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A B S T R A C T   

The emergence of Artificial Intelligence, deep learning, and current computer vision algorithms are the main 
contributors to innovations in the agricultural domain. The most recent detection algorithms capable of giving 
real-time detections at the edge nodes tackle most agricultural problems, such as disease, pest or insect de
tections, and maturity level detection of crops (fruits and vegetables). Modern harvesters and fruit-picking robots 
rely heavily on the detection capability of the algorithms used. Various detection algorithms have been proposed 
and used in literature, having good performance in terms of mean average precision. Still, the current agricul
tural systems require not only high mean average accuracy but also algorithms should have high inference 
speeds. The research proposes a Detectron2-based framework with PointRend (Point-based Rendering), capable 
of providing enhanced, high-quality pixel-level instance segmentation in identifying and detecting green gram 
pods or Mung Bean (Vigna Radiata) in natural field conditions rendering crisp and smooth boundaries for 
accurately locating the green gram pods. The results indicate that the proposed framework outperforms the 
famous Mask R-CNN model to obtain higher mean average precision and improved quality of detections.   

1. Introduction 

Recent developments in Artificial Intelligence (AI), advanced com
puter vision algorithms, availability of spatial and temporal data from 
the agricultural field, satellite imagery, and affordable cloud-based 
computational resources have made commendable progress in 
achieving agriculture sustainability. Modern agrarian practices aim at 
effectively utilizing the available agricultural resources to maximize 
farm productivity that fetches higher consumer returns. This agricul
tural practice method is called Precision Agriculture (PA). Crop health 
monitoring plays a vital role in ensuring superior quality of yields. 

The popularity of precision agriculture attracted many researchers 
and engineers (ML/DL and computer vision) to develop robust models 
capable of providing precise identification, detection, classification, and 
localization of essential crop parts to retrieve vital growth features. The 
earlier implementations of deep learning techniques in the agricultural 
domain focused on solving classification problems related to crops. 
These encompassed disease classification [1], pest classification [2], 
detection [3], grading, and classification of fruits based on maturity 
levels, such as coffee beans [4], as well as beehive monitoring [5]. 

The introduction of modern computer vision algorithms provided the 
“vision” to computers to classify agricultural commodities and pinpoint 
their locations in the image, either with the bounding boxes or a polygon 
around the object [6]. 

Though there are numerous implementations of detecting fruits and 
vegetables for developing real-time systems enabling the automation of 
fruit picking during harvesting, there is always a need for pixel-level 
accuracy in detecting and identifying fruits and vegetables under study. 

Prior to the popularity of machine learning algorithms, the identi
fication and categorization of fruits and vegetables relied heavily on 
image-processing techniques. The traditional or classical segmentation 
techniques include three widely used methods: region-based, threshold- 
based, and edge-based. These techniques were prevalent and were 
mainly used in detection systems to identify, detect and classify various 
crops under study. One method by [7] includes two ways based on edge 
and colour segmentation in the case of orange fruit. The colour-based 
segmentation method obtained an accuracy of 85% in detecting the 
oranges. An automatic threshold-based method [8] for detecting dam
ages caused by insects on soybean used hyperspectral images to obtain 
an accuracy of insect-damaged samples of 91.7%. Another 
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threshold-based method [9] uses the OTSU method for depth-based 
segmentation and recognition of clustered tomatoes. The developed 
method achieved a tomato recognition accuracy of 87.9%. Another 
popular traditional image processing technique widely used is based on 
edge detection. Modified Canny edge detection for the detection and 
classification of fruits (Apples and Oranges) by [10] by extracting fea
tures corresponding to the colour and the shape. Proposed comparative 
analysis of various edge detection algorithms such as Prewitt, Laplacian, 
and Sobel for detecting rice diseases and pests [11]. 

Further, the authors developed two CNN-based models to show how 
deep learning algorithms can outperform traditional image processing 
techniques for image segmentation. Soon the researchers started to 
realize the need for segmentation techniques capable of providing better 
object segmentation while requiring low computational time. A 
watershed-based model [12] for segmenting cotton leaves shows an 
enhancement in the computational speed of segmentation, with the 
success rate of segmentation reaching a level of 97% when compared to 
the manually extracted leaf area. The clustering algorithms used for the 
segmentation purpose have the edge over the other techniques in 
providing good segmentation with the advantage of being quick in 
obtaining the segmentation results. Two prevalent cluster-based seg
mentation unsupervised methods developed include K-means and Fuzzy 
C-means clustering. An adaptive K- means clustering algorithm [13] for 
segmenting diseased tomato leaves was able to achieve higher precision 
and efficiency when compared to the other techniques, such as tradi
tional K-means, DBSCAN, and mean-shift techniques. A cognitive fuzzy 
C-means (CFCM) algorithm [14] can precisely identify the diseased and 
normal parts of rice crops and apple trees. Various algorithms proposed 
in the literature utilize CNN backbones for monitoring crops, such as the 
early detection of crop diseases [15]. The best-known architecture 
widely used for providing instance segmentation in agricultural and 
other domains includes the Mask R-CNN [16,17] which effectively ad
dresses the issues arising from overlapping objects. 

