
SOME FLOW PROBLEMS IN PERISTALSIS ON
DISPERSION: EFFECTS OF WALL PROPERTIES

A thesis submitted to
Visvesvaraya Technological University,

Belagavi (Karnataka), India
for the award of the degree of

DOCTOR OF PHILOSOPHY
IN

MATHEMATICS

by

MALLINATH YASHWANT DHANGE
(2BL12PGN01)

Research Centre
Department of Mathematics

B.L.D.E.A’s V.P. Dr. P. G. Halakatti College of Engineering and Technology,
Vijayapur - 586103

MARCH 2018



2



i



ii



Dedicated to

My Parents

and

Family Members



Acknowledgements

I thank the Visvesvaraya Technological University (VTU), Belagavi and
Vachana Pitamaha Dr. P. G. Halakatti College of Engineering and Tech-
nology, Vijayapur particularly, the Department of Mathematics, for giving
me an opportunity to do a Ph.D. and supporting me during my tenure at the
Institute.

I would like to express my utmost gratitude to my beloved supervisor Prof. G.
C. Sankad, who has always been a source of inspiration for me. I consider
myself privileged to be one of his research students. Words are inadequate
to express my appreciation for his parenthood support, guidance and encour-
agement during this work. His worthy comments, suggestions and valuable
guidance enabled me in enhancing and improving my research ability. With-
out his generous help and support it was not possible for me to complete this
work. I shall ever remain indebted to him. I also thank to Sankad’s family for
their hospitality and moral support during my research period.

It is my privilege to thank Dr. P. K. Gonnagar, Head, Department of Mathe-
matics and Vice-Principal for his priceless support and inspiration and also for
providing the essential facilities during the research period.

I extend my sincere thanks to senior faculties of the department Dr. P. M.
Hiremath and Dr. S. C. Desai for devoting their precious time in providing
valuable suggestions and encouragements on this work. I am also thankful to
all faculty members and non-teaching staff of the department.

I am greatly indebted to Sri M. B. Patil, President, BLDEA’s Vijayapur (Kar-
nataka) for joyful encouragement in pursuing my research work. My profound

iv



and heartfelt thanks to our Principal Dr. V. P. Huggi for ceaseless support
during my Ph.D. work.

I would also like to express my gratitude to friends Dr. A. B. Patil, Dr. G.
Ravikiran, Dr. N. Santhosh, Mrs. Pratima Nagathan and Mr. K. M. Cha-
van for their friendship and companionship.

I owe special thanks to my parents, who have been my role models in striving
for success through hard work. Words fail me to express my appreciation to
my wife Sow. Savitri, who has always been an endless source of love and
support to me. I cannot finish without expressing my heartiest feelings to our
sweet kid Chi. Shreyas, whose love, I missed a lot during my Ph.D. studies.

Finally, I would like to thank everybody who was important to the successful
realization of this thesis, as well as expressing my apology that I could not
mention personally one by one.

- Mallinath Dhange

v



vi



Abstract

Bio-fluid mechanics is part of biomechanics which describes the kinematics
and dynamics of body fluids in humans, animals and plants. It uses the general
principles of fluid mechanics which involve some new applications to biologi-
cal systems. Modern bio-fluid mechanics measures and analyzes the fluid flow
in the blood vessels, the respiratory system, the lymphatic system, the gastroin-
testinal system, the urinary system and many other physiological situations.
Studies in this area are important for clinical applications such as artificial
organs, vascular vessel development, and design of medical tools and fabri-
cation of materials membranes for orthopedics. The interaction of peristalsis
with dispersion studies in this thesis since they are very important phenomena
in biological, chemical, environmental and bio-medical processes. We briefly
describe below the concepts of peristalsis and dispersion so that the problems
studied in this thesis can be properly understood.

Peristalsis is a form of material transport induced by a progressive wave of
area contraction or expansion travelling along the length of a distensible tube
or channel containing the fluid. Physiologically, peristaltic action is an inher-
ent property of smooth muscle contraction. Peristalsis is an automatic and vital
process that drives the urine from the kidney to the bladder through the ureter,
food through the digestive tract, bile from the gall bladder into the duodenum,
the movement of spermatozoa in the ducts efferents of the male reproductive
tract, movement of the ovum in the Fallopian tube, vasomotion in small blood
vessels and many others. Peristaltic flows play an indispensable role in some
biomedical instruments such as heart-lung machine. A major industrial ap-
plication of this mechanism is in the design of the finger and roller pumps,
which are used in pumping fluids without being contaminated due to the con-
tact with the pumping machinery. This mechanism is also used for transport of
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sensitive or corrosive fluids, sanitary fluids, slurries and noxious fluids in the
nuclear industry. Although the peristaltic action is quite prevalent in biologi-
cal systems, the first theoretical and experimental aspects of its fluid dynamics
were discussed about four decades ago. Several theoretical and experimental
studies have been made to understand the phenomenon of peristalsis using var-
ious geometries, fluids, wave shapes, etc. In view of its importance, a number
of researchers have investigated peristaltic transport of Newtonian and non-
Newtonian fluids under different circumstances.

Flow through porous medium has captivated significant attention in recent
years due to its prospective applications in nearly all fields of engineering,
biomechanics and Geo-fluid dynamics. Also, as most of the tissues in the
body are deformable porous media. Peristaltic transportation of a bio-fluid
through a conduit with permeable walls is of considerable importance in bi-
ology and medicine. Analysis of flow past a permeable medium is used im-
mensely in biomedical problems to understand the transportation process in
the lungs, gall bladder and kidneys, to investigate inter vertebral disc tissues,
cartilage and bones etc. Some of the physiological systems such as blood ves-
sel consists of porous layers. Peristalsis is also important in blood vessels; it
will be interesting to know the effects of permeability on the peristaltic pump-
ing. Flow through porous media has been of significant interest to understand
the complexity of disease like bladder stones, intestinal cystitis, and bacterial
infections of the kidneys. Porous medium models are applied to identify the
various medical conditions and treatments. As the fluid displays a loss of ad-
hesion at the wetted wall, the fluid is made to slide along the wall, resulting
in slip flow, as seen in several applications like flow through pipes in wherein
chemical reactions occur in the walls. Slippage is claimed to occur in New-
tonian and non-Newtonian fluids, molten polymer and concentrated polymer
solution.

Dispersion is the process by which matter is transported from one part of a
system to another as a result of random molecular motions. Dispersion plays
a chief role in applications like chromatographic separations in chemical engi-
neering, pollutant transport in the environment, mixing and transport of drugs
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or toxins in physiological systems, and so on. Further, it is known to balance
material in the bio artificial kidney and transporting of oxygen in the human
body. The fluid mechanical aspects of hydrodynamic dispersion of a solute in
a viscous fluid have received the attention of several investigators.

It is envisaged that peristalsis may enhance the dispersion of a solute in the
fluid flow. This, in turn, may help in better absorption of nutrients and drugs
in physiological systems. Further, the dynamical interaction between the fluid
flow and movement of flexible boundaries may also be significant in peristaltic
transport. Hence, the study of the interaction of peristalsis with dispersion un-
der different conditions may lead to better understanding of the flow situation
in physiological systems. This is the core reason why this thesis is aimed at
these physiologically relevant phenomena.

In view of the above discussion, an attempt has been made in this thesis,
to study dispersion of a solute in peristaltic motion of Newtonian and non-
Newtonian fluids with wall properties by considering different characteristics
such as porous media and magnetic field in a channel with elastic wall. The in-
compressible viscous fluid and couple stress fluid models are used since these
are known to be better models for physiological fluids such as blood, bile, and
chyme. The expression for the mean effective coefficient of dispersion is de-
veloped by using long wavelenght hypothesis and Taylor’s limiting condition.
Mathematica software is used to analyze the results graphically.
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1.1 Preliminary

Fluid mechanics is concerned with understanding, expecting and governing the behavior
of a fluid. Fluid dynamics is the branch of fluid mechanics dealing with the properties
of fluids in motion. It has several sub disciplines. Fluid dynamics has a wide range of
applications like computing forces on the aircraft, forecasting weather patterns, planning
dams, irrigation canals and water supply systems, exploring the movement of biological
liquids in human beings, determining the mass flow rate of petroleum through pipelines.
Several of its principles are even used in traffic flow engineering, where traffic flow is
treated as a continuous liquid.

The leading equations of fluid dynamics (Navier-Stokes equations) are extremely nonlin-
ear. The exact results are attainable for some very special cases. In most of the circum-
stances, one can put faith on approximate solutions found by analytical and computational
techniques. This is the approach of new investigative strategies for experiments, computa-
tional procedures and tools that has empowered researchers to test into the complexity of
the subject. The strong point of this knowledge can serve the humankind, regarding fore-
casts of worldwide climate framework, manufacture of innovative aerodynamic vehicles,
design of micro fluidic devices and etc. Because of the difficulty of the subject and an
enormity of its applications, fluid dynamics is recognized to be a highly thrilling and chal-
lenging area of contemporary sciences. Fluid dynamics have raised the curiosity of many
researchers in the recent years. In biological systems, fluid dynamics have several applica-
tions, which is broadly called bio-fluid dynamics. We describe below bio-fluid dynamics
briefly.

1.2 Bio-fluid Dynamics

Mathematical modeling is the illustration of a system using scientific observation and lin-
guistic. It is applied to study the complications in medical science. Bio-fluid dynamics
is the branch of biomechanics which deals with the kinematics and dynamics of the fluids
present in human beings, animals and plants. It spans from cells to organs, covering diverse
aspects of functionality of systemic physiology, including cardiovascular, lymphatic, mus-
culoskeletal, neurological, ocular, respiratory, reproductive, urinary, and auditory systems.
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The latest study of bio-fluid mechanics measures and analysis the flow of physiological liq-
uids, applicable for the clinical studies as in: cancer treatment, artificial organs and many
more. It is well known fact that experimentation on physiological liquids is a difficult task
to undertake and further the non-invasive experiments do not always give accurate results.
Hence the understanding of bio-fluid dynamics in the flow of physiological fluids in a hu-
man body is rather a difficult task in comparison with the engineering applications. In
addition, this necessitates the familiarity of both theoretical and computational bio-fluid
dynamics to understand the bio-fluid dynamics in the human body.

The biological systems are very complex and have defied all attempts at satisfactory math-
ematical solutions. These complicated systems are studied theoretically by means of ap-
proximated models whose simplified nature becomes amenable to mathematical analysis
and give meaningful mathematical solutions. Hence, the mathematical analysis and under-
standing of bio-fluid dynamics seem to be extremely important and useful for diagnosis
and clinical purposes. They can lead to determination of significant physical parameters of
human systems and development of sophisticated instruments.

In general, bio-fluid dynamics can be considered as the study of the human body and its
components in the application of principles of mechanics, oriented with a sense to medical
applications. The fundamental assumption here is that the world of the living and the world
of non-living are governed by the same laws of physics. The role of a mathematician in
biomechanical study is to build simplified mathematical models of the physical situation
and analyze them.

We describe below the characteristics considered so that the problems studied in this thesis
can be properly understood. Among these, the vital mechanism for fluid transport in bio-
fluid dynamics is peristalsis. It is briefly described as follows.

1.3 Peristalsis

"Peristaltikos" is a Greek word which implies, clasping and compressing, from which arise
the word ’Peristaltic’. Peristalsis is a coordinated response wherein a wave of contraction
preceded by a wave of relaxation passes down a hollow viscus. Thus ’Peristalsis’ is the
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rhythmic sequence of smooth muscle constrictions that progressively squeeze one small
section of the tract and then the next, to push the content along the tract. As they are pro-
pelled along, would always enter a segment which had actively relaxed and enlarged to
receive them. From the perspective of fluid dynamics, peristalsis is typified by the dynam-
ical interface of the fluid flow and movement of the flexible boundaries of the conduit.

Peristalsis is an intrinsic properties of any smooth muscle like the bile duct, gastro in-
testinal tract, ureter, glandular duct, etc. The physiological applications of peristalsis is
observed when the swallowed food moved into the esophagus, urine flow from kidney to
the bladder, spermatozoa move in the male and female reproductive organs, lump move
in the lymphatic vessels, bile juice flow in the bile duct, blood circulates in small blood
vessels like arteries, venules and capillaries. Peristalsis has brought revolutionary devel-
opments in industrial appliances as well: transportation of sanitary liquid, caustic liquid,
toxic liquid in the nuclear industry and also in the finger pump, roller pump and in biomed-
ical instruments, for instance, blood and heart lung pump machinery. Peristalsis has found
applications in Micro electro mechanical systems (MEMS) (Teymoori and Abbaspoursani
[160]). Even the translocation of water in large trees is speculated to occur through peristal-
sis, through its porous matrix (Rathod and Kulkarni [118]). Bose (1923) was probably the
first to ascertain that water was pumped upwards by alternate contractions and expansions
of living cortical cells. Thane (1969) has proposed that phloem translocation is achieved
by driving a sucrose solution by peristaltic contractions along tubules which traverse many
sieve cells.

We describe below esophagus, intestines, kidneys, bioengineering pumps, spermatozoa,
and ovum which works on the principle of peristalsis.

1.3.1 Esophagus

The usual stimulus of the esophagus is swallowing, which at any level results in the de-
velopment of peristalsis. Thus, after reaching the esophagus, food is propelled into the
stomach by peristalsis (Fig. 1.1). It consists of lumen obliterating contractions, 4-8 cms
in length, which move down at a speed of 2 - 4 cm/sec. The strength of the peristaltic
contractions is proportional to the size of the bolus entering the esophagus.
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Figure 1.1

1.3.2 Intestines

Once the intestine wall is stretched or distended by chyme (food), a circular constriction
form above the intestine because of contraction of the longitudinal muscle layer (Fig. 1.2).
Therefore, the intestinal contents move towards the dilated part; then contraction of circular
muscles spread to this part which in turn is constricted, while the segment below it is dilated
by contraction of the longitudinal muscle layer. Several of these waves like contractions
occur simultaneously along the length of the intestine. Each wave lasts for 1 - 2 seconds
and propels the chyme a few centimeters.

1.3.3 Kidneys

Bergman [14] affirmed that urine flow from the kidney to the bladder within the ducts
called ureters is due to peristalsis in the uteral wall (Fig. 1.3). The only function of the
ureter is to drive the urine to the bladder from the kidneys, beginning right from the kidney
and forwarding towards the bladder, through peristatic action. The ureter wall is made up
of a number of layers (Krstic [61]). The luminal surface of the ureteral wall consists of
a transitional epithelium and a lamina propia, comprising of a thick layer of finely vascu-
larized and innervated connective tissue. The remaining portion of the wall is included of
smooth muscle along with connective tissue called Tunica Muscularis (TMu). The TMu
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Figure 1.2

consists of smooth muscle bundles isolated by abundant loosely-fitted connective tissue
([100]). The peristaltic contractions are simplified by these muscle fibers.

1.3.4 Ovum and Spermatozoa

The ovum or the female reproductive cell is extruded onto the surface of the ovary near the
ovarian end of the oviduct at the time of ovulation and is sucked into the oviduct because
of the sweeping motion of the finger-like projections at this end of the oviduct, caused by
the contraction and relaxation of the smooth muscles surrounding them. The epithelium of
the oviduct is lined with cilia, i.e., hair-like projections on the walls. These cilia because
of their beating motion send waves towards the interior of the duct and hence facilitate the
motion of the ovum. Though the actual mechanism for the transport of the ovum in the
oviduct towards the site of fertilization is not clearly known, it is speculated that peristalsis
plays a very important role in the transport of the ovum in the oviduct (Fig1.4).

The spermatozoa are deposited, during the coitus, at the mouth of the cervix and are known
to travel at an average speed of 1-3 mm/minute. The transport of the sperm to the site of
fertilization (in the oviduct) is so rapid that the first sperm arrives within 45 minutes. This
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Figure 1.3

Figure 1.4
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Figure 1.5

is far too rapid to be accounted for by the sperm’s own motility. It is suggested that the
movement produced by the wave motion along the sperm’s tail is probably essential only
in the final stages of the approach and penetration of the ovum. The act of coitus provides
some impetus because of ejaculated fluid pressure and the pumping action of the penis
(Fig. 1.5). Though the actual mechanism of spermatozoa moves in the female genital tract
is not very well understood, it is speculated that peristalsis plays a very major role in this
motion.

1.3.5 Bioengineering Pumps

The basic principle of a Bioengineering pump is a mechanical application of peristalsis.
It can be broadly divided into two categories, one that are seen in the biological systems,
i.e. naturally occurring pumps and other ones are the artificial ones made by human beings
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Figure 1.6: Heart lung machine

and are utilized for biomedical appliances. Oxygenator is an engineering device, used to
oxygenate blood, known as heart-lung machine (Fig. 1.6). It is used in the open-heart
surgery, which serves a dual purpose of heart and lung. During the operation impure blood
is taken out of the body and passed into the heart-lung machine for the purification and
oxygenated blood will be sent back to the body (Mishra and Pandey [84]).

Dialysis machine also works on the mechanism of peristalsis. Dialysis is a treatment that
cleans and filters the blood by utilizing the dialysis machine (Fig. 1.7). It has been utilized
from 1940 to treat people with kidney issues. Without dialysis, salts and other waste items
will collect in the blood and poisons the body. This helps to keep our body in adjusting
when the kidneys cannot do their work. It can help to keep the body running as commonly
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Figure 1.7

as could be permitted. Roller and finger pumps use this mechanism of peristalsis to pump
the blood. Hence, many scientists and researchers have been showing core interest in
peristaltic flow.

A non-biological application of peristalsis is the peristaltic pump (Fig. 1.8), which is used
to move/clean/sterile of aggressive fluid through a tube without cross contamination be-
tween the exposed pump components and the fluid. As discussed by Jaffrin and Shapiro
[49], the presence of viscous forces, one can produce effective pumping. In nuclear in-
dustry peristalsis avoids polluting of the outside environment during the exclusion of toxic
liquid. Observations reveal that transportation of water in tall trees is due to peristalsis
(Lightfoot [68]). The porous matrix of the trees assists this water flow.

The fluid mechanical study of peristalsis has received considerable attention in the last few
decades mainly because of its relevance to industrial and physiological processes.

The relevance of peristaltic flow in physiology was brought out mainly through the works
of Kill [54]. The study of the mechanism of peristaltic motion was first experimentally
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Figure 1.8

examined by Latham [66]. These experimental results were in accordance with the the-
oretical results examined by Shapiro [133]. Burns and Parkes [18] considered the above
experimental work and sinusoidal variations on the walls to investigate the flow of a vis-
cous fluid through a pipe and a channel. A theoretical establishment of peristaltic stream
developed by sinusoidal transverse waves of small amplitude for inertia-free Newtonian
fluid was suggested by Fung and Yih [28]. They found that a backward motion in the
mid region of the stream is generated when pumping in opposition to a positive pressure
gradient is higher than a critical value. Later, Yin and Fung [29] extended this problem
in the case of circular cylindrical pipe and who made the comparison of experimental and
theoretical outcomes of peristaltic flow. Shapiro et al. [50] obtained the solution in the
closed form considering a continuous train of peristaltic waves for low Reynolds number
under large wavelength and arbitrarily chosen wave amplitude. They found that there were
two major phenomena: trapping and reflux in physiology. A long wavelength approach
to peristaltic movement was also carried by Zien and Ostrach [172]. Jaffrin and Shapiro
[49] provided an elaborate review of the earlier literature regarding peristalsis. Bohme and
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Friedrich [16] observed peristaltic transport mechanism of an incompressible visco-elastic
fluid. Pozrikidis [105] investigated the flow in two dimensional channel with sinusoidal
waves.

