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A B S T R A C T

This work presents a theoretical analysis of the non-linear behavior of blood flow along an angled arterial section
with overlapping stenosis. An elastic cylindrical tube with a moving wall is used to represent the artery, and a
Casson liquid is used to simulate blood flowing through it. The nonlinear equations that govern blood flow are
taken into account. The influence of the pulsatile pressure gradient caused by the regular heartbeat on the flow
process in the stenosed artery is demonstrated mathematically. The current analytical method can compute the
wall shear stress, flow resistivity, and velocity profiles with mild stenosis assumption by applying the boundary
conditions. Numerical calculations of the desired quantities are carried out systematically. They provide an
overview of how the degree of stenosis and the malleability of the artery wall influence blood flow abnormalities.
Concerning the height of stenosis, the surface shear stress and the resistivity to flow increase together with an
increase in the proclivity angle.

1. Introduction

One of the diseases affecting the human cardiovascular system is the
constriction of blood arteries brought on by improper tissue develop-
ment. As a result, blood flow may be decreased or obstructed, which
might result in significant cardiovascular diseases. One of the most
significant causes of death in the developed world today is cardiovas-
cular disease. The cardiovascular system, which is made up of the heart
and blood arteries, is what allows blood to flow via an artery. Vascular
conditions may significantly change how blood flows. Blood vessels and
heart conditions, such as heart attacks and strokes, face serious health
hazards today and are responsible for a significant portion of mortality.
The properties of blood flow and vascular behavior are directly related
to these diseases. These deaths are mostly due to stenosis. The term
"stenosis" describes the narrowing of an artery as a result of the devel-
opment of arteriosclerotic plaques or another kind of abnormal tissue
growth. It has been suggested that deposits of fatty material, cholesterol,
and cellular waste products on the arterial wall are the causes of

stenosis, even if the exact causes remain unclear. When an artery de-
velops stenosis, blood flow is decreased. The usual working of the cir-
culatory systemmay be impaired by injuries sustained by the occurrence
of stenosis in an artery. In particular, heart attacks might happen as a
consequence of it. Blood flow restriction can injure the inner cells of the
wall and hasten the onset of stenosis. Therefore, there is a link between
the development of stenosis and blood flow in the artery since one af-
fects the other. Young1 was the first to study stenosis and looked at how
it affected the steady flow of blood through a pipe. Models of the flow
patterns in stenosed blood arteries were created by Azuma and
Fukushima.2 Vascular stenosis’ impact on steady flow was mentioned by
MacDonald.3 Then, several research examined the flow characteristics
of blood in a pipe with mild contraction using blood under various
conditions such as Newtonian or non-Newtonian fluids.4–12

Through the use of a mathematical model, Chakraborty and Man-
dal13,14 investigated the blood flow in overlaying stenosis with body
acceleration. Two-layered non-Newtonian flow and overlapping sten-
osis’s impact on arterial flow have both been studied by Srivastava
et al.15,16 In the context of overlapping stenosis, the arterial flow was
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examined by Riahi et al.17 Mathematical modeling of irregular blood
flow through elastic tapering arteries with overlapping stenosis was
explored by Haghighi et al.18 Following that, other studies investigated
the effects of overlapping stenosis in blood flow through varied artery
geometry.19–24

Non-Newtonian blood flow has recently attracted the attention of
scientists because it can be used to study blood flow via constricted ar-
teries. Most investigations in the literature employ the Herschel-Bulkley,
micropolar, Jeffrey, and Newtonian models. Due to the presence of yield
stress, this technique is unable to explain the physiological behavior of
the circulation in feeding channels. The Casson model resembles the
blood moving at low shear rates better than the Herschel-Bulkley fluid,
despite the latter’s yield stress constraint (see ScottBlair25). Recently,
multiple researchers examined Casson fluid under various physiological
conditions.26–29

It is well known that many pipes in physiological systems are in-
clined to the axis rather than horizontally. By Prasad and Radhakrish-
namacharya,30 the blood flow via an artery with many stenoses and an
uneven cross-section was investigated. An inclined elastic tube with a
permeable wall and a creeping Casson liquid flow were studied by
Gudekote and Choudhari.31 According to Umadevi et al.32 copper
nanoparticles and a magnetic force paired with an interwoven,
restricted oblique artery were used to study the blood flow. The Casson
fluid model for blood flow through an inclined tapered artery of an
accelerated body in the presence of MHD is explored by Srivastava.33