When considering real-time detection and identification of fruits and 
vegetables, the Yolo series detectors and the Single Shot Multi-Box De
tectors (SSDs) are favoured over Faster R-CNN. The study by [18] 
demonstrates the implementation of real-time apple fruit detection 

using an enhanced Yolo V3-based model. Similarly, the research con
ducted in [19] introduces an optimized improved SSD detector for 
detecting strawberries, which operates on Raspberry Pi. 

Green gram is one of the most widely consumed agricultural com
modities in the pulses category. Besides high nutritional value, green 
grams are known for their soil and nitrogen-enriching characteristics. 
Also, the studies show that the farmers are getting good returns when 
using new technologies for green gram cultivation. New technologies 
such as deep learning and computer vision have shown considerable 
promise for improving agricultural products’ quality. In the literature, 
we could not find any research contributions purely related to the pixel- 
level detection and instance segmentation of green gram pods. The 
possible reason might be the challenge posed by the background (the 
pod’s colour matches the background colour), which makes pod detec
tion a complicated task. Moreover, the small size of the pods also poses a 
challenge for object detection. This research aims at creating a custom 
polygon annotated image dataset consisting of green gram pods and 
developing a detectron2-based framework using a rendering approach 
(PointRend) that modifies the state-of-the-art Mask R-CNN object 
detection algorithm to yield higher accuracy (mAP) and improve the 
detection quality of instance segmentation in the case of green gram 
pods. The primary contributions of this research include:  

• The study introduced a first-of-its-kind dataset consisting of polygon 
annotated images of green gram pods that can identify, detect, and 
localize green pods with improved instance segmentation capabil
ities under complex backgrounds. 

• The research led to the development of a detectron2-based frame
work that uses deep learning baseline models and state-of-the-art 
computer vision libraries to enhance the quality of instance 
segmentation.  

• The developed approach not only delivers enhanced segmentation 
precision and accuracy 95 but also improves the quality of the seg
mentation mask, enabling the capture of finer details 96 and more 
defined green gram pod boundaries. (Segmentation + improvement 
in segmentation quality) 

Fig. 1. Sample raw dataset images consisting of green gram pods collected from the field.  
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The rest of the article is organized into four sections. Section 2 details 
the materials and methods adopted in the study, highlighting dataset 
details, annotation details, use of augmentations, experimental setup, 
evaluation metrics, and model architectures. Section 3 provides a 
detailed tabulation of the training and validation process results, along 
with the model’s predictions on unseen data. Section 4 presents a brief 
discussion using a comparative analysis of the results and key findings of 
the experimentation, referring to a similar implementation from the 
literature. Section 5 concludes the article by summarizing key findings 
and insights while also discussing potential scope for future research. 

2. Materials and methods 

2.1. Dataset details 

A local field near the Vijayapur district of Karnataka provided the 
required images for the experimentation. Using a smartphone camera as 
an imaging device, the raw pictures collected encompass various times 
of the day (morning, afternoon, evening, and even night). Additionally, 
the datasets include images representing occluded pods, ensuring high 
generalizability in various deployment scenarios. In a pre-processing 
step, rescaling images to a resolution of 1024×1024 provides a bal
ance between detection capability and inference speeds. Several sample 
images within the dataset displayed in Fig. 1 feature green gram pods set 
against complex backgrounds (same as the green gram pods), making 
the detection and localization of pods very challenging. 

Table 1 portrays the details of the dataset used for the research in 
developing an instance segmentation model for detecting green gram 
pods on the field. The dataset consists of 1215 training images with 3720 
training instances representing the green grams. Similarly, the valida
tion set includes 270 images representing 1512 instances of green gram. 
In the percentage split of training and validation image sets, the ratios 

are 82% and 18%, respectively. 

2.2. Annotation details 

To collect the raw images of green gram pods for the dataset, we 
visited a nearby local farm in the Vijayapur district of Karnataka. A 
smartphone with a 48 Megapixel camera as an imaging device provided 
the required images, ensuring the model’s generalizability when 
deployed at the edge mobile devices. The bare pictures had an image 
dimension of 1846×4000 (portrait) or 4000×1846 (landscape). The 
images were pre-processed and rescaled to a resolution of 1024×1024 
before the training. LabelMe open annotation tool provided the required 
polygon annotations for the dataset in common objects in context 
(COCO) JSON format. Fig. 2 represents the sample images of the dataset 
(before and after annotations). 

The pictures in the figure on the left have no annotations (before 
annotation), while the images on the right show the polygon annotated 
images (shown in the red-dotted boundary around the green gram pods 
after annotation). 

2.3. Image augmentations 

The unique dataset mapper of Detectron2 uses modifications that 
provide augmentations for expanding the dataset size, preventing the 
model from overfitting the training data. The augmentation techniques 
used correspond to resizing (800×600), random brightness (0.8 to 1.8), 
random contrast (0.6 to 1.3), random saturation (0.8 to 1.4), random 
rotation (90◦), random lighting (0.7), and random vertical flip (with a 
probability of 0.4). Apart from expanding the dataset, augmentations 
ensure that the models generalize well when deployed in the production 
environments. 

