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Preface

About

This section briefly introduces this book and software requirements in order to complete all of
the included activities and exercises.
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About the Book

You already know you want to learn data visualization with Python, and a smarter way
to learn is to learn by doing. The Data Visualization Workshop focuses on building up
your practical skills so that you can develop clear, expressive real-world charts and
diagrams. You'll learn from real examples that lead to real results.

Throughout The Data Visualization Workshop, you'll take an engaging step-by-step
approach to understanding data visualization with Python. You won't have to sit
through any unnecessary theory. If you're short on time, you can jump into a single
exercise each day, or you spend an entire weekend learning how companies like Uber
are using advanced visualization techniques to represent their data visually. It's your
choice. Learning on your terms, you'll build up and reinforce key skills in a way that
feels rewarding.

Every physical print copy of The Data Visualization Workshop unlocks access to the
interactive edition. With videos detailing all exercises and activities, you'll always have a
guided solution. You can also benchmark yourself against assessments, track progress,
and receive content updates. You'll even earn a secure credential that you can share and
verify online upon completion. It's a premium learning experience that's included with
your printed copy. To redeem, follow the instructions located at the start of your book.

Fast-paced and direct, The Data Visualization Workshop is the ideal companion for
Python beginners who want to get up and running with data visualization. You'll
visualize your work like a skilled data scientist, learning along the way. This process
means that you'll find that your new skills stick, embedded as best practice—a solid
foundation for the years ahead.

Audience

Our goal at Packt is to help you be successful, in whatever it is that you choose to do.
The Data Visualization Workshop is an ideal tutorial for those who want to perform data
visualization with Python and are just getting started. Pick up a workshop today and let
Packt help you develop skills that stick with you for life.

About the Chapters

Chapter 1, The Importance of Data Visualization and Data Exploration, will introduce you
to the basics of statistical analysis, along with basic operations for calculating the mean,
median, and variance of different datasets with real-world datasets.

Chapter 2, All You Need to Know about Plots, will explain the design practices for certain
plots. You will design attractive, tangible visualizations and learn to identify the best
plot type for a given dataset and scenario.
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Chapter 3, A Deep Dive into Matplotlib, will teach you the fundamentals of Matplotlib
and how to create visualizations using the built-in plots that are provided by the library.
You will also practice how to customize your visualization plots and write mathematical
expressions using TeX.

Chapter 4, Simplifying Visualizations Using Seaborn, will extend your knowledge of
Matplotlib by explaining the advantages of Seaborn in comparison to Matplotlib, and
show you how to design visually appealing and insightful plots efficiently.

Chapter 5, Plotting Geospatial Data, will teach you how to utilize Geoplotlib to create
stunning geographical visualizations, identify the different types of geospatial charts,
and create complex visualizations using tile providers and custom layers.

Chapter 6, Making Things Interactive with Bokeh, will introduce Bokeh, which is used
to create insightful web-based visualizations that can be extended into beautiful,
interactive visualizations that can easily be integrated into your web page.

Chapter 7, Combining What We Have Learned, will apply all the concepts that you will
have learned in all the previous chapters, using three new datasets in combination with
practical activities for Matplotlib, Seaborn, Geoplotlib, and Bokeh.

Conventions

Code words in text, database table names, folder names, filenames, file extensions, path
names, dummy URLSs, user input, and Twitter handles are shown as follows:

"Note that by simply passing the axis parameter in the np.mean () call, we can
define the dimension our data will be aggregated on. axis=0 is horizontal and axis=1
is vertical."

Words that you see on the screen (for example, in menus or dialog boxes) appear in the
same format.

A block of code is set as follows:

# slicing an intersection of 4 elements (2x2) of the first two rows and
first two columns
subsection 2x2 = dataset[1:3, 1:3]

np.mean (subsection 2x2)
New terms and important words are shown like this:

"In this book, you will learn how to use Python in combination with various libraries,
such as NumPy, pandas, Matplotlib, Seaborn, and geoplotlib, to create impactful data
visualizations using real-world data."
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Before You Begin

Each great journey begins with a humble step. Our upcoming adventure into data
visualization is no exception. Before we explore the book in detail, we need to set up
specific software and tools. In this small note, we shall see how to do that.

Installing Python

The following section will help you to install python in Windows, macOS, and
Linux systems.

Installing Python on Windows

Installing Python on Windows is done as follows:

1.

Find your desired version of Python on the official installation page at
https: //packt.live /37AxDz4.

Ensure you select Python 3.7 from the download page.

Ensure that you install the correct architecture for your computer system; that is,
either 32-bit or 64-bit. You can find out this information in the System Properties
window of your OS.

After you download the installer, simply double-click on the file and follow the
user-friendly prompts on-screen.

Installing Python on Linux

To install Python on Linux, you have a couple of good options:

1.

Open Command Prompt and verify that p\Python 3 is not already installed by
running python3 --version.

To install Python 3, run this:

sudo apt-get update
sudo apt-get install python3.7

If you encounter problems, there are numerous sources online that can help you
troubleshoot the issue.

Install Anaconda Linux by downloading the installer from
https: //packt.live /20YAmMw and following the instructions.



https://packt.live/37AxDz4
https://packt.live/2OYAmMw
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Installing Python on macOS

Similar to Linux, you have a couple of methods for installing Python on a Mac. To install
Python on macOS X, do the following:

1.

Open the Terminal for Mac by pressing CMD + Spacebar, type terminal in the
open search box, and hit Enter.

Install Xcode through the command line by running xcode-select --install.

The easiest way to install Python 3 is using Homebrew, which is installed through
the command line by running ruby -e "$(curl -£fsSL https://raw.
githubusercontent.com/Homebrew/install/master/install)".

Add Homebrew to your $PATH environment variable. Open your profile in the
command line by running sudo nano ~/.profile and inserting export
PATH="/usr/local/opt/python/libexec/bin:$PATH" at the bottom.

The final step is to install Python. In the command line, run brew
install python.

Again, you can also install Python via the Anaconda installer, available
from https: //packt.live /20Zwwm2.

Installing Libraries

Using the following pip command, install the following libraries:

python -m pip install --user numpy matplotlib jupyterlab pandas squarify
bokeh geoplotlib seaborn pyglet

Working with JupyterLab and Jupyter Notebook

You'll be working on different exercises and activities in JupyterLab. These exercises

and activities can be downloaded from the associated GitHub repository.

Download the repository from here: https: //packt.live /31USkof.

You can either download it using GitHub or as a zipped folder by clicking on the green

Clone or download button in the upper-right corner.


https://packt.live/2OZwwm2
https://packt.live/31USkof
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In order to open Jupyter Notebook, type the following command in the Terminal:
cd Data-Visualization-with-Python/<your current chapter>.

For example:
cd Data-Visualization-with-Python/Chapter01l/

To complete the process, perform the following steps:

1. Toreach the folder for each activity and exercise, you have to use ed once more to
go into each folder, like so:

cd ActivityOl
2. Once you are in the folder of your choice, simply call jupyter-1ab to start up
JupyterLab. Similarly, for Jupyter Notebook, call jupyter notebook.
Importing Python Libraries

Every exercise and activity in this book will make use of various libraries. Importing
libraries into Python is very simple, as shown in the following steps:

1. To import libraries such as NumPy and pandas, run the following code. This will
import the whole numpy library into your current file:

import numpy # import numpy

2. In the first cells of the exercises and activities of this book, you will see the
following code. Use np instead of numpy in our code to call methods from numpy:

import numpy as np # import numpy and assign alias np
3. Partial imports can be done as shown in the following code:
from numpy import mean # only import the mean method of numpy

This only loads the mean method from the library.

Installing the Code Bundle

Download the code files from GitHub at https: //packt.live /31USkof. Refer to these code
files for the complete code bundle.

The high-quality color images used in book can be found
at https: /packt.live /38CbpOV.

If you have any issues or questions about installation, please email us at workshops@
packt.com.



https://packt.live/31USkof
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The Importance of
Data Visualization
and Data Exploration

Overview

This chapter introduces you to the basics of the statistical analysis of a dataset.
We will look at basic operations for calculating the mean, median, and variance
of different datasets and use NumPy and pandas to filter, sort, and shape the
datasets to our requirements. The concepts we will cover will serve as a base of
knowledge for the upcoming visualization chapters, in which we'll work with real-
world datasets.

By the end of this chapter, you will be able to explain the importance of data

visualization and calculate basic statistical values (such as median, mean, and
variance), and use NumPy and pandas for data wrangling.
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Introduction

Unlike machines, people are usually not equipped for interpreting a large amount of
information from a random set of numbers and messages in each piece of data. Out
of all our logical capabilities, we understand things best through the visual processing
of information. When data is represented visually, the probability of understanding
complex builds and numbers increases.

Python has recently emerged as a programming language that performs well for data
analysis. It has applications across data science pipelines that convert data into a usable
format (such as pandas), analyzes it (such as NumPy), and extract useful conclusions
from the data to represent it in a visually appealing manner (such as Matplotlib

or Bokeh). Python provides data visualization libraries that can help you assemble
graphical representations efficiently.

In this book, you will learn how to use Python in combination with various libraries,
such as NumPy, pandas, Matplotlib, seaborn, and geoplotlib, to create impactful data
visualizations using real-world data. Besides that, you will also learn about the features
of different types of charts and compare their advantages and disadvantages. This will
help you choose the chart type that's suited to visualizing your data.

Once we understand the basics, we can cover more advanced concepts, such as
interactive visualizations and how Bokeh can be used to create animated visualizations
that tell a story. Upon completing this book, you will be able to perform data wrangling,
extract relevant information, and visualize your findings descriptively.

Introduction to Data Visualization

Computers and smartphones store data such as names and numbers in a digital
format. Data representation refers to the form in which you can store, process,
and transmit data.

Representations can narrate a story and convey fundamental discoveries to your
audience. Without appropriately modeling your information to use it to make
meaningful findings, its value is reduced. Creating representations helps us achieve
a more precise, more concise, and more direct perspective of information, making it
easier for anyone to understand the data.

Information isn't equivalent to data. Representations are a useful apparatus to derive
insights from the data. Thus, representations transform data into useful information.



Introduction | 3

The Importance of Data Visualization

Instead of just looking at data in the columns of an Excel spreadsheet, we get a better

idea of what our data contains by using visualization. For instance, it's easy to see
a pattern emerge from the numerical data that's given in the following scatter plot.
It shows the correlation between body mass and the maximum longevity of various
animals grouped by class. There is a positive correlation between body mass and

maximum longevity:
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Figure 1.1: A simple example of data visualization
Visualizing data has many advantages, such as the following:

» Complex data can be easily understood.

* A simple visual representation of outliers, target audiences, and futures markets

can be created.
» Storytelling can be done using dashboards and animations.

» Data can be explored through interactive visualizations.
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Data Wrangling

Data wrangling is the process of transforming raw data into a suitable representation
for various tasks. It is the discipline of augmenting, cleaning, filtering, standardizing,
and enriching data in a way that allows it to be used in a downstream task, which in our
case is data visualization.

Look at the following data wrangling process flow diagram to understand how accurate
and actionable data can be obtained for business analysts to work on. The following
steps explain the flow of the data wrangling process:

1. First, the Employee Engagement data is in its raw form.
2. Then, the data gets imported as a DataFrame and is later cleaned.

3. The cleaned data is then transformed into graphs, from which findings can
be derived.

4. Finally, we analyze this data to communicate the final results.

For example, employee engagement can be measured based on raw data gathered

from feedback surveys, employee tenure, exit interviews, one-on-one meetings, and so
on. This data is cleaned and made into graphs based on parameters such as referrals,
faith in leadership, and scope of promotions. The percentages, that is, information
derived from the graphs, help us reach our result, which is to determine the measure of
employee engagement:

Import Clean Cleaned
DataFrame
DataFrame
— — Data Graphs
Employee
E t ] . Final Result
ngagemen Transform Visualize nainesunts
Raw Data Employee Engagement
Insights is High
Model Communicate

Figure 1.2: Data wrangling process to measure employee engagement
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Tools and Libraries for Visualization

There are several approaches to creating data visualizations. Depending on your
requirements, you might want to use a non-coding tool such as Tableau, which allows
you to get a good feel for your data. Besides Python, which will be used in this book,
MATLAB and R are widely used in data analytics.

However, Python is the most popular language in the industry. Its ease of use and the
speed at which you can manipulate and visualize data, combined with the availability of
a number of libraries, make Python the best choice for data visualization.

Note

MATLAB (https://www.mathworks.com/products/matlab.html),
R (https://www.r-project.org), and Tableau (https://www.tableau.com) are not
part of this book; we will only cover the relevant tools and libraries for Python.

Overview of Statistics

Statistics is a combination of the analysis, collection, interpretation, and representation
of numerical data. Probability is a measure of the likelihood that an event will occur and
is quantified as a number between 0 and 1.

A probability distribution is a function that provides the probability for every possible
event. A probability distribution is frequently used for statistical analysis. The higher the
probability, the more likely the event. There are two types of probability distributions,
namely discrete and continuous.


https://www.mathworks.com/products/matlab.html
https://www.r-project.org
https://www.tableau.com

6 | The Importance of Data Visualization and Data Exploration

A discrete probability distribution shows all the values that a random variable can
take, together with their probability. The following diagram illustrates an example of
a discrete probability distribution. If we have a six-sided die, we can roll each number
between 1 and 6. We have six events that can occur based on the number that's
rolled. There is an equal probability of rolling any of the numbers, and the individual
probability of any of the six events occurring is 1/6:

o

Probability

Event

Figure 1.3: Discrete probability distribution for die rolls
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A continuous probability distribution defines the probabilities of each possible value
of a continuous random variable. The following diagram provides an example of a
continuous probability distribution. This example illustrates the distribution of the time
needed to drive home. In most cases, around 60 minutes is needed, but sometimes, less
time is needed because there is no traffic, and sometimes, much more time is needed if
there are traffic jams:

0.06 A

0.05 4

0.04 -

0.03 4

Density

0.02 A

0.01 4

0.00 1 T T T T T T I
40 50 60 70 80 90 100 110

Time driven in minutes

Figure 1.4: Continuous probability distribution for the time taken to reach home



8 | The Importance of Data Visualization and Data Exploration

Measures of Central Tendency

Measures of central tendency are often called averages and describe central or typical
values for a probability distribution. We are going to discuss three kinds of averages in
this chapter:

* Mean: The arithmetic average is computed by summing up all measurements and
dividing the sum by the number of observations. The mean is calculated as follows:

N
1
K= NZ Xi
=1

Figure 1.5: Formula for mean

* Median: This is the middle value of the ordered dataset. If there is an even number
of observations, the median will be the average of the two middle values. The
median is less prone to outliers compared to the mean, where outliers are distinct
values in data.

* Mode: Our last measure of central tendency, the mode is defined as the most
frequent value. There may be more than one mode in cases where multiple values
are equally frequent.

For example, a die was rolled 10 times, and we got the following numbers: 4, 5, 4, 3, 4, 2,
1,1, 2, and 1.

The mean is calculated by summing all the events and dividing them by the number of
observations: (4+5+4+3+4+2+1+1+2+1) /10=2.7.

To calculate the median, the die rolls have to be ordered according to their values. The
ordered values are as follows: 1,1, 1, 2, 2, 3, 4, 4, 4, 5. Since we have an even number of
die rolls, we need to take the average of the two middle values. The average of the two
middle values is (2+3)/2=2.5.

The modes are 1 and 4 since they are the two most frequent events.

Measures of Dispersion

Dispersion, also called variability, is the extent to which a probability distribution is
stretched or squeezed.
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The different measures of dispersion are as follows:

* Variance: The variance is the expected value of the squared deviation from the
mean. It describes how far a set of numbers is spread out from their mean. Variance
is calculated as follows:

N
1
Var(x) =5 > (4 — )?
i=1

Figure 1.6: Formula for mean
» Standard deviation: This is the square root of the variance.
* Range: This is the difference between the largest and smallest values in a dataset.

* Interquartile range: Also called the midspread or middle 50%, this is the
difference between the 75th and 25th percentiles, or between the upper and
lower quartiles.

Correlation

The measures we have discussed so far only considered single variables. In contrast,
correlation describes the statistical relationship between two variables:

* In a positive correlation, both variables move in the same direction.
* In a negative correlation, the variables move in opposite directions.

* In zero correlation, the variables are not related.

Note

One thing you should be aware of is that correlation does not imply causation.
Correlation describes the relationship between two or more variables, while
causation describes how one event is caused by another. For example, ice cream
sales are correlated with the number of drowning deaths. But that doesn't mean
that ice cream consumption causes drowning. There is a third variable, namely
temperature, that's responsible for this correlation. Higher temperature causes
increasing ice cream sales and more people engaging in swimming, which
eventually results in drowning.
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Example

You want to find a decent apartment to rent that is not too expensive compared to
other apartments you've found. The other apartments you found on a website are
priced as follows: $700, $850, $1,500, and $750 per month:

* The mean is (S700 + $850 + $1,500 + S750) / 4 = $950.

* The median is (§750 + $850) / 2 = $800.

($700 — $950)2+ ($850 — $950)2+ (31500 — $950)%+ ($ 750 — $950)°
4

=$322.10 .

¢ The standard deviation is \/
* The range is $1,500 - $700 = $800.

* The median is a better statistical measure in this case since it is less prone to
outliers (the rent amount of $1,500).

Types of Data

It is important to understand what kind of data you are dealing with so that you can
select both the right statistical measure and the right visualization. We categorize

data as categorical /qualitative and numerical /quantitative. Categorical data describes
characteristics, for example, the color of an object or a person's gender. We can further
divide categorical data into nominal and ordinal data. In contrast to nominal data,
ordinal data has an order.

Numerical data can be divided into discrete and continuous data. We speak of discrete
data if the data can only have certain values, whereas continuous data can take any
value (sometimes limited to a range).

Another aspect to consider is whether the data has a temporal domain - in other words,
is it bound to time or does it change over time? If the data is bound to a location, it
might be interesting to show the spatial relationship, so you should keep that in mind
as well:
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Data types

Categorical/
Qualitative

Numerical/
Quantitative

Nominal

Examples: Gender of a
person, city of birth, ...

Temporal

Spatial

Continuous

Examples: Temperature,
Weight, Height, ...

Ordinal
Examples: Educational
experience (high school,
college, university), ...

Discrete
Examples: Number of
students in a class,
result of a die roll, ...

Figure 1.7: Classification of types of data

Summary Statistics

In real-world applications, we often encounter enormous datasets. Therefore, summary
statistics are used to summarize important aspects of data. They are necessary to
communicate large amounts of information in a compact and simple way.

We have already covered measures of central tendency and dispersion, which are both
summary statistics. It is important to know that measures of central tendency show a
center point in a set of data values, whereas measures of dispersion show how much
the data varies.

The following table gives an overview of which measure of central tendency is best
suited to a particular type of data:

Nominal Mode
Ordinal Median
Numerical Mean/Median

Figure 1.8: Best suited measures of central tendency for different types of data

In the next section, we will learn about the NumPy library and implement a few
exercises using it.
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NumPy

When handling data, we often need a way to work with multidimensional arrays. As we
discussed previously, we also have to apply some basic mathematical and statistical
operations on that data. This is exactly where NumPy positions itself. It provides
support for large n-dimensional arrays and has built-in support for many high-level
mathematical and statistical operations.

Note

Before NumPy, there was a library called Numeric. However, it's no longer used,
because NumPy's signature ndarray allows the performant handling of large and
high-dimensional matrices.

Ndarrays are the essence of NumPy. They are what makes it faster than using Python's
built-in lists. Other than the built-in list data type, ndarrays provide a stridden view of
memory (for example, int[] in Java). Since they are homogeneously typed, meaning
all the elements must be of the same type, the stride is consistent, which results in less
memory wastage and better access times.

The stride is the number of locations between the beginnings of two adjacent elements
in an array. They are normally measured in bytes or in units of the size of the array
elements. A stride can be larger or equal to the size of the element, but not smaller;
otherwise, it would intersect the memory location of the next element.

Note

Remember that NumPy arrays have a defined data type. This means you are not
able to insert strings into an integer type array. NumPy is mostly used with double-
precision data types.

The following are some of the built-in methods that we will use in the exercises and
activities of this chapter.
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mean

NumPy provides implementations of all the mathematical operations we covered in the
Overview of Statistics section of this chapter. The mean, or average, is the one we will
look at in more detail in this exercise:

np.mean (dataset) mean value for the whole dataset

(
np.mean (dataset[0]) mean value of the first row
(

np.mean (dataset[:, 0] mean value of the whole first column

#
#
#
#

np.mean (dataset[1l, 0:10]) mean value of the first 10 elements of the

second row

median

Several of the mathematical operations have the same interface. This makes them easy
to interchange if necessary. The median, var, and std methods will be used in the
upcoming exercises and activities:

np.median (dataset) # median value for the whole dataset

np.median (dataset[-1]) # median value of the last row using reverse

indexing

np.median (dataset[5:, 0]) # median value of values of rows >5 in the first
column

Note that we can index every element from the end of our dataset as we can from the
front by using reverse indexing. It's a simple way to get the last or several of the last
elements of a list. Instead of [0] for the first/last element, it starts with dataset[-
1] and then decreases until dataset[-1len (dataset) ], which is the first element in
the dataset.

var

As we mentioned in the Overview of Statistics section, the variance describes how far a
set of numbers is spread out from their mean. We can calculate the variance using the
var method of NumPy:

np.var (dataset) # variance value for the whole dataset
np.var (dataset, axis=0) # axis used to get variance per column
np.var (dataset, axis=1) # axis used to get variance per row
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std

One of the advantages of the standard deviation is that it remains in the scalar system
of the data. This means that the unit of the deviation will have the same unit as the data
itself. The std method works just like the others:

np.std(dataset) # standard deviation for the whole dataset

np.std(dataset[:2, :2]) # std value of values from the 2 first rows
and columns

np.std(dataset, axis=1l) # axis used to get standard deviation per row

Now we will do an exercise to load a dataset and calculate the mean using
these methods.

Note

All the exercises and activities in this chapter will be developed in Jupyter
Notebooks. Please download the GitHub repository with all the prepared
templates from https://packt.live/31USkof.

Exercise 1.01: Loading a Sample Dataset and Calculating the Mean using
NumPy

In this exercise, we will be loading the normal_distribution.csv dataset and
calculating the mean of each row and each column in it:

1. Open the Exercisel.01.ipynb Jupyter Notebook from the Chapter01 folder to
do this exercise. In the command-line Terminal, type jupyter-1lab. You will now
see a browser window open, showing the content of the directory you called in the
previous command.

2. Click on Exercisel.Ol.ipynb. The notebook for Chapter01 should now be open
and ready for you to modify.

3. Import numpy with an alias:
import numpy as np
4. Use the genfromtxt method of NumPy to load the dataset:

dataset = np.genfromtxt('../../Datasets/normal distribution.csv',
delimiter="',")


https://packt.live/31USkof
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In order to load the dataset, we will use the genfromtxt method call in the
following cell. This method helps load the data from a given text or .esv file. If
everything works as expected, the generation should run through without any

error or output.

Note

The numpy . genfromtext method is less efficient than the

pandas.read_csv method.

Check the data you just imported by simply writing the name of the ndarray in the
next cell. Simply executing a cell that returns a value, such as an ndarray, will use
Jupyter formatting, which looks nice and, in most cases, displays more information

than using print:

# looking at the
dataset

The output of the preceding code is as follows:

array([[

105

105

99,
98.
[ 92.

92.
[ 95.

98.
[ o1.
.48508838,
[101.

93,
[102.

89.
[106.
106.
.02548256,
102.
[105.
101.
[11e.

92.
[101.
.0320535
[ 97.

dataset

14931546,
74986914,
02628776,
9267508 ,
66253664,
80084371,
37294597,

20862522,
37126331,
80387079,
03452725,
71751618,
39798503,

45651798,
30350449,
29326772,
44484313,
75048583,
3514185 ,

21315663,

104
98
97
92
95

105

100.
91.
1e3.
108.
98.
96.

102
95

102.
98.
92.

100.
93.

101.

100.
99.

107

.03852715,
.80833412,
.10439252,
.65657752,
.17750125,
.95297652,
96781394,
6604946 ,
5730309 ,
57980357,
29687616,
2832753 ,
.97585605,
.46493436,
82360856,
74767493,
87730812,
85447132,
87155456,
72074646,
37372248,
35999981,
.02874163,

1e7.
96.
99.

105

43534677,
81964892,
32066924,

.7197853 ,
90.
98.

1e00.

106.

100.

1e0.
93.

104.
98.
94.

106.
97.

l1e3.

le1l.
le1.
96.

106.
98.

l102.

93318132,
37481387,
40118279,
1472841 ,
28690912,
79478953,
24376389,
60344836,
45723272,
35373179,
47551845,
57544275,
19258339,
2226037 ,
5363647 ,
96851209,
6471081 ,
87007532,
17642112,

97
98
97

l1e1.
11@.

106

113.

95

105.
94.
97.

le1.

100.

106

l1e1.
92.
l104.

106

97.
1e3.
100.

95
96

.85230675,
.56783189],
.24584816,
23162942],
18889465,
.54654286],
42090475,
.08715803],
85269352,
20019732],
24130034,
13442416],
72418901,
.83273763],
34745901,
5748759 1,
40518318,
.03868807],
65393524,
291471117,
61742813,
.85284217],
.74630281,

Figure 1.9: The first few rows of the normal_distribution.csv file
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6. Print the shape using the dataset.shape command to get a quick overview of our
dataset. This will give us output in the form (rows, columns):

dataset.shape

We can also call the rows as instances and the columns as features. This means
that our dataset has 24 instances and 8 features. The output of the preceding code
is as follows:

(24,8)

7. Calculate the mean after loading and checking our dataset. The first row in
a NumPy array can be accessed by simply indexing it with zero; for example,
dataset[0]. As we mentioned previously, NumPy has some built-in functions for
calculations such as the mean. Call np.mean () and pass in the dataset's first row to
get the result:

# calculating the mean for the first row
np.mean (dataset[0])

The output of the preceding code is as follows:
100.177647525

8. Now, calculate the mean of the first column by using np.mean () in combination
with the column indexing dataset[:, 0]:

np.mean (dataset[:, 0])
The output of the preceding code is as follows:
99.76743510416668

Whenever we want to define a range to select from a dataset, we can use a colon,
:, to provide start and end values for the to be selected range. If we don't provide
start and end values, the default of 0 to n is used, where n is the length of the
current axis.



NumPy | 17

10.

Calculate the mean for every single row, aggregated in a list, using the axis tools

of NumPy. Note that by simply passing the axis parameter in the np.mean () call,
we can define the dimension our data will be aggregated on. axis=0 is horizontal

and axis=1 is vertical. Get the result for each row by using axis=1:

np.mean (dataset, axis=1)

The output of the preceding code is as follows:

array([100.17764752, 97.27899259, 100.20466135, 100.56785907,
100.98341406, 97.83018578, 101.49052285, 99.75332252,
101.89845125, 99.77973914, 101.013081 , 100.54961696,

98.48256886, 98.49816126, 101.85956927, 97.05201872,
102.62147483, 101.21177037, 99.58777968, 98.96533534,
103.85792812, 101.89050288, 99.07192574, 99.34233101])

Figure 1.10: Mean of the elements of each row
Get the mean of each column by using axis=0:
np.mean (dataset, axis=0)

The output of the preceding code is as follows:

array([ 99.7674351 , 99.61229127, 101.14584656, 101.8449316 ,
99.04871791, 99.67838931, 99.7848489 , 100.44049274])

Figure 1.11: Mean of elements for each column

Calculate the mean of the whole matrix by summing all the values we retrieved in
the previous steps:

np.mean (dataset)
The output of the preceding code is as follows:

100.16536917390624

You are already one step closer to using NumPy in combination with plotting libraries
and creating impactful visualizations. Since we've now covered the very basics and
calculated the mean, it's now up to you to solve the upcoming activity.
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Activity 1.01: Using NumPy to Compute the Mean, Median, Variance, and

Standard Deviation of a Dataset

In this activity, we will use the skills we've learned to import datasets and perform
some basic calculations (mean, median, variance, and standard deviation) to compute
our tasks.

Perform the following steps to implement this activity:

1.

10.

11.

12.

Open the Activityl.01. ipynb Jupyter Notebook from the Chapter01 folder to
do this activity. Import NumPy and give it the alias np.

Load the normal_distribution.csv dataset by using the genfromtxt method
from NumPy.

Print a subset of the first two rows of the dataset.

Load the dataset and calculate the mean of the third row. Access the third row by
using index 2, dataset[2].

Index the last element of an ndarray in the same way a regular Python list can be
accessed. dataset[:, -1] will give us the last column of every row.

Get a submatrix of the first three elements of every row of the first three columns
by using the double-indexing mechanism of NumPy.

Calculate the median for the last row of the dataset.

Use reverse indexing to define a range to get the last three columns. We can use
dataset[:, -3:] here.

Aggregate the values along an axis to calculate the rows. We can use axis=1 here.
Calculate the variance for each column using axis 0.

Calculate the variance of the intersection of the last two rows and the first
two columns.

Calculate the standard deviation for the dataset.

Note

The solution for this activity can be found on page 348.

You have now completed your first activity using NumPy. In the following activities, this
knowledge will be consolidated further.
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Basic NumPy Operations

In this section, we will learn about basic NumPy operations such as indexing, slicing,
splitting, and iterating and implement them in an exercise.

Indexing

Indexing elements in a NumPy array, at a high level, works the same as with built-in
Python lists. Therefore, we can index elements in multi-dimensional matrices:

dataset [0] # index single element in outermost dimension
dataset [-1] # index in reversed order in outermost dimension
dataset[1l, 1] # index single element in two-dimensional data
dataset[-1, -1] # index in reversed order in two-dimensional data
Slicing

Slicing has also been adapted from Python's lists. Being able to easily slice parts of lists
into new ndarrays is very helpful when handling large amounts of data:

dataset[1:3] # rows 1 and 2

dataset[:2, :2] # 2x2 subset of the data

dataset[-1, ::—1] # last row with elements reversed

dataset [-5: 6:2] # last 4 rows, every other element up to index 6
Splitting

Splitting data can be helpful in many situations, from plotting only half of your time-
series data to separating test and training data for machine learning algorithms.

There are two ways of splitting your data, horizontally and vertically. Horizontal
splitting can be done with the hsplit method. Vertical splitting can be done with the
vsplit method:

np.hsplit (dataset, (3)) # split horizontally in 3 equal lists
np.vsplit (dataset, (2)) # split vertically in 2 equal lists
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Iterating

Iterating the NumPy data structures, ndarrays, is also possible. It steps over the
whole list of data one after another, visiting every single element in the ndarray once.
Considering that they can have several dimensions, indexing gets very complex.

The nditer is a multi-dimensional iterator object that iterates over a given number
of arrays:

# iterating over whole dataset (each value in each row)
for x in np.nditer (dataset) :
print (x)

The ndenumerate will give us exactly this index, thus returning (0, 1) for the second
value in the first row:

# iterating over the whole dataset with indices matching the position in

the dataset
for index, value in np.ndenumerate (dataset) :

print (index, value)

Now, we will perform an exercise using these basic NumPy operations.

Exercise 1.02: Indexing, Slicing, Splitting, and Iterating

In this exercise, we will use the features of NumPy to index, slice, split, and iterate
ndarrays to consolidate what we've learned. Our client wants us to prove that our
dataset is nicely distributed around the mean value of 100.

Let's use the features of NumPy to index, slice, split, and iterate ndarrays.
Indexing
1. Import the necessary libraries:
import numpy as np

2. Load the normal distribution.csv dataset using NumPy. Have a look at the
ndarray to verify that everything works:

dataset = np.genfromtxt('../../Datasets/normal distribution
splittable.csv', delimiter="',")
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3. First, use simple indexing for the second row, as we did in our first exercise. For a
clearer understanding, all the elements are saved to a variable:

second row = dataset[1]
np.mean (second_row)

The output of the preceding code is as follows:
96.90038836444445

4. Now, reverse index the last row and calculate the mean of that row. Always
remember that providing a negative number as the index value will index the list
from the end:

last row = dataset[-1]
np.mean (last row)

The output of the preceding code is as follows:
100.18096645222221
5. Index the first value of the first row using the Python standard syntax of [0][0]:

first val first row = dataset[0] [0]

np.mean (first val first row)
The output of the preceding code is as follows:
99.14931546

6. Use reverse indexing to access the last value of the second last row (we want to use
the combined access syntax here). Remember that -1 means the last element:

last val second last row = dataset[-2, -1]
np.mean (last val second last row)

The output of the preceding code is as follows:

101.2226037
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Slicing

7. Create a 2x2 matrix that starts at the second row and second column using
[1:3, 1:3]:
# slicing an intersection of 4 elements (2x2) of the first two rows and

first two columns
subsection 2x2 = dataset[1:3, 1:3]

np.mean (subsection 2x2)
The output of the preceding code is as follows:
95.63393608250001

8. In this task, we want to have every other element of the fifth row. Provide indexing
of : : 2 as our second element to get every second element of the given row:

every other elem = dataset[4, ::2]
np.mean (every other elem)

The output of the preceding code is as follows:
98.35235805800001

Introducing the second column into the indexing allows us to add another layer of
complexity. The third value allows us to only select certain values (such as every
other element) by providing a value of 2. This means it skips the values between and
only takes each second element from the used list.

9. Reverse the elements in a slice using negative numbers:

reversed last row = dataset[-1, ::-1]

np.mean (reversed last row)
The output of the preceding code is as follows:
100.18096645222222
Splitting
10. Use the hsplit method to split our dataset into three equal parts:
hor splits = np.hsplit (dataset, (3))

Note that if the dataset can't be split with the given number of slices, it will throw
an error.

11. Split the first third into two equal parts vertically. Use the vsplit method to
vertically split the dataset in half. It works like hsplit:

ver splits = np.vsplit (hor splits[0], (2))
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12. Compare the shapes. We can see that the subset has the required half of the rows
and the third half of the columns:

print ("Dataset", dataset.shape)
print ("Subset", ver splits[0].shape)

The output of the preceding code is as follows:

Dataset (24, 9)
Subset (12, 3)

Iterating
13. Iterate over the whole dataset (each value in each row):

curr_index = 0
for x in np.nditer (dataset):
print (x, curr index)

curr_index += 1
The output of the preceding code is as follows:

99.14931546 ©
104.03852715 1
107.43534677 2
97.85230675 3
98.74986914 4
98.80833412 5
96.81964892 6
98.56783189 7
101.34745901 8
92.02628776 9
97.10439252 10

Figure 1.12: Iterating the entire dataset

Looking at the given piece of code, we can see that the index is simply incremented
with each element. This only works with one-dimensional data. If we want to index
multi-dimensional data, this won't work.
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14. Use the ndenumerate method to iterate over the whole dataset. It provides two
positional values, index and value:

for index, value in np.ndenumerate (dataset) :

print (index, value)

The output of the preceding code is as follows:

(0, @) 99.14931546
(0, 1) 104.03852715
(0, 2) 107.43534677
(0, 3) 97.85230675
(0, 4) 98.74986914
(0, 5) 98.80833412
(8, 6) 96.81964892
(0, 7) 98.56783189
(0, 8) 101.34745901
(1, @) 92.02628776
(1, 1) 97.10439252
(1, 2) 99.32066924
(1, 3) 97.24584816
(1, 4) 92.9267508
(1, 5) 92.65657752

Figure 1.13: Enumerating the dataset with multi-dimensional data

We've already covered most of the basic data wrangling methods for NumPy. In the next
exercise, we'll take a look at more advanced features that will give you the tools you
need to get better at analyzing your data.

Advanced NumPy Operations

In this section, we will learn about advanced NumPy operations such as filtering,
sorting, combining, and reshaping and implement them in an exercise.

Filtering

Filtering is a very powerful tool that can be used to clean up your data if you want to
avoid outlier values.

In addition to the dataset[dataset > 10] shorthand notation, we can use the
built-in NumPy extract method, which does the same thing using a different notation,
but gives us greater control with more complex examples.
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If we only want to extract the indices of the values that match our given condition, we
can use the built-in where method. For example, np.where (dataset > 5) will return
a list of indices of the values from the initial dataset that is bigger than 5:

dataset [dataset > 10] # values bigger than 10
np.extract ((dataset < 3), dataset) # alternative - values smaller
than 3

dataset|[ (dataset > 5) & (dataset < 10)] # values bigger 5 and smaller 10
np.where (dataset > 5) # indices of values bigger than 5

(rows and cols)
Sorting

Sorting each row of a dataset can be really useful. Using NumPy, we are also able to sort
on other dimensions, such as columns.

In addition, argsort gives us the possibility to get a list of indices, which would result
in a sorted list:

np.sort (dataset) # values sorted on last axis
np.sort (dataset, axis=0) # values sorted on axis O
np.argsort (dataset) # indices of values in sorted list
Combining

Stacking rows and columns onto an existing dataset can be helpful when you have two
datasets of the same dimension saved to different files.

Given two datasets, we use vstack to stack dataset 1 on top of dataset 2, which will
give us a combined dataset with all the rows from dataset_1, followed by all the rows
from dataset_2.

If we use hstack, we stack our datasets "next to each other," meaning that the elements
from the first row of dataset_1 will be followed by the elements of the first row of
dataset_2. This will be applied to each row:

np.vstack([dataset 1, dataset 2]) # combine datasets vertically
np.hstack([dataset 1, dataset 2]) # combine datasets horizontally
np.stack([dataset 1, dataset 2], axis=0) # combine datasets on axis 0
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Reshaping

Reshaping can be crucial for some algorithms. Depending on the nature of your data, it
might help you to reduce dimensionality to make visualization easier:

dataset.reshape (-1, 2) # reshape dataset to two columns x rows
np.reshape (dataset, (1, -1)) # reshape dataset to one row x columns

Here, -1 is an unknown dimension that NumPy identifies automatically. NumPy will
figure out the length of any given array and the remaining dimensions and will thus
make sure that it satisfies the required standard.

Next, we will perform an exercise using advanced NumPy operations.

Exercise 1.03: Filtering, Sorting, Combining, and Reshaping

This final exercise for NumPy provides some more complex tasks to consolidate our
learning. It will also combine most of the previously learned methods as a recap.

Let's use the filtering features of NumPy for sorting, stacking, combining, and reshaping
our data:

1. Import the necessary libraries:
import numpy as np

2. Load the normal distribution splittable.csv dataset using NumPy. Make
sure that everything works by having a look at the ndarray:

dataset = np.genfromtxt('../../Datasets/normal distribution
splittable.csv', delimiter="',")

Filtering
3. Get values greater than 105 by supplying the condition > 105 in the brackets:
vals greater five = dataset[dataset > 105]

4, Extract the values of our dataset that are between the values 90 and 95. To use
more complex conditions, we might want to use the extract method of NumPy:

vals between 90 95 = np.extract((dataset > 90) & (dataset < 95),
dataset)



NumPy | 27

5. Use the where method to get the indices of values that have a delta of less than 1 to
100. Use those indices (row, col) in alist comprehension and print them out:

rows, cols = np.where (abs(dataset - 100) < 1)

one away indices = [[rows[index], cols[index]] for (index, ) in
np.ndenumerate (rows) ]

The where method from NumPy allows us to get indices (rows, cols) for each
of the matching values.

Note

List comprehensions are Python's way of mapping over data. They're a handy
notation for creating a new list with some operation applied to every element of
the old list.

For example, if we want to double the value of every element in this list, 1ist

= [1, 2, 3, 4, 5], wewoulduse list comprehensions like this: doubled _
list=[x*x for x in list]. This gives us the following list: [1, 4, 9,
16, 25].To get a better understanding of list comprehensions, please visit
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions.

Sorting
6. Sort each row in our dataset by using the sort method:
row_sorted = np.sort (dataset)

As described before, by default, the last axis will be used. In a two-dimensional
dataset, this is axis 1 which represents the rows. So we can omit the axis=1
argument in the np. sort method call.

7. With multi-dimensional data, we can use the axis parameter to define which
dataset should be sorted. Use the 0 axes to sort the values by column:

col sorted = np.sort (dataset, axis=0)


https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
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8. Create a sorted index list and use fancy indexing to get access to sorted elements
easily. To keep the order of our dataset and obtain only the values of a sorted
dataset, we will use argsort:

index sorted = np.argsort (dataset[0])
dataset[0] [index sorted]

array([ 96.81964892, 97.85230675, 98.56783189, 98.74986914,
98.80833412, 99.14931546, 101.34745901, 104.03852715,
107.435346771)

Figure 1.14: First row with sorted values from argsort
Combining

9. Use the combining features to add the second half of the first column back
together, add the second column to our combined dataset, and add the third
column to our combined dataset.

thirds = np.hsplit (dataset, (3))
halfed first = np.vsplit(thirds[0], (2))

halfed first[0]

The output of the preceding code is as follows:

array([[ 99.14931546, 104.03852715, 107.43534677],
[ 92.02628776, 97.10439252, 99.32066924],
[ 95.66253664, 95.17750125, 90.93318132],
[ 91.37294597, 100.96781394, 100.40118279],
[101.20862522, 163.5730309 , 100.28690912],
[102.80387079, 98.29687616, 93.24376389],
[106.71751618, 102.97585605, 98.45723272],
[ 96.02548256, 102.82360856, 106.47551845],
[105.30350449, 92.87730812, 103.19258339],
[110.44484313, 93.87155456, 101.5363647 ],
[101.3514185 , 100.37372248, 106.6471081 ],
[ 97.21315663, 107.02874163, 102.17642112]])

Figure 1.15: Splitting the dataset
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10. Use vstack to vertically combine the halfed first datasets:
first col = np.vstack([halfed first[0], halfed first[1]])

After vstacking the second half of our split dataset, we have one-third of our initial
dataset stacked together again. Now, we want to add the other two remaining
datasets to our first_col dataset.

11. Use the hstack method to combine our already combined first col with the
second of the three split datasets:

first second col = np.hstack([first col, thirds[1]])

12. Use hstack to combine the last one-third column with our dataset. This is the
same thing we did with our second-third column in the previous step:

full data = np.hstack([first second col, thirds[2]])
Reshaping
13. Reshape our dataset into a single list using the reshape method:
single list = np.reshape (dataset, (1, -1))
14. Provide a -1 for the dimension. This tells NumPy to figure the dimension out itself:

# reshaping to a matrix with two columns
two _col dataset = dataset.reshape(-1, 2)

You have now used many of the basic operations that are needed so that you can
analyze a dataset. Next, we will be learning about pandas, which will provide several
advantages when working with data that is more complex than simple multi-
dimensional numerical data. pandas also support different data types in datasets,
meaning that we can have columns that hold strings and others that have numbers.

NumPy, as you've seen, has some powerful tools. Some of them are even more powerful
when combined with pandas DataFrames.

pandas

The pandas Python library provides data structures and methods for manipulating
different types of data, such as numerical and temporal data. These operations are easy
to use and highly optimized for performance.
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Data formats, such as CSV and JSON, and databases can be used to create DataFrames.
DataFrames are the internal representations of data and are very similar to tables

but are more powerful since they allow you to efficiently apply operations such as
multiplications, aggregations, and even joins. Importing and reading both files and
in-memory data is abstracted into a user-friendly interface. When it comes to handling
missing data, pandas provide built-in solutions to clean up and augment your data,
meaning it fills in missing values with reasonable values.

Integrated indexing and label-based slicing in combination with fancy indexing (what
we already saw with NumPy) make handling data simple. More complex techniques,
such as reshaping, pivoting, and melting data, together with the possibility of easily
joining and merging data, provide powerful tooling so that you can handle your

data correctly.

If you're working with time-series data, operations such as date range generation,
frequency conversion, and moving window statistics can provide an advanced
interface for data wrangling.

Note

The installation instructions for pandas can be found here:
https://pandas.pydata.org/. The latest version is v0.25.3 (used in this book);
however, every v0.25.x should be suitable.

Advantages of pandas over NumPy
The following are some of the advantages of pandas:

* High level of abstraction: pandas have a higher abstraction level than NumPy,
which gives it a simpler interface for users to interact with. It abstracts away some
of the more complex concepts, such as high-performance matrix multiplications
and joining tables, and makes it easier to use and understand.

* Less intuition: Many methods, such as joining, selecting, and loading files, are
used without much intuition and without taking away much of the powerful nature
of pandas.

* Faster processing: The internal representation of DataFrames allows faster
processing for some operations. Of course, this always depends on the data and
its structure.

* Easy DataFrame design: DataFrames are designed for operations with and on
large datasets.


https://pandas.pydata.org/
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Disadvantages of pandas
The following are some of the disadvantages of pandas:

* Less applicable: Due to its higher abstraction, it's generally less applicable than
NumPy. Especially when used outside of its scope, operations can get complex.

* More disk space: Due to the internal representation of DataFrames and the way
pandas trades disk space for a more performant execution, the memory usage of
complex operations can spike.

* Performance problems: Especially when doing heavy joins, which is
not recommended, memory usage can get critical and might lead to
performance problems.

* Hidden complexity: Less experienced users often tend to overuse methods and
execute them several times instead of reusing what they've already calculated. This
hidden complexity makes users think that the operations themselves are simple,
which is not the case.

Note

Always try to think about how to design your workflows instead of excessively
using operations.

Now, we will do an exercise to load a dataset and calculate the mean using pandas.

Exercise 1.04 Loading a Sample Dataset and Calculating the Mean using
Pandas

In this exercise, we will be loading the world population.csv dataset and calculating
the mean of some rows and columns. Our dataset holds the yearly population density
for every country. Let's use pandas to perform this exercise:

1. Open the Exercisel.04.ipynb Jupyter Notebook from the Chapter01 folder to
implement this exercise and import the pandas libraries:

import pandas as pd

2. Use the read _csv method to load the aforementioned dataset. We want to use
the first column, containing the country names, as our index. We will use the
index_col parameter for that:

dataset = pd.read csv('../../Datasets/world population.csv', index
col=0)
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3. Now, check the data you just imported by simply writing the name of the dataset
in the next cell. pandas uses a data structure called DataFrames. Print some of the
rows. To avoid filling the screen, use the pandas head () method:

dataset.head()

The output of the preceding code is as follows:

Country
Name

Aruba

Andorra

Afghanistan

Angola

Albania

Country
Code

ABW

AND

AFG

AGO

ALB

5 rows x 60 columns

Indicator
Name

Population
density
(people

per sg. km

of land ...

Population
density
(people

per sq. km

of land ...

Population
density
(people

per sg. km

of land ...

Population
density
(people

per sq. km

of land ...

Population
density
(people

per sg. km

of land ...

Indicator
Code

EN.POP.DNST

EN.POP.DNST

EN.POP.DNST

EN.POP.DNST

EN.POP.DNST

1960

NaN

NaN

NaN

NaN

NaN

1961 1962 1963 1964 1965

307.972222 312.366667 314.983333 316.827778 318.666667

30.587234 32.714884 34914894 37.170213 39.470213

14.038148 14.312061 14.599692 14.901579  15.218206

4.305185 4.384299 4.464433 4.544558 4624228

60.576642 62.456898 64.329234 66.209307 68.058066

Figure 1.16: The first five rows of our dataset

Both head () and tail () let you provide a number, n, as a parameter, which
describes how many rows should be returned.

Note

Simply executing a cell that returns a value such as a DataFrame will use Jupyter
formatting, which looks nicer and, in most cases, displays more information than
using print.
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4. Print out the shape of the dataset to get a quick overview using the dataset.
shape command. This works the same as it does with NumPy ndarrays. It will give
us the output in the form (rows, columns):

dataset.shape
The output of the preceding code is as follows:
(264, 60)

5. Index the column with the year 1961. pandas DataFrames have built-in functions for
calculations, such as the mean. This means we can simply call dataset.mean () to
get the result.

The printed output should look as follows:
dataset["1961"] .mean ()

The output of the preceding code is as follows:
176.91514132840555

6. Check the difference in population density over the years by repeating the previous
step with the column for the year 2015 (the population more than doubled in the
given time range):

# calculating the mean for 2015 column
dataset ["2015"] .mean ()

The output of the preceding code is as follows:
368.70660104001837

7. To get the mean for every single country (row), we can make use of pandas axis
tools. Use the mean () method on the dataset on axis=1, meaning all the rows, and
return the first 10 rows using the head () method:

dataset.mean (axis=1) .head (10)
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The output of the preceding code is as follows:

Country Name

Aruba 413.944949
Andorra 106.838839
Afghanistan 25.373379
Angola 9.649583
Albania 99,159197
Arab World 16.118586
United Arab Emirates 31.321721
Argentina 11.634028
Armenia 103.415539
American Samoa 211.855636

dtype: float64d

Figure 1.17: Mean of elements in the first 10 countries (rows)
8. Get the mean for each column and return the last 10 entries:
dataset.mean (axis=0) .tail (10)

The output of the preceding code is as follows:

2007 331.995474
2008 338.688417
2009 343.649206
2010 347.967029
2011 351.942027
2012 357.787305
2013 360.985726
2014 364.849194
2015 368.706601
2016 NaN
dtype: float64

Figure 1.18: Mean of elements for the last 10 years (columns)
9. Calculate the mean of the whole DataFrame:

# calculating the mean for the whole matrix
dataset.mean ()
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The output of the preceding code is as follows:

1960 NaN
1961 176.915141
1962 180.703231
1963 184.572413
1964 188.461797
1965 192.412363
1966 196.145042
1967 200.118063
1968 203.879464
1969 207.336102
1970 210.607871
1971 213.489694
1972 215.998475
1973 218.438708
1974 220.621210
1975 223.046375
1976 224.960258
1977 227.006734
1978 229.187306
1979 232.510772
1980 236.185357
1981 240.789508
1982 246.175178
1983 251.342389
1984 256.647822

Figure 1.19: Mean of elements for each column

Since pandas DataFrames can have different data types in each column, aggregating
this value on the whole dataset out of the box makes no sense. By default, axis=0
will be used, which means that this will give us the same result as the cell prior

to this.

We've now seen that the interface of pandas has some similar methods to NumPy,
which makes it really easy to understand. We have now covered the very basics, which
will help you solve the first exercise using pandas. In the following exercise, you will
consolidate your basic knowledge of pandas and use the methods you just learned to
solve several computational tasks.
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Exercise 1.05: Using pandas to Compute the Mean, Median, and Variance of a

Dataset

In this exercise, we will take the previously learned skills of importing datasets and
basic calculations and apply them to solve the tasks of our first exercise using pandas.

Let's use pandas features such as mean, median, and variance to make some
calculations on our data:

1.

Import the necessary libraries:
import pandas as pd

Use the read_csv method to load the aforementioned dataset and use the index_
col parameter to define the first column as our index:

dataset = pd.read csv('../../Datasets/world population.csv', index
col=0)

Print the first two rows of our dataset:
dataset [0:2]
The output of the preceding code is as follows:

Country Indicator Indicator

Code Name Code 1960 1961 1962 1963 1964

Country
Name

Population
density
Aruba ABW (people EN.POP.DNST NaN 307.972222 312.366667 314.983333 316.827778
per sq. km
of land ...

Population
density
Andorra AND (people EN.POP.DNST NaN 30.587234 32.714894 34.914894 37170213
per sq. km
of land ...

2 rows x 60 columns
Figure 1.20: The first two rows, printed

Now, index the third row by using dataset.iloc[[2]]. Use the axis parameter
to get the mean of the country rather than the yearly column:

dataset.iloc[[2]] .mean (axis=1)
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The output of the preceding code is as follows:

Country Name
Afghanistan 25.373379
dtype: float64

Figure 1.21: Calculating the mean of the third row

Index the last element of the DataFrame using -1 as the index for the
iloc () method:

dataset.iloc[[-1]] .mean (axis=1)

The output of the preceding code is as follows:

Country Name
Zimbabwe 24.520532
dtype: float64

Figure 1.22: Calculating the mean of the last row

Calculate the mean value of the values labeled as Germany using loc, which works
based on the index column:

dataset.loc[["Germany"]] .mean (axis=1)

The output of the preceding code is as follows:

Country Name
Germany 227.773688
dtype: float64

Figure 1.23: Indexing a country and calculating the mean of Germany

Calculate the median value of the last row by using reverse indexing and axis=1 to
aggregate the values in the row:

dataset.iloc[[-1]] .median (axis=1)

The output of the preceding code is as follows:

Country Name
Zimbabwe 25.505431
dtype: float64

Figure 1.24: Usage of the median method on the last row
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8. Use reverse indexing to get the last three columns with dataset[-3:] and
calculate the median for each of them:

dataset[-3:] .median (axis=1)

The output of the preceding code is as follows:

Country Name

Congo, Dem. Rep. 14,419050
Zambia 10.352668
Zimbabwe 25.505431

dtype: float64

Figure 1.25: Median of the last three columns

9. Calculate the median population density values for the first 10 countries of the list
using the head and median methods:

dataset.head (10) .median (axis=1)

The output of the preceding code is as follows:

Country Name

Aruba 348.022222
Andorra 107.300000
Afghanistan 19.998926
Angola 8.458253
Albania 106.001058
Arab World 15.307283
United Arab Emirates 19.305072
Argentina 11.618238
Armenia 105.898033
American Samoa 220.245000

dtype: float64

Figure 1.26: Usage of the axis to calculate the median of the first 10 rows

When handling larger datasets, the order in which methods are executed
matters. Think about what head (10) does for a moment. It simply takes your
dataset and returns the first 10 rows in it, cutting down your input to the mean ()
method drastically.

The last method we'll cover here is the variance. pandas provide a consistent API,
which makes it easy to use.
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10. Calculate the variance of the dataset and return only the last five columns:
dataset.var () .tail()

The output of the preceding code is as follows:

2012 3.063475e+06
2013 3.094597e+06
2014 3.157111e+06
2015 3.220634e+06
2016 NaN
dtype: float64

Figure 1.27: Variance of the last five columns
11. Calculate the mean for the year 2015 using both NumPy and pandas separately:

# NumPy pandas interoperability

import numpy as np

print ("pandas", dataset["2015"].mean())
print ("numpy", np.mean(dataset["2015"]))

The output of the preceding code is as follows:

Pandas 368.7066010400187
NumPy 368.7066010400187

Figure 1.28: Using NumPy's mean method with a pandas DataFrame

This example of how to use NumPy's mean method with a pandas DataFrame shows
that, in some cases, NumPy has better functionality. However, the DataFrame format of
pandas is more applicable, so we combine both libraries to get the best out of both.

You've completed your first exercise with pandas, which showed you some of the
similarities, and also differences when working with NumPy and pandas. In the
following exercise, this knowledge will be consolidated. You'll also be introduced to
more complex features and methods of pandas.
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Basic Operations of pandas

In this section, we will learn about the basic pandas operations, such as indexing,
slicing, and iterating, and implement them with an exercise.

