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The stenosis of an artery lowers blood flow in the artery. This stenosed artery
induces tangential pressure stress, which weakens the arterial wall and leads to
dilatation or aneurysm. This article examines blood flow through an inclined tube
with stenosis and expansion after stenosis (dilation) under the effect of a steady
incompressible Casson fluid flow. The mechanically regulated stenosis formation
and post-stenotic dilatation in blood vessels were studied by using a mild stenosis
approximation and appropriate boundary conditions. Expressions for velocity,
pressure drop, wall shear stress, and flow resistance are derived analytically. The
impact of various physical parameters on fluid resistance to flow and wall shear
stress is investigated. The wall shear stress and the impedance of the flow increase
for the height of stenosis and decrease for the height of dilatation with a rise in
the angle of proclivity. It is seen that the plug flow radius is more in the case of
the inclined artery as compared to the noninclined artery.

A list of symbols can be found on page 167.

1. Introduction

The term stenosis refers to a constriction of an artery caused by arteriosclerotic
deposition or other abnormal tissue growth. Blood flow is obstructed as the devel-
opment progresses into the artery’s lumen. The obstruction may cause damage to
the inner cells of the wall, leading to stenosis progression. The development of
stenosis and the flow of blood through the artery are thus linked, since each affects
the other. The progression of stenosis in an artery can have serious consequences
and disrupt the normal functioning of the circulatory system. Specifically, it might
prompt increased resistance to flow with the possible serious decrease in blood flow;
increased risk of complete occlusion; abnormal cell development in the region of
the stenosis, which builds the intensity of the stenosis; and tissue harm prompting
post-stenosis dilatation.

The study of blood flow through stenosed veins is a key topic of research since
circularity issues cause more than 30% of all deaths, and these circularity issues can
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induce symptoms such as chest pain and a reduction in blood supply to the brain.
The failure of the cardiovascular system increases the risk of death. Stenosis is the
most common cause of circularity problems. A typical cardiovascular ailment is a
stenotic artery, which restricts blood flow. The normal function of the cardiac system
might be affected by stenosis. It also raises blood pressure and causes tissue damage,
which leads to stenotic dilatation. Young [35] was the first to investigate stenosis
and studied the time-dependent stenosis effects on the flow of blood through a tube.
Azuma and Fukushima [1] modeled the flow patterns in stenosed blood vessels.
The effects of vascular stenosis on steady flow were observed by MacDonald [11].
Following that, several researchers studied the flow characteristics of blood in a
tube with mild constriction by using blood as Newtonian or non-Newtonian fluids
in a variety of conditions [2; 5; 6; 7; 14; 16; 25; 26; 28].

Scientists have been particularly interested in studying the non-Newtonian nature
of blood flow because of its use in studying the flow of blood via narrow arteries.
The Newtonian fluid, micropolar, Herschel–Bulkley, and Jeffrey models are used
in the majority of studies in the literature. Because of the presence of yield stress,
this technique fails to clarify the physiological conduct of the bloodstream in
supply routes. Even though the Herschel–Bulkley fluid has a yield stress limita-
tion, the Casson model matches the blood flow better at low shear rates than the
Herschel–Bulkley fluid (see Scott Blair [3]). In recent years, many researchers have
investigated Casson fluid in various physiological circumstances [8; 23; 32].

Many ducts in physiological systems are known to be inclined to the axis rather
than horizontal. The blood flow through an artery with numerous stenosis and a
nonuniform cross-section was studied by Prasad and Radhakrishnamacharya [13].
Umadevi et al. [31] investigated the blood flow in an inclined overlapping stenosed
artery with a magnetic field combined with copper nanoparticles.

