapatra and Gupta [103]. The solution depicts a steady asymmetric 

stagnation point stream approaching a stretched surface. An observed boundary 

layer arises when the slab extending velocity exceeds the free flow rate, whereas 

the temperature distribution in the drift is discovered when the sheet is held at a 

invariable temperature. Energy transmission from the plane to the molten at the 

stagnation point when the surface temperature exceeds the ambient temperature, 

whereas heat exchange from the liquid to the extended surface further away from 

the stagnation point. Using a similarity solution, Partha et al. [119] investigated 

mixed convection flow and energy exchange near an exponentially extending 

surface in a static liquid. They discovered that the temperature at the boundary 

wall and the rate of extending sheet can have a distinct exponential structure. In 

both helping and opposing flow scenarios, the effects of buoyancy and viscous 

dissipation on convective transport in the boundary layer region were 

investigated. 

For nonlinear issues emerging in a moving sheet, Xu [166], Liao [85]-[86], 

Liao and Pop [87], employed the homotopy analysis approach. For the first time, 

they have obtained an explicit analytic solution with recursive coefficient 

equations. The impacts of radiation and sources of heat on the MHD stream of a 

viscoelastic fluid and heat exchange above an extending sheet were investigated 

by Siddheshwar and Mahabaleswar [116]. With the addition of viscous 

dissipation, heat occurrence or absorption, and radiation, an exact solution was 

obtained for the non-linear momentum differential equation and the energy 

equation. Heat flow in a boundary layer of viscoelastic liquid near an expanding 

surface with viscous dissipation was examined by Abel et al. [96]. Awad et al. [56] 

examined the heat and mass exchange characteristics of mixed convection in a fluid 

saturated pervious medium with radiative heat exchange along a semi-infinite plate. 

Using a similarity transformation and the Keller box method, the problem was solved. 

The results were validated by means of the MATLAB package. The radiation impact 

on the magnetohydrodynamic Newtonian fluid stream near an exponentially extended 

plate was investigated by Kameswaran et al. [75]. On the heat exchange, the effects of 

heating generation by friction and viscous dissipation are considered. The impacts of 

a magnetic field on the radiative stream of a nanofluid across a stretched surface with 
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heat radiation were explored numerically by Khan et al. [107]. Kumar et al. [117] 

researched the MHD influence on a Newtonian liquid flow over a super linear 

stretching sheet and found that the viscous liquid owing to a super linear expanding 

surface under the sway of MHD has a huge degree of nonlinearity in conducting the 

solution region with various arrangements. 

However, all of the earlier researchers focused on Newtonian fluid flow. In 

the remaining sections of this chapter, literature survey on the stretching sheet 

issues with an asymmetrically stressed liquid was carried out. 

1.4.2 Non-Newtonian fluid flows due to stretching sheet 

The studies of boundary layer flow of heat exchange are relevant to the 

understanding of the compiling progress in order to improve the quality of goods. A 

fascinating and important investigation is the liquid with specific qualities across a 

direct stretching surface and heat transfer marvels; we encounter several 

manufacturing of mechanical products. The exploration of non-Newtonian boundary 

layer liquid flow influenced by various considerations and heat exchange study has 

various usages in manufacturing, for instance, the withdrawal of polymer plates from 

rinse and wiredrawing, and so on. Further, similar applications of the extending 

surface include the production of paper, glass fibers, and the freezing of metallic 

sheets, among others. Several academics have been working on the boundary layer 

stream and heat exchange examination near the linear extending surface for a few 

decades.  

The study of continuous stream of viscous incompressible liquid near a 

continuous extending surface is of great interest, and similar flow situations are 

emerging in several industrial processes, such as desolidifying metallic products in a 

freezing bath process, ejection of plastic films, and forcing polymer ply through a dye 

to form polymer ply with a desired cross section. The slit forms the blend during the 

deposition of such polymer ply, which is then overextended to give the desired 

thickness, and the plate is solidified when it passages over the freezing system, 

resulting in a well-graded output. The uniqueness of ply appears to be controlled via 

heat and mass exchange confined by the ply and fluid. The stretched sheet warms up 

and mechanically touches the medium fluid during manufacture. Bhatnagar [25] 
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explored the stream of an Oldroyd-B liquid engaging space across an expandable 

sheet as a result of the sheet stretching in the presence of a continuous free-stream 

rate. The governing equations were deformed to a system of coupled non-linear 

ordinary differential equations by incorporating similarity transformations for the 

velocity field and the components of the stress tensor. The resulting equations were 

solved numerically and using a Weissenberg number perturbation. The two solutions 

were established to be validated when compared. The flow of a power law fluid 

across an inextensible horizontal sheet moving with steady velocity in its own plane 

was examined by Fox et al. [60]. Certain non-Newtonian liquid features, such as 

normal stress difference, are not present in this model.  

Rajagopal et al. [128] explored the stream of a 2nd order liquid across an 

extending surface in the absence of heat transfer and gave a perturbation solution 

for the velocity distribution. The stream of the Walters' liquid B near an extending 

slab was explored by Siddappa and Abel [150], and an exact solution to the 

momentum equation was provided. Walter's liquid B flow past a stretched surface 

involving suction was also examined by Siddappa and Abel [151]. The boundary-

layer stream and the energy equation have both been solved to an exact answer. 

The coefficient of skin friction and width of the boundary layer were examined. 

Rajagopal et al. [130] investigated the boundary layer stream of a second order liquid 

near a stretching surface with a uniform free flow and came up with some intriguing 

findings. Bujurke et al. [28] examined energy transmission in the drift of a 2nd order 

liquid above an extending surface using Coleman and Noll's constitutive equation. 

The temperature distribution in a Walters' liquid B model on a horizontal 

extending plate was investigated by Chen and Char [35]. The sheet's velocity was 

thought to be relational to its distance from the split, with the plate exposed to a 

changing heat flow. Kummer's function was used to express the answer to the 

heat transfer equation (Abramowitz and Stegun [13]; Andrews [21]). For 

specifying conditions, several closed-form solutions were investigated. The 

temperature field's effect on the viscoelastic parameter and the heat flux 

parameter was also investigated.  

Dandapat and Gupta [46] investigated the flow of a second-order liquid as well as the 

heat exchange caused by an extending sheet. It was investigated how viscoelasticity 
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affects flow behaviour and heat transmission characteristics. For velocity and 

temperature distributions, an analytical solution was presented alongside numerical 

findings. Chang [33] established a closed form solution to the boundary layer issue for 

a given value of the non-Newtonian constraint. Chen et al. [37] investigated the 

temperature distribution in Walters' liquid B flowing over a horizontal stretching plate 

with a constant surface temperature and heat flux. It is revealed that, as the 

viscoelastic constraint decreases, the temperature at a given point decreases. The 

dimensionless heat exchange coefficient and temperature distribution in the region 

around the stretched sheet were determined for various values of the viscoelastic 

constraints. 

  The energy exchange in a second order liquid across a steady extending 

surface with power law surface temperature or power law heat flow was studied 

by Rollins and Vajravelu [132], which took into report the impacts of internal 

heat production. The researchers looked at two cases: I PST and (ii) PHF. 

Kummer's function was exercised to determine the solution and energy transfer 

features. In both the PST and PHF examples, a uniform approximation in terms of 

a parabolic cylinder function with a boundary layer of width reciprocal of the 

Prandtl number was presented for large values of Prandtl number. It was also 

demonstrated that for tiny Prandtl numbers, no boundary layer type solution 

exists. Pavlov [121] proposed an exact similarity solution for the continual MHD 

two-dimensional stream of an electrically charged incompressible liquid 

instigated by the extending plate. Chakrabarti and Gupta [32] built on Pavlov's 

[121] work to investigate the temperature distribution in an MHD boundary layer 

stream involving uniform suction. The velocity and energy exchange parameters 

in the stream involving steady drag near the wall were compared using a 

similarity solution. Incomplete gamma function was used to solve the equation. 

The impacts of persuaded magnetic properties and internal heat source or 

absorbent on stream and energy exchange features through an extending surface 

were inspected by Kumari et al. [83]. MHD stream of a Walters' liquid B near an 

extended sheet was studied by Andersson [16] and determined an analytical result 

for the governing nonlinear boundary layer relations. The topic of heat transport 

in a second order liquid near a stretching surface was analyzed by Sam and Rao 

[143]-[144] and for skin friction and heat exchange coefficient, an expression was 
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found. Further, they found two closed-form solutions to the momentum equation for 

varying viscoelastic constraints. This raised concerns about the uniqueness of the 

solution. 

MHD convective stream and energy exchange in a viscid heat producing 

molten across an infinite perpendicular extending sheet were investigated by 

Vajravelu and Nayfeh [160]. The influence of free convection and heat production or 

absorption on stream and heat exchange properties was investigated. Numerical 

solutions are determined for the conservation of momentum, mass, and energy 

equations. Char [34] investigated heat and mass transmission in an MHD flow of 

Walters' liquid B across a stretched sheet. Exact as well as approximate results for 

energy and mass transport features were found for various selections of modified, 

modified Schmidt number, surface temperature index, magnetic parameter, and 

Prandtl number. 

The study of MHD flow and steadiness of a Walters' liquid B across a 

stretched surface was carried out by Dandapat et al. [47]. The approach of weighted 

residuals was used to do a three-dimensional linear stability analysis for disturbances 

of the type. The magnetic field has been discovered to have a flow-stabilizing effect. 

Andersson [18] investigated an MHD flow near an extending surface and found a 

similarity solution for the steady two-dimensional Navier- Stokes equations velocity 

and pressure. The velocity field solution was found to be identical to Pavlov's [121] 

solution. MHD boundary layer stream owing to sheet extending with a power law 

velocity distribution was studied by Chiam [38]. To obtain the similarity equation, a 

specific form of the magnetic field was chosen. With Crocco's transformation, an 

analytical result for a large value of magnetic parameters was produced, as well as an 

accurate expression for the skin coefficient. The resulting boundary value problem 

was then directly numerically solved using the shooting approach. The presence of 

suspended nanoparticles in the base fluid was defined by Choi and Eastman [41]. A 

colloidal mixing of nanoparticles and a base fluid is known as a nanofluid. Chiam 

[38] obtained the solution for an energy equation of MHD boundary layer stream of 

an electrically charged fluid across a linearly stretched non-uniform current extending 

surface. The influence of heat generation, degeneracy, and tension were all taken into 

account. An exact outcome to the subsequent linear non-homogeneous BVP was 
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presented in the form of Kummer's expression to the case of PST and PHF, and these 

are regarded quadratic relations of reserve. Free convection and interior warmth 

production on stream and energy exchange properties in an electrically charged 

molten across a uniform extending surface were investigated by Vajravelu and 

Hadjinicolaou [158]. Ariel [22] investigated the flow of a second order liquid, for a 

class of singular boundary value problems with a small coefficient of the highest 

derivative, a fourth-order predictor-corrector method was utilized to get the numerical 

solution. With frictional heating and internal heat generation or absorption, Abel and 

Veena [11] investigated the Walters' liquid B stream and heat exchange in a saturated 

pervious medium across an impervious stretched surface. I PST and (ii) PHF were the 

two cases that were considered. The velocity field and skin friction have been solved 

to exact precision. In addition, Kummer's function was used to derive answers for 

temperature and heat transport characteristics.  

Kumari and Nath [82] explored the effect of the magnetic field on the 

stagnation point stream and heat exchange of a viscous electrically charged fluid 

above an extending surface, when the sheet and free stream velocity are not identical. 

Two-dimensional stagnation point flow and flow near a stretched surface in an 

ambient fluid can be conceived of as a hybrid of two problems. Kelly et al. [77] 

investigated how a viscoelastic liquid that was incompressible and electrically 

conducting behaved in terms of heat and mass transmission as it traveled through 

a plane flexible surface. Takhar et al. [155] investigated Newtonian flow and energy 

transfer near an extending sheet including magnetic impact and chemical species. The 

PDEs that govern boundary layer stream and energy transmission were determined 

utilizing finite-difference approach. Surface skin friction was established to be greatly 

increased by the magnetic field, whereas surface mass transfer was reduced little. The 

Schmidt number and the reaction rate were shown to have a big impact on surface 

mass transfer. A constant stagnation-point stream of an incompressible viscous 

electrically charged fluid above a flat deformable sheet was presented by Mahapatra 

and Gupta [104]. The rapidity at a specific location was exhibited to drop or rise 

including growth in the magnetic impact as soon as the free flow rapidity was fewer 

or superior than the expanding rate. The energy distribution throughout a stream was 

computed on a plane assumed at a constant temperature. Thomas algorithm and the 

finite difference technique were used to generate the findings numerically. 
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The effects of Hall and ion slip currents on the flow of a magneto micropolar, 

viscous, incompressible, and electrically charged liquid were studied by Seddeek 

[148]. He looked at heat exchange from the extending sheet to a micropolar liquid as 

well. He used the shooting technique to solve the equations by assuming a low 

magnetic Reynolds number (Hartmann formulation). The Walters' liquid B stream 

and energy exchange through a non-uniform extending surface imbedded in a 

pervious medium were studied by Abel et al. [12]. They looked at I PST and (ii) 

PHF. A similarity transformation was used to translate the non-linear partial 

differential equations, which are formulated for momentum and energy transfer 

characteristics, into the system of ordinary differential equations. The nonlinear 

momentum differential equation that resulted was precisely solved. The energy 

equation was also solved analytically in the presence of viscous internal heat 

production or absorption, as well as a first-order chemical process. The continuous 

laminar stream of a second-grade fluid across a radially stretched sheet was examined 

by Ariel [23]. The liquid's viscoelasticity was proven to cause a boundary value issue 

wherein the order of the differential equations beats the number of boundary 

conditions. For all values of the viscoelastic parameter, the solution was demonstrated 

to exist. A perturbation solution for a small viscoelastic value was found, as well as an 

asymptotic solution for a high viscoelastic parameter. Keblinski et al. [115] 

investigated the mechanisms of heat flow in nanoparticle suspensions.  

Liao [87] developed the homotopy analysis approach, a powerful and simple 

analytic tool for nonlinear problems that provided an exact result of viscous flow of 

power-law liquid above an extending surface. The explicit analytic outcomes for the 

pretended second and third order power law fluids are given by recursive equations 

having coefficient constants. In addition, an analytic equation for skin friction on the 

moving sheet was provided for actual indices of power law and when the magnetic 

field value is relatively big. In terms of physics, the magnetic field tends to increase 

skin friction, indicating that the flow is slowed. Shear-thinning liquids exhibit this 

effect more than shear thickening liquids. In the presence of radiation, Datti et al. [49] 

investigated stream of a Walters' B fluid above a non-uniform extended surface 

involving domestic heat source or sink. Temperature-dependent thermal conductivity 

was postulated. By applying a similarity transformation for the controlling PDEs, 
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ODEs were generated. Analytical and numerical techniques were used to solve these 

equations.  

Using a fourth-order Runge-Kutta algorithm and the shooting technique, Afify 

[14] explored MHD free convective stream and energy transmission across a 

stretching surface through chemical reaction. For numerous values of chemical 

reaction rates and liquids with a Prandtl number of 0.71, numerical findings for 

velocity, temperature, and concentration profiles, as well as the skin friction 

coefficient, local Nusselt number, and Sherwood number, were reported. Using the 

quasi-linearization method, Massoudi and Maneschy [105] examined the numerical 

outcomes to the stream of a second-grade liquid across a stretching surface. Rajagopal 

and Gupta [127] and Rajagopal et al. [128] investigated this problem using a 

perturbation approach. Using the similarity transformation proposed by Rajagopal et 

al. [130], Massoudi and Maneschy [105] utilized the quasi-linearization method to 

obtain approximate solutions to the relevant equations. 

 Energy transmission in an MHD stream of a micropolar fluid across an 

extending sheet involving suction or blowing via permeable surface was examined by 

Eldabe et al. [54]. Chebyshev's finite difference approach was used to solve the 

governing equations for linear momentum, rotational momentum, and energy. On the 

velocities and temperature profiles, the impacts of surface mass transfer, Prandtl 

number, magnetic field, and porous media were examined. In the presence of a 

uniform transverse magnetic field, Liu [88] looked at the momentum, heat, and mass 

transfer of a hydrodynamic liquid past a stretching sheet. Internal heat source or sink 

is comprised in the mass transmission equation, as are chemically responsive species 

of order one reactivity. The distance was expected to be a linear function of the 

concentration and temperature boundary conditions. MHD stream of a power-law 

liquid across a stretching sheet was recently described by Cortell [42], and the 

problem was numerically addressed. The literature on the shrinking sheet problem 

will now be presented.  

An oscillatory motion of a viscoelastic liquid via a stretched sheet was 

examined by Siddheshwar et al. [116]. A power series method was used to get the 

solution to the equation of motion. Unsteadiness had a significant impact on wall 

velocity and skin friction, according to the researchers. The unsteady MHD stream of 
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Maxwellian fluids atop impulsively extending sheets were examined by Alizadeh et 

al. [15], and the modelled equations were solved using the homotopy analysis method. 

Nield and Kuznetsov [45] have solved the Cheng–Minkowycz issue for natural 

convective boundary layer stream in a pervious medium saturated with a nanofluid.  

Abel et al. [92] investigated the mathematical study of MHD flow and energy 

transmission near a horizontal stretched sheet to a laminar liquid film. Using 

similarity transformation, the flow of a thin fluid film and consequent energy 

exchange from the stretching surface is examined. Using an effective shooting 

technique, the numerical solution of the resulting nonlinear differential equations was 

found. The thickness of the boundary layer is quantitatively investigated for variations 

in non-dimensional factors. Manjunatha et al. [135] investigated the influence of 

thermal radiation on stream and energy transmission in the dusty liquid across 

variable stretched surface. Khidir et al. [79] investigated the thermal-diffusion and 

viscous dissipation features of natural convection near a vertical plate immersed in a 

non-Newtonian liquid saturated non-Darcy porous medium. In a vertical channel, 

Haritha et al. [67] investigated convective energy and mass transmission in the 

nanoliquids bordered through stretched and immobile fences. From a practical 

standpoint, controlling the stretching sheet boundary layer flow is critical. Some 

liquids, such as liquid metals, nuclear fuel slurry, biological liquids, mercury 

amalgams, paper coating, lubricating oil greases, and plastic extrusions, have 

applicability in many areas both in the absence and presence of a magnetic field, 

according to Sarpakaya [147]. The application of a magnetic influence produces a 

rheostatic impact on the stream because cooling liquids are electrically 

conducting in most situations. The literature on the Casson fluid flow and 

magnetohydrodynamic (MHD) stretching sheet problem is briefly reviewed here. 

1.4.3 Casson fluid flow due to stretching sheet 

Casson fluid has been shown to be useful in a variety of applications where the 

fluid exhibits non-Newtonian behaviour with an edge shear stress. The model's utility 

can be shown in fields like medical science, such as blood flow behavior. It also 

characterizes the behavior of numerous base fluids used as coolants in the food sector, 

such as sodium alginate, Xianthen gum, and so on. Many heat conduction researchers 

have studied it extensively due to its use. The magnetohydrodynamic stream of non-
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Newtonian liquid across an exponentially pervious flinching surface was 

examined by Nadeem et al. [136]. In the presence of a uniform transverse 

magnetic field, Das [74] investigated the impact of partial slip-on continual 

boundary layer stagnation point flow of an electrically charged micropolar liquid 

imposed normally near a shrinking surface. Swati et al. [154] investigated the 

unsteady stream of non-Newtonian liquid across an expanding plate at a fixed 

temperature. The momentum equation was solved numerically using the shooting 

method, and the energy equation was subsequently solved numerically using the 

same way. Pramanik [137] explored the stream of a non-Newtonian liquid near an 

exponentially extended surface involving suction or blowing near the sheet along with 

heat transfer. Mahanta and Shaw [61] looked at three-dimensional Casson fluid flow 

near an extending surface in porous medium. The governing equations were solved 

with the help of the Spectral Relaxation method. Bhattacharyya et al. [80] studied the 

thermal boundary layer in Casson fluid flow across a pervious shrinking surface with 

varying wall temperature and radiation. The influence of magnetohydrodynamic 

(MHD) on the mixed convection stream of a Casson nanofluid across a nonlinear 

pervious stretching surface involving viscous dissipation, as well as double 

stratification and Joule heating was explored by Ramaiah et al. [131]. Ramana Reddy 

et al. [73] compared Casson and Maxwell's fluid flow near the stretching sheet in the 

presence of a steady heat source or sink and a magnetic field. Yang et al. [50] studied 

thermal transport analysis in Casson nanofluid stagnation-point flow across a 

diminishing surface involving viscous dissipation. 

1.4.4 Bioconvection in fluid flow due to nano particles and gyrotactic 

microorganisms 

The term "bioconvection" was coined by Platt [125] to explain the process of 

pattern formation in shallow suspensions of motile microorganisms. The directed 

spinning of organisms creates and maintains a macroscopic disparity in the 

concentration of bacteriological inhabitants, which is known as bioconvection. 

Bioconvection due to nanoliquids and microbes is an important exploration due to 

recent bionanomaterials producing needs. In such unstable settings, bioconvection 

flow occurs at the interface of a liquid comprising microorganisms or bacteria, and the 

boundary layer including microbes dispersed as bioconvection units, which can be 
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classed as oxytocic or gravitaxis, gyrotactic microbes. Childress et al. [40] provided a 

model for collective drive and pattern development in layered suspensions of 

negatively geotactic bacteria. The findings are compared to patterns formed by the 

ciliated protozoan Tetrahymena pyriformis. Pedley and Kessler [122]-[123] examined 

bioconvection of hydrodynamic processes in the suspension of swimming 

microorganisms and pattern development. Bees and Hill [89]-[90], [23] released a 

series of studies on the methodology for analyzing and measuring the bioconvection 

patterns created by aqueous cultures of the single-celled alga Chlamydomonas nivalis 

as a function of cell concentration, suspension depth, and time. Andras Czirok et al. 

[20] looked into the properties of the patterns during the onset of the instability and 

later during its development into a completely nonlinear convection method. Using 

the continuum model proposed by Pedly et al. [124], Ghorai and Hill [134] studied the 

occurrence and stability of periodic arrays of two-dimensional plumes in deep 

chambers. After that, the outcomes of related equations are determined by applying 

finite difference approach. Hopkins and Lisa [106] proposed a numerical approach 

and a computer model for analyzing the group dynamics of geotactic, gyrotactic, and 

chemotactic microorganisms immersed in a viscous fluid. Kuznetsov and Avramenko 

[4]-[5] investigated bioconvection in a liquid comprising of motile oxytactic, 

gyrotactic microorganisms through saturated porous media and established an 

analytical expression for the porous medium's critical permeability. The influence of 

tiny particles on the steadiness of bioconvection in a suspension of gyrotactic 

microbes in a layer of finite depth was explored by Kuznetsov and Avramenko [6]. 

Avramenko and Kuznetsov [7] looked into the stability of gyrotactic microbe 

suspension in a stacked fluid and porous layer system. Patterns generation of 

gravitactic microbe in a vertical cylinder is represented by the Navier–Stokes equation 

linked with the microorganism conservation equation, according to Alloui et al. [168]. 

These equations were numerically solved using the control volume approach. 

Bioconvection patterns suspensions of swimming microorganisms that are slightly 

denser than water, theoretical and practical advances, comprising nonlinear 

examination of the patterns, diffusion in shear streams, dimensions of cell swimming 

behaviour, and innovative efforts to formulate more concentrated suspensions were 

presented by Hill and Pedley [110]. Kuznetsov [8] investigated bioconvection in a 

system comprising both gyrotactic microorganisms and nanoparticles, concluding that 
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these microbes generate or improve nanofluid convection. Croze et al. [114] looked at 

bioconvection and cell diffusion in horizontal tubes with imposed stream. The 

patterns caused by suspensions of the gyrotactic and gravitactic green biflagellate 

algae Chlamydomonas in horizontal tubes subjected to an imposed flow are quantified 

for the first time in this experimental investigation. Kuznetsov [2] investigated a 

nanofluid including nanoparticles and oxytactic bacteria. The Galerkin solution 

provides important physical perceptions into the behaviour of this system, as well as 

confirming that the fluctuating means of volatility is achievable in a rather system. 

Aziz et al. [3] evaluated the free convection boundary layer stream past a horizontal 

flat surface embedded in a pervious medium saturated with nanofluid comprising 

gyrotactic microbes. In the presence of both nanoparticles and motile microbes, Xu 

and Pop [66] investigated a mixed convection stream of a nanofluid across an 

extending surface with steady free flow. The implications of essential physical 

parameters such as velocity, energy, nanoparticle concentration, and density of motile 

microbes, profiles are addressed, and analytical solutions with high accuracy are 

derived for the deformed equations with the usage of homotopy analysis method 

(HAM). 

