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Diabetic Macular Edema (DME) is the foremost reason for vision loss in patients having Diabetic Retinopathy
(DR). In the earlier diagnosis of DR, Optical Coherence Tomography (OCT) plays a major part in detecting and
classifying DR, thus preventing vision loss. Most people suffer from DME due to neglecting treatments, which
may lead to blindness or visual impairment. If properly detected, this can be healed at an earlier phase. DME
detection and classification is a challenging chore in affected patients. To vanquish the.

Challenging task, an effective method is proposed for DME detection as well as classification using the pro-
posed Shape Index Histogram Honey Badger Aquila Optimization-based deep convolutional neural network
(SIH+HBAO-based deep CNN). Pre-processing is conducted employing a Gaussian filter. After pre-processing,
layer segmentation is conducted by Correlative-based gradient global thresholding with active contour. Then,
feature extraction is performed whereas layer-specific features, texture features including Local Gradient Pattern
(LGP) and proposed SIH with multi-kernel are extracted. Furthermore, the proposed SIH with multi-kernel
feature is devised by modification of shape index histogram with multi-kernel. After that, DME detection and
classification are conducted utilizing Deep CNN, which is tuned employing the proposed HBAO algorithm. The
proposed HBAO algorithm is introduced by incorporation of Honey Badger Algorithm (HBA) and Aquila Opti-
mizer (AO). Moreover, the proposed SIH+HBAO-based deep CNN attained maximal values of accuracy, sensi-

tivity and specificity of 0.912, 0.913 and 0.917.

1. Introduction

Medical imaging is a complex resource of knowledge about patients
and the data from imaging is a preliminary diagnostic tool in several
cases of medical. OCT is the medical imaging modality that can be uti-
lized in diverse medicinal fields [16], especially for diagnosing various
diseases related to the eye. When compared to other techniques that
utilize X-rays, OCT is safest as it applies a source of light, where radia-
tions are not concerned and so it is also utilized for imaging of several
characteristics of biological tissues [15,45]. Recently, OCT for 3-dimen-
sional (3D) images assured to fill the identified gaps among larger fields
of inspecting tissue to higher resolution of cellular tissue investigation
with feasibility to go through tissue of about 2 mm deep [14]. It is stated
as new imaging technology as it generates higher resolution cross-
sectional images of the interior tiny structure of alive tissue [10,9].
The main reason for OCT fascinating the view of researchers and engi-
neers in the field of photonics is the potential to become the first
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diagnostic imaging technology, where features of coherent optics are
important. The optical sectioning capability of OCT enables the scanners
of OCT to image the microscopic compositions in tissue at a depth afar
the attainment of confocal microscopes and conventional bright-field
[9]. OCT executes numerous longitudinal scans at a sequence of lateral
positions to provide a 2-dimensional reflection site map in the sample
[10]. Automatic diagnosis on OCT imaging is relatively novel and the
majority of precedent tasks on analyzing OCT images have focused on
issues of segmenting retinal layers [11]. Assessing the captured images
[39,40] could be employed for earlier diagnosis of various diseases
including DME by detecting the formation of normal and abnormal
retina [21].

Macular edema is the bulging of the retina’s macula or Muller cells,
whereas the macula is the very sensible portion of the eye and it is
responsible for sharp visualization. The affected patient experiences
macula edema because of fluid accretion under the macula and this is
the reason for the swelling and thickening of the macula [25]. DME is
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the main reason for irreversible vision failure in each person having
diabetes. It plays a vital part in preventing unfavourable consequences,
like blindness [11]. The pathophysiology of DME is relatively difficult
and not understood fully. Presently, several pharmacological composites
are under examination for DR treatment [38,12]. DME can extend at any
phase of DR but it happens more often as the interval of diabetes and
amplification of DR ardor [13]. As DME can occur at any phase of DR
[37], it is considered as main reason for loss of vision and a goal of novel
therapies range [17]. It is caused by extreme vascular permeability that
results in the thickening of the retina and the leaking of fluid as well as
constituents of plasma [18]. Generally, DME patients are advised to treat
using numerous focal laser photocoagulations for several months or
years, which leads to a better option for protecting their vision, how-
ever, the patients should not anticipate an improvement in vision. The
prediction is secured for patients who have considerable loss of vision
due to DME. This offered higher motivation for developing novel
treatments, despite this focal laser photocoagulation alone being
confirmed for DME treatment. A main cause for poor advancement in
developing novel treatments for DME is a lack of comprehension of its
pathogenesis [19].

Based on pathogenic, DME is classified as a commonly tractional
component, retino vascular component or tightly affixed posterior hy-
aloid component. Here in many cases, pathogenic components are
joined, which results in a complex challenge for deciding the prevalent
component and also the most revealed treatment. Clinical ophthalmo-
scopes with fluorescein angiography, bio-microscopic lenses and OCT
are the most significant in assisting the detection of DME prevalent
etiopathogenic components. DME happens during abnormal perme-
ability of retinal capillaries that causes an inactive flow of blood or
plasma into an extracellular space [20]. A decrease in the time and effort
of ophthalmologists for diagnosing will be essential for lessening the
expansion of DME cases. Deep learning [43,46,47] is rising as the
foremost tool of machine learning in the computer aspect and is in
progress for authorizing a major deliberation in the medical imaging
field. Earlier detection utilizing deep learning techniques is mostly
trustworthy for determining the occurrence of abnormalities in an image
[22,21]. Recently, deep learning has demonstrated extraordinary per-
formance in solving medical imaging issues and thus fascinated sub-
stantial concentration. Therefore, one of the characteristic chores is the
detection of abnormalities and then classifying them into categories of
disease [23,21]. Deep learning [48,49] techniques like CNN have
quickly increased the importance of analyzation of medical images
[4,41]. CNN has been demonstrated as a powerful tool for learning DME
features [24,25,6]. CNN-based categorization strategies provide the best
implementation due to their scale property, rotational property and
expansive field of focus. In addition, CNN has a proficient enhancement
for the recognition and characterization of images and it is conse-
quently, implemented for frameworks of DR diagnosis [26].