2.4. Experimental setup 

The experimental setup consists of a Detectron2 [20] modular and 
extensible object detection library that uses the PyTorch [21] frame
work to provide various computer vision functionalities that include 
object detection, key point detection, and various types of image seg
mentation (Semantic, Instance, and Panoptic). The Google Colaboratory 
Pro-version [22] rendered the required computational resources for 
model training, including GPU (Tesla P100-PCIE-16GB). The system 
used for the model development consists of a MacBook Air running on 
Mojave macOS with Python 3.7 as a programming language. The other 
essential libraries used include cv2, Pillow, and NumPy. The hyper
parameters selected for the model training includes number of epochs 
(2000), batch size (2, 4, 8 images/batch), learning rate (1e− 3, 1e− 2), 
data augmentation techniques (random brightness, random contrast, 
random lighting, random saturation, random rotation, and random 
vertical flip). 

2.5. Performance evaluation metrics 

The model’s performance evaluation uses metrics consisting of mean 
average precision (mAP), average recall (AR), and F1-score. Before 
evaluating the parameters, it is necessary to understand a key parameter 
known as intersection-over-union (IoU), invariably used for the detec
tion and localization-based models. The IoU ranges from 0 to 1 and is 
widely used to provide the measure of overlap between the ground truth 
bounding box and the predicted bounding box. The higher the value, the 
better the detection capability of the model. If the overlap is higher than 
the set threshold of IoU, the detection is considered valid. If not, it re
sults in invalid detection. The parameter evaluation includes calculating 
the true positive (TP), true negative (TN), false positive (FP), and false 
negative (FN). The metric that uses TPs and FPs is the precision, given by 
the ratio of the model’s TPs to the sum of TPs and FPs, represented by 
Eq. (1). 

Table 1 
Dataset details indicating contents of training and validation sets.  

SL. 
No. 

Dataset 
Split 

Number of 
Images 

Number of 
Instances 

Image 
Resolution 

1. Training 1215 3720 1024×1024 
2. Validation 270 1512  

Fig. 2. Green gram sample images from dataset before annotation (left) and 
after annotation (right). 
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Precision (P) =
TP

TP + FP
(1) 

The ratio of TPs to the sum of TPs and FNs defines the recall of the 
model, as indicated in Eq. (2). 

Recall (R) =
TP

TP + FN
(2) 

The F1-score depends on the values of precision and recall and is 
indicated by Eq. (3). 

F1 − score =
2 × (P ∗ R)

P + R
(3) 

The F1-score is a metric generally chosen as a trade-off between 
precision and recall. 

The Average Precision (AP) metric, represented by the area under the 

precision-recall curve, is obtained by Eq. (4). 

AP =

∫1

0

P(R)dR (4) 

The mean average precision is a typical metric that evaluates the 
object detection model’s accuracy. It is determined using average pre
cision (AP) for all the classes and then averaged over n, as indicated in 
Eq. (5). 

mAP =
1
n
∑n

i=1
APi (5)  

Here, n represents dataset classes. 

Fig. 3. Detectron2’s Mask R-CNN architecture for instance segmentation.  

Fig. 4. PointRend architecture for Instance segmentation indicating point proposal and selection for improved class boundaries.  
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2.6. Model architectures 

The PointRend [23] architecture offers flexibility in implementing 
existing detection algorithms to provide semantic or instance segmen
tation. One widely used instance segmentation model is the Mask 
R-CNN, popularly known as a two-stage detector. The Mask R-CNN built 
over a faster R-CNN includes a mask head for the prediction of object 
mask in parallel to the standard bounding box prediction. Fig. 3 shows 
the typical architecture of Mask R-CNN used for providing instance 
segmentation [24]. 

The RoIPool layer, used by faster R-CNN, offers coarse spatial 
quantization during feature extraction. As a result, these improperly 
aligned features cannot provide a pixel-to-pixel mapping between inputs 
and outputs. In Mask R-CNN, the RoIAlign layer takes the place of the 
RoIPool layer to ensure accurate feature extraction and correct align
ment. Parallel to the bounding box prediction module, a mask head 
follows the RoIAlign with two convolutional layers. 

The predicted bounding box with class probability and a predicted 
label boundary around the green gram pods makes up the Mask R-CNN 
model’s final output. In order to obtain good-quality segmentation of the 
green gram pods, the developed framework shown in Fig. 4 builds on the 
Mask R-CNN to enable instance segmentation by improving the class 
boundaries. The standard mask head, consisting of three FC layers (FC1, 
FC2, and FC3), is replaced by a point mask head and a coarse head, 
consisting of two FC layers (FC1 and FC2). The model uses coarse fea
tures (generated from backbone CNN), which serve as the inputs to the 
PointRend model resulting in the generation of the fine features with 
some uncertain points (N) by using the point selection technique. 

The smooth boundaries in PointRend are the results of the bilinear 
upsampling process that is applied to increase the resolution of the 
prediction boundaries relative to the small number of points at the 
boundary of the class (green gram pods). 