Makinde and Khan [162], Das et.al [48], and Khan et al. [163] evaluated the 

impact of bioconvection constraints on the dimensionless velocity, energy, 

concentration of nanoparticle and motile microbes, as well as Sherwood, local 

Nusselt, and motile microbe counts. MHD nanofluid bioconvection caused by 

gyrotactic microbes across a convectively heated stretched surface, as well as a 

vertical sheet involving slip and chemical response via pervious intermediate. 

  The bioconvection caused by the hydromagnetic stream of a water-based fluid 

comprising nanoparticles and motile microbes near a porous vertical continual sheet 

was studied by Mutuku and Makinde [165]. The combined influence of buoyancy 

forces and magnetic fields on the interface of motile bacteria and nanoparticles 

produces bioconvection. The boundary value problem is solved using appropriate 

similarity transformation and shooting quadrature, as well as the Runge Kutta–

Fehlberg integration scheme. Hady et al. [59] reported a numerical analysis of an 

unsteady thermal bioconvection boundary layer stream of a nanofluid comprising 

motile microbes along an extending surface involving the magnetic and viscous 
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dissipation properties. An explicit finite difference method is utilized to find the 

numerical results. The thermophoresis and Brownian movement effects are conveyed 

for in the nanofluid model. The results show that each bioconvection Rayleigh 

number and magnetic parameter have a favorable impact on the density of microbes 

and dimensionless Nusselt number, whereas Eckert number and Grashof number have 

the opposite effect. Uddin et al. [95] explored the impacts of 2nd order rapidity slip, 

microorganism species slip, thermal slip, and Stefan blowing on bioconvection 

physical phenomenon stream of a nanofluid near a horizontal surface surrounded in an 

exceedingly pervious medium including the presence of an inactively restricted 

boundary values. The Chebyshev collocation method is utilized to solve the similarity 

equations numerically. A Nakamura tri-diagonal finite difference method is used to 

validate the results. 

Using an explicit finite difference approach, the numerical solution is 

achieved. The nanofluid model takes into account the effects of a variety of variables. 

Tausif et al. [157] investigated the various slip impacts on bioconvection of gyrotactic 

microbes and nanoparticles in a liquid stream. Graphs and charts are utilized to 

investigate the impacts of different slip constraints on flow characteristics. Slip 

constraints are closely associated with numerous physical aspects of the stream, 

according to the investigation. 

 The bioconvection stream of nanofluid embedded gyrotactic microbes near a 

vertical wavy cone was investigated by Siddiqa et al. [139]. The numerical findings 

obtained utilizing an implicit finite difference iterative technique, show that the 

amplitude of the wavy cone surface and half cone angle have a significant impact on 

the heat exchange coefficient, mass transmission constant, and microorganism density 

constant. The influence of Brownian movement and thermophoresis on radiative 

Casson liquid in a two-dimensional flow across a moving wedge loaded with 

gyrotactic microbes with magnetic effects were explored by Raju et al. [30]. Ramzan 

et al. [109] investigated the stream of a magneto Jeffrey nanofluid past an angled 

stretched cylinder with heat generation or absorption and thermal radiation. Thermal 

and concentration stratification effects are taken into consideration as well. 

Temperature and concentration distributions have been found to be diminishing 

functions of thermal and solutal stratification factors. Pal and Mondal [118] 
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demonstrated bioconvection due to nanofluid embedded gyrotactic microbes across an 

exponentially extended surface comprising heat radiation. Talha et al. [94] explored 

MHD stable incompressible viscous Williamson's nano fluid including exponential 

domestic heat production and motile microbes atop the extending surface. In the 

presence of a magnetic field and a heat source or sink, Aamir Ali et al. [9] explored 

the stream of Maxwell nanofluid surrounded with motile microbes over a stretched 

surface. In comparison to the case of a heat sink, the thickness and temperature of the 

thermal boundary layer in the case of a heat source have been seen to rise. Rehman et 

al. [78] investigated the interaction of motile microorganisms with nanofluid near a 

vertical stretching sheet, and also studied the influence of bioconvection Peclet 

number, Schmidt number, and the microorganism’s concentration difference 

parameter on motile gyrotactic microorganism density. The combined effects of 

convective boundary conditions and the magnetic field on the bioconvection in 

nanofluid flow with gyrotactic microbes near an expanding sheet were investigated by 

Chakraborty et al. [156]. Alzahrani et al. [53] demonstrated third-grade liquid flow 

with gyrotactic microorganisms on a horizontal porous expanding sheet involving a 

magnetic effect. Nayak et al. [91] explored the impacts of speed, concentration, motile 

microbes, and slip on the stream with a chemical consequence, finding that negligible 

values of Prandtl number intensify the magnetic influence and accelerate microbe 

distribution. Srinivasacharya and Sreenath [44] investigated the bioconvection of 

micropolar fluid in an annulus containing microorganisms in which the outer cylinder 

rotates, as well as the density of motile microbes and their slip parameter.  

Hossein Zadeh et al. [70] studied the impacts of mixed liquid stream including 

motile microbes and nanoparticles on momentum, energy, and concentration profiles 

on a horizontal cylinder with magnetic field and viscous dissipation. Hosseinzadeh et 

al. [71] investigated magnetohydrodynamic (MHD) flow on a surface with 

microorganisms and nanoparticles. Thermophoresis, thermal radiation, Brownian 

movement, bioconvection Schmidt number, Peclet number, and magnetic field all 

have an impact on concentration of microbes, skin friction coefficient, Sherwood 

number, and Nusselt number. 

Rahila Naz et al. [126] examined entropy generation dynamics in a 

magnetohydrodynamic flow of Williamson nanofluid containing gyrotactic 
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microorganisms. The Brownian motion parameter can be used to increase 

nanoparticle concentration, while the temperature difference parameter can be used to 

manage the entropy production process. Yu-Ming Chu et al. [167] looked at the 

impact of a third-grade fluid model (non-Newtonian) on a stretchy surface containing 

gyrotactic microorganisms in a steady, incompressible, and two-dimensional laminar 

flow. Larger thermophoresis parameters and Brownian movement were shown to be 

more susceptible to the thermal field and associated layer thickness. In the presence of 

a magnetic field, Fazal Haq et al. [58] investigated the flow behaviour of stratified 

Williamson nanofluid across the porous surface of a stretching cylinder containing 

gyrotactic microorganisms. In addition, a growth in the vortex viscosity constraints 

enhances the penetration of microorganisms from the sheet to the border layer and 

amplifies the density number of motile microorganisms. Zuhra et al. [145] studied the 

simultaneous stream and energy transmission of Casson and Williamson nanofluids 

across a pervious medium in the presence of gyrotactic microorganisms and a cubic 

autocatalysis chemical reaction under buoyancy forces. The convective heat exchange 

properties of MHD nanofluid flow in a three-dimensional geometry, comprising 

oxytactic motile microbes moving through a spinning cone were examined by 

Mogharrebi et al. [108].  
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CHAPTER 2 

Classification of Fluids, Governing Equations and Boundary 

Conditions 

2.1 INTRODUCTION  

The purpose of this chapter is to present the classification of fluids as well as 

the fundamental principles of fluid dynamics that apply to them. The chapter's goal is 

to go over the essential equations for the dynamics of Newtonian and Casson liquid 

due to a stretched sheet. Boussinesq approximations and the boundary layer 

approximations are thoroughly examined. The momentum and energy boundary 

conditions for stretching surface issues are also discussed. The dimensionless 

parameters that arise in the problems under consideration are also grouped together. 

2.2 Fluid State and Its Physical Characteristics 

Solid and fluid matter are the two most common types of matter. Solids can 

with stand both marginal internal tension and normal, whereas fluids can only with 

stand normal tension at rest. The stress at any point occupying in an area is referred to 

as normal stress, while the tension at any point engaging in a region is  𝑙𝑖𝑚
𝐴→0

 �𝐹
𝐴
� , 

referred to as fluid pressure. Only when the medium is continuous does this hold true. 

As a result, it is critical to explain the continuum theory, which can be described as 

below. 

Continuum Hypothesis 

 Liquids are aggregations of particles, broadly spread out for the air and 

densely spread out for the fluids, as is well known. In comparison to the molecular 

diameter, the distance between molecules is extremely large. The particles are not 

static in a pattern, but rather, flow around spontaneously. These molecules are 

constantly colliding and moving at random. When we imagine the liquid to be made 

up of discrete particles flowing at random, the computing means turn out to be 

useless, adding to the problem's complexity. To get around this problem, we assume 

the fluid is unceasingly dispersed in a specific space. A liquid constituent can be split 
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indeterminately in this way. In a particular space, they are evenly dispersed. A fluid 

element can be separated indefinitely in this way. The "Continuum Hypothesis" is the 

name given to this theory of continuity. We assume that the dimensions of a liquid 

particle are enormously insignificant in comparison to the overall dimensions 

conquered by the liquid, that the liquid particle is a physical object, and that the fluid 

density is a continuous function of place and time under the premise. As a result, 

pressure at a point in a continuum is defined as 

            P = 𝑙𝑖𝑚
𝐴→𝐴∗

 �𝐹
𝐴
�                                                                                            (2.2.1) 

In keeping with the continuum method, 𝐹 is the force normal to the surface 𝐴, 

and 𝐴∗ is the smallest area surrounding the point. In addition, the density of a 

continuum is determined by 

             𝜌 = 𝑙𝑖𝑚
𝑉→𝑉∗

�𝑀
𝑉
� ,                                                                                   (2.2.2) 

In accordance with the continuum approach, 𝑀𝑀 denotes the mass contained in 

volume 𝑉, and 𝑉∗ denotes the smallest volume surrounding the point. 

 

Homogeneity 

 In all sections of the system, the fluid characteristics are considered to be the 

same. This assumption might be broken in a suspension, for example, if the particles 

were not evenly distributed. 

Isotropy 

 When a fluid's property (pressure density, for example) is the same in all 

directions at a place, it is said to be isotropic. If a fluid's property is not the same in all 

directions, it is said to be anisotropic. 

2.2.1 Fluid State 

 Liquid, gaseous, and plasma are the three different types of fluids. Fluid 

dynamics is concerned with the first two states, while plasma dynamics is concerned 

with the third. Hydrodynamics and aerodynamics are the two corresponding branches 

of fluid dynamics, the former dealing with water and other fluids and the latter 
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employing an air and other gases. Another common classification is based on the 

practical significance of fluid friction. All tangential strains induced by friction are 

ignored in the "perfect fluids." The term "real fluids" refers to situations where 

friction is taken into consideration appropriately. 

2.2.2 Ideal Liquid or Inviscid Liquid 

  "An ideal liquid has no other properties beyond density." When such a fluid 

flows, no resistance is encountered”. In other words, Inviscid liquids are those where 

two connecting surfaces do not go through tangential force, but constraint one another 

using normal force, as soon as the liquids are in movement. This translates to 

"inviscid liquid has no internal resistance to shape change." Whether the liquid is at 

rest or in movement, the normal force at every point of a perfect liquid is identical in 

all directions. Prefect liquids or frictionless liquids are other names for inviscid fluids. 

Nature does not have such a fluid. The mathematical analysis is made easier by the 

assumption of perfect fluids. Under some conditions, however, low viscosity fluids 

like air and water can be classified as ideal liquids. 

2.2.3 VISCOUS OR REAL LIQUID 

"Viscous liquids or real liquids have surface tension, viscosity, and compressibility in 

addition to density" or "Viscous fluids or real fluids suffer tangential as well as 

normal tensions when they are in movement." This is also fact adjacent to a liquid-

soaked solid wall. The attribute of a real fluid imposing normal tension and tangential 

while in movement is known as viscosity. During the motion of a viscous liquid, 

internal resistance is very essential. Internal resistance to fluid motion is one of the 

most essential features of viscous fluids. Because viscosity is a property of real fluids, 

it also demonstrates some resistance to changing their shape. The following two 

groups of viscous or actual fluids are distinguished. 

i. Newtonian Liquid    

ii. Non-Newtonian Liquid 
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2.2.4 NEWTONIAN LIQUIDS 

 Newtonian fluids follow Newton's law of viscosity, which stipulates that 

"shear tension is proportional to velocity gradient." As a result, we obtain a straight 

line passing through the origin when plotting shear stress versus rate of strain. This 

curve is known as the liquid's Rheogram or flow curve. For a Newtonian liquid, the 

equation of constitutive is 

                                           τij = �2
3

 µ𝑞𝑘,𝑘� δ𝑖𝑗 +  µ�𝑞𝑖,𝑗 + 𝑞𝑗,𝑖�    ,                          (2.2.4) 

where τij  are the components of stress, δ𝑖𝑗  are the Kronecker's delta tensor 

components, 𝑞𝑖 are the components of velocity, and µ is the viscosity coefficient.  

2.2.5 NON-NEWTONIAN LIQUIDS 

The term "non-Newtonian liquid" refers to a liquid that does not satisfy Newton's law 

or has a non-linear flow curve. This indicates that the viscosity of a non-Newtonian 

liquid is dependent on other parameters such as shear rate, the apparatus in which the 

liquid is housed, and even the liquid's historical history, rather than being constant at a 

particular temperature and pressure. Rheology is the study of non-Newtonian liquids. 

Based on the non-linearity of the stream curve and the amount of time the liquid has 

been sheared, non-Newtonian liquids are classified as follows. 

 Non-Newtonian liquids Classification: 

Non-Newtonian liquids with non-linear stream curvatures can be classified into three 

groups. 

i. Non-Newtonian liquids are ones whose fleece size at any point is the relation of 

the shearing tension near the place and does not depend on anything else. 

ii. There is a more sophisticated structure where the relationship between shear rate 

and shear tension is dependent on the length of time the liquid has been sheared 

or its previous motion history. Non-Newtonian fluids are a class of complex fluid 

systems that are time dependent. 
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iii. There are several fluid systems that display partial elastic recovery after 

deformation and have features of both solids and fluids. These fluid systems are 

referred to as viscoelastic liquids. 

Time-independent non-Newtonian liquids 

The rheological equation of the form governs the behavior of these liquids, 

                                             𝑒𝑖𝑗 = 𝑓�𝜏𝜏𝑖𝑗�,                                                              (2.2.5)  

i.e., In such liquids, the rate of strain is independent of the time it takes to shear the 

liquid. Depending on the nature of the function 𝑓 , these liquids can be categorized into 

four types (see Skelland, 1967): 

 

 

 

 

     

 

Figure.2.2.1: Rheogram 

1 Bingham plastic: The shear stress axis intersects the flow curve, which is a 

straight line. The equation for these liquids is as follows: 

                           𝜏𝜏𝑖𝑗 = �𝜇 + 𝜏𝑦

�𝑒𝑖𝑗𝑒𝑖𝑗�
1/2� 𝑒𝑖𝑗 ,                                           (2.2.6) 

            Where 𝜇 the coefficient of viscosity is,𝜏𝜏𝑑𝑑 is the yield stress, 𝜏𝜏𝑖𝑗  is shear stress              

and 

                                          𝑒𝑖𝑗 = 𝜕𝑞𝑖 
𝜕𝑥𝑗

+ 𝜕𝑞𝑗 
𝜕𝑥𝑖

. 

2 Casson fluids have a yield stress. The constitutive equation for these liquids is 

                                        𝜏𝜏𝑖𝑗 = �𝑘𝑐2 + 𝜏𝜏𝑑𝑑 +
𝑘𝑐𝜏𝑦

1/2

�12∑ ∑ 𝑒𝑐𝑑𝑑𝑐 𝑒𝑐𝑑�
1/2� 𝑒𝑖𝑗  ,                        (2.2.7) 
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                  where 𝑘𝑐2 , is the Casson's viscosity constant that applies to a certain liquid 

and 𝜏𝜏𝑑𝑑 is the yield stress. 

2.3 Bioconvection Due to Nanofluid Containing Gyrotactic 

Microorganisms 

The Thermal characteristics of nanofluids are quite good. When gyrotactic 

microorganisms are added to a nanofluid, it improves heat transfer, mixing, and the 

nanofluid's thermal properties. This is due to the turn over impact and the formation 

of spontaneous patterns caused by the motile microbes' biased migration as they seek 

better environments. As a result, nanofluid bioconvection has a wide range of direct 

applications in gas modeling and oil-bearing microbial improved oil revival, as well 

as the pharmaceutical business. The synthesis of biofuels from microorganisms, 

particularly hydrogen or biodiesel, has sparked considerable attention. For these 

alternative fuels to be commercially competitive, existing bioreactors must be refined. 

Despite the fact that the field of nanofluids has received a lot of attention, the qualities 

of swimming cell suspension have received little attention. More exploration of heat 

exchange in the nanofluid bioconvection is needed to understand the factors that 

improve heat transmission. 

2.3.1 Nanofluids 

In the recent discoveries of nanofluids, cooling technology had spawned a 

solution. This is because, when compared to normal liquids, nanofluids exhibit 

negligible congestion, superior convective and conductive heat exchange capabilities. 

Nanofluids are useful in a variety of industrial applications due to their cooling 

properties. Nuclear reactors and computer coolants are two applications where 

nanofluids are used. The broad range of claims for nanofluids is the primary motivator 

for the study in this area. The use of nanofluids in some microsystems has sparked a 

lot of attention recently, according to recent papers. Micro-reactors, micro-heat pipes, 

and micro-channel heat sinks are only a few of the microsystems available. 

Nanomaterials have also demonstrated their ability to be used in a variety of bio-

microsystems, including enzyme biosensors. The development of chip-size micro-

devices for assessing nanoparticle toxicity has also sparked a lot of attention. 

Nanomachines, nanostructures, nanofibers, nanowires, and nanoparticles are some of 
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the potential application areas for nanomaterials available in biotechnology. 

Nanofluids are employed to conserve both material and heat in the exchanger. 

Biological sensors, pharmaceuticals, and agriculture are just a few of the applications 

that might be developed by combining biotechnology components with nanofluid. 

2.3.2 Brownian Motion 

Brownian motion is caused when nanoparticles travel through the molecules 

of the base fluid and collide with nearby particles. When two particles collide, the 

heat transfer mode can boost the nanofluid's overall thermal conductivity. A diffusive 

path is the result of Brownian motion. It is clear that as the temperature rises, the 

diffusivity rises, resulting in a rise in thermal conductivity. 

2.3.3 Thermophoresis  

Particle thermophoresis, which is analogous to thermal diffusion, is a non-

uniform mixed-stream influence between mass and energy transmission in simple 

fluid combinations (the Soret effect). The scattered particles exhibit a continuous drift 

velocity on top of Brownian motion when a colloidal disturbance is to be found in the 

temperature gradient, with the thermophoretic motion being referred to as the thermal 

diffusion coefficient. The particles subsequently concentrate on the cold or hot side, 

resulting in a steady state concentration gradient for low particle concentration, 

depending on the indication. 

2.3.4 Viscous Dissipation 

The effects of viscous dissipation are generally only noticeable in high viscous 

flows or when the velocity distribution has a large gradient. In high-velocity flows, 

such steep slopes occur at the macroscale. Even with low-velocity flows, such steep 

gradients can occur due to the small size of microscale devices. As a result, viscous 

dissipation in microchannels should be taken into account. Viscous dissipation exists 

as a source term in the liquid stream and creates temperature distribution variance due 

to the conversion of the fluid's kinetic motion to thermal energy. 

2.3.5 Gyrotactic Microorganisms 

In recent years, the study of natural pattern development in motile microbe 

suspensions has gained interest. These organisms have developed millions of years 
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ago, whether they're in our bellies or changing the global climate through 

photosynthesis in the sea. The power of microorganisms could be harnessed. Alcohol 

is produced as an unwanted byproduct by some algae and bacteria, but it is a valuable 

commodity to humans, not least because it may be utilized as a fuel. Plastics, 

fertilizers, waste treatment plants, and solid fuels can all benefit from algae and their 

products. The goal of this thesis is to explain why swimming microbe suspensions 

have certain patterns. 

A living being that can grow, digest food, and reproduce on a regular basis is known 

as  "organism." A single cell or a multicellular creature could be the source of the 

problem. Microorganisms are tiny organisms that can't be seen with the naked eye. 

Organisms are classified into five different groups: prokaryotes, protists, fungi, plants, 

and animals. 

2.3.6 Bioconvection 

Bioconvection is a phenomenon in which motile microbe suspensions produce 

spontaneous flow patterns. Nanofluids are connected to this phenomenon. Motile 

bacteria in a nanofluid can spin dynamically in response to provocations such as 

chemical(s) attraction, light, and gravity. When motile microbes are added to a 

deferral, mass transfer and mixing are two of the advantages that are gained. Gas 

modeling and the pharmaceutical industry, oil-bearing microbial enhanced oil 

recovery, microfluidic devices, sedimentary basins, and many more direct uses of 

nanofluid bioconvection are just a few examples. The production of biofuels from 

microorganisms, particularly hydrogen and biodiesel, has piqued interest. Existing 

bioreactors must be refined in order for these alternative fuels to be commercially 

competitive. The field of nanofluids has been widely explored due to their numerous 

uses. However, in biotechnology applications, the characteristics of swimming cell 

suspension have been under-utilized or completely neglected. In light of the rising 

demand for nanoliquids and the various prospective applications of bioconvection in 

nanofluid, this project intends to investigate bioconvection of a non-Newtonian 

nanofluid across a stretching sheet with gyrotactic microorganisms. 
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2.4 Fundamental Equations of Fluid Dynamics in Vectorial Form  

 The fundamental equations of fluid dynamics are a set of nonlinear partial 

differential equations that must be solved to investigate any liquid motion. The basic 

equations that control all flow phenomena are listed here:  

1. Physical principle (Law of conservation of mass): It is impossible to produce 

or destroy mass.  

Equation of continuity: 

  𝜕𝜌
𝜕𝑡

+ ∇. (𝜌�⃗�) = 0,                                                      (2.4.1) 

            Where, �⃗� is the velocity of the fluid and 𝜌 is the fluid density. 

2. Physical principle (Law of conservation of momentum): The overall force 

acting on a liquid mass confined in a control volume in space is same as that 

of rate of change of linear momentum over time. 

Equation of motion:  

  𝜌 𝐷𝑞�⃗
𝐷𝑡

= 𝜌�⃗� − ∇p + ∇. τ,                                                                           (2.4.2)  

 where, p and τ denotes viscous stress tensor (Only deviatoric strains are 

present) and the liquid's pressure. The operator  𝐷
𝐷𝑡

= 𝜕
𝜕𝑡

+ �⃗�.∇   is the physical 

derivative. The equation of motion (2.4.2) is also known as the Navier-Stokes 

equation. 

3. Physical principle (Law of conservation of energy): The rate of raise in the 

internal energy is equal to sum of heat supply through surface, work done by 

friction and dissipated energy. 

 Equation of energy:  

            𝜌 𝐷𝑈
𝐷𝑡

= −∇.𝑄�⃗ − 𝑝∇. �⃗� + 𝜑,                                                                     (2.4.3)  
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Here, internal energy is denoted as,  , 𝑄�⃗ = −𝑘∇T  (Fourier’s law) represents direction 

of energy flow, 𝜑 = ∇. (τ�⃗�)− �⃗�∇. τ  is the function of dissipation. The fundamental 

equations of fluid dynamics are the three equations listed above (see Tritton, 1979; 

Yuan, 1970). In the case of a stretching sheet problem, we may now simplify these 

equations. 

2.5 Basic Equations of Stretching Sheet Problem 

Conservation of mass  

The differential version of the continuity equation is represented by the equation 

(2.4.1). In the concerns discussed in this thesis, the concentration of the conserving 

liquid is assumed to be constant, hence the phase derivative of concentration in 

equation (2.4.1) disappears, and the continuity equation takes the final form presented 

below.    

∇. �⃗� = 0 ,                                                         (2.5.1) 

Conservation of linear momentum  

Before proceeding, we make the following assumptions: 

1. The cooling liquid flows because the sheet is stretched, implying that there is 

no pressure gradient driving the liquid i.e.,∇𝑝𝑚𝑜𝑡 = 0.  

2. It is believed that the flow will be steady i.e., 𝜕
𝜕𝑡

= 0 .  

The momentum equation (2.4.2) assumes the following form using the above 

assumptions. 

 𝜌(�⃗�.∇)�⃗� = ∇𝑝 + 𝜌�⃗� + ∇. 𝜏𝜏  ,                                           (2.5.2) 

For Newtonian, equations (2.2.1) provide the stress tensor 𝜏𝜏. 

Conservation of energy  

We don't detect the impacts of viscous dissipation, internal heat production, or 

radiation on velocity profiles except buoyancy is present since the temperature has no 
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influence on the velocity profile owing to the hypothesis of a homogenous liquid. 

These affects are only obvious on the temperature profile if there is a one-way 

connection between temperature and velocity; if there is a two-way coupling, the 

impacts are visible on both the velocity and temperature profiles. Furthermore, 

viscoelasticity manifests itself indirectly rather than explicitly in energy conservation. 

Using the flow assumptions and equation (2.4.1), the heat transfer equation (2.4.3) 

with internal energy 𝑈 = 𝐶𝑝𝑇𝑇 is produced. 

