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ABSTRACT 
 
Kidney disease is recognized as a worldwide public health problem. The growth of kidney 

disease has gradually increased in recent years. Kidney disease is usually a progressive 

disease, which means that the damage in the kidney tends to be permanent and cannot be 

undone. So it is important to identify kidney disease early before the damage is done. Kidney 

disease can be treated very effectively if it is identified in the early stages. This is very 

important since kidney diseases also increase the risks of heart disease and stroke. 

Modern engineering and technical tools can be applied for fostering proper diagnostics to get 

the best results. Digital image processing becomes more and more important in health care 

because of the increasing use of direct digital imaging systems for medical diagnostics. The 

most important tool in medical application is medical imaging. Proper medical treatment 

begins with a correct diagnosis. Medical imaging provides a wealth of information and 

challenges to the physicians.  Medical image processing deals with the development of 

problem-specific approaches to the enhancement of raw medical image data for selective 

visualization as well as further analysis.  It aims at assisting medical experts in their decisions 

by providing quantitative measures inferred from various imaging modalities like ultrasound 

(US), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI), etc. Medical 

imaging, particularly ultrasound imaging is the most commonly used primary diagnostic tool 

by the medical experts. It provides the internal structure of the body to detect eventually 

diseases or abnormal tissues non-invasively.  

The main aim of the research study is to develop an efficient and effective system to detect, 

analyze the cysts and stones in ultrasound images of the kidney. The system can assist the 

physicians to identify the disease, by means of providing a clearer view of the affected 

regions. Adverse outcomes of kidney diseases can be prevented through early detection and 

treatment.  

The work carried out is divided into speckle noise removal, automatic initial contour 

detection, applying segmentation on these images to get the ROI of the kidney (in case of the 

normal kidney) or diseased portion of the kidney (in case of cystic and kidney stones), 

extracting optimal features from these segmented ROIs to classify them into a suitable class.  
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The work starts with the collection of input ultrasound images of the kidney for 

experimentation. Ultrasound images of normal kidney, cystic, and kidney stone are 

considered for the research work. Removal of speckle noise is one of the essential primary 

stages of research work. Experimentation is carried out using various filters like Gaussian, 

median, and Weiner. The transforms like wavelet and contourlet transform are also used 

effectively for the despeckling of ultrasound images of the kidney. Contourlet transform 

performs comparatively better than the other methods in case of ultrasound images of the 

kidney. The performance parameters like mean square error (MSE), peak signal noise to ratio 

(PSNR), and correlation coefficient (CC) are used for evaluation. Hence denoised US images 

of the kidney using contourlet transform followed by contrast enhancement are used for the 

segmentation process. 

Segmentation plays an essential role in all kinds of image analysis. In medical image 

analysis, segmentation has a great clinical value. To deal with boundary insufficiencies, 

missing edges, and lack of texture contrast between ROIs and background, segmentation is 

used. It identifies the boundaries of the objects. Segmentation of the required region in the 

ultrasound image is one of the challenging tasks. The segmentation and analysis of the region 

of interest in the ultrasound image is a difficult task due to the shape variant objects, 

orientation, and poor image quality. The proposed method focuses on the segmentation of 

cyst and stone in an image.  

A semiautomatic method of segmentation is performed using GVF effectively to segment 

kidney, single-cystic and single-stone images. But it needs an initial contour to be specified 

as user input. To resolve the drawbacks of GVF based segmentation an automatic 

segmentation method for cystic images is proposed using ACM. Initial contour for 

segmentation, closer to the actual cysts boundaries is obtained automatically using 

morphological operations. It can effectively segment the single cystic images automatically. 

But, it segments a single larger contour enclosing all the cysts in polycystic kidney US 

image.  An automatic novel approach for automatic kidney cysts and stone segmentation 

using level set method is proposed to overcome the drawbacks of GVF and ACM based 

segmentation methods. Completely automated segmentation of cysts and stones is mainly 

addressed in the work proposed. The level set algorithm effectively segments normal kidney, 

cysts, and stones in ultrasound images of the kidney. The level set is fully automated and 
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demonstrates better performance in segmentation. Further, the diagnostic parameters 

essentially needed by medical experts, namely, the number of cysts/stones including the size 

are calculated. The developed method is evaluated using performance parameters such as 

Jaccard coefficient, Dice coefficient, sensitivity, specificity, accuracy, and amount of 

execution time. The efficacy of the developed approach is proved by the results of the 

experiment. It takes less computational time comparatively. The method is tested using Chi-

square to analyze how significantly the obtained values vary from the expert-determined 

values. The acceptable range of the test shows the efficacy of the method. Hence, the level 

set segmented US images of the kidney are used for feature extraction and classification 

process. 

A texture can be informally defined as a perceptually homogeneous irradiance pattern. Using 

five different feature extraction techniques, the texture pattern of the kidney region is 

diagnosed and classified automatically. The five feature sets namely Haralick features, shape 

features, wavelet features, Tamura features, and HOG features are applied individually and in 

combination for renal US image. Extracted feature vectors are used as inputs for three 

different classifiers namely k-NN, fuzzy k-NN, and SVM. The performance of the decision 

support systems is analyzed using accuracy and time taken for execution. The better accuracy 

rate is found using fuzzy k-NN with combined features set to classify the kidney US images 

into normal kidney, single-cystic, polycystic, single-stone, and multiple-stones classes. The 

performance of the classifiers is measured using sensitivity, specificity, accuracy, precision, 

recall, and F1 score.  

To provide an easy to use interface to the radiologists, medical professionals, and patients an 

Android application is developed. It facilitates the real-time viewing of segmented and 

classified results of US images of kidney on smartphones. The work carried out has 

interesting applications in the field of medical image analysis in particular for the analysis of 

ultrasound images of the kidney. The analytical information obtained from segmented kidney 

medical ultrasound images such as the number of cysts and stones along with the size can be 

used by the medical experts for precise treatment.  The work has a scope of extension in real-

time for mass screening to obtain the results in lesser time. 
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Chapter 1 

INTRODUCTION  

1.1 Medical imaging 

Data representation in an image format has its own importance and effect, rather than textual 

representation. The data with good visual appearance is quickly perceived by human beings. 

It is quickly analyzed and understood by human beings. Digital image processing is a 

computer-based technology, carries out manipulation, automatic processing, and performed 

interpretation of such visual information. It plays a highly significant role in many aspects of 

our daily life. It can be applied to a wider variety of disciplines and fields. Image processing 

is an evolving field with enormous applications in science and technology. It is mainly 

concerned with the use of computerized algorithms on images. It tries to develop the ultimate 

machine with the possibility of performing the visual functions of living beings. 

Digital image processing covers a wide range of applications, such as remote sensing through 

satellites, image transfer, storage for business applications, medical image processing, radar, 

sonar, acoustic image processing, robotics, automated inspection of industrial parts and many 

more.  Image processing is basically developed for two-dimensional images. But, now it can 

be modeled for three and multidimensional images. Automation has major benefits in many 

fields including agricultural, marketing, medical fields and many other fields as well.  

 In the recent eras, there has been a significant increase in the level of interest in image 

morphology, artificial intelligence, machine learning, color image processing, image 

recognition, and knowledge-based image analysis system. The principal goal of image 

analysis by computer is to endow a machine with the capability to approximate, in some 

sense, a similar capability exhibited by human beings. Thus, an automated image analysis 

system should be capable of performing the aforementioned tasks with varying degrees of 

intelligence. 

In medical applications, processing of chest X-rays, cine angiograms, projection images of 

transactional tomography, other medical images that occur in radiology, nuclear magnetic 
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resonance, and ultrasonic scanning are being carried out. These images may be used for 

patient screening and monitoring or detection of tumors or other diseases in patients. 

Medical imaging is one of the most important tools in medical applications. Medical imaging 

provides a wealth of information and challenges to the physicians. Digital image processing 

plays a vital role in health care because of the increasing use of direct digital imaging 

systems for medical diagnostics. It refers to different techniques that are helpful to assess the 

human body to diagnose and treatment of diseases. This technology provides important 

information regarding the organ under study or treatment. Medical image processing deals 

with the development of problem-specific approaches to the enhancement of raw medical 

image data. Medical imaging creates a visual representation of the internal view of an organ 

for clinical analysis. This assists to observe the functionalities of organs or tissues 

(physiology). It reveals the internal structures under the skin and bones. Medical imaging 

helps to establish a database of normal anatomy/physiology to make it possible to identify 

abnormalities. Although imaging of removed organs and tissues can be performed for 

medical reasons, such procedures are usually considered part of pathology instead of medical 

imaging. The main purpose of medical image processing is selective visualization and image 

analysis. It aims at assisting medical experts in their decisions by providing quantitative 

measures inferred from various imaging modalities like Ultrasound (US), Computed 

Tomography (CT), Magnetic Resonance Imaging (MRI), X-rays and many more. 

Ultrasonic imaging has been used in medical diagnosis for more than half a century (Paul 

Suetens, 2002). Ultrasound contributes to faster, better, safer and in-time diagnostics. It is 

used for diagnosis of the abdominal area, including liver, gall -bladder, kidneys, spleen, 

pancreas, uterus, ovaries, aorta space, periaortic space, prostate gland, and adrenal gland. The 

ultrasound imaging allows faster and more accurate procedures due to its real-time 

capabilities. The  noninvasive, non-radioactive and inexpensive properties of US images lead 

to widespread application in diagnosing soft tissue organs (Hagen-Ansert S,1995 ; H. M. 

Pollack and B. L. McClennan, 2000). 

1.2 Ultrasound imaging 

Ultrasound imaging works on high-frequency sound waves. Ultrasound images have the 

advantage of capturing the images in real-time. Therefore, they are capable to show the 
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movements of the internal organs. They can visualize the blood flow in the vessels. 

Ultrasound images are captured without exposing to harmful radiation. Ultrasound imaging 

has many advantages in the evaluation, diagnosis, and treatment of medical disorders. Some 

of the commonly used procedures are: 

 a. Abdominal ultrasound to observe abdominal tissues/and organs 

 b. Bone sonometry to evaluate frangibleness of bones 

           c. Sonomammography to observe breast tissue 

           d. Doppler ultrasound to monitor blood flow through blood vessels 

           e. Echocardiography to view the heart functioning 

           f. Fetal ultrasound to monitor the fetus in pregnant women 

           g. Ultrasound-guided biopsy for collecting a tissue sample 

 h. Ocular echography to test eye structures 

 

1.2.1 Ultrasound machine 

Medical ultrasound scanning is performed by the ultrasound machine. A basic ultrasound 

machine is shown Fig.1.1. 

A typical ultrasound machine has components such as transducer probe, processor, 

transmitter or pulser, display, keyboard, printer, and storage device. A transducer converts 

energy in one form to another form. In this case, electrical energy is converted to mechanical 

energy. It serves the purpose of a receiver of reflected acoustic waves as well. It works on the 

principle of piezoelectricity. The processor is required to identify, manipulate and process the 

reflected pulse in creating the image for display and storage. The transmitter controls the 

amplitude, frequency, and duration of the pulses produced by the transducer. It controls the 

time interval between ultrasound pulses as well. The ultrasound waves must have enough 

intervals between the waves in order to reach the desired depth. Further, the wave should be 

reflected back before the next wave is sent (Cobbold and Richard S. C., 2007). The display 
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unit displays the ultrasound image. It is the ultrasound data processed by the CPU. The 

ultrasound machine has a very lesser built-in memory. So, it needs an external storage device 

to store the captured images. 

 

Fig.1.1. Ultrasound machine 

Image Credit:wikimedia.org/wikipedia/commons/AlokaPhoto2006a.jpg/ 

Ultrasound scanning is carried out by a skilled technician, called a sonographer. A special 

lubricating gel is applied on the skin of a patient to be scanned. The sound is focused through 

the shape of the transducer. A typical transducer is shown in Fig. 1.2. The gel prevents 

friction while rubbing the transducer on the skin and facilitates the efficient transfer of 

energy from the transducer to the body.  

The electrical pulses generated by the ultrasound machine drives the transducer for the 

emission of high-frequency waves. Wave is reflected whenever there is a change in acoustic 

impedance like hitting an opaque element, such as an organ or bone. These echoes are 

partially reflected back to a computer. Some of them are reflected back to the transducer. 

These sound waves are having a high-frequency range of 1MHz to 18MHz. This range is 

above the audible frequency range of human beings. The returned sound waves cause the 

vibration of the transducer which is turned into electrical pulses by the transducer.  
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These pulses are processed and converted to a digital image called ultrasound image.  

 

Fig. 1.2 Transducer 

Image Credit:wikipedia.org/wiki/File:UltrasoundProbe2006a 

1.2.2 Ultrasound image formation 

The image forming process by an ultrasound scanner is dependent on two main factors:  

 The duration taken to receive the reflections back after sending the initial sound wave  

 Strength of echo  

The duration determines the pixel location. Longer duration results into more depth of the 

pixel location. The intensity of the pixel is decided by the strength. A strong echo is 

represented by white pixel and the weakest echo is by black pixel. Intermediate values form 

the various gray intensities forming a gray scale image. 

A two-dimensional image is obtained by swiping a transducer mechanically against the skin. 

As an alternative, 1-D phased array transducer can be used to sweep the beam electronically. 

The reflected wave is processed to construct the 2-D image, representing a slice of the human 

body. Three-dimensional images are framed by capturing a series of adjacent two-

dimensional images. A specialized probe is used. It is hard to acquire 3-D images of moving 

tissue because of the slow process of mechanical scanning. Hence, the 2-D phased array 

transducer is under use for 3-D image acquisition. It captures the images quickly and 

facilitates 3-D live images. 

https://en.wikipedia.org/wiki/File:UltrasoundProbe2006a.jpg
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1.2.3 Modes of ultrasound imaging 

Ultrasound images can be displayed in various modes from simple A- mode to high-

resolution images (Carol M. Rumack and Deborah Levine, 2018 ; N. R. Dunnick, Carl M. 

Sandler and Jefry  H.N, 2013).  

 A – (Amplitude) mode: It is the earliest and simplest mode of imaging where the 

devices used position and strength of echoes to frame the image. The voltage 

generated by the reflected wave through the transducer on the surface of an 

oscilloscope is processed and displayed. A single transducer is used for scanning. Fig.  

1.3 shows a sample A-mode ultrasound image. It displays the amplitude spikes. As 

shown in Fig 1.3, it has X and Y axis, where X denotes the depth and Y shows 

amplitude.   

 
Fig. 1.3. A sample A-mode ultrasound image 

Image Credit: sonodriftzone.blogspot.com 

 M – (Motion) mode: It is another simple mode of imaging. It displays the reflected 

wave amplitudes. Mainly it shows the position of moving structures. The brightness 

of the display is used to specify the intensity of the echoed pulse.  M-mode image has 

an important application such as assessment of fetal heart rates. A sample M-mode 

image is shown in Fig. 1.4. 
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Fig. 1.4. A sample M-mode ultrasound image 

Image Credit: medison.ru/ultrasound/ 

 
Fig. 1.5. A sample B-mode ultrasound image 

Image Credit: medison.ru/ultrasound/ 
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 B – (Brightness) mode: It is the major and important imaging mode. It provides real-

time, gray scale images. It uses a linear array of transducers simultaneously. It creates 

the two-dimensional view of a body organ. Hence, it is known as a 2-D mode. B-

mode display uses the strength of reflected wave to a particular brightness level in the 

display device. A sample B-mode image is shown in Fig. 1.5. 

 Doppler mode: It uses the Doppler effect for measurement and visualization of blood 

flow. A sample Doppler image is shown in Fig. 1.6. Doppler sonography is meant for 

studying the blood flow and muscle movements. Different speeds of motions are 

represented in different colors for easy interpretation. Colors are used to show the 

varying amplitudes of the reflected waves. 

 

Fig. 1.6. A sample Doppler mode ultrasound image 

Image Credit: medison.ru/ultrasound/ 

1.3 Kidney anatomy  

The major function of the kidney is to filter blood. The kidneys filter about 180 liters of 

blood every day.  The filtering process regulates water-salt and acid-base balance for water 

homeostasis. The kidney has a length of approximately 15cm, width of 5cm and thickness of 

2.5cm. It has a weight of 120g – 170g. The volume of the left kidney is larger than that of the 
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right kidney. Length of kidney is correlated with body height. The kidney size goes on 

decreasing with aging (N. R. Dunnick, Carl M. Sandler and Jefry  H.N, 2013). The kidneys 

have a mobility nature, they move as per body position. Fig. 1.7 shows the anatomy of 

kidney. 

The kidneys are protected by perirenal fat, from external damage. The concave surface of the 

kidney is known as renal hilum. The surface is continuous connecting the structures such as 

nerves, ureters, vessels, and lymphatics. 

 

 

Fig. 1.7. Anatomy of kidney 

Image Credit: BlueRingMedia/Shutterstock 

Renal arteries supply the blood to the kidneys. The renal artery is a main branch of the 

abdominal aorta. These arteries are divided into multiple levels, forming a specialized 

network. These form the special capillary beds known as glomeruli. Every glomerulus 

formulates one component of a nephron. The filtered blood moves within the left and right 

renal veins. These veins are vacated in the inferior vena cava and in turn to the heart.  
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Nephrons are the structural units of the kidney. There are about 1.3 million nephrons in each 

kidney. Fig. 1.8 describes the nephron structure. Two major parts of nephrons are tubules and 

corpuscles. The corpuscles comprise of glomeruli. The tubules are small tubes traveling 

through the interior of the kidney. These are responsible for regulating the chemicals in the 

blood.  

 

 

 

Fig. 1.8. Anatomy of nephron 

Image Credit: Encyclopaedia Britannica, Inc. 

The cortex is the outer tissue present beneath the renal capsule. It reaches the inner renal 

tissue and splits triangular structures called pyramids.  The urine formed inside the pyramids 

is stored in a structure known as the minor calyx.  Different minor calices combine forming a 

major calyx. Urine flows from the major calices to the renal pelvis. The pelvis is a structure 

formed by the fusion of all major calices. It transmits urine from the kidney to the ureter.  
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1.4 Kidney diseases  

Kidney diseases are one of the world-wide financial burdens. Most of the people do not know 

about their impaired kidney functions. Most of the time, kidney diseases do not show 

symptoms at the early stages. Many patients are not aware even at the highly risky conditions 

like kidney failure that may need dialysis or transplantation. The abnormalities of kidneys 

can lead to cardiovascular diseases, infections, and hospitalizations. It is estimated that 

globally more than 850 million people have one or the other kind of kidney disorders. This 

count is roughly double the number of diabetic patients (422 million, 

(http://www.who.int/news-room/fact-sheets/detail/diabetes)) and over 20 times than that of 

cancer (42 million (https://ourworldindata.org/cancer)) or more than AIDS/HIV (36.7 million 

(http://www.who.int/gho/hiv/en/)) patients. Thus, kidney disorders are one of the common 

diseases all over the world. David Harris and Adeera Levin of the International Society of 

Nephrology (ISN) explain as “It is high time to put the global spread of kidney diseases into 

focus”. It is found that kidney disorders enforce heavy expenditure. Table 1.1 shows the 

annual expense incurred on dialysis by various countries. The annual expense per patient for 

dialysis ranges between Int.$3,424 to Int.$ 42,785 (Carovac A, Smajlovic F and Junuzovic D, 

2011). 

                                      Table 1.1. Cost of dialysis in various countries  

Country  Approx. cost per 

annum (in USD) 

United States of 

America 

88,000 

Netherlands 84,000 

Belgium 84,000 

France 71,000 

Germany 33,000 to 59,000 

United Kingdom 39,000 

Every day 1.5 lakhs to 2 lakhs people undergo dialysis in India (Vijayavani (kannada daily), 

2019). In order to create awareness, the 2
nd

 Thursday of March is celebrated as "World 

Kidney Day", every year. It is very essential to diagnose and treat kidney diseases in the 

earlier stage. More than 1.5 million people globally are currently alive on renal replacement 
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therapy, either by dialysis or with a functioning graft. The incidence of renal failure has 

increased in the last 15 years. Kidney stones (renal calculi) affect up to 5% of the population, 

with a lifetime risk of passing a kidney stone of about 8-10%. Increased incidence of kidney 

stones in the industrialized world is associated with improved standards of living. It is 

strongly associated with race or ethnicity and region of residence (Shah J and Whitfield H. 

N.,2002). Kidney disease is usually a progressive disease, which means that the damage in 

the kidney tends to be permanent and cannot be undone. So it is important to identify kidney 

disease early before the kidney gets damaged. Kidney disease can be treated very effectively 

if it is diagnosed in the early stages. This is very important since kidney diseases can increase 

the risks of heart disease and stroke. 

Usually, kidney diseases cause degraded functionality over the years. This is known as 

“chronic kidney disease (CKD)”. Different reasons for CKD are high blood pressure, 

glomerulonephritis, polycystic kidney disease (PCKD), reflux nephropathy and sometimes 

the cause is not known. There are different health issues that can harm the kidneys leading to 

CKD. They are PCKD, lupus nephritis, kidney cancer, and other rare diseases. 

1.4.1 Polycystic kidney disease 

 Polycystic kidney disease (PKD or PCKD, also known as polycystic kidney syndrome) is a 

cystic genetic disorder of the kidneys. PKD is characterized by the presence of multiple 

cysts. Renal cysts are non-cancerous and fluid-filled. They can be numerous, leading to 

enlargement of the kidney. The occurrence of cysts increases with aging. 30% of people 

above 60 years are prone to cysts. Most of the cysts are asymptomatic. However larger cysts 

cause flank pain or hematuria. 

The 17% of cases primarily diagnosed for PKD disease in one kidney, progressed to bilateral 

disease in adulthood. The disease can in turn damage the liver, pancreas and, in some rare  
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                         (a)                                            (b) 

                       Fig. 1.9.  Sample images: (a) Normal kidney   (b) Polycystic kidney 

(Image Credit :radiopaedia.org)    (Image Credit:nephsim.com ) 

cases, the heart, brain. Polycystic kidney disease is one of the common life-threatening 

genetic diseases. In recent years, the potential use of computer-aided diagnosis in the field of 

medical imaging in general and kidney images, in particular, has been the area for rigorous 

research. 

PKD is a disorder in which groups of cysts develop primarily in kidneys. This leads to 

enlargement of kidneys, and they do not function properly over time. Cysts are nonmalignant 

type. The cysts differ in size. They can grow to a very large size. Presence of multiple cysts 

or larger cysts can destroy the kidneys. Further, PKD can lead to cysts development in the 

liver and other organs at the later stages of the disease. The disease can lead to many other 

complications in turn. PKD has different levels of severity.  Some complications are 

preventable and controllable. Fig. 1.9 shows the normal and polycystic kidney.              

 The two types of polycystic kidney disease classified on genetic defects are: 

 Autosomal dominant polycystic kidney disease (ADPKD): The symptoms of ADPKD 

often appear among the population in the age group of 30 to 40. Before, it was known 

as adult polycystic kidney disease, but kids can also face this problem. This disease is 

inherited only if anyone parent has the disorder. If one parent has ADPKD, there is a 

50% chance of disease getting inherited to the child. This type of disease accounts for 

90% of the cases of PKD. 

 Autosomal recessive polycystic kidney disease (ARPKD): This type is very uncommon 

than ADPKD. The symptoms usually are seen after birth. Sometimes, symptoms do not 
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appear in childhood. This disease is inherited only if both the parents have the disorder. 

There is a 25% chance of disease getting inherited.  

The other major complications with PKD are listed below: 

 Hypertension: It is a commonly observed complication of polycystic kidney disease. If 

it is not treated earlier, it can lead to kidney failure and an increased risk of heart 

problems and stroke. 

 Impairment in kidney function: It is one of the serious complications. Around 50% of 

the PCKD patients face this problem in turn leading to kidney failure. 

 Pregnancy complications: Along with pregnancy complication, some women may be 

prone to a life-threatening disease called preeclampsia.  

 Development of cysts in the liver:  The chance of finding liver cysts in aged patients 

with PKD is more.  

 Brain aneurysm: A bulged blood vessel (aneurysm) in the brain can also cause 

hemorrhage. Patients with a family background of aneurysm have a high risk. 

 Heart valve abnormality:  This leads to improper closing of the valve, which causes the 

blood leakage in a backward direction. 

 Colon disorders:  Weakness and sacs in the colon wall may be observed. 

 Pain: Pain in back, side or pain due to urinary tract infection is commonly observed 

symptom. 

1.4.2 Kidney stones or renal calculi 

Renal stone is one of the common problem faced all over the world. These stones have 

afflicted the human population since the earlier civilizations. The discussion on the treatment 

of stones is found in the earliest Egyptian writing of 1500 BC (Shah J and Whitfield H. 

N.,2002 ; Michell A. R.,1989). 

The earlier statements on the description of symptoms and treatment of dissolving the stones 

are available in the books of Asutu, Mesopotamia in the year 3200 and 1200 BC (Shah J and 

Whitfield H. N.,2002). The details on “cutting for the stone” is observed in Hindu and Greek 

literature. Sushruta (around 600 BC), an ancient Indian surgeon mentions “perineal 
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lithotomy” in his book “Sushruta Samhita” (Chakravorty R. C., 1969 ; Chakravorty R. C. ). 

The description of bladder stones is described in this text. Initial treatment recommendations 

to the patients like diet, consumption of water are observed. The surgical procedure is 

defined in detail in Sushruta's books (Chakravorty R. C.). Ancient Greeks made significant 

observations and documentation regarding urinary stones. Hippocrates (460–377BC) 

explained about kidney stones in his famous book, “Oath of Medical Ethics for physicians” 

(Dimopoulos C,et. al.,1980). In those days, lithotomy was under practice. 