Gupt and Gupta34 observed the unsteady blood flow in an artery through
a non-symmetrical stenosis. Pralhad and Scultz35 investigated arterial
stenosis through modeling and its application to blood diseases. A
mathematical model for different shapes of stenosis and slip velocity at
the wall through mild stenosis artery is explored by Kumar et al.36

Recently, several scientists examined the characteristics of blood flow
within an artery in the presence of stenosis.37–51

This study’s challenge may be used in engineering and biomedical
applications. The literature evaluation indicates that numerous re-
searchers have studied the stenosed artery. Although treating blood as
Casson fluid, no study has yet demonstrated how the angle of proclivity
affects blood flow in an overlapping stenosed artery. Using the inspi-
ration from the foregoing work, an attempt was made to investigate the
effects of overlapping stenosis on a Casson fluid under mild stenosis
conditions. Diagrams are used to show how various significant limita-
tions affect the flow of energy, and formulas are generated for velocity,
flow resistance, and wall shear stress.

2. Mathematical formulation and solution

Take into account the movement of a Casson fluid that is incom-
pressible through a conduit that has a uniform cross-section and an in-
clined axisymmetry overlap. The stenosis should be modest and progress

axially symmetrically. The surface’s geometry is shown in Fig. 1.
The formula involving the geometry of the stenosed surface is

(Chakraborty and Mandal,13 Srivastava et al.15)

h =
R(z)
R0

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 −
3δ

2R0L40

⎡

⎣
11(z − d)L30 − 47(z − d)2L20+

72(z − d)3L0 − 36(z − d)4

⎤

⎦ : d ≤ z ≤ d+ L0

1 : otherwise

.

(2.1)

Here, the tube’s radius at the stenotic area is R(z), the radius of the
artery’s normal segment is R0, the start of the stenotic area lies at po-
sition d, and the tube length is L. L0measures how long the stenotic area
and the proclivity angle is θ. As measured from the origin, δis the
maximum height of the stenosis at z= d+ L0/6, z= d+ 5L0/6, and 3δ

4 is
the critical height of the stenosis at z = d+ L0

2 , and the length of over-
lapping stenosis is h.

2.1. Leading equations

In this learning, lifeblood was taken to be a consistent, incompress-
ible, non-Newtonian liquid. The viscidness of lifeblood can be described
by a collection of non-Newtonian liquid prototypes, together with the
micropolar, Herschel-Bulkley, power-law liquid schemes, and others.
We utilized the Casson liquid prototypical to characterize the physical
property of blood in our study because, when matched to other viscosity

Nomenclature

L length of the tube (m)
L0 length of stenosis (m)
d Beginning of the stenosis region
δ maximum height of stenosis (m)
u Velocity of fluid (m/s)
up Velocity of fluid in plug flow region (m/s)
r radial coordinate (m)
θ the angle of proclivity (radian)
R(z) radius of the artery (m)
R0 the radius of the normal artery (m)
p pressure across the region (kg/ms2)
h Length of the geometry of artery wall (m)

λ resistance to the flow (kg/m4s)
τw wall shear stress (N/m2)
τrz shear stress (N/m2)
μ blood viscosity (kg/ms)
τ0 yield stress (N/m2)
g acceleration due to gravity (m/s2)
H Length of the geometry of artery wall (m)
Rp Radial distance in plug flow region (m)
r0 Radial distance (m)
Q volume flow rate (kW/m2)
ρ the density of the fluid (kg/m3)
z axial coordinate (m)

Fig. 1. Design of overlying stenosis.
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prototypes, it exactly depicts the viscidness characteristic of physio-
logical blood in day-to-day lifespan (Pratumwal et al.41).

According to Prasad and Radhakrishnamacharya,30 Vajravelu et al.42

Chaturani and Ponalugusamy43 the important formulation of the flow-
ing for the existing circumstances is as follows:

1
r

∂
∂r (r τr z) = ρgsinθ −

∂p
∂z, (2.1.1)

where,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

̅̅̅̅̅̅̅τr z
√

=
̅̅̅μ√

̅̅̅̅̅̅̅̅̅

−
∂u
∂r

√

+
̅̅̅̅̅τ0

√
: τr z ≥ τ0

−
∂u
∂r = 0 : τr z ≤ τ0.

(2.1.2)

Here, θ is the proclivity angle, τ0is the yield stress, μis the blood
viscosity, τrz is the shear stress, pis the pressure, uis the velocity of the
fluid, gis the acceleration due to gravity, ρis the density of the fluid, and
(z, r) are the correspondingly axial and radial coordinates.