The major intent of this research paper is to introduce an efficient
detection and classification technique for DME based on the proposed
SIH+HBAO-based deep CNN. Initially, the input image is considered
from the particular database and after that pre-processing is performed
utilizing a Gaussian filter. Thereafter, layer segmentation is done by
Correlative-based gradient global thresholding with active contour,
which is modified by including the adaptive concept into the gradient-
based thresholding and global threshold into the active contour model
and finally, the correlation coefficient is used for the fusion process.
Afterwards, extraction of features is carried out in which layer-specific
features including reflectivity, uniformity, thickness, variance,
smoothness, and mean, as well as area and image level features like Fast
Fourier Transform (FFT) and wavelet, are extracted. Additionally,
texture features include LGP and proposed SIH with multi-kernel are
extracted. The proposed SIH with multi-kernel feature is designed by
modifying the shape index histogram with a multi-kernel. Lastly, DME
detection and classification is carried out employing Deep CNN that is
tuned utilizing the proposed HBAO algorithm. During detection, DME is
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detected into normal or abnormal cases, whereas in classification, the
abnormal cases are further classified into diffuse retinal thickening,
serous retinal detachment, cystoid macular, posterior hyaloid traction,
and tractional retinal detachment categories utilizing Deep CNN that is
trained using same proposed HBAO approach. The proposed HBAO al-
gorithm is introduced by an integration of HBA [34] and AO [33].

The goal of this research is to classify patients with diabetic reti-
nopathy and detect DME in those patients who have vision loss. Here,
using the proposed Shape Index Histogram Honey Badger Aquila
Optimization-based deep convolutional neural network (SIH+HBAO-
based deep CNN). Pre-processing is conducted employing a Gaussian
filter. After pre-processing, layer segmentation is conducted by
Correlative-based gradient global thresholding with active contour.
Then, feature extraction is performed whereas layer-specific features,
texture features including Local Gradient Pattern (LGP) and proposed
SIH with multi-kernel are extracted. Furthermore, the proposed SIH
with multi-kernel feature is devised by modification of shape index
histogram with multi-kernel.

The vital contribution of this probe paper is elucidated beneath:

e Proposed SIH+HBAO-based deep CNN for Diabetic Macular
Edema detection and classification: The newly developed
SIH+HBAO-based deep CNN technique is employed to predict DME.
The devised SIH+HBAO is newly formed by the combination of HBA
and AO. Here, SIH is proposed with multi-kernel to extract the fea-
tures whereas DME detection and classification is conducted utilizing
HBAO that is trained by deep CNN.

The rest of the portions in this research paper are ordered as follows:
A literature overview of traditional techniques according to DME
detection and classification is elucidated in section 2 and section 3 de-
scribes a proposed method for DME detection and classification. In
section 4, the result of the proposed method is discussed and the
conclusion is expounded in section 5.

2. Literature Review

Earlier detection and classification of DME are more significant and
hence this portion illustrates the literature survey of eight research pa-
pers that applied classical techniques along with identified research gaps
and challenges faced by these techniques are also described, which
motivate the researchers for further development of new techniques
related to DME detection and classification. This part elucidates litera-
ture reviews of current DME detection and classification techniques with
merits and demerits. Harpal Singh Sandhu., et al. [1] developed a new
computer-assisted diagnostic (CAD) model for detecting and classifying
DR utilizing OCT images and a two-phase deep network was utilized for
classifying normal, subclinical phase DR or moderate DR based on three
discriminate features like curvature, reflectivity, and thickness. It
automatically diagnosed non-proliferative diabetic retinopathy (NPDR)
based on OCT images from type II diabetics is possible, trustworthy and
precise but still it was not cooperated with OCT angiographic data for an
enhancement of accuracy. Mohammed Ghazal., et al. [2] presented a
new CAD system for earlier detection of DR-related alterations in OCT
images utilizing CNNs. This method achieved maximal accuracy with
minimum computational time. However, the scarcity of the data and the
relative complexity of the problem. Xuechen Li., et al. [3] developed a
new deep network- OCTD Net for earlier phase classification of DR
utilizing OCT images showing the probable of OCT images for detecting
earlier phase DR in a cost and time-proficient manner but this method
failed to add clinical history and other data sources for cross-modality
earlier detection of DR. Rajeev Kumar Singh., et al [4] developed
DMENet algorithm utilizing Hierarchical Ensemble of CNNs (HE-CNN)
for automatic DME screening. This technique has consistency over other
current techniques on every metric that was most significant in the field
of medicine whereas the possibility of a developed solution could not be
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Table 1
Review of existing models.
Author methods Advantages Disadvantages
Harpal Singh CAD model Automatically It was not
Sandhu., utilizing OCT. diagnosed non- cooperated with
etal [1] proliferative diabetic OCT angiographic
retinopathy. data for an
enhancement of
accuracy.
Mohammed CAD system This method achieved ~ The scarcity of the
Ghazal,etal.  using CNN. maximal accuracy data and the

[2]

Xuechen Li.,
etal [3]

Rajeev Kumar
Singh., et al.
[4]

Sivamurugan
Vellakani.,
etal [5]

Xiaomeng Li.,
et al. [6]

Akash Tayal.,
etal [7]

Joaquim de
Moura., et al.

[8]

Amit Kumar,
etal [42]

Amit Kumar, et
al. [44]

Zeru Hai., et al.
[51]

Deep network—
OCTD_Net.

Diabetic
macular edema
Network
(DMENet)
algorithm.
Artificial
intelligence (AI)
based clinical
decision support
system.

Cross-disease
attention
network
(CANet).

Diagnostic tool
based on a deep-
learning
framework.

Fully automatic
model.

Densenet121.