Post-stenotic dilatation refers to arterial dilatation that occurs after a stenosis
has developed. It has been observed that certain people’s nerve systems are weak
(especially in old people). When blood clots in a specific location, the artery
wall bulges out from that location due to high pressure. If it continues to rise,
the artery walls may be damaged. It may result in death. Although the specific
cause of post-stenotic dilatation is unknown, increased lateral pressure, cavitation,
anomalous shear stresses, and turbulence have all been proposed. As a result, a
better understanding of dilatation issues will aid in the diagnosis of arterial disorders.
Pincombe et al. [17] investigated the effects of post-stenotic dilatations on blood
flow through stenosed coronary arteries because of their importance. Priyadharshini
and Ponalagusamy [21] examined the flow of Herschel–Bulkley fluid through
tapered artery stenosis and dilatation using a biorheological model. The effects of
post-stenotic dilatation on the flow of couple stress fluid via stenosed arteries were
investigated by Prasad et al. [19]. Sharma et al. [24] and Verma and Parihar [33]
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investigated the effect of a constant external magnetic field in a multistage stenosis
artery in the central region, hypothesizing that the yield stress and stenosis reduce
the shear stress of the wall and the flow speed within the magnetic field’s sight.
Several experts have recently looked into the characteristics of blood flow through
the artery in the presence of stenosis [4; 9; 10; 12; 18; 22; 27; 30; 34].

With this in mind, an attempt was made to investigate the effects of stenosis and
post-stenotic dilatation on a Casson fluid with mild stenosis conditions. The research
is carried out analytically. It is possible that a growth in the extent of the stenosis in
the artery disturbed the normal flow of blood through vessels in the heart, body, and
brain, and that this might lead to significant cardiac disease problems such as stroke,
heart attack, and so on. The mathematical model described here may help and
support the physician in understanding the biomechanical effects that lead to artery
stenosis and damage. It proposes a new approach to preventing atherosclerosis.

2. Formulation of the problem and its solution

Consider the flow of an incompressible Casson fluid through an inclined axisymmet-
ric stenosed artery (tube) of the uniform cross-section with post-stenotic dilatations.
The stenosis is supposed to be mild and develop in an axially symmetric manner.
The geometry of the wall is as shown in Figure 1.

The equation relating the geometry of the wall is (Pincombe et al. [17])

h(z) =
R
R0

=

{
1 −

δi
2R0

(
1 + cos 2π

L i

(
z − αi −

L i
2

))
, α1 ≤ z ≤ βi ,

1, otherwise.
(1)

Here, δi is how far the i-th abnormal segment projects into the lumen. It is positive
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Figure 1. Schematic diagram of the tube with stenosis.
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for stenosis and negative for aneurysms. L i is the length of the i-th abnormal
segment, R is the radius of the artery, R0 is the radius of the normal artery, αi is
the distance between the origin and the beginning of the i-th abnormal segment.

The distance from the origin to the beginning of the i-th abnormal segment is

αi =

( i∑
j=1

(d j + L j )
)

− L i , (2)

where di is the distance from the start of the i-th diseased segment from the end of
the (i−1)-st segment.

The distance from the origin to the end of the i-th abnormal segment (βi ) is

βi =

i∑
j=1

(d j + L j ). (3)

From [19] and [25], we adopt the following limitations for mild stenosis:

min(R0, Rout) ≫ δ1, δ2 and L1, L2 ≫ δ1, δ2, where R(z) = Rout at z = L .

Governing equations. In this study, blood is supposed to be a homogeneous and
incompressible non-Newtonian fluid. The viscosity of blood can be described using
a variety of non-Newtonian models, such as the power-law model, the micropolar
fluid model, and the Herschel–Bulkley fluid model. In this investigation, we used
the Casson model to describe the material property of blood viscosity because,
when compared to other viscosity models, the Casson model accurately represents
the viscosity properties of physiological blood in real life (Pratumwal et al. [20]).