Indexing

Indexing with pandas is a bit more complex than with NumPy. We can only access
columns with a single bracket. To use the indices of the rows to access them, we need
the iloc method. If we want to access them with index_col (which was set in the
read_csv call), we need to use the loc method:

dataset ["2000"] # index the 2000 col
dataset.iloc[-1] # index the last row
dataset.loc["Germany"] # index the row with index Germany
dataset [["2015"]].loc[["Germany"]] # index row Germany and column 2015
Slicing

Slicing with pandas is even more powerful. We can use the default slicing syntax we've
already seen with NumPy or use multi-selection. If we want to slice different rows or
columns by name, we can simply pass a list into the brackets:

dataset.iloc[0:10] # slice of the first 10 rows
dataset.loc[["Germany", "India"]] # slice of rows Germany and India
# subset of Germany and India with years 1970/90

dataset.loc[ ["Germany", "India"]][["1970", "1990"]]

Iterating

Iterating DataFrames is also possible. Considering that they can have several
dimensions and dtypes, the indexing is very high level and iterating over each row
has to be done separately:

# iterating the whole dataset
for index, row in dataset.iterrows|() :

print (index, row)



pandas | 41

Series

A pandas Series is a one-dimensional labeled array that is capable of holding any type of
data. We can create a Series by loading datasets from a . esv file, Excel spreadsheet, or
SQL database. There are many different ways to create them, such as the following:

* NumPy arrays:

# import pandas

import pandas as pd

# import numpy

import numpy as np

# creating a numpy array
numarr = np.array(['p','y','t','h','0o"','n'])
ser = pd.Series (numarr)

print (ser)
* pandas lists:

# import pandas

import pandas as pd

# creating a pandas list

plist = ['p','y','t','h','0", 'n"]
ser = pd.Series(plist)

print (ser)

Now, we will use basic pandas operations in an exercise.

Exercise 1.06: Indexing, Slicing, and Iterating Using pandas

In this exercise, we will use the previously discussed pandas features to index, slice,
and iterate DataFrames using pandas Series. To derive some insights from our dataset,
we need to be able to explicitly index, slice, and iterate our data. For example, we can
compare several countries in terms of population density growth.

Let's use the indexing, slicing, and iterating operations to display the population density
of Germany, Singapore, United States, and India for years 1970, 1990, and 2010.
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Indexing
1. Import the necessary libraries:

import pandas as pd

2. Use the read_csv method to load the world population.csv dataset and
use the first column, (containing the country names) as our index using the
index_col parameter:

dataset = pd.read csv('../../Datasets/world population.csv', index
col=0)

3. Index the row with the index col "United States" using the loc method:
dataset.loc[["United States"]].head()

The output of the preceding code is as follows:

Country | Indicator |Indicator
Code Name Code

1960 | 1961 1962 1963 1964 1965 1966

Country
Name

Population
density
USA (people EN.POP.DNST | NaN |20.05588 | 20.366723|20.661953| 20.950959 | 21.214527 | 21.460952 | ...
per sqg. km
of land ...

United
States

1 rows x 60 columns

Figure 1.29: A few columns from the output showing indexing United States with the loc method

4. Use reverse indexing in pandas to index the second to last row using the
iloc method:

dataset.iloc[[-2]]
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The output of the preceding code is as follows:

Country |Indicator | Indicator 1960 1961|1962  |1963  |1964  |1965  [1966  |..|2007
Code Name Code

Country
Name

Population
density
Zambia | ZMB (people EN.POP.DNST | NaN |4.227724|4.359305 | 4.496824 | 4.639914 | 4.788452 | 4.942343 | ... | 17.13592
per sqg. km
ofland ...

1 rows x 60 columns

Figure 1.30: Indexing the second to last row

5. Columns are indexed using their header. This is the first line of the CSV file. Index
the column with the header of 2000 as a Series:

dataset ["2000"] .head ()

The output of the preceding code is as follows:

Country Name

Aruba 504.766667
Andorra 139.146809
Afghanistan 30.177894
Angola 12.078798
Albania 112.738212

Name: 2000, dtype: float64

Figure 1.31: Indexing all 2000 columns
Remember, the head () method simply returns the first five rows.

6. First, get the data for the year 2000 as a DataFrame and then select India using the
loc () method using chaining:

dataset [["2000"]].loc[["India"]]

The output of the preceding code is as follows:

2000
Country Name

India 354.326858

Figure 1.32: Getting the population density of India in 2000
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Since the double brackets notation returns a DataFrame once again, we can chain
method calls to get distinct elements.

7. Use the single brackets notation to get the distinct value for the population density
of India in 2000:

dataset ["2000"].loc["India"]

If we want to only retrieve a Series object, we must replace the double brackets
with single ones. The output of the preceding code is as follows:

354.326858357522
Slicing
8. Create a slice with the rows 2 to 5 using the iloc () method again:

# slicing countries of rows 2 to 5
dataset.iloc[1l:5]

The output of the preceding code is as follows:

Country Indicator Indicator

Code Name Code 1960 1961 1962 1963

Country
Name

Population
density
Andorra AND (people  EN.POP.DNST NaN 30.587234 32.714894 34.914894
per sqg. km
of land ..

Population
density
Afghanistan AFG (people EN.POP.DNST NaN 14.038148 14.312061 14.599692
per sqg. km
of land ..

Population
density
Angola AGO (people EN.POP.DNST NaN 4.305195 4384299 4.464433
per sg. km
of land ..

Population
density
Albania ALB (people EN.POP.DNST NaN 60.576642 62.456898 64.329234
per sg. km
of land ..

4 rows x 60 columns

Figure 1.33: The countries inrows 2to 5
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Use the 1loc () method to access several rows in the DataFrame and use the
nested brackets to provide a list of elements. Slice the dataset to get the rows for
Germany, Singapore, United States, and India:

dataset.loc[["Germany",

"Singapore",

"United States",

The output of the preceding code is as follows:

Country
Name

Germany

Singapore

United
States

India

4 rows x 60 columns

Country
Code

DEU

SGP

USA

IND

Indicator
Name

Population
density
(people

per sq. km

of land ...

Population
density
(people

per sq. km

of land ...

Population
density
(people

per sq. km

of land ...

Population
density
(people

per sq. km

of land ...

Indicator
Code

EN.POP.DNST

EN.POP.DNST

EN.POP.DNST

EN.POP.DNST

1960

NaN

NaN

NaN

NaN

1961

210.172807

2540.895522

20.055880

154.275864

"India"]]
1962 1963
212.029284  214.001527
2612.238806 2679.104478
20.366723 20.661953
157.424902 160.679256

Figure 1.34: Slicing Germany, Singapore, United States, and India
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10. Use chaining to get the rows for Germany, Singapore, United States, and India and
return only the values for the years 1970, 1990, and 2010. Since the double bracket
queries return new DataFrames, we can chain methods and therefore access
distinct subframes of our data:

country list = ["Germany", "Singapore", "United States", "India"]

dataset.loc[country list][["1970", "13890", "2010"]]

The output of the preceding code is as follows:

1970 1990 2010

Country Name
Germany 223.897371 227.517054 234.606908
Singapore 3096.268657 4547.958209 7231.811966
United States 22.388131 27254514  33.817938
India 186.312757  292.817404 414.028200

Figure 1.35: Slices some of the countries and their population density for 1970, 1990, and 2010
Iterating

11. Tterate our dataset and print out the countries up until Angola using the
iterrows () method. The index will be the name of our row, and the row will
hold all the columns:

for index, row in dataset.iterrows() :
# only printing the rows until Angola
if index == 'Angola':
break

print (index, '\n', row[["Country Code", "1970"™, "1990", "2010"]1],
l\nl)
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The output of the preceding code is as follows:

Aruba

Country Code ABW
1970 328.139
1990 345,267
2010 564.428

Name: Aruba, dtype: object

Andorra

Country Code AND
1970 51.6574
1990 115.981
2010 179.615

Name: Andorra, dtype: object

Afghanistan

Country Code AFG
1970 17.0344
1990 18.4842
2010 42.8303

Name: Afghanistan, dtype: object

Figure 1.36: Iterating all countries until Angola

We've already covered most of the underlying data wrangling methods using pandas. In
the next exercise, we'll take a look at more advanced features such as filtering, sorting,
and reshaping to prepare you for the next chapter.

Advanced pandas Operations

In this section, we will learn about some advanced pandas operations such as filtering,
sorting, and reshaping and implement them in an exercise.

Filtering

Filtering in pandas has a higher-level interface than NumPy. You can still use the
simple brackets-based conditional filtering. However, you're also able to use more
complex queries, for example, filter rows based on labels using likeness, which allows
us to search for a substring using the 1ike argument and even full regular expressions
using regex

dataset.filter (items=["1990"]) # only column 1994

dataset|[ (dataset["1990"] < 10)] # countries population density < 10 in
1999

dataset.filter (1like="8", axis=1) # years containing an 8

dataset.filter (regex="as$", axis=0) # countries ending with a
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Sorting

Sorting each row or column based on a given row or column will help you analyze

your data better and find the ranking of a given dataset. With pandas, we are able to

do this pretty easily. Sorting in ascending and descending order can be done using the
parameter known as ascending. The default sorting order is ascending. Of course, you
can do more complex sorting by providing more than one value in theby = [ ] list.
Those will then be used to sort values for which the first value is the same:

dataset.sort values(by=["1999"]) # values sorted by 1999
# values sorted by 1999 descending
dataset.sort values (by=["1994"], ascending=False)

Reshaping

Reshaping can be crucial for easier visualization and algorithms. However, depending
on your data, this can get really complex:

dataset.pivot (index=["1999"] * len(dataset), columns="Country Code",
values="1999")

Now, we will use advanced pandas operations to perform an exercise.

Exercise 1.07: Filtering, Sorting, and Reshaping

This exercise provides some more complex tasks and also combines most of the
methods we learned about previously as a recap. After this exercise, you should be able
to read the most basic pandas code and understand its logic.

Let's use pandas to filter, sort, and reshape our data.
Filtering
1. Import the necessary libraries:

# importing the necessary dependencies
import pandas as pd
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2. Use the read_csv method to load the dataset, again defining our first column as an
index column:

# loading the dataset

dataset = pd.read csv('../../Datasets/world population.csv', index
col=0)

3. Use filter instead of using the bracket syntax to filter for specific items. Filter the
dataset for columns 1961, 2000, and 2015 using the items parameter:

# filtering columns 1961, 2000, and 2015
dataset.filter (items=["1961", "2000", "2015"]) .head()

The output of the preceding code is as follows:

1961 2000 2015

Country Name
Aruba 307.972222 504.766667 577161111
Andorra 30.587234 139.146809 149.942553
Afghanistan 14.038148 30.177894 49.821649
Angola 4.305195 12.078798  20.070565

Albania 60576642 112.738212 105.444051

Figure 1.37: Filtering data for 1961, 2000, and 2015

4. Use conditions to get all the countries that had a higher population density than
500 in 2000. Simply pass this condition in brackets:

# filtering countries that had a greater population density than 500 in
2000

dataset [ (dataset ["2000™] > 500)][["2000™]]
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The output of the preceding code is as follows:

2000
Country Name
Aruba 504.766667
Bangladesh 1008.532988
Bahrain 939.232394
Bermuda 1236.660000
Barbados 627.530233
Channel Islands 766.623711
Gibraltar  2735.100000
Hong Kong SAR, China 6347.619048
Macao SAR, China 21595.350000
St. Martin (French part) 521.764706
Monaco 16040.500000

Figure 1.38: Filtering out values that are greater than 500 in the 2000 column

5. Search for arbitrary columns or rows (depending on the index given) that match a
certain regex. Get all the columns that start with 2 by passing #2 (meaning that it
starts at 2):

dataset.filter (regex=""2", axis=1) .head()

The output of the preceding code is as follows:

2000 2001 2002 2003 2004

Country
Name

Aruba 504.766667 516.077778 527.750000 538.972222 548.566667
Andorra 139.146809 144.191489 151.161702 159.112766 166.674468
Afghanistan  30.177894 31448029 32.912231 34.475030 35.995236
Angola 12.078798 12.483188 12.921871 13.388462  13.873025
Albania 112.738212 111.685146 111.350730 110.934891 110.472226

Figure 1.39: Retrieving all columns starting with 2
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6. Filter the rows instead of the columns by passing axis=0. This will be helpful for
situations when we want to filter all the rows that start with A:

dataset.filter (regex=""A", axis=0) .head()
The output of the preceding code is as follows:

Country Indicator Indicator

Code Name Code 1960 1961 1962 1963

Country
Name

Population
density
Aruba ABW (people EN.POP.DNST NaN 307972222 312.366667 314.983333
per sqg. km
of land ...

Population
density
Andorra AND (people EN.POP.DNST NaN 30.587234 32.714894 34.914894
per sqg. km
of land ...

Population
density
Afghanistan AFG (people EN.POP.DNST NaN 14.038148 14.312061 14.599692
per sqg. km
of land ...

Population
density
Angola AGO (people EN.POP.DNST NaN 4.305195 4.384299 4.464433
per sqg. km
of land ...

Population
density
Albania ALB (people EN.POP.DNST NaN 60.576642 62.456898 64.329234
per sqg. km
of land ...

5 rows x 60 columns

Figure 1.40: Retrieving the rows that start with A
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7. Use the 1ike query to find only the countries that contain the word l1and, such
as Switzerland:

dataset.filter (like="1land", axis=0) .head()
The output of the preceding code is as follows:

Country Indicator Indicator

Code Name Code 1960 1961 1962 1963

Country
Name

Population
density
Switzerland CHE (people EN.POP.DNST NaN 137479609 141.009285 144.056036
per sg. km
of land ...

Population
density

CHI (people EN.POP.DNST NaN 569.067010 574.551546 580.386598
per sg. km
of land ...

Channel
Islands

Population
density

CYM (people EN.POP.DNST NaN 33.441667 33.925000 34.283333
per sg. km
of land ...

Cayman
Islands

Population
density
Finland FIN (people EN.POP.DNST NaN 14.645934 14.745865 14.850484
per sg. km
of land ...

Population
density
FRO (people EN.POP.DNST NaN 24.878223 25.181232 25.465616
per sg. km
of land ...

Faroe
Islands

5 rows x 60 columns

Figure 1.41: Retrieving all countries containing the word "land"
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Sorting

8. Use the sort_values or sort_index method to get the countries with the lowest
population density for the year 1961:

dataset.sort values (by=["1961"]) [["1961"]] .head(10)

The output of the preceding code is as follows:

1961

Country Name
Greenland 0.098625
Mongolia 0.632212
Namibia 0.749775
Libya 0.843320
Mauritania 0.856916
Botswana 0.946793
United Arab Emirates 1.207955
Australia 1.364565
Iceland 1.785825

Oman 1.825186

Figure 1.42: Sorting by the values for the year 1961
9. Just for comparison, carry out sorting for 2015:

dataset.sort values(by=["2015"]) [["2015"]].head(10)
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The output of the preceding code is as follows:

2015

Country Name
Greenland 0.136713
Mongolia 1.904744
Namibia 2.986590
Australia 3.095579
Iceland 3.299980
Suriname 3.480609
Libya 3.568227
Guyana 3.896800
Canada 3.942567

Mauritania 3.946409

Figure 1.43: Sorting based on the values of 2015

We can see that the order of the countries with the lowest population density has
changed a bit, but that the first three entries remain unchanged.

10. Sort column 2015 in descending order to show the biggest values first:

dataset.sort values (by=["2015"], ascending=False) [["2015"]].head(10)
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The output of the preceding code is as follows:

2015

Country Name
Macao SAR, China 19392.937294
Monaco 18865.500000
Singapore  7828.857143
Hong Kong SAR, China 6957.809524
Gibraltar  3221.700000
Bahrain 1788.619481
Maldives 1363.876667
Malta 1347.915625
Bermuda 1304.700000

Bangladesh 1236.810648

Figure 1.44: Sorting in descending order
Reshaping

11. Get a DataFrame where the columns are country codes and the only row is the
year 2015. Since we only have one 2015 label, we need to duplicate it as many
times as our dataset's length:

# reshaping to 2015 as row and country codes as columns
dataset 2015 = dataset[["Country Code", "2015"]]

dataset 2015.pivot (index=["2015"] * len(dataset 2015),
columns="Country Code", values="2015")

The output of the preceding code is as follows:

Country

Code ABW AFG AGO ALB AND ARB ARE ARG ARM

2015 577161111 49.821649 20.070565 105.444051 149.942553 28.779858 109.53305 15.864696 105.996207

1rows x 264 columns

Figure 1.45: Reshaping the dataset into a single row for the values of 2015
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You now know the basic functionality of pandas and have already applied it to a real-
world dataset. In the final activity for this chapter, we will try to analyze a forest fire
dataset to get a feeling for mean forest fire sizes and whether the temperature of each
month is proportional to the number of fires.

Activity 1.02: Forest Fire Size and Temperature Analysis

In this activity, we will use pandas features to derive some insights from a forest fire
dataset. We will get the mean size of forest fires, what the largest recorded fire in
our dataset is, and whether the amount of forest fires grows proportionally to the
temperature in each month.

Our forest fires dataset has the following structure:
* X: X-axis spatial coordinate within the Montesinho park map:1to 9
* Y: Y-axis spatial coordinate within the Montesinho park map: 2 to 9
* month: Month of the year: 'jan' to 'dec’
* day: Day of the week: 'mon' to 'sun'
* FFMC: FFMC index from the FWI system: 18.7 to 96.20
» pMC: DMC index from the FWI system: 1.1 to 291.3
* DC: DC index from the FWI system: 7.9 to 860.6
e ISI:ISIindex from the FWI system: 0.0 to 56.10
* temp: Temperature in degrees Celsius: 2.2 to 33.30
* RH: Relative humidity in %: 15.0 to 100
* wind: Wind speed in km/h: 0.40 to 9.40
* rain: Qutside rain in mm/m? 0.0 to 6.4

* area: The burned area of the forest (in ha): 0.00 to 1090.84

Note

We will only be using the month, temp, and area columns in this activity.
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The following are the steps for this activity:

1.

2.
3.

Open the Activityl.02.ipynb Jupyter Notebook from the Chapter01 folder to
complete this activity. Import pandas using the pd alias.

Load the forestfires.csv dataset using pandas.

Print the first two rows of the dataset to get a feeling for its structure.

Derive insights from the sizes of forest fires

1.

2.

4.

Filter the dataset so that it only contains entries that have an area larger than 0.

Get the mean, min, max, and std of the area column and see what information this
gives you.

Sort the filtered dataset using the area column and print the last 20 entries using
the tail method to see how many huge values it holds.

Then, get the median of the area column and visually compare it to the mean value.

Finding the month with the most forest fires

1.

2.

Get a list of unique values from the month column of the dataset.

Get the number of entries for the month of March using the shape member of
our DataFrame.

Now, iterate over all the months, filter our dataset for the rows containing the
given month, and calculate the mean temperature. Print a statement with the
number of fires, the mean temperature, and the month.

Note

The solution for this activity can be found on page 351.

You have now completed this topic all about pandas, which concludes this chapter. We
have learned about the essential tools that help you wrangle and work with data. pandas
is an incredibly powerful and widely used tool for wrangling and understanding data.
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Summary

NumPy and pandas are essential tools for data wrangling. Their user-friendly
interfaces and performant implementation make data handling easy. Even though
they only provide a little insight into our datasets, they are valuable for wrangling,
augmenting, and cleaning our datasets. Mastering these skills will improve the quality
of your visualizations.

In this chapter, we learned about the basics of NumPy, pandas, and statistics. Even
though the statistical concepts we covered are basic, they are necessary to enrich

our visualizations with information that, in most cases, is not directly provided in our
datasets. This hands-on experience will help you implement the exercises and activities
in the following chapters.

In the next chapter, we will focus on the different types of visualizations and how to
decide which visualization would be best for our use case. This will give you theoretical
knowledge so that you know when to use a specific chart type and why. It will also lay
down the fundamentals of the remaining chapters in this book, which will focus on
teaching you how to use Matplotlib and seaborn to create the plots we have discussed
here. After we have covered basic visualization techniques with Matplotlib and seaborn,
we will dive more in-depth and explore the possibilities of interactive and animated
charts, which will introduce an element of storytelling into our visualizations.









All You Need to Know
about Plots

Overview

In this chapter, we will learn the basics of different types of plots. You will design
attractive, tangible visualizations, and learn how to identify the best plot type for a
given dataset and scenario.
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Introduction

In the previous chapter, we learned how to work with new datasets and get familiar
with their data and structure. We also got hands-on experience of how to analyze and
transform them using different data wrangling techniques such as filtering, sorting, and
reshaping. All of these techniques will come in handy when working with further real-
world datasets in the coming activities.

In this chapter, we will focus on various visualizations and identify which visualization
is best for showing certain information for a given dataset. We will describe every
visualization in detail and give practical examples, such as comparing different stocks
over time or comparing the ratings for different movies. Starting with comparison plots,
which are great for comparing multiple variables over time, we will look at their types
(such as line charts, bar charts, and radar charts).

We will then move onto relation plots, which are handy for showing relationships
among variables. We will cover scatter plots for showing the relationship between two
variables, bubble plots for three variables, correlograms for variable pairs, and finally,
heatmaps for visualizing multivariate data.

The chapter will further explain composition plots (used to visualize variables that are
part of a whole), as well as pie charts, stacked bar charts, stacked area charts, and Venn
diagrams. To give you a deeper insight into the distribution of variables, we will discuss
distribution plots, describing histograms, density plots, box plots, and violin plots.

Finally, we will talk about dot maps, connection maps, and choropleth maps, which
can be categorized into geoplots. Geoplots are useful for visualizing geospatial data.
Let's start with the family of comparison plots, including line charts, bar charts, and
radar charts.

Note

The data used in this chapter has been provided to demonstrate the different
types of plots available to you. In each case, the data itself will be revisited and
explained more fully in a later chapter.
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Comparison Plots

Comparison plots include charts that are ideal for comparing multiple variables

or variables over time. Line charts are great for visualizing variables over time. For
comparison among items, bar charts (also called column charts) are the best way to
go. For a certain time period (say, fewer than 10-time points), vertical bar charts can be
used as well. Radar charts or spider plots are great for visualizing multiple variables for
multiple groups.

Line Chart

Line charts are used to display quantitative values over a continuous time period and
show information as a series. A line chart is ideal for a time series that is connected by
straight-line segments.

The value being measured is placed on the y-axis, while the x-axis is the timescale.

Uses

* Line charts are great for comparing multiple variables and visualizing trends for
both single as well as multiple variables, especially if your dataset has many time
periods (more than 10).

» For smaller time periods, vertical bar charts might be the better choice.
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The following diagram shows a trend of real estate prices (per million US dollars) across
two decades. Line charts are ideal for showing data trends:

140 7

120 4

1004
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40 4

Real Estate Prices (in million US dollars)

20 4

1995 2000 2005 2010 2015
Years

Figure 2.1: Line chart for a single variable
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Example

The following figure is a multiple-variable line chart that compares the stock-closing
prices for Google, Facebook, Apple, Amazon, and Microsoft. A line chart is great for
comparing values and visualizing the trend of the stock. As we can see, Amazon shows
the highest growth:

Stock trend

—— Google
—— Facebook
—— Apple
1300 4 — Amazon
—— Microsoft

1400

1200

1100

1000

900 1

Closing price in $

Figure 2.2: Line chart showing stock trends for five companies

Design Practices
* Avoid too many lines per chart.

* Adjust your scale so that the trend is clearly visible.

Note

For plots with multiple variables, a legend should be given to describe
each variable.
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Bar Chart

In a bar chart, the bar length encodes the value. There are two variants of bar charts:
vertical bar charts and horizontal bar charts.

Use

While they are both used to compare numerical values across categories, vertical bar
charts are sometimes used to show a single variable over time.

Don'ts of Bar Charts

* Don't confuse vertical bar charts with histograms. Bar charts compare different
variables or categories, while histograms show the distribution for a single variable.
Histograms will be discussed later in this chapter.

* Another common mistake is to use bar charts to show central tendencies among
groups or categories. Use box plots or violin plots to show statistical measures or
distributions in these cases.

Examples

The following diagram shows a vertical bar chart. Each bar shows the marks out of 100
that 5 students obtained in a test:

Test results
100

80

60 -

Mark

40

20 A

Nancy John Juan Robert Patricia
Student name

Figure 2.3: Vertical bar chart using student test data
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The following diagram shows a horizontal bar chart. Each bar shows the marks out of
100 that 5 students obtained in a test:

Test results

Patricia

Robert

Juan

Student name

John

Nancy

80 100

Mark

Figure 2.4: Horizontal bar chart using student test data
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The following diagram compares movie ratings, giving two different scores. The
Tomatometer is the percentage of approved critics who have given a positive review
for the movie. The Audience Score is the percentage of users who have given a score

of 3.5 or higher out of 5. As we can see, The Martian is the only movie with both a high
Tomatometer and Audience Score. The Hobbit: An Unexpected Journey has a relatively
high Audience Score compared to the Tomatometer score, which might be due to a
huge fan base:

Movie comparison

100% +

I Tomatometer
____ B Audience Score |

80% -
60% -
40%

20% -

0% -

The ShaP® of Watel Black Panthe’ punkirk The Martia?

Figure 2.5: Comparative bar chart

Design Practices

* The axis corresponding to the numerical variable should start at zero. Starting with
another value might be misleading, as it makes a small value difference look like a
big one.

» Use horizontal labels—that is, as long as the number of bars is small, and the chart
doesn't look too cluttered.

» The labels can be rotated to different angles if there isn't enough space to
present them horizontally. You can see this on the labels of the x-axis of the
preceding diagram.
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Radar Chart

Radar charts (also known as spider or web charts) visualize multiple variables with
each variable plotted on its own axis, resulting in a polygon. All axes are arranged
radially, starting at the center with equal distances between one another, and have
the same scale.

Uses

* Radar charts are great for comparing multiple quantitative variables for a single
group or multiple groups.

» They are also useful for showing which variables score high or low within a dataset,
making them ideal for visualizing performance.

Examples

The following diagram shows a radar chart for a single variable. This chart displays data
about a student scoring marks in different subjects:

Math

English

Geography

Figure 2.6: Radar chart for one variable (student)
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The following diagram shows a radar chart for two variables/groups. Here, the chart
explains the marks that were scored by two students in different subjects:

English

Math Geography

Figure 2.7: Radar chart for two variables (two students)
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The following diagram shows a radar chart for multiple variables/groups. Each chart
displays data about a student's performance in different subjects:

Geography

100

History
English
Science
Nancy
Math
Geography
100
History
English

Science

Robert

Math
Geography

100

History
English

Science

John

Math
Geography

English

Science

Patricia

Figure 2.8: Radar chart with faceting for multiple variables (multiple students)
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Design Practices
* Try to display 10 factors or fewer on a single radar chart to make it easier to read.

* Use faceting (displaying each variable in a separate plot) for multiple variables/
groups, as shown in the preceding diagram, in order to maintain clarity.

In the first section, we learned which plots are suitable for comparing items. Line charts
are great for comparing something over time, whereas bar charts are for comparing
different items. Last but not least, radar charts are best suited for visualizing multiple
variables for multiple groups. In the following activity, you can check whether you
understood which plot is best for which scenario.

Activity 2.01: Employee Skill Comparison

You are given scores of four employees (Alex, Alice, Chris, and Jennifer) for five
attributes: efficiency, quality, commitment, responsible conduct, and cooperation. Your
task is to compare the employees and their skills. This activity will foster your skills in
choosing the best visualization when it comes to comparing items.

1. Which charts are suitable for this task?

2. You are given the following bar and radar charts. List the advantages and
disadvantages of both charts. Which is the better chart for this task in your
opinion, and why?

The following diagram shows a bar chart for the employee skills:

5_

Efficiency Quality Commitment  Responsible Conduct Cooperation

Figure 2.9: Employee skills comparison with a bar chart
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The following diagram shows a radar chart for the employee skills:

Alex Alice
Quality Quality

Commit A‘ Commit

iciency Efficiency
Responsible Responsible
Cooperation Cooperation
Chris Jennifer
Quality Quality
Commitme Commit
Efficiency Efficiency
Responsible Responsible
Cooperation Cooperation

Figure 2.10: Employee skills comparison with a radar chart

3. What could be improved in the respective visualizations?

Note

The solution to this activity can be found on page 356.
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Concluding the activity, you hopefully have a good understanding of deciding which
comparison plots are best for the situation. In the next section, we will discuss different
relation plots.

Relation Plots

Relation plots are perfectly suited to showing relationships among variables. A scatter
plot visualizes the correlation between two variables for one or multiple groups. Bubble
plots can be used to show relationships between three variables. The additional third
variable is represented by the dot size. Heatmaps are great for revealing patterns or
correlations between two qualitative variables. A correlogram is a perfect visualization
for showing the correlation among multiple variables.

Scatter Plot
Scatter plots show data points for two numerical variables, displaying a variable on
both axes.
Uses
* You can detect whether a correlation (relationship) exists between two variables.

* They allow you to plot the relationship between multiple groups or categories
using different colors.

* Abubble plot, which is a variation of the scatter plot, is an excellent tool for
visualizing the correlation of a third variable.
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Examples

The following diagram shows a scatter plot of height and weight of persons belonging
to a single group:
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Figure 2.11: Scatter plot with a single group
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The following diagram shows the same data as in the previous plot but differentiates
between groups. In this case, we have different groups: A, B, and C:
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Figure 2.12: Scatter plot with multiple groups
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The following diagram shows the correlation between body mass and the maximum
longevity for various animals grouped by their classes. There is a positive correlation
between body mass and maximum longevity:

Maximum longevity in years
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Design Practices

Body mass in grams

Figure 2.13: Correlation between body mass and maximum longevity for animals

» Start both axes at zero to represent data accurately.

» Use contrasting colors for data points and avoid using symbols for scatter plots

with multiple groups or categories.

Variants: Scatter Plots with Marginal Histograms

In addition to the scatter plot, which visualizes the correlation between two numerical
variables, you can plot the marginal distribution for each variable in the form of
histograms to give better insight into how each variable is distributed.
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Examples

The following diagram shows the correlation between body mass and the maximum
longevity for animals in the Aves class. The marginal histograms are also shown, which
helps to get a better insight into both variables:

Scatter plot with marginal histograms

0.0010 -
0.0008 -
0.0006 -
0.0004 -
0.0002 -
0.0000 -
°
80
°
°
o °
g 60 *
€ e
2
2 °
> °
e
o ® o ™
c40{ %o o °° °
5 - .® ° °
£ ool o ° °
X o0 o
5 o o °
= ® o 0 °
o0 o ©
" ®ee & » ° o
20 3,08 °° oA o° N °
TRE) °, e ©
o0 Y ol o ° °
‘.' ° ° *°
A. [ ) [ ]
°
0..
0 2000 4000 6000 8000 10000 12000 14000  0.00 0.05

Body mass in grams

Figure 2.14: Correlation between body mass and maximum longevity
of the Aves class with marginal histograms
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Bubble Plot

A bubble plot extends a scatter plot by introducing a third numerical variable. The
value of the variable is represented by the size of the dots. The area of the dots is
proportional to the value. A legend is used to link the size of the dot to an actual
numerical value.

Use

Bubble plots help to show a correlation between three variables.

Example

The following diagram shows a bubble plot that highlights the relationship between
heights and age of humans to get the weight of each person, which is represented by
the size of the bubble:

Relation between age, height, and weight for humans
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Figure 2.15: Bubble plot showing the relation between height and age of humans
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Design Practices
* The design practices for the scatter plot are also applicable to the bubble plot.

* Don't use bubble plots for very large amounts of data, since too many bubbles make
the chart difficult to read.

Correlogram

A correlogram is a combination of scatter plots and histograms. Histograms will be
discussed in detail later in this chapter. A correlogram or correlation matrix visualizes
the relationship between each pair of numerical variables using a scatter plot.

The diagonals of the correlation matrix represent the distribution of each variable in
the form of a histogram. You can also plot the relationship between multiple groups or
categories using different colors. A correlogram is a great chart for exploratory data
analysis to get a feel for your data, especially the correlation between variable pairs.

Examples

The following diagram shows a correlogram for the height, weight, and age of humans.
The diagonal plots show a histogram for each variable. The off-diagonal elements show
scatter plots between variable pairs:
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Figure 2.16: Correlogram with a single category
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The following diagram shows the correlogram with data samples separated by color

into different groups:
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Figure 2.17: Correlogram with multiple categories

Design Practices

» Start both axes at zero to represent data accurately.

Group
e Group A
e GroupB
e GroupC

» Use contrasting colors for data points and avoid using symbols for scatter plots

with multiple groups or categories.
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Heatmap

A heatmap is a visualization where values contained in a matrix are represented as
colors or color saturation. Heatmaps are great for visualizing multivariate data (data in
which analysis is based on more than two variables per observation), where categorical
variables are placed in the rows and columns and a numerical or categorical variable is
represented as colors or color saturation.

Use

The visualization of multivariate data can be done using heatmaps as they are great for
finding patterns in your data.

Examples

The following diagram shows a heatmap for the most popular products on the
electronics category page across various e-commerce websites, where the color shows
the number of units sold. In the following diagram, we can analyze that the darker
colors represent more units sold, as shown in the key:
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Figure 2.18: Heatmap for popular products in the electronics category
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Variants: Annotated Heatmaps

Let's see the same example we saw previously in an annotated heatmap, where the
color shows the number of units sold:
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Figure 2.19: Annotated heatmap for popular products in the electronics category

Design Practice

» Select colors and contrasts that will be easily visible to individuals with vision
problems so that your plots are more inclusive.

In this section, we introduced various plots for relating a variable to other variables and
looked at their uses, and multiple examples for the different relation plots were given.
The following activity will give you some practice in working with heatmaps.
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Activity 2.02: Road Accidents Occurring over Two Decades

You are given a diagram that provides information about the road accidents that
have occurred over the past two decades during the months of January, April, July,
and October. The aim of this activity is to understand how you can use heatmaps to
visualize multivariate data.

1. Identify the two years during which the number of road accidents occurring was
the least.

2. For the past two decades, identify the month for which accidents showed a
marked decrease:

700

January
600

500
April
s
s 400
=
July
300
200
October
- 100
1995 2000 2005 2010 2015
Year
Figure 2.20: Total accidents over 20 years
Note

The solution to this activity can be found on page 356.
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Composition Plots

Composition plots are ideal if you think about something as a part of a whole. For static
data, you can use pie charts, stacked bar charts, or Venn diagrams. Pie charts or donut
charts help show proportions and percentages for groups. If you need an additional
dimension, stacked bar charts are great. Venn diagrams are the best way to visualize
overlapping groups, where each group is represented by a circle. For data that changes
over time, you can use either stacked bar charts or stacked area charts.

Pie Chart

Pie charts illustrate numerical proportions by dividing a circle into slices. Each arc
length represents a proportion of a category. The full circle equates to 100%. For
humans, it is easier to compare bars than arc lengths; therefore, it is recommended to
use bar charts or stacked bar charts the majority of the time.

Use

To compare items that are part of a whole.
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Examples

The following diagram shows household water usage around the world:

Water usage

Clothes Washer

Leak

Other

Shower

Toilet

Figure 2.21: Pie chart for global household water usage
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Design Practices

* Arrange the slices according to their size in increasing /decreasing order, either in
a clockwise or counterclockwise manner.

* Make sure that every slice has a different color.

Variants: Donut Chart

An alternative to a pie chart is a donut chart. In contrast to pie charts, it is easier to
compare the size of slices, since the reader focuses more on reading the length of
the arcs instead of the area. Donut charts are also more space-efficient because the
center is cut out, so it can be used to display information or further divide groups
into subgroups.

The following diagram shows a basic donut chart:

Group A

Group B Group C

Figure 2.22: Donut chart
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The following diagram shows a donut chart with subgroups:

Group A

Group B ‘ Group C

Figure 2.23: Donut chart with subgroups

Design Practice

» Use the same color that's used for the category for the subcategories. Use varying
brightness levels for the different subcategories.

Stacked Bar Chart

Stacked bar charts are used to show how a category is divided into subcategories

and the proportion of the subcategory in comparison to the overall category. You can
either compare total amounts across each bar or show a percentage of each group. The
latter is also referred to as a 100% stacked bar chart and makes it easier to see relative
differences between quantities in each group.
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Use

» To compare variables that can be divided into sub-variables

Examples

The following diagram shows a generic stacked bar chart with five groups:
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Figure 2.24: Stacked bar chart to show sales of laptops and mobiles
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The following diagram shows a 100% stacked bar chart with the same data that was
used in the preceding diagram:
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Figure 2.25: 100% stacked bar chart to show sales of laptops, PCs, and mobiles
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The following diagram illustrates the daily total sales of a restaurant over several
days. The daily total sales of non-smokers are stacked on top of the daily total sales
of smokers:

Restaurant performance
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Figure 2.26: Daily total restaurant sales categorized by smokers and non-smokers

Design Practices
» Use contrasting colors for stacked bars.

* Ensure that the bars are adequately spaced to eliminate visual clutter. The ideal
space guideline between each bar is half the width of a bar.

» Categorize data alphabetically, sequentially, or by value, to uniformly order it and
make things easier for your audience.
Stacked Area Chart

Stacked area charts show trends for part-of-a-whole relations. The values of several
groups are illustrated by stacking individual area charts on top of one another. It helps
to analyze both individual and overall trend information.
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Use

To show trends for time series that are part of a whole.

Examples

The following diagram shows a stacked area chart with the net profits of Google,
Facebook, Twitter, and Snapchat over a decade:
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Figure 2.27: Stacked area chart to show net profits of four companies

Design Practice

» Use transparent colors to improve information visibility. This will help you to
analyze the overlapping data and you will also be able to see the grid lines.

In this section, we covered various composition plots and we will conclude this section
with the following activity.
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Activity 2.03: Smartphone Sales Units

You want to compare smartphone sales units for the five biggest smartphone
manufacturers over time and see whether there is any trend. In this activity, we also
want to look at the advantages and disadvantages of stacked area charts compared to
line charts:

1.

Sales units in thousands

Looking at the following line chart, analyze the sales of each manufacturer and
identify the one whose fourth-quarter performance is exceptional when compared
to the third quarter.

Analyze the performance of all manufacturers and make a prediction about two
companies whose sales units will show a downward and an upward trend:

Smartphone sales units

—— Apple
Samsung
80000 1 —— Huawei

— Xiaomi

70000 A OPPO

60000 A
50000 A

40000 -

30000 -

20000 A

10000 A

3Q16 4Q16 1Q17 2Q17 3Q17 4Q17 1Q18 2Q18
Quarters

Figure 2.28: Line chart of smartphone sales units

What would be the advantages and disadvantages of using a stacked area chart
instead of a line chart?

Note

The solution to this activity can be found on page 357.
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Venn Diagram

Venn diagrams, also known as set diagrams, show all possible logical relations between
a finite collection of different sets. Each set is represented by a circle. The circle size
illustrates the importance of a group. The size of overlap represents the intersection
between multiple groups.

Use

To show overlaps for different sets.

Example

Visualizing the intersection of the following diagram shows a Venn diagram for students
in two groups taking the same class in a semester:

Group B
Group A
Figure 2.29: Venn diagram showing students taking the same class
From the preceding diagram, we can note that there are eight students in just group A,
four students in just group B, and one student in both groups.
Design Practice

* Itis not recommended to use Venn diagrams if you have more than three groups.
It would become difficult to understand.

Moving on from composition plots, we will cover distribution plots in the
following section.
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Distribution Plots

Distribution plots give a deep insight into how your data is distributed. For a single
variable, a histogram is effective. For multiple variables, you can either use a box plot or
a violin plot. The violin plot visualizes the densities of your variables, whereas the box
plot just visualizes the median, the interquartile range, and the range for each variable.

Histogram

A histogram visualizes the distribution of a single numerical variable. Each bar
represents the frequency for a certain interval. Histograms help get an estimate
of statistical measures. You see where values are concentrated, and you can easily
detect outliers. You can either plot a histogram with absolute frequency values or,
alternatively, normalize your histogram. If you want to compare distributions of
multiple variables, you can use different colors for the bars.

Use

Get insights into the underlying distribution for a dataset.

Example

The following diagram shows the distribution of the Intelligence Quotient (IQ) for a
test group. The dashed lines represent the standard deviation each side of the mean
(the solid line):
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Figure 2.30: Distribution of IQ for a test group of a hundred adults
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Design Practice
* Try different numbers of bins (data intervals), since the shape of the histogram can
vary significantly.
Density Plot

A density plot shows the distribution of a numerical variable. It is a variation of a
histogram that uses kernel smoothing, allowing for smoother distributions. One
advantage these have over histograms is that density plots are better at determining the
distribution shape since the distribution shape for histograms heavily depends on the
number of bins (data intervals).

Use

To compare the distribution of several variables by plotting the density on the same axis
and using different colors.

Example

The following diagram shows a basic density plot:
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Figure 2.31: Density plot
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The following diagram shows a basic multi-density plot:
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Figure 2.32: Multi-density plot

Design Practice

» Use contrasting colors to plot the density of multiple variables.

Box Plot

The box plot shows multiple statistical measurements. The box extends from the lower
to the upper quartile values of the data, thus allowing us to visualize the interquartile
range (IQR). The horizontal line within the box denotes the median. The parallel
extending lines from the boxes are called whiskers; they indicate the variability outside
the lower and upper quartiles. There is also an option to show data outliers, usually as
circles or diamonds, past the end of the whiskers.
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Use

Compare statistical measures for multiple variables or groups.

Examples

The following diagram shows a basic box plot that shows the height of a group
of people:
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Figure 2.33: Box plot showing a single variable
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The following diagram shows a basic box plot for multiple variables. In this case, it
shows heights for two different groups - adults and non-adults:

200

180

Non-Adult Adult
Adult

Figure 2.34: Box plot for multiple variables

In the next section, we will learn what the features, uses, and best practices are of the
violin plot.

Violin Plot

Violin plots are a combination of box plots and density plots. Both the statistical
measures and the distribution are visualized. The thick black bar in the center
represents the interquartile range, while the thin black line corresponds to the whiskers
in a box plot. The white dot indicates the median. On both sides of the centerline, the
density is visualized.
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Use

Compare statistical measures and density for multiple variables or groups.

Examples

The following diagram shows a violin plot for a single variable and shows how students
have performed in Math:
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Figure 2.35: Violin plot for a single variable (Math)

From the preceding diagram, we can analyze that most of the students have scored
around 40-60 in the Math test.
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The following diagram shows a violin plot for two variables and shows the performance
of students in English and Math:
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Figure 2.36: Violin plot for multiple variables (English and Math)

From the preceding diagram, we can say that on average, the students have scored
more in English than in Math, but the highest score was secured in Math.
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The following diagram shows a violin plot for a single variable divided into three
groups, and shows the performance of three divisions of students in English based
on their score:
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Figure 2.37: Violin plot with multiple categories (three groups of students)

From the preceding diagram, we can note that on average, division C has scored the
highest, division B has scored the lowest, and division A is, on average, in between
divisions B and C.

Design Practice

» Scale the axes accordingly so that the distribution is clearly visible and not flat.

In this section, distribution plots were introduced. In the following activity, we will have
a closer look at histograms.



104 | All You Need to Know about Plots

Activity 2.04: Frequency of Trains during Different Time Intervals

You are provided with a histogram that states the number of trains arriving at
different time intervals in the afternoon to determine the maximum number of trains
arriving in 2-hour time intervals. The goal of this activity is to gain a deeper insight

into histograms:
1. Looking at the following histogram, can you identify the interval during which a
maximum number of trains arrive?
2. How would the histogram change if in the morning, the same total number of
trains arrive as in the afternoon, and if you have the same frequencies for all
time intervals?

>
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Time (pm)
Figure 2.38: Frequency of trains during different time intervals

Note

The solution to this activity can be found on page 358.
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With that activity, we conclude the section about distribution plots and we will
introduce geoplots in the next section.

Geoplots

Geological plots are a great way to visualize geospatial data. Choropleth maps can be
used to compare quantitative values for different countries, states, and so on. If you
want to show connections between different locations, connection maps are the way
to go.

Dot Map

In a dot map, each dot represents a certain number of observations. Each dot has the
same size and value (the number of observations each dot represents). The dots are
not meant to be counted; they are only intended to give an impression of magnitude.
The size and value are important factors for the effectiveness and impression of the
visualization. You can use different colors or symbols for the dots to show multiple
categories or groups.

Use

To visualize geospatial data.
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Example

The following diagram shows a dot map where each dot represents a certain amount of
bus stops throughout the world:

Figure 2.39: Dot map showing bus stops worldwide

Design Practices

* Do not show too many locations. You should still be able to see the map to get a
feel for the actual location.

¢ Choose a dot size and value so that in dense areas, the dots start to blend. The dot
map should give a good impression of the underlying spatial distribution.

Choropleth Map

In a choropleth map, each tile is colored to encode a variable. For example, a tile
represents a geographic region for counties and countries. Choropleth maps provide a
good way to show how a variable varies across a geographic area. One thing to keep in
mind for choropleth maps is that the human eye naturally gives more attention to larger
areas, so you might want to normalize your data by dividing the map area-wise.
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Use

To visualize geospatial data grouped into geological regions—for example, states
or countries.

Example

The following diagram shows a choropleth map of a weather forecast in the USA:

Figure 2.40: Choropleth map showing a weather forecast for the USA

Design Practices

» Use darker colors for higher values, as they are perceived as being higher
in magnitude.

* Limit the color gradation, since the human eye is limited in how many colors it can
easily distinguish between. Seven color gradations should be enough.

Connection Map

In a connection map, each line represents a certain number of connections between
two locations. The link between the locations can be drawn with a straight or rounded
line, representing the shortest distance between them.
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Each line has the same thickness and value (the number of connections each line
represents). The lines are not meant to be counted; they are only intended to give an
impression of magnitude. The size and value of a connection line are important factors
for the effectiveness and impression of the visualization.

You can use different colors for the lines to show multiple categories or groups, or you
can use a colormap to encode the length of the connection.
Use

To visualize connections.

Examples

The following diagram shows a connection map of flight connections around the world:

Figure 2.41: Connection map showing flight connections around the world
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Design Practices

* Do not show too many connections as it will be difficult for you to analyze the data.
You should still see the map to get a feel for the actual locations of the start and
end points.

* Choose a line thickness and value so that the lines start to blend in dense
areas. The connection map should give a good impression of the underlying
spatial distribution.

Geoplots are special plots that are great for visualizing geospatial data. In the following
section, we want to briefly talk about what's generally important when it comes to
creating good visualizations.

What Makes a Good Visualization?
There are multiple aspects to what makes a good visualization:

* Most importantly, the visualization should be self-explanatory and visually
appealing. To make it self-explanatory, use a legend, descriptive labels for your
x-axis and y-axis, and titles.

* Avisualization should tell a story and be designed for your audience. Before
creating your visualization, think about your target audience; create simple
visualizations for a non-specialist audience and more technical detailed
visualizations for a specialist audience. Think about a story to tell with your
visualization so that your visualization leaves an impression on the audience.

Common Design Practices

» Use colors to differentiate variables/subjects rather than symbols, as colors are
more perceptible.

* To show additional variables on a 2D plot, use color, shape, and size.

* Keep it simple and don't overload the visualization with too much information.
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Activity 2.05: Analyzing Visualizations

The following visualizations are not ideal as they do not represent data well. Answer the
following questions for each visualization. The aim of this activity is to sharpen your
skills with regard to choosing the best suitable plot for a scenario.

1. What are the bad aspects of these visualizations?

2. How could we improve the visualizations? Sketch the right visualization for
both scenarios.

The first visualization is supposed to illustrate the top 30 YouTube music channels
according to their number of subscribers:

T-Series KatyPerryVEVO

T-Series Bhakti Sagar
Canal KondZilla
Zee Music Company
Ed Sheeran .
EminemMusic »

RihannaVEVO

Bruno Mars

Spinnin' Records

YRF

Daddy Yankee

Ozuna

BLACKPINK
El Reino Infantil

SonyMusiclndiaVEVO
TaylorSwiftVEVO
Ariana Grande
GR6 EXPLODE
Taylor Swift Speed Records
Trap Nation
JustinBieberVEVO
Maroon 5

Alan Walker
Sony Music India

Shemaroo Filmi Gaane o Wave Music
ibighit One Direction

Figure 2.42: Pie chart showing the top 30 YouTube music channels
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The second visualization is supposed to illustrate the number of people playing a
certain game in a casino over 2 days:

3000
2750
2500
2250
2000
1750
1500

1250
1000 /

Poker Black Jack Roulette Craps

Figure 2.43: Line chart displaying casino data for 2 days

Note

The solution to this activity can be found on page 359.

Activity 2.06: Choosing a Suitable Visualization

In this activity, we are using a dataset to visualize the median, the interquartile ranges,
and the underlying density of populations from different income groups. Following is
the link to the dataset that we have used: https: //packt.live /2HgHxeK. Select the best
suitable plot from the following plots.



https://packt.live/2HgHxeK
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The following diagram shows the population by different income groups using a

density plot:
Population by different income groups

—— low income
—— middle income

0.030
—— high income

0.025
0.020

0.015

Density

0.010

0.005

0.000
80 100

40 60
Age

Figure 2.44: Density plot
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The following diagram shows the population by different income groups using a
box plot:

Population by different income groups

100 _._

80

60

40
) !
0

low income middle income high income
Income Group

Age

Figure 2.45: Box plot
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The following diagram shows the population by different income groups using a
violin plot:

Population by different income groups

100
80
60
)
(o))
<
40
20
0
low income middle income high income
Income Group
Figure 2.46: Violin plot
Note

The solution to this activity can be found on page 360.

Summary

This chapter covered the most important visualizations, categorized into comparison,
relation, composition, distribution, and geological plots. For each plot, a description,
practical examples, and design practices were given. Comparison plots, such as line
charts, bar charts, and radar charts, are well suited to comparing multiple variables
or variables over time. Relation plots are perfectly suited to show relationships
between variables. Scatter plots, bubble plots, which are an extension of scatter plots,
correlograms, and heatmaps were considered.
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Composition plots are ideal if you need to think about something as part of a whole.
We first covered pie charts and continued with stacked bar charts, stacked area charts,
and Venn diagrams. For distribution plots that give a deep insight into how your data

is distributed, histograms, density plots, box plots, and violin plots were considered.
Regarding geospatial data, we discussed dot maps, connection maps, and choropleth
maps. Finally, some remarks were provided on what makes a good visualization.

In the next chapter, we will dive into Matplotlib and create our own visualizations. We
will start by introducing the basics, followed by talking about how you can add text
and annotations to make your visualizations more comprehensible. We will continue
creating simple plots and using layouts to include multiple plots within a visualization.
At the end of the next chapter, we will explain how you can use Matplotlib to

visualize images.






A Deep Dive into
Matplotlib

Overview

By the end of this chapter, you will be able to describe the fundamentals of
Matplotlib and create visualizations using the built-in plots that are provided by
the library. You will also be able to customize your visualization plots and write
mathematical expressions using TeX.
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Introduction

In the previous chapter, we focused on various visualizations and identified which
visualization is best suited to show certain information for a given dataset. We
learned about the features, uses, and best practices for following various plots such as
comparison plots, relation plots, composition plots, distribution plots, and geoplots.

Matplotlib is probably the most popular plotting library for Python. It is used for data
science and machine learning visualizations all around the world. John Hunter was an
American neurobiologist who began developing Matplotlib in 2003. It aimed to emulate
the commands of the MATLAB software, which was the scientific standard back then.
Several features, such as the global style of MATLAB, were introduced into Matplotlib to
make the transition to Matplotlib easier for MATLAB users.

Before we start working with Matplotlib to create our first visualizations, we will

need to understand the hierarchical structure of plots in Matplotlib. We will then

cover the basic functionality, such as creating, displaying, and saving Figures. Before
covering the most common visualizations, text and legend functions will be introduced.
After that, layouts will be covered, which enable multiple plots to be combined

into one. We will end the chapter by explaining how to plot images and how to use
mathematical expressions.

Overview of Plots in Matplotlib

Plots in Matplotlib have a hierarchical structure that nests Python objects to create a
tree-like structure. Each plot is encapsulated in a Figure object. This Figure is the
top-level container of the visualization. It can have multiple axes, which are basically
individual plots inside this top-level container.

Figure
-

Figure 3.1: A Figure contains at least one axes object

Furthermore, we again find Python objects that control axes, tick marks, legends, titles,
text boxes, the grid, and many other objects. All of these objects can be customized.

The two main components of a plot are as follows:
* Figure

The Figure is an outermost container that allows you to draw multiple plots within
it. It not only holds the Axes object but also has the ability to configure the Title.
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e Axes

The axes is an actual plot, or subplot, depending on whether you want to plot
single or multiple visualizations. Its sub-objects include the x-axis, y-axis, spines,
and legends.

Observing this design, we can see that this hierarchical structure allows us to create a
complex and customizable visualization.

When looking at the "anatomy" of a Figure (shown in the following diagram), we get an
idea about the complexity of a visualization. Matplotlib gives us the ability not only to
display data, but also design the whole Figure around it by adjusting the Grid, X and Y
ticks, tick labels, and the Legend. This implies that we can modify every single bit of
a plot, starting from the Title and Legend, right down to the major and minor ticks on
the spines:

Anatomy of a Figure «—— itle
2 : |
|
Major tick I i —— Green
|
I | Yellow
2.5 - — | —
I egen
Minor tick - o I NHHM\ | —— Grid
| “ | I
o o . ]
P SN S, AS—
Major tick | -\
) o |© ° 5 :
label |
| o o I
Markers | I
215 \ o | © o I
> | o | O
> o Ql o o S \\‘_‘\
o o
¥ axis label | o Ca 1 o L
o i| o o o (o] ine
- & L A ]
! o o | ° o o /
OI o © © o S
o | @ o :
0.5 o | @ !
| Spines
: i P —
I I
0 I | i |
0.5 1.5 2.5
0 T 1 X axis 2 3
Minor tick label
X axis label

Figure 3.2: Anatomy of a Matplotlib Figure
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Taking a deeper look into the anatomy of a Figure object, we can observe the
following components:

* Spines: Lines connecting the axis tick marks

» Title: Text label of the whole Figure object

» Legend: Describes the content of the plot

* Grid: Vertical and horizontal lines used as an extension of the tick marks

* X/Y axis label: Text labels for the X and Y axes below the spines

* Minor tick: Small value indicators between the major tick marks

* Minor tick label: Text label that will be displayed at the minor ticks

* Major tick: Major value indicators on the spines

* Major tick label: Text label that will be displayed at the major ticks

* Line: Plotting type that connects data points with a line

* Markers: Plotting type that plots every data point with a defined marker
In this book, we will focus on Matplotlib's submodule, pyplot, which provides MATLAB-
like plotting.
Pyplot Basics

pyplot contains a simpler interface for creating visualizations that allow the users to
plot the data without explicitly configuring the Figure and Axes themselves. They are
automatically configured to achieve the desired output. It is handy to use the alias p1t
to reference the imported submodule, as follows:

import matplotlib.pyplot as plt

The following sections describe some of the common operations that are performed
when using pyplot.