2.6.1. Point selection strategy 
The segmentation mask refinement is accomplished through several 

steps. First, neural networks predict the coarse segmentation mask 
around each green gram pod in the image. Subsequently, the uncertainty 
linked to these segmentation masks is estimated using pixel-wise un
certainty measures, such as entropy or confidence scores. Higher un
certainty values indicate ambiguity in the initially predicted masks. The 
next step is the point sampling, where the points corresponding to the 
ambiguous region or the region with high uncertainty are chosen for 
further refinement. These regions are usually the edges of pods or region 
indicating an abrupt change in the image. Subsequently, regular grid 
sampling process is undertaken to select a finite number of segmentation 
points that necessitate refinement, particularly focusing on the bound
aries or edges of the pods. These chosen points then undergo a refine
ment process, resulting in the creation of sharp and well-defined 
segmentation masks around the pods. This procedure significantly en
hances the overall segmentation quality of the pods. The point selection 
steps are depicted in Fig. 5. 

2.6.2. Loss function 
The segmentation loss (SL), the point-wise loss (PL) and the total loss 

are the three loss components that are included in training process to 
ensure effective model training. The total loss is the weighted sum of SL 

and PL. 
The segmentation loss is a pixel-level loss that measures the pixel- 

wise inconsistency between the predicted probability distribution and 
the ground truth labels, which represent each pixel in the image. The 
commonly used loss function for segmentation tasks is the cross-entropy 
(CE) loss, calculated by Eq. (6) and represented as: 

Lseg = −
1
N

∑N

i=1

∑C

c=1
yi,c⋅log

(
pi,c

)
(6)  

Where:  

• pi,c is the predicted probability of pixel i belonging to class c  
• yi,c is ground truth label for pixel i and class c  
• N is the total number of pixels in the image  
• C is the number of classes (in our case C=1) 

The point-wise loss represents the effectiveness in further refining 
the mask at selected points within the instance mask. Lower values of 
this loss ensure more accurate object boundaries, highlighting finer 
details at the selected points. 

The point-wise loss for each selected point m from instance mask is 
defined using a loss function such as Smooth L1, calculated by Eq. (7) 
and represented as: 

Lpoint =
1
|M|

∑

m∈M
SmoothL1(ŷm, ym) (7)  

Where:  

• |M| is the total number of selected points.  
• ŷm is the refined prediction at point m and  
• ym is the ground truth label at point m. 

The total loss is the weighted combination of SL and PL, calculated by 
Eq. (8) and given as: 

Ltotal = λ⋅Lseg + (1 − λ)⋅ Lpoint (8)  

Where:  

• λ represents the hyperparameter that is responsible for providing 
control between the SL and PL based on the requirements.  

• Lseg is the segmentation loss and  
• Lpoint is the point loss 

Further investigation reveals that the loss parameters associated with 
PointRend model consists of the following losses in:  

(1). Region of interest (RoI) head- It consists of RoI classification loss, 
represented as (LROI

cls ) and RoI localisation loss represented as 
(LROI

loc ). The LROI
cls loss provides the measure of model’s ability to 

correctly label the predicted bounding box with the associated or 
the correct class, while LROI

loc helps to identify how close the pre
dicted bounding boxes are to the true location of the object. 

(2). Region proposal network (RPN)- This loss consists of RPN classi
fication loss (LRPN

cls ), and RPN localisation loss (LRPN
loc ). The LRPN

cls 

Fig. 5. Point selection strategy adopted in PointRend for improving quality of segmentation mask.  
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provides the measure of how capable the RPN is at identifying the 
anchor boxes as a foreground or background. In the RPN, LRPN

loc is 
indicative of the loss represented as localisation of the predicted 
regions.  

(3). Mask head- The mask loss in mask head is represented as (Lmask) 
and it denotes the correctness of the predicted binary masks.  

(4). Point mask head- The point loss in the point mask is represented 
by (LPoint) and it demonstrate the model’s proficiency in pre
dicting uncertain points within the mask, using cross-entropy 
loss. 

The total loss, denoted as (LTotal), is the weighted summation of all 
these individual losses and is logged during each iteration. Eq. (9) dis
plays the total loss associated with the PointRend model. In contrast, 
while the losses for Mask R-CNN remain the same as previously 
mentioned, it lacks a specific loss attributed to the point head. 

LTotal = LROI
cls + LROI

loc + LRPN
cls + LRPN

loc + Lmask + Lpoint (9)  

3. Results 

3.1. Model training and evaluation 

The training and validation outcomes were evaluated for both the 
Mask R-CNN model consisting of the standard head, and for the Poin
tRend model equipped with both a point head and a standard head. The 
detailed visual comparison indicates the capability of the PointRend 
model to provide the best quality (smooth and sharp) boundaries across 
the detected green gram pods. Developing an instance segmentation 
model, particularly in the case of green gram, poses a challenge owing to 
the similarity between the background and the object of interest (green 
gram pods). The proposed model’s output assessment includes pixel- 
level detection of green gram pods with the bounding box and corre
sponding pixel-level segmentation. 