The expression of the Casson model, taken from Prasad and Radhakrishna-
macharya [13] and Pincombe et al. [17], is

1
r

∂

∂r
(rτr z) = −

1
µ

∂p
∂z

+ ρg sin θ, (4)

where
√

τr z =

{√
µ

√
−∂u/∂r +

√
τ0, τ ≥ τ0,

0, τ ≤ τ0.
(5)

Here, τr z is the shear stress, µ is the blood viscosity, ρ is the density, g is the
acceleration of gravity, θ is the angle of inclination, p is the pressure, τ0 is the yield
stress, and r, z are the radial and axial coordinates.

Considering the forces in the plug region, we get

2πr0 Bτ0 = Pπr2
0 B ∴ τ0 =

Pr0

2
, where P =

∂p
∂z

. (6)

Boundary conditions and numerical solution. Boundary conditions are important
in computing the solutions to simulated physical problems. Considering that the
blood particles adhere to the inner surface of the arterial segment under consideration,
the axial velocity (u) of blood particles on the wall surface, corresponding to one-
dimensional flow, may be taken to be equal to the velocity of the vascular wall
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material points along the same direction. For the stenosed portion, this may be
stated mathematically as

u = 0 at r = h. (7)

The velocity gradient of the fluid flow along the axis can be considered to be
zero, implying that there is no fluid shear rate along the axis of the artery segment
under consideration, which can be represented as

τr z is finite at r = 0. (8)

About half of the patients who had mild to moderate stenosis at the start of
the study experienced increasing valve calcification, resulting in hemodynamically
severe aortic stenosis symptoms. In mild stenosis conditions, the flaps (cusps) of
the aortic valve may become thickened and stiff, or they may fuse. This causes
narrowing of the aortic valve opening. The narrowed valve isn’t able to open fully,
which reduces or blocks blood flow from the heart into the aorta and the rest of the
body (see Ott [15]).

Using the mild stenosis restriction and solving equation (4) under the boundary
conditions (7) and (8), the fluid velocity is given as

u =
P + f

2µ

( 4
3r1/2

0

(
r3/2

− h3/2)
−

1
2(r2

− h2) − r0(r − h)
)
. (9)

Substituting r = r0 in this equation, we get the plug velocity as

u p =
P + f

2µ

(
−

1
6r2

0 −
4
3

r1/2
0 h3/2

+
1
2 h2

+ hr0
)
, (10)

where f = sin α/F and F = (µu1/2)/(ρgR3/2
0 ).

The fluid’s flow flux Q is defined as

Q = 2
∫ r0

0
u pr dr + 2

∫ h

r0

ur dr . (11)

Therefore,

Q =
P + f

µ

(
−

1
168r4

0 −
2
7r1/2

0 h7/2
+

1
8 h4

+
1
6 h3r0

)
. (12)

The nondimensional quantities are

r ′
=

r
R0

, r ′

0 =
r0

R0
, δ′

1 =
δ1

R0
, δ′

2 =
δ2

R0
, H =

h
R0

,

z′
=

z
L

, L ′

1 =
L1

L
, L ′

2 =
L2

L
, u =

u′

U0
, d ′

1 =
d1

L
,

d ′

2 =
d2

L
, Q′

=
Q

U0 R2
0
, p′

=
p

( µU0 B)/R2
0
, r ′

0 =
r0

R0
, r ′

=
r
R0

.

(13)
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From (12) and (13), we get

Q = (P + f )
[
−

1
168r4

0 −
2
7r1/2

0 H 7/2
+

1
8 H 4

+
1
6 H 3r0

]
. (14)

Equation (14) can be expressed as
∂p
∂z

= −
Q[

−
1

168r4
0 −

2
7r1/2

0 H 7/2 +
1
8 H 4 +

1
6 H 3r0

] + f. (15)

The primitive of (15) gives the pressure difference △p along the total length of
the channel as

△p =

∫ 1

0

∂p
∂z

dz =

∫ 1

0

{
−Q[

−
1

168r4
0 −

2
7r1/2

0 H 7/2 +
1
8 H 4 +

1
6 H 3r0

] + f
}

dz. (16)

