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Abstract This article addresses the effects of homogeneous and heterogeneous chemical reactions

on the peristaltic pumping of an incompressible viscous fluid through a porous medium with wall

properties. The mean effective coefficient of dispersion has been calculated through long wavelength

hypothesis and conditions of Taylor’s limit. The effects of various penetrating parameters on mean

effective dispersion coefficient are observed graphically.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The dispersion of a solute in a solvent flowing in a channel has
applications in physiological fluid dynamics, biomedical and

chemical engineering. The basic theory on dispersion was first
proposed by Taylor [1–3], who investigated the viscous incom-
pressible laminar flow of a fluid in a circular pipe with disper-
sion of salute matter. Author believes that, the solute disperses

with an equivalent average effective dispersion coefficient, and
the dispersion depended on the radius of the tube, coefficient
of molecular diffusion and average speed of the flow. Aris

[4], Padma and Rao [5], Gupta and Gupta [6], Misra and
Ghosh [7], Pal [8], and Sobh [9] investigated the dispersion
of a solute in viscous fluid under different limitations. Further-
more, [10–17] extended this analysis to non-Newtonian fluids.
Moreover, few authors have studied the dispersion of a solute
in a porous medium under various circumstances. Flow
through permeable medium has several applications in Geo-

fluid dynamics, physiological fluid dynamics and Engineering
sciences. The study of flow in permeable media is an immensely
vital role for understanding the transport process in kidneys,

lungs, and gallbladder with stones. Most of the tissues in the
body are deformable permeable media. The proper functioning
of such things depends on the flow of blood and nutrients.

Peristalsis is the main technique for transporting many
physiological fluids. This motion is involved in ovum move-
ment in the female fallopian tube, the urine segment from
the kidney to the bladder, transport of spermatozoa in the

efferent ducts in males, advancement of bile in the bile funnel,
etc. This mechanism is used in some biomedical devices: hose
pumps, finger and roller pumps that use it to force blood, slur-

ries, and other fluids. A few experts have examined the peri-
staltic transport of different liquids under various
circumstances [18–22]. In 1973, the effects of wall on Poiseuille
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flow with peristalsis have been examined by [23]. After this
study, several investigators have studied the wall effects on dif-
ferent fluids in peristalsis [24–29].

Diffusion, peristalsis and porosity are more essential char-
acteristics in bio-medical, natural and chemical processes.
The fluids present in the ducts of living being can be classified

as Newtonian and non-Newtonian fluids based on their beha-
viour. To the best of our knowledge, no attempt has yet been
reported to discuss the impact of simultaneous homogeneous

and heterogeneous chemical responses on peristaltic stream
of an incompressible viscous fluid through a porous medium
with wall effects. The application to this problem is moment
of nutrients in blood vessels which have peristalsis on its walls

[30]. Using d-approximation, conditions of Taylor’s limit and
dynamic periphery conditions, the analytic expressions for
mean effective scattering coefficient in case of chemical reac-

tions have been obtained. Furthermore, mean dispersion coef-
ficient was calculated numerically. The results are explored for
different values of penetrating parameters through graphics.

2. Two-dimensional viscous Newtonian porous medium flow

model

Consider the peristaltic flow of an incompressible viscous fluid
through a porous medium in the 2-dimensional compliant wall
channel filled with porous material. The peristaltic wave with

speed c produces the flow travelling along walls of the channel.
The Cartesian coordinates x, y with x-axis at the centre of the
fluid flow and the homogeneous and heterogeneous reaction
effects in the flow analysis. Fig. 1 shows the travelling waves.

The travelling sinusoidal wave is given by the following
equation:

y ¼ ��h ¼ � dþ a sin
2p
k
ðx� ctÞ

� �
; ð1Þ

where a is the amplitude and k is the wavelength of the peri-
staltic wave.

The corresponding flow equations of the present issue are
as follows:
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Figure 1 Geometry
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where U - velocity component in the x direction, V - the veloc-
ity components in the y direction, q - the density, p - the pres-

sure, and l - the viscosity coefficient.
The equation of the bendable wall movement [23] is given

as follows:

Lð�hÞ ¼ p� p0; ð5Þ
where L - the movement of an expanded membrane by the

damping forces and is calculated using the following equation:

L ¼ �T
@2

@x2
þm

@2

@t2
þ C

@

@t
: ð6Þ

Here, m - mass/unit area, T - the tension in the membrane, and
C - the viscous damping force coefficient.