An experimental study of peristalsis was given by Weinberg et al. [169]. Since it is known
(Patel et al. [99]) that human faeces behave rheologically like a power law fluid. Peri-
staltic transport of power law liquid with particular references to the motion of human
faeces in colon investigated by Picologou et al. [103]. Manton [71] found an asymptotic
growth in the stream in an axisymmetric pipe with lengthy peristaltic waves of uninformed
shape and derived the important phenomena of trapping and reflux occurs with limitations.
Kaimal [52] studied the peristaltic flow in an axisymmetric tube with uniformly distributed
suspended particles, under low Reynolds number and long wavelength hypothesis. A nu-
merical study of 2- dimensional peristaltic streams was made by Takabatake and Ayukawa
[153]. Later, Tandon et al. [155] considered the inpact of microstructure and peripheral
layer viscosity on creeping motion. Peristaltic transport of power law fluid in an axisym-
metric tube under long wave length hypothesis is investigated by Radhakrishnamacharya
[109]. Rath and Reese [117] studied creeping sinusoidal flow of non- Newtonian fluids
containing small spherical particles. The effect of peristaltic motion on the movement of
micro-organisms with a usage to spermatozoa transportation was explored by Shukla et al.
[138]. A perturbation solution for peristaltic transport of a fluid-particle mixture for small
amplitudes was given by Misra and Pandey [83].

The peristaltic pumping of Herschel-Bulkley fluid in a channel under long wavelength hy-
pothesis and small Reynolds number was studied by Vajravelu et al. [166]. The peristaltic
motion of Carreau fluid in an uniform tube is studied by Hakeem et al. [34]. Creeping
sinusoidal flow of third-order fluid in an irregular conduit was analyzed by Haroun [36].
Radhakrishnamacharya and Sharma [112] considered the effect of viscosity variation on
motion of a self propelling microorganism in a conduit with peristalsis. Nadeem et al. [88]
studied the effect of peristaltic movement on heat and mass transfer for a third order fluid
in a tube. Peristaltic pumping of a particle fluid suspension in a catheterized circular tube
has been investigated by Medhavi [72]. Noreen et al. [92] considered the peristaltic flow
of pseudoplastic fluid in an irregular channel. The impact of hydromagnetic field on peri-
staltic flow of a couple stress fluid in an inclined conduit was observed by Shit and Roy
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[137].

In all the above investigations, the walls of the duct are assumed to be rigid. But, in most
of the physiological situations, the walls are elastic in nature, i.e., walls get excited by the
smooth muscle contractions whose tension controls its deformation.

Mittra and Prasad [86] analyzed the movement of Newtonian fluid under peristalsis to know
the effects of the viscoelastic behavior of walls. The dynamic mechanism is presumed to
be due to the imposition of moderate amplitude sinusoidal wave on the flexible walls of the
channel. Srivastava and Srivastava [149] studied the peristaltic transport of Casson fluid.
Radhakrishnamacharya and Srinivasulu [113] explored the influence of heat transfer on
peristalsis considering the elasticity of the walls. Srinivasacharya et al. [145] investigated
the influence of wall features on the creeping flow of a dusty fluid under long wave length
hypothesis. The effect of sleep on peristaltic stream in an inclined conduit with wall prop-
erties has been investigated by Ramana Kumari and Radhakrishnamacharya [115]. The
effect of magnetic field on the peristaltic transport of a couple stress fluid in a channel
with wall properties was analyzed by Sankad and Radhakrishnamacharya [129]. Recently,
Alemayehu and Radhakrishnamacharya [10], Akbar and Nadeem [7] and Tripathi and Beg
[164] studied peristalsis under different conditions.

Theoretical study of viscous effects in peristaltic pumping was investigated by Provost
and Schwarz [107]. Tokyo [161] developed a new mathematical model for the peristaltic
motion in the esophagus. Obtained the manometric dimensions of luminal pressure in the
esophagus.

It is known that many ducts in biological systems are having non-uniform cross section.
In the human body, several small blood vessels, lymphatic vessels, intestines, ductus effer-
entes of the reproductive tract are generally observed to be of non-uniform cross section
(Srivastava et al. [150]). Hence, Lee and Fung [67] studied the flow in non-uniform small
blood vessels. Gupta and Seshadri [31] investigated peristaltic flow in non-uniform chan-
nels and tubes with particular reference to the flow of spermatic fluid in vasdeferens. Hasan
et al. [37] extended the same problem with different wave forms. Radhakrishnamacharya
and Radhkrishna Murthy [110] studied peristaltic transport in a non-uniform channel with
heat transfer. Srinivasulu and Radhakrishnamacharya [146] studied the peristaltic motion
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of a Newtonian fluid in a non-uniform channel with wall effects. The peristaltic flow of
blood under the effect of magnetic field in a non uniform channel was investigated by
Mekheimer [75]. Sobh and Mady [143] studied the peristaltic motion of a Newtonian fluid
in a non-uniform porous channel. Eytan et al. [27] analyzed asymmetric peristaltic flow in
a non-uniform channel with particular application to human reproduction.

Another physiologically important phenomenon that this thesis deals with is a dispersion of
a solute matter in a flowing fluid. We present the brief description of dispersion as follows.

1.4 Dispersion

A solution contains of a liquid, so-called the solvent, in which some stuff, named the solute,
has dissolved. We consider a solution in which simple molecular dispersion takes place.
The composition of the solution is characterized by its mass concentration C, which is the
mass of dissolved matter per unit volume of liquid. One means by which the solute parti-
cles are dissolved and transported through the solvent is diffusion/dispersion. Therefore,
dispersion is the process by which material is transported from one portion of a system to
another as a result of random molecular motion (Fig. 1.9).

The consistent movement of the dissolvable molecules delivers a considerable number of
collisions with a given huge solute particle. Therefore, pressure variations are created
which in chance convey to the solute grain a jerky irregular path, named, a random walk.
The result of this random walk is a net dislodgment of the molecule in some direction. The
equivalent phenomenon occurs in the case of suspended particles (e.g. emulsions). This
random motion is called Brownian motion, in honor of the English botanist Robert Brown
(1828). Dispersion is a direct result of the random motion of the molecules in the direction
of a gradient. Dispersion of soluble matter in laminar flow has biological applications
such as drug and nutrient distribution in the body. Dispersion plays a vital role in many
biological situations. Through dispersion, metabolites are swapped between a cell and its
environment or among the tissues and blood stream.
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Figure 1.9

1.4.1 Fick’s Law of Diffusion

Consider a solution in which simple molecular diffusion is occurring, the fluid being oth-
erwise at rest. The mechanism of transport of the solute is governed only by concentration
differences.

The material flux per unit area is known as the current density and is denoted by J. The
classical theory of diffusion was invented more than one hundred years ago by a physiolo-
gist A. Fick in 1855. The first law of diffusion is that

Material f lux =−D × concentration gradient, i.e.,

J =−D∂C
∂X

, (1.1)

where the concentration C varies from point to point and depends on the position X only
and D is the diffusion coefficient. The diffusion coefficient is a characteristic of the solute
of the fluid and in this case it is given by D= KT

f , where K is the Boltzmann constant, T is
the absolute temperature and f is a frictional coefficient which depends on the molecular
size and shape and the viscosity of the fluid. For instance, for spherical fluids, Stokes’ law
says that f = 6πµa where a is the radius of the molecule and µ is the viscosity of the
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fluid. The minus sign in equation (1.1) implies that the particle flow proceeds from a high
concentration region to a low concentration region.

The dispersion of a solute flowing in a conduit has numerous applications in chemical,
biomedical engineering, and physiological fluid dynamics. Taylor [156] was the first per-
son, who proposed the basic theory on dispersion and investigated theoretically and ex-
perimentally that the dispersion of a solute is miscible with a liquid flowing through a
channel. Dispersion plays an important role in physiological systems. For example, the
knowledge of substances injected into a blood vessel is useful for many clinical and physi-
ological purposes and also in the distribution of drugs in the body. It may also be useful in
the investigation into the development of atherosclerotic lesions along the wall of modeled
arterial bifurcation. Taylor [157, 158] suggested a simple method to study dispersion, an-
alyzed the scattering of a solute matter in a solvent flowing under laminar conditions in a
circular pipe. Taylor imposed certain restrictions in his analysis, which were later removed
by Aris [11]. Numerous authors have studied dispersion in the flow of Newtonian and
non-Newtonian fluids under different conditions following Taylor’s approach. The effect
of chemical response on scattering in non-Newtonian fluids were studied by Shukla et al.
[139]. Chandra and Agarwal [5] analyzed dispersion in simple microfluid flows. Diffusion
in the existence of a slip and chemical responses of flow in a porous tube has been studied
by Mehta and Tiwari [73]. Philip and Chandra [19] studied the effects of heterogeneous
and homogeneous responses on the scattering of a solute in simple microfluid. Hazra et
al. [46] investigated the dispersion of a solute in oscillating flow of a non-Newtonian fluid
in a channel. Zhangji et al. [171] considered the effects of peripheral layer on dispersion
of soluble matter in Newton-dipolar stratified fluid. Bandyopadhyay and Mazumder [13]
dealt with contaminant dispersion in unsteady generalized Couette flow. Yang et al. [170]
considered experimental studies on the particle dispersion in a plane wake. Paul [102] an-
alyzed the axial dispersion in pressure perturbed flow through an annular pipe oscillating
around its axis.

Sarkar and Jayaraman [131, 132] considered the effect of wall absorption on scattering
in oscillatory flow in an annulus. Nagarani et al. [90] considered the effect of bound-
ary absorption on scattering in Casson fluid flow in a tube. Koo and Song [57] studied
Taylor dispersion coefficients for longitudinal laminar flow in shell-and-tube exchangers.
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Further, Paul [101] investigated scattering in unsteady Couette-Poiseuille flows. The an-
alytical solution to 1- dimensional advection-diffusion equation with variable coefficients
in semi-infinite media has been considered by Kumar et al. [62]. Dentz et al. [22] dealt
with mixing, spreading and reaction in heterogeneous media. Similarly, Golder et al. [30]
worked on mass transport in porous media. Jiang and Wu [51] studied transition rate trans-
formation method for solving advection-dispersion equation. Kumar et al. [63] considered
steady solute dispersion in composite porous medium between two parallel plates. Jaafar
et al. [48] dealt with mathematical modeling of shear augmented dispersion of a solute in
blood flow. Alemayehu and Radhakrishnamacharya [9, 10], Porta et al. [104], Ravikiran
and Radhakrishnamacharya [121, 122, 123, 124], Hyat et al. [41, 43, 45] have considered
dispersion of a solute in peristaltic flow of non-Newtonian fluids under different conditions.

Chemical reactions take place in most of the processes of dispersion of a solute. A descrip-
tion of both homogeneous and heterogeneous chemical reactions is given below.

1.5 First Order Chemical Reaction

A chemical response/reaction is a procedure that is generally characterized by a substance
change in which the beginning materials (reactants) are not quite from the products. Chem-
ical reactions have a tendency to include the movement of electrons, leading to the forma-
tion and breaking of chemical bonds. There are diverse varieties of chemical reactions
and more than one way of classifying them. The order of response is well-defined as the
amount of all the exponents of the reactants intricate in the rate constraint. It should be
noted that all the particles shown in a chemical equation do not decide the value of order
of reaction, but only those particles whose concentrations are changed are included in the
determination of the order of a reaction. In other words, the number of the reacting parti-
cles whose concentration varies as an outcome of chemical reactions is termed as the order
of reaction. For example, the reaction in which only one molecule undergoes a chemical
change is called first order reaction. In the recent instants, liquid flows containing chem-
ical response have been paying attention of engineers and scientists. Such flows have key
importance in many processes like energy transfer in a wet cooling tower, evaporation of
drying on the surface of a water body, producing electric power, flow in a desert cooler,
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food processing, groves of fruit trees, crop damage because of freezing, etc. There is al-
ways a molecular diffusion of species in the existence of a chemical response inside or at
the boundary throughout numerous practical diffusive operations. There are two types of
responses namely homogeneous and heterogeneous ([120]).

1.5.1 Homogeneous Chemical Reaction

Homogeneous reactions are chemical reactions in which the reactants are in the identical
phase. A response among two gases, two liquids or two solids is homogeneous. The
reactions between gases (e.g. the combination of common household gas and oxygen to
produce a flame) and the reactions between liquids or substances dissolved in liquids can be
named as homogeneous chemical reactions. From a theoretical standpoint, homogeneous
reactions are the simplest type of reactions because the chemical changes that take place
are exclusively dependent on the nature of the interactions of the reacting substances. The
smog formation is a significant example, representing a first order homogeneous chemical
reaction.

1.5.2 Heterogeneous Chemical Reaction

Heterogeneous reaction is a chemical reaction in which the reactants occur in two or more
phases (i.e. solid and gas, solid and liquid, two immiscible liquids) or in which one or
more reactants experience chemical change at boundary, for instance, on the surface of a
solid catalyst. The reaction of metals with acids, the electrochemical changes that occur in
batteries and electrolytic cells, and the phenomena of corrosion are part of the subject of
heterogeneous reactions. By far the majority of the researches of heterogeneous reactions
are devoted to heterogeneous catalysis (e.g. the reactions between gases or liquids acceler-
ated by solids). Practical appliances of heterogeneous responses are in catalytic converters,
fuel cells and chemical vapor deposition among others.

Chemical responses usually take place during dispersal of a solute matter in a fluid. This is
the reason why some investigators dealing with dispersion considered chemical response
in their study. To mention a few examples, Gupta and Gupta [32] discussed effect of ho-
mogeneous and heterogeneous responses on the scattering of a solute in the laminar flow
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between two plates. Dutta et al. [23] studied scattering of a solute in a non-Newtonian liq-
uid with the simultaneous chemical response. Further, Rao and Padma [93, 95] considered
homogeneous and heterogeneous chemical responses on the scattering of a solute in MHD
Couette flow. Padma and Rao [94] dealt with the influence of homogeneous and heteroge-
neous responses on the scattering of a solute in laminar flow between two parallel porous
plates. The impacts of chemical response, heat and mass transfer on MHD flow, along a
vertical porous wall discussed by Ahmed and Chamkha [6]. Saini et al. [127] examined
the effects of first order chemical response on the dispersal coefficient associated with lam-
inar flow through a circular tube. Effect of first order chemical response on gravitational
instability in a porous medium is discussed by Kim and Choi [55].

Further, characteristics such as magneto-hydrodynamics and porous medium have been
considered in this thesis. The brief description of each of them is given below.

1.6 Magnetohydrodynamics (MHD)

The study of the interaction of electrically conducting fluid flow with a magnetic field
is called magneto-hydrodynamics (MHD). The movement of conducting fluid generates
electric currents across the magnetic field that leads to the formation of mechanical forces
and modify the motion of the fluid.

The flow of blood takes place in two layers. One in the plasma layer which is near the wall
and another one is the core layer which consists of a suspension of cells in the plasma. The
core is treated as magnetic field because red blood cells have iron, which is magnetic in
nature. The magnetism affects the human body through the nervous system, circulatory
system and the endocrine system.

For MHD flow, there is an extra term due to MHD body force, namely, ~J×~B in the mo-
mentum equation.

The basic equations that govern the flow influenced by MHD (after ignoring the displace-
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ment currents) as:

∇ ·~B = 0, ∇×~B = µm ~J, ∇ ·~E =−∂~B
∂ t

and ~J = σ

(
~E +~q×~B

)
(1.2)

Which is the Generalized Ohm’s law and Maxwell’s equation.

The velocity of the fluid is ~q, the electric current density is ~J , the total magnetic field is
~B =

(
~B0 +~B1

)
, the induced magnetic field is ~B1

(
and ~B1� ~B0

)
, the Lorentz’s force is

~J×~B, acting on the fluid, electrical conductivity is σ , the magnetic permeability is µm and
electric field is ~E.

It is pressumed that, the imposed and induced electric field is minute, the magnetic Reynolds
number is low and µm is constant throughout the flow field. Hence the force simplifies as:

~J×~B =−σB0
2U. (1.3)

The applications of magneto-hydrodynamics are very broad, ranging from astrophysics
and plasma physics to drug targeting. The principle of magnetic field is also applied in
medical field in the form of a device called Magnetic Resonance Imaging (MRI scanning
- Fig 1.10), which is widely used for diagnosis of diseases of brain and other parts of
the body. Further, the effect of magnetic field on fluid flows finds applications in devices
such as Magnetohydrodynamic (MHD) power producers, heating of aerodynamic, MHD
pumps, crude oil purification, etc. Moreover, many physiological fluids possess electrically
conducting properties and hence different effects could be observed in fluid flow, in the
existance of magnetic field.

Motivated by this, Sud et al. [152] considered the magnetic effect on pumping action of
the blood. Prasad Rao et al. [106] studied free convection in hydrodynamic flows in a
vertical wavy channel. Srivastava and Agrawal [148] have observed that blood constitutes
of plasma wherein red cells occurs in suspension. They considered blood as an electrically
conducting fluid. Radhakrishnamacharya and Radhakrishna Murthy [111] examined the
interaction of heat flow and peristalsis of an incompressible viscous liquid moving inside
a 2-dimensional conduit. RatishKumar and Naidu [119] discussed a numerical study of
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Figure 1.10

magnetic effects in peristaltic flows. Mekheimer [75] considered creeping stream of blood
under the effect of a magnetic field in a non-uniform channel. Kim [56] observed the trans-
fer of mass and heat in MHD-micropolar fluid over a vertical moving porous plate in a
permeable medium. Mekheimer [77] dealt with the peristaltic movement of a magneto-
micropolar fluid under the effect of induced magnetic field. The influence of wall char-
acterstics and magnetic field on peristaltic transport through a porous medium has been
explored by Kothandapani and Srinivas [60]. Recently, Many scholars studied MHD ef-
fects on various fluids under different limitations (Hayat et al. [39], Elmaboud [26], Akbar
and Nadeem [7], Abd-Alla et al. [2], Kothandapani et al. [58]).

1.7 Porous Media

Porous medium is formed by many relatively closely packed particles or solid matrix with
its void filled with fluids. A porous medium is a material containing pores or spaces in
between the solid matter through which gas or liquid can pass. The human lung, bile duct,
gallbladder with stones, small blood vessels, sandstone, beach sand, limestone are some of
the examples of natural porous media (Figs. 1.11, 1.12, 1.13, 1.14, 1.15, 1.16). Moreover,
movement of underground water, liquid filtration and water discharge in river beds are a
limited example of flow through a permeable medium.
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Figure 1.11

A peristaltic stream with a porous intermediate has attained significance in the current
decade because of its practical applications mainly in biomechanics and geophysical fluid
dynamics. Even in some pathological situations like: transportation of fluids in the kidneys,
in the lungs, gallbladder with stones, small blood vessels and tissues, cartilage, bones and
allocation of fatty cholesterol can be well thoughtout as a permeable medium. The proper
functioning of these depends on the stream of blood, nutrients, etc., through them. The
oil reservoirs are mainly composed of limestone and sandstone wherein the oil is trapped.
With the knowledge of flow through permeable media. Oil extraction from the oil refinery
can be enhanced, many medical conditions like tumor growth and their treatment can be
well understood.