      𝜌𝐶𝑝(�⃗�.∇)𝑇𝑇 = k∇2𝑇𝑇 + 𝜑,                                                              (2.5.3) 

Both Newtonian and non-Newtonian models use the aforementioned type of energy 

conservation. Similarly, for incompressible fluids, the energy equation will be as 

follows  

  𝜌𝐶𝑝 �
𝜕𝑇
𝜕𝑡

+ (𝑣.∇)𝑇𝑇� = 𝜏𝜏𝑖𝑗 . L + k∇2𝑇𝑇 + 𝜌𝑟ℎ                                          (2.5.4) 

Here, T stands for temperature, and , 𝜏𝜏𝑖𝑗. 𝐿 stands for viscous dissipation, k for 

thermal conductivity, 𝑟ℎ for radiative heating, and the above equation assumes the 

form in the absence of radiative heating, 

                 𝜌𝐶𝑝 �
𝜕𝑇
𝜕𝑡

+ (𝑣.∇)𝑇𝑇� = 𝜏𝜏𝑖𝑗. L + k∇2𝑇𝑇  ,                      (2.5.5) 

2.6 Magnetohydrodynamic (MHD) Equations 

When the displacement currents and free charges are ignored, the basic equations of 

MHD are as follows, 

 ∇.𝐸�⃗ = 0  , 

                 ∇.𝐻��⃗ = 0  , 

                  ∇ × 𝐸�⃗ = −𝜇𝑚
𝜕𝐻
𝜕𝑡

  ,                                                (2.6.1)  

       ∇ × 𝐻��⃗ = 𝐽  , 

       ∇. 𝐽 = 0  ,    
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here, 𝐸�⃗  denotes electric field, 𝐻��⃗  denotes magnetic field, 𝐽 is denotes moment density  

and 𝜇𝑚 is the magnetic viscosity. The Maxwell equations are the MHD equations 

listed above. The density at the moment 𝐽  is given by, Ohm’s law, in the following 

form: 

𝐽 = 𝜎�𝐸�⃗ + 𝜇𝑚�⃗� × 𝐻��⃗ �,                                                                        (2.6.2)  

When the conduction current 𝜎𝐸�⃗   is negligible compared to 𝜎𝜇𝑚�⃗� × 𝐻��⃗   Ohm’s law 

gives  

 𝐽 = 𝜎𝜇𝑚�⃗� × 𝐻��⃗  ,                                               (2.6.3)  

When the magnetic Reynolds number 𝑅𝑚 is of less magnitude, the Lorentz force takes 

the form  

                 𝜇𝑚𝐽 ��⃗ × 𝐻��⃗ = 𝜎𝜇𝑚2 𝐻02𝑞  ,                                              (2.6.4) 

Where 𝐻0 is the applied magnetic field ,we now go over two key approximations 

utilized in the theoretical analysis of stretching sheet problems. 

2.7 Approximations 

The following approximations were used to get the fundamental equations: 

2.7.1   Boundary layer approximation 

Ludwig Prandtl, a German scientist, proposed the concept of laminar boundary 

layers in 1904. Prandtl proposed in his study that the flow around a solid mass may be 

divided into two sections for liquids with extremely low viscosity: "liquid motion 

with very small friction." 

i. The boundary layer is a very thin layer in the immediate vicinity of the body 

that is thought to be dominated by viscous effects. 

ii. Outside of this layer, the viscous effects may be deemed minimal, and the 

liquid is called inviscid. The Navier-Stokes equations are streamlined to a 
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theoretically flexible model using this hypothesis, and these equations are 

referred to as boundary layer equations. 

2.7.2 Boussinesq Approximation  

If the flow is impacted by gravity, the Boussinesq approximation is utilized. The 

liquid is acted upon by gravity as a body force i.e., �⃗� = 𝜌�⃗� . Consider the most 

fundamental version of the Navier-Stokes equation for a Newtonian liquid, which is 

required for the Boussinesq approximation explanation. 

         𝜌 𝐷𝑞�⃗
𝐷𝑡

= −∇𝑝 + 𝜌�⃗� + 𝜇∇2�⃗� ,                                                                  (2.7.1) 

If 𝑝 and 𝜌  are now perturbed about the values of  𝑝𝑠𝑡𝑎𝑡 and 𝜌𝑠𝑡𝑎𝑡in a reference 

condition of hydrostatic equilibrium where ∇𝑝𝑠𝑡𝑎𝑡 = 𝜌𝑠𝑡𝑎𝑡 �⃗� (i.e., one sets 𝑝 =

𝑝𝑠𝑡𝑎𝑡 + 𝑝′  and 𝜌 = 𝜌𝑠𝑡𝑎𝑡 + 𝜌′ the above equation becomes 

      (𝜌𝑠𝑡𝑎𝑡 + 𝜌′) 𝐷𝑞�⃗
𝐷𝑡

= −∇𝑝′ + 𝜌′�⃗� + 𝜇∇2�⃗�,                                                 (2.7.2) 

This equation means that in determining the gravitational effect, only changes in 

density 𝜌′  from some standard values matter. The density variation 𝜌′  is assumed to 

be minimal in comparison to 𝜌𝑠𝑡𝑎𝑡 in the approximation being considered currently. 

We get the following when we rewrite the previous equation. 

                  �1 + 𝜌′
𝜌𝑠𝑡𝑎𝑡

� 𝐷𝑞�⃗
𝐷𝑡

= − 1
𝜌𝑠𝑡𝑎𝑡

∇𝑝′ + 𝜌′

𝜌𝑠𝑡𝑎𝑡
�⃗� + ν∇2�⃗� ,                                     (2.7.3) 

When 𝜌′ is insignificant in comparison to 𝜌𝑠𝑡𝑎𝑡, the density ratio 𝜌′
𝜌𝑠𝑡𝑎𝑡

  

,Compared to a liquid density 𝜌𝑠𝑡𝑎𝑡, it functions as a tiny adjustment to inertia, 

However, in the context of buoyancy, this ratio is crucial. 

Boussinesq [27a] approach entails ignoring density change in the inertia term 

while keeping it in the buoyancy term. Variations in liquid characteristics are also 

ignored in this approximation when viscosity and diffusion are factored in. Other 

constraints are required in compressible fluids, and the term 'Boussinesq 

approximation' is frequently used to describe these. Spiegel and Veronis [152a] go 

into great length on these topics, and only the conclusions will be quoted here. To 
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begin, potential density must be substituted for density. Small density deviations from 

a standard 𝜌𝑠𝑡𝑎𝑡 are limited by two factors: the vertical scale of the average movement 

should be significantly lower than the scale height, and varying density deviation 

owing to local pressure discrepancies should be minimal. The last of the extra criteria 

is the most essential; it means that the liquid can be viewed as incompressible, which 

means that sound and shock waves are excluded. Finally, in an unstable flow, the ratio 

of length to duration of any variation ought to be significantly smaller than the sound 

velocity, to confirm that evidence regarding pressure variations is delivered efficiently 

and instantly, as it would be in an incompressible viscous fluid.  

2.8 Basic Equations after Approximations 

Equation of Continuity 

 For a two-dimensional stream we have  �⃗� = (𝑢, 𝑣, 0) , and therefore the equation of 

continuity equation (2.4.1) takes the following form: 

 𝜕𝑑𝑑
𝜕𝑥

+ 𝜕𝑣
𝜕𝑑𝑑

= 0,                                            (2.8.1) 

Equation of motion  

In the case of a linear stretching sheet problem, we get the equation of motion, 

which recovers the other two horizontal and vertical problems. We must employ both 

of the previously mentioned approximations. It is worth noting that, the velocity along 

the 𝑥-axis in the linear stretching sheet problem is considered to be  𝑢 = 𝑏𝑥. In 

component form, we express the equation (2.4.2) as follows: 

𝜌 �𝑢 𝜕𝑑𝑑
𝜕𝑥

+ 𝑣 𝜕𝑑𝑑
𝜕𝑑𝑑
� = [∇𝑝 + 𝜌�⃗�]𝑥 + �𝜕𝜏𝑥𝑥

𝜕𝑥  
+ 𝜕𝜏𝑥𝑦

𝜕𝑑𝑑  
�  ,                                 (2.8.2) 

𝜌 �𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣
𝜕𝑑𝑑
� = [∇𝑝 + 𝜌�⃗�]𝑑𝑑 + �𝜕𝜏𝑦𝑥

𝜕𝑥  
+ 𝜕𝜏𝑦𝑦

𝜕𝑑𝑑  
� ,                                 (2.8.3) 

By considering the stress-rate-of-strain relationship for Newtonian and non-

Newtonian cooling liquids, we can now particularize the equation of motion.  

Equation of momentum for stretching surface issue including a Newtonian and 

non-Newtonian fluids: 
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Equation of motion can be recast in the form by means of the definition of stress 

tensor for a Newtonian liquid from equation (2.2.1). 

𝑢 𝜕𝑑𝑑
𝜕𝑥

+ 𝑣 𝜕𝑑𝑑
𝜕𝑑𝑑

= 𝜈 �𝜕
2𝑑𝑑

𝜕𝑥2
+ 𝜕2𝑑𝑑

𝜕𝑑𝑑2
� + 𝜈 𝜕

𝜕𝑥
�𝜕𝑑𝑑
𝜕𝑥

+ 𝜕𝑣
𝜕𝑑𝑑
� ,                     (2.8.4) 

𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣
𝜕𝑑𝑑

= 𝜈 �𝜕
2𝑣

𝜕𝑥2
+ 𝜕2𝑣

𝜕𝑑𝑑2
� + 𝜈 𝜕

𝜕𝑑𝑑
�𝜕𝑑𝑑
𝜕𝑥

+ 𝜕𝑣
𝜕𝑑𝑑
� ,                                      (2.8.5) 

where the pressure gradient ∇𝑝 is assumed to be zero. Thus the equation can also be 

simplified for two-dimensional Newtonian fluid flow as 

                𝑢 𝜕𝑑𝑑
𝜕𝑥

+ 𝑣 𝜕𝑑𝑑
𝜕𝑑𝑑

= 𝜈 �𝜕
2𝑑𝑑

𝜕𝑑𝑑2
� ,                        (2.8.6). 

For the non-Newtonian fluid Casson fluid model is used in our study and the equation 

of motion can be taken in simplified form as 

𝑢 𝜕𝑑𝑑
𝜕𝑥

+ 𝑣 𝜕𝑑𝑑
𝜕𝑑𝑑

= 𝜈 �𝛽𝛽 + 1
𝛽
� �𝜕

2𝑑𝑑
𝜕𝑑𝑑2

�,                                                               (2.8.7) 

where  𝛽𝛽 is the Casson fluid parameter            

Equation of energy 

𝜌𝑐𝑝 �
𝜕𝑇
𝜕𝑡

+ 𝑢 𝜕𝑇
𝜕𝑥

+ 𝑣 𝜕𝑇
𝜕𝑑𝑑
� = 𝑘 �𝜕

2𝑇
𝜕𝑑𝑑2

�+ 𝜇𝜑  ,                    (2.8.8) 

For two-dimensional steady incompressible fluid flow, the boundary layer energy 

equation is as follows: 

𝜌𝑐𝑝 �𝑢
𝜕𝑇
𝜕𝑥

+ 𝑣 𝜕𝑇
𝜕𝑑𝑑
� = 𝑘 �𝜕

2𝑇
𝜕𝑑𝑑2

� + 𝜇𝜑 ,                      (2.8.9) 

Concentration of Nanofluids 

 It states that the entire species concentration of the framework beneath thought 

is always consistent. The mass flux based on the thermophoretic dissemination as well 

as the Brownian movement is given by. 

𝑗 = 𝑗𝑇 + 𝑗𝐵 = 𝜌𝐷𝐵∇𝐶 − 𝜌𝐷𝑇
∇𝑇
𝑇∞

   ,                     (2.8.10) 
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The condition for mass exchange within the absence of chemical response is generally 

presented as below 

 𝑑𝑑𝐶
𝑑𝑑𝑡

= − 1
𝜌
∇ ∙ 𝑗  ,                       (2.8.11) 

Therefore, equation of mass exchange takes the form 

𝜕𝐶
𝜕𝑡

+ 𝑣.∇𝐶 = ∇. �𝐷𝐵∇𝐶 + 𝐷𝑇
∇𝑇
𝑇∞
�     ,                               (2.8.12) 

Concentration of Microorganisms 

 There exist three major components of microorganism exchange that is plainly 

visible convection, irregular movement of microorganisms and self-moved 

swimming. The flux 𝑗1 of microorganisms is characterized as 

 𝑗1 = 𝑛𝑉 + 𝑛𝑊𝑐�̂� − 𝐷𝑚∇𝑛    ,                     (2.8.13) 

where 𝑛𝑉 is the flux due to advection, 𝑊𝑐�̂� is the average relative swimming velocity 

and 𝐷𝑚 is the diffusivity of microorganisms. The governing microorganism equation 

can be expressed as follows 

  𝜕𝑛
𝜕𝑡

= −∇ ∙ 𝑗1   ,                       (2.8.14) 

Where 𝑗1   is the microorganisms flux. 

 

2.9 Boundary Conditions 

 The fluids mostly interact with their surroundings via shared limits. Boundary 

conditions are the outcome of mathematically expressing these boundary interactions. 

As a result, boundary conditions are limitations insisted on the conservation relations 

to define how the field under investigation imitates to its surroundings. As a result, 

boundary conditions are mathematical explanation of the interactions at the boundary 

that come from nature. These criteria are automatically applied once a system or a 

stream field is selected. Indeed, if boundary conditions aren't evident, the system's 

borders may not be natural, resulting in an ill-posed mathematics issue. The boundary 

surroundings may include movement, boundary values of field variables, rate of mass, 
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external stress, momentum flux, and relationships between them. In addition to 

boundary requirements, starting conditions are required when solving problems 

involving the time evolution of flow fields. 

 The number of boundary conditions required is determined by the type of the 

presiding partial differential equations. In general, elliptic equations need boundary 

requirements on all sides of the boundary, hyperbolic equations require boundary 

conditions upstream but not downstream, and parabolic equations require initial 

conditions and boundary conditions everywhere except downstream. 

Boundary Conditions on Velocity 

The type of the liquid stream and the geometry of the boundary wall affect the 

boundary conditions on velocity. We explore a constant, incompressible Casson fluid 

passing across a flat elastic sheet in this thesis. The surface is extended with a speed 

proportional to the distance from the origin 𝑥 = 0 by applying two equal and opposite 

forces along the 𝑥-axis. The following are the mathematical representations of 

velocity boundary conditions:  

𝑢 = 𝑏𝑥, 𝑣 = 0    𝑎𝑡     𝑦 = 0 

𝑢 → 0,    𝜕𝑑𝑑
𝜕𝑑𝑑
→ 0    𝑎𝑠𝑠     𝑦 → ∞,                                                              (2.9.1) 

 

THERMAL BOUNDARY CONDITIONS 

The thermal boundary conditions are influenced by the type of heating process 

used. The prescribed surface temperature was taken into account in our research (PST 

Case). The following is a mathematical depiction of such temperature boundary 

conditions: 

𝑇𝑇 =  𝑇𝑇𝑤 = 𝑇𝑇∞ + 𝐴 �
𝑥
𝑙
�
𝜆1
𝑎𝑡  𝑦 = 0, 

 𝑇𝑇 → 𝑇𝑇∞      𝑎𝑠𝑠       𝑦 → ∞,                                                         (2.9.2) 
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2.10 Dimensionless Parameters 

Every physical problem entails the measurement of physical quantities in 

various units. The physical problem, on the other hand, should not be affected by the 

unit of measurement. The dimensions of each physical quantity are written down in 

terms of fundamental units in dimensional analysis of any problem. We may then 

generate non-dimensional numbers by dividing and rearranging the various units. 

A dimensional analysis of any issue provides data on the qualitative behaviour 

of the physical problem. We may use the dimensionless parameter to understand the 

physical significance of a problem-related phenomena. When it comes to obtaining 

dimensionless parameters, there are usually two options (i) The inspectional analysis 

(ii) The dimensionless analysis. 

The latter approach was adopted in this thesis. Using certain dependent and 

independent characteristic values, the basic relations are constructed dimensionless in 

this manner. Certain dimensionless numbers occur as coefficients of various terms in 

these equations as a result of this procedure. The following sections discuss some of 

the dimensionless parameters that were employed in this thesis. 

PRANDTL NUMBER 

Non-linear convection is the method of thermal energy release that is related 

with a wide range of events in the convection problem. The motion is based on the 

Prandtl number, which is defined as 

𝑃𝑃𝑟𝑟 = 𝑣𝑖𝑠𝑐𝑜𝑑𝑑𝑠 𝑓𝑜𝑟𝑟𝑐𝑒
𝑡ℎ𝑒𝑟𝑟𝑚𝑎𝑙 𝑓𝑜𝑟𝑟𝑐𝑒

= 𝜇𝑐𝑝
𝐾

. 

Chandrasekhar Number 

Chandrasekhar number is represented by  𝑞 and is defined as the square of the 

Hartmann number  

𝑞 = 𝑀𝑀𝑛2 = 𝜎 𝜇𝑚2  𝐻02

𝜌𝐶
. 

 

 

 

 

39 



                                                                                  

Eckert Number  

The immeasurable quantity Eckert number is termed as 𝐸𝑐 and is defined as 

𝐸𝑐 = 𝑏2𝑙2

𝐶𝑝𝐴
. 

Where 𝑏 , 𝑙 ,𝐶𝑝  are some velocity, characteristic length, and specific heat at constant 

pressure reference values, respectively. 

Radiation Parameter          

 𝑁 = 𝐾𝐾∗

4𝜎𝑇∞3  . 

Here, the Stefan-Boltzmann constant is represented by 𝜎 and the absorption 

coefficient is denoted by 𝐾∗,  𝑇𝑇∞  is the temperature far away from the wall and the 

thermal conductivity of the fluid is denoted by 𝐾. 

Skin Friction 

We may compute the viscous drag, commonly known as skin friction, by 

integrating the boundary layer equations and obtaining the velocity distribution and 

the position of the point of separation. The shearing tension on the wall is determined 

by 

𝜏𝜏0 = 𝜇 �
𝜕𝑢
𝜕𝑦
�    𝑎𝑡  𝑦 = 0. 

In the case of two-dimensional flow, the viscous drag is 

𝐷𝜌 = 𝑏 ∫ 𝜏𝜏0 𝑐𝑜𝑠𝑠 𝜑 𝑑𝑠𝑠
𝑙
0  . 

The height of the cylindrical body is denoted by 𝑏. 𝑠𝑠 is the co-ordinate measured 

along the surface, and 𝜑 is the angle between the tangent to the surface and the free 

stream velocity U. 
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Nusselt Number 

The Nusselt number is the most essential dimensionless parameter in heat 

exchange issues, and it is defined as 

𝑁𝑑𝑑 = −ℎ
(𝑇𝑤−𝑇∞)

�𝜕𝑇
𝜕𝑑𝑑
�
𝑑𝑑=0

. 

Where, (𝑇𝑇𝑤 − 𝑇𝑇∞) is the temperature differential between the fluid and the wall and ℎ 

is a characteristic length. This dimensionless quantity is defined as the ratio of actual 

heat exchange rate to the rate at which heat would be transmitted by conduction alone 

for a given temperature differential between the plates. 

Lewis Number 

The Lewis number is named after Warren Lewis, who proposed the concept in 

1939. It refers to the relationship between the Prandtl and Schmidt numbers. When 

heat and mass transmission occur at the same time, the Lewis number is critical. It can 

be stated as follows 

𝐿𝑒 = 𝛼
𝐷

  . 

Where 𝛼 and 𝐷 are the thermal and mass diffusivity, respectively. 
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CHAPTER 3 

Casson Fluid Flow Due to Stretching Sheet with Magnetic 
Effect and Variable Thermal Conductivity 

3.1 INTRODUCTION 

  Theoretical study of Casson fluid flow across a linear stretching 

surface under the sway of magnetic effect is carried out in this chapter. The study of a 

continual stream of viscous incompressible liquids across a steady stretching surface 

is fascinating, and similar flow situations are emerging in a number of manufacturing 

processes, including desolidifying metallic products in a freezing bath process, 

ejection of plastic films, and forcing polymer ply through a dye to form polymer ply 

with a desired cross section. During the deposition of such polymer ply, the slit 

creates the mix, which is then stretched to the proper thickness, and the sheet 

solidifies as it travels through the cooling system, resulting in a well-graded output. 

The idiosyncrasies of ply appear to be controlled by heat and mass transmission 

contained by the ply and fluid. The stretching sheet develops a thermal and 

mechanical bond with the medium fluid during manufacture. Sakiadis [141] was the 

first to introduce a boundary layer flow across a continuous solid slab that was 

moving at a steady velocity. Crane [43] developed a solution for the two-dimensional 

incompressible boundary layer flow of adhesive fluid created by a stretching plate. 

This flow problem had already been employed in a variety of physical situations. 

Magyari and Keller [99] used both exact and approximating techniques to 

attempt the boundary layer stream issue on an exponentially extending surface with 

ascending temperature diffusion. MHD Casson liquid near a pervious linearly flexible 

plate was explored by Nadeem et al. [136]. The impacts of MHD boundary layer 

stream of Casson fluid over stretching and shrinking surface with wall mass 

transmission were explored by Bhattacharya et al. [26] using an analytical solution. 

Mahanta and Shaw [102] explored three-dimensional Casson fluid streams via a 

pervious linearly stretched surface with a convective boundary requirement using the 

Spectral Relaxation Method. The analytical solution of convective energy and mass 

transport of a nanoliquids confined by stretched and immobile borders in a 

perpendicular channel was proposed by Haritha et al. [67]. The influence of wall 
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characteristics on the diffusion of a solute in the peristaltic movement of a Newtonian 

liquid was studied by Sankad and Dhange [146]. The fluid conditions of boundary 

layer Casson fluid stream across a nonlinearly extending slab including viscous 

dissipation are invented by Gangadhar et al. [62]. MHD convective flows of Casson 

fluid across a nonlinear elastic sheet with temperature-dependent viscosity and 

thermal conductivity were examined by Abderrahim [10] using a novel mathematical 

technique. Krishna et al. [93] studied the MHD flow of Casson nanofluid across an 

infinite exponential porous surface in a rotating frame with slip velocity. 

After performing similarity transformations, we have determined the 

analytical solutions for the momentum and energy equations. Additionally, an attempt 

was made to numerically solve nonlinear-coupled equations in order to obtain the 

solutions and behaviours of each of the parameters. 

3.2 Mathematical Formulation 

A stretching sheet is used to simulate the two-dimensional flow of an 

incompressible, steady non-Newtonian fluid. The flow region refers to 𝑦 > 0 and 

corresponds at 𝑦 = 0. The accompanying dimensional form of equations represent the 

flow and heat transport with radiation impacts. 

   𝜕𝑑𝑑
𝜕𝑥

+ 𝜕𝑣
𝜕𝑑𝑑

= 0,              (3.2.1) 

   𝑢 𝜕𝑑𝑑
𝜕𝑥

+ 𝑣 𝜕𝑑𝑑
𝜕𝑑𝑑

= 𝜐 �1 + 1
𝛽
� 𝜕

2𝑑𝑑
𝜕𝑑𝑑2

− 𝜎𝐵∘2𝑑𝑑
𝜌

   ,           (3.2.2) 

   𝑢 𝜕𝑇
𝜕𝑥

+ 𝑣 𝜕𝑇
𝜕𝑑𝑑

= 𝐾
𝐶𝑝

𝜕2𝑇
𝜕𝑑𝑑2

.                        (3.2.3) 

The following are the associated boundary conditions for this issue: 

                𝑢 = 𝑎0𝑥, 𝑣 = 0 ,𝑇𝑇 = 𝑇𝑇 = 𝑇𝑇𝑤 = 𝑇𝑇∞+A �𝑥
𝑙
�
𝜆1

,  when   𝑦 = 0,
                                              𝑢 → 0,   𝑇𝑇 → 𝑇𝑇∞        as        𝑦 → ∞.

�           (3.2.4) 

Where A is a constant, 𝑎0 is the stretching rate, 𝑙 is the sheet's characteristic length, 

𝑇𝑇𝑤 is the wall temperature, and 𝑇𝑇∞ is the fluid's temperature at an infinite distance 

from the membrane. 
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Assume that the magnetic inclusion is negligibly small, and that the charge 

gained along the course is expanded upon ejection. We use the following similarity 

transformation to solve Equations (3.2.1) through (3.2.3). 

𝑢 = 𝑎0𝑥𝑓′(𝜂𝜂), 𝑣 = −�𝑎0𝜐𝑓(𝜂𝜂), 𝜂𝜂 = �𝑎0
𝜐
𝑦, 𝜃𝜃 = 𝑇−𝑇∞

𝑇𝑤−𝑇∞
 ,                                 (3.2.5)          

As per the relation (2.2.7) for the Casson fluid model, relations (3.2.1) through 

(3.2.3), as well as the boundary conditions (3.2.4), are written as follows.  