2.2. Borderline conditions (BC) and mathematical solution

Boundary constraints play a key role in computing the solutions to
simulated physical issues. Since lifeblood elements stick to the interior
surface of the questioned artery piece, it may be inferred that the axial
speed (u) of blood elements on the surface, matches to one-dimensional
stream, and is identical to the swiftness of arterial barrier material. The
quantitative description of the stenosed portion of this is as follows and
it is also called the no-slip boundary condition:

u = 0 at r = h. (2.2.1)

Supposing that there is no liquid shear rate along the axis of the
artery section in the problem, the fluid stream speed gradient along the
axis can be written as:

τrz is finite at r = 0. (2.2.2)

The velocity of the fluid is determined by taking into account the
constraint for mild stenosis and addressing (2.1.1) within the boundary
constraints (2.2.1) and (2.2.2) as:

u =

[
4
3
r
1
2
0

(

r
3
2 − h

3
2

)

−
1
2
(
r2 − h2

)
− r0(r − h)

]

(

− ∂p
∂z + f

)

2μ . (2.2.3)

where F =
μ c

1
2

ρ g R
3
2
0

, f = sinθ
F , c is the moving wave speed (see ref. Vajravelu

et al.42 of the arterial wall.
Using ∂u

∂r = 0 of Eq. (2.1.2), we obtain the upper limit of the plug flow
region i. e. the region between r = 0 and r = r0for which |τrz| < τ0

2πr0 L τ0 = (P+ f) π r20 L ∴ τ0 =
(P+ f) r0

2
, or r0 =

2 τ0
P+ f

(2.2.4)

Here, P = − ∂p
∂z .

Also by using the condition τrz= τhatr= h (Bird et al.45), we obtained
as:

P =
2 τh
h

.

Hence we obtained as:

r0
h

=
τ0
τh

= τ, 0 < τ < 1. (2.2.5)

Using Eq. (2.2.5) along with r = r0in Eq. (2.2.3), we get the plug
velocity (see ref.43–44) as:

up =
[

−
1
6
r20 −

4
3
r
1
2
0 h

3
2 +

1
2
h2 + h r0

]

(

− ∂p
∂z + f

)

2μ , (2.2.6)

There are several ways to observe the flow flux Q of the fluid:

Q = 2

⎡

⎢
⎣

∫r0

0

up r dr +

∫h

r0

u r dr

⎤

⎥
⎦, (2.2.7)

∴Q =

[

−
1
168

r40 −
2
7
r
1
2
0 h

7
2 +

1
8
h4 +

1
6
h3r0

]

(

−
∂p
∂z + f

)

μ . (2.2.8)

The following dimensionless amounts were employed:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

rʹ =
r
R0

, rʹ0 =
r0
R0

, δʹ =
δ
R0

,H =
h
R0

, ź =
z
L
, τʹ

0 =
τ0

μ
(

c
R0

), dʹ =
d
R0

,

uʹ =
u
c
, τʹ

rz =
τrz

μ
(

c
R0

), Lʹ
0 =

L0
R0

,Qʹ =
Q
cR2

0
, pʹ =

p
μc L0
R2
0

,Rʹ =
R
R0

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(2.2.9)

Eq. (2.2.8) results from Eq. (2.2.9) as:

Q =

[

−
1
168

r40 −
2
7
r
1
2
0 H

7
2 +

1
8
H4 +

1
6
H3r0

](

−
∂p
∂z+ f

)

. (2.2.10)

Eq. (2.2.10) can be written as follows:

∂p
∂z = f −

Q
[

− 1
168r

4
0 − 2

7r
1
2
0 H

7
2 + 1

8H4 + 1
6H3r0

]. (2.2.11)

Eq. (2.2.11) computes the pressure difference Δp lengthways of the
whole distance of the pipe as:

Δp =

∫1

0

∂p
∂z dz =

∫1

0

⎧
⎪⎪⎨

⎪⎪⎩

f −
Q

[

− 1
168r

4
0 − 2

7r
1
2
0 H

7
2 + 1

8H4 + 1
6H3r0

]

⎫
⎪⎪⎬

⎪⎪⎭

dz.