Creating Figures

You can use plt. figure () to create a new Figure. This function returns a Figure
instance, but it is also passed to the backend. Every Figure-related command that
follows is applied to the current Figure and does not need to know the Figure instance.

By default, the Figure has a width of 6.4 inches and a height of 4.8 inches with a dpi
(dots per inch) of 100. To change the default values of the Figure, we can use the
parameters figsize and dpi.
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The following code snippet shows how we can manipulate a Figure:

plt.figure (figsize=(10, 5)) #To change the width and the height
plt.figure (dpi=300) #To change the dpi

Even though it is not necessary to explicitly create a Figure, this is a good practice if
you want to create multiple Figures at the same time.

Closing Figures

Figures that are no longer used should be closed by explicitly calling plt.close(),
which also cleans up memory efficiently.

If nothing is specified, the p1t.close () command will close the current Figure. To
close a specific Figure, you can either provide a reference to a Figure instance or
provide the Figure number. To find the number of a Figure object, we can make use of
the number attribute, as follows:

plt.gcf () .number

The plt.close('all') command is used to close all active Figures. The following
example shows how a Figure can be created and closed:

plt.figure (num=10) #Create Figure with Figure number 10
plt.close (10) #Close Figure with Figure number 10

For a small Python script that only creates a visualization, explicitly closing a Figure isn't
required, since the memory will be cleaned in any case once the program terminates.
But if you create lots of Figures, it might make sense to close Figures in between so as
to save memory.

Format Strings

Before we actually plot something, let's quickly discuss format strings. They are a
neat way to specify colors, marker types, and line styles. A format string is specified
as [color] [marker] [1line], where each item is optional. If the color argument is
the only argument of the format string, you can use matplotlib.colors. Matplotlib
recognizes the following formats, among others:

* RGB or RGBA float tuples (for example, (0.2, 0.4, 0.3) or (0.2, 0.4, 0.3, 0.5))
* RGB or RGBA hex strings (for example, '#0FOFOF' or '#0FOFOFOF")
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The following table is an example of how a color can be represented in one

particular format:
Colors Color

'b’ blue

r red

'’ green
'm' magenta
'c' cyan

'k’ black

'w' white

'y' yellow

Figure 3.3: Color specified in string format

All the available marker options are illustrated in the following figure:

°® ° + e point marker =
- v @ circle marker ='0"
® ' pixel marker =
> * V¥ triangle_down marker ='v'
- ® u * p- triangle_right marker ='>'
. <« triangle_left marker ='<'
' -+ " tri_down marker =1
< * A tri_up marker =
4 * tri_left marker =3
v * » tri_right marker ='4'
+ * 4 @ hexagon1 marker ='h
N [ ] @ hexagon2 marker ="H'
® | v * ° @ pentagon marker ='p'
A ° B square marker ='s'
. | 1
° [ | N e + plus marker ='+
| ® < > +# star marker ='*
° n R I > x marker ='x'
- | 4 diamond marker ='D'
* S
° v thin_diamond marker ='q'
* > .
| - ¢ | vline marker =
e — hline marker ="'

Figure 3.4: Markers in format strings
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All the available line styles are illustrated in the following diagram. In general, solid
lines should be used. We recommend restricting the use of dashed and dotted lines to
either visualize some bounds/targets/goals or to depict uncertainty, for example, in

a forecast:

solid line style
dash-dot line style
dashed line style

dotted line style

Figure 3.5: Line styles

To conclude, format strings are a handy way to quickly customize colors, marker
types, and line styles. It is also possible to use arguments, such as color, marker,

and linestyle.
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Plotting

With plt.plot([x], y, [fmt]), you can plot data points as lines and /or markers.
The function returns a list of Line2D objects representing the plotted data. By default,
if you do not provide a format string (£mt), the data points will be connected with
straight, solid lines. p1t.plot ([0, 1, 2, 31, [2, 4, 6, 8]) produces a plot, as
shown in the following diagram. Since x is optional and the default values are [0, ..,
N-1],plt.plot([2, 4, 6, 8]) resultsin the same plot:

T T T T T T T

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.6: Plotting data points as a line

If you want to plot markers instead of lines, you can just specify a format string with
any marker type. For example, pl1t.plot ([0, 1, 2, 3], [2, 4, 6, 8], 'o')
displays data points as circles, as shown in the following diagram:
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T T T T T T T

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.7: Plotting data points with markers (circles)

To plot multiple data pairs, the syntax plt.plot([x], y, [fmt], [x], y2,
[fmt2], ..) can be used. plt.plot([2, 4, 6, 8], 'o', [1, 5, 9, 13], 's')
results in the following diagram. Similarly, you can use plt.plot multiple times, since
we are working on the same Figure and Axes:

|
12 -
10 +
|
8 - ®
6 [ ]
|
4 4 ®
24 @
a
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.8: Plotting data points with multiple markers
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Any Line2D properties can be used instead of format strings to further customize the
plot. For example, the following code snippet shows how we can additionally specify the
linewidth and markersize arguments:

plt.plot([2, 4, 6, 8], color='blue', marker='o', linestyle='dashed',
linewidth=2, markersize=12)

Besides providing data using lists or NumPy arrays, it might be handy to use pandas
DataFrames, as explained in the next section.
Plotting Using pandas DataFrames

It is pretty straightforward to use pandas .DataFrame as a data source. Instead
of providing x and y values, you can provide the pandas.DataFrame in the data
parameter and give keys for x and y, as follows:

plt.plot('x key', 'y key', data=df)

If your data is already a pandas DataFrame, this is the preferred way.

Ticks

Tick locations and labels can be set manually if Matplotlib's default isn't sufficient.
Considering the previous plot, it might be preferable to only have ticks at multiples
of ones at the x-axis. One way to accomplish this is to use plt.xticks () and plt.
yticks () to either get or set the ticks manually.

plt.xticks (ticks, [labels], [**kwargs]) sets the current tick locations and
labels of the x-axis.

Parameters:
* ticks: List of tick locations; if an empty list is passed, ticks will be disabled.
* labels (optional): You can optionally pass a list of labels for the specified locations.

* **kwargs (optional): matplotlib. text.Text () properties can be used to
customize the appearance of the tick labels. A quite useful property is rotation;
this allows you to rotate the tick labels to use space more efficiently.

Example:

plt.figure (figsize=(6, 3))
plt.plot([2, 4, 6, 8], 'o', [1, 5, 9, 131, 's')
plt.xticks (ticks=np.arange (4))
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This will result in the following plot:

12

10 ~

T T T T

0 1 2 3

Figure 3.9: Plot with custom ticks
It's also possible to specify tick labels, as follows:

plt.figure (figsize=(6, 3))
plt.plot([2, 4, 6, 8], 'o', [1, 5, 9, 13], 's'")

plt.xticks (ticks=np.arange(4), labels=['January', 'February', 'March',
'April'], rotation=20)

This will result in the following plot:

12

10 -

o ceoree” wor < ot

Figure 3.10: Plot with custom tick labels
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If you want to do even more sophisticated things with ticks, you should look into

tick locators and formatters. For example, ax.xaxis.set _major_ locator (plt.
NullLocator ()) would remove the major ticks of the x-axis, and ax.xaxis.set_
major formatter (plt.NullFormatter ()) would remove the major tick labels, but
not the tick locations of the x-axis.

Displaying Figures

plt.show () is used to display a Figure or multiple Figures. To display Figures within a
Jupyter Notebook, simply set the $matplotlib inline command at the beginning of
the code.

If you forget to use plt.show (), the plot won't show up. We will learn how to save the
Figure in the next section.

Saving Figures

The plt.savefig(fname) saves the current Figure. There are some useful optional
parameters you can specify, such as dpi, format, or transparent. The following code
snippet gives an example of how you can save a Figure:

plt.figure ()

plt.plot([1, 2, 4, 5], [1, 3, 4, 3], '-o')
plt.savefig('lineplot.png', dpi=300, bbox inches='tight')
#bbox inches='tight' removes the outer white margins
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The following is the output of the code:

4.0 1

3.5 1

3.0 1

2.5 1

2.0 1

1.5 1

1.0 A

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 3.11: Saved Figure

Note

All exercises and activities will be developed in Jupyter Notebook. Please
download the GitHub repository with all the prepared templates from
https://packt.live/2HKTW1m. The datasets used in this chapter can be
downloaded from https://packt.live/3bzApYN.

Let's create a simple visualization in our next exercise.


https://packt.live/2HkTW1m
https://packt.live/3bzApYN
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Exercise 3.01: Creating a Simple Visualization

In this exercise, we will create our first simple plot using Matplotlib. The purpose of this
exercise is for you to create your first simple line plot using Matplotlib, including the
customization of the plot with format strings.

1.

Open the Exercise3.01. ipynb Jupyter Notebook from the Chapter03 folder to
implement this exercise. Navigate to the path of this file and type in the following at
the command line: jupyter-1lab.

Import the necessary modules and enable plotting within the Jupyter Notebook:
import numpy as np

import matplotlib.pyplot as plt

gmatplotlib inline

Explicitly create a Figure and set the dpi to 200:

plt.figure (dpi=200)

Plot the following data pairs (x, y) as circles, which are connected via line
segments: (1, 1), (2, 3), (4, 4),and (5, 3).Then, visualize the plot:

plt.plot([1, 2, 4, 51, [1, 3, 4, 31, '"-o")
plt.show ()
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Your output should look similar to this:

4.0 4

3.5 A

3.0 1

2.5 1

2.0 A

1.5 1

1.0 1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 3.12: A simple visualization created with the help of given data pairs
and connected via line segments

Save the plot using the plt.savefig () method. Here, we can either provide a
filename within the method or specify the full path:

plt.savefig('Exercise3.01l.png', bbox inches='tight')

This exercise showed you how to create a line plot in Matplotlib and how to use format
strings to quickly customize the appearance of the specified data points. Don't forget
to use bbox_inches='tight' to remove the outer white margins. In the following
section, we will cover how to further customize plots by adding text and a legend.

Basic Text and Legend Functions

All of the functions we discuss in this topic, except for the legend, create and return
amatplotlib. text.Text () instance. We are mentioning it here so that you know
that all of the properties discussed can be used for the other functions as well. All text
functions are illustrated in Figure 3.13.
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Labels

Matplotlib provides a few label functions that we can use for setting labels to the x- and
y-axes. The plt.xlabel () and plt.ylabel () functions are used to set the label for
the current axes. The set _xlabel () and set_ylabel () functions are used to set the
label for specified axes.

Example:

ax.set xlabel ('X Label')
ax.set ylabel ('Y Label')

You should (always) add labels to make a visualization more self-explanatory. The same
is valid for titles, which will be discussed now.
Titles

A title describes a particular chart/graph. The titles are placed above the axes in the
center, left edge, or right edge. There are two options for titles - you can either set
the Figure title or the title of an Axes. The suptitle () function sets the title for the
current and specified Figure. The title () function helps in setting the title for the
current and specified axes.

Example:

fig = plt.figure ()
fig.suptitle ('Suptitle', fontsize=10, fontweight='bold')

This creates a bold Figure title with a text subtitle and a font size of 10:
plt.title('Title', fontsize=16)

The plt. title function will add a title to the Figure with text as Title and font size

of 16 in this case.

Text

There are two options for text - you can either add text to a Figure or text to an Axes.
The figtext (x, y, text) and text(x, y, text) functions add text at locations x
or y for a Figure.

Example:

ax.text (4, 6, 'Text in Data Coords', bbox={'facecolor': 'yellow',
'alpha':0.5, 'pad':10})
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This creates a yellow text box with the text Text in Data Coords.

Text can be used to provide additional textual information to a visualization. To
annotate something, Matplotlib offers annotations.

Annotations

Compared to text that is placed at an arbitrary position on the Axes, annotations are
used to annotate some features of the plot. In annotations, there are two locations to
consider: the annotated location, xy, and the location of the annotation, text xytext.
It is useful to specify the parameter arrowprops, which results in an arrow pointing to
the annotated location.

Example:

ax.annotate ('Example of Annotate', xy=(4,2), xytext=(8,4),
arrowprops=dict (facecolor="green', shrink=0.05))

This creates a green arrow pointing to the data coordinates (4, 2) with the text Example
of Annotate at data coordinates (8, 4):

Suptitle
10
B -
6 Text in Data Coords
©
L
m
=l
> 4 Example of Annotate
2 L
0 T T T T
0 2 4 6 8 10
X Label

Figure 3.13: Implementation of text commands
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Legends

Legend describes the content of the plot. To add a legend to your Axes, we have to
specify the 1abel parameter at the time of plot creation. Calling plt.legend () for
the current Axes or Axes.legend () for a specific Axes will add the legend. The loc
parameter specifies the location of the legend.

Example:

plt.plot([1l, 2, 3], label='Label 1'")
plt.plot([2, 4, 3], label='Label 2')
plt.legend()

This example is illustrated in the following diagram:

4.0 1 ~— —— Label 1
- - Label 2
F
3.5 1
3.0 1
2.5 1

1.5 4

1.0 4

0.00 0.25 0.50 075 1.00 1.25 1.50 1.75 2.00

Figure 3.14: Legend example
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Labels, titles, text, annotations, and a legend are great ways to add textual information
to visualization and therefore make it more understandable and self-explanatory. But
don't overdo it. Too much text can be overwhelming. The following activity gives you
the opportunity to consolidate the theoretical foundations learned in this section.

Activity 3.01: Visualizing Stock Trends by Using a Line Plot

In this activity, we will create a line plot to show stock trends. The aim of this activity
is to not just visualize the data but to use labels, a title, and a legend to make the
visualization self-explanatory and "complete.

Let's look at the following scenario: you are interested in investing in stocks. You
downloaded the stock prices for the "big five": Amazon, Google, Apple, Facebook, and
Microsoft. You want to visualize the closing prices in dollars to identify trends. This
dataset is available in the Datasets folder that you had downloaded initially. The
following are the steps to perform:

1. Import the necessary modules and enable plotting within a Jupyter Notebook.

2. Use pandas to read the datasets (GOOGL_data.csv, FB_data.csv, AAPL data.
csv, AMZN data.csv,and MSFT data.csv)located in the Datasets folder. The
read_csv () function reads a .csv file into a DataFrame.

3. Use Matplotlib to create a line chart visualizing the closing prices for the past 5
years (whole data sequence) for all five companies. Add labels, titles, and a legend to
make the visualization self-explanatory. Use plt.grid () to add a grid to your plot.
If necessary, adjust the ticks in order to make them readable.
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After executing the preceding steps, the expected output should be as follows:

Stock trend

—— Google
Facebook
- Apple
1300 4 —— Amazon
—— Microsoft

1400

1200

1100

1000

©
=3
=]

800

700

600

Closing price in $§

300

200

100

Figure 3.15: Visualization of stock trends of five companies

Note

The solution to this activity can be found on page 361.

This covers the most important things about pyplot. In the following section, we will
talk about how to create various plots in Matplotlib.

Basic Plots

In this section, we are going to go through the different types of simple plots. This
includes bar charts, pie charts, stacked bar, and area charts, histograms, box plots,
scatter plots and bubble plots. Please refer to the previous chapter to get more details
about these plots. More sophisticated plots, such as violin plots, will be covered in the
next chapter, using Seaborn instead of Matplotlib.
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Bar Chart

The plt.bar (x, height, [width]) creates a vertical bar plot. For horizontal bars,
use the plt.barh () function.

Important parameters:
* x: Specifies the x coordinates of the bars
* height: Specifies the height of the bars
* width (optional): Specifies the width of all bars; the default is 0.8
Example:
plt.bar(['A', 'B', 'C', 'D'], [20, 25, 40, 10])

The preceding code creates a bar plot, as shown in the following diagram:

A B c D

Figure 3.16: A simple bar chart

If you want to have subcategories, you have to use the plt.bar () function multiple
times with shifted x-coordinates. This is done in the following example and illustrated
in the figure that follows. The arange () function is a method in the NumPy package
that returns evenly spaced values within a given interval. The gea () function helps in
getting the instance of current axes on any current Figure. The set_xticklabels ()
function is used to set the x-tick labels with the list of given string labels.



138 | A Deep Dive into Matplotlib

Example:

labels = ['A', 'B', 'C', 'D']

x = np.arange (len(labels))

width = 0.4

plt.bar(x - width / 2, [20, 25, 40, 10], width=width)
plt.bar(x - width / 2, [30, 15, 30, 20], width=width)
# Ticks and tick labels must be set manually
plt.ticks (x)

ax = plt.gcal()

ax.set xticklabels (labels)

This creates a bar chart as shown in the following diagram:

A B Cc D

Figure 3.17: Bar chart with subcategories

After providing the theoretical foundation for creating bar charts in Matplotlib, you can
apply your acquired knowledge in practice with the following activity.
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Activity 3.02: Creating a Bar Plot for Movie Comparison

In this activity, we will create visually appealing bar plots. We will use a bar plot to
compare movie scores. You are given five movies with scores from Rotten Tomatoes.
The Tomatometer is the percentage of approved Tomatometer critics who have given
a positive review for the movie. The Audience Score is the percentage of users who
have given a score of 3.5 or higher out of 5. Compare these two scores among the
five movies.

The following are the steps to perform:

1.

2.
3.

Import the necessary modules and enable plotting within a Jupyter Notebook.
Use pandas to read the data located in the Datasets subfolder.

Use Matplotlib to create a visually appealing bar plot comparing the two scores for
all five movies.

Use the movie titles as labels for the x-axis. Use percentages at intervals of 20
for the y-axis and minor ticks at intervals of 5. Add a legend and a suitable title to
the plot.

Use functions that are required to explicitly specify the axes. To get the reference
to the current axes, use ax = plt.gca(). To add minor y-ticks, use Axes.set
yticks ([ticks], minor=True).To add a horizontal grid for major ticks, use
Axes.yaxis.grid(which='major"'), and to add a dashed horizontal grid for
minor ticks, use Axes.yaxis.grid (which="minor', linestyle='--"').
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The expected output is as follows:

Movie comparison

100% +

B Tomatometer
____ W Audience Score |

80% v
60% -
40% -

20% -

neher Dunk'\rk ftian mey

ter
e Shape of Wa' glack Pa The M2 Unexpe cted Jou

The Hobbit: A”

Figure 3.18: Bar plot comparing scores of five movies

Note

The solution to this activity can be found on page 363.

After practicing the creation of bar plots, we will discuss how to create pie charts in
Matplotlib in the following section.

Pie Chart
The plt.pie(x, [explode], [labels], [autopct]) function creates a pie chart.
Important parameters:

* x: Specifies the slice sizes.

* explode (optional): Specifies the fraction of the radius offset for each slice. The
explode-array must have the same length as the x-array.

* labels (optional): Specifies the labels for each slice.

* autopct (optional): Shows percentages inside the slices according to the specified
format string. Example: '$1.1£%%".
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Example:

plt.pie([0.4, 0.3, 0.2, 0.1], explode=(0.1, O, O, 0), labels=['A', 'B',
lcl, IDI])

The result of the preceding code is visualized in the following diagram:

A

c
Figure 3.19: Basic pie chart

After this short introduction to pie charts, we will create a more sophisticated pie chart

that visualizes the water usage in a common household in the following exercise.

Exercise 3.02: Creating a Pie Chart for Water Usage

In this exercise, we will use a pie chart to visualize water usage. There has been a
shortage of water in your locality in the past few weeks. To understand the reason
behind it, generate a visual representation of water usage using pie charts.

The following are the steps to perform:

1. Open the Exercise3.02. ipynb Jupyter Notebook from the Chapter03 folder to
implement this exercise.

Navigate to the path of this file and type in the following at the command line:
jupyter-1lab.

2. Import the necessary modules and enable plotting within the Jupyter Notebook:

# Import statements
import pandas as pd
import matplotlib.pyplot as plt

Smatplotlib inline
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3. Use pandas to read the data located in the Datasets subfolder:

# Load dataset
data = pd.read csv('../../Datasets/water usage.csv')

4. Use a pie chart to visualize water usage. Highlight one usage of your choice using
the explode parameter. Show the percentages for each slice and add a title:

# Create figure
plt.figure (figsize=(8, 8), dpi=300)
# Create pie plot

plt.pie('Percentage', explode=(0, 0, 0.1, 0, 0, 0), labels='Usage',
data=data, autopct='%.0£%%")
# Add title

plt.title('Water usage')
# Show plot
plt.show ()

The output is as follows:

Water usage

Clothes Washer

Faucet

Shower

Figure 3.20: Pie chart for water usage
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Pie charts are a common way to show part-of-a-whole relationships, as you've
seen in the previous exercise. Another visualization that falls into this category are
stacked bar charts.

In the next section, we will learn how to generate a stacked bar chart and implement an
activity on it.
Stacked Bar Chart

A stacked bar chart uses the same plt.bar function as bar charts. For each stacked
bar, the p1t.bar function must be called, and the bottom parameter must be specified,
starting with the second stacked bar. This will become clear with the following example:

plt.bar(x, barsl)
plt.bar(x, bars2, bottom=barsl)
plt.bar(x, bars3, bottom=np.add(barsl, bars2))

The result of the preceding code is visualized in the following diagram:

A B C

Figure 3.21: A stacked bar chart

Let's get some more practice with stacked bar charts in the following activity.
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Activity 3.03: Creating a Stacked Bar Plot to Visualize Restaurant Performance

In this activity, we will use a stacked bar plot to visualize the performance of a
restaurant. Let's look at the following scenario: you are the owner of a restaurant and,
due to a new law, you have to introduce a No Smoking Day. To make as few losses as
possible, you want to visualize how many sales are made every day, categorized by
smokers and non-smokers.

Use the dataset tips from Seaborn, which contains multiple entries of restaurant bills,
and create a matrix where the elements contain the sum of the total bills for each day
and smokers/non-smokers:

Note

For this exercise, we will import the Seaborn library as import seaborn
as sns. The dataset can be loaded using this code:bills = sns.load
dataset('tips').

We will learn in detail about this in Chapter 4, Simplifying Visualizations

Using Seaborn.

1. Import all the necessary dependencies and load the tips dataset. Note that we
have to import the Seaborn library to load the dataset.

2. Use the given dataset and create a matrix where the elements contain the sum of
the total bills for each day and split according to smokers/non-smokers.

3. Create a stacked bar plot, stacking the summed total bills separated according to
smoker and non-smoker for each day.

4. Add alegend, labels, and a title.
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After executing the preceding steps, the expected output should be as follows:

Restaurant performance

EEE Smoker
N Non-smoker

1750 A

1500

b
)
ul
o

Daily total sales in $

Thur Fri Sat Sun

Figure 3.22: Stacked bar chart showing the performance of a restaurant on different days

Note

The solution to this activity can be found on page 365.

In the following section, stacked area charts will be covered, which, in comparison
to stacked bar charts, are suited to visualizing part-of-a-whole relationships for time
series data.
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Stacked Area Chart
plt.stackplot(x, y) creates a stacked area plot.
Important parameters:

» x: Specifies the x-values of the data series.

* y: Specifies the y-values of the data series. For multiple series, either as a 2D array
or any number of 1D arrays, call the following function: pl1t.stackplot(x, y1,

y2, y3, ..).
* labels (optional): Specifies the labels as a list or tuple for each data series.
Example:
plt.stackplot([1, 2, 3, 4], [2, 4, 5, 81, [1, 5, 4, 2])

The result of the preceding code is shown in the following diagram:

1.0 15 2.0 2.5 3.0 3.5 4.0

Figure 3.23: Stacked area chart

Let's get some more practice regarding stacked area charts in the following activity.
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Activity 3.04: Comparing Smartphone Sales Units Using a Stacked Area Chart

In this activity, we will compare smartphone sales units using a stacked area chart. Let's
look at the following scenario: you want to invest in one of the five biggest smartphone
manufacturers. Looking at the quarterly sales units as part of a whole may be a good
indicator of which company to invest in:

1. Import the necessary modules and enable plotting within a Jupyter Notebook.

2. Use pandas to read the smartphone_sales.csv dataset located in the
Datasets subfolder.

3. Create a visually appealing stacked area chart. Add a legend, labels, and a title.

After executing the preceding steps, the expected output should be as follows:

Smartphone sales units

250000 A Apple

Samsung
Huawei
Xiaomi
OPPO

200000 A

150000 A

100000 -

Sales units in thousands

50000 -

3Q16 4Q16 1Q17 2Q17 3Q17 4Q17 1Q18 2Q18
Quarters

Figure 3.24: Stacked area chart comparing sales units of different smartphone manufacturers

Note

The solution to this activity can be found on page 367.

In the following section, the histogram will be covered, which helps to visualize the
distribution of a single numerical variable.
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Histogram

A histogram visualizes the distribution of a single numerical variable. Each bar
represents the frequency for a certain interval. The plt.hist (x) function creates
a histogram.

Important parameters:
* x: Specifies the input values.

* bins: (optional): Specifies the number of bins as an integer or specifies the bin
edges as a list.

* range: (optional): Specifies the lower and upper range of the bins as a tuple.
* density: (optional): If true, the histogram represents a probability density.
Example:
plt.hist (x, bins=30, density=True)

The result of the preceding code is shown in the following diagram:

0.40

0.35

0.30 1

0.25 1

0.20

0.15 -

0.10 -

0.05

0.00 -

-3 =2 -1 0 1 2 3 4

Figure 3.25: Histogram
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plt.hist2d(x, y) creates a 2D histogram. 2D histograms can be used to visualize
the frequency of two-dimensional data. The data is plotted on the xy-plane and the
frequency is indicated by the color. An example of a 2D histogram is shown in the
following diagram:

L

o]

[

[=]

=3 -2 -1 0 1 2 3

Figure 3.26: 2D histogram with color bar

Histograms are a good way to visualize an estimated density of your data. If you're only
interested in summary statistics, such as central tendency or dispersion, the following
covered box plots are more interesting.

Box Plot

The box plot shows multiple statistical measurements. The box extends from the
lower to the upper quartile values of the data, thereby allowing us to visualize the
interquartile range. For more details regarding the plot, refer to the previous chapter.
The plt.boxplot (x) function creates a box plot.

Important parameters:

* x: Specifies the input data. It specifies either a 1D array for a single box, or a
sequence of arrays for multiple boxes.

* notch: (optional) If true, notches will be added to the plot to indicate the
confidence interval around the median.



150 | A Deep Dive into Matplotlib

* labels: (optional) Specifies the labels as a sequence.

* showfliers: (optional) By default, it is true, and outliers are plotted beyond
the caps.

* showmeans: (optional) If true, arithmetic means are shown.
Example:
plt.boxplot ([x1l, x2], labels=['A', 'B'])

The result of the preceding code is shown in the following diagram:

47 o

31 o
2_
l_
0_
_1_
_2_

o

-3 o

_4_ o

T T

A B

Figure 3.27: Box plot

Now that we've introduced histograms and box plots in Matplotlib, our theoretical
knowledge can be practiced in the following activity, where both charts are used to
visualize data regarding the intelligence quotient.
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Activity 3.05: Using a Histogram and a Box Plot to Visualize Intelligence
Quotient

In this activity, we will visualize the intelligence quotient (IQ) using histogram and
box plots. 100 people have come for an interview in a company. To place an individual
applicant in the overall group, a histogram and a box plot shall be used.

Note

Theplt.axvline (x, [color=.], [linestyle=.]) functiondrawsa
vertical line at position x.

1. Import the necessary modules and enable plotting within a Jupyter Notebook.
2. Use the following IQ scores to create the plots:

# IQ samples

iqg scores = [126, 89, 90, 101, 102, 74, 93, 101, 66, 120, 108,
97, 98, 105, 119, 92, 113, 81, 104, 108, 83, 102, 105, 111, 102,
107, 103, 89, 89, 110, 71, 110, 120, 85, 111, 83, 122, 120, 102,
84, 118, 100, 100, 114, 81, 109, 69, 97, 95, 106, 116, 109, 114,
%8, %0, 92, 98, 91, 81, 85, 86, 102, 93, 112, 76, 89, 110,
75, 100, 90, 96, 94, 107, 108, 95, 96, 96, 114, 93, 95, 117,
141, 115, 95, 86, 100, 121, 103, 66, 99, 96, 111, 110, 105, 110,
91, 112, 102, 112, 75]

3. Plot a histogram with 10 bins for the given IQ scores. IQ scores are normally
distributed with a mean of 100 and a standard deviation of 15. Visualize the mean as
a vertical solid red line, and the standard deviation using dashed vertical lines. Add
labels and a title.
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The expected output is as follows:

IQ scores for a test group of a hundred adults
25 1 T

20

=
(%]
I

=
o
I

Frequency

70 80 90 100 110 120 130 140
IQ score

Figure 3.28: Histogram for an 1Q test

4. Create a box plot to visualize the same IQ scores. Add labels and a title. The
expected output is as follows:

IQ scores for a test group of a hundred adults

140 - o

90 -

80 -

70 A

Test group

Figure 3.29: Box plot for 1Q scores
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5. Create a box plot for each of the IQ scores of the different test groups. Add labels
and a title. The following are IQ scores for different test groups that we can use

as data:
group_a = [118,
114,

107, 87,
110,

117, 8o,
108,

111, 107,
93,

128, 115,
108,

130, 107,
70,

139, 94,
109,

121, 106,
group b = [126,
98,

105,
102, 107,

103,
120, 102,

84,
109,

114,
112, 76,

89,
114,

93,
96,

111,
group_c = [108,
107,

122, 104,
93,

89, 90,
103,

81, 107,
114,

93, 93,
115,

B2, 90,
92,

101, 72,
90,

110, 96,
group d = [ 93,
83,

102, 60,

104,

103,

117,
143,

98,
138,
106,
110,

118,
89,

119,

89,

118,

98,

110,

95,

110,
89,

107,
86,
85,

114,

117,

109,

69,
99,

91,

125,

117,
83,
89,

121,

106,

105,

131,
90,

92,

89,

100,

90,

75,

117,

105,

114,

108,
91,
116,
107,
108,
94,

85,
91,

82,

107,

114,
106,
113,

87,
101,
122,

88,

101,

113,

110,

100,

92,

100,

141,

110,

116,

137,
99,
85,

107,

115,

122,

102,

110,

90,

111,

117,
86,
117,
112,
117,
94,

122,

102,

81,

71,

114,

98,

90,

115,

91,

126,

107,
98,
107,
84,
113,
90,

69,
80,

97,

96,

112,
98,
81,

110,
93,
94,

125,
74,

104,
110,
81,
91,
96,
95,

112,
104,

116,

83,
125,
131,
108,
102,

96,
113,

101,

104,
107,
126,
113,

79,
94,
105,

93,
93,

108,

120,
109,

81,
94,
86,

102,
113,

98,
93,
126,
91,
104,
86,

101,
111,

89,

97,

133,
109,
112,
100,
103,
129,

78]
101,

83,

85,
99,

85,
107,
100,

112,
96,

132,
114,
123,
108,
103,
119,

90]
115,

89,

96,
94,
91,
84,
84,

112,

110,

66,
102,
111,
97,

86,

108,

121,

75]
69,

108,
96,
122,
127,
90,

103,

98,

117,

114,
91,
112,
115,
115,
98,

112,

120,
105,
83,

95,
102,

95,

103,

121,
114,
95,
124,
112,
110,

110,

74,

91,

96,
118,
120,
96,
93,
103,

97,

108,
111,
122,

106,

93,
96,

66,

109,
82,
113,
115,
106,
114,

96,

96,

104,

75,

97,

11le,

96,

99,

102,

80,
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102, 128, 106, 111, 79, 92, 97, 101, 106, 110, 93, 93,

e io0s8, 85, 83, 108, 94, 79, 87, 113, 112, 111, 111, 79,
e 104, 84, 116, 111, 103, 103, 112, 68, 54, 80, 86, 119,
o 84, 91, 96, 1lle6, 125, 99, 58, 102, 77, 98, 100, 90,
:;26, 109, 114, 102, 102, 112, 103, 98, 96, 85, 97, 110, 131,

79, 115, 122, 95, 105, 74, 85, 85, 95]

The expected output is as follows:

IQ scores for different test groups

140 - T o L
120 A1
E ——
S 100 - — =
[y]
o
80 A
60 A
Group A Group B Group C Group D

Figure 3.30: Box plot for 1Q scores of different test groups

Note

The solution to this activity can be found on page 368.

In the next section, we will learn how to generate a scatter plot.
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Scatter Plot

Scatter plots show data points for two numerical variables, displaying a variable on both
axes. plt.scatter (x, y) creates a scatter plot of y versus x, with optionally varying
marker size and /or color.

Important parameters:
* x, y: Specifies the data positions.
* s:(optional) Specifies the marker size in points squared.

* c: (optional) Specifies the marker color. If a sequence of numbers is specified, the
numbers will be mapped to the colors of the color map.

Example:
plt.scatter(x, vy)

The result of the preceding code is shown in the following diagram:
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1.0 4 ° ®
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Figure 3.31: Scatter plot

Let's implement a scatter plot in the following exercise.
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Exercise 3.03: Using a Scatter Plot to Visualize Correlation between Various

Animals

In this exercise, we will use a scatter plot to show correlation within a dataset. Let's
look at the following scenario: You are given a dataset containing information about
various animals. Visualize the correlation between the various animal attributes.

Note

The Axes.set_xscale('log') andthe Axes.set_yscale('log')
change the scale of the x-axis and y-axis to a logarithmic scale, respectively.

Let's visualize the correlation between various animals with the help of a scatter plot:

1.

Open the Exercise3.03. ipynb Jupyter Notebook from the Chapter03 folder to
implement this exercise.

Navigate to the path of this file and type in the following at the command-line
terminal: jupyter-1lab.

Import the necessary modules and enable plotting within the Jupyter Notebook:

# Import statements

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
gmatplotlib inline

Use pandas to read the data located in the Datasets folder:

# Load dataset
data = pd.read csv('../../Datasets/anage data.csv')
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4. The given dataset is not complete. Filter the data so that you end up with samples
containing a body mass and a maximum longevity. Sort the data according to the
animal class; here, the isfinite () function (to check whether the number is finite
or not) checks for the finiteness of the given element:

# Preprocessing

longevity = 'Maximum longevity (yrs)'

mass = 'Body mass (qg)'

data = datalnp.isfinite(data[longevity]) & np.isfinite (data[mass]) ]
# Sort according to class

amphibia = datal[data['Class'] == 'Amphibia']

aves = datal[data['Class'] == 'Aves']

mammalia = data[data['Class'] == 'Mammalia']

reptilia = data[data['Class'] == 'Reptilia']

5. Create a scatter plot visualizing the correlation between the body mass and the
maximum longevity. Use different colors to group data samples according to their
class. Add a legend, labels, and a title. Use a log scale for both the x-axis and y-axis:

# Create figure

plt.figure (figsize=(10, 6), dpi=300)

# Create scatter plot

plt.scatter (amphibia[mass], amphibia[longevity], label='Amphibia')
plt.scatter (aves[mass], aves[longevity], label='Aves')

plt.scatter (mammalia[mass], mammalia[longevity], label='Mammalia')
plt.scatter (reptilia[mass], reptilia[longevity], label='Reptilia')
# Add legend

plt.legend()

# Log scale

ax = plt.gca()

ax.set xscale('log')

ax.set yscale('log')

# Add labels

plt.xlabel ('Body mass in grams')

plt.ylabel ('Maximum longevity in years')

# Show plot

plt.show ()
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The following is the output of the code:
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Figure 3.32: Scatter plot on animal statistics

From the preceding output, we can visualize the correlation between various

animals based on the maximum longevity in years and body mass in grams.

Next, we will learn how to generate a bubble plot.

Bubble Plot

The plt.scatter function is used to create a bubble plot. To visualize a third or fourth

variable, the parameters s (scale) and ¢ (color) can be used.
Example:

plt.scatter(x, y, s=z*500, c=c, alpha=0.5)
plt.colorbar ()

The colorbar function adds a colorbar to the plot, which indicates the value of the

color. The result is shown in the following diagram:
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Figure 3.33: Bubble plot with color bar

Layouts

There are multiple ways to define a visualization layout in Matplotlib. By layout, we
mean the arrangement of multiple Axes within a Figure. We will start with subplots and
how to use the tight layout to create visually appealing plots and then cover GridSpec,
which offers a more flexible way to create multi-plots.

Subplots

It is often useful to display several plots next to one another. Matplotlib offers the
concept of subplots, which are multiple Axes within a Figure. These plots can be grids
of plots, nested plots, and so on.

Explore the following options to create subplots:

* The plt.subplots(, ncols) function creates a Figure and a set of
subplots. nrows, ncols define the number of rows and columns of the
subplots, respectively.

* The plt.subplot(nrows, ncols, index) function or, equivalently, plt.
subplot (pos) adds a subplot to the current Figure. The index starts at 1. The
plt.subplot(2, 2, 1) function is equivalent to plt.subplot(221).

* The Figure.subplots (nrows, ncols) function adds a set of subplots to the
specified Figure.
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* The Figure.add subplot(nrows, ncols, index) function or, equivalently,
Figure.add_subplot (pos), adds a subplot to the specified Figure.

To share the x-axis or y-axis, the parameters sharex and sharey must be set,
respectively. The axis will have the same limits, ticks, and scale.

plt.subplot and Figure.add subplot have the option to set a projection. For a
polar projection, either set the projection='polar' parameter or the parameter
polar=True parameter.

Example 1:

fig, axes = plt.subplots (2, 2)
axes = axes.ravel ()
for i1, ax in enumerate (axes) :

ax.plot (series[i])

for i in range(4):
plt.subplot (2, 2, i+l)
plt.plot (series[i])

Both examples yield the same result, as shown in the following diagram:
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0 25 50 75 100 0 25 50 75 100

Figure 3.34: Subplots
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Example 2:

fig, axes = plt.subplots (2, 2, sharex=True, sharey=True)
axes = axes.ravel ()
for i, ax in enumerate (axes) :

ax.plot (series[i])

Setting sharex and sharey to True results in the following diagram. This allows for a
better comparison:

—-10 5 T T T T - T T T T
0 25 50 15 100 0 25 50 75 100

Figure 3.35: Subplots with a shared x- and y-axis
Subplots are an easy way to create a Figure with multiple plots of the same size placed
in a grid. They are not really suited for more sophisticated layouts.
Tight Layout

The plt.tight layout () adjusts subplot parameters (primarily padding between
the Figure edge and the edges of subplots, and padding between the edges of adjacent
subplots) so that the subplots fit well in the Figure.
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Examples:
If you do not use plt. tight layout (), subplots might overlap:

fig, axes = plt.subplots (2, 2)
axes = axes.ravel ()
for i, ax in enumerate (axes) :
ax.plot (series[i])
ax.set title('Subplot ' + str(i))

The result of the preceding code is shown in the following diagram:

Subplot 0 Subplot 1
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0 25 Subﬁot 275 100 0 25Subﬁ%t 375 100
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D 1 _4 .
_2 — —6 _
_4 - _8 |
_5 -
T T T T T T T T T T
0 25 50 75 100 0 25 50 75 100

Figure 3.36: Subplots with no layout option
Using plt. tight layout () results in no overlapping of the subplots:

fig, axes = plt.subplots (2, 2)
axes = axes.ravel ()
for i, ax in enumerate (axes) :
ax.plot (series[i])
ax.set title('Subplot ' + str(i))
plt.tight layout ()

The result of the preceding code is shown in the following diagram:
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Figure 3.37: Subplots with a tight layout
Radar Charts

Radar charts, also known as spider or web charts, visualize multiple variables, with
each variable plotted on its own axis, resulting in a polygon. All axes are arranged
radially, starting at the center with equal distance between each other, and have the

same scale.

Exercise 3.04: Working on Radar Charts

In this exercise, it is shown step by step how to create a radar chart. As a manager of
the team, you have to award a "Star Performer" trophy to an employee for the month of
December. Create radar charts to understand the performance of your team and award

the trophy. The following are the steps to perform:

1. Import the necessary modules and enable plotting within a Jupyter Notebook:

# Import settings

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
Smatplotlib inline
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2. The following dataset contains ratings of five different attributes for
four employees:

# Sample data

# Attributes: Efficiency, Quality, Commitment, Responsible Conduct,
Cooperation

data = pd.DataFrame ({

'Employee': ['Alex', 'Alice', 'Chris', 'Jennifer'],
'Efficiency': [5, 4, 4, 3,1,

'Quality': [5, 5, 3, 3],

'Commitment': [5, 4, 4, 4],

'Responsible Conduct': [4, 4, 4, 31,

'Cooperation': [4, 3, 4, 5]

})
3. Create angle values and close the plot:

attributes = list(data.columns[1l:])
values = list(data.values[:, 1:1)
employees = list (data.values[:, 0])

angles = [n / float(len(attributes)) * 2 * np.pi for n in
range (len (attributes)) ]
# Close the plot

angles += angles[:1]
values = np.asarray(values)
values = np.concatenate([values, values[:, 0:1]], axis=1l)

4. Create subplots with the polar projection. Set a tight layout so that
nothing overlaps:

# Create figure
plt.figure (figsize=(8, 8), dpi=150)
# Create subplots
for i in range(4):
ax = plt.subplot(2, 2, i + 1, polar=True)
ax.plot (angles, values[i])
ax.set yticks([1, 2, 3, 4, 5])
ax.set xticks (angles)
ax.set xticklabels (attributes)
ax.set title(employees[i], fontsize=14, color='r')
# Set tight layout
plt.tight layout ()
# Show plot
plt.show ()



Layouts | 165

The following diagram shows the output of the preceding code:

Alex Alice
Quality Quality

Efficiency

Responsible Responsible

Cooperation Cooperation
Chris Jennifer
Quality Quality

fficiency

Responsible Responsible

Cooperation Cooperation
Figure 3.38: Radar charts

In the next section, we will learn how to use the GridSpec function.
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GridSpec

The matplotlib.gridspec.GridSpec (nrows, ncols) function specifies the
geometry of the grid in which a subplot will be placed. For example, you can specify
a grid with three rows and four columns. As a next step, you have to define which
elements of the gridspec are used by a subplot; elements of a gridspec are accessed
in the same way as NumPy arrays. You could, for example, only use a single element
of a gridspec for a subplot and therefore end up with 12 subplots in total. Another
possibility, as shown in the following example, is to create a bigger subplot using 3x3
elements of the gridspec and another three subplots with a single element each.

Example:

gs = matplotlib.gridspec.GridSpec (3, 4)
axl = plt.subplot(gs[:3, :31)

ax?2 = plt.subplot(gs[0, 3])
ax3 = plt.subplot ( (1, 31)
ax4 = plt.subplot ( [2, 31)

axl.plot (series|

gs
gs
)

ax2.plot (series[1])

)

)

ax4.plot (series|

0]

1]

ax3.plot (series[2]
3]

)

plt.tight layout (

The result of the preceding code is shown in the following diagram:
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Figure 3.39: GridSpec

Next, we will implement an activity to implement GridSpec.

Activity 3.06: Creating a Scatter Plot with Marginal Histograms

In this activity, we will make use of GridSpec to visualize a scatter plot with marginal
histograms. Let's look at the following scenario: you are given a dataset containing
information about various animals. Visualize the correlation between the various animal
attributes using scatter plots and marginal histograms.

The following are the steps to perform:
1. Import the necessary modules and enable plotting within a Jupyter Notebook.

2. Filter the data so that you end up with samples containing a body mass and
maximum longevity as the given dataset, AnAge, which was used in the previous
exercise, is not complete. Select all of the samples of the Aves class with a body
mass of less than 20,000.
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3. Create a Figure with a constrained layout. Create a gridspec of size 4x4. Create a
scatter plot of size 3x3 and marginal histograms of size 1x3 and 3x1. Add labels and
a Figure title.

After executing the preceding steps, the expected output should be as follows:

Scatter plot with marginal histograms
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Figure 3.40: Scatter plots with marginal histograms
Note

The solution to this activity can be found on page 373.
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Next, we will learn how to work with image data in our visualizations.

Images

If you want to include images in your visualizations or work with image data, Matplotlib
offers several functions for you. In this section, we will show you how to load, save, and
plot images with Matplotlib.

Note

The images that are used in this section are from https://unsplash.com/.

Basic Image Operations
The following are the basic operations for designing an image.
Loading Images

If you encounter image formats that are not supported by Matplotlib, we recommend
using the Pillow library to load the image. In Matplotlib, loading images is part of the
image submodule. We use the alias mpimg for the submodule, as follows:

import matplotlib.image as mpimg

The mpimg. imread (fname) reads an image and returns it as a numpy . array object.
For grayscale images, the returned array has a shape (height, width), for RGB images
(height, width, 3), and for RGBA images (height, width, 4). The array values range from O
to 255.

We can also load the image in the following manner:

img filenames = os.listdir('../../Datasets/images"')

imgs = [mpimg.imread(os.path.join('../../Datasets/images', img filename))
for img filename in img filenames]

The os.listdir () method in Python is used to get the list of all files and directories
in the specified directory and then the os.path. join () function is used to join one or
more path components intelligently.


https://unsplash.com/
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Saving Images

The mpimg.imsave (fname, array) saves a numpy.array object as an image file. If
the format parameter is not given, the format is deduced from the filename extension.
With the optional parameters vmin and vmax, the color limits can be set manually. For a
grayscale image, the default for the optional parameter, cmap, is 'viridis'; you might
want to change it to 'gray’'.

Plotting a Single Image

The plt. imshow (img) displays an image and returns an AxesImage object. For
grayscale images with shape (height, width), the image array is visualized using

a colormap. The default colormap is 'viridis', as illustrated in Figure 3.41. To
actually visualize a grayscale image, the colormap has to be set to 'gray' (that s,
plt.imshow (img, cmap='gray'), which is illustrated in Figure 3.42. Values for
grayscale, RGB, and RGBA images can be either float or uint8, and range from
[0..1] or [0..255], respectively. To manually define the value range, the parameters
vmin and vmax must be specified. A visualization of an RGB image is shown in the
following figures:
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Figure 3.41: Grayscale image with a default viridis colormap



Images | 171

The following figure shows a grayscale image with a gray colormap:
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Figure 3.42: Grayscale image with a gray colormap

The following figure shows an RGB image:
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Figure 3.43: RGB image



172 | A Deep Dive into Matplotlib

Sometimes, it might be helpful to get an insight into the color values. We can simply
add a color bar to the image plot. It is recommended to use a colormap with high
contrast—for example, jet:

plt.imshow (img, cmap="'jet')
plt.colorbar ()

The preceding example is illustrated in the following figure:

100
200 48
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Figure 3.44: Image with a jet colormap and color bar

Another way to get insight into the image values is to plot a histogram, as shown in
the following diagram. To plot the histogram for an image array, the array has to be
flattened using numpy . ravel:

plt.hist (img.ravel (), bins=256, range=(0, 1))

The following diagram shows the output of the preceding code:
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Figure 3.45: Histogram of image values
Plotting Multiple Images in a Grid

To plot multiple images in a grid, we can simply use plt. subplots and plot an image
per Axes:

fig, axes = plt.subplots(l, 2)
for i in range(2):
axes[i].imshow (imgs[i])
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The result of the preceding code is shown in the following diagram:

Figure 3.46: Multiple images within a grid

In some situations, it would be neat to remove the ticks and add labels. axes.set__
xticks ([]) and axes.set_yticks([]) remove x-ticks and y-ticks, respectively.
axes.set_xlabel ('label') adds alabel:

fig, axes = plt.subplots(l, 2)
labels = ['coast', 'beach']
for i in range(2):

i])

1)

1)
abels[i])

axes[i].imshow (imgs

[1 [
axes[i].set xticks ([
axes[i].set yticks ([
axes[i].set xlabel (1l

The result of the preceding code is shown in the following diagram:

Figure 3.47: Multiple images with labels

Let's go through an activity for grid images.
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Activity 3.07: Plotting Multiple Images in a Grid

In this activity, we will plot images in a grid. You are a developer in a social media
company. Management has decided to add a feature that helps the customer to upload
images in a 2x2 grid format. Develop some standard code to generate grid-formatted
images and add this new feature to your company's website.

The following are the steps to perform:
1. Import the necessary modules and enable plotting within a Jupyter Notebook.
2. Load all four images from the Datasets subfolder.
3. Visualize the images in a 2x2 grid. Remove the axes and give each image a label.

After executing the preceding steps, the expected output should be as follows:

city at night

Figure 3.48: Visualizing images in a 2x2 grid

Note

The solution to this activity can be found on page 376.
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In this activity, we have plotted images in a 2x2 grid. In the next section, we will learn
the basics of how to write and plot a mathematical expression.

Writing Mathematical Expressions

In case you need to write mathematical expressions within the code, Matplotlib
supports TeX, one of the most popular typesetting systems, especially for typesetting
mathematical formulas. You can use it in any text by placing your mathematical
expression in a pair of dollar signs. There is no need to have TeX installed since
Matplotlib comes with its own parser.

An example of this is given in the following code:

plt.xlabel (,$xS")
plt.ylabel ('$\cos(x)$")

The following diagram shows the output of the preceding code:

1.00 A

0.75 A

0.50 4

0.25 4

0.00 A

cos(x)

—0.25 A

—0.50 A

—0.75 A

—1.00 4

X

Figure 3.49: Diagram demonstrating mathematical expressions
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TeX examples:
* '$\alpha_i>\beta_ i$' produces a>p;
* '$\sum_{i=0}"\infty x_i$' produces D ” ;.
e '$\sqrt[3]1{8}$"' produces ¥/8. N
* '$\frac{3 - \frac{x}{2}}{5}$"' produces 3_?5

In this section, we learned how to write a basic mathematical expression and generate a
plot using it.

Summary

In this chapter, we provided a detailed introduction to Matplotlib, one of the most
popular visualization libraries for Python. We started off with the basics of pyplot
and its operations, and then followed up with a deep insight into the numerous
possibilities that help to enrich visualizations with text. Using practical examples, this
chapter covered the most popular plotting functions that Matplotlib offers, including
comparison charts, and composition and distribution plots. It concluded with how to
visualize images and write mathematical expressions.

In the next chapter, we will learn about the Seaborn library. Seaborn is built on top of
Matplotlib and provides a higher-level abstraction to create visualizations in an easier
way. One neat feature of Seaborn is the easy integration of DataFrames from the pandas
library. Furthermore, Seaborn offers a few more plots out of the box, including more
advanced visualizations, such as violin plots.






Simplifying
Visualizations Using
Seaborn

Overview

In this chapter, we will see how Seaborn differs from Matplotlib and construct
effective plots leveraging the advantages of Seaborn. By the end of this chapter,
you will be able to explain the advantages Seaborn has compared to Matplotlib
and to design visually appealing and insightful plots efficiently.
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Introduction

In the previous chapter, we took an in-depth look at Matplotlib, one of the most popular
plotting libraries for Python. Various plot types were covered, and we looked into
customizing plots to create aesthetic plots.

Unlike Matplotlib, Seaborn is not a standalone Python library. It is built on top of
Matplotlib and provides a higher-level abstraction to make visually appealing statistical
visualizations. A neat feature of Seaborn is the ability to integrate with DataFrames from
the pandas library.

With Seaborn, we attempt to make visualization a central part of data exploration and
understanding. Internally, Seaborn operates on DataFrames and arrays that contain
the complete dataset. This enables it to perform semantic mappings and statistical
aggregations that are essential for displaying informative visualizations. Seaborn can
also be used to simply change the style and appearance of Matplotlib visualizations.

The most prominent features of Seaborn are as follows:
* Beautiful out-of-the-box plots with different themes
* Built-in color palettes that can be used to reveal patterns in the dataset
* A dataset-oriented interface

* A high-level abstraction that still allows for complex visualizations

Advantages of Seaborn

Working with DataFrames using Matplotlib adds some inconvenient overhead. For
example, simply exploring your dataset can take up a lot of time, since you require
some additional data wrangling to be able to plot the data from the DataFrames
using Matplotlib.

Seaborn, however, is built to operate on DataFrames and full dataset arrays, which
makes this process simpler. It internally performs the necessary semantic mappings
and statistical aggregation to produce informative plots.

Note

The American Community Survey (ACS) Public-Use Microdata Samples (PUMS)
dataset (one-year estimate from 2017) from https://www.census.gov/programs-
surveys/acs/technical-documentation/pums/documentation.2017.html is used
in this chapter. This dataset is later used in Chapter 07, Combining What We Have
Learned. This dataset can also be downloaded from GitHub. Here is the link:
https://packt.live/3bzApYN.



https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
https://packt.live/3bzApYN
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The following is an example of plotting using the Seaborn library:

import seaborn as sns

import pandas as pd

sns.set (style="ticks")

data = pd.read csv("../../Datasets/salary.csv") [:1000]

sns.relplot (x="Salary", y="Age", hue="Education", style="Education",
col="Gender", data=data)

This creates the following plot:
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Figure 4.1: Seaborn relation plot

Seaborn uses Matplotlib to draw plots. Even though many tasks can be accomplished
with just Seaborn, further customization might require the usage of Matplotlib. We only
provided the names of the variables in the dataset and the roles they play in the plot.
Unlike in Matplotlib, it is not necessary to translate the variables into parameters of

the visualization.

Other potential obstacles are the default Matplotlib parameters and configurations.
The default parameters in Seaborn provide better visualizations without

additional customization. We will look at these default parameters in detail in

the upcoming topics.

For users who are already familiar with Matplotlib, the extension with Seaborn is
self-evident, since the core concepts are mostly similar.
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Controlling Figure Aesthetics

As we mentioned previously, Matplotlib is highly customizable. But it also has the effect
that it is very inconvenient, as it can take a long time to adjust all necessary parameters
to get your desired visualization. In contrast, Seaborn provides several customized
themes and a high-level interface for controlling the appearance of Matplotlib figures.

