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Abstract:

Using  magnetic  resonance  imaging  (MRI)  in  osteoarthritis  pathogenesis  research  has  proven  extremely  beneficial.  However,  it  is  always
challenging for both clinicians and researchers to detect morphological changes in knee joints from magnetic resonance (MR) imaging since the
surrounding tissues produce identical signals in MR studies, making it difficult to distinguish between them. Segmenting the knee bone, articular
cartilage and menisci from the MR images allows one to examine the complete volume of the bone, articular cartilage, and menisci. It can also be
used to assess certain characteristics quantitatively. However, segmentation is a laborious and time-consuming operation that requires sufficient
training  to  complete  correctly.  With  the  advancement  of  MRI  technology  and  computational  methods,  researchers  have  developed  several
algorithms to automate the task of individual knee bone, articular cartilage and meniscus segmentation during the last two decades. This systematic
review aims to present available fully and semi-automatic segmentation methods for knee bone, cartilage, and meniscus published in different
scientific articles. This review provides a vivid description of the scientific advancements to clinicians and researchers in this field of image
analysis  and segmentation,  which helps the development of  novel  automated methods for clinical  applications.  The review also contains the
recently  developed  fully  automated  deep  learning-based  methods  for  segmentation,  which  not  only  provides  better  results  compared  to  the
conventional techniques but also open a new field of research in Medical Imaging.
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1. INTRODUCTION

The  knee  is  the  largest  joint  in  the  human  body,  and
because  of  this,  it  is  the  joint  that  allows  for  the  most  fluid
transitions from one position to another. There is currently no
known  treatment  that  may  effectively  reverse  the  crippling
effects of osteoarthritis (OA), a degenerative joint disease that
affects more than 71 million individuals all over the globe.

In older people, osteoarthritis, sometimes known as OA, is
a  prevalent  and  debilitating  disorder.  The  most  common
technological  tool  employed  to  monitor  and  evaluate  the
progression of an OA is magnetic resonance imaging (MRI).
Despite the fact that MRI provides an effective analysis of knee
joint anatomy, it is an expensive modality and routine clinical
examinations are limited due to its non-availability.

Injuries to the meniscus, anomalies in the bone beneath the
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joint boundaries, and a lack of articular cartilage integrity may
all contribute to the development of osteoarthritis (OA) of the
knee [1]. Pre-structural and structural changes in tissues such
as articular cartilage, synovial, fluid meniscus, and subchondral
bones may be measured to detect early-stage osteoarthritis [2].
In the assessment of osteoarthritis, pre-structural/biochemical
compositions  (water  content,  proteoglycan  content  and
collagen) are mainly measured in the articular cartilage (AC)
tissue to diagnose the disease at early stages, followed by the
measurement of anatomical (thickness, volume, surface area)
changes  that  occurs  either  at  early  or  during  the  progression
stages.

Similarly, quantitative MR of the meniscus has been used
to measure biochemical (collagen-PG) changes during the early
onset of osteoarthritis followed by its morphological (flap or
complex tears; meniscal maceration; or destruction) changes to
monitor progression. Alterations in the subchondral bone might
be  used  as  an  imaging  biomarker  to  diagnose  knee
osteoarthritis  symptoms  [3  -  5].  It  has  been  shown  that
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magnetic resonance imaging, often known as MR imaging, is
an  effective  tool  for  evaluating  osteophytes,  surface  area
abnormalities,  and  lesions  most  commonly  seen  in  bone
marrow as a method for monitoring the progression of OA [3].

Quantitative  MRI  can  diagnose,  assess,  and  monitor
diseases  such  as  osteoarthritis  by  identifying  morphologic
changes in the knee and calculating quantitative values such as
T1  rho  and  T1/T2  relaxation  times.  However,  the  clinical
application  of  quantitative  MRI  has  been  hindered  by  the
requirement  for  time-consuming  post-processing  of  images,
particularly for segmenting the joint and musculoskeletal tissue
[5].  The  anterior  compartment  (AC)  is  segmented  in  most
quantitative  MR techniques,  and  a  technique-specific  map is
formed.  This  map  is  then  utilized  to  evaluate  particular  data
from knee tissue [6, 7].

In many cases, the AC subdivision (whether for the entire
system or individual compartments) is performed manually by
a  trained  professional  or  semi-automatically.  Both  of  these
methods  are  laborious  and  time-consuming  and  potentially
introduce  dependability  issues  Neogi  et  al.  [8].  If  done
manually, it can take a skilled technician around three hours to
do  an  image,  depending  on  the  image's  quality  and  what  is
being segmented. In order for doctors and scientists to develop
biomarkers,  knee  implants,  knee  kinematics,  and  a
comprehension  of  the  physical  phenomena  that  occur  within
healthy  knee  joints,  segmenting  the  tissue  that  makes  up  the
knee joint, such as the cartilage, the bones, and the meniscus,
using medical images is an essential first step.

Segmentation  of  knee  bone,  articular  cartilage  and
meniscus from MRI images knee segmentation is currently a

popular  area  of  research  because  it  can  save  a  significant
amount of time being spent by doctors and radiologists in order
to accurately a significant amount of time and effort while also
improving the accuracy of their diagnose pathologies related to
joint diseases. As a result, this area of study holds a great deal
of promise for both clinical and scientific investigation. Thus,
this  comprehensive  review  focuses  on  the  MRI-based  knee
joint  segmentation  methods  and  their  impact  on  future
technology  development.

2. EXISTING METHODS

2.1. Bone Segmentation & Quantification of Changes

Segmentation  of  subchondral  bone  from MR images  has
two  important  aspects  in  knee  OA  studies;  (1)  to  quantify
alterations  in  the  tibial  plateau,  bony  surface  contour  (e.g.,
subchondral bone attrition), bone shape, surface geometry and
area  from  3D  model  reconstructed  from  segmented  bone
regions as an imaging biomarker to monitor the progression of
knee  OA  [8]  and  (2)  as  an  intermediate  stage  in  the
segmentation  of  knee  joint  associated  tissues  like  articular
cartilage,  meniscus,  ligaments,  etc.  as  bone  being  the  larger
size  tissue  in  MR  images,  regular  shape  and  more
discriminative intensity as compared to other joint tissues [9,
10]. Various researchers have proposed techniques to segment
the  subchondral  bones  to  fulfill  the  above-mentioned
importance. Segmentation of the subchondral bones from MR
images  is  a  challenging  task.  Various  researchers  have
proposed  and  investigated  several  promising  knee  bone
segmentation algorithms, as summarized in Table 1, with the
type of MR sequence used.

Table 1. Automatic segmentation of bone: Existing studies (After the year 2010).

Type Key Segmentation
Algorithms Author, Year & MRI Sequence Performance

Parameters Dependability

- Graph Cut Algorithm Ababneh et al. 2011 [10] Sagittal T2 map DSC – 0.95 -

Fully-automatic

Multi-atlas registration
and voxel

classification

Tamez-Pena et al. 2016 [11] Sequence not Specified DSC (Femur) – 0.95
DSC (Tibia) – 0.95

Most algorithms depend
on Models and Atlas

designs, Training
dataset set for
classification

Dam et al. 2015 [12]
Sagittal Turbo MR sequence DSC (Tibia) – 0.97

Ray Casting technique Dodin et al. 2011 [13] Gradient echo fat suppressed
sequence

DSC (Femur) – 0.94
DSC (Tibia) – 0.92

Random and Semantic
Context Forests

Learning

Balsiger et al. 2015 [14] Sequence not Specified DSC (Femur) – 0.92

Wang et al. 2013 [15] DESS MR sequence
DSC (Femur) – 0.94
DSC (Tibia) – 0.95

DSC (Patella) – 0.94

Active and Statistical
Shape Models,

Appearance Models

Neogi et al. 2013 [8]
DESS MR sequence Not specified

Bindernagel et al. 2011 [16]
Sequence not Specified

DSC (Femur) – 0.94
DSC (Tibia) – 0.89

Seim et al. 2010 [17]
Sequence not Specified

AvgD (Femur) – 1.02
mm RMSD (Femur) –
1.54mm AvgD (Tibia)

– 0.84 mm RMSD
(Tibia) – 1.24 mm

- Continuous convex
optimization

Shan et al. 2010 [18] T1 and T2* images Not specified Incorporating regional
and shape information

Semi-automatic Quantitative BML
measurement

Ratzlaff et al. 2013 [19] 3 T TSE FS intermediate-
weighted (IW) sequence Tibia BML volume vs.

WORMS scores

Weight-bearing pain
was associated with

BML volume
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Type Key Segmentation
Algorithms Author, Year & MRI Sequence Performance

Parameters Dependability

Fully automatic 2D and 3D CNN
segmentation models

Deniz et al. 2018 [20] T1-weighted 3D fast low angle
shot (3D FLASH) images DSC-0.95

Multiple initial feature
maps, layers and

dilation rates
Fully automatic Deformable model-

based approach with
automatic initial point
selection to segment

knee bones

Kim et al. 2018 [21], MRI datasets of kne from
http://mridataweb.us-west-2.elasticbeanstalk.com

Results showed that the
approach achieves 95%
of Dice, 93% of SENS,

and 99% of SPEC in
the volume evaluation,

whereas ASSD of
1.17mm and RMSD of
2.01mm in the surface

evaluation.

3D deformable model

Fully automatic CNN, 3D fully
connected conditional
random field (CRF)

Zhou et al. 2019 [22] T1-weighted spoiled gradient
recalled-echo (3D-SPGR) knee images

Dice coefficients femur
(mean ± SD: 0.970 ±
0.010), tibia (0.962 ±
0.015), muscle (0.932

± 0.024), and other
non-specified tissues

(0.913 ± 0.017)

3D simplex deformable
modelling

Fully automatic Evaluate the cross-
sectional and
longitudinal

association of BMLs

Roemer et al. 2010 [23] 1.0 T dedicated MR system with
a circumferential extremity coil using fat-suppressed (fs)

fast
spin-echo proton density

1025 knees were
included. 8.9% of the

analyzed knee
subregions showed

SBA present at
baseline, and 9.2% of
subregions exhibited

prevalent subchondral
BMLs

With SBA in the same
subregion of the knee

Fully automatic Deep Siamese
Convolutional Neural

Network

Tiulpin et al. 2017 [24], two public datasets: MOST and
OAI -

The Kellgren-Lawrence
grading scale

Fully automatic Combining statistical
shape knowledge and
convolutional neural

networks

Ambellan et al. 2019 [25], E, Siemens, Philips, Toshiba,
Hitachi. Mostly 1.5T, some 3T, a few 1TSiemens 3T

Trio Siemens 3T Trio
MRI sequence: Many (T1, T2, GRE, Spoiled-GRE)

partly with fat suppression, DESS, Acquisition plane:
sagittal,

The DSC is 98.6% for
FB, 98.5% for TB,
89.9% for FC, and

85.6% for TC.

SKI10 challenge, as
well as from the OAI

database

Fully automatic Landmark-based shape
regression and

subsequent local
segmentation of
relevant areas.

Schock et al. 2020 [26], public dataset: OAI Performance of
existing high-precision
approaches in terms of
segmentation accuracy
while at the same time

drastically reducing
computational
complexity and

improving runtime by a
large margin.

OAI-ZIB dataset

Fully automatic Douglas-Rachford
splitting algorithm

Rini et al. 2020 [27], 1.5 T MR scanner with MR Images
of size 512×512 pixels

The values of
parameters such as

DSC, specificity and
sensitivity are 97.12%,

98.28% and 99.72%
margin.

Douglas-Rachford
Splitting algorithm.

Fully automatic Multi-stage
convolutional neural

networks

Gatti 2020 [28] public dataset: OAI The framework
produces cartilage

segmentation
accuracies (Dice

similarity coefficient)
of 0.907 (femoral),

0.876 (medial tibial),
0.913 (lateral tibial),
and 0.840 (patellar).

Multi-stage
convolutional neural

networks

(Table 1) contd.....
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Type Key Segmentation
Algorithms Author, Year & MRI Sequence Performance

Parameters Dependability

Semi-automatic Gradient-based semi-
automatic bone
segmentation

algorithm

Heckelman, L.N. 2021 [29], 3.0 T MR scanner (TIM
Trio; Siemens Healthcare; Malvern, PA) with an 8-

channel knee coil (In-vivo; Gainesville, FL).

Dice similarity
coefficient = 0.988 ±

0.002; surface distance
= − 0.01 ± 0.001 mm

(1) repeated semi-
automatic segmentations

of the same T1 VIBE
MRI scans, (2) semi-

automatic segmentations
of second T1 VIBE

MRI scans of the same
participants, and (3)

manual segmentations
of DESS MRI scans of
the same participants.

Fully automated Eagle algorithm Rini et al. [30], 2021, three-dimensional (3-D) gradient-
echo MR images of the knee

Improved accuracy in
contrast with other
traditional methods

Thickness of the
cartilage region from the

femur, tibia or patella
bone and segment the

portion.
Fully automated 2.5D U-Net algorithm Robert et al. [31] 2022, SKI10 database from the

MICCAI challenge
Final Dice score (98%)
compared well with the

state-of-the-art
algorithms

SKI10 database from
the MICCAI challenge

and U Net 2.5
architecture.

Fully automated A mask region-based
convolutional neural

network (RCNN)
algorithm

Patekar et al. [32] 2022, public dataset:OAI Improved dice
similarity scores for
femur bone 97.11%,

tibia bone 97.33%, and
patella bone 97.05%
are obtained by Mask

RCNN with
Resnet-101 as

backbone architecture.

Mask region-based
convolutional neural

network (RCNN)
algorithm and

Marching-Cube
algorithm.

Abbreviations: DSC - Dice Similarity Coefficient, Sens.- Sensitivity, Spec. – Specificity, AvgD. – Average Surface distance, RMSD – Root mean square distance, Seg.
Err. – Mean Segmentation Error

A  three-dimensional  MRI  model  of  the  knee's  bone
structure  was  demonstrated  to  assist  in  predicting  the
development  of  knee  osteoarthritis  in  research  conducted  by
Neogi et al. [8]. There will be research conducted to examine
whether  or  not  the  3D  bone  obtained  from  an  MRI  can
accurately  predict  the  onset  of  knee  osteoarthritis  (OA).  The
participants in this research consisted of two randomly picked
patients and two randomly chosen controls.  Both patient and
control  participants  had  acquired  incident  tibiofemoral
radiographic  knee  osteoarthritis  (OA).  Through  active
appearance  modelling  of  the  femur,  tibia,  and  patella,  the
author  was  able  to  find  the  best  knees  for  OA  classification
using knee imaging throughout the study.

MRI  texture  analysis  may  detect  changes  in  the
subchondral  bone  in  patients  with  OA.  MacKay  et  al.  [9]
investigated  whether  or  not  there  was  a  correlation  between
MRI  texture  analysis  and  histomorphometry  in  terms  of
osteoarthritic subchondral bone. The study includes 10 patients
aged 57 to 84 scheduled to have total knee arthroplasty (TKA)
undergone knee MR examination on 3T using high-resolution
coronal T1 weighted sequencing. Tibial plateau explants were
histologically  created  during  TKA  to  assess  bone  volume
fraction  (BV.TV),  trabecular  thickness  (Tb.Th),  trabecular
separation,  and  trabecular  number.  BV.TV  stands  for  bone
volume fraction,  while  Tb.Th stands  for  trabecular  thickness
(Tb.N). The authors used regression models to investigate the
association between texture analysis features such as BV.TV,
Tb.Th, Tb.Sp, and Tb.

Peña et  al.  [11] published the outcomes of an automated

segmentation  system  for  knee  MRI  images  as  well  as  the
histological slices of the tibial subchondral bone. Authors were
able  to  determine  the  degree  to  which  the  geographically
overlapping areas of the automatically and manually separated
segments by using the dice similarity coefficient (DSC). The
DSC  values  obtained  were  0.95  for  both  Tibia  and  Femur,
showing  good  agreement  between  automated  and  manual
segmentation.

An  automated  segmentation  technique  for  MRIs  of  the
knee was suggested by Dam et al. 2015 [12]. The framework
uses a multi-atlas rigid registration and voxel classification as a
consequence of training on a variety of segmentations of bones,
cartilages, and menisci from a database of 1907 MRIs of the
knee. When compared against manual reader re-segmentation,
the  performance  of  the  re-segmentation  was  shown  to  be
superior  in  terms  of  accuracy  and  precision.

An MR-based bone segmentation approach for the human
knee has been developed by Dodin et al. [13] and focuses on
femur  and tibia  segmentation  in  data  from 161 patients.  The
authors  used  the  ray  casting  method  to  locate  the  borders
between bones in MR images acquired using gradient echo fat
suppressed  sequence.  Results  obtained  in  this  study  were
compared  with  a  validated  semi-automatic  segmentation
technique.  Results  were  compared  in  terms  of  the  average
surface  distance  (ASD),  volume correlation  coefficient  (VC)
and Dice similarity coefficient. Ray casting method shows the
DSC 0.94 and 0.92 for the femur and tibia, respectively.