(2.2.12)

Flow opposition is described as:

λ =
Δp
Q
. (2.2.13)

Starting Eqs. (2.2.12) and (2.2.13), we may infer that

1
Q

∫1

0

⎧
⎪⎪⎨

⎪⎪⎩

f −
Q

[

− 1
168r

4
0 − 2

7r
1
2
0 H

7
2 + 1

8H4 + 1
6H3r0

]

⎫
⎪⎪⎬

⎪⎪⎭

dz = λ. (2.2.14)

Due to the nonappearance of stricture(H= 1), the pressure reduction
is deliberate as:

∫1

0

⎧
⎪⎪⎨

⎪⎪⎩

f −
Q

[

− 1
168r

4
0 − 2

7r
1
2
0 +

1
8 +

1
6r0

]

⎫
⎪⎪⎬

⎪⎪⎭

dz = (Δp)n . (2.2.15)

Flow impedance is defined as follows when there is no stenosis:

λn =
(Δp)n
Q

. (2.2.16)

The expression is given by Eqs. (2.2.15) and (2.2.16) is as follows:

M. Dhange et al.
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λn =
1
Q

∫1

0

⎧
⎪⎪⎨

⎪⎪⎩

f −
Q

[

− 1
168r

4
0 − 2

7r
1
2
0 +

1
8+

1
6r0

]

⎫
⎪⎪⎬

⎪⎪⎭

dz. (2.2.17)

The normalized opposition of a stream is written as:

λ
λn

= λ. (2.2.18)

Shear stress is applied to the channel’s surface as a consequence of

τw = − μ∂u
∂r

⃒
⃒
⃒
⃒
r=h

. (2.2.19)

Using Eq. (2.2.9) to Eq. (2.2.19), it turns into:

τʹ
w =

τw[
μc
R0

]. (2.2.20)

On the other hand, Eq. (2.2.20), is reduced to

τʹ
w = −

∂uʹ

∂rʹ. (2.2.21)

Using the dimensionless method, modify Eqs (2.2.5) and (2.2.9) in
Eq (2.2.21), and the outcome is

f −
Q
2

⎧
⎪⎨

⎪⎩

2r
1
2
0H

1
2 − H − r0

1
168r

4
0 +

2
7r
1
2
0 H

7
2 − 1

8H4 − 1
6H3r0

⎫
⎪⎬

⎪⎭
= τw. (2.2.22)

Eq. (2.2.22) is used to determine the shear stress at the surface in the
nonappearance of stenosis (H = 1) as follows:

f −
Q
2

⎧
⎪⎨

⎪⎩

2r
1
2
0 − 1 − r0

1
168r

4
0 + 2

7r
1
2
0 − 1

8 − 1
6H3r0

⎫
⎪⎬

⎪⎭
= (τw)n. (2.2.23)

It is possible to calculate the normalized surface shear stress as
follows:

τw
(τw)n

= τw. (2.2.24)

3. Computational results

When analyzing blood flow via a stenosed artery, two critical factors
are resistance to flow and wall shear stress. Investigative results for
liquid velocity(u), flow opposition ()λ), and wall shear stress (τw) are
shown in Eqs. (2.2.3), (2.2.18), and (2.2.24), respectively. The several
restrictions on stream opposition, wall shear stress, and fluid velocity are
numerically estimated with the help of MATHEMATICA, and the results
are then visualized using graphs.

3.1. Opposition to the flow

Opposition to stream is demonstrated to yield greater values for
lifeblood vessels with larger stenosis heights, nevertheless, the reverse is
true for arteries with lesser stenosis elevations. It’s essential to under-
stand the physical foundation for these findings. The stenosis area’s
stopped liquid quickly moves toward the core flowing area. As a result,
the liquid encounters a brief obstruction in the pre-stenotic region
before decreasing in size in the post-stenotic region. The effects of
impedance on various limitations, including stenosis height (δ), are
depicted in Figs. 2–5. When there is stenosis, it is observed that the
radial distance (r) of the linked region increases, and the flow impedance
(δ) increases (see Fig. 2,3). The impedance rises when the Casson liquid
possesses non-Newtonian characteristics.

According to Fig. 4 and 5, as the angle of bent (θ) increases, the flow

impedance (λ) rises for the height of the stenosis (δ). These findings
show that the decreased lumen size of the slanted artery, which in-
fluences the flow, causes a significant change in the plug flow radius. In
comparison to arteries that are not inclined, the plug flow radius is
larger in sloped arteries. It supports Srivastava’s claims.33 These results
are in line with earlier findings by5,12,27 and they also support the results
of experiments by Bureau et al.39 and McMillan et al.40 on fluid flow
resistance.

Fig. 2. Design of λ for r through θ = π/6, Q = 0.1, d = 0.2, L0 = 0.4, F =

0.1.

Fig. 3. Design of λ for r through θ = π/6, Q = 0.1, d = 0.2, L0 = 0.4, F =

0.3.

Fig. 4. Design of λ for θthrough r = 0.2, Q = 0.1, d = 0.2, L0 = 0.4, F = 0.1.