Kidney stones are the crystals made of different ion contents (Jack W. McAninch and Tom F. 

Lue, 2013). Based on the contents, they can be classified into various classes. The sample 

images of different renal stone types are shown in Fig. 1.10.  

 Calcium: Calcium is the major and common stone type. These stones are composed 

of calcium oxalate or calcium phosphate. The deficiency of citrate leads to stone 

development. Estrogen enhances citrate excretion. Hence, calcium stone incidents are 

less in women, particularly during pregnancy.  

 Struvite: This is commonly found in women with urinary tract infections (UTI). They 

are resultants of kidney infections. Handling the underlying infections may avoid the 

growth of struvite stone. 

 Uric acid: This is commonly observed in men. Uric acid is generated during purine 

metabolism. These are found in patients treated for malignant conditions.  

 Cystine: Cystine stones are rare. They are observed in people with genetic defects 

irrespective of the gender. The recurrence rate of these stones is very high. 

The majority of renal stones induce the pain. The other symptoms include: 

 blood in the urine (color change of urine) 

 vomiting and nausea 

 discolored or foul-smelling urine 

 chills and fever 

 frequent need to urinate 

 urinating small amounts of urine  
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Fig. 1.10. Different types of renal stones: (a) Calcium (b) Struvite  (c) Uric acid (d)Cystine 

Image Credit: Louis C. Harring Company, Kidney Stone Analysis Laboratory www.herringlab.com 

1.5 Image dataset 

Medical renal ultrasound B-mode images having different sizes and varying orientations are 

used for the study. The input image dataset is categorized as S1(Clinical dataset) and S2 

(Website dataset). The images in S1 are collected from BLDEDU‟s Shri. B.M. Patil Medical 

College and Research Centre, Vijayapur. These images are acquired using the GE LOGIQ 3 

Expert system and Phillips HD11XE US system. Curvilinear transducer having a frequency 

range between 5 MHz to7MHz is used.  The dataset is prepared by consulting the medical 

experts of the hospital.  The images in S2 are downloaded from public websites (nlm.nih.gov, 

sonoworld.com, and ultrasoundimages.com). Totally 185 images are used for the 

experimentation; S1 set contains 105 images and S2 contains 80 images. There are 37 normal 

kidney images, 39 single-cystic, 35 polycystic, 38 single-stone and 36 multiple-stones images 

altogether. The image datasets S1and S2 are shown in the Appendix I. 
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1.6 Speckle noise removal 

Speckle noise gives ultrasound images their characteristic granular appearance. It inherently 

exists in coherent imaging, including ultrasound imaging. The analysis of signal-dependent 

effect has been a major subject of investigation in the medical ultrasound imaging 

community as well as the optical (laser) and radar imaging communities. The texture 

appearance of the observed speckle-noise does not correspond to the underlying tissue 

structure. However, the local brightness of the speckle-noise pattern does reflect the local 

echogeneity of the underlying scatterers. The speckle noise with the signal carrying some 

information about the observed tissues can be undesirable and hence needs to be reduced, 

without loss of required information.  To avoid the subjective diagnosis on raw US images, 

image processing is used to help the medical experts in better diagnosis of the images. 

Removal of noise is necessary for effective use of the segmentation and image analysis 

algorithms in producing the useful results. 

Different methods and filters are available for denoising. Speckle noise is of multiplicative 

type. Multiplicative noise in the image has a feature of granular visibility, due to a low SNR. 

The multiplicative noise is converted into additive noise using logarithmic transform. 

1.6.1 Logarithmic and inverse logarithmic transforms 

The multiplicative noise has a log like term and is non-quadratic. Speckle noise has a nature 

of increasing with multiple factors. It is turned into additive type by applying logarithmic 

transform. The acquired image I(x,y) is shown (Hiremath P. S., Prema T. Akkasaligar and 

Sharan Badiger, 2011) as in Eq. (1.6.1). 

                                     (   )     (   )  (   )                                                               (1.6.1) 

where, U(x, y) is the actual ultrasound image and ξ(x, y) is speckle noise. As shown in Eq. 

(1.6.1), noise is multiplied with true image. It is difficult to handle multiplicative noise. So, it 

is turned into additive type by applying the logarithmic transformation as in Eq. (1.6.2). 

                                   log                                                                 (1.6.2) 
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Thus, a multiplicative form is converted into additive term. The log transformed image 

undergoes despeckling process. The resultant image is applied with inverse logarithmic 

transform to get the denoised image. 

1.6.2 Noise removal filters  

Edges in the image are most widespread and essential features. Low pass filters are employed 

to eliminate high frequency noise from an image. This is because of high frequencies of 

noises and edge. Hence, some of the nonlinear filters like median filter and wavelet filer are 

most commonly used for denoising. However, the high-pass filters are used for image 

sharpening. These can enhance the finer details in the image. 

 Gaussian low-pass filter                                                                                              

In the Gaussian filter, frequency values to be filtered out are changing continuously 

throughout. The variation in filter frequencies depends on the Gaussian curve. The value is 

high at the center and keeps on decreasing as moved away from the center. Thus the resultant 

average frequency is largely biased by the central pixel frequency and its neighboring pixels. 

So, the Gaussian filter is better in preserving the edges compared to low-pass and average 

filters. 

Sigma value is used to control the shape of the Gaussian curve. A large value of sigma leads 

to a broad and shorter peak of the kernel function. It smoothens the image with a low rate of 

edge preservation as it gives more weight to the pixels away from the central pixel.  

Median filter 

The median filter works on the principle of assigning the median of the pixels by taking into 

account of a specific sized window. The filter replaces each pixel by the median of the pixel 

values in the neighborhood of that pixel. For finding the median, input window pixels are 

arranged in the numerical order and central value is selected as a median. Median filter is 

efficient enough in the removal of random noise. It is good at the preservation of edges. But, 

it leads to elimination of thin lines. 
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Wiener filter 

The Wiener filter helps in inverting the blur and removal of the additive noise together. The 

Wiener filter is a linear filter. It supports image smoothening effectively. It is efficient 

comparatively and is measured with minimal mean square error.  

Spatial domain-based despeckling methods directly manipulate the pixel values without any 

transformation. 

1.6.3 Transform domain methods 

Various transforms are applied to remove the speckle noise from ultrasound images of 

kidney. 

Wavelet transform 

Wavelet represents a mathematical function. It decomposes a wave signal into different 

signal components. Every component has a frequency range and it is analyzed by using its 

matching resolution. Wavelet transforms have various applications like compression, data 

transfer, image smoothing, etc.  Denoising of the image is on the basis of thresholding of 

wavelet coefficients. 

The wavelet transform is applied to perform the multi-resolution analysis. The image is 

decomposed into four frequency “subbands” namely, horizontal, vertical, diagonal and 

approximate bands. Despeckling is performed by computing the local statistical features in 

these subbands. One of the virtues of wavelet transform in noise removal is lossless, 

produced during reconstruction of output image after denoising (Hiremath P. S., Prema T. 

Akkasaligar and Sharan Badiger, 2010). Soft thresholding is applied on coefficients obtained 

after the discrete wavelet transform (DWT).  Soft thresholding has more benefits than hard 

thresholding such as: It prevents discontinuities and good at recovering the images as it 

prevents fast- sharper alterations, unlike hard thresholding. Soft thresholding has 

comparatively good stability.  
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Contourlet transform 

Contourlet transforms are very effective in smoothening of the ultrasound image contours. It 

is performed in two stages as discussed in (Hiremath P. S., Prema T. Akkasaligar and Sharan 

Badiger, 2011). In the first stage, Laplacian pyramid(LP) decomposition is applied for 

capturing of discontinuous points. In step two, the directional filters bank is used for 

connecting the points of discontinuities to construct an undeviating the arrangement of 

points. Inverse contourlet transform is carried out to obtain the despeckled image.  

The despeckled images are contrast enhanced further using histogram equalization. 

1.6.4 Contrast enhancement 

The resultant images of despeckling are enhanced using histogram equalization. Image 

enhancement improves the image quality, so that the image is perceivable by human. It is 

effectively carried out by histogram equalization. Histogram equalization is a valuable 

enhancement method.  In ideal cases, the continuous distribution of gray levels results into 

uniform histograms. Histogram graphically represents the count of intensity levels in an 

image. An example for original image and its histogram is shown in Fig. 1.11(a) and (b) 

respectively. Histogram is the basis for many spatial domain methods. Histogram 

equalization performs better on different image types. For a discrete image, it does not 

generate a uniform histogram. However, for digital images, it can spread the gray levels 

throughout effectively. It is a suitable method to enhance the quality of images. Therefore, it 

can be used efficiently for enhancement which results into a dynamic range of gray levels, 

leading to increase in image contrast (Agarwal T., Tiwari M., and Lamba S., 2014). 

 

Fig. 1.11 Contrast enhancement of US image: (a) Original image (b) Histogram of original image  
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Fig.1.12 Histogram of contrast enhanced image:  (a) Equalized image  (b) Histogram of equalized image 
 

Contrast enhancement is suitably used to obtain despeckled image with more image clarity.  

It is performed by applying histogram equalization (Agarwal T., Tiwari M., and Lamba S., 

2014) on despeckled image. Contrast enhancement makes the image brighter, visualizing the 

edges clearly. Hence, overall image is enriched with better quality. Histogram equalized 

image is obtained using the Eq. (1.6.3) 

                              Hk = (L− 1) ∗ Pi (𝑟)                                                                              (1.6.3) 

 Ni is the total number of pixels with intensity „r‟ at different gray levels (0 to L-1). Pi (r) is a 

probability density function at gray level i. It is calculated using Eq. (1.6..4) 

                              Pi(𝑟)=∑   ∗
 

 ∗ 

 
                                                                                (1.6.4) 

The H values obtained are rounded and mapped on to despeckled image to get enhanced 

image with improvement in contrast. Fig. 1.12(a) shows a sample image and Fig. 1.12(b) 

shows histogram of equalized image. 

The denoised and contrast enhanced images are used by segmentation algorithms. 

1.6.5 Performance Evaluation 

Speckle noise inhibits the major details in the ultrasound image. So, removal of speckle noise 

enhances the visual perception for evaluation by medical experts. It is necessary to improve 

the image quality for segmentation of US images further. Various evaluation parameters like 

Mean Square Error(MSE), Peak Signal to Noise Ratio(PSNR) and Correlation 

Coefficient(CC) are used (Loizou C.P. et al., 2006). These parameters are computed using 

the acquired input image (I) and the despeckled image (S) as follows. 
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Mean Squared Error: The MSE computes variation in quality between the acquired input 

image (I) and despeckled image (S) of size M×M . It is calculated as in Eq. (1.6.5). 

                                     
 

  
∑ (         )

    
                                                                (1.6.5) 

The MSE is used extensively to quantify the image quality. But, MSE alone is not capable to 

measure the perceptual. So, it is often used with other parameters. 

Peak Signal-to-Noise Ratio:  The PSNR is defined as the ratio between the highest intensity 

of image and the intensity of noise, which affects the images representation. It is expressed as 

in Eq. (1.6.6). 

                                              
    

 

   
                                                               (1.6.6) 

Correlation Coefficient: The CC is the strength and direction of a linear relation between 

image samples. Pearson‟s CC is computed by the ratio of the product of standard deviations 

of two images and their covariance. The CC is expressed as in Eq. (1.6.7)  

                                
  ∑        ∑   ∑   

√  ∑   
  (∑   )

 √  ∑   
  (∑   )

 
                            (1.6.7) 

1.7 Segmentation 

Segmentation mainly aims at dividing an image into connected regions. The production of 

regions is emphasized as the pre-stage of classification. Image segmentation is a partitioning 

of an image into regions that are meaningful for a specific task. It is one of the initial steps 

leading to image analysis and interpretation. The result of segmentation is always on the 

regional level of abstraction. It can be used to focus on the most common application of 

medical imaging, namely, the discrimination between healthy anatomical structures and 

pathological tissues.  

Image segmentation approaches can be classified according to the features and the type of 

techniques used. Features include pixel intensities, edge information, and texture, etc. The 

task of the classification step is to assign all connected regions, which are obtained from the 

https://en.wikipedia.org/wiki/Noise
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segmentation to a particular specified class of object. Various algorithms are implemented 

for segmentation of ultrasound images of kidney.  

 1.7.1 Active contour model 

The active contour model is a segmentation method used to extract the region of interest 

(ROI) of the medical images. Based on energy gradients and forces of the medical image, 

ROI is segmented. The pixels of the medical image, which contain the disease, related  

 
 
 
 

 
 
 
 

 
 
 (a)                                                       (b)                                              (c)  

Fig. 1.13. Different stages of active contour deformation: (a) Initial contour  

                                      (b) Intermediate deformation (c) Final deformation 

information, is extracted to form a contour. An initial contour is specified for ACM as shown 

in Fig. 1.13(a). The dotted line is the initial contour for the desired curve in solid line to be 

segmented. The desired contour depends on the energy minimizing function.  An 

intermediate deformation of initial contour is shown in Fig. 1.13(b). The final deformed 

contour is merged with actually desired contour as shown in Fig. 1.13(c). For an image I in 

domain Ω, the C-V model (Chan T and Vase L., 2001) is expressed by the energy 

minimizing function as specified in Eq. (1.7.1). 

 

  v     ∫         ( )  ( )              ∫        ( )  ( )            Ω         (1.7.1) 

 

The constants A1 and A2 are the average intensities in the interior and exterior of the 

contours. It is assumed as in Eq. (1.7.2), Eq. (1.7.3) and Eq. (1.7.4) respectively.  The 

constants A1 and A2 are expressed as in Eq. (1.7.5) and Eq. (1.7.6). 
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                                          (1.7.6) 

 
 

1.7.2 Gradient vector force method 

The gradient vector force is an updated version of active contour. The gradient vector force is 

used for boundary extraction from the medical image by computing the diffusion of the 

gradient vector. It differs basically from ancient snake external forces as it cannot consider 

the negative gradient of a potential function, and the corresponding snake is formulated 

directly from a force balance condition rather than a variation in formulation. GVF has a 

large capture range and is able to move the snakes into boundary concavities. It does not 

cause blurring of the edges, unlike other methods.  

GVF field can capture a snake from a long range and can force it into concave regions. Fig. 

1.14(a) shows the actual ROI to be segmented. Fig. 1.14(b) and (c) show the convergence of 

GVF snake to the concave boundary of ROI to be segmented. The intermediate deformations 

are well represented in Fig. 1.14(b). We start defining an edge map f(x, y) derived from the 

image I(x, y) having the property that it is larger near the image edges using GVF external 

force EGVF as in Eq. (1.7.7).         

                                               

                                               (   )          
 

 (    )                                                      (1.7.7) 

                                                 for,  j = 1, 2, 3, 4   
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Fig. 1.14  Movement of snake into the concave boundary region using GVF external force: (a)Object to be 

segmented (b) Deformation of GVF snake at different iterations (c) Deformation of contour to a 

concave boundary  

 

In general, the field  f has vectors pointing toward the edges, but it has a narrow capture 

range.  Furthermore, in homogeneous regions, I(x, y) is constant,  f is zero, and therefore no 

information about nearby or distant edges is available. GVF is an external force vector field 

represented as (u(x,y), v(x, y)).  The GVF is constructed by diffusing the edge force and is 

achieved by minimizing the energy functional which is given by Eq. (1.7.8) 

                                                        (1.7.8) 

 

where   is a smoothing term of field (u, v).   balances the weight of first and second terms, 

the subscripts indicate directional partial derivatives. This can be obtained by using Euler 

Eqs. (1.7.9) and (1.7.10). 

 

                                            (1.7.9) 

 

                                      (1.7.10) 
 

 2
 is the Laplacian operator. The Laplacian operator can be solved through iteration towards 

a steady-state value using Eqs. (1.7.11) and (1.7.12). 

 

                    (1.7.11) 
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                     (1.7.12) 

 

This result replaces the default external force used in active contour by GVF force. We have 

applied gradient vector force method for segmentation of kidney region in medical US 

images of kidney. It is necessary to specify initial parameter for the deforming balloon. After 

the deformation, initialized balloon will fit in to actual boundary of the object. 

 1.7.3 Morphological operations used for segmentation 

The morphological operation is based on structuring element. The structuring element is 

applied throughout the image to get output image of the same size. The structuring elements 

of different shapes are available like diamond shaped, square shaped, etc. Various 

morphological operations used are erosion, dilation, opening and closing. The erosion 

operation shrinks the image size by removing boundary pixels. The dilation operation 

expands the image size by adding pixels. The adding and removing of pixels depends on the 

structuring element. The opening operation smoothens the outline of an object and removes 

thin lumps in the image. The closing smoothens the object outline but fuses narrow breaks 

eliminates holes and helpful in filling gaps in the contour. The morphological operations are 

used to segment the medical image for analysis and investigation of diseases.  

Two important morphological operations that we have used are morphological opening and 

closing. The opening is used to smooth the contour of an object. It eliminates the thin 

protrusions in the image. The closing smoothens the object contour but fuses narrow breaks, 

eliminates holes and helpful in filling gaps in the contour (Sonka Milan, Hlavac Vaclav and 

Boyle Roger, 2013). The morphological opening of I by structuring element Q is given by  

I○Q and is defined as in Eq. (1.7.13). 

                          I   Q=(I   Q)   Q                                                                   (1.7.13) 

 

Where,   indicates erosion and   indicates dilation. Closing of I by structuring element Q 
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is defined as in Eq. (1.7.14). 

 

                                    I . Q=(I   Q)   Q                                                                   (1.7.14) 

Erosion leads to shrinking of objects. i.e., image details smaller than structuring elements are 

filtered out from the image (Sonka Milan, Hlavac Vaclav and Boyle Roger, 2013). Let E be a 

Euclidean space or an integer grid. Erosion of I by structuring element Q is the set of all 

points z such that Q, translated by z, is contained in I. It is given in Eq. (1.7.15). 

                                        *        +                                          (1.7.15) 

Where Qz is the translation of Q by the vector z.  

Dilation thickens the object contour. Thickening is controlled by a structuring element. 

Dilation is based on reflecting Q about its origin and shifting this reflection by q. It is 

expressed as in Eq. (1.7.16). 

                                          ⋃                                                                (1.7.16)   

These morphological operations are effectively used in finding the initial approximate 

contours for segmentation algorithms. 

 1.7.4 Level set segmentation 

The level set method is used for the analysis of surfaces and shapes. The basic idea is to 

represent the curves or surfaces as the zero level set of a higher dimensional hyper-surface as 

shown in Fig. 1.15. The level set method as mentioned by Osher and Sethian takes the 

original front shown in Fig. 1.15 (a) and develops it into a surface shown in Fig. 1.15 (b). 

The cone-shaped surface intersects the X-Y plane exactly where the curve sits. The cone 

surface is called the level set function, as it accepts any point in the plane as input and returns 

back its height as output. The zero level set is so called because it is the assembly of all 

points at height zero. The zero level set for the boundary is set as curve. Based on the 

boundary curve, the remaining region of the medical image is divided into internal region 

and external region. The constancy and insignificance nature of level set helps to produce  
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                                (a)       (b) 

Fig. 1.15. Level set working: (a) original front (b) Level set function 

edge points. The edge stopping condition is dependent on the image gradient. This technique 

not only provides more accurate numerical implementations but handles the topological 

change very easily. 

 1.7.5 Performance evaluation of segmentation algorithms 

Segmentation algorithms are evaluated using parameters like Dice similarity coefficient (DC) 

and Jaccard coefficient (JC) (J.K. Udupa and V.R. LeBlanc, 2002; Candemir S., et al.,2014). 

The parameters carry out a statistical evaluation by finding the overlapping accuracy of 

segmented image I1 experimentally and manually marked image by medical expert I2. DC is 

computed using Eq. (1.7.17) and Jaccard coefficient using Eq. (1.7.18). 

 

                                           (     )  
         

         
                                                            (1.7.17) 

                                               

                                                      
       

       
                                                               (1.7.18) 

I1 is the area of the segmented region obtained by applying the segmentation algorithm and I2 

is an area of the region marked manually by a medical expert. The value of DC ranges from 0 

to 1. For an exact match, it is 1 and 0 for no match. 
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 Jaccard coefficient compares the similarity and dissimilarity between two images namely, I1 

and I2. It is calculated as the intersection of the images to the union of the images. The value 

ranges from 0 and 1.  Similar to DC, it is 1 for an exact match and 0 for the complete 

mismatch.  

The segmentation algorithm is evaluated using the parameters such as sensitivity (Sn), 

specificity (Sp), and accuracy (Acc) (Mahmoud Ramze Rezaee, et al., 2000) as well. The 

parameters are expressed as in Eqs.  (1.7.19), (1.7.20) and (1.7.21). 

                                                                          

                                        
true 

true  f lse 
                                                                                              (1.7.19) 

 

                                  p     
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                                                                                   (1.7.20) 

 

                                 cc     
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                                                       (1.7.21) 

                  

Fig. 1.16. Venn diagram for representation of truep, truen, falsep and falsen 

Fig. 1.16 shows the representation of truep, truen, falsep and falsen . I1 is the segmented region 

obtained by applying the segmentation algorithm and I2 is the region annotated manually by a 

medical expert. 

truen 
 

I1 

falsep  
I1∩I2 

truep 

I2 

falsen 



30 
 

truep, true positive is computed by finding the intersection of the segmented image and the 

marked image by a medical expert. The false positive, falsep is the incorrectly segmented 

image with non-matching ROI in the ground truth image obtained by a medical expert. The 

false negative, falsen, is the missed region in the ground truth. The true negative, truen is the 

part of the image beyond the union of segmented image and ground truth. The values of these 

parameters lie within the range from 0 to 1. The value 1 shows the exact segmentation. 

Mean and standard deviation of performance parameters are considered for the comparison 

of different segmentation methods. Mean is computed as an average value of all the values 

under consideration. Standard deviation is a measure of the amount of variation or dispersion 

around the mean. It is useful in finding the spread out over a dataset. 

1.8 Feature extraction 

After segmentation in a medical image, the required features contain information helpful to 

analyze and diagnose. The features are the characteristics of the medical image and are 

required to extract relevant maximum characteristics for analysis. Instead of taking the whole 

medical image, selected features that offer the information required for analysis are selected. 

The big challenge is detecting the features containing the needed detail information, selecting 

those features and extracting it for further processing. Several methods are available for 

feature extraction as discussed below. 

 

1.8.1. Haralick features  

 
Gray level co-occurrence matrix (GLCM) based features are also termed as Haralick 

features. The working of Haralick feature extraction is done in two major steps. Computation 

of GLCM is the initial step, followed by the extraction of texture features on the obtained 

GLCM. The GLCM is used to measure co-occurrence of relation between the adjacent pixels 

based on pixel positions. GLCM computes the probability of gray level distribution by 

considering a pair of adjacent pixels. The GLCM extracts the features based on pixel 

positions with similar gray level values. Various GLCM texture features like energy 

homogeneity, contrast and correlation can be calculated by using Eqs. (1.8.1), (1.8.2), (1.8.3) 

and (1.8.4) respectively.  
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Where, μ = weighted avg. of pixel and σ = weighted variance of pixel. 

 
 

1.8.2. Shape-based features  

Images are represented by different forms that explain the object shape and size. Different 

shape feature descriptors namely, area, perimeter, diameter, orientation, eccentricity, major 

and minor axis length are used effectively for image analysis and classification. 

Area: It is the total number of pixels (P) covering the segmented kidney stone or cystic 

region and is calculated as in Eq. (1.8.5) 
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Major axis length: It is obtained by the diameter of the largest circle circumscribed by the 

segmented stone or cystic region and is shown as in Eq. (1.8.6). 
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Maj_axis                                                          (1.8.6)                       

 

Minor axis length: It is obtained by the diameter of the smallest circle circumscribed by the 

segmented stone or cystic region and is shown as in Eq. (1.8.7). 
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Min_axis                                           (1.8.7) 

 

In Eq. (1.8.6) and Eq. (1.8.7), (m1,n1) and (m2,n2) are the end points of the axes. 

Eccentricity: Eccentricity is defined by the ratio between major axis length and minor axis 

length. It is expressed as in Eq. (1.8.8). 

                            Eccentricity

 
Min_axis

Maj_axis


                                     

                                        (1.8.8) 

Orientation: It is a scalar value that represents the angle between the horizontal axis and the 

major axis of the diseased kidney region. 

 

1.8.3 Wavelet transform based features 

In wavelet transform method, the medical image is converted into new form using frequency 

properties of gray-level distribution. The wavelet is a function that divides the continuous 

waves into various scale components. The scales are processed simultaneously in time and in 

frequency domain. The wavelet transform is based on windowing techniques of varying 

sizes. The long term intervals are used to extract low frequency features and short term 

intervals are used to extract high frequency features.  

Wavelet considers both time and frequency domain knowledge of the image. Wavelet 

transform can be effectively used in image processing for various applications such as 

compression, image analysis, speckle noise removal of medical images (Hiremath P. S., 

Prema T. Akkasaligar and Sharan Badiger, 2010). 

In wavelet decomposition, a 2D image is decomposed into four frequency sub-bands, 

namely, the LL, HL, LH and HH bands as shown in Fig. 1.17 (a). H symbolizes high pass 

filter and L indicates low pass filter. LL is obtained by applying a low pass filter for both 

horizontal and vertical directions. LH is obtained by applying a low pass filter for horizontal 

and high pass filter for vertical directions. HL is obtained by applying a high pass filter for 

horizontal and low pass filter for vertical directions. HH is obtained by applying a high pass 

filter for both horizontal and vertical directions. In higher decomposition levels, LL subband 
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alone is taken for further subdivision because, it represents the approximate coefficients. The 

decomposition at level 3 is shown in Fig. 1.17(b). An example for level 1 wavelet 

decomposition of a ultrasound image of kidney is shown in Fig. 1.17(c). Energy feature 

obtained at horizontal, vertical, and diagonal subbands are considered as features for 

classification of diseased ultrasound images of kidney. 