3.1.1. Evaluation of mean average precision (mAP) 
The PointRend model trained to detect and provide instance seg

mentation on the custom dataset uses Google Colaboratory. The exper
imentation involves training two state-of-the-art segmentation models. 
The first model is Mask R-CNN+FPN with three baselines (Mask R-CNN 
with ResNet101(R101-FPN) backbone, Mask R-CNN with ResNeXt101 
(X101-FPN) backbone, and Mask R-CNN with ResNet50 (R50-FPN) 
backbone, and PointRend+FPN with the same baselines, including the 
point head for the fine-grained prediction for the instance segmentation. 
The tabulated results further provided the analysis of the models. The 
training results represent the model metrics consisting of mean average 
precision (mAP) with IoU threshold values ranging between 0.5 to 0.95, 
varied in steps of 0.05. The value indicated by AP50 corresponds to the 
average precision with IoU=0.5. Similarly, AP75 has IoU=0.75. The 
other parameters (APM and APL) indicate the mean average precision 
values obtained for medium-size instances with the area (322 < area <
962) and large-size instances with the area (area > 962), respectively. 
The instance segmentation model’s evaluation comprises the object’s 
localization and the predicted boundary around the object. The 

evaluation includes two results, one representing the bounding box 
prediction and the other segmentation. Table 2 indicates the tabulated 
mean average precision values obtained for various baselines. For Mask 
R-CNN training and evaluation for mean average precision (mAP), the 
X101-FPN backbone outperformed the other two backbones (R101-FPN 
and R50 -FPN) with a mAP of 52.25%, while R101-FPN and R50-FPN 
could manage to obtain a mAP of 50.96% and 48.49%, respectively. 
When considering the training time for 2000 epochs, the X101-FPN took 
around 23.30 min, which is higher than the time taken for the training of 
R101-FPN (12.05 min) and R50-FPN (10.03 min). Similarly, Table 3 
shows the mean average precision (mAP) evaluated for segmentation 
after training the Mask R-CNN model for various baselines. The X101- 
FPN obtained the highest mAP of 39.48%, while R101-FPN and R50- 
FPN could manage mAP values of 36.84% and 33.07%, respectively. 
Also, the table represents the other values corresponding to AP50, AP75, 
APM, and APL. 

Tables 4 and 5 show the bounding box and segmentation results 
obtained by the PointRend model, respectively, for mAP. 

Fig. 6 shows the plots corresponding to the model evaluation for 
mAP. In Fig. 6(a) and (b), the results obtained for mAP for the Mask R- 
CNN model represent the bounding box and segmentation, respectively, 
while Fig. 6(c) and (d) indicate the results obtained for the PointRend 
model in terms of mAP. 

3.1.2. Evaluation of average recall (AR) 
The average recall metrics indicate how the trained model can deal 

with the false negative (FN) corresponding to the detections made by the 
model. We consider the AR value with a maximum detection of 10 per 
image for evaluation (ARmax=10) both in the bounding box and 

Table 2 
Training results for Mask R-CNN model (bounding box) in terms of (mAP) (best 
result are in bold face).  

SL. 
No. 

Baselines Mean Average Precision (mAP) in% Training 
Time (hh: 
mm: ss) mAP AP50 AP75 APM APL 

1. X101- 
FPN 

52.25 67.73 59.51 45.82 78.34 00:23:30 

2. R101- 
FPN 

50.96 65.57 58.64 42.81 80.50 00:12:05 

3. R50 -FPN 48.49 65.21 55.37 39.76 78.31 00:10:03  

Table 3 
Training results for Mask R-CNN model (segmentation) in terms of (mAP) (best 
result are in bold face).  

SL. 
No. 

Baselines Mean Average Precision (mAP) in% Training 
Time (hh: 
mm: ss) mAP AP50 AP75 APM APL 

1. X101- 
FPN 

39.48 63.70 46.48 26.79 67.67 00:23:30 

2. R101- 
FPN 

36.84 62.79 41.90 24.01 64.20 00:12:05 

3. R50 -FPN 33.07 58.02 37.21 18.93 61.76 00:10:03  

Table 4 
Training results for PointRend model (bounding box) in terms of (mAP) (best 
result are in bold face).  

SL. 
No. 

Baselines Mean Average Precision (mAP) in% Training 
Time (hh: 
mm: ss) mAP AP50 AP75 APM APL 

1. X101- 
FPN 

53.43 68.52 61.80 45.04 80.40 00:42:54 

2. R101- 
FPN 

51.79 67.30 58.41 43.74 80.89 00:20:46 

3. R50 -FPN 48.35 65.17 56.77 41.14 76.75 00:15:18  

Table 5 
Training results for PointRend model (segmentation) in terms of (mAP) (best 
result are in bold face).  

SL. 
No. 

Baselines Mean Average Precision (mAP) in% Training 
Time (hh: 
mm: ss) mAP AP50 AP75 APM APL 

1. X101- 
FPN 

46.15 67.49 54.63 33.13 74.03 00:42:54 

2. R101- 
FPN 

44.45 65.81 53.41 29.68 74.33 00:20:46 

3. R50 -FPN 42.89 66.61 50.04 26.44 72.64 00:15:18  
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segmentation case. 
The average recall (AR) values obtained for instance segmentation 

corresponding to the Mask R-CNN model for bounding box and seg
mentation, are depicted in Tables 6 and 7, respectively. Table 6 clearly 
shows that, compared to the other two baselines with 55.00% and 
53.30% AR values, the X101-FPN baseline obtained the highest AR of 
55.80%. In Table 7, the tabulated AR values show that the X101-FPN 
baseline outperformed the R101-FPN (42.20%) and R50-FPN 
(37.60%) by reaching the highest value of 43.10%. The table also 
shows the values obtained for ARmax=100, ARM, and ARL. 