�1 + 1
𝛽
� 𝑓‴(𝜂𝜂) = [𝑓′(𝜂𝜂)]2 + 𝑞𝑓′(𝜂𝜂) − 𝑓(𝜂𝜂)𝑓″(𝜂𝜂),                                             (3.2.6) 

(1+∈ 𝜃𝜃)𝜃𝜃′′ + 𝑃𝑃𝑟𝑟𝑓(𝜂𝜂)𝜃𝜃′ − 𝜆1𝑃𝑃𝑟𝑟𝜃𝜃𝑓′(𝜂𝜂)+∈ (𝜃𝜃′)2 = 0,                                         (3.2.7) 

 
𝑓(𝜂𝜂) = 0,   𝑓′(𝜂𝜂) = 1,𝜃𝜃(𝜂𝜂) = 1   at   𝜂𝜂 = 0
               𝑓′(𝜂𝜂) → 0,    𝜃𝜃(𝜂𝜂) → ∞   as   𝜂𝜂 → ∞�,                                                      (3.2.8) 

Where,  𝛽𝛽  is the Casson fluid parameter,     𝑞 = 𝜎𝐵∘2

𝜌𝑎0
  is Chandrasekhar number, 

  𝑃𝑃𝑟𝑟 = 𝜇𝐶𝑝
𝑘∞

,    𝑘 = 𝑘∞(1+∈ 𝜃𝜃)  and  ∈= 𝑘𝑤−𝑘∞
𝑘𝑤

  and 𝜆1  is the temperature constant. 

We get a closed-form solution for the equation of momentum by solving equations 

(3.2.6) and (3.2.7) using conditions (3.2.8). 

                      𝑓(𝜂𝜂) = 1−𝑒−𝛼𝜂

𝛼
, 

 where  𝛼 = √(𝛽(1+𝑞))
�𝛽+1

.                                                                                             (3.2.9) 

The local skin friction coefficient is 𝑓″(0) = −𝛼, and it is calculated for various 

penetration parameter values. 

Equations (3.2.7) and (3.2.8) have been solved using the usual Perturbation 

approach. Let's pretend that the exact solution of equation (3.2.7) is in the form 

𝜃𝜃(𝜂𝜂) = 𝜃𝜃0(𝜂𝜂)+∈ 𝜃𝜃1(𝜂𝜂) +∈2 𝜃𝜃2(𝜂𝜂) +∈3 𝜃𝜃3(𝜂𝜂) + ⋯,                                         (3.2.10) 

where   𝜃𝜃0(𝜂𝜂), 𝜃𝜃1(𝜂𝜂), 𝜃𝜃2(𝜂𝜂), 𝜃𝜃3(𝜂𝜂), …  are obtained as first, second, third, 

and so on order boundary value problems. The above sequence of BVP will be 

generated by using equations (10) in equations (7) and (8) and then equating like 

powers of  ∈ on both sides. 
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3.2.1   Zeroth order solution  

The zeroth-order differential equation is 

                 𝜀𝜃𝜃∘″ + �1 − 𝑃𝑟
𝛼2
− 𝜀� 𝜃𝜃∘′ + 2𝜃𝜃∘ = 0,                                                                                     (3.2.11) 

The boundary conditions are 

             
𝜃𝜃∘(𝜀) = 1  as  𝜀∘ = − 𝑃𝑟

𝛼2

𝜃𝜃∘(𝜀) → 0 as 𝜂𝜂 → ∞.
, �                                                                        (3.2.12) 

Equation (3.2.11) is transformed into a feeder hypergeometric relation by appropriate 

substitution, and the result is given in the form of Kummer's function. 

      𝜃𝜃∘(𝜂𝜂) = 𝑏∘(𝜀)
𝑃𝑟
𝛼2𝛭 � 𝑃𝑟

𝛼2
− 2, 𝑃𝑟

𝛼2
+ 1, 𝜀� ,                                                          (3.2.13) 

where M is Kummer’s function, with the usual notation in the standard form, 

       𝜀 = −�𝑃𝑟
𝛼2
� 𝑒−𝛼𝜂 ,       and     𝑏∘ = 1

(𝜀)
𝑃𝑟
𝛼2𝛭�𝑃𝑟

𝛼2
−2 ,𝑃𝑟

𝛼2
+1,−𝑃𝑟

𝛼2
�
  

3.2.2 First-order solution 

The first-order differential equation is 

𝜀𝜃𝜃1″ + �1 − 𝑃𝑟
𝛼2
− 𝜀� 𝜃𝜃1′ + 2𝜃𝜃1 = −{𝜀𝜃𝜃𝑜𝜃𝜃𝑜″ + 𝜃𝜃𝑜𝜃𝜃𝑜′ + 𝜀(𝜃𝜃𝑜′)2},                                        (3.2.14) 

The boundary conditions are 

       𝜃𝜃1(𝜀) = o as 𝜀1 = − 𝑃𝑟
𝛼2

𝜃𝜃1(𝜀) → 0   as 𝜀1 → ∞
�.                                                                                   (3.2.15)  

The solution of equation (3.2.14) with aid of equation (3.2.15) is  

  𝜃𝜃1 = 𝜃𝜃11 + 𝜃𝜃12 ,                                        (3.2.16) 

  where   

 
   𝜃𝜃11 = 𝑐𝑜(𝜀)

𝑃𝑟
𝛼2 𝛭� 𝑃𝑟

𝛼2
− 2, 𝑃𝑟

𝛼2
+ 1, 𝜀� ,   𝑐𝑜 = −∑𝑑𝑑𝑟(𝜀)𝑟+2

(𝜀)
𝑃𝑟
𝛼2𝛭�𝑃𝑟

𝛼2
−2,𝑃𝑟

𝛼2
+1,−𝑃𝑟

𝛼2
�
,                   (3.2.17)                                                         
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    𝜃𝜃12 = ∑𝑑𝑟𝑟𝜀𝑟𝑟+2.                                                                                                (3.2.18)    

After ignoring phrases containing second and higher powers in, ϵ is a relatively small 

amount. The energy equation's answer is in the form                                                                                                                     

      𝜃𝜃(𝜂𝜂) = 𝜃𝜃𝑜(𝜂𝜂)+∈ 𝜃𝜃1(𝜂𝜂).                                                                                 (3.2.19) 

The numerical solutions for the present study have also been completed by using 

MATHEMATICA software. The analytical and numerical solutions are presented in 

Table 1. 

3.3  Results and Discussion 

A collection of numerical results for several parameters such as Casson fluid 

parameter (𝛽𝛽), Chandrasekhar number (𝑞), Prandtl number (𝑃𝑃𝑟𝑟), temperature constant 

(𝜆1) and temperature variable coefficient (∈) on the flow, variables are presented in 

Figures 3.3.1 –3.3.6. 

The decrease in the velocity profile for numerous rising values of the Casson 

fluid parameter and the Chandrasekhar number is depicted in Figures 3.3.1 and 3.3.2. 

Because the Laurent force has an effect on fluid velocity, when the Casson fluid 

parameter and Chandrasekhar number increase, the fluid velocity drops. 

Figures 3.3.3–3.3.6 demonstrate the temperature profile for different values of 

Chandrasekhar number, Prandtl number, temperature constant, and temperature 

variable coefficient. The relationship between temperature and Chandrasekhar 

number is shown in Figure 3.3.3 If the emergent values of 𝑞 are in the range (0.5,1), 

the temperature will be reduced less. There is a rise in temperature when q grows 

from 1 to 2. The reason for this is because when 𝑞 < 1  is little, the magnetic intensity 

is low, and when 𝑞 > 1   is large, the magnetic intensity is great. 

Because of the heat exchange between the sheet and the fluid, Figure 3.3.4 

indicates a loss in temperature growth for larger values of the temperature constant. 

The temperature drops as the Prandtl number rises, resulting in an increase in the 

speed of the fluid model's boundary layer thickness and heat loss (Figure 3.3.5). The 

temperature profile for changing the values of the thermal conductivity variable 

coefficient constant is depicted in Figure 3.3.6. Because the constant coefficient of the 
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thermal variable increases the magnitude of the temperature, the temperature profile is 

improved, resulting in an increase in heat flow. 

Furthermore, we attempted to extract (see Table 3.3.1) the impact of the 

Casson liquid parameter on the local skin friction coefficient (−𝑓′′(0))and heat 

gradient(−𝜃𝜃′(0)). According to the table, as the Casson liquid parameter and 

Chandrasekhar number (Modified Magnetic parameter) grow, the skin friction 

coefficient on the wall increases and the temperature differential at the wall decreases. 

This is due to an induced magnetic field, which reduces the heat flux at the stream 

wall and retards force on it. In addition, under the sway of the magnetic domain, the 

Casson liquid parameter is more reactive. 

 

 

 

 

 

 

 

Figure 3.3.1 Velocity profile for distinct values of Casson fluid parameter    

β=0.5, 0.6, 0.7, 0.8 with  𝒒=1. 
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Figure3.3.2 Velocity profile for distinct values of Chandrasekhar number        

𝒒 = 0.5, 1, 1.5, 2 with β =1. 

 

 

Figure 3.3.3 Energy profile for unlike values of Chandrashekhar number 𝒒 with 

β=1, 𝑷𝑷𝒓𝒓= 6.2, ∈= 𝟎𝟎.𝟏𝟏, and 𝝀𝟏𝟏=2. 
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Figure 3.3.4 Energy profile for different values temperature constant 𝝀𝟏𝟏 =1, 2, 3, 

4 with  𝑷𝑷𝒓𝒓= 6.2, 𝒒=0.5, β=1. 

 

 

Figure 3.3. 5 Energy profile for different values of Prandtl number  𝑷𝑷𝒓𝒓=1,3,5,11 

with 𝒒 =1, β=1 and 𝝀𝟏𝟏=2. 

 



                                                                                  

 

Figure 3.3.6 Temperature profile for different values thermal variable coefficient  
∈ = 𝟎𝟎.𝟐𝟐,𝟎𝟎.𝟒𝟒,𝟎𝟎.𝟔𝟔,𝟎𝟎.𝟖𝟖 with 𝑷𝑷𝒓𝒓 =6.2, 𝒒=0.5, β=1 and 𝝀𝟏𝟏=2. 
 
 
Table 3.3.1 Nature of local skin coefficient (𝜶) and the temperature gradient 

(−𝜽′(𝟎𝟎)) for distinct values of Casson parameter (𝜷𝜷) and Chandrasekhar 

number (𝒒) with  (𝑷𝑷𝒓𝒓 = 𝟏𝟏,    ∈= 𝟎𝟎.𝟏𝟏,   𝝀𝟏𝟏 = 𝟐𝟐)  

𝒒 β 𝜶 = −𝒇′′(𝟎𝟎) 𝜶 = −𝒇′′(𝟎𝟎) −𝜃𝜃′(0) −𝜃𝜃′(0) 

  Analytical sol N.sol Analytical sol N.sol 

 
 
 
 
1 

0.1 0.42640143 0.42640214 1.39450881 1.39450842 

0.2 0.57735025 0.57735027 1.35348185 1.35648105 

0.3 0.67936622 0.67936619 1.33023889 1.33023872 

0.4 0.75592894 0.75592892 1.31027914 1.31027911 

0.5 0.81649658 0.81649656 1.29432803 1.29432845 

0.6 0.86602540 0.86602540 1.28118347 1.28118363 

0.7 0.90748521 0.90748521 1.27011492 1.27011481 

0.8 0.94280904 0.94280904 1.26064049 1.26064056 

0.9 0.97332852 0.97332853 1.25242430 1.25242444 

1.0 1.00000000 1.00000000 1.24522263 1.24522290 
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𝑞 β Analy. sol 
−𝒇′′(𝟎𝟎) 

Numerical sol 
−𝒇′′(𝟎𝟎) 

Analy. sol 
−𝜃𝜃′(0) 

Numerical sol 
−𝜃𝜃′(0) 

 
 
 
 
2 

0.1 0.52223296 0.52223298 1.39450881 1.39450842 

0.2 0.70710678 0.70710677 1.35348185 1.35648105 

0.3 0.83205029 0.83205029 1.33023889 1.33023872 

0.4 0.92582009 0.92582009 1.31027914 1.31027911 

0.5 1.00000000 1.00000001 1.29432803 1.29432845 

0.6 1.06066017 1.06066017 1.28118347 1.28118363 

0.7 1.11143786 1.11143786 1.27011492 1.27011481 

0.8 1.15470053 1.15470053 1.26064049 1.26064056 

0.9 1.19207912 1.19207911 1.25242430 1.25242444 

1.0 1.22474487 1.22474487 1.24522263 1.24522290 
 

3.4 CONCLUSION 

Analytical and computational approaches are used to explore the stream of Casson 

liquid across an impermeable linear extending surface involving magnetic impact. 

Following are the most important conclusions: 

 As the Casson fluid parameter and Chandrasekhar number increase, the     

boundary layer thickness falls due to the applied magnetic force. 

 As the Casson fluid parameter rises, the local skin friction coefficient and 

temperature gradient rise with it. 

 With increasing Prandtl number values, the thickness of the boundary layer 

decreases. 
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CHAPTER 4 

Impact of Variable Wall Temperature and Radiation on 

Casson Liquid Flow across a Pervious Extending Sheet. 

                           (Part of the chapter is published in springer 2019) 

4.1 INTRODUCTION 

The sway of a magnetic field on a Casson liquid stream near a stretched 

surface was discussed in the preceding chapter. The effect of varying wall 

temperature and radiation on Casson fluid flow across extending sheets via porous 

medium is examined in this chapter. Because of their widespread use in the 

manufacturing industries, research on boundary layer flow of diverse non-Newtonian 

fluids is regarded as one of the most significant in physical science and engineering 

concerns. According to the literature review, several researchers used analytical or 

numerical approaches to study boundary layer stream with non-Newtonian liquids in 

diverse conditions. We have attempted to investigate the stream and energy 

transmission analysis of a non-Newtonian Casson liquid in a thermal boundary layer 

above a pervious linear extending slab with variable wall temperature and radiation in 

this chapter. By converting partial differential equations into ordinary differential 

equations with similarity transformation, the governing equations are then solved 

using the regular perturbation method. The exact outcomes are validated with 

approximate outcomes and are presented through graphs. For the numerical solutions 

we have used Mathematica software built in functions NDSolve and are plotted using 

the same package. 

4.2 Mathematical Formulation and the Solution 

Consider a non-Newtonian Casson fluid moving down the 𝑥-axis through a 

porous linear stretching surface with liquid flow restricted above  𝑦 > 0. Impact of 

the mass suction velocity, the Casson liquid parameter, the Prandtl number, and 

thermal radiation are used to analyze flow and heat conduction. 

𝑢𝑥 + 𝑣𝑑𝑑 = 0 ,                                                          (4.2.1) 
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𝑢𝑢𝑥 + 𝑣𝑢𝑑𝑑 = 𝜈 �1 + 1
𝛽
� 𝑢𝑑𝑑𝑑𝑑 −

𝜈
𝑘′
𝑢    ,                                                        (4.2.2) 

 

 
𝑢𝑇𝑇𝑥 + 𝑣𝑇𝑇𝑑𝑑 = 𝑘

𝜌𝑐𝑝
𝑇𝑇𝑑𝑑2 −

1
𝜌𝑐𝑝

(𝑞𝑟𝑟)𝑑𝑑   ,                                                     (4.2.3)    

 

Where ρ  the density of the fluid, T is is the temperature of the liquid, qr is the 

radiative heat flux and, cp is the specific heat at constant pressure. u and v are the 

components of velocity in the x and y directions, respectively. The bounding criteria 

are as follows: 

𝑢 = 𝑎0𝑥, 𝑣 = 𝑣𝑐   ,when      𝑦 = 0
𝑢 → 0                        𝑎𝑠𝑠           𝑦 → ∞� ,                                                        (4.2.4) 

 

where 𝑣𝑐 denotes the mass suction velocity and 𝑎0 > 0 denotes the stretching rate. 

Using the transformations for similarity, 

𝑢 = 𝑏𝑥𝑓′(𝜂𝜂),𝑣 = −√𝑏𝜐𝑓(𝜂𝜂)  and   𝜂𝜂 = �𝑏
𝜐
𝑦,                          (4.2.5) 

 

In the Equations (4.2.1) and (4.2.2), we obtain 

�1 + 1
𝛽
� 𝑓‴(𝜂𝜂) − [𝑓′(𝜂𝜂)]2 + 𝑓(𝜂𝜂)𝑓″(𝜂𝜂) − 𝑃𝑃𝑟𝑟𝑘1𝑓′′[𝜂𝜂] = 0,                                (4.2.6) 

Where; 𝜐 = 𝜇
𝜌
   ; 𝑃𝑃𝑟𝑟 = 𝜒

𝑘′𝑏
      ; 𝑘1 = 𝜐

𝜒
  , 

 

Similarly, the associated boundary conditions are obtained as 

𝑓(𝜂𝜂) = − 𝑣𝑐
√𝑏𝜐

,       𝑓′(𝜂𝜂) = 1    at    𝜂𝜂 = 0
𝑓′(𝜂𝜂) → 0 ,        as                               𝜂𝜂 → ∞

� ,                                                    (4.2.7) 

 

Assuming 𝑓(0) = 𝑠𝑠, 𝑠𝑠 > 0 corresponds to mass suction, whereas 𝑠𝑠 = 0 corresponds to 

impermeable surface. We obtain when we solve Eqs. (4.2.6) and (4.2.7), 

𝑓(𝜂𝜂) = 𝑠𝑠 + 1−𝑒−𝛼𝜂

𝛼
, where =

𝑠±�𝑠2+4�𝛽+1𝛽 �(𝑃𝑟𝑘1+1

2�𝛽+1𝛽 �
 ,                                           (4.2.8) 
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Theoretically, thermal conductivity varies linearly with temperature, and it is given by 

 𝑘 = 𝑘∞{1+∈ 𝜃𝜃(𝜂𝜂)},                                                                (4.2.9) 
 

 We have taken ∈= 0.1 , to find the solution in this study since is believed to be 

a modest parameter. The radiative heat flux is created as follows, as stated in the 

Rosseland approximation, 

        𝑞𝑟𝑟 = −4𝜎∗

3𝑘∗
𝜕(𝑇4)
𝜕𝑑𝑑

 ,                                                                    (4.2.10) 

 

The mean absorption coefficient is 𝑘∗, whereas the Stefan-Boltzmann constant 

is 𝜎∗,We use Taylor's series in the increasing powers of the difference of the 

temperature distribution in the flow to expand 𝑇𝑇4about 𝑇𝑇∞  and is given by 

  
 𝑇𝑇4 = 𝑇𝑇∞4 + 4𝑇𝑇∞3(𝑇𝑇 − 𝑇𝑇∞) + 6𝑇𝑇∞2(𝑇𝑇 − 𝑇𝑇∞)2+. . ..,                    (4.2.11) 

Higher order terms above the first degree were disregarded in the expansion, and the 

result was approximated as 

 𝑇𝑇4 ≅ −3𝑇𝑇∞4 + 4𝑇𝑇∞3𝑇𝑇,                                                         (4.2.12) 
 

Using equations (4.2.10) and (4.2.12), we get 

 𝜕𝑞𝑟
𝜕𝑑𝑑

= −16𝜎∗𝑇∞∗

3𝑘∗
𝜕2𝑇
𝜕𝑑𝑑2

  ,                                   (4.2.13) 

 

Therefore, energy equation (4.2.3) can be rewritten as 

𝑢𝑇𝑇𝑥 + 𝑣𝑇𝑇𝑑𝑑 = 1
𝜌𝑐𝑝

𝜕
𝜕𝑑𝑑
��𝑘 + 16𝜎∗𝑇∞∗

3𝑘∗
� 𝑇𝑇𝑑𝑑�,                                           (4.2.14) 

 

The type of heating procedure determines the thermal boundary conditions to be 

applied. We address the scenario of a prescribed power law surface temperature in our 

study, which is given by 

𝑇𝑇 = 𝑇𝑇𝑤 = 𝑇𝑇∞ + 𝐴 �𝑥
𝑙
�
𝜆1

,  at  𝑦 = 0
𝑇𝑇 → ∞ ,                               as  𝑦 → ∞

                                             (4.2.15) 

Where, 𝑇𝑇𝑤 is the wall temperature, 𝑙 is the sheet's characteristic length, 𝐴 is a 

constant, and 𝑇𝑇∞ is the fluid's temperature at an infinite distance from the membrane. 

For our convenience the temperature constant 𝜆1 is set at 2 in this case. 
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Set up non dimensional temperature 𝜃𝜃(𝜂𝜂) as
 

𝜃𝜃(𝜂𝜂) = 𝑇−𝑇∞
𝑇𝑤−𝑇∞

    ,                        (4.2.16) 

Utilizing the equations, (4.2.14) and (4.2.16), we get 

(1+∈ 𝜃𝜃 + 𝑇𝑇𝑟𝑟)𝜃𝜃″(𝜂𝜂) + 𝑃𝑃𝑟𝑟𝑓(𝜂𝜂)𝜃𝜃′(𝜂𝜂) − 2𝑃𝑃𝑟𝑟𝜃𝜃(𝜂𝜂)𝑓′(𝜂𝜂)+∈ (𝜃𝜃′(𝜂𝜂))2 = 0,          (4.2.17) 

Where 𝑃𝑃𝑟𝑟 = 𝜇𝐶𝑝
𝑘∞

  ,
 
𝑇𝑇𝑟𝑟 = 16𝜎∗𝑇∞4

3𝑘∞𝑘∗
 , 

 

and the associated boundary condition takes the form 

𝜃𝜃(𝜂𝜂) = 1 ,    at     𝜂𝜂 = 0
𝜃𝜃(𝜂𝜂) → 0,     as   𝜂𝜂 → ∞�   ,                     (4.2.18) 

 

4.3   Solution of the Energy Equation 

We use the regular Perturbation approach to solve the above nonlinear thermal 

boundary layer equation. The exact solution to equation (4.2.17) is assumed as 

𝜃𝜃(𝜂𝜂) = 𝜃𝜃0(𝜂𝜂)+∈ 𝜃𝜃1(𝜂𝜂) +∈2 𝜃𝜃2(𝜂𝜂) +∈3 𝜃𝜃3(𝜂𝜂)+. . . ..  ,                   (4.3.1) 

Where 𝜃𝜃0(𝜂𝜂),𝜃𝜃1(𝜂𝜂),𝜃𝜃2(𝜂𝜂),𝜃𝜃3(𝜂𝜂). . .. are the zeroth order, first order, second order, 

third order…solution and these are to be determined. For that the sequence of BVP 

will be generated by using equation (4.3.1) in equation (4.2.17) and (4.2.18) and 

equating like powers of ∈on both the sides. 
 

4.3.1. Solution at the zero-th order BVP: 

(1 + 𝑇𝑇𝑟𝑟)𝜀𝜃𝜃∘″ + �1 + 𝑇𝑇𝑟𝑟 −
𝑃𝑟𝑣𝑐
𝛼
− 𝑃𝑟

𝛼2
− 𝜀� 𝜃𝜃∘′ + 2𝜃𝜃∘ = 0    ,                 (4.3.2) 

The boundary conditions are: 

𝜃𝜃∘(𝜀) = 1 ,     at    𝜀∘ = − 𝑃𝑟
𝛼2

𝜃𝜃∘(𝜀) → 0 ,    as     𝜀∘ → ∞
�   ,                                    (4.3.3) 

 

The above zeroth order differential equation can be turned into a confluent hyper 

geometric equation by making appropriate substitutions, and the answer can be 

written in terms of Kummer's function as follows, 
 

𝜃𝜃∘(𝜂𝜂) = 𝐶𝑜𝑒
−𝛼�𝐵𝐴�𝜂𝛭 �𝐵 + (𝑛 − 3)𝐴,𝐵 + 𝑛𝐴, �𝜀

𝐴
�� − 𝑎1 �

𝑃𝑟
𝛼2
� 𝑒−𝛼𝜂 + 𝑎2 �

𝑃𝑟
𝛼2
�
2

        (4.3.4) 
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Where, 𝛭 is Kummer’s function with its usual notation, 𝜀 = −�𝑃𝑟
𝛼2
� 𝑒−𝛼𝜂,   

 𝐴 = (1 + 𝑇𝑇𝑟𝑟) ,    𝐵 = 𝑃𝑟𝑣𝑐
𝛼

+ 𝑃𝑟
𝛼2

 , 

 𝐶𝑜 =
1+𝑎1�

𝑃𝑟
𝛼2
�−𝑎2�

𝑃𝑟
𝛼2
�
2

𝛭�𝐵+(𝑛−3)𝐴,   𝐵+𝑛𝐴  ,�−𝑃𝑟
𝛼2𝐴

��
  , 

 𝑎1 = (𝐵−2𝐴)
𝐴(𝐴+𝐵)

 , 

 𝑎2 = (𝐵−2𝐴)(𝐵−𝐴)
𝐴2(𝐴+𝐵)(2𝐴+𝐵)(2!)