 

                                  Fig. 1.17. Wavelet decomposition: (a) Level 1 decomposition (b) Level 3 decomposition                                     

                                                  (c) Level 1 decomposition of a sample US image of kidney 

Various wavelet families are available like Daubechies, discrete symlets, biorthogonal, 

reverse biorthogonal, Meyer, and coiflets. 

1.8.4 Tamura features 

Tamura features work on the visual perception of humans. They contribute potentially for 

representation of image. The computed features take into account of variation between the 
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average signals for the non-overlapping windows of various sizes. The three common 

features of Tamura are coarseness, contrast and direction. 

 Coarseness: It is the measure significant spatial variation of grey levels. In other 

words, it refers to the size of the significant pixels framing the texture. 

 Contrast: It is a measure of grey level distribution in the image and the extent to 

which the gray levels are biased towards black or white. 

 Direction: Direction is a measurement of the frequency distributions of oriented 

edges versus their directional angle. 

1.8.5 Histogram of Oriented Gradient (HOG) features 

The HOG feature set is used for object detection in image classification. It considers the 

number of occurrences of gradient orientation in region of interest (ROI). To find HOG 

features, the image is divided into small connected regions called as cells. A histogram of 

gradient directions is computed for all the pixels within each cell. The HOG descriptor is 

computed by concatenating these histograms. To improve the accuracy, the local histograms 

are contrast-normalized by computing a measure of the intensity across a larger region of the 

image called a block. Then these values are used to normalize all cells within the block. This 

normalization results in better invariance to the changes in illumination and shadowing. 

1.9 Classification 

The classification is the process of classifying the medical images as normal or abnormal 

images based on features extracted. Several classification methods are available to classify 

the extracted feature sets. 

1.9.1. Support Vector Machine (SVM) 

 
The SVM is a supervised machine learning algorithm or discriminative classifier used to 

separate the hyperplane. The hyperplanes are decision boundaries which help to classify the 

data. The data falling on either side of the hyperplane is categorized into different classes. 

Based on a number of input features the dimension of the hyperplane varies (M. B. 
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Subramanya, S.Mukherjee and M. Saini, 2015). The SVM training algorithm is used to build 

a model that categorizes the data set into two or more categories. The SVM creates a hyper-

plane to increase the margin between different categories as shown in Fig. 1.18. The labled 

training data belongs to one category and remaining data in other categories.  

 

Fig. 1.18. Working of support vector machine 

 

1.9.2. K-Nearest Neighbors (k-NN) 

The k-NN is a simple, easy-to-implement and non-parametric supervised learning algorithm. 

It is used as a classifier. In a supervised learning algorithm, the labeled training sets are used 

during the training phase. In testing phase, non-labeled data sets are used to analyze and 

recognize the label for data sets based on trained labeled data sets. The k-NN classifier uses 

k-nearest trained data set to test non-labeled data set and recognizes the similarities based on 

major votes to a class label. The output of the classifier is a class member. The entire training 

sets are used during the testing phase. 

The working of k-NN is explained in the Fig. 1.19. The example considers k=3 for finding 

the class of green dot. As shown, the 3 nearest objects are selected, based on majority vote 

the object is classified to the category of red triangle. 
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Fig. 1.19. Working of k-NN classifier 

For the n classes, c1, c2, c3, …, cn, and the unknown sample T, the k-NN judge that the 

majority vote for k nearest neighbors belongingness to one class using the Eucledian 

distance. The decision function (S. Manish, 2007) is as in Eq. (1.12.1). We have used a 

classifier with the class labels as normal class, stone and a cystic ultrasound image of kidney. 

                                           

                                         Di (T) =max (ki )                                                         (1.12.1) 

   for  i=1,2….n. 

1.9.3. Fuzzy K-Nearest Neighbors (Fuzzy k-NN) 

 The fuzzy k-NN classifier is more suitable to classify explicit or undefined data sets with 

assumptions that, the data set belongs to all classes with different degree of membership. In 

fuzzy k-NN, all unlabeled test data sets are analyzed and assigned to the nearest trained class 

labels with full membership of degree one. If the test data set is not close to any class labels, 

then such data sets are assigned to all class labels with different degree of membership. The 

main goal of the classifier is to build the trained data set, which is used for prediction.  

In case of fuzzy k-NN, the decision of class is made by using the relation between distance 

and similarity. The distance between T and Ci can be shown as in Eq. (1.9.2).  
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                               dist (T,Ci) = 1-sim(T, Ci)                                                                    (1.9.2) 

Where sim(T, Ci) denotes the similarity between training image set and testing image. K-

nearest neighbors‟ known samples {Ti, 1, 2, k} of the classifying sample T, are computed as 

the members of a sample T to each class as specified (S. Manish, 2007) in Eq. (1.9.3).  
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                                (1.9.3) 

1.10 Motivation 

Ultrasound image segmentation is strongly influenced by the quality of the input images. 

There are characteristic artifacts which make the segmentation task complicated such as 

attenuation, speckle, shadows and signal dropout; due to the orientation dependence of 

acquisition that can result in missing boundaries. Segmentation and classification of kidney 

in medical ultrasound images is a challenging task.  

Most of the work done so far mainly focuses on segmenting the required organ in US images.  

The motivation of study is to segment the diseased part of the kidney such as cyst or stone 

rather than an entire organ. Further, the classification of the input ultrasound image of kidney 

into normal and abnormal (cystic or stone) image followed by the appropriate analysis is 

crucial information for the medical experts. Presently, the diagnosis is subjective and time-

consuming process. Hence, computerized medical applications are gaining more popularity 

in assisting the clinicians for diagnosis of the diseases. 

1.11 Objectives of the study 

The primary aim of the work is to detect, segment and analyze the cysts and stones in 

ultrasound images of kidney. Ultrasound images of normal kidney, cystic and kidney stone 

are considered for the research work. In the proposed work, different methods for speckle 

noise removal, segmentation and classification algorithms are experimented. The main aim 

of the research work includes the design and development of efficient methods for automatic 

ROI generation, analysis and recognition of kidney disease in medical US images namely, 

kidney stones and polycystic kidney disease. The objectives of the thesis are: 
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 To design efficient methods for the generation of the automatic initial contour of 

cysts and stones in the medical US image of the kidney.  

 To design efficient methods for fully automated segmentation of cysts and stones in 

the medical US image of the kidney.  

 To develop efficient methods for the extraction of optimal features from the ROI 

obtained and classification of kidney diseases using various classifiers. 

 To identify the number of cysts and stones along with their size in the medical US 

image of the kidney having cysts and stones. 

1.12 Organization of the thesis 

The thesis is organized into seven chapters.   

The literature review is presented in Chapter 2. In order to put the research into the context 

different issues are addressed in the literature. The brief review of existing works on 

importance of ultrasound images, denoising of ultrasound images, segmentation of kidney in 

ultrasound images, detection of renal calculus or kidney stone in medical images, detection 

of cysts in medical images of kidney, and diagnosis of other kidney diseases using ultrasound 

medical images are discussed. 

Segmentation of normal kidney, cysts and stones using GVF method is discussed in Chapter 

3. Experimentation carried out, performance evaluation of the proposed method are discussed 

in the chapter. 

Automatic segmentation of kidney cysts using active contour model is proposed in Chapter 4. 

An automatic initial contour generation, avoiding the user intervention is proposed followed 

by cystic kidney image segmentation. The performance evaluation by medical experts and 

using various parameters is discussed in this chapter. 

Automatic segmentation of cysts and stones using the level set method is discussed in 

Chapter 5. The improved performance of the level set method over GVF and ACM is shown 

in Chapter 5. 
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Chapter 6 describes feature extraction and classification of the diseases in US images of 

kidney. Different set of features like  Haralick, wavelet, shape, Tamura and HOG features are 

extracted and classified using three classifiers namely, k-NN, SVM and fuzzy k-NN. 

Performance of the different feature sets and classifiers are evaluated. 

Finally, Chapter 7 presents the conclusions of the research study undertaken herein. The 

contributions and limitations of the proposed work are discussed. In addition, 

recommendations and future directions of the present study are also presented. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

The literature on computer-assisted approaches to the US kidney image analysis is scarce. 

The discussion on existing methods is divided into six main sections as denoising of 

ultrasound images, segmentation of kidney in ultrasound images, segmentation and 

classification of renal calculus or kidney stone in medical images, segmentation and 

classification of kidney cysts in medical images, and diagnosis of other kidney diseases using 

ultrasound medical images.  

The kidney and its associated diseases are preferably evaluated by ultrasound imaging 

modality (O‟Neill, 2014) because of the kidney's location, shape, and limited range of 

pathology. Additionally, US imaging is safe, easily accessible, and free from radiation 

effects. Because of all these virtues, US imaging is the ideal imaging modality.  US imaging 

is considered as demonstrating high sensitivity in detecting kidney cysts. Hence, it is widely 

used in the diagnosis and progression monitoring of PKD (Gradzik M. et al., 2016). US 

imaging is a good diagnostic tool for CKD (Lucisano, G. et al., 2015). The measurements 

like pole-to-pole length, width, and thickness obtained by sonography are correlated with 

kidney functions and helpful for the diagnosis of CKD.  The parameters like kidney size 

obtained by US imaging are correlated with the functionality of the organ such as the 

filtration rate of glomeruli (Adibi A., Adibi I. and Khosravi P., 2007). Glomerular filtration is 

the major functionality of the kidney. Thus the sonographic parameters obtained can be used 

to predict kidney functionality and abnormality. 

US imaging is a vital tool for diagnosis. It provides the internal structure of the body to 

eventually diagnose the diseases or abnormal tissues. US images have many advantages. 

They are non-invasive, non-harmful, portable, accurate, and cost-effective. Because of these 

characteristics, US images are the most dominant diagnostic tools. However, the quality of 

US images is poorer. It is due to many reasons, like the noise introduced during the process 

of image acquisition and defectiveness in the imaging system. So, in recent years extensive 
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work is carried out in this direction to resolve the issues associated with speckle-noise in US 

images. 

In Chapter 1, a general perspective of the concepts related to the research is discussed. A 

comprehensive literature survey related to the research work is presented in this chapter. 

2.2 Denoising of ultrasound images  

B-mode US images are characterized by the speckle artifact. It introduces tiny false 

structures in the images, disguising the true tissue boundaries. The speckle enforces difficulty 

for a human to discriminate between pathological tissue/organ in diagnostic examinations 

and the speckle noise. The speckle exists as a result of overlaps between the echoes. It is 

generated because of two signals are caught in identical environments, experiencing similar 

speckle artifact (C.B. Burckhardt, 1978; P.N.T Wells and M. Halliwell, 1981; Bamber J. C. 

and C. Daft, 1986). 

Speckle noise uses a phenomenon of acquiring the images based on signal interferences that 

are emanated from heterogeneities of the objects under study. The superposing acoustic 

waves with random phases and amplitudes tend to create convoluted interference patterns, 

leading to speckle noise. US images are more prone to speckle noise. Speckle noise reduces 

image contrast. It leads to ambiguity and image blurring. Further, it decreases the quality and 

consistency of medical ultrasound image. Hence, various methods for suppressing the 

speckle noise are proven to be essential. Enhancement of image quality improves the 

diagnostic perspective of US images.  

Speckle noise impurity is very common in US images. The noise in the ultrasound image 

appears because of many causes.  Surrounding tissues, fatty content and respiratory moments 

are some reasons for noise. The noise may have a bad effect on the segmentation or 

classification of organs (S. D. Chen and A. Ramli, 2003). Noise in ultrasound images leads to 

poorer resolution and low image quality. Noise level is higher in ultrasound images than the 

other imaging modalities like X-ray, CT, and MRI. Apart from speckle noise in US images, 

several other errors are made during image acquisition. In (Andrzej Paweł Wieczorek, 

Magdalena Maria Woźniak, Janusz F. Tyloch, 2013), authors have illustrated about the most 

common errors committed during the US diagnosis of the urinary system. The common 



42 
 

errors appear mainly because of inappropriate techniques of US imaging or inaccurate 

interpretation. These errors arise due to inexperienced sonographers, inadequate scanning 

machine, and insufficient knowledge about operating the machine, and the lack of patient 

support during the scanning. These errors may lead to poor quality of the image and wrong 

diagnosis in turn. 

The interpretation of kidney boundary is difficult for visual inspection by the experts when 

the speckle noise becomes apparent. In (Hiremath P. S., Prema T. Akkasaligar and Sharan 

Badiger, 2009; Hiremath P. S., Prema T. Akkasaligar and Sharan Badiger, 2013; T. Joel and 

R. Sivakumar, 2013), authors have discussed the methods for despeckling medical US 

images. In (Gonzalez R. C. and Woods R. E., 2002), the authors have discussed the various 

despeckling techniques in image processing. Spatial filtering methods like mean filter, 

median filter, Frost filter, Lee filter, etc. are discussed. Several multi-scale methods based on 

wavelet, curvelet, and contourlet have been discussed. So, the despeckling of ultrasound 

images is an essential preprocessing step. Noise must be carefully eliminated without 

affecting the major features of the input image.  

(Si Wang et al., 2017) have discussed a despeckling method using total variations of first and 

second order. The method uses an edge-preserving feature which is very essential in further 

stages of segmentation and analysis. The negative effects of speckle noise in US images are 

eliminated by (Shan Gai et al., 2018). They have used a monogenic wavelet transform with 

the Bayesian framework. The monogenic coefficients are separated as noisy and noiseless 

signals using Laplace mixture and Rayleigh distributions respectively. In (Yingyue Zhou et 

al., 2019), authors have presented an iterative speckle filtering technique using Bayesian non-

local means filter (BNLMF). The technique makes use of a key probability density function. 

The noisy image is passed through multiple iterations of the filter. 

The wavelet transform is applied to perform the multi-resolution analysis. The image is 

decomposed into four frequency “subbands” namely, horizontal, vertical, diagonal, and 

approximate bands. Despeckling is performed by computing the local statistical features in 

these subbands. One of the virtues of wavelet transform in noise removal is a lossless 

resultant image, produced during the reconstruction of output image after denoising 

(Hiremath P. S., Prema T. Akkasaligar, and Sharan Badiger, 2010). Soft thresholding is 

applied to coefficients obtained after the discrete wavelet transform (DWT).  Soft 
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thresholding has more benefits than hard thresholding such as: It prevents discontinuities and 

good at recovering the images as it prevents fast- sharper alterations. Soft thresholding has 

comparatively good stability.  

Contourlet transform is very effective in smoothening of the ultrasound image contours. It is 

performed in two stages as discussed in (Hiremath et al., 2009;   Hiremath P. S., Prema T. 

Akkasaligar, and Sharan Badiger, 2011). In the first stage, the Laplacian pyramid(LP) 

decomposition is applied for capturing of discontinuous points. In step two, the directional 

filters bank is used for connecting the points of discontinuities to construct an undeviating the 

arrangement of points. Inverse contourlet transform is carried out to obtain the despeckled 

image. As contourlet transform performs better in noise removal, denoising is performed in 

the proposed work using contourlet transform before segmentation. 

2.3 Segmentation of kidney in ultrasound images  

In (Wan M. Hafizah and Eko Supriyanto, 2012), authors have proposed an algorithm for 

segmentation of the region of interest (ROI) in renal ultrasound images. Firstly, the speckle 

noise reduction is carried out using a median filter, Wiener filter, and Gaussian low-pass 

filter. Then texture analysis is performed by computing the local entropy of the image. This 

is followed by the threshold selection, morphological operations, object windowing, 

determination of seed point, and the ROI generation. The initial seed point is determined with 

the assumption of the kidney always lies in the center of the US image. However, the 

location of the kidney in the US image may not lie in the center for all views of kidney US 

images.   In (Xie J., Jiang Y. and Tsui H., 2005), authors have discussed the texture feature 

extraction by using a bank of Gabor filters on test image through a two-sided convolution 

strategy. The texture model is created by approximating the parameters of a set of half-

planed Gaussians using the expectation-maximization method. Further, the texture 

similarities of areas around the segmenting curve are identified as the inside and outside 

regions. A method based on the scale-space representation of the assessment of multi-scale 

differential principal curvature features is proposed in (Raja, K. B., Madheswaran  M. and 

Thyagaraja, K., 2000). It can be used to determine the extent of isolation between the 

features of different kidney types. In (Ashish K. Rudra, et al., 2013), authors have proposed a 

kidney segmentation algorithm using graph cuts and pixel connectivity. A connectivity term 
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is introduced in the energy function of the standard graph cut via pixel labeling. Each pixel is 

assigned a different label based on its probabilities to belong to two different segmentation 

classes. The labeling process is articulated according to Dijkstra‟s shortest path algorithm. In 

(Carlos S., et al., 2013), authors have used an active shape model, based on a covariance 

matrix adaptation assessment strategy. The genetic algorithm optimizes the posture and main 

shape variation models of the kidney shape model, resulting in the segmentation of the 

kidney.  

In (K. Bommannna Raja, et al., 2006), authors have discussed a higher-order spline 

interpolated contour obtained through homogenously distributed coordinates for 

segmentation of the kidney region into different classes. In (Chia- Hsiang Wu and Yung-

Nien Sun, 2006), authors have used the Laws‟ microtexture energies and maximum a 

posteriori (MAP) estimation to build a probabilistic deformable method for kidney 

segmentation. Using texture image features and MAP estimation, each image pixel is 

categorized as inside or outside the periphery. Texture and shape prioris based method is 

used for kidney segmentation in ultrasound images. In (J. Alison Noble and Djamal 

Boukerroui, 2006; K. M. Meiburger, U. R. Acharya and F. Molinari, 2018), authors have 

conferred reviews on ultrasound segmentation methods in detail. Mainly they focused on 

techniques developed for medical B-mode ultrasound images. Authors have discussed a 

review of articles by clinical application to highlight the methods that have been investigated 

and the process of validation that has been done in different clinical domains. They have 

presented different classification methodologies in terms of the use of shape prior 

information.   

In (Wan M. Hafizah and Eko Supriyanto, 2012), authors have applied rotation to the kidney 

region in the US image for the images of different orientations and then texture feature 

analysis is done. In (Arpana M. Kop and Ravindra Hegadi,2010), authors have computed an 

external force called gradient vector force to avoid poor convergence to concave boundaries 

of the snake model. In (Huang J., Yang H. and Chen Y. , Tang L.), authors have employed a 

parametric super-ellipse as a global prior shape for a human kidney and the Fisher-Trippet is 

used to describe the gray level statistics. In (Ujjwal Maulik, 2009), genetic algorithms (GAs) 

have been used for segmentation. The genetic algorithmic framework used is effective in 

segmenting noisy US images. In (Vijay Jeyakumar and M. Kathirarasi Hasmi, 2013), authors 
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have described a framework for evaluating ultrasound kidney image segmentation using 

various algorithms like edge detection, watershed segmentation, region-based segmentation, 

and clustering method. It has been found that the clustering method performs well among 

these methods.  

From the literature survey on the segmentation of kidney in US images, it is observed that 

there is a need for research in fully automatic segmentation of kidney from US images 

without user intervention. Some of the methods assume a fixed elliptical shape and pre-

registration of the image. It cannot work for all the new input images to be segmented.  

Complete automation of segmentation can be achieved through the generation of initial seed 

point automatically for algorithms like region growing and automatic initial contour 

generation for deformable methods.  Further, the algorithm must work for all the views of US 

images of kidney like transverse view and longitudinal view. 

2.4 Detection of renal calculus or kidney stone in medical images 

 In (P. R. Tamilselvi and P. Thangaraj, 2011), the author has proposed a region indicator with 

contour segmentation. K-means clustering is utilized to find accurate calculi from renal 

images. In (P. R. Tamilselvi, 2013), authors have proposed segmentation and detection of the 

calculi using an effective Adaptive Neuro-Fuzzy Inference System (ANFIS) approach.  In (P. 

R. Tamilselvi and P. Thangaraj, 2011), the study presents a scheme for ultrasound kidney 

image diagnosis for stone and its early detection. It is based on semiautomatic seeded region 

growing segmentation and classification of kidney images with stone sizes. In segmented 

portions of the images, the intensity threshold variation is used in identifying multiple classes 

to classify the images as normal, an image with stone and early stone stages. In this 

segmentation method, the homogeneous region depends on the image granularity features, 

where the interesting structures with dimensions comparable to the speckle size are extracted. 

In (Neil R. Owen, 2006), authors have reported the calculation and measurement of shock 

wave scattering by stone models in water. Calculations are based on linear elastic theory to 

find pressure in the fluid and stress in the stone models. Further scattering theory is used to 

find radiation from the stone models. Measurements are made with a spherical, broadband 

receiver used to distinguish between fractured and intact model stones. In (Jie Wu, 2009), 

authors have worked on MRI images of the kidney. They have used a template-based 
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technique for diagnosis of kidney diseases such as tumors, cyst, and stone. In (Ranjitha M., 

2016), authors have used GLCM and second-order texture features followed by k-means 

clustering to analyze the required features in the kidney organ. The principal component 

analysis is used for feature reduction. 

There is a scope to develop fully automatic segmentation algorithms for medical images, 

particularly for US images of kidney stone. Most of the work carried out so far is lacking in 

image analysis of the segmented stones, to determine the size of the stone. Analysis of the 

segmented results has greater importance in clinical analysis for further plan of treatment by 

medical experts. 

2.5 Detection of cysts in kidney images of other imaging    

modalities 

In (Mahmoud Ramze Rezaee, 2000), an unsupervised image segmentation technique is 

presented, which combines pyramidal image segmentation with the fuzzy c-means clustering 

algorithm. Each layer of the pyramid is split into a number of regions by a root labeling 

technique, and then fuzzy c-means is used to merge the regions of the layer with the highest 

image resolution. Cluster validity functional is used to find the optimal number of objects 

automatically. In (Carlos Nicalou et al., 2000), authors have described the use of sonographic 

features from US images of kidney in differentiating the ADPKD from ARPKD. The 

parameters such as the number of cysts, their sizes, cortical echogenicity, etc., can distinguish 

ADPKD from ARPKD easily.  A statistical survey of clinical data and sonographic 

parameters of the kidney is used by the authors for the study. In (Kanishka Sharma, et .al, 

2017), automated segmentation of ADPKD kidneys, using fully convolutional neural 

networks is proposed on CT images. The efficiency of the developed method is measured 

both by quantitative and qualitative methods. In (Kyongtae T. Bae,  et .al, 2014), a semi-

automated method is developed to segment individual renal cysts in MR images of patients 

with ADPKD using image editing software.  

In (Arlene B. Chapman and Wenjing Wei, 2011), authors have explained the appropriateness 

of using US, CT, and MRI for the detection of kidney cysts. However, CT and MRI show 

higher resolution and increased sensitivity for the detection of kidney cysts of diameter less 
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than 1cm. But, due to low-cost, no radiation and contrast exposure, US imaging is the 

primary choice for diagnosis of ADPKD.  Both CT and MRI modalities have greater 

sensitivity compared to ultrasonography in the detection of cysts of smaller sizes, particularly 

in children as mentioned in (Nascimento A. B., 2001). Total renal volume is used as a 

suitable parameter for evaluating disease progression. But, for significantly enlarged kidneys, 

the US does not yield an accurate valuation of their sizes (Wołyniec W. et al., 2008). Hence, 

CT and MRI are the preferred imaging modalities for the diagnosis of cysts, of too smaller 

and too larger sized cyst over the US.   

Most of the standard methods proposed are using cystic MRI and CT images of the kidney. 

The segmentation algorithms found in the literature are semi-automatic. Hence, there is a 

need for fully automatic segmentation algorithms on US images of kidney cysts particularly. 

2.6 Diagnosis of other kidney diseases using medical ultrasound                    

       images 

Ultrasound imaging is used in the detection of other kidney diseases like tumors in the 

kidney, evaluating CKD, etc. US imaging is capable of evaluating kidney tumors before the 

treatment. US image also has the advantage of early diagnosis of tumors (O. Helenon et al., 

2001). The histopathologic property concerning the tumor size can be obtained easily. In 

(Xiong  X. et al., 2019), authors have proposed a method for the segmentation of renal 

tumors in US images using adaptive sub-regional evolution level set algorithm. Radius and 

curvature of the convoluting initial level set function are adaptively adjusted based on 

internal and external gradient forces. In (Li L., Ross P., Kruusmaa M., and  Zheng  X., 2011), 

authors have shown a comparative study of various segmentation algorithms such as region-

based, edge-based and texture-based algorithms for US images of renal tumors.  

In (Pujari R. M., and Hajare V. D., 2014), authors have presented a method for analysis of 

chronic kidney disease stages in US images. Authors have used the median filter followed by 

manual cropping of the image. The manually segmented image is separated into four 

concentric rings. Based on the black to white ratio of each ring, the stage of CKD is 

determined. In (Chen C. et al., 2014 and Chen C. et al., 2020), authors have proposed a 

method using image processing and machine learning algorithms for the diagnosis of 

different CKD stages. Texture features and SVM classifier are used for analysis. Features to 

analyze brightness, area, grayscale variations are used on a preprocessed (applying median 
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filter) image. In (Chin-Chi Kuo, et al., 2019), authors have presented estimation of kidney 

function and CKD through US images using deep neural networks. For finding the 

glomerular filtration rate, a deep convolution neural network is used.  