M. Dhange et al.
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3.2. Shear-stress of the wall

The tiny arteries and arterioles must be understood in the context of
wall shear stress. The arteries are affected by the pressure gradient and
wall shear stress, which over time makes them more rigid and less
flexible. The arterial wall ruptures in these injured arteries when they
are subjected to high blood pressure. The effects of surface shear stress
(τw) on various restrictions with a height of stenosis are shown in
Figs. 6–9. As r of the linked flowing area increases, it is demonstrated
that surface shear stresses both decrease and increase in response to the
elevation of stenosis (see Fig. 6,7). According to Figs. 8–9, the height of
the stenosis (δ) causes an increase in the proclivity angle (θ), which
causes an increase in wall shear stress. The numerical findings of
Young,1 Chakraborty and Mandal,13 and Prasad and Radhakrishna-
macharya30 are in agreement with these findings. In the case of fluid
wall shear stress, our results concur with those of Bureau et al.39 and
McMillan40 experiments.

3.3. Fluid velocity

Figs. 10–13 show how different restrictions impact the fluid’s ve-
locity (u). As stenosis height (δ) rises, it is demonstrated that fluid ve-
locity (u) drops (see Figs. 10 and 11). It has been noted that fluid velocity
(u) is highest in the tube’s middle and declines toward the wall before
reaching zero at the tube’s wall. It is obvious that the regular artery
moves at a higher speed than the stenosed artery. The effects of the
proclivity angle are depicted in Figs. 12–15. It has been observed that in
stenosis conditions, the fluid’s velocity (u) increases an angle of incli-
nation (θ) increase. Additionally, it has been noticed that the fluid ve-
locity is seen to be decreasing as the radial distance and stenosis height

increase. These results concur with those made before Young1 and
Chakraborty and Mandal.13

4. Concluding observations

The mathematical model of Casson liquid in a steady, consistent tube
with overlapping stenosis is examined. The results are represented
graphically for varied radial distance, inclination angle, stenosis alti-
tude, and expansion following stenosis values. The main conclusions are
as follows:

Fig. 5. Design of λ for θthrough r = 0.2, Q = 0.1, d = 0.2, L0 = 0.4, F = 0.3.

Fig. 6. Design of τw for r through Q = 0.1, d = 0.2, θ = π/6, L0 = 0.4, F =

0.1.

Fig. 7. Design of τw for r through Q = 0.1, d = 0.2, θ = π/6, L0 = 0.4, F =

0.3.

Fig. 8. Design of τw for θthrough Q = 0.1, d = 0.2, r = 0.2, L0 = 0.4, F = 0.1.

Fig. 9. Design of τw for θ through Q = 0.1, d = 0.2, r = 0.2, L0 = 0.4, F = 0.3.
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• Surface shear stress falls and flowing resistivity rises as the radial
length (r) of the linked flowing region increases.

• Concerning the height of stenosis, the surface shear stress and the
resistivity to flow increase together with an increase in the proclivity
angle.

• As the level of stenosis altitude increases, the blood’s velocity
decreases.

• The fluid’s velocity increases in response to an increase in proclivity
angle.

• For heights of stenosis, an increase in the radial length of the linked
area results in a decrease in the fluid’s velocity.

The above-mentioned discoveries might be applied to improve blood
vessel function. Drugs could be administered to people with aberrant
blood vessel narrowing using this method. Additionally, the associated
discovery of the current physical model will act as a prototype for
pharmaceutical and biological researchers engaged in research and
development work. This mathematically based work may serve as a

Fig. 10. Design u & r for δ through z = 0.5, d = 0.2, θ = π/6, L0 = 0.4, F =

0.1.

Fig. 11. Design u & r for δ through z = 0.5, d = 0.2, θ = π/6, L0 = 0.4, F =

0.3.

Fig. 12. Design of u & r for θthrough δ = 0.3, z = 0.5, d = 0.2, L0 = 0.4, F
= 0.1.

Fig. 13. Design of u & r for θthrough δ = 0.3, z = 0.5, d = 0.2, L0 = 0.4, F
= 0.3.

Fig. 14. Design of u & δ for θthrough r = 0.2, z = 0.5, d = 0.2, L0 = 0.4, F
= 0.1.

Fig. 15. Design of u & δ for θthrough r = 0.2, z = 0.5, d = 0.2, L0 = 0.4, F
= 0.3.

M. Dhange et al.
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biomedical engineering prototype for the use of angioplasty to treat
vascular-related disorders.
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