Balsiger  et  al.  [14]  developed  a  method  using  random
forest  (RF)  and  semantic  context  forests  learning  models  to

(Table 1) contd.....
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automatically segment distal femur bone. To test/validate this
methodology,  19  datasets  were  taken,  out  of  which  10  were
manually labelled. DSC calculated for the distal femur (DSC –
0.92)  shows  a  good  agreement  between  manually  labelled
segmentation  and  automatically  developed  method.

Shan  et  al.  [18]  provided  a  two-step  technique  of  bone
segmentation  and  elastic  tissue  deformation  to  rectify  faults
made in their earlier work. From the T1 and T2* pictures, the
images of the femur and tibia are automatically segmented and
extracted.  When  attempting  to  find  a  solution  to  a  problem
involving  continuous  convex  optimization,  geometric  and
shape information is taken into account. The incorporation of
essential  information  that  is  appearance-based  assists  in  the
optimization process. If you skip the phase when the forms are
aligned,  you'll  have  better  success  segmenting  the  data.
Because  of  the  unique  physical  characteristics  of  the  tissues
that make up the knee, standard registration poses a challenge
to ensure that the knee is properly aligned (bone, muscle, etc.).
Because  of  this,  the  author  devised  a  novel  approach  to  re-
aligning one's bones using an elastic deformation model, and
the stringent enforcement of similarity transforms.

Using a unique  approach that  was proposed by  Ratzlaff
et  al.  [19],  subchondral  bone  marrow  lesions  that  were
discovered by MRI in patients with knee osteoarthritis may be
measured.  This  study's  primary  objective  is  to  assess  the
reliability and validity of an automated quantitative method for
determining the presence of osteoarthritis-related bone marrow
lesions  (BMLs)  in  the  femur  and  tibia  of  study  participants.
Whole-Organ Magnetic Resonance Imaging Score (WORMS)
scoring was used to validate the BML volume criterion.  The
Western Ontario and McMaster University OA Index weight-
bearing  pain  questions  were  also  used  by  the  researchers  to
investigate the relationship between BML volume in the tibiae
and femurs of the knee.

The  proximal  femur  extraction  from  MR  images  and
segmented with the help of neural networks was the subject of
investigation carried out by Deniz et al. [20]. This study aims
to  develop  a  method  for  the  automated  segmentation  of  the
proximal femur based on deep convolutional neural networks
(CNNs).  After  ensuring  that  every  participant  was  provided
with enough information and given the opportunity to provide
their informed permission, the university's institutional review
board approved the research project.

In the future work done by Deniz et al., more than eighty-
six  individuals'  lower  leg  volumetric  structural  images  were
manually segmented by a medical practitioner. To evaluate and
compare  the  segmentation  capabilities  of  two  distinct  CNN
architectures,  each  network  was  trained  using  a  unique
combination of the starting feature map count, layer count, and
dilation rate. The lower femur was segmented using CNN, and
the results produced were excellent in terms of accuracy. The
dice  similarity  score  was  0.950.02,  while  the  values  for
precision  and  recall  were  also  0.95.02.  Because  of  the  high
level  of  segmentation  accuracy  that  CNNs  possess,  it  is
possible  that  they  might  be  useful  in  the  treatment  of
osteoporosis.

Two  separate  CNN  architectures,  each  with  a  different

number of initial feature maps and layers, are put through four-
fold  cross-validation  to  compare  their  results  to  the  hand
segmentations  that  serve  as  the  gold  standard.  A  3D
convolution-based  CNN  architecture  performs  better  when
segmenting the proximal femur than a 2D CNN. This design
produced dice similarity scores of 0.94±0.05 with precision =
0.95±0.02  and  recall  =  0.94±0.08  for  the  latter.  Due  to  the
exceptional  segmentation  accuracy  that  CNNs  provide,  it  is
possible  that  they  might  facilitate  the  incorporation  of
structural  MRI  assessments  of  bone  quality  into  clinical
practice for osteoporosis therapy. Improving knee joint tissue
segmentation  efficiency  and  accuracy  is  possible  using
techniques  such  as  deep  convolutional  neural  networks
(DCNN). 3D fully connected conditional random fields (CRF)
and simplex deformable modelling [20].

A new transparent computer-aided diagnosis method based
on Knee osteoarthritis (OA) severity was automatically scored
using the Deep Siamese Convolutional Neural Network created
by Tiulpin et al. [24] using Kellgren-Lawrence (KL) grading
technique. The author developed and assessed a method based
on  findings  from  the  Osteoarthritis  Initiative  and  the
Multicenter Osteoarthritis Study, funded by the Osteoarthritis
Initiative. Compared to the annotations provided by a panel of
clinical  experts,  the  recommended  technique  has  a  quadratic
Kappa coefficient of 0.83 and an average multi-class accuracy
of 66.71 percent. In this particular investigation, it was shown
that the AUC for radiological OA was 0.93. The radiological
properties that affect network decision-making are highlighted
using a probability distribution of classes.

Gandhamal et al. [33] presented their work on subchondral
bone  segmentation  by  utilizing  MR  scans  of  the  knee.  The
results  of  this  work  have  made  it  feasible  to  independently
segment  subchondral  bone  from  MR  images  of  the  knee.
During this research, MR images of the knees were enhanced
using  gray-level  S-curve  processing,  automated  seed  point
recognition, and three-dimensional multiple-edge overlap. As
can be seen in the picture,  level-set  evolution is used to first
extract  bone  sections  and  then  to  find  and  patch  leaks  along
bone border regions using boundary displacement. This process
is repeated until all leaks along bone border regions have been
fixed.  The  sensitivities  and  specificities  of  the  suggested
method, as well as the DSC, average surface distance (AvgD),
and  root  mean  square  surface  distance  (RMSSD),  were
evaluated  in  comparison  to  real-world  settings  (RMSD).  All
segmentation findings were acquired with confidence intervals
of  95  percent  utilizing  a  total  of  eight  separate  datasets.  An
average  sensitivity  (91.14%),  specificity  (99.12%)  and  DSC
(90.28%) with 95% confidence interval (CI) in the range 89.74
– 92.54%, 98.93 – 99.31% and 88.68 – 91.88% respectively is
achieved  for  the  femur  bone  segmentation.  Because  of  this
study's reliability and robustness, the suggested methodology
can be used for  large-scale and long-term research into knee
OA in clinical settings.

Chen  et  al.  [34]  proposed  a  knee  bone  segmentation
method  based  on  a  3D  Deep  Neural  Network  Using
Adversarial  Loss  for  Prior  Shape  Constraint.  To  enlarge  the
contextual information and incorporate prior shape constraints,
a three-dimensional (3D) deep neural network with adversarial
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loss was proposed to automatically segment the knee bone in a
resampled image volume. A restoration network was proposed
to  improve  bone  segmentation  accuracy  further  by  restoring
bone  segmentation  to  its  original  resolution.  Regarding  the
SKI10 validation dataset, the proposed method received a score
greater than 76. This method proved robust in extracting bone
and  cartilage  masks  from  the  MRI  dataset,  even  for  the
pathological  case.

Fast and accurate segmentation of knee bone and cartilage
on  MRI  images  is  becoming  increasingly  important  in  the
orthopedic area, as the segmentation is an essential prerequisite
step to a patient-specific diagnosis, optimizing implant design
and  preoperative  and  intraoperative  planning.  However,
manual segmentation is time-intensive and subjected to inter-
and intra-observer variations. Various semi-automatic and fully
automatic  methods  have  been  developed  to  segment  knee
bones  accurately.  The  application  of  deep  learning-based
approaches  for  knee  bone  segmentation  provides  promising
results. Researchers have proposed various deep learning-based
networks, giving more accurate results than manual and semi-
automated methods.

Jiang  et  al.  developed  their  combined  segmentation
strategy.  They  use  a  multiphase  Chan-Vese  model  that  has
been  upgraded.  According  to  the  investigation's  findings,  a
multiphase model of the knee joint was used in this study. To
begin,  the author introduces a new energy function based on
the  anatomical  structures  and  intensity  distributions  of  knee

joints  in  the  horizontal  section,  with  the  goal  of  keeping  the
evolving curves in the same relative location as the initial ones.
This  metric  correct  segmentation  errors  and  ensures
segmentation results are accurate. Then, another interior energy
term  is  introduced  to  keep  the  evolving  curves  close  to  the
signed  distance  functions.  Re-initialization,  which  is  time-
consuming and required in the traditional Chan-Vese model, is
never required in this manner, and segmentation convergence
becomes  rapid  and  smooth.  The  results  of  segmenting  knee
joints in MRI and CT validate the approach's effectiveness and
efficiency  compared  to  the  original  multiphase  Chan-Vese
model.

2.2.  Cartilage  Segmentation  &  Quantification  of
Morphoslogy

Because  of  its  unpredictable  form,  bulk  (the  typical
thickness of cartilage is around 4 millimeters), and connections
with  other  tissues  [35,  36],  AC  is  difficult  to  segment.  The
studies that have been published after 2010 and are included in
Table  2  are  those  that  focus  on  the  development  of
computational  algorithms  for  segmenting  articular  cartilage
from knee MR data. In addition, the Medical Image Computing
and  Computer  Assisted  Intervention  Society  (also  known  as
The MICCAI Society) initiated a massive project in 2010 with
the goal of segmenting articular cartilage and bone from MR
images of  the  knee,  which was followed by the  extension of
submissions of segmentation results through an internet service
[37].

Table 2. Automatic segmentation of AC: Existing studies (After the year 2010).

Study/Refs. MR Pulse Sequence Technique Used Sensitivity
(%) Specificity (%) DSC

Ambellan et al.
2018 [25]

SKI10, OAI Imorphics and OAI
ZIB datasets

3D Statistical Shape Models (SSMs),
as well as 2D and 3D CNNs

- - DSC is 98.5% for FB,
98.5% for TB, 89.9%
for FC, and 85.6% for

TC
Lee et al. 2011

[38]
Double-Echo Steady-State

(DESS)
Optimization of Local Shape and

Appearance
NR NR Femur- 0.77

Tibia- 0.81
Liang et al. 2012

[39]
SPGR KNN Classification Femur- 80.7

Tibia- 83.3
Femur- 0.99
Tibia- 0.99

Femur- 0.75
Tibia- 0.81

T1 weighted magnetic resonance
(MR) knee images

multi-atlas-based method to
automatically segment the femoral

and tibial cartilage

- - femoral = 75.2% and
tibial cartilage =

81.7%
Zhang, Lu et al.

2013 [40]
FS SPGR, FIESTA, IDEAL GRE

Water, IDEAL GRE Water Fat
Multi-contrast MR and Classification Femur-82.6

Tibia-86.0
Femur -99.6
Tibia-99.5

Femur- 0.86
Tibia- 0.88

Lee 2013 [41] GRE T1-weighted with FS Multiple-Atlas and Locally Weighted
Vote (LWV)

Tibia-53.0
Femur-57.5

Femur -99.9
Tibia-99.9

Femur -0.67
Tibia- 0.53

Shan, Zach et al.
2014 [42]

T1-weighted (3D SPGR) Multi-atlas and Multi-level - - Femur-0.856
Tibia-0.859

Pang, Li et al.
2015) [43]

T2-Weighted and Fat Suppression Pattern Recognition with Bayesian
Classifiers

- - Femur-0.804
Tibia-0.726

Patella-0.700
Öztürk and

Albayrak 2016
[44]

Double-Echo Steady-State
(DESS)

Voxel-Classification driven Region-
Growing

Femur- 79.9
Tibia-84.0

Patella-71.5

Femur- 99.8
Tibia- 99.9
Patella-99.9

Femur- 0.826
Tibia- 0.831
Patella-0.726

Falicia 2017 [45] 3DT1 VIBE WE 2DUNetcascade- deep learning Femur -0.782 Femur -0.998 Femur DSC- 0.717
Norman et al.

2018 [46]
Double-Echo Steady-State

(DESS)
2D U-Net Convolutional Neural

Networks
- - Cartilage 0.770

-0.878
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Study/Refs. MR Pulse Sequence Technique Used Sensitivity
(%) Specificity (%) DSC

Dodin et al. 2012
[47]

T1/T2*-weighted gradient echo
(DESS) and a water-sensitive

intermediate-weighted turbo spin
echo (IW-TSE)

Selection of bright, structured areas
corresponding to BMLs, geometric

filtering of unrelated structures,
segmentation of the BML, and

quantification of BML proportion
within bone regions.

- - -

Ahn et al. 2016
[48]

3-D DESS WE image series Initial contour and level-set method
with modified localizing region-based

active contours

Femoral
cartilage

-90.6%, Tibial
cartilage-

87.5%, Patellar
cartilage- 90.2

Femoral
cartilage

-99.7%, Tibial
cartilage-

99.9%, Patellar
cartilage- 99.8

Femoral 87.1, patellar
84.8 and tibial
cartilage 81.7

Brui et al. 2018
[49]

1.5T using a VIBE sequence Genuine CNN for the wrist cartilage
segmentation

- - 0.81±0.11

Liu et al. 2018
[50]

Single sagittal fat-suppressed T2-
weighted fast spin-echo MRI

sequence

A convolutional encoder-decoder
network for segmenting cartilage and

bone followed by a second CNN
classification network to detect

structural abnormalities within the
segmented cartilage tissue.

- - Femur - 0.96 ± 0.02
tibia - 0.95 ± 0.03
femoral cartilage -

0.81 ± 0.04,
tibial cartilage - 0.82

± 0.04
.

Liu et al. 2018
[51]

Sagittal T1-weighted spoiled
gradient-echo (SPGR) knee

images

Combine a semantic segmentation
CNN and 3D simplex deformable

modeling

- - -

Liu et al. 2018
[52]

PD-FSE dataset and T2-FSE
dataset

Cycle-consistent generative
adversarial network

- - Femur - 0.97, Tibia -
0.93, Femoral

Cartilage - 0.65,
Tibial Cartilage - 0.64

Kashyap et al.
2019 [53]

All subjects were scanned using
the DESS protocol

Just-enough interaction (JEI) - - -

Bonaretti et al.
2019 [54]

T2-weighted images Pioneer framework - - DSC for OAI1
dataset - 0.81

Kashyap et al.
2019 [55]

All subjects were scanned using
the DESS protocol

Hierarchical Classifiers and Just
Enough Interaction based Learning

- - -

Kashyap et al.
2019 [56]

Double echo steady state (DESS)
MRIs

Learning-Based Cost Functions for
3D and 4D Multi-Surface

- - -

Jurgen Fripp et
al. 2010 [57]

T1 weighted FS SPGR images,
weDESS, and MEDIC MR

images.

Three-dimensional active shape model - - DSC of (0.83,
0.83, 0.85) for the

(patellar, tibial,
femoral) cartilages

Pierre Dodin et
al. 2010 [58]

3T scanner and
a knee coil and the exam consisted

of a double echo steady state
(DESS) sequence

Segmentation algorithm for human
osteoarthritic knee cartilage

volume quantification from MR
images, taking into account the

aforementioned problems

- - (DSC) for the global
knee (r = 0.96, p <
0.0001, and median
DSC = 0.84), for the
femur (r = 0.95, p <
0.0001, and median

DSC = 0.85), and the
tibia (r = 0.83, p <

0.0001, and median
DSC = 0.84)

S. Shah 2010
[59]

Sagittal 3D MR images were
acquired at 1.5T using a phased

array surface coil with an in-plane
resolution

Bezier splines and Canny edge
detection

- - -

M. Swamy et al.
2010 [60]

A water excitation double echo
steady-state (DESS) imaging

protocol
with sagittal slices at 3.0T

Precise cartilage
reconstruction, visualization and

quantification are carried out
in the detection and treatment of OA.

- - -

Long et al. 2010
[61]

MRI scans Integrate active contour models
(Snake) with artificial neural network

- - -

(Table 2) contd.....
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Study/Refs. MR Pulse Sequence Technique Used Sensitivity
(%) Specificity (%) DSC

Williams et al.
2010 [62]

A fat-suppressed -weighted 3-D
gradient echo sequence for
visualization of the hyaline
cartilage, and a -weighted

sequence

Anatomically corresponded regional
analysis of cartilage (ACRAC)

- - -

Yin et al. 2010
[63]

A sagittal 3-D dual-echo steady
state (DESS)

sequence with water-excitation

Algorithmic incorporation of multiple
spatial inter-relationships in a single
n-dimensional graph, followed by
graph optimization that yields a

globally optimal solution

- - DSC values of
femoral = 0.84, tibial

=0.80 and patellar
cartilage regions =

0.80
Peña et al. 2011

[64]
3D DESS MRI images Precisely characterize and measure

cartilage changes in volume, thickness
and shape changes in natural OA

progression

- - -

Zhang et al.
2011 [65]

A 3.0T magnet scanner
with multiple MR sequences,

including
FS SPGR, FIESTA, and IDEAL

GRE.

Cartilage segmentation with multi-
contrast MR images

based on pixel classification

0.909±0.114 0.997±0.002 0.913±0.090

Marstal et al.
2011 [67]

A FLASH Gradient Echo (GR)
sequence

Semi-automatic and requires a
minimal

amount of manual intervention

Tibial = 0.853
±

0.093,femoral
cartilages =

0.831 ± 0.095

Tibial =
0.999,femoral
cartilages =

0.999 ± 0.001

Tibial = 0.800 ±
0.106

,femoral cartilages =
0.777 ± 0.054

Tran et al. 2012
[68]

Real magnitude MR images of the
human knee

The least squares approach is
employed. Then, a total variation
noise removal algorithm using an

iterative scheme is applied. After that,
the vector field convolution active

contour method.