Terrill [159] studied laminar flow in a porous tube. Criskysikopoulos et al. [21] analyzed
the one dimensional solute movement through a permeable medium with variable retarda-
tion factor. Pal [96] considered the influence of chemical response on the diffusion of a
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Figure 1.12

Figure 1.13
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Figure 1.14

Figure 1.15
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Figure 1.16

solute in a permeable medium. Shehawey and Sebaei [136] explored peristaltic movement
with a permeable medium in a cylindrical tube. Quintard et al. [108] investigated scatter-
ing in heterogeneous porous media. Rao and Mishra [116] considered peristaltic pumping
of a power law liquid in a porous tube. Hayat et al. [40] analyzed a mathematical model
of peristalsis in tubes through a porous medium. Misra et al. [82] carried out peristaltic
pumping of a physiological liquid in an asymmetric porous channel under external mag-
netic field. Sobh and Mady [143] considered creeping flow through a permeable medium
in a non-uniform channel. Khan and Ellahi [53] discussed an exact solution for oscillatory
flows of generalized Oldroyd-B fluid through a porous medium in a rotating frame. Khan
et al. [4] studied the peristaltic transport of a Jeffrey fluid with variable viscosity through
a porous medium in an asymmetric channel. Nadeem et al. [89] analyzed the creeping
sinusoidal flow of nano-fluid through eccentric tubes comprising permeable medium. A
mathematical study of the peristaltic pumping of viscoelastic liquid using the generalized
fractional Burger’s model through a non-uniform channel is presented by Tripathi and Beg
[162]. Abed-Alla and Abo-Dahab [1] studied the effects of rotation and magnetic field on
the peristaltic flow of a Jeffrey fluid in a symmetric channel through a permeable medium.
Motivated by this, several investigators considered the effect of slip in various fluids flows
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under different limitations (Bhatt and Sacheti [15], Terrill [159], Kwang et al. [65], Mehta
and Tiwari [73]. Ashgar et al. [12], Sobh [140], Srinivas et al. [144], Chaube et al. [20],
Tripathi et al. [165], Akram [8], and Gurju et al. [33]).

Many physiological fluids like blood, chyme exhibit the behavior of Newtonian and non-
Newtonian fluids. We describe below the relevant concepts and governing equations for an
incompressible viscous fluid and couple stress fluid used in this thesis.

1.8 Classification of Fluids

Depending on the variation of strain rate with the stress within a matter, the viscosity can
be classified as linear or non-linear. The matter exhibiting a relationship weherein stress
is linearly comparative to the strain rate is termed Newtonian. In this contrast, a material
exhibiting a non-linear relationship between the stress and the strain rate is termed non-
Newtonian.

1.8.1 Newtonian Fluid

Biofluids are the fluids present in the ducts of the living body, which are treated either as
Newtonian or non-Newtonian fluids depending on the physiological circumstances. Exten-
sive research work has been carried out on the physiological liquid flow, during the last few
decades, assuming the fluid under peristaltic motion to behave as a Newtonian fluid with
constant viscosity. Newtonian behavior has been noticed in most of liquids with simple
molecular structures and all gases.

Basic Equations

The constitute equations of motion characterizing an incompressible Newtonian fluid flow
are given as:

∇ ·~q = 0, (1.4)

−∇P+µ∇×∇×~q = ρ

[
∂~q
∂ t

+~q ·∇~q
]
, (1.5)
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where the velocity vector is~q, the pressure is P, the density is ρ , the time is t, the coefficient
of viscosity is µ .

The equation (1.4) and (1.5) represents the principles of conservation of mass and linear
momentum.

The constitutive equation containing the stress tensor ti j and rate of deformation tensor di j

is given as:

ti j =−Pδi j +2µdi j, (1.6)

where δi j the Kronecker delta.

A huge work covering on mathematical and experimental models in a Newtonian or non-
Newtonian fluid in a conduit has been carried out. Most of the researchers examined the
fluid to behave like a viscous fluid with constant viscosity for physiological peristalsis
including the flow of blood in arterioles. Gupta and Seshadri [31] investigated the trans-
portation of a Newtonian fluid under peristalsis. The peristaltic transport of an incompress-
ible generalized Newtonian liquid in a planar conduit has been explored by Misery et al.
[79]. Naby and Misery [3] examined the impacts of an endoscope on the peristaltic flow of
generalized Newtonian liquid. A Newtonian fluid in an irregular conduit was considered
by Mishra and Rao [80] for the peristaltic movement analysis. The wall compliance on
the creeping flow of a Newtonian liquid in an irregular channel has been considered by
Haroun [35]. Some investigators studied creeping sinusoidal flow of an incompressible
and viscous fluid with different limitations have been reported in references (Ebaid [24],
Hayat and Nasir [38], Kothandapani and Srinivas [59], Raghunath Rao [114]).

1.8.2 Non-Newtonian Fluid

Non-Newtonian fluids cannot be explained with a single constitutive equation between
stress and strain rate, but their constitutive equations lead to complicated mathematical
problems. Thus the mathematicians, physicists, researchers are challenged in modeling,
analyzing and solving the non-Newtonian fluid flows
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Through the investigations, it is accepted that blood in tiny arteries and liquids in the lym-
phatic vessels and in the digestive system, urine under certain pathological conditions, etc.
behave like non-Newtonian liquids. Al though the solution of non-Newtonian liquids is
complex due to the appearance of the non-linear term, blood flow in human body, alloys
and metals in industries, mercury amalgams and lubrication with heavy oils and greases in
machines, are few examples of flow of non-Newtonian liquids that show us how important
is the study of non-Newtonian fluids ([120]).

The following Non-Newtonian fluid model study has been made in this thesis:

Couple Stress Fluid

The discrepancy of the real fluids compared with that of the behavior of Newtonian fluid
is well explained by the couple stress fluid theory. The equations that govern the couple
stress fluid motion are none other than the Navier Stokes equations. Stokes [151] was the
first person, who introduced couple stress fluid in 1966. Later, many researchers of the
fluid dynamics concentrated on the study of couple stress fluid flow model. This model
defines the rotation field in terms of the velocity field, i.e., the rotation vorticity vector (~ω)
is equal to one-half of the curl of the velocity (~q) (i.e. vorticity). Further, this theory takes
into account all the important features and effects of the couple stresses, which results the
Navier-Stokes equations.

Basic Equations

The equations of motion characterizing an incompressible couple stress fluid flow (Stokes
[151]) after neglecting body couples and body forces are given as:

∇ ·~q = 0, (1.7)

−∇P−µ∇×∇×~q−η∇×∇×∇×∇×~q = ρ

[
∂~q
∂ t

+~q ·∇~q
]
, (1.8)

where the velocity vector is~q, the pressure is P, the density is ρ , the time is t, the coefficient
of viscosity is µ and the couple stress viscosity is η .
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The equations (1.7)and (1.8) respectively represent the principles of conservation of mass
and linear momentum.

The constitutive equation containing the stress tensor ti j and deformation rate tensor di j is
specified as:

ti j =−Pδi j ++2µdi j +λ (∇ ·~q)δi j−
1
2

εi jk(m,k +4η1ωk,rr), (1.9)

For the couple stress tensor mi j, the linear constitutive relation is observed as:

mi j =
1
3

mδi j +4η1ω j,i +4η
′
ωi, j, (1.10)

where the spin tensor is ωi, j, rate of deformation tensor is di j, and trace of the couple stress
tensor is m. The viscosity coefficients are denoted by λ and µ , the couple stress viscosity
coefficients denoted by η1, η ′.

These constants are bounded by the following inequalities:

3λ +2µ ≥ 0; µ ≥ 0; η1 ≥ 0; | η ′1 |≤ η1. (1.11)

Here, l =
√

η1
µ

- the length constraint that measures the polarity of the fluid model and
for non-polar fluids l = 0.

At the points on the boundary, the condition to be satisfied by the field vector~q is the hyper-
stick condition or condition of super adherence, which means that the velocity vector~q and
the effect of couple stresses on the tangential component of the spin vector ~ω = 1

2∇×~q can
be prescribed so as to synchronize with their respective values on the boundary.

As the couple stress fluid possesses the mechanism that explains complex rheological fluids
as seen in blood and liquid crystals. The study of couple stress fluid has gained importance
in the recent years. Couple stress fluid is a fluid consisting of rigid, randomly oriented par-
ticles suspended in a viscous medium, such as blood, lubricants containing small amount
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of high polymer additive, electro-rhelogical fluids and synthetic fluids. The main feature
of couple stresses is to introduce a size dependent effect. Numerous research works per-
taining to couple stress fluid are brought out by Srivastava [147]. The research carried on
this fluid is much helpful in many physiological problems. The transport of this liquid un-
der peristalsis has been analyzed by Shehawey and Mekheimer [134]. Kothandapani and
Srinivas [59] examined the MHD creeping flow of this fluid with heat and compliant wall.
Pandey and Chaube [98] gave a report on the motion of this fluid within a conduit having
wall features with peristalsis. They showed that the boundary velocity of the fluid reduces
with gains in couple stress constraint. The couple stress fluid was analyzed for creeping
flow to know the relevance in hemodynamics by Maiti and Misra [70]. Some studies on
the peristaltic transport of couple stress fluid have been reported in references (Valanis and
Sun [167], Sagayamary and Devanathan [126], Mekheimer [74, 77], Sobh [140], Bujurke
and Jayaraman [17], Wang et al. [168])

1.9 Problem statement

The liquids existing in the ducts of living being can be categorized as Newtonian and
non-Newtonian liquids based on their behavior. It is considered that the blood and other
physiological liquids exhibit Newtonian as well as non-Newtonian behaviors. Several in-
vestigators have contributed in this regard. But, the dispersion of a solute substance and
the flow of an incompressible viscous fluid and couple stress fluid with wall features have
not been considered. Thus, in view of studying an incompressible viscous fluid and couple
stress fluid with wall properties, the following research issues have been considered.

This necessity has led to the following research issues:

What is the effect of peristalsis on dispersion of an incompressible viscous fluid with wall
features? What effect do the wall and chemical response on the peristaltic pumping of an
incompressible viscous fluid in a permeable medium? What might be the effect of MHD
on this flow? In addition to these, what might be the effects of the above studies when a
non-Newtonian fluid is taken into consideration instead of the Newtonian fluid?
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1.10 Objective of the research

The objective of the thesis is to explore peristalsis and dispersion of a solute substance with
wall features by the analytical method, and assess appropriate conclusions when applied
to the peristaltic flow issues. The mathematical modeling is based on some suppositions
leading to tractable analytical solutions of the problem to examine the relation between
constraints.

The core objective is to study the interaction of peristalsis and dispersion on an incompress-
ible viscous fluid and couple stress fluid models to examine the MHD, porosity, chemical
response rate effects in a uniform channel having compliant walls. The flow is modeled by
taking into consideration of long wavelength hypothesis, Taylor’s procedure and twistable
periphery conditions.

1.11 Outline of the Thesis

The first chapter is introductory, deals with several characteristics of the fluid and the rele-
vant literature survey, thus explaining the reason for consideration of the problems involved
in the following chapters of the thesis and the basic equations of the fluid model.

An incompressible viscous fluid and couple stress fluid models have been used since they
are known to be better models for physiological fluids, particularly, blood, chyme, bile.
Keeping these things in mind, the following problems have been considered in chapters 2
- 7 of the thesis.

Chapters 2 to 4 consider the effect of peristalsis on dispersion of a solute in an incompress-
ible and viscous fluid flow with wall features wherein chapters 5 to 7 deal with dispersion
of a solute in peristaltic motion of a couple stress fluid with wall features under different
limitations. For the analysis, long wavelength hypothesis, Taylor’s procedure and twistable
periphery conditions are considered.

Chapter 2 studies the scattering of a solute matter in the peristaltic transport of an incom-
pressible and viscous fluid in a uniform channel having wall properties. Long wavelength
hypothesis, Taylor’s procedure and twistable periphery conditions at the flexible walls are
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used to find a closed form solution for the average effective scattering coefficient in the
presence of simultaneous homogeneous and heterogeneous chemical reactions. The ef-
fects of various pertinent constraints on the effective scattering coefficient are discussed.
It is seen that average scattering ascends with an amplitude ratio, which implies that scat-
tering is high in the existence of peristalsis. It also increases with the rigidity, stiffness
and deceptive nature of the walls. Further, dispersion descends with heterogeneous and
homogeneous chemical response rates.

The effectiveness of the analytical expression of the mean scattering coefficient for the
peristaltic pumping of an incompressible and viscous fluid in a uniform porous channel
with elastic wall is analyzed and assessed in chapter 3. Using dynamic boundary condi-
tions, Taylor’s procedure and long wavelength hypothesis, the analytic solution has been
computed. The influence of permeability constraint, peristalsis through amplitude ratio,
rigidness, stiffness, damping characteristic of wall, heterogeneous and homogeneous re-
sponse rates on scattering coefficient have been examined through graphs. It is noticed
that peristalsis enhances scattering of a solute. It is also revealed that scattering amplifies
with the permeability and wall constraints. Further, it falls with homogeneous response
and heterogeneous response rates.

Chapter 4, presents analytical results for the dispersion of a solute matter in magnetohydro-
dynamic (MHD) peristaltic motion of a viscous fluid with wall properties. The magnetic
field is applied uniformly at right angles to the channel wall. Following the same proce-
dure as in the previous chapters, the solution for the effective scattering coefficient has been
determined analytically. The effects of various relevant constraints are discussed. It is wit-
nessed that scattering rises with peristalsis, permeability and wall characteristics. Further,
scattering fall down with homogenous response and heterogeneous response rates.

Chapter 5 reports the dispersion and the creeping sinusoidal flow of an incompressible
couple stress fluid in a uniform channel having compliant walls. The equations governing
the flow have been linearized by long wavelength hypothesis and mathematical expres-
sion of the scattering coefficient has been found using Taylor’s procedure and dynamic
border conditions of the flexible wall. The elastic wall features on scattering coefficient
with peristalsis has been studied through graphs. It is found that rigidness, stiffness and
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dissipative nature of the wall enhance the scattering. It is also noted that scattering coeffi-
cient increases with amplitude ratio and couple stress constraint. Conversely, it is found to
decrease with homogeneous and heterogeneous response rates.

Chapter 6 concentrates on scattering of a solute matter in the creeping sinusoidal flow of
an incompressible and couple stress fluid through a permeable medium with wall prop-
erties. Long wavelength hypothesis, Taylor’s procedure and dynamic boarder conditions
have been applied to obtain the average effective scattering coefficient in the existence of
heterogeneous-homogeneous chemical responses. The effects of various pertinent con-
straints on the scattering coefficient are presented graphically. It is examined that average
effective scattering coefficient increases with the amplitude ratio, which clears that scat-
tering is high in the existence of peristalsis. It is also noticed that scattering rises with the
porosity and wall constraints. Further, it is found to drop with couple stress constraint,
homogeneous and heterogeneous response rates.

In chapter 7, an attempt has been made to investigate the diffusion of a solute in the mag-
netohydrodynamic (MHD) creeping sinusoidal flow of a couple stress fluid having wall
properties. Considering the flexible effects of deformable boundaries, the relevant stream
equations of motion have been solved under long wavelength hypothesis. Taylor’s pro-
cedure and dynamic periphery circumstances at the elastic walls have been used to find a
closed form expression for effective scattering coefficient. It is witnessed that the scattering
increases with rigidity, stiffness, deceptive nature of the walls. Conversely, it reduces with
magnetic constraint, couple stress constraint, homogeneous and heterogeneous chemical
response rates. It can also be viewed that the occurrence of peristalsis, enhances scattering
of a solute.

Finally, chapter eight gives the main conclusions and scope for future work.
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Part - I

Peristalsis and Dispersion of a Solute in
an Incompressible Viscous Fluid with
Chemical Reactions and Wall Effects
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Chapter 2

Effect of Chemical Reactions on
Dispersion of a Solute in Peristaltic
Motion of an Incompressible Viscous
Fluid with Wall Properties
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2.1 Introduction

Peristaltic motion is a well-known natural phenomenon of fluid mixing and movement that
take place in biological tracts. The mechanism behind this is the progressive wave moving
along the boundaries of the tract from the region of low pressure to high pressure through
driving action studied by Yin and Fung [29]. In particular, it occurs in many physiological
situations like transport of mixture of food grains and liquids in the esophagus, movement
of urine through the ureter, driving blood in small blood vessels, etc. This process appears
in many industrial systems to force/drive corrosive and sanitary fluids. Several researchers
have studied many liquids with peristalsis under different circumstances (Fung and Yih
[28], Shapiro et al. [50], Shehawey and sebaei [136], Radhakrishnamacharya [109], Tri-
pathi and Beg [165], Misra and Pandey [85], Takagi and Balmforth [154]). Mittra and
Prasad [86] have studied the wall effects on Poiseuille flow with peristalsis. In addition,
several researchers have explored the wall effects on non- Newtonian fluids in peristalsis
(Muttu et al. [87], Sankad and Radhakrishnamacharya [128]).

Dispersion is a mechanism that enhances the rate of broadening of a solute cloud in flow
through a tube or channel and which can be utilized as an effective means to accomplish
mixing or diluting. Dispersion plays a central task in chyme transport and other applica-
tions like environmental pollutant transportation, chromatographic separation, the mixing
and transport of drugs or toxic substances in physiological structures (Ng [91]). The dis-
persion of a solute in a solvent flowing in a channel has wide applications in physiological
fluid dynamics, biomedical and chemical industries. The basic theory of dispersion was
first proposed by Taylor [156, 157, 158] and he further discussed the dispersion of a so-
lute in a circular pipe with an incompressible viscous fluid through laminar flow. Taylor
investigated that, the solute disperses with an equivalent average effective dispersion co-
efficient, and the dispersion depends on the radius of the tube, coefficient of molecular
diffusion and average speed of the flow, under the hypothesis that the solute material does
not chemically react with the fluid. Aris [11], Padma and Rao [93], Gupta and Gupta [32],
Rao and Padma [94, 95], and other several investigators have investigated the dispersion of
a solute in viscous fluid, under different limitations. Furthermore, Chandra and Agarwal
[5], Philip and Chandra [19], Dutta et al. [23], Hayat et al. [41, 45], Alemayehu and Rad-
hakrishnamacharya [10], and Ravikiran and Radhakrishnamacharya [121] extended this
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analysis to non Newtonian fluids. Several studies have been carried out on the dispersion
with chemical reactions for Newtonian and non-Newtonian fluids.

Diffusion and peristalsis are more essential characteristics in bio-medical, natural and
chemical processes. The liquids present in the ducts of living being can be classified as
Newtonian and non-Newtonian fluids based on their behavior. The impact of simultane-
ous homogeneous, heterogeneous reactions with peristalsis of an incompressible viscous
fluid with wall properties has not received much attention. Peristalsis may have significant
effects on the dispersion of a solute in fluid flow. Hence, in this chapter, we have consid-
ered a mathematical model to study the peristaltic pumping of Newtonian fluid with wall
features and chemical reactions through δ -approximation, conditions of Taylor’s limit and
dynamic boundary conditions. The analytical expression for the mean effective scatter-
ing coefficient has been obtained and results are analyzed for different values of relevant
constraints through graphs.

2.2 Formulation of the Problem

We have considered peristaltic pumping of an incompressible viscous fluid in the 2- dimen-
sional compliant wall channel, the Cartesian coordinates (x, y) with x- axis at the centre of
the fluid flow and the homogeneous, heterogeneous reaction effects in the flow analysis.
The peristaltic wave with speed c produces the flow travelling along the walls of the chan-
nel. Figure 2.1 shows the travelling waves.

The wave shape is given by the subsequent equation as:

Y=±h =±
[

d +asin
2π

λ
(X− ct)

]
, (2.1)

where the speed is c, the amplitude is a, the wavelength of the wave is λ , and the half width
of the channel is d.