Squeeze-and-
Excitation
embedded
densenet121
(SEDense).
DRGCNN (DR
Grading CNN)
model.

with minimum
computational time.
This method has a
low cost and low
response time.

This technique has
consistency over
other current
techniques on every
metric.

Have a higher
potential for
ophthalmologists to
make optimum
diagnostic decisions.

The better quality of
the network over
other methods on
grading chores of DR
and DME.

This framework
identified the harmful
parameters affecting
the algorithm’s
functions.

This technique
identified and
segmented the
pathological regions
of each disorder of
ME.

The model serves to
lessen the strain on
ophthalmologists by
diagnosing DME at an
early stage so that it
can be treated
promptly.

This method reduces
the hassle of
ophthalmologists in
diagnosing DME
grades.

This method provided
better performance
and established a
highly competitive
intelligent
classification model.

relative complexity
of the problem.
This method failed
to add clinical
history and other
data sources for
cross-modality
earlier detection of
DR.

The possibility of a
developed solution
could not be tested
in hospital settings.

This devised
method did not
utilise fused
features for
designing a novel
training model for
the generation of
captions.

It failed to tune the
network jointly
with lesion
annotations.

It did not consider
the biological
variations in the
structure of the
retina and eye.

It did not
automatically
segment other
diseases related to
the eye.

Failed to work in
the graphics
processing unit
(GPU) model.

Required more
memory to store
intermediate
feature maps.

Required large
amounts of labeled
data.

tested in hospital settings. Sivamurugan Vellakani., et al. [5] devised an
artificial intelligence (AI) based clinical decision support system for the
detection and classification of DME by OCT images that have higher
potential for ophthalmologists in making optimum diagnostic decisions.
This devised method did not utilise fused features for designing a novel
training model for the generation of captions. Xiaomeng Li., et al. [6]
presented a cross-disease attention network (CANet) for combinable
grading of DR and DME and investigated the individual diseases
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demonstrating the better quality of the network over other methods on
grading chores of DR and DME but still, it failed to tune the network
jointly with lesion annotations. Akash Tayal., et al. [7] presented a
diagnostic tool based on a deep-learning framework for the automatic
detection of DME in OCT scans of the human eye. This framework
identified the harmful parameters affecting the algorithm’s functions
but it did not consider the biological variations in the structure of the
retina and eye. Joaquim de Moura., et al. [8] developed a fully automatic
model for the detection, segmentation and classification of three kinds of
ME utilizing OCT images that identified and segmented the pathological
regions of each disorder of ME but this model did not automatically
segment other diseases related to the eye. Amit Kumar., et al [42]
developed a method for detecting instances of DME from retinal fundus
images using the idea of transfer learning. In this method, the fundus
images are utilized to train a pre-trained DenseNet121 to extract the
useful set of feature vectors, which are then passed into a few further
fully connected layers and onto the classification layer to categorize
DME occurrences. The model serves to lessen the strain on ophthal-
mologists by diagnosing DME at an early stage so that it can be treated
promptly. However, it failed to work in the graphics processing unit
(GPU) model. Amit Kumar., et al. [44] presented a technique for cate-
gorizing the severity of DME grades known as Squeeze-and-Excitation
embedded DenseNet121 (SEDense). Pre-processing is carried out,
including augmentation and green channel extraction. From the initial
413 images used for training, the augmentation creates 1170 images. It
has a classification accuracy of 88.35 % for the DME grades. Ophthal-
mologists can diagnose DME grades with less effort thanks to the pro-
posed SEDense model. This method reduces the hassle of
ophthalmologists in diagnosing DME grades. Yet, it required more
memory to store intermediate feature maps. Zeru Hai., et al. [51] pro-
posed the Diabetic Retinopathy Grading Convolutional Neural Networks
(DRGCNN) model for the diagnosis of diabetic retinopathy. This method
provided better performance and established a highly competitive
intelligent classification model. However, it required a large amount of
labeled data. Table 1 shows a Review of existing models.

3. Proposed SIH+HBAO-Based deep CNN for Diabetic Macular
edema detection and classification

DME happens at any phase of proliferative and non-proliferative DR,
which leads to worsening of vision. Therefore, earlier detection and
classification are very important for DME to protect the vision. Hence,
an efficient technique is proposed employing SIH+HBAO-based deep
CNN. Firstly, the input image is considered from a particular database
specified in [35] and then pre-processing is carried out employing a
Gaussian filter. Afterwards, layer segmentation is performed by
Correlative-based gradient global thresholding with an active contour
that is modified by including an adaptive concept into the gradient-
based thresholding and global threshold into an active contour model
and then, the correlation coefficient is utilized for the fusion process.
Thereafter, feature extraction is done whereas layer-specific features,
texture features including LGP and proposed SIH with multi-kernel are
extracted. Moreover, the proposed SIH with the multi-kernel feature is
introduced by modifying the shape index histogram with multi-kernel.
Finally, DME detection and classification are performed employing
Deep CNN that is tuned utilizing the proposed HBAO algorithm. The
proposed HBAO algorithm is introduced by an integration of HBA [34]
and AO [33]. During detection, DME is detected into normal or
abnormal cases whereas, in classification, the abnormal cases are further
classified into diffuse retinal thickening, serous retinal detachment,
cystoid macular, posterior hyloid traction, and tractional retinal
detachment categories. Fig. 1 explicates the diagrammatic view of the
proposed SIH+HBAO-based deep CNN for the detection and classifica-
tion of DME.

Acquisition of input image

Consider the OCT image for DME as an input image that is acquired
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Fig. 1. Diagrammatic view of proposed SIH+HBAO-based deep CNN for DME detection and classification.

from a particular database mentioned in [35] and it is represented as
given below,

Z={Iy,Iy,..1g..I,} ¢))
Here, m represents the overall number of training images in the

training database Z, whereas I; implies d input image.