- - -

Tamez-Pena et
al. 2012 [69]

Vivo 3-D dual echo steady state
images.

Multiatlas automated knee
segmentation method and apply it to

the OAI pilot scan–rescan images

- - Femoral = 0.88 and
tibial cartilage = 0.84

Kashyap et al.
2013 [70]

MR field strength of 1.5 T and the
rest 3 T and 1 T

A modified Layered Optimal Graph
Image Segmentation of Multiple

Objects and Surfaces (LOGISMOS)

- - -

Prasoon et al.
2013 [71]

(MR) images from the
Osteoarthritis Initiative (OAI)

database

Two-stage classifier for segmenting
tibial cartilage in knee MRI scans

combining nearest neighbor
classification and support vector

machines

80.8236% 98.0760% 0.8115

Prasoon et al.
2013 [72]

Specialized extremity MRI
scanner

A novel system for voxel
classification integrating three 2D
CNNs, which have a one-to-one

association with the xy, yz and zx
planes of 3D images, respectively

81.92% 99.97% 0.8249

Shan et al. 2013
[73]

Pfizer Longitudinal Dataset (PLS-
A9001140) which contains T1-
weighted (3D SPGR) images

A novel general spatiotemporal three-
label segmentation method

84.2% (6.3%) 99.8% (0.07%) 81.8% (3.5%)

Gan et al. 2014
[74]

Dual echo steady state (DESS)
MR knee images with water

excitation

Random walks to facilitate the
segmentation process.

0.86 0.99 0.82

Kubicek et al.
2014 [75]

Proton-dense sequence with fat
suppression and gradient spin-

echo sequence

Detection of local extremes in the
histogram and uses a membership

function to allocate each image
density into an output set

- - -

Gan et al. 2018
[76]

Osteoarthritis Initiative (OAI) and
Multicenter Osteoarthritis Study

(MOST)

A binary seeds auto-generation model
to reduce the reliance on manually
crafted priori information in deep

learning

0.96±0.051 0.997±0.0019. Reproducibility =
0.92±0.051

(Table 2) contd.....
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Study/Refs. MR Pulse Sequence Technique Used Sensitivity
(%) Specificity (%) DSC

Revathi et al.
2018 [77]

MRI sequences are the most
frequently used for

cartilage volume assessment on
1.5T apparatus gradient echo

sequences

There are two processes of
segmentation here, one after the other,

the number of morphological
operations at the final segmentation

process.

- - -

Viken 2020 [78] Real arthroscopic images from
surgeries are considered.

Used MultiResUnet architecture for
accurate segmentation. Classification
of multifractal features using neural

networks is also shown to perform as
well.

0.7±0.014 0.8±0.012 Mean Pixel Acc.
0.9±0.006

Xue et al. 2021
[79]

Cones-T1, Cones-AdiabT1,
Cones-T2*, and MMF were

measured using a series of 3D
UTE cone sequences.

Cones-T1 imaging was performed
using actual flip angle imaging,
followed by variable flip angle
(AFI-VFA) imaging with four

different flip angles (5°, 10°, 20°,
and 30°).

3D
ultrashort echo time (UTE) cones MR

imaging with deep
convolutional neural networks

- - Mean Dice scores
were 0.81 ± 0.11 for
Rad1 vs. CNN1 and
0.82 ± 0.08 for Rad2

vs. CNN2,
respectively.

Kessler et al.
2022 [80]

2-weighted images from the OAI
dataset were registered to the

DESS images

The 3D cartilage surface mapping
(3D-CaSM) method, a surface-based

analysis of cartilage morphology
(thickness) and composition (T2), was

performed using both manual and
network-generated segmentations

from OAI ZIB testing images.

- - Cartilage thickness
measurements range

between -0.12 to 0.33
[-0.28, 0.96] mm with
2D U-Net and 0.07 to
0.14 [-0.14, 0.39] mm
with 3D U-Net. For
T2, the mean bias

[95% limits of
agreement] ranged

between -0.16 to 1.32
[-4.71, 4.83] ms

Yang M et al.
2022 [81]

Siemens 3T Trio scanner using the
3D sagittal double-echo steady
state (DESS) sequence with the
same coil model and acquisition

parameter settings

Generative adversarial networks with
transfer learning

- - Dice coefficient of
0.819, an HD95 of
1.463 mm, and an

ASSD of 0.350 mm

The difficulty of correctly and completely automating the
segmentation  of  articular  cartilage  using  different  pattern
recognition algorithms have been the subject of much research
that has sought to solve this problem.

Researchers  have  proposed  various  automatic
segmentation  algorithms,  a  selection  of  which  has  been
summarized  in  the  sections  that  came  before  it.  Different
classifiers have been used to differentiate the AC voxel from
the  voxels  that  represent  other  tissues  or  the  backdrop,  and
deformation  models  and  graph  models  were  utilized  to
construct these methods. Certain researchers have created more
advanced  methods,  including  multi-nuclei,  multi-contrasts,
multi-contrasts,  multi-levels,  and  multi-object-based
algorithms, in order to automatically differentiate AC pictures
from  MR  images.  Even  though  many  automated  articular
segmentation procedures can be found in the literature, there is
still a need for research in this area. As was said before, many
existing  systems  have  various  flaws.  A  great  quantity  of
learning data is necessary for most of the techniques, and just a
little change in the data may have the potential to have a big
influence on the outcomes that may be achieved. Even making
little  adjustments  to  the  data  requires  an  equivalent  time
commitment in the beginning stages. Researchers could make a
substantial  contribution  to  this  field  by  inventing  efficient

methods in terms of both time and computing while retaining a
high level of sensitivity, selectivity, and dynamic range (DSC).

Osteoarthritis patients must have their bone marrow lesions
(BMLs)  identified  and  quantified  since  these  lesions  are  the
root cause of increased pain and deterioration of cartilage. In
this investigation, MRI was used, and two different sequences
were performed: a T1/T2*-weighted gradient echo and a water-
sensitive intermediate-weighted turbo spin echo (DESS). The
study aimed to create a quantitative BML evaluation technique
for human knee OA (IW-TSE).

A  multi-atlas- based  technique is  presented by  L. Shan et
al.  [39]  for  segmenting  femoral  and  tibial  cartilage  from  T1
scans.  The  segmentation  outcomes  could  be  determined  by
using  a  variety  of  atlases  for  the  registration  process  and
Bayesian  approaches.  An  application  of  the  probabilistic  k-
closest neighbor classification was used to obtain the cartilage
likelihoods. It was shown that the femoral and tibial cartilage
in this osteoarthritis dataset, comprised of 18 MR images of the
knee  and  manually  segmented  by  experts,  was  properly
segmented.  MRI  scans  have  made  it  feasible  to  detect
osteoarthritis in its earliest stages and conduct assessments on
patients  suffering  from  the  condition  (OA).  The  rate  of
cartilage  loss  in  the  individual  plates  may  vary  significantly

(Table 2) contd.....
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from  one  another.  The  segmentation  of  cartilage  plates  and
accurate  delineation  is  no  longer  attainable  by  the  use  of
automated  techniques.

Automatic  segmentation  of  knee  joint  cartilage  in  high-
field  magnetic  resonance  images  was  accomplished  by  C.
Oztürk  et  al.  [44]  by  using  an  enhanced  region-growing
technique  that  included  proximity-correlated  subsampling.
Using  voxel  classification  methods,  magnetic  resonance
imaging  (MR)  can  unequivocally  identify  degradable
anatomical  components  such  as  cartilage.  It  requires  a
significant amount of processing power to segment high-field
MR images using voxel classification. The knee joint's femoral,
tibial, and patellar cartilage compartments were autonomously
partitioned using a region growth algorithm driven by the voxel
classification,  as  stated  by  the  MR  images  provided  by  the
Osteoarthritis Initiative. By removing background voxels from
the training MR images  and selecting just  a  small  sample  of
important  attributes,  researchers  were  able  to  reduce  the
amount  of  computational  complexity  associated  with  the
classification.  This  was  accomplished  considering  that  some
systems have restricted memory and processing capability.

Dodin et al. [47] worked on transferring bone and cartilage
objects from previously published automated technology to the
DESS  sequence.  After  that,  they  went  on  to  quantify  BMLs
using a four-stage process, which included the following steps:
selection of bright, structured areas that correspond to BMLs;
geometric filtering of unrelated structures; segmentation of the
BML; and quantification of the BML proportion with IW-TSE
sequences.  The  reliability  of  BML  manual  segmentation
(DESS  and  IW-TSE)  was  tested  by  applying  intra-class
correlations  on  154  OA  patients  from  the  Osteoarthritis
Initiative (OAI) cohort (available datasets) (ICC). The newly
found  automatic  algorithms  for  BML  localization  and
geometric  extent  were  compared  with  manual  segmentation
(DSC) using ICC and Dice similarity coefficients. In the last
step,  a  comparison  was  made  between  the  incidence  and
proportion  of  BML  in  the  DESS  and  IW-TSE  sequences.

Lee et al. [38] provided a totally automated technique for
analysing  3-D  MR  data.  This  system  included  bone
segmentation,  BCI  classification,  and  knee  cartilage
segmentation.  Binary  classification  is  a  method  proposed  by
authors for the BCI. This method depends on binary location
and  local  appearance  classifiers  for  bone  segmentation.  This
work  significantly  contributes  to  the  area  of  cartilage
segmentation by using locally produced and optimized Markov
random fields (MRFs).

In order to determine the region and border potentials of
the MRFs, training pictures unique to each local patch are used
in the calculation. The local image characteristics are employed
in this tactic to combine the local signals for the object's form
and look. In order to investigate theories about the impact that
exercise has on cognitive function, an MR imaging dataset was
used. This dataset consisted of the baseline and follow-up scans
taken two years later  of  10 different  people.  Comparisons of
the  proposed  method's  qualitative  and  quantitative  findings
with  other  semi-automatic  segmentation options  demonstrate
the technique's potential for therapeutic applications.

Adaptive force function and template-based segmentation

of  the  knee  MRI  using  the  results  of  Ahn  et  al.  [48]
osteoarthritis  initiative article.  Researchers  have developed a
ground-breaking  knee  cartilage  segmentation  method.
Compared to the traditional procedures, the DSC approach led
to considerable improvements in the patient's patellar, femoral,
and  tibial  cartilage.  In  a  study  involving  10  individuals,  the
dice similarity coefficients were 87.1 percent, 84.8 percent, and
81.7 percent.

Research  on  the  deep  learning-based,  fully  automated
segmentation of wrist cartilage in MR images was carried out
by  Brui  et  al.  [49].  Researchers  developed,  tested,  and
validated  an  autonomous  system  based  on  deep  learning  to
segment  the  cartilage  in  the  wrist  joint  using  magnetic
resonance  imaging  (MRI).  The  participants  in  the  research
were  all  suffering  from  issues  related  to  the  joints  in  their
wrists. It was possible to acquire a total of 20 3D MRI datasets
at  1.5T  by  using  a  VIBE  sequence.  Convolutional  neural
networks  (CNNs)  were  trained  and  evaluated  using  coronal
slices of wrist cartilage as its data source. A dataset consisting
of  20  central  coronal  slices  was  segmented  three  times  and
twice  by  the  same  observer  to  conduct  an  inter-  and  intra-
observer analysis on wrist cartilage.

This study used concordance and Srensen–Dice similarities
to compare CNN and hand segmentations. Osteoarthritis, often
known as  OA, is  a  debilitating condition affecting over  one-
third of adults over 60.

Liu  et  al.  [50]  worked  on  “Deep  Learning  Approach  for
Evaluating Knee MR Images: This work aims to determine the
feasibility of using a deep learning approach to detect cartilage
lesions in MR images. Fat-suppressed T2-weighted, fast spin-
echo MRI data sets of the knee of 175 patients with knee pain
were  retrospectively  analysed.  The  reference  standard  for
training the CNN classification was the interpretation provided
by a musculoskeletal radiologist of the presence or absence of a
cartilage lesion.

A  3D  deformable  approach  was  developed  by  Liu  et  al.
[51]  for  determining  tissue  segmentation  in  musculoskeletal
magnetic  resonance  imaging.  The  segmentation  process  is
broken down and analyzed using unlabeled MR images and a
neural  network  that  combines  adversarial  and  segmentation
convolutional layers (CNN).

The assistance of  adversarial  and segmentation networks
was used to construct segmentation pipelines. The fundamental
method  to  translate  unpaired  pictures  was  called  cycle-
consistent  generative  adversarial  network  (CycleGAN).  The
performance  of  semantic  segmentation  was  bolstered  by
including a mixed segmentation network inside the adversarial
network.  In  order  to  segment  bone  and  cartilage,  the  fully
automated segmentation approach known as SUSAN was put
through its paces on two clinical knees MR imaging datasets.
SUSAN used pictures and annotated masks from a publically
accessible  online  collection  of  knee  MR  images.  The
segmentation outcomes were analysed and compared using two
different registration methods and two different supervised U-
Net segmentation strategies. In order to determine the degree of
variation  present  in  quantitative  measures,  the  Wilcoxon
signed-rank  test  was  used  for  the  data  collected.  Magnetic
Resonance  Imaging  of  the  Skeletal  and  Musculoskeletal
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Systems for Tissue Segmentation Imagine a deep convolutional
neural network working with a 3D deformable neural network.

Semantic dissection as a basis for segmentation CNN and
3D  simplex  deformable  modelling  was  used  to  develop  a
method  for  completely  automatic  segmentation  [52].  The
segmentation  technique  was  supported  by  SegNet,  a  CNN
method for multi-class tissue classification at high-resolution
pixels. This method served as the strategy's backbone. In order
to  keep  its  general  form  and  a  smooth  surface  ideal  for  the
musculoskeletal system, it was required to adapt the output of
SegNet  using  3D  simplex  deformable  modelling.  The  fully
automated  segmentation  technique  was  compared  to  other
state-of-the-art  segmentation  algorithms  using  a  knee  MRI
dataset  accessible  to  the  public.

The knee joint is particularly notable for its degree of both
intricacy and sensitivity. Articulations are a common factor in
the  development  of  knee  injuries  and  damage.  Those  who
suffer from knee osteoarthritis may find that the accompanying
pain  and  restrictions  incapacitate  them to  the  point  that  they
cannot function normally (OA). Two types of cartilage may be
found in joints: articular cartilage and synovial cartilage. Pain
is caused when cartilage deteriorates and is worn away due to
osteoarthritis (OA).

An  automatic  layered  optimum  graph  segmentation  of
numerous objects and surfaces (LOGISMOS) is integrated into
an instant rectification phase as part of the interactive approach
known as just-enough interaction (JEI), which was developed
by Kashyap et al. [53]. The JEI user input did not influence the
boundary surfaces of the bones and cartilages in the knee MRI
after  the  LOGISMOS  segmentation  was  performed.  After
adjusting the local costs of the underlying network nodes, the
graph is re-optimized to get globally optimum results that have
been rectified.

Clear  musculoskeletal  imaging  is  necessary  for  the
diagnosis of osteoarthritis (OA). OA is a chronic disease that
wears  away  at  the  cartilage  in  the  femoral  knee  and  has  the
potential  to  cause  disability.  Researchers  have  developed
methodologies that are both transparent and capable of being
replicated. In order to design and operate the majority of these
algorithms, advanced programming abilities are necessary.

However, the use of methods that are both open and able to
be replicated is very necessary in order to hasten the discovery
and conclusion of new facts and ideas. Using MR images, S.
Bonaretti  et al.  [54] provide Pioneer,  a platform that enables
open and repeatable research into femoral knee cartilage. This
Python-based  program,  which  uses  Jupyter  Notebooks  to
provide users with a graphical  user interface,  is  governed by
the  GNU  GPLv3  open-source  license.  Three  components
comprise  the  whole:  Image  preprocessing  was  used  to
normalize  the  spatial  and  intensity  features  prior  to  doing
intersubjective,  multimodal,  and  longitudinal  research  on
femoral  knee  cartilage.  Segmentation  and  analysis  of  the
femoral  knee  cartilage  were  then  done.  Each  module  comes
with a selection of Jupyter notebooks, which may be used to
simulate  various  computing  environments.  Researchers  that
employ transparent image analysis to investigate the femoral
knee  cartilage  have  found  that  Pioneer's  simplicity  of

installation and usage and its  publishing and sharing options
have  been  of  significant  use  to  their  work.  Because  of  its
modular architecture,  Pioneer makes it  simple to expand and
compare different algorithms.