A definition of flow resistance is

λ =
△p
Q

. (17)

From equations (16) and (17), we get

λ =
1
Q

∫ 1

0

{
−Q[

−
1

168r4
0 −

2
7r1/2

0 H 7/2 +
1
8 H 4 +

1
6 H 3r0

] + f
}

dz. (18)

The pressure drop is calculated as follows in the absence of stenosis (H = 1):

(△p)n =

∫ 1

0

{
−Q[

−
1

168r4
0 −

2
7r1/2

0 +
1
8 +

1
6r0

] + f
}

dz. (19)

Flow resistance is defined as follows in the absence of stenosis:

λn =
(△p)n

Q
. (20)

From (19) and (20), we obtain

λn =
1
Q

∫ 1

0

{
−Q[

−
1

168r4
0 −

2
7r1/2

0 +
1
8 +

1
6r0

] + f
}

dz. (21)

The normalized resistance of a flow is defined as

λ =
λ

λn
. (22)

The shear stress acting on the channel’s wall is determined by

τw = −µ
∂u
∂r

∣∣∣
r=h

. (23)

Applying the dimensional quantities from (13) to (23) we get

τ ′

w =
τw

[(µU )/R0]
. (24)
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Equation (24) reduces to

τ ′

w = −
∂u′

∂r ′
. (25)

Using equations (9) (in nondimensional form) and (15) in (25), we get

τw =
−Q

2

{
2r1/2

0 H 1/2
− H − r0

1
168r4

0 +
2
7r1/2

0 H 7/2 −
1
8 H 4 −

1
6 H 3r0

}
+ f. (26)

In the absence of stenosis (H =1), the shear stress at the wall is calculated using (26)
as follows:

(τw)n =
−Q

2

{
2r1/2

0 − 1 − r0

1
168r4

0 +
2
7r1/2

0 −
1
8 −

1
6 H 3r0

}
+ f. (27)

The normalized shear stress at the wall can be calculated as

τw =
τw

(τw)n
. (28)

3. Numerical results and discussion

The study of the physiology and anatomy of a biological system depends on the
knowledge of the blood flow through arteries. The progress and cause of various
arterial diseases are related to the mechanical behavior and the flow characteristics
of blood vessel walls. The unnatural and abnormal growth in the arterial wall
thickness at different locations of the cardiovascular system is medically termed
stenosis. Its presence in one or more places restricts blood flow across the coronary
arteries’ lumen. Once the decrease has reached maturity, it causes major changes in
blood flow, such as flow resistance and wall shear stress. Resistance to flow and wall
shear stress are important variables in the study of blood flow through a stenosed
artery and post-stenotic dilatation. Analytical solutions for the velocity of the fluid
(u), flow resistance (λ) and wall shear stress (τw) were given in equations (9), (22),
and (28). The effects of several parameters on flow resistance, wall shear stress and
fluid velocity were computed and plotted using Mathematica.

Resistance to the flow. Figures 2–4 show the impedance behavior on a variety of
parameters including stenosis height (δ1) and height of the dilatation (δ2). It is
noticed that increase in the radial distance (r) of the plug region, the impedance
of the flow (λ) rises in the case of stenosis height (Figure 2, top) but drops in the
case of dilatation height (Figure 2, bottom). Figure 3 illustrates that the impedance
ascends concerning the height of the stenosis and descends for the height of dilation
as the angle of proclivity increases. There is a significant change in the plug flow
radius in the inclined artery, which influences the flow due to the smaller lumen
size. When comparing inclined arteries to noninclined arteries, the plug flow radius
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is larger in inclined arteries. This is in agreement with Srivastava [29].
In Figure 4 it is seen that resistance to flow increases with the dilation height,

but decreases with a rise in height of the stenosis. Resistance to flow is found to
yield higher values for the arteries with higher stenosis heights, but the opposite is
true for the arteries with lower stenosis heights. It’s important to note the physical
cause of these observations. The blocked fluid in the stenosis region quickly moves
towards the main flow region. As a result, the fluid has a temporary resistance to
flow in the pre-stenotic region before reaching its minimum in the post-stenotic
region. The results from our are in agreement with those of [13] and [21].