3.1. Pre-Processing utilizing Gaussian filtering

Image pre-processing is the initial stage in several feature description
techniques. It is utilized for eliminating unnecessary alterations and

noises that enhance the quality of the image. In this phase, Gaussian
filtering [27] is used to suppress the noise and also, the noise is
smoothed out. The one-dimensional Gaussian filter can be formulated

by,

F(p) =

1
o exp( —p*/26%) (2)

Here, ¢®> denotes the variance of Gaussian filter whereas two-
dimensional Gaussian filter is represented by,
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Where, p and q signifies the distance from the origin to the vertical
axis and horizontal axis. Therefore, the pre-processed outcome G; is the
input for the layer segmentation process.

F(p,q) = exp(— (p* + ¢*)/26%) 3)

3.2. Layer segmentation using Correlative-Based gradient global
thresholding with active contour

After pre-processing is commenced, layer segmentation is performed
for segmenting the layers in images. Here, layer segmentation is per-
formed utilizing correlative-based gradient global thresholding with
active contour, which is modified by including an adaptive concept into
the gradient-based thresholding and global threshold into an active
contour model and thereafter, the correlation coefficient is employed for
the fusion process.

3.2.1. Active global contour model

A resultant image from the prior phase G, is taken for the active
contour model in the layer segmentation stage, where segmentation of
retinal areas is performed. An active contour model mostly depends on
an energy minimization technique that takes account of interior and
exterior forces. It persistently drags the contour for moving in the di-
rection of image features and it is formulated by,

b= [ A7) it @

Here, the internal energy is indicated by A;,; and is described as the
functional term of the first order u_(c)?, which reveals the elasticity
evaluation and the functional term of the second order is y,(c)* that
denotes the active contour collecting the thin plate behavior, which
signifies the curvature. Thereafter, functional terms of first as well as
second order are operated using invariable weight factors like, ¢ and ¢.
In addition, an expression of internal energy is represented as,

A= 5 (o)) +5 (#leec) ) ®)
External energy is used for pulling a contour model by the intensity
behaviour of an image G4, which is given as,

AS, = —|VGq(c) |? 6

Here, VG, denotes an image gradient. An output obtained from the
active contour model is V.

3.2.2. Gradient-based adaptive thresholding

In this method, the retinal regions are altered to several layers
whereas the gradient-based adaptive thresholding [28] is carried out
utilizing gradient-based threshold values of OCT image and it is indi-
cated by T,. Initially, OCT image gradient values are evaluated and
thereafter extraction of upper and lower retinal layers is carried out.
Thereafter, binary mask layers are generated and then, retinal sections
are separated by multiplying binary mask along with an input image,
Afterwards adaptive thresholding method is passed to regions for seg-
mentation of fluid portion from the retina.

Additionally, DME portions from the retina are founded by incor-
poration of gradient-based adaptive thresholding method output T; and
output obtained in active contour method V; and it is formulated by,

Sq=¢eVy+1Ty @
Here, ¢ and 7 denotes the random number that ranges between 0 and
Here, the thresholding value is selected as follows [29]: Initially,

select an input estimation for H and then, segment the image utilizing H

which generates two-pixel groups whereas R; comprising of pixels with
grey level values < H and R, comprising of pixels < H. Afterwards,
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calculate the mean grey level values M; and M, for pixels in R; and R;.
Thereafter, calculate a new threshold value by using the below Eq. (8).
Repeat the steps until the difference H for consecutive iteration is min-
imum than a pre-defined parameter Hj.

1
HZE(Ml + M) ®
Therefore, the output of adaptive thresholding is signified by Sj.

3.2.3. Fusion based on correlation coefficient

A correlation coefficient is a definite measure that quantifies the
linear relationship strength among two variables. Here, the output of an
active global contour model V; and output of gradient-based adaptive
thresholding S, are fused utilizing correlation coefficient and output for
layer segmentation is signified by L4, where

if C(Vq,Sq) = 1
if C(Va,Sq) # 1

If the correlation coefficient,C of outputs V;,S, is not equal, then take

the neighboring pixels of segmented outputs V; as well as S; select the
majority pixel number based upon voting.

_IVa
La= { Majority voting based solution ®

3.3. Feature extraction

Feature extraction is a method where an image having a large
number of pixels is proficiently represented in such a way that fasci-
nating parts of an image are captured efficiently. Here, L, is considered
as an input and image level features, texture features as well as layer
specific features are extracted from Lg.

3.3.1. Image level features

Firstly, extractions of image-level features from segmented layers are
carried out by involving FFT as well as wavelet coefficients.

(i) FFT: Here, features of the retina are extracted based on a periodic
function with FFT, which is represented below,

E, = Zﬂf.e(—ZanJ/K) (10)

Here, K indicates the total of boundary points and the time is denoted
by J. Fourier coefficients are signified by 4, and it is formulated as,

K
I = 11< /0 I (J).e 2 dy a1

Where, [, implies an extracted image level feature from the
segmented output. E; denotes the FFT feature.

(ii) Wavelet coefficient feature: A wavelet is a wave-like oscillation
having an amplitude that starts at zero, maximizes or minimizes and
thereafter returns to zero one or numerous times. The wavelet feature is
expressed by,

1 /[v—w
E,=26 12
25(5) (12

Here, the scaling factor is indicated by &, w denotes a shifting factor, v
signifies a real integer and a wavelet feature is represented by E,.

3.3.2. Texture feature

Texture is a vital part of human visual perception and it is utilized in
several computer vision methods. Here, LGP and proposed SIH are
considered for the extraction of texture features.

(i) LGP: LGP is a fundamental and intrinsic property of human visual
perception, which is generally utilized for characterizing the several
local semantic frameworks of an image. An expression of LGP is given
by,
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Fig. 2. The architecture of Deep CNN.