 . 

 

4.3.2. Solution at the first order BVP: 

(1 + 𝑇𝑇𝑟𝑟)𝜀𝜃𝜃1″ + �1 + 𝑇𝑇𝑟𝑟 −
𝑃𝑟𝑣𝑐
𝛼
− 𝑃𝑟

𝛼2
− 𝜀�𝜃𝜃1′ + 2𝜃𝜃1 = −{𝜀𝜃𝜃𝑜𝜃𝜃𝑜″ + 𝜃𝜃𝑜𝜃𝜃𝑜′ + 𝜀(𝜃𝜃𝑜′)2},        (4.3.5) 

The boundary conditions are: 

 

 

𝜃𝜃1(𝜀) = 1  ,        at   𝜀1 = − 𝑃𝑟
𝛼2

𝜃𝜃1(𝜀) → 0  ,        as   𝜀1 → ∞
�  ,                                        (4.3.6) 

 

For the homogeneous part of the equation, the solution of the first order equation will 

be achieved as in the zeroth order. 

𝜃𝜃11 = 𝑑𝑜𝑒−𝛼(𝐵/𝐴)𝜂𝛭 �𝐵 + (𝑛 − 3)𝐴,𝐵 + 𝑛𝐴, �𝜀
𝐴
�� − 𝑎1 �

𝑃𝑟
𝛼2
� 𝑒−𝛼𝜂 + 𝑎2 �

𝑃𝑟
𝛼2
�
2
𝑒−2𝛼𝜂,               (4.3.7) 

 

Where  𝑑𝑜 = −∑𝑑𝑑𝑟(𝜀)2+𝑟

𝛭�𝐵+(𝑛−3)𝐴,𝐵+𝑛𝐴,�−𝑃𝑟
𝛼2𝐴

��
 , 

The particular integral part of the equation can be found by associating numerous 

powers of 𝜀 on both parts and solution will be of the form. 

𝜃𝜃12 = ∑𝑑𝑟𝑟𝜀𝑟𝑟+2  ,                                    (4.3.8) 

Therefore, the solution of first order is  

 𝜃𝜃1 = 𝜃𝜃11 + 𝜃𝜃12  ,                                   (4.3.9) 

Due to small magnitude values, the findings of the higher solution are ignored, and we 

search for the ultimate outcome for the energy equation in the form 

 𝜃𝜃(𝜂𝜂) = 𝜃𝜃𝑜(𝜂𝜂)+∈ 𝜃𝜃1(𝜂𝜂) ,                                           (4.3.10) 
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Tables and Figures: 

Table 4.3.1 Results of  )0(f ′′−  for discrete values of the parameters. 

β  rP  1k  𝒔𝒔 2 4 6 8 10 
0.5 3 1 

 

1.53518 2.0 2.52753 3.09717 3.069425 
1   2.0 2.73205 3.56155 4.44949 5.37228 
2   2.4305 3.44152 4.58199 5.79361 7.04518 
3   2.63746 3.79129 5.08945 6.4641 7.88068 
5   2.84027 4.13873 5.5957 7.13392 8.71578 
7   2.94034 4.31174 5.84845 7.46863 9.13322 
2 1 1 2.0 3.09717 4.3094 5.5726 6.861 
 2  2.23014 3.27698 4.44949 5.68513 6.95426 
 3  2.4305 3.44152 4.58199 5.79361 7.04518 
 4  2.61032 3.59411 4.70801 5.89845 7.13392 
 3  2.77485 3.73703 4.82843 6.0 7.22063 
  1 1.53518 2 2.52753 3.09717 3.69425 
   1.19087 1.48676 1.82137 2.18466 2.56832 
   1 1.21525 1.45743 1.72076 2 
  2 2.92744 3.87192 4.94392 6.09854 7.30546 
  3 3.33333 4.23927 5.26599 6.37851 7.5497 
  4 3.68513 4.56512 5.55903 6.63879 7.78055 

 

Table 4.3.2 Results of  )0(θ ′−  for different values of the parameters, where we 

have taken  𝜀 = 0.1,𝑘1 = 1  

β  rP  rT  α  𝒔𝒔 )0(θ ′−   β  rP  rT  α  𝒔𝒔 )0(θ ′−  

2 3 1 2.25733 2.5 4.40418  2 1 1 2.25733 2.5 1.69161 

   2.36401 2.7 4.68432   2    3.03087 

   2.52753 3 5.0937   3    4.47455 

   3.09717 4 6.4581   4    6.09476 

0.5   0.816497 0 1.49854   5    7.84656 

1   1  1.36302   2 1   1.69161 

1.5   1.09545  0.825758    2   3.03087 

2   1.1547  1.39406    3   4.47455 
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Figure 4.3.1 Velocity profile for distinct values of  , taking  
 𝜷𝜷 = 𝟐𝟐,𝒌𝟏𝟏 = 𝟏𝟏,𝑷𝑷𝒓𝒓 = 𝟏𝟏 

 

 

 

Figure 4.3.2 Velocity profile for the fluid for distinct values of 𝜷𝜷 , taking  

𝒗𝒄 = 𝟎𝟎,𝒌𝟏𝟏 = 𝟏𝟏,𝑷𝑷𝒓𝒓 = 𝟏𝟏 
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Figure 4.3.3 Velocity profile for the variations of 𝑷𝑷𝒓𝒓  with     𝜷𝜷 = 𝟐𝟐,     𝐤𝟏𝟏 = 𝟏𝟏 ,

𝒔𝒔 = 𝟐𝟐.𝟓𝟓, 𝑻𝑻𝒓𝒓 = 𝟏𝟏 

 

 

 

Figure 4.3.4 Energy profile for different values of  𝜷𝜷 with  

𝒔𝒔 = 𝟐𝟐.𝟓𝟓,𝒌𝟏𝟏 = 𝟏𝟏,𝑷𝑷𝒓𝒓 = 𝟏𝟏. 
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Figure 4.3.5 Energy profile for different values of 𝒔𝒔  with 𝑷𝑷𝒓𝒓 =3, 𝑻𝑻𝒓𝒓=1, 𝒌𝟏𝟏 = 𝟏𝟏 

 

Figure 4.3.6 Energy profile for different values of 𝑷𝑷𝒓𝒓 with    𝜷𝜷 = 𝟐𝟐,     𝐤𝟏𝟏 = 𝟏𝟏,

𝒔𝒔 = 𝟐𝟐.𝟓𝟓, 𝑻𝑻𝒓𝒓 = 𝟏𝟏 

 



                                                                                  

 

Figure 4.3.7 Energy profile for different values of 𝑻𝑻𝒓𝒓 with 𝜷𝜷 = 𝟐𝟐,𝐤𝟏𝟏 = 𝟏𝟏,𝑷𝑷𝒓𝒓  = 𝟑𝟑 
 

4.4 OUTCOMES AND ANALYSIS 

The solutions of BVPs encountered in the research of Casson fluid boundary 

layer stream and energy transmission involving varying wall temperature and thermal 

radiation through extending surface were analyzed using the regular perturbation 

method. Graphs are displayed in Figures 4.3.1- 4.3.7 to visualize the influence of 

distinct constraints on the momentum and energy distribution. The velocity of the 

boundary layer near the wall falls as the suction parameter 𝑠𝑠, the Casson fluid 

parameter, and the Prandtl number 𝑃𝑃𝑟𝑟 for impermeable surfaces increase, as seen in 

Figures 4.3.1 to 4.3.3. Figures 4.3.4 to 4.3.7 demonstrate the temperature profile with 

different parameter adjustments. Temperature drops as the mass suction parameter 

and Prandtl number grow, but temperature rises as the Casson liquid parameter and 

radiation parameter increase. 

In addition, Tables 1 and 2 illustrate the values of the local skin coefficient 

and temperature gradient for various values of relevant factors. According to the 

tables, as the Casson liquid parameter, mass suction velocity, and Prandtl number 𝑃𝑃𝑟𝑟 

grow, the skin friction coefficient and temperature gradient increase. In the absence of 

the Prandtl number, the results are consistent with Bhattacharya [80]. 
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4.5 CONCLUSION 

In this paper, the flow and heat exchange of Casson liquid over a stretching 

surface are investigated, as well as wall mass transmission and thermal radiation 

effects. The boundary layer thickness falls as the Casson fluid parameter, Prandtl 

number, and radiation increase, and radiation can be minimized by keeping the system 

at a constant temperature. In order to improve the cooling effect, small values of 

thermal conductivity coefficient (∈) must be chosen. 
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CHAPTER 5 

Casson Liquid Flow Comprising Nanofluids and Gyrotactic 
Bacteria with Varying wall Temperature and Thermo-

Radiation 
 

(The part of the article is published in Elsevier) 
 

5.1 INTRODUCTION 

The consequences of variable wall temperature and radiation on the 

bioconvection of Casson nanofluid flow including gyrotactic microorganisms under 

the sway of a magnetic properties are conferred in this chapter. The studies of 

boundary layer flow and heat flow are relevant to the knowledge of the assembly 

cycle in order to enhance the nature of items. A fascinating and important inquiry is 

the liquid with specified characteristics across a direct expanding surface and heat 

exchange marvels; we meet several mechanical assembly units. The exploration of the 

boundary layer of a non-Newtonian liquid impacted by various considerations, as well 

as heat transfer analysis, has a wide range of applications in industry, wiredrawing 

and including the extraction of polymer sheets from color, among others. Cooling 

metallic plates, glass filaments, producing paper, and so on are all examples of similar 

uses for the extending sheet. In recent years, a number of experts have carried out 

substantial study on the boundary layer theory and heat transmission above the linear 

extending surface. Several scholars have tried to provide exact or approximate 

outcomes for streams of Newtonian and non-Newtonian liquids near stretching or 

narrowing surfaces including various consequences and considerations in the 

boundary layer theory. 

A "nanofluid" is a fluid solution with ultrafine particles (diameter 50 nm) 

(Choi [41]). Traditional heat transfer fluids (mineral oils, water, motor oil, ethylene 

glycol, and so on) have limited heat transmission capabilities. Nanofluids are colloidal 

suspensions in base fluids containing nanometer-sized metal and metal oxide particles 

such as iron, titanium or their oxides, copper, gold, and aluminium. Water, bio-

liquids, oil, toluene, and ethylene glycol are all examples of base fluids. Thermal 

conductivities of base liquids containing nanoparticle suspensions are substantially 
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greater than those of base fluids, according to tests. Buongiorno [29] developed a 

revolutionary concept of nanofluid convection energy transmission because of the 

Brownian motion and thermophoresis. They also argued that turbulence indication has 

an effect on thermophoresis and Brownian motion, which in turn has an impact on 

other critical sliding processes.  

In the last several years, microorganisms have piqued people's curiosity. 

Fertilizers, medicine delivery systems, and biofuels are all created with 

microorganisms (prepared from waste). Microbes have an intense density than water. 

In general, microbes swim upward, increasing the denseness of the source liquid and 

causing a variable concentration on the superior surface. Oxytactic, chemo-taxic, 

gravitaxis, and gyrotactic microorganisms are among the several kinds of 

microorganisms. There are some substantial differences between microbes and 

nanoparticles. Self-propelled, the microbes may spin in the liquid in response to 

provocations for example: chemical attraction, gravity, and light. In contrast, 

nanoparticles are not automotive; the thermophoresis and Brownian movement 

influences are responsible for their movement. To increase the rate of mass 

transmission and microscale combination, as well as the nanofluid's flow stability, the 

microbes are mixed with a dilute solution of nanoparticles. Bioconvection caused by 

ultrafine particles and microbes in the fluid stream is an important research topic for 

improving the nature of bioproducts and biotechnology companies. Through a 

extending or shrinking slab, Shahid et al. [149] investigated nanofluid stream 

including gyrotactic microbes and MHD. They looked at how a chemical reaction and 

thermal radiation affected the flow properties. The impact of motile microorganisms 

on nanofluid flow, heat, and mass transfer through a vertical stretched sheet was 

studied by Zadeh et al. [70]. 

The differential transform method (DTM) is one of the fundamental strategies 

for dealing with a family of coupled and de-coupled linear or nonlinear boundary 

value issues and the solutions can be expressed in terms of Taylor's or Maclaurin's 

series. Zhou [72] proposed this method for studying electrical circuits. DTM is a 

useful approach for quickly convergent series solutions for a class of nonlinear 

differential equations that is difficult to solve using known exact techniques. Many 
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research publications utilizing DTM can be found, few of them are Vedat [161], 

Hossein et al. [71], Patra et al. [120], Hatami et al. [68] and many more. 

The investigation of bioconvection of nanoliquids containing gyrotactic microbes 

under the sway of magnetic properties, across a linear expanding surface elongated 

horizontally, and energy transmission examination comprising variable temperature at 

the wall and thermo-radiation impact are the main intension of this effort. We also 

looked at exciting aspects of Brownian movement and thermophoresis, as well as the 

influence of penetrating factors on nanofluid particle flow, heat transfer, and 

convergence, as well as microbe clustering. The Casson liquid with motile microbes, 

as well as the thermal radiation parameter and the wall temperature impact, are 

examined in this chapter. Both Differential Transform and numerical approaches are 

used to solve the relevant equations. Figures are used to assess the results of the 

current investigation. 

5.2 MATHEMATICAL FORMULATION  

Liquid containing gyrotactic microorganisms can flow over the linear 

extending surface and the liquid is diluted in order for the microbes to survive on the 

nanoparticles. Under the sway of magnetic field, the surface of the sheet is expanded 

along the 𝑥-axis and the liquid stream is confined uniformly in 𝑥𝑦-plane. The induced 

magnetic field is not taken into account. Consider the effects of the Brownian and 

Thermophoresis diffusion coefficients (𝐷𝐵,𝐷𝑇) on heat conduction. Let   𝑇𝑇𝑤,  𝐶𝑊 and  

𝑛𝑤be the temperature, nanoparticle volume fraction, and microorganism diffusive 

convergence near the wall, and let  𝑇𝑇∞, 𝐶∞,𝑛∞ be the temperature, nanoliquids 

concentration, and dispersive coefficient of the microbes far away from the surface, 

respectively. 

 

 

 

 



                                                                                  

Figure 5. 2. 1 Bioconvection in the boundary layer flow of nanofluids containing 

microorganisms. 

The equations that govern the current problem are as follows: 

𝜕𝑑𝑑
𝜕𝑥

+ 𝜕𝑣
𝜕𝑑𝑑

= 0 ,                                                                                                       (5.2.1) 

 𝑢 𝜕𝑑𝑑
𝜕𝑥

+ 𝑣 𝜕𝑑𝑑
𝜕𝑑𝑑

= 𝑣 �1 + 1
𝛽
� 𝜕

2𝑑𝑑
𝜕𝑑𝑑2

− 𝜎𝐵02

𝜌
𝑢,                                                                 (5.2.2) 

𝑢 𝜕𝑇
𝜕𝑥

+ 𝑣 𝜕𝑇
𝜕𝑑𝑑

= � 𝐾
𝜌𝐶𝑝

� 𝜕
2𝑇

𝜕𝑑𝑑2
− 1

𝜌𝐶𝑝

𝜕𝑞𝑟
𝜕𝑑𝑑

+ 𝜏𝜏 �𝐷𝐵
𝜕𝐶
𝜕𝑑𝑑

𝜕𝑇
𝜕𝑑𝑑

+ 𝐷𝑇
𝑇∞
�𝜕𝑇
𝜕𝑑𝑑
�
2
�,                             (5.2.3) 

𝑢 𝜕𝐶
𝜕𝑥

+ 𝑣 𝜕𝐶
𝜕𝑑𝑑

= 𝐷𝐵
𝜕2𝐶
𝜕𝑑𝑑2

+ �𝐷𝑇
𝑇∞
� 𝜕

2𝑇
𝜕𝑑𝑑2

  ,                                                                       (5.2.4)  

𝑢 𝜕𝑁
𝜕𝑥

+ 𝑣 𝜕𝑁
𝜕𝑑𝑑

+ 𝑏𝑊𝑐
𝐶𝑤−𝐶∞

� 𝜕
𝜕𝑑𝑑
�𝑁𝐶𝑑𝑑�� = 𝐷𝑚

𝜕2𝑁
𝜕𝑑𝑑2

                                                        (5.2.5) 

The pertinent boundary conditions for this problem are as follows: 

𝑣 = 𝑣𝑐,   𝑢 = 𝑎0𝑥,     𝑇𝑇 = 𝑇𝑇𝑤 = 𝑇𝑇∞ + 𝐴 �𝑥
𝑙
�
𝜆1

,   𝐶 = 𝐶𝑤,    𝑁 = 𝑁𝑤,     as 𝑦 → 0,                           

𝑢 → 0,𝑇𝑇 → 𝑇𝑇∞,𝐶 → 𝐶∞,𝑁 → 𝑁∞    𝑎𝑠𝑠  𝑦 → ∞ ,                                     (5.2.6) 

The similarity transformations employed in the governing equations are listed below, 

𝜂𝜂 = �
𝑐
𝜗

 𝑦;𝑢 =  𝑎0𝑥𝑓′(𝜂𝜂);   𝑣 = −√𝑐𝜗 𝑓(𝜂𝜂);   𝜃𝜃(𝜂𝜂) =
𝑇𝑇 − 𝑇𝑇∞
𝑇𝑇𝑤 − 𝑇𝑇∞

,𝜙𝜙(𝜂𝜂) =
𝐶 − 𝐶∞
𝐶𝑤 − 𝐶∞

, 

      𝜒𝜒(𝜂𝜂) = 𝑁−𝑁∞
𝑁𝑤−𝑁∞

,   𝑘 = 𝑘∞(1 + 𝜖 𝜃𝜃)                                                                 (5.2.7) 

The coupled nonlinear ordinary differential equations are 

�1 + 1
𝛽
� 𝜕

3𝑓
𝜕𝜂3

− 𝜕2𝑓
𝜕𝜂2

+ 𝑓(𝜂𝜂) 𝜕
2𝑓

𝜕𝜂2
− 𝑀𝑀 𝜕𝑓

𝜕𝜂
= 0   ,                                                       (5.2.8)  

(1 + 𝜖𝜃𝜃 + 𝑇𝑇𝑟𝑟) 𝜕
2𝜃

𝜕𝜂2
+ (𝜖 + 𝑃𝑃𝑟𝑟𝑁𝑡) �

𝜕𝜃
𝜕𝜂
�
2

+ 𝑃𝑃𝑟𝑟 �𝑓(𝜂𝜂) 𝜕𝜃
𝜕𝜂

+ 𝑁𝑏 �
𝜕𝜃
𝜕𝜂
� �𝜕𝜙

𝜕𝜂
� − 2 𝜕𝑓

𝜕𝜂
𝜃𝜃(𝜂𝜂)� = 0,           (5.2.9) 

𝜕2𝜙
𝜕𝜂2

+ 𝑁𝑡
𝑁𝑏
�𝜕

2𝜃
𝜕𝜂2

�+ L𝑒 𝑓(𝜂𝜂) 𝜕𝜙
𝜕𝜂

= 0   ,                                                                 (5.2.10) 

𝜕2𝜒
𝜕𝜂2

+ 𝑆𝑐 𝑓(𝜂𝜂) 𝜕𝜒
𝜕𝜂
− P𝑒  �𝜕𝜒

𝜕𝜂
𝜕𝜙
𝜕𝜂

+ 𝜕2𝜙
𝜕𝜂2

(𝜒𝜒(𝜂𝜂) + 𝜎)� = 0 ,                                     (5.2.11) 

The reduced periphery conditions are 

𝑓(0) = 𝑣𝑐 ,  𝑓′(0) = 1, 𝜃𝜃(0) = 1, 𝜙𝜙(0) = 1, 𝜒𝜒(0) = 1,   as   𝜂𝜂 → 0
𝑓𝑛(∞) = 0, 𝜃𝜃(∞) = 0, 𝜙𝜙(∞) = 0, 𝜒𝜒(∞) = 0  ,       as            𝜂𝜂 → ∞  �,          (5.2.12) 
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By scaling variables, the system of equations becomes dimensionless: 

𝑃𝑃𝑟𝑟 =
𝑣
𝑚

,𝑀𝑀 =
𝜎𝐵02

𝜌𝑐
,𝑁𝑏 =

𝜏𝜏𝐷𝐵(𝐶𝑤 − 𝐶∞)
𝑣

,𝑁𝑡 =
𝜏𝜏𝐷𝐵(𝑇𝑇𝑤 − 𝑇𝑇∞)

𝑣𝑇𝑇∞
,  

L𝑒 = 𝑣
𝐷𝐵(𝐶𝑤−𝐶∞) ,   𝑆𝑐 = 𝑣

𝐷𝑛
,            P𝑒 = 𝑏𝑊𝑐

𝐷𝑛
,𝜎 = 𝑁∞

(𝑁𝑤−𝑁∞)  ,                             (5.2.13) 

5.3 Series Solution by DTM 

The equations with boundary conditions (5.2.8) -(5.2.12) may be translated into the 

following differential forms, according to Zhou [72]: 

�1 +
1
𝛽𝛽
� (𝑘 + 1)(𝑘 + 2)(𝑘 + 3)𝐹[𝑘 + 3] = 𝑀𝑀(𝑘 + 1)𝐹[𝑘 + 1] +    

                                  +  ∑ (𝑘 −𝑚 + 1)𝐹[𝑘 −𝑚 + 1](𝑚 + 1)𝐹[𝑚 + 1] −𝑘
𝑚=0

                                                               −∑ 𝐹[𝑘 −𝑚](𝑚 + 1)(𝑚 + 2)𝑘
𝑚=0 𝐹[𝑚 + 2]  

Where 𝐹[0] = 𝑠𝑠,𝐹[1] = 1, 𝐹[2] = 𝑎1,                                                              (5.3.1) 

(𝑘 + 1)(𝑘 + 2)𝜃𝜃[𝑘 + 2] = 𝑃𝑃𝑟𝑟 ∗ 2 ∗ ∑ 𝜃𝜃[𝑘 −𝑚](𝑚 + 1)𝑘
𝑚=0 𝐹[𝑚 + 1] −

                                            −𝑃𝑃𝑟𝑟 ∑ 𝐹[𝑘 −𝑚](𝑚 + 1)𝜃𝜃[𝑚 + 1] −𝑘
𝑚=0

                                           −𝑁𝑏𝑃𝑃𝑟𝑟 ∑ (𝑘 −𝑚 + 1)𝑘
𝑚=0 𝜃𝜃[𝑘 −𝑚 + 1](𝑚 + 1)𝜙𝜙[𝑚 + 1] −

                                     −(𝜖 + 𝑃𝑃𝑟𝑟𝑁𝑡)∑ (𝑘 −𝑚 + 1)𝑘
𝑚=0 𝜃𝜃[𝑘 −𝑚 + 1](𝑚 + 1)𝜃𝜃[𝑚 + 1]  

Here, 𝜃𝜃[0] = 1, 𝜃𝜃[1] = 𝑎2 ,                                                                                  (5.3.2) 

(𝑘 + 1)(𝑘 + 2)𝜙𝜙[𝑘 + 2]  = 

= 𝐿𝑒 � 𝐹[𝑘 −𝑚](𝑚 + 1)𝜙𝜙[𝑚 + 1]  −
𝑁𝑡  
𝑁𝑏

𝑘

𝑚=0

� (𝑘 + 1)(𝑘 + 2)𝜃𝜃[𝑘 + 2]
𝑘

𝑚=0

 

 Where  𝜙𝜙[0] = 1,   𝜙𝜙[1] =  𝑎3     ,                                                                   (5.3.3) 

(𝑘 + 1)(𝑘 + 2)𝜒𝜒[𝑘 + 2] = P𝑒𝜎(𝑘 + 1)(𝑘 + 2)𝜙𝜙[𝑘 + 2] +                 

                                        +P𝑒 ∑ (𝑘 −𝑚 + 1)𝜙𝜙[𝑘 −𝑚 + 1](𝑚 + 1)𝜒𝜒[𝑚 + 1] +𝑘
𝑚=0

                                        +P𝑒 ∑ 𝜒𝜒[𝑘 −𝑚](𝑚 + 1)𝑘
𝑚=0 (𝑚 + 2)𝜙𝜙[𝑚 + 2] −

                                        −  𝑆𝑐 ∑ 𝐹[𝑘 −𝑚](𝑚 + 1)𝑘
𝑚=0 𝜒𝜒[𝑚 + 1] , 

Where 𝜒𝜒[0] = 1,𝜒𝜒[1] = 𝑎4   ,                                                                              (5.3.4) 
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The differential transformations of 𝑓(𝜂𝜂), 𝜃𝜃(𝜂𝜂), 𝜙𝜙(𝜂𝜂), and 𝜒𝜒(𝜂𝜂) are denoted as 

𝐹[𝑘],𝜃𝜃[𝑘], 𝜙𝜙[𝑘],  and [𝑘]  . Utilizing the above modified equations and the boundary 

requisites, the supposed constants 𝑎1, 𝑎2, 𝑎3, and   𝑎4 may be derived. Taking 𝑘 = 

0,1,2, 3..., and s = 0, we obtain 

F[3] = 𝛽(1+M)
6(1+𝛽)   ;        F[4] = a1(1+𝑀)𝛽

24(1+𝛽)  ;    

θ[2] = P𝑟
1+Tr+𝜖

− a2a3𝑁𝑏P𝑟
2(1+Tr+𝜖)

− a22(𝑁𝑡P𝑟+𝜖)
2(1+Tr+𝜖)

  ;    

ϕ[2] = −
𝑁𝑡�

P𝑟
1+Tr+𝜖

−
a2a3𝑁𝑏P𝑟
2(1+Tr+𝜖)−

a22(𝑁𝑡P𝑟+𝜖)
2(1+Tr+𝜖) �

N𝑏
  ; 

χ[2]= a3a4P𝑒
2

−
𝑁𝑡P𝑒�

P𝑟
1+Tr+𝜖

−a2a3𝑁𝑡P𝑟
2(1+Tr+𝜖)−

a22(𝑁𝑡P𝑟+𝜖)
2(1+Tr+𝜖) �(1−𝜎)

N𝑏
  , 

similarly, computing θ[3], ϕ[3], χ[3] , F[5]... and replacing the above results in the 

differential Transformed equations and utilizing the Pade approximation with 

lim𝑛→∞ 𝑓′(𝜂𝜂) = 0,  and by taking 𝑃𝑃𝑟𝑟 = 6.8,𝛽𝛽 = 0.5, 𝜖 = 0.1, 𝑇𝑇𝑟𝑟 = 1,𝑀𝑀 = 5, 𝑁𝑏 =

0.1, 𝑁𝑡 = 0.1, L𝑒 = 10, S𝑐 = 1, P𝑒 = 1, 𝜎 = 0.2 ,we can get 𝑎1 =  −1.41421, 𝑎2 =

 −2.29631 , 𝑎3 =  −0.761353,𝑎4 =  −1.21743 and thus the Taylor’s series 

solution for 𝑓(𝜂𝜂),𝜃𝜃(𝜂𝜂),𝜙𝜙(𝜂𝜂),𝜒𝜒(𝜂𝜂)  are  obtained as follows. 