The relating flow equations (Gupta and Seshadri [31]) of the present issue as:

∂U

∂X
+

∂V

∂Y
= 0, (2.2)
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Figure 2.1: Geometry of the problem

− ∂ p
∂X

+µ

(
∂ 2

∂X2 +
∂ 2

∂Y2

)
U= ρ

[
∂

∂ t
+U

∂

∂X
+V

∂

∂Y

]
U, (2.3)

−∂ p
∂Y

+µ

(
∂ 2

∂X2 +
∂ 2

∂Y2

)
V= ρ

[
∂

∂ t
+U

∂

∂X
+V

∂

∂Y

]
V, (2.4)

where the fluid density is ρ , the pressure is p, the viscosity coefficient is µ , the velocity
component in the X direction is U, velocity component in Y direction is V.

Referring Mittra and Prasad [86], the condition of the flexible wall movement is specified
as:

L(h) = p− p0, (2.5)

where the movement of the stretched membrane by the damping force is L and is intended
by the subsequent equation:

L=−T ∂ 2

∂X2 +m
∂ 2

∂ t2 +C
∂

∂ t
. (2.6)

Here, the coefficient of sticky damping force is C, the mass per/area is m, and the mem-
brane tension is T.
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2.3 Method of Solution

Under long - wavelength hypothesis and referring Alemayehu and Radhakrishnamacharya
[9], the equations (2.2) to (2.4) yield as:

∂U

∂X
+

∂V

∂Y
= 0, (2.7)

− ∂ p
∂X

+µ
∂ 2U

∂Y2 = 0, (2.8)

−∂ p
∂Y

= 0. (2.9)

The appropriate periphery conditions are specified as:

U= 0, at Y=±h. (2.10)

It is presumed that p0 = 0 and the channel walls are inextensible; therefore, the straight
displacement of the wall is zero and only lateral movement takes place, and from equation
(2.5), (2.6) and (2.8), we get

∂

∂X
L(h) = µ

∂ 2U

∂Y2 at Y=±h, (2.11)

where
∂

∂X
L(h) =

∂ p
∂X

=−T ∂ 3h
∂X3 +m

∂ 3h
∂X∂ t2 +C

∂ 2h
∂X∂ t

. (2.12)

After solving equations (2.8) and (2.9) with the conditions (2.10) and (2.11), we obtain

U(Y) =
1

2µ

(
∂ p
∂X

)(
Y2−h2) , (2.13)
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The mean velocity is specified as:

Ū=
1

2h

∫ h

−h
U(Y)dy. (2.14)

Equations (2.13) and (2.14) yield as:

Ū=− 1
µ

(
∂ p
∂X

)
h2

3
. (2.15)

If convection is across the plane moving with the mean speed of the flow, then relative
to this plane, the fluid velocity is given by the condition (Alemayehu and Radhakrishna-
macharya [10], Sobh [142]).

UX = U− Ū. (2.16)

From equations (2.13), (2.15) and (2.16), we find

UX =
1

2µ

(
∂ p
∂X

)(
Y2− h2

3

)
, (2.17)

where

P′ =
∂ p
∂X

=−T ∂ 3h
∂X3 +m

∂ 3h
∂X∂ t2 +C

∂ 2h
∂X∂ t

.

2.4 Simultaneous homogeneous and heterogeneous chem-
ical reactions with diffusion

The first order irreversible reaction model in the peristaltic pumping of viscous fluid flow
under isothermal conditions (Taylor [156], Gupta and Gupta [32]) is considered as:

∂C
∂ t

+U
∂C
∂X

=D

(
∂ 2C
∂X2 +

∂ 2C
∂Y2

)
− k1C. (2.18)
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Using Taylor’s approximation ∂ 2C
∂x2 ≤ ∂ 2C

∂y2 , the equation (2.18) is expressed as:

∂C
∂ t

+u
∂C
∂X

= D
∂ 2C
∂Y2 − k1C. (2.19)

In the above equation, concentration of the fluid is C, the molecular diffusion coefficient is
D and the rate constant of first order chemical response is k1.

For the regular estimations of physiologically essential parameters of this issue, it is normal
that Ū≈C (Alemayehu and Radhakrishnamacharya [10]).

Utilizing this condition Ū≈C, with below specified dimensionless quantities,

θ =
t
t̄
, t̄ =

λ

Ū
, η =

Y

d
, ξ =

(X− Ūt)
λ

, H =
h
d
, P=

d2

µcλ
P′. (2.20)

Equations (2.12), (2.17) and (2.19) reduce to

P=−ε
[
(E1 +E2)(2π)3 cos(2πξ )−E3(2π)2 sin(2πξ )

]
, (2.21)

UX =
d2

2µ

∂ p
∂X

(
η

2− H2

3

)
, (2.22)

∂ 2C
∂η2 −

k1d2

D
C =

d2

λD
UX

∂C
∂ξ

, (2.23)

where

the amplitude ratio is ε
(
= a

d

)
, the rigidity is E1

(
=− Td3

λ 3µc

)
, the stiffness is

E2 =

(
mcd3

λ 3µ

)
, the viscous damping force in the wall is E3 =

(
cd3

µλ 2

)
.

Below, we discuss the diffusion with first order reaction taking place in the mass of the
fluid medium and at the walls of the channel, the walls are catalytic to chemical reaction.
Hence, the boundary conditions at the walls (Philip and Chandra [19]) are expressed by the
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following equations:

0 = FC+
∂C
∂Y

at Y= [asin
2π

λ
(X− Ūt)+d] = h, (2.24)

0 =−FC+
∂C
∂Y

at Y=−[asin
2π

λ
(X− Ūt)+d] =−h. (2.25)

If we use the equation (2.20), the conditions (2.24) and (2.25) reduces to

0 = βC+
∂C
∂η

at η = [ε sin(2πξ )+1] =H, (2.26)

0 =−βC+
∂C
∂η

at η =−[ε sin(2πξ )+1] =−H, (2.27)

where the heterogeneous response rate parameter corresponding to the catalytic response
at the walls is β = Fd.

Assuming that ∂C
∂ξ

is independent of η at any cross section, we obtain the concentration of
the solute C as follows:

C(η) =− d4

2λ µD

∂C
∂ξ

∂ p
∂X

[A1

A2
cosh(αη)+

H2

3α2 −
η2

α2 −
2

α4

]
, (2.28)

where A1 = α sinhαH+β coshαH, A2 =
(

2H
α2 + 2βH2

3α2 + 2β

α4

)
.

The volumetric rate Q is defined as the rate in which the solute is pumping across a section
of channel per unit breadth.

Q=
∫ H

−H
C UXdη . (2.29)

Using equations (2.22) and (2.28) in equation (2.29), we get

Q=−2
d6

λ µ2D

∂C
∂ξ

G(ξ ,α,β ,ε,E1,E2,E3), (2.30)
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where

G(ξ ,α,β ,ε,E1,E2,E3) =[
P

A2

2A1

(
H2

3α
sinhαH− H

α2 coshαH+
1

α3 sinhαH

)
−P

H5

45α2

]
. (2.31)

Glancing at equation (2.30) with Fick’s law of diffusion, the scattering coefficient D∗ was
calculated such that the solute disperses near to the plane moving with the typical speed of
the flow and is specified as:

D∗ = 2
d6

µ2D
G(ξ ,α,β ,ε,E1,E2,E3). (2.32)

Let Ḡ be the mean of G and is attained by the succeeding equation:

Ḡ=
∫ 1

0
G(ξ ,α,β ,ε,E1,E2,E3)dξ . (2.33)

2.5 Outcomes and Discussion

This segment is prepared to investigate the impacts of different constraints on the con-
centration. The mean effective dispersion coefficient was observed through the function
Ḡ(ξ ,α,β ,ε,E1,E2,E3) for simultaneous homogeneous, heterogeneous reactions given by
equation (2.33). Ḡ was computed by the software MATHEMATICA and end results are
presented graphically. The penetrating constraints present in this argument are the ampli-
tude ratio (ε), the homogeneous reaction rate (α), the heterogeneous reaction rate (β ), the
rigidity (E1), the stiffness (E2), and the viscous damping force (E3). We may ensure that
E1,E2 and E3 cannot be zero all together.

We have considered the Figs. 2.2, 2.3, 2.4, and 2.5 for the impact of the rigidity param-
eter (E1) of the elastic wall on the mean effective dispersion coefficient (Ḡ). Dispersion
enhances with increase in wall rigidity (E1) in the cases of (a) without stiffness in the
wall (E2=0) and perfectly elastic wall (E3=0) (Figs. 2.2, 2.4); (b) with stiffness in the
wall (E2 6=0) and dissipative wall (E3 6=0) (Figs. 2.3, 2.5). It is observed that Ḡ increases
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with the stiffness (E2) when the wall is dissipative in nature (E3 6=0) (Figs. 2.7, 2.8). Fur-
ther, it is noted that boost in viscous damping force (E3) increases Ḡ for both the cases of
without stiffness in the wall (E2=0) (Figs. 2.10, 2.12) and stiffness in the wall (E2 6=0)
(Figs. 2.11, 2.13). This understanding might be derived to the truths that the increment in
the flexibility of the channel walls helps the stream moment which causes to enhance the
scattering. It is also noticed that dispersion is more in presence of stiffness in the wall as
compared to without stiffness in the wall. These results are in agreement with the results
of Ravikiran and Radhakrishnamacharya [122, 123]. Furthermore, the effective dispersion
coefficient enhances with an increase in the amplitude ratio (ε) (Figs. 2.6, 2.9, 2.14). As
already known, the increment in the amplitude ratio is the expansion in the amplitude of
the wave across the channel and this cause to increase the fluid velocity within the channel
and consequently dispersion may enhance. This outcome concurs with that of Sobh [142],
Alemayehu and Radhakrishnamacharya [9, 10].

Diffusion reduces with homogeneous response rate (α) (Figs. 2.2, 2.3, 2.7, 2.10, 2.11) and
heterogeneous response rate (β ) (Fig. 2.4, 2.5, 2.8, 2.12, 2.13). This result is consistent
with the arguments of Gupta and Gupta [32], Sobh [142], Alemayehu and Radhakrishna-
macharya [9], Hayat et al. [45], Ravikiran and Radhakrishnamacharya [122].

2.6 Conclusion

The present study investigates the effect of compliant wall and chemical reactions on New-
tonian fluid with peristalsis. It is observed that, the concentration profile (Ḡ) amplifies with
an increase in amplitude ratio and wall constraints. Furthermore, opposite behaviors of
heterogeneous response and homogeneous response rate constraints are observed on Ḡ. Fi-
nally, it concludes that amplitude ratio, wall constraints favor the scattering and peristaltic
flow increases the dispersion.
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Figure 2.2: Illustration of scattering coefficient Ḡ with E1 with ε = 0.2, β = 5.0, E2 = 0.0,
E3 = 0.00.

Figure 2.3: Illustration of scattering coefficient Ḡ with E1 with ε = 0.2, β = 5.0, E2 = 4.0,
E3 = 0.06.
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Figure 2.4: Illustration of scattering coefficient Ḡ with E1 with ε = 0.2, α = 1.0, E2 = 0.0,
E3 = 0.00.

Figure 2.5: Illustration of scattering coefficient Ḡ with E1 with ε = 0.2, α = 1.0, E2 = 4.0,
E3 = 0.06.
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Figure 2.6: Illustration of scattering coefficient Ḡ with E1 with α = 1.0, β = 5.0 E2 = 4.0,
E3 = 0.00.

Figure 2.7: Illustration of scattering coefficient Ḡ with E2 with ε = 0.2, β = 5.0, E1 = 0.1,
E3 = 0.06.
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Figure 2.8: Illustration of scattering coefficient Ḡ with E2 with ε = 0.2, α = 1.0, E1 = 0.1,
E3 = 0.06.

Figure 2.9: Illustration of scattering coefficient Ḡ with E2 with α = 1.0, β = 5.0 E1 = 0.1,
E3 = 0.06.
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Figure 2.10: Illustration of scattering coefficient Ḡ with E3 with ε = 0.2, β = 5.0, E1 = 0.1,
E2 = 0.00.

Figure 2.11: Illustration of scattering coefficient Ḡ with E3 with ε = 0.2, β = 5.0, E1 = 0.1,
E2 = 4.0.

49



Figure 2.12: Illustration of scattering coefficient Ḡ with E3 with ε = 0.2, α = 1.0, E1 = 0.1,
E2 = 0.00.

Figure 2.13: Illustration of scattering coefficient Ḡ with E3 with ε = 0.2, α = 1.0, E1 = 0.1,
E2 = 4.0.
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Figure 2.14: Illustration of scattering coefficient Ḡ with E3 with α = 1.0, β = 5.0 E1 = 0.1,
E2 = 4.0.
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Chapter 3

Peristaltic Pumping of an
Incompressible Viscous Fluid in a
Porous Medium with Wall Effects and
Chemical Reactions
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3.1 Introduction

In the chapter 2, we have explored the influence of wall features on dispersion of a solute
in peristaltic pumping of a viscous fluid. A permeable medium is a material containing
pores or spaces between solid matter wherein gas and liquid can pass through. As most of
the tissues in the body are deformable porous media, in the recent years, studies involving
flow past a porous media has gained significant interest, to understand various medical
conditions (viz., tumor growth) and treatments (injections). Flow through a permeable
medium has several applications in Geo-fluid dynamics, physiological fluid dynamics and
engineering sciences. The study of flow in permeable media is an immensely vital role in
understanding the transport process in kidneys, lungs, gallbladder with stones. The flow
of blood in the micro vessels of a lung which may be treated as a channel bounded by two
thin, porous layers (Misra and Ghosh [81]). The proper functioning of such things depends
on the flow of blood and nutrients. The study of peristaltic movement past a permeable
medium was first presented by Shehawey et al. [135]. Since, then many researchers have
been working on the peristaltic transport in porous media.

An mentioned above and in chapter 1 (section 1.7), several investigators have worked on
different Newtonian and non-Newtonian liquids with permeable medium. To the best of our
knowledge, no attempt has yet been reported to discuss the impact of simultaneous homo-
geneous and heterogeneous chemical responses on a peristaltic stream of an incompress-
ible viscous fluid through a porous medium with wall effects. It is realized that porosity
and peristalsis may have a significant effect on the scattering of a solute in liquid streams.
Therefore, in this chapter, the peristaltic pumping of an incompressible viscous fluid in a
porous medium with wall effects and chemical reactions have been considered. Utilizing
long wavelength hypothesis, Taylor’s limiting condition and dynamic periphery limitation,
the analytic expression for mean effective scattering coefficient in case of chemical reac-
tions has been derived and the impacts of many physical constraints on it are discussed
through graphs.
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3.2 Formulation of the problem

Consider the flow of an incompressible viscous liquid through a permeable medium with
peristalsis in a uniform channel. Figure 3.1 depicts the wave shape.

Figure 3.1: Geometry of the problem.

The equation of wave shape is considered same as in the previous chapter (Eqn. 2.1). The
basic equations (Gupta and Seshadri [31]) govern the flow of the current problem are as
follows:

∂U

∂X
+

∂V

∂Y
= 0, (3.1)

− ∂ p
∂X

+µ

(
∂ 2

∂X2 +
∂ 2

∂Y2

)
U− µ

k̄
U= ρ

[
∂

∂ t
+U

∂

∂X
+V

∂

∂Y

]
U, (3.2)

−∂ p
∂Y

+µ

(
∂ 2

∂X2 +
∂ 2

∂Y2

)
V− µ

k̄
V= ρ

[
∂

∂ t
+U

∂

∂X
+V

∂

∂Y

]
V, (3.3)

where density is ρ , pressure is p, viscosity coefficient is µ , velocity component in the X, Y
direction are U, V respectively, porosity component is k̄.
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Condition of the flexible wall movement (Mittra and Prasad [86]) is specified as:

L(h) = p− p0, (3.4)

where the movement of the stretched membrane by the damping force is L and is intended
by the subsequent equation:

L=−T ∂ 2

∂X2 +m
∂ 2

∂ t2 +C
∂

∂ t
. (3.5)

Here the mass per/ area is m, the tension in the membrane is T, and the coefficient of sticky
damping force is C.

3.3 Method of Solution

After solving the equations (3.1) to (3.3) under long - wavelength hypothesis (Alemayehu
and Radhakrishnamacharya [10]), we get

∂U

∂X
+

∂V

∂Y
= 0, (3.6)

− ∂ p
∂X

+µ
∂ 2U

∂Y2 −
µ

k̄
U= 0, (3.7)

∂ p
∂Y

= 0. (3.8)

The allied border conditions are given as:

U= 0 at Y=±h. (3.9)

From equation (3.4), (3.5) and (3.7), active periphery conditions at the stretchy walls (Mit-
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tra and Prasad [86]) are specified as:

∂

∂x
L(h) = µ

∂ 2U

∂Y2 −
µ

k̄
U at Y=±h, (3.10)

where

∂

∂x
L(h) =

∂ p
∂X

=−T ∂ 3h
∂X3 +m

∂ 3h
∂X∂ t2 +C

∂ 2h
∂X∂ t

= P′. (3.11)

After solving the equations (3.7) to (3.8) with equations (3.9) and (3.10), we get

U(Y) =
1

µm2
1

∂ p
∂X

[
cosh(m1Y)

cosh(m1h)
−1
]
. (3.12)

The mean speed is specied as:

Ū(Y) =
1

2h

∫ h

−h
U(Y)dY. (3.13)

Equations (3.12) and (3.13) yield as:

Ū=
1

µm2
1

∂ p
∂X

[
sinh(m1h)

m1hsinh(m1h)
−1
]
. (3.14)

Utilizing Alemayehu and Radhakrishnamacharya [10], the liquid speed is given by the
equation:

UX = U− Ū. (3.15)

Equations (3.12), (3.14) and (3.15), we obtaion

UX =
1

µm2
1

∂ p
∂X

[
B′1 cosh(m1Y)−B′2

]
, (3.16)

where
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∂ p
∂X

= m
∂ 3h

∂X∂ t2 + c
∂ 2h

∂X∂ t
−T

∂ 3h
∂X3 , m1 =

√
1
k̄
, B′1 =

1
cosh(m1h)

,

B′2 =
sinh(m1h)

m1hcosh(m1h)
.

3.4 Simultaneous homogeneous and heterogeneous chem-
ical reactions with diffusion

Following ∂ 2C
∂x2 ≤ ∂ 2C

∂y2 (Taylor [156], Gupta and Gupta [32]), the dispersion equation for
the concentration C of the substance for the present issue under isothermal conditions is
expressed as:

D
∂ 2C
∂Y2 − k1C = U

∂C
∂X

+
∂C
∂ t

. (3.17)

Here, the rate constant of first order chemical response is k1, the molecular diffusion coef-
ficient is D and liquid concentration is C.

The dimensionless quantities are specified as:

θ =
t
t̄
, t̄ =

λ

Ū
,η =

Y

d
,ξ =

(X− Ūt)
λ

,H =
h
d
,P=

d2

µc
P′,k =

k̄
d2 . (3.18)

For the regular estimations of physiologically essential parameters of this issue, it is normal
that Ū≈C (Alemayehu and Radhakrishnamacharya [10]).

To proceed further, we use Ū≈C in (3.17), equations (3.11), (3.16) and (3.17) are non-
dimensionalized as:

P=−ε
[
(E1 +E2)(2π)3 cos(2πξ )−E3(2π)2 sin(2πξ )

]
, (3.19)

UX =
d2

µm2P [B1 cosh(mη)−B2] , (3.20)
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∂ 2C
∂η2 −

k1d2

D
C =

d2

λD
UX

∂C
∂ξ

, (3.21)

where

the amplitude ratio is ε
(
= a

d

)
, the rigidity is E1

(
=− Td3

λ 3µc

)
, the stiffness is

E2 =

(
mcd3

λ 3µ

)
, the viscous damping force in the wall is E3 =

(
cd3

µλ 2

)
,

The dispersion with first- order irreversible chemical response occur in the mass of the
liquid and at the channel walls.