Pu,v(xryyr) = I(Dz - 5) 2F (13)
Here, P,,(x;,y,) this signifies the LGP feature at the center pixel
location (x;,y,), u and v are radius and gradient values. An average set of

v gradient values is formulated by, F = (%) > oD.. LGP feature is

indicated by Ej.

(ii) Proposed SIH.

The SI captures the structure of 2nd order image in an incessant
period that permits to overview of the distributions of curvature in a
histogram [32].

By applying linear kernel in Gaussian aperture function, the equation
is expressed as,

k1(b,A) =gig+Z 14)

Here, 1 denotes the width of the Gaussian kernel and b indicates the
spatial coordinates.

Then, by applying a sigmoid kernel in the Gaussian aperture func-
tion, the equation is formulated by,

k2(b, 4) = tanh(y.g%g + i) 15)
Thereafter, applying polynomial kernel in Gaussian aperture func-

tion, the equation is given by,

x3(b.2) = (pg"g +Z) (16)

Where, Z and f are constants. Therefore, the modified equation ob-
tained for the proposed SIH is mentioned as multi kernel equation,
which can be formulated as,

x1(b, 4) + k2(b, 1) + K3(b, 1)

b,2) = 17
k(b,4) 3 a7n
An output of the proposed SIH feature is denoted by E, .
Thus, an extracted image is given by,
X4 = {Eq, Es, E3,E4} (18)

3.3.3. Layer specific features

Here, the features like reflectivity, thickness, uniformity, smooth-
ness, mean, variance and area are extracted.

(i) Reflectivity: This feature is utilized for extracting two segments
like the thickest portion of the retina and it is denoted by k;.

(ii) Thickness: The distance between an upper and lower retinal

surface and it is indicated by k.

2
Vi =—S+— 19)

Here, ¢(O;, K,) are known as harmonic functions.

(iii) Uniformity: Uniformity is defined as a maximal value reached
when all the intensities are equal. It is signified by k3.

(iv) Smoothness: This feature decreases the noises or produces a low
pixilated image and it is revealed by k4.

(v) Mean: Mean value is the total pixel values divided by the overall
count of pixel values whereas mean is represented by ks.

1 m
ks=—3 La (20)

Here, m indicates the total amount of images and output segmented
layer is denoted by Ly .

(vi) Variance: It is a square of the standard deviations in the values
of input or output images and the variance is expressed by k.

e

1 m
&ﬁ;;@r&) (21)

Where, ks indicates the mean.

(vii) Area: The area of an image is defined as a space enclosed within
the perimeter or the boundary of a given image and it is denoted by k.

Then, layer-specific features are applied to each extracted image and
hence the expression is given as follows.

Wi = {ky. ks, ks, ks ks, ke, ky} (22)
Wa = {ky, ko, ks, ke, ks, ke, ky} (23)
Wa = {ky, ks, ks, kg, ks, ke, ky } 24)
Wi = {ki, ko, ks, ka, ks, ke, k7 } (25)

Therefore, the feature vector output is represented by,
Wy = {Wy, Wy, W3, Wy} (26)
3.4. DME detection using proposed HBAO-Based deep CNN

Detection of DME is performed by the proposed HBAO, which is

trained by deep CNN. A major purpose of utilizing deep CNN is that it
offers efficient detection and classification. Here, detection of DME is
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Table 2
Experimental parameters.
Parameters Deep NN CNN OCTD-Net G-AT-AC+ALSMO-GAN SEDense Akash Tayal., et al HE-CNN 3D-CNN Proposed SIH+HBA
0O-based deep CNN
Epoch 100 100 100 100 100 100 100 100 100
Batch size 32 64 32 32 32 32 32 32 64
Learning rate 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Convolutional layers 3 3 3 3 3 3 3 3 4
Pooling layers 3 3 3 3 3 3 3 3 4
Optimizer adam adam adam adam adam adam adam adam adam
output and outputs attained from deep CNN are represented by Tg; and
Tgble 3 By, respectively.
Disease Types.
Type of Disease Total images 3.4.2. Training of deep CNN utilizing proposed HBAO
CMD 287 HBA solves difficult problems of optimization with various local
DRT 73 areas as well as it has better convergence speed and balancing of
}S)g)r 2; exploration and exploitation phases. AO performs the hunting action of
TRD 28 Aquila at every step. Initially, the search space is selected and explored

carried out, which results in normal or abnormal.

3.4.1. Architecture of deep CNN

CNN is a sort of artificial neural network that involves a convolu-
tional layer along with non-linear, fully connected and pooling layers to
form a deep CNN [36]. Deep CNN architecture is delineated in Fig. 2.
The layer types of Deep CNN are described below.

Convolutional layers: Here, plentiful filters glide over a layer for
particular input data. After that, an evaluation of the output layer is
carried out by summation of element-by-element multiplication of filters
as well as the receptive field of an input. It is formulated as,

9—1 a9 a9
[0 . )

(ABE),, = (@), + D2 D0 D0 (W) *(ABFY),,,., @)

[ —

In the above equation, a permanent feature map or output of qq™
convolutional layer, which is centered as (%,A) is represented by
(ABY), ,. The weight and bias of qgg™ the convolutional layer are W§},

and Q?. An output of the previous (qq — 1)‘h layer develops the input to
mm" the convolutional layer and a convolutional operator is denoted by
* . Likewise, 9, y and w indicates the feature maps, which perform as an
output of each convolutional layer.

Pooling Layer: This layer diminishes the dimension of an input
although, it is non-parametric and performs stable operations.

Fully connected layers: The data from the pooling layer is thereafter
fed to the fully connected layer. This layer operates as the classifier and
it is significant to train non-linear incorporation of characteristics. An
output obtained from deep CNN is signified by By. The fully connected
expression is given by,

FCl' = @ (ABY)

(aBg ) (28)
hty Mo

Aquila position encoding

To attain the optimum solution in a search space, the learning
parameter is trained until achieving the optimal solution, in which the
learning parameter is indicated Z.