𝑓(𝜂𝜂) = 𝜂𝜂 − 0.70710678 𝜂𝜂2 + 0.333333 𝜂𝜂3 −  0.11785113 𝜂𝜂4 + 0333333 𝜂𝜂5 − 

        −0.00785674 𝜂𝜂6 −0.0015873 𝜂𝜂7 − 0.00028059 𝜂𝜂8 + 0.00004409 𝜂𝜂9 − 

         −0.0000062355 𝜂𝜂10 + 8.01667467 ×  10−7𝜂𝜂11−. . ..                               (5.3.5) 

 

𝜃𝜃(𝜂𝜂) =  1 − 2.29631088 𝜂𝜂 + 1.975757237 𝜂𝜂2 − 2.33636843 𝜂𝜂3 + 1.26330833 𝜂𝜂4 

      −0.27303305𝜂𝜂5 − 0.781049234 𝜂𝜂6 + 1.32714368 𝜂𝜂7 − 0.567156644 𝜂𝜂8 

     −0.937622474 𝜂𝜂9 + 1.956197893 𝜂𝜂10 − 1.4128657111 𝜂𝜂11+. . . . ..  ,       (5.3.6) 

 

𝜙𝜙(𝜂𝜂) = −0.76135259 𝜂𝜂 − 1.97575723 𝜂𝜂2 + 3.60528942 𝜂𝜂3 + 1.58098907 𝜂𝜂4 −

              −6.4050803 𝜂𝜂5 + 1.631536804 𝜂𝜂6 + 6.39940692 𝜂𝜂7 − 5.35109107𝜂𝜂8 −

              −2.79067908 𝜂𝜂9 + 5.524592211 𝜂𝜂10 − 0.20836641𝜂𝜂11 − ⋯,            (5.3.7) 
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𝜒𝜒(𝜂𝜂)   =      1 − 1.21743302 𝜂𝜂 − 0.5722382 𝜂𝜂2 − 0.5722382𝜂𝜂3 − 0.3408438 𝜂𝜂4 −

             −3.92775865 𝜂𝜂5  + 3.86466401 𝜂𝜂6 + 3.902623735 𝜂𝜂7 −

            9.612664149 𝜂𝜂8 + 1.13224397 𝜂𝜂9 + 14.10829523𝜂𝜂10 −

           − 11.9391550003𝜂𝜂11 −⋯,                         (5.3.8) 
 

5.4 Outcomes and Analysis 

This investigation into the current boundary layer stream of the liquid loaded 

with motile microbes across an extended surface subjected to a magnetic field is 

carried out. We sought to analyze the influence of thermal radiation with varying wall 

temperatures, taking into account the thermophoresis parameter and the Brownian 

movement constraints. The underlying comparisons are solved exactly as well as 

approximately. The numerical and the DTM outcomes are compared through graphs. 

Here we have also attempted to represent the outcome as a Taylor's series using the 

DTM. 

Velocity Variation 

The velocity profiles for the variations of the parameters of Casson liquid (𝛽𝛽 ), 

mass transmission (𝑠𝑠 ),and the modified magnetic (𝑀𝑀 ) are shown in Figures 5.4.1 -

5.4.3. The speed of the liquid resists when the Casson liquid parameter is increased, as 

seen in Figure 5.4.1. The rationale is that when the Casson liquid parameter is 

increased, the thickness of the boundary layer decreases. The effect of the magnetic 

field on the liquid flow is shown in Figure 5.4.2. When a magnetic influence is 

functional regularly to the exterior of a molten, the generated magnetic effect 

produces a repellant intensity on the molten passage, and hence the rapidity of the 

liquid decreases. The link between the suction parameter and the fluid velocity is seen 

in Figure 5.4.3. With rising levels of the mass flux parameter, the liquid flow speed 

decreases. These findings are quite similar to those of Raju et al. [30] and Nayak et al. 

[91]. 

Temperature variation 

Figures 5.4.4 - 5.4.8 show temperature profiles for various parameter values. 

We discovered that rising values of the radiation parameter, Brownian movement 
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parameter, and thermophoresis parameter result in higher temperatures, while 

variation in ascending order of the suction parameter and Prandtl number result in 

lower temperatures. The energy profile of the liquid is shown versus the radiation 

parameter (𝑇𝑇𝑟𝑟) in Figure 5.4.4. The temperature of the molten raises for varied values 

𝑇𝑇𝑟𝑟 . This is due to the manner that ascending values of 𝑇𝑇𝑟𝑟 produce a decrease in the 

viscosity of the molten, which raises the temperature. Figure 5.4.5 illustrates that as 

soon as the suction constraints rises, the temperature of the molten declines; this is 

due to an increase in the thickness of the thermal boundary layer at the wall. Because 

of the nonlinearity of the fluctuating wall temperature. The influence of 𝑃𝑃𝑟𝑟 on the 

temperature of the molten is depicted in Figure 5.4.6, where growth in the 𝑃𝑃𝑟𝑟 values 

instigate the energy of the liquid to drop. It is for this reason that as the Prandtl 

number increases, the thickness of the thermal boundary layer decreases, resulting in a 

decrease in heat flow. The increase in temperature for the growth of the 

thermophoresis parameter (𝑁𝑡) is depicted in Figure 5.4.7. This is due to the fact that 

each nano molecule has different thermophoresis parameter values, which causes the 

thickness of the thermal boundary layer at the wall to decrease, and thus temperature 

increases. Figure 5.4.8 shows how the temperature profile improves when the 

Brownian movement parameter (𝑁𝑏) is increased. As the value of (𝑁𝑏) grows, the 

collision rate between nanoparticles increases, assisting in the growth of heat 

generation. These findings support those of Chakraborty [156] and Nayak et al. [91]. 

 Concentration profiles of nanoliquids 

Figure 5.4.9 - 5.4.11 illustrates the volume concentration of nanoparticles. The 

concentration of nanoparticles is found to decrease as non-dimensional parameters 

such as the Lewis number (𝐿𝑒), mass suction (𝑠𝑠), and thermal radiation parameter (𝑇𝑇𝑟𝑟) 

are changed.  The concentration nanoparticles profile for the variation of 𝐿𝑒 is shown 

in the Figure 5.4.9.  When 𝐿𝑒 varied in ascending order, the concentration of 

nanoparticles volume falls. Nanoparticles with lower mass diffusivity have lower 

concentrations. The relationship between the density of nanoparticles and the 

magnetic number is seen in Figure 5.4.10. As the magnetic parameter is increased, the 

particle concentration increases. When a magnetic field is applied to nanoparticles, 

dipoles occur, which are allied in the direction of same magnetic field, growing the 

density of nanoliquids. Figure 5.4.11 shows how the density of nanoliquids changes 
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with the mass suction parameter. As the suction parameter is increased, the 

concentration of nanoparticles drops. The suction parameter causes the nanoliquids to 

disperse and segregate, lowering the nanoparticle concentration. These outcomes are 

in accord with the findings of Chakraborty [156], Shahid [149], Nayak et al. 

[91], Zadeh et al. [71]. 

Concentration profiles of microbes 

The Figure 5.4.12 - 5.4.14 shows the microorganism concentration profile. 

The density of microbes decreases as the bio-convection constant increases (see 

Figure 5.4.12). Because microorganisms have a higher density than nanoparticles, 

bio-convection occurs as the density of microorganisms decreases. The density of 

microbes against the Peclet number for bioconvection is shown in Figure 5.4.13. With 

increasing Peclet number, the density of microbes falls. The density of motile microbes is 

shown in Figure 5.4.14 as a function of the mass flux parameter. As the suction parameter 

is increased, the density of motile microorganisms drops. These findings are reliable 

with those of Nayak et.al [91] and Zadeh et.al [71]. 

 

 

Figure 5.4.1 Velocity of the fluid  for 𝜷𝜷 = 𝟎𝟎.𝟓𝟓,𝟎𝟎.𝟔𝟔,𝟎𝟎.𝟕𝟕,𝟎𝟎.𝟖𝟖. 
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Figure 5.4.2  Velocity of the fluid for the variations of 𝑴𝑴. 

 

 

 

 Figure 5.4.3  Velocity of the fluid for the variation of  S = 0.1, 0.25, 0.5,0.75. 
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Figure 5.4.4  Temperature profile for distinct values of radiation parameter 

 𝑻𝑻𝒓𝒓  = 𝟏𝟏,𝟐𝟐,𝟓𝟓,𝟕𝟕. 

 

 

Figure 5.4.5  Energy profile for the variations mass flux parameter                  

 𝒔𝒔 =  𝟎𝟎.𝟏𝟏, 𝟎𝟎.𝟐𝟐𝟓𝟓, 𝟎𝟎.𝟓𝟓, 𝟎𝟎.𝟕𝟕𝟓𝟓. 
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Figure 5.4.6 Temperature profile for different values of  𝑷𝑷𝒓𝒓  = 𝟎𝟎.𝟎𝟎𝟏𝟏,𝟏𝟏,𝟏𝟏.𝟐𝟐,𝟏𝟏.𝟓𝟓 

 

 

Figure 5.4.7 Energy profile for the variations of  𝑵𝑵𝒕𝒕  =  𝟎𝟎.𝟓𝟓,𝟏𝟏,𝟏𝟏.𝟐𝟐,𝟏𝟏.𝟓𝟓 
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Figure 5.4.8 Energy profile for the variations of 𝑵𝑵𝒃𝒃 = 𝟎𝟎.𝟓𝟓,𝟏𝟏,𝟏𝟏.𝟐𝟐,𝟏𝟏.𝟓𝟓 

 

 

 

Figure 5.4.9 Concentration profile of nanoparticles for the variations of  

𝑳𝑳𝑳𝑳 =  𝟐𝟐,𝟓𝟓,𝟕𝟕,𝟏𝟏𝟎𝟎 
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Figure 5.4.10 Concentration profile of nanoparticles for the variations of   

𝑴𝑴 =  𝟏𝟏,𝟑𝟑,𝟓𝟓,𝟕𝟕 

 

 

Figure 5.4.11 Concentration profile of nanoparticles for the variations of 

𝒔𝒔 = 𝟎𝟎.𝟏𝟏,𝟎𝟎.𝟐𝟐𝟓𝟓,𝟎𝟎.𝟓𝟓,𝟎𝟎.𝟕𝟕𝟓𝟓. 
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Figure 5.4.12 density  profile of microbes for the variations of  

𝝈𝝈 = 𝟎𝟎.𝟐𝟐,𝟎𝟎.𝟒𝟒,𝟎𝟎.𝟔𝟔,𝟎𝟎.𝟖𝟖. 

 

 

Figure 5.4.13 Density profile of microbes for the variations of  

𝑷𝑷𝑳𝑳 = 𝟎𝟎.𝟔𝟔,𝟎𝟎.𝟖𝟖,𝟏𝟏,𝟏𝟏.𝟐𝟐. 
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Figure 5.4.14 Density profile of microbes for the variations of  

𝒔𝒔 = 𝟎𝟎.𝟏𝟏,𝟎𝟎.𝟐𝟐𝟓𝟓,𝟎𝟎.𝟓𝟓,𝟎𝟎.𝟕𝟕𝟓𝟓. 
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5.5 CONCLUSION 

We wanted to find a semi-intuitive and approximate solution for a set of coupled 

nonlinear equations involving MHD non-Newtonian liquid stream incorporating 

motile microbes on a linearly extended surface in the current work. Molten stream, 

energy transmission comprising the thermal radiation effect, and changeable 

temperature at the walls are all being researched. The concentrations of nanoparticles 

and microorganisms are also examined and graphed utilizing a variety of non-

dimensional properties. The important points of the current investigation are 

summarized below.  

 The thermophoresis parameter (𝑁𝑡), Brownian movement parameter (𝑁𝑏), and 

the thermal radiation parameter (𝑇𝑇𝑟𝑟) all have increasing values, resulting in an 

increase in fluid temperature. 

 The temperature of the fluid is lowered by Prandtl number (𝑃𝑃𝑟𝑟) and suction 

parameter (𝑠𝑠). 

 The magnetic field parameter (𝑀𝑀) raises the density of the nanoparticles in the 

flow while the Lewis number (𝐿𝑒) and suction parameter (s) decrease. 

 For increasing Peclet number (𝑃𝑃𝑒), suction parameter (𝑠𝑠), and bio-convection 

constant (𝜎), the density of microbes drops. 
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    CHAPTER 6 

Impact of Magnetic Field on the Bioconvection of Casson 

Liquid Flow Due to Microbes and Nanoparticles. 
 

(Part of the chapter is published in Advanced Mathematics scientific Journal 

(AMSJ)) 

 

6.1 INTRODUCTION 

The major purpose of this chapter is to use Oberbeck-Boussinesq 

approximations to explore the influence of Brownian motion and thermophoresis 

parameters on bioconvection in a Casson nanofluid stream containing gyrotactic 

microorganisms with magnetic impact. The physical scenario encountered in many 

industrial and technical applications is the stream and energy transmission of 

nanofluids with diverse characteristics in the boundary layer near a steady flat 

extended surface. The analysis of the Newtonian and non-Newtonian liquid streams, 

as well as energy exchange with diverse impacts, has found widespread use in 

industries such as wire drawing and polymer eviction from dyes among others. 

Tinning, cooling metallic plates, polymer sheet ejection, paper, and making glass 

fibers are some of the other engineering implementations of the stretched sheet. A lot 

of study on flow and energy exchange across the extending surface has been done by 

notable scientists in the boundary layer theory for the last several decades. 

Alloui et al. [168] published a computational solution for thermo-

bioconvection that had become blocked due to gyrotactic microorganisms. Khan et al. 

[112] examined the consequences of a magnetic field and Navier slip on boundary 

layer stream with energy and mass transmission in water-based nanoliquids 

surrounding motile microbes. The numerical findings are generated using the 

similarity transformation and Oberbeck-Boussinesq approximation. Mehmood et al. 

[169] demonstrated the influence of stagnation point stream on an expanding slab 

containing microbes under the sway of an induced magnetic field. In addition, Akbar 

et.al [111] quantitatively investigated bioconvection, Brownian motion, and 

thermophoresis of motile microbes and nanoliquids across a stretched plate involving 
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magnetic effect. The properties of thermophoresis and Brownian movement on the 

radiative stream of Casson liquid across a moving wedge including motile microbes 

and magnetic impact were recently published by Raju et al. [30]. Khan et al. [113] 

examined mixed convection of non-Newtonian fluid sheets due to nanoparticles and 

motile microbes using the homotopy analysis approach. Khan [114] used inactively 

controlled nanoliquids model boundary conditions to investigate bioconvection in 

stable second-grade liquids thin stream comprising nanoliquids and motile microbes. 

The governing equations were solved analytically using HAM. 

Zhou’s [72] approach, often known as the differential transform method 

(DTM), is a time-saving technique frequently utilized by scientists. DTM, a 

fundamental method of solving differential equations given beginning or boundary 

conditions, may be used to get the Taylor's series as the outcomes. This technique is 

extremely adaptable and easy to understand, it can easily be automated. In contrast to 

HAM, no additional settings are required. Many researchers have lately been 

successful in achieving convergence of series solutions to their issues. DTM is 

discovered to be an alternate method for obtaining quick convergence series solutions 

for nonlinear ODEs as well as PDEs that cannot be solved exactly. DTM was used to 

solve linear and nonlinear set of ODEs by Mirzaee [57]. Hatami et al. [68] employed 

DTM to analyze Newtonian and non-Newtonian nanoliquids stream, with good 

agreement between numerical and experimental outcomes. Sepasgozar et.al [138] 

used DTM to find the series solution for non-Newtonian liquid stream in an 

axisymmetric channel with a porous wall's momentum and heat exchange equations. 

The goal of this chapter is to look into a bioconvection investigation of Casson 

nanofluid flow above the stretched sheet, which includes gyrotactic microbes, under 

the sway of magnetic field. We also used the Oberbeck-Boussinesq approximations to 

investigate intriguing elements of Brownian motion, thermophoresis, and energy 

transmission analyses of the studied fluid. Using the differential transform approach 

and the numerical method, we attempted to solve the governing equations. 

6.2 Mathematical Formulation 

Consider adding gyrotactic microorganisms to an incompressible water-based 

Casson nanofluid. The bacteria are thought to be alive since the combined fluid is 
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dilute. The stretching sheet is stretched along the 𝑥 − 𝑎𝑥𝑖𝑠𝑠  and the liquid is allowed 

to stream above the stretched surface under the sway of an induced magnetic field 

normal to the stretched surface. An induced magnetic field isn't taken into account. 

The stretched sheet surface is supposed to be moving at a linear speed. Let 𝐷𝑏 

represent Brownian diffusion coefficient and 𝐷𝑡 represent the influence of the 

thermophoresis diffusion coefficient on heat conduction. Let 𝑇𝑇𝑤, 𝐶𝑤, and 𝑁𝑤 signify 

temperature, nanoparticle volume fraction, and microbe diffusive concentration near 

the wall, respectively, while 𝑇𝑇∞, 𝐶∞ ,𝑁∞  denote energy, coefficient of nanoliquids, 

and microbes diffusive concentration far away from the surface respectively, as 

shown in the Figure 6.2.1. 

 

Figure 6.2.1 Geometrical sketch of the model of bioconvection in the stream of 

nanofluids containing microbes 

Mathematically formulated equations are: 

𝜕𝑑𝑑
𝜕𝑥

+ 𝜕𝑣
𝜕𝑑𝑑

= 0,                                                                 (6.2.1)   

𝑢
𝜕𝑢
𝜕𝑥

+ 𝑣
𝜕𝑢
𝜕𝑦

= 𝜈 �1 +
1
𝛽𝛽
�
𝜕2𝑢
𝜕𝑦2

−
𝜎𝐵∘2

𝜌
𝑢 + �

1 − 𝐶∞
𝜌𝑓

�𝜌∞𝑔𝛼(𝑇𝑇 − 𝑇𝑇∞) − 

                                −�𝜌𝑝−𝜌∞
𝜌𝑓

�𝑔(𝐶 − 𝐶∞)− �𝜌𝑚−𝜌𝑓
𝜌𝑓

�𝑔𝛾(𝑁 −𝑁∞),                              (6.2.2) 

𝑢 𝜕𝑇
𝜕𝑥

+ 𝑣 𝜕𝑇
𝜕𝑑𝑑

= � 𝐾
𝜌𝐶𝑝

� 𝜕
2𝑇

𝜕𝑑𝑑2
+ 𝜏𝜏 �𝐷𝐵

𝜕𝐶
𝜕𝑑𝑑

𝜕𝑇
𝜕𝑑𝑑

+ 𝐷𝑇
𝑇∞
�𝜕𝑇
𝜕𝑑𝑑
�
2
�,                                 (6.2.3) 
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𝑢 𝜕𝐶
𝜕𝑥

+ 𝑣 𝜕𝐶
𝜕𝑑𝑑

= 𝐷𝐵
𝜕2𝐶
𝜕𝑑𝑑2

+ �𝐷𝑇
𝑇∞
� 𝜕

2𝑇
𝜕𝑑𝑑2

   ,                                                   (6.2.4) 

𝑢 𝜕𝑁
𝜕𝑥

+ 𝑣 𝜕𝑁
𝜕𝑑𝑑

+ 𝑏𝑊𝑐
𝐶𝑤−𝐶∞

� 𝜕
𝜕𝑑𝑑

(𝑁𝐶𝑑𝑑)� = 𝐷𝑚
𝜕2𝑁
𝜕𝑑𝑑2

  ,                                            (6.2.5) 

The Casson model's flow and heat transfer boundary conditions are as follows 

𝑣 = 0 ,𝑢 = 𝑎0𝑥 ,𝑇𝑇 = 𝑇𝑇𝑤,𝐶 = 𝐶𝑤,𝑁 = 𝑁𝑤    𝑎𝑠𝑠       𝑦 → 0,                                                 

𝑢 → 0,𝑇𝑇 → 𝑇𝑇∞,𝐶 = 𝐶∞,𝑁 → 𝑁∞     𝑎𝑠𝑠       𝑦 → ∞,                           (6.2.6)    

 

Incorporating the similarity transformation into the governing equations is as follows: 

𝜂𝜂 = 𝑑𝑑
𝑥
𝑅𝑎𝑥

1/4𝑓(𝜂𝜂) ,𝜓 = 𝑚𝑅𝑎𝑥
1/4𝑓(𝜂𝜂) ,𝜃𝜃(𝜂𝜂) = 𝑇−𝑇∞

𝑇𝑤−𝑇∞
,  𝜑(𝜂𝜂) = 𝐶−𝐶∞

𝐶𝑤−𝐶∞
,  

𝜒𝜒(𝜂𝜂) = 𝑁−𝑁∞
𝑁𝑤−𝑁∞

, 𝑅𝑎𝑥 = (1−𝐶∞)𝛼𝑔𝛥𝑇𝑓
𝑚𝜈

𝑥3 ,                                            (6.2.7)   

 

The following nonlinear ordinary differential equations are linked nonlinearly: 

(1 + 1/𝛽𝛽)𝑓𝜂3 − (1/2𝑃𝑃𝑟𝑟)𝑓𝜂2 + (3/4𝑃𝑃𝑟𝑟) 𝑓𝑓𝜂2 −𝑀𝑀𝑓𝜂 + 𝜃𝜃 − 𝑁𝑟𝑟𝜙𝜙 − 𝑅𝑏𝜒𝜒 = 0,             (6.2.8) 

𝜃𝜃𝜂2 + (3/4)𝑓𝜃𝜃𝜂 + 𝑁𝑏𝜃𝜃𝜂𝜙𝜙𝜂 + 𝑁𝑡𝜃𝜃𝜂2 = 0,                                             (6.2.9) 

𝜙𝜙𝜂2 + �3
4
� 𝐿𝑒𝑓𝜙𝜙𝜂 + (𝑁𝑡/𝑁𝑏)𝜃𝜃𝜂2=0,                                                                   (6.2.10) 

𝜒𝜒𝜂2 + (3/4)𝑆𝑐𝑓𝜒𝜒𝜂 − 𝑃𝑃𝑒�𝜙𝜙𝜂𝜒𝜒𝜂 + 𝜙𝜙𝜂2(𝜒𝜒 + 𝜎)� = 0,                                          (6.2.11) 

 

The dimensionless boundary conditions that go with it are 

𝑓(0) = 0,𝑓𝜂(0) = 𝜆,𝜃𝜃(0) = 1,𝜙𝜙(0) = 1,𝜒𝜒(0) = 1  𝑎𝑠𝑠 𝜂𝜂 → 0
𝑓𝜂(∞) = 0,𝜃𝜃(∞) = 0,𝜙𝜙(∞) = 0, 𝜒𝜒(∞) = 0    𝑎𝑠𝑠          𝜂𝜂 → ∞ �,                  (6.2.12) 

 

 the dimensionless parameters that are utilized in (6.2.8) to (6.2.11) are: 

𝑀𝑀 = 𝜎𝐵02𝑥2

𝜌𝜈𝑅𝑎𝑥
1/2, 𝑁𝑟𝑟 = (𝜌𝑝−𝜌∞)𝛥𝐶𝑤

𝜌𝑓(1−𝑐∞)𝛼𝛥𝑇𝑓
,𝑅𝑏 = 𝛾𝛾𝛥𝑁𝑤𝛥𝜌

𝜌𝑓𝛼(1−𝐶∞)𝛥𝑇𝑤
,𝑁𝑡 = 𝜏𝐷𝑇(𝑇𝑤−𝑇∞)

𝑚𝑇∞
,  

𝑁𝑏 = 𝜏𝐷𝐵(𝐶𝑤−𝐶∞)
𝑚

, 𝐿𝑒 = 𝑚
𝐷𝐵

, 𝑆𝑐 = 𝑚
𝐷𝑚

  ,𝑃𝑃𝑒 = 𝑏𝑊𝑐
(𝐶𝑤−𝐶∞)

, 𝜎 = 𝑁∞
(𝑁𝑤−𝑁∞)

  

𝜆 = 𝑎𝑥2

𝑚𝑅𝑎𝑥
1/2.  𝑃𝑃𝑟𝑟 = 𝜈/𝑚 .   