Referring Philip and Chandra [19], the wall conditions are specified as:

0 = FC+
∂C
∂Y

at Y= [asin
2π

λ
(X− Ūt)+d] = h, (3.22)

0 =−FC+
∂C
∂Y

at Y=−[asin
2π

λ
(X− Ūt)+d] =−h. (3.23)

From equations (3.18), (3.22) and (3.23), we get

0 = βC+
∂C
∂η

at η = [ε sin(2πξ )+1] =H, (3.24)

0 =−βC+
∂C
∂η

at η =−[ε sin(2πξ )+1] =−H, (3.25)

where the heterogeneous response rate constraint is β = Fd, relating to catalytic reaction
at the walls.

From equations (3.24), (3.25) the primitive of equation (3.21) as follows:

C(η) =− d4

λ µDm2
∂C
∂ξ

P
[
B4 cosh(mη)−B5 cosh(αη)+B6−B7 cosh(αη)

]
. (3.26)

58



and α =

√
k1

D
d2, m = m1d =

√
1
k
.

As expressed in chapter 2, the volumetric flow rate Q is specified as:

Q=
∫ H

−H
CUXdη . (3.27)

Using equations (3.20) and (3.26) in equation (3.27), we get

Q=−2
d6

λ µ2D

∂C
∂ξ

G(ξ ,α,β ,ε,E1,E2,E3,k), (3.28)

where

G(ξ ,α,β ,ε,E1,E2,E3,k) =

− P2

m4

[B1B4

2
B8− (B1B5 +B1B7)B9 +(B1B6−B2B4)B10+

(B2B5 +B2B7)B11−B2B6H
]
, (3.29)

B1 =
1

coshmH
,B2 =

sinhmH

mHcoshmH
,B3 =

sinhmH

α sinhαH
,

B4 =
1

(m2−α2)coshmH
,B6 =

sinhmH

mHα2 coshmH
,α =

√
k1

D
d,

B5 =
msinhmH+β coshmH

(m2−α2)coshmH(α sinhαH+β coshαH)
,B10 =

sinhmH

m
,

B7 =
β sinhmH

mHα2 coshmH(α sinhαH+β coshαH)
,

B8 =
2mH+ sinh2mH

2m
,

B9 =
msinhmHcoshαH−α coshmH sinhαH

(m2−α2)
,B11 =

sinhαH

α
,

Glancing at equation (3.28) with Fick’s bylaw of dispersion, the scattering coefficient D∗
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was intended such that the solute disperses near to the plane moving with the typical speed
of the flow and is specified as:

D∗ = 2
d6

µ2D
G(ξ ,α,β ,ε,E1,E2,E3,k). (3.30)

Let Ḡ be the mean of G and is attained by the succeeding equation:

Ḡ=
∫ 1

0
G(ξ ,α,β ,ε,E1,E2,E3,k)dξ , (3.31)

3.5 Outcomes and Discussion

The expression for Ḡ(ξ ,α,β ,ε,E1,E2,E3,k) has been obtained and end results are pre-
sented through graphs using the software MATHEMATICA. The pertinent constraints
present in this argument are amplitude ratio (ε), the homogeneous response rate (α), the
permeability constraint (k), the heterogeneous response rate (β ), the rigidity (E1), the stiff-
ness (E2), and the viscous damping force (E3). We may ensure that E1,E2 and E3 cannot
be zero all together.

Consider the Figs. 3.2, 3.3, 3.4 for the impact of the rigidness constraint (E1) of the elastic
wall on the mean effective dispersion coefficient (Ḡ). Dispersion enhances with increase in
wall rigidness (E1) for the cases of (a) no stiffness in the wall (E2=0) and perfectly elastic
channel wall (E3=0) (Fig. 3.2); (b) without stiffness in the wall (E2=0) and dissipative
wall (E3 6=0) (Fig. 3.3); (c) stiffness in the wall (E2 6=0) and fully elastic wall (E3=0) (Fig.
3.4). It is observed that Ḡ increases with the stiffness (E2). It is true for the cases of (a)
perfectly flexible wall (E3=0) (Fig. 3.5) and (b) dissipative wall (E3 6=0) (Figs. 3.6, 3.7).
Moreover, it is seen that boost in viscous damping force (E3) rises Ḡ in the case of stiffness
in the wall (E2 6=0) (Figs. 3.8, 3.9, 3.10). It is revealed that Ḡ ascends monotonically
with an increase in E1,E2 and E3. This result agreement with the result of Ravikiran and
Radhakrishnamacharya [122], Hayat et al. [45].

Figures 3.11 - 3.13 indicates that Ḡ enhances with an increase in the permeability constraint
(k). These are true for the cases of (i) no stiffness in the wall (E2=0) and dissipative nature
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of channel wall (E3 6=0) (Fig. 3.11); (ii) stiffness in the wall (E2 6=0) and dissipative wall
(E3 6=0) (Fig. 3.12 and 3.13). This is a direct result of the way that the growing porosity
in a channel which thusly generate the fluid speed and cause to ascend the dispersion.
Furthermore, Ḡ ascends with an increment in the amplitude ratio (ε) (Figs. 3.4, 3.7, 3.10,
and 3.13). As already known, the increment in the amplitude ratio is the expansion in the
amplitude of the wave across the channel and this cause to increase the fluid velocity within
the channel and consequently dispersion may enhance. This outcome concurs with that of
Sobh [142], Ravikiran and Radhakrisnamacharya [122].

Dispersion reduces with a homogeneous compound response rate (α) (Figs. 3.3, 3.6, 3.9
and 3.12) and heterogeneous substance response rate (β ) (Figs. 3.2, 3.5, 3.8 and 3.11).
This result is consistent with the arguments of Padma and Rao [93], Gupta and Gupta [32],
Hayat et al. [45], Ravikiran and Radhakrisnamacharya [122].

3.6 Conclusion

This study explores the effect of wall characteristics and chemical responses on an incom-
pressible viscous fluid with peristalsis. It is observed from the previous section that, the
concentration profile (Ḡ) amplifies with a rise in amplitude ratio (ε), permeability con-
straint (k) and wall characteristics (E1,E2 and E3). Furthermore, opposite behaviors of
homogeneous response rate (α) and heterogeneous response rate (β ) constraints are ob-
served on Ḡ. Finally, it concludes that amplitude ratio, permeability and wall constraints
favor the scattering and peristaltic flow increases the dispersion.
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Figure 3.2: Illustration of rigidity (E1) with scattering coefficient (Ḡ) when E2 = 0.0, E3 =
0.00, ε = 0.2, α = 1.0, k = 0.9.

Figure 3.3: Illustration of rigidity (E1) with scattering coefficient (Ḡ) when E2 = 0.0, E3 =
0.06, ε = 0.2, β = 5.0, k = 0.9.
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Figure 3.4: Illustration of rigidity (E1) with scattering coefficient (Ḡ) when E2 = 4.0, E3 =
0.00, α = 1.0, β = 5.0, k = 0.9.

Figure 3.5: Illustration of stiffness (E2) with scattering coefficient (Ḡ) when E1 = 0.1,
E3 = 0.00, ε = 0.2, α = 1.0, k = 0.9.
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Figure 3.6: Illustration of stiffness (E2) with scattering coefficient (Ḡ) when E1 = 0.1,
E3 = 0.06, ε = 0.2, β = 5.0, k = 0.9.

Figure 3.7: Illustration of stiffness (E2) with scattering coefficient (Ḡ) when E1 = 0.1,
E3 = 0.06, α = 1.0, β = 5.0, k = 0.9.
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Figure 3.8: Illustration of damping force (E3) with scattering coefficient (Ḡ) when E1 = 0.1,
E2 = 4.0, ε = 0.2, α = 1.0, k = 0.9.

Figure 3.9: Illustration of damping force (E3) with scattering coefficient (Ḡ) when E1 = 0.1,
E2 = 4.0, ε = 0.2, β = 5.0, k = 0.9.
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Figure 3.10: Illustration of damping force (E3) with scattering coefficient (Ḡ) when E1 =
0.1, E2 = 4.0, α = 1.0, β = 5.0, k = 0.9.

Figure 3.11: Illustration of permeability constraint (k) with scattering coefficient (Ḡ) when
E1 = 0.1, E2 = 0.0, E3 = 0.06, ε = 0.2, α = 1.0, β = 5.0.
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Figure 3.12: Illustration of permeability constraint (k) with scattering coefficient (Ḡ) when
E1 = 0.1, E2 = 4.0, E3 = 0.06, ε = 0.2, β = 5.0, α = 1.0.

Figure 3.13: Illustration of permeability constraint (k) with scattering coefficient (Ḡ) when
E1 = 0.1, E2 = 4.0, E3 = 0.00, α = 1.0, β = 5.0.
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Chapter 4

Effect of Compliant Walls on
Magneto-Hydrodynamic Peristaltic
Pumping of an Incompressible Viscous
Fluid With Chemical Reactions
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4.1 Introduction

In the previous chapter, we have studied scattering of a solute in peristaltic pumping of
an incompressible viscous liquid through a permeable medium with wall characteristics.
In this chapter, the influence of magnetic field on the diffusion of a solute in peristaltic
pumping of a viscous fluid with compliant wall is inspected.

Magnetohydrodynamics (MHD) deals with the study of electrically conducting fluids un-
der the influence of electromagnetic field. Research has revealed that numerous physio-
logical liquids have electrically conducting properties in Bioengineering systems. MHD
of peristaltic stream is being studied due to its significance in blood pump machines, be-
havioral modification in cells and tissues, problems about urinary tract and treatment of
gastrointestinal mobility related disorders. Currently, studies on interaction of peristalsis
with magnetohydrodynamic (MHD) flows of physiological liquids have turned out to be
a subject of budding interest for scholars. Such studies are useful mostly for receiving
appropriate understanding of the working on different machines utilized by clinicians for
driving physiological liquids (Misra et al. [78]). Hence, Mekheimer and Elmabounf [78],
Mekheimer [75, 76], Ratishkumar et al. [119], Pandey and Chaube [97], Ramana Kumari
and Radhakrishnamacharya [115], Sobh [141, 142] have deliberated the impact of mag-
netic field with peristalsis in varied circumstances.

Keeping this in view, in this chapter, the influence of magnetic field on dispersion of a
solute material in peristaltic pumping of a viscous fluid with compliant wall is explored
in the occurrence of simultaneous heterogeneous and homogeneous irreversible chemical
responses.

4.2 Formulation of the problem

Figure 4.1 shows the geometry of the magneto-hydrodynamic peristaltic stream of an in-
compressible viscous fluid in a 2 - dimensional channel with compliant walls and Cartesian
coordinates.

The equation of wave shape is deliberated same as in chapter 2 (Eqn. 2.1).
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Figure 4.1: Geometry of the problem.

Utilizing the Maxwell’s equations, the assumptions regarding magnetic field as specified
in chapter 1 (section 1.6), the equations of the viscous fluid as given in chapter 1 (section
1.8.1), and the equivalent flow equations (Gupta and Seshadri [31]) of the present problem
are as follows:

∂U

∂X
+

∂V

∂Y
= 0, (4.1)

− ∂ p
∂X

+µ

(
∂ 2

∂X2 +
∂ 2

∂Y2

)
U−σB2

0U= ρ

[
∂

∂ t
+U

∂

∂X
+V

∂

∂Y

]
U, (4.2)

−∂ p
∂Y

+µ

(
∂ 2

∂X2 +
∂ 2

∂Y2

)
V= ρ

[
∂

∂ t
+U

∂

∂X
+V

∂

∂Y

]
V, (4.3)

where density is ρ , pressure is p, viscosity coefficient is µ , velocity component in the X, Y
direction are U, V respectively and magnetic field is B0.

Condition of the elastic wall movement (Mittra and Prasad [86]) is specified as:

L(h) = p− p0, (4.4)
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where, the movement of the stretched membrane by the damping force is L and is intended
by the subsequent equation:

L=−T ∂ 2

∂X2 +m
∂ 2

∂ t2 +C
∂

∂ t
. (4.5)

Here, the coefficient of sticky damping force is C, the mass per/area is m, and the mem-
brane tension is T.

4.3 Method of solution

After solving the equations (4.1) to (4.3) under long - wavelength hypothesis, we get

∂U

∂X
+

∂V

∂Y
= 0, (4.6)

− ∂ p
∂X

+µ
∂ 2U

∂Y2 −σB2
0U= 0, (4.7)

∂ p
∂Y

= 0. (4.8)

The allied border conditions are given as:

U= 0 at Y=±h. (4.9)

From equation (4.4), (4.5) and (4.7), active periphery conditions at the stretchy walls (Mit-
tra and Prasas [86]) are specified as:

∂

∂x
L(h) = µ

∂ 2U

∂Y2 −σB2
0U at Y=±h, (4.10)

where

∂

∂x
L(h) =

∂ p
∂X

=−T ∂ 3h
∂X3 +m

∂ 3h
∂X∂ t2 +C

∂ 2h
∂X∂ t

= P′. (4.11)
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After solving the equations (4.7) to (4.8) with conditions (4.9) and (4.10), we get

U(Y) =
1

µm2
1

∂ p
∂X

[
cosh(m1Y)

cosh(m1h)
−1
]
. (4.12)

The mean speed is given as:

Ū(Y) =
1

2h

∫ h

−h
U(Y)dY. (4.13)

From equation (4.12) and (4.13), we obtain

Ū=
1

µm2
1

∂ p
∂X

[
sinh(m1h)

m1hsinh(m1h)
−1
]
. (4.14)

Utilizing Alemayehu and Radhakrishnamacharya [9], the liquid speed is specified as:

UX = U− Ū. (4.15)

From equations (4.12), (4.14) and (4.15), we attain as:

UX =
1

µm2
1

∂ p
∂X

[
m1 cosh(m1Y)− sinh(m1h)

m1hcosh(m1h)

]
, (4.16)

where

∂ p
∂X

= m
∂ 3h

∂X∂ t2 + c
∂ 2h

∂X∂ t
−T

∂ 3h
∂X3 , m1 =

√
σB2

0
µ

.

4.4 Simultaneous homogeneous and heterogeneous chem-
ical reactions with diffusion

Utilizing ∂ 2C
∂x2 ≤ ∂ 2C

∂y2 of Taylor [156] and referring Gupta and Gupta [32], the diffusion
equation for the concentration C of the substance for the present issue under isothermal
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conditions is written as:

D
∂ 2C
∂Y2 − k1C = U

∂C
∂X

+
∂C
∂ t

. (4.17)

Here, the rate constant of first order chemical response is k1, the molecular diffusion coef-
ficient is D and liquid concentration is C.

The dimensionless quantities are specified as:

θ =
t
t̄
, t̄ =

λ

Ū
,η =

Y

d
,ξ =

(X− Ūt)
λ

,H =
h
d
,P=

d2

µc
P′,M=

√
σB2

0
µ

d. (4.18)

For the regular estimations of physiologically essential parameters of this issue, it is normal
that Ū≈C (Alemayehu and Radhakrishnamacharya [10]).

To proceed further, we use Ū≈C in (4.17), equations (4.11), (4.16) and (4.17) are nondi-
mensionalized as:

P=−ε
[
(E1 +E2)(2π)3 cos(2πξ )−E3(2π)2 sin(2πξ )

]
, (4.19)

UX =
d2

µm2P [A1 cosh(mη)−A2] , (4.20)

∂ 2C
∂η2 −

k1d2

D
C =

d2

λD
UX

∂C
∂ξ

, (4.21)

where

the amplitude ratio is ε
(
= a

d

)
, the rigidity is E1

(
=− Td3

λ 3µc

)
, the stiffness is

E2 =

(
mcd3

λ 3µ

)
, the viscous damping force in the wall is E3 =

(
cd3

µλ 2

)
.

The dispersion with first- order irreversible chemical response occur in the mass of the
liquid and at the channel walls.
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Referring Philp and Chandra [19], the wall conditions are specified as:

0 = FC+
∂C
∂Y

at Y= [asin
2π

λ
(X− Ūt)+d] = h, (4.22)

0 =−FC+
∂C
∂Y

at Y=−[asin
2π

λ
(X− Ūt)+d] =−h. (4.23)

From equations (4.18), (4.22) and (4.23), we get

0 = βC+
∂C
∂η

at η = [ε sin(2πξ )+1] =H, (4.24)

0 =−βC+
∂C
∂η

at η =−[ε sin(2πξ )+1] =−H, (4.25)

where the heterogeneous response rate constraint is β = Fd, relating to catalytic response
at the dividers.

From equations (4.24), (4.25) the primitive of equation (4.21) as follows:

C(η) =

[
d4

λ µDm2
∂C
∂ξ

]
P
[
A4 cosh(mη)−A5 cosh(αη)+A6−A7 cosh(αη)

]
, (4.26)

and α =

√
k1

D
d2, m = m1d =

√
σ

µ
B0d =M.

As discussed in chapter 2, the volumetric flow rate Q is defined as:

Q=
∫ H

−H
C UXdη . (4.27)

Using equations (4.20) and (4.26) in equation (4.27), we get

Q=−2
d6

λ µ2D

∂C
∂ξ

G(ξ ,α,β ,ε,E1,E2,E3,M). (4.28)
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where

G(ξ ,α,β ,ε,E1,E2,E3,M) =

− P2

M4

[A1A4

2
B1− (A1A5 +A1A7)B2 +(A1A6−A2A4)B3+

(A2A5 +A2A7)B4−A2A6H
]
, (4.29)

A1 =
1

coshMH
,A2 =

sinhMH

MHcoshMH
,A3 =

sinhMH

α sinhαH
,

A4 =
1

(M2−α2)coshMH
,A6 =

sinhMH

MHα2 coshMH
,α =

√
k1

D
d,

A5 =
MsinhMH+β coshMH

(M2−α2)coshMH(α sinhαH+β coshαH)
,B3 =

sinhMH

M
,

A7 =
β sinhMH

MHα2 coshMH(α sinhαH+β coshαH)
,

B1 =
2MH+ sinh2MH

2M
,

B2 =
MsinhMHcoshαH−α coshMH sinhαH

(M2−α2)
,B4 =

sinhαH

α
.

Glancing at equation (4.28) with Fick’s bylaw of dispersion, the scattering coefficient D∗

was intended such that the solute disperses near to the plane moving with the typical speed
of the flow and is specified as:

D∗ = 2
d6

µ2D
G(ξ ,α,β ,ε,E1,E2,E3,M). (4.30)

The mean of G is Ḡ and is attained as:

Ḡ=
∫ 1

0
G(ξ ,α,β ,ε,E1,E2,E3,M)dξ , (4.31)
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4.5 Outcomes and Discussion

The impacts of various constraints on the mean effective scattering coefficient can be ob-
served through the expression Ḡ. Using MATHEMATICA software the graphs are plotted
for equation (4.31).

The effects of the rigidity constraint (E1), stiffness (E2) and viscous damping force (E3)

on the dispersion coefficient (Ḡ) are depicted in Figs. (4.2) - (4.10). Figures 4.2, 4.3
and 4.4 shows the influence of the rigidness (E1) of the stretchy wall on the dispersion
coefficient (Ḡ). Dispersion enhances with increase in wall rigidness (E1) for an instant of
(a) no stiffness in the channel wall (E2=0) and perfectly elastic wall (E3=0) (Fig. 4.2); (b)
stiffness in the wall (E2 6=0) and dissipative wall (E3 6=0) (Figs. 4.3, 4.4). It is witnessed that
Ḡ increases with the stiffness (E2) for both the cases of (a) dissipative wall (E3 6=0) (Figs.
4.5, 4.6) and (b) perfectly elastic wall (E3=0) (Fig. 4.7). Furthermore, it is perceived
that expansion in viscous damping drive/force (E3) ascends Ḡ for an illustration E2 6=0
(Figs. 4.8, 4.9, 4.10). This result is in agreement with the results of Hayat et al. [41, 45],
Ravikiran and Radhakrisnamacharya [121].