Kashyap  et  al.  [55]  assert  that  they  have  created  a
completely automated learning-based method for segmenting
osteoarthritic  knee  cartilage  (OA).  The  approach  utilizes
random  forests  across  the  many  levels  of  its  hierarchical
structure.  On  the  other  hand,  the  feature  set  used  by  RF
classifiers  is  the  output  probability  map  generated  by  a
neighborhood  approximation  forest  (NAF).  The  best  graph
segmentation  of  many  objects  and  surfaces  should  use
hierarchical probabilities as cost functions (LOGISMOS). The
author of this research details it and illustrates how to build a
large number of training instances quickly and consistently via
a unique post-processing interface (JEI).  For the purposes of
training,  a  total  of  53  knee  datasets  were  used,  and  for  the
purposes  of  testing,  15  knee  datasets  were  utilized.  Using  a
double echo steady state (DESS) technique, an MRI was used
to get every picture from the OAI database. Compared to the
traditional  gradient-based  cost  functions,  the  learning-based
cost function significantly reduced the number of segmentation
mistakes (p less than 0.05).

The Osteoarthritis Initiative contributed to the data used in
Kashyap  et  al.  [56]  presentation  on  learning-based  cost
functions  for  3D  and  4D  multi-surface  multi-object
segmentation  of  knee  MRI.  Using  a  unique  hierarchical
collection  of  RF  classifiers,  researchers  have  devised  a
completely  automated  system  for  analyzing  osteoarthritis
(OA).  For  layered  optimum  graph  image  segmentation  of
multiple  objects  and  surfaces,  LOGISMOS  uses  a
neighborhood  approximation  forest  to  give  context  for  the
second-level  RF  classifier.

Researchers have developed a machine-learning classifier
that considers both the 3D spatial environment and the passage
of  time.  This  classifier  also  incorporates  local  features  and
outputs location-specific costs. After a year, at least one-third
of  the  54  patients  evaluated  with  4D  LOGISMOS  showed  a
significant reduction in the number of segmentation mistakes
(p0.001). Researchers examined the same group of 54 patients
five times over the course of one year.

Fripp  et  al.  [57]  used  magnetic  resonance  images  of  the
knee to automatically segment the articular cartilages and then
statistically  analyzed  the  results  of  their  work.  The  authors
provide  a  segmentation  technique  based  on  MR  images  of
healthy knees that differentiates cartilage and bone consistently
and automatically. The segmentation of bone and cartilage is
accomplished by using a 3D active shape model that combines
patient-specific tissue estimations with deformable models that
incorporate  the  thickness  fluctuation  of  the  cartilage  as
described  in  this  study.  This  model  is  used  to  carry  out  the
segmentation  process.  MR  images  were  used  so  that  the
accuracy of  examining gradient  recall  datasets  that  have had
their fat content reduced could be evaluated. As a method of
comparison,  they  used  non-rigid  registration  in  conjunction
with  tissue  classification  (B-spline-based  free-form
deformation).
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Dodin et al. [58] devised a way to evaluate the amount of
human  knee  cartilage  using  MRI  data  and  an  artificial
segmentation  approach.  In  order  to  construct  a  parametric
bone–cartilage contact  surface on the femur and tibia,  it  was
essential to segment the three-dimensional data from the MRI.
In order to complete the first step, there was a need to reduce
the resolution of  the  MR images that  cover  the  area  close  to
where the bone surface meets the bone. In order to recognize
cartilage as bright and uniform, filtering procedures are used
for a second time. Due to the fact that this procedure does not
include any soft tissues, the outermost border of the cartilage
may become visible. Third, using Bayesian judgment criteria, it
is possible to automatically distinguish cartilage and synovial
fluid from one another. Ultimately, the technology created was
used to determine a person's cartilage volume and how it varies
over their lifetime. The novel and automated method described
in this article may assess knee cartilage volume with pinpoint
accuracy. These evaluations are intended for clinical research
purposes.

Shah et al. [59] presented a more straightforward method
for  estimating  and  visualizing  MRI  cartilage  of  the  knee  in
their  study.  One  of  the  most  important  objectives  of  this
research  is  to  simplify  the  description  of  knee  cartilage  by
using  segmentation,  analysis,  and  visualization  techniques.
This  research  uses  a  technique  for  semi-automatic
segmentation  based  on  Bezier  splines  and  intelligent  edge
detection. When using an anisotropic diffusion technique, it is
possible to discern the borders of the cartilage in the pictures
quite clearly. A shape-based interpolation technique is applied
to  segmented  cartilage  to  get  isotropic  voxels  and  then
employed in a basic manner. MRI registration involves making
artificial connections between points located on various slices
of  the  brain.  After  the  thickness  and  volume of  the  cartilage
have  been  determined,  an  evaluation  may  be  performed.
Visualizing articular cartilage offers a different approach to the
traditional way of measuring it.

According to the findings of this study by M. Holi  et al.
[60], cartilage is present in both normal and osteoarthritic knee
joints. This cartilage may be seen and quantified. In the course
of this research, image processing methods were used for the
examination  of  MRI  scans  of  the  knee.  Techniques  such  as
Canny  edge  detection  and  histogram  averaging  are  used  in
order  to  accomplish  this  goal.  The  femur,  the  tibia,  and  the
menisci  cartilages  may  all  be  segmented  with  this  approach.
Using  this  technique,  the  cartilage  in  the  knee  may  be  seen.
The  thickness  of  the  cartilage  in  individuals  with  normal
conditions and OA is measured. The findings might be used to
get  a  deeper  comprehension of  the processes that  lead to the
development  of  OA  and  to  better  direct  treatment  decisions
pertaining to this illness.

Long et al. [61] conducted research on the use of artificial
neural  networks  in  the  process  of  cartilage  segmentation.
Magnetic  resonance  imaging,  sometimes  known  as  MRI,
provides the best noninvasive image of articular cartilage. This
imaging technique examines the structure,  biochemistry,  and
function  of  cartilage.  This  study  tries  to  tackle  the  difficult
problem  of  automatically  calculating  cartilage  amounts.
Initially,  a  clustered  segmentation  method  is  built  using

algorithms based on common segmentation techniques, such as
thresholding  and  poly  fitting,  and  calculating  the  average
weight.  This  is  done  in  order  to  create  the  segmentation
method. An artificial neural network (ANN) has been used to
refine  further  the  method  to  address  the  nonlinearity  and
inexplicable MRI image anomalies. The needed results may be
obtained by combining active contour models with this ANN
(Snake).  An  example  based  on  computation  is  offered  to
validate the findings and explain the methodology developed.

Williams et al. [62] gave a presentation titled “Statistical
Shape Modelling of the Bone: The Analytic Study of Cartilage
between  Asymptomatic  as  well  as  Osteoarthritic  Knees.”
ACRAC  is  a  unique  method  for  the  anatomically-correlated
globalized context of cartilage, which may be used to analyze
the  morphology  of  knee  cartilage  in  anatomically
corresponding focal regions defined on the surface of the bone.
Researchers  divided  the  bone  fragments  in  the  knees  of  19
healthy women volunteers after doing 3-D knee scans on them.
In order to generate statistical shape modelling (SSMs) with a
minimal  description  length  (MDL),  the  segmented  bone
surfaces  were  employed.  These  models  supplied  mean  bone
shapes and a dense collection of anatomically matching places
on each bone. The precision of such SSMs was evaluated using
repeat photos provided by a selection of the participants.

Yin  et  al.  [63]  developed  an  innovative  approach  called
layered optimal graph image segmentation of multiple objects
and  surfaces  (LOGISMOS)  that  can  concurrently  segment
many  interacting  surfaces  corresponding  to  several  different
objects  that  interact  with  one  another.  The  first  step  in  the
process  is  the  algorithmic  incorporation  of  multi-spatial
interrelationships into a single n-dimensional graph, which is
subsequently optimized to produce a global solution. In order
to  demonstrate  the  applicability  and  effectiveness  of  the
LOGISMOS approach, bone and cartilage from a human knee
joint have been segmented. Despite being trained on a small set
of  nine  photographs,  this  system  performed  quite  well  after
evaluation.

Tamez-Peña  et  al.  [64]  provided  data  from  the
osteoarthritis project paper on the automated segmentation and
quantification of knee features using an atlas-based approach.
Tamez-Peña  et  al.  Their  study  provides  an  unsupervised
method for segmenting 3D DESS MRI images of the human
knee. This method was reported in their paper. Five MRI knees
that  were manually segmented make up the reference atlases
used in automatically segmenting subsequent MRI images. The
segmentation of the knee is produced by taking the average of
the  results  of  the  other  five  segments.  Images  from  the
Osteoarthritis  Initiative  (OAI)  DESS  sequence  were  used  to
conduct the evaluation.

Zhang  et  al.  [65]  proposed  a  novel  method  for  cartilage
segmentation  that  uses  multi-contrast  MR  images  and  pixel
classification  to  get  precise  and  automated  results.  When  it
comes to cartilage segmentation, all that is required are trained
classifiers  such  as  support  vector  machines  (SVMs)  or  k-
nearest  neighbors.  On  the  other  hand,  this  particular  set  of
guidelines does not consider any geographical information.

Authors  employ  loopy  belief  propagation  inference  to
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determine which label arrangement is the most effective. The
characteristics employed may be categorized into local picture
structure features and geometrical information-based features.
Experiments have demonstrated that the combined features are
superior to the two types of individual features as well as the
conventional  frameworks  that  are  purely  based  on  SVM  or
DRF for cartilage segmentation.

Marstal et al. [67] asserted that a novel technique had been
devised for segmenting the osteoarthritic cartilage in the knee
in  MRI  images.  Using  this  modern  approach,  magnetic
resonance imaging may segment cartilage from the knee. There
must be some degree of manual involvement, although it may
be  rather  light.  The  Kellgren-Lawrence  grading  method  for
knee  osteoarthritis  assesses  the  prescribed  treatment  using
scans from fifty. The segmentation of MR images is essential
in automatically diagnosing medical  conditions.  Such photos
get distorted due to the Rician noise and the fuzzy edges.

The combination of methods described in Tran et al. [68]
made  it  simpler  to  automatically  separate  articular  cartilage
from noisy MR images. As illustrated in the work of T. Pena et
al.  [69],  it  is  feasible to avoid falling into local  optimization
traps by defining the beginning contour in a different method
for  each  section  of  the  knee.  This  will  allow  the  knee  to  be
optimized  more  globally.  This  paper  demonstrates  the
automated  segmentation  of  knee  cartilage  and  bone  using  in
vivo three-dimensional dual-echo steady-state images.

The  longitudinal  scans  of  healthy  controls  and  patients
with  knee  osteoarthritis  (OA)  that  were  performed  twice  at
each  visit  were  included  in  the  MRI  datasets  that  were
collected  as  part  of  the  Osteoarthritis  Initiative  (OAI)  pilot
study and were used to compile the MRI datasets (baseline, 24
months).  Initially,  human  professionals  were  responsible  for
segmenting six different MRI sequences. Five of the six sets of
results generated by a multi-atlas segmentation approach could
serve as reference atlases. In order to determine the curvature
of the subchondral bone plate and the volume, surface area, and
thickness  of  the  articular  cartilage  in  the  knee,  exact
segmentations  of  the  knee  were  required.

Kashyap  et  al.  [70]  devised  a  method  for  autonomous
segmenting and defining cartilage plates. As a result of this, the
author  has  made  efforts  to  enhance  the  accuracy  of  the
segmentation of a wide variety of objects and surfaces by using
layered optimal graph image segmentation (LOGISMOS). This
method was evaluated by applying it to sixty different data sets
provided by the MICCAI segmentation competition in  2010.
There  is  a  mean  value  as  well  as  a  standard  deviation
associated  with  the  surface  location  inaccuracies  of  each
cartilage  plate  region.

Prasoon  et  al.  [71]  successfully  segmented  femoral
cartilage in knee MRI images using two voxel categorization
steps. Even if a classifier does not scale well with the number
of training samples, it is still possible to incorporate effective
classifiers into tasks requiring a significant quantity of data for
training by using multiple classification stages and exploiting
the imbalance across class populations. This is the case even if
the  task  requires  a  great  deal  of  data.  Therefore,  in  order  to
segment  knee  cartilage  in  photographs  of  knees,  we

constructed a two-stage classifier by combining the techniques
of nearest neighbor classification and support vector machines
(SVM). Using this method, individual segments of the femoral
cartilage  are  removed.  In  this  work,  researchers  discuss  the
similarities and distinctions between the two distinct forms of
knee  cartilage.  Authors  suggest  more  approximation
techniques,  such  as  online  SVMs,  after  relaxing  the  halting
condition  in  the  quadratic  programme  solver  used  for  batch
SVM  training.  This  was  done  in  order  to  provide  room  for
alternative  approximation  methods.  The  two-stage  procedure
reached  a  higher  level  of  accuracy  when contrasted  with  the
method  now  considered  to  be  state-of-the-art  in  the  field.  It
demonstrated  greater  inter-scan  segmentation  repeatability
compared to the state-of-the-art technique currently in use, as
well as a radiologist.

In their research on knee cartilage segmentation utilizing
deep  learning  for  characteristics,  Prasoon  et  al.  [72]  at  the
following conclusions: Convolutional neural cell networks with
three  layers  of  complexity.  For  the  purpose  of  image
classification,  deep  learning  systems  like  CNNs  and  other
convolutional  neural  networks  may  be  able  to  infer  a
hierarchical representation of the images they process. A team
of authors devised an innovative method for classifying voxels
in  their  work.  It  is  possible  to  establish  one-to-one  links
between the three 2D CNNs and the three 3D planes that make
up  a  3D  picture.  These  three  planes  are  denoted  by  the
notations  xx,  yx,  and  zx,  respectively.  The  authors  created  a
method for segmenting low-field knee MRI pictures and used it
on 114 scans that had never been published before. In contrast
to the current technology, which utilizes 3D characteristics on
numerous scales, the method developed by the authors uses just
2D  features  at  a  single  scale  in  its  analysis,  making  it  more
effective.  Second,  the  characteristics  and  the  classifier  have
been revised to align with the aim now being pushed forward.

Longitudinal Three-Label Segmentation of Knee Cartilage
was  a  study  carried  out  by  Shan  et  al.  [73].  The  gradual
cartilage  degeneration  in  osteoarthritis  patients  calls  for
accurate  segmentation  methods  independent  of  human
involvement  (OA).  The  author  provides  several  unique
approaches to three-label segmentation in order to improve the
consistency of  segmentation  over  time in  longitudinal  image
data.

In order to handle the problem of cartilage segmentation in
an improved way, use a segmentation approach that uses three
labels, simulation of the longitudinal three-label segmentation
technique  is  accomplished  by  using  a  convex  optimization
problem.  The  authors  had  previously  implemented  a
segmentation system with three labels, but we have now added
temporal  consistency  to  it  as  well.  It  is  possible  that  the
segmentation may be recast as a convex problem, which would
then  provide  the  best  solution.  It  is  possible  to  compute
anything  along  these  lines.  In  order  to  do  longitudinal
segmentation, a pipeline that can autonomously segment knee
cartilage  is  used.  According  to  the  results  of  the  studies,
adopting  longitudinal  segmentation  rather  than  temporally
independent  segmentation  results  in  more  consistency  in  the
segmentation  process.  This  assertion  requires  a  reference  in
order to be considered valid.
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Gan  et  al.  [76]  presented  the  Multilabel  Graph-based
Approach  for  Knee  Cartilage  Segmentation.  Data  from  the
Osteoarthritis  Initiative  were  used  to  conduct  this  analysis.
Knee osteoarthritis  is  one of the most  debilitating illnesses a
person may suffer from.

Random walks may be used to effectively segment a huge
number of objects, and it also has the potential to lead to the
discovery of the global shortest route solution. It's possible that
the pathophysiology of osteoarthritis may be better understood
with  some  quantitative  research.  Random  walks  were  more
effective  at  knee  cartilage  segmentation  than  hand
segmentation  when  compared  to  it.

In  the  process  of  extracting  objects  from  an  MRI  scan,
Kubicek  et  al.  [75]  used  a  newly  invented  fuzzy-based
approach. To identify certain characteristics, the MRI data used
in this investigation are segmented using a number of different
approaches  (MRI).  Imaging  of  the  knee  is  used  to  perform
procedures  such  as  the  extraction  and  identification  of  the
articular  structures  of  the  knee.  Because  even  the  smallest
change  in  brightness  might  signal  injury  to  the  cartilage  in
joints,  this  subject  is  of  significant  interest  to  medical
professionals.  Creating  colour  maps  of  tissue  densities  via
image  segmentation  is  possible.  This  method  uses  a
membership function based on detecting local extremes in the
histogram to  assign picture  density  to  an  output  set.  Each of
these  sets  may  be  categorized  according  to  a  number  of
different  colour  swatches  and  palettes.  It  is  possible  to
differentiate between different tissue forms based on density.

Gan et al. [76] presented their work on a binary seeds auto-
generation  model  in  order  to  achieve  their  objective  of
segmenting knee cartilage. In medical image analysis, picture
segmentation  is  an  essential  step  that  may  be  performed.  In
addition, the manual, semiautomatic, and automated techniques
of  segmentation  have  all  been  shown  to  be  useless  in  the
ongoing study that has been carried out. To perform properly,
models  and  processes  need  to  use  human  input  and  data  for
training.  It  has  been  shown  that  computer-aided  learning
algorithms, along with other types of learning algorithms, are
unsuccessful  when  it  comes  to  identifying  anatomical
differences.  An algorithm has been shown to be capable,  via
deep  learning,  of  independently  producing  binary  seed  sets
without requiring the participation of a human operator in the
process.  In  order  to  compare  the  reproducibility  of  the
proposed  model  to  that  of  manual  segmentation,  normal  and
osteoarthritic  magnetic  resonance  imaging  of  the  knees  was
employed in conjunction with an algorithm for analysis. This
came to light while comparing the proposed model's findings
with those of manual segmentation. According to the author's
evaluation,  using  the  model  for  deep  learning  segmentation
may be fruitful.