Similarly, Table 8 shows the results corresponding to AR (bounding 

Fig. 6. Plots showing variation in mean average precision (mAP) for (a) Mask R-CNN (Bounding box) (b) Mask R-CNN (Segmentation) (c) PointRend (Bounding box) 
and (d) PointRend (Segmentation). 

Table 6 
Training results for Mask R-CNN model (bounding box) in terms of (AR) (best 
result are in bold face).  

SL. 
No. 

Baselines Average Recall (AR) in% Training Time 
(hh: mm: ss) 

ARmax=10 ARmax=100 ARM ARL 

1. X101- 
FPN 

55.80 61.10 54.70 84.30 00:23:30 

2. R101- 
FPN 

55.00 59.10 51.50 84.40 00:12:05 

3. R50 -FPN 53.30 61.20 55.10 84.10 00:10:03  

Table 7 
Training results for Mask R-CNN model (segmentation) in terms of (AR) (best 
result are in bold face).  

SL. 
No. 

Baselines Average Recall (AR) in% Training Time 
(hh: mm: ss) 

ARmax=10 ARmax=100 ARM ARL 

1. X101- 
FPN 

43.10 45.60 36.30 72.30 00:23:30 

2. R101- 
FPN 

42.20 44.40 35.10 70.20 00:12:05 

3. R50 -FPN 37.60 40.90 31.30 67.70 00:10:03  

Table 8 
Training results for PointRend model (bounding box) in terms of (AR) (best 
result are in bold face).  

SL. 
No. 

Baselines Average Recall (AR) in% Training Time 
(hh: mm: ss) 

ARmax=10 ARmax=100 ARM ARL 

1. X101- 
FPN 

57.00 62.00 55.20 85.55 00:42:54 

2. R101- 
FPN 

57.00 62.50 55.30 86.20 00:20:46 

3. R50 -FPN 52.30 61.60 55.40 82.70 00:15:18  
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box) for the PointRend model. Considering the AR (Table 8), the X101- 
FPN and R101-FPN baselines yielded the highest value of 57.00%, while 
R50-FPN could manage a value of 52.30%, as indicated. The table also 

includes the other parameters indicated by ARmax=100, ARM, and ARL. 
In the segmentation results for AR (Table 9), the X101-FPN baseline 

outwitted the other baselines with a value of 49.40%, which could 
manage AR values of 49.10% and 48.00%, corresponding to the R101- 
FPN and R50-FPN baselines, respectively. The table also tabulates the 
other values indicated by ARmax=100, ARM, and ARL for PointRend 
segmentation. 

Based on the mAP and AR values, the F1-scores calculated for Mask 
R-CNN and PointRend models are tabulated in Table 10 for both 
bounding box and segmentation considering only the best-performing 
baselines. The results indicate that the PointRend model performs bet
ter by including a point head for making point-based predictions that are 
more accurate when compared to Mask R-CNN with the standard head. 

Fig. 7 displays the graphs of the AR values obtained in terms of the 
bounding box and segmentation for Mask R-CNN and PointRend models. 
Figs. 7(a) and (b) show the variation in AR (bounding box) for Mask R- 
CNN and PointRend models, while Fig. 7(c) and (d) represent the AR 
values attained by Mask R-CNN and PointRend models in terms of seg
mentation. The graphs show that Mask R-CNN and PointRend models 
obtained higher AR values for bounding boxes than AR’s segmentation 
results. The PointRend model achieved better results regarding the 
bounding box and the segmentation evaluation, as depicted by the 
graphs. 

Fig. 8 shows the F1-scores of the two trained models (Mask R-CNN 
and PointRend) along with mAP and AR. Fig. 8(a) represents the values 
obtained for the models in the bounding box, while Fig. 8(b) gives 
segmentation results for the models. 

Table 9 
Training results for PointRend model (segmentation) in terms of (AR) (best 
result are in bold face).  

SL. 
No. 

Baselines Average Recall (AR) in% Training Time 
(hh: mm: ss) 

ARmax=10 ARmax=100 ARM ARL 

1. X101- 
FPN 

49.40 54.00 47.00 77.10 00:42:54 

2. R101- 
FPN 

49.10 52.20 44.00 77.10 00:20:46 

3. R50 -FPN 48.00 53.90 46.90 76.30 00:15:18  

Table 10 
Calculation of (F1-score) for Mask R-CNN and PointRend (Bounding Box and 
Segmentation) using mAP and AR (best results are in bold face).  

SL. 
No. 