The following code snippet creates a simple line plot in Matplotlib:

Smatplotlib inline
import matplotlib.pyplot as plt

plt.figure ()
xl = [10, 20, 5, 40, 8]
x2 = [30, 43, 9, 7, 20]

plt.plot(xl, label='Group A')
plt.plot(x2, label='Group B')
plt.legend()

plt.show ()

This is what the plot looks with Matplotlib's default parameters:

—— Group A
40 Group B

35 A
30 A
25 A
20 A
15+

10 A

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 4.2: Matplotlib line plot
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To switch to the Seaborn defaults, simply call the set () function:

Smatplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns

sns.set ()

plt.figure ()

x1 = [10, 20, 5, 40, 8]
x2 = [30, 43, 9, 7, 20]

plt.plot (x1, label='Group A')
plt.plot (x2, label='Group B')

plt.legend()
plt.show ()

Following is the output of the code:

40
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15
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0.0 0.5

1.0 15 2.0 2.5 3.0 35 4.0

Figure 4.3: Seaborn line plot

Seaborn categorizes Matplotlib's parameters into two groups. The first group
contains parameters for the aesthetics of the plot, while the second group scales
various elements of the plot so that it can be easily used in different contexts, such as
visualizations that are used for presentations and posters.
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Seaborn Figure Styles

To control the plot style, Seaborn provides two methods: set_style (style, [rc])
and axes_style(style, [rc]).

seaborn.set_style(style, [rc]) sets the aesthetic style of the plots.
Parameters:

* style: A dictionary of parameters or the name of one of the following
preconfigured sets: darkgrid, whitegrid, dark, white, or ticks

* rc (optional): Parameter mappings to override the values in the preset Seaborn-
style dictionaries

Here is an example:

Smatplotlib inline

import matplotlib.pyplot as plt
import seaborn as sns
sns.set style ("whitegrid")

plt.figure ()
x1l = [10, 20, 5, 40, 8]
x2 = [30, 43, 9, 7, 20]

plt.plot (x1, label='Group A')
plt.plot (x2, label='Group B')
plt.legend()

plt.show ()

This results in the following plot:
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Figure 4.4: Seaborn line plot with whitegrid style
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seaborn.axes_style(style, [rc]) returnsa parameter dictionary for the
aesthetic style of the plots. The function can be used in a with statement to
temporarily change the style parameters.

Here are the parameters:

* style: A dictionary of parameters or the name of one of the following
pre-configured sets: darkgrid, whitegrid, dark, white, or ticks

* rc (optional): Parameter mappings to override the values in the preset
Seaborn-style dictionaries

Here is an example:

Smatplotlib inline
import matplotlib.pyplot as plt

import seaborn as sns

sns.set ()

plt.figure ()

xl = [10, 20, 5, 40, 8]
x2 = [30, 43, 9, 7, 20]

with sns.axes style('dark'):
plt.plot(xl, label='Group A')
plt.plot(x2, label='Group B')

plt.legend()

plt.show()

The aesthetics are only changed temporarily. The result is shown in the
following diagram:
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Figure 4.5: Seaborn line plot with dark axes style
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For further customization, you can pass a dictionary of parameters to the re argument.
You can only override parameters that are part of the style definition.

Removing Axes Spines

Sometimes, it might be desirable to remove the top and right axes spines. The
despine () function is used to remove the top and right axes spines from the plot:

seaborn.despine (fig=None, ax=None, top=True, right=True, left=False,
bottom=False, offset=None, trim=False)

The following code helps to remove the axes spines:

Smatplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns

sns.set style("white")

plt.figure ()
xl = [10, 20, 5, 40, 8]
x2 = [30, 43, 9, 7, 20]

plt.plot (x1, label='Group A')
plt.plot(x2, label='Group B')
sns.despine ()

plt.legend()

plt.show ()

This results in the following plot:
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Figure 4.6: Despined Seaborn line plot
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In the next section, we will learn to control the scale of plot elements.

Controlling the Scale of Plot Elements

A separate set of parameters controls the scale of plot elements. This is a handy way
to use the same code to create plots that are suited for use in contexts where larger or
smaller plots are necessary. To control the context, two functions can be used.

seaborn.set_ context(context, [font scale], [rc]) sets the plotting context
parameters. This does not change the overall style of the plot but affects things such as
the size of the labels and lines. The base context is a notebook, and the other contexts
are paper, talk, and poster—versions of the notebook parameters scaled by 0.8, 1.3,

and 1.6, respectively.

Here are the parameters:

* context: A dictionary of parameters or the name of one of the following
preconfigured sets: paper, notebook, talk, Or poster

* font_scale (optional): A scaling factor to independently scale the size of
font elements

* rc (optional): Parameter mappings to override the values in the preset Seaborn
context dictionaries

The following code helps set the context:

Smatplotlib inline

import matplotlib.pyplot as plt
import seaborn as sns

sns.set context ("poster")
plt.figure ()

x1 [10, 20, 5, 40, 8]

X2 [30, 43, 9, 7, 20]
plt.plot (x1, label='Group A')
plt.plot(x2, label='Group B')
plt.legend()

plt.show ()
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The preceding code generates the following output:

40 —— Group A
Group B

20 /\// \
0 1 2 3 4

Figure 4.7: Seaborn line plot with poster context

seaborn.plotting context (context, [font scale], [rc]) returnsa
parameter dictionary to scale elements of the Figure. This function can be used with a
statement to temporarily change the context parameters.

Here are the parameters:

* context: A dictionary of parameters or the name of one of the following
pre-configured sets: paper, notebook, talk, or poster

* font_scale (optional): A scaling factor to independently scale the size of
font elements

* rc (optional): Parameter mappings to override the values in the preset Seaborn
context dictionaries

Contexts are an easy way to use preconfigured scales of plot elements for different use
cases. We will apply them in the following exercise, which uses a box plot to compare
the IQ scores of different test groups.

Note

All the exercises and activities in this chapter are developed using

Jupyter Notebook. The files can be downloaded from the following link:
https://packt.live/20NDmLI. All the datasets used in this chapter can be found at
https://packt.live/3bzApYN.



https://packt.live/2ONDmLl
https://packt.live/3bzApYN
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Exercise 4.01: Comparing IQ Scores for Different Test Groups by Using a Box

Plot

In this exercise, we will generate a box plot using Seaborn. We will compare IQ scores
among different test groups using a box plot of the Seaborn library to demonstrate

how

easy and efficient it is to create plots with Seaborn provided that we have a proper

DataFrame. This exercise also shows how to quickly change the style and context of a
Figure using the pre-configurations supplied by Seaborn.

Let's compare 1Q scores among different test groups using the Seaborn library:

1.

Open the Exercise4.01. ipynb Jupyter Notebook from the Chapter04 folder to
implement this exercise. Navigate to the path of this file and type in the following at
the command-line terminal: jupyter-1lab.

Import the necessary modules and enable plotting within a Jupyter Notebook:

Smatplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

Use the pandas read_csv () function to read the data located in the
Datasets folder:

mydata = pd.read csv("../../Datasets/ig_scores.csv")

Access the data of each test group in the column. Convert this into a list using the
tolist () method. Once the data of each test group has been converted into a list,
assign this list to variables of each respective test group:

group_a = mydata[mydata.columns[0]].tolist ()
group b = mydata[mydata.columns[1l]].tolist ()
group_c = mydata[mydata.columns[2]].tolist ()
group_d = mydata[mydata.columns[3]].tolist ()

Print the values of each group to check whether the data inside it is converted into
a list. This can be done with the help of the print () function:

print (group a)
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The data values of Group A are shown in the following screenshot:

[118, 103, 125, 107, 111, 96, 104, 97, 96, 114, 96, 75, 114, 187, 87, 117, 117, 114, 117, 112, 107, 133, 9
4, 91, 118, 11e, 117, 86, 143, 83, 106, 86, 98, 126, 109, 91, 112, 120, 1es, 111, 107, 98, 89, 113, 117, 8
1, 113, 112, 84, 115, 96, 93, 128, 115, 138, 121, 87, 112, 110, 79, 100, 84, 115, 93, 108, 130, 107, 106,

106, 101, 117, 93, 94, 103, 112, 98, 103, 70, 139, 94, 110, 105, 122, 94, 94, 105, 129, 110, 112, 97, 109,

121, 16, 118, 131, 88, 122, 125, 93, 78]

Figure 4.8: Values of Group A
The following is the code for printing Group B:

print (group b)
The data values of Group B are shown in the following screenshot:

[126, 89, 90, 1e1, 102, 74, 93, 101, 66, 120, 1e8, 97, 98, 105, 119, 92, 113, 81, le4, 108, 83, 102, 105,
111, 102, 107, 103, 89, 89, 110, 71, 119, 120, 85, 111, 83, 122, 120, 102, 84, 118, 100, 100, 114, 81, 10
9, 69, 97, 95, 106, 116, 109, 114, 98, 99, 92, 98, 91, 81, 85, 86, 182, 93, 112, 76, 89, 110, 75, 118, 9@,
96, 94, 107, 108, 95, 96, 96, 114, 93, 95, 117, 141, 115, 95, 86, 1e@, 121, 103, 66, 99, 96, 111, 118, 10

5, 11e, 91, 112, 102, 112, 75]

Figure 4.9: Values of Group B
The following is the code for printing Group C:

print (group c)

The data values of Group C are shown in the following screenshot:

[108, 89, 114, 116, 126, 104, 113, 96, 69, 121, 109, 102, 107, 122, 14, 107, 108, 137, 107, 116, 98, 132,
1e8, 114, 82, 93, 89, 9@, 86, 91, 99, 98, 83, 93, 114, 96, 95, 113, 1@3, 81, 107, 85, 116, 85, 107, 125, 1
26, 123, 122, 124, 115, 114, 93, 93, 114, 107, 107, 84, 131, o1, 1es, 127, 112, 1e6, 115, 82, 90, 117, 16
8, 115, 113, 108, 104, 103, 90, 110, 114, 92, 101, 72, 109, 94, 122, 9@, 162, 86, 119, 103, 118, 96, 90, 1

10, 96, 69, 85, 182, 69, 96, 101, 98]

Figure 4.10: Values of Group C
The following is the code for printing Group D:

print (group_ d)
The data values of Group D are shown in the following screenshot:

[93, 99, 91, 110, 8@, 113, 111, 115, 98, 74, 96, 80, 83, 102, 60, 91, 82, 90, 97, 101, 89, 89, 117, 91, 10
4, 1e4, 1e2, 128, 1@6, 111, 79, 92, 97, 101, 166, 110, 93, 93, 186, 108, 85, 83, 108, 94, 79, 87, 113, 11

2, 111, 111, 79, 116, 104, 84, 116, 111, 103, 163, 112, 68, 54, 80, 86, 119, 81, 84, 91, 96, 116, 125, 99,
58, 102, 77, 98, 100, 90, 106, 109, 114, 102, 162, 112, 103, 98, 96, 85, 97, 110, 131, 92, 79, 115, 122, 9

5, 185, 74, 85, 85, 95]
Figure 4.11: Values of Group D
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6. Once we have the data for each test group, we need to construct a DataFrame from
this data. This can be done with the help of the pd.DataFrame () function, which
is provided by pandas:

data = pd.DataFrame ({'Groups': ['Group A'] * len(group _a) + ['Group
B'] * len(group b) + ['Group C'] * len(group c) + ['Group D'] *
len (group_ d),

'IQ score': group a + group b + group c +
group d})

7. If you don't create your own DataFrame, it is often helpful to print the column
names, which is done by calling print (data.columns). The output is as follows:

Index(['Groups', "IQ score'], dtype='object')
Figure 4.12: Column labels

You can see that our DataFrame has two variables with the labels Groups and
IQ score. This is especially interesting since we can use them to specify which
variable to plot on the x-axis and which one on the y-axis.

8. Now, since we have the DataFrame, we need to create a box plot using the
boxplot () function provided by Seaborn. Within this function, specify the
variables for both the axes along with the DataFrame. Make Groups the variable
to plot on the x-axis, and IQ score the variable for the y-axis. Pass data as a
parameter. Here, data is the DataFrame that we obtained from the previous step.
Moreover, use the whitegrid style, set the context to talk, and remove all axes
spines, except the one on the bottom:

plt.figure (dpi=150)

# Set style

sns.set style('whitegrid')

# Create boxplot

sns.boxplot ('Groups', 'IQ score', data=data)
# Despine

sns.despine (left=True, right=True, top=True)
# Add title

plt.title('IQ scores for different test groups')
# Show plot

plt.show ()

The despine () function helps in removing the top and right spines from the plot
by default (without passing any arguments to the function). Here, we have also
removed the left spine. Using the title () function, we have set the title for our
plot. The show () function visualizes the plot.
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After executing the preceding steps, the final output should be as follows:

IQ scores for different test groups

=T ¢

140 p—

120 T
o
. e
g
80
60 o

GroupA GroupB Group C Group D
Groups

Figure 4.13: 1Q scores of groups

From the preceding diagram, we can conclude that Seaborn offers visually appealing
plots out of the box and allows easy customization, such as changing the style, context,
and spines. Once a suitable DataFrame exists, the plotting is achieved with a single
function. Column names are automatically used for labeling the axis. Even categorical
variables are supported out of the box. Another great advantage of Seaborn is color
palettes, which are introduced in the following section.

Color Palettes

Color is a very important factor for your visualization. Color can reveal patterns in
data if used effectively or hide patterns if used poorly. Seaborn makes it easy to select
and use color palettes that are suited to your task. The color_palette () function
provides an interface for many of the possible ways to generate color palettes.

The seaborn.color palette([palette], [n_colors], [desat]) command
returns a list of colors, thus defining a color palette.

The parameters are as follows:
* palette (optional): Name of palette or None to return the current palette.

* n_colors (optional): Number of colors in the palette. If the specified number of
colors is larger than the number of colors in the palette, the colors will be cycled.

* desat (optional): The proportion to desaturate each color by.

You can set the palette for all plots with set_palette (). This function accepts the
same arguments as color_palette (). In the following sections, we will explain how
color palettes are divided into different groups.
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Choosing the best color palette is not straightforward and, to some extent, subjective.
To make a good decision, you have to know the characteristics of your data. There are
three general groups of color palettes, namely, categorical, sequential, and diverging,
which we will break down in the following sections.

Categorical Color Palettes

Categorical palettes (or qualitative color palettes) are best suited for distinguishing
categorical data that does not have an inherent ordering. The color palette should
have colors as distinct from one another as possible, resulting in palettes where
mainly the hue changes. When it comes to human perception, there is a limit to how
many different colors are perceived. A rule of thumb is that if you have double-digit
categories, it is advisable to divide the categories into groups. Different shades of color
could be used for a group. Another way to keep groups apart could be to use hues that
are close together in the color wheel within a group and hues that are far apart for
different groups.

Some examples where it is suitable to use categorical color palettes are line charts
showing stock trends for different companies, and a bar chart with subcategories;
basically, any time you want to group your data.

There are six default themes in Seaborn: deep, muted, bright, pastel, dark, and
colorblind. The code and output for each theme are provided in the following
diagram. Out of these color palettes, it doesn't really matter which one you use. Choose
the one you prefer and the one that best fits the overall theme of the visualization. It's
never a bad idea to use the colorblind palette to account for colorblind people. The
following is the code to create a deep color palette:

import seaborn as sns
palettel = sns.color palette("deep")
sns.palplot (palettel)

The following diagram shows the output of the code:

Figure 4.14: Deep color palette

The following code creates a muted color palette:

palette2 = sns.color palette ("muted")
sns.palplot (palette2)
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The following is the output of the code:

Figure 4.15: Muted color palette

The following code creates a bright color palette:

palette3 = sns.color palette("bright")
sns.palplot (palette3)

The following is the output of the code:

Figure 4.16: Bright color palette
The following code creates a pastel color palette:

paletted4d = sns.color palette("pastel")
sns.palplot (paletted)

Here is the output showing a pastel color palette:

Figure 4.17: Pastel color palette
The following code creates a dark color palette:

paletteb = sns.color palette("dark")
sns.palplot (paletteb)

The following diagram shows a dark color palette:

Figure 4.18: Dark color palette
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The following code creates a colorblind palette:

palette6 = sns.color palette("colorblind")
sns.palplot (palette®)

Here is the output of the code:

Figure 4.19: Colorblind color palette

Sequential Color Palettes

Sequential color palettes are appropriate for sequential data ranges from low to high
values, or vice versa. It is recommended to use bright colors for low values and dark
ones for high values. Some examples of sequential data are absolute temperature,
weight, height, or the number of students in a class.

One of the sequential color palettes that Seaborn offers is cubehelix palettes. They have
a linear increase or decrease in brightness and some variation in hue, meaning that
even when converted to black and white, the information is preserved.

The default palette returned by cubehelix palette () is illustrated in the following
diagram. To customize the cubehelix palette, the hue at the start of the helix can be set
with start (a value between 0 and 3), or the number of rotations around the hue wheel
can be set with rot:

Figure 4.20: Cubehelix palette

Creating custom sequential palettes that only produce colors that start at either light
or dark desaturated colors and end with a specified color can be accomplished with
light palette() or dark _palette (). Two examples are given in the following:

custom palette2 = sns.light palette("magenta")
sns.palplot (custom palette2)
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The following diagram shows the output of the code:

T T

Figure 4.21: Custom magenta color palette

The preceding palette can also be reversed by setting the reverse parameter to True
in the following code:

custom palette3 = sns.light palette("magenta", reverse=True)
sns.palplot (custom paletted)

The following diagram shows the output of the code:

Figure 4.22: Custom reversed magenta color palette

By default, creating a color palette only returns a list of colors. If you want to use it as a
colormap object, for example, in combination with a heatmap, set the as_cmap=True
argument, as demonstrated in the following example:

X = np.arange (25) .reshape (5, 5)
ax = sns.heatmap(x, cmap=sns.cubehelix palette (as_cmap=True))
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This creates the following heatmap:
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Figure 4.23: Heatmap with cubehelix palette

In the next section, we will learn about diverging color palettes.

Diverging Color Palettes

Diverging color palettes are used for data that consists of a well-defined midpoint. An
emphasis is placed on both high and low values. For example, if you are plotting any
population changes for a particular region from some baseline population, it is best to
use diverging colormaps to show the relative increase and decrease in the population.
The following code snippet and output provides a better understanding of diverging
plots, wherein we use the coolwarm template, which is built into Matplotlib:

custom paletted4d = sns.color palette("coolwarm", 7)
sns.palplot (custom paletted)
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The following diagram shows the output of the code:

Figure 4.24: Coolwarm color palette

You can use the diverging palette () function to create custom-diverging palettes.
We can pass two hues in degrees as parameters, along with the total number of
palettes. The following code snippet and output provides a better insight:

custom palette5 = sns.diverging palette (120, 300, n=7)
sns.palplot (custom paletteb)

The following diagram shows the output of the code:

Figure 4.25: Custom diverging color palette

As we already mentioned, colors, when used effectively, can reveal patterns in data.
Spend some time thinking about which color palette is best for certain data. Let's apply
color palettes to visualize temperature changes in the following exercise.

Exercise 4.02: Surface Temperature Analysis

In this exercise, we will generate a heatmap using Seaborn. The goal of this exercise is
to choose an appropriate color palette for the given data. You are asked to visualize the
surface temperature change for the Northern Hemisphere for past years. Data from
the GISS Surface Temperature Analysis is used, which contains estimates of global
surface temperature change (in degree Celsius) for every month. The dataset contains
temperature anomalies for every month from 1880 to the present. Temperature
anomalies indicate how much warmer or colder it is than normal. For the GISS analysis,
normal means the average over the 30-year period 1951-1980.

Note

The dataset used for this exercise is used from https://data.giss.nasa.gov/gistemp/
(accessed January 7, 2020). For more details about the dataset, visit the website,
looking at the FAQs in particular.
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Following are the steps to perform:

1. Import the necessary modules and enable plotting within a Jupyter Notebook:

$matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

sns.set ()

2. Use the pandas read csv () function to read the northern surface
temperature.csv dataset located in the Datasets folder. After successful
loading, transpose the dataset so that it is in a suitable structure:

data = pd.read csv("../../Datasets/northern surface temperature.csv",
index col=['Year'])
data = data.transpose|()
3. Create a custom-diverging palette that diverges to blue (240 degrees on the hue
wheel) for low values and to red (15 degrees on the hue wheel) for high values.
Set the saturation as s=99. Make sure that the diverging palette () function
returns a colormap by setting as_cmap=True:

heat colormap = sns.diverging palette (240, 15, s=99, as cmap=True)

4. Plot the heatmap for every 5 years. To ensure that the neutral color corresponds to
no temperature change (the value is zero), set center=0:

plt.figure (dpi=200)

sns.heatmap (data.iloc[:, ::5], cmap=heat colormap, center=0)
plt.title ("Temperature Changes from 1880 to 2015 (base period 1951-
1980)™)

plt.savefig ('temperature change.png', dpi=300, bbox inches='tight')
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The following is the output of the preceding code:

Temperature Changes from 1880 to 2015 (base period 1951-1980)
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Figure 4.26: Surface temperature changes visualized as a heatmap

The preceding diagram helps us to visualize the surface temperature change for the
Northern Hemisphere for past years.

Let's now perform an activity to create a heatmap using a real-life dataset with various
color palettes.
Activity 4.01: Using Heatmaps to Find Patterns in Flight Passengers' Data

In this activity, we will use a heatmap to find patterns in the flight passengers' data. The
goal of this activity is to apply your knowledge about color palettes to choose a suitable
color palette for this data.

The following are the steps to perform:

1. Use pandas to read the £1ight_details.csv dataset located in the Datasets
folder. The given dataset contains the monthly figures for flight passengers for the
years 1949 to 1960. This dataset originates from the Seaborn library.

2. Use a heatmap to visualize the given data.
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3. Use your own appropriate colormap. Make sure that the lowest value is the
brightest, and the highest the darkest, color. After executing the preceding steps,
the expected output should be as follows:

Flight Passengers from 1949 to 1960
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500
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June 400

July
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- 200
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Figure 4.27: Heatmap of flight passengers' data

Note

The solution to this activity can be found on page 378.

After the in-depth discussion about various color palettes, we will introduce some more
advanced plots that Seaborn offers in the following section.

Advanced Plots in Seaborn

In the previous chapter, we discussed various plots in Matplotlib, but there are still

a few visualizations left that we want to discuss. First, we will revise bar plots since
Seaborn offers some neat additional features for them. Moreover, we will cover kernel
density estimation, correlograms, and violin plots.
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Bar Plots

In the last chapter, we already explained how to create bar plots with Matplotlib.
Creating bar plots with subgroups was quite tedious, but Seaborn offers a very
convenient way to create various bar plots. They can also be used in Seaborn to
represent estimates of central tendency with the height of each bar, while uncertainty
is indicated by error bars at the top of the bar.

The following example gives you a good idea of how this works:

import pandas as pd

import seaborn as sns

data = pd.read csv("../Datasets/salary.csv")

sns.set (style="whitegrid")

sns.barplot (x="Education", y="Salary", hue="District", data=data)

The result is shown in the following diagram:

70000 District
B Brooklyn
s Manhatten
60000 I Staten Island
B Bronx
50000 BN Queens
5‘40000
©
[0)]
30000
20000
- II I . - .
0 ][
Academic degree High school diploma No diploma

Education

Figure 4.28: Seaborn bar plot

Let's get some practice with Seaborn bar plots in the following activity.
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Activity 4.02: Movie Comparison Revisited

In this activity, we will generate a bar plot to compare movie scores. You will be given
five movies with scores from Rotten Tomatoes. The Tomatometer is the percentage
of approved Tomatometer critics who have given a positive review for a movie. The
Audience Score is the percentage of users who have given a score of 3.5 or higher, out
of 5. Compare these two scores among the five movies:

1. Use pandas to read the movie_scores.csv dataset located in the
Datasets folder.

2. Transform the data into a useable format for Seaborn's barplot function.

3. Use Seaborn to create a visually appealing bar plot that compares the two scores
for all five movies.

After executing the preceding steps, the expected output should appear as follows:

Movies Scores comparison
100
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B Audience Score
. Tomatometer
80
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The Shape of Wat Black panth® punk! The Marts unexpec cted ‘oume‘/
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The HooPY
Movies

Figure 4.29: Movie Scores comparison

Note

The solution to this activity can be found on page 379.
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Kernel Density Estimation

It is often useful to visualize how variables of a dataset are distributed. Seaborn offers
handy functions to examine univariate and bivariate distributions. One possible way
to look at a univariate distribution in Seaborn is by using the distplot () function.
This will draw a histogram and fit a kernel density estimate (KDE), as illustrated in the
following example:

Smatplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

data = pd.read csv('../../Datasets/age salary hours.csv')
sns.distplot (data.loc[:, 'Age'l)

plt.xlabel ('Age')

plt.ylabel ('Density")

The result is shown in the following diagram:
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Figure 4.30: KDE with a histogram for a univariate distribution
To just visualize the KDE, Seaborn provides the kdeplot () function:

sns.kdeplot (data.loc[:, 'Age'], shade=True)
plt.xlabel ('Age')
plt.ylabel ('Density"')
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The KDE plot is shown in the following diagram, along with a shaded area under
the curve:
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Figure 4.31: KDE for a univariate distribution

In the next section, we will learn how to plot bivariate distributions.

Plotting Bivariate Distributions

For visualizing bivariate distributions, we will introduce three different plots. The
first two plots use the jointplot () function, which creates a multi-panel figure
that shows both the joint relationship between both variables and the corresponding
marginal distributions.

A scatter plot shows each observation as points on the x and y axes. Additionally,
a histogram for each variable is shown:

import pandas as pd

import seaborn as sns

data = pd.read csv('../../Datasets/age salary hours.csv')
sns.set (style="white")

sns.jointplot (x="Annual Salary", y="Age", data=data))
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The scatter plot with marginal histograms is shown in the following diagram:
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Figure 4.32: Scatter plot with marginal histograms

It is also possible to use the KDE procedure to visualize bivariate distributions. The joint
distribution is shown as a contour plot, as demonstrated in the following code:

sns.jointplot ('Annual Salary', 'Age', data=subdata, kind='kde', xlim=(0,
500000), ylim=(0, 100))
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The result is shown in the following diagram:
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Figure 4.33: Contour plot

The joint distribution is shown as a contour plot in the center of the diagram. The
darker the color, the higher the density. The marginal distributions are visualized on the
top and on the right.
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Visualizing Pairwise Relationships

For visualizing multiple pairwise relationships in a dataset, Seaborn offers the
pairplot () function. This function creates a matrix where off-diagonal elements
visualize the relationship between each pair of variables and the diagonal elements
show the marginal distributions.

The following example gives us a better understanding of this:

Smatplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

data = pd.read csv('../../Datasets/age salary hours.csv')
sns.set (style="ticks", color codes=True)

g = sns.pairplot (data, hue='Education')

Note

The age_salary hours dataset is downloaded and derived from https://
WWWw.census.gov/programs-surveys/acs/technical-documentation/pums/
documentation.2017.html.

A pair plot, also called a correlogram, is shown in the following diagram. Scatter plots
are shown for all variable pairs on the off-diagonal, while KDEs are shown on the
diagonal. Groups are highlighted by different colors:


https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
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Figure 4.34: Seaborn pair plot

Violin Plots

A different approach to visualizing statistical measures is by using violin plots. They
combine box plots with the kernel density estimation procedure that we described
previously. It provides a richer description of the variable's distribution. Additionally,
the quartile and whisker values from the box plot are shown inside the violin.
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The following example demonstrates the usage of violin plots:

import pandas as pd

import seaborn as sns

data = pd.read csv("../../Datasets/salary.csv")
sns.set (style="whitegrid")

sns.violinplot ('Education', 'Salary', hue='Gender', data=data, split=True,
cut=0)

The result appears as follows:

Gender
350000 B Male
[ Female
300000
250000
2 200000
©
®©
w
150000
100000
50000
0
Academic degree High school diploma No diploma

Education

Figure 4.35: Seaborn violin plot

The violin plot shows both statistical measures and the probability distribution. The
data is divided into education groups, which are shown on the x-axis, and gender
groups, which are highlighted by different colors.

With the next activity, we will conclude the section about advanced plots. In this
section, multi-plots in Seaborn are introduced.
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Activity 4.03: Comparing IQ Scores for Different Test Groups by
Using a Violin Plot

In this activity, we will compare the IQ scores among four different test groups by using
the violin plot that's provided by the Seaborn library. The following steps will help you
to complete this activity:

1. Use pandas to read the iq_scores.csv dataset located in the Datasets folder.

2. Access the data of each group in the column, convert it into a list, and assign
appropriate variables.

3. Create a pandas DataFrame from the data for each respective group.

4. Create a box plot for the IQ scores of the different test groups using Seaborn's
violinplot function.

5. Use the whitegrid style, set the context to talk, and remove all axes spines,
except the one on the bottom. Add a title to the plot.

After executing the preceding steps, the final output should appear as follows:

1Q scores for different test groups

949

Group A Group B Group C Group D
Groups

160

140

120

100

1Q score

80

60

40

Figure 4.36: Violin plot showing IQ scores of different groups

Note

The solution to this activity can be found on page 381.
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In the next section, we will learn about multi-plots in Seaborn.

Multi-Plots in Seaborn

In the previous topic, we introduced a multi-plot, namely, the pair plot. In this topic,
we want to talk about a different way to create flexible multi-plots.

FacetGrid

The FacetGrid is useful for visualizing a certain plot for multiple variables separately.
A FacetGrid can be drawn with up to three dimensions: row, col, and hue. The first
two have the obvious relationship with the rows and columns of an array. The hue

is the third dimension and is shown in different colors. The FacetGrid class has

to be initialized with a DataFrame, and the names of the variables that will form the
row, column, or hue dimensions of the grid. These variables should be categorical
or discrete.

The seaborn.FacetGrid(data, row, col, hue, ..) command initializes a
multi-plot grid for plotting conditional relationships.

Here are some interesting parameters:

* data: A tidy ("long-form") DataFrame where each column corresponds to a variable,
and each row corresponds to an observation

* row, col, hue: Variables that define subsets of the given data, which will be
drawn on separate facets in the grid

* sharex, sharey (optional): Share x/y axes across rows/columns
* height (optional): Height (in inches) of each facet

Initializing the grid does not draw anything on it yet. To visualize data on this grid, the
FacetGrid.map () method has to be used. You can provide any plotting function and
the name(s) of the variable(s) in the DataFrame to the plot:

FacetGrid.map (func, *args, **kwargs) applies a plotting function to each facet
of the grid.

Here are the parameters:
* func: A plotting function that takes data and keyword arguments.

* *args: The column names in data that identify variables to plot. The data for each
variable is passed to func in the order in which the variables are specified.

» **kwargs: Keyword arguments that are passed to the plotting function.
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The following example visualizes FacetGrid with scatter plots:

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

data = pd.read csv("../../Datasets/salary.csv") [:1000]
g = sns.FacetGrid(data, col='District')

g.map (plt.scatter, 'Salary', 'Age')

District = Brooklyn District = Manhatten District = Staten Island District = Bronx District = Queens

K

°
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0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000
Salary Salary Salary Salary Salary

Figure 4.37: FacetGrid with scatter plots

We will conclude FacetGrids with the following activity.

Activity 4.04: Visualizing the Top 30 Music YouTube Channels Using Seaborn's
FacetGrid

In this activity, we will generate a FacetGrid plot using the Seaborn library. We will
visualize the total number of subscribers and the total number of views for the
top 30 YouTube channels (as of January 2020) in the music category by using the
FacetGrid () function that's provided by the Seaborn library.

Visualize the given data using a FacetGrid with two columns. The first column should
show the number of subscribers for each YouTube channel, whereas the second column
should show the number of views. The goal of this activity is to get some practice
working with FacetGrids. The following are the steps to implement this activity:

1. Use pandas to read the YouTube . csv dataset located in the Datasets folder.

2. Access the data of each group in the column, convert this into a list, and assign this
list to variables of each respective group.

3. Create a pandas DataFrame with the preceding data, using the data of each
respective group.
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4. Create a FacetGrid with two columns to visualize the data.

After executing the preceding steps, the final output should appear as follows:

Type = Subscribers Type = Views

T-Series I N— |
Canal Kondzilla IR
Zee Music Company [N
Ed Sheeran [
EminemMusic NI
Ariana Grande I
Taylor Swift IR
JustinBiebervevo [N
BLACKPINK |
Alan Walker [N
Shemaroo Filmi Gaane |G
ibighit I
One Direction IR
Wave Music IR
Sony Music India [ INEGG__—
El Reino Infantil NG
Maroon 5 N
Trap Nation |
Speed Records [N
GR6 EXPLODE [
Taylorswiftvevo [N
SonyMusicindiavEvo [N
Ozuna [N
Daddy Yankee [N
YRF
Spinnin' Records NN
Bruno Mars [N
RihannaVEVO [N
T-Series Bhakti Sagar [N
KatyPerryVEVO [N
0 20 40 60 80 100 120
Subscribers in millions

YouTube Channels

20000 40000 60000 80000
Subscribers in millions

=)

Figure 4.38: Subscribers and views of the top 30 YouTube channels

Note
The solution to this activity can be found on page 385.

In the next section, we will learn how to plot a regression plot using Seaborn.

Regression Plots

Many datasets contain multiple quantitative variables, and the goal is to find a
relationship among those variables. We previously mentioned a few functions that
show the joint distribution of two variables. It can be helpful to estimate relationships
between two variables. We will only cover linear regression in this topic; however,
Seaborn provides a wider range of regression functionality if needed.
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The regplot () function offered by Seaborn helps to visualize linear
relationships, determined through linear regression. The following code
snippet gives a simple example:

import numpy as np
import seaborn as sns
X = np.arange (100)

y = X + np.random.normal (0, 5, size=100) # normal distribution with mean 0
and a standard deviation of 5

sns.regplot (x, V)

The regplot () function draws a scatter plot, a regression line, and a 95% confidence
interval for that regression, as shown in the following diagram:
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40

20

0 20 40 60 80 100

Figure 4.39: Seaborn regression plot

Let's have a look at a more practical example in the following activity.
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Activity 4.05: Linear Regression for Animal Attribute Relations

In this activity, we will generate a regression plot to visualize a real-life dataset using
the Seaborn library. You have a dataset pertaining to various animals, including their
body mass and maximum longevity. To discover whether there is any linear relationship
between these two variables, a regression plot will be used.

Note

The dataset used is from http://genomics.senescence.info/download.html#anage.
The dataset can also be downloaded from GitHub. Here is the link to it:
https://packt.live/3bzApYN.

The following are the steps to perform:
1. Use pandas to read the anage _data.csv dataset located in the Datasets folder.

2. Filter the data so that you end up with samples containing a body mass and
maximum longevity. Only consider samples for the Mammalia class and a body
mass of less than 200,000.

3. Create a regression plot to visualize the linear relationship between the variables.


http://genomics.senescence.info/download.html#anage
https://packt.live/3bzApYN
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After executing the preceding steps, the output should appear as follows:

120

100
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0 25000 50000 75000 100000 125000 150000 175000 200000
Body mass (g)

Figure 4.40: Linear regression for animal attribute relations

Note

The solution to this activity can be found on page 387.

In the next section, we will learn how to plot Squarify using Seaborn.
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Squarify

At this point, we will briefly talk about tree maps. Tree maps display hierarchical data
as a set of nested rectangles. Each group is represented by a rectangle, of which its area
is proportional to its value. Using color schemes, it is possible to represent hierarchies
(groups, subgroups, and so on). Compared to pie charts, tree maps use space efficiently.
Matplotlib and Seaborn do not offer tree maps, and so the Squarify library that is built
on top of Matplotlib is used. Seaborn is a great addition for creating color palettes.

The following code snippet is a basic tree map example. It requires the Squarify library:

gmatplotlib inline

import matplotlib.pyplot as plt
import seaborn as sns

import squarify

colors = sns.light palette("brown", 4)

squarify.plot(sizes=[50, 25, 10, 15], label=["Group A", "Group B", "Group
C", "Group D"], color=colors)
plt.axis ("off")

plt.show()

The result is shown in the following diagram:

Group A

Group B

Figure 4.41: Tree map

Now, let's have a look at a real-world example that uses tree maps in the
following exercise.
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Exercise 4.03: Water Usage Revisited

In this exercise, we will create a tree map using the Squarify and Seaborn libraries.
Consider the scenario where you want to save water. Therefore, you visualize your
household's water usage by using a tree map, which can be created with the help of the

Squarify library.

Note

The water_ usage.csv dataset used is from this link: https://www.epa.gov/
watersense/how-we-use-water. Their data originates from https://www.waterrf.
org/research/projects/residential-end-uses-water-version-2.

Following are the steps to perform:

1.

Open the Exercise4.03. ipynb Jupyter Notebook from the Chapter04 folder to
implement this exercise. Navigate to the path of this file and type in the following at
the command-line terminal: jupyter-1lab.

Import the necessary modules and enable plotting within a Jupyter Notebook:

Smatplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

import squarify

Use the read_csv () function of pandas to read the water usage.csv dataset
located in the Datasets folder:

mydata = pd.read csv("../../Datasets/water usage.csv", index col=0)

Create a list of labels by accessing each column from the preceding dataset. Here,
the astype ('str') function is used to cast the fetched data into a type string:

labels = mydata['Usage'] + ' (' + mydata['Percentage'].astype('str') +

'%)'


https://www.epa.gov/watersense/how-we-use-water
https://www.epa.gov/watersense/how-we-use-water
https://www.waterrf.org/research/projects/residential-end-uses-water-version-2
https://www.waterrf.org/research/projects/residential-end-uses-water-version-2
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5. To create a tree map visualization of the given data, use the plot () function of the
squarify library. This function takes three parameters. The first parameter is a list
of all the percentages, and the second parameter is a list of all the labels, which we
got in the previous step. The third parameter is the colormap that can be created
by using the 1ight_palette () function of the Seaborn library:

# Create figure
plt.figure (dpi=200)
# Create tree map

squarify.plot (sizes=mydata['Percentage'], label=labels, color=sns.
light palette('green', mydata.shape[0]))
plt.axis ('off'")

# Add title
plt.title('Water usage')
# Show plot

plt.show ()

Following is the output of the code:

Water usage

Clothes Washer (17%)

Leak (12%)

Figure 4.42: Tree map visualizing the water usage in a household
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To conclude this exercise, you can see that tree maps are great for visualizing
part-of-a-whole relationships. We immediately see that using the toilet requires
the most water, followed by showers.

Activity 4.06: Visualizing the Impact of Education on Annual Salary and Weekly
Working Hours

In this activity, we will generate multiple plots using a real-life dataset. You're asked to
get insights on whether the education of people has an influence on their annual salary
and weekly working hours. You ask 500 people in the state of New York about their age,
annual salary, weekly working hours, and their education. You first want to know the
percentage for each education type, so therefore you use a tree map. Two violin plots
will be used to visualize the annual salary and weekly working hours. Compare in each
case to what extent education has an impact.

It should also be taken into account that all visualizations in this activity are designed to
be suitable for colorblind people. In principle, this is always a good idea to bear in mind.

Note

The American Community Survey (ACS) Public-Use Microdata Samples (PUMS)
dataset (one-year estimate from 2017) from https://www.census.gov/programs-
surveys/acs/technical-documentation/pums/documentation.2017.html is used
in this activity. This dataset is later used in Chapter 07, Combining What We Have
Learned. This dataset can also be downloaded from GitHub. Here is the link:
https://packt.live/3bzApYN.



https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
https://packt.live/3bzApYN
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The following are the steps to perform:

1. Use pandas to read the age_salary_ hours.csv dataset located in the
Datasets folder.

2. Use a tree map to visualize the percentages for each education type. After
executing the preceding steps, the outputs should appear as follows:

Degrees

Figure 4.43: Tree map

3. Create a subplot with two rows to visualize two violin plots for the annual salary
and weekly working hours, respectively. Compare in each case to what extent
education has an impact. To exclude pensioners, only consider people younger
than 65. Use a colormap that is suitable for colorblind people. subplots () can be
used in combination with Seaborn's plot, by simply passing the ax argument with
the respective axes. The following output will be generated after implementing
this step:
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Figure 4.44: Violin plots showing the impact of education on annual salary and weekly working hours

Note
The solution to this activity can be found on page 389.
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Summary

In this chapter, we demonstrated how Seaborn helps to create visually appealing
figures. We discussed various options for controlling Figure aesthetics, such as Figure
style, controlling spines, and setting the context of visualizations. We talked about
color palettes in detail. Further visualizations were introduced for univariate and
bivariate distributions. Moreover, we discussed FacetGrids for creating multi-plots, and
regression plots as a way to analyze the relationships between two variables. Finally, we
discussed the Squarify library, which is used to create tree maps.

In the next chapter, we will work with a different category of data, called geospatial
data. The prominent attribute of such a dataset is the presence of geo-coordinates
that can be used to plot elements on a given position on a map. We will visualize
poaching points, the density of cities around the world, and create a more interactive
visualization that only displays data points of the currently selected country.









Plotting Geospatial
Data

Overview

By the end of this chapter, you will be able to utilize geoplotlib to create stunning
geographical visualizations and identify the different types of geospatial charts.
You will be able to demonstrate datasets containing geospatial data for plotting
and create complex visualizations using tile providers and custom layers.
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Introduction

geoplotlib is an open-source Python library for geospatial data visualizations. It has
a wide range of geographical visualizations and supports hardware acceleration. It
also provides performance rendering for large datasets with millions of data points.
As discussed in earlier chapters, Matplotlib provides various ways to visualize
geographical data.

However, Matplotlib is not designed for this task because its interfaces are complicated
and inconvenient to use. Matplotlib also restricts how geographical data can be
displayed. The Basemap and Cartopy libraries allow you to plot on a world map,

but these packages do not support drawing on map tiles. Map tiles are underlying
rectangular, square, or hexagonal tile slabs that are used to create a seamless map of
the world, with lightweight, individually requested tiles that are currently in view.

geoplotlib, on the other hand, was designed precisely for this purpose; it not only
provides map tiles but also allows for interactivity and simple animations. It provides
a simple interface that allows access to compelling geospatial visualizations such

as histograms, point-based plots, tessellations such as Voronoi or Delaunay, and
choropleth plots.

In the exercises and activities in this chapter, we will use geoplotlib in combination with
different real-world datasets to do the following:

» Highlight popular poaching spots in one area of Tanzania

» Discover dense areas within cities in Europe that have a high population

* Visualize values for the distinct states of the US

» Create a custom animated layer that displays the time series data of aircraft

To understand the concepts, design, and implementation of geoplotlib, take a brief look
at its conceptual architecture. The two inputs that are fed to geoplotlib are your data
sources and map tiles. The map tiles, as we'll see later, can be replaced by different
providers. The outputs describe the possibility to not only render images inside Jupyter
Notebooks but also to work in an interactive window that allows the zooming and
panning of the maps. The schema of the components of geoplotlib looks as follows:
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Data Sources Jupyter Notebook
Inputs geoplotlib Outputs
Map Tiles Interactive Window
NumPy/SciPy Pyglet/OpenGL
Python

Figure 5.1: Conceptual architecture of geoplotlib

geoplotlib uses the concept of layers that can be placed on top of one another,
providing a powerful interface for even complex visualizations. It comes with several
common visualization layers that are easy to set up and use.

From the preceding diagram, we can see that geoplotlib is built on top of NumPy/
SciPy and Pyglet /OpenGL. These libraries take care of numerical operations and
rendering. Both components are based on Python, therefore enabling the use of the
full Python ecosystem.

Note

All the datasets used in this chapter can be found at https://packt.live/3bzApYN. All
the files of exercises and activities can be found here: https://packt.live/2U|Rbyt.

All of the following examples are created with the world cities_pop.csv dataset,
which we will use for the exercises and activities later in this chapter. Before we can use
it, we have to extract the . zip file that is included in the Datasets folder.


https://packt.live/3bzApYN
https://packt.live/2UJRbyt
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To use the world cities_pop dataset, we need to add a 1at and lon column. For
the examples, we also want to filter our dataset down to contain only cities in Brazil.
This will give us dataset_filtered. We will use this filtered-down dataset in the
following examples:

# loading the Dataset with geoplotlib

dataset = pd.read csv('../../Datasets/world cities pop.csv',
dtype={'Region': np.str})

# Adding lat and lon column needed by geoplotlib
dataset['lat'] = dataset['Latitude']
dataset['lon'] = dataset['Longitude']

# filtering for cities in brasil
dataset filtered = dataset[dataset['Country'] == 'br']

To run these examples yourself, please refer to Examples . ipynb in the Examples
folder of the chapter.

The Design Principles of geoplotlib

Taking a closer look at the internal design of geoplotlib, we can see that it is built
around three design principles:

» Integration: geoplotlib visualizations are purely Python-based. This means
that generic Python code can be executed, and other libraries such as pandas
can be used for data wrangling purposes. We can manipulate and enrich our
datasets using pandas DataFrames and later convert them into a geoplotlib
DataAccessObject, which we need for optimal compatibilities, as follows:

import pandas as pd
from geoplotlib.utils import DataAccessObject

# data wrangling with pandas DataFrames here
dataset obj = DataAccessObject (dataset filtered)

geoplotlib fully integrates into the Python ecosystem. This even enables us to plot
geographical data inline inside our Jupyter Notebooks. This possibility allows us to
design our visualizations quickly and iteratively.

» Simplicity: Looking at the example provided here, we can quickly see that
geoplotlib abstracts away the complexity of plotting map tiles and already-provided
layers such as dot density and histogram. It has a simple API that provides
common visualizations. These visualizations can be created using custom data
with only a few lines of code.
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The core attributes of our datasets are 1at and lon values. Latitude and longitude
values enable us to index every single location on Earth. In geoplotlib, we need
them to tell the library where on the map our elements need to be rendered. If
our dataset comes with 1at and lon columns, we can display each of those data
points, for example, dots on a map with five lines of code.

In addition, we can use the £_tooltip argument to provide a popup for each point
as an element of the column we provide as a source as follows:

# plotting our dataset as a dot density plot
import geoplotlib
from geoplotlib.utils import DataAccessObject

dataset obj = DataAccessObject (dataset filtered)
geoplotlib.dot (dataset obj, f tooltip=lambda d:d['City'].title())

geoplotlib.show ()

Executing this code will result in the following dot density plot:

Figure 5.2: Dot density layer of cities in Brazil and an overlay of the city on hovering
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In addition to this, everyone who's used Matplotlib before will have no problems
understanding geoplotlib. The syntax of geoplotlib is highly inspired by Matplotlib.

* Performance: As we mentioned before, geoplotlib can handle large amounts of data
due to the use of NumPy for accelerated numerical operations and OpenGL for
accelerated graphical rendering.

Next, we will create geographical visualizations without much effort and discover

the advantages of using geoplotlib in combination with pandas. We will implement an
exercise that plots the cities of the world and will be able to feel the performance of the
library when plotting thousands of dots on our map.

Geospatial Visualizations

Voronoi tessellation, Delaunay triangulation, and choropleth plots are a few of the
geospatial visualizations that will be used in this chapter. An explanation for each of
them is provided here.

Voronoi Tessellation

In a Voronoi tessellation, each pair of data points is separated by a line that is the same
distance from both data points. The separation creates cells that, for every given point,
marks which data point is closer. The closer the data points, the smaller the cells.

The following example shows how you can simply use the voronoi method to create
this visualization:

# plotting our dataset as voronoi plot
geoplotlib.voronoi (dataset filtered, line color='b')
geoplotlib.set smoothing(True)

geoplotlib.show ()

As we can see, the code to create this visualization is relatively short.

After importing the dependencies we need, we read the dataset using the read_csv
method of pandas (or geoplotlib). We then use it as data for our voronoi method, which
handles all of the complex logic of plotting the data on the map.



Geospatial Visualizations | 233

In addition to the data itself, we can set several parameters, such as general smoothing
using the set_smoothing method. The smoothing of the lines uses anti-aliasing:

Figure 5.3: Voronoi plot of cities in Brazil to visualize population density

Delaunay Triangulation

A Delaunay triangulation is related to Voronoi tessellation. When connecting each
data point to every other data point that shares an edge, we end up with a plot that
is triangulated. The closer the data points are to each other, the smaller the triangles
will be. This gives us a visual clue about the density of points in specific areas. When
combined with color gradients, we get insights about points of interest, which can be
compared with a heatmap:

# plotting our dataset as a delaunay
geoplotlib.delaunay (dataset filtered, cmap='hot r')
geoplotlib.set smoothing (True)

geoplotlib.show ()

This example uses the same dataset as before, that is, population density in Brazil. The
structure of the code is the same as in the voronoi example.
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After importing the dependencies that we need, we read the dataset using the read _
esv method and then use it as data for our delaunay method, which handles all of the
complex logic of plotting data on the map.

In addition to the data itself, we can again use the set _smoothing method to smooth
the lines using anti-aliasing.

The resulting visualization looks as follows:

Figure 5.4: Delaunay triangulation of cities in Brazil to visualize population density

Choropleth Plot

This kind of geographical plot displays areas such as the states of a country in a shaded
or colored manner. The shade or color of the plot is determined by a single data point
or a set of data points. It gives an abstract view of a geographical area to visualize the
relationships and differences between the different areas. In the following code and
visual example, we can see that the unemployment rate determines the shade of each
state of the US. The darker the shade, the higher the rate:
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from geoplotlib.colors import ColorMap

import json

# find the unemployment rate for the selected county, and convert it to
color
def get color (properties):

key = str(int (properties['STATE'])) + properties['COUNTY']
if key in unemployment rates:

return cmap.to color (unemployment rates.get (key), .15, 'lin')
else:

return [0, 0, 0, 0]

# get unemployment data
with open('../../Datasets/unemployment.json') as fin:
unemployment rates = json.load (fin)

# plot the outlines of the states and color them using the unemployment
rate
cmap = ColorMap ('Reds', alpha=255, levels=10)

geoplotlib.geojson('../../Datasets/us_states shapes.json', fill=True,
color=get color, f tooltip=lambda properties: properties['NAME'])
geoplotlib.geojson('../../Datasets/us states shapes.json', fill=False,

color=[255, 255, 255, 641])
geoplotlib.set bbox (BoundingBox.USA)

geoplotlib.show ()

We will cover what each line does in more detail later on. However, to give you a better
understanding of what is happening here, we will quickly cover the sections of the
preceding code.

The first few lines import all of the necessary dependencies, including geoplotlib and
json, which will be used to load our dataset, which is provided in this format.

After the import statements, we see a get_color method. This method returns a
color that has been determined by the unemployment rate of the given data point. This
method defines how dark the red value will be. In the last section of the script, we read
our dataset and use it with the geojson method.

The choropleth plot is one of the only visualizations that does not have a method
assigned that is solely used for this kind of plot. We use the geojson () method to
create more complex shapes than simple dots. By using the £_tooltip argument, we
can also display the name of the city we are hovering over.
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The BoundingBox object is an object to define the "corners" of the viewport. We can
set an initial focus when running our visualization, which helps the user see what the
visualization is about without panning around and zooming first.

Executing this code with the right example dataset provides the following visualization:

Figure 5.5: Choropleth plot of unemployment rates in the US; the darker the color, the higher the value

Next, we will implement an exercise to plot dot density and histograms.

Exercise 5.01: Plotting Poaching Density Using Dot Density and Histograms

In this exercise, we'll be looking at the primary use of geoplotlib's plot methods for
dot density, histograms, and Voronoi diagrams. For this, we will make use of data on
various poaching incidents that have taken place all over the world.

The dataset that we will be using here contains data from poaching incidents in
Tanzania. The dataset consists of 268 rows and 6 columns (id_report, date_report,
description, created date, lat, and lon).
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Each row is uniquely identified by id_report. The date_report column states what
date the poaching incident took place on. On the other hand, the created_date
column states the date on which the report was created. The description column
provides basic information about the incident. The 1at and lon columns state the
geographical location of the place where the poaching took place.

Note that geoplotlib requires your dataset to have both 1at and lon columns. These
columns are the geographical data for latitude and longitude, which are used to
determine how to plot the data. The following are the steps to perform:

1.

Open the Exercise5.01. ipynb Jupyter Notebook from the Chapter05 folder
to implement this exercise. To do that, type jupyter-1lab into the command-line
terminal and then open the Exercise5.01. ipynb file.
First, import the dependencies that you will need. Use the read csv method
provided by geoplotlib to read the dataset as a CSV file into a DataAccessObject:
import geoplotlib
from geoplotlib.utils import read csv
Load the poaching points_cleaned.csv dataset from the Datasets folder
using the pandas read csv method as well:
dataset = read csv('../../Datasets/poaching points cleaned.csv')
Print out the dataset and look at its type. What difference do you see compared to
a pandas DataFrame? Let's take a look:
# looking at the dataset structure
dataset
The following figure shows the output of the preceding code:
DataAccessObject(['id_report', 'date_report', 'description', 'created_date', 'lat’', 'lon'] x 268)

Figure 5.6: Dataset structure
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The dataset is stored in a DataAccessObject class that's provided by geoplotlib.
It does not have the same capabilities as a pandas DataFrame. Instead, it's meant
for the simple and quick loading of data so that you can create a visualization. If we
print out this object, we can see the differences better. It gives us a basic overview
of what columns are present and how many rows the dataset has.

5. Convert the dataset into a pandas DataFrame to preprocess the data:

# csv import with pandas

import pandas as pd

pd dataset =

pd dataset.head()

pd.read csv ('.

The following figure shows the output:

./../Datasets/poaching points cleaned.csv')

id_report | date_report description created_date lat lon
0138 01/01/2005 12:00:00 AM | Poaching incident | 2005/01/01 12:00:00 AM | -7.049359 | 34.841440
1(4 01/20/2005 12:00:00 AM | Poaching incident | 2005/01/20 12:00:00 AM | -7.650840 | 34.480010
243 01/20/2005 12:00:00 AM | Poaching incident | 2005/02/20 12:00:00 AM | -7.843202 | 34.005704
3|98 01/20/2005 12:00:00 AM | Poaching incident [ 2005/02/21 12:00:00 AM | -7.745846 | 33.948526
4(141 01/20/2005 12:00:00 AM | Poaching incident | 2005/02/22 12:00:00 AM | -7.876673 | 33.690167

Figure 5.7: The first five entries of the dataset

6. Plot each row of our dataset as a single point on the map using a dot density layer
by calling the dot method. Then, call the show method to render the map with a
given layer:

# plotting our dataset with points
geoplotlib.dot (dataset)
geoplotlib.show ()
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The following figure shows the output:

.'_ -

Figure 5.8: Dot density visualization of poaching points

Only looking at the 1at and lon values in the dataset won't give us a very good idea
of where on the map our elements are located or how far apart they are. We're not
able to draw conclusions and get insights into our dataset without visualizing our
data points on a map. When looking at the rendered map, we can instantly see that
some areas have more incidents than others. This insight couldn't have been easily
identified by simply looking at the numbers in the dataset itself.
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7. Visualize the density using the hist method, which will create a Histogram Layer
on top of our map tiles. Then, define a binsize of 20. This will allow us to set the
size of the hist bins in our visualization:

# plotting our dataset as a histogram
geoplotlib.hist (dataset, binsize=20)
geoplotlib.show ()

The following figure shows the output of the preceding code:
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Figure 5.9: Histogram visualization of poaching points

Histogram plots give us a better understanding of the density distribution of
our dataset. Looking at the final plot, we can see that there are some hotspots for
poaching. It also highlights the areas without any poaching incidents.