Fitness function

The difference between destination output and achieved output from
the deep CNN is known as fitness function and it is illustrated by,

. wf’l wgq wgq qq
with Z(qzl Z;(:m‘{q Zm:,wgq (lyoﬂ)w){

1 m
FF = m Z [Tgs — Bd] > (29)
o

Where the total number of samples is signified by m, destination

within a diverging space whereas exploitation occurs within a
converging space and then finds the optimum solution. Hence, deep
CNN is tuned for effectual operations, employing the proposed HBAO.

Step 1: Solution Initialization

AO is a population-based optimization approach in which a tenet for
optimization initializes with a candidate solution population (H) in a
search space my, x n, as revealed in Eq. (30). A supreme solution is
considered as an optimal solution in all iteration, which is illustrated by,

(30)

Here, an existing candidate solution, which is generated randomly by
Eq. (28), the location of d™ the solution is represented by Hy, the overall
candidate solution population is indicated by o and the problem
dimension is presented by m,. It is given as,

Hyy = rand x (UUff - LLff) + LLg, d
(€3]

Here, a random number is signified by rand UUy and LL; implies ff*
the upper and the lower bound of the known problem.

Step 2: Evaluate Objective Function

Here, a difference between targeted output and obtained output from
deep CNN is evaluated utilizing Eq. (29).

Step 3: Expanded Exploration (H;).

Here, an Aquila identifies the prey region and elects the finest region
for haunting by higher ascent with vertically bending down. Hence, AO
broadly identifies the region of search space having the prey from higher
ascent. The expression is represented below.

e
Hi(e + 1) = Hper(€) X (1 - N) + (Hy (&) — Hyexe(e)*rand ) (32)

Here, H; (e + 1) is the next iteration solution e that is created by the
first search method (H;). Hy.(e) is an obtained finest solution until e

iteration, which shows the position of prey. The equation (1 — ﬁ) is
utilized for controlling the expanded or exploration search concerning
the count of iterations. The mean value position of present solutions is
indicated by Hy(e). Random value is signified by rand and the value
ranges between 0 and 1. Maximal iteration and present iteration are

implied by N and e. The equation (29) is then simplified as follows,

Hi(e + 1) = Hye(e) [(1 - 1%) - rand] +Hule) (33)
Where,
Hy(e) = % > "Ha(e) (34
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(©) (d)

(2) (h)

Fig. 3. Experimentation outcomes of (a) input image-1, (b) input image-2, (c) filtered image-1, (d) filtered image-2, (e) segmented image-1, (f) segmented image-2,
(g) extracted image-1 of LGP feature, (h) extracted image-2 of LGP feature.
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Fig. 4. Assessment based upon 1st level classification (a) Testing accuracy, (b) Specificity, (c) Sensitivity.

Therefore, equation (37) becomes,

]. 0
— H, =H
0 ; a(e) 1(e) (35) Hi(e+1) = Hyprey(e) (1 +E xmmy; x T) —E xmy; x T x Hy(e) (44)
Then assume, o = 1 so the equation becomes, Hi(e) = Hj(e+1) — Hyprey(e) (1 +E xmmy x T) (45)
e e = Exmy; xT
Hi(e +1) = Hyar(e) [ (1 _ﬁ) ~ rand| + Hy e) (36)
Hipey(€) (1 +E xrand x T) —H;(e +1
The above equation is an updated equation of AO. Then, from honey H(e) = 2 w(e)( E x rand x T) 1 ) (46)
badger,
Substitute equation (43) in (33),
Hipew = Hiprey + E x 7 X T X dis (37) .
The above equation H; ., denotes a honey badger’s new position and Hi(e+1) = Hyes(€) [(1 B ITI)
Hi,r, signifies the location of prey. E indicates the disturbance and T is ~ ran d] n Hiprey(€) (1+Exm; xT) —Hi(e+1) 7
the time variation. rn; is the random number ranging between 0 and 1. Exm; xT
The location of prey is identified based on distance information dis
where, Hi(e+1) e
Hie+1) JrE ; m; xT = Hoee(€) [(1 _N)
dis = Hiprey — Py (38) - mnd] . Hiprey(€) (1 +Exm x T) 48)
Then, the equation becomes, Exm; xT
Hinew = Hiprey + E X 1117 X T X (Hiprey — Pa) (39) - 1 (E><rand><T+l)7H 1_8
et D anaxt @ {17y
Hinew = Hiprey(1 + E x iy x T) —E x rny x T x Py (40) 7rand] N [Hlp,ey(e) (1 +E x rand x T)}
Exrand x T
Let, Hipew = Hi (e + 1) (41
Inew 1( ) (41) (49
Hiprey = Huprey (€) (42)
P; =Hj(e) (43)
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Fig. 5. Analysis based on 2nd level classification (a) Testing accuracy, (b) Specificity, (c) Sensitivity.

250

Exm; xT
Hi(e+1) = (E x rny ><T+1)}
(E x rny % T)Hpex () [(1 - ﬁ) - rand] + Hiprey(€) (1 +E x my x T+1) (50)
Exm; xT
The final update equation of HBAO is given by,
(E x rn7 x T)Hpest(€) [(1 - 1%) - rand] +Hiprey(e) (1 +Exrny; x T+ 1)
H 1) = 1
ie+1) Exrm, xT+1) G
ques above the targeted prey, and then it arranges the land and assaults
H E_ 1 ifrne <0.5 (52) the prey. Here, the chosen region for targeted prey is identified by AO
ere, b= -1 else and then prepared for an assault. The expression is illustrated by,
T=C x exp (e—_e> (53) Hy(e+ 1) = Hpege(e) x Levy(Y)+Hy(e) + (rr — s;)*rand (54)

Here, Hy(e + 1) is a solution of successive iteration e that is obtained

Here, ey, signifies a maximal count of iterations and C, is constant,
where C; > 1. The randomly selected number is denoted by rng.

Step 4: Narrowed Exploration (H,).