Wall shear stress. Figures 5–7 illustrate the effect on wall shear stress (τw) of
the stenosis height (δ1) and dilatation height (δ2). From Figure 5 we observe that
wall shear stress decreases and increases concerning the height of stenosis and
dilatation, respectively, as the radial distance (r) of the plug flow region increases.
In Figure 6 we see that with an increase in proclivity angle (θ), the shear stress
grows in the case of stenosis height but decreases in the case of the dilatation height.
Figure 7 illustrates that shear stress increases with an increase in dilatation height
but decreases with an increase in stenosis height. The results obtained with our
model in the case of wall shear stress are similar to those obtained by Young [35],
Prasad and Radhakrishnamacharya [13], and Pincombe et al. [17].
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Understanding wall shear stress is an important part of the study of small arteries
and arterioles. The pressure gradient and wall shear stress have a substantial impact
on the arteries, which grow quite hard and lose their flexibility over time. When
these affected arteries are subjected to excessive blood pressure, the arterial wall
ruptures.

Velocity of fluid. The effects of several parameters on the velocity of the fluid
(u) are shown in Figures 8 and 9. It is seen that fluid velocity increases with the
dilatation height (δ2) (Figure 8, top) and decreases with the stenosis height (δ1)

(Figure 8, bottom). The velocity rises with the angle of proclivity (θ) for both
the cases of stenosis (Figure 9). Specifically, increasing the proclivity leads to a
decrease in velocity at the boundary of the arterial wall, but the velocity in the
center of the arterial tube increases with the height of the stenosis and dilation,
implying an increase in the viscous forces near the artery wall. These results are
consistent with those of Young [35] and Prasad and Radhakrishnamacharya [13].

4. Concluding remarks

The mathematical model of Casson fluid in a steady-state and incompressible in a
uniform tube with stenosis and expansion after stenosis is analyzed. The governing
equations describing the transport phenomena relevant to our model are solved by
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using mild stenosis and boundary conditions. For different values of radial distance,
angle of inclination, the height of stenosis, and expansion after stenosis, the results
obtained are presented graphically. The main findings are listed below:

• In the case of stenosis, flow impedance (λ) increases and wall shear stress
(τw) decreases as the radial distance of the plug flow region (r) increases. By
contrast, in the case of post-stenotic dilatation, λ decreases and τw increases
with an increase in r .

• With a rise in the angle of proclivity (θ), flow impedance and shear stress
increase with respect to stenosis height (δ1) and decrease with respect to
dilatation height (δ2).

• With an increase in stenosis height, flow impedance and wall shear stress both
decrease. By contrast, with an increase in dilatation height, flow impedance
and wall shear stress increase.

• Fluid velocity (u) decreases as stenosis height increases, but it rises with an
increase in dilatation height.

• Fluid velocity increases with proclivity angle for stenosis and dilatation.

• The mathematical model described here may help and support physicians in
getting the mathematical knowledge needed for medicinal applications.

List of symbols

L length of the channel (m)
L1 length of stenosis (m)
L2 length of post-stenotic dilatation (m)
δ1 max height of stenosis (m)
δ2 max height of post-stenotic dilatation (m)
r radial coordinate (m)
θ angle of proclivity (radian)

R(z) radius of the artery (m)

λ resistance to flow (kg / m4s)
τw wall shear stress (N / m2)
τr z shear stress (N / m2)
µ blood viscosity (kg / ms)
τ0 yield stress (N / m2)
z axial coordinate (m)
p pressure in the region (kg / ms2)

R0(z) radius of normal artery (m)
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