8. Create a Voronoi plot using the same dataset. Use a color map cmap of 'Blues_r'
and define the max area parameter as 1e5:

# plotting a voronoi map
geoplotlib.voronoi (dataset, cmap='Blues r', max area=le5, alpha=255)
geoplotlib.show ()
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The following figure shows the output of the preceding code:

Figure 5.10: Voronoi visualization of poaching points

Voronoi plots are good for visualizing the density of data points, too. Voronoi
introduces a little bit more complexity with several parameters, such as cmap,
max_area, and alpha. Here, cmap denotes the color of the map, alpha denotes the
color of the alpha, and max_area denotes a constant that determines the color of the
Voronoi areas.

If we compare this Voronoi visualization with the histogram plot, we can see that one
area draws a lot of attention. The center-right edge of the plot shows quite a large dark
blue area with an even darker center: something that could've easily been overlooked
with the histogram plot.

We have now covered the basics of geoplotlib. It has many more methods, but they all
have a similar API that makes using the other methods simple. Since we have looked at
some very basic visualizations, it's now up to you to solve the first activity.
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Activity 5.01: Plotting Geospatial Data on a Map

In this activity, we will take our previously learned skills of plotting data with geoplotlib
and apply them to our new world cities_pop.csv dataset. We will find the dense
areas of cities in Europe that have a population of more than 100,000 people:

1.

10.

Open the Activity5.01. ipynb Jupyter Notebook from the Chapter05 folder to
implement this activity.

Import the dependencies and load the world cities_pop.csv dataset from the
Datasets folder using pandas.

List all the datatypes that are present in it and verify that they are correct. Then,
map the Latitude and Longitude columns to 1lat and lon.

Now, plot the data points on a dot density plot.
Use the agg method of pandas to get the average number of cities per country.

Obtain the number of cities per country (the first 20 entries) and extract the
countries that have a population of greater than zero.

Plot the remaining data on a dot plot.

Again, filter your remaining data for cities with a population of greater
than 100,000.

To get a better understanding of the density of our data points on the map, use a
Voronoi tessellation layer.

Filter down the data even further to only cities in countries such as Germany and
Great Britain.
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11. Finally, use a Delaunay triangulation layer to find the most densely
populated areas.

Observe the expected output of the dot plot:

Figure 5.11: A dot density visualization of the reduced dataset
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The following is the expected output of the Voronoi plot:

Figure 5.12: A Voronoi visualization of densely populated cities
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The following is the expected output of the Delaunay triangulation:

Figure 5.13: A Delaunay triangle visualization of cities in Germany and Great Britain

Note

The solution for this activity can be found on page 393.

You have now completed your first activity using geoplotlib. Note how we made use
of different plots to get the information we required. Next, we will look at some more
custom features of geoplotlib that will allow us to change the map tiles provider and
create custom plotting layers.
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The GeoJSON Format

The GeoJSON format is used to encode a variety of data structures, such as points,
lines, and polygons with a focus on geographical visualization. The format has a defined
structure that each valid file has to follow:

{

"type": "Feature",

"properties": {
"name": "Dinagat Islands"

}y

"geometry": {
"type": "Point",
"coordinates": [125.6, 10.1]

}

Each object with additional properties, for example, an ID or name attribute, is a
Feature. The properties attribute simply allows additional information to be added
to the feature. The geometry attribute holds information about the type of feature we
are working with, for example, a Point, and its specific coordinates. The coordinates
define the positions for the "waypoints" of the given type. Those coordinates define the
shape of the element to be displayed by the plotting library.

Exercise 5.02: Creating a Choropleth Plot with GeoJSON Data

In this exercise, we will work with GeoJSON data and also create a choropleth
visualization. GeoJSON is especially useful for displaying statistical variables in shaded
areas. In our case, the areas will be the outlines of the states of the USA.

Let's create a choropleth visualization with the given GeoJSON data:

1. Open the Exercise5.02.ipynb Jupyter Notebook from the Chapter05 folder to
implement this exercise. Then, load the dependencies for this exercise:

# importing the necessary dependencies
import json

import geoplotlib

from geoplotlib.colors import ColorMap
from geoplotlib.utils import BoundingBox

2. Since the geojson method of geoplotlib only needs a path to the us_states.
json dataset instead of a DataFrame or object, we don't need to load it. However,
since we still want to see what kind of data we are handling, we must open the
GeoJSON file and load it as a json object. We can then access its members using
simple indexing:
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# displaying the fourth entry of the states dataset
with open('../../Datasets/us_states.json') as data:
dataset = json.load(data)

fourth state = dataset.get ('features') [3]

# only showing one coordinate instead of all points

fourth state['geometry']['coordinates'] = fourth state['geometry']
['coordinates'] [0] [0]

print (json.dumps (fourth state, indent=4))

Our dataset contains a few properties. Only the state name, NAME, and the number
of consensus areas, CENSUSAREA, are important for us in this exercise.

Note

Geospatial applications prefer GeoJSON files for persisting and exchanging
geographical data.

Extract the names of all the states of the USA from the dataset. Next, print the
number of states in the dataset and then print all the states as a list:

# listing the states in the dataset
with open('../../Datasets/us_states.json') as data:
dataset = json.load(data)

states = [feature['properties']['NAME'] for feature in dataset.
get ('features')]

print ('Number of states:', len(states))
print (states)

The following figure shows the output of the preceding code:

Number of states: 52

['Alabama', 'Alaska', 'Arizona', 'Arkansas', 'California', 'Colorado',
'Connecticut', 'Delaware', 'District of Columbia', 'Florida', 'Georgia'
, 'Hawaii', 'Idaho', 'Illinois', 'Indiana', 'Iowa', 'Kansas', 'Kentucky
', 'Louisiana', 'Maine', 'Maryland', 'Massachusetts', 'Michigan', 'Minn
esota', 'Mississippi', 'Missouri', 'Montana', 'Nebraska', 'Nevada', 'Ne
w Hampshire', 'New Jersey', 'New Mexico', 'New York', 'North Carolina',
'North Dakota', 'Ohio', 'Oklahoma', 'Oregon', 'Pennsylvania', 'Rhode Is
land', 'South Carolina', 'South Dakota', 'Tennessee', 'Texas', 'Utah',
'Vermont', 'Virginia', 'Washington', 'West Virginia', 'Wisconsin', 'Wyo
ming', 'Puerto Rico']

Figure 5.14: List of all cities in the US
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4. 1If your GeoJSON file is valid, that is, if it has the expected structure, then use
the geojson method of geoplotlib. Create a GeoJSON plot using the geojson ()
method of geoplotlib:

# plotting the information from the geojson file
geoplotlib.geojson('../../Datasets/us states.json')
geoplotlib.show ()

After calling the show method, the map will show up with a focus on North
America. In the following diagram, we can already see the borders of each state:

Figure 5.15: Map with outlines of the states plotted
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5. Rather than assigning a single value to each state, we want the darkness to
represent the number of census areas. To do this, we have to provide a method for
the color property. Map the CENSUSAREA attribute to a ColorMap class object
with 10 levels to allow a good distribution of color. Provide a maxvalue of 300000
to the to_color method to define the upper limit of our dataset:

cmap = ColorMap ('Reds', alpha=255, levels=10)
def get color (properties):

return cmap.to color (properties[CENSUSAREA],
maxvalue=300000, scale="1lin")

As you can see in the code example, we can provide three arguments to our
ColorMap. The first one, 'Reds', in our case, defines the basic coloring scheme.
The alpha argument defines how opaque we want the color to be, 255 being 100%
opaque, and 0 completely invisible. Those 8-bit values for the Red, Green, Blue, and
Alpha (RGBA) values are commonly used in styling: they all range from O to 255.
With the levels argument, we can define how many "steps,’ that is, levels of red
values, we can map to.

6. Use the us_states. json file in the Datasets folder to visualize the different
states. First, provide the color mapping to our color parameter and set the £111
parameter to True. Then, draw a black outline for each state. Use the color
argument and provide the RGBA value for black. Lastly, use the USA constant of the
BoundingBox class to set the bounding box:

# plotting the shaded states and adding another layer which plots the
state outlines in white
# our BoundingBox should focus the USA

geoplotlib.geojson('../../Datasets/us states.json', fill=True,
color=get color)
geoplotlib.geojson('../../Datasets/us_states.Jjson', fill=False,

color=[0, 0, 0O, 255])

geoplotlib.set bbox (BoundingBox.USA)
geoplotlib.show ()



250 | Plotting Geospatial Data

After executing the preceding steps, the expected output is as follows:

X |
[L

Figure 5.16: Choropleth visualization showing census areas in different states

A new window will open, displaying the country, USA, with the areas of its states
filled with different shades of red. The darker areas represent higher census areas.

7. To give the user some more information about this plot, use the £ _tooltip
argument to provide a tooltip displaying the name and census area value of the
state currently hovered over:

# adding the f tooltip that

geoplotlib.geojson('../../Datasets/us_states.json', fill=True,
color=get color, f tooltip=lambda properties: properties['NAME'] + ' -
Census Areas: ' + str(properties['CENSUSAREA']))

geoplotlib.geojson('../../Datasets/us_states.json', fill=False,
color=[0, 0, 0O, 255])

geoplotlib.set bbox (BoundingBox.USA)
geoplotlib.show ()
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The following is the output of the preceding code:

Figure 5.17: A choropleth visualization showing the census area value of the state hovered over

Upon hovering, we will get a tooltip for each of the plotted areas displaying the
name of the state and the census area value.

You've already built different plots and visualizations using geoplotlib. In this exercise,
we looked at displaying data from a GeoJSON file and creating a choropleth plot.

In the following topics, we will cover more advanced customizations that will give you
the tools to create more powerful visualizations.
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Tile Providers

geoplotlib supports the use of different tile providers. This means that any
OpenStreetMap tile server can be used as a backdrop for our visualization. Some of the
popular free tile providers include Stamen Watercolor, Stamen Toner, Stamen Toner
Lite, and DarkMatter. Changing the tile provider can be done in two ways:

* Make use of built-in tile providers:

geoplotlib contains a few built-in tile providers with shortcuts. The following code
shows you how to use it:

geoplotlib.tiles provider ('darkmatter')
* Provide a custom object to the tiles_provider method:

By providing a custom object to geoplotlib's tiles_provider () method, you
will not only get access to the url parameter from which the map tiles are being
loaded but also see the attribution parameter displayed in the lower-right
corner of the visualization. We are also able to set a distinct caching directory
for the downloaded tiles. The following code demonstrates how to provide a
custom object:

geoplotlib.tiles provider ({
'url': lambda zoom, xtile, ytile:

'http://a.tile.stamen.com/watercolor/%d/%d/%d.png' % (zoom,
xtile, ytile),
'tiles dir': 'tiles dir’,
'attribution': 'Python Data Visualization | Packt'

1)

The caching in tiles_dir is mandatory since, each time the map is scrolled or
zoomed into, we query new map tiles if they are not already downloaded. This can
lead to the tile provider refusing your request due to too many requests occurring
in a short period of time.

In the following exercise, we'll take a quick look at how to switch the map tile provider.
It might not seem convincing at first, but it can take your visualizations to the next level
if leveraged correctly.
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Exercise 5.03: Visually Comparing Different Tile Providers

In this exercise, we will switch the map tile provider for our visualizations. geoplotlib
provides mappings for some of the most popular available map tiles. However, we can
also provide a custom object that contains the url of some tile providers.

The following are the steps to perform the exercise:

1. Open the Exercise5.03. ipynb Jupyter Notebook from the Chapter05 folder
to implement this exercise. To do that, you need to navigate to the path of this file
and, in the command-line terminal, type in jupyter-1lab.

2. Import the necessary dependencies:
import geoplotlib

We won't use a dataset in this exercise since we want to focus on the map tiles and
tile providers.

3. Display the map with the default tile provider:

geoplotlib.show ()
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The following figure shows the output of the preceding code:

Figure 5.18: World map with the default tile provider

This will display an empty world map since we haven't specified a tile provider. By
default, it will use the CartoDB Positron map tiles.



Tile Providers | 255

4. Use the tiles_provider method and provide the 'darkmatter’ tiles:

# using map tiles from the dark matter tile provider
geoplotlib.tiles provider ('darkmatter')
geoplotlib.show ()

geoplotlib provides several shorthand accessors to common map tile providers.
The following figure shows the output:

Figure 5.19: World map with darkmatter map tiles
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In this example, we used the darkmatter map tiles. As you can see, they are very
dark and will make your visualizations pop out.

Note

We can also use different map tiles such as watercolor, toner, toner-lite, and
positron in a similar way.

5. Use the attribution element of the tiles provider argument object (the
entity passed to the method) to provide a custom attribution:

geoplotlib.tiles provider ({
'url': lambda zoom, xtile, ytile: 'http://a.tile.openstreetmap.fr/
hot/%d/%d/%d.png' % (zoom, xtile, ytile),
'tiles dir': 'custom tiles',
'attribution': 'Custom Tiles Provider - Humanitarian map style'
})
geoplotlib.show ()
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The following figure shows the output of the preceding code:

Custom Tiles Provider - Humanitarian map style | Packt

Figure 5.20: Humanitarian map tiles from the custom tile providers object

Some map tile providers have strict request limits, so you may see warning
messages if you're zooming in too fast.
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You now know how to change the tile provider to give your visualization one more layer
of customizability. This also introduces us to another layer of complexity. It all depends
on the concept of our final product and whether we want to use the "default” map tiles
or some artistic map tiles.

The next section will cover how to create custom layers that can go far beyond the ones
we have described in this book. We'll look at the basic structure of the BaseLayer class
and what it takes to create a custom layer.

Custom Layers

Now that we have covered the basics of visualizing geospatial data with built-in layers
and methods to change the tile provider, we will now focus on defining our custom
layers. Custom layers allow you to create more complex data visualizations. They also
help with adding more interactivity and animation to them. Creating a custom layer
starts by defining a new class that extends the BaseLayer class that's provided by
geoplotlib. Besides the __init _ method, which initializes the class level variables,
we also have to, at the very least, extend the draw method of the BaseLayer class
already provided.

Depending on the nature of your visualization, you might also want to implement the
invalidate method, which takes care of map projection changes such as zooming
into your visualization. Both the draw and invalidate methods receive a Projection
object that takes care of the latitude and longitude mapping on our two-dimensional
viewport. These mapped points can be handed to an instance of a BatchPainter
object that provides primitives such as points, lines, and shapes to draw those
coordinates onto your map.

An example of a custom layer, comparable to what we will create, is this program, which
plots the cities of a selected country as dots on the map. We have a given list of possible
countries and can switch through them using the arrow keys:

# importing the necessary dependencies
import pyglet

from geoplotlib.layers import Baselayer
from geoplotlib.core import BatchPainter

countries = ['be', 'ch', 'de', 'es', 'fr', 'it', 'nl', 'pt']
class CountrySelectlayer (Baselayer) :

def init (self, data, bbox=BoundingBox.WORLD) :
self.data = data
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self.view = bbox

# start with germany
self.country num = 0

def invalidate(self, proj):

country data
country num]]
self.painter = BatchPainter ()

self.data[self.data['Country'] == countries[self.

X, y = proj.lonlat to screen(country data['lon'], country
data['lat'])
self.painter.points (x, vy, 2)

def draw(self, proj, mouse x, mouse_ y, ui manager) :
self.painter.batch draw ()

def draw(self, proj, mouse x, mouse_ y, ui manager) :
self.painter.batch draw ()

ui manager.info('Displaying cities in {}'.format (countries[self.
country num]))

def on_key release(self, key, modifiers):
if key == pyglet.window.key.RIGHT:
self.country num = (self.country num + 1) % len(countries)
return True
elif key == pyglet.window.key.LEFT:

self.country num = (self.country num - 1) % len(countries)

return True
return False

# bounding box that gets used when layer is created
def bbox (self):

return self.view

europe_ bbox = BoundingBox (north=68.574309, west=-25.298424,
south=34.266013, east=47.387123)

geoplotlib.add layer (CountrySelectLayer (dataset, europe bbox))
geoplotlib.show ()
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As we've seen several times before, we first import all the necessary dependencies for
this plot, including geoplotlib. BaseLayer and BatchPainter are dependencies we
haven't seen before, since they are only needed when writing custom layers.

Baselayer is a class provided by geoplotlib that is extended by our custom Layer
class. This concept is called inheritance. This means that our custom class has access to
all the properties and methods defined in the BaseLayer class. This is necessary since
geoplotlib requires a predefined structure for layers to make them plottable.

The BatchPainter class is another helper for our implementation that lets us trigger
the drawing of elements onto the map.

When creating the custom layer, we simply provide the BaseLayer class in the
parentheses to tell Python to extend the given class.

The class then needs to implement at least two of the provided methods, __init__
and draw.

__init__ defines what happens when a new custom layer is instantiated. This is used
to set the state of our layer; here, we define values such as our data to be used and
create a new BatchPainter class.

The draw method is called every frame and draws the defined elements using the
BatchPainter class.

In this method, we can do all sorts of calculations such as, in this case, filtering our
dataset to only contain the values of the current active timestamp. In addition to that,
we make the viewport follow our current 1at and lon values by fitting the projection to
a new BoundingBox.

Since we don't want to draw everything from scratch with every frame, we use the
invalidate method, which only updates the points on the viewport. For example,
changes such as zooming.

When using interaction elements, such as switching through our countries using the
arrow keys, we can return either True or False from the on_key pressed method to
trigger the redrawing of all the points.
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Once our class is defined, we can call the add_layer method of geoplotlib to add the
newly defined layer to our visualization and finally call show () to show the map.

When executing the preceding example code, we get a visualization that, upon
switching the selected country with the arrow keys, draws the cities for the selected
country using dots on the map:

Displaying cities in de

Figure 5.21: The selection of cities in Germany
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The following figure shows the cities in Spain after changing the selected country using
the arrow keys:

Displaying cities in es

Figure 5.22: The selection of cities in Spain after changing the country using the arrow keys

In the following exercise, we will create our animated visualization by using what we've
learned about custom layers in the preceding example.

Note

Since geoplotlib operates on OpenGL, this process is highly performant and can
even draw complex visualizations quickly.
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Exercise 5.04: Plotting the Movement of an Aircraft with a Custom Layer

In this exercise, we will create a custom layer to display geospatial data and also
animate your data points over time. We'll get a deeper understanding of how geoplotlib
works and how layers are created and drawn. Our dataset contains both spatial and
temporal information, which enables us to plot the flight's movement overtime on

our map.

Let's create a custom layer that will allow us to display geospatial data and animate the
data points over time:

1. Import pandas for the data import:

# importing the necessary dependencies

import pandas as pd

2. Use the read_csv method of pandas to load the £1ight_tracking.csv dataset
from the Datasets folder:

dataset

pd.read csv('.

./../Datasets/flight tracking.csv')

3. Use the head method to list the first five rows of the dataset and to understand
the columns:

# displaying the first 5 rows of the dataset
dataset.head ()

hex_ident altitude(feet)

0 40831C
1 40631C
2 40631C
3 40631C

4 40631C

14525
14525
14500
14475

14475

latitude
53.65947
53.65956
53.65979
53.66025

53.66044

longitude date
-1.43819 2017/09/11
-1.43921 2017/09/11
-1.44066 2017/09/1
-1.44447 2017/09/11

-1.44591 2017/09/1

time
17:02:06.418
17:02:06.875
17:02:07.342
17:02:09.238

17:02:09.825

angle
-120.77
-120.64
-120.43
-119.94

-119.76

istar i ile)
11.27
11.30
11.32
11.40

11.43

6276.0
6276.0
6276.0
6276.0

6276.0

ground_speed(knotph)
299.0
299.0
299.0
299.0

299.0

Figure 5.23: The first five elements of the dataset

track

283.0

283.0

283.0

283.0

283.0

callsign
NaN

NaN
EZY63BT
EZYE3BT

EZYE3BT

4. Rename the latitude and longitude columns to lat and lon by using the
rename method provided by pandas:

# renaming columns latitude to lat and longitude to lon

dataset
"longitude":

dataset.rename (index=str,

"lon" })

columns={"latitude":

"lat",
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Take another look at the first five elements of the dataset, and observe that the
names of the columns have changed to 1at and lon:

# displaying the first 5 rows of the dataset
dataset.head ()

hex_ident altitude(feet) lat lon date time angle di i i q ground_speed(knotph) track callsign
0 40631C 145256 53.65947 -1.43819 2017/09/11 17:02:06.418 -120.77 1.27 6276.0 299.0 283.0 NaN
1 408631C 14525 53.65956 -1.43921 2017/09/11 17:02:06.875 -120.64 11.30 6276.0 299.0 283.0 NaN
2 40831C 14500 53.65979 -1.44086 2017/09/11 17:02:07.342 -120.43 11.32  6276.0 299.0 283.0 EZYB3BT
3 40631C 14475 5366025 -1.44447 2017/09/11 17:02:09.238 -119.94 11.40 6276.0 299.0 283.0 EZYB3BT
4 40631C 14475 53.66044 -1.44591 2017/09/11 17:02:09.825 -119.75 11.43  6276.0 299.0 283.0 EZY63BT

Figure 5.24: The dataset with the lat and lon columns

5. Since we want to get a visualization over time in this activity, we need to work with
date and time. If we take a closer look at our dataset, it shows us that date and
time are separated into two columns. Combine date and time into a timestamp,
using the to_epoch method already provided:

# method to convert date and time to an unix timestamp
from datetime import datetime
def to_epoch(date, time):
try:
timestamp = round(datetime.strptime('{} {}'.format (date,
time), '%Y/%m/%d $H:$M:%S.%f').timestamp())
return timestamp
except ValueError:

return round(datetime.strptime('2017/09/11 17:02:06.418",
'$Y/%m/%d $H:%$M:%S.%f') .timestamp () )

6. Use to_epoch and the apply method provided by the pandas DataFrame to create
a new column called timestamp that holds the Unix timestamp:

# create a new column called timestamp with the to epoch method
applied

dataset['timestamp'] = dataset.apply(lambda x: to epoch(x['date'],
x['time']), axis=1)
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7.

B W N a O

Take another look at our dataset. We now have a new column that holds the
Unix timestamps:

# displaying the first 5 rows of the dataset
dataset.head ()

hex_ident altitude(feet) lat lon date time  angle distance(nauticalmile) squawk ground_speed(knotph) track callsign timestamp
40631C 14525 5365947 -1.43819 2017/09/11 17:02:06.418 -120.77 11.27 62760 299.0 283.0 NaN 1505142126
40631C 14525 53.65956 -1.43921 2017/09/11 17:02:06.875 -120.64 11.30 62760 299.0 283.0 NaN 1505142127
40631C 14500 53.65979 -1.44066 2017/09/11 17:02:07.342 -120.43 1132 6276.0 299.0 283.0 EZYE3BT 1505142127
40631C 14476 53.66025 -1.44447 2017/09/11 17:02:09.238 -119.94 11.40 6276.0 299.0 283.0 EZYB3BT 1505142129

40831C 14475 53.66044 -1.44591 2017/09/11 17:02:09.825 -119.75 1.43 62760 299.0 283.0 EZYB3BT 1505142130
Figure 5.25: The dataset with a timestamp column added

Since our dataset is now ready to be used with all the necessary columns in place,
we can start writing our custom layer. This layer will display each point once it
reaches the timestamp that's provided in the dataset. It will be displayed for a few
seconds before it disappears. We'll need to keep track of the current timestamp in
our custom layer. Consolidating what we learned in the theoretical section of this
topic, we have an __init__ method that constructs our custom TrackLayer.

In the draw method, filter the dataset for all the elements that are in the mentioned
time range and use each element of the filtered list to display it on the map with
color that's provided by the colorbrewer method.

Since our dataset only contains data from a specific time range and we're always
incrementing the time, we want to check whether there are still any elements
with timestamps after the current timestamp. If not, we want to set our current
timestamp to the earliest timestamp that's available in the dataset. The following
code shows how we can create a custom layer:

# custom layer creation

import geoplotlib

from geoplotlib.layers import Baselayer

from geoplotlib.core import BatchPainter

from geoplotlib.colors import colorbrewer

from geoplotlib.utils import epoch to str, BoundingBox

class TrackLayer (Baselayer) :
def init (self, dataset, bbox=BoundingBox.WORLD) :
self.data dataset
self.cmap = colorbrewer (self.data['hex ident'], alpha=200)

self.time self.data['timestamp'] .min ()
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self.painter = BatchPainter ()
self.view = bbox

def draw(self, proj, mouse x, mouse_ y, ui manager) :
self.painter = BatchPainter ()

df = self.data.where((self.data['timestamp'] > self.time) &
(self.data['timestamp'] <= self.time + 180))
for element in set(df['hex ident']):

grp = df.where(df['hex ident'] == element)
self.painter.set color(self.cmap[element])
X, y = proj.lonlat to screen(grp['lon'], grp['lat'])
self.painter.points(x, y, 15, rounded=True)
self.time += 1
if self.time > self.data['timestamp'].max () :
self.time = self.data['timestamp'].min ()
self.painter.batch draw ()

ui manager.info ('Current timestamp: {}'.format (epoch to
str(self.time)))

# bounding box that gets used when the layer is created
def bbox(self):

return self.view

9. Define a custom BoundingBox that focuses our view on this area, since the dataset
only contains data from the area around Leeds in the UK:

# bounding box for our view on Leeds
from geoplotlib.utils import BoundingBox

leeds bbox = BoundingBox (north=53.8074, west=-3, south=53.7074 ,
east=0)

10. geoplotlib sometimes requires you to provide a DataAccessObject class instead
of a pandas DataFrame. Use geoplotlib to convert any pandas DataFrame into a
DataAccessObject class:

# displaying our custom layer using add layer

from geoplotlib.utils import DataAccessObject

data = DataAccessObject (dataset)
geoplotlib.add layer (TrackLayer (data, bbox=leeds bbox))
geoplotlib.show ()
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The following is the output of the preceding code:

Figure 5.26: Final animated tracking map that displays the routes of the aircraft

You have now completed the custom layer activity using geoplotlib. We've applied
several preprocessing steps to shape the dataset as we want to have it. We've also
written a custom layer to display spatial data in the temporal space. Our custom layer
even has a level of animation. This is something we'll look into more in the following
chapter about Bokeh. We will now implement an activity that will help us get more
acquainted with custom layers in Bokeh.
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Activity 5.02: Visualizing City Density by the First Letter Using an Interactive
Custom Layer

In this last activity for geoplotlib, you'll combine all the methodologies learned in the
previous exercises and the activity to create an interactive visualization that displays
the cities that start with a given letter, by merely pressing the left and right arrow keys
on your keyboard.

Since we use the same setup to create custom layers as the library does, you will be able
to understand the library implementations of most of the layers provided by geoplotlib
after this activity.

Open the Activity5.02.ipynb Jupyter Notebook from the Chapter05 folder to
implement this activity:

1. Import the dependencies.

2. Load the world cities pop.csv dataset from the Datasets folder using pandas
and look at the first five rows to understand its structure.

3. Map the Latitude and Longitude columns to 1lat and lon.

4. Filter the dataset to only contain European cities by using the given
europe country_ codes list.

5. Compare the length of all data with the filtered data of Europe by printing the
length of both.

6. Filter down the European dataset to get a dataset that only contains cities that
start with the letter Z.

7. Print its length and the first five rows using the head method.
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8. Create a dot density plot with a tooltip that shows the country code and the name
of the city separated by a -. Use the DataAccessObject to create a copy of our
dataset, which allows the use of £_tooltip. The following is the expected output
of the dot density plot:

Figure 5.27: Cities starting with a Z in Europe as dots
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9.

Create a Voronoi plot with the same dataset that only contains cities that start with
Z.Use the 'Reds_r' color map and set the alpha value to 50 to make sure you
still see the map tiles. The following is the expected output of the Voronoi plot:

Figure 5.28: Voronoi visualization of cities starting with a Z in Europe

10. Create a custom layer that plots all the cities in Europe dataset that starts with the

11.

provided letter. Make it interactive so that by using the left and right arrow keys,
we can switch between the letters. To do that, first, filter the self.data dataset in
the invalidate method using the current letter acquired from the

start letters array using self.start letter indexing.

Create a new BatchPainter () function and project the lon and lat values to x
and y values. Use the BatchPainter function to paint the points on the map with
a size of 2.
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12.

13.

14.

Call the batch_draw () method in the draw method and use the ui_manager to
add an info dialog to the screen telling the user which starting letter is currently
being used.

Check which key is pressed using pyglet: pyglet.window.key.RIGHT. If the
right or left key is pressed, increment or decrement the start_letter value of
the FilterLayer class accordingly. (Use modulo to allow rotation, which should
happen when A->Z or Z->A). Make sure that you return True in the on_key
release method if you changed the start_letter to trigger a redrawing of
the points.

Add the custom layer using the add_layer method and provide the given
europe bbox as a BoundingBox class.

The following is the expected output of the custom filter layer:

Displaying cities starting with A

Figure 5.29: A custom filter layer displaying European cities starting with A
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If we press the right arrow twice, we will see the cities starting with C instead:

Displaying cities starting with C

Figure 5.30: A custom filter layer displaying European cities starting with C

Note

The solution for this activity can be found on page 402.

This last activity has a custom layer that uses all the properties described by geoplotlib.
All of the already provided layers by geoplotlib are created using the same structure.
This means that you're now able to dig into the source code and create your own
advanced layers.
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Summary

In this chapter, we covered basic and advanced concepts and methods of geoplotlib. It
gave us a quick insight into internal processes, and we learned how to practically apply
the library to our own problem statements. Most of the time, the built-in plots should
suit your needs pretty well. If you're interested in building animated or even interactive
visualizations, you will have to create custom layers that enable those features.

In the following chapter, we'll get some hands-on experience with the Bokeh library
and build visualizations that can easily be integrated into web pages. Once we have
finished using Bokeh, we'll conclude the chapter with an activity that allows you to work
with a new dataset and a library of your choice so that you can come up with your very
own visualization. This will be the last step in consolidating your journey in The Data
Visualization Workshop.






Making Things
Interactive
with Bokeh

Overview

In this chapter, we will design interactive plots using the Bokeh library. By the
end of this chapter, you will be able to use Bokeh to create insightful web-based
visualizations and explain the difference between two interfaces for plotting. You
will identify when to use the Bokeh server and create interactive visualizations.
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Introduction

Bokeh is an interactive visualization library focused on modern browsers and the web.
Other than Matplotlib or geoplotlib, the plots and visualizations we are going to create
in this chapter will be based on JavaScript widgets. Bokeh allows us to create visually
appealing plots and graphs nearly out of the box without much styling. In addition to
that, it helps us construct performant interactive dashboards based on large static
datasets or even streaming data.

Bokeh has been around since 2013, with version 1.4.0 being released in November 2019.
It targets modern web browsers to present interactive visualizations to users rather
than static images. The following are some of the features of Bokeh:

Simple visualizations: Through its different interfaces, it targets users of many skill
levels, providing an API for quick and straightforward visualizations as well as more
complex and extremely customizable ones.

Excellent animated visualizations: It provides high performance and can,
therefore, work on large or even streaming datasets, which makes it the go-to
choice for animated visualizations and data analysis.

Inter-visualization interactivity: This is a web-based approach; it's easy
to combine several plots and create unique and impactful dashboards with
visualizations that can be interconnected to create inter-visualization interactivity.

Supports multiple languages: Other than Matplotlib and geoplotlib, Bokeh
has libraries for both Python and JavaScript, in addition to several other
popular languages.

Multiple ways to perform a task: Adding interactivity to Bokeh visualizations can
be done in several ways. The simplest built-in way is the ability to zoom and pan in
and out of your visualization. This gives the users better control of what they want
to see. It also allows users to filter and transform the data.

Beautiful chart styling: The tech stack is based on Tornado in the backend and is
powered by D3 in the frontend. D3 is a JavaScript library for creating outstanding
visualizations. Using the underlying D3 visuals allows us to create beautiful plots
without much custom styling.

Since we are using Jupyter Notebook throughout this book, it's worth mentioning that
Bokeh, including its interactivity, is natively supported in Notebook.
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Concepts of Bokeh

The basic concept of Bokeh is, in some ways, comparable to that of Matplotlib. In
Bokeh, we have a figure as our root element, which has sub-elements such as a title,
an axis, and glyphs. Glyphs have to be added to a figure, which can take on different
shapes, such as circles, bars, and triangles. The following hierarchy shows the different
concepts of Bokeh:

Bokeh
Python
e l ™
Interfaces Output Presentation Integration
Models File Interactions Embed
| | |
Plotting Notebook Styling
| |
Server Tools
|
Layouts

Figure 6.1: Concepts of Bokeh

Interfaces in Bokeh

The interface-based approach provides different levels of complexity for users that
either want to create some basic plots with very few customizable parameters or want
full control over their visualizations to customize every single element of their plots.
This layered approach is divided into two levels:

* Plotting: This layer is customizable.

* Models interface: This layer is complex and provides an open approach to
designing charts.

Note

The models interface is the basic building block for all plots.
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The following are the two levels of the layered approach to interfaces:
* bokeh.plotting

This mid-level interface has a somewhat comparable API to Matplotlib. The
workflow is to create a figure and then enrich this figure with different glyphs
that render data points in the figure. As in Matplotlib, the composition of
sub-elements such as axes, grids, and the inspector (which provide basic ways
of exploring your data through zooming, panning, and hovering) is done without
additional configuration.

The vital thing to note here is that even though its setup is done automatically,
we can configure the sub-elements. When using this interface, the creation of the
scene graph used by BokehJS is handled automatically too.

¢ bokeh.models

This low-level interface is composed of two libraries: the JavaScript library called
BokehJS, which gets used for displaying the charts in the browser, and the core
plot creation Python code, which provides the developer interface. Internally, the
definition created in Python creates JSON objects that hold the declaration for the
JavaScript representation in the browser.

The models interface provides complete control over how Bokeh plots and widgets
(elements that enable users to interact with the data displayed) are assembled and
configured. This means that it is up to the developer to ensure the correctness of
the scene graph (a collection of objects describing the visualization).

Output

Outputting Bokeh charts is straightforward. There are three ways this can be done:

* The .show () method: The primary option is to display the plot in an HTML page
using this method.

* The inline . show () method: When using inline plotting with a Jupyter Notebook,
the . show () method will allow you to display the chart inside your Notebook.

* The .output_ file () method: You're also able to directly save the visualization to
a file without any overhead using the .output_file () method. This will create a
new file at the given path with a given name.

The most powerful way of providing your visualization is through the use of the
Bokeh server.
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Bokeh Server

Bokeh creates scene graph JSON objects that will be interpreted by the Bokeh]JS library
to create the visualization output. This process gives you a unified format for other
languages to create the same Bokeh plots and visualizations, independently of the
language used.

To create more complex visualizations and leverage the tooling provided by Python,
we need a way to keep our visualizations in sync with one another. This way, we can
not only filter data but also do calculations and operations on the server-side, which
updates the visualizations in real-time.

In addition to that, since we will have an entry point for data, we can create
visualizations that get fed by streams instead of static datasets. This design provides a
way to develop more complex systems with even greater capabilities.

Looking at the scheme of this architecture, we can see that the documents are
provided on the server-side, then moved over to the browser, which then inserts it into
the Bokeh]S library. This insertion will trigger the interpretation by BokehJS, which

will then create the visualization. The following diagram describes how the Bokeh
server works:

Bokeh Server

App
Code

Document Document Document

S

2 | N\

Browser Browser Browser
BokehlS Bokehls Bokehls
Document Document Document

Figure 6.2: The Bokeh server
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Presentation

In Bokeh, presentations help make the visualization more interactive by using different
features, such as interactions, styling, tools, and layouts.

Interactions

Probably the most exciting feature of Bokeh is its interactions. There are two types of
interactions: passive and active.

Passive interactions are actions that the users can take that doesn't change the dataset.
In Bokeh, this is called the inspector. As we mentioned before, the inspector contains
attributes such as zooming, panning, and hovering over data. This tooling allows the
user to inspect the data in more detail and might provide better insights by allowing
the user to observe a zoomed-in subset of the visualized data points. The elements
highlighted with a box in the following figure show the essential passive interaction
elements provided by Bokeh. They include zooming, panning, and clipping data.
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Figure 6.3: Example of passive interaction zooming

Active interactions are actions that directly change the displayed data. This includes
actions such as selecting subsets of data or filtering the dataset based on parameters.
Widgets are the most prominent of active interactions since they allow users to
manipulate the displayed data with handlers. Examples of available widgets are buttons,
sliders, and checkboxes.
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Referring back to the subsection about the output styles, these widgets can be used in
both the so-called standalone applications in the browser and the Bokeh server. This
will help us consolidate the recently learned theoretical concepts and make things more
transparent. Some of the interactions in Bokeh are tab panes, dropdowns, multi-selects,
radio groups, text inputs, check button groups, data tables, and sliders. The elements
highlighted with a red box in the following figure show a custom active interaction
widget for the same plot we looked at in the example of passive interaction.
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Figure 6.4: Example of custom active interaction widgets
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Integrating
Embedding Bokeh visualizations can take two forms:

* HTML document: These are the standalone HTML documents. These documents
are self-contained, which means that all the necessary dependencies of Bokeh are
part of the generated HTML document. This format is simple to generate and can
be sent to clients or quickly displayed on a web page.

* Bokeh applications: Backed by a Bokeh server, these provide the possibility to
connect to, for example, Python tooling for more advanced visualizations.

Bokeh is a little bit more complicated than Matplotlib with Seaborn and has its
drawbacks like every other library. Once you have the basic workflow down, however,
you're able to quickly extend basic visualizations with interactivity features to give
power to the user.

Note

One interesting feature is the to_bokeh method, which allows you to plot
Matplotlib figures with Bokeh without configuration overhead. Further information
about this method is available at https://packt.live/2UMwstF.

In the following exercises and activities, we'll consolidate the theoretical knowledge and
build several simple visualizations to explain Bokeh and its two interfaces. After we've
covered the basic usage, we will compare the plotting and models interfaces and
work with widgets that add interactivity to the visualizations.

Basic Plotting

As mentioned before, the plotting interface of Bokeh gives us a higher-level
abstraction, which allows us to quickly visualize data points on a grid.


https://packt.live/2UMwstF
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To create a new plot, we have to define our imports to load the
necessary dependencies:

# importing the necessary dependencies
import pandas as pd

from bokeh.plotting import figure, show
from bokeh.io import output notebook

output notebook ()

Before we can create a plot, we need to import the dataset. In the examples in this
chapter, we will work with a computer hardware dataset. It can be imported by using
pandas read_csv method.

# loading the Dataset with pandas
dataset = pd.read csv('../../Datasets/computer hardware.csv')

The basic flow when using the plotting interface is comparable to that of Matplotlib.
We first create a figure. This figure is then used as a container to define elements and
call methods on:

# adding an index column to use it for the x-axis

dataset['index'] = dataset.index

# plotting the cache memory levels as line

plot = figure (title='Cache per Hardware',K x axis label='Hardware index',
y_axis label='Cache Memory')
plot.line(dataset['index'], dataset['cach'], line width=5)

show (plot)

Once we have created a new figure instance using the imported figure () method, we
can use it to draw lines, circles, or any glyph objects that Bokeh offers. Note that the
first two arguments of the plot.line method is datasets that contain an equal number
of elements to plot the element.
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To display the plot, we then call the show () method we imported from the bokeh.
plotting interface earlier on. The following figure shows the output of the
preceding code:
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Figure 6.5: Line plot showing the cache memory of different hardware

Since the interface of different plotting types is unified, scatter plots can be created in
the same way as line plots:

# plotting the hardware cache as dots

plot = figure(title='Cache per Hardware',K x axis label='Hardware',6 y axis
label="'Cache Memory"')
plot.scatter (dataset['index'], dataset['cach'], size=5, color='red')

show (plot)
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The following figure shows the output of the preceding code:
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Figure 6.6: Scatter plot showing the cache memory of different hardware

In many cases, a visualization will have several attributes of a dataset plotted. A legend
will help users understand which attributes they are looking at. Legends display a
mapping between, for example, lines in the plot and according to information such as
the hardware cache memory.
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By adding a 1egend label argument to the plot calls like plot.1line (), we get a small
box containing the information in the top-right corner (by default):

# plotting cache memory and cycle time with legend

plot = figure(title='Attributes per Hardware',K x axis label='Hardware
index', y axis label='"Attribute Value')

plot.line(dataset['index'], dataset['cach'], line width=5, legend
label="Cache Memory"')

plot.line(dataset['index'], dataset['myct'], line width=5, color='red',
legend label='Cycle time in ns')

show (plot)

The following figure shows the output of the preceding code:
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Figure 6.7: Line plots displaying the cache memory and cycle time per hardware with the legend
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When looking at the preceding example, we can see that once we have several lines, the
visualization can get cluttered.

We can give the user the ability to mute, meaning defocus, the clicked element in
the legend.

Adding a muted _alpha argument to the line plotting and adding a click_policy of
mute to our legend element are the only two steps needed:

# adding mutability to the legend

plot = figure(title='Attributes per Hardware',K x axis label='Hardware
index', y axis label='Attribute Value')

plot.line(dataset['index'], dataset['cach'], line width=5, legend
label="Cache Memory', muted alpha=0.2)

plot.line(dataset['index'], dataset['myct'], line width=5, color='red',
legend label='Cycle time in ns', muted alpha=0.2)

plot.legend.click policy="mute"

show (plot)
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The following figure shows the output of the preceding code:
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Figure 6.8: Line plots displaying the cache memory and cycle time per hardware
with a mutable legend; cycle time is also muted
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Next, we will do an exercise to plot the graph using Bokeh.

Note

All the exercises and activities in this chapter are developed using

Jupyter Notebook. The files can be downloaded from the following link:
https://packt.live/39txwHS5. All the datasets used in this chapter can be found
at https://packt.live/3bzApYN.

Exercise 6.01: Plotting with Bokeh

In this exercise, we want to use bokeh.plotting interface, which is focused on
providing a simple interface for quick visualization creation. We will use world__
population dataset. This dataset shows the population of different countries over the
years. Follow these steps:

1. Open the Exercise6.01.ipynb Jupyter notebook from the Chapter06 folder. To
do that, you need to navigate to the path of this file in the command-line terminal
and type in jupyter-lab.

2. Import the figure (which will initialize a plot) and the show method (which displays
the plot) from plotting our library:

import pandas as pd
from bokeh.plotting import figure, show

3. Import and call the output_notebook method from the io interface of Bokeh to
display the plots inside a Jupyter Notebook:

from bokeh.io import output notebook

output notebook ()
4. Use pandas to load the world population dataset:

dataset = pd.read csv('../../Datasets/world population.csv', index
col=0)


https://packt.live/39txwH5
https://packt.live/3bzApYN
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5. Verify that our data has been successfully loaded by calling head on our DataFrame:
dataset.head()

The following figure shows the output:

Country Indicator Indicator

Code Name Code 1960 1961 1962 1963 1964 1965

Country
Name

Population
density
Aruba ABW (people EN.POP.DNST NaN 307972222 312.366667 314.983333 316.827778 318.666667
per sq. km
of land ...

Population
density
Andorra AND (people EN.POP.DNST NaN 30.587234 32.714894 34.914894 37170213 39.470213
per sq. km
of land ...

Population
density
Afghanistan AFG (people EN.POP.DNST NaN 14.038148 14.312061 14.599692 14.901579  15.218206
per sq. km
of land ...

Population
density
Angola AGO (people EN.POP.DNST NaN 4.305195 4.384299 4.464433 4544558 4624228
per sq. km
of land ...

Population
density
Albania ALB (people EN.POP.DNST NaN 60.576642 62.456898 64.329234 66.209307 68.058066
per sq. km
of land ...

Figure 6.9: Loading the top five rows of the world_population dataset using the head method

6. Populate our x-axis and y-axis with some data extraction. The x-axis will hold
all the years that are present in our columns. The y-axis will hold the population
density values of the countries. Start with Germany:

# preparing our data for Germany

years = [year for year in dataset.columns if not year[0].isalpha() ]
de vals = [dataset.loc[['Germany']] [year] for year in years]
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7. After extracting the necessary data, create a new plot by calling the Bokeh figure
method. Provide parameters such as title, x_axis label,and y_axis_label to
define the descriptions displayed on our plot. Once our plot is created, we can add
glyphs to it. Here, we will use a simple line. Set the legend label parameter next
to the x and y values to get an informative legend in our visualization:

# plotting the population density change in Germany in the given years

plot = figure(title='Population Density of Germany', X axis
label="Year', y axis label='Population Density")
plot.line(years, de vals, line width=2, legend label='Germany')

show (plot)
The following figure shows the output of the preceding code:

Population Density of Germany
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Figure 6.10: Creating a line plot from the population density data of Germany
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8. Now add another country—in this case, Switzerland. Use the same technique that
we used with Germany to extract the data for Switzerland:

# preparing the data for the second country
ch vals = [dataset.loc[['Switzerland']][year] for year in years]

9. We can add several layers of glyphs on to our figure plot. We can also stack
different glyphs on top of one another, thus giving specific and data-improved
visuals. Add an orange line to the plot that displays the data from Switzerland.
Also, plot orange circles for each data point of the ch_vals list and assign it the
same legend label to combine both representations, the line, and circles:

# plotting the data for Germany and Switzerland in one visualization,
# adding circles for each data point for Switzerland

plot = figure(title='Population Density of Germany and Switzerland',6 x_
axis label='Year', y axis label='Population Density')

plot.line(years, de vals, line width=2, legend label='Germany')
plot.line(years, ch vals, line width=2, color='orange',6 legend
label='Switzerland"')

plot.circle(years, ch vals, size=4, line color='orange', fill
color="'white', legend label='Switzerland')

show (plot)
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The following figure shows the output of the preceding code:

Population Density of Germany and Switzerland
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Figure 6.11: Adding Switzerland to the plot
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10. When looking at a larger amount of data for different countries, it makes sense to
have a plot for each of them separately. Use gridplot layout:

# plotting the Germany and Switzerland plot in two different
visualizations

# that are interconnected in terms of view port
from bokeh.layouts import gridplot

plot de = figure(title='Population Density of Germany',6 x axis
label="Year', y axis label='Population Density', plot height=300)
plot ch = figure (title='Population Density of Switzerland',K x axis
label="Year', y axis label='Population Density', plot height=300, x_
range=plot de.x range, y range=plot de.y range)

plot de.line(years, de vals, line width=2)

plot ch.line(years, ch vals, line width=2)

plot = gridplot([[plot de, plot ch]])

show (plot)

The following figure shows the output of the preceding code:
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Figure 6.12: Using a gridplot to display the country plots next to each other

11. Realign the plots vertically by passing a two-dimensional array to the
gridplot method:

# plotting the preceding declared figures in a vertical manner
plot v = gridplot([[plot del], [plot ch]])
show (plot v)



Basic Plotting | 295

The following screenshot shows the output of the preceding code:
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Figure 6.13: Using the gridplot method to arrange the visualizations vertically
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We have now covered the very basics of Bokeh. Using the plotting interface makes
it easy to get some quick visualizations in place. This helps you understand the data
you're working with.

This simplicity is achieved by abstracting away complexity, and we lose much control
by using the plotting interface. In the next exercise, we'll compare the plotting and
models interfaces to show you how much abstraction is added to plotting.

Let's implement an exercise to compare the plotting and models interfaces.

Exercise 6.02: Comparing the Plotting and Models Interfaces

In this exercise, we want to compare the plotting and models interfaces. We will
compare them by creating a basic plot with the high-level plotting interface and
then recreate this plot by using the lower-level models interface. This will show us the
differences between these two interfaces and set us up for the next exercises, in which
we will need to understand how to use the models interface. Follow these steps:

1. Open the Exercise6.02. ipynb Jupyter Notebook from the Chapter06 folder. To
do that, once again, you need to navigate to the path of this file. In the command-
line terminal, type jupyter-lab.

2. Import the £igure (which will initialize a plot) and the show method (which
displays the plot). Also, import and call the output_notebook method from the io
interface of Bokeh to plot inline:

import numpy as np

import pandas as pd

from bokeh.io import output notebook
output notebook ()

3. Use pandas to load our world population dataset:

dataset = pd.read csv('../../Datasets/world population.csv', index
col=0)

4. Call head on our DataFrame to verify that our data has been successfully loaded:

dataset.head()
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The following screenshot shows the output of the preceding code:

Country Indicator Indicator

Code Name Code 1960 1961 1962 1963 1964 1965

Country
Name

Population
density
Aruba ABW (people EN.POP.DNST NaN 307.972222 312.366667 314.983333 316.827778 318.666667
per sq. km
of land ...

Population
density
Andorra AND (people EN.POP.DNST NaN 30.587234 32.714894 34.914894 37170213 39.470213
per sq. km
of land ...

Population
density

Afghanistan AFG (people EN.POP.DNST NaN 14.038148 14.312061 14.599692 14.901579  15.218206

per sq. km
of land ...

Population
density
Angola AGO (people EN.POP.DNST NaN 4.305195 4.384299 4.464433 4.544558 4624228
per sq. km
of land ...

Population
density
Albania ALB (people EN.POP.DNST NaN 60.576642 62.456898 64.329234 66.209307 68.058066
per sq. km
of land ...

Figure 6.14: Loading the top five rows of the world_population dataset using the head method
Import £igure and show to display our plot:
from bokeh.plotting import figure, show

Create three lists that have years present in the dataset, the mean population
density for the whole dataset for each year, and the mean population density per
year for Japan:

years = [year for year in dataset.columns if not year[0].isalpha()]
mean _pop vals = [np.mean(dataset[year]) for year in years]
Jjp_vals = [dataset.loc[['Japan']] [year] for year in years]

Use the plot element and apply our glyphs elements to it. Plot the global mean
with a line and the mean of Japan with crosses. Set the legend location to the
bottom-right corner:

plot = figure(title='Global Mean Population Density compared to Japan',
x_axis label='Year', y axis label='Population Density')

plot.line(years, mean pop vals, line width=2, legend label='Global
Mean')
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plot.cross(years, jp_vals, legend label='Japan', line color='red')
plot.legend.location = 'bottom right'

show (plot)
The following screenshot shows the output of the preceding code:
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Figure 6.15: Line plots comparing the global mean population density with that of Japan
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As we can see in the preceding diagram, we have many elements already in place.
This means that we already have the right x-axis labels, the matching range for
the y-axis, and our legend is nicely placed in the upper-right corner without
much configuration.

Using the models Interface

The models interface is of a much lower level than other interfaces. We can already
see this when looking at the list of imports we need for a comparable plot.

1. Import Grid, Plot, LinearAxis, Rangeld, Line, Cross, ColumnDataSource,
SingleIntervalTicker, YearsTicker, the Glyphrenderer, Title, Legend,
and LegendItem from the submodules of the models interface:

# importing the models dependencies

from bokeh.io import show

from bokeh.models.grids import Grid

from bokeh.models.plots import Plot

from bokeh.models.axes import LinearAxis

from bokeh.models.ranges import Rangeld

from bokeh.models.glyphs import Line, Cross

from bokeh.models.sources import ColumnDataSource

from bokeh.models.tickers import SingleIntervalTicker, YearsTicker
from bokeh.models.renderers import GlyphRenderer

from bokeh.models.annotations import Title, Legend, LegendItem

2. Before we build our plot, we have to find the min and max values for the y-axis
since we don't want to have too large or too small a range of values. Get all the
mean values for global and Japan without any invalid values. Get their smallest and
largest values and pass them to the constructor of Rangeld. For the x-axis, our list
of years is pre-defined:

# defining the range for the x and y axis

extracted mean pop vals = [val for i, val in enumerate (mean pop vals)
if 1 not in [0, len(mean pop vals) - 1]]

extracted jp vals = [Jp val['Japan'] for i, jp val in enumerate (jp_
vals) if i not in [0, len(jp vals) - 1]]

min pop density = min (extracted mean pop vals)

min jp densitiy = min(extracted jp vals)

min y = int(min(min pop density, min Jjp densitiy))
max pop density = max (extracted mean pop vals)
max_ jp densitiy = max(extracted jp vals)

max y = int(max(max jp densitiy, max pop density))
xdr = Rangeld(int (years[0]), int(years[-11))

ydr = Rangeld(min_ y, max_y)
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3. Next, create two Axis objects, which will be used to display the axis lines and the
label for the axis. Since we also want ticks between the different values, pass in a
Ticker object that creates this setup:

axis def = dict(axis line color='#222222"', axis line width=1, major

tick line color='#222222', major label text color='#222222"',major
tick line width=1)

X axis = LinearAxis(ticker = SinglelIntervalTicker (interval=10), axis
label = 'Year', **axis def) -
y_axis = LinearAxis(ticker = SinglelIntervalTicker (interval=50), axis
label = 'Population Density', **axis def)

4. Create the title by passing a Title object to the title attribute of the
Plot object:

# creating the plot object

title = Title(align = 'left', text = 'Global Mean Population Density
compared to Japan')

plot = Plot(x range=xdr, y range=ydr, plot width=650, plot height=600,
title=title)

5. Try to display our plot now by using the show method. Since we have no renderers
defined at the moment, we will get an error. We need to add elements to our plot:
# error will be thrown because we are missing renderers that are
created when adding elements

show (plot)

The following screenshot shows the output of the preceding code:

WARNING: bokeh.core.validation.check:W-1000 (MISSING_RENDERERS): Plot ha
s no renderers: Plot(id='2393', ...)