US images are effectively used as an efficient diagnostic tool for many kidney diseases like 

kidney stones, tumors, polycystic kidney disease, chronic kidney disease, etc. Thus, there is a 

crucial requirement for the design and development of a fully automatic computer-assisted 

diagnostic system for the analysis of kidney diseases. 

2.7 Summary 

The literature review in this chapter has examined the existing work, on importance of 

ultrasound images, denoising of ultrasound images, segmentation of kidney in ultrasound 

images, segmentation and classification of renal calculus or kidney stone in medical images, 

segmentation and classification of cysts in medical images of the kidney, and diagnosis of 

other kidney diseases using ultrasound medical images.  

The work in recent years on ultrasound images deals with the segmentation schemes to 

identify the kidney boundary using various methodologies. Not much work is cited in the 

literature for the segmentation of diseased portions such as stone or cyst in the kidney organ. 

Further analysis of the segmented region like location, number of cysts/stone and size is 

hardly found in the existing literature. To the best of our knowledge, classification of the 

segmented organ as the normal and diseased organ is rarely found in the existing works. The 

scope exists for the automatic region of interest (ROI) generation, analysis, and recognition 

of kidney disease from ultrasound images of the kidney. 

The literature survey indicates the necessity of further research, to develop and evaluate new 

computer-assisted techniques for the detection of abnormalities in the kidney.  Analysis of 

stone and PKD in the US image is very essential in particular. Segmentation and 

identification of kidney cysts and stones in US images is discussed in subsequent chapters.  
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Chapter 3 

GRADIENT VECTOR FORCE BASED 

SEGMENTATION OF KIDNEY, CYSTS AND STONES 

IN ULTRASOUND IMAGES OF KIDNEY 

3.1 Introduction 

Segmentation reduces the larger available information to a more focused point. However, it 

is a difficult task for noisy images like B-mode US images. Segmentation of images using a 

deformable curve is essential in medical images. The extraction of anatomic 

structures/tissues by segregating the original image pixels into subsets conforming to the 

organ/tissue is very essential and a primary stage of the medical image analysis. It is carried 

out through registration, labeling, and other means of user input. The manual process of 

segmentation is extremely labor-intensive and time-consuming. Segmentation by traditional 

approaches like region growing and edge detection requires some form of expert interactive 

inputs. The complete automation of these techniques is hard. This is because of the 

complexity, variations within and across the objects to be segmented. Noisy images and poor 

quality images with added artifacts can lead to false region segmentation or boundary cutoffs 

in the objects (or ROI). 

 The deformable spline-based segmentation algorithms can overcome the drawbacks 

associated with traditional image processing algorithms. The connected and contiguous 

representations reflect the object borders. Prior knowledge of continuity and smoothness of 

the deformable methods can resolve issues such as noise, gaps, and other anomalies in object 

boundaries. Additionally, the parameter based model representation provides a condensed, 

analytical narration about ROI shape. All these characteristics are leading to a vigorous and 

sophisticated technique. The snake model is the first and primarily used deformable method 

for a medical image, to extract the ROIs in two-dimensional images. 

 

 

1
 Akkasaligar Prema T. and Biradar Sunanda, “Analysis of polycystic kidney disease in medical 

ultrasound images, International Journal of Medical Engineering and Informatics, vol.10 (1), pp. 49-64, 
2018. 
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The traditional snake model has certain shortcomings like their sensitivity to the local 

minimum state. The performance of segmentation is dependent on the converging policy 

(Cohen L.D. and Cohen I., 1990). It fails in convergence to the nearest boundary. The GVF 

model successfully addresses the issues of the traditional model. It expands towards the 

boundary of a ROI when the GVF field is nearer to it. But, it changes smoothly over the 

consistent regions, expanding towards the ROI boundary. The field prevents a snake from 

expanding to an unnecessarily larger range and forces it to a concave region.   

The cysts and stones in the kidney do not have a perfect geometrical shape, but resemblance 

to concave-shaped objects. The GVF segmentation is more suitable for concave-shaped 

objects and hence suitable for the segmentation of a bean-shaped kidney. The GVF algorithm 

is used for the effective segmentation of normal and abnormal kidney having a stone or cyst. 

In the present chapter, denoising of ultrasound images of the kidney is discussed. Further, the 

efficient segmentation of cysts, stones, and kidney in renal US images is carried out using 

GVF.   The experiments are carried out to assess the suitability of using GVF deformable 

curves. The performance evaluation of the method is enlightened in this chapter. 

In the present chapter, the objective is to propose a semiautomatic segmentation method for 

the segmentation of the kidney, cyst, and stone in US images. 

3.2 Proposed method 

The proposed method of segmentation of normal kidney, stone, or cysts in renal ultrasound 

images is shown in Fig. 3.1. The input ultrasound image of the kidney is denoised using 

contourlet transform. The denoised image is read as input by GVF segmentation algorithm 

along with an initial contour specified based on expert opinion.  The GVF segmentation 

method mainly aims at finding the précised boundary of the region. The GVF segmented 

image is evaluated using the performance parameters such as Dice coefficient (DC) and 

Jaccard coefficient (JC), sensitivity, specificity, accuracy, and execution time. The 

segmented output image is compared with the manually marked image by a medical expert.   

In order to apply GVF, an edge map f(x,y) is computed on the despeckled image S(m,n). It is 

having a larger size and is approximately nearer to the actual boundary. Further, it is 

deformed towards the actual edges of the ROI using GVF external force.  
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Fig. 3.1. Block diagram of the proposed methodology 

It is essential to mention the initial parameter for the snake deformation. After complete 

evolution, the initialized balloon fits into the actual ROI boundary. The different steps of 

GVF segmentation are shown in Algorithm 3.1. 

Algorithm 3.1: GVF based segmentation model 

 

Input: Denoised renal US image (S) with initial contour. 

Output: Segmented kidney/cystic/stone region. 

Begin 

Step 1: Read the denoised renal US image S. 

Step 2: Set the initial parameters and boundaries of initial contour, based on expert opinion  

            for the balloon deformation. 

Step 3: Compute an edge map of S using Eq. (1.7.7) to obtain the GVF field.  

Step 4: Construct the GVF by diffusing the edge force and is achieved by minimizing the  

            energy functional which is given by Eq. (1.7.8). The value of gradient is calculated  

            using Euler equations specified in  Eq. (1.7.9) and Eq. (1.7.10). 

Step 5:  Based on the GVF external force on the edge map, interpolate the snake for     

             segmentation of ROI. 

Ultrasound image of kidney 

Noise removal using contourlet 
transform 

Segmentation of normal kidney, kidney 

cysts and kidney stones using GVF 

Performance analysis 
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Step 6: Continue deformation, until the balloon completely fits in the actual boundary. 

Step 7: Obtain the précised boundary of the ROI. 

End. 

The basic details of the gradient vector force method are described in section 1.7.2 of the 

Chapter1. The GVF snake model is applied for the segmentation of renal cysts in US images. 

As described in Algorithm 3.1, denoised US image of the kidney is taken as input. An edge 

map of denoised image is computed followed by Gaussian filter to get the smoothened 

image. Initial parameters like coordinates for oval, angles, and the number of iterations are 

explicitly provided as input. The initial contour is generated based on expert advice.  Further, 

the GVF snake is interpolated and deformation is continued until the deformed curve fits into 

the precise boundary of the ROI of kidney or cysts/stones.  

 It is suitable for segmenting the kidney, cysts, and stones found in an ultrasound image. 

Accurate sizes of cysts and stones obtained through the proposed GVF method can help the 

nephrologists to provide the appropriate medical treatments for patients. 

3.3 Experimental Results and Discussion  

The experimentation is performed on all 185 US images of the kidney, cysts, and stones. The 

dataset specified in section 1.5 contains the clinical (S1) and web (S2) datasets, comprising 

of 37 normal kidney images, 39 single-cystic, 35 polycystic, 38 single-stone, and 36 

multiple-stones images altogether. The algorithm is implemented on Intel core i5 processor 

with 4GB RAM @ 2.5GHz, using MATLAB 7.11. The denoising of images is carried out 

using spatial and transform domain filters.  

3.3.1 Speckle noise removal 

The input image dataset specified in section 1.5 is considered for the study. Experimental 

results obtained using various speckle noise removal algorithms are described in this section. 

Experimentation is carried both on the spatial domain and transform domain filters. An input 

image is applied with logarithmic transform before filtering, through various spatial domain  
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Table 3.1 Performance of different filters using window sizes of 3X3, 5X5, 7x7 in terms of MSE, 

                              PSNR, and  CC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From filters like Gaussian, median, and Weiner filters. Then, inverse log transform is applied 

to get a despeckled image. The performance of the spatial domain filters is evaluated using 

Filter 

size 

Despeckling filter MSE PSNR CC 

3X3 

Gaussian filter 0.00476 27.756 0.981 

Median filter 0.00539 26.729 0.967 

Weiner filter 0.00512 25.315 0.956 

Wavelet transform 

(Bior 6.8 family, level 3 

decomposition) 

0.00413 28.143 0.984 

Contourlet transform 0.00348 29.729 0.997 

5X5 

Gaussian filter 0.00572 25.891 0.961 

Median filter 0.00641 24.312 0.942 

Weiner filter 0.00598 23.815 0.939 

Wavelet transform 

(Bior 6.8 family, level 3 

decomposition) 

0.00452 26.736 0.954 

Contourlet transform 0.00463 27.234 0.956 

7X7 

Gaussian filter 0.00613 24.106 0.923 

Median filter 0.00647 22.849 0.905 

Weiner filter 0.00687 22.153 0.898 

Wavelet transform 

(Bior 6.8 family, level 3 

decomposition) 

0.00549 24.635 0.943 

Contourlet transform 0.00518 26.729 0.951 
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parameters such as MSE, PSNR, and CC. Different window sizes of 3X3, 5X5, and 7X7 

have experimented, results are tabulated as shown in Table 3.1.  

Table 3.1, it is observed that the window size of 3X3 is optimal. The Gaussian filter performs 

better compared to the other two filters namely, Weiner and median filters. Fig. 3.2 shows 

the filtered images by using different spatial domain filters namely, Gaussian, median, and 

Weiner filters for each of the input image classes namely, normal kidney, cystic, polycystic, 

single-stone, and multiple-stones ultrasound images of kidney respectively. Further, the 

wavelet transform and contourlet transform are good at noise removal than the spatial 

domain filters. 

Fig. 3.2 Denoised images obtained using spatial domain filters  

Image 
class 

Original sample 
 US image 

Gaussian filtered  
Image 

Median filtered 
 Image 

Weiner filtered 
 Image 
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Single-
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Polycystic 

    

Single- 
stone 

    

Multiple-

stones 
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Fig. 3.3 Denoised images obtained using transform domain filters 

Experimentation on different wavelet families and different levels of decomposition is 

carried out. The decomposition level of 3 with biorthogonal 6.8 is found to be more accurate, 

empirically. Similar to the previous filters, log and inverse log transform is applied before 

and after applying contourlet transform respectively. For, the input images of size 512X512, 

two levels of LP decomposition with six levels of directional decomposition filters are found 

as optimal. Hard thresholding is performed further. The final despeckled image is obtained 

by applying the inverse contourlet transform. Among all the five despeckling methods, 
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contourlet transform demonstrates better efficiency and it is justified by the obtained values 

for MSE, PSNR, and CC. The better performance of the contourlet transforms is evident 

from the performance parameter values as shown in Table 3.1. Fig. 3.3 shows the denoised 

images using the transform domain filters namely, wavelet biorthogonal 6.8 and contourlet 

transform. 

The despeckled image obtained by applying a contourlet transform is passed through the 

contrast enhancement. The contrast-enhanced image is obtained by applying histogram 

equalization to get better quality image. The contrast-enhanced images of sample despeckled 

images using contourlet transform are shown in the last column of Fig. 3.3. 

From Fig. 3.3, it is observed that the contourlet transform is more efficient than the wavelet 

method. Hence, contourlet transform followed by histogram equalization is used for 

denoising. Thus contrast enhanced, despeckled image of input US image is used for 

segmentation. 

3.3.2 Segmentation of normal kidney, cyst, and stone  

The denoised images are segmented by applying GVF algorithm. The GVF based 

segmentation requires initial parameters to be defined. Initial parameters include center of 

ROI to be segmented and boundary expansion limit both along X and Y axes. It is 

empirically found that normal images require a boundary limit varying between 50px to 

180px.  The single-cystic and single-stone images contain smaller ROI, the boundary limit is 

as small as 5px to 30px. The polycystic and multi-stone ultrasound images of the kidney, 

requires boundary limit ranging between 60px to 280px. 

The segmentation of ultrasound image of the normal kidney using GVF based segmentation 

algorithm is described in Fig 3.4 (a) to (e). The sample denoised normal ultrasound image of 

the kidney is shown in Fig 3.4(a). Fig 3.4(b) is the initial contour defined manually.  Fig 3.4 

(c) shows intermediate deformation of the GVF-snake and Fig 3.4 (d) is the finally deformed 

image. Fig 3.4(e) is a manually segmented image by a medical expert. A good correlation is 

observed between GVF segmented image and manually annotated image by medical expert.  
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Fig. 3.4. Segmentation of normal kidney using GVF model: (a) Denoised normal kidney ultrasound image. (b) 

User defined initial contour. (c) Intermediate deformed image. (d) Finally segmented image. (e) 

Manually annotated image by medical expert 

The performance of the GVF model is measured by the performance parameters namely Dice 

similarity coefficient and Jaccard coefficient, as mentioned in section 1.7.5. The values of 

Dice coefficient and Jaccard coefficient calculated for segmented ultrasound image of the 

normal kidney are 0.806 and 0.814 respectively for all normal kidney images in the dataset. 

The execution time for segmentation is 14.092 seconds. 

The GVF segmentation is carried out on all 39 normal kidney images. Some of the sample 

outputs are shown in Fig. 3.5. 
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Fig. 3.5. Results of normal kidney segmentation using proposed GVF method 

The segmentation of single-cystic ultrasound image of the kidney is described in Fig 3.6 (a) 

to (e). Fig 3.6 (a) shows the sample denoised image of a single-cystic kidney. Fig 3.6 (b) is 

the pre-defined initial contour. The Fig 3.6 (c) is the intermediate stage of GVF deformation 

Input US image Segmented image by 
proposed GVF method 

Manually annotated 
image by medical expert 

Results 

   

DC=0.73 

JC=0.718 
Sensitivity=0.813 

Specificity=0.857 
Accuracy=0.876 

   

DC=0.91 
JC=0.904 

Sensitivity=0.923 
Specificity=0.935 

Accuracy=0.931 

   

DC=0.78 
JC=0.774 

Sensitivity=0.831 
Specificity=0.837 
Accuracy=0.846 

   

DC=0.783 

JC=0.764 
Sensitivity=0.842 

Specificity=0.851 
Accuracy=0.84 

 
  

DC=0.761 

JC=0.758 
Sensitivity=0.817 
Specificity=0.823 

Accuracy=0.838 
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and the Fig 3.6 (d) is the finally segmented image. Fig 3.6 (e) is the manually segmented 

image by a medical expert. Fig 3.6 (d) and Fig 3.6 (e) show a good visual resemblance. The 

segmented image is binarized to find the size of the cyst. The cyst size is obtained as 

38.5mm
2
. The cyst size specified by medical expert is 35.8mm

2
. A small deviation is 

observed in experimentally determined size of the cyst and actual size. 

 

Fig. 3.6. Segmentation of single-cystic kidney using GVF model: (a) Denoised single-cystic kidney ultrasound 

image. (b) Predefined initial contour. (c) Deformed intermediate image. (d)Finally segmented image 

(e) Segmentation by a medical expert.    

The performance of segmented output image is verified by performance parameters.  The 

values of Dice coefficient and Jaccard coefficient calculated for segmented ultrasound image 

of single-cystic kidney are 0.837 and 0.844 respectively. The execution time required for 

segmentation is 12.149 seconds. Thus, it demonstrates the effective application of GVF for 

the segmentation of single-cystic kidney images. 
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 Fig. 3.7. Segmentation of polycystic kidney using GVF model: (a) Denoised polycystic ultrasound 

image of kidney. (b) Predefined initial contour. (c) Deformed intermediate image.(d) 

Segmented  image  (e) Manually annotated image  by  medical expert  

Similarly, the segmentation of polycystic ultrasound image of the kidney is described in Fig 

3.7 (a) to (e). The Fig 3.7 (a) shows the sample denoised image of a polycystic kidney, Fig 

3.7 (b) is the pre-defined initial contour, Fig 3.7 (c) is the intermediate stage of GVF 

deformation and the Fig 3.7 (d) is the finally segmented image of polycystic kidney. Fig 3.7 

(e) is the manually marked image by a nephrologist. The values of Dice coefficient and 

Jaccard coefficient calculated for segmented ultrasound image of the polycystic kidney are 

0.724 and 0.715 respectively. The execution time for the segmentation of polycystic kidney 

image sample is 20.651 seconds. The comparison between Fig 3.7 (d) and Fig 3.7 (e) shows 

that a single region enclosing all the cysts is segmented instead of segmenting the cysts 

individually. 
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 Fig. 3.8. Results of kidney cysts segmentation using proposed GVF model 

 

Image 

class 

Input US image Segmented cystic 

image by proposed 
GVF method 

Manually annotated 

image by medical 
expert 

Results 

Single 

cystic 

  
 

DC=0.853 

JC=0.858 

Sensitivity=0.891 

Specificity=0.897 

Accuracy=0.895 

Cyst size= 38.4mm
2
 

Single 

cystic 

 
  

DC=0.921 

JC=0.914 

Sensitivity=0.963 

Specificity=0.956 

Accuracy=0.961 
Cyst size=26mm

2
 

Polycystic 

 

 

  

DC=0.68 

JC=0.676 

Sensitivity=0.734 

Specificity=0.774 

Accuracy=0.765 

Polycystic 

 
  

DC=0.734 

JC=0.741 

Sensitivity=0.754 
Specificity=0.750 

Accuracy=0.784 

Polycystic 

  
 

DC=0.776 

JC=0.781 

Sensitivity=0.798 

Specificity=0.793 

Accuracy=0.792 
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The segmented results of cystic kidney images are shown in Fig. 3.8. All the 74 images are 

segmented using GVF. Some of the samples are shown in Fig. 3.8. 

Fig 3.9 (a) to (e) show the sample denoised image of a single-stone kidney, initial contour, 

the intermediate stage of GVF deformation, the finally segmented image, and manually 

marked image by medical expert respectively. A good resemblance observed between the 

segmented image by GVF and the manually marked image by the medical expert.  The size 

of the stone is calculated as 17.7 mm
2
 and the value mentioned by a medical expert is 15 

mm
2
. A small relative error is observed in the experimentally obtained value. 

 

Fig. 3.9. Segmentation of single-stone kidney using GVF model: (a) Denoised single-stone ultrasound   image 

of kidney (b) User-defined initial contour. (c) Deformed intermediate image. (d) Finally segmented 

image. (e) Manual annotation by medical expert. 

Similarly, the segmentation of multi-stone ultrasound image of the kidney is described in Fig 

3.10 (a) to (e). Fig 3.10(a) shows a sample denoised image, the Fig 3.10(b) is the pre-defined 

initial contour, Fig 3.10(c) is the intermediate stage of GVF deformation and the Fig 3.10 (d) 

is the finally segmented image of a multi-stone kidney. Fig 3.10 (e) is the manually marked 
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image by the urologist. The values of Dice coefficient and Jaccard coefficient calculated for 

segmented ultrasound image of the multiple-stones kidney are 0.617 and 0.624 respectively. 

The execution time for segmentation of multiple –stone image sample is 19.347 seconds.  

Similar to polycystic image, the comparison between Fig 3.10 (d) and Fig 3.10 (e) shows that 

a single region containing all the stones is segmented instead of segmenting the individual 

stones. 

  

 

Fig. 3.10. Segmentation of multiple-stones kidney using GVF model: (a) Denoised multiple-stones ultrasound 

image of the kidney (b) Predefined Initial contour. (c) Deformed intermediate image. (d) Finally 

segmented  image. (e)   Manual annotation by medical expert. 

 

All 74 renal calculi images are tested using GVF. The dataset includes 38 single-stone and 36 

multiple-stones images. The results of segmentation for some of the samples are shown in 

Fig. 3.11.  
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From Fig. 3.11, it is observed that the proposed GVF algorithm effectively segments single-

stone kidney US images. However, a single larger region enclosing all the stones is 

segmented for multiple-stones image. 

Fig. 3.11. Results of kidney stones segmentation proposed GVF model 

Considering all the images of the dataset specified in section 1.5, the performance of the 

GVF algorithm is calculated using DC, JC, and the execution time for segmentation of 

normal kidney, cysts, and stone in US images of the kidney. The mean and standard 

deviation of these parameters are computed considering all the images in both the datasets. 

The results obtained are shown in Table 3.2.  

Image 
class 

Input US image Manually annotated 
image by medical 

expert 

Segmented image by 
proposed GVF method 

Results 

Single 
stone 

 
  

DC=0.886 
JC=0.878 

Sensitivity=0.886 

Specificity=0.891 

Accuracy=0.885 

Stone size= 17.7mm2 

Multiple

-stones 

   

DC=0.721 

JC=0.719 

Sensitivity=0.743 

Specificity=0.752 

Accuracy=0.740 

Multiple

-stones 

   

DC=0.641 

JC=0.6466 

Sensitivity=0.647 

Specificity=0.674 

Accuracy=0.665 

Single 

stone 

   

DC=0.934 

JC=0.941 

Sensitivity=0.944 

Specificity=0.935 

Accuracy=0.941 

Stone size= 15.2mm2  
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Table 3.2 Segmentation accuracy of the proposed GVF method 

Image class Segmentation accuracy Execution time  

(in Sec.) DC JC 

 Mean   SD  Mean   SD 

Normal kidney 0.724 0.086 0.732 0.09 12.6 

Single cystic 0.81 0.07 0.802 0.08 9.6 

Polycystic 0.709 0.10 0.722 0.10 16.15 

Single stone 0.746 0.08 0.761 0.07 9.8 

Multiple-stones 0.654 0.09 0.682 0.09 13.2 

From Table 3.2, it is observed that the proposed GVF algorithm can effectively segment the 

normal kidney, cysts, and stones in US images. The execution time required for the 

segmentation of polycystic and multiple-stones images are comparatively more. This is 

because of a single larger contour is deformed enclosing all the cystic/stone regions. The 

performance of GVF is evaluated using another set of parameters namely; sensitivity, 

specificity, and accuracy as elaborated in section 1.7.5 of Chapter 1, are shown in Table 3.3.  

Table 3.3 Pixel level evaluation of the proposed GVF method 

Image class Performance metrics 

Sensitivity Specificity Accuracy 

Mean SD Mean SD Mean SD 

Normal kidney 0.84 0.06 0.86 0.07 0.85 0.07 

Single cystic 0.78 0.07 0.79 0.06 0.79 0.10 

Polycystic 0.70 0.09 0.702 0.08 0.71 0.09 

Single stone 0.85 0.06 0.85 0.05 0.86 0.08 

Multiple-stones 0.71 0.09 0.72 0.10 0.71 0.09 

The set of parameters in Table 3.3 carry out a pixel-level comparison of segmented region 

and ground truth obtained by a medical expert. From Table 3.3, it is observed that there is a 

good agreement between the segmented image by applying GVF and the manually annotated 

image by medical expert for normal kidney, single stone and single cystic images of kidney. 



66 
 

One of the limitations of the GVF segmentation algorithm is, it segments a single larger 

region containing all cysts and all stones, in case of polycystic and multiple-stones ultrasound 

images of the kidney. 

3.4 Summary 

This chapter discusses about the segmentation of the normal kidney, single-cystic, polycystic, 

single-stone, and multiple-stones kidney US images using the GVF snake model. Speckle 

noise removal is one of the essential step, before the segmentation and classification of 

ultrasound images. Various filters and transform domain methods are used for the 

despeckling of kidney ultrasound medical images. Among all transform domain and spatial 

domain filters, contourlet transform is found to be better. 

It is observed that GVF segmentation performs well in segmenting the normal kidney, single-

cystic, and single–stone renal ultrasound images. The performance of the segmentation is 

measured using DC, JC, sensitivity, specificity, accuracy, and the amount of execution time 

taken for segmentation. The results obtained show the effectiveness of the method.  The 

proposed GVF algorithm performs well in segmenting single-cystic and single –stone US 

images of kidney. But, in the case of polycystic and multiple-stones images, a single region 

enclosing all the cysts or stones is marked rather than segmenting individually.  

GVF needs an explicit specification of the initial contour by the user. This is a time 

consuming process for the medical experts. In order to completely automate the segmentation 

algorithm, initial contour is automatically generated in subsequent chapters.  
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Chapter 4 

AUTOMATIC SEGMENTATION OF CYSTS IN 

ULTRASOUND IMAGES OF KIDNEY USING ACTIVE 

CONTOUR MODEL  

4.1 Introduction 

The active contour model (ACM) is also known as the snake model. ACM is an effective 

frame-work to find the object boundary, particularly for 2D images (Cohen L.D. and Cohen 

I., 1990). It is more suitable for noisy images. A deformable curve (snake) is controlled by 

external and internal forces (Cohen L.D. and Cohen I., 1990). An external force drags the 

snake towards the object boundary. However, the internal force prevents the deformation 

movement outside the actual boundary. ACM uses a common approach for matching a 

deformable spline using energy minimizing function/term. Region-based ACM has its own 

strengths over its edge-based version. The region-based model works on the statistical data of 

the contour for controlling the deforming spline. Chan Vase(C-V) model (T. Chan and  L. 