The knee joint is one of the elements of the human motion
system that is often damaged. Because it  provides direct and
noninvasive  pictures  of  the  whole  knee  joint  as  well  as  the
cartilage tissue, magnetic resonance imaging (MRI) is the most
effective imaging modality for detecting structural changes in
cartilage  tissue.  This  is  because  MRI  can  detect  structural
changes  in  cartilage  tissue.  Revathi  et  al.  [77]  proposed  a
cartilage  segmentation  of  knee  osteoarthritis  derived  from

magnetic  resonance  images  (MRI).  In  this  study,  magnetic
resonance (MR) imaging of a knee illustrates one approach to
separating the cartilage in the knee. The author develops two
different segmentation processes, one after the other, to arrive
at  the  morphological  operations  of  the  final  segmentation
process. In terms of the quality level, this research's findings
imply  that  the  methodology  can  properly  segment  cartilage
areas.  The  results  of  the  newly  developed  methodology  and
those  of  manually  segmented  cartilage  were  compared  and
contrasted with  one another.  Due to  the  fact  that  it  is  a  non-
invasive  method  of  measuring  cartilage  composition,  the  T2
relaxation  time  obtained  using  magnetic  resonance  imaging
(MRI)  has  the  potential  to  serve  as  an  early  biomarker  for
osteoarthritis of the knee.

The research conducted by Viken et al.  [78] used a deep
neural  network  to  detect  photographs  taken  during  actual
arthroscopy procedures to automatically separate the cartilage
of  the  joints  from  one  another.  It  was  found  that  machine
learning approaches might be used to handle the challenging
task of categorizing and segmenting medical photographs since
they  are  successful.  This  was  discovered  after  it  was
determined that these techniques were effective. The fact that
these  strategies  have  been  shown  to  be  effective  was  the
primary  consideration  that  led  to  the  formation  of  this
judgement.  In  the  area  of  medical  imaging  segmentation,
multifractal  analysis  has  also  found  significant  use  in  recent
years.  To  carry  out  automated  segmentation,  this  study
recommends  using  neural  networks  in  conjunction  with
multifractals as a tool. In order to provide evidence in support
of the thesis, a real arthroscopy photograph that was obtained
while the patient was under anesthesia was used. It  has been
shown  that  the  design  of  MultiResUnet  is  a  great  fit  for
carrying out pixel-perfect segmentation. It has been shown that
the neural network classification of multifractal characteristics
works well compared to other kinds of research.

Kessler  et  al.  [80]  used  CNN  to  partition  the  data  they
collected  from  knee  MRIs.  Following  the  completion  of  the
segmentation, a three-dimensional analysis of the morphology
and content of the cartilage was carried out. In order to train U-
Nets  for  the  segmentation  of  femoral  bone,  tibial  bone,  and
cartilage, data from the Osteoarthritis Initiative (OI) was used
(OAI).  DESS  photos  were  used  to  generate  U-Nets,  which
were  then  utilized  to  automatically  segment  bone-cartilage
structures (the segmentations of bone and cartilage integrated
into one structure) from the images.

An  investigation  of  the  morphology  (thickness)  and
composition  (T2)  of  cartilage  was  carried  out  with  the
assistance of surface-based 3D cartilage surface mapping (3D-
CaSM), which included both manually performed and network-
generated segmentations from OAI ZIB testing pictures. This
was done by combining the bone and cartilage segmentations
into one structure. After collecting cartilage thickness and T2
data  from  both  U-Nets,  the  information  was  subjected  to
Bland-Altman  tests  to  see  how  well  it  compared  to  manual
segmentations.  The  findings  were  correct  to  a  significant
degree. The findings demonstrated that the data obtained were
correct to a significant degree. For femoral and tibial cartilage
thickness  measurements,  Bland-Altman  analysis  revealed  a
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mean  bias  [95  percent  limits  of  agreement]  of  -0.12  to  0.33
[-0.28, 0.96] mm with 2D U-Net and 0.07 to 0.14 [-0.14, 0.39]
mm  with  3D  U-Net.  The  mean  bias  [95  percent  limits  of
agreement] for T2 ranged from -0.16 to 1.32 [-4.71, 4.83] ms
for 2D U-Net and from -0.05 to 0.46 [-2.47, 3.39] ms for 3D U-
Net. The 95 percent confidence intervals varied from -0.05 to
0.46 [-2.47 to 3.39] ms, while the mean bias for 2D and 3D U-
Net was anywhere from -0.16 to 1.32 ms [-4.71 to 4.83] ms for
T2.

Most  knee  cartilage  segmentation  techniques  have  been
defined,  and  they  may  be  used  for  volume  measurements  in
DESS or SPGR sequences. In order to get T2 quantifications,
these segmentations will first need to be put on T2 maps. Due
to  the  time  and  manual  alignment  necessary  for  these
operations, employing these techniques to analyze T2 maps in
large clinical trials such as the Osteoarthritis Initiative (OAI) is
challenging.  Stehling  et  al.  [82]  devised  a  method  for
segmenting the knee cartilage for  T2 values  on MR imaging
using data from the Osteoarthritis Initiative. The segmentation
of  one  knee  using  DST  and  the  measurement  of  T2  took  an
average of 63 minutes and three seconds (vs.  302 13 min for
volume and T2 measurements with SST). Bland Altman plots
revealed  significant  agreement  between  the  two  different
segmentation  techniques  and  the  two  readers  when  all  three
were compared. For the total knee cartilage mean T2, laminar
analysis  (up  to  2.53  percent  vs.  3.19  percent),  and  texture
analysis, the errors in repeatability were the same for both DST
and SST (P > 0.05). (up to 8.34 percent vs. 9.45 percent). The
inter-reader  repeatability  errors  in  DST were much higher  in
the texture analysis (up to 15.59 percent) compared to the mean
T2  and  laminar  analyses  (up  to  2.17  percent).  Due  to  these
discoveries,  DST  may  be  used  in  significant  clinical
investigations  such  as  the  OAI.  In  addition  to  being  a  cost-
effective  diagnostic  tool,  ultrasonic  imaging  (US)  is  non-
invasive,  does  not  use  ionizing  radiation,  and  is  simple  to
transport.

The  progression  of  knee  osteoarthritis  (OA)  will  lead  to
deterioration of the cartilage found in the knee. It is possible
that  changes  in  the  shape  of  the  knee  joint  cartilage  may  be
seen in  images  processed in  the  United States  using medical
imaging  technology.  This  study  intends  to  propose  a  fresh
technique  to  contrast  enhancement  that  has  the  potential  to
overcome the limitations of the current method.

The  gold  standard  method  in  research  for  grading
osteoarthritis  (OA)  from  thin  tissue  sections  is
histopathological  grading,  which  has  numerous  known
drawbacks.  T.  Frondelius  et  al.  [83]  previously  developed  a
semi-automatic  3D  grading  system for  human  osteochondral
plugs  using  micro-computed  tomography  (mCT)  and
phosphotungstic  acid  (PTA)  as  a  contrast  agent  to  capture
complex  three-dimensional  (3D)  OA-induced  changes.  T.
Frondelius  et  al.  ultimate  goal  is  to  automate  the  grading
process,  which  requires  accurate  segmentation  of  different
cartilage layers.  The loss of attenuation contrast  at  the bone-
cartilage (BC) interface, an important anatomical landmark, is
a  disadvantage  of  PTA  staining.  The  author  created  a  fully
automatic  BC interface  segmentation method based on Deep
Convolutional Neural Networks (DCNN) to address this issue.

Wirth et al. [84] investigated the T2 sub-regional MR spin-
spin relaxation periods in osteoarthritic knees with and without
loss of medial tibial  cartilage for the purpose of the research
that was published by the Osteoarthritis Initiative (OAI). The
purpose  of  this  study  was  to  determine  whether  or  not
variations  in  the  sub-regional  laminar  femorotibial  cartilage
spin-spin relaxation time (T2) over the course of one year are
associated with eventual radiographic progression and cartilage
loss in knees with established radiographic OA (ROA). As part
of  this  case-control  research,  knees  with medial  femorotibial
progression  (OAI)  were  chosen  for  analysis  based  on  a  one-
year decline in both quantitative cartilage thickness and femur
length.  This  was  done  so  that  the  knees  could  be  compared
with knees that did not have this condition. Radiography and
magnetic resonance imaging are two modalities assessing the
breadth  of  joint  spaces  (JSW).  Both  the  male  and  female
individuals had the same Kellgren-Lawrence grade (2/3), body
mass index (BMI), and degree of discomfort. Using multi-echo
spin-echo MRI, the T2 of the superficial and deep cartilage in
sixteen separate femorotibial subregions was examined at the
research's beginning and after one year had elapsed.

Si  et  al.  [85]  deliberated that  it  was extremely necessary
for the research on osteoarthritis to evaluate cartilage thinning
in a full knee joint and track changes in cartilage morphology
over time in the general population. This was before massive
volumes  of  imaging  data  and  artificial  intelligence  were
integrated.  As  a  part  of  the  research,  the  authors  will  be
analyzing the thickness of the cartilage in the knee in a number
of  different  anatomical  areas.  Furthermore,  we  will  be
determining whether or not there is a connection between age
and  the  pattern  of  cartilage  thinning  in  order  to  better
understand this phenomenon. The participants in the research
ranged  in  age  from  15  to  64  years  old,  with  the  average
participant  being  35±10  years  old.  A  total  of  2,481  knees  in
good health were recruited for the study. The cartilage of the
knees was segmented automatically and accurately using deep
learning,  and a  computer  algorithm was used to  quantify  the
thickness of the cartilage in 14 distinct anatomical locations. In
order to get a picture of the knees, a superconducting magnetic
resonance  imaging  device  operating  at  3  T  was  used.  When
analyzing  the  thickness  measurements  using  ANOVA,  many
variables  were  considered,  including  age,  gender,  and  which
side the measurements were collected from.

Using  three-dimensional  magnetic  resonance  (MR)
imaging of the knee, Rania Almajalid et al. [86] observed the
movement of knee cartilage over the course of one year as part
of their research. The period of the trial was determined to be
twelve months. The medial tibia compartment of the knee joint
was the major focus of this examination. Both manual cartilage
segmentation  on  each  slice  of  the  3D  MR  sequence  and  the
cartilage  damage  index  (CDI)  was  used  to  quantify  the
thickness  of  the  cartilage in  this  compartment.  The CDI was
used  to  do  cartilage  thickness  estimates  at  a  few  distinct
strategically critical sites. They used artificial neural networks
(ANNs)  to  precisely  show  the  varying  pattern  of  cartilage
thickness.  The  information  on  cartilage  thickness  and  its
immediate surroundings was a component of the data used to
produce the input feature space. The input feature space was
generated utilizing the data from the baseline year. According
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to  the  difference  in  thickness  that  was  assessed  between  the
baseline year and the follow-up data that was gathered after a
period of 12 months, the result categories were “changed” and
“no  change.”  The  utilization  of  CDI  data  and  manually
segmented  features  were  used  in  training  a  broad  variety  of
artificial neural network (ANN) models.

Egor Panfilov et al. [87] Observed morphological changes
in the knee cartilage sub-regions as one way to track the course
of osteoarthritis. These changes are most often recognized via
magnetic  resonance  imaging  (MRI).  Till  now,  cartilage
segmentation has been carried out manually, with a significant
amount of attention to detail. Although deep learning methods
make it feasible to automate the process, the assessment these
algorithms provide is not clinically acceptable. As part of their
review  of  the  link  between  the  radiographic  progression  of
osteoarthritis and segmentation and sub-regional assessment of
articular  cartilage,  the  authors  present  and  evaluate  a
completely automated approach. This was done as part of their
research  into  the  relationship.  This  is  done  as  part  of  their
review  of  the  link  between  these  two  aspects,  and  it  is  an
important  component  of  the  investigation.  The  findings
obtained  from  the  Osteoarthritis  Initiative  (OAI)  using  3D
double-echo steady-state MRI were presented in two distinct
sets. In the first set, the sample size was n = 88, while in the
second set, the sample size was n = 600. The data in each set
came from visits at 0, 12, and 24 months after the first one. The
sub-regional volume and thickness of the knee cartilage tissues
were obtained by applying deep learning-based segmentation
in conjunction with multi-atlas registration. The initial batch of
data  that  was  obtained  was  used  to  create  and  test  the
segmentation model.  This was done utilizing the data.  When
analyzing the second batch of data, the authors compared and
contrasted  the  morphological  measures  obtained  using  the
method with the one used before. In addition, in a retrospective
study,  their  ability  to  distinguish  between  the  progression  of
radiographic osteoarthritis over the period of 12 and 24 months
was assessed.

Deep neural networks may be used in order to segment the
cartilage  found  in  the  knee  Ichiro  Sekiya  et  al.  [88].  With  a
total of 45 sub-regions and 9 regions, this programme was used
to analyze the interscan measurement error in terms of cartilage
thickness  and  expected  cartilage  area  ratio.  Following  this,
each  of  these  sub-regions  was  divided  further,  this  time  into
regions.  For  the  objective  of  this  study,  magnetic  resonance
imaging  (MRI)  scans  were  carried  out  on  the  brains  of  ten

healthy volunteers twice throughout the span of a single day.
The total cartilage thickness of 9 areas and 45 sub-regions were
calculated by the algorithm, and no changes from humans were
necessary at  any point  in the process.  In addition to this,  the
anticipated cartilage area ratio was established (thickness 1.5
mm).

The interscan  measurement  error  was  evaluated  for  each
area and sub-region by utilizing data from nine distinct donors,
except for one donor who had MRI motion while the scanning
was done.  This donor was excluded from the evaluation.  All
nine  areas  and  39  of  the  45  subregions  were  scanned  for
cartilage thickness, and the error in the interscan measurement
was less than 0.10 millimeters across the board.

Knee magnetic resonance imaging (MRI) is one of the best
imaging modalities to determine the severity of OA. It has been
shown  to  be  predictive  of  outcomes  after  surgeries  such  as
arthroscopic partial meniscectomy. However, manual grading
of cartilage disease using semi-quantitative grading systems is
time-consuming  and  suffers  from  inter-observer  variability
limiting its routine use in clinical practice. Many researchers
have  developed  manual,  semi-automatic  and  fully-automatic
methods  to  accurately  segment  the  cartilage.  Deep  Learning
based methods outperform all the existing state-of-art methods.

2.3. Meniscus Segmentation & Quantification of Damages

The meniscus is very important to the function of a healthy
knee  joint  because  of  its  ability  to  absorb  stress  and  evenly
distribute  the  load.  MRIs  of  the  knees  of  people  with
osteoarthritis  (OA)  often  demonstrate  meniscal  damage.  Rip
patterns  that  are  horizontal,  flap-like,  or  more  sophisticated
may be indicators of meniscal maceration or full destruction.
MRI scans of the knees of middle-aged and older individuals
often reveal asymptomatic meniscal abnormalities in the knees
of  these  patients.  Studies  have  demonstrated  that  meniscal
abnormalities  are  associated  with  the  development  of
radiographic osteoarthritis  [89],  the development of cartilage
loss [90], and the progression of cartilage loss [91]. Meniscal
abnormalities have also been linked to the loss of cartilage. It is
necessary  to  segment  the  menisci  into  three  dimensions  in
order  to  calculate  quantitative  meniscal  measures  such  as
meniscal volume and tibial coverage. The primary emphasis of
many  current  lines  of  investigation  in  the  field  of  meniscus
research is the development of computer tools for segmenting
and measuring changes in the meniscus. Table 3  provides an
example  of  a  method  introduced  after  2010,  including  full
automation.

Table 3. Automatic segmentation of meniscus: Existing studies (After the year 2010).