 

 

 

83 



                                                                                  

6.3 DTM Solution 

The equations (6.2.8) - (6.2.12) may be translated into the following Differential 

forms [Hatami [167]]: 

�1 +
1
𝛽𝛽
� (𝑟 + 1)(𝑟 + 2)(𝑟 + 3)𝐹[𝑟 + 3] = 𝑀𝑀(𝑟 + 1)𝐹[𝑟 + 1) − 𝜃𝜃[𝑟] + 𝑁𝑟𝑟𝜙𝜙[𝑟] 

                              +𝑅𝑏𝜒𝜒[𝑟] + 1
2𝑃𝑟

∑ (𝑟 − 𝑚 + 1) 𝐹[𝑟 − 𝑚 + 1](𝑚 + 1)𝐹[𝑚 + 1]𝑟𝑟
𝑚=0 - 

                                  −(3/4𝑃𝑃𝑟𝑟) � 𝐹[𝑟 −𝑚]
𝑟𝑟

𝑚=0

(𝑚 + 1)(𝑚 + 2)𝐹[𝑚 + 2], 

where  𝐹[0] = 0, 𝐹[1] = 0,𝐹[2] = 𝑎1    ,                                                        (6.3.1) 

             

(𝑟 + 1)(𝑟 + 2)𝜃𝜃[𝑟 + 2] = �− 3
4
�∑ 𝐹[𝑟 − 𝑚](𝑚 + 1)𝜃𝜃[𝑚 + 1] −𝑟𝑟

𝑚=0  

−𝑁𝑏 � (𝑟 − 𝑚 + 1)𝜃𝜃[𝑟 − 𝑚 + 1](𝑚 + 1)𝜙𝜙[𝑚 + 1] −
𝑟𝑟

𝑚=0

 

                                  −𝑁𝑡 ∑ (𝑟 − 𝑚 + 1)𝜃𝜃[𝑟 − 𝑚 + 1](𝑚 + 1)𝜃𝜃[𝑚 + 1]𝑟𝑟
𝑚=0      

where  𝜃𝜃[0] = 1, 𝜃𝜃[1] = 𝑎2.        ,                                                           (6.3.2) 

(𝑟 + 1)(𝑟 + 2)𝜙𝜙[𝑟 + 2] = 

     = �− 3
4
� 𝐿𝑒 ∑ 𝐹[𝑟 − 𝑚](𝑚 + 1)𝜙𝜙[𝑚 + 1] −𝑟𝑟

𝑚=0
𝑁𝑡
 𝑁𝑏

∑ (𝑟 + 1)(𝑟 + 2)𝜃𝜃[𝑟 + 2]𝑟𝑟
𝑚=0 ,      

 where 𝜙𝜙[0] = 1,  𝜙𝜙[1] = 𝑎3,                                                          (6.3.3) 

(𝑟 + 1)(𝑟 + 2)𝜒𝜒[𝑟 + 2] = 𝑃𝑃𝑒 � (𝑟 − 𝑚 + 1)𝜙𝜙[𝑟 − 𝑚 + 1](𝑚 + 1)𝜒𝜒[𝑚 + 1]
𝑟𝑟

𝑚=0

+ 

        +𝑃𝑃𝑒 � 𝜒𝜒[𝑟 − 𝑚](𝑚 + 1)(𝑚 + 2)𝜙𝜙[𝑚 + 2]                                               
𝑟𝑟

𝑚=0

 

             +𝑃𝑃𝑒𝜎(𝑟 + 1)(𝑟 + 2)𝜙𝜙[𝑟 + 2]  − (3/4)𝑆𝑐 ∑ 𝐹[𝑟 − 𝑚](𝑚 + 1)𝜒𝜒[𝑚 + 1]𝑟𝑟
𝑚=0 ,         

𝜒𝜒[0] = 1,  𝜒𝜒[1] = 𝑎4   ,                                                        (6.3.4) 

𝐹[𝑟], 𝜃𝜃[𝑟], 𝜙𝜙[𝑟] and 𝜒𝜒[𝑟] are the differential transforms of 𝑓(𝜂𝜂) , 𝜃𝜃(𝜂𝜂),𝜙𝜙(𝜂𝜂) and 

𝜒𝜒(𝜂𝜂) , while 𝑎1,𝑎2,𝑎3 and 𝑎4  are the assumed constants, which may be found using 
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equations (6.3.1) - (6.3.4) and the boundary conditions. We get the following results 

for r = 0,1,2,3... 

F[3]= −1+N𝑟+R𝑏
6�1+1𝛽�

 , 

θ[2] = −1
2

a2a3N𝑏 −
a22N𝑡
2

  , 

ϕ[2] = −
N𝑡�−

1
2a2a3N𝑏−

a22N𝑡
2 �

N𝑏
   , 

χ[2] = a3a4𝑃𝑒
2

+ 𝑃𝑃𝑒 �
1
2

a2a3N𝑏 + a22Nt
2
� Nt
N𝑏

(1 + 𝜎)  , 

F[4] = a1𝑀
12(1+1𝛽)

+ −a2+a3N𝑟+a4R𝑏
24(1+1𝛽)

  , 

θ[3] = −
2
3

a2N𝑡 �−
1
2

a2a3N𝑏 −
a22N𝑡

2
� − 

                        −1
6

N𝑏(2a3(−1
2

a2a3N𝑏 −
a22N𝑡
2

) −
2a2N𝑡(−12a2a3N𝑏−a2

2N𝑡
2 )

N𝑏
) , 

 

Similarly, we can obtain, ϕ[3], χ[3], and so on. Using all of the above in the 

differential inverse transforms, and assuming  𝑃𝑃𝑟𝑟 = 6.2 ,  𝛽𝛽 = 1,    𝑀𝑀 = 5,     𝑁𝑟𝑟 =

0.5,  R𝑏 = 0.1,  𝑁𝑡 = 0.1, 𝑁𝑏 = 0.1,   𝐿𝑒 = 10, 𝑆𝑐 = 0.1,𝑃𝑃𝑒 = 1, 𝜎 = 0.2  and solving 

for 𝑎1,𝑎2,𝑎3, 4a , utilizing the boundary requisites and the Pade approximation with  

Lim 0)( =′ ηf   as   ∞→η     ,we get      1a = 0.144761,    2a = −0.159598 ,     3a

=−0.4891398,  

4a = −0.619069 , and then the series solutions for  𝑓(𝜂𝜂),𝜃𝜃(𝜂𝜂),𝜑(𝜂𝜂),𝜒𝜒(𝜂𝜂)    are 

obtained as follows. 

 

𝑓(𝜂𝜂) = 0.0723803575𝜂𝜂2 − 0.0333333333𝜂𝜂3 + 0.0120192699𝜂𝜂4- 

        −0.0038352688𝜂𝜂5 + +0.0009907633𝜂𝜂6 − 0.00022955075𝜂𝜂7+ 

     +0.0000587013𝜂𝜂8 − 0.0000160486𝜂𝜂9 + 0.0000042669𝜂𝜂10 − 

     −0.00000116244𝜂𝜂11 + 3.2298296 × 10−7𝜂𝜂12 − + − 
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𝜃𝜃(𝜂𝜂) = 1 − 0.159598𝜂𝜂 − 0.00517687𝜂𝜂2 − 0.000111948𝜂𝜂3 + 0.00072017𝜂𝜂4 

     −0.0000914205𝜂𝜂5  + 0.0000249909𝜂𝜂6 − 9.58335 × 10−6𝜂𝜂7 + 

    +7.22131 × 10−8𝜂𝜂8 + 4.64485 × 10−7𝜂𝜂9 − 1.8687 × 10−7𝜂𝜂10 + 

   +1.57907 × 10−7𝜂𝜂11 − 9.19743 × 10−8𝜂𝜂12 −,    

 

𝜙𝜙(𝜂𝜂) = 1 − 0.48914𝜂𝜂 + 0.00517687𝜂𝜂2 + 0.000111948𝜂𝜂3 + 0.0214074𝜂𝜂4 

−0.00630385𝜂𝜂5 + 0.00152499𝜂𝜂6 − 0.0014524𝜂𝜂7 + 0.000757427𝜂𝜂8 − 

−0.000298733𝜂𝜂9 + 0.000148427𝜂𝜂10 − 0.000075264𝜂𝜂11 + 0.0000345801𝜂𝜂12- 

 

𝜒𝜒(𝜂𝜂) = 1 − 0.619069𝜂𝜂 + 0.157618𝜂𝜂2 − 0.0277013𝜂𝜂3 + 0.0297124𝜂𝜂4 

   −0.0212832𝜂𝜂5 + 0.00917625𝜂𝜂6 − 0.00430325𝜂𝜂7 + 0.0025966𝜂𝜂8 

 −0.00144392𝜂𝜂9 + 0.000719194𝜂𝜂10 − 0.000368404𝜂𝜂11 + 0.000196706𝜂𝜂12-.. 

 

6.4 Results and Discussion 

Under the effect of a uniformly applied magnetic field normal to the surface, 

the heat exchange of nano particles and bioconvection in the unsteady fluid flow 

owing to gyrotactic microorganisms are investigated. In this work, exact and 

approximate solutions for all governing equations are generated utilizing DTM and 

Mathematica software and graphs are used to examine the impact of a wide variety of 

factors on fluid momentum, energy, concentration of nanoparticles, and motile 

microbes. 

Velocity profile 

Figures 6.4.1 – 6.4.4 depict the Casson fluid's velocity profile for a variety of 

parameter values. For increasing values of in Figure 6.4.1, the Casson nanofluid 

stream's velocity rises due to functional magnetic field normal to the sheet. Figure 

6.4.2 shows the reduction in fluid velocity as the bioconvection Rayleigh number 𝑅𝑏 

rises. This is because of the buoyancy effect. Near the stretched sheet's edge, the 

Casson fluid's velocity falls. Figure 6.4.3 demonstrates how the fluid velocity 

decreases when the bioconvection ratio parameter is increased (𝑁𝑟𝑟). The 
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concentration of nanoparticles near the sheet rises, causing this effect. The velocity of 

the Casson fluid decreases with rising Prandtl numbers, as seen in Figure 6.4.4. The 

impact of rising Prandtl numbers. As the Prandtl number rises, the density of 

nanoparticles rises, causing the coefficient of viscosity to rise and the liquid velocity 

to fall. 

Temperature Profile 

Figures 6.4.5- 6.4.8 show temperature profiles for various non-dimensional 

parameter values, and we discovered that a rise in temperature corresponds to 

increasing values of thermophoresis parameter, Brownian movement parameter, and 

buoyancy Rayleigh number, while a reduction in temperature corresponds to 

increasing values of slip parameter. Figure 6.4.5 shows how increasing the slip 

parameter causes a drop in the temperature profile. This is because increasing the slip 

parameter values for the liquid causes a decrease in pressure and temperature. 

Because a rise in Brownian movement parameter increases the collision frequency of 

the particles in the liquid, and therefore heat streams, Figure 6.4.6 demonstrates the 

augmentation of temperature profile for an increase in Brownian motion parameter. 

Figure 6.4.7 illustrates the effect of the thermophoresis parameter 𝑁𝑡. As the value of  

𝑁𝑡 rises, so does the temperature profile of the fluid. The reason for this is that the Nt 

values of nanoparticles vary. Figure 6.4.8 depicts the effect of the buoyancy Rayleigh 

number on temperature. As the buoyancy Rayleigh parameter increases, the 

temperature profile rises. The reason for this is that the rapidity of the liquid increases 

as microbes drag it, lowering the particle concentration in the fluid. As a result, the 

chance of random motion increases, resulting in an increase in temperature. 

Concentration of nano particles and microorganisms: 

Figures 6.4.9 to 6.4.12 show the concentration profiles of nanoparticles and 

microorganisms. Figure 6.4.9 shows that as the stretching parameter is increased, the 

concentration of nanoparticles falls. This is because the Brownian motion coefficient 

reduces as nano particles migrate away from the sheet. Figure 6.4.10 shows how the 

concentration of nanoparticles decreases as the thermophoresis parameter increases. 

The motive for this is because increasing the thermophoresis parameter causes 

nanoparticles to flow towards the cold, resulting in a drop in nanoparticle 

 

 

 

87 



                                                                                  

concentration in the fluid. The relationship between nanoparticle concentration and 

the buoyancy ratio parameter is seen in Figure 6.4.11. With rising values of the 

buoyancy ratio constraint 𝑁𝑟𝑟, the density of nanoliquids also rises. As the buoyancy 

parameter increases, the fluid will exert an upward force that opposes the weight of 

the object in the fluid. Because the pressure at the bottom of a fluid is greater than at 

the top due to the weight of the overlaying fluid, the pressure deviation results in total 

ascendent force, and the nanofluids descend to the bottom. The rise in density of 

nanoparticles for increased magnetic field levels is seen in Figure 6.4.12. When a 

magnetic field is applied to nanoparticles, it causes magnetic dipoles to develop in the 

tendency of the magnetic field. The particles form chain link clusters in the direction 

of the functional magnetic field, increasing the nanoparticle density. The relationship 

among the Schmidt number and density of microbes is seen in Figure 6.4.13. As the 

Schmidt number increases, the density of the microbes drops. As the Schmidt number 

rises, the fluid's dynamic viscosity rises, while the density and mass diffusivity of the 

nanoparticles fall, lowering the microbes' concentration. The behaviour of the 

thermophoresis parameter on the density of microorganisms is depicted in Figure 

6.4.14. As the thermophoresis parameter is increased, the concentration of bacteria 

falls. Because moving particles have varying capacity of temperature gradient, the 

thermophoresis parameter is most usually employed to analyze temperature influence 

on mobile particles. As the temperature of moving particles increases, the 

concentration of microorganisms decreases. The bioconvection constant is shown in 

Figure 6.4.15 as a function of the microbe concentration. Because bioconvection 

occurs when the density of mobile organisms falls below that of the fluid, we may see 

a reduction in the concentration of microorganisms as the bioconvection constant 

rises. The relationship between motile microorganisms and the non-dimensional 

Peclet number is seen in Figure 6.4.16. The density of microorganisms decreases as 

the Peclet number rises. The Peclet number aids in thinning the boundary layer. 
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 Figure 6.4.1 Velocity Profile of the  liquids  for β= 0.5,0.6,0.7,0.8. 

 

 

Figure 6.4.2 Velocity profile for variations of the parameter  𝑹𝒃𝒃 = 0.1,0.2,0.3,0.4. 
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Figure 6.4.3 Velocity profile for variations of 𝑵𝑵𝒓𝒓 = 0.2 ,0.4 ,0.7,0.9. 

 

 

Figure 6.4.4 Velocity profile for the variations of  𝑷𝑷𝒓𝒓 =0.01,11.8,55,100. 
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Figuer 6.4.5 Energy profile for the variation of  λ=0,0.25 ,0.5 ,1. 

 

 

Figure  6.4.6  Energy profile for the variations of   𝑵𝑵𝒃𝒃= 0.5 ,1 ,1.2,1.5. 
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Figure 6.4.7 Energy profile for the variation of  𝑵𝑵𝒕𝒕=0.5,1,1.2,1.5. 

 

 

 

Figure6.4.8 Energy profile for the variation of  𝑹𝒃𝒃=0.1, 0.2, 0.3, 0.4. 
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Figure6.4.9. Concentration profile of the nanoparticles for the variations of 
λ=0,0.25,0.5, 1. 

 

 

Figure 6.4.10. Concentration profile of the nanoparticles for the variations of  

    𝑵𝑵𝒕𝒕 = 0.5,1,1.2,1.5. 
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Figure6.4.11 Concentration profile of the nanoparticles for the variations of  

     𝑵𝑵𝒓𝒓 = 0.2,0.4,0.7,0.9. 

 

 

Figure 6.4.12 Concentration profile of the nanoparticles for the variations of  

M =2,5,7,10. 
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Figure6.4.13 Concentration of microorganisms for the variations of                               

𝑺𝒄 =1,1.7,2.5,3.2 

 

 

Figure 6.4.14 Density profile of microbes for the variations of  𝑵𝑵𝒕𝒕= 0.5,1,1.2,1.5. 
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Figure 6.4.15 Concentration profile of microbes for the variations of                      

σ = 0.1,0.2,0.3,0.4 

 

 

Figure 6.4.16 Density profile of microbes for the variations of                                 

𝑷𝑷𝑳𝑳 =0.1,0.2,0.4,0.5 
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6.5. Conclusion 

The present research focuses on bioconvection in MHD boundary layer flow, 

energy transmission of nanofluids, and gyrotactic microbes across a linear stretched 

surface using semi-analytic and numerical methods. Via the Differential Transform 

technique, a Taylor's series solution is produced for the momentum, energy, nanofluid 

density, and microbes density equation, which is visually described using DTM 

solution and numerical solution. The answers are shown using graphs once non-

dimensional parameters are modified. The velocity of the flow as well as the heat 

exchange is discussed in detail. 

 The applied magnetic field normal to the stream causes the velocity of Casson 

fluid to rise versus Casson fluid parameter. 

 The concentration of mobile microorganisms is reduced as the Schmidt 

number is increased.  

 Because nanoparticles have different values of Brownian movement parameter 

(𝑁𝑏) and thermophoresis parameter (𝑁𝑡), the density of nanoliquids and heat 

conduction rises as 𝑁𝑏 and 𝑁𝑡 increase. 

 Due to microorganism sensitivity and lowering of boundary layer thickness, 

the concentration of microorganisms decreases with increased magnitude of 

Peclet parameter. 

 As the stretching parameter is increased, the friction near the sheet's surface 

decreases, and the temperature decreases. 
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CHAPTER 7 

Casson Liquid Flow Comprising Microbes Across Porous 

Stretching Sheet With Viscous Dissipation 

(The part of the chapter is published in springer journal) 
 

7.1   INTRODUCTION 

An analysis of bioconvection owing to Casson nanofluid and gyrotactic 

microbes across linear stretching surface through a porous media involving magnetic 

influence, and viscous dissipation is carried out in this chapter as a continuation of the 

previous work. Viscous dissipation is a term used in fluid dynamics to describe the 

elimination of changing velocity gradients caused by viscous strains. The transition of 

kinetic energy into internal energy of the fluid is a term used to describe this partially 

irreversible process. In geophysics, astrophysics, and many engineering and industrial 

operations, the magnetohydrodynamic boundary layer flow of an incompressible and 

electrically charged liquid occurs. The MHD heat and mass transmission in the 

boundary layer caused by a moving surface in a fluid has a wide range of applications 

in chemical engineering, electronics, meteorology, and metallurgy, among others. In 

the engineering and biotechnological industries, studies on the bioconvection flows 

produced by the mixed buoyancy impacts of nanoliquids and microbes under the sway 

of porous media have been important. Many Scholars have invested the effect of 

various parameters on the heat exchange in the stream of non-Newtonian liquids. 

Partha et al. [119] investigated mixed convection flow and heat transfer from an 

exponentially expanding vertical surface in a quiescent liquid. They discovered 

that the temperature of the wall and the stretching velocity can have a distinct 

exponential form. In both helping and opposing flow scenarios, the effects of 

buoyancy and viscous dissipation on convective transport in the boundary layer 

region were investigated. Abel et al. [96] investigated viscoelastic fluid flow and 

heat transmission near a stretched sheet with varying viscosity. Makinde and Khan 

[162], Khan et al. [163], and Das et al. [48] evaluated the impact of bioconvection 

parameters on the dimensionless momentum, energy, density of nanoparticle, and  

motile microbes, as well as impact of various parameters on the molten stream. MHD 
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nanofluid bioconvection caused by gyrotactic microbes across a convectively heated 

extended surface, as well as a vertical sheet with Navier slip and chemical reaction in 

a pervious medium. Mahanta and Shaw [102] looked at three-dimensional Casson 

fluid flow near a stretching sheet in porous medium. Hossein Zadeh et al. [70] studied 

the impacts of viscous dissipation and magnetic field in the cross-fluid flow of 

gyrotactic microbes and nanoparticles across a horizontal cylinder on momentum, 

energy, and concentration profiles is carried out. 

The current chapter examines the effect of viscous dissipation in 

bioconvection generated by nanofluid and gyrotactic microorganisms travelling 

through porous media above the stretched sheet in the MHD boundary region with 

Oberbeck-Boussinesq approximations.  Brownian motion and thermophoresis were 

also studied to see how they influenced the nanofluid and heat transport. Under the 

influence of a magnetic field, a non-Newtonian fluid containing gyrotactic 

microorganisms is injected through porous media near the linear stretching surface. 

7.2 MATHEMATICAL FORMULATION 

Consider a non-Newtonian fluid with gyrotactic microorganisms that is 

permitted to flow through porous media along the x-axis above the linear stretching 

sheet. The magnetic field is applied evenly normal to the surface of the border zone, 

ignoring the influence of the induced magnetic field. Microorganisms are thought to 

be alive since the fluid is water-based, and nanoparticles have no influence on their 

activity. The bioconvection volatility caused by bacteria and nanoparticles is avoided 

by diluting the fluid. We may derive the following equations using these assumptions. 

The governing equations are 

 𝜕𝑑𝑑
𝜕𝑥

+ 𝜕𝑣
𝜕𝑑𝑑

= 0 ,                                                 (7.2.1) 

𝑢
𝜕𝑢
𝜕𝑥

+ 𝑣
𝜕𝑢
𝜕𝑦

= 𝜈 �1 +
1
𝛽𝛽
�
𝜕2𝑢
𝜕𝑦2

− �
𝜎𝐵∘2

𝜌
+
𝜗
𝐾�

𝑢 + �
1 − 𝐶∞
𝜌𝑓

�𝜌∞𝑔𝛼(𝑇𝑇 − 𝑇𝑇∞) − 

                                −�𝜌𝑝−𝜌∞
𝜌𝑓

�𝑔(𝐶 − 𝐶∞)− �𝜌𝑚−𝜌𝑓
𝜌𝑓

�𝑔𝛾(𝑁 −𝑁∞),                                 (7.2.2)      

 𝑢 𝜕𝑇
𝜕𝑥

+ 𝑣 𝜕𝑇
𝜕𝑑𝑑

= � 𝐾
𝜌𝐶𝑝

� 𝜕
2𝑇

𝜕𝑑𝑑2
+ 𝜏𝜏 �𝐷𝐵

𝜕𝐶
𝜕𝑑𝑑

𝜕𝑇
𝜕𝑑𝑑

+ 𝐷𝑇
𝑇∞
�𝜕𝑇
𝜕𝑑𝑑
�
2
� + � 𝜗

𝐶𝑝
� �𝜕𝑑𝑑

𝜕𝑑𝑑
�
2

,                      (7.2.3)  
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  𝑢
𝜕𝐶
𝜕𝑥

+ 𝑣 𝜕𝐶
𝜕𝑑𝑑

= 𝐷𝐵
𝜕2𝐶
𝜕𝑑𝑑2

+ �𝐷𝑇
𝑇∞
� 𝜕

2𝑇
𝜕𝑑𝑑2

,                                                                        (7.2.4) 

𝑢 𝜕𝑁
𝜕𝑥

+ 𝑣 𝜕𝑁
𝜕𝑑𝑑

+ 𝑏𝑊𝑐
𝐶𝑤−𝐶∞

� 𝜕
𝜕𝑑𝑑

(𝑁𝐶𝑑𝑑)� = 𝐷𝑚
𝜕2𝑁
𝜕𝑑𝑑2

 ,                                                      (7.2.5) 

where 𝜌  is the Casson fluid density, 𝛾  average volume of microorganisms, 

𝐷𝐵 𝑖𝑠𝑠 Brownian diffusion coefficient, 𝐷𝑇   𝑖𝑠𝑠 thermophoresis diffusion coefficient, and 

The following are the flow and heat flow boundary conditions: 

𝑣 = 0 ,𝑢 = 𝑎0𝑥 ,𝑇𝑇 = 𝑇𝑇𝑤,   𝐶 = 𝐶𝑤,   𝑁 = 𝑁𝑤    𝑎𝑠𝑠       𝑦 → 0,                                        

𝑢 → 0,    𝑇𝑇 → 𝑇𝑇∞,    𝐶 = 𝐶∞,    𝑛 → 𝑛∞     𝑎𝑠𝑠          𝑦 → ∞ ,                                  (7.2.6) 

Where 𝑎0  represents the rate of stretching. Incorporating the similarity transformation 

into the governing equations  

𝜂𝜂 = 𝑑𝑑
𝑥
𝑅𝑎𝑥

1/4𝑓(𝜂𝜂) ,𝜓 = 𝑚𝑅𝑎𝑥
1/4𝑓(𝜂𝜂) ,𝜃𝜃(𝜂𝜂) = 𝑇−𝑇∞

𝑇𝑤−𝑇∞
,  𝜙𝜙(𝜂𝜂) = 𝐶−𝐶∞

𝐶𝑤−𝐶∞
,  

𝜒𝜒(𝜂𝜂) = 𝑁−𝑁∞
𝑁𝑤−𝑁∞

,       𝑅𝑎𝑥 = (1−𝐶∞)𝛼𝑔𝛥𝑇𝑓
𝑚𝜈

𝑥3 ,                   

The following coupled nonlinear ordinary differential equations were found. 