After solving Eqs. (2)–(4) under long-wavelength hypothe-
sis, we get
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The related periphery conditions are

U ¼ 0 at y ¼ ��h: ð10Þ
It is presumed that p0 ¼ 0 and the channel walls are inex-

tensible; therefore, the horizontal displacement of the wall is
zero and only lateral movement takes place.

and
@

@x
Lð�hÞ ¼ l

@2U
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� l
�k
U at y ¼ ��h; ð11Þ

where
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After solving Eqs. (9) and (10) with conditions (11) and (12),
we get

UðyÞ ¼ 1

lm2
1

@p

@x

coshðm1yÞ
coshðm1�hÞ � 1

� �
: ð13Þ
of the problem.
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The mean velocity is given as

U ¼ 1

2�h

Z �h

��h

UðyÞdy: ð14Þ

From Eqs. (14) and (15), we get

U ¼ 1

lm2
1

@p

@x

sinhðm1�hÞ
m1�hcoshðm1�hÞ � 1

� �
: ð15Þ

Utilising [12], the fluid velocity is given by the following
equation:

Ux ¼ U � U: ð16Þ
From equations (13), (15) and (16), we obtain

Ux ¼ 1

lm2
1
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where
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3. Diffusion with simultaneous homogeneous and heterogeneous

chemical reactions

Following Taylor [1], and Gupta and Gupta [6], the dispersion
equation for the concentration C of the substance for the pre-

sent issue under isothermal conditions is as follows:

@C

@t
þ U @C

@x
¼ D

@2C

@y2
� k1C: ð18Þ

In the above equation, C - concentration of the fluid, D -

the diffusion coefficient for chemical reactions, and k1 - the
rate constant of chemical reaction.

For the common values of physiologically important

parameters of this issue, it is expected that U � C [12].

Utilising the condition U � C, and consequent non-
dimensional quantities,

h ¼ t
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Eqs. (18) and (19) reduce to

Ux ¼ d2

lm2
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and further, Eq. (13) reduces to

P ¼ �� ð2pÞ3ðE1 þ E2Þ cosð2pnÞ � ð2pÞ2E3 sinð2pnÞ
h i

; ð22Þ
where E1 ¼ � Td3

k3l{

	 

is the rigidity, E2 ¼ m{d3

k3l

	 

is the stiffness,

E3 ¼ {d3
lk2

	 

is the damping characteristic of the wall and

� ¼ a
d

� �
is an amplitude ratio.

Below, we have discussed the diffusion with first-order irre-
versible chemical reaction taking place in the mass of the fluid
medium and at the walls of the channel; the walls are catalytic

to chemical reaction.
Hence, the periphery conditions at the walls [10] are given

by the following equations:
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From Eqs. (20), (24) and (25), we get
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where b ¼ fd the heterogeneous reaction rate corresponding to
the catalytic reaction at the walls.

From Eqs. (26) and (27), we obtain the primitive of equa-
tion (22) as follows:
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The volumetric rate Q is defined as the rate in which the solute
is pumping across a section of channel per unit breadth.

Q ¼
Z
�

CUxdg: ð28Þ

Using Eqs. (21) and (28) in Eq. (29), we obtain
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Figure 3 Plot of G for E1 with e = 0.2, b = 5.0, k = 0.9,

E2 = 0.0, E3 = 0.06.
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B6 ¼ sinh m
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;
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m
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a
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Looking at Eq. (31) with Fick’s law of diffusion, the scattering
coefficient D� was calculated such that the solute diffuses com-
parative to the plane moving with the average speed of the flow
and is given as follows:

D� ¼ 2
d6

Dl2
Gðn; a; b; �;E1;E2;E3; kÞ: ð31Þ

Let G be the average of G, and is obtained by the following
equation:

G ¼
Z 1

0

Gðn; a; b; �;E1;E2;E3; kÞdn: ð32Þ
Figure 4 Plot of G for E1 with b = 5, a= 1.0, k = 0.9,

E2 = 4.0, E3 = 0.00.
4. Numerical computations and discussion

The mean effective scattering coefficient is observed through-

out the function Gðn; a; b; �;E1;E2;E3; kÞ for simultaneous
homogeneous and heterogeneous chemical reactions given by
Eq. (32). Computational results have been generated by using
the software MATHEMATICA and end results are presented

through graphics. The penetrating parameters present in this
argument are an amplitude ratio e, the homogeneous response
rate a, the permeability parameter k, the heterogeneous

response rate b, the rigidity E1, the stiffness E2, and the viscous
damping force E3. We may ensure that E1, E2 and E3 cannot be
zero all together.