Study/Refs. MR Pulse Sequence Technique Used Sensitivity
(%)

Specificity
(%)

DSC

Zhang et al. 2013
[40]

Multi-contrast DRF + ELM 0.8395 0.9934 0.82

Felicia et al.2017
[45]

3D T1 WE
T2 de3D WE

2DUNetcascade- deep learning 0.784 1.000 DSC- 0.75 3

Norman et al. 2018
[46]

T1 weighted images and three-
dimensional (3D) double-echo

steady-state (DESS) images

U-Net convolutional network - - Mean validation Dice
coefficients 0.833 (95% CI:
0.821, 0.845) for meniscus.
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Study/Refs. MR Pulse Sequence Technique Used Sensitivity
(%)

Specificity
(%)

DSC

Paproki et al. 2014
[92]

Double-echo steady-state MR
images

Deformable model approach. MD: 78.9
95% CI:
77.4-79.9

MD: 99.99
95% CI:

99.99 -99.99

-

3D weDESS 3D ASM MM-0.771
ML- 0.790

MM- 0.999
ML- 0.999

MM- 0.783
ML- 0.839

Tack et al. 2018
[93]

2D DESS MRI slices CNNs in combination with Statistical
Shape Models (SSMs)

- - Dice Similarity Coefficient:
MM - 83.8%, LM -88.9%

Bloecker et al.
2012 [94]

Sagittal double-echo steady
state with water excitation

magnetic resonance sequence

Characterize tibial plateau coverage
and morphometric differences of the
medial (MM) and lateral meniscus
(LM) in a male reference cohort
using three-dimensional imaging

- - -

Zarandi et al. 2016
[95]

3D knee T1-weighted and T2-
weighted MR images

A type-2 fuzzy expert system for
meniscal tear diagnosis using PD

magnetic resonance images (MRI)

91.84% - -

Zhang et al. 2019
[96]

3-T clinical MR scanner A detailed finite element model of
the knee joint with bones, cartilages,

menisci and main ligaments

- - -

Couteaux et al.
2019 [97]

Sagittal MR images centered
around the knee

Mask region-based convolutional
neural network (R-CNN)

- - Score of 0.906

Michal Byra et al.
2020 [98]

3D ultrashort echo time (UTE)
cones MR imaging

2D attention U-Net convolutional
neural networks for the menisci

segmentation

- - An automated method with
dice scores of 0.860 and

0.833. Manual segmentation
achieved 0.820

Benjamin Fritz et
al. 2020 [99]

One hundred consecutive
patients' MR Images.

Fully automated deep convolutional
neural network (DCNN)

- - For medial meniscus tear
detection, sensitivity,

specificity, and accuracy
were for reader 1: 93%, 91%,
and 92%, for reader 2: 96%,
86%, and 92%, and for the

DCNN: 84%, 88%, and 86%.
For lateral meniscus tear

detection, sensitivity,
specificity, and accuracy

were for reader 1: 71%, 95%,
and 89%, for reader 2: 67%,
99%, and 91%, and for the

DCNN: 58%, 92%, and 84%
Zhongjie Long et

al. 2021 [100]
T2-weighted MR slices/frames ATTU-Net - - Min DSC 0.743

Max DSC 0.990
Average DSC 0.864 ± 0.077

Yuan-Zhe Li et al.
2022 [101]

Philips 3.0 T MRI system 3D deep convolutional neural
network (DCNN)

90%
sensitive

- DCNN model, AUC value,
accuracy, sensitivity, and

specificity values in the test
set were 0.907, 0.924, 0.941,

and 0.785, respectively
Swanson et al.

2010 [138]
T2 Map 120 mm field of view

MRI obtained from 3 T
Siemens machines

Semi-automated segmentation
consisted of five phases:
initialization, threshold

determination, segmentation,
conditional dilation, and

morphological post-processing

- - -

I.  Pang  et  al.  [43]  presented  their  research,  Automatic
Articular Cartilage Segmentation Based on Pattern Recognition
from  Knee  MRI  Images.  In  order  to  better  understand  how
cartilage is segmented in MRI scans of the knee, an automated
approach is used. The femoral cartilage, the tibial cartilage, and
the  patellar  cartilage  are  all  segmented  using  the  Bayesian
theory in conjunction with three binary classifiers based on the
integral  and  partial  pixel  qualities.  The  first  steps  entail
devising  an  iterative  approach  for  selecting  an  acceptable
threshold  for  the  Canny  operator  and  extracting  the  bone-

cartilage interface from MRI images.  These steps are part  of
the  first  attempts.  As  a  second  example,  the  one-of-a-kind
edges  are  recognized  by  particular  characteristics,  making  it
possible to separate the various cartilage types simultaneously.
The  cartilage  edge  and  the  anatomical  region  it  occupies
contribute  to  accelerating  the  segmentation  process.
Morphological  treatments  have  the  potential  to  improve  the
outcomes  of  the  final  segmentation.  The  smooth  cartilage
border presented by the automated segmentation is consistent
with that seen in the human segmentation.

(Table 3) contd.....
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Random Forest and the deep learning method of 2D UNet
fully convolutional networks (FCN) were used by the research
team led by F. Aldrin et al. [45] to differentiate among menisci.
For the purpose of  extracting menisci  from 3D MRI images,
both  approaches  were  evaluated  and compared in  a  series  of
tests.  In  contrast  to  Random  Forest,  a  2D  UNet  cascade
achieved a Dice Similarity Coefficient (DSC) of 75.3%, while
Random Forest only achieved 54.43%.

Researchers looked at 28 more participants' distal femurs
and articular cartilage using 3D MR images and the 2D UNet
cascade.  When  applied  to  both  the  distal  femur  and  the
articular cartilage, the single-class 2D UNet cascade produced
noticeably more favorable results.

In order to assess relaxation and morphology, B. Norman
et  al.  [46]  investigated  the  use  of  2D  U-Net  Convolutional
Neural  Networks  for  automated  cartilage  and  meniscus
segmentation of knee MR imaging data. This was done in order
to analyze the data. This study utilized quantitative magnetic
resonance  imaging  (QMRI)  to  determine  the  accuracy  and
precision  of  automated  segmentation  of  morphology  and
relaxometry  in  quantitative  magnetic  resonance  imaging
(QMRI) for degenerative knee disorders such as osteoarthritis.
These disorders include knee degeneration (OA).

The models  provided an independent  segmentation in  an
average  of  five  seconds.  The  human  and  automated
quantifications  of  T1  and  T2  values,  respectively,  had
correlations that averaged 0.8233 and 0.8603 and 0.9349 and
0.9384,  respectively.  These  correlations  were  found  to  be
significant.  The  automated  approach's  long-term  accuracy  is
comparable  to  that  of  the  human  method.  These  findings
provide evidence of the accuracy and precision with which U-
Net  can  create  segmentations.  These  segmentations  have  the
potential to be used in the diagnostic process of OA in order to
get  relaxation  durations  as  well  as  morphological
characteristics  and  values.

Semi-automated  segmentation  was  proposed  by  M.
Swanson  et  al.  [102  -  138]  in  order  to  evaluate  the  lateral
meniscus in knees that were either healthy or had osteoarthritis.
The segmentation approach was used on ten normal controls
and fourteen osteoarthritis patients who did not have symptoms
or  risk  factors  for  developing  knee  osteoarthritis.  These
patients  were  part  of  the  Osteoarthritis  Initiative  (OAI).  A
threshold level was formulated using a Gaussian fit model after
hand-selecting a seed point in the meniscus. In order to fulfill
the requirements imposed by the anatomy and the intensity, a
threshold operation was carried out, and this was then followed
by conditional dilation and post-processing. During the post-
processing stage, an accuracy check is performed on the region
around the meniscus by reevaluating the included and excluded
pixels. Both normal and degenerative menisci were subjected
to  a  head-to-head  comparison  between  the  results  of  the
segmentation algorithm and those of the manual segmentation,
which five human readers performed.

Using  MRI  data  from  the  Osteoarthritis  Initiative,  A.
Paproki  et  al.  [92]  suggested  automatically  segmenting  and
analyzing  normal  and  osteoarthritic  knee  menisci.  An
automated approach for segmenting and measuring the medial

and lateral meniscuses of the knee will be put through its paces
using magnetic resonance (MR) images of the knee (MM and
LM).  The  author  conducted  analyses  of  OAI  cohort
photographs  utilizing  sagittal  water-stimulated  double-echo
steady-state  MR  images.  These  images  were  acquired  in  a
sagittal plane. A deformable model technique was used in order
to  carry  out  an  automated  segmentation  of  the  MM and  LM
inside the MR images. Data on tibial coverage and subluxation
were  automatically  produced  to  facilitate  the  comparison  of
knees  that  displayed  varied  degrees  of  radiographic
osteoarthritis  and  medial  and  lateral  joint  space  narrowing
(mJSN,  lJSN)  and  discomfort  (Wilcoxon  tests).

The  menisci  of  the  knee  may  be  segmented  utilizing  an
innovative approach reported by A. Tack et al. [93] and can be
seen  in  MR  images.  It  is  possible  to  evaluate  osteoarthritis
(OA)  biomarkers  using  meniscal  measurements.  This  work
offers  a  unique  approach  for  autonomously  segmenting  the
knee's menisci using MRI images as the primary data source.
Biomarkers of osteoarthritis may be quantified using meniscal
measurements  in  certain  cases  (OA).  Constructing  a
segmentation  approach  used  convolutional  neural  networks
with  statistical  shape  models.

88  manual  segmentations  were  used  to  determine  how
accurate the results were. We estimated the meniscal volume
and  tibial  coverage,  then  looked  for  differences  between  the
OA, JSN, and pain (WOMAC) groups. Six hundred individuals
were investigated to see whether or not there was a connection
between  the  results  of  MOAKS  specialists  and  the
computerized  meniscal  extrusion.  In  order  to  determine
whether  or  whether  biomarkers  might  accurately  predict  the
presence  of  radiographic  osteoarthritis  in  552,  a  conditional
logistic regression was carried out (184 with incident OA and
386  controls).  The  medial  menisci  were  dichotomized  and
segmented  in  a  very  precise  manner.

K. Bloecker et al. [94] investigated the medial and lateral
menisci  of  healthy  boys'  knees  using  magnetic  resonance
imaging  (MRI).  Utilizing  three-dimensional  imaging,  the
objective  was  to  determine  what  percentage  of  a  reference
group's medial and lateral menisci were covered by the tissue
in  question.  For  the  purpose  of  this  study,  the  researchers
employed a sagittal double-echo, steady state, water excitation
MRI sequence (slice thickness: 1.5mm, pixel resolution: 0.37 x
0.70mm), as well as multiplanar reconstructions, on a total of
47  men  who  were  a  part  of  the  Osteoarthritis  Initiative
reference  cohort.  Complete  knee  coverage  was  attained  by
hand-segmenting the LT plateau cartilage and the MM and LM
knee joint surfaces. This led to the achievement of the goal. A
coronal intermediately weighted turbo spin echo was used to
assist  with  this  method.  Estimates  were  made  in  three
dimensions for the total menisci, the body of the menisci, the
anterior  and  posterior  horns  of  the  menisci,  and  the  tibial
coverage.

Tears in the meniscus are one of the most common knee
problems affecting young athletes as well as the elderly, and it
is  essential  to  make  an  appropriate  diagnosis  and  undergo
surgical  intervention  if  necessary.  Because  it  is  difficult  to
manually  diagnose  meniscal  tears  and  because  of  the
possibility  of  mistakes  being  made,  automatic  detection
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approaches  are  required.  M.  Zarandi  et  al.  [95]  developed  a
type-2 fuzzy expert system as a means of identifying meniscal
tears  via  the  use  of  PD magnetic  resonance  imaging.  (MRI).
The Type-2 fuzzy image processing paradigm comprises many
components, the most notable of which are the pre-processing,
segmentation,  and  classification  stages.  An  enhancement
algorithm is applied to the data to start the pre-processing. In
order to complete the processing of the pictures, It2PCM may
make use of the results that were produced by Interval Type-2
Fuzzy  C-Means  (IT2FCM).  After  that,  IT2PCM  will  utilize
those outputs to further process the photos. We have to go back
and tweak the value in order to further improve IT2PCM. Two-
layered  perceptron  networks  are  often  used  during  the
classification process. Compared to a method of meniscal tear
identification  that  is  more  widely  used,  the  segmentation
technique,  a  type-2  expert  system  that  has  been  suggested,
provides more accurate results.

K.  Zhang  et  al.  [96]  conducted  a  finite  element  study  to
investigate  meniscectomy's  effects  and  the  meniscus's
following degradation of the knee joint. In order to determine
the effect that degenerative and radial meniscal tears, as well as
meniscectomy,  have  on  the  knee's  biomechanics,  these
conditions will  be investigated. Using computed tomography
and  magnetic  resonance  imaging  data,  a  model  of  the  knee
joint was created, which included all of the bones, cartilages,
menisci, and ligaments that make up the joint. The model was
subjected  to  simulated  vertical  and  anterior  stresses,  which
mimicked  the  model's  static  position  and  minimal  bending.
This  was  done  in  order  to  detect  both  the  menisci's
degeneration  and  the  resulting  medial  meniscectomy.  When
compared to  the  effects  of  compression and shear  stress,  the
extrusion of the meniscus was shown to be superior. This task
has  been  finished.  In  degenerative  and  radial  rips,  there  is  a
substantial association between medial meniscal tear stress and
extrusion  values,  higher  peak  meniscal  and  cartilage
compression and shear stress, and severe meniscus extrusion.
Patients suffering from knee ailments may find that computer-
assisted  diagnosis  and  treatment  planning  benefit  their
condition thanks to the 3D segmentation of knee joint tissues.

Because of the difficulties and unpredictability associated
with  completing  human  segmentation  across  various  raters,
there is a clear and present demand for automated segmentation
methods.  In  order  to  successfully  separate  human  tissues,  a
variety of approaches have been used. For instance, it  is still
challenging to dissect the microscopic menisci that are located
in the knee.

V. Couteaux et al. [97] provided evidence that the Mask-
RCNN  can  detect  and  classify  knee  meniscus  tears.
Participants were asked to identify the existence of tears in the
anterior and posterior menisci as well as the direction of these
tears after having sagittal MRI slices cropped around the knee
(horizontal or vertical). An R-CNN was trained to differentiate
between normal and torn menisci. After that, it was reinforced
using ensemble aggregation to enhance its robustness. Finally,
it was cascaded into a shallow ConvNet in order to identify the
direction of tearing in the meniscus. The database provided for
the challenge contained correct  predictions of  tears  based on
the V. Couteaux technique. For all  three tasks, this approach

produced a weighted AUC score of 0.906, placing it first in the
competition. For non-typical cases of severely injured menisci
or many tears,  expanding the database or using 3D data may
help further improve the performance.

Yi  Wang  et  al.  [101]  investigate  the  possibility  of
automatically recognizing a torn meniscus in the sagittal and
coronal planes of the knee joint using radiomics fusion as their
research  method.  Between  July  2018  and  March  2019,  the
institution's Department of Orthopedics admitted 152 patients
with  arthroscopically  confirmed  meniscal  injuries.  These
patients were treated at the facility. Using sagittal and coronal
pictures acquired in single mode, 1316 dimensional radiomic
signals were obtained for the menisci.

In order to construct a dual-mode joint feature group with
2632-dimensional  radiomic  fingerprints,  the  characteristics
from the sagittal and coronal planes were joined. For the most
significant 8-dimensional radiomics signatures, the ICC values
for Model 1 ranged anywhere from 0.832 to 0.998, while the
ICC values for Model 2 ranged anywhere from 0.845 to 0.998.
For both the training and validation sets, Model 3 had an AUC
of  0.947,  which  was  significantly  higher  than  the  other  two
models,  which  had  AUCs  of  0.889  and  0.876,  respectively
(AUCs  of  the  training  set  and  validation  set  were  0.831  and
0.851, respectively).

Lee  et  al.  [102]  developed  a  method  for  knee  cartilage
segmentation  from  magnetic  resonance  (MR)  images.  The
process  of  segmentation  included the  construction  of  several
atlases,  the  use  of  a  locally  weighted  vote  (LWV),  and  the
reorganization  of  geographic  regions.  All  of  the  training
examples were first registered with the help of a target picture,
and  then  the  best-matched  atlases  were  chosen.  Researchers
have  used  an  LWV strategy  to  merge  the  data  from the  two
atlases  in  order  to  get  to  the  first  segmentation  result.  This
allowed  us  to  more  accurately  represent  the  data.  The  first
segmentation  result  produced  bone,  cartilage,  and  nearby
regions data. This data was used. Producing seed points for the
graph-cutting approach used statistical data as input. In the end,
the outliers and aberrant bone sections were reevaluated as part
of the region correction technique.

A comparison of the effects  of  loaded vs.  unloaded knee
MRI on meniscus extrusion was conducted by Rina Patel et al.
[103]  in  research  including  healthy  volunteers  as  well  as
patients  suffering  from  osteoarthritis.  The  extrusion  of  the
meniscus  is  the  topic  of  this  study,  which  examines  both
healthy persons and those with varying degrees of osteoarthritis
(OA).  Unloaded  and  loaded  three-dimensional  magnetic
resonance  imaging  scans  of  the  knees  were  performed  on  a
total  of  143  healthy  participants  and  OA  patients.  The
Kellgren-Lawrence  (KL)  approach  was  used  in  order  to
evaluate  OA.  It  was  found  that  there  were  tears  in  the
meniscus.  The  mean  and  standard  deviation  were  used  to
represent  the  descriptive  data.  A  comparison  between  the
groups  that  were  loaded  and  those  that  were  emptied  was
carried out with the use of the Student t-test. When the p-value
was  less  than  0.05,  it  was  determined  that  all  of  the
computations were statistically significant. There were a total
of 87 female participants and 56 male participants in the study,
with an average age of 53 years old and a standard deviation of
9.7 years.
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The following is the grade distribution, as determined by
Kellgren-Lawrence: There were 46 cases of grade 1 meniscus
tears, 25 cases of grade 2 meniscus tears, 13 cases of grade 3
meniscus  tears,  and  three  cases  of  grade  4  meniscus  tears
among  the  patients  who  had  grades  0  and  1.  Significant
differences were seen in the medial meniscal extrusion when
comparing loading and unloading conditions (p 0.0001). When
the  medial  meniscus  was  loaded  and  unloaded,  there  were
statistically significant differences in KL score groups 0, 1, and
3.  It  was  determined  that  loading  and  unloading  did  not
significantly impact the lateral meniscus extrusion (p = 0.07).
After loading the device, patients with low KL values (between
0 and 1) and those with a KL score of 3 improved their medial
meniscal  extrusion.  It  is  possible  for  a  loaded  MRI  scan  to
provide  a  more  accurate  diagnosis  of  medial  meniscal
extrusion,  particularly  in  patients  with  little  to  moderate
osteoarthritis.