In Figs. (4.11) - (4.13), it is observed that Ḡ descends with an increase in magnetic field
constraint (M). Furthermore, Ḡ ascends with an increment in the amplitude ratio (ε) (Figs.
4.4, 4.7, 4.10, and 4.13). This finding agrees with the conclusion of Sobh [142], Ravikiran
and Radhakrisnamacharya [121].

Dispersion reduces with a homogeneous compound response rate (α) (Figs. 4.3, 4.6, and
4.9) and heterogeneous substance response rate (β ) (Figs. 4.2,4.5, and 4.8), where as
scattering lessening thru β is a lesser amount of important. This result is common since
growth in α stimulates an expansion in the sum of moles of solute proficiencies chemical
response. This output coincides with the arguments of Padma and Rao [93], Gupta and
Gupta [32], Hayat et al. [41, 45], Ravikiran and Radhakrisnamacharya [121].

4.6 Conclusion

In the present study, the effects of magnetic constraint (M), amplitude ratio (ε), homoge-
neous response rate (α), heterogeneous response rate (β ), rigidity (E1), stiffness (E2) and
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viscous damping characteristic of the wall (E3) on dispersion coefficient (Ḡ) have been
inspected for the magneto-hydrodynamic peristaltic pumping of an incompressible viscous
fluid in a uniform channel. It is noticed that the concentration profile (Ḡ) amplifies with a
rise in wall features (E1,E2,E3), and ε . Furthermore, opposite behaviors of homogeneous
response rate (α) and heterogeneous response rate (β ) are looked on Ḡ.

Figure 4.2: Illustration of rigidity (E1) with scattering coefficient (Ḡ) when E2 = 0.0, E3 =
0.00, ε = 0.2, α = 1.0, M= 4.0.
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Figure 4.3: Illustration of rigidity (E1) with scattering coefficient (Ḡ) when E2 = 4.0, E3 =
0.06, ε = 0.2, β = 5.0, M= 4.0.

Figure 4.4: Illustration of rigidity (E1) with scattering coefficient (Ḡ) when E2 = 4.0, E3 =
0.06, α = 1.0, β = 5.0, M= 4.0.
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Figure 4.5: Illustration of stiffness (E2) with scattering coefficient (Ḡ) when E1 = 0.1,
E3 = 0.06, ε = 0.2, α = 1.0, M= 4.0.

Figure 4.6: Illustration of stiffness (E2) with scattering coefficient (Ḡ) when E1 = 0.1,
E3 = 0.06, ε = 0.2, β = 5.0, M= 4.0.
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Figure 4.7: Illustration of stiffness (E2) with scattering coefficient (Ḡ) when E1 = 0.1,
E3 = 0.00, α = 1.0, β = 5.0, M= 4.0.

Figure 4.8: Illustration of damping force (E3) with scattering coefficient (Ḡ) when E1 = 0.1,
E2 = 4.0, ε = 0.2, α = 1.0, M= 4.0.
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Figure 4.9: Illustration of damping force (E3) with scattering coefficient (Ḡ) when E1 = 0.1,
E2 = 4.0, ε = 0.2, β = 5.0, M= 4.0.

Figure 4.10: Illustration of damping force (E3) with scattering coefficient (Ḡ) when E1 =
0.1, E2 = 4.0, α = 1.0, β = 5.0, M= 4.0.
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Figure 4.11: Illustration of magnetic constraint (M) with scattering coefficient (Ḡ) when
E1 = 0.1, E2 = 4.0, E3 = 0.06, ε = 0.2, α = 1.0.

Figure 4.12: Illustration of magnetic constraint (M) with scattering coefficient (Ḡ) when
E1 = 0.1, E2 = 4.0, E3 = 0.06, ε = 0.2, β = 5.0, α = 1.0.
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Figure 4.13: Illustration of magnetic constraint (M) with scattering coefficient (Ḡ) when
E1 = 0.1, E2 = 4.0, E3 = 0.00, ε = 0.2, α = 1.0, β = 5.0.
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Part - II

Peristalsis and Dispersion of a Solute in
Couple Stress Fluid with Chemical

Reactions and Wall Effects
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Chapter 5

Influence of Creeping Sinusoidal Flow
on Dispersion in a Couple Stress Fluid
with Chemical Reactions and Wall
Properties
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5.1 Introduction

The problem of dispersion in the presence of heterogeneous and homogeneous chemical re-
actions is of importance in several contexts, for example, in nuclear physics, gas absorption
in agitated tank, biological systems and the flow of nuclear fuel where heat is generated in
the bulk (Mehta and Tiwari [73]). Hence, dispersion of a solute has been extensively stud-
ied under dissimilar conditions by many scholars (Bandyopadhyay and Mazumder [13],
Hazra et al. [46], Sarkar and Jayaraman [131, 132], MacKenzie and Roberts [69], Na-
garani et al. [90], Koo and Song [57], Paul [101, 102] and Kumar and Jayaraman [64]).

Peristaltic flows have been widely studied in the recent decades. Interest in such flows is
inspired because of their occurrence in physiological, mechanical and industrial situations.
Motivated by this, Haroun [36], Wang et al. [168], Vajravelu et al. [166], Medhavi [72],
Radhakrishnamacharya and Murthy [110], Nadeem et al. [88], and Sankad and Radhakr-
ishnamacharya [130] studied peristaltic transport of Newtonian or non-Newtonian fluids
under different conditions.

In view of the role played by peristalsis and scattering in engineering and physiological
systems, we have investigated, in the last three chapters that the effect of dispersion on
peristaltic driving of an incompressible viscous fluid with wall features by including char-
acteristics like: permeable media and magnetic field in the uniform cross section.

In a non-Newtonian fluid models, one fluid model that received considerable attention in
the latest past, is the couple stress fluid, which seems to be a suitable model to explain
some industrial and physiological fluids. It is seen that couple stress fluid behaviors are
exceptionally useful in understanding dissimilar physiological and mechanical procedures.
The couple stress model introduced by Stokes [151] has distinct features. The key feature
of couple stresses is to introduce a size dependent effect. This fluid is able to describe
blood, suspension fluids, and various types of lubricants. Such studies clarify the behavior
of rheological complex liquids. Some studies on the peristaltic transport of couple stress
fluid have been reported in the introduction chapter. After these studies, few investigators
have explored the wall effects on different fluids with peristalsis (Sankad and Radhakrish-
namacharya [129], Shit and Roy [137], Ellahi et al. [25], Hayat et al. [44], and Hina et al.
[47]).
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Existing information on the topic witnessed that an analytical treatment of the creeping
sinusoidal flow and dispersion of a couple stress fluid with the chemical reaction and wall
features have been never reported. Motivated from the reported literature, in this chapter,
we have investigated the wall and chemical effects on the creeping sinusoidal stream and
dispersion of a couple stress fluid with combined heterogeneous and homogeneous irre-
versible chemical reactions. The analytical expression for the mean effective dispersion
coefficient has been derived by utilizing Taylor’s limiting condition and long wavelength
hypothesis. The principle outcomes are presented through graphs.

5.2 Formulation of the problem

Consider the flow of couple stress liquid with peristalsis in a channel. Figure 5.1 depicts
the wave shape.

Figure 5.1: Geometry of the problem.

The equation of wave shape is considered same as in previous chapter 2 (Eqn. 2.1).

The relating flow conditions (Mekheimer [74]) of the present issue are:

∂U

∂X
+

∂V

∂Y
= 0, (5.1)
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− ∂ p
∂X

+µ∇
2U−η

′
∇

4U= ρ

[
∂

∂ t
+V

∂

∂Y
+U

∂

∂X

]
U, (5.2)

−∂ p
∂Y

+µ∇
2V−η

′
∇

4V= ρ

[
∂

∂ t
+V

∂

∂Y
+U

∂

∂X

]
V, (5.3)

where ∂ 2

∂X2 +
∂ 2

∂Y2 = ∇2, ∇2∇2 = ∇4, the constant associated with couple stress fluid is η ′,
the fluid density is ρ , the viscosity coefficient is µ , the velocity components in the X, Y
direction is U, V respectively and the pressure is p.

Referring Mittra and Prasad [86], the condition of the flexible wall movement is specified
as:

L(h) = p− p0, (5.4)

where, the movement of the stretched membrane by the damping force is L and is intended
by the subsequent equation:

L=−T ∂ 2

∂X2 +m
∂ 2

∂ t2 +C
∂

∂ t
. (5.5)

Here, the coefficient of sticky damping force is C, the mass per/area is m, and the mem-
brane tension is T.

5.3 Method of Solution

Neglecting the body couples and body strengthens, under long wavelength hypothesis (Ale-
mayehu and Radhakrishnamacharya [10]), equations (5.1) to (5.3) yield as:

∂U

∂X
+

∂V

∂Y
= 0, (5.6)

− ∂ p
∂X

+µ
∂ 2U

∂Y2 −η
′∂

4U

∂Y4 = 0, (5.7)
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−∂ p
∂Y

= 0. (5.8)

The allied border conditions are specified as:

U= 0 ,
∂ 2U

∂Y2 = 0 ,at Y=±h. (5.9)

From equation (5.4), (5.5) and (5.7), active periphery conditions at the stretchy walls (Mit-
tra and Prasas [86]) are specified as:

∂

∂X
L(h) = µ

∂ 2U

∂Y2 −η
′∂

4U

∂Y4 = 0 at Y=±h, (5.10)

where

−T ∂ 3h
∂X3 +m

∂ 3h
∂X∂ t2 +C

∂ 2h
∂X∂ t

=
∂

∂X
L(h) =

∂ p
∂X

. (5.11)

Solving the equations (5.7) and (5.8) with (5.9) and (5.10) we obtain

U(Y) =− 1
µ

(
∂ p
∂X

)[
A′1cosh(m′Y)+A′2Y

2 +A′3
]
. (5.12)

The mean speed is specified as:

Ū(Y) =
1

2h

∫ h

−h
U(Y)dY. (5.13)

Equations (5.12) and (5.13) yield as:

Ū(Y) =− 1
µ

(
∂ p
∂X

)[
A′1

cosh(m′Y)
m′h

+A′2
h2

3
+A′3

]
. (5.14)

Utilizing Alemayehu and Radhakrishnamacharya [10], the liquid speed is given as:

UX = U− Ū. (5.15)
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Equations (5.12), (5.14) and (5.15) yield as:

UX =− 1
µ

(
∂ p
∂X

)[
A′1 cosh(m′Y)+A′2Y

2 +A′4
]
, (5.16)

where

A′1 =
1

m′2 cosh(m′h)
, A′2 =−

1
2
, A′3 =

h2

2
− 1

m′2
,

A′4 =−
A′1 sinh(m′h)

m′h
−

A′2h2

3
.

5.4 Simultaneous homogeneous and heterogeneous chem-
ical reactions with diffusion

As discussed in earlier chapter 2, the diffusion equation for the concentration C of the
substance for the present issue under isothermal conditions:

D
∂ 2C
∂Y2 − k1C = U

∂C
∂X

+
∂C
∂ t

. (5.17)

Here, the rate constant of first order chemical response is k1, the molecular diffusion coef-
ficient is D and liquid concentration is C.

The dimensionless quantities are specified as:

η =
Y

d
, m = d

√
µ

η
′ , θ =

t
t̄
, t̄ =

λ

Ū
, H =

h
d
, P =

d2

µcλ
P′, ξ =

(X− Ūt)
λ

. (5.18)

For the regular estimations of physiologically essential parameters of this issue, it is normal
that Ū≈C ([10]).

To proceed further, we use Ū≈C in (5.17) and the conditions (5.11), (5.16), (5.17) are
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non-dimensionalized as:

P=−ε
[
−E3(2π)2 sin(2πξ )+(E1 +E2)(2π)3 cos(2πξ )

]
, (5.19)

UX =−d2

µ

∂ p
∂X

[
A1 cosh(mη)+A2η

2 +A3
]
, (5.20)

∂ 2C
∂η2 −

k1d2

D
C =

d2

λD
UX

∂C
∂ξ

, (5.21)

where

the amplitude ratio is ε
(
= a

d

)
, the rigidity is E1

(
=− Td3

λ 3µc

)
, the stiffness is

E2 =

(
mcd3

λ 3µ

)
, the viscous damping force in the wall is E3 =

(
cd3

µλ 2

)
, and

the couple stress constraint is γ

(
= d
√

µ

η ′

)
.

The dispersion with first- order irreversible chemical response occur in the mass of the
liquid and at the channel walls.

Referring Philip and Chandra [19], the wall conditions are specified as:

0 = FC+
∂C
∂Y

at Y= [asin
2π

λ
(X− Ūt)+d] = h, (5.22)

0 =−FC+
∂C
∂Y

at Y=−[asin
2π

λ
(X− Ūt)+d] =−h. (5.23)

Equations (5.18), (5.22) and (5.23) yields as:

0 = βC+
∂C
∂η

at η = [ε sin(2πξ )+1] =H, (5.24)

0 =−βC+
∂C
∂η

at η =−[ε sin(2πξ )+1] =−H, (5.25)

where the heterogeneous response rate constraint is β = Fd, relating to catalytic response
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at the dividers.

Utilizing equations (5.24) and (5.25), the primitive of (5.21) is obtained as:

C(η) =− d4

λ µD

∂C
∂ξ

P
[
A4 cosh(mη)+A5 cosh(αη)+A6η

2 +A7

]
. (5.26)

The volumetric flow rate Q stated as in chapter 2 is specified as:

Q=
∫ H

−H
C UXdη . (5.27)

Using (5.20) and (5.26) in (5.27), we obtain

Q=−2
d6

λ µ2D

∂C
∂ξ

G(ξ ,α,β ,ε,E1,E2,E3,γ), (5.28)

where,

G(ξ ,α,β ,ε,E1,E2,E3,γ) =
{
−P2

[A1A4

2
B1 +A1A5B2

+(A1A6 +A2A4)B3 +A2A5B4 +(A1A7 +A3A4)B5 +A3A5B6

+A2A6
H5

5
+(A2A7 +A3A6)

H3

3
+A3A7H

]}
, (5.29)
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A1 =
1

m2 cosh(mH)
, A2 =−

1
2
, A3 =−

sinh(mH)

m3Hcosh(mH)
+

H2

6
,

A4 =
A1

m2−α2 , A5 =−
A1

(m2−α2)

L2

L1
+

2A2H

α2L1
− A2β

α2L1

(
H2 +

2
α2

)
+

A3β

α2L1
,

A6 =−
A2

α2 , A7 =−
2A2

α4 −
A3

α2 , L1 = α sinh(αH)+β cosh(αH),

L2 = msinh(mH)+β cosh(mH), B1 =
sinh(2mH)+2mH

2m
,

B2 =
msinh(mH)cosh(αH)−α cosh(mH)sinh(αH)

m2−α2 ,

B3 =
H2 sinh(mH)

m
− 2Hcosh(mH)

m2 +
2sinh(mH)

m3 , B5 =
sinh(mH)

m
,

B4 =
H2 sinh(αH)

α
− 2Hcosh(αH)

α2 +
2sinh(αH)

α3 , B6 =
sinh(αH)

α
.

Looking at equation (5.28) with Fick’s law of scattering, the dispersing coefficient D∗ was
computed to such an extent that the solute disperses near to the plane moving with the
typical speed of the flow and is specified as:

D∗ = 2
d6

µ2D
G(ξ ,α,β ,ε,E1,E2,E3,γ). (5.30)

The mean of G is Ḡ and is attained as:

Ḡ=
∫ 1

0
G(ξ ,α,β ,ε,E1,E2,E3,γ)dξ . (5.31)

5.5 Outcomes and Discussion

This part is composed to discuss the influence of various constraints on the concentration
profile. The mean effective scattering coefficient is seen through the function Ḡ for simul-
taneous heterogeneous-homogeneous responses given by equation (5.31). Ḡ was computed
by the software MATHEMATICA and end results are presented graphically. It might be
assured that rigidity (E1), stiffness (E2) and damping force (E3) of the wall can’t be zero
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all together.

The impacts of the rigidity (E1), stiffness (E2) and damping force (E3) on the dissipating
coefficient (Ḡ) are represented in Figs. 5.2 - 5.10. As discussed in previous chapters, it is
experiential that Ḡ rises as growth in rigidity (E1) for the following cases of (a) toughness
in the wall (E2 6=0) and dissipative wall (E3 6=0) (Fig. 5.2); (b) without toughness in the
wall (E2=0) and dissipative wall (E3 6=0) (Fig. 5.3, 5.4). It is observed that Ḡ increases
with the toughness of the wall (E2) for the case of dissipative wall (E3 6=0) (Figs. 5.5, 5.6,
5.7). Additionally, it is seen that boost in viscous damping characterstics of the wall (E3)

amplifies Ḡ for both the cases of (a) toughness in the wall (E2 6=0) (Figs. 5.8, 5.10) and (b
) without toughness in the wall (E2=0) (Fig. 5.9).

This understanding might be real because, increments in the elasticity of the conduit walls
help the stream moment which causes to enhance the diffusion. Furthermore, Ḡ rises with
an augmentation in the amplitude ratio (ε) (Figs. 5.4, 5.7, 5.10, and 5.13). As definitely
known, an increment in the amplitude ratio is the expansion in the amplitude of the wave
across the channel and this cause to increase the fluid velocity within the channel and
consequently may enhance dispersion.

The consequences of the couple stress constraint (γ) on the scattering coefficient (Ḡ) are
depicted in Figs. 5.11-5.13. It is experiential that Ḡ leads to an increase in couple stress
constraint (γ) when there is toughness in the wall (E2 6= 0) and dissipative wall (E3 6= 0).

Scattering lessens with homogeneous reaction rate (α) (Figs. 5.3, 5.6, 5.9, and 5.12)
and heterogeneous reaction rate (β ) (Figures 5.2, 5.5, 5.8, and 5.11), where as scattering
lessening thru β is a lesser amount of importance. This result is common since growth in
α stimulates an expansion in the sum of moles of solute proficiencies chemical response.
This outcome is reliable with the contentions of [93] and [45].

5.6 Conclusion

The present study leads us to understand numerically the effects of homogeneous response
rate constraint (α), heterogeneous response rate constraint (β ), couple stress constraint
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(γ), amplitude ratio (ε), rigidity (E1), stiffness (E2), and damping force (E3) of the wall on
dispersion coefficient (Ḡ), which is of great importance for the movement of chyme in the
small intestine of the digestive system. It is looked out that the concentration profile (Ḡ)

rises with an amplify in amplitude ratio, couple stress constraint and wall features. It also
explored that concentration profile (Ḡ) descends with a rise in the heterogeneous response
rate and homogeneous response rate. Finally, it concludes that amplitude ratio, couple
stress constraint and wall properties favor the scattering.

Figure 5.2: Illustration of rigidity (E1) with scattering coefficient (Ḡ) when E2 = 4.0, E3 =
0.06, ε = 0.2, α = 1.0, γ = 2.0.
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Figure 5.3: Illustration of rigidity (E1) with scattering coefficient (Ḡ) when E2 = 0.0, E3 =
0.06, ε = 0.2, β = 5.0, γ = 2.0.