Model Bounding Box Evaluation 
(%) 

Segmentation Evaluation 
(%) 

mAP AR F1- 
score 

mAP AR F1- 
score 

1. Mask R- 
CNN 

52.25 54.70 53.45 39.48 36.30 37.82 

2. PointRend 53.43 55.20 54.30 | 
46.15 

47.00 46.57  

Fig. 7. Plots showing variation in average recall (AR) for (a) Mask R-CNN (Bounding box) (b) PointRend (Bounding box) (c) Mask R-CNN (Segmentation) and (d) 
PointRend (Segmentation). 
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Fig. 9 shows the validation performance of the PointRend-based 
model. The results suggest the efficacy of the rendering approach used 
to develop the model to improve the detection capability and the quality 

of instance segmentation. 
The images on the top are the sample images from the validation set, 

while those on the bottom are the model-predicted output images. The 

Fig. 8. Variation of mAP, AR, and F1-score for (a) Mask R-CNN and PointRend (Bounding box) and (b) Mask R-CNN and PointRend (Segmentation).  

Fig. 9. The model’s performance on sample images from the validation set includes: (a) Input images, and (b) Corresponding model-predicted images with bounding 
boxes and pixel-level class boundaries. 
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images on the right indicate the model’s prediction in terms of the 
bounding box and the pixel-level segmentation. 

Compared to the Mask R-CNN-based model, the model’s high con
fidence level values (with a tight bounding box) and the smooth and 
sharp edges of the green gram pods show their potential to produce 
excellent results. Further, to validate the PointRend-based model, the 
testing was carried out on unseen images to indicate the model’s capa
bility to provide improved quality of instance segmentation with fine, 
smooth, and sharp boundaries across the green gram pods. 

Fig. 10 visually represents the results obtained by the model. For 
simplicity, three input images considered as the unseen sample images 
(sample images 1, 2, and 3) are depicted in Fig. 10(a), (b), and (c) 
respectively. The figure clearly shows the predictions by the model that 
have better quality in terms of well-defined boundaries compared to the 

predictions made by the Mask R-CNN-based model. By suitably zoom
ing, the predicted images provide fine-grained details on the sample 
images as indicated. Also, the figure indicates some false positives (FPs) 
and false negatives (FNs) produced by Mask R-CNN and PointRend 
models. The overall result indicates that the PointRend model out
performs the Mask R-CNN model in providing a better quality of 
instance segmentation with smooth and sharp edges around the green 
gram pods. 

3.1.3. Loss function evaluation 
Soon after training process, the model’s loss functions are logged and 

evaluated, consisting of various loss parameters as discussed in Section 
2.6.2. To streamline comprehension, we have chosen to retain and 
present solely the loss functions pertinent to the PointRend model. This 

Fig. 10. The visual evaluation of the Mask R-CNN and PointRend trained models on unseen images, the sequence followed is: sample input image-PointRend 
Prediction-Zoomed Mask R-CNN prediction-Zoomed PointRend Prediction where (A)Sample input 1 (B)Sample input 2 and (C)Sample input 3. 
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Fig. 11. Plot indicating the loss function evaluation (a) RoI Classification Loss (b) RoI Localisation Loss (c) RPN Classification Loss (d) RPN Localisation Loss (e) Mask 
Loss (f) Point Loss and (g) Total Loss. 
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evaluation comprises a total of seven distinct losses. 
Within the RoI (Region of Interest) proposal network, two essential 

losses are identified: the RoI classification loss (LROI
cls ) and the RoI 

localization loss (LROI
loc ). Correspondingly, the region proposal network 

(RPN) contributes the RPN classification loss (LRPN
cls ) and the RPN 

localization loss (LRPN
loc ) to the overall evaluation. Furthermore, addi

tional losses comprise the mask loss within the mask head (Lmask) and 
the point loss in the point mask (Lpoint). The weighted summation of 
these losses yields the total loss (LTotal). 

The assessment of these distinct losses plays an essential role in 
comprehensively evaluating the model’s performance throughout the 
training phase. It aids significantly in minimizing errors associated with 
classification, localization, and point refinement. 

Moreover, these losses decide the optimal set of hyperparameters, 
effectively enhancing the model’s performance when fine-tuned. The 
graphical representation of these losses is depicted in the plot illustrated 
in Fig. 11. The evaluation of loss function consists R50-FPN, R101-FPN, 
and X101-FPN as the base models. Fig. 11(a) indicates the variation of 
the RoI classification loss as a function of number of epochs or iterations. 
As indicated, this loss decreases with number of iterations, and the loss 
attains a final value at the end of 2000th epoch. The final value of RoI 
classification loss attained by various baselines are: R50-FPN=0.1257, 
R101-FPN=0.0538, and X101-FPN=0.0292. The performance of Poin
tRend model for RoI classification loss shows better results with X101- 
FPN (0.0292) baseline when compared to R50-FPN (0.1257), and 
R101-FPN (0.0538) baselines. Similarly, for RoI localisation loss, the 
performance achieved by X101-FPN (0.09), is better than R50-FPN 
(0.1253), and R101-FPN (0.2067), as indicated by Fig. 11(b). Further, 
the loss corresponding to RPN classification and localisation are shown 
in Fig. 11(c) and (d), respectively. The mask loss and point loss are 
depicted by Fig. 11(e) and (f), while the total loss, which the weighted 
sum of these losses is shown in Fig. 11(g). The close observation reveals 
that the performance of X101-FPN baseline model outperforms the other 
basslines. 