Treating  complicated  rips  in  meniscal  ligaments  was  the
topic  of  research  conducted  by  Nobutake  Ozeki  et  al.  [104].
After suffering an injury, a meniscal repair should be the first
course  of  therapy  chosen  so  that  the  meniscus  may  remain
healthy and functional. Meniscal repair, on the other hand, has
been  shown  in  long-term  follow-up  studies  to  have  superior
clinical  results  and  less  severe  degenerative  changes  in
osteoarthritis.  In  addition  to  bone  marrow  stimulation  and
platelet-rich plasma injections, fibrin glue, stem cell injections,

and  scaffolding  have  all  contributed  to  the  expansion  of  the
applications of meniscus surgery. Individuals with damage to
their  meniscus  that  were  formerly  thought  to  be  irreversible
now  have  a  viable  option  for  meniscus  repair  due  to
advancements  in  the  treatments  used  to  heal  the  injury  and
biological augmentation.

2.4. Different Methods for Knee Joint Segmentations based
on MRI

2.4.1. Active Contour for Knee Joint Segmentation

One of the active models in image segmentation techniques
is  the  active  contour.  It  separates  the  region  of  interest  by
utilizing  energy  constraints  and  forces  in  the  image.  Active
contours  are  used  to  segment  regions  from  medical  images
such as brain CT and MRI scans. Many researchers have used
the  active  contour  method  for  knee  joint  segmentations,  as
illustrated in Table 4.

2.4.2. The ASMs and the AAMs for Knee MRI Segmentation

Active Shape Model (ASM) and Active Appearance Model
(AAM) segmentation techniques are widely used in the field of
medical  imaging  due  to  their  accuracy.  This  segmentation
technique  has  been  used  by  many  researchers  to  accurately
segment bone and cartilage from MR images. Table 5 explains
how to segment different knee joints using AAM and ASM.

Table 4. Active Contour for Knee Joint Segmentation.

Method Publication Target Weakness
Geodesic

Active
Contour.

Lorigo et al. [105]. Bone The GAC snake model was
sensitive to edge clarity.

Cubic
B-spline;

Bezier Spline.

Cohen et al. [106], Lynch et al. [107], Carballido-Gamio
et al. [108, 109]. Cartilage

A further process was needed
for these methods;

The methods were sensitive
to initialization;

The optimization was
non-convex;

The convergence was not
guaranteed.

Directional
GVF Snake. Tang et al. [110]. Cartilage

The GVF snake model could not
handle long, thin, concave

shape.

Table 5. ASMs and the AAMs for Knee MRI Segmentation.

Authors Model Targets Weakness

Solloway et al. [111] ASM
(2D) Bone/Cartilage 1. 3D structures were ignored in the model.

2. Post-processing was needed.

Fripp  et  al.  [57,  92,  104],  Schmid et  al.  [118,
119].

ASM
(3D) Bone

1.  The  search  for  an  initial  model  pose  parameters  can  be  very  time-
consuming.
2. The initialization was based on manually defined landmarks.

Gilles et al. [112], Seim et al. [17]. ASM
(3D) Bone/Cartilage

1. Such models only reach a local
optimum and depend heavily on their initial position;
2. The cartilage segmentation largely
depends on the preset parameter ‘thickness.'

Vincent et al. [113], Williams et al. [114, 115]. AAM Bone/Cartilage Variation outside these spaces cannot be properly captured if no
subsequent relaxation step is used;
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Table 6. VC-based Methods for Knee Joint Segmentation.

Authors Classifier Pros Cons

Dam et al. [12] KNN
The rigid multi-atlas registration
allowed the multi-structure
segmentation.

4. A large number of training samples
are needed.

Folkesson et al. [36] KNN The method could segment knee MRI fully automated. ---

Shan et al. [39] Probabilistic
KNN

The spatial prior generated by
multi-atlas  registration  improved  both  performance  and
computational
efficiency.

1. Very low computational
efficiency;

Prasoon et al. [71] CNN The introduced deep feature improved -

Prasoon et al. [72] KNN+SVM
The computational efficiency was
improved by using two-stage
classification framework.

-

Folkesson et al. [139, 140] KNN The combination of two-class KNN
outperformed the three-class KNN [71]. -

Wang et al. [116] KNN

The  introduced  novel  multiresolution  patch-based  segmentation
framework
allowed a coarse-to-fine
segmentation.

2. Over-segmentation
on the BCI;

Liu et al. [117] Random
Forest

Improved the performance by
introducing context information.

3. The training process
is time-consuming;

Table 7. Comparisons of Different Methods.

Method Pros. Cons.

SSMs and
AAMs

1. The methods could be fully-automatic.
2. The models could handle incomplete
boundaries well.

1. The methods have difficulties for
cartilage modeling.
2. The performance largely depends on
the representativeness of the training
samples.

Active
Contour

1. Low computational complexity.
2. The methods could achieve accurate results with expert interaction.

1. It is hard to build an automatic system
based on active contour.
2. Convergence problem.

Voxel
Classification

1. Concise model.
2. High accuracy.
3. The performance could be improved by providing more training samples.

1. Over-segmentation and the need of
post-processing.
2. Computational complexity is high.

Graph-based 1. High accuracy.
2. Global optimization could be achieved.

1. High computational complexity and
high storage requirement;
2. Initialization is needed in most cases.

Atlas-based 1. High accuracy.
2. The process and the results are intuitionistic.

1. Existing labeled slices should be
provided;
2. Difficulties in handling the variations

2.4.3. VC-based Methods for Knee Joint Segmentation

Different  VC-based  methods  are  applied  in  order  to
segment knee joints from MR Images. Table 6  are those that
focus  on  the  development  of  computational  algorithms  for
segmenting  knee  joints  from  knee  MR  data.

2.5. Comparisons of Different Methods

Table  7  shows  the  comparison  of  different  methods  of
segmentation with their advantages and disadvantages.

By  employing  simplex  meshes,  B.  Gilles  et  al.  [112]
presented  a  novel  method  for  segmenting  and  registering
images of  the musculoskeletal  system. Previous studies have
demonstrated  that  discrete  models  may  be  helpful  when  it
comes to the segmentation of medical images. The framework's
inventor  has  included  multi-resolution  approaches  and  a

reversible medial representation to calculate geometry and non-
penetration  requirements  more  straightforwardly.  The
presented  model  enables  registration  between  and  within
patients  (involving  rigid  and  elastic  matching).  Because  of
these  representations,  morphological  analysis  may  be  done
more straightforwardly. The author uses a case study of the hip
and thigh to illustrate that the muscles, bones, ligaments, and
cartilages  of  the  hip  and  thigh  may  be  recorded  quickly  (30
minutes),  accurately  (1.5  mm),  and  with  minimum  manual
labour. This is demonstrated via the usage of the hip and thigh.

In the study, Graham Vincent et al. [113] segmented MR
images  of  the  knee  using  a  model-based  technique.  Active
Appearance  Models  (AAM),  constructed  from  manually
segmented  instances  found  in  the  Osteoarthritis  Initiative
database, are used in the segmentation method as the primary
tool. An MDL Groupwise Image Registration approach is used
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in  order  to  construct  model  correspondences  of  a  superior
grade. Methods like multi-start and hierarchical modelling are
used to fit the model to newly taken photographs. The model
successfully segmented the test  data from the MICCAI 2010
Grand Challenge, and it did so with a high degree of accuracy
while making no modifications to the training data.

The solution presented is  the  automated segmentation of
tibial  articular  cartilage from knee MRI data.  Z.  Wang et  al.
[116]  reported  on  an  application  to  knee  MRI  in  their  work
titled “Patch-Based Segmentation without Registration.”

This  work  presents  a  brand-new  method  for  multi-
resolution  patch-based  segmentation,  and  it  does  not  need
image registration to function properly. In addition, an image
similarity  measure  based  on  directed  gradients  and  a  3D
histogram is also provided for use in atlas selection. This tactic
was tested during the MICCAI SKI10 Grand Challenge, which
included 100 different training atlases and 50 test photos that
had  never  been  seen  before.  Our  approach  did  very  well
compared  to  the  most  cutting-edge  techniques  of  knee  MRI
segmentation  used  in  this  competition;  consequently,  we
received  excellent  evaluations  and  could  imitate  the  best
outcomes.

In order to differentiate between the bones and cartilages
of the knee, it is required to segment MR images of the joint; in
the  article,  Q.  Liu  et  al.  [117]  explore  the  use  of  multi-atlas
context  forests  to  segment  cartilages  and bones  sequentially.
This technique uses training atlas pictures to repeatedly train
sets of random forests to classify individual voxels to segment
bone and cartilage.  The preliminary segmentation results  are
used to produce context characteristics for the random forests
that are a part of the iterative architecture. In order to derive
characteristics  pertaining  to  the  context,  the  preliminary
segmentation  result  of  the  topic  has  to  be  registered  with  a
large number of atlases.

After that, the author uses the registered atlases to get the
spatial priors of the anatomical labels. After that, we put those
spatial priors to use in order to acquire more context about the
topic.  However,  keep  in  mind  that  the  early  findings  of  the
topic's segmentation, which have been revised, may cause these
characteristics  to  shift.  The  accuracy  of  many  atlases'
registration  to  the  subject  also  increases  due  to  improved
segmentation findings, which makes it possible to train random
forests  iteratively.  The  suggested  technique  has  been  put
through  its  paces  using  the  SKI10  dataset,  and  the  results
indicate  that  it  is  quite  accurate.

In  the  setting  of  a  restricted  field  of  view,  Schmid et  al.
[118, 119] presented statistical models for bone segmentation.
The author of this paper presents a modified initialization for
modelling  and  computer-aided  diagnosis,  as  well  as  a  multi-
resolution  SSM approach  for  the  segmentation  of  MRI  bone
images  produced  in  constrained  FOvs.  Both  of  these  are
presented in conjunction with a multi-resolution SSM approach
for segmenting MRI bone images. Creating a dependable SSM
in this research, which is based on both complete and corrupted
forms  and  the  simultaneous  optimization  of  transformations
and shape parameters, is an example of innovative research. 86
magnetic resonance imaging (MRI) scans of the femur and hip

bones  were  used  to  construct  an  algorithm.  Both  the  pixel
density  and  the  field  of  view  of  these  photos  have  been
significantly  altered  from  one  another.  The  segmentation
findings may be used in an image-based clinical  diagnosis if
one  so  chooses  (e.g.,  an  average  distance  error  of  1.12  0.46
mm).  Segmentation  from  medical  pictures  is  especially
difficult due to the structural complexity of the musculoskeletal
system,  as  well  as  the  great  diversity  of  persons  in  the
community  and  their  potential  for  severe  deformations.

In order to manage the biological diversity present in many
medical  imaging  classification  and  segmentation  tasks,  a
substantial quantity of training data is required. Training data
points  may  have  a  significant  impact  on  how  well  someone
learns.  There  is  a  possibility  that  non-linear  support  vector
machines  (SVMs)  with  excellent  generalization  performance
will  not  be  considered  (SVMs).  In  many  medical  imaging
circumstances, the segmented object has a disproportionately
small  number  of  pixels  or  voxels  compared to  the  backdrop.
This  results  in  an  abnormally  unbalanced  population.  A.
Prasoon et al. [120] provide a two-stage classifier to solve the
difficulties  associated  with  large-scale  medical  imaging.
Getting  started  using  a  classifier  that  can  be  easily  trained
utilizing extensive datasets is essential. This is done to ensure
that  the  class  imbalance  may  be  exploited  by  modifying  the
classifier  to  detect  the  background  in  an  acceptable  manner.
Only information that  isn't  background is  carried over  to  the
next level of processing. A strong classifier with a high training
time complexity may determine whether individual data points
belong to a certain entity.

The absence of spatial correspondence among individuals
and  time  and  the  geographic  heterogeneity  of  cartilage
advancement  across  subjects  make  some analytical  methods,
such as subregion-based analysis, which have been developed
to improve quantitative cartilage analyses, less than ideal. This
is  one  of  the  reasons  why  it  is  difficult  to  apply  analytical
approaches. Detection of Diseased Regions in a Patient's Knee
Using Longitudinal Magnetic Resonance Imaging Data by C.
Huang et al. [121] concentrated on these two concerns in order
to  establish  a  statistical  approach  for  measuring  longitudinal
cartilage in OA patients. The goal was to develop this method
as  quickly  as  possible.  The  first  thing  that  must  be  done  to
analyze  the  data  from  3D  knee  imaging  is  to  search  for
patterns, both temporally and geographically. Gaussian hidden
Markov models (GHMM) are used to explore the variance in
cartilage progression over time and between individuals with
OA.

In  the  suggested  technique,  a  pseudo-likelihood function
and an expectation-maximization (EM) approach are  used to
estimate the unknown parameters  of  the GHMM that  are the
most accurate possible. Using the recommended approach, it is
possible  to  accurately  detect  each  OA  patient's  unhealthy
locations, and the longitudinal cartilage thickness of each latent
subpopulation may be evaluated in great detail.

Through the Osteoarthritis Initiative (OAI), researchers can
acquire clinical records, images, and biospecimens open to the
public. These resources can be used in the study of factors that
contribute to the onset and progression of OA, as well as the
evaluation  of  biomarkers  that  can  predict  and  monitor  the
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progression  of the  disease. In their  Perspectives, F. Eckstein
et  al.  [122]  address  imaging  processes  and  outline  image
analyses that have been done so far for the OAI cohort and its
design.  Additionally,  they  describe  how the  OAI  cohort  was
designed. The longitudinal changes in cartilage thickness that
occurred within the OAI progression subcohort over the course
of  two  years  are  accounted  for  in  the  author's  descriptive
analysis  of  these  data  from  a  core  sample  consisting  of  600
knees  taken  from  590  individuals.  These  researchers  also
highlight  how  the  methodological  and  applied  imaging  data
obtained  from  the  OAI  pilot  study  may  be  used  to  generate
biomarkers to assess the success of intervention studies. They
provide greater elaboration on this point.

Computer-aided  knee  MRI  segmentation  has  immense
potential in clinical diagnosis, as well as in scientific research.
The central issue in knee MRI segmentation is finding the bone
and cartilage boundary accurately. For bone segmentation, the
existing  literature  supports  that  the  deformable  model-based
methods  can  handle  bone  segmentation  well.  The  region-
growing-based  semi-automatic  methods  also  achieve
satisfactory  results.  Voxel/pixel  classification-based methods
could  handle  bone  segmentation  well.  However,  researchers
prefer  deformable  models  for  bone  segmentation  due  to  the
higher computational efficiency. The segmentation of articular
cartilage still needs further investigation, especially the fully-
automatic cartilage segmentation.

Using quantitative computed tomography of  the knee,  P.
Zerfass et al. [123] developed a unique integrated approach for
assessing bone mineral density (BMD) and subchondral bone
structure. The establishment of anatomical coordinate systems
is followed by the acquisition and reconstruction of pictures in
three  dimensions,  followed  by  the  positioning  of  analysis
volumes of interest (VOI) in a consistent manner. Researchers
have developed new segmentation algorithms that can reliably
identify the growth plates of the tibia, femur, and joint space.
There are five separate VOIs on the epiphysis, and each one is
located  at  a  different  distance  from  the  articular  surface.
Further differentiation is made between the medial and lateral
components  of  each  VOI.  BMD is  determined  for  each  VOI
that is examined. Quantifying the subchondral bone structure
may be  accomplished by doing a  texture  analysis  on a  high-
resolution  CT  reconstruction  created  using  a  CT  scan.  For
every VOI that was investigated, local and global homogeneity
and  anisotropy  were  subjected  to  measurement.  The  overall
accuracy  of  the  method  over  a  shorter  period  of  time  was
evaluated by taking duplicate measurements of twenty human
cadaver knees that had osteoarthritis.

R. Youssef et al. [124] used semi-automatic compartment
extraction  to  measure  the  3D  bone  mineral  density  and  the
morphometric  properties  of  the  subchondral  bone.  This  was
accomplished by using CT scans. The study aims to develop a
semi-automatic  method  of  segmentation  of  the  subchondral
bone in the tibial compartments of the knee to assess 3D local
variation  of  BMD  and  BV/TV  from  HR-pQCT  images.
Because  of  osteoarthritis  of  the  knee,  the  author  discusses  a
unique  semi-automatic  method  for  assessing  bone  mineral
density (BMD) and bone ratio (BV/TV) in clinically important
compartments  (medial  vs.  lateral)  (anterior  versus  posterior).