Figure 5.4: Illustration of rigidity (E1) with scattering coefficient (Ḡ) when E2 = 0.0, E3 =
0.06, α = 1.0, β = 5.0, γ = 2.0.
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Figure 5.5: Illustration of stiffness (E2) with scattering coefficient (Ḡ) when E1 = 0.1,
E3 = 0.06, ε = 0.2, α = 1.0, γ = 2.0.

Figure 5.6: Illustration of stiffness (E2) with scattering coefficient (Ḡ) when E1 = 0.1,
E3 = 0.06, ε = 0.2, β = 5.0, γ = 2.0.
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Figure 5.7: Illustration of stiffness (E2) with scattering coefficient (Ḡ) when E1 = 0.1,
E3 = 0.06, α = 1.0, β = 5.0, γ = 2.0.

Figure 5.8: Illustration of damping force (E3) with scattering coefficient (Ḡ) when E1 = 0.1,
E2 = 4.0, ε = 0.2, α = 1.0, γ = 2.0.
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Figure 5.9: Illustration of damping force (E3) with scattering coefficient (Ḡ) when E1 = 0.1,
E2 = 0.0, ε = 0.2, β = 5.0, γ = 2.0.

Figure 5.10: Illustration of damping force (E3) with scattering coefficient (Ḡ) when E1 =
0.1, E2 = 4.0, α = 1.0, β = 5.0, γ = 2.0.
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Figure 5.11: Illustration of couple stress constraint (γ) with scattering coefficient (Ḡ) when
E1 = 0.1, E2 = 4.0, E3 = 0.06, ε = 0.2, α = 1.0.

Figure 5.12: Illustration of couple stress constraint (γ) with scattering coefficient (Ḡ) when
E1 = 0.1, E2 = 4.0, E3 = 0.06, ε = 0.2, β = 5.0.
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Figure 5.13: Illustration of couple stress constraint (γ) with scattering coefficient (Ḡ) when
E1 = 0.1, E2 = 4.0, E3 = 0.06, ε = 0.2, α = 1.0, β = 5.0.
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Chapter 6

Creeping Sinusoidal Flow and
Dispersion of a Solute in Couple Stress
Fluid through a Porous Medium with
Compliant Walls and Chemical
Reactions
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6.1 Introduction

In the last chapter, we have studied the dispersion of a solute matter in creeping sinusoidal
flow of a couple stress fluid with wall features. Here, we have investigated the scatter-
ing of a solute in creeping sinusoidal movement of a couple stress fluid through a porous
medium with compliant walls. Creeping sinusoidal flow with porous intermediate has at-
tained significance in the current decade because of its practical applications, chiefly in
biomechanics and geophysical fluid dynamics. Hence, Srinivas et al. [144], Sobh and
Mady [143], Saffman [125], Rathod and Kulkarni [118], Rao and Mishra [116], Quintard
et al. [108], Porta [104], Pal [96], Misra et al. [82], Hayat et al. [40] have studied the effect
of porosity on different fluids with peristalsis.

The study of interaction of peristalsis with diffusion may lead to a better understanding
of the flow situations in physiological systems. Hence, in this chapter, the influences of
combined heterogeneous and homogeneous chemical response on the creeping flow of a
couple stress fluid through a permeable medium with compliant walls have been investi-
gated. Applying Taylor’s approach, hypothesis of long wavelength, periphery limitation of
stretchy walls, the closed form solution has been obtained for the scattering coefficient and
effects of relevant constraints on it are studied.

6.2 Formulation of the problem

The flow of an incompressible and couple stress fluid through a permeable medium with
peristalsis in a uniform channel is considered. Figure 6.1 depicts the wave shape.

The travelling sinusoidal wave equation is carried out as in chapter 2 (Eqn. 2.1) and the ba-
sic equations (Mekheimeri [74]) governing the flow of the current problem are as follows:

∂U

∂X
+

∂V

∂Y
= 0, (6.1)

− ∂ p
∂X

+µ∇
2U−η

′
∇

4U−
(

µ

k̄

)
U= ρ

[
∂

∂ t
+U

∂

∂X
+V

∂

∂Y

]
U, (6.2)
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Figure 6.1: Geometry of the problem.

−∂ p
∂Y

+µ∇
2V−η

′
∇

4V−
(

µ

k̄

)
V= ρ

[
∂

∂ t
+U

∂

∂X
+V

∂

∂Y

]
V, (6.3)

where ∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 , ∇4 = ∇2∇2, the fluid density is ρ , the pressure is p, the viscos-
ity coefficient is µ , the velocity component in the X, Y directions are U, V, the constant
associated with couple stress fluid is η ′, the permeability constraint is k̄.

Referring Mittra and Prasad [86], the condition of the flexible wall movement is specified
as:

L(h) = p− p0, (6.4)

where, the movement of the stretched membrane by the damping force is L and is intended
by the subsequent equation:

L=−T ∂ 2

∂X2 +m
∂ 2

∂ t2 +C
∂

∂ t
. (6.5)

Here, the coefficient of sticky damping force is C, the mass per/area is m, and the mem-
brane tension is T.
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6.3 Method of Solution

Neglecting the body couples and body strengthens, under long wavelength hypothesis (Ale-
mayehu and Radhakrishnamacharya [10]), equations (6.1) to (6.3) yield as:

∂U

∂X
+

∂V

∂Y
= 0, (6.6)

− ∂ p
∂X

+µ
∂ 2U

∂Y2 −η
′∂

4U

∂Y4 −
µ

k̄
U= 0, (6.7)

−∂ p
∂Y

= 0. (6.8)

The related periphery conditions are as stated:

U= 0 ,
∂ 2U

∂Y2 = 0 ,at Y=±h. (6.9)

From equation (6.4), (6.5) and (6.7), active periphery conditions at the stretchy walls (Mit-
tra and Prasas [86]) are specified as:

∂

∂X
L(h) = µ

∂ 2U

∂Y2 −η
′∂

4U

∂Y4 −
µ

k̄
U= 0 at Y=±h, (6.10)

where

∂

∂X
L(h) =

∂ p
∂X

=−T ∂ 3h
∂X3 +m

∂ 3h
∂X∂ t2 +C

∂ 2h
∂X∂ t

. (6.11)

After solving the equations (6.7) and (6.8) with conditions (6.9) and (6.10), we get

U(Y) =− k̄
µ

(
∂ p
∂X

)[
A′1cosh(m′1Y)+A′2cosh(m′2Y)+1

]
, (6.12)

where
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m′1 =
√

µ

2η ′

(
1+
√

1− 4η ′

µ k̄

)
, m′2 =

√
µ

2η ′

(
1−
√

1− 4η ′

µ k̄

)
.

The mean speed is specified as:

Ū=
1

2h

∫ h

−h
U(Y)dY. (6.13)

From equation (6.12) and (6.13), we get

Ū=− k̄
µ

(
∂ p
∂X

)[
A′1

m′1h
sinh(m′1h)+

A′2
m′2h

sinh(m′2h)+1
]
. (6.14)

Employing Ravikiran and Radhakrishnamacharya [122], the fluid velocity is given by the
equation as:

UX = U− Ū. (6.15)

From equations (6.12), (6.14) and (6.15), we obtain

UX =− k̄
µ

(
∂ p
∂X

)[
A′1 cosh(m′1Y)+A′2 cosh(m′2Y)−

A′1
m′1h

sinh(m′1h)−
A′2

m′2h
sinh(m′2h)

]
,

(6.16)

where
A′1 =

(m′2)
2

[(m′1)2−(m′2)2]cosh(m′1h)
, A′2 =

−(m′1)2

[(m′1)2−(m′2)2]cosh(m′2h)
,

P′ =−T ∂ 3h
∂X3 +m ∂ 3h

∂X∂ t2 +C ∂ 2h
∂X∂ t .
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6.4 Simultaneous homogeneous and heterogeneous chem-
ical reactions with diffusion

The dispersion equation for the concentration C of the substance of the current issue under
isothermal conditions as discussed in earlier chapters i.e.

D
∂ 2C
∂Y2 − k1C = U

∂C
∂X

+
∂C
∂ t

. (6.17)

Here, the rate constant of first order chemical response is k1, the molecular diffusion coef-
ficient is D and the liquid concentration is C.

The dimensionless quantities are specified as:

θ =
t
t̄
, t̄ =

λ

Ū
, η =

Y

d
, ξ =

(X− Ūt)
λ

, H=
h
d
, P=

d2

µcλ
P′, k =

k̄
d2 . (6.18)

For the regular estimations of physiologically essential parameters of this issue, it is normal
that Ū≈C ([10]).

To proceed further, we use Ū≈C in (6.17) and the equations (6.11), (6.16), (6.17) are non-
dimensionalized as:

P=−ε
[
(E1 +E2)(2π)3 cos(2πξ )−E3(2π)2 sin(2πξ )

]
, (6.19)

UX =−k
d2

µ

∂ p
∂X

[A1 cosh(m1η)+A2 cosh(m2η)+A3] , (6.20)

∂ 2C
∂η2 −

k1d2

D
C =

d2

λD
UX

∂C
∂ξ

, (6.21)

where

m1 = m′1d =

√
γ2

2

(
1+
√

1− 4
γ2k

)
, m2 = m′2d =

√
γ2

2

(
1−
√

1− 4
γ2k

)
,
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the amplitude ratio is ε
(
= a

d

)
, the rigidity is E1

(
=− Td3

λ 3µc

)
, the stiffness is

E2 =

(
mcd3

λ 3µ

)
, the viscous damping force in the wall is E3 =

(
cd3

µλ 2

)
,

the couple stress constraint is γ

(
= d
√

µ

η ′

)
, and the permeability constraint is k

(
=

k̄
d2

)
.

The dispersion with first- order irreversible chemical response occur in the mass of the
liquid and at the channel walls.

Referring Philip and Chandra [19], the wall conditions are specified as:

0 = FC+
∂C
∂Y

at Y= [asin
2π

λ
(X− Ūt)+d] = h, (6.22)

0 =−FC+
∂C
∂Y

at Y=−[asin
2π

λ
(X− Ūt)+d] =−h. (6.23)

From equations (6.18), (6.22) and (6.23), we get

0 = βC+
∂C
∂η

at η = [ε sin(2πξ )+1] =H, (6.24)

0 =−βC+
∂C
∂η

at η =−[ε sin(2πξ )+1] =−H, (6.25)

where the heterogeneous response rate parameter corresponding to the catalytic response
at the walls is β = Fd.

From equations (6.24) and (6.25), we obtain the primitive of equation (6.21) as follows:

C(η) =− kd4

λ µD

∂C
∂ξ

P
[
A4 cosh(m1η)+A5 cosh(m2η)+A6 cosh(αη)+A7

]
. (6.26)
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The volumetric rate Q stated as in chapter 2 is considered as:

Q=
∫ H

−H
C UXdη . (6.27)

Using equations (6.20) and (6.26) in equation (6.27), we obtain

Q=−2
d6

λ µ2D

∂C
∂ξ

G(ξ ,α,β ,ε,E1,E2,E3,k,γ), (6.28)

where

G(ξ ,α,β ,ε,E1,E2,E3,k,γ) =

− k2P2
[A1A4

2
B1 +

A2A5

2
B2 +(A1A5 +A2A4)B3 +A1A6B4 +A2A6B5

+(A1A7 +A3A4)B6 +(A2A7 +A3A5)B7 +A3A6B8 +A3A7H
]
. (6.29)

Glancing at equation (6.28) with Fick’s bylaw of dispersion, the scattering coefficient D∗

was intended such that the solute disperses near to the plane moving with the typical speed
of the flow and is specified as:

D∗ = 2
d6

µ2D
G(ξ ,α,β ,ε,E1,E2,E3,k,γ). (6.30)

and
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A1 =
(m2)

2

[(m1)2− (m2)2]cosh(m1H)
, A2 =

−(m1)
2

[(m1)2− (m2)2]cosh(m2H)
,

A3 =
−(m2)

2 sinh(m1H)

m1H [(m1)2− (m2)2]cosh(m1H)
+

(m1)
2 sinh(m2H)

m2H [(m1)2− (m2)2]cosh(m2H)
,

A4 =
(m2)

2

[(m1)2− (α)2] [(m1)2− (m2)2]cosh(m1H)
, A6 = A3L1−A4L2−A5L3,

A5 =
−(m1)

2

[(m2)2− (α)2] [(m1)2− (m2)2]cosh(m2H)
, A7 =−

A3

α2 ,

L1 =
β

α2(α sinh(αH)+β cosh(αH)
, L2 =

(m1 sinhm1H+β coshm1H)

(α sinhαH+β coshαH)
,

L3 =
(m2 sinhm2H+β coshm2H)

(α sinhαH+β coshαH)
, B1 =

2m1H+ sinh2m1H

2m1
,

B2 =
2m2H+ sinh2m2H

2m2
, B6 =

sinhm1H

m1
, B7 =

sinhm2H

m2
, B8 =

sinhαH

α
,

B3 =
m1 sinhm1Hcoshm2H−m2 coshm1H sinhm2H

[(m1)2− (m2)2]
,

B4 =
m1 sinhm1HcoshαH−α coshm1H sinhαH

[(m1)2− (α)2]
,

B5 =
m2 sinhm2HcoshαH−α coshm2H sinhαH

[(m2)2− (α)2]
, α =

√
k1

D
d.

The mean of G is Ḡ and is attained as:

Ḡ=
∫ 1

0
G(ξ ,α,β ,ε,E1,E2,E3,k,γ)dξ . (6.31)

6.5 Outcomes and Discussion

The equation (6.31) gives the diffusion coefficient D∗ through the expression Ḡ, which has
been found by numerical integration using the software MATHEMATICA and end results
are presented through graphs.

The effects of the rigidness (E1), stiffness (E2) and viscous damping characteristic of the
wall (E3) on the scattering coefficient (Ḡ) are depicted in Figs. 6.2 - 6.10. It is revealed
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that Ḡ rises as growth in rigidity (E1) for an instant of (a) no stiffness in the wall (E2=0)
and perfectly elastic channel wall (E3=0) (Fig. 6.2); (b) no stiffness in the wall (E2=0)
and dissipative wall (E3 6=0) (Fig. 6.3); (c) stiffness in the wall (E2 6=0) and fully elastic
wall (E3=0) (Fig. 6.4). It is observed that Ḡ increases with the toughness of the wall
(E2) for both the cases of (a) wall is perfectly elastic in nature (E3=0) (Fig. 6.5) and (b)
wall is dissipative in nature (E3 6=0) (Figs. 6.6, 5.7). It is also seen that boost in viscous
damping characteristics of the wall (E3) amplifies Ḡ if there is stiffness in the wall (E2 6=0)
(Figs. 6.8, 6.9, 6.10). It is witnessed that Ḡ rises monotonically with upswing in E1,E2 and
E3. The increments in the flexibility of the channel walls help the stream moment, which
causes to enhance the scattering.

Figures 6.11 - 6.13 shows that Ḡ enhances with an amply in the permeability constraint
k. The growing porosity in a channel, generates the fluid speed and cause to ascend the
dispersion. Furthermore, Ḡ ascends with an increment in the amplitude ratio (ε) (Figs. 6.4,
6.7, 6.10, 6.13, and 6.16). Also, it is understood that the increment in the amplitude ratio
is the expansion in the amplitude of the wave across the channel and this cause to increase
the fluid velocity within the channel and consequently dispersion may enhance. In Figs.
6.14 - 6.16 it is observed that Ḡ descends with an ascend in couple stress constraint (γ).

Dispersion reduces with homogeneous compound response rate constraint (α) (Figs. 6.3,
6.6, 6.9, 6.12, and 6.15) and heterogeneous substance response rate constraint (β ) (Figs.
6.2, 6.5, 6.8, 6.11, and 6.14). These results are consistent with the arguments of [93], [122].

6.6 Conclusion

This work analyzes the effect of compliant walls and chemical reactions on the creeping
sinusoidal flow of a couple stress liquid through a permeable medium. It is observed from
the previous section that, the concentration profile (Ḡ) amplifies with a rise in amplitude
ratio, permeable constraint and wall constraints. Further, opposite behaviors of couple
stress constraint, homogeneous response rate constraint and heterogeneous response rate
constraint noticed on concentration profile (Ḡ).
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Figure 6.2: Illustration of Ḡ for E1 with ε = 0.2, α = 1.0, k = 0.002, γ = 2.0, E2 = 0.0,
E3 = 0.0

Figure 6.3: Illustration of Ḡ for E1 with ε = 0.2, β = 5.0, k = 0.002, γ = 2, E2 = 0.0,
E3 = 0.06

112



Figure 6.4: Illustration of Ḡ for E1 with α = 1.0, β = 5.0, k = 0.002, γ = 2.0, E2 = 4.0,
E3 = 0.00

Figure 6.5: Illustration of Ḡ for E2 with ε = 0.2, α = 1.0, k = 0.002, γ = 2.0, E1 = 0.1,
E3 = 0.00
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Figure 6.6: Illustration of Ḡ for E2 with ε = 0.2, β = 5.0, k = 0.002, γ = 2.0, E1 = 0.1,
E3 = 0.06

Figure 6.7: Illustration of Ḡ for E2 with α = 1.0, β = 5.0, k = 0.002, γ = 2.0, E1 = 0.1,
E3 = 0.06
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Figure 6.8: Illustration of Ḡ for E3 with ε = 0.2, α = 1.0, k = 0.002, γ = 2.0, E1 = 0.1,
E2 = 4.0

Figure 6.9: Illustration of Ḡ for E3 with ε = 0.2, β = 5.0, k = 0.002, γ = 2.0, E1 = 0.1,
E2 = 4.0
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Figure 6.10: Illustration of Ḡ for E3 with α = 1.0, β = 5.0, k = 0.002, γ = 2.0, E1 = 0.1,
E2 = 4.0

Figure 6.11: Illustration of Ḡ for k with ε = 0.2, α = 1.0, γ = 2.0, E1 = 0.1, E2 = 0.0,
E3 = 0.06
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Figure 6.12: Illustration of Ḡ for k with ε = 0.2, β = 5.0, γ = 2.0, E1 = 0.1, E2 = 4.0,
E3 = 0.06

Figure 6.13: Illustration of Ḡ for k with α = 1.0, β = 5.0, γ = 2.0, E1 = 0.1, E2 = 4.0,
E3 = 0.00
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Figure 6.14: Illustration of Ḡ for γ with ε = 0.2, α = 1.0, k = 0.002, E1 = 0.1, E2 = 0.0,
E3 = 0.06

Figure 6.15: Illustration of Ḡ for γ with ε = 0.2, β = 5.0, k = 0.002, E1 = 0.1, E2 = 4.0,
E3 = 0.06
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Figure 6.16: Illustration of Ḡ for γ with α = 1.0, β = 5.0, E1 = 0.1,E2 = 4.0, E3 = 0.00
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Chapter 7

Interaction of Peristaltic Pumping on
Dispersion in a MHD Couple Stress
Fluid with Chemical Reactions and Wall
Properties
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7.1 Introduction

In chapter six, we presented dispersion of a matter in creeping sinusoidal flow of a couple
stress fluid through a permeable medium with wall properties. In this chapter, we have ex-
plored the wall and chemical effects on the creeping sinusoidal stream and dispersion of a
solute material in the MHD couple stress fluid. Magnetohydrodynamic (MHD) peristaltic
flow nature of liquid is especially imperative in physiological and mechanical procedures.
In the existence of magnetic field, many fluids possess an electrically conducting nature,
which is an important aspect of the physical situation in the flow problems of magne-
tohydrodynamics. It is useful for tumor treatment, MRI (Magnetic Resonance Imaging)
scanning, blood pumping, reduction of bleeding during surgeries, targeted transportation
of drugs, and so on. Magneto-therapy is an essential application to the human body. This
heals the diseases like ulceration, inflammations and diseases of the uterus. Some re-
searchers (Hayat et al [42], Kim [56], Kothandapani and Srinivas [60], Tripathi and Beg
[163]) have explored the magneto-hydrodynamic characteristics of non-Newtonian liquids
through different circumstances.