Global Mean Population Density compared to Japan

Figure 6.16: Empty plot with title
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Insert the data into a DataSource object. This can then be used to map the data
source to the glyph object that will be displayed in the plot:

# creating the data display

line source = ColumnDataSource (dict (x=years, y=mean pop vals))

line glyph = Line(x='x"', y='y', line color='#2678b2', line width=2)
cross_source = ColumnDataSource (dict (x=years, y=jp vals))
cross_glyph = Cross(x='x"', y='y', line color='#fcld26")

Use the right add method to add objects to the plot. For layout elements such as
the Axis objects, use the add layout method. Glyphs, which display our data,
have to be added with the add_glyph method:

plot.add layout(x axis, 'below')

plot.add layout(y axis, 'left')

line renderer = plot.add glyph(line source, line glyph)
cross_renderer = plot.add glyph(cross source, cross glyph)

Show our plot again to see our lines are in place:

show (plot)
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The following screenshot shows the output of the preceding code:

Global Mean Population Density compared to Japan

350 -}

ey,

Population Density

1960 1970 1980 1990 2000 2010
Year

Figure 6.17: A models interface-based plot displaying the lines and axes

9. Use an object to add a legend to the plot. Each LegendItem object will be displayed
in one line in the legend:

legend items= [LegendItem(label='Global Mean',6 renderers=[line
renderer]), LegendItem(label='Japan', renderers=[cross renderer]) ]

legend = Legend(items=legend items, location='bottom right')
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10. Create the grid by instantiating two Grid objects, one for each axis. Provide the

11.

tickers of the previously created x and y axes:

# creating the grid

x _grid = Grid(dimension=0, ticker=x axis.ticker)

y _grid = Grid(dimension=1, ticker=y axis.ticker)

Finally, use the add _layout method to add the grid and the legend to our plot.
After this, display our complete plot, which will look like the one we created in the
first task, with only four lines of code:

plot.add layout (legend)
plot.add layout (x grid)
plot.add layout (y grid)
show (plot)

The following screenshot shows the output of the preceding code:

Global Mean Population Density compared to Japan
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Figure 6.18: Full recreation of the visualization done with the plotting interface
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As you can see, the models interface should not be used for simple plots. It's
meant to provide the full power of Bokeh to experienced users that have specific
requirements that need more than the plotting interface.

We've looked at the difference between the high-level plotting and low-level models
interface now. This will help us understand the internal workings and potential future
errors better. In this following activity, we'll use what we've already learned and
created a basic visualization that plots the mean car price of each manufacturer from
our dataset.

Next, we will color each data point with a color based on a given value. In Bokeh, like in
geoplotlib, this can be done using ColorMapper.

ColorMapper can map specific values to a given color in the selected spectrum. By
providing the minimum and maximum value for a variable, we define the range in which
colors are returned:

# adding color based on the mean price to our elements

from bokeh.models import LinearColorMapper

color mapper = LinearColorMapper (palette='Magmaz256"',
low=min (dataset['cach']), high=max (dataset['cach']))

plot = figure(title='Cache per Hardware', x axis label='Hardware', y axis
label="'Cache Memory"')

plot.scatter (dataset['index'], dataset['cach'], color={'field': 'y',
'transform': color mapper}, size=10)

show (plot)
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The following screenshot shows the output of the preceding code:
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Figure 6.19: Cache memory colored using the amount of cache

Next, we will implement all the concepts related to Bokeh we have learned so far.
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Activity 6.01: Plotting Mean Car Prices of Manufacturers

This activity will combine everything that you have learned about Bokeh so far. We will
use this knowledge to create a visualization that displays the mean price of each car
manufacturer of our dataset.

Our automobile dataset contains the following columns:
* make: Manufacturer of the car
* fuel-type: Diesel or gas
* num-of-doors: Number of doors
* body-style: Body style of the car, for example, convertible
* engine-location: Front or rear
* length: Continuous from 141.1 to 208.1
* width: Continuous from 60.3 to 72.3
* height: Continuous from 47.8 to 59.8
* num-of-cylinders: Number of cylinders, for example, eight
* horsepower: Amount of horsepower
* peak-rpm: Maximum RPM
* city-mpg: Fuel consumption in the city
* highway-mpg: Fuel consumption on the highway
* price: Price of the car
Note that we will use only the make and price columns in our activity.

In the process, we will first plot all cars with their prices and then slowly develop a
more sophisticated visualization that also uses color to visually focus the manufacturers
with the highest mean prices.

1. Openthe Activity6.01.ipynb Jupyter Notebook from the Chapter06 folder.

2. Import pandas with an alias and make sure to enable Notebook output using the
bokeh. io interface.
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Load the automobiles.csv dataset from the Datasets folder using pandas. Make
sure that the dataset is loaded by displaying the first five elements of the dataset.

Import £igure and show from Bokeh's plotting interface.

Add a new column index to our dataset by assigning it to the values from our
dataset. index.

Create a new figure and plot each car using a scatter plot with the index and price
column. Give the visualization a title of Car prices and name the x-axis Car
Index. The y-axis should be named Price.

Grouping cars from manufacturers together

1. Group the dataset using groupby and the column make. Then use the mean
method to get the mean value for each column. We don't want the make column to
be used as an index, so provide the as_index=False argument to groupby.

2. Create a new figure with a title of Car Manufacturer Mean Prices, an X-axis
of Car Manufacturer, and a y-label of Mean Price. In addition to that, handle
the categorical data by providing the x_range argument to the figure with the
make column.

3. Assign the value of vertical to the xaxis.major_label orientation attribute
of our grouped_plot. Call the show method again to display the visualization.

Adding color

1. Import and set up a new LinearColorMapper object with a palette of Magma256,
and the min and max prices for the low and high arguments.

2. Create a new figure with the same name, labels, and x_range as before.

3. Plot each manufacturer and provide a size argument with a size of 15.

4. Provide the color argument to the scatter method and use the field and

transform attributes to provide the column (y) and the color_mapper.

Set the label orientation to vertical.
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The final output will look like this:

Car Manufacturer Mean Prices
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Figure 6.20: Final visualization displaying the mean car price for each manufacturer

Note

The solution for this activity can be found on page 411.

In the next section, we will create interactive visualizations that allow the user to
modify the data that is displayed.
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Adding Widgets

One of the most powerful features of Bokeh is the ability to use widgets to interactively
change the data that's displayed in a visualization. To understand the importance of
interactivity in your visualizations, imagine seeing a static visualization about stock
prices that only shows data for the last year.

If you're interested in seeing the current year or even visually comparing it to the
recent and coming years, static plots won't be suitable. You would need to create one
plot for every year or even overlay different years on one visualization, which would
make it much harder to read.

Comparing this to a simple plot that lets the user select the date range they want, we
can already see the advantages. You can guide the user by restricting values and only

displaying what you want them to see. Developing a story behind your visualization is
very important, and doing this is much easier if the user has ways of interacting with

the data.

Bokeh widgets work best when used in combination with the Bokeh server. However,
using the Bokeh server approach is beyond the content of this book, since we would
need to work with simple Python files. Instead, we will use a hybrid approach that only
works with the Jupyter Notebook.

We will look at the different widgets and how to use them before going in and building a
basic plot with one of them. There are a few different options regarding how to trigger
updates, which are also explained in this section. The widgets that will be covered in the
following exercise are explained in the following table:

Value Widget Example

Boolean Checkbox False

String Text 'Input Text'

Intvalue, Intrange IntSlider 5, (0,100), (0,10, 1)
Floatvalue, Floatrange FloatSlider 1.0, (0.0, 100.0), (0.0, 10.0, 0.5)

Listor Dict Dropdown [Option1','Option2'], {one"1 'two' 2}

Figure 6.21: Some of the basic widgets with examples
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The general way to create a new widget visible in a Jupyter Notebook is to define a
new method and wrap it into an interact widget. We'll be using the "syntactic sugar’
way of adding a decorator to a method—that is, by using annotations. This will give

us an interactive element that will be displayed after the executable cell, like in the
following example:

# importing the widgets
from ipywidgets import interact, interact manual

# creating an input text
@interact (Value="'Input Text')
def text input (Value):

print (Value)

The following screenshot shows the output of the preceding code:

Value | Input Text

Input Text

Figure 6.22: Interactive text input

In the preceding example, we first import the interact element from the ipywidgets
library. This then allows us to define a new method and annotate it with the @
interact decorator.

The value attribute tells the interact element which widget to use based on the data
type of the argument. In our example, we provide a string, which will give us a TextBox
widget. We can refer to the preceding table to determine which value data type will
return which widget.

The print statement in the preceding code prints whatever has been entered in the
textbox below the widget.

Note

The methods that we can use interact with always have the same structure. We will
look at several examples in the following exercise.
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Exercise 6.03: Building a Simple Plot Using Basic Interactivity Widgets

This first exercise of the Adding Widgets topic will give you a gentle introduction to
the different widgets and the general concept of how to use them. We will quickly go
over the most common widgets, sliders, checkboxes, and dropdowns to understand
their structure.

1. Open the Exercise6.03. ipynb Jupyter Notebook from the Chapter06 folder.
Type in the following at the command line: jupyter notebook.

2. Anew browser window will open that lists all the files in the current directory.
Click on Exercise6.03. ipynb; it will open in a new tab.

3. Import and call the output_notebook method from Bokeh's io interface to
display the plots inside Jupyter Notebook:

# make bokeh display figures inside the notebook
from bokeh.io import output notebook
output notebook ()

Looking at Basic Widgets

1. In this first task, we will add interactive widgets to the interactive element of
IPython. Import the necessary interact and interact_manual elements
from ipywidgets:

# importing the widgets
from ipywidgets import interact, interact manual

2. Create a checkbox widget and print out the result of the interactive element:

@interact (Value=False)
def checkbox (Value=False) :
print (Value)
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The following screenshot shows the output of the preceding code:

Value

False

Figure 6.23: Interactive checkbox that will switch from False to True if checked

Note

@interact () is called a decorator. It wraps the annotated method into
the interact component. This allows us to display and react to the change of
the drop-down menu. The method will be executed every time the value of the

dropdown changes.

3. Create a dropdown using a list of options, [ 'Optionl', 'Option2',
'Option3', 'Option4d4'] as the @interact decorator value:

# creating a dropdown
options=['Optionl', 'Option2', 'Option3', 'Option4']

@interact (Value=options)
def dropdown (Value=options[0]) :
print (Value)

The following screenshot shows the output of the preceding code:

Value | Option1 v

Optionl
Figure 6.24: Interactive dropdown

4. Create a text input using a value of ' Input Text' asthe @interact
decorator value:

# creating an input text
@interact (Value='Input Text')
def text input(Value):

print (Value)
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The following screenshot shows the output of the preceding code:

Value | Input Text
Input Text

Figure 6.25: Interactive text input

Create two widgets, a dropdown and a checkbox with the same value, as in the last
two tasks:

# multiple widgets with default layout
options=['Optionl', 'Option2', 'Option3', 'Option4d']

@interact (Select=options, Display=False)
def uif (Select, Display):
print (Select, Display)

The following screenshot shows the output of the preceding code:

Select | Option1 v
Display

Optionl False
Figure 6.26: Two widgets are displayed vertically by default

Create an int slider using a range value of (0,100) as the @interact
decorator value:

# creating an int slider with dynamic updates
@interact (Value=(0, 100))
def slider (Value=0) :

print (Value)

The following screenshot shows the output of the preceding code:

Value 0

Figure 6.27: Interactive int slider
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7. Create an int slider using values of 0 and 100 as the @interact decorator min
and max values. Set continuous_update to false to only trigger an update on
mouse release:

# creating an int slider that only triggers on mouse release
from ipywidgets import IntSlider
slider=IntSlider (min=0, max=100, continuous update=False)

@interact (Value=slider)
def slider (Value=0.0) :
print (Value)

The following screenshot shows the output of the preceding code:
Value 0

0

Figure 6.28: Interactive int slider that only triggers upon mouse release

Note

Although the outputs of Figure 6.27 and Figure 6.28 look the same, in Figure 6.28,
the slider triggers only upon mouse release.

8. Use the @interact manual decorator, which adds an execution button to the
output that triggers a manual update of the plot. Create an int slider using a range
value of (0.0,100.0,0.5) as the decorator value to set a step size of 0.5:

# creating a float slider 0.5 steps with manual update trigger
@interact manual (Value=(0.0, 100.0, 0.5))
def slider (Value=0.0) :

print (Value)
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The following screenshot shows the output of the preceding code:
Value 0.00

Run Interact

Figure 6.29: Interactive int slider with a manual update trigger

Note

Compared to the previous cells, this one contains the interact manual
decorator instead of interact. This will add an execution button that will trigger
the update of the value instead of triggering with every change. This can be really
useful when working with larger datasets, where the recalculation time would be
large. Because of this, you don't want to trigger the execution for every small step,
but only once you have selected the correct value.

After looking at several example widgets and how to create and use them in the
previous exercise, we will now use a real-world stock_price dataset to create a
basic plot and add simple interactive widgets.

Exercise 6.04: Plotting Stock Price Data in Tabs

In this exercise, we will revisit the essential widgets and build a simple plot that will
display the first 25 data points for the selected stock. We will display the stocks that
can be changed with a drop-down menu.

The dataset of this exercise is a stock_prices dataset. This means that we will be
looking at data over a range of time. As this is a large and variable dataset, it will be
easier to show and explain widgets such as slider and dropdown on it. The dataset is
available in the Datasets folder of the GitHub repository; here is the link to it:
https: //packt.live /3bzApYN. Follow these steps:

1. Open the Exercise6.04.ipynb Jupyter Notebook in the Chapter06 folder.
Type in the following at the command line: jupyter notebook.

2. Anew browser window will open that lists all the files in the current directory.
Click on Exercise6.04 . ipynb, which will open it in a new tab.

3. Import the pandas library:

import pandas as pd


https://packt.live/3bzApYN
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4. Import and call the output notebook method from Bokeh's io interface to
display the plots inside Jupyter Notebook:

from bokeh.io import output notebook
output notebook ()

5. After downloading the dataset and moving it into the Datasets folder of this
chapter, import our stock_prices.csv data:

dataset = pd.read csv('../../Datasets/stock prices.csv')

6. Test whether the data has been loaded successfully by executing the head method
on the dataset:

dataset.head()

The following screenshot shows the output of the preceding code:

date symbol open close low high volume

0 2016-01-05 00:00:00 WLTW 123.430000 125.839996 122.309998 126.250000 2163600.0
1 2016-01-06 00:00:00 WLTW 125239998 119.980003 119.940002 125.540001 2386400.0
2 2016-01-07 00:00:00 WLTW 116.379997 114.949997 114.930000 119.739998 2489500.0
3 2016-01-08 00:00:00 WLTW 115.480003 116.620003 113.500000 117.440002 2006300.0

4 2016-01-11 00:00:00 WLTW 117.010002 114.970001 114.089996 117.330002 1408800.0

Figure 6.30: Loading the top five rows of the stock_prices dataset using the head method

Since the date column has no information about the hour, minute, and second, we
want to avoid displaying them in the visualization later on and display the year,
month, and day.

7. Create a new column that holds the formatted short version of the date value. Print
out the first five rows of the dataset to see the new column, short_date:

# mapping the date of each row to only the year-month-day format
from datetime import datetime
def shorten time stamp (timestamp) :
shortened = timestamp[0]
if len(shortened) > 10:
parsed date=datetime.strptime (shortened, '$Y-%m-%d %H:%M:%S')
shortened=datetime.strftime (parsed date, '$Y-%m-%d')
return shortened

dataset['short date'] = dataset.apply(lambda x: shorten time stamp (x),
axis=1)

dataset.head()
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The following screenshot shows the output of the preceding code:

date symbol open close low high volume short_date

0 2016'_01'_05 WLTW 123.430000 125.839996 122.309998 126.250000 21636000 2016-01-
00:00:00 05

1 2016-01-06  \vi 1y 125239998 119.980003 119.940002 125.540001 23864000 2016-01-
00:00:00 06

2 2016-01-07 \vi 1\ 116379997 114.949997 114.930000 119.739998 24895000 -016-01-
00:00:00 07

3 2016-01-08  \v\ 1\ 115480003 116.620003 113.500000 117.440002 2006300.0 =2016-01-
00:00:00 08

4 2010%’_%:)’_8(1) WLTW 117.010002 114.970001 114.089996 117.330002 1408600.0 2016’0111‘

Figure 6.31: Dataset with the added short_date column

Note

The execution of the cell will take a moment since it's a fairly large dataset. Please
be patient.

Creating a Basic Plot and Adding a Widget

In this task, we will create a basic visualization with the stock price dataset. This
will be your first interactive visualization in which you can dynamically change the
stock that is displayed in the graph. We will get used to one of the aforementioned
interactive widgets: the drop-down menu. It will be the main point of interaction
for our visualization.

8. Import the already-familiar figure and show methods from the plotting interface.
Since we also want to have a panel with two tabs displaying different plot styles,
also import the Panel and Tabs classes from the models interface:

from ipywidgets import interact
from bokeh.models.widgets import Panel, Tabs

from bokeh.plotting import figure, show

To better structure, our notebook, write an adaptable method that gets a
subsection of stock data as an argument and builds a two-tab Pane object that
lets us switch between the two views in our visualization.
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9.

Create two tabs. The first tab will contain a line plot of the given data, while the
second will contain a circle-based representation of the same data. Create a legend
that will display the name of the currently viewed stock:

# method to build the tab-based plot
def get plot(stock):
stock name=stock['symbol'].unique () [0]

line plot=figure (title='Stock prices',
x_axis label='Date', x range=stock['short

date'],
y _axis label='Price in $USD')
line plot.line(stock['short date'], stock['high'], legend
label=stock name)
line plot.xaxis.major label orientation = 1

circle plot=figure (title='Stock prices’,
x _axis label='Date', x range=stock['short

date'],
y_axis label='Price in $SUSD')
circle plot.circle(stock['short date'], stock['high'], legend
label=stock name)
circle plot.xaxis.major label orientation = 1

line tab=Panel (child=line plot, title='Line')
circle tab=Panel (child=circle plot, title='Circles')
tabs = Tabs (tabs=[ line tab, circle tab ])

return tabs

10. Get a list of all the stock names in our dataset by using the unique method for our

11.

symbol column:

# extracting all the stock names
stock names=dataset['symbol'].unique ()

Once we have done this, use this list as an input for the interact element.

Add the drop-down widget in the decorator and call the method that returns our
visualization in the show method with the selected stock. Only provide the first 25
entries of each stock. By default, the stock of Apple should be displayed; its symbol
in the dataset is AAPL. This will give us a visualization that is displayed in a pane
with two tabs. The first tab will display an interpolated line, and the second tab will
display the values as circles:

# creating the dropdown interaction and building the plot

@interact (Stock=stock names)
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def get stock for (Stock='AAPL'):
stock = dataset[dataset['symbol'] == Stock][:25]
show (get plot (stock))

The following screenshot shows the output of the preceding code:

Stock | AAPL v

Line Circles

Stock prices

215 - — AAPL |

210 +

205

Price in $USD

200

Figure 6.32: Line tab with the data of AAPL displayed
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The following screenshot shows the output of the code in step 11:

Stock | AAPL v

Line Circles

Stock prices
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Figure 6.33: Circle tab with the data of AAPL displayed

Note

We can already see that each date is displayed on the x-axis. If we want to display
a bigger time range, we have to customize the ticks on our x-axis. This can be done
using ticker objects.
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We have now covered the very basics of widgets and how to use them in a
Jupyter Notebook.

Note

If you want to learn more about using widgets and which widgets can be used in
Jupyter, visit https://packt.live/3bCaQGk and https://packt.live/39zRwYL.

In the following activity, we will make use of the Bokeh DataSource to add a tooltip
overlay to our plot that is displayed upon hovering over the data points. DataSource
can be helpful in several cases, for example, displaying a tooltip on hovering the data
points. In most cases, we can use pandas DataFrames to feed data into our plot, but for
certain features, such as tooltips, we have to use DataSource:

# using a ColumnDataSource to display a tooltip on hovering
from bokeh.models.sources import ColumnDataSource

data source = ColumnDataSource (data=dict (
vendor name=dataset['vendor name'],
model=dataset['model'],
cach=dataset['cach'],
x=dataset['index'],
y=dataset['cach']

))

TOOLTIPS=]
('"Vendor', '@vendor name'),
('"Model', '@model'),

('"Cache', '@Qcach')

plot = figure (title='Cache per Hardware',K x axis label='Hardware'
, y_axis label='Cache Memory'
, tooltips=TOOLTIPS)

plot.scatter('x', 'y', size=10, color='teal', source=data source)

show (plot)


https://packt.live/3bCaQGk
https://packt.live/39zRwYL
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The following screenshot shows the output of the preceding code:

Cache per Hardware

1 @ o
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Figure 6.34: Cache memory plotted as dots with tooltip overlay displaying the vendor,
model, and amount of memory

In the next activity, we will learn to extend plots using widgets.
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Activity 6.02: Extending Plots with Widgets

In this activity, you will combine what you have already learned about Bokeh. You

will also need the skills you have acquired while working with pandas for additional
DataFrame handling. We will create an interactive visualization that lets us explore the
results of the 2016 Rio Olympics.

Our dataset contains the following columns:

id: Unique ID of the athlete

name: Name of the athlete

nationality: Nationality of the athlete

sex: Male or female

dob: Date of birth of the athlete

height: Height of the athlete

weight: Weight of the athlete

sport: Category the athlete is competing in
gold: Number of gold medals the athlete won
silver: Number of silver medals the athlete won

bronze: Number of bronze medals the athlete won

We want to use the nationality, gold, silver, and bronze columns to create a
custom visualization that lets us dig through the Olympians.
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Our visualization will display each country that participated in a coordinate system
where the x-axis represents the number of medals won and the y-axis represents the
number of athletes. Using interactive widgets, we will be able to filter the displayed
countries by both the maximum number of medals won and the maximum amount of

athletes axes.

Max. Athletes:

567

Max. Medals: () 264

Rio Olympics 2016 - Medal comparison

) |3
500 e
4 “"/1
400
" o
) 1 =
_Q)_- -
S 300
< |
3] @
S . @
z (9
200 -
100 — @
0+
T T . — — , I
0 50 100 150 200 250

Number of Medals

Figure 6.35: Final interactive visualization that displays the scatter plot
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There are many options when it comes to choosing which interactivity to use. We will
focus on only two widgets to make it easier for you to understand the concepts. In the
end, we will have a visualization that allows us to filter countries for the number of
medals and athletes they placed in the Olympics and upon hovering over the single data
points, receive more information about each country:

1.

2.

Open the Activity6.02.ipynb Jupyter Notebook in the Chapter06 folder.

Enable notebook output using the bokeh. io interface. Import pandas and load
the dataset and make sure that the dataset is loaded by displaying the first five
elements of the dataset.

Import figure and show from Bokeh and interact and widgets from
ipywidgets to get started.

Load our olympia2016_athletes.csv dataset from the Datasets folder and set
up the interaction elements. Scroll down until you reach the cell that says getting
the max number of medals and athletes of all countries. Extract the two numbers
from the dataset.

Create widgets for IntSlider for the maximum number of athletes
(orientation vertical) and IntSlider for the maximum number of medals
(orientation horizontal).

Set up the @interact method, which will display the complete visualization. The
only code we will write here is to show the return value of the get_plot method
that gets all the interaction element values as parameters.

Implement the decorator method, move up in the Notebook, and work on the
get_plot method.

First, filter our countries dataset that contains all the countries that placed athletes
in the Olympic games. Check whether they have a lower or equal number of medals
and athletes than our max values passed as arguments.

Create our DataSource and use it for the tooltips and the printing of the
circle glyphs.

10. After that, create a new plot using the figure method that has the following

11.

attributes: title set to Rio Olympics 2016 - Medal comparison,x_axis_
label set to Number of Medals,andy axis label set to Num of Athletes.

Execute every cell starting from the get _plot cell to the bottom—again, making
sure that all implementations are captured.
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12. When executing the cell that contains the @interact decorator, you will see
a scatter plot that displays a circle for every country displaying additional
information, such as the shortcode of the country, the number of athletes, and
the number of gold, silver, and bronze medals.

Note

The solution for this activity can be found on page 418.

As we mentioned before, when working with interactive features and Bokeh, you might
want to read up about the Bokeh server a little bit more. It will give you more options
to express your creativity by creating animated plots and visualizations that can be
explored by several people at the same time.

Summary

In this chapter, we have looked at another option for creating visualizations with a
whole new focus: web-based Bokeh plots. We also discovered ways in which we can
make our visualizations more interactive and give the user the chance to explore data in
a different way.

As we mentioned in the first part of this chapter, Bokeh is a comparably new tool
that empowers developers to use their favorite language to create easily portable
visualizations for the web. After working with Matplotlib, Seaborn, geoplotlib, and
Bokeh, we can see some standard interfaces and similar ways to work with those
libraries. After studying the tools that are covered in this book, it will be simple to
understand new plotting tools.

In the next and final chapter, we will introduce a new real-life dataset to create
visualizations. This last chapter will allow you to consolidate the concepts and tools
that you have learned about in this book and further enhance your skills.









Combining What We
Have Learned

Overview

In this chapter, we will apply all the concepts that we have learned in all the
previous chapters. We will use three new datasets in combination with practical
activities for Matplotlib, Seaborn, geoplotlib, and Bokeh. By the end of this chapter,
you will be able to apply your skills in Matplotlib and Seaborn. We will create a
time series with Bokeh, and finally, we will analyze geospatial data with geoplotlib.
We will conclude this chapter with a summary that recaps what we've learned
throughout the book.
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Introduction

In recent chapters, we've learned about some of the most widely used and state-of-the-
art visualization libraries for Python. In the previous chapter, we advanced from simple
static plots to building interactive visualizations using Bokeh, which allowed us to gain
control over what is displayed to the users.

Matplotlib and Seaborn

To consolidate what we have learned, we will provide you with three sophisticated
activities. Each activity uses one of the libraries that we have covered in this book. Each
activity has a more extensive dataset than we have used before, which will prepare you
to work with real-world examples.

In the first activity, we will consolidate the acquired knowledge in Matplotlib and
Seaborn. For a quick recap, Matplotlib allows the generation of various plot types

with just a few lines of code. Seaborn is based on Matplotlib and provides a high-level
interface for creating visually appealing charts. It dramatically extends Matplotlib with
predefined visualization styles and color palettes.

Note

All activities will be developed in the Jupyter Notebook or Jupyter Lab. Please
download the GitHub repository with all the prepared templates and datasets from
https://packt.live/2tSthph.

Activity 7.01: Implementing Matplotlib and Seaborn on the New York City
Database

In this activity, we will visualize data pertaining to New York City (NYC) and compare

it to the state of New York and the United States (US), including visualizing the median
household income, plotting the average wage by gender and for different job categories,
visualizing the wage distribution, and much more. The goal of this activity is to combine
everything you've learned about Matplotlib and Seaborn to create self-explanatory,
nice-looking plots.

The American Community Survey (ACS) Public-Use Microdata Samples (PUMS) dataset
(one-year estimate from 2017) from https: //packt.live /2UJSai9 is used.



https://packt.live/2tSthph
https://packt.live/2UJSai9
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Download the following datasets and place the extracted CSV file in the
Datasets subdirectory:

https: //www?2.census.gov/programs-surveys /acs/data /pums/2017/1-Year/csv_ pny.
zip and https: /www2.census.gov/programs-surveys /acs/data/pums/2017/1-Year/

csv_hny.zip.

In this activity, the New York Population Records (. ./ . ./Datasets/acs2017/
pny . csv) and New York Housing Unit Records (. ./. . /Datasets/acs2017/

hny . csv) datasets are used. The first dataset contains information about the New
York population, and the second dataset contains information about housing units.
The dataset contains data for about 1% of the population and housing units. Due
to the extensive amount of data, we do not provide the datasets for the whole

of the US; instead, we will provide the required information related to the US,; if
necessary. The PUMS_Data Dictionary 2017.pdf PDF gives an overview and
description of all variables. A further description of the codes can be found in
ACSPUMS2017CodeLists.xls:

1. Open the Activity7.01.ipynb Jupyter Notebook from the Chapter07 folder to
implement this activity. Import all the necessary libraries.

2. Use pandas to read both CSV files located in the Datasets folder.

3. Use the given PUMA (public use microdata area code based on the 2010 census
definition, which are areas with populations of 100k or more) ranges to further
divide the dataset into NYC districts (Bronx, Manhattan, Staten Island, Brooklyn,
and Queens):

# PUMA ranges

bronx = [3701, 3710]
manhatten = [3801, 3810]
staten island = [3901, 3903]
brooklyn = [4001, 4018]
queens = [4101, 4114]

nyc = [bronx[0], queens[1l]]


https://www2.census.gov/programs-surveys/acs/data/pums/2017/1-Year/csv_pny.zip
https://www2.census.gov/programs-surveys/acs/data/pums/2017/1-Year/csv_pny.zip
https://www2.census.gov/programs-surveys/acs/data/pums/2017/1-Year/csv_hny.zip
https://www2.census.gov/programs-surveys/acs/data/pums/2017/1-Year/csv_hny.zip
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4. In the dataset, each sample has a certain weight that reflects the weight for the
total dataset. Therefore, we cannot simply calculate the median. Use the given
weighted _median function in the following code to compute the median:

# Function for a 'weighted' median

def weighted frequency(values, weights):
weighted values = []
for value, weight in zip(values, weights):

weighted values.extend(np.repeat (value, weight))
return weighted values

def weighted median (values, weights):

return np.median(weighted frequency(values, weights))

5. In this subtask, we will create a plot containing multiple subplots that visualize

information with regard to NYC wages. Before we create the plots, some data
wrangling is necessary.

6. Compute the average wage by gender for the given occupation categories for the
population of NYC:

occ_categories = ['Management, \nBusiness, \nScience,\nand Arts\
nOccupations', 'Service\nOccupations',
'Sales and\nOffice\nOccupations', 'Natural Resources, \

nConstruction, \nand Maintenance\nOccupations',
'Production, \nTransportation, \nand Material Moving\

nOccupations']
occ_ranges = {'Management, Business, Science, and Arts Occupations':
[10, 3540], 'Service Occupations': [3600, 46507,
'Sales and Office Occupations': [4700, 5940], 'Natural
Resources, Construction, and Maintenance Occupations': [6000, 7630],
'Production, Transportation, and Material Moving
Occupations': [7700, 97507}

7. Compute the wage frequencies for New York and NYC. Use the following yearly

wage intervals: 10k steps between 0 and 100k, 50k steps between 100k and 200k,
and >200k:

wage bins = {'<$10k': [0, 10000], '$10-20k': [10000, 200001, '$20-
30k': [20000, 300001, '$30-40k': [30000, 400001, '$10-20k': [40000,
500007,

'$50-60k': [50000, 60000], '$60-70k': [60000, 700007,
'$70-80k': [70000, 80000], '$80-90k': [80000, 90000], '$90-100k':
[90000, 1000007,

'$100-150k': [100000, 150000], '$150-200k': [150000,

200000], '>$200k': [200000, np.infty]}
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8. Create a plot containing multiple subplots that visualize information with regard
to NYC wages. Now, visualize the median household income for the US, New
York, NYC, and its districts. Next, visualize the average wage by gender for the
given occupation categories for the population of NYC. Then, visualize the wage
distribution for New York and NYC. Lastly, use the following yearly wage intervals:
10k steps between 0 and 100k, 50k steps between 100k and 200k, and >200k.
Following is the expected output:
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Figure 7.1: Wage statistics for New York City in comparison with New York and the United States
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9. Use a tree map to visualize the percentage for the given occupation subcategories
for the population of NYC:

occ_subcategories =
9507,

19657,
nand Media': [2000,

[3000, 35401,

76307,

97501}

{ '"Management, \nBusiness, \nand Financial': [10,
'Computer, Engineering, \nand Science': [1000,

'Education, \nLegal, \nCommunity Service, \nArts, \
296017,
'Healthcare\nPractitioners\nand\nTechnical':

'Service': [3600, 4650],

'Sales\nand Related': [4700, 49657,

'Office\nand Administrative\nSupport': [5000, 5940],
'': [6000, 61307,

'Construction\nand Extraction': [6200, 6940],
'Installation, \nMaintenance, \nand Repair': [7000,

'Production': [7700, 8965],
'Transportation\nand Material\nMoving': [9000,

Following is the expected output:

Occupations in New York City

Figure 7.2: Occupations in NYC
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10. Use a heatmap to show the correlation between difficulties (self-care difficulty,
hearing difficulty, vision difficulty, independent living difficulty, ambulatory
difficulty, veteran service-connected disability, and cognitive difficulty) and age
groups (<5, 5-11, 12-14, 15-17, 18-24, 25-34, 35-44, 45-54, 55-64, 65-74, and 75+) in
NYC. Following is the expected output:

Percentage of NYC population with difficulties
Self-care difficulty “
Hearing difficulty 32
Vision difficulty

Independent living difficulty

16
Ambulatory difficulty

Veteran service connected disability -8

Cognitive difficulty .
-0

LS B S S

S & e 288 ¢ 8 4
Age Groups

Figure 7.3: Percentage of NYC population with disabilities

Note

The solution to this activity can be found on page 423.

In the next section, we will perform an activity on Bokeh using a real-life scenario.

Bokeh

Stock price data is one of the most exciting types of data for many people. When
thinking about its nature, we can see that it is highly dynamic and continually changing.
To understand it, we need high levels of interactivity to not only look at the stocks of
interest, but also to compare different stocks, see their traded volume, and the highs/
lows of the given dates and whether it rose or sunk the day before that.
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Considering all of the features mentioned previously, we need to use a highly
customizable visualization tool. We also need the possibility to add different widgets to
enable interactivity. In this activity, we will, therefore, use Bokeh to create a candlestick
visualization with several interactivity widgets to enable a better exploration of our
data. Please make sure the Bokeh version you are using is 1.4.0.

Activity 7.02: Visualizing Stock Prices with Bokeh

In this activity, we will implement all the skills of Bokeh that we have learned. You will
also need the skills you have acquired while working with pandas. We will create an
interactive visualization that displays a candlestick plot, which is often used when
handling stock price data. We will be able to compare two stocks with one another by
selecting them from dropdowns. A RangeSlider will allow us to restrict the displayed
date range in the requested year, 2016. Depending on what graph we choose, we will
either see the candlestick visualization or a simple line plot displaying the volume of the
selected stock:

1. Open the Activity7.02.ipynb Jupyter Notebook from the Chapter07 folder to
implement this activity.

2. Import pandas and enable notebook output by using the bokeh. io interface.
3. Load the downloaded stock_prices dataset.

4. Make sure that the dataset is loaded by displaying the first five elements of
the dataset.

5. Use the datetime library to create a column, short_date, in our DataFrame
that holds the information from the date column without the hour, minute, and
second information.

6. Validate by displaying the first five elements of the updated DataFrame.

7. Import figure and show from Bokeh and interact and widgets from
ipywidgets to get started.

8. Execute the cells from top to bottom until you reach the cell that has the comment
#extracting the necessary data. Start your implementation there.
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10.

11.

12.

13.

14.

15.

Get the unique stock names from the dataset. Filter out the dates from 2016. Only
get unique dates from 2016. Create a list that contains the strings open-close and
volume, which will be used for the radio buttons to switch between the two plots.

After extracting the necessary data, set up the interaction elements. Create widgets
for the following: a dropdown for the first stock name (the default value will be
AAPL) and a dropdown for the second stock name that will be compared to the first
(the default value will be AON).

Also, set up a SelectionRangeSlider to select the range of dates we want to
display in our plot (the default values displayed will be O to 25).

Define a RadioButtons attribute to choose between the candlestick plot and the
plot that displays the traded volume (the default value will be open-close, which
will display the candlestick plot.)

Set up the @interact method that finally displays the complete visualization.
Provide the interaction elements that have just been set up with the @
interact decorator and call the show method with the get_plot method we
executed before.

After implementing the decorated method, move up in our notebook and work on
the add_candle_plot method. Start with the so-called candlestick visualization,
which is often used with stock price data. Calculate the mean for every (high/
low) pair and then plot those data points with a line with the given color. Next, set
up an add_candle_plot that gets a plot object, a stock_name, a stock_range
columns containing the data of only the selected date range that was defined with
the widgets, and a color for the line. Create a segment that creates the vertical
line, and either a green or red vbar to color code whether the close price is lower
than the open price. Once the candles are created, draw a continuous line running
through the mean high, low point of each candle.

Move on and implement the line plot in the cell that contains the get_plot
method. Plot a line for the data from stock_1 with a blue color. Plot a line for the
data from stock_2 with an orange color.
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16. Before finalizing this activity, add mutability to our legend, which changes the
way elements are displayed upon clicking on one of the displayed elements in the

legend of the visualization. The resulting visualization should look somewhat like
the following image:
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Figure 7.4: Final interactive visualization that displays the candlestick plot
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The following figure shows the final interactive visualization of volume plot:
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Figure 7.5: Final interactive visualization that displays the volume plot
Note

The solution to this activity can be found on page 432.

As we mentioned before, when working with interactive features and Bokeh, you might
want to read up about the Bokeh server a little bit more. It will give you more options to

create animated plots and visualizations that can be explored by several people at the
same time.
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Geoplotlib

The dataset that is used in this activity is from Airbnb, which is publicly available

online. Accommodation listings have two predominant features: latitude and longitude.
Those two features allow us to create geospatial visualizations that give us a better
understanding of attributes such as the distribution of accommodation across each city.

In this activity, we will use geoplotlib to create a visualization that maps each
accommodation to a dot on a map. Each dot is colored based on either the price or
rating of that listing. The two attributes can be switched by pressing the left and right
keys on the keyboard.

Activity 7.03: Analyzing Airbnb Data with Geoplotlib

In this activity, we will implement all the geoplotlib skills that we have learned. We

will use Airbnb listing data to determine the most expensive and best-rated regions of
accommodation in the New York area. We will write a custom layer with which we can
switch between the price and the review score of each accommodation. In the end, we
will be able to see the hotspots for the most expensive and best-rated accommodation
across New York.

In theory, we should see a price increase the closer we get to the center of Manhattan.
It will be very fascinating to see whether the ratings for the given accommodations also
increase as we get closer to the center of Manhattan:

1. Open the Activity7.03.ipynb Jupyter Notebook from the Chapter07 folder to
implement this activity. First, make sure you import the necessary dependencies.

2. Load the airbnb_new_york.csv dataset using pandas. If your system is a little
bit slower, just use the airbnb_new_york smaller.csv dataset with fewer
data points.

3. Understand the dataset by observing the variables and the first few entries.

4. Since our dataset once again has columns that are named Latitude and
Longitude instead of 1at and lon, rename those columns to their short versions.

5. To use a color map that changes color based on the price of accommodation,
we need a value that can easily be compared and checked whether it's smaller
or bigger than any other listing. Therefore, create a new column called
dollar_price that will hold the value of the price column as float. Make sure
to fill all the NaN values of the price column with $0.0, and review_scores__
rating column with 0.0 by using the £illna () method of the dataset.



Introduction | 341

6. This dataset has 96 columns. When working with such a huge dataset, it makes
sense to think about what data we really need and create a subsection of our
dataset that only holds the data we need. Print all the columns that are available
and an example for that column to decide what information is suitable.

7. Trim down the number of columns our working dataset has by creating a
subsection of the columns with id, latitude (as lat), longitude (as lon),
price (in §), and review_scores_rating.

8. Print the first five rows of the trimmed down the dataset.

9. Create a new DataAccessObject object with the newly created subsection of the
dataset. Use it to plot out a dot map. The expected output is as follows:

Figure 7.6: Simple dot map created from the points

10. Create a new ValueLayer class that extends the geoplotlib BaseLayer class.
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11.

Initiate the following instance variables in the __init method of the
ValueLayer class: first, sel£.data, which holds the dataset; second, self.
display, which holds the currently selected attribute name; third, self.painter,
which holds an instance of the BatchPainter class; fourth, self.view, which
holds the BoundingBox function; and lastly, sel£ . cmap, which holds a color map
with the jet color schema, and an alpha of 255 and 100 levels:

12.

13.

Figure 7.7: Jet color map scale

Implement the bbox, draw, and on_key_release methods from the ValueLayer
class. First, return the self.view variable in the bbox method. Then, set the

ui manager.info texttoUse left and right to switch between the
displaying of price and ratings. Currently displaying: dollar
price or review_scores_rating, depending on what the self.display
variable holds. Next, in the on_key release method, check whether the left or
right key is pressed and switch the self.display variable between dollar__
price Or review_scores_rating. Lastly, return True if the left or the right key
has been pressed to trigger redrawing the dots, otherwise return False.

Given the data, plot each point on the map with a color that is defined by the
currently selected attribute, either price or rating. First, in the invalidate
method, assign a new BatchPainter () function to the self.painter variable.
Second, get the max value of the dataset given the current self.display variable.
Third, use a log scale if dollar price is used, otherwise use a lin scale. Fourth,
map the value to color using the cmap object we defined in the __init__ method
and plot each point with the given color onto the map with a size of 5.

This is not the most efficient solution, but it will do for now.
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14. Create a new BoundingBox function focused on New York by using
north=40.897994, west=-73.999040, south=40.595581,
east=-73.95040. In addition to a custom BoundingBox, we will use the
darkmatter tile provider that we looked at in Chapter 5, Plotting Geospatial Data.
Provide the BoundingBox function to the ValueLayer class when adding a new
layer to geoplotlib.

The following is an expected output that shows a dot map with color based
on rating:

geoplotlib
Use left and right to switch between the displaying of price and ratings. Currently displaying: dollar_price|

Figure 7.8: New York Airbnb dot map, colored based on the price
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The following is an expected output that shows a dot map with color based
on rating:

geoplotlib
Use left and right to switch between the displaying of price and ratings. Currently displaying: review_scores_rating

Figure 7.9: New York Airbnb dot map, colored based on the ratings

Note

The solution to this activity can be found on page 441.

As we can now see, writing custom layers for geoplotlib is a good approach for focusing
on the attributes that you are interested in.
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Summary

This chapter gave us a short overview and recap of everything that was covered in this
book based on three extensive practical activities. In Chapter 1, The Importance of Data
Visualization and Data Exploration, we started with a Python library journey that we
used as a guide throughout the whole book. We first talked about the importance of
data and visualizing this data to get meaningful insights from it and gave a quick recap
of different statistical concepts.

Through several activities, we learned how to import and handle datasets with NumPy
and pandas. In Chapter 2, All You Need to Know about Plots, we discussed various plot/
chart visualizations and which visualizations are best for displaying certain information.
We mentioned the use case, design practices, and practical examples for each plot type.

In Chapter 3, A Deep Dive into Matplotlib, we thoroughly covered Matplotlib and started
with the basic concepts. Next, we dived deeper into the numerous possibilities for
enriching visualizations with text. Emphasis was put on explaining almost all plotting
functions Matplotlib offers using practical examples. Furthermore, we talked about
different ways to create layouts. The chapter was rounded off by demonstrating how
you can visualize images and write mathematical expressions.

Chapter 4, Simplifying Visualizations Using Seaborn, covered Seaborn, which is

built on top of Matplotlib and provides a higher-level abstraction to make insightful
visualizations. With several examples, we showed you how Seaborn can simplify the
creation of visualizations. We also introduced further plots, such as heatmaps, violin
plots, and correlograms. Finally, we used Squarify to create tree maps.

Visualizing geospatial data was covered in Chapter 5, Plotting Geospatial Data, using
geoplotlib. Understanding how geoplotlib is structured internally explained why we
had to work with the pyglet library when adding interactivity to our visualizations. We
worked with different datasets and built both static and interactive visualizations for
geospatial data.

In Chapter 6, Making Things Interactive with Bokeh, we focused on working with Bokeh,
which targets modern web browsers to present interactive visualizations. Starting
with simple examples, we explored the most significant advantage of Bokeh, namely,
interactive widgets.

We ended the book with this chapter, applying all the skills that we've learned through
three real-life datasets.

With the conclusion of this book, you should now have the practical knowledge and
skills to design your own data visualizations using various Python libraries such as
NumPy, pandas, Matplotlib, Seaborn, geoplotlib, and Bokeh.






Appendix

About

This section is included to assist the students to perform the activities present in the book. It

includes detailed steps that are to be performed by the students to complete and achieve the
objectives of the book.
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Chapter 1: The Importance of Data Visualization and Data
Exploration

Activity 1.01: Using NumPy to Compute the Mean, Median, Variance, and
Standard Deviation of a Dataset
Solution:
1. Import NumPy:
import numpy as np

2. Load the normal distribution.csv dataset by using the genfromtxt method
from NumPy:

dataset = np.genfromtxt('../../Datasets/normal distribution.csv',
delimiter="',")

3. First, print a subset of the first two rows of the dataset:

dataset [0:2]
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The output of the preceding code is as follows:

Country  Indicater Indicator

Code Mame Code 1960 1961 1962 1963 1964 1965

Country
MName

Population
density
Aruba ABW (people EM.POPDONST  MaW 307972222 312366667 314983333 EB27TTE 310666667
per 5. km
ol land ...

Population
density
Andorra AND (people EN.POP.DNST MaW 30587234 32714894 34914894 Framon3 30470213
par sq. km
of land ...
Population
density
Afghanistan AFG (people EMPORDNST  MaW 14038148 14312087 14599682 14901579 15278208
per 549. km
of land ...

PFopulation
density
Angola AGO (people EM.POP.DNST  MaM 4.305195 4384289 4464433 4544558 4624228
per 54. km
of land ...

Population
density
Albania ALB (people EMPOP.OMST MaM  GOGTEE42 6240608 64320234 66209307 G8.0GEDEE
Per 50 ki
of land ...

5 rows x 60 columns

Figure 1.46: First two rows of the dataset

Load the dataset and calculate the mean of the third row. Access the third row by
using index 2, dataset[2]:

np.mean (dataset[2])
The output of the preceding code is as follows:
100.20466135250001

Index the last element of an ndarray in the same way a regular Python list can be
accessed. dataset[:, -1] will give us the last column of every row:

np.mean (dataset[:,-1])
The output of the preceding code is as follows:

100.4404927375
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6. Get a submatrix of the first three elements of every row of the first three columns
by using the double-indexing mechanism of NumPy, which gives us an interface to
extract sub-selection:

# calculate the mean of the intersection of the first 3 rows and first 3
columns

np.mean (dataset[0:3, 0:3])

The output of the preceding code is as follows:

97.87197312333333

7. Calculate the median of the last row of the dataset. Don't use the length of the
dataset as the index:

np.median (dataset[-1])
The output of the preceding code is as follows:
99.18748092

8. Use reverse indexing define a range to get the last three columns using
dataset[:, -3:]:

np.median (dataset[:, -3:])
The output of the preceding code is as follows:
99.47332349999999
9. To aggregate the values along an axis to calculate the rows, use axis=1:
np.median (dataset, axis=1)

The output of the preceding code is as follows:

array([ 98.77910163, 97.17512834, 98.58782879, 100.68449836,
101.@0170737, 97.76908825, 101.85882253, 100.04756697,
1082.24292555, 99.59514997, 10@.4955753 , 99.8860714 ,

99,00647994, 98.67276177, 102.44376222, 96.61933565,
184.0968893 , 100.72023043, 98.7@877396, 99.75008654,
194.89344428, 101.00634942, 98.30543801, 99,18748092])

Figure 1.47: Using axis to calculate the median of each row
10. Calculate the variance for each column using axis=0:

np.var (dataset, axis=0)
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The output of the preceding code is as follows:

array([23.64757465, 29.78886109, 20.50542011, 26.03204443, 28.38853175,
19.09960817, 17.67291174, 16.17923204])

Figure 1.48: Variance across each column

11. Calculate the variance of the intersection of the last two rows and the first two
columns. When only looking at a very small subset of the matrix (2x2) elements, we
can apply what we learned in the statistical overview to observe that the value is
way smaller than the whole dataset:

np.var (dataset[-2:, :2])
The output of the preceding code is as follows:
4.674691991769191

The values of the variance might seem a little bit strange at first. You can always go
back to the Measures of Dispersion section to recap what you've learned so far.

Note

A small subset of a dataset does not display the attributes of the whole.

12. Calculate the standard deviation of the dataset. Just remember that the variance is
not the standard deviation:

np.std(dataset)
The output of the preceding code is as follows:

4.838197554269257

Activity 1.02: Forest Fire Size and Temperature Analysis
Solution:
1. Import the necessary libraries:
import pandas as pd
2. Use the read_csv method to load the forestfires.csv dataset:
dataset = pd.read csv('../../Datasets/forestfires.csv')
3. Print the first two rows of the dataset to get a feeling for its structure:

dataset [0:2]
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The output of the preceding code is as follows:

X Y month day FFMC DMC DC ISI temp RH wind rain area

0 7 5 mar  fri 86.2 26.2 943 5.1 8.2 51 6.7 00 0.0
1 7 4 oct tue 906 354 6691 6.7 180 33 09 00 0.0
Figure 1.49: Printing the first two rows of the dataset
Derive insights from the sizes of forest fires

4. Filter the dataset so that it only contains rows that have an area value of >0 since
our dataset contains several rows with an area of 0 and we only want to look at
rows that have an area larger than 0 for now:

area dataset= dataset[dataset["area"] > 0]

area dataset

The output of the preceding code is as follows:

X Y month day FFMC DMC DC ISI temp RH wind rain area

138 9 9 jul  tue 858 483 3134 39 18.0 42 27 0.0 0.36
139 1 4 sep tue 91.0 1295 6926 7.0 217 38 22 00 043
140 2 5 sep mon 90.9 1265 6865 7.0 219 39 1.8 00 047
141 1 2 aug wed 955 999 5133 132 233 31 45 0.0 0.55

142 8 6 aug fri 90.1 108.0 529.8 125 21.2 51 89 0.0 0.61

509 5 4 aug fri 91.0 1669 7526 71 211 71 76 14 217
510 6 5 aug fri 91.0 1669 7526 7.1 182 62 54 0.0 043
512 4 3 aug sun 816 ©56.7 6656 1.9 27.8 32 27 0.0 6.44
513 2 4 aug sun 816 567 6656 1.9 219 71 58 0.0 54.29

514 7 4 aug sun 816 ©56.7 6656 1.9 212 70 6.7 0.0 11.16

270 rows x 13 columns

Figure 1.50: Filtered dataset with only rows that have an area of larger than 0
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Get the mean, min, max, and std of the area column and see what information this
gives you. First, let's find the mean value:

area_dataset["area"].mean ()

Following is the output of the code:
24.600185185185182

Get the smallest area value from our dataset:
area_dataset["area"].min ()

The output of the preceding code is as follows:
0.09

Get the largest area value from our dataset:
area_dataset["area"].max ()

The output of the preceding code is as follows:
1090.84

Get the standard deviation of values in our dataset:
area_dataset["area"].std()

The output of the preceding code is as follows:
86.50163460412126

Sort the filtered dataset using the area column and print the last 20 entries using
the tail method to see how many very large values it holds:

area dataset.sort values (by=["area"]) .tail (20)
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The output of the preceding code is as follows:

X Y month day FFMC DMC DC ISI temp RH wind rain area

469 6 3 apr sun 91.0 146 256 123 137 33 9.4 00 61.13
228 4 6 sep sun 93.5 1493 7286 81 283 26 3.1 00 64.10
473 9 4 jun  sat 905 611 2526 94 245 50 3.1 00 70.32
392 1 3 sep sun 91.0 2763 8251 7.1 219 43 40 0.0 70.76
229 8 6 aug sat 922 818 4808 119 164 43 40 0.0 71.30
457 1 4 aug wed 91.7 1914 6359 78 199 50 40 0.0 82.75
293 7 6 jul  tue 93.1 1804 430.8 11.0 269 28 5.4 0.0 86.45
230 4 4 sep wed 92.9 1333 6996 9.2 264 21 45 0.0 88.49
231 1 5 sep sun 93.5 1493 7286 8.1 278 27 3.1 0.0 95.18
232 6 4 sep tue 91.0 1295 6926 7.0 187 43 27 0.0 103.39
233 9 4 sep tue 844 734 6719 32 243 36 3.1 0.0 105.66
234 4 5 sep sat 925 1211 6744 86 17.7 25 3.1 00 154.88
377 2 2 aug sat 93.7 2311 7151 84 219 42 22 00 174.63
420 8 8 aug wed 91.7 1914 6359 7.8 262 36 45 00 185.76
235 8 6 aug sun 91.4 1424 6014 106 19.6 41 58 00 196.48
236 2 2 sep sat 92.5 1211 6744 86 182 46 1.8 0.0 200.94
237 1 2 sep tue 91.0 1295 6926 7.0 188 40 22 0.0 212.88
479 7 4 jul mon 89.2 1039 4316 6.4 226 57 49 0.0 278.53
415 8 6 aug thu 948 2224 698.6 139 275 27 49 0.0 746.28

238 6 5 sep sat 925 1211 6744 86 261 27 4.0 0.0 1090.84

Figure 1.51: 20 largest entries sorted by area
7. Get the median of the area column and visually compare it to the mean value:
area dataset["area"].median ()
The output of the preceding code is as follows:
6.37
Finding the month with the most forest fires

8. List all the month values present in the dataset to compare the number of fires
and the temperature and get a list of unique values from the month column of
the dataset:

months = dataset["month"].unique ()

months
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The output of the preceding code is as follows:

array(['mar', 'oct', 'aug', 'sep', 'apr', 'jun', 'jul', 'feb', 'jan',
'dec', 'may', 'nov'], dtype=object)

Figure 1.52: List of month values present in the dataset

9. Get the amount of entries for the month of March using the shape member of
our DataFrame:

dataset[dataset["month"] == "mar"].shape[0]
The output of the preceding code is as follows:
54

10. Now, iterate over all months, filter our dataset for rows containing the given month,
and calculate the mean temperature. Print a statement containing the number of
fires, the mean temperature, and the month:

for month in months:
month dataset = dataset[dataset["month"] == month]
fires in month = month dataset.shape[0]
avg _tmp in month = int (month dataset["temp"].mean ())

print (str(fires in month) + " fires in " + month + " with a mean
temperature of ~" + str(avg tmp in month) + "°C")

The output of the preceding code is as follows:

54 fires in mar with a mean temperature of ~13°C
15 fires in oct with a mean temperature of ~17°C
184 fires in aug with a mean temperature of ~21°C
172 fires in sep with a mean temperature of ~19°C
9 fires in apr with a mean temperature of ~12°C
17 fires in jun with a mean temperature of ~20°C
32 fires in jul with a mean temperature of ~22°C
20 fires in feb with a mean temperature of ~9°C

2 fires in jan with a mean temperature of ~5°C

9 fires in dec with a mean temperature of ~4°C

2 fires in may with a mean temperature of ~14°C

1 fires in nov with a mean temperature of ~11°C

Figure 1.53: Amount of forest fires and mean temperature for each month
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Chapter 2: All You Need to Know about Plots

Activity 2.01: Employee Skill Comparison

Solution:

1.

Bar charts and radar charts are great for comparing multiple variables for
multiple groups.

Suggested response: The bar chart is great for comparing the skill attributes of
the different employees, but it is not the best choice when it comes to getting an
overall impression of an employee, due to the fact that the skills are not displayed
directly next to one another.

The radar chart is great for this scenario because you can both compare
performance across employees and directly observe the individual performance for
each skill attribute.

Suggested response:

For both the bar and radar charts, adding a title and labels would help to
understand the plots better. Additionally, using different colors for the different
employees in the radar chart would help to keep the different employees apart.