In the secondary method.

(Hz2), an Aquila identifies the prey region from higher soar and cir-

10

by H,, dimensional space and levy flight distribution function is signi-
fied by Y and Levy(Y), which is computed by Eq. (52). Randomly chosen
solution in a range among [1 o] at the d* iteration is implied by Hy (e).
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Fig. 6. Analysis based upon 1% level classification a) Testing accuracy, b) Specificity, c) Sensitivity.

In (Hs), after the prey region is founded exactly, Aquila prepares for
alighting and then assaults. The Aquila drops in a vertical manner
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Where, t, is the constant value set to 0.01 whereas p; and g, are the
random numbers among O and 1. y, is computed by the following
expression,

Pa(1+7,) x sine (%)

g
pa ((Hzn)) X 7. X 2 2

Here, 7. is constant value set to 1.5. Equation (51), . and s, are
utilized to represent a spiral formation in search that is formulated as
below,

Ho = (56)

I, = 2, % cos(6) (57)

S5 = 2, x sin(6) (58)
Where,

Ze = Ze + Wy x D; (59)

0=, x D;+06; (60)
3xrm

6, = 5 (61)

Here, z.; the value ranges from 1 to 20 for the invariable count of
search cycles and W, is the least value that is set to 0.00565. D; is the
integer from 1 to search spacious dimension m, and wj, is the least value
fixed to 0.005.

Step 5: Expanded Exploitation (Hs).

11

having prime assault. Here, AO utilizes the chosen targeted region to
move closer to prét and assaults. It is represented by,

Hs(e +1) = (Hpese(e) —Hum(e) ) x ay —rand+ ((UU — LL) x rand + LL )
X 0p
(62)

Here, H;(e + 1) is the successive iteration solution e that is obtained
by (Hs), Hpes:(€) represents an approximative position of prey up to d
iteration best solution is attained and Hy (e) signifies the current solution
mean at d" iteration, rand is randomly selected value among 0 and 1.
Exploitation adjustment parameters are denoted by a, and 9, that is set
to least value 0 and 1 UU and LL indicates upper and lower bound of a
known problem.

Step 6: Narrowed Exploitation (Hs).

In the fourth method (Hy4) , the Aquila moves about nearer to prey
and then assaults prey above the land in accordance with speculative
motions. Here, AO assaults a prey in the last location. It is mathemati-
cally represented as,

Hy(e+ 1) = Qs X Hyexr(e) — (S1H(e) x rand ) — SzLevy(Y) +rand x Iy
(63)

Here, Hy(e + 1) is a successive iteration solution e that is formed by
(Hs4). Qs represents a quality function, which is utilized to balance the
search plans. Several movements of AO are signified by J;, whereas J, is
the flight slope of AO. J; is used for tracking the prey, which is achieved
by equation (62) and 3 is utilized for following the prey while eloping
from the initial position to the final position, which is attained by the
equation (63), H(e) is the current solution of e iteration.
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Fig. 7. Analysis based on 2nd level classification a) Testing accuracy, b) Specificity, c¢) Sensitivity.

2xrand ()-1
a2

Qle)=e N (64)
Jp=2xrand()—1 (65)
X, — _¢

[y =2 % (l N) (66)

The above equation (61), Q(e) indicates the quality function value at
e iteration.

Step 7: Termination

The top-mentioned steps are continuously done till an optimum so-
lution is obtained.

3.5. DME classification utilizing proposed HBAO-Based deep CNN

If DME is detected as abnormal, then classification is performed,
Here, DME is classified into retinal thickening, serious retinal detach-
ment, cystoid macular, posterior hyloid traction, and tractional retinal
detachment categories. The classification is performed by deep CNN that
is tuned by the proposed HBAO. The deep CNN training utilizing the
proposed HBAO is already expounded in section 3.4.2.

4. Results and discussion

This portion elucidates about outcomes and deliberations of the
proposed SIH+HBAO-based deep CNN with respective measures of
evaluation like accuracy, specificity and sensitivity. Moreover, experi-
mentation setup, description of the database, evaluation measures and
experimental outcomes, analysis based on performance as well as
comparative techniques and comparative techniques discussion are
described beneath.

12

4.1. Experimentation setup

An implementation of the proposed approach for the detection and
classification of DME is executed in the MATLAB tool. Table 2 shows the
experimental parameters of the proposed method.

4.2. Database description

The Optical Coherence Tomography Image Retinal Database
(OCTIRD) database [35] comprises OCT images catalogued into various
diseases and has high-resolution images in jpeg format, which could be
downloaded as zip files. This database comprises more than 500 OCT
volumetric scans of the spectral domain, comprising of four categories
namely, Normal, Age-related Macular Degeneration, Macular Hole,
Central Serous Retinopathy (CSR) and DR. Type of disease identified is
Congenital muscular dystrophy (CMD), dentato-rubro-thalamic tract
(DRT), Pulmonary hypertension (PHT), Sepiapterin reductase deficiency
(SRD), and Treatment-resistant depression (TRD) based on classes.

Table 3 shows the types of diseases and total images of each disease.

4.3. Performance measures

The proposed technique for DME detection and classification is
investigated for its performance using evaluation measures mentioned
below in subsections.

4.3.1. Testing accuracy
Accuracy is defined as the closeness of the calibrated value to the
known or standard value. It is formulated by,
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L+

_ 67
t+t+f+f ©7

a

Here, t, symbolizes true positive, t, implies true negative. f,
Mentioned false positive and f, false negative, correspondingly.