(1 + 1/𝛽𝛽)𝑓𝜂3 − (1/2 𝑷𝑷𝒓𝒓)𝑓𝜂2 + (3/4𝑃𝑃𝑟)𝑓𝑓𝜂2 − (𝑀𝑀 + 𝐾𝑝)𝑓𝜂 + 𝜃𝜃 − 𝑁𝑟𝑟𝜙𝜙 − 𝑅𝑏𝜒𝜒 = 0,           (7.2.7) 

𝜃𝜃𝜂2 + �3
4
� 𝑓𝜃𝜃𝜂 +  𝑵𝑵𝒃𝒃𝜃𝜃𝜂𝜙𝜙𝜂 +  𝑵𝑵𝒕𝒕𝜃𝜃𝜂2 +  𝑃𝑃𝑟𝑟𝐸𝑐�𝑓𝜂2�

2
= 0,                                       (7.2.8) 

𝜙𝜙𝜂2 + �3
4
� 𝐿𝑒 𝑓 𝜙𝜙𝜂 + �𝑁𝑡

𝑁𝑏
� 𝜃𝜃𝜂2 = 0,                                                            (7.2.9) 

𝜒𝜒𝜂2 + (3/4)𝑆𝑐𝑓𝜒𝜒𝜂 − 𝑃𝑃𝑒�𝜙𝜙𝜂𝜒𝜒𝜂 + 𝜙𝜙𝜂2(𝜒𝜒 + 𝜎)� = 0,                                          (7.2.10) 

The dimensionless boundary conditions that go with it are 

𝑓(0) = 0,𝑓𝜂(0) = 𝜆,𝜃𝜃(0) = 1,𝜙𝜙(0) = 1,𝜒𝜒(0) = 1  𝑎𝑠𝑠 𝜂𝜂 → 0
𝑓𝜂(∞) = 0,𝜃𝜃(∞) = 0,𝜙𝜙(∞) = 0, 𝜒𝜒(∞) = 0    𝑎𝑠𝑠          𝜂𝜂 → ∞ �  ,                  (7.2.11) 

The dimensionless parameters used in (9–12) are defined as follows: 

𝑀𝑀 = 𝜎𝐵02𝑥2

𝜌𝜈𝑅𝑎𝑥
1/2, 𝑵𝑵𝒓𝒓 = (𝜌𝑝−𝜌∞)𝛥𝐶𝑤

𝜌𝑓(1−𝑐∞)𝛼𝛥𝑇𝑓
    , 𝑹𝒃𝒃 = 𝛾𝛾𝛥𝑁𝑤𝛥𝜌

𝜌𝑓𝛼(1−𝐶∞)𝛥𝑇𝑤
, 𝑵𝑵𝒕𝒕 = 𝜏𝐷𝑇(𝑇𝑤−𝑇∞)

𝑚𝑇∞
, 

  𝑵𝑵𝒃𝒃 = 𝜏𝐷𝐵(𝐶𝑤−𝐶∞)
𝑚

,  𝐿𝑒 = 𝑚
𝐷𝐵

, 𝑆𝑐 = 𝑚
𝐷𝑚

  ,𝑃𝑃𝑒 = 𝑏𝑊𝑐
(𝐶𝑤−𝐶∞)

, 𝜎 = 𝑁∞
(𝑁𝑤−𝑁∞)

 
,
𝜆 = 𝑎𝑥2

𝑚𝑅𝑎𝑥
1/2. 
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 𝑃𝑃𝑟𝑟 = 𝜈/𝑚, 𝜅𝑝 = 1

𝑅𝑎𝑥
1/2𝐷𝑎

 𝐸𝑐 = 𝑚2𝑅𝑎𝑥
𝑥2𝐶𝑝𝐷𝑇𝑓

 

Where 𝜅𝑝 is permeabity constant, 𝐸𝑐 is the Eckert number.  

7.3    DTM SOLUTION 

The equations (7.2.7) - (7.2.11) can be transformed in the following Differential 

forms: 

�1 +
1
𝛽𝛽
� (𝑟 + 1)(𝑟 + 2)(𝑟 + 3)𝐹[𝑟 + 3]

= (𝑀𝑀 + 𝜅𝑝)(𝑟 + 1)𝐹[𝑟 + 1) − 𝜃𝜃[𝑟] + 𝑁𝑟𝑟𝜙𝜙[𝑟] 

               +𝑅𝑏𝜒𝜒[𝑟] + 1
2𝑃𝑟

∑ (𝑟 − 𝑚 + 1) 𝐹[𝑟 − 𝑚 + 1](𝑚 + 1)𝐹[𝑚 + 1]𝑟𝑟
𝑚=0 - 

                −(3/4𝑃𝑃𝑟𝑟) � 𝐹[𝑟 − 𝑚]
𝑟𝑟

𝑚=0

(𝑚 + 1)(𝑚 + 2)𝐹[𝑚 + 2], 

Where 𝐹[0] = 0, 𝐹[1] = 0,𝐹[2] = 𝑎1    ,                                                            (7.3.1)     

  (𝑟 + 1)(𝑟 + 2)𝜃𝜃[𝑟 + 2] = �− 3
4
�∑ 𝐹[𝑟 − 𝑚](𝑚 + 1)𝜃𝜃[𝑚 + 1] −𝑟𝑟

𝑚=0  

                           
    
− 𝑁𝑏

∑ (𝑟 − 𝑚 + 1)𝜃𝜃[𝑟 − 𝑚 + 1](𝑚 + 1)𝜙𝜙[𝑚 + 1] −𝑟𝑟
𝑚=0

                           −𝑁𝑡 ∑ (𝑟 − 𝑚 + 1)𝜃𝜃[𝑟 − 𝑚 + 1](𝑚 + 1)𝜃𝜃[𝑚 + 1] −𝑟𝑟
𝑚=0      

                     −(𝑃𝑃𝑟𝑟𝐸𝑐)∑ (𝑟 − 𝑚 + 1)𝜃𝜃[𝑟 − 𝑚 + 1](𝑚 + 1)(𝑚 + 2)𝜃𝜃[𝑚 + 2]𝑟𝑟
𝑚=0  

where  𝜃𝜃[0] = 1, 𝜃𝜃[1] = 𝑎2.  ,                                                                             (7.3.2) 

(𝑟 + 1)(𝑟 + 2)𝜙𝜙[𝑟 + 2] = (−3/4)𝐿𝑒 ∑ 𝐹[𝑟 − 𝑚](𝑚 + 1)𝜙𝜙[𝑚 + 1]  −𝑟𝑟
𝑚=0

                      − 𝑁𝑡
𝑁𝑏
∑ (𝑟 + 1)(𝑟 + 2)𝜃𝜃[𝑟 + 2]𝑟𝑟
𝑚=0 ,       

Where 𝜙𝜙[0] = 1,  𝜙𝜙[1] = 𝑎3,                                                               (7.3.3) 

(𝑟 + 1)(𝑟 + 2)𝜒𝜒[𝑟 + 2] = 𝑃𝑃𝑒 � (𝑟 −𝑚 + 1)𝜙𝜙[𝑟 − 𝑚 + 1](𝑚 + 1)𝜒𝜒[𝑚 + 1]
𝑟𝑟

𝑚=0

+ 

+𝑃𝑃𝑒 ∑ 𝜒𝜒[𝑟 − 𝑚](𝑚 + 1)(𝑚 + 2)𝜑[𝑚 + 2] +𝑟𝑟
𝑚=0 𝑃𝑃𝑒𝜎(𝑟 + 1)(𝑟 + 2)𝜑[𝑟 + 2] −

−(3/4)𝑆𝑐 ∑ 𝐹[𝑟 − 𝑚](𝑚 + 1)𝜒𝜒[𝑚 + 1]𝑟𝑟
𝑚=0 ,         

𝜒𝜒[0] = 1,  𝜒𝜒[1] = 𝑎4  ,                                                            (7.3.4) 

 

 

 

101 



                                                                                  

𝐹[𝑟], 𝜃𝜃[𝑟], 𝜙𝜙[𝑟] and 𝜒𝜒[𝑟] are the differential transforms of 𝑓(𝜂𝜂) , 𝜃𝜃(𝜂𝜂),𝜙𝜙(𝜂𝜂) and 

𝜒𝜒(𝜂𝜂) , while 𝑎1,𝑎2,𝑎3 and 𝑎4  are the assumed constants, which may be found using 

equations (6.3.1) - (6.3.4) and the boundary conditions. We get the following results 

for r = 0,1,2,3... 

F[3] = a12P𝑟
12�1+1𝛽�

+
a1�𝑀− 1

Da√Ra
�

6�1+1𝛽�
+ −1+N𝑟+R𝑏

6�1+1𝛽�
  , 

θ[2] = −1
2

a3a4N𝑏 −
a32𝑵𝑵𝒕𝒕
2

− 1
2

a12E𝑐P𝑟𝑟  , 

ϕ[2]=−
𝑵𝑵𝒕𝒕�−

1
2a3a4N𝑏−

a32Nt
2 −12a1

2E𝑐P𝑟�

Nb
  , 

χ[2] = a4a5𝑷𝑷𝑳𝑳
2

−
𝑵𝑵𝒕𝒕𝑷𝑷𝑳𝑳�−

1
2a3a4N𝑏−

a32Nt
2 −12a1

2E𝑐P𝑟�

N𝑏
−

  𝑵𝑵𝒕𝒕𝑷𝑷𝑳𝑳(−12a3a4N𝑏−
a32𝑵𝑵𝒕𝒕
2 −12a1

2E𝑐P𝑟)𝜎

N𝑏
  , 

 

 we can find  F[4] , θ[3],  ϕ[3] , χ[2] , χ[3] and so on.  Taking  𝑷𝑷𝒓𝒓 = 6.2, 𝛽𝛽 = 1, 

𝑀𝑀 = 5,𝑵𝑵𝒓𝒓 = 0.5,  𝑹𝒃𝒃 = 0.1,  𝑵𝑵𝒕𝒕 = 0.1,  𝑵𝑵𝒃𝒃 = 0.1, 𝐿𝑒 = 10, 𝑺𝒄 = 0.1, 𝑷𝑷𝑳𝑳 = 1, 

𝜎 = 0.2,  𝑅𝑎 = 0.5,𝐷𝑎 = 0.5 and solving for 1a , 2a , 3a , 4a  using the boundary 

conditions and the Pade approximation for Lim 0)( =′ ηf   as ∞→η  , we obtain 1a = 

0.130491, 2a = 0.105687 , 3a =4.05355, 4a = 6.91778 , 𝑎5 =  -0.579615 and  the 

Taylor’s series solutions for the equations (7.2.7)-(7.2.10)   are  
 

𝑓(𝜂𝜂) =0.130491𝜂𝜂+0.105687𝜂𝜂2+0.0254366𝜂𝜂3+0.00931264𝜂𝜂4+0.0315593𝜂𝜂5-

0.00705885𝜂𝜂6+0.0000565214𝜂𝜂7-0.0010699𝜂𝜂8-0.000362508𝜂𝜂9-0.000426626𝜂𝜂10-

0.000221054 𝜂𝜂11-… 
 

𝜃𝜃(𝜂𝜂) =1+4.05355𝜂𝜂 -2.22364 𝜂𝜂2+0.747091 𝜂𝜂3-0.0810705𝜂𝜂4+0.0117574𝜂𝜂5-0.0306772 

𝜂𝜂6+0.00773456 𝜂𝜂7+0.0069833 𝜂𝜂8-0.00369728 𝜂𝜂9-0.00112102 𝜂𝜂10+0.000891603 

𝜂𝜂11+… 

 

𝜙𝜙(𝜂𝜂) =1+6.91778𝜂𝜂+2.22364𝜂𝜂2-1.87547𝜂𝜂3-0.738584𝜂𝜂4+0.0213219𝜂𝜂5 

+0.231329𝜂𝜂6+0.0247125𝜂𝜂7-0.0279245𝜂𝜂8+0.0103749𝜂𝜂9+0.00405778𝜂𝜂10-0.00242809 

𝜂𝜂11-... 
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=)(ηχ 1-0.579615𝜂𝜂+0.663541𝜂𝜂2-1.578781𝜂𝜂3-2.064390𝜂𝜂4-4.637221𝜂𝜂5-5.451773𝜂𝜂6-

6.076239𝜂𝜂7-4.203908𝜂𝜂8-1.521497𝜂𝜂9+1.73707𝜂𝜂10+3.626755𝜂𝜂11+.. 

7.4 RESULT AND DISCUSSION: 

Bioconvection flow of Casson fluid nano particles and gyrotactic 

microorganisms across porous media under the effect of a uniformly applied magnetic 

field normal to the surface is discussed, as well as heat exchange analyses. For all of 

the governing equations, the answer is expressed in Taylor's series using DTM. 

Through graphs, it is aimed to investigate the influence of non-dimensional 

parameters on fluid velocity, temperature, nano particle concentration, and gyrotactic 

microorganisms. 

Velocity profile 

Figure 7.4.1-7.4.4 depicts the Casson fluid's velocity curve for a variety of 

parameter values. For increasing values of Casson fluid parameters, the velocity of the 

Casson fluid flow rises due to the applied magnetic field normal to the surface in 

Figure 7.4.1. The bioconvection effect of microorganisms and nanofluids, along with 

the separation of boundary layers generated by a magnetic field, generates growth in 

liquid speed. The rapidity of the molten increases with increasing values of the 

viscous dissipation parameter, as seen in Figure 7.4.2. The reason for this is that when 

the Eckert number increases, the fluid's viscosity improves, affecting the fluid's 

motion. Figure 7.4.3 demonstrates how the velocity decreases as the magnetic 

parameter increases. This is because the applied magnetic field is perpendicular to the 

fluid flow, resulting in an increase in the force required to fight the flow. Figure 7.4.4 

shows the rise in velocity as the amount of Nb increases. 

Temperature profile  

 Figures 7.4.5 to 7.4.8 show temperature profiles for various non-dimensional 

parameter values, and we discovered that the temperature rises with increasing Casson 

fluid parameter, viscous dissipation parameter, Brownian motion parameter, and 

thermophoresis parameter values. In Figure 7.4.5, increasing Casson fluid parameter 

values produces a rise in the temperature profile because the fluid velocity ascends 

with increasing Casson fluid parameter values. Figure 7.4.6 demonstrates how the 
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temperature profile improves when the viscous dissipation parameter is increased 

(𝑬𝒄), Figures 7.4.7 and 7.4.8 depict the effects of 𝑵𝑵𝒃𝒃 and  𝑵𝑵𝒕𝒕 . Effects of  𝑵𝑵𝒃𝒃 and  𝑵𝑵𝒕𝒕 

on fluid and heat flow with increasing  𝑵𝑵𝒃𝒃 and  𝑵𝑵𝒕𝒕 values, the temperature profile 

rises. The reason for this is that nanoparticles have varying  𝑵𝑵𝒃𝒃 and  𝑵𝑵𝒕𝒕 values. 

Concentration of nanoparticles and microorganisms 

Figures 7.4.9 to 7.4.13 show the concentration profiles of Casson 

nanoparticles and microorganisms. Figure7.4.9 shows that when the value of Casson 

fluid parameters increases, the concentration of Casson nanofluid particles increases. 

The concentration of nanofluid particles drops when the Eckert number is raised, as 

seen in Figure 7.4.10. The concentration of nanofluid particles rises as the magnetic 

parameter value is increased, as seen in Figure7.4.11. The relationship between 

nanofluid particle concentration and Brownian motion parameter is shown in 

Figure7.4.12. The thermophoresis parameter and the concentration of microorganisms 

are shown in Figure 7.4.14. For rising levels of  𝑵𝑵𝒃𝒃, 𝑵𝑵𝒕𝒕 the graph reveals a drop in 

nanofluid particle concentration and microorganism profiles. The profiles' results are 

attributable to the Brownian parameter's dependence on decreased thermal 

enhancement and concentration on temperature field. The concentration of 

nanoparticles reduces as the Lewis number increases, as seen in Figure 7.4.13. The 

reason for this is that when the Lewis number rises, heat in the fluid diffuses more 

quickly, causing the boundary layer to shrink and the concentration of nanoparticles 

to decrease. The concentration of microbes diminishes as the  𝑷𝑷𝑳𝑳 values rise, as seen 

in Figure7.4.15. The boundary layer viscosity reduces while the value of Peclet 

number rises. As a result, the density of microorganisms in the environment will 

decrease.  
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Figure 7.4.1 Velocity profile of the fluid for  8.0,7.0,6.0,5.0=β  

 

 

Figure 7.4.2 Velocity profile of the fluid for  𝐸𝑐 =1,3,5,8. 

 

 



                                                                                  

 

Figure7.4.3 Velocity profile of the fluid for  M=3,4,6,7 

 

 

 

Figure7.4.4 Velocity profile of the fluid for  𝑵𝑵𝒃𝒃 =0.8,1,1.2,1.5 

 

 



                                                                                  

 

 

Figure 7.4.5 Temperature profile of the liquid for  8.0,7.0,6.0,5.0=β  

 

 

 

Figure 7.4.6 Temperature profile for 𝑬𝒄=1,3,5,8 
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Figure 7.4.7  Temperature profile for  𝑵𝑵𝒃𝒃=0.8,1,1.2,1.5 and  𝑵𝑵𝒕𝒕=0.1 

 

 

Figure 7.4.8  Temperature profile for  𝑵𝑵𝒕𝒕=0.8,1,1.2,1.5 and  𝑵𝑵𝒃𝒃=0.1 

 

 

 

 

108 



                                                                                  

 

 

Figure 7.4.9 Concentration of nanoparticles for different values of Casson fluid 

parameter 

 

 

Figure 7.4.10  Concentration of nanoparticles for different values of viscous 

dissipation parameter. 
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Figure7.4.11 Concentration of Nano particles for M=3,4,6,7. 

 

 

 

Figure 7.4.12 Concentration of nanofluid particles for  𝑵𝑵𝒃𝒃=0.8,1,1.2,1.5. 
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Figure7.4.13 Concentration of nanofluid particles for 𝑳𝑳𝑳𝑳 =1,5,7,10 

 

 

Figure7.4.14 Concentration of microorganism for  𝑵𝑵𝒕𝒕=0.8,1,1.2,1.5 and  𝑵𝑵𝒃𝒃=0.1 
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Figure 7.4.15 Concentration of microorganism for  𝑷𝑷𝑳𝑳 =0.8,1,1.2.1.5 
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7.5 CONCLUSION 

Our research focuses on the exact as well as the approximate solution of the 

governing equations of bioconvection of MHD boundary layer stream and heat 

transmission of Casson nanofluids and gyrotactic microorganisms via porous media 

across a linear stretching sheet. Using the Differential Transform technique, a Taylor's 

series solution for momentum, energy, nanofluid concentration equations, and 

gyrotactic microbe density equations is achieved and compared with numerical 

solutions through graphs. The velocity of the stream as well as the heat exchange are 

explained in detail.  

• As the viscous dissipation parameter (𝑬𝒄) is increased, the Casson fluid's 

velocity increases. 

• Brownian movement, and thermophoresis constraint values in nanoparticles 

are different. As a result, the concentration of nanofluid and heat flow 

decreases as  𝑵𝑵𝒃𝒃 and  𝑵𝑵𝒕𝒕 values increase. 

• As the Peclet number increases, the concentration of microorganisms drops 

due to the sensitivity of microorganisms and the weakening of the boundary 

layer thickness.  

• As a result, for the ascending values of Lewis number, heat flow in the fluid 

gets diffused and hence there will be a fall in the concentration of 

nanoparticles near the thinned boundary layer region.  
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CHAPTER 8 

Conclusion and Scope for Future Work 

8.1 CONCLUSION 

              The objective of this research was intended to study, investigate and develop 

exact and numerical solutions for certain issues related to boundary layer theory in 

fluid dynamics, in particular the fluid flow in the presence of a magnetic field under 

various assumptions by considering the Casson fluid over the linear stretching sheet. 

Differential transformation method (DTM) and numerical method were used. Our 

method attacks non-linear problems in a manner as linear problems and overcomes 

the difficulty of linearization. DTM is reliable and powerful with promising results. 

The numerical code was adopted and implemented in Wolfram Mathematica. This 

study has been primarily concerned with analyzing flow and heat exchange 

phenomena in the Casson fluid near a stretching surface with or without viscous 

dissipation, and it has also been extended to the study of bioconvection in the fluid 

due to nanoparticles and microorganisms. Also, it offers extremely significant to the 

production of biotechnological goods as well as sheet extrusion. 

Following are some of the important findings:  

• The skin friction coefficient on the wall increases, while the temperature 

differential at the wall reduces as the Casson liquid parameter and 

Chandrasekhar number (Modified Magnetic parameter) expand. This is due to 

an induced magnetic field, which decreases the heat flow at the stream wall 

and slows the force applied to it. Furthermore, the Casson liquid parameter is 

more reactive under the influence of the magnetic domain.To reduce the 

thickness of the momentum boundary layer, Chandrasekhar number 𝑞 is 

used.The results are consistent with Bhattacharya [80]. 

• The direction of heat transport can be determined by the magnitude of the 

temperature parameter 𝜆1.We observed that increasing the radiation parameter, 

Brownian movement parameter, and thermophoresis parameter leads to 

greater temperatures, whereas decreasing the suction parameter and Prandtl 
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number leads to lower temperatures. The increase in temperature for the 

growth of the thermophoresis parameter (𝑁𝑡).This is owing to the fact that 

each nano molecule has distinct thermophoresis parameter values, resulting in 

a decrease in the thickness of the thermal boundary layer at the wall, and 

hence an increase in temperature.The collision rate between nanoparticles 

increases as the value of (𝑁𝑏) rises, contributing in the increase in heat 

generation. The findings of Chakraborty [156] and Nayak et al. [91] are 

supported by these findings. 

• The concentration of nanoparticles falls when non-dimensional parameters 

such as the Lewis number (𝐿𝑒), mass suction (s), and thermal radiation 

parameter (𝑇𝑇𝑟𝑟) are changed. When 𝐿𝑒 is raised, the concentration of 

nanoparticles volume falls. Nanoparticles with a low mass diffusivity have 

lower concentrations. These outcomes are in accord with the findings of 

Chakraborty [156], Shahid [149], Nayak et al. [91], Zadeh et al. [71], 

• The density of microorganisms declines as the Schmidt number rises. The 

fluid's dynamic viscosity increases as the Schmidt number increases, while the 

density and mass diffusivity of the nanoparticles decrease, reducing the 

microbe concentration. The Casson liquids rapidity increases when the viscous 

dissipation parameter (𝐸𝑐) is raised.As the 𝑃𝑃𝑒 values increase, the 

concentration of microorganisms decreases. While the Peclet number 

increases, the boundary layer viscosity decreases. As a result, there will be 

fewer microbes in the environment. These findings are reliable with those of 

Nayak et.al [91] and Zadeh et.al [71]. 

8.2      Scope for future work 

Addressing the inquiries brought up in this research has raised many new 

doubts, opening up extraordinary potential for future research that will have a 

substantial effect on the actual world. In the light of the limitations identified and the 

findings of the study, the following are recommended as future research work: 

            Our preliminary research indicates that the bioconvection study has a lot of 

potential. Bioconvection in non-Newtonian fluids containing various types of 
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microorganisms can be studied in the future using linear, Superlinear, nonlinear, and 

exponential stretching sheets with varied geometrical flow situations. It also aims to 

apply a variety of numerical or analytical approaches to handle nonlinear boundary 

value issues that arise. 
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