Vese, 2001) is used for the implementation. The C-V model is capable to segment all the 

ROIs in the two-dimensional image. 

In some of the earlier methods, users have initialized a deformable model nearer to the ROI 

of the object to be segmented. It is deformed further to get a ROI of perfect shape and size. 

Users have used the interactive abilities of these models to manually tune the segmentation 

until perfectness is achieved. Additionally, if the user is satisfied with the result on an initial 

contour specified, then it can be used as the initial boundary approximation for other 

adjoining parts of the image as well. The resultant structure of 2-D contours can then be 

coupled together, to frame a continuous three-dimensional model (Lin, W.C. and Chen, S.Y., 

1989; Chang, L.W., Chen, H.W. and Ho, J.R., 1991; Cohen, L.D., 1991; Cohen, L.D. and 

Cohen, I., 1993). 

 

 

1
 Akkasaligar Prema T. , and  Biradar Sunanda, “Automatic Segmentation of Kidney Cysts in Medical 

Ultrasound Images”, UGC Sponsored National Conference on Recent Trends in Image Processing and Pattern 
Recognition-2016,, Karnataka Arts, Science and Commerce College, Bidar, Karnataka, India  2-3 April 2016, 
pp. 140-147. 
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Several segmentation algorithms including GVF and ACM require an initial contour or seed 

point to be specified explicitly. A fixed shape of the ellipse for the kidney is assumed 

globally to segment it. Further, Fisher-Trippets are used to find the gray level properties of an 

image and to classify. This method does not work on different orientations of the image 

(Huang J., Yang H., Chen Y. and Tang L., 2013).  

The survey of several segmentation algorithms for US images including watershed, region, 

and edge-based is found (Jeyakumar V,  Hasmi M. K., 2013). Many researchers have 

integrated the knowledge of the shape of ROI to be segmented in deformable models using 

shape templates. These methods use manually defined shape structures to express a priori 

information needed for several applications of automated segmentation. The concept of pre-

defined templates for deformation can be found in the initial works on spring-loaded 

templates (M. A. Fischler and R. A. Elschlager, 1973). In semi-automatic segmentation 

methods, seed point or initial contour has to be mentioned manually as in the GVF algorithm 

discussed in the previous Chapter. A fully automatic segmentation method for cysts 

segmentation in ultrasound images of kidney using ACM is proposed and described in this 

chapter.   

Chapter 4 includes the discussion on automatic segmentation of cysts in despeckled and 

contrast-enhanced renal US images. It highlights about automatic generation of initial 

contour, ACM algorithm, results, performance evaluation, and analysis. 

4.2 Proposed method 

The proposed method for the segmentation of cysts in ultrasound images of the kidney using 

active contour model is shown in Fig. 4.1. The input image dataset is denoised using the 

contourlet transform. The detection of initial contour automatically is one of the major steps 

before the segmentation. Morphological operators are effectively used for initial contour 

detection followed by segmentation of cysts using ACM.  
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Fig. 4.1. Proposed method for segmentation of cysts in renal ultrasound images using ACM. 

4.2.1 Automatic initial contour detection of cysts 

Morphological operations have various applications in the field of image processing. They 

are used to segment the objects in two-dimensional images approximately. The size and 

shape of the segmented region by morphological operations are slightly varied compared to 

the actual ROI. Hence, the morphologically segmented region is taken as initial contour by 

ACM and is refined further to the actual ROI required. Algorithm 4.1 shows the steps to find 

the initial contour automatically, without the user intervention. 

Algorithm 4.1: Automatic generation of initial contour 

Input: Despeckled and contrast-enhanced renal US image(S). 

Output: Initial contour generated (A) automatically. 

Begin 

Step 1: Read the despeckled and contrast-enhanced renal US image S. 

Step 2: Find the binary form of S. 

Step 3: Apply erosion to eradicate the elements that are thinner than their adjoining    
           components attached to the image boundary. 

Step 4: Compute the contour matrix for the eroded image. 

Ultrasound image of kidney 

Noise removal using contourlet transform 

Segmentation of cysts using active contour model 

Analysis of segmented cysts 

Automatic initial contour selection  
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Step 5: Apply morphological opening using disk-shaped SE (with a size of M1) to remove     
           weak edges. 

Step 6: Erode the image in step 5 with a SE of size M2 to discard the spurious regions. 

Step 7: Find the count of regions and their boundary pixels to get the initial contour (A)      

            automatically for each region in the image(S). 

End. 

The resultant image with automatic initial contour of Algorithm 4.1 is free from the regions 

with a lesser area than M1 and M2. The values of M1=20px and M2=10px, are empirically 

obtained. Thus initial contour is generated automatically using morphological operators 

irrespective of image size, orientation. 

4.2.2 Segmentation of cysts using active contour model  

ACM fundamentals discussed in Chapter 1, section 1.7.2 is used for the segmentation of 

cysts in renal US images. An input image defined with the initial contour is used for 

segmentation further. The step by step procedure is described in Algorithm 4.2. 

Algorithm 4.2: ACM based segmentation of renal cysts in US image . 

Input:  Despeckled US image having an initial contour (A). 

Output: Segmented renal cystic image. 

Begin 

Step 1: Read the image A. 

Step 2: Set ∅(u)=0 and allocate to initial contour A which is to be deformed further.  

Step 3: Compute the interior and exterior of energy terms of A.  

Step 4: Find the value of energy minimizing function and start deformation.  

Step 5: Continue deformation until it reaches the zero-crossing points or exceeds the  

            prescribed number of iterations; then stop. Otherwise, go to Step 3. 

 End.  
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The proposed ACM method shown in Algorithm 4.2 is effectively used for completely 

automated segmentation of cysts in the kidney US images. 

4.3 Analysis of segmented images 

The analysis and interpretation of segmented outputs is extremely essential. The analysis can 

provide information such as the size, shape, location, and orientation of the extracted ROI. 

Automatic analysis of medical images can reduce the burden of doctors from the labor-

intensive work of labeling and marking. It provides an alternative approach for improved 

accuracy, consistency, and reproduction of the interpretation.  

In the analysis step, the information like the number of cysts and their size is computed after 

segmentation. The segmented image is binarized to calculate the number of regions 

indicating the number of cysts. The area is obtained by finding the pixel count covering the 

cystic region. The area of cyst is computed using the Eq. (4.1), mentioned in (P. R. 

Tamilselvi and P. Thangaraj, 2011). 

                                    √                                                                                      (4.1) 

P is the number of pixels covering the cyst region. The sq. root of P is multiplied by 0.264. 

As the known fact is “1mm is equal to 0.264 pixels”. Analysis of the segmented result 

provides useful information to the end-users. Particularly it is very important in the case of 

medical images, revealing the necessary information to the clinicians. 

4.4 Experimental Results and Discussion 

The experimentation is performed on all 74 US images of kidney cysts. 39 single-cystic and 

35 polycystic kidney images present in the dataset specified in section 1.5 are used for 

experimentation. The ACM algorithm is implemented on a system of Intel core i5 processor 

with 4GB RAM @ 2.5GHz, using MATLAB 7.11. The denoising of images is carried out 

using contourlet transform as discussed in section 3.3.1 of Chapter 3. The denoised images 

are applied with the Algorithm 4.1 to generate the initial contour automatically. Further, the 

denoised images with initial contour are segmented by applying the ACM algorithm. 
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4.4.1 Automatic initial contour selection 

The denoised image is binarized to apply morphological operations. Algorithm 4.1 is applied 

to get the image with an initial contour. Fig. 4.2 shows the images obtained at different steps 

of the algorithm.  

 

Fig. 4.2. Initial contour detection for single-cystic renal US image:  (a) Original image  (b) Despeckled 

image  (c) Image after contrast enhancement (d)  Image after a set of morphological operations 

resulting in initial contour (e) Automatically generated initial contour. 

The initial contour needed for the segmentation of a single-cystic renal US image is obtained 

by applying Algorithm 4.1. A sample single-cystic renal US image is shown in Fig. 4.2(a). 

The despeckled image of Fig. 4.2 (a) is shown in Fig. 4.2 (b). The contrast-enhanced image is 

shown in Fig. 4.2 (c). After applying Algorithm 4.1 an initial contour for single-cystic renal 

US image is obtained and is shown in Fig 4.2 (d). A single region is obtained for a single-

cystic image after applying a series of morphological operations as shown in Fig. 4.2 (d). The 

morphological opening is performed using a disk-shaped structuring element of size 20 

pixels and holes of size 10 pixels are filled to discard the spurious regions.  Fig. 4.2 (e) shows 
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the finally generated automatic initial contour for a single-cystic image. Thus, explicit 

specification of initial parameters required by the ACM segmentation algorithms is 

completely avoided.  

 

 

Fig. 4.3. Different stages of detecting initial contour for polycystic renal US image : (a) Despeckled image  

(b) Binary image (c) Eroded image (d)  Image after morphological opening  (e) Final image with 

distinct regions   

The despeckled sample polycystic US image of the kidney, shown in Fig. 4.3(a) is converted 

into binary form, as shown in Fig 4.3 (b).  Elimination of the elements that are thinner than 

the actual cyst ROI is performed using erosion and the resultant image is shown in Fig 4.3 

(c). Further, a morphological opening is performed to remove the weaker edges as shown in 

Fig 4.3(d).  For the opening, a disk-shaped SE of size 20 pixels is used. Further, it is passed 

through the filling of holes with a SE of size 10 pixels, resulting into Fig 4.3(e). Most of the 

spurious regions are discarded by morphological operations. Fig 4.3 (e) shows the clear 

separation of different cystic regions.  Thus initial contour is generated automatically for both 

single-cystic and polycystic US images of the kidney.  
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4.4.2 Segmentation of cysts in renal US images 

Algorithm 4.2 shows the detailed steps involved in the ACM model. Fig 4.4 shows the images 

obtained at different stages of ACM for the segmentation of a single cyst in renal US images. 

Fig 4.4(a) is the image obtained by applying the morphological operations as described in 

section 4.4.1.  Internal and external energy terms are calculated. These two terms are used for 

computing the energy minimizing function, used for deformation. The deformed image in one 

of the intermediate stages after 60 iterations is shown in Fig 4.4(b). Deformation is continued 

until the maximum number of iterations is reached or no change is observed in successive 

iterations. The finally deformed image after 75 iterations is shown in Fig 4.4 (c). Finally, the 

segmented image can be compared with the manually marked image by a medical expert as 

shown in Fig 4.4 (d). The size of the cyst calculated using Eq. 4.1 is 26.5mm
2
. The size 

specified by a medical expert is 28.2 mm
2
.  A smaller relative error is observed in the 

experimentally obtained value. Thus completely automatic ACM algorithm is effectively used 

for the segmentation of single-cystic images.  

 

Fig.4.4. Different stages of segmentation of single-cystic renal US image: (a) Automatically generated 

initial contour  (b)Intermediate deformation at the end of iteration number 60(c) Finally deformed 

boundary at the end of iteration number 75 (d) Manually marked image by a medical expert  
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Fig. 4.5  Segmentation of polycystic renal US image : (a) Original input image  (b) Automatically 

generated initial contour  (c) Finally deformed boundary by ACM at the end of  90 iterations (d) 

Manually marked image by a medical expert. 

Fig 4.5 shows the segmentation of polycystic renal US images using ACM. Fig 4.5 (a) is the 

sample polycystic renal image. ACM based segmentation algorithm accepts a single region 

as an initial contour. A single region is obtained by finding the minimum and maximum of 

X-Y coordinates by considering all the regions extracted by the initial contour detection 

algorithm specified by Algorithm 4.1. Finally, a larger single region covering all the cysts is 

determined as the initial contour for the segmentation of polycystic regions in renal US 

images. Thus, Fig 4.5 (b) shows the automatic initial contour generated for Fig 4.5 (a) using 

morphological operations. Fig 4.5(c) is finally segmented image after the completion of 90 

iterations. It is compared with the manually marked image by a medical expert as shown in 

Fig 4.5 (d). ACM is unable to segment the individual cysts separately instead it segments a 

single region containing all the cysts.  

4.4.3 Performance evaluation  

Different parameters are used for performance evaluation of the segmentation such as Dice 

coefficient, Jaccard coefficient, sensitivity, specificity, and accuracy as discussed in section 

1.7.5 of Chapter 1.  All the single and polycystic images specified in section 1.5 of Chapter 1 

are taken into account for the calculation of the mean and standard deviation. Some of the 

sample results obtained are shown in Fig. 4.6. Fig. 4.6 demonstrates the efficiency of the 

ACM method in the segmentation of single and polycystic renal US images. The proposed 

ACM algorithm segments the single-cystic images effectively without any user intervention.  
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Fig. 4.6. Results of cysts segmentation using proposed ACM algorithm  

Fig.4.7 and 4.8 show the plots of performance parameters for the segmentation of single-

cystic images. From Fig. 4.7and Fig. 4.8, it is observed that the mean values of DC, JC, 

sensitivity, specificity, and accuracy obtained for single cyst segmentation are nearer to 1 and 

are better than GVF based segmentation. The standard deviation values are too lower, 

Image 

class 

Input US image Segmented image by  

proposed  
ACM method 

Manually annotated 

image by a medical 
expert 

Results 

Single 

cystic 

   

DC=0.871 
JC=0.867 

Sensitivity=0.901 
Specificity=0.907 

Accuracy=0.915 
Size of cyst= 36.1mm2 

Single 

cystic 

   

DC=0.934 

JC=0.931 
Sensitivity=0.968 

Specificity=0.962 
Accuracy=0.964 

Size of cyst= 26.5mm2 

Polycystic 

 

   

DC=0.687 

JC=0.682 
Sensitivity=0.746 

Specificity=0.781 
Accuracy=0.773 

Polycystic 

   

DC=0.741 

JC=0.740 
Sensitivity=0.763 

Specificity=0.765 
Accuracy=0.792 

Polycystic 

   

DC=0.783 
JC=0.782 

Sensitivity=0.809 
Specificity=0.806 

Accuracy=0.799 
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indicating no much deviation in the obtained values for the segmentation of individual images. 

Thus automatic segmentation of a single-cystic image is carried out successfully. 

 

Fig. 4.7 Performance analysis of single cyst segmentation in renal US images  

 

Fig. 4.8 Statistical parameters of single cyst segmentation in renal US images  
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Fig. 4.9 Performance analysis of polycysts segmentation in renal US images  

 

Fig. 4.10 Statistical parameters of polycysts segmentation in renal US images  
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Fig.4.9 and 4.10 show the plots of performance and statistical parameters for the segmentation 

of polycystic images. From Fig. 4.9 and Fig. 4.10, it is noticed that the performance is 

improved in the segmentation of polycystic images. The values of performance parameters 

DC, JC, sensitivity, specificity, and accuracy show the improvement in segmentation using the 

proposed ACM method compared to the GVF segmentation algorithm. 

 The ACM segmentation algorithm can be compared with the GVF algorithm as shown in 

Table 4.1. The mean values of DC, JC, and execution time for complete segmentation of 

single-cystic and polycystic images are shown in Table 4.1. The mean values of DC and JC 

are calculated by considering all the cystic images in both the datasets. 

Table 4.1 Comparison of GVF and ACM method for segmentation of cysts in ultrasound images of kidney 

Method Image class Performance 

parameter 

Average execution 

time for 

segmentation 

 (in sec.) 
Mean(DC) Mean(JC) 

ACM algorithm 

 

Single-cystic 0.86 0.87 8.25 

Polycystic 0.81 0.79 9.4 

GVF algorithm 

(Chapter 3) 

Single-cystic 0.81 0.802 9.6 

Polycystic 0.709 0.722 16.15 

From Table 4.1, it is observed that the performance of segmentation is improved in the 

proposed ACM method compared to the GVF algorithm (discussed in Chapter 3) for the 

segmentation of single-cystic ultrasound images of the kidney. The amount of time taken for 

the segmentation of single-cystic images is comparatively less than that of segmentation 

cysts in polycystic images. Segmentation of polycystic image takes a larger initial contour 

and consumes more iterations to cover all the cysts. Hence, the execution time required is 

more in the case of polycystic kidney images.  

As discussed in section 2.5 of Chapter 2, any standard method on the segmentation of cysts 

in US images of kidney is hardly found in the literature. It is observed that the fully 

automatic segmentation methods are also not available on imaging modalities like CT and 

MRI of the kidney. In (Sharma et al., 2017), authors have implemented the segmentation of 
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cysts using a convolution neural network on CT images of the kidney. In (Bae, et al., 2017), 

authors have used a semiautomatic method for kidney cysts segmentation in MRI images. 

Authors have used image editing software and the method is not fully automatic. However, 

the proposed ACM method is fully automated for the segmentation of cysts in kidney 

images. 

4.5 Summary 

In this Chapter, an automated ACM segmentation algorithm for the segmentation of cystic 

renal US images is proposed. The disadvantage of GVF based segmentation is resolved by 

completely avoiding the specification of initial parameters by the user. The initial contour 

needed by the ACM algorithm is effectively generated automatically using morphological 

operations.  This reduces the burden and saves the time of medical experts to a greater extent 

avoiding manual annotation for every image. The efficiency of the algorithm is measured in 

two ways. One of the ways is comparing segmented images with manually marked images by 

the medical experts. The second way is verification using various performance parameters 

namely DC, JC, sensitivity, specificity, accuracy, and amount of time for execution.  Thus 

proposed ACM based segmentation performs the segmentation of single-cystic images 

effectively. The performance of the proposed ACM based segmentation is better than GVF 

based segmentation.  

Initial contour cannot be generated for ultrasound images of renal stones using morphological 

operations. Hence, the automatic segmentation of stones in ultrasound images of the kidney 

is not effectively performed. ACM method is unable to segment individual cysts in the 

polycystic US image of the kidney rather it segments the image into a single region 

containing all the cysts. Further, there is a need for improvement in the segmentation of 

polycystic kidney image and is discussed in subsequent chapters. 
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Chapter 5 

AUTOMATIC SEGMENTATION OF CYSTS AND 

STONES IN ULTRASOUND IMAGES OF KIDNEY 

USING LEVEL SET METHOD 

 

5.1 Introduction 

The purpose of segmentation is to find the distinct regions within an image. In region-based 

algorithms, the pixels are grouped, based on their intensities. Generally, the pixels with 

similar intensity are distributed equally. Hence, the edge-based method is more appropriate 

than its region-based version. In the case of the level set, the contour deforms progressively 

considering the variance among neighborhood pixel values. This is employed through the 

partial differential equations. The level set method has many benefits compared to other 

methods such as ACM. The level set can effectively handle the complex contours as well. 

One more added benefit is that it performs contour merge and split automatically unlike 

ACM (Sussman M., Smereka P., and Osher S., 1994). It uses a cartesian grid for computation 

without the necessity of contour points. This algorithm works based on choosing a surface 

instead of the front. The front is specified with the pixels having no surface height. 

Basically level set uses sign-magnitude for segmentation of the regions. The boundary is 

specified using the continuity points (Li C., Xu C., Gui C., and Fox M. D., 2010). The basic 

method does not segment all the images accurately as it uses the unbalanced level set 

function (LSF).  The irregular LSF sometimes leads to wrong results during the evolution of  

 

 

 

 

 

1
 Akkasaligar Prema T., Biradar Sunanda, “Automatic Kidney Cysts Segmentation in Digital Ultrasound 

Images”, In: Shukla A. (ed.), Chapter 4, Medical Imaging Methods. Springer, Singapore, 2019, pp. 97-117. 

2 Akkasaligar Prema T., Biradar Sunanda, “Segmentation of kidney stones in medical ultrasound images'', 

Recent Trends in Image Processing and Pattern Recognition, RTIP2R 2018, Communications in Computer and 
Information Science, vol. 1036, part 2, Springer Nature Singapore Ple. Ltd. 2019, pp. 200-208. 

3
Akkasaligar Prema T., Biradar Sunanda, “Automatic Segmentation and Ana lysis of Renal Calculi in Medical 

Ultrasound Images”, Pattern Recognition and Image Analysis, vol. 30(4), 2020 (under press). 



82 
 

contour. The limitation of irregular LSF is resolved through reinitializing LSF during 

evolution (Li C., Xu C., Gui C., and Fox M. D., 2010).  It is enhanced by using a distance 

regularization term for controlling the evolution accurately (Osher S. and Fedkiw, 2002). It 

also uses a sign-magnitude. An edge-based method using distance regularization LSF is used 

for the segmentation of cysts in renal US images. 

As discussed in the previous chapter, the fully automatic segmentation of stones in 

ultrasound images of the kidney is not performed. Because initial contour generation for 

segmentation of stones in ultrasound images of the kidney using morphological operations is 

not effective. Further, the improved performance in the segmentation algorithm is an 

essential need. 

Chapter 5 discusses the automatic segmentation of cysts and stones from denoised renal US 

images. This chapter elaborates the algorithms for automatic generation of initial contour, 

effective use of a level set algorithm, results obtained, performance evaluation, and analysis. 

The proposed algorithm uses a LSF having a signed distance function indicating abortion 

and/or continuation of the deformation.  

5.2 Proposed method 

Medical image analysis can be broadly classified into completely automated methods and 

semiautomatic methods. The automated approach for medical image interpretation is highly 

accepted. Even though it is difficult to achieve but, it has many benefits. The benefits are 

increased speed, increased accuracy, consistent, and easily reproducible. On the other hand, 

semiautomatic approaches need manual effort through interactive inputs or editing by the 

clinician. The segmentation of cysts and stones from the renal US image is made completely 

automatic by specifying a method for the generation of initial contour. It prevents the labor-

intensive work needed by the medical expert. 

5.2.1 Automatic initial contour generation for segmentation of cysts 

Morphological operations can be effectively used in the field of image processing for many 

applications. These operations are used for the generation of initial contour as well. The 

method specified in Algorithm 4.1 of Chapter 4 is used for the detection of initial contour for 

the level set method as well. Algorithm 4.1 results in an automatic initial contour that can be 
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used effectively to segment the single and multiple cysts in renal US images.  For a single-

cystic image, a single region containing cyst is obtained and is used as an automatic initial 

contour by a level set based method. In the case of polycystic kidney image, multiple cystic 

regions are extracted after applying algorithm 4.1. These all regions are taken as initial 

contour by level set based segmentation method for simultaneous deformation of all the 

cystic regions. 

As discussed in Algorithm 4.1of Chapter 4, the empirically determined initial contours in the 

image are greater than M1 and M2 pixels are used for segmentation of single-cystic and 

polycystic images of the kidney. 

5.2.2 Automatic initial contour generation for segmentation of stones 

Renal calculi can have varying sizes. They can be as tiny as 1mm. Morphological operations 

based methods are not suitable for segmenting the stones.  Because the stones of smaller 

sizes are filled, assuming them as holes and the stone ROI to be segmented is not retained 

during the process of initial contour detection. 

It is generally observed that the renal calculi are not located in the upper part and corners of 

the US images. Hence a larger rectangle leaving the corners, lying in the center, is taken as 

an initial contour for segmentation algorithm is shown in Fig 5.1. The sections of the image 

bordered with red color are the regions in the US image not containing the stone. The pixel 

coordinates of the X-axis for the rectangle of the initial contour are computed using Eqs. 5.1 

and 5.2. The Y coordinates of the rectangle corner are computed using Eqs. 5.3 and 5.4. 

 

                                                    
 

 
                                                                              (5.1) 

    

                                                      
 ∗ 

 
                                                                         (5.2) 

 

                                                      
 

 
                                                                              (5.3) 

 

 

                                                      
 ∗ 

 
                                                                        (5.4) 
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Fig. 5.1. Generation of automatic initial contour for renal calculus US image 

 

The variables m and n represent the number of rows and columns of the image respectively. 

The different stages followed in the calculation of initial contour detection are shown in 

Algorithm 5.1.  

 

Algorithm 5.1: Generation of automatic initial contour for stones  

Input: Despeckled renal US image (S). 

Output: Initial contour generated with the corners (x1, y1) and (x2,y2). 

Begin 

Step 1: Read the denoised renal US image S. 

Step 2: Determine the image size (m, n). 

Step 3: Compute the x-coordinate(x1) of the upper corner of the initial contour rectangle, by  
             equating it to one-sixth of the width „m‟ as mentioned in Eq. (5.1). 
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Step 4: Compute the x-coordinate(x2) of the bottom-right corner of the initial contour     
             rectangle, subtracting one-sixth of the „m‟ from the width of the image as mentioned  
             in Eq. (5.2). 
 

Step 5: Find the y- coordinate (y1), of the upper corner of the initial contour rectangle, by  
            equating one-sixth of „n‟ to it as mentioned in Eq. (5.3). 

Step 6: Find the y- coordinate(y2), of the bottom corner of the initial contour rectangle, by  
            subtracting one-sixth of „n‟ from the „n‟ as mentioned in Eq. (5.4). 

Step 7: The resultant coordinates (x1, y1) and (x2, y2) are used as the top left and bottom right 
            corners of the initial contour rectangle respectively. 

End. 

Thus, the pixel coordinates (x1, y1) and (x2, y2) represent the endpoints for the initial contour 

rectangle. The larger rectangle of the initial contour is used for the level set segmentation of 

kidney stones to get the nearest and approximate ROI for the stone. The output of the first 

time application of the level set algorithm is used for calculation of the initial contour 

rectangle for by the level set method for the second time. The  minimum and maximum X-Y 

coordinates of the first time segmented output is used to determine the initial contour 

rectangle.  Thus the selection of initial contour for stones in US images of the kidney is 

automated completely. 