Activity 2.02: Road Accidents Occurring over Two Decades

Solution:

1.

Suggested response: If we look at Figure 2.20, we can see that the years 2000 and
2015 have the lightest colored squares overall. These are the two years that have
the lowest accident rates.

Suggested response: If we look at the trend for each month, that is, January, April,
July, and October for the past two decades, we can see a decreasing trend in the
number of accidents taking place in January.
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The activity about road accidents gave you a simple example of how to use heatmaps to
illustrate the relationship between multiple variables. In the next section, we will cover
composition plots.

Activity 2.03: Smartphone Sales Units

Solution:

1.

Suggested response: If we compare the performance of each manufacturer in the
third and fourth quarters, we come to the conclusion that Apple has performed
exceptionally well. Their sales units have risen at a higher rate from the third
quarter to the fourth quarter for both 2016 and 2017 when compared with that of
other manufacturers.

Suggested response: If we look at the trends in the sales units of each
manufacturer, we can see that after the third quarter of 2017, the sales units of

all the companies except Xiaomi have shown an inconsistency. If we look at the
performance of Xiaomi, there has been an upward trend after the first quarter of
the year 2017. The sales of Apple and Samsung are exhibiting a downward trend
while the sales of Huawei and Xiaomi are showing an upward trend. It is predicted
that these trends will continue.

Suggested response: Using a stacked area chart would additionally directly
visualize the overall trend of smartphone sales. A small drawback is that it
would be more difficult to read absolute smartphone sales numbers for an
individual company.
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Activity 2.04: Frequency of Trains during Different Time Intervals
Solution:
1. Suggested response: Most trains arrive at 4 p.m. and 6 p.m.

2. Suggested response: The histogram appears as follows:

5_

Frequency

0 2 4 6 8 10 12
Time (am)

Figure 2.47: Frequency of trains in the morning
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Activity 2.05: Analyzing Visualizations

Solution:

First Visualization
Suggested response:

1. The proposed visualization has multiple faults. First, a pie chart is supposed to
show part-of-a-whole relations, which is not the case for this task since we only
consider the top 30 YouTube music channels and not all channels. Second, 30
values are too many to visualize within a pie chart. Third, the labels overlap. Also, it
is difficult to quantify the slices as there is no unit of measurement specified.

2. An improvement would be to use a bar chart. For example, in the following
horizontal bar chart, it is easier to tell the number of subscribers in millions for
each YouTube channel:

YouTube Music Channels according to their number of subscribers

T-Series
Canal KondZilla
Zee Music Company
Ed Sheeran
EminemMusic
Ariana Grande
Taylor Swift
JustinBieberVEVO
BLACKPINK
Alan Walker
Shemaroo Filmi Gaane
ibighit
One Direction
Wave Music
Sony Music India
El Reino Infantil
Maroon 5
Trap Nation
Speed Records
GR6 EXPLODE
TaylorSwiftVEVO
SonyMusiclndiaVEVO
Ozuna
Daddy Yankee
YRF
Spinnin' Records
Bruno Mars
RihannaVEVO
T-Series Bhakti Sagar
KatyPerryVEVO

Channel

-
o
o
-
N
o

60 80
Subscriber in millions

o
N
(=}
N
o

Figure 2.48: Horizontal bar chart showing YouTube music channels
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Second Visualization
Suggested response:

1. This is also an example of using the wrong chart type. A line chart was used to
compare different categories that do not have any temporal relation. Furthermore,
informative guides such as legends and labels are missing.

2. The following diagram shows how the data should have been represented using a
comparative bar chart:

Number of people per game playing at the casino
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@
o
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< 1000
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Poker Black Jack Roulette Craps

Games in a casino

Figure 2.49: Comparative bar chart displaying casino data for 2 days

Activity 2.06: Choosing a Suitable Visualization
Solution:

Since it was asked of us to visualize the median, the interquartile ranges, and the
underlying density of populations from different income groups, violin plots are
the best choice as they visualize both summary statistics and a kernel density
estimate. The density plot only shows the density, whereas box plots only illustrate
summary statistics.
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Chapter 3: A Deep Dive into Matplotlib

Activity 3.01: Visualizing Stock Trends by Using a Line Plot

Solution:

Visualize a stock trend by using a line plot:

1.

Open the Activity3.01.ipynb Jupyter notebook from the Chapter03 folder to
implement this activity.

Navigate to the path of this file and type in the following at the command-line
terminal: jupyter-1lab.

Import the necessary modules and enable plotting within the Jupyter notebook:

# Import statements

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd

Smatplotlib inline

Use pandas to read the datasets (GOOGL_data.csv, FB_data.csv, AAPL data.
csv, AMZN data.csv, and MSFT data.csv)located in  the Datasets folder. The
read csv () function reads a .csv file into a DataFrame:

# load datasets

google = pd.read csv('../../Datasets/GOOGL data.csv"')
facebook = pd.read csv('../../Datasets/FB data.csv')
apple = pd.read csv('../../Datasets/AAPL data.csv')
amazon = pd.read csv('../../Datasets/AMZN data.csv')
microsoft = pd.read csv('../../Datasets/MSFT data.csv')

Use Matplotlib to create a line chart that visualizes the closing prices for the past
5 years (whole data sequence) for all five companies. Add labels, titles, and a legend
to make the visualization self-explanatory. Use the p1t.grid () function to add a
grid to your plot:

# Create figure
plt.figure (figsize=(16, 8), dpi=300)
# Plot data

plt.plot('date', 'close', data=google, label='Google')
plt.plot ('date', 'close', data=facebook, label='Facebook')
plt.plot ('date', 'close', data=apple, label='Apple')
plt.plot('date', 'close', data=amazon, label='Amazon')

(

plt.plot('date', 'close', data=microsoft, label='Microsoft')
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# Specify ticks for x and y axis

plt.xticks (np.arange (0, 1260, 40), rotation=70)
plt.yticks(np.arange (0, 1450, 100))

# Add title and label for y-axis
plt.title('Stock trend', fontsize=16)
plt.ylabel ('Closing price in $', fontsize=14)
# Add grid

plt.grid()

# Add legend

plt.legend()

# Show plot

plt.show()

Following is the output of the code:
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Figure 3.50: Visualization of stock trends of five companies

From the preceding diagram, we can see that the stock prices of Google and
Amazon are high compared to Facebook, Microsoft, and Apple.
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Activity 3.02: Creating a Bar Plot for Movie Comparison

Solution:

Create a bar plot for comparing the ratings of different movies:

1.

Open the Activity3.02. ipynb Jupyter notebook from the Chapter03 folder to
implement this activity.

Navigate to the path of this file and type in the following at the command-line
terminal: jupyter-1lab.

Import the necessary modules and enable plotting within the Jupyter notebook:

# Import statements

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
Smatplotlib inline

Use pandas to read the data located in the Datasets folder:

# Load dataset

movie scores = pd.read csv('../../Datasets/movie scores.csv')

Use Matplotlib to create a visually appealing bar plot comparing the two scores
for all five movies. Use the movie titles as labels for the x-axis. Use percentages at
intervals of 20 for the y-axis, and minor ticks at intervals of 5. Add a legend and a
suitable title to the plot:

# Create figure

plt.figure (figsize=(10, 5), dpi=300)

# Create bar plot

pos = np.arange (len(movie scores['MovieTitle']))
width = 0.3

plt.bar (pos - width / 2, movie scores['Tomatometer'], width,
label="'Tomatometer"')

plt.bar(pos + width / 2, movie scores['AudienceScore'], width,
label="Audience Score')

# Specify ticks

plt.xticks (pos, rotation=10)

plt.yticks(np.arange (0, 101, 20))

# Get current Axes for setting tick labels and horizontal grid
ax = plt.gca()

# Set tick labels

ax.set xticklabels (movie scores['MovieTitle'])

ax.set yticklabels(['0%', '20%', '40%', '60%', '80%', '100%'])
# Add minor ticks for y-axis in the interval of 5
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ax.set yticks (np.arange (0, 100, 5), minor=True)
# Add major horizontal grid with solid lines
ax.yaxis.grid(which='major")

# Add minor horizontal grid with dashed lines
ax.yaxis.grid(which='minor', linestyle='--")
# Add title

plt.title('Movie comparison')

# Add legend

plt.legend()

# Show plot

plt.show ()

Movie comparison
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Figure 3.51: Bar plot comparing scores of five movies

In the preceding output, we can see that the audience liked the movie "The Hobbit:
An Unexpected Journey" when compared to other movies that were rated high
by Tomatometer.
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Activity 3.03: Creating a Stacked Bar Plot to Visualize Restaurant Performance

Solution:

Let's create a stacked bar chart to visualize the performance of a restaurant:

1.

Open the Activity3.03. ipynb Jupyter notebook from the Chapter03 folder to
implement this activity.

Navigate to the path of this file and type in the following at the command-line
terminal: jupyter-1lab.

Import the necessary modules and enable plotting within the Jupyter notebook:

# Import statements

import pandas as sb

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns
gmatplotlib inline

Note that we have imported the Seaborn library to load the built-in dataset that the
library provides.

Load the dataset:

# Load dataset
bills = sns.load dataset('tips"')

Use the given dataset and create a matrix where the elements contain the sum of
the total bills for each day and are split by smokers/non-smokers:

days = ['Thur', 'Fri', 'Sat', 'Sun']

days range = np.arange (len(days))

smoker = ['Yes', 'No']

bills by days = [bills[bills['day'] == day] for day in days]
bills by days smoker = [[bills by days[day] [bills by days[day]
['smoker'] == s] for s in smoker] for day in days range]

total by days smoker = [[bills by days smoker[day][s]['total bill'].
sum() for s in range(len(smoker))] for day in days range]

totals = np.asarray(total by days smoker)

Here, the asarray () function is used to convert any list into an array.



366

| Appendix

5.

Daily total sales in $

Create a stacked bar plot, stacking the summed total bills separated by smoker and
non-smoker for each day. Add a legend, labels, and a title:

# Create figure

plt.figure (figsize=(10, 5), dpi=300)

# Create stacked bar plot

plt.bar(days range, totals[:, 0], label='Smoker')

plt.bar(days range, totals[:, 1], bottom=totals[:, 0], label='Non-
smoker")
# Add legend

plt.legend()

# Add labels and title
plt.xticks (days range)

ax = plt.gcal()

ax.set xticklabels (days)
ax.yaxis.grid()

plt.ylabel ('Daily total sales in $')
plt.title ('Restaurant performance')
# Show plot

plt.show ()

Restaurant performance
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Figure 3.52: Stacked bar chart showing restaurant performance on different days

In the preceding output, we can see that the highest sales were made on Saturday
by both smokers and non-smokers.
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Activity 3.04: Comparing Smartphone Sales Units Using a Stacked Area Chart

Solution:

Let's compare the sales units of smartphone manufacturers using a stacked area chart:

1.

Open the Activity3.04.ipynb Jupyter notebook from the Chapter03 folder to
implement this activity.

Navigate to the path of this file and type in the following at the command-line
terminal: jupyter-1lab.

Import the necessary modules and enable plotting within the Jupyter notebook:

# Import statements

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
Smatplotlib inline

Use pandas to read the data located in the Datasets folder:

# Load dataset
sales = pd.read csv('../../Datasets/smartphone sales.csv')

Create a visually appealing stacked area chart. Add a legend, labels, and a title:

# Create figure

plt.figure (figsize=(10, 6), dpi=300)
# Create stacked area chart
labels = sales.columns([2:]

plt.stackplot ('Quarter', 'Apple', 'Samsung', 'Huawei', 'Xiaomi',
'OPPO', data=sales, labels=labels)
# Add legend

plt.legend()

# Add labels and title

plt.xlabel ('Quarters"')

plt.ylabel ('Sales units in thousands')
plt.title('Smartphone sales units')

# Show plot

plt.show ()
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Smartphone sales units
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Figure 3.53: Stacked area chart comparing sales units of different smartphone manufacturers
In the preceding output, we can see a comparison of five smartphone units. We can
see that Samsung has the highest sales and it would be safe to invest in it.

Activity 3.05: Using a Histogram and a Box Plot to Visualize Intelligence

Quotient

Solution:

Let's visualize the IQ of different groups using a histogram and a box plot:

1. Import the necessary modules and enable plotting within a Jupyter notebook:

# Import statements
import numpy as np
import matplotlib.pyplot as plt
$matplotlib inline
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2. Use the following IQ scores for the following plots:

# IQ samples

ig_scores = [126, 89, 90, 101, 102, 74, 93, 101,
97 98, 105, 119, 92, 113, 81, 104, 108, 83, 102,
107, 103, 89, 89, 110, 71, 110, 120, 85, 111, 83,
84, 118, 100, 100, 114, 81, 109, 69, 97, 95, 106,
9185, G0, 92,0 g8 G R8I, BI5T, 816, L0120 93] k2
75, 100, 90, 96, 94, 107, 108, 95, 96, 96, 114,
141, 115, 95, 86, 100, 121, 103, 66, 99, 96, 111,
91, 112, 102, 112, 75]

66,
105,
122,
116,
76,
93,
110,

120,

108,

102,
102,

114,

111,
120,
109,
89, 110,
95, 117,
105, 110,

3. Plot a histogram with 10 bins for the given IQ scores. IQ scores are normally
distributed with a mean of 100 and a standard deviation of 15. Visualize the mean as
a vertical solid red line, and the standard deviation using dashed vertical lines. Add

labels and a title:

# Create figure

plt.figure (figsize=(6, 4), dpi=150)
# Create histogram
plt.hist (ig scores, bins=10)

plt.axvline (x=100, color='r")
(

plt.axvline (x=115, color='r', linestyle=

plt.axvline (x=85, color='r', linestyle=
# Add labels and title
plt.xlabel ('IQ score')

plt.ylabel ('Frequency')

plt.title('IQ scores for a test group of a hundred adults')

# Show plot
plt.show ()
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Following is the output of the code:

IQ scores for a test group of a hundred adults
25 A T

20 1

Frequency
[}
w

[
o
1

70 80 90 100 110 120 130 140
I1Q score

Figure 3.54: Histogram for an 1Q test
4. Create a box plot to visualize the IQ scores. Add labels and a title:

# Create figure

plt.figure (figsize=(6, 4), dpi=150)
# Create histogram
plt.boxplot (ig scores)

# Add labels and title

ax = plt.gcal()

ax.set xticklabels(['Test group'])
plt.ylabel ('IQ score')
plt.title('IQ scores for a test group of a hundred adults')
# Show plot

plt.show ()
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Following is the output of the code:

1Q scores for a test group of a hundred adults

140 A

130 1

120

1105

100 +

IQ score

90 1

80

70 -

o]

Test group

Figure 3.55: Box plot for 1Q scores

5. The following are 1Q scores for different test groups that we can use as data:

group_a = [118,
114,

107, 87,
110,

117, 86,
108,

111, 10@7,
93,

128, 115,
108,

130, 107,
70,

139, 94,
109,

121, 106,
group_b = [126,
98,

105,
102, 107,

103,
120, 102,

84,
109,

114,
112, 76,

89,

114,

103,

117,
143,

98,
138,
106,
110,

118,
89,

119,

89,
118,

98,

110,

125,

117,
83,
89,

121,

106,

105,

131,
90,

92,

89,

100,

90,

75,

107,

114,
106,
113,

87,
101,
122,

88,

101,

113,

110,

100,

92,

100,

111,

117,
86,
117,
112,
117,
94,

122,

102,

81,

71,

114,

98,

90,

96,

112,
98,
81,

110,
93,
94,

125,
74,

104,

110,

81,
91,

96,

104,

107,
126,
113,
79,
94,
105,

93,
93,

108,

120,

109,

81,

94,

97,

133,
109,
112,
100,
103,
129,

78]

101,

83,
85,
69,

85,

107,

96,
94,
91,
84,
84,

112,

110,

66,
102,
111,
97,

86,

108,

114,

91,
112,
115,
115,

98,

112,

120,

105,
83,

95,

102,

98,

96, 75,
118,
120,
96,
93,
103,

97,

108, 97,
111,
122,

106, 116,

93,

96, 96,
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plt.ylabel ('IQ score')

plt.title('IQ scores for different test groups')
# Show plot

plt.show ()

93, 95, 117, 141, 115, 95, 86, 100, 121, 103, 66, 99,
96,
111, 110, 105, 110, 91, 112, 102, 112, 75]
group_c = [108, 89, 114, 116, 126, 104, 113, 96, 69, 121, 109, 102,
107,
122, 104, 107, 108, 137, 107, 11le, 98, 132, 108, 114, 82,
93,
89, 90, 86, 91, 99, 98, 83, 93, 114, 96, 95, 113,
103,
81, 107, 85, 116, 85, 107, 125, 126, 123, 122, 124, 115,
114,
93, 93, 114, 107, 107, 84, 131, 91, 108, 127, 112, 106,
115,
82, %0, 117, 108, 115, 113, 108, 104, 103, 90, 110, 114,
92,
101, 72, 109, 94, 122, 90, 102, 86, 119, 103, 110, 96,
90,
110, 96, 59, 85, 102, 59, 96, 10i, 90]
group d = [ 93, 99, 91, 110, 80, 113, 111, 115, 98, 74, 96, 80,
83,
102, 60, 91, 82, 90, 97, 101, 89, 89, 117, 91, 104,
104,
102, 128, 106, 111, 79, 92, 97, 101, 106, 110, 93, 93,
106,
108, 85, 83, 108, 94, 79, 87, 113, 1i2, 1ii, 111, 79,
116,
104, 84, 116, 111, 103, 103, 112, 68, 54, 80, 86, 119,
81,
84, 91, 96, 116, 125, 99, 58, 102, 77, 98, 100, 90,
106,
109, 114, 102, 102, 112, 103, 98, 96, 85, 97, 110, 131,
92,
7%, 115, 122, 95, 105, 74, 85, 85, 95]
6. Create a box plot for each of the IQ scores of different test groups. Add labels and
a title:
# Create figure
plt.figure (figsize=(6, 4), dpi=150)
# Create histogram
plt.boxplot ([group a, group b, group c, group d])
# Add labels and title
ax = plt.gca()
ax.set xticklabels(['Group A', 'Group B', 'Group C', 'Group D'])
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Following is the output of the code:

IQ scores for different test groups
140 - o
120 A _[_ _[_
100 4 -

Group A Group B Group C Group D

1Q score

80 1

60

Figure 3.56: Box plot for 1Q scores of different test groups

Activity 3.06: Creating a Scatter Plot with Marginal Histograms

Solution:

1. Import the necessary modules and enable plotting within a Jupyter notebook:

# Import statements

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
$matplotlib inline

2. Use pandas to read the data located in the Datasets folder:

# Load dataset
data = pd.read csv('../../Datasets/anage data.csv')
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3. Filter the data so that you end up with samples containing a body mass and a
maximum longevity as the given dataset is not complete. Select all the samples of
the aves class and with a body mass smaller than 20,000:

# Preprocessing

longevity = 'Maximum longevity (yrs)'
mass = 'Body mass (g)'
data = datal[np.isfinite(data[longevity]) & np.isfinite (data[mass]) ]

# Sort according to class
aves = data[data['Class'] == 'Aves']
aves = data[data[mass] < 20000]

4. Create a Figure with a constrained layout. Create a gridspec of size 4x4. Create a
scatter plot of size 3x3 and marginal histograms of size 1x3 and 3x1. Add labels and
a Figure title:

# Create figure

fig = plt.figure (figsize=(8, 8), dpi=150, constrained layout=True)
# Create gridspec

gs = fig.add gridspec (4, 4)

# Specify subplots

histx ax = fig.add subplot(gs[0, :-11])

histy ax = fig.add subplot(gs([l:, -1])

scatter ax = fig.add subplot(gs[l:, :-11])

# Create plots

scatter ax.scatter (aves[mass], aves[longevity])
histx ax.hist (aves[mass], bins=20, density=True)
histx ax.set xticks([])

histy ax.hist (aves[longevity], bins=20, density=True,
orientation='horizontal')
histy ax.set yticks([])

# Add labels and title

plt.xlabel ('Body mass in grams')

plt.ylabel ('Maximum longevity in years')

fig.suptitle ('Scatter plot with marginal histograms')
# Show plot

plt.show ()
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The following is the output of the code:

Scatter plot with marginal histograms

0.0010 A
0.0008 A
0.0006 A
0.0004 A

0.0002 A

0.0000 -

80

60

40 -

Maximum longevity in years

20 A
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8000

10000 12000 14000 0.00 0.05

Body mass in grams

Figure 3.57: Scatter plots

with marginal histograms
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Activity 3.07: Plotting Multiple Images in a Grid

Solution:

1. Import the necessary modules and enable plotting within a Jupyter notebook:

# Import statements

import os

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
$matplotlib inline

2. Load all four images from the Datasets folder:

# Load images

img filenames = sorted(os.listdir('../../Datasets/images"'))
imgs = [mpimg.imread(os.path.join('../../Datasets/images', img
filename)) for img filename in img filenames]

3. Visualize the images in a 2x2 grid. Remove the axes and give each image a label:

# Create subplot
fig, axes = plt.subplots (2, 2)

fig.figsize = (6, 6)
fig.dpi = 150
axes = axes.ravel ()

# Specify labels
labels = ['coast', 'beach', 'building', 'city at night']
# Plot images

for i in range(len(imgs)) :
axes[1i].imshow (imgs[i])
1
]

axes .set xticks(

[ [
[1] (1)
axes[i].set yticks([])
axes[i].set xlabel(labels[i])
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The following is the output of the code:

coast beach

buildin city at night

Figure 3.58: Visualizing images in a 2x2 grid
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Chapter 4: Simplifying Visualizations Using Seaborn

Activity 4.01: Using Heatmaps to Find Patterns in Flight Passengers' Data
Solution:
Find the patterns in the flight passengers' data with the help of a heatmap:

1. Openthe Activity4.01.ipynb Jupyter notebook from the Chapter04 folder to
implement this activity. Navigate to the path of this file and type in the following at
the command-line terminal: jupyter-1lab.

2. Import the necessary modules and enable plotting within a Jupyter notebook:

Smatplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

sns.set ()

3. Use pandas to read the f1ight details.csv dataset located in the Datasets
folder. The given dataset contains the monthly figures for flight passengers for the
years 1949 to 1960:

data = pd.read csv("../../Datasets/flight details.csv")

4. Now, we can use the pivot () function to transform the data into a format that is
suitable for heatmaps:

data = data.pivot ("Months", "Years", "Passengers")

data = data.reindex(['January', 'February', 'March', 'April', 'May',
'June', 'July', 'August', 'September', 'October', 'November',
'December'])

5. Use the heatmap () function of the Seaborn library to visualize this data. Within
this function, we pass parameters such as DataFrame and colormap. Since we got
data from the preceding code, we will pass it as a DataFrame in the heatmap ()
function. Also, we will create our own colormap and pass it as a second parameter
to this function:

plt.figure (dpi=200)

sns.heatmap (data, cmap=sns.cubehelix palette(rot=-.3, as cmap=True)) #
you can use any sequential color palette
plt.title("Flight Passengers from 1949 to 1960")

plt.show ()
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The following is the output of the code:

Flight Passengers from 1949 to 1960

January 600
February
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May
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June 400
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August 300
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Figure 4.45: Heatmap of flight passengers' data

The heatmap reveals an increasing number of flight passengers from year to year as
well as increased demand for flights during the summer months.

Activity 4.02: Movie Comparison Revisited
Solution:

Compare the movie scores for five different movies by using a bar plot that's been
provided by the Seaborn library:

1. Open the Activity4.02.ipynb Jupyter notebook from the Chapter04 folder to
implement this activity. Navigate to the path of this file and type in the following at
the command-line terminal: jupyter-1lab.

2. Import the necessary modules and enable plotting within a Jupyter notebook:

Smatplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns
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3. Use the read _csv () function of pandas to read the movie scores.csv dataset
located in the Datasets folder:

mydata = pd.read csv("../../Datasets/movie scores.csv", index col=0)

4. Construct a DataFrame from this given data. This can be done with the help of
the pd.DataFrame () function provided by pandas. The following code gives us a
better idea of this:

movie scores = pd.DataFrame ({"Movie Title": list (mydata["MovieTitle"])
*2,
"Score": list (mydata["AudienceScore"]) +
list (mydata["Tomatometer"]),
"Type": ["Audience Score"] *
len (mydata["AudienceScore"]) + ["Tomatometer"] *
len (mydata["Tomatometer"]) })

5. Make use of the barplot () function provided by Seaborn. Provide Movies and
Scores as parameters so that their data is displayed on both axes. Provide Type as
hue to use subgroups. The final parameter requires a DataFrame as input. Thus, we
provide the movie_scores DataFrame that we obtained from the previous step.

The following code provides a better understanding of this:

sns.set ()
plt.figure (figsize=(10, 5), dpi=300)
# Create bar plot

ax = sns.barplot ("Movie Title", "Score", hue="Type", data=movie
scores)
plt.xticks (rotation=10)

# Add title

plt.title("Movies Scores comparison")
plt.xlabel ("Movies")

plt.ylabel ("Scores")

# Show plot

plt.show ()
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Scores

The following is the output of the code:

Movies Scores comparison
100

Type
B Audience Score
= Tomatometer
80
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0
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‘e shape Of WBter g ack Panthet punklt The Mart Unexpected journeY
poit: AN
The Ho
Movies

Figure 4.46: Movie scores comparison

We compared the ratings of Audience Score and Tomatometer for five different movies
and concluded that the ratings matched for the movie The Martian.

Activity 4.03: Comparing IQ Scores for Different Test Groups by Using a Violin
Plot

Solution:

Compare 1Q scores among different test groups using the Seaborn library:

1.

Open the Activity4.03. ipynb Jupyter notebook from the Chapter04 folder to
implement this activity. Navigate to the path of this file and type in the following at
the command-line terminal: jupyter-1lab.

Import the necessary modules and enable plotting within a Jupyter notebook:

Smatplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns
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3. Use the read csv () function of pandas to read the data located in the
Datasets folder:

mydata = pd.read csv("../../Datasets/ig_scores.csv")

4. Access the data of each test group in the column. Convert this into a list using the
tolist () method. Once the data of each test group has been converted into a list,
assign this list to the variables of each respective test group:

group a = mydata[mydata.columns[0]].tolist ()
group_b = mydata[mydata.columns[1l]].tolist ()
group_c = mydata[mydata.columns[2]].tolist()
group d = mydata[mydata.columns[3]].tolist ()

5. Print the variables of each group to check whether the data inside it has been
converted into a list. This can be done with the help of the print () function:

print (group_a)
Following is the output of the code:

[118, 1@3, 125, 17, 111, 96, 1@4, 97, 96, 114, 96, 75, 114, 1e7, 87, 117, 117, 114, 117, 112, 187, 133, 9
4, 91, 118, 11e, 117, 86, 143, 83, 1e6, 86, 98, 126, 169, 91, 112, 12e, 1es, 111, 167, 98, 89, 113, 117, 8
1, 113, 112, 84, 115, 96, 93, 128, 115, 138, 121, 87, 112, 118, 79, 1ee, 84, 115, 93, 1e8, 13e, 167, 166,
1le6, 161, 117, 93, 94, 1e3, 112, 98, 1@3, 7@, 139, 94, 1le, 185, 122, 94, 94, 1e5, 129, 118, 112, 97, 189,
121, 1e6, 118, 131, 88, 122, 125, 93, 78]
Figure 4.47: Values of Group A
Print data of group b:
print (group b)
Following is the output of the code:

[126, 89, 90, 101, 102, 74, 93, 101, 66, 120, 108, 97, 98, 1e5, 119, 92, 113, 81, 104, 108, 83, 102, 105,
111, 102, 107, 103, 89, 89, 11@, 71, 110, 120, 85, 111, 83, 122, 120, 162, 84, 118, 100, 160, 114, 81, 10
9, 69, 97, 95, 106, 116, 109, 114, 98, 96, 92, 98, 91, 81, 85, 86, 102, 93, 112, 76, 89, 110, 75, 118, 90,
96, 94, 107, 108, 95, 96, 96, 114, 93, 95, 117, 141, 115, 95, 86, 100, 121, 183, 66, 99, 96, 111, 110, 10
5, 11e, 91, 112, 102, 112, 75]

Figure 4.48: Values of Group B
Print data of group c:

print (group_ c)
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Following is the output of the code:

[1e8, 89, 114, 116, 126, 164, 113, 96, 69, 121, 109, 182, 107, 122, 104, 107, 108, 137, 107, 116, 98, 132,
1e8, 114, 82, 93, 89, 90, 85, 91, 99, 98, 83, 93, 114, 96, 95, 113, 103, 81, 187, 85, 116, 85, 107, 125, 1
26, 123, 122, 124, 115, 114, 93, 93, 114, 167, 167, 84, 131, 91, 1e8, 127, 112, 1e6, 115, 82, 90, 117, 10
8, 115, 113, 188, 104, 103, 98, 11@, 114, 92, 101, 72, 109, 94, 122, 90, 102, 86, 119, 183, 110, 96, 90, 1
10, 96, 69, 85, 102, 69, 96, 101, 99]

Figure 4.49: Values of Group C
Print data of group d:
print (group_ d)
Following is the output of the code:

[93, 99, 91, 110, 8@, 113, 111, 115, 98, 74, 96, 80, 83, 102, 60, 91, 82, 90, 97, 101, 89, 89, 117, 91, 10
4, 1e4, 102, 128, 106, 111, 79, 92, 97, 1el, 16, 11@, 93, 93, 186, 108, 85, 83, 108, 94, 79, 87, 113, 11
2, 111, 111, 79, 116, 104, 84, 116, 111, 103, 103, 112, 68, 54, 80, 86, 119, 81, 84, 91, 96, 116, 125, 99,
58, 102, 77, 98, 100, 99, 106, 109, 114, 102, 102, 112, 103, 98, 96, 85, 97, 11, 131, 92, 79, 115, 122, 9
5, 105, 74, 85, 85, 95]

Figure 4.50: Values of Group D

6. Once we get the data for each test group, we need to construct a DataFrame from
this given data. This can be done with the help of the pd.DataFrame () function
that's provided by pandas:

data = pd.DataFrame ({'Groups': ['Group A'] * len(group _a) + ['Group
B'] * len(group b) + ['Group C'] * len(group c) + ['Group D'] *
len (group_d),

'IQ score': group a + group b + group c +
group_d})

7. Now, since we have the DataFrame, we need to create a violin plot using the
violinplot () function that's provided by Seaborn. Within this function, we need
to specify the titles for both the axes along with the DataFrame we are using. The
title for the x-axis will be Groups, and the title for the y-axis will be IQ score. As
far as the DataFrame is concerned, we will pass data as a parameter. Here, data is
the DataFrame that we obtained from the previous step:

plt.figure (dpi=150)

# Set style

sns.set style('whitegrid')

# Create boxplot

sns.violinplot ('Groups', 'IQ score', data=data)
# Despine
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sns.despine (left=True, right=True, top=True)

# Add title
plt.title('IQ scores for different test groups')

# Show plot
plt.show()

The following is the output of the code:

IQ scores for different test groups

949

Group A Group B Group C Group D
Groups

160

140

120

100

1Q score

80

60

40

Figure 4.51: Violin plot showing IQ scores of different groups

The despine () function helps to remove the top and right spines from the plot.
Here, we have also removed the left spine. Using the title () function, we have set
the title for our plot. The show () function helps to visualize the plot.



Chapter 4: Simplifying Visualizations Using Seaborn | 385

Activity 4.04: Visualizing the Top 30 Music YouTube Channels Using Seaborn's
FacetGrid

Solution:

Visualize the total number of subscribers and the total number of views for the top
30 YouTube channels by using the FacetGrid () function that's provided by the
Seaborn library:

1.

Open the Activity4.04.ipynb Jupyter notebook from the Chapter04 folder to
implement this activity. Navigate to the path of this file and type in the following at
the command-line terminal: jupyter-1ab.

Import the necessary modules and enable plotting within a Jupyter notebook:

gmatplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

Use the read _csv () function of pandas to read the data located in the
Datasets folder:

mydata = pd.read csv("../../Datasets/YouTube.csv")

Access the data of each test group in the column. Convert this into a list by using
the tolist () method. Once the data of each test group has been converted into a
list, assign this list to variables of each respective test group:

channels = mydata[mydata.columns[0]].tolist ()
subs = mydata[mydata.columns[1l]].tolist ()
views = mydata[mydata.columns[2]].tolist ()

Print the variables of each group to check whether the data inside it has been
converted into a list. This can be done with the help of the print () function:

print (channels)
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Following is the output of the code:

['T-Series', 'Canal KondZilla', 'Zee Music Company', 'Ed Sheeran ', 'EminemMusic ', 'Ariana Grande

', 'Taylor Swift', 'JustinBieberVEVO ', ' BLACKPINK', 'Alan Walker', 'Shemaroco Filmi Gaane', 'ibighi
t', 'One Direction’, 'Wave Music ', 'Sony Music India ', 'El Reino Infantil®', 'Maroon 5 ', 'Trap Nat
ion', 'Speed Records', 'GR6 EXPLODE ', 'TaylorSwiftVEVO ', 'SonyMusicIndiaVEVO', 'Ozuna’, 'Daddy Yan
kee', 'YRF', "Spinnin' Records"™, 'Bruno Mars', 'RihannaVEVO ', 'T-Series Bhakti Sagar', 'KatyPerryVE

Vo' ]
Figure 4.52: List of YouTube channels
Printing the number of subscribers for each channel:
print (subs)

Following is the output of the code:

[123.8, 54.5, 48.5, 43.2, 40.2, 39.3, 36.8, 33.1, 32.4, 31.7, 31.0, 36.9, 30.4, 30.4, 29.9, 29.2, 2
9.2, 27.9, 27.4, 27.2, 27.0, 27.9, 27.0, 26.9, 26.8, 26.4, 26.3, 25.9, 25.8, 25.8]

Figure 4.53: List of subscribers for each YouTube channel
Printing the number of views for each channel:
print (views)

[94410, 27860, 22689, 18905, 773, 953, 310, 19326, 8112, 7470, 14708, 7659, 356, 20569, 12077, 2615
9, 294, 10195, 13769, 13341, 18096, 12577, 13059, 9796, 14253, 15738, 11411, 14768, 10552, 18603]

Figure 4.54: List of views for each YouTube channel

6. Once we get the data for channels, subs, and views, we need to construct
a DataFrame from the given data. This can be done with the help of the
pd.DataFrame () function that's provided by pandas:

data = pd.DataFrame ({'YouTube Channels': channels + channels,
'Subscribers in millions': subs + views, 'Type': ['Subscribers'] *
len(subs) + ['Views'] * len(views) })

7. Now, since we have the DataFrame, we need to create a FacetGrid using the

FacetGrid () function that's provided by Seaborn. Here, data is the DataFrame,
which we obtained from the previous step:

sns.set ()

g = sns.FacetGrid(data, col='Type', hue='Type', sharex=False,
height=8)
g.map (sns.barplot, 'Subscribers in millions', 'YouTube Channels')

plt.show ()
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The following is the output of the code:

Type = Subscribers Type = Views

T-Series I |
Canal Kondzilla IR
Zee Music Company [N
Ed Sheeran [
EminemMusic IR
Ariana Grande [N
Taylor Swift IR
JustinBiebervevo [N
BLACKPINK |
Alan Walker [N
Shemaroo Filmi Gaane |G
ibighit I
One Direction IR
Wave Music IR
Sony Music India [ INEGG__—
El Reino Infantil NG
Maroon 5 N
Trap Nation |
Speed Records [N
GR6 EXPLODE [
Taylorswiftvevo [N
SonyMusicindiavEvo [N
Ozuna [N
Daddy Yankee [N
YRF
Spinnin' Records  [INEEG__
Bruno Mars NG
RihannaVEVO [
T-Series Bhakti Sagar [N
KatyPerryVEVO [N
20000 40000 60000 80000

0 20 40 60 80 100 120
Subscribers in millions Subscribers in millions

YouTube Channels

=)

Figure 4.55: Subscribers and views of the top 30 YouTube channels

We can conclude that the YouTube channel T-Series has both the highest number
of subscribers and views in the music category.

Activity 4.05: Linear Regression for Animal Attribute Relations

Solution:

Visualize the linear relationship between maximum longevity and body mass in the
regression plot by using the regplot () function that's provided by the Seaborn library:

1. Open the Activity4.05. ipynb Jupyter notebook from the Chapter04 folder to
implement this activity. Navigate to the path of this file and type in the following at

the command-line terminal: jupyter-1lab.

2. Import the necessary modules and enable plotting within a Jupyter notebook:

Smatplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns
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3. Use the read csv () function of pandas to read the data located in the
Datasets folder:

mydata = pd.read csv("../../Datasets/anage data.csv")

4. Filter the data so that you end up with samples containing a body mass and
maximum longevity. Only consider samples for the Mammalia class and a body
mass of less than 200,000. This preprocessing can be seen in the following code:

longevity = 'Maximum longevity (yrs)'

mass = 'Body mass (g)'

data = mydata[mydata['Class'] == 'Mammalia']

data = datal[np.isfinite(data[longevity]) & np.isfinite(data[mass]) &

(data[mass] < 200000)]

5. Once the preprocessing is done, plot the data using the regplot () function
that's provided by the Seaborn library. There are three parameters inside the
regplot () function that have to be specified. The first two parameters are mass
and longevity, wherein the body mass data will be shown on the x-axis, and
the maximum longevity data will be shown on the y-axis. For the third parameter,
provide the DataFrame obtained from the previous step:

# Create figure

sns.set ()

plt.figure (figsize=(10, 6), dpi=300)

# Create a scatter plot

sns.regplot (mass, longevity, data=data)
# Show plot

plt.show ()
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The following is the output of the code:

120

100

80

60

Maximum longevity (yrs)

40

20

0 25000 50000 75000 100000 125000 150000 175000 200000
Body mass (g)

Figure 4.56: Linear regression for animal attribute relations

We can conclude that there is a linear relationship between body mass and
maximum longevity for the Mammalia class.

Activity 4.06: Visualizing the Impact of Education on Annual Salary and Weekly
Working Hours
Solution:

You're asked to determine whether education has an influence on annual salary and
weekly working hours. You ask 500 people in the state of New York about their age,
annual salary, weekly working hours, and their education. You first want to know the
percentage for each education type, so therefore you use a tree map. Two violin plots
will be used to visualize the annual salary and weekly working hours. Compare in each
case to what extent education has an impact.
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It should also be taken into account that all visualizations in this activity are designed to
be suitable for colorblind people. In principle, this is always a good idea to bear in mind:

1.

Open the Activity4.06.ipynb Jupyter notebook from the Chapter04 folder to
implement this activity. Navigate to the path of this file and type in the following at
the command-line terminal: jupyter-1ab.

Import the necessary modules and enable plotting within a Jupyter notebook:

Smatplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

import squarify

sns.set ()

3. Use the read csv () function of pandas to read the age_salary hours.csv

dataset located in the Datasets folder:

mydata = pd.read csv("../../Datasets/age salary hours.csv")

4. Use a tree map to visualize the percentages for each education type:

# Compute percentages from dataset
degrees = set(data['Education'])
percentages = []
for degree in degrees:
percentages.append(data[data['Education'] == degree].shape[0])
percentages = np.array (percentages)
percentages = ((percentages / percentages.sum()) * 100)

# Create labels for tree map

labels = [degree + '\n({0:.1f}%)'.format (percentage) for degree,
percentage in zip(degrees, percentages) ]

# Create figure
plt.figure (figsize=(9, 6), dpi=200)

squarify.plot (percentages, label=labels, color=sns.color
palette ('colorblind', len(degrees)))
plt.axis ('off'")

# Add title
plt.title('Degrees’)
# Show plot
plt.show ()
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The following is the output of the code:

Degrees

Figure 4.57: Tree map

5. Create a subplot with two rows to visualize two violin plots for the annual salary
and weekly working hours, respectively. Compare in each case to what extent
education has an impact. To exclude pensioners, only consider people younger
than 65. Use a colormap that is suitable for colorblind people. subplots () can be
used in combination with Seaborn's plot, by simply passing the ax argument with
the respective axes:

# Set color palette to colorblind

sns.set palette('colorblind')

# Create subplot with two rows

fig, ax = plt.subplots (2, 1, dpi=200, figsize=(8, 8))

sns.violinplot ('Education', 'Annual Salary', data=data, cut=0,
order=ordered degrees, ax=ax[0])
ax[0] .set xticklabels(ax[0].get xticklabels(), rotation=10)

sns.violinplot ('Education', 'Weekly hours', data=data, cut=0,
order=ordered degrees, ax=ax[1l])
ax[1l].set xticklabels(ax[1l].get xticklabels(), rotation=10)
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plt.tight layout ()
# Add title
fig.suptitle ('Impact of Education on Annual Salary and Weekly Working

Hours')
# Show figure

plt.show()

The following is the output of the code:

Impact of Education on Annual Salary and Weekly Working Hours
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Figure 4.58: Violin plots showing the impact of education on annual salary and weekly working hours

The preceding output helps us to analyze the impact of education on annual salary and
weekly working hours.
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Chapter 5: Plotting Geospatial Data

Activity 5.01: Plotting Geospatial Data on a Map
Solution:

Let's plot the geospatial data on a map and find the densely populated areas of cities in
Europe that have population of more than 100,000:

1. Open the Activity5.01.ipynb Jupyter notebook from the Chapter05 folder to
implement this activity and then import the necessary dependencies:

import numpy as np
import pandas as pd
import geoplotlib

2. Load the world cities_pop.csv dataset from the Datasets folder
using pandas:

#loading the Dataset (make sure to have the dataset downloaded)

Dataset = pd.read csv('../../Datasets/world cities pop.csv', dtype =
{'Region': np.str})

Note

If we import our dataset without defining the dtype attribute of the Region
column as a String type, we will get a warning telling us that it has a mixed
datatype. We can get rid of this warning by explicitly defining the type of the values
in this column, which we can do by using the dtype parameter.

3. Check the dtype attribute of each column using the dtypes attribute of
a DataFrame:

# looking at the data types of each column
Dataset.dtypes
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The following figure shows the output of the preceding code:

Note

Country
City
AccentCity
Region
Population
Latitude
Longitude

dtype: object

object
object
object
object
float64
floated
floaté4d

Figure 5.31: The datatypes of each column of the dataset

Here, we can see the datatypes of each column. Since the String type is not
a primitive datatype, it's displayed as an object.

4. Use the head () method of a pandas DataFrame to display the first five entries:

# showing the first 5 entries of the dataset
dataset.head()

The following figure shows the output of the preceding code:

Country
0 ad
1 ad
2 ad
3 ad
i | ad

City AccentCity Region Population

aixas
aixirivali
aixirivall
aixirvall

aixovall

Aixas
Aixirivali
Aixirivall

Aixirvall

Aixovall

06
06
06
06
06

NaN

NaN

NaN

NaN

NaN

Latitude
42.483333
42.466667
42.466667
42.466667

42.466667

Figure 5.32: The first five entries of the dataset

Longitude
1.466667
1.500000
1.500000
1.500000

1.483333

5. Map the Latitude and Longitude columns into the 1at and lon columns by
using simple code:

# mapping Latitude to lat and Longitude to lon

dataset['lat'] dataset['Latitude']

dataset['lon'] =

dataset['Longitude']
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Most datasets won't be in the format that you desire. Some of them might have
their Latitude and Longitude values hidden in a different column. This is where
the data wrangling skills of Chapter 1, The Importance of Data Visualization and
Data Exploration, are required.

Our dataset is now ready for the first plotting. Use a DotDensityLayer to see all
of our data points:

# plotting the whole dataset with dots
geoplotlib.dot (dataset)
geoplotlib.show ()

The following figure shows the output of the preceding code:

Figure 5.33: Dot density visualization of all the cities
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7. Before we start breaking down our data to get a better and more workable dataset,
we want to understand the outlines of all of our data. Display the number of
countries and the number of cities that our dataset holds:

# amount of countries and cities
print (len (dataset.groupby(['Country'])), 'Countries')
print (len (dataset), 'Cities')

The following figure shows the output of the preceding code:

234 Countries
3173958 Cities

8. Use the size () method, which returns a Series object, to see each grouped
element on its own:

# amount of cities per country (first 20 entries)
dataset.groupby (['Country']) .size () .head(20)

The following figure shows the output of the preceding code:

Country

ad 92
ae 446
af 88749
ag 183
ai 42
al 15123
am 2890
an 269
ao 19560
ar 8738
at 14788
au 10941
aw 115
az 11223
ba 15999
bb 536
bd 26414
be 16218
bf 10468
bg 20106

dtype: int64

Figure 5.34: The number of cities per country



Chapter 5: Plotting Geospatial Data | 397

9. Display the average number of cities per country using the agg method of pandas:

# average num of cities per country
dataset.groupby (['Country']) .size () .agg('mean')

The following figure shows the output of the preceding code:
13563.923076923076

Reduce the amount of data we are working with by removing all the cities that don't
have a population value, meaning a population of 0, in this case:

# filter for countries with a population entry (Population > 0)
dataset with pop = dataset[ (dataset['Population'] > 0)]

print ('Full dataset:', len(dataset))

print ('Cities with population information:', len(dataset with pop))

The following figure shows the output of the preceding code:

Full dataset: 3173958
Cities with population information: 47980

Note

Breaking down and filtering your data is one of the most important aspects of
getting good insights. Cluttered visualizations can hide information.

10. Display the first five items of the new dataset to get a basic indication of what the
values in the Population column will look like:

# displaying the first 5 items from dataset with pop
dataset with pop.head()

The following figure shows the output of the preceding code:

Country City AccentCity Region Population Latitude Longitude lat lon

6 ad andorralavella Andorra la Vella 07 20430.0 42500000 1516667 42.500000 1.516667
20 ad canillo Canillo 02 3292.0 42566667 1.600000 42.566667 1.600000
32 ad encamp Encamp 03 112240 42533333 1.5683333 42.533333 1.583333
49 ad la massana La Massana 04 7211.0 42550000 1.516667 42.550000 1.516667
53 ad les escaldes Les Escaldes 08 15854.0 42500000 1.533333 42500000 1.533333

Figure 5.35: The first five items of the reduced dataset
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11. Now, take a look at our reduced dataset with the help of a dot density plot:

# showing all cities with a defined population with a dot density plot
geoplotlib.dot (dataset with pop)
geoplotlib.show ()

The following is the output of the code:

5
G
P
>

Figure 5.36: Cities with a valid population

On the new dot plot, we can already see some improvements in terms of clarity.
However, we still have too many dots on our map. Given the activity definition, we
can filter our dataset further by only looking at cities with a population of more
than 100k.

12. Filter the dataset to contain only cities with a population of more than 100k:

# dataset with cities with a population of >= 100k
dataset 100k = dataset with pop[ (dataset with pop['Population'] >=

100000) ]
print ('Cities with a population of 100k or more:', len(dataset 100k))
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13.

The following figure shows the output of the preceding code:
Cities with a population of 100k or more: 3527

In addition to just plotting our 100k dataset, fix our viewport to a specific bounding
box. Since our data is spread across the world, use the built-in WORLD constant of
the BoundingBox class:

# displaying all cities >= 100k population with a fixed bounding box
(WORLD) in a dot density plot
from geoplotlib.utils import BoundingBox

geoplotlib.dot (dataset 100k)
geoplotlib.set bbox (BoundingBox.WORLD)
geoplotlib.show ()

The following figure shows the output of the preceding code:

Figure 5.37: Dot density visualization of cities with a population of 100,000 or more
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14. Compare the output with the previous plots; it gives us a better view of where the
highest number of cities with a population of more than 100,000 is. Find the areas
of these cities that are the most densely packed using a Voronoi plot:

# using filled voronoi to find dense areas

geoplotlib.voronoi (dataset 100k, cmap='hot r', max area=le3,
alpha=255)
geoplotlib.show ()

Figure 5.38: A Voronoi visualization of densely populated cities

The resulting visualization is exactly what we were searching for. On the Voronoi
plot, we can see clear tendencies. Germany, Great Britain, Nigeria, India, Japan,
Java, the East Coast of the USA, and Brazil stick out. We can now filter our data and
only look at those countries to find the ones that are best suited to this scenario.

Note

You can also create a custom colormap gradient with the ColorMap class.

15. Filter the dataset to only countries in Europe, such as Germany and Great Britain.
Use the or operator when adding a filter to our data. This will allow us to filter for
Germany and Great Britain at the same time:

# filter 100k dataset for cities in Germany and GB

dataset europe = dataset 100k[ (dataset 100k['Country'] == 'de') |
(dataset 100k['Country'] == 'gb')]
print ('Cities in Germany or GB with population >= 100k:', len(dataset

europe) )
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16.

The following is the output of the preceding code:
Cities in Germany or GB with population >= 100k: 150

Use Delaunay triangulation to find the areas that have the most densely
packed cities:

#using Delaunay triangulation to find the most densely populated area
geoplotlib.delaunay (dataset europe, cmap='hot r'")
geoplotlib.show ()

By using a hot_r color map, we can quickly get a good visual representation and
make the areas of interest pop out. Here, the areas around Cologne, Birmingham,
and Manchester really stick out:
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Figure 5.39: A Delaunay triangle visualization of cities in Germany and Great Britain
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Activity 5.02: Visualizing City Density by the First Letter Using an Interactive
Custom Layer
Solution:

1. Open the Activity5.02.ipynb Jupyter notebook from the Chapter05 folder to
implement this activity, and then import the necessary dependencies:

# importing the necessary dependencies
import numpy as np

import pandas as pd

import geoplotlib

2. Load the world cities_pop.csv dataset from the Datasets folder
using pandas:

Dataset = pd.read csv('../../Datasets/world cities pop.csv', dtype =
{'Region': np.str})

Note

If we import our dataset without defining the dtype parameter of the Region
column as a String type, we will get a warning telling us that it has a mixed
datatype. We can get rid of this warning by explicitly defining the type of the values
in this column, which we can do by using the dtype parameter.

3. Check the dtype parameter of each column using the dtypes attribute of
a DataFrame:

# looking at the first 5 rows of the dataset
dataset.head()

The following figure shows the output of the preceding code:

Country City AccentCity Region Population Latitude Longitude

0 ad aixas Aixas 06 NaN 42.483333 1.466667
1 ad aixirivali Aixirivali 06 NaN 42.466667 1.500000
2 ad aixirivall Aixirivall 06 NaN 42.466667 1.500000
3 ad aixirvall Aixirvall 06 NaN 42.466667 1.500000
4 ad aixovall Aixovall 06 NaN 42.466667 1.483333

Figure 5.40: The first five rows of the dataset
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4. Prepare our dataset to be usable by geoplotlib by assigning two new columns, lat
and lon. Map the Latitude and Longitude columns into 1lat and lon columns,
which are used by geoplotlib:

# mapping Latitude to lat and Longitude to lon
dataset['lat'] = dataset['Latitude']
dataset['lon'] = dataset['Longitude']

5. Focus your attention on European countries and their cities. A list of all European
countries is as follows:

# 2 letter country codes of europe without russia

europe country codes = ['al', 'ad', 'at', 'by', 'be', 'ba', 'bg',
'hr', 'Cy', 'CZ', ldkl, lee|, 'fO', Ifil, 'fr', Idel

0 lgil, 'gr'[ 'hl_l', 'iS', 'ie', 'im', litl,
'xk', 'lv', 'li', 'lt', 'lu', 'mk', 'mt', 'md', 'mc’

, lmel, lnll, lnol, lpll, lptl, lrol, 'Sm',
'IS', 'Sk', 'Sj_', leS|, 'Se', 'Ch', 'U.a', Igbl

, 'va'l]

6. Given this list, we want to use filtering to get a dataset that only contains European
cities. The filtering works exactly as we learned in Chapter 01, The Importance of
Data Visualization and Data Exploration. Use the europe country codes column
to filter down our dataset by using the isin () method as a condition for
our DataFrame:

# filtering the dataset for countries in europe
europe dataset = dataset[dataset['Country'].isin(europe country

codes) ]

7. Print both the length of our whole dataset and the filtered down dataset:

# printing the length of both datasets
print ('Whole World data', len(dataset))
print ('Europe data', len(europe dataset))

The following figure shows the output of the preceding code:

Whole World data 3173958
Europe data 682348
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8. As preparation for our interactive visualization, we want to do a test run with
cities that start with the letter Z. Filter down our Europe dataset by using europe
dataset['AccentCity'].str.startswith('Z') as a filter condition. Print out
the number of cities starting with Z and the first five rows of our filtered dataset:

# plotting the whole dataset with dots

cities starting z = europe dataset[europe dataset['AccentCity'].str.
startswith('z")]

print ('Cities starting with Z:', len(cities starting z))
cities starting z.head()

The following figure shows the output of the preceding code:

Cities starting with Z: 13218

Country City AccentCity Region Population Latitude Longitude lat lon
104206 al zaane ZAane 44 NaN 40.932778 19.783056 40.932778 19.783056
104207 al zabarzani Zabarzani 40 NaN 40.427778 20.269167 40.427778 20.269167
104208 al zabarzan Zabarzan 40 NaN 40.427778 20.269167 40.427778 20.269167
104209 al zaberzane Zabérzang 40 NaN 40.427778 20.269167 40.427778 20.269167
104210 al zaberzanisiperm Zaberzan i Sipérm 40 NaN 40.427778 20.269167 40.427778 20.269167

Figure 5.41: The dataset only containing cities starting with Z

We want to take a quick look at the cities starting with z in the dataset using

a DotDensity plot and also get some information about the cities using the
previously seen £_tooltip argument. To use the £_tooltip argument, we need
to wrap our dataset in DataAccessObject.