4. Discussion 

The results obtained by the PointRend model during the training and 
the testing process indicate the superiority of the developed PointRend 
model in delivering unmatched performance compared to the Mask R- 
CNN model. As mentioned earlier, this study is the first to demonstrate 
the enhanced rendering-based instance segmentation considering the 
case study of green gram pods. The first implementation of the 
PointRend-based model shows the enhancement of the COCO and 
Cityscapes dataset providing an average precision of 38.2% for seg
mentation, with a maximum output image resolution of 224×224. The 
proposed PointRend-based model obtained higher mAP (46.15%) for an 
output image dimension of 1024×1024 with improved quality of 
instance segmentation compared to the segmentation quality obtained 
by the Mask R-CNN (39.48%). The study conducted by [25] addresses a 
comparable challenge of detecting Cucumber fruits amid intricate 
backgrounds resembling the object of interest. Their research focused on 

enhancing instance segmentation using Mask R-CNN. While their find
ings showcased remarkable performance in contrast to alternative 
methods (Yolo V2, Yolo V3, Original Mask R-CNN), the evaluation 
overlooked improvements in the precision of mask boundaries. A 
separate study conducted by [26] involved experimentation and com
parison of two models, incorporating Mask R-CNN, Mask scoring 
R-CNN, and Cascade R-CNN with various baselines, aimed at providing 
instance segmentation for detecting diseases in peach fruits. Addition
ally, in the research conducted by [27], a method based on Yolo V5 was 
proposed for detecting cucumber fruits in a greenhouse environment by 
leveraging colour space features. Table 11 compares the performance 
obtained by the experimented models (Mask R-CNN and PointRend) 
with the results obtained by other similar implementations used for 
segmentation of peach diseases and cucumber fruits. The observation 
reveals that the proposed PointRend model outperforms the experi
mented Mask R-CNN and the results obtained by the models developed 
above from the literature (both in terms of the bounding box and seg
mentation mean average precision). The proposed PointRend-based 
implementation obtained a 39.10% improvement in the bounding box 
AP50 and a 40.80% increase in segmentation AP50. Apart from providing 
improved mean average precision, the PointRend model achieves better 
results in terms of segmentation quality. The RestNeXt101-FPN baseline 
implemented in the experimentation of Mask R-CNN and PointRend 
models yielded the best model performance. 

5. Conclusion and future scope 

Modern computer vision tasks in agriculture require precise detec
tion and localization of agricultural commodities like field crops, fruit 
crops, and vegetable crops to automate the process that saves the 
farmers’ labor and time. Thus, the detection algorithms must have pixel- 
level accuracies to ensure error-free operation. The proposed framework 
addresses this issue by developing a PointRend-based model on top of 
Detectron2 instance segmentation to demonstrate the class boundaries’ 
improvement by employing point-based refined prediction. Further, the 
comparison results between the Mask R-CNN-based implementations 
(with three baseline models) and the PointRend-based model highlight 
the effectiveness of the proposed model. According to the results, the 
PointRend-based model provides higher values of mean average preci
sion (both for bounding box and segmentation) along with crisp and 
smooth class boundaries around green gram pods under natural envi
ronments. Improved results obtained for the sample test images (unseen 
images) indicate high generalizability from the rendering-based 
approach. The PointRend-based model outperforms the standard Mask 
R-CNN-based model in terms of accuracy (2.26% increase in mAP for 
bounding box and 16.90% mAP improvement for segmentation 
compared to Mask R-CNN results) and quality of detected boundaries 
across the green gram pods. The methodology developed in this study is 
the first of its kind to test the rendering-based instance segmentation 
framework by taking the case study of green gram pods (small object 
detection) in the field environment, which is challenging owing to the 
similarity between the pods and the background (leaves). The accuracy 

Table 11 
Comparison of the proposed work with a similar implementation from the literature (best result are in bold face).  

SL. 
No. 

Reference Dataset type Agricultural commodity 
under study 

Function Rendered Network Bounding Box 
AP50 

Segmentation 
AP50 

1. [26] 
Peach Disease Image 
Dataset (PDID) Peach disease detection Segmentation 

Cascade 
R-CNN 

0.450 0.243 

Mask Scoring R- 
CNN 

0.301 0.279 

Mask R-CNN 0.294 0.267 

2. [27] Custom dataset Cucumber fruit detection Detection (Bounding Box) Yolo V5 0.550 – 

4. 
Proposed 
method Custom dataset 

Green gram pod 
detection 

Segmentationþ boundary 
refinement 

Mask R-CNN 0.677 0.637 
PointRend 0.685 0.675  
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in localizing the objects (pods) offered by the proposed method is higher 
than the experimented Mask RCNN, original Mask R-CNN and Mask 
scoring R-CNN with improved segmentation masks. With precise 
detection of the pods in the field, a precise yield estimation helps 
effectively plan and manage post-harvest activities to improve farmers’ 
profit margins with enhanced agricultural sustainability. In future work, 
we plan to expand the dataset with more field images (including 
diseased pods) to enhance the functionalities of the developed model 
with improved robustness. 
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