5.2.3 Segmentation of cysts and stones   

All the renal US images of cystic and stone type in both the datasets S1 and S2 specified in 

section 1.5 of Chapter 1 are used for experimentation.  The level set method can be 

effectively used for the segmentation of cysts and stones. The different steps of the level set 

are described in Algorithm 5.2. 

Algorithm 5.2: Level set segmentation method. 

Input:  Renal cystic or stone US image having initial contour (A). 

Output: Segmented renal cystic or stone image. 

Begin 

Step 1: Apply the Gaussian kernel function to get a smoothened image. 
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Step 2: Partial differentiation is carried out on the edge indicator of the smoothened image.  

Step 3: Find the distance regularization term using Eq. (5.7).  

Step 4: Calculate Dirac delta and Heaviside functions.  

Step 5: Obtain the energy function using the parameters obtained in Step 3 and Step 4. 

Step 6: Perform the deformation until the curve obtained in Step 5 is changed (i.e. it  
             has zero-crossing points) or until the number of iterations are exhausted. 

Step 7: Return the segmented output image or return to Step 2.  

End.  

The evolution of the initial contour depends on the energy function. The energy function is 

computed using external energy and distance regularization term as shown in Eq. (5.5). 

Calculation of external energy and term for distance regulation is carried out using Eq. (5.6) 

and Eq. (5.7). External energy depends on the input. μ is a constant with a value greater than 

zero. L(ɵ) and A(ɵ) use an energy coefficient α larger than zero. These functions are defined 

as in Eq. (5.8) and Eq. (5.9). Here, „del‟ represents the Dirac delta function and „Hs‟ 

represents the Heaviside function.  L(ɵ) defines the energy of line integral of a smoothened 

image along initial zero level contour. A(ɵ) is a weighted area of the region. The weighted 

area helps to enhance the speed of the contour evolution. 

 E(ɵ)=μRx(ɵ)+Eex(ɵ)                                                          (5.5) 

Eex(ɵ)=λL(ɵ)+αA(ɵ)                                               (5.6) 

Rx(ɵ)= ∫X(| ɵ |) Ωdu                                                        (5.7) 

                                                                                                           (5.8) 

                                                        (5.9) 

 

The sign-magnitude associated with the distance regularization term (DRT) of the initial 

curve decides about the expansion and contraction of the curve.  If the sign of DRT is 

positive the deforming curve grows expanding its size and if it is negative then the curve is 
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contracted during deformation. The initial sign-magnitude for DRT is positive during the 

segmentation of the renal cystic US image. Because the initial contour generated for cystic 

images is smaller in size than the actual cyst size.   

In the case of single-cystic kidney images a single region generated by Algorithm 4.1 is used 

as an automatic initial contour by a level set algorithm for further deformation. However, 

Algorithm 4.1 generates multiple initial contours for polycystic kidney images. All these 

regions are deformed simultaneously to get the desired ROI of multiple cysts using a 

proposed level set based segmentation algorithm. 

In the case of renal stone segmentation process, the initial sign-magnitude for DRT is 

negative as the generated initial contour for the renal calculus image is a larger rectangle. 

However, during the further stages of deformations, sign of the DRT image can be changed 

and accordingly the curve is expanded or reduced. Hence, the DRT plays a vital role in 

regulating the shape and size of a deforming curve. Thus, a level set algorithm can be 

effectively used in the segmentation of cysts and stones in US images of the kidney. 

The stopping criteria for the deformation are: either the pre-specified iterations have 

exhausted or when no changes are observed in the curve obtained in the previous step and the 

curve obtained in the current step. 

5.3 Experimental Results and Discussion 

The experimentation is performed on all 185 US images of the kidney, cysts, and stones. The 

dataset specified in section 1.5 contains the clinical (S1) and web (S2) datasets, comprising 

of 37 normal kidney images, 39 single-cystic, 35 polycystic, 38 single-stone, and 36 

multiple-stones images altogether. The algorithm is implemented on Intel core i5 processor 

with 4GB RAM @ 2.5GHz, using MATLAB 7.11. The denoising of images is carried out 

using contourlet transform as discussed in section 3.3.1 of Chapter 3. 

The denoised image is binarized to apply morphological operations. Fig. 5.2((a) to (d)) shows 

the sample images of single-cystic, polycystic, single-stone, and multiple-stones renal US 

images respectively.  
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Algorithm 4.1 of Chapter 4 is applied to a single cystic image specified in Fig. 5.2 (a), to get 

the automatic initial contour for level set segmentation as shown in Fig. 5.3(a). The 

segmented region after complete deformation is shown in Fig. 5.3(c). The nature of LSF at 

the initial level and after complete evolution is shown in Fig. 5.3(b) and Fig. 5.3(d) 

respectively. The deformation is completed in 305 iterations for this particular example. 

However, the numbers of iterations vary based on the input image. The size of the cyst is 

determined as 27.6 mm
2
 by using the Eq. (4.1). The size specified by a medical expert is 28.2 

mm
2
.  

 
Fig. 5.2. Sample images: (a) Single-cystic renal US image  (b) Polycystic renal US  image   (c) Single renal 

calculus US image (d)  Multiple-stones renal US image  

The multiple initial contours generated automatically for a polycystic renal US image using 

Algorithm 4.1 is shown in Fig. 5.4(a). All the regions deform simultaneously resulting in 

multiple cystic regions. The segmented polycystic region after complete deformation is 

shown in Fig. 5.4(c). The nature of LSF at the initial level and after complete evolution is 

shown in Fig. 5.4(b) and Fig. 5.4(d) respectively. The deformation is completed in 322 

iterations for this particular example. The segmented output is binarized to obtain the number 

of stones and their sizes as discussed in section 4.3 of Chapter 4. For this particular sample 

image, number of cysts is computed as 4. The sizes of the cysts are computed as 35.4 mm
2
, 

33.5mm
2
, 22.3mm

2
, and 11.2mm

2
 by using the Eq. (4.1). The sizes of the cysts specified by a 

medical expert are computed as 35.9 mm
2
, 33mm

2
, 21.7mm

2
, and 11.6mm

2
. A smaller 
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relative error is observed in the values. Thus complete automatic segmentation of cysts in 

medical US images of the polycystic kidney is performed successfully using the level set 

method. 

 

 

Fig. 5.3. Segmentation of single-cystic  image : (a) Image with initial contour  (b)Nature of LSF at initial 

stage  (c) Finally deformed image at the end of 305 iterations   (d) Nature of LSF at the end of 

deformation 

 

 

Fig. 5.4. Segmentation of polycystic  image : (a) Image with initial contour  (b)Nature of LSF at initial stage 

(c) Finally deformed image at the end of 322 iterations   (d) Nature of LSF at the end of 

deformation 
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Fig. 5.5. Results of segmentation of cysts in kidney US images using a level set  

Experimentation is carried out on all cystic images specified in section 1.5 of Chapter1. 

Some of the sample outputs are shown in Fig. 5.5. From Fig. 5.5, it is observed that the 

Image 
class 

Input US image Segmented image by 
proposed level set 

method 

Manually annotated 
image by a medical 

expert 

Results 

Single 

cystic 

  
 

DC=0.947 
JC=0.951 

Sensitivity=0.951 
Specificity=0.958 

Accuracy=0.964 
Cyst size= 31.4mm2 

Single 

cystic 

   

DC=0.967 
JC=0.971 

Sensitivity=0.978 
Specificity=0.972 

Accuracy=0.975 
Cyst size= 27.6mm2 

Polycystic 

 

  
 

DC=0.817 

JC=0.812 
Sensitivity=0.821 

Specificity=0.819 
Accuracy=0.823 

Cyst1  size= 25.3mm2 
Cyst2 size= 26.1mm2 

Cyst3 size= 33.2mm2 

Polycystic 

  
 

DC=0.913 

JC=0.917 
Sensitivity=0.916 

Specificity=0.923 
Accuracy=0.927 

Cyst1  size= 24.2mm2 
Cyst2 size= 26.3mm2 

Cyst3 size= 20.2mm2 

Cyst4  size= 21.8mm2 

Polycystic 

  
 

DC=0.783 

JC=0.782 
Sensitivity=0.809 

Specificity=0.806 
Accuracy=0.799 

Cyst1  size= 19.4mm2 
Cyst2 size= 15.3mm2 

Cyst3 size= 21.7mm2 
Cyst4  size= 28.2mm2 

Cyst5 size= 13.4mm2 
Cyst6 size= 23.2mm2 
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relative error in the segmentation of individual cyst in single-cyst and, polycystic images 

is improved. There is a good agreement between experimentally segmented images and 

manually annotated images by medical experts. 

 

Fig. 5.6.  Segmentation of single-stone image : (a) Automatic initial contour at the first time application of 

level set (b) Final segmented contour  at the end of the first time application after 300 iterations (c) 

Refined initial contour  for the second  time application of level set  (d) Final segmented contour  at 

the end of the second time application after 165 iterations 

Algorithm 5.2 is used for automatic initial contour selection for renal calculus stone in US 

images. In the first time application, a larger rectangle of the initial contour is generated 

automatically using Algorithm 5.1, as shown in Fig. 5.6(a). Segmented contour obtained at 

the end of the first time application of the level set method is shown in Fig.5.6 (b). For the 

sample image of renal calculus, it takes 300 iterations in the proposed level set algorithm. 

From Fig.5.6 (b), the initial contour for the second run of level set is obtained by finding the 

minimum and maximum of X-Y coordinates. This contour is shown in Fig 5.6 (c). It is 

considered as a final initial contour generated automatically.  

The level set method is applied for the second time taking Fig. 5.6(c) as an initial contour for 

further evolution. This extracts the more refined contour of ROI as shown in Fig. 5.6(d) 

resulting in accurate segmentation of stones. For the considered example, level set evolution 

is completed in 165 iterations. Only one stone is identified, as a single segmented region is 

found. The computation of the number of stones and their size are carried out by binarizing 

the segmented output as discussed in section 4.3 of Chapter 4. The size of the stone is 
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computed as 11.54 mm
2
 and the value mentioned by a medical expert is 10.75 mm

2
. A 

smaller relative error is observed in the experimentally obtained value.
  

As observed, the level set needs more number of iterations at the first time application of 

level set segmentation. This is because of the larger initial rectangle. The number of 

iterations are reduced considerably during the second time. Thus, the proposed algorithm 

successfully deforms to the ROI of stone, locating, and marking the stone more accurately.  

 

Fig. 5.7. Segmentation of multiple-stones image : (a) Initial contour at first time application of level set (b) 

Final segmented contour  at the end of the first time application after 224 iterations (c) Refined initial 

contour  for the second  time application of level set  (d) Final segmented contour  at the end of the 

second time application after 162 iterations 

Similar to single-stone, the multiple-stones renal image can be segmented effectively as 

shown in Fig. 5.7. The first larger initial contour is obtained automatically by applying 

Algorithm 5.1 as shown in Fig. 5.7(a). The deformed contour at the end of the first time 

application of level set based segmentation is shown in Fig. 5.7 (b). The level set uses 224 

iterations to obtain the contour shown in Fig. 5.7 (b). The refined contour is obtained by 

finding minimum and maximum X-Y coordinates of the contour obtained in Fig. 5.7(b) is 

shown in Fig. 5.7 (c).  
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Fig. 5.8. Results of kidney stones segmentation using the level set method 

Fig. 5.7 (c) is used as an initial contour by the level set algorithm to get the more refined ROI 

of stones. The single initial contour is divided into multiple regions automatically based on 

the textural properties of the pixels in the image by level set based segmentation algorithm. 

This property of a level set algorithm is effectively used to individually segment the multiple-

Image 

class 

Input US image Segmented image by 

proposed level set 
method 

Manually annotated 

image by a medical 
expert 

Results 

Single 

stone 

  
 

DC=0.952 
JC=0.9541 

Sensitivity=0.971 
Specificity=0.968 

Accuracy=0.969 
Stone size= 14.69mm2 

Multiple

-stones 

 
 

 

DC=0.968 
JC=0.969 

Sensitivity=0.982 
Specificity=0.986 

Accuracy=0.984 
Stone1 size= 13.92mm2 

Stone2 size= 11.43mm2 

Multiple

-stones 

 
 

 

DC=0.934 
JC=0.937 

Sensitivity=0.934 
Specificity=0.945 

Accuracy=0.9388 
Stone1 size= 7.67mm2 

Stone2 size= 7.73mm2 

Single 

stone 

 
 

 

DC=0.963 
JC=0.967 

Sensitivity=0.964 
Specificity=0.958 

Accuracy=0.962 
Stone size= 12.82mm2  
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stones present in the kidney US image. Finally, segmented stones by second-time application 

of the level set are shown in Fig. 5.7 (d). The number of iterations taken by level set for the 

second time is 162. The sizes of the stones are computed as 13.92 mm
2
 and 11.43 mm

2
 from 

the segmented kidney stone image. The sizes of the stones annotated by a medical expert are 

13.21 mm
2
 and 11.9 mm

2 
respectively. A smaller relative error is observed in the 

experimentally obtained values.
  

Experimentation is carried out on all kidney stone images specified in section 1.5 of 

Chapter1. Some of the sample outputs for renal calculi images are shown in Fig. 5.8. From 

Fig. 5.8, it is observed that there is a good resemblance between experimentally segmented 

images and manually annotated images by medical experts. 

The statistical acceptance of the experimentally obtained values is performed using the chi-

square test. The details are shown in Appendix III. Thus, the proposed level set method 

segments the cysts and stones automatically and effectively. It is capable of segmenting 

individual cysts/stones in the case of the polycystic and multiple-stones US images 

respectively. 

5.4 Performance evaluation  

The performance of the segmentation is performed using the parameters Dice coefficient, 

Jaccard coefficient, sensitivity, specificity, and accuracy as discussed in section 1.7.5 of 

Chapter 1.  The mean and standard deviation are computed by considering all the images in 

S1 (clinical) and S2 (web) datasets. The results obtained for level set segmentation of single 

and polycystic renal US images are compared with the ACM method (discussed in Chapter 4) 

using the plots in Fig. 5.9,  Fig. 5.10, Fig. 5.11 and Fig. 5.12 respectively.  
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Fig. 5.9.  Performance parameters of single cyst segmentation in renal US images  

Obtained values in the plots of Fig 5.9 and Fig 5.10 show the improved accuracy in the 

proposed level set method over ACM based segmentation in terms of DC, JC, sensitivity, 

specificity, and accuracy for segmentation of single cystic US images of the kidney.  

 

Fig. 5.10.Statistical parameters of single cyst segmentation in renal US images  
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Fig. 5.11. Performance  parameters of  polycysts segmentation in renal US  images  

 

Fig. 5.12. Statistical parameters of polycysts segmentation in renal US images  

From Fig 5.11 and Fig 5.12, it is observed that the proposed level set method results in more 

accurate segmentation of cysts in polycystic kidney US images.  
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ACM 0.95 0.05 0.82 0.045 0.913 0.058

Parameters for polycystic image segmentation  

Level-set

ACM
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Fig. 5.13. Performance analysis for segmentation of single stone kidney images  

 

Fig. 5.14. Performance analysis for segmentation of multiple-stones kidney images 

Fig. 5.13 and Fig. 5.14 show the comparison of the different parameters obtained for the 

proposed level set and GVF based segmentation of single and multiple-stones from the 
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ultrasound images of the kidney respectively. The obtained values show that the proposed 

level set method is more accurate than the GVF method using various parameters namely, 

DC, JC, sensitivity, specificity, and accuracy. Thus, from Figs. 5.9 to 5.14, it is found that the 

proposed level set based method performs fully automatic segmentation of cysts and stones 

successfully in US images of the kidney. 

Table 5.1. Comparison of execution time in seconds for proposed level set method. 

Method Single-

cystic 

images 

Polycystic 

images  

Single-stone 

images 

Multiple-stones 

images 

Proposed level 

set method 

 

6.4 8.56 8.7 10.7 

ACM 

(Chapter 4)  

8.25 9.4 -- -- 

GVF 

(Chapter 3) 

9.6 16.15 9.8 13.2 

 

The comparison of the average execution time for complete segmentation of single-cystic, 

polycystic, single-stone, and multiple-stones images using the level set, ACM, and GVF based 

segmentation methods are shown in Table 5.1. It is observed that the execution time for the 

segmentation of polycystic and multiple-stones images is more than that of single-

cystic/single-stone images in all the three algorithms. It is observed that the proposed level set 

method is capable to segment the kidney cysts and stones in lesser time than that of ACM and 

GVF based segmentation algorithms. 

The proposed method of the level set for the segmentation of kidney stones is compared with 

the existing method specified by (W. Ardiatna et. al., 2018). Authors have used 50 clinical 

images, region-based segmentation with statistical descriptors is used. The algorithm needs a 

seed point by the user. An accuracy rate of 95% is achieved. The proposed level set method 

has an average accuracy rate of 96.1% and is completely automated without the need for user 

input. It is observed that the performance of the proposed method of a level set for the 

segmentation of renal calculi is better compared with the method in (W. Ardiatna et al., 

2018). The proposed method is fully automatic. Hence, the proposed level set method 

performs the effective segmentation of renal stones in US images. 
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5.5  Statistical inference using Chi-square test 

Chi-square test is performed on obtained and expert determined values of renal stone size as 

specified in Appendix III. Eight sample renal stone images are considered for the test.  The 

chi-square distribution table value for a 5% level of significance is 15.507. The obtained 

value is lesser than the table value. i.e. 0.33 < 15.507. Hence, the null hypothesis H0 is 

accepted. The acceptance indicates that the computed values are statistically acceptable.  

5.6 Summary 

In this chapter, an automated level set segmentation algorithm for the segmentation of cystic 

and renal stone US images is discussed. The segmentation of polycystic and multiple-stones 

images is carried out effectively by the level set method. The proposed level set segments the 

individual cysts and stones in polycystic and multiple-stones images respectively.  

The experimental results of performance parameters show that the initial contour needed by 

the algorithm is effectively generated for both stone and cystic images automatically. The 

performance to measure the appropriate segmentation and execution time for computation, 

both are improved in the proposed level set method. Numbers of cysts/stones in the 

segmented image are determined along with their size. Chi-square test is performed on the 

kidney stone size, calculated after segmentation using the level set method. The test 

performed indicates that the computed values are statistically acceptable. Thus, the proposed 

level set based segmentation method performs fully automatic segmentation of cysts and 

stones successfully in US images of the kidney. The structural statistics found through the 

segmentation offer indispensable visual assistance for image-guided surgeries. Thus, the 

level set based segmentation algorithm is found to be more efficient in segmenting single-

cystic, polycystic, single-stone, and multiple-stones images. Hence, the level set segmented 

output images are used for feature extraction and classification process discussed in the 

subsequent chapters. 

 

 

 



100 
 

Chapter 6 

 

FEATURE EXTRACTION AND CLASSIFICATION OF 

KIDNEY ULTRASOUND IMAGES 

6.1 Introduction 

Among various diseases associated with the human kidney, the stone is a universally 

observed disorder.  The recurrence rate of renal calculus is more. The other kidney disorder 

considered is polycystic kidney disease. It is one of the deadly diseases. It can further harm 

the organs like the liver, pancreas. In rare cases, the heart and brain can be affected in turn.  

Hence, the early diagnosis of these disorders is very important. The kidney is imaged to 

know its morphology.  

It is necessary to extract the set of valuable features that explores the characteristics of the 

kidney accurately. So, the classification of renal cysts and stones in US images of the kidneys 

is one of the crucial research issues. It simplifies the process of diagnosing kidney diseases 

and their treatment. 

In (K.B. Raja, M. Madheswaran, and K. Thyagarajah, 2000), an evaluation technique for 

principal curvature of the multi-scale differential is used. Classification of kidney image is 

carried out using obtained feature values. The analysis of features is a significant research 

issue. There is a major variation in intensities or colors of neighboring pixels. Particularly 

analysis of texture is a challenging problem because of the complex nature of texture. The 

image can be classified using texture analysis. The texture is used to separate the image into 

smaller regions. In (Shahabaz, D. K. Somwanshi, A. K. Yadav, and R. Roy, 2007), the 

authors explained that the small pixel value indicates smooth texture and the rough texture 

comprises larger values. The homogeneous graphical patterns are stated by texture features 

without a similar intensity or a single color.  

 

 

1 
Akkasaligar Prema T., Biradar Sunanda, “Classification of Medical Ultrasound Images of Kidney”, 

International Journal of Computer Applications, Special Issue on ICICT 2014, pp. 24-28. 

2
 Akkasaligar Prema T., Biradar Sunanda, “Diagnosis of Renal Calculus  Disease in Medical Ultrasound 

Images”,  IEEE International  Conference on Computational Intelligence  and Computing Research-2016, Agni 
College of Technology,  Chennai, Tamilnadu, India, 15-17 Dec. 2016,  pp. 948-952. 
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In (S. Poonguzhalil, B. Deepalakshmil, and G. Ravindran, 2007), the classification of 

ultrasonic liver images using texture features are discussed. The classification of normal and 

abnormal liver types is carried out using texture features. The principal component analysis 

(PCA) features are used followed by reduction. The K-means clustering is used for the 

identification of diseased and normal liver. Image analysis has a vital role in the medical 

field. In (S. Poonguzhali and G.Ravindran, 2006), the classification of liver tissue as normal 

or abnormal is carried out. Authors have used the wavelet, Laws‟ features, autocorrelation, 

and edge frequency features. The neural network classifier is used further for classification.  

Three different segmentation algorithms namely, GVF, ACM, and level set for segmentation 

of kidney, cyst/stones in ultrasound images of the kidney have been discussed in Chapters 3, 

4, and 5. The Level set based segmentation algorithm effectively segments the kidney cysts 

and stones in ultrasound images of the kidney. The level set is fully automated and 

demonstrates better performance in segmentation. It takes less computational time 

comparatively. Hence, the level set segmented images obtained from the algorithms 

Algorithm 5.2 and 5.3 discussed in Chapter 5,  are used for feature extraction and 

classification process. Extraction of features from segmented renal US images of cysts and 

stones are discussed in the current Chapter.  A different set of features and classifiers are 

used effectively. The experimentation details and results obtained are discussed. Various 

performance parameters used for determining the efficiency are elaborated. The combined 

approach for the selection of optimal feature sets for the classification of renal medical 

ultrasound images is explored. 

6.2 Proposed method  

A feature provides structural information about the image to be classified or an object of 

interest in an image. Different feature descriptors can be extracted from an image. For the 

classification of segmented renal US images into a normal kidney, single cystic, polycystic, 

single stone, and multiple-stones class, several sets of features are used. 

The proposed methodology for feature extraction and classification is described in Fig. 6.1. 

The input ultrasound images of normal kidney, cystic, and calculi kidney are despeckled 

using a contourlet transform. The despeckled images are enhanced using histogram 



102 
 

equalization. Further, segmentation is applied using the level set method. The feature 

extraction is carried out to classify the images into the respective classes.  

 

Fig. 6.1 Proposed method for feature extraction and classification of kidney US images  

6.2.1 Feature extraction 

The five feature sets namely Haralick features, shape features, wavelet features, Tamura 

features, and HOG features are applied individually for renal US images.  The various 

features discussed in section 1.8 of Chapter 1 are used. All obtained feature values are 

normalized in the range of 0 to 1. Normalization aligns all the values within a specified 

range. It is essential as some of the feature values are of a larger range.  

 Haralick features 

Haralick features are extracted from the computed GLCM of input renal US image. The 

GLCM is computed based on the probability of gray-level distribution. The steps involved 

are elaborated in Algorithm 6.1. 

Algorithm 6.1: Haralick texture features extraction 
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Input: Segmented renal ultrasound image. 

Output: Sixteen normalized Haralick features. 

Begin 

Step 1: Read the input image. 

Step 2: Compute the GLCM matrices in the directions of 0°, 45°, 90°, 135° using a  

            a distance of 1 for the input image. 

Step 3: Calculate the energy, homogeneity, contrast, and correlation for all the four matrices.    

Step 4: Apply normalization to get the feature values in the range of 0 to 1, which gives a  

            feature vector of 16 values. 

Step 5: Store the normalized Haralick features vector for each input image. 

End. 

 

Fig. 6.2. Sample input images: (a) Normal US image of kidney (b) Single cystic US kidney image (c) Polycystic 

kidney image (d) Single stone kidney image  (e) Multiple-stones kidney image 

Table 6.1 shows the normalized values of Haralick features for sample inputs, one for each 

image class is given in Fig. 6.2.  
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Table 6.1 Normalized Haralick feature values for renal US image 

The Haralick features extracted are based on the location of pixels having similar gray level 

values.  Cyst and stone are comprised of the pixels having completely different gray values.  

Thus, Haralick features obtained in Table 6.1 are effective in distinguishing kidney cyst from 

stone. However, distinguishing features cannot be obtained for a normal kidney. 