9. Create a new DataAccessObject from our cities with the z dataset, visualize
it with a dot plot, and use a tooltip that outputs the Country and City name
separated by a - (for example, Ch - Ziirich):

# using dot density to plot a point for each city
from geoplotlib.utils import DataAccessObject

geoplotlib data = DataAccessObject (cities starting z)
geoplotlib.dot (geoplotlib data, f tooltip=lambda d: '{} - {}'.
format (d['Country'].upper(), d['City']).title())
geoplotlib.show ()
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The following figure shows the output of the preceding code:

Figure 5.42: A dot density plot of cities starting with Z in Europe

10. As a second step, we want to use a voronoi plot to display the density of cities
starting with the letter Z. Create a new voronoi plot using a color map of Reds_r,
max area of 1e5, and an alpha value of 50 so that we can still see the mapping
peeking through:

# displaying the density of cities stating with z using a voronoi plot
geoplotlib.voronoi (cities starting z, cmap='Reds r', max area=le5,
alpha=50)

geoplotlib.show ()
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The following figure shows the output of the preceding code:

1T
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Figure 5.43: A Voronoi plot showing the density of cities starting with Z in Europe

Now we will create an interactive visualization that displays each city, as a dot, that
starts with the currently selected first letter. The letter selected by default will be
A. We need a way to iterate through the letters using the left and right arrows. As
described in the introductory Custom Layers section, we can make use of the
on_key_ release method, which is specifically designed for this.
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11. Filter the self.data dataset in the invalidate method using the current letter
acquired from the start_letters array using the self.start_letter index:

# custom layer creation

import pyglet

import geoplotlib

from geoplotlib.layers import Baselayer
from geoplotlib.core import BatchPainter
from geoplotlib.utils import BoundingBox

start letters = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'H',
'K" 'L'

, 'M" 'N" 'O" 'P" 'Q" 'R" 'S" 'T" 'U" 'V"
'W'

p IXI, IYI, lZl}

class FilterLayer (Baselayer):
def init (self, dataset, bbox=BoundingBox.WORLD) :
self.data = dataset
self.start letter = 0
self.view = bbox

def invalidate(self, proj):

start letter data = self.data[self.data['AccentCity'].str.
startswith (start letters[self.start letter])]

12. Create a new BatchPainter () function and project the lon and lat values to
the x and y values. Use the BatchPainter function to paint the points on the map
with a size of 2:

self.painter = BatchPainter ()

X, y = proj.lonlat to screen(start letter data['lon'], start
letter data['lat'])
self.painter.points(x, y, 2)

13. Call the batch_draw () method in the draw method and use the ui_manager to
add an info dialog to the screen telling the user which starting letter is currently
being used:

def draw(self, proj, mouse x, mouse_ y, ui manager) :
self.painter.batch draw ()

ui manager.info('Displaying cities starting with {}'.
format (start letters[self.start letter]))
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14. Check which key is pressed using pyglet, pyglet.window.key.RIGHT. If the
right or left key is pressed, increment or decrement the start_letter value of
the FilterLayer class accordingly. (Use modulo to allow rotation, which should
happen when A->Z or Z->A). Make sure that you return True in the on_key
release method if you changed the start_letter value to trigger a redrawing of
the points:

def on key release(self, key, modifiers):

if key == pyglet.window.key.RIGHT:
self.start letter = (self.start letter + 1) % len(start
letters)
return True
elif key == pyglet.window.key.LEFT:
self.start letter = (self.start letter - 1) % len(start
letters)

return True
return False

# bounding box that gets used when the layer is created
def bbox (self):

return self.view

15. Now call the add_layer () method of geoplotlib, providing our custom layer with
the given BoundingBox class of Europe:

# using Delaunay triangulation to find the densest area

europe bbox = BoundingBox (north=68.574309, west=-25.298424,
south=34.266013, east=47.387123)

geoplotlib.add layer (FilterLayer (europe dataset, europe bbox))
geoplotlib.show ()
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The following figure shows the output of the preceding code:

Displaying cities starting with A

Figure 5.44: A dot density plot of cities starting with A in Europe in the custom layer
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Pressing the right arrow key twice will lead to the custom layer plotting the cities
starting with a C:

Displaying cities starting with C

Figure 5.45: A dot density plot of cities starting with C in Europe in the custom layer
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Chapter 6: Making Things Interactive with Bokeh

Activity 6.01: Plotting Mean Car Prices of Manufacturers
Solution:
1. Openthe Activity6.01.ipynb Jupyter notebook in the Chapter06 folder.
2. Import the necessary libraries:
import pandas as pd
from bokeh.io import output notebook
output notebook ()
3. Load the automobiles.csv dataset from the Datasets folder:
dataset = pd.read csv('../../Datasets/automobiles.csv')
4. Use the head method to print the first five rows of the dataset:
dataset.head()

The following figure shows the output of the preceding code:

make ';;zt “u:;—:; b:;}: Iz'::git'il:r; length width height c’y‘::;“c;::; horsepower per:Ir('; :,:l:g- high\;ay- price
0 ror:ch; gas two convertible front 168.8 64.1 48.8 four 111 5000 21 27 13495
1 rcr:Z:; gas two convertible font 168.8 641 4838 four 111 5000 21 27 16500
2 mr:';fc; gas two hatchback front 1712 655 52.4 six 154 5000 19 26 16500
3 audi gas four sedan front 1766 662 543 four 102 5500 24 30 13950
4 audi gas four sedan front 176.6 66.4 54.3 five 115 5500 18 22 17450

Figure 6.36: Loading the top five rows of the automobile dataset
Plotting each car with its price

5. Use the plotting interface of Bokeh to do some basic visualization first.
Let's plot each car with its price. Import f£igure and show from the bokeh.
plotting interface:

from bokeh.plotting import figure, show

6. First, use the index as our x-axis since we just want to plot each car with its price.
Create a new column in our dataset that uses dataset. index as values:

dataset['index'] = dataset.index

Once we have our usable index column, we can plot our cars.



412 | Appendix

7. Create a new figure and plot each car using a scatter plot with the index and price
column. Give the visualization a title of Car prices and name the x-axis Car
Index. Name the y-axis Price:

plot = figure(title='Car prices', x axis label='Car Index', y axis
label="Price")
plot.scatter (dataset['index'], dataset|['price'])

show (plot)

The following screenshot shows the output of the preceding code:
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Figure 6.37: One point for each car
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Grouping cars from manufacturers together

8. Group the dataset using groupby and the make column. Then use the mean
method to get the mean value for each column. We don't want the make column to
be used as an index, so provide the as_index=False argument to groupby. Print
out the grouped average dataset to see how it differs from the initial dataset:

grouped average = dataset.groupby(['make'], as_ index=False) .mean/()
grouped average

The following screenshot shows the output of the preceding code:

highway-

make length width height city-mpg mpg

price index

0 alfa-romero 169.600000 64.566667 50.000000 20.333333 26.666667 15498.333333 1.0

1 audi 184.766667 68.850000 54.833333 19.333333 24.500000 17859.166667 5.5
2 bmw 184.500000 66.475000 54.825000 19.375000 25.375000 26118.750000 12.5
3 chevrolet 151.933333 62.500000 52.400000 41.000000 46.333333 6007.000000 18.0
4 dodge 160.988889 64.166667 51.644444 28.000000 34.111111 7875.444444 240
5 honda 160.769231 64.384615 53.238462 30.384615 35.461538 8184.692308 35.0
6 isuzu 171.650000 63.500000 52.450000 24.000000 29.000000 8916.500000 42.5
7 jaguar 196.966667 69.933333 51.133333 14.333333 18.333333 34600.000000 45.0
8 mazda 170.805882 65.588235 653.358824 25.705882 31.941176 10652.882353 55.0
9 mercegee:; 195.262500 71.062500 55.725000 18.500000 21.000000 33647.000000 67.5
10 mercury 178.400000 68.000000 54.800000 19.000000 24.000000 16503.000000 72.0

1 mitsubishi 168.030769 65.253846 50.692308 24.923077 31.153846 9239.769231 79.0

12 nissan 170.988889 65.088889 53.633333 27.000000 32.944444 10415.666667 94.5
13 peugot 191.136364 68.390909 57.181818 22.454545 26.636364 15489.090909 109.0
14 plymouth 164.900000 64.271429 51.971429 28.142857 34.142857 7963.428571 118.0
15 porsche 168.900000 65.825000 51.250000 17.500000 25.500000 31400.500000 123.5
16 renault 179.150000 66.550000 52.850000 23.000000 31.000000 9595.000000 126.5
17 saab 186.600000 66.500000 56.100000 20.333333 27.333333 15223.333333 130.5
18 subaru 168.858333 64.950000 53.750000 26.333333 30.750000 8541.250000 138.5
19 toyota 171.934375 65.090625 53.721875 27.500000 32.906250 9885.812500 161.5

20 volkswagen 172.533333 65.616667 55.183333 28.583333 34.916667 10077.500000 183.5

21 volvo 188.800000 67.963636 56.236364 21.181818 25.818182 18063.181818 195.0
Figure 6.38: New grouped dataset with mean values for columns

Note that we are dealing with categorical data, the manufacturer name, this time.
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9. Create a new figure with a title of Car Manufacturer Mean Prices, an X-axis
of Car Manufacturer, and a y-axis of Mean Price. In addition to that, handle
the categorical data by providing the x_range argument to the figure with the
make column:

# plotting the manufacturers and their mean car prices

grouped plot = figure(title='Car Manufacturer Mean Prices', x axis
label='Car Manufacturer', y axis label='Mean Price’

, X_range=grouped average| 'make'])
grouped plot.scatter (grouped average['make'], grouped
average|['price'])

show (grouped plot)
The following screenshot shows the output of the preceding code:

Car Manufacturer Mean Prices
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Figure 6.39: Car manufacturers with their mean car prices
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By default, the axis labels are aligned horizontally.

10. Assign the value of vertical to the xaxis.major_label orientation attribute
of our grouped_plot. Call the show method again to display the visualization:

grouped plot.xaxis.major label orientation = "vertical"

show (grouped plot)

The following screenshot shows the output of the preceding code:
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Figure 6.40: Car manufacturers with their mean car prices and vertical make labels



416 | Appendix

Adding color

To give the user a little bit more information about the data, we want to add some
color based on the mean price of each manufacturer. In addition to that, we also
want to increase the size of the points to make them pop more.

11. Import and set up a new LinearColorMapper with a palette of Magma256, and the
min and max prices for the 1low and high arguments.

12. Create a new figure with the same name, labels, and x_range as before. Plot each
manufacturer and provide a size argument with a size of 15. Provide the color
argument to the scatter method and use the field and transform attributes
to provide the column (y) and color_mapper. As we've done before, set the label
orientation to vertical:

# adding color based on the mean price to our elements
from bokeh.models import LinearColorMapper

color mapper = LinearColorMapper (palette='Magma256', low=min (grouped
average['price']), high=max(grouped average['price']))
grouped colored plot = figure(title='Car Manufacturer Mean Prices', x_

axis label='Car Manufacturer', y axis label='Mean Price'
; X_range=grouped average[ 'make'])

grouped colored plot.scatter (grouped average['make'], grouped
average['price'],color={"'field': 'y', 'transform': color mapper},
size=15)

grouped colored plot.xaxis.major label orientation = "vertical"

show (grouped colored plot)
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Mean Price

The following screenshot shows the output of the preceding code:

Car Manufacturer Mean Prices
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Figure 6.41: Car manufacturers with their mean car prices colored based on the mean price

You've built a full visualization to display data of different car manufacturers. We
worked with basic plotting elements such as the scatter method and categorical
data. In addition to that, we also discovered how to use ColorMappers, similar to
what we did with geoplotlib, to give our data points colors based on specific values,
such as the mean price.
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Activity 6.02: Extending Plots with Widgets
Solution:
1. Open the Activity6.02.ipynb Jupyter notebook in the Chapter06 folder.
2. Import the necessary libraries:
import pandas as pd
3. Import and call the output_notebook method from the io interface of Bokeh:

from bokeh.io import output notebook
output notebook ()

4. Load our olympia2016_athletes.csv dataset from the Datasets folder:
dataset = pd.read csv('../../Datasets/olympia2016 athletes.csv')

5. Call head on the DataFrame to test that our data has been successfully loaded:
dataset.head()

The following figure shows the output of the preceding code:

id name nationality sex dob height weight sport gold silver bronze
A
0 736041664 Jesus ESP male 10/17/69 1.72 64.0 athletics 0 0 0
Garcia
A Lam .
1 532037425 Shin KOR female 9/23/86 1.68 56.0 fencing 0 0 0
Aaron .
2 435962603 Brown CAN male 5/27/92 1.98 79.0 athletics 0 0 1
Aaron
3 521041435 Cook MDA  male 1/2/91 1.83 80.0 taekwondo 0 0 0
4 33922579 Ag:;g NZL male 11/26/90 1.81  71.0 cycling 0 0 0

Figure 6.42: Loading the top five rows of the olympia2016_athletes dataset using the head method
Building an Interactive Visualization

6. Import £igure and show from the plotting interface and interact, as a
decorator, from the widgets interface:

from bokeh.plotting import figure, show, ColumnDataSource
from ipywidgets import interact, widgets
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7.

10.

Get a list of unique countries and one for the number of athletes and the number of
medals per country. Use the groupby method of your dataset to achieve this:

countries = dataset['nationality'].unique ()
athletes per country = dataset.groupby('nationality') .size()

medals per country = dataset.groupby('nationality') ['gold',
'silver', 'bronze'].sum()

Before we go in and implement the plotting for this visualization, we want to set up
our widgets and the @interact method that will display the plot upon execution.
Execute this empty get_plot () method cell and then move on to the widget
creation. We will implement this later.

Use two IntSlider widgets that will control the max numbers for the number
of athletes and /or medals a country is allowed to have in order to be displayed in
the visualization. Get the maximum number of medals of all the countries and the
maximum number of athletes of all the countries:

max medals = medals per country.sum(axis=1) .max()
max athletes = athletes per country.max()

Use those maximum numbers as the maximum for two IntSlider widgets.

Display the max_athletes_slider in a vertical orientation and the max_medals__
slider in a horizontal orientation. In the visualization, they should be described as
Max. Athletes and Max. Medals:

# setting up the interaction elements

max_ athletes slider=widgets.IntSlider (value=max athletes, min=0,
max=max athletes, step=1, description='Max. Athletes:', continuous
update=False, or1entation='vertical', layout={"'width': '100px"'})

max medals slider=widgets.IntSlider (value=max medals, min=0, max=max
medals, step=1, description='Max. Medals:', continuous update=False,
orientation='horizontal')

After setting up the widgets, implement the method that will be called with each
update of the interaction widgets. Use the @interact decorator for this. Instead of
value ranges or lists, provide the variable names of our already created widgets in
the decorator:

@interact (max athletes=max athletes slider, max medals=max medals
slider)
def get olympia stats (max athletes, max medals) :

show (get plot (max athletes, max medals))
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Since we have already set up the empty method that will return a plot, we can call
show () with the method call inside it to show the result once it is returned from
the get_plot method.

11. Scroll up and implement the plotting we skipped in a previous step. The two
arguments passed are max_athletes and max_medals. First, filter our countries
dataset, which contains all the countries that placed athletes in the Olympic games.
Check whether they have less than or equal medals and athletes than our max
values, which were passed as arguments. Once we have a filtered dataset, create
our DataSource. This DataSource will be used both for the tooltips and the
printing of the circle glyphs.

Note

There is extensive documentation on how to use and set up tooltips that you can
and use, which can be accessed with the following link: https://packt.live/2SgmioOl.

12. Create a new plot using the £igure method that has the following attributes: title
setto 'Rio Olympics 2016 - Medal comparison',x axis label setto
'Number of Medals', and y_axis_label setto 'Num of Athletes':

# creating the scatter plot
def get plot(max athletes, max medals) :
filtered countries=[]

for country in countries:
if (athletes per country[country] <= max athletes and
medals per country.loc[country].sum() <= max medals) :
filtered countries.append(country)

data source=get datasource (filtered countries)

TOOLTIPS=[
('Country', '@countries'),
('Num of Athletes', 'Qy'),
('Gold', '@gold'),
('Silver', '@silver'),
("Bronze', '@bronze')

plot=figure(title='Rio Olympics 2016 - Medal comparison',
x axis label='Number of Medals',
y_axis label="'Num of Athletes’,


https://packt.live/2Sqmi0l
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13.

14.

plot width=800,
plot height=500,
tooltips=TOOLTIPS)

plot.circle('x', 'y', source=data source, size=20, color='color',
alpha=0.5)

return plot

Display every country with a different color by randomly creating the colors with a
six-digit hex code. The following method does this:

# get a 6 digit random hex color to differentiate the countries better
import random
def get random color():

return '#%06x' % random.randint (0, OXFFFFFF)

Use a Bokeh ColumnDataSource object to handle our data and make it easily
accessible for our tooltip and glyphs. We want to display additional information in a
tooltip, so add the color field, which holds the required amount of random colors;
the countries field, which holds the filtered list of countries; the gold, silver,
and bronze fields, which hold the number of gold, silver, and bronze medals
for each country, respectively; the x field, which holds the summed number of
medals for each country; and the y field, which holds the number of athletes for
each country, to our DataSource object:

# build the datasource
def get datasource (filtered countries):
return ColumnDataSource (data=dict (
color=[get random color() for _ in filtered countries],
countries=filtered countries,

gold=[medals per country.loc[country]['gold'] for country in
filtered countries],

silver=[medals per country.loc[country]['silver'] for country
in filtered countries],
bronze=[medals per country.loc[country]['bronze'] for country

in filtered countries],

x=[medals per country.loc[country].sum() for country in
filtered countries],

y=[athletes per country.loc[country].sum() for country in
filtered countries]

))
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15. Execute the last cell with our Rinteract decorator once more. This time, it will
display our scatter plot with our interactive widgets. We will see each country in a
different color. Upon hovering over them, we will get more information about each
country, such as its short name, number of athletes, and the number of gold, silver,
and bronze medals they earned. The resulting visualization should look as follows:
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Figure 6.43: Final interactive visualization

You've built a full visualization to display and explore data from the 2016 Olympics.
We added two widgets to our visualization, which allowed us to filter the

displayed countries.
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Chapter 7: Combining What We Have Learned

Activity 7.01: Implementing Matplotlib and Seaborn on the New York City
Database
Solution:

1. Open the Activity7.01.ipynb Jupyter Notebook from the Chapter07 folder to
implement this activity. Import all the necessary libraries:

# Import statements

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib

import matplotlib.pyplot as plt
import squarify

sns.set ()

2. Use pandas to read both CSV files located in the Datasets folder:

p ny = pd.read csv('../../Datasets/acs2017/pny.csv"')
h ny = pd.read csv('../../Datasets/acs2017/hny.csv")

3. Use the given PUMA (public use microdata area code based on the 2010 census
definition, which are areas with populations of 100,000 or more) ranges to further
divide the dataset into NYC districts (Bronx, Manhattan, Staten Island, Brooklyn,
and Queens):

# PUMA ranges

bronx = [3701, 3710]

manhatten = [3801, 3810]

staten island = [3901, 3903]
brooklyn = [4001, 4017]

queens = [4101, 4114]

nyc = [bronx[0], queens[1l]]

def puma filter (data, puma_ ranges) :

return data.loc[ (data['PUMA'] >= puma ranges[0]) & (data['PUMA']
<= puma ranges([1])]
h bronx = puma filter (h ny, bronx)

h manhatten = puma filter (h ny, manhatten)
h staten island = puma filter (h ny, staten island)
h brooklyn = puma filter (h ny, brooklyn)
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h queens = puma filter (h ny, queens)

p_nyc
h nyc = puma filter (h ny, nyc)

puma filter (p _ny, nyc)

4. Use the given weighted median function in the following code to compute
the median:

# Function for a 'weighted' median
def weighted frequency(values, weights):
weighted values = []
for value, weight in zip(values, weights) :
weighted values.extend(np.repeat (value, weight))
return weighted values
def weighted median (values, weights):
return np.median(weighted frequency(values, weights))

5. In this subtask, we will create a plot containing multiple subplots that visualize
information with regard to NYC wages. Before we create the plots, some data
wrangling is necessary:

# Median household income in the US

us_income median = 60336

# Data wrangling for median household income
income adjustement = h ny.loc[0, ['ADJINC']].values[0] / le6

def median household income (data) :

query = data.loc|[np.isfinite(data['HINCP']), ['HINCP', 'WGTP']].
values
return np.round(weighted median(queryl[:, 0], queryl[:, 1]) *

income adjustement)

h ny income median = median household income (h ny)

h nyc income median = median_ household income (h nyc)

h bronx income median = median household income (h bronx)

h manhatten income median = median household income (h manhatten)

h staten island income median = median household income (h_staten
island)
h brooklyn income median = median household income (h brooklyn)

h queens_ income median = median household income (h queens)
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6. Compute the average wage by gender for the given occupation categories for the
population of NYC:

occ_categories = ['Management, \nBusiness, \nScience,\nand Arts\
nOccupations', 'Service\nOccupations',

'Sales and\nOffice\nOccupations', 'Natural Resources, \
nConstruction, \nand Maintenance\nOccupations',

'Production, \nTransportation, \nand Material Moving\
nOccupations']

occ_ranges = {'Management, Business, Science, and Arts Occupations':
[10, 3540], 'Service Occupations': [3600, 4650],
'Sales and Office Occupations': [4700, 5940], 'Natural
Resources, Construction, and Maintenance Occupations': [6000, 7630],
'Production, Transportation, and Material Moving
Occupations': [7700, 9750]}

def wage by gender and occupation(data, gender):
weighted wages = []
for occ in occ_ranges.values() :

query = data.loc[ (data['OCCP'] >= occ[0]) & (data['OCCP'] <=
occ[l]) & (data['SEX'] == gender), ['WAGP', 'PWGTP']]
weight sum = np.sum(query['PWGTP'])
weighted wages.append(np.round(np.sum(query['WAGP'] *
(query['PWGTP'] / weight sum))))
return weighted wages

wages male = wage by gender and occupation(p nyc, 1)
wages female = wage by gender and occupation(p nyc, 2)

7. Compute the wage frequencies for New York and NYC. Use the following yearly

wage intervals: 10k steps between 0 and 100k, 50k steps between 100k and 200k,
and >200k:

wage bins = {'<$10k': [0, 10000], '$10-20k': [10000, 200001, '$20-
30k': [20000, 300001, '$30-40k': [30000, 400001, '$10-20k': [40000,
500007,

'$50-60k': [50000, 600001, '$60-70k': [60000, 700001,
'$70-80k': [70000, 80000], '$80-90k': [80000, 90000], '$90-100k':
[90000, 1000007,

'$100-150k': [100000, 150000], '$150-200k': [150000,
200000], '>$200k': [200000, np.infty]}
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def wage frequency(data):

valid = data.loc[np.isfinite(data['WAGP']) & (data['WAGP'] > 0),
['WAGP', 'PWGTP']] # Only consider people who have a job: salary > 0
overall sum = np.sum(valid['PWGTP'].values)

frequency = []

for wage bin in wage bins.values() :

query = data.loc[ (data['WAGP'] * income_ adjustement >
wage bin[0]) & (data['WAGP'] * income adjustement <= wage bin[l]),
['"PWGTP'] ] .values

frequency.append (np.sum(query) / overall sum)
return frequency

wages nyc = wage frequency(p nyc)
wages ny = wage frequency(p_ny)

8. Create a plot containing multiple subplots that visualize information with regard
to NYC wages. Now, visualize the median household income for the US, New
York, NYC, and its districts. Next, visualize the average wage by gender for the
given occupation categories for the population of NYC. Then, visualize the wage
distribution for New York and NYC. Lastly, use the following yearly wage intervals:
10k steps between 0 and 100k, 50k steps between 100k and 200k, and >200k:

# Create figure with three subplots
fig, (axl, ax2, ax3) = plt.subplots(3, 1, figsize=(7, 10), dpi=300)

# Median household income

axl.set title('Median Household Income', fontsize=14)

X = np.arange (8)

axl.barh(x, [h bronx income median, h manhatten income median,

h staten island income median, h brooklyn income median,
h queens income median,
h nyc income median, h ny income median, us income

median])

axl.set yticks(x)

axl.set yticklabels(['Bronx', 'Manhatten', 'Staten Island',
'Brooklyn', 'Queens', 'New York City', 'New York', 'United States'])

axl.set xlabel('Yearly household income in $')



Chapter 7: Combining What We Have Learned | 427

# Wage by gender in common jobs

ax2.set title('Wage by Gender for different Job Categories',
fontsize=14)
X = np.arange(5) + 1

width = 0.4

ax2.bar (x - width / 2, wages male, width=width, label='Male')
ax2.bar(x + width / 2, wages female, width=width, label='Female')
ax2.legend()

ax2.set xticks(x)

ax2.set xticklabels (occ_categories, rotation=0, fontsize=8)
ax2.set ylabel ('Average Salary in $')

# Wage distribution

ax3.set title('Wage Distribution', fontsize=14)
X = np.arange (len(wages nyc)) + 1

width = 0.4

ax3.bar(x - width / 2, np.asarray(wages nyc) * 100, width=width,
label="NYC")

ax3.bar(x + width / 2, np.asarray(wages ny) * 100, width=width,
label="New York')

ax3.legend()

ax3.set xticks(x)

ax3.set xticklabels(wage bins.keys (), rotation=90, fontsize=8)
ax3.set ylabel ('Percentage')

ax3.vlines (x=9.5, ymin=0, ymax=15, linestyle='--")

# Overall figure
fig.tight layout ()
plt.show ()
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The following diagram shows the output of the preceding code:
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Figure 7.10: Wage statistics for NYC in comparison with New York and the United States
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9. Use a tree map to visualize the percentage for the given occupation subcategories
for the population of NYC:

# Data wrangling for occupations

occ_subcategories = {'Management, \nBusiness,\nand Financial': [10,
9501,

'Computer, Engineering, \nand Science': [1000,
19657,

'Education, \nLegal, \nCommunity Service, \nArts, \
nand Media': [2000, 2960],

'Healthcare\nPractitioners\nand\nTechnical':
[3000, 3540],

'Service': [3600, 4650],

'Sales\nand Related': [4700, 4965],

'Office\nand Administrative\nSupport': [5000, 5940],

'': [6000, 61307,

'Construction\nand Extraction': [6200, 6940],

'Installation, \nMaintenance, \nand Repair': [7000,
76307,

'Production': [7700, 896517,

'Transportation\nand Material\nMoving': [9000,
97501}

def occupation percentage (data) :
percentages = []

overall sum = np.sum(data.loc[(data['OCCP'] >= 10) & (data['OCCP']
<= 9750), ['PWGTP']].values)
for occ in occ_subcategories.values():

query = data.loc[ (data['OCCP'] >= occ[0]) & (data['OCCP'] <=
occ[l]), ['PWGTP']].values
percentages.append (np.sum(query) / overall sum)

return percentages

occ_percentages = occupation percentage (p_nyc)

# Visualization of tree map
plt.figure (figsize=(18, 10), dpi=300)

df = pd.DataFrame ({'percentage': occ percentages, 'group': list (occ
subcategories.keys()) })

df['group'] = df['group'] + ' (' + (np.round(df['percentage'] * 1000)
/ 10) .astype('str') + '%)'

blues = [matplotlib.cm.Blues((i + 2) * 30) for i in range(4)]

greens = [matplotlib.cm.Greens((i + 2) * 40) for i in range(l)]
oranges = [matplotlib.cm.Oranges((i + 2) * 40) for i in range(2)]
purples = [matplotlib.cm.Purples((i + 2) * 40) for i in range(3)]

reds = [matplotlib.cm.Reds((i + 2) * 40) for i in range(2)]



430 | Appendix

colors = blues + greens + oranges + purples + reds

squarify.plot (sizes=df['percentage'], label=df['group'], color=colors,
text kwargs={'fontsize': 20, 'rotation': 25, 'fontweight': 'bold'})
plt.axis ('off'")

plt.title('Occupations in New York City', fontsize=24)
plt.savefig('tree map.png', dpi=300, bbox inches='tight')

The following diagram shows the output of the preceding code:

Occupations in New York City

Figure 7.11: Occupations in NYC

Note

Please note that the terms here addressed refer solely to the classifications of
disabilities as defined by the US Census Bureau (accessible through the following
link: https://packt.live/2wfvSdR). This language does not reflect the views or
intentions of Packt or its affiliates.

Independent living difficulty: Because of a physical, mental, or emotional
problem, having difficulties performing errands alone, such as visiting a doctor's
office or shopping (DOUT).

Ambulatory difficulty: Having serious difficulty walking or climbing stairs (DPHY).
Self-care difficulty: Having difficulty bathing or dressing (DDRS).
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10. Use a heatmap to show the correlation between the different disability types
(self-care difficulty, hearing difficulty, vision difficulty, independent living difficulty,
ambulatory difficulty, veteran service-connected disability, and cognitive difficulty)
and age groups (<5, 5-11, 12-14, 15-17, 18-24, 25-34, 35-44, 45-54, 55-64, 65-74, 75+) in
New York City:

# Data wrangling for New York City population difficulties

difficulties = {'Self-care difficulty': 'DDRS', 'Hearing difficulty"':
'"DEAR',

'Vision difficulty': 'DEYE', 'Independent living
difficulty': 'DOUT',

'Ambulatory difficulty': 'DPHY', 'Veteran service
connected disability': 'DRATX',

'Cognitive difficulty': 'DREM'}
age groups = {'<5': [0, 4], '5-11': [5, 11], '12-14': [12, 14],
'15-17': [15, 17], '18-24': [18, 24], '25-34': [25, 34],

'35-44": [35, 44], '45-54': [45, 54], '55-64': [55,
641, '65-74': [65, 741, '"75+': [75, np.inftyl}

def difficulty age array(data):

array = np.zeros ((len(dificulties.values()), len(age groups.
values())))
for d, diff in enumerate (difficulties.values()) :
for a, age in enumerate (age groups.values()):
age_sum = np.sum(data.loc[(data['AGEP'] >= agel[0]) &
(data['AGEP'] <= age[l]), ['PWGTP']].values)
query = data.loc|[ (data['AGEP'] >= age[0]) & (data['AGEP']
<= age[l]) & (datal[diff] == 1), ['PWGTP']].values
array[d, al = np.sum(query) / age sum

return array

array = difficulty age array(p_nyc)

# Heatmap
plt.figure (dpi=300 , cmap=sns.cubehelix palette(rot=-.3, as_cmap=True))
ax = sns.heatmap (array * 100)

ax.set yticklabels (difficulties.keys (), rotation=0)
ax.set xticklabels(age groups.keys (), rotation=90)
ax.set xlabel ('Age Groups')

ax.set title('Percentage of NYC population with difficulties’',
fontsize=14)
plt.show ()



432 | Appendix

The following diagram shows the output of the preceding code:
Percentage of NYC population with difficulties
Self-care difficulty 0
Hearing difficulty 32
Vision difficulty

Independent living difficulty

16
Ambulatory difficulty

Veteran service connected disability -8
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Figure 7.12: Percentage of NYC population with disabilities

Activity 7.02: Visualizing Stock Prices with Bokeh
Solution:

1. Open the Activity7.02.ipynb Jupyter Notebook from the Chapter07 folder to
implement this activity.

2. Import pandas and enable the notebook output for Bokeh:

# importing the necessary dependencies
import pandas as pd
from bokeh.io import output notebook

output notebook ()

3. After downloading the dataset and moving it into the Datasets folder, import our
stock_prices.csv data:

# loading the Dataset with geoplotlib
dataset = pd.read csv('../../Datasets/stock prices.csv')
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4. Check the first five rows on our DataFrame to make sure that our data has been
loaded successfully:

# looking at the dataset
dataset.head ()

The following diagram shows the output of the preceding code:

date symbol open close low high volume

0 2016-01-0500:00:00 WLTW 123.430000 125.839996 122.309998 126.250000 2163600.0
1 2016-01-06 00:00:00 WLTW 125.239998 119.980003 119.940002 125.540001 2386400.0
2016-01-07 00:00:00 WLTW 116.379997 114.949997 114.930000 119.739998 2489500.0

2016-01-08 00:00:00 WLTW 115.480003 116.620003 113.500000 117.440002 2006300.0

aWN

2016-01-11 00:00:00 WLTW 117.010002 114.970001 114.089996 117.330002 1408600.0

Figure 7.13: Head of our imported data

5. Since the date column has no information regarding the hour, minute, and
second (all 00:00:00), avoid displaying them in the visualization later on by simply
displaying the year, month, and day. Create a new column that holds the formatted
short version of the date value. Display the first five elements of the dataset again
to validate your new column:

# mapping the date of each row to only the year-month-day format
from datetime import datetime
def shorten time stamp (timestamp) :

shortened = timestamp[0]

if len(shortened) > 10:

parsed date=datetime.strptime (shortened, '$Y-%m-%d %H:%M:%S')
shortened=datetime.strftime (parsed date, 'SY-%m-%d')
return shortened
dataset['short date'] = dataset.apply(lambda x: shorten time stamp (x),

axis=1)
# looking at the dataset with shortened date

dataset.head()
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The following diagram shows the output of the preceding code:

date symbol open close low high volume short_date

0 2016'_01'_05 WLTW 123.430000 125.839996 122.309998 126.250000 2163600.0 20 16-01-
00:00:00 05

1 2016'_01f°6 WLTW 125239998 119.980003 119.940002 125540001 23864000 2016-01-
00:00:00 06
2016-01-07 2016-01-

2 00:00-00 WLTW 116.379997 114.949997 114.930000 119.739998 2489500.0 o7
3 2016ﬂ01f°8 WLTW 115.480003 116.620003 113.500000 117.440002 2006300.0 2016-01-
00:00:00 08

4 2010%%:)’_88 WLTW 117.010002 114.970001 114.089996 117.330002 1408600.0 2016’0111’

Figure 7.14: Dataset with an added short_date column

Note

The execution of the cell will take a moment since it's a fairly large dataset. Please,
be patient.

6. To create our visualization, we need some additional imports. Import figure and
show this from the plotting interface. The widgets, as we saw in Chapter 6, Making
Things Interactive with Bokeh, come from the ipywidgets library. Import the @
interact decorator and the widgets interface, which gives us access to the
different widgets:

# importing the necessary dependencies
from bokeh.plotting import figure, show
from ipywidgets import interact, widgets
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7. Scroll down to the cell that says #extracting the necessary data before
implementing the plotting. Make sure that you execute the cells below that,
even though this will simply pass and do nothing for now. Extract the following
information: a list of unique stock names that are present in the dataset, a list of
all short_dates that are in 2016, a sorted list of unique dates generated from the
previous list of dates from 2016, and a list with the values open-close and volume:

# extracting the necessary data

stock names=dataset['symbol'].unique ()
dates 20l6=dataset[dataset['short date'] >= '2016-01-01"]['short
date']

unique dates 20l6=sorted(dates 2016.unique())
value options=['open-close', 'volume']

8. Given the extracted information from the preceding cell, define widgets and
provide the available options for it. Create a dropdown with the stock_names,
which, by default, should have the AAPL stock selected, named Compare:. The
second dropdown also uses stock _names, but, by default, should have the AON
stock selected, named to:

# setting up the interaction elements

drp l=widgets.Dropdown (options=stock names,
value='AAPL',
description='Compare:"')

drp 2=widgets.Dropdown (options=stock names,
value='AON', description='to:'")

9. Create a SelectionRange slider, which will allow us to select a range of dates
from the extracted list of unique 2016 dates. By default, set the first 25 dates as
selected and name it From-To. Disable the continuous_update parameter. Adjust
the layout width to 500px to make sure that the dates are displayed correctly:

range slider=widgets.SelectionRangeSlider (options=unique dates 2016,
index=(0,25),
continuous update=False,
description='From-To',
layout={'width': '500px"'})
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10. Add a RadioButtons group that provides the open-close and volume options. By
default, open-close should be selected, named Metric:

range slider=widgets.SelectionRangeSlider (options=unique dates 2016,
index=(0,25),
continuous update=False,
description='From-To',
layout={'width': '500px"'})
value radio=widgets.RadioButtons (options=value options,
value='open-close',

description="'Metric')

Note

As we mentioned in Chapter 6, Making Things Interactive with Bokeh, we can also
make use of the widgets that are described here: https://packt.live/39zRwYL.

11. After setting up the widgets, implement the method that will be called with each
update of the interactive widgets. Use the @interact decorator for this.

Instead of value ranges or lists, provide the variable names of our already created
widgets in the decorator. The method will get four arguments: stock_1, stock_2,
date, and value.

Since we have already set up the empty method that will return the preceding plot,
call show () with the method call inside to show the result once it is returned from
the get_stock_for_ 2016 method. Now, create the interact method:

@interact (stock 1=drp 1, stock 2=drp 2, date=range slider,

value=value radio)
def get stock for 2016 (stock 1, stock 2, date, value):

show (get _plot(stock 1, stock 2, date, value))


https://packt.live/39zRwYL
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12. Start with the so-called candlestick visualization, which is often used with stock
price data. Calculate the mean for every (high/low) pair and then plot those data
points with a line with the given color. Next, set up an add_candle_plot function
that gets a plot object, a stock name parameter, a stock_range parameter
containing the data of only the selected date range that was defined with the
widgets, and a color for the line. Create a segment that creates the vertical line, and
either a green or red vbar to color code whether the close price is lower than the
open price. Once the candles are created, draw a continuous line running through
the mean (high, low) point of each candle:

def add candle plot (plot, stock name, stock range, color):

inc 1 = stock range.close > stock range.open
dec 1 = stock range.open > stock range.close
w = 0.5
plot.segment (stock range['short date'], stock range['high'],
stock range['short date'], stock range['low'],
color="grey")
plot.vbar (stock range['short date'][inc 1], w,
stock range['high'][inc_ 1], stock range['close']
[inc 17,
fill color="green", line color="black",
legend label=('Mean price of ' + stock name))
plot.vbar (stock range['short date'][dec 1], w,
stock range['high'][dec 1], stock range['close']
[dec 117,
fill color="red", line color="black",
legend label=('Mean price of ' + stock name))
stock mean val=stock range[['high', 'low']].mean (axis=1)
plot.line(stock range['short date'], stock mean val,
legend label=('Mean price of ' + stock name),
line color=color, alpha=0.5)
Note

Make sure to reference the example provided in the Bokeh library here. You can
adapt the code in there to our arguments: https://packt.live/2000Ccs.
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13. After you have implemented the add_candle plot method, scroll down and
rerun the @interact cell. You will now see the candles being displayed for the two
selected stocks. The final missing step is implementing the plotting of the lines if
the volume value is selected.

14. Add an interactive legend that allows us to mute, meaning gray out, each stock in
the visualization:

# method to build the plot
def get plot(stock 1, stock 2, date, value):
/7.1
plot.xaxis.major label orientation = 1
plot.grid.grid line alpha=0.3
if value == 'open-close':

add candle plot (plot, stock 1 name, stock 1 range, 'blue')

add _candle plot (plot, stock 2 name, stock 2 range, 'orange')
if value == 'volume':
plot.line(stock 1 range['short date'], stock 1 range['volume'],
legend label=stock 1 name, muted alpha=0.2)
plot.line(stock 2 range['short date'], stock 2 range['volume'],

legend label=stock 2 name, muted alpha=0.2,
line color='orange')

plot.legend.click policy="mute"

return plot

Note

To make our legend interactive, please take a look at the documentation for the
legend feature: https://packt.live/2SEQLH2.
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15.

Price in $USD

After our implementation has finished, execute the last cell with our @interact
decorator once more. This time, it will display our candlestick plot and, once we
switch to the volume RadioButton, we will see the volumes displayed that have

been traded at the given dates. The resulting visualization should look something
like this:

Compare: ‘ AAPL v ‘

to: ‘ AON V‘

From-To (m 2016-01-04-2016-02-09

Metric @ open-close
volume
Stock prices
105 B Mean price of AAPL |
e | BB Mean price of AON

100 — l\

o -
w0l | !

85 +

Figure 7.15: Final interactive visualization that displays the candlestick plot
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The following diagram shows the final interactive visualization of the volume plot:
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Figure 7.16: Final interactive visualization that displays the volume plot

You have now built a full visualization to display and explore stock price data. We
added several widgets to our visualization that allows us to select "to be compared"

stocks, restrict the displayed data to a specific date range, and even display two
different kinds of plots.
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Activity 7.03: Analyzing Airbnb Data with geoplotlib
Solution:

1. Open the Activity7.03.ipynb Jupyter Notebook from the Chapter07 folder to
implement this activity. Import NumPy, pandas, and geoplotlib first:

# importing the necessary dependencies
import numpy as np

import pandas as pd

import geoplotlib

2. Use the read_csv method of pandas to load the . esv file. If your computer is a
little slow, use the smaller dataset:

# loading the Dataset
dataset = pd.read csv('../../Datasets/airbnb new york.csv')
# dataset = pd.read csv('../../Datasets/airbnb new york smaller.csv')

3. Observe the structure of our dataset by looking at the features provided:

# print the first 5 rows of the dataset
dataset.head()

The following diagram shows the output of the preceding code:

id listing_url scrape_id last_scraped name summary space description experiences_offered neighborhood_overview ...
An
Light-filed An adorable, ~ adorable,  Anadorable, Diverse. Great coffee
0 21456 httpsi/Aww.airbnb.comirooms/21456 20181206022948  2018-12-06 Classic C‘SSS‘JC- Coey),  GEESR, GESER TR none  shops and restaurants,
e ight-filled c\gan‘ light-filled q
one-... light-filled one-...
one-...
ceans  Renovated PSS CROR
) quiet apt apt home in ! Close to Prospect Park
1 2539  https://www.airbnb.com/rooms/2539  20181206022948 2018-12-06 home by the elevator and clean elgvslor none 14 Historic Ditmas Park
N apt home, building.
park building. :
one b.. Spaci...
Nice room
Upper Agreat space ina Agreat space | love that the
2 21644 hitps/Aww.airbnb.comirooms/21644 2018120602294  2018-12-06  Manhattan, | beautiill  spacious i a beautiful none  neighborhood is safe to
e neighborhood- pre-war neighborhood- TR
min apartment min..
inu.
. Room i
Thisis a Thisis a
+;e?31%ﬂ>s(2 spacious, Fea;‘uers’s‘. spaclous, Location is GREAT!!
3 3330 https://www.airbnb.com/rooms/3330 20181206022948 2018-12-06 clean, - | clean, none N g
Guestroom furni hardwood : Right off the L trainin t...
. urnished floors - 2 furnished
master be. a master be.
This is the
cozy It's comfy & smaller It's comfy &
y . QUIET room  has a loft bed roomof  has a loft bed GREAT Central Location.
4 21794 hitps:/iwww.airbnb.com/rooms/21794  20181206022948 2018-12-06 4 8 a chaise the two | 2 a chaise none o kih street between
DOOGLERS! lounge, have lounge,.

ava..

5 rows x 96 columns

Figure 7.17: Displaying the first five elements of the dataset
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4. Remember that geoplotlib needs 1atitude and longitude columns with the
names lat and lon. We will, therefore, add new columns for 1at and lon and
assign the corresponding value columns to them:

# mapping Latitude to lat and Longitude to lon
dataset['lat'] = dataset['latitude']
dataset['lon'] = dataset['longitude']

5. In order to use a color map that changes color based on the price of
accommodation, we need a value that can easily be compared and checked whether
it's smaller or bigger than any other listing. Therefore, create a new column called
dollar_price that will hold the value of the price column as a float. Make sure
to fill all the NaN values of the price column and the review_scores_rating
column with 0.0 by using the £illna () method of the dataset:

# convert string of type $<numbers> to <nubmers> of type float
def convert to float (x):
try:
value=str.replace(x[1:], ',', '")
return float (value)
except:

return 0.0

# create new dollar price column with the price as a number
# and replace the NaN values by 0 in the rating column

dataset['price'] = dataset['price'].fillna('$0.0")
dataset['review scores rating'] = dataset['review scores rating'].
fillna (0.0)

dataset['dollar price'] = dataset['price'].apply(lambda x: convert to
float (x))

6. This dataset has 96 columns. When working with such a huge dataset, it makes
sense to think about what data we need and creates a subsection of our dataset
that only holds the data we need. Before we can do that, we'll take a look at all
available columns and an example for that column. This will help us decide what
information is suitable:

# print the col name and the first entry per column
for col in dataset.columns:
print ("{}\t{}"'.format (col, dataset[col][0]))
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The following diagram shows the output of the preceding code:

id 2515
listing_url https://www.airbnb.com/rooms/2515
scrape_id 20181206022948

last_scraped 2018-12-06

name Stay at Chez Chic budget room #1

summary Step into our artistic spacious apartment and enjoy your artistic Guest room with origimal artwork from NY artists. Shared with my little family hov
entral Park - the busy city minutes away but sleeping in quiet at night!

space  -PLEASE BOOK DIRECTLY. NO NEED TO SEND A REQUEST FOR DATES> CALENDAR IS UP TO DATE> ALL AIRBNB RESERVATIONS WILL BE HONORED> Nice, comfortable, and
ize bed. In very nice apartment on central Park North 4th floor walk-up. same place as Chez chic #2, max capacity of the rooms 2 people). You will share the
cated one block from Subway 2/3,B/C on 110th street, Bus M1,2,3,4 at the corner, central park across the street. Your room: full size bed (sleeps two), des
provided. Iron/air dryer provided. Separate Full bathroom shared with guestroom room #2. Access to the Kitchen from 8AM weekdays or anytime during the weeke
n the evening. The apartment: spacious newly renovated, hardwood floors,3BD, 2Bath apartment with Living r

description Step into our artistic spacious apartment and enjoy your artistic Guest room with original artwork from NY artists. Shared with my little fe
t from Central Park — the busy city minutes away but sleeping in quiet at night! -PLEASE BOOK DIRECTLY. NO NEED TO SEND A REQUEST FOR DATES> CALENDAR IS UP
and clean private guest room with shared bathroom (2 people max) - full size bed. In very nice apartment on central Park North 4th floor walk-up. same place
the apt with me and my little family. Daily cleaning in common areas. Located one block from Subway 2/3,B/C on 11@th street, Bus M1,2,3,4 at the corner, cer
desk, Digital Tv/DVD, wifi internet, A/C, closet and desk. Sheets/Towels provided. Iron/air dryer provided. Separat

experiences_offered none

neighborhood_overview nan

notes Please no cooking at night but you can warm up food in the microwave and use the kitchen

transit Subway 2.3.B.C. at 11@th street around the corner and bus M.2.3.4 at the corner

access Guests will have their PRIVATE BATHROOM (NOTE: Shared between June 22-Aug 22) (shared with 2nd guestroom if there are guests), and the kitchen

interaction We will have a list of Harlem restaurants and points of interest ready for you, as well as a subway map of NYC and pratical infos.
house_rules no-smoking/please take off your shoes: cleaning fees $40

thumbnail_url nan

medium_url nan

picture_url https://a@.muscache.com/im/pictures/d0489e42-4333-4360-911f-413d503fe146. jpg?aki_policy=large

x1l_picture_url nan
host_id 2758

Figure 7.18: Each column header with an example entry from the dataset

7. Trim down the number of columns our working dataset has by creating a
subsection of the columns with id, latitude as 1lat, longitude as lon, price in
S, and review_scores_rating:

# create a subsection of the dataset with the above-mentioned columns
columns=['id', 'lat', 'lon', 'dollar price', 'review scores rating']
sub data=dataset[columns]

8. Print the first five rows of the trimmed down dataset:

# print the first 5 rows of the dataset
sub data.head()

The following diagram shows the output of the preceding code:

id lat lon dollar_price review scores_rating
0 2515 40.799205 -73.953676 59.0 93.0
1 21466 40.797642 -73.961775 140.0 94.0
2 2539 40.647486 -73.972370 149.0 98.0
3 2595 40.753621 -73.983774 225.0 95.0
4 21644 40.828028 -73.947308 89.0 100.0

Figure 7.19: Displaying the first five rows after keeping only five columns
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9. Create a new DataAccessObject object with the newly created subsection of the
dataset. Use it to plot out a dot map:

# import DataAccessObject and create a data object as an instance of
that class

from geoplotlib.utils import DataAccessObject
data = DataAccessObject (sub data)

# plotting the whole dataset with dots
geoplotlib.dot (data)

geoplotlib.show ()

The following diagram shows the output of the preceding code:

parasil Mamaroneck

PATERSON
New Rochelle Bayville

NEWARK

JERSEY CITY = TPark Garden City

ELIZABETH

Figure 7.20: Simple dot map created from the points
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10. The final step is to write the custom layer. Define a ValueLayer class that extends
the BaseLayer object of geoplotlib. For the interactive feature mentioned,
we require an additional import. pyglet provides us with the option to act on
key presses:

# custom layer creation

import pyglet

import geoplotlib

from geoplotlib.layers import Baselayer
from geoplotlib.core import BatchPainter
from geoplotlib.colors import ColorMap
from geoplotlib.utils import BoundingBox

class Valuelayer (Baselayer) :

def init (self, dataset, bbox=BoundingBox.WORLD) :
# initialize instance variables

pass

def invalidate(self, proj):

# draw the points with the color based on the selected
attribute

pass

def draw(self, proj, mouse x, mouse_ y, ui manager) :
# display the ui manager info
pass

def on key release(self, key, modifiers):

# check if left or right keys are pressed to switch to other
attribute

pass

def bbox(self):
# bounding box that gets used when the layer is created
pass
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11. Initiate the following instance variables in the __init  method of the
ValueLayer class: first, sel£.data, which holds the dataset; second, self.
display, which holds the currently selected attribute name; third, self.painter,
which holds an instance of the BatchPainter class; fourth, self.view, which
holds the BoundingBox function; and lastly, sel£ . cmap, which holds a color map
with the jet color schema and an alpha of 255 and 100 levels:

# custom layer creation

import pyglet

import geoplotlib

from geoplotlib.layers import Baselayer
from geoplotlib.core import BatchPainter
from geoplotlib.colors import ColorMap
from geoplotlib.utils import BoundingBox

class Valuelayer (Baselayer) :

def init (self, dataset, bbox=BoundingBox.WORLD) :
# initialize instance variables
self.data = dataset
self.display = 'dollar price'
self.painter = BatchPainter ()
self.view = bbox
self.cmap = ColorMap('jet', alpha=255, levels=100)

12. Implement the bbox, draw, and on_key release method for the ValueLayer
class. First, return the self.view variable in the bbox method. Then, set the
ui manager.info text to Use left and right to switch between the
displaying of price and ratings. Currently displaying: dollar
price Or review_scores_rating, depending on what the self.display
variable holds, and lastly, in the on_key_release method, check whether the left
or right key is pressed and switch the self.display variable between dollar
price Or review_scores_rating. Next, return True if the left or the right key
has been pressed to trigger redrawing of the dots, otherwise return False. The full
custom layer notebook cell will look like this:

# custom layer creation

import pyglet

import geoplotlib

from geoplotlib.layers import Baselayer
from geoplotlib.core import BatchPainter
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from geoplotlib.colors import ColorMap
from geoplotlib.utils import BoundingBox

class Valuelayer (Baselayer) :

def init (self, dataset, bbox=BoundingBox.WORLD) :
# initialize instance variables
self.data = dataset
self.display = 'dollar price'
self.painter = BatchPainter ()
self.view = bbox
self.cmap = ColorMap('jet', alpha=255, levels=100)

def invalidate(self, proj):

# draw the points with the color based on the selected
attribute
pass

def draw(self, proj, mouse x, mouse_ y, ui manager) :
# display the ui manager info

ul manager.info('Use left and right to switch between
the displaying of price and ratings. Currently displaying: {}'.
format (self.display))

self.painter.batch draw ()

def on key release(self, key, modifiers) :

# check if left or right keys are pressed to switch to other

attribute

if key == pyglet.window.key.LEFT or key == pyglet.window.key.

RIGHT:

self.display = 'dollar price' if self.display != 'dollar_

price' else 'review scores rating'
return True

return False

def bbox(self):
# bounding box that gets used when a layer is created

return self.view
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13. Given the data, plot each point on the map with a color that is defined by the
currently selected attribute, either price or rating. First, in the invalidate
method, assign a new BatchPainter () function to the self.painter variable.
Second, get the max value of the dataset given the current self.display variable.
Third, use a 1log scale if dollar_price is used, otherwise use a 1in scale. Lastly,
map the value to color using the cmap object we defined in the __init _ method
and plot each point with the given color onto the map with a size of 5:

# custom layer creation

import pyglet

import geoplotlib

from geoplotlib.layers import Baselayer
from geoplotlib.core import BatchPainter
from geoplotlib.colors import ColorMap
from geoplotlib.utils import BoundingBox

class Valuelayer (Baselayer) :

def init (self, dataset, bbox=BoundingBox.WORLD) :
# initialize instance variables
self.data = dataset
self.display = 'dollar price'
self.painter = BatchPainter ()
self.view = bbox
self.cmap = ColorMap('jet', alpha=255, levels=100)

def invalidate(self, proj):

# paint every point with a color that represents the currently
selected attributes value
self.painter = BatchPainter ()

max val = max(self.data[self.display])
scale = 'log' if self.display == 'dollar price' else 'lin'

for index, id in enumerate(self.data['id']):
# log scale can't start at 0, must be 1
min val = max(self.data[self.display] [index], 1)

color = self.cmap.to color(min val, max val, scale)
self.painter.set color(color)

lat, lon = self.data['lon'][index], self.data['lat']
[index]
x, y = proj.lonlat to screen(lat, lon)
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self.painter.points(x, y, 5)

def draw(self, proj, mouse x, mouse_ y, ui manager) :
# display the ui manager info

ui manager.info('Use left and right to switch between
the displaying of price and ratings. Currently displaying: {}'.
format (self.display))

self.painter.batch draw ()

def on key release(self, key, modifiers):

# check if left or right keys are pressed to switch to other
attribute
if key == pyglet.window.key.LEFT or key == pyglet.window.key.
RIGHT:
self.display = 'dollar price' if self.display != 'dollar
price' else 'review_scores_rating'_ -
return True

return False

# bounding box that gets used when layer is created
def bbox(self):

return self.view

14. Create a new BoundingBox function focused on New York by using
north=40.897994, west=-73.999040, south=40.595581,
east=-73.95040. Use the darkmatter tile provider that we looked at in
Chapter 5, Plotting Geospatial Data. Provide the BoundingBox function to the
Valuelayer class when adding a new layer to geoplotlib:

# bounding box for our view on New York
from geoplotlib.utils import BoundingBox

ny bbox = BoundingBox (north=40.897994, west=-73.999040,
south=40.595581, east=-73.95040)

# displaying our custom layer using add layer
geoplotlib.tiles provider ('darkmatter')
geoplotlib.add layer (Valuelayer (data, bbox=ny bbox))
geoplotlib.show ()
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After launching our visualization, we can see that our viewport is focused on
New York. Every accommodation is displayed with one dot. Each dot is colored,
based on either its price or (upon clicking the right or left arrow) the rating. We
can see that the general color gets closer to yellow/orange the closer we get to
central Manhattan. On the other hand, in the rating visualization, we can see that
the accommodation in central Manhattan appears to be rated lower than the
accommodation outside:

geoplotlib

Figure 7.21: New York Airbnb dot map, colored based on price
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The following diagram shows a dot map with color based on rating:

geoplotlib
Use left and right to switch between the displaying of price and ratings. Currently displaying: review_scores_rating

Figure 7.22: New York Airbnb dot map, colored based on ratings

You have just created an interactive visualization by writing your custom layer
to display and visualize price and rating information for Airbnb accommodations
spread across New York.
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