This  convex-hull  method  was  developed  mainly  for  high-
resolution  peripheral  computed  tomography,  but  it  has  the
potential to be employed in clinical CT if the resolution is high
enough.

An innovative method for knee cartilage segmentation that
combines  deep  segmentation  networks  with  bone-cartilage
complex modelling has been created, as stated by Hansang Lee
et al.  [125]. The diagnosis and treatment of osteoarthritis are
both  significantly  aided  by  the  segmentation  of  cartilage  on
MRIs of the knee. Recent research has demonstrated that deep
segmentation networks, also known as DSNs, may be helpful
in the process of segmenting cartilage. DSNs tend to gloss over
minute details like cartilage when they are learning multi-class
segmentation, which is why they have limits when it comes to
segmenting  cartilage.  This  work  used  BCC  modelling  and
BCD extraction to develop an innovative DSN-based cartilage
segmentation approach. Because the DSNs have such a limited
understanding  of  cartilage,  the  researchers  H.  Lee  and
colleagues suggest building a mask called the BCC, composed
of  bone  and  cartilage.  In  order  to  remove  the  cartilage,  the
bones holding them in place must first be removed. Once this
step is complete, the cartilage may be removed. In addition, a
2.5-dimensional  segmentation  method  is  used.  This  method
combines the outcomes of many segmentation masks applied to
various planes using a majority vote to improve the accuracy of
the segmentation even further.

In the dataset used to validate the SKI10 public challenge,
our BCD-Net obtained average DSCs of 98.1 percent for the
femoral  cartilage  and  83.8  percent  for  the  tibial  cartilage,
respectively.

It  is  necessary  to  perform  automated  articular  cartilage
segmentation in order to conduct quantitative cartilage analysis
and see cartilage in three dimensions.  Some people with OA
have  lesions  similar  to  Bone  Marrow  Edema  (BME),  which
significantly  challenge  automated  cartilage  segmentation.  In
patients  with  and  without  bone  anomalies,  automated  knee
cartilage segmentation using the modified radial approach was
shown to be feasible, as reported by R. Thaha et al. [126]. The
primary  purpose  of  this  investigation  was  to  design  an
automated  segmentation  method  that  would  be  successful  in
healthy persons as well as OA patients with and without BME
lesions.  We  devised  an  automated  technique  for  segmenting
cartilage  by  using  T2  map  data  and  a  modified  radial
methodology.  The  coefficients  of  similarity  were  used  to
conduct  an  analysis  that  determined  how  accurate  the
suggested method was. Twelve MRI datasets were successfully
segregated by making use of the strategy that was provided.

An approach to bone segmentation in MDCT images for
the knee joint was suggested by Y. Uozumi et al. [127]. In this
particular  investigation,  the  femur,  tibia,  patella,  and  fibular
bones  of  the  knee  are  each  manually  and  mechanically
dissected  into  their  respective  segments.  In  a  study,  it  was
tested  on  six  persons  aged  33  to  13,  and  the  results  were
analyzed (four  men and two women).  There  is  a  rationale  in
terms of  anatomy to  the  practice  of  dissecting the knee joint
into its component bones. In the course of the testing, both the
validity of the manual's matching rate and the most effective
technique for determining that rate were examined and tested.
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The matching rates of the femur, tibia, patella, and fibula were
thus  95.84±0.57%,  94.12±1.01%,  94.49±0.83%,  and
86.37±4.28%, respectively. This investigation concluded that
the approach suggested is sufficient to segment the knee bones.
Researchers were successful in separating the bones in the knee
by employing this technique.

Ultrasonography, sometimes known as US, is a diagnostic
tool that may be used in the early stages of osteoarthritis of the
knee in order to evaluate the degree of cartilage damage (OA).

A  framework  for  the  automatic  segmentation  of  knee
cartilage from improved US images has been provided by P. R.
Desai  et  al.  [128].  The  augmentation  of  bone  surfaces  is
facilitated  by  calculating  local  phase  image  characteristics
included  in  the  proposed  framework.  The  dynamic
programming  method  is  used  to  segment  the  bones,  and  the
surface areas of the segmented bones are used as seeds in the
random walker method. Eight healthy participants participated
in  the  research  and  submitted  a  total  of  one  hundred  scans.
Eight scans were used for the validation study's qualitative and
quantitative analyses. The validation results against an expert's
manual segmentation yielded a DSC of 0.8758 on average.

An  efficient  classification  approach  for  knee  MR  image
segmentation  was  developed  by  Y.  Yamamoto  et  al.  [129].
Using  the  evolutionary  categorization  system  CBGA-LDIC,
MR images of the knee bone may be automatically recognized.
CBGA-LDIC is used to identify an efficient cell set for image
segmentation. In order to identify photographs in terms of the
geographic place to which they were taken, LDIC is combined
with a genetic algorithm, also known as GA, and case-based
reasoning (CB).  Segmenting pictures using LDIC's  one-of-a-
kind  yet  locally  applicable  approaches  and  several  location-
dependent classifiers is now possible. Every single classifier is
educated with the help of a Gaussian mixture model.

CBGA-LDIC  decomposes  an  image  into  its  component
pixels  to  generate  a  collection  of  pixels  and  then  trains
classifiers on those constructed collections. As a result of the
proximity  of  the  knee  bones  to  one  another  and/or  the
similarities  in  the  form  of  the  bones  themselves,  favorable
combinations of cells are preserved in case of bases for later
customers.  If  favorable  cell  combinations  are  identified  in
patients just beginning the GA process, then this method ought
to  provide  superior  outcomes.  The  results  of  several  of  the
experiments  described  in  this  section  lend  credence  to  this
assertion.

S.  Suresha  et  al.  [130]  demonstrate  how  to  stage  the
severity of knee osteoarthritis using open-source software that
utilizes X-ray pictures and completely automated open-source
technology.  Despite  recent  advances  in  machine  learning,
particularly  in  the  field  of  deep  learning,  the  automated
interpretation  of  X-ray  and  MRI  data  continues  to  be  a  key
bottleneck in the study of osteoarthritis. This is particularly true
in the United States. Research on osteoarthritis might benefit
from the recent developments in deep learning, which could be

applied  to  the  database  maintained  by  the  Osteoarthritis
Initiative  (OAI).  The  author  has  shown  that  deep  learning
algorithms may be utilized to automate the severity staging of
knee osteoarthritis using X-ray data.

This was accomplished by analyzing the images produced
by X-ray machines. For this particular study, the author used a
total of 7549 X-ray images of knees in fixed flexion—both the
right  and  the  left—that  had  previously  been  assessed  on  the
Kellgren-Lawrence  (KL)  scale  by  qualified  radiologists.
During the testing phase, just 25% of the data were used, while
the  remaining  data  were  included  in  the  model.  This  step
culminated in the division of this set into sets for training and
testing. In order to accomplish the two goals detailed below,
the author constructed a region convolutional neural network
using a deep neural network in a very short amount of time. (1)
extract  the  knee-joint  region  from  the  X-ray  images  and  (2)
classify the knee-joint regions using the KL scale (0e4).

G.B.  Joseph  et  al.  [133  -  137]  determine  whether  or  not
preliminary T2 relaxation time measurements of knee cartilage
in individuals who have risk factors for osteoarthritis are linked
to  the  progression  of  cartilage,  meniscus,  and  bone  tissue
degeneration  over  the  course  of  three  years,  these
measurements  will  be  studied  (OA).  The  Osteoarthritis
Initiative  (OAI)  database  allowed  for  identifying  289
individuals  who  exhibited  OA  risk  factors  (45±55  years  of
age). The researchers used the scores obtained from a 3.0 Tesla
MR  scan  to  assess  the  overall  health  of  the  menisci  and
cartilage  (WORMS  scoring).

A method called “T2 mapping” was used to determine the
average  and  heterogeneity  of  T2  (gray-level  co-occurrence
matrix  texture  analysis).  Researchers  utilized  regression
models  to  investigate  whether  or  if  there  was  a  correlation
between  the  three-year  changes  in  morphological  knee
WORMS  scores  and  the  baseline  T2  levels.

For  the  clinical  manifestations  of  osteoarthritis,  an
investigation into the use of pixel-based segmentation and the
SVM  classifier  was  provided  by  Bhagyashri  L  et  al.  [132].
Pixel-based  image  segmentation  and  the  Support  Vector
Machine (SVM) classifier are diagnostic tools that may be used
in osteoarthritis  diagnosis (OA). During this procedure,  MRI
scans are performed on the joint areas of the knee. Segmenting
cartilage  into  its  component  parts  is  feasible  using  several
image  processing  methods,  including  thresholding  and  noise
reduction.  When  determining  statistical  and  form  features,
parts of an image's texture are used as inputs. These qualities
include colour and shape. These characteristics are used in the
training  of  the  SVM,  and  the  results  are  classified  as  either
normal or influenced by OA.

Osteoarthrosis  (OA)  is  a  multi-factorial  disease
characterized by the progressive loss of articular cartilage and
the development of subchondral sclerosis, intra-osseous cysts
and osteophytes. In addition to changes in cartilage that occur
in  OA,  it  is  suggested  that  early  changes  are  seen  in  the
adjoining  subchondral  and  trabecular  bone.
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Table 8. Typical Thickness Measurement Methods.

Authors 2D/3D Method Weakness

Solloway et al. [111]. 2D ‘M-Norm’

1. The distance defined in 2D space
could not accurately reflect the true
thickness;
2. The method is unstable.

Tang et al. [110]. 2D ‘T-norm.’
The distance defined in 2D space
could not accurately reflect the true
thickness.

Cohen et al. [106]. 3D Ray casting. The method is unstable when the
BCI is not smooth.

Fripp et al. [35].
Stammberger
et al. [134, 135]. Carballido-Gamio
et al. [108, 109].

3D 3D Euclidean distance
transformation. High computational cost.

Williams et al. [62, 136]. 3D ‘Spans and Ridges.’ The method BCI is not smooth and is unstable when the

Shan et al. [42, 73], Huang et al. [121]. 3D 3D
Laplace-equation. High computational cost.

Kauffmann et al. [137]. 3D Thickness map High computational cost

Characterization of  trabecular  bone micro-architecture in
the  knee  in  osteoarthrosis  using  high-resolution  MRI  paper
presented by O. Beuf et al. [133 - 148]. In this work, the author
develops, optimizes and extends MR techniques to depict and
quantify trabecular bone structure in vivo in the knee joint, in
the distal femur and proximal tibia. Authors characterize and
quantify  the  variations  of  the  trabecular  bone  structure
measures  along  the  distal  femur  and  proximal  tibia  and
examine the difference in trabecular structure between the tibia
and femur in joints unaffected and affected by OA.

3. TYPICAL THICKNESS MEASUREMENT METHODS

The  researchers  and  clinicians  must  develop  a  different
approach to measure the thickness of knee bone and cartilage
to  assess  knee  osteoarthritis.  It  is  very  important  for  the
medical  practitioner  to  perform  a  volumetric  analysis  of
segmented parts in order to analyze the different stages of OA.
Many  researchers  have  developed  various  methods  for
morphological  assessment  and  quantifying  different  knee
joints.  Table  8  provides  the  summary  of  different  thickness
measurement methods proposed by various researchers on knee
joints using MR Images.

4. DISCUSSION

The semi-automatic  and  fully-automatic  segmentation  of
different parts of knee joints has evolved as a critical area of
research in the last two decades. This literature review outlined
various  conventional  and  recently  developed  deep-learning
methods  for  bone,  cartilage,  and  meniscus  segmentation  and
quantification. The studies involved MR Images as a diagnostic
tool as MR images provide more detailed information on the
anatomical  position  of  menisci  and  surrounding  tissues.
Additionally, performing MR scans is non-invasive, ensuring
less patient discomfort. The study includes subchondral bone
segmentation and quantifies modifications in the tibial plateau,
bony surface contour (e.g.,  subchondral  bone attrition),  bone
shape,  surface  geometry,  and  area  from  a  3D  model
reconstructed  from  segmented  bone  regions  as  an  imaging
biomarker  to  track  the  progression  of  knee  OA.  Various

researchers have proposed semi-automated and fully automated
techniques for the segmentation of morphological features of
bone, such as Active Shape Models (ASM), Active Appearance
Models (AAM), Statistical Shape Models (SSM), classification
techniques  (e.g.,  voxel,  phase,  or  texture),  and  atlas-based
methods. Fully automatic segmentation methods are also more
sensitive  and  produce  the  best  results.  It  has  also  been
discovered that fully automatic segmentation methods are more
sensitive and deliver the best results. When datasets or training
samples change, the flexibility of the developed process in the
global  domain  is  reduced.  Although  many  automatic
segmentation techniques are available in the literature, there is
still  much  room  for  research  in  this  field  because  many
available  methods  have  gaps,  as  discussed  in  the  preceding
review.  The  segmentation  techniques  help  clinicians  and
rheumatologists  to  detect  and  diagnose  various  abnormal
conditions in the bone in the early phase of the disease. Several
deep learning-based methods have recently been proposed that
outperform the conventional knee joint segmentation methods.

Deep learning-based models overcome various drawbacks
present  in  traditional  techniques  in  terms  of  accurate
segmentation  of  knee  bone.

Articular  cartilage  segmentation  is  a  critical  and
challenging task due to its shape, irregularity, and connection
with surrounding tissues. The quantification of knee AC assists
clinicians in diagnosing osteoarthritis at various stages. Several
studies have been conducted over a long period to segment AC,
which helps to detect the condition of patients suffering from
OA.  Many  conventional  automatic  and  semi-automatic
techniques,  such  as  Optimization  of  Local  Shape  and
Appearance,  KNN  classification,  Multi-contrast  MR  and
Classification, 3D Statistical Shape Models (SSMs), and so on,
are used by the researcher to segment the AC from MR Images
accurately. Most techniques are learning-based, necessitating a
large amount of training data at first, and even minor changes
in the training data can affect the possible outcomes.

It  also  takes  the  same  time  as  it  did  at  the  beginning  of
training  for  every  small  change  in  data.  This  opens  up
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opportunities  for  researchers  to  contribute  to  this  field  by
developing  efficient  techniques  in  terms  of  both  time  and
computations  while  also  having  high  sensitivity,  specificity,
and  DSC.  Because  they  are  computationally  expensive,  DL-
based segmentation techniques can achieve acceptable overall
performance  compared  to  atlas-based  and  model-based
methods.  As  a  result,  researchers  are  encouraged  to  use
combined  DL-based  models  and  any  other  strategy  that  can
achieve higher accuracy levels than those reported in previous
studies. Compared to UNet and LOGISMOS on their own, the
combination  of  UNet  and  LOGISMOS  improved  pancreas
segmentation  significantly.

Because of its capacity to absorb shock and distribute the
load, the meniscus is essential to a healthy knee joint. Meniscal
damage is  a  common finding on an osteoarthritic  knee MRI.
Nonetheless, a small group of researchers pioneered automatic
segmentation  of  knee  menisci  during  the  current  decade,
regarded as a cornerstone in this field. It inspired others to use
machine  learning  algorithms  to  perform  segmentation.  Fully
automated segmentation involves  Shape based segmentation.
Image-based  segmentation  provides  excellent  segmentation
results  in  comparison  with  the  manual  approach.  This  helps
majorly in treating meniscus tears and morphological changes,
which can cause damage to the knee meniscus. Recently many
researchers  have  also  proposed a  machine  learning and deep
learning-based  approach  to  increase  segmentation  accuracy.
Thereby  it  helps  quantify  and  visualize  the  meniscus  to
determine  the  affected  areas.

From this  review, it  is  observed that  researchers initially
emphasized  Semi-Automatic  segmentation  over  Manual
methods where for inputs and for processing the images, users
were needed. Later, the researcher switched to fully-automated
ways, where segmentation accuracy was outstanding compared
to semi-automated methods and reduced human involvement.
Deep  learning-based  methods  with  minimal  user  input  have
recently been used to perform automatic segmentation. U-Net,
VGG  Net,  Segnet,  and  ATTU-Net,  a  convolutional  network
based  on  graphics  processing  units  (GPUs)  developed  for
biomedical  image  segmentation,  were  used  in  the  studies.
Applying deep learning methods in medical imaging provides
various research issues,  allowing the researcher  to  focus and
conduct  their  research.  We  have  comprehensively  reviewed
different  segmentation  and  quantifying  methods  focusing  on
crucial parts of the knee joint such as bone, Articular Cartilage
and Meniscus.

CONCLUSION

This  comprehensive  review  article  aims  to  provide
complete insight into various segmentation and quantification
techniques  emphasizing  Knee  bone,  Articular  Cartilage  and
meniscus, as these are the critical parts for knee damages and
impairments.  The  review  provides  a  detailed  explanation  of
conventional  semi-automated  and  fully-automated
segmentation  techniques,  which  helps  in  many  clinical
applications. In addition, we have reviewed current DL-based
methods for segmentation and quantification using MR Images,
which creates many opportunities for researchers and clinicians
to  detect  the  damages  present  in  the  knee  joint  in  the  early
stages.
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