Shape features 

 The shape and size of cysts and stones are generally varying. The shape features contribute 

highly to the classification of renal cystic and stone images. The segmented image is 

converted into binary form to extract the features such as eccentricity, orientation, length of 

major, and minor axes. The binary image has a single region in case of single cystic and 

single stone images. It has multiple regions in the case of polycystic and multiple-stones 

images. The features are calculated on all the regions of the binary image. The various shape 

feature namely, area, perimeter, diameter, orientation, eccentricity, major, and minor axis 

length are used for renal kidney ultrasound image classification. Algorithm 6.2 describes the 

Features 

Feature values 

Normal 

image 

Single-cystic 

image 

Polycystic  

image 

Single-stone  

image 

Multiple-stones  

image 

Energy at 0
0
 0.118 0.346 0.382 0.366 0.248 

Homogeneity  at 0
0
 0.129 0.155 0.174 0.159 0.142 

Contrast  at 0
0
  0.296 0.161 0.063 0.141 0.224 

Correlation  at 0
0
 0.305 0.319 0.385 0.328 0.306 

Energy  at 45
0
 0.073 0.304 0.332 0.322 0.203 

Homogeneity  at 45
0
 0.075 0.090 0.115 0.078 0.068 

Contrast  at 45
0
  0.409 0.300 0.117 0.384 0.447 

Correlation  at 45
0
 0.214 0.179 0.276 0.112 0.148 

Energy at 90
0
 0.094 0.334 0.362 0.344 0.235 

Homogeneity  at 90
0
 0.100 0.143 0.147 0.122 0.122 

Contrast  at 90
0
 0.366 0.106 0.078 0.232 0.229 

Correlation  at 90
0
 0.234 0.307 0.319 0.217 0.260 

Energy  at 135
0
 0.068 0.304 0.333 0.321 0.203 

Homogeneity  at 135
0
 0.069 0.090 0.116 0.078 0.069 

Contrast  at 135
0
  0.447 0.298 0.108 0.386 0.443 

Correlation  at 135
0
 0.185 0.163 0.263 0.094 0.133 
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steps involved in the shape feature extraction process. Table 6.2 shows the normalized values 

for shape features for different types of sample renal ultrasound images shown in Fig 6.2.  

Table 6.2 Normalized shape feature values for renal US images  

Algorithm 6.2: Shape features extraction 

Input: Segmented renal ultrasound image. 

Output: Eleven normalized shape features. 

Begin 

Step 1: Read the input image. 

Step 2: Compute the shape features namely, area, perimeter, diameter, major axis, minor  
            axis, eccentricity, and orientation using Eq. (1.8.5) to Eq. (1.8.8). 

Step 3: Apply normalization to get the feature values in the range of 0 to 1, which gives a  
            feature vector of 11 values. 

Step 4: Store the normalized shape features vector for each input image. 

End. 

Features 

Feature values 

Normal 

image 

Single-cystic  

image 

Polycystic 

image 

Single-stone 

image 

Multiple-

stones image 

Area 
0.0023 0.0083 0.0724 0.0128 0.0076 

Convex area 
0.0032 0.0265 0.0647 0.0102 0.0061 

Eccentricity 
0.3648 0.4492 0.2575 0.7148 0.1713 

Equi-diameter 
0.0064 0.0880 0.1876 0.1099 0.0845 

Major axis length 
0.0082 0.2091 0.1761 0.1095 0.0684 

Minor axis 
length 

0.0066 0.2189 0.1670 0.0857 0.0813 

Extent 
0.7134 0.1753 0.8944 0.8574 0.7763 

Filled area 
0.0021 0.0279 0.0676 0.0107 0.0064 

Orientation 
0.9996 0.0984 0.6022 0.9999 0.3805 

Perimeter 
0.0180 0.1408 0.1567 0.0870 0.0665 

Solidity 
0.8364 0.1717 0.8762 0.9017 0.8835 
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The segmented ROIs of normal kidney, cyst, and stone are of oval-shaped structures 

resembling the ellipse. Thus, the shape features namely area, perimeter, diameter, major axis 

length, minor axis length, eccentricity, and orientation shown in Table 6.2 are characterizing 

the unique properties of ROIs. Further, the shape features can effectively contribute to 

classification. 

Wavelet features 

Wavelets are better in approximating the signals with sharp spikes or the discontinuous 

signals. Various wavelet families like as Daubechies, Haar, symlets, and biorthogonal filters 

and their combinations are experimented.  A discrete wavelet transform (DWT) is tested for 

multiple decomposition levels.  Table 6.3 shows the normalized values for some of the 

wavelet features for sample inputs shown in Fig. 6.2. (page no. 102)  

Table 6.3 Normalized wavelet feature values for renal US images   

 Feature values  

Wavelet family, level, sub-band, feature 

Normal 

image 

Single-
cystic 

image 

Polycystic 

image 

Single- 
stone 

image 

Multiple-
stones 

image 

Daubechies, Level 1, Horizontal, Mean 0.580 0.858 0.552 0.593 0.222 

Daubechies,Level 1, Horizontal, Variance 0.643 0.060 0.010 0.271 0.537 

Daubechies,Level 1, Horizontal, Range 0.250 0.245 0.246 0.240 0.229 

Daubechies,Level 1, Horizontal, Energy 0.957 0.035 0.077 0.008 0.005 

Daubechies,Level 1, Horizontal, Max. 
probability 0.077 0.077 0.067 0.073 0.050 

Daubechies,Level 1, Horizontal, Homogeneity 0.958 0.894 0.904 0.545 0.300 

Daubechies,Level 1, Horizontal, IDM 0.690 0.025 0.382 0.855 0.807 

Daubechies,Level 1, Vertical, Mean 0.905 0.520 0.730 0.706 0.705 

Daubechies,Level 1, Vertical, Variance 0.400 0.085 0.085 0.280 0.323 

Daubechies,Level 1, Vertical, Range 0.032 0.030 0.030 0.025 0.000 

Daubechies,Level 1, Vertical, Energy  0.706 0.009 0.060 0.007 0.000 

Daubechies,Level 1, Vertical, Max. probability 0.060 0.060 0.060 0.059 0.035 

Daubechies,Level 1, Vertical, Homogeneity 0.975 0.277 0.995 0.952 0.929 

Daubechies,Level 1, Vertical, IDM 0.009 0.000 0.730 0.892 0.873 

Daubechies,Level 1, Diagonal, Mean 0.987 0.674 0.390 0.283 0.478 

Daubechies,Level 1, Diagonal, Variance 0.300 0.006 0.039 0.069 0.039 

Daubechies,Level1, Diagonal, Range 0.492 0.007 0.450 0.000 0.007 

Daubechies,Level 1, Diagonal, Energy  0.508 0.000 0.025 0.000 0.000 

It is determined that the decomposition up to level 3, for Daubechies and biorthogonal 

families are more appropriate empirically. Only detailed subbands are considered. In total 18 

subbands are considered for feature extraction. These comprise of 3 at level 1, 3 at level2 and 

3 at level3 for Daubechies and biorthogonal families. From these subbands, different features 
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such as mean, variance, range, energy, homogeneity, maximum probability, and IDM are 

extracted. Totally 126 features are extracted followed by normalization.   

Tamura features 

Tamura features represent surface property and appearance of the objects. These features 

have the basis of visual perception. Coarseness, contrast, and direction are the features 

extracted for the classification of renal US images. Table 6.4 shows the normalized values for 

Tamura features for the sample inputs shown in Fig. 6.2 (page no. 103). 

Table 6.4 Normalized Tamura feature values for renal US images  

 

 

 

 

 

Tamura features shown in Table 6.4, contribute potentially in image representation. The 

effective role of Tamura features in classification US images of the kidney is justified with 

Kruskal Walli‟s test mentioned in Appendix III. 

 HOG features 

The HOG features are used for the classification of renal US images as discussed in section 

1.8 of Chapter 1. The detailed process of HOG features extraction is shown in Algorithm 6.3.  

Algorithm 6.3: HOG features extraction 

Input: Segmented renal ultrasound image. 

Output: A normalized vector of HOG features. 

Begin 

Step 1: Read the input image. 

Step 2: Divide the image into cells of size 5X5. 

Step 3: Find HOG directions for all the pixels within the cell. 

Type of input renal US 

image 

Normalized feature values 

Coarseness Contrast Direction 

Normal 0.664 0.978 0.964 

Single-cystic 0.206 0.329 0.794 

Polycystic 0.079 0.368 0.780 

Single-stone 0.006 0.366 0.784 

Multiple-stones 0.059 0.533 0.787 
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Step 4: Discretize every cell in 9 bins based on the gradient directions of 0
0
 to 160

0
 at a  

            variance of 20
0
. 

Step 5: The blocks are constructed taking adjacent cells, based on histogram normalization. 

Step 6: Save the histogram values as features for each block. 

End. 

The sets of Haralick, shape, wavelet, Tamura, and HOG features are used individually and in 

a combination of two, three, and all together as well. 

6.2.2 Classification 

The different features extracted from the US image of the kidney are classified using three 

different classifiers namely, k-NN, fuzzy k-NN, and SVM. The k-N N is an unsupervised 

machine learning algorithm. The input for the classifier is few closer training samples in the 

feature space. The output is a class membership to the nearest in the knowledge base. The 

classification is carried out based on a majority vote of its neighbors by using Euclidean 

distance. The sample to be tested is assigned to the class, most similar among its k nearest 

neighbors. k is tested with different values of 1, 2, 3, and 4. There is no explicit training 

phase for the k-NN algorithm. However, it is necessary to only store the feature vectors and 

class labels for the training samples. The testing is carried out by assigning the label which is 

most frequent among the k training samples and nearest to the query point. The k-NN is 

faster as there is no explicit training. But, the whole training set is needed during the testing 

stage. 

SVM is a supervised classifier method. It works effectively in many classification problems 

wherever a large dataset is available. The algorithm works in two stages as the training and 

testing phase. Exhaustive training is needed to get better accuracy. Hence, it consumes more 

time than k-NN. The classification of kidney US image is also carried out using SVM.  

Fuzzy set theory has found applications in many fields, such as pattern recognition, control 

systems, and medical applications (Sourabh Dash, Raghunathan Rengaswamy, and Venkat 

Subramanian, 2003; Nedeljkovic I., 2004). Fuzzy logic was initiated in 1965 by L. A. Zadeh 

(Zadeh L. A., 1965; Zadeh L. A., 1973; Zadeh L. A., 1984). It is also used to develop 

different techniques in image processing applications including ultrasound images (Kerre E. 
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E. and Nachtegael M., 2000; Khademi A., et al., 2009). The existence of inherent “fuzziness” 

in the nature of the image itself in terms of uncertainties associated with the definition of 

edges, boundaries, and contrast makes the fuzzy theory a remarkable tool for handling the 

ultrasound imaging applications (Hiremath P. S. and Tegnoor J. R., 2011). Hence, a fuzzy-

based k-NN classifier algorithm is implemented to classify the US images of the kidney. 

6.3 Experimental results and discussion  

Feature extraction and classification are carried out on all 185 US images of the kidney, 

cysts, and stones. The dataset specified in section 1.5 contains the clinical (S1) and web (S2) 

datasets, comprising of 37 normal kidney images, 39 single-cystic, 35 polycystic, 38 single-

stone, and 36 multiple-stones images altogether. The algorithms are implemented on Intel 

core i5 processor with 4GB RAM @ 2.5GHz, using MATLAB 7.11. The denoising of 

images is carried out using contourlet transform as discussed in section 3.3.1 of Chapter 3. 

The denoised images are segmented using the level set method specified in Chapter 5. The 

segmented images are passed through feature extraction and classification. 

Different feature sets namely Haralick, shape, wavelet, Tamura, and HOG features are 

extracted as specified in section 6.2.1 using the Algorithms 6.1, 6.2, and 6.3. The different 

feature sets and their combinations are tested using three different classifiers namely k-NN, 

fuzzy k-NN, and SVM. These classifiers are used to classify the renal ultrasound images into 

normal kidney, single cystic, polycystic, single stone, and multiple-stones classes. For k-NN 

and fuzzy k-NN, k value of 3 is empirically determined. Euclidean distance is used as a 

distance metric. For SVM classifier, Gaussian radial basis kernel function with a scaling 

factor of 1 is determined as more suitable in the classification of kidney ultrasound images. 

The 5-fold validation is performed for all the classifiers.  In all the three classifiers, the 

training and testing image sets are randomly selected using a 5-fold method. The average 

classification accuracy for individual feature sets using the three classifiers is shown in Fig 

6.3. 
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Fig. 6.3 Average accuracy for k-NN, fuzzy k-NN, and SVM using individual feature sets  

From Fig 6.3, it is observed that shape and wavelet feature sets are better in classifying the 

medical US images of the kidney. The performance of the fuzzy k-NN is better than the k-

NN and SVM classifier. 

 

Fig. 6.4 Average accuracy for wavelet feature model at different decomposition levels  

0

20

40

60

80

100

Haralick Shape
Wavelet Tamura HOG

A
ve

ra
ge

 c
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy
 

Features 

Haralick Shape Wavelet Tamura HOG

k-NN 90.32 92.15 92.12 90.53 90.37

Fuzzy k-NN 90.19 92.68 92.69 90.79 90.68

SVM 81.37 85.17 84.72 80.97 83.17

k-NN

Fuzzy k-NN

SVM

k-NN

Fuzzy k-NN

SVM

0
10
20
30
40
50
60
70
80
90

100

Level 1
Level 2

Level 3
Level 4

A
ve

ra
ge

 a
cc

u
ra

cy
 

Wavelet decomposition level 
Level 1 Level 2 Level 3 Level 4

k-NN 88.63 90.65 92.12 91.19

Fuzzy k-NN 89.79 91.76 92.69 91.67

SVM 74.32 79.8 84.72 82.13



111 
 

Experimentation is carried out on feature sets obtained at different levels of wavelet 

decomposition such as level 1, level 2, level 3, and level 4 using the three classifiers. Fig 6.4 

shows the plot of average accuracy obtained at different levels. From Fig 6.4, it is observed 

that the accuracy increases up to third level and decreases at fourth level. Hence, empirically 

third level decomposition is considered to be optimal. For better performance, the combined 

feature set of detailed subbands at all three levels of decomposition are considered for 

classification. The fuzzy k-NN classifier shows better performance among the three 

classifiers. 

The models with a combined feature set of two and three feature sets are considered for 

classification of renal US images are shown in Fig 6.5 and Fig 6.6 respectively. The feature 

sets are labeled as H, S, W, T, and G indicating Haralick, shape, wavelet, Tamura, and HOG 

sets respectively.  Fig 6.5 shows the graph of average classification accuracy obtained for the 

ten possible combinations of two feature sets, namely, Haralick-shape(H-S), Haralick- 

wavelet (H-W), Haralick-Tamura(H-T), Haralick-HOG(H-G), HOG-wavelet(G-W), Tamura-

wavelet (T-W), Tamura-HOG(T-G),  shape-Tamura (S-T), shape-HOG(S-G,) and shape-

wavelet(S-W).  

 

Fig. 6.5 Average classification accuracy for a combination of two feature sets  

In the plot of Fig 6.5 shape-wavelet(S-W) model is found to be the optimal combination as 

shown in the last column. The accuracy rate of 85.94% for SVM, 94.05% for k-NN, and 

95.04% for fuzzy k-NN are obtained. Hence, fuzzy k-NN is found to be more suitable for the 

classification of kidney ultrasound images. 
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Fig. 6.6 Average classification accuracy for a combination of three feature sets and combination of all 

features 

Fig. 6.6 shows the plot of average classification accuracy for a combination of three feature 

sets and a combination of all features using three different classifiers namely k-NN, SVM, 

and fuzzy k-NN. From Fig 6.6, it is observed that the combined feature set of two feature sets 

(shown in Fig. 6.5)  are generating better results as compared to the combined feature set of 

three features.  

Experimentation on different values of k for k-NN and fuzzy k-NN for a combined feature 

sets of shape and wavelet features is carried out. The obtained accuracy values are shown in 

Table 6.5. 

Table 6.5 Accuracy of k-NN and fuzzy k-NN for a combined feature sets of shape and wavelet(S-W) features 

 k=1 k=2 k=3 k=4 

k-NN 89.8 92.3 94.05 93.0 

Fuzzy k-NN 90.6 92.9 95.04 93.5 
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SVM 82.17 84.17 78.17 83.72 84.02 83.67 83.17 84.35
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From Table 6.5, it is observed that the performance of k-NN and fuzzy k-NN classifiers is 

optimal at k value of 3. 

The confusion matrix for the combined feature set of shape and wavelet using the three 

classifiers namely, k-NN, SVM, and fuzzy k-NN is shown in Table 6.6, Table 6.7, and Table 

6.8 respectively. It is possible to compute true positive, true negative, false positive, and false 

negative by using the confusion matrix as described in Fig. 1.16 of Chapter 1. In turn, these 

parameters can be used to compute accuracy as the ratio of the number of correctly classified 

images to the total number of images of a respective class. 

Table 6.6 Confusion matrix for the combined feature set of shape and wavelet using k-NN 

 

 Normal kidney Single-Cystic  polycystic  Single-stone  Multiple-stones 

Normal kidney  35 01 -- 01 -- 

Single-Cystic  01 38 -- -- -- 

polycystic  01 01 33 -- -- 

Single-stone  02 -- -- 35 01 

Multiple-stones 02 -- -- 01 33 

 

Table 6.7 Confusion matrix for the combined feature set of shape and wavelet using SVM 

 

 Normal kidney Single-Cystic  polycystic  Single-stone  Multiple-stones 

Normal kidney  30 04 02 01 -- 

Single-Cystic  02 37 -- -- -- 

polycystic  01 01 32 01 -- 

Single-stone  06 01 01 30 -- 

Multiple-stones 03 02 -- 01 30 

 

Table 6.8 shows the confusion matrix for the combined feature set of shape and wavelet 

features using the fuzzy k-NN classifier. Five-fold cross validation is carried out for the 
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classifiers and average values of all the 5 iterations in the validation are taken into 

consideration. 

Table 6.8 Confusion matrix for the combined feature set of shape and wavelet using fuzzy k-NN 

 

 Normal kidney Single-Cystic  polycystic  Single-stone  Multiple-stones 

Normal kidney  35  

-- 

01 01 -- 

Single-Cystic  01 38 -- -- -- 

polycystic  01 -- 33 01 -- 

Single-stone  01 -- -- 36 01 

Multiple-stones 01 01 -- -- 34 

 

It is observed from Tables 6.6, 6.7, and 6.8 that the fuzzy k-NN classifier performs better 

compared to k-NN and SVM for the proposed method. The proposed fuzzy k-NN classifier 

with wavelet and shape features classifies the input images into normal kidney, cystic, and 

kidney stone images with an overall accuracy of 95.04% as shown in Fig 6.5.  

The performance metrics namely precision, recall, F1score are calculated using the confusion 

matrices obtained for all the three classifiers. Precision computes the percentage of the 

relevant samples. Recall computes the percentage of the samples that are actually found 

among all the relevant classes. The F1 score is obtained by finding the harmonic mean of 

precision and recall. It reaches its best value at 1 and worst at 0 (Vijay Kotu and Bala 

Deshpande, 2019). Precision, recall, and F1 score are computed using the Eqs. 6.2, 6.3, and 

6.4 respectively.  

                                               c      
true 

true  f lse 
                                                     (6.2) 

                                                    c    
true 

true  f lse 
                                                     (6.3) 

                                                  c     ∗
 re  s   ∗ e  ll

 re  s     e  ll
                                      (6.4)
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The values of the parameters obtained are shown in Table 6.9. 

 Table 6.9 Performance parameters of the classifiers  

 

From Table 6.9, it is observed that the fuzzy k-NN achieves precision, recall, and F1 score 

nearer to 1, exhibiting the better performance of the classifier. From the experimental results, 

it is observed that the supervised classifiers such as SVM are not suitable for the smaller 

training sets. Another added advantage of non-parametric classifiers like k-NN and fuzzy k-

NN is a substantial reduction in training time. Hence, the proposed method using combined 

sets of shape and wavelet features using a fuzzy k-NN classifier is found to be better than the 

existing methods discussed in the literature. 

The details of comparison of the proposed method with the methods in the literature are 

shown in Table 6.10. The proposed method can be compared with the method in (Jyoti 

Verma, et al., 2017), kidney stones in ultrasound images are identified using k-NN and SVM 

classifiers. Morphological segmentation is applied before classification. In (K. Kumar, 2012), 

laboratory blood test parameters of 1000 patients are directly used for the identification of 

kidney stones using artificial neural networks, and an accuracy of 92% is achieved. In (Goel 

R. and Jain A., 2020), kidney abnormality and stones are detected with an accuracy rate of 

90%.  

 

 

 

 

Image 

class 

k-NN  SVM  Fuzzy k-NN 

Precision  Recall F1score Precision  Recall F1score Precision  Recall F1score 

Normal 
kidney 

0.854 0.946 0.898 0.714 0.811 0.759 0.897 0.946 0.921 

Single- 
cystic 

0.95 0.974 0.962 0.822 0.948 0.881 0.974 0.974 0.974 

poly-
cystic 

0.943 1.0 0.971 0.914 0.914 0.914 0.971 0.943 0.957 

Single-
stone 

0.921 0.946 0.933 0.909 0.811 0.857 0.947 0.947 0.947 

Multiple- 
stone 

0.917 0.971 0.943 1.0 0.833 0.909 0.971 0.944 0.957 
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Table 6.10 Comparison of results of the proposed method 

 Method in ( Jyoti 
Verma, et al., 
2017) 

Method in (Goel R. 
and Jain A, 2020) 

Proposed 
method 

Dataset US images of the 
kidney (Clinical 
dataset) 

US images of kidney US images of 
kidney 

Algorithms 
used 

Morphological 
segmentation 

SVM and k-NN 

Region growing 
segmentation 

GLCM features, SVM  

Level set 
segmentation  

Shape 
&wavelet 
features, 

Fuzzy k-NN  

Accuracy rate 89% for k-NN 

84% for SVM 

90% 95.04% 

From Table 6.10, it is observed that the proposed fuzzy k-NN classifier using a combined 

feature set of shape and wavelet features performs better comparatively. 

Mobile interface 

To provide an easy to use interface to the users on handheld devices like smartphone, an 

application is developed. The application is compatible with any Android device. The 

application offers various facilities to the radiologists, medical professionals, and patients, 

such as real-time viewing of segmented and classified results on US images of kidney. 

Computerized analysis on the segmented image such as size and location of the cysts/stone is 

also provided. The application enables collaboration between medical experts and patients 

effectively. It provides easy access for accurate diagnosis in real-time and thus helps in 

taking the right decision. The details of the user interface are discussed in Appendix II.  

6.4 Summary 

In this Chapter, the extraction of features and classification of segmented kidney US images 

is discussed.  Segmented ultrasound images of the kidney using the level set method are used 

as input by the feature extraction module. Individual feature sets like Haralick, shape, 

wavelets, Tamura, and histogram oriented gradient features are extracted.  Extracted features 
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are used in different combinations of two and three feature sets as well.  Three different 

classifiers namely k-NN, fuzzy k-NN, and SVM are used to classify the input kidney US 

images into five classes namely, normal kidney, single cystic, polycystic, single stone, and 

multiple-stones. The performance of the classifiers is measured by the parameters accuracy, 

precision, recall, and F1 score. The accuracy rate of 95.04 % is achieved using fuzzy k-NN 

with combined features set of shape and wavelet features. The proposed algorithm can be 

used for clinical analysis of kidney medical ultrasound images by the medical experts.  
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Chapter 7 

CONCLUSION AND FUTURE SCOPE  

Automatic diagnosis of diseases through medical images is an important application in the 

field of health care. This research work attempts to provide a robust method on analysis of 

renal calculus and polycystic kidney disease in medical ultrasound images of the kidney 

using image processing techniques. The contributions made by this research work are 

highlighted with conclusions and scope for future works in this chapter.  

7.1 Conclusion  

The recent trends in medical image processing and the application of the available techniques 

have motivated in defining the problem of analysis on renal calculus and polycystic kidney 

diseases. Among the various available imaging modalities for diagnosis, ultrasound images 

are taken into account. Among the different kidney diseases, renal stones, and polycystic 

kidney disease are considered. Renal stone is the most common issue world-wide and 

polycystic kidney disease is a genetic disorder, if not treated at an earlier stage, it can affect 

the other major organs like heart and brain, leading to the death of a person. The overall 

process of implementation involves major steps of automatic initial contour generation, 

automatic segmentation, feature extraction, and detection of stones and cysts in US images of 

the kidney. 

Different spatial domain and transform domain filters are tested for speckle noise removal of 

renal ultrasound medical images. The filters like Gaussian, Weiner, median, wavelet 

transform, and contourlet transform are used for denoising of kidney ultrasound images. The 

contourlet transform is found to be the better method for denoising of renal ultrasound 

images. It is justified using various performance parameters namely, MSE, PSNR, and CC.  

Automatic initial contour generation for segmentation has many advantages. It reduces the 

burden and saves the time of medical experts to a greater extent avoiding manual annotation 

for every image. The segmentation of the denoised kidney US images is carried out using 

GVF based segmentation method. The proposed GVF based segmentation algorithm is a 
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semi-automatic method. It needs explicit specification of initial contour by the user, making 

the segmentation semi-automatic. It is observed that GVF segmentation performs well in 

segmenting the normal kidney, single-cystic, and single–stone renal ultrasound images.  

An automated ACM segmentation algorithm is implemented for the segmentation of cystic 

renal US images. The algorithm is automated completely, avoiding the specification of initial 

parameters by the user.  The automatic initial contour needed by the algorithm is effectively 

generated by using morphological operations. The efficiency of the proposed algorithm is 

measured by comparing segmented images with manually marked images by the medical 

experts. It is found that the proposed ACM method is good at segmenting single-cystic 

ultrasound images of the kidney. But it segments a single region enclosing all the cysts. 

Hence, it is not effective in polycystic kidney US images.  