We have considered Figs. 2–10 for the effect of the rigidity
parameter (E1), stiffness (E2) and viscous damping force (E3)

on the dispersion coefficient ðGÞ. It is observed that G ascends
monotonically with an increase in E1, E2 and E3. This under-
Figure 2 Plot of G for E1 with e = 0.2, a= 1.0, k = 0.9,

E2 = 0.0, E3 = 0.00.

Figure 5 Plot of G for E2 with e = 0.2, a= 1.0, k = 0.9,

E1 = 0.1, E3 = 0.00.
standing might be derived to the truths that increment in the
flexibility of the channel walls helps the stream moment which

causes to enhance the scattering. This result is in agreement
with the result of Ravikiran and Radhakrishnamacharya [13]
and Hayat et al. [16].



Figure 6 Plot of G for E2 with e= 0.2, b = 5.0, k= 0.9,

E1 = 0.1, E3 = 0.06.

Figure 7 Plot of G for E2 with b = 5, a= 1.0, k= 0.9,

E1 = 0.1, E3 = 0.06.

Figure 8 Plot of G for E3 with e = 0.2, a= 1.0, k= 0.9,

E1 = 0.1, E2 = 4.0.

Figure 9 Plot of G for E3 with e = 0.2, b = 5.0, k= 0.9,

E1 = 0.1, E2 = 4.0.

Figure 10 Plot of G for E3 with b = 5, a= 1.0, k= 0.9,

E1 = 0.1, E2 = 4.0.

Figure 11 Plot of G for k with e = 0.2, a= 1.0, E1 = 0.1,

E2 = 0.0, E3 = 0.06.
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Figs. 11–13 indicate that G enhances with an increase in the

permeability parameter k when (i) E2 = 0 and E3 – 0
(Fig. 11); (ii) E2 – 0 and E3 – 0 (Figs. 12 and 13). This is a
direct result of the way that growing porosity in a channel
which thusly generates the fluid speed and causes to ascend

the dispersion. Furthermore, G ascends with an increment in

the amplitude ratio e (Figs. 4, 7, 10, and 13). As already
known, increment in the amplitude ratio is the expansion in
the amplitude of the wave across the channel, and causes to

increase the fluid velocity within the channel and consequently



Figure 12 Plot of G for k with e = 0.2, b = 5.0, E1 = 0.1,

E2 = 4.0, E3 = 0.06.

Figure 13 Plot of G for k with b = 5, a= 1.0, E1 = 0.1,

E2 = 4.0, E3 = 0.0.
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dispersion may enhance. This outcome concurs with that of
Sobh [9] and Alemayehu and Radhakrishnamacharya [12].

Dispersion reduces with homogeneous compound response

rate parameter a (Figs. 3, 6, 9, and 12) and heterogeneous sub-
stance response rate b (Figs. 2, 5, 8, and 11), whereas scattering
diminishing with b is less significant. This outcome is normal

since expansion in a prompts an expansion in number of moles
of solute experiences chemical response. This result is consis-
tent with the arguments of Padma and Rao [5] and Hayat
et al. [14,16].

5. Concluding remarks

The present study investigates the effect of compliant wall and

chemical reactions on an incompressible viscous fluid with
peristalsis. The imperative results of this article are given
below:

1. Identical effect is noticed for wall parameters on concentra-
tion profile.

2. Similar behaviour is looked for permeability parameter k
on dispersion coefficient.

3. Opposite behaviour of homogeneous response rate param-

eter a and heterogeneous response parameter b is observed
on concentration profile.
4. Similar behaviour is noted for amplitude ratio e on disper-

sion coefficient. This concludes that peristaltic flow
increases the dispersion.
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