The objective of this chapter is to study the effects of simultaneous heterogeneous and
homogeneous chemical responses on scattering of a solute in MHD peristaltic pumping of
a couple stress fluid with wall properties. The closed form solution has been obtained for
the effective scattering coefficient by applying long wavelength hypothesis and condition
of Taylor’s limit. The effects of different values of penetrating constraints are discussed in
detail through graphs.

7.2 Formulation of the Problem

Consider the magneto-hydrodynamic couple stress fluid with peristalsis in the 2- dimen-
sional channel. Figure 7.1 depicts the wave shape.

Referring the Maxwell’s equations, the presumptions regarding magnetic field as specified
in chapter 1 (section 1.6), the equations of the couple stress fluid as mentioned in chapter
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Figure 7.1: Geometry of the problem.

1 (section 1.8.2), and The relating flow conditions ([74]) of the current issue are:

∂U

∂X
+

∂V

∂Y
= 0, (7.1)

− ∂ p
∂X

+µ∇
2U−η

′
∇

4U−σB2
0U= ρ

[
∂

∂ t
+U

∂

∂X
+V

∂

∂Y

]
U, (7.2)

−∂ p
∂Y

+µ∇
2V−η

′
∇

4V= ρ

[
∂

∂ t
+U

∂

∂X
+V

∂

∂Y

]
V, (7.3)

where ∂ 2

∂X2 +
∂ 2

∂Y2 = ∇2, ∇2∇2 = ∇4, the constant associated with couple stress fluid is η ′,
the fluid density is ρ , the viscosity coefficient is µ , the velocity components in the X, Y
direction is U, V, the pressure is p and the magnetic field is B0.

Referring Mittra and Prasad [86], the condition of the flexible wall movement is specified
as:

L(h) = p− p0, (7.4)

where, the movement of the stretched membrane by the damping force is L and is intended

122



by the subsequent equation as:

L=−T ∂ 2

∂X2 +m
∂ 2

∂ t2 +C
∂

∂ t
. (7.5)

Here, the coefficient of sticky damping force is C, the mass per/area is m, and the mem-
brane tension is T.

7.3 Method of Solution

Neglecting the body couples and body strengthens, under long - wavelength hypothesis
([10]), equation (7.1) to (7.3) yield as:

∂U

∂X
+

∂V

∂Y
= 0, (7.6)

− ∂ p
∂X

+µ
∂ 2U

∂Y2 −η
′∂

4U

∂Y4 −σB2
0U= 0, (7.7)

−∂ p
∂Y

= 0. (7.8)

The allied border conditions are stated as:

U= 0,
∂ 2U

∂Y2 = 0, at Y=±h. (7.9)

From equation (7.4), (7.5) and (7.7), active periphery conditions at the stretchy walls (Mit-
tra and Prasas [86]) are specified as:

∂

∂X
L(h) = µ

∂ 2U

∂Y2 −η
′∂

4U

∂Y4 −σB2
0U= 0, at Y=±h, (7.10)

where

∂

∂X
L(h) =

∂ p
∂X

= P′ =−T ∂ 3h
∂X3 +m

∂ 3h
∂X∂ t2 +C

∂ 2h
∂X∂ t

. (7.11)
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Solving the equations (7.7) and (7.8) with (7.9) and (7.10) we obtain

U(Y) =− 1
σB2

0

(
∂ p
∂X

)[
A′1cosh(m′1Y)+A′2cosh(m′2Y)+1

]
, (7.12)

where, m′1 =

√√√√ µ

2η ′

(
1+

√
1− 4η ′σB2

0
µ2

)
, m′2 =

√√√√ µ

2η ′

(
1−
√

1− 4η ′σB2
0

µ2

)
.

The mean speed is specified as:

Ū=
1

2h

∫ h

−h
U(Y)dY. (7.13)

Equations (7.12) and (7.13) yield as:

Ū=− 1
σB2

0

(
∂ p
∂X

)[
A′1

m′1h
sinh(m′1h)+

A′2
m′2h

sinh(m′2h)+1
]
. (7.14)

Utilizing Ravikiran and Radhakrishnamacharya [122], the liquid speed is given by the
condition:

UX = U− Ū. (7.15)

Equations (7.12), (7.14) and (7.15) yield as:

UX =− 1
σB2

0

(
∂ p
∂X

)[
A′1 cosh(m′1Y)+A′2 cosh(m′2Y)−

A′1
m′1h

sinh(m′1h)−
A′2

m′2h
sinh(m′2h)

]
,

(7.16)

where
A′1 =

(m′2)
2

[(m′1)2−(m′2)2]cosh(m′1h)
, A′2 =

−(m′1)2

[(m′1)2−(m′2)2]cosh(m′2h)
,

P′ =−T ∂ 3h
∂X3 +m ∂ 3h

∂X∂ t2 +C ∂ 2h
∂X∂ t .
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7.4 Simultaneous heterogeneous and homogeneous chem-
ical reactions with diffusion

Alluding Taylor [156] and Gupta and Gupta [32], the diffusion equation for the concentra-
tion C of the material for the current issue is

D
∂ 2C
∂Y2 − k1C = U

∂C
∂X

+
∂C
∂ t

. (7.17)

Here, the rate constant of first order chemical response is k1, the molecular diffusion coef-
ficient is D and liquid concentration is C.

The dimensionless quantities are specified as:

η =
Y

d
,ξ =

(X− Ūt)
λ

,H =
h
d
,P=

d2

µcλ
P′,θ =

t
t̄
, t̄ =

λ

Ū
,M=

√
σB2

0d2

µ
. (7.18)

For the regular estimations of physiologically essential parameters of this issue, it is normal
that Ū≈C (Ravikiran and Radhakrishnamacharya [123]).

To proceed further, we use Ū≈C in (7.17) and the conditions (7.11), (7.16), (7.17) are
non-dimensionalized as:

P=−ε
[
−E3(2π)2 sin(2πξ )+(E1 +E2)(2π)3 cos(2πξ )

]
, (7.19)

UX =− 1
σB2

0

∂ p
∂X

[A1 cosh(m1η)+A2 cosh(m2η)+A3] , (7.20)

∂ 2C
∂η2 −

k1d2

D
C =

d2

λD
UX

∂C
∂ξ

, (7.21)

where
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m1 = m′1d =

√√√√γ2

2

(
1+

√
1− 4M2

γ2

)
, m2 = m′2d =

√√√√γ2

2

(
1−

√
1− 4M2

γ2

)
,

the amplitude ratio is ε

(
=

a
d

)
, the rigidity is E1

(
=− Td3

λ 3µc

)
, the stiffness is

E2 =

(
mcd3

λ 3µ

)
, the viscous damping force in the wall is E3 =

(
cd3

µλ 2

)
,

the couple stress constraint is γ

(
= d
√

µ

η ′

)
and the magnitic field constraint is

M

(
= B0d

√
σ

µ

)
.

The dispersion with first- order irreversible chemical response occur in the mass of the
liquid and at the channel walls.

Referring Chandra and Phlip [19], the wall conditions are specified as:

0 = FC+
∂C
∂Y

at Y= [asin
2π

λ
(X− Ūt)+d] = h, (7.22)

0 =−FC+
∂C
∂Y

at Y=−[asin
2π

λ
(X− Ūt)+d] =−h. (7.23)

Equation (7.18), (7.22) and (7.23) yields as:

0 = βC+
∂C
∂η

at η = [ε sin(2πξ )+1] =H, (7.24)

0 =−βC+
∂C
∂η

at η =−[ε sin(2πξ )+1] =−H, (7.25)

where the heterogeneous response rate constraint is β = Fd, relating to catalytic response
at the dividers.
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Utilizing (7.24) and (7.25), the primitive of (7.21) is obtained as:

C(η) =− d2

λD

1
σB2

0

∂C
∂ξ

∂ p
∂X

[
A4 cosh(m1η)+A5 cosh(m2η)+A6 cosh(αη)+A7

]
. (7.26)

The volumetric rate Q defined as in chapter 2 is reflected as:

Q=
∫ H

−H
CUXdη . (7.27)

Using (7.20) and (7.26) in (7.27), we obtain

Q=−2
d6

λ µ2D

∂C
∂ξ

G(ξ ,ε,α,β ,E1,E2,E3,M,γ), (7.28)

where
G(ξ ,ε,α,β ,E1,E2,E3,M,γ) =− P2

M4

[
A1A4

2 B1 +
A2A5

2 B2 +(A1A5 +A2A4)B3 +A1A6B4

+A2A6B5 +(A1A7 +A3A4)B6 +(A2A7 +A3A5)B7 +A3A6B8 +A3A7H
]
,

A1 =
(m2)

2

[(m1)2−(m2)2]cosh(m1H)
, A2 =

−(m1)
2

[(m1)2−(m2)2]cosh(m2H)
,

A3 =
−(m2)

2 sinh(m1H)

m1H[(m1)2−(m2)2]cosh(m1H)
+ (m1)

2 sinh(m2H)

m2H[(m1)2−(m2)2]cosh(m2H)
,

A4 =
(m2)

2

[(m1)2−(α)2][(m1)2−(m2)2]cosh(m1H)
, A6 = A3L1−A4L2−A5L3,

A5 =
−(m1)

2

[(m2)2−(α)2][(m1)2−(m2)2]cosh(m2H)
, A7 =− A3

α2 ,

L1 =
β

α2(α sinh(αH)+β cosh(αH)
, L2 =

(m1 sinh(m1H)+β cosh(m1H))
(α sinh(αH)+β cosh(αH)) ,

L3 =
(m2 sinh(m2H)+β cosh(m2H))
(α sinh(αH)+β cosh(αH)) , B1 =

2m1H+sinh(2m1H)
2m1

,

B2 =
2m2H+sinh(2m2H)

2m2
, B6 =

sinh(m1H)
m1

, B7 =
sinh(m2H)

m2
, B8 =

sinh(αH)
α

,

B3 =
m1 sinh(m1H)cosh(m2H)−m2 cosh(m1H)sinh(m2H)

[(m1)2−(m2)2]
,

B4 =
m1 sinh(m1H)cosh(αH)−α cosh(m1H)sinh(αH)

[(m1)2−(α)2]
,

B5 =
m2 sinh(m2H)cosh(αH)−α cosh(m2H)sinh(αH)

[(m2)2−(α)2]
, α =

√
k1
Dd.
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Looking at (6.28) with Fick’s law of scattering, the dispersing coefficient D∗ was computed
to such an extent that the solute disperses near to the plane moving with the typical speed
of the flow and is specified as:

D∗ = 2
d6

µ2D
G(ξ ,ε,α,β ,E1,E2,E3,M,γ). (7.29)

The mean of G is Ḡ and is attained as

Ḡ=
∫ 1

0
G(ξ ,ε,α,β ,E1,E2,E3,M,γ)dξ . (7.30)

7.5 Outcomes and Discussion

The expression Ḡ(ξ ,ε,α,β ,E1,E2,E3,M,γ) as shown in equation (7.30) and is used to
observe the domino effects of various constraints on the effective scattering coefficient.

The effects of the couple stress constraint (γ) and magnetic field constraint (M) on the
scattering coefficient (Ḡ) are depicted in Figs. 7.2 - 7.7. It is observed that Ḡ descends
with an increase in couple stress constraint (γ) (Figs. 7.2 - 7.4). This finding agrees with
the conclusion of Alemayehu-Radhakrishnamacharya [10]. Figures 7.5 -7.7 depicts that Ḡ
descends with an increase in magnetic field constraint (M). This finding agrees with the
conclusion of Ravikiran and Radhakrishnamacharya [123].

The impacts of the rigidity constraint (E1) of the wall on the dissipating coefficient (Ḡ)
are illustrated in Figs. 7.8 - 7.10. It is experiential that Ḡ ascends monotonically with an
expansion in E1 in the following cases of (a) no stiffness in the wall (E2=0) and perfectly
elastic channel wall (E3=0) (Fig. 7.8); (b) no stiffness in the wall (E2=0) and dissipative
wall (E3 6=0) (Fig.7.9) and (c) stiffness in the wall (E2 6=0) and perfectly elastic wall (E3=0)
(Fig.7.10). It is noticed from the figures 7.11 - 7.13 that the mean effective dispersion
coefficient increases with stiffness in the wall for the cases of (a) perfectly elastic wall
(E3=0) (Fig. 7.11) and (b) dissipative wall (E3 6=0) (Figs. 7.12, 7.13). Figures 7.14 - 7.16
shows that dispersion coefficient increases as the viscous damping force increases in the
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Figure 7.2: Illustration of Ḡ for γ when ε = 0.2, α = 1.0, M = 5.5, E1 = 0.1, E2 = 0.0,
E3 = 0.06

case of stiffness in the wall (E2 6=0) (Figs. 7.14, 7.15, 7.16). Furthermore, Ḡ ascends with
an increment in the amplitude ratio (ε) (Figs. 7.4, 7.7, 7.10, 7.13 and 7.16). This outcome
concurs with that of [142] and [121].

It is seen that Ḡ descends with an increase in the homogeneous compound response rate
constraint (α) (Figs. 7.3, 7.6, 7.9, 7.12, and 7.15). Also, it is noticed from the figures
7.2, 7.5, 7.8, 7.11, and 7.14 that the scattering diminishes with heterogeneous substance
response rate constraint (β ), and the decrease in the effective scattering coefficient is sharp
in a section near to the wall. This agrees with the chemical point of view because the
reactions which affect diffusion happen only at the surface for heterogeneous substance
response. This implies that the heterogeneous substance response tends to decrease the
scattering of the solute.
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Figure 7.3: Illustration of Ḡ for γ when ε = 0.2, β = 5.0, M = 5.5, E1 = 0.1, E2 = 4.0,
E3 = 0.06

7.6 Conclusion

The effects of magnetic constraint (M), couple stress constraint (γ), amplitude ratio (ε),
homogeneous response rate (α), heterogeneous response rate (β ), rigidity (E1), stiffness
(E2), damping characteristic (E3) of the wall on scattering coefficient (Ḡ) have been in-
spected for peristaltic pumping of a couple stress fluid. It is seen that the concentration
profile (Ḡ) rises with an amplify in amplitude ratio and wall constraints, but descends with
a rise in the heterogeneous response rate, homogeneous response rate, couples stress and
magnetic field constraints. Finally, rigidity (E1), stiffness (E2), damping force (E3) of the
wall and amplitude ratio (ε) favor the scattering, while couple stress constraint (γ) homo-
geneous response rate constraint (α) and heterogeneous response rate constraint (β ) resist
the scattering.
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Figure 7.4: Illustration of Ḡ for γ when α = 1.0, β = 5.0, M = 5.5, E1 = 0.1, E2 = 4.0,
E3 = 0.00

Figure 7.5: Illustration of Ḡ for M when ε = 0.2, α = 1.0, γ = 6.0, E1 = 0.1, E2 = 0.0,
E3 = 0.06
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Figure 7.6: Illustration of Ḡ for M when ε = 0.2, β = 5.0, γ = 6.0, E1 = 0.1, E2 = 4.0,
E3 = 0.06

Figure 7.7: Illustration of Ḡ for M when α = 1.0, β = 5.0, γ = 6.0, E1 = 0.1, E2 = 4.0,
E3 = 0.00
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Figure 7.8: Illustration of Ḡ for E1 when ε = 0.2, α = 1.0, M = 5.5, γ = 6.0, E2 = 0.0,
E3 = 0.0

Figure 7.9: Illustration of Ḡ for E1 with ε = 0.2, β = 5.0, M = 5.5, γ = 6.0, E2 = 0.0,
E3 = 0.06
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Figure 7.10: Illustration of Ḡ for E1 when α = 1.0, β = 5.0, M = 5.5, γ = 6.0, E2 = 4.0,
E3 = 0.00

Figure 7.11: Illustration of Ḡ for E2 when ε = 0.2, α = 1.0, M = 5.5, γ = 6.0, E1 = 0.1,
E3 = 0.00
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Figure 7.12: Illustration of Ḡ for E2 when ε = 0.2, β = 5.0, M = 5.5, γ = 6.0, E1 = 0.1,
E3 = 0.06

Figure 7.13: Illustration of Ḡ for E2 when α = 1.0, β = 5.0, M = 5.5, γ = 6.0, E1 = 0.1,
E3 = 0.06
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Figure 7.14: Illustration of Ḡ for E3 when ε = 0.2, α = 1.0, M = 5.5, γ = 6.0, E1 = 0.1,
E2 = 4.0

Figure 7.15: Illustration of Ḡ for E3 when ε = 0.2, β = 5.0, M = 5.5, γ = 6.0, E1 = 0.1,
E2 = 4.0
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Figure 7.16: Illustration of Ḡ for E3 when α = 1.0, β = 5.0, M = 5.5, γ = 6.0, E1 = 0.1,
E2 = 4.0
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Chapter 8

Conclusions and Scope for Future Work
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8.1 Conclusions

Peristalsis and dispersion are very important aspects in physiological systems. Hence, in
this thesis we studied the effects of combined homogeneous and heterogeneous chemi-
cal reactions on dispersion of a solute in the peristaltic transport of Newtonian and non-
Newtonian fluids with wall properties by considering different characteristics such as mag-
netic field, porous medium in the uniform cross section. The incompressible viscous and
couple stress fluid models have been used since these are known to be better models for
physiological fluids like blood, bile, chyme and etc. The equations of motion have been lin-
earized using long wave length approximation and analytical solutions have been obtained
for the average effective dispersion coefficient under Taylor’s limiting condition and dy-
namic boundary conditions at the flexible walls. The effects of various relevant constraints
such as amplitude ratio, homogeneous chemical response rate, heterogeneous chemical re-
sponse rate, magnetic field, permeability, and couple stress constraints on dispersion have
been studied.

Following are some of the important observations:

Newtonian Fluid:

In the case of scattering of a solute material in peristaltic transport of an incompressible
viscous fluid under different circumstances, it is noticed that peristalsis enhances scattering.
It is also observed that scattering increases with wall constraints such as rigidity, stiffness
and dissipative nature of the walls. Further, magnetic field constraint, homogeneous and
heterogeneous chemical response rates tend to decrease scattering, but the permeability
constraint increase scattering.

Couple Stress Fluid:

In the case of scattering of a solute matter in the peristaltic flow of a couple stress fluid
with wall features, it is revealed that scattering is more in the existence of peristalsis. It is
also observed that scattering decreases with magnetic field and couple stress constraints,
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homogeneous and heterogeneous response rates, but increases with wall constraints, per-
meability constraint.

8.2 Future Work

The investigations carried out in this thesis deal with dispersion of a solute in the peristaltic
transport of Newtonian and non-Newtonian fluid models with wall features under various
limitations. The flow equations have been linearized by assuming that the wavelength of
the peristaltic wave is very large in comparison to the mean half width of the channel. The
same issues can be studied with arbitrary wavelength.

In this thesis, we have used Cartesian coordinate system in the analysis of the issues con-
sidered. These issues can be studied using polar coordinate system.

Further, the above issues can be extended by considering the inclination and curvature of
the duct.

Similarly, we have used an incompressible viscous and Couple stress fluid models. These
problems can be done using other non-Newtonian fluid models such as Herschel Bulkley
fluid and Casson fluid, etc.

We have used analytical method to obtain the closed form solution under certain conditions.
These problems can be studied by applying numerical techniques.
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