An automated level set segmentation algorithm can be effectively used for the segmentation 

of cystic and renal stone US images. The initial contour is generated automatically and 

effectively for segmenting the stones and cysts in US images of the kidney. The drawbacks 

of ACM based segmentation are improved to segment the individual cysts and stones in 

polycystic and multiple renal stone images respectively. Different performance parameters 

namely DC, JC, sensitivity, specificity, accuracy, and execution time are used for measuring 

the performance of the proposed segmentation algorithm. The performance to measure the 

appropriate segmentation method and execution time for computation, both are improved in 

the proposed level set method. The segmented results are analyzed to determine the number 

of cysts and stones with their size. The chi-square method, a statistical method is used to find 

the relevance between the values of stone sizes determined experimentally and by expert 

opinion.  The structural statistics found through the segmentation offer indispensable visual 

assistance for image-guided surgeries.  

Segmented ultrasound images using a level set algorithm are read as input for feature 

selection. Individual feature sets like Haralick, shape, wavelets, Tamura, and histogram 

oriented gradient features are extracted. The feature sets are used individually as well as in 

the combination of two and three feature sets by the decision support system. A combined 

approach having shape-based and wavelet features set is the best feature model for 

classification. Extracted features are classified by three different classifiers namely k-NN, 

fuzzy k-NN, and SVM. The performance of the proposed method is measured using 
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sensitivity, specificity, accuracy, precision, recall, and F1 score. The accuracy rate of 

95.04 % is achieved using fuzzy k-NN with combined features sets of wavelet and shape 

features to classify the kidney US images into normal kidney, single-cystic, polycystic, 

single-stone, and multiple-stones classes.  

The segmentation of kidney cysts and stones using a level set segmentation method followed 

by classification using a fuzzy k-NN classifier with combined features set of shape and 

wavelet yields better results. The proposed algorithm can be effectively used for clinical 

analysis of kidney medical ultrasound images such as number of cysts and stones along with 

size, by the medical experts for precise treatment. The proposed automated system can be 

used for mass screening to obtain the results in lesser time. 

Overall, the significant contributions of the present research study are the following: 

i.  Semiautomatic segmentation of kidney cysts, and stones in US image using gradient 

vector force algorithm. Performance evaluation of the GVF based segmentation 

algorithm using DC, JC, sensitivity, specificity, accuracy, and amount of execution 

time (Chapter 3). 

ii.  Automatic initial contour detection using morphological operations and segmentation 

of kidney cysts in the US image using an active contour model. Performance 

valuation of the segmented algorithm and calculation of cyst size (Chapter 4). 

iii.  Fully automatic segmentation of kidney cysts, and stones in US image using the level 

set method is found to be superior to GVF and ACM based segmentation methods. 

Improved performance in terms of DC, JC, sensitivity, specificity, accuracy, and 

amount of execution time. Identification of the number of cysts/stones in the 

segmented US images of the kidney along with their sizes. Verification of statistical 

acceptance of determined stone size using the chi-square test (Chapter 5). 

iv. Feature extraction and classification of the level set segmented kidney US images into 

the five classes using different classifiers. Verification of statistical importance of 

extracted features using the Kruskal Wallis test. The five classes are normal kidney, 

single-cystic, polycystic, single-stone, and multiple-stones. Experimentation on 

various classifiers such as k-NN, SVM, and fuzzy k-NN is carried out (Chapter 6). 
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It is found that the level set method proposed in Chapter 5 has yielded better segmentation 

results. Further the combined feature set of shape and wavelet-based features with fuzzy k-

NN classifier has yielded better classification results for kidney diseases. An easy to use 

mobile interface is developed for the medical experts. The interface offers various 

functionalities such as real-time viewing of segmented and classified results on US images of 

kidney. It helps to collaborate with other medical experts and patients in an effective manner. 

It provides easy access for accurate diagnosis in real-time and thus helps in taking the right 

decision.  

 

7.2 Future scope  

The present study has further scope for enhancement. The development of a computer-aided 

automated diagnostic system for analysis of polycystic kidney disease and renal stones for 

the Indian race using deep learning techniques can be taken up as a major research objective. 

As there is no availability of benchmark datasets for ultrasound images of the kidney, PCKD, 

and renal stones, the benchmark dataset in consultation with a medical expert can be created.   

The diagnosis of other kidney disorders like chronic kidney disease, lupus nephritis, and 

kidney cancer can be taken up for research.  Attention is required in the diagnosis of diseases 

in 3D ultrasound images. The work can be extended to the diseases associated with different 

organs. The images from different imaging modalities like CT, MRI can be taken up for the 

purpose of automatic diagnosis. 

The development of ultrasound machines embedded with these advanced algorithms leading 

to immediate, real-time diagnosis and analysis of the various diseases requires due attention. 

The developed computerized algorithms can be directly connected with the real-time input of 

the ultrasound machine. This can be achieved through Aurdino and Raspberry pi models. 

Such methods can take further advantages with the use of IoT applications as well.  

To conclude, the research investigation on analysis of renal calculus and polycystic kidney 

disease in medical ultrasound images recognition presented in this thesis opens further 

research avenues in the medical image analysis. 
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Appendix I 

KIDNEY ULTRASOUND IMAGE DATASET  

Ultrasound images of kidney are used for the design and development of an automatic 

diagnosis system for kidney diseases. Medical renal ultrasound B-mode images having 

different sizes and orientations are used. The input US image set is comprised of two sets S1 

and S2. The images in S1 (Clinical dataset) are collected from BLDEDU‟s Shri. B.M. Patil 

Medical College and Research Centre, Vijayapura. The images in S2 (Website dataset)  are 

collected from medical websites, namely,  https://openi.nlm.nih.gov, 

http://www.sonoworld.com, and https://www.ultrasoundimages.com. Totally 185 images are 

used for the experimentation; the S1 set contains 105 images and S2 contains 80 images as 

shown in Table AI.1. The dataset includes normal, single cystic, polycystic, renal calculi 

medical ultrasound images. 

Table AI.1 Image dataset 

Kidney Image type 

Number of images 

Dataset S1 Dataset S2 Total 

Normal kidney 12 25 37 

Single cystic 19 20 39 

Polycystic 24 11 35 

Single stone 24 14 38 

Multiple-stones 26 10 36 

Total number of images 105 80 185 
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Ultrasound Images of Normal Kidney 
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Ultrasound Images of Single-Cystic Kidney 
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Ultrasound Images of Polycystic Kidney 
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Ultrasound Images of Single-stone Kidney 
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Ultrasound Images of Multiple-stones Kidney 
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Appendix II 

ANDROID MOBILE INTERFACE  

The medical field has evolved beyond traditional boundaries with the advent of new 

technologies and tools. Android-based mobile devices are popular all over the world. In the 

modern era, hospitals are integrating their information system to enhance the quality of 

patient care services, using the concepts adopted worldwide. The technology used in the 

digital health system allows a large-scale network and image management systems, providing 

patient information, images to be shared and viewed remotely. Hence, an android interface 

for the system is developed for the end-users. 

The mobile healthcare applications have brought new opportunities. In recent days, medical 

experts are adopting mobile applications to view or share images and reports. These 

applications are helpful to collaborate with other physicians for review discussions. About 

15% of mobile applications are designed for healthcare professionals according to a survey 

carried out by research2guidance (Sarah Bruyn Jones, 2013). 

Medical image analysis using smartphones focuses on enabling visualization and analysis 

through mobile devices. The system is implemented and tested on Samsung Note 9 cell 

phone, Exynos 9 Octa-core (2.7 GHz, Quad-core, M3 Mongoose, 1.7 GHz, Quad-core, 

Cortex A55) processor, 512 GB storage, 12 MP camera with 8 GB RAM running on Android 

version 8.1(Oreo) operating system. The interface is designed using MATLAB mobile 

application. Licensed MATLAB 2018b software with connectivity to the cloud is essential 

for the accessibility of MATLAB software 

The initial setting for the connectivity between cloud and licensed MATLAB software is 

shown in Fig. AII.1 (a) and (b). The details like license number of MATLAB software and 

login id of a Mathworks account (https://mathworks.com) should be entered to connect to the 

MATLAB mobile application. 
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                         (a)                                                           (b) 

Fig. AII.1 Setting in application (a) Snapshot of initial setting (b) Connectivity with the cloud  

 

After connecting, files can be opened and executed in the mobile application. The execution 

of a file shows the instructions to the user to select the dataset. Initially, enter the image file 

name for testing as shown in Fig. AII.2(a). After reading the input it displays the result as 

shown in the snapshot Fig. AII.2(b). 
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(a)                                                           (b) 

Fig. AII.2 Snapshots of results (a) Display of instructions to specify the input (b) Output of the classifier 

 
The execution time to perform the specified task and the input image is shown in a smaller 

size at the bottom line as shown in Fig. AII.2(b). The full view of the image can be seen by 

clicking on it as shown in Fig. AII.3. 
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Fig. AII.3 Enlarged form of the processed image 

Thus an easy to use mobile interface is developed for the end-users avoiding the requirement 

of computer to run the proposed algorithm for classification of segmented images using an 

automatic level set based segmentation method. The application offers various functionalities 

to the radiologists, medical professionals, and patients, such as real-time viewing of 

segmented and classified results on US images of kidney. The application facilitates 

collaboration with other medical experts and patients in an effective manner. It provides easy 

access for accurate diagnosis in real-time and thus helps in taking the right decision.  
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Appendix III 

KRUSKAL WALLIS TEST AND CHI-SQUARE TEST 

Kruskal Wallis test  

The Kruskal Wallis H test is a non-parametric test alternative to the one-way ANOVA. It is 

used to find out the statistically important variations among different sets of an independent 

variable on a continuous- dependent variable (sociostatatististics.com; Eva O., Oskar O., 

Jozef K., 2014). It is an improved version of the Mann-Whitney test. The Kruskal Wallis test 

supports the assessment of multiple independent sets. 

The extracted features are tested for their statistically important variations between different 

features. This test is to justify that different features in a model have distinguishable 

importance in the proper classification. The working of Kruskal Wallis test is described in 

Algorithm AIII.1. 

Algorithm AIII.1: Kruskal Wallis test. 

Input:  Extracted feature vector. 

Output: Acceptance or rejection of the null hypothesis. 

Begin 

Step 1: Define the null hypothesis (H0) and the alternative hypothesis (H1) 

             H0: The feature values are from populations with equal medians. 

             H1: The feature values are from populations with the medians that are not all equal. 

Step 2: Sort all the columns of a feature vector in ascending order. 

Step 3: Assign rank to sorted feature values within a column. 

Step 4: Find the sum of all the ranks for every column. 

Step 5: Compute the Kruskal Wallis statistic using Eq. (A3.1).       

                               
  

 (   )
∑

  
 

  
  (   ) 

                                                          (A3.1) 
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where,           s  = Total sum of samples in all the columns. 

                       j  = Number of groups(feature columns). 

                      Ti = Sum of the ranks for sample i. 

                      si = Size of sample  i. 

Step 6: Find the degree of freedom, j-1, and assign a level of significance alpha as 0.05 (5%).  

Step 7: Obtain the critical value „V‟ for the particular parameters in step 6 using chi-square  

             table. 

Step 8:  Perform the comparison and  

              If     K
 
< V

 
  

             then  H0  is accepted ; 

             Otherwise  H1  is accepted and H0  is rejected.  

End.  

 

 Table AIII.1: Kruskal Wallis test on Tamura feature set 

 

Normalized feature values(Sorted in ascending order) Ranks assigned 

Coarseness(f1) Contrast(f2) Direction(f3) f1 rank f2 rank f3 rank 
0 0 0 5.5 5.5 5.5 

0.021 0 0 14.5 5.5 5.5 

0.021 0 0.757 14.5 5.5 340 

0.021 0 0.757 14.5 5.5 340 

0.021 0 0.757 14.5 5.5 340 

0.021 0 0.758 14.5 5.5 343.5 

0.021 0 0.758 14.5 5.5 343.5 

0.021 0.085 0.758 14.5 37.5 343.5 

0.021 0.085 0.758 14.5 37.5 343.5 

0.026 0.085 0.759 20 37.5 350 

0.026 0.085 0.759 20 37.5 350 

0.026 0.088 0.759 20 42.5 350 

0.028 0.088 0.759 23 42.5 350 

0.028 0.088 0.759 23 42.5 350 

0.028 0.088 0.759 23 42.5 350 
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Table AIII.1 (Contd…): Kruskal Wallis test on Tamura feature set  

 

 

 

 

Normalized feature values(Sorted in ascending order) Ranks assigned 

Coarseness(f1) Contrast(f2) Direction(f3) f1 rank f2 rank f3 rank 
0.034 0.088 0.759 25.5 42.5 350 

0.034 0.088 0.759 25.5 42.5 350 

0.059 0.123 0.76 27 69.5 355 

0.079 0.123 0.762 29 69.5 360 

0.079 0.123 0.762 29 69.5 360 

0.079 0.123 0.762 29 69.5 360 

0.08 0.132 0.762 32.5 74.5 360 

0.08 0.132 0.762 32.5 74.5 360 

0.08 0.143 0.762 32.5 81 360 

0.08 0.143 0.762 32.5 81 360 

0.083 0.163 0.762 35 95.5 360 

0.096 0.163 0.762 47.5 95.5 360 

0.096 0.163 0.763 47.5 95.5 370.5 

0.096 0.163 0.763 47.5 95.5 370.5 

0.096 0.181 0.763 47.5 103 370.5 

0.102 0.182 0.763 52 108 370.5 

0.102 0.182 0.763 52 108 370.5 

0.102 0.186 0.763 52 114 370.5 

0.102 0.186 0.764 52 114 378.5 

0.102 0.186 0.764 52 114 378.5 

0.111 0.186 0.764 56 114 378.5 

0.111 0.186 0.764 56 114 378.5 

0.111 0.186 0.765 56 114 383.5 

0.114 0.186 0.765 58.5 114 383.5 

0.116 0.186 0.765 62 114 383.5 

0.116 0.203 0.765 62 126.5 383.5 

0.116 0.203 0.765 62 126.5 383.5 

0.116 0.203 0.766 62 126.5 390 

0.116 0.203 0.766 62 126.5 390 

0.117 0.222 0.766 66 135.5 390 

0.117 0.222 0.766 66 135.5 390 

0.117 0.222 0.766 66 135.5 390 

0.126 0.222 0.767 72.5 135.5 394.5 

0.126 0.225 0.767 72.5 139.5 394.5 

0.14 0.225 0.769 77.5 139.5 403.5 

0.14 0.227 0.769 77.5 141 403.5 

0.14 0.242 0.769 77.5 147 403.5 

0.14 0.245 0.769 77.5 150.5 403.5 

0.143 0.259 0.771 81 156.5 410 

0.152 0.259 0.771 84.5 156.5 410 

0.152 0.259 0.771 84.5 156.5 410 

0.152 0.259 0.771 84.5 156.5 410 
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Table AIII.1 (Contd…): Kruskal Wallis test on Tamura feature set  

 

 

 

Normalized feature values(Sorted in ascending order) Ranks assigned 

Coarseness(f1) Contrast(f2) Direction(f3) f1 rank f2 rank f3 rank 
0.152 0.259 0.771 84.5 156.5 410 

0.153 0.259 0.771 87.5 156.5 410 

0.153 0.277 0.771 87.5 166.5 410 

0.157 0.277 0.771 91 166.5 410 

0.157 0.285 0.771 91 168 410 

0.157 0.287 0.772 91 170 415.5 

0.157 0.287 0.772 91 170 415.5 

0.157 0.287 0.773 91 170 419.5 

0.165 0.295 0.773 98 172 419.5 

0.169 0.3 0.773 99 173 419.5 

0.181 0.31 0.773 103 175 419.5 

0.181 0.31 0.773 103 175 419.5 

0.181 0.31 0.773 103 175 419.5 

0.181 0.329 0.774 103 181.5 424 

0.181 0.329 0.774 103 181.5 424 

0.181 0.341 0.774 103 184 424 

0.182 0.341 0.775 108 184 428 

0.197 0.341 0.775 119 184 428 

0.198 0.348 0.775 122 188 428 

0.198 0.348 0.775 122 188 428 

0.198 0.348 0.775 122 188 428 

0.198 0.36 0.778 122 192.5 432 

0.198 0.36 0.778 122 192.5 432 

0.216 0.36 0.778 129 192.5 432 

0.217 0.36 0.779 131 192.5 434 

0.217 0.36 0.78 131 192.5 438.5 

0.217 0.36 0.78 131 192.5 438.5 

0.219 0.364 0.78 133 198.5 438.5 

0.223 0.364 0.78 138 198.5 438.5 

0.232 0.364 0.78 142.5 198.5 438.5 

0.232 0.364 0.78 142.5 198.5 438.5 

0.234 0.364 0.78 144 198.5 438.5 

0.242 0.364 0.78 147 198.5 438.5 

0.242 0.366 0.781 147 207 444 

0.242 0.366 0.781 147 207 444 

0.242 0.366 0.781 147 207 444 

0.245 0.366 0.782 150.5 207 446.5 

0.252 0.366 0.782 152.5 207 446.5 

0.252 0.368 0.783 152.5 214 448 

0.26 0.368 0.784 160.5 214 453 

0.26 0.368 0.784 160.5 214 453 

0.262 0.377 0.784 163.5 221.5 453 

0.262 0.377 0.784 163.5 221.5 453 

0.262 0.377 0.784 163.5 221.5 453 
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Table AIII.1 (Contd…): Kruskal Wallis test on Tamura feature set 

 

 

 

Normalized feature values(Sorted in ascending order) Ranks assigned 

Coarseness(f1) Contrast(f2) Direction(f3) f1 rank f2 rank f3 rank 
0.262 0.377 0.784 163.5 221.5 453 

0.323 0.377 0.784 178.5 221.5 453 

0.323 0.377 0.784 178.5 221.5 453 

0.323 0.379 0.784 178.5 226 453 

0.323 0.379 0.785 178.5 226 461 

0.342 0.379 0.785 186 226 461 

0.366 0.388 0.785 207 233 461 

0.366 0.388 0.785 207 233 461 

0.366 0.388 0.785 207 233 461 

0.366 0.388 0.785 207 233 461 

0.366 0.388 0.785 207 233 461 

0.366 0.401 0.786 207 239 466.5 

0.372 0.405 0.786 217 241 466.5 

0.372 0.405 0.786 217 241 466.5 

0.372 0.405 0.786 217 241 466.5 

0.384 0.411 0.787 228.5 243.5 469 

0.384 0.411 0.788 228.5 243.5 470.5 

0.386 0.42 0.788 230 245.5 470.5 

0.391 0.42 0.789 236 245.5 474 

0.398 0.426 0.789 237.5 247.5 474 

0.398 0.426 0.789 237.5 247.5 474 

0.436 0.462 0.789 249 258 474 

0.437 0.462 0.789 250 258 474 

0.442 0.462 0.79 251.5 258 479 

0.442 0.489 0.79 251.5 260 479 

0.453 0.494 0.79 253 261 479 

0.455 0.516 0.79 254 270 479 

0.46 0.518 0.79 255.5 271 479 

0.46 0.522 0.791 255.5 276 486.5 

0.495 0.522 0.791 262 276 486.5 

0.498 0.522 0.791 263 276 486.5 

0.504 0.522 0.791 264.5 276 486.5 

0.504 0.522 0.791 264.5 276 486.5 

0.512 0.523 0.791 267.5 279.5 486.5 

0.512 0.523 0.791 267.5 279.5 486.5 

0.512 0.533 0.791 267.5 282 486.5 

0.512 0.538 0.791 267.5 283 486.5 

0.521 0.549 0.791 272.5 285.5 486.5 

0.521 0.549 0.792 272.5 285.5 493.5 

0.524 0.574 0.792 281 288 493.5 

0.54 0.574 0.792 284 288 493.5 

0.588 0.574 0.792 290.5 288 493.5 

0.588 0.59 0.793 290.5 292 501.5 
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Table AIII.1 (Contd…): Kruskal Wallis test on Tamura feature set  

Sum of the ranks for column(f1 rank) T1= 34750.5 

Sum of the ranks for column(f2 rank) T2= 38566 

Sum of the ranks for column(f3 rank) T3= 80973.5 

Ti is calculated as the sum of the ranks for the feature ranks columns. n is the total number of 

sample values taken. Applying the formula mentioned in Algorithm A3.1, we get the statistic 

Normalized feature values(Sorted in ascending order) Ranks assigned 

Coarseness(f1) Contrast(f2) Direction(f3) f1 rank f2 rank f3 rank 
0.596 0.591 0.793 294.5 293 501.5 

0.596 0.601 0.793 294.5 300.5 501.5 

0.597 0.601 0.793 296.5 300.5 501.5 

0.597 0.646 0.793 296.5 304.5 501.5 

0.598 0.646 0.793 298.5 304.5 501.5 

0.598 0.656 0.793 298.5 306 501.5 

0.61 0.666 0.793 302.5 308 501.5 

0.61 0.683 0.793 302.5 312.5 501.5 

0.664 0.683 0.793 307 312.5 501.5 

0.669 0.686 0.793 310 315 501.5 

0.669 0.686 0.793 310 315 501.5 

0.669 0.686 0.794 310 315 509 

0.745 0.689 0.794 333 317 509 

0.745 0.691 0.794 333 318 509 

0.745 0.711 0.795 333 319.5 512.5 

0.745 0.711 0.795 333 319.5 512.5 

0.745 0.719 0.795 333 321.5 512.5 

0.756 0.719 0.795 338 321.5 512.5 

0.763 0.734 0.796 370.5 324.5 516 

0.763 0.734 0.796 370.5 324.5 516 

0.763 0.734 0.796 370.5 324.5 516 

0.763 0.734 0.797 370.5 324.5 522 

0.763 0.736 0.797 370.5 327.5 522 

0.763 0.736 0.797 370.5 327.5 522 

0.822 0.743 0.797 535 329.5 522 

0.822 0.743 0.797 535 329.5 522 

0.822 0.755 0.797 535 336.5 522 

0.822 0.755 0.797 535 336.5 522 

0.822 0.759 0.797 535 350 522 

0.822 0.766 0.797 535 390 522 

0.822 0.766 0.798 535 390 529 

0.825 0.768 0.798 540.5 398.5 529 

0.845 0.768 0.798 543.5 398.5 529 

0.845 0.768 0.798 543.5 398.5 529 

0.862 0.768 0.825 547.5 398.5 540.5 

0.862 0.768 0.825 547.5 398.5 540.5 

0.862 0.768 0.825 547.5 398.5 540.5 

0.862 0.798 0.957 547.5 529 552.5 

0.862 0.936 0.957 547.5 551 552.5 

0.862 0.978 0.964 547.5 555 554 
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K= 276.7. The critical value V obtained from chi-square table is 5.991 for degree of freedom 

2 at 5% level of significance. Therefore K>V and null hypothesis H0 is rejected as shown in 

Algorithm A3.1. Hence, the three different Tamura features have an important significant 

difference. They have not come from a population with a common median. Each of the 

features contributes significantly in classifying the renal ultrasound medical images. 

Chi-Square test 

Chi-Square, test of goodness is proposed by Pearson. It is a non-parametric test, mainly 

applied to determine, how obtained values are significantly varying from the expert-

determined standard values.  The test compares the obtained values distribution with 

probability distribution of actual values (Kothari C. R., 2004).  

Chi-square test is used to evaluate the appropriateness of stone size calculated experimentally 

and the actual values obtained by medical experts. The various steps involved in chi-square 

test are shown in Algorithm AIII.2. 

Algorithm AIII.2: Chi-square test. 

 

Input:  Observed value of stone area (O), expected value (Ex) mentioned by medical  

             expert and predefined level of significance. 

Output: Acceptance or rejection of null hypothesis. 

Begin 

Step 1: Define null hypothesis (H0) 

             H0: Values of the stone area calculated by the algorithm and the values obtained by    

                  medical expert are similar. 

 

Step 2: Compute chi-square statistics using the O and Ex values specified in Table 5.3 using  

             the formula specified in Eq.A3.2. 

 

                 ∑
(     ) 

  
                                                        (A3.2) 

Step 3: Define level of significance (s) and obtain a degree of freedom (d) as in Eq. (A3.3)  

           and  Eq.  (A3.4)  respectively. 
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                                                                                                                             (A3.3) 

                         (    )(    )                                                                                  (A3.4) 

          where     and     refer to the number of rows and number of columns in Table A3.2. 

Step 4: Perform goodness of fit test by the computed value of  ᵡ2
 and ᵡf2 obtained value by a  

            chi-square table, for a particular degree of freedom and level of significance. 

            If      χ
2 <  ᵡf2   

        then  H0  is accepted ; 

            otherwise, H0  is rejected.  

 

End.  

Table AIII.2. Chi-square test on sample values of renal calculus area 

Image sample 
Stone size ( in mm

2
) (    ) 

  
 

Experimentally obtained (O) Obtained by an expert (E) 

I1 11.54 10.75 
0.058 

I2 7.75 8.46 
0.060 

I3 12.82 13.77 
0.066 

I4 
Stone1=13.92 Stone1=13.21 

0.038 
Stone2=11.43 Stone2=11.9 

0.019 

I5 11.19 10.96 
0.005 

I6 15.0 14.63 
0.009 

I7 14.69 15.74 
0.070 

I8 10.98 11.23 
0.006 

Chi-square = 
0.33 

 

Chi-square test is performed on obtained and expert determined values of renal stone sizes as 

specified in Algorithm AIII.2. Table AIII.2 shows the details of eight sample renal stone 

images considered for the test.  The chi-square distribution table value for a 5% level of 

significance is 15.507. The obtained value is lesser than the table value. i.e. 0.33 < 15.507. 

Hence, the null hypothesis H0 is accepted. The acceptance indicates that the computed values 

are statistically acceptable. 
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