4.3.2. Sensitivity
It is a true positive rate signifies the possibility of positive test cases,
conditioned on actually being positive and hence it is represented by,
— t/’
t, +f

(68)

e

4.3.3. Specificity
It is a true negative rate defined as the possibility of negative test
cases, conditioned on actually being negative and is revealed by,

(69)

4.4. Experimental results

Experimentation outcomes of the proposed DME detection and
classification approach are illustrated in Fig. 3. Fig. 3 a) delineates an
input image-1and input image-2 is depicted in Fig. 3 b). Fig. 3 c) reveals
the filtered image-1 whereas Fig. 3 d) portrays filtered image-2.
Segmented image-1 is illustrated in Fig. 3 e) and Fig. 3 f) represents
segmented image-2. Fig. 3 g) depicts an extracted image-1 of the LGP
feature whereas Fig. 3 h) portrays an extracted image-2 of the LGP
feature.

13

4.5. Performance analysis

This portion interprets an assessment of performance by the pro-
posed SIH+HBAO-based deep CNN technique concerning 1% level
classification (detection of DME) and 2™ Jevel classification (classifi-
cation of DME) level classifications with diverse epoch sizes.

4.5.1. Analysis based on 1% level classification

Fig. 4 illustrates an assessment of the proposed SIH+HBAO-based
deep CNN by changing iterations from 50 to 250 with diverse epoch
sizes. Performance analysis based upon testing accuracy by varying it-
erations with diverse epoch sizes is revealed in Fig. 4 a). When iteration
= 50, the proposed SIH+HBAO-based deep CNN model with epoch size
100 is 0.839. A performance analysis based upon specificity by varying
iterations with diverse epoch sizes is represented in Fig. 4 b). When
iteration = 50, the performance analysis of specificity for the proposed
model with epoch size 100 is 0.833. Fig. 4 ¢) shows the performance
analysis based on sensitivity by varying iterations with different epoch
sizes. For iteration = 50, the sensitivity for the proposed model with
epoch size 20 is 0.785.

4.5.2. Analysis based on 2™ level classification

Fig. 5 elucidates an assessment of the proposed SIH+HBAO-based
deep CNN by changing iterations from 50 to 250 with diverse epoch
sizes. Performance analysis based upon testing accuracy by varying it-
erations with diverse epoch sizes is shown in Fig. 5 a). When iteration =
50, the performance analysis of testing accuracy for the proposed
SIH+HBAO-based deep CNN model with epoch size 100 is 0.835. Fig. 5
b) reveals the performance evaluation of the proposed SIH+HBAO-
based deep CNN based upon specificity by varying iterations with
different epoch sizes. While iteration = 50, the performance analysis of
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specificity for the proposed model with epoch size is 0.827. Fig. 5(c)
shows the performance analysis based on sensitivity by varying itera-
tions with diverse epoch sizes. For iteration = 50, the performance
analysis of sensitivity for the proposed model with epoch size 100 is
0.834.

4.6. Comparative techniques

The current techniques like Deep NN [1], CNN [2], OCTD-Net [3], G-
AT-AC+ALSMO-GAN, SEDense [44], and Akash Tayal., et al. [7], HE-
CNN [49], and 3D-CNN [50] are examined with the proposed SIH+H-
BAO-based deep CNN to prove the effectiveness of the proposed model.

4.7. Comparative analysis

This section describes a comparison assessment of the proposed
SIH+HBAO-based deep CNN concerning evaluation measures by
altering a percentage of training data.

4.7.1. Andlysis based upon 1* level classification

The comparison evaluation of the proposed SIH+HBAO-based deep
CNN based on 1%-level classification considering evaluation measures is
revealed in Fig. 6. An evaluation of the proposed SIH+HBAO-based deep
CNN with respective to testing accuracy is interpreted in Fig. 6 a). A
testing accuracy achieved by the proposed method is 0.912 whereas
other techniques like Deep NN, CNN, OCTD-Net, G-AT-AC+ALSMO-
GAN, SEDense, Akash Tayal., et al, HE-CNN, and 3D-CNN attained the
values of 0.847, 0.867, 0.885, 0.895, 0.839, 0.858, 0.876, and 0.886 for
90% of training data. Fig. 6 b) interprets an estimation of the proposed
SIH+HBAO-based deep CNN regarding specificity. The specificity ach-
ieved by SIH+HBAO-based deep CNN is 0.918 whereas other techniques
Deep NN, CNN, OCTD-Net, G-AT-AC+ALSMO-GAN, SEDense, Akash
Tayal., et al, HE-CNN, and 3D-CNN attained 0.847, 0.866, 0.894, 0.904,
0.838, 0.858,0.885, and 0.895 for 90% of training data. An evaluation of
the proposed SIH+HBAO-based deep CNN with respective sensitivity is
delineated in Fig. 6 c). The sensitivity acquired by the proposed
SIH+HBAO-based deep CNN is 0.917 whereas the other techniques
Deep NN, CNN, OCTD-Net, G-AT-AC+ALSMO-GAN, SEDense, Akash
Tayal., et al, HE-CNN, and 3D-CNN achieved 0.847, 0.867, 0.894, 0.904,
0.904, 0.839, 0.858, and 0.886 for 90% of training data.

4.7.2. Analysis based upon 2" level classification

Fig. 7 elucidates the comparison assessment of the proposed
SIH+HBAO-based deep CNN based upon the 2nd-level classification.
Fig. 7 a) reveals an estimation of the proposed SIH+HBAO-based deep
CNN with respective to testing accuracy. From the figure, it is observed

Accuracy: 90.57%

Output Class

Target Class

a)
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that the testing accuracy attained by the proposed SIH+HBAO-based
deep CNN is 0.907 whereas other techniques like Deep NN, CNN, OCTD-
Net, G-AT-AC+ALSMO-GAN, SEDense, Akash Tayal., et al. HE-CNN, and
3D-CNN attained 0.842, 0.862, 0.870, 0.890, 0.834, 0.853, 0.861, and
0.881 for 90% of data. An estimation of the proposed SIH+HBAO-based
deep CNN with respective specificity is shown in Fig. 7 b). The speci-
ficity achieved by the proposed SIH+HBAO-based deep CNN is 0.913
whereas other techniques Deep NN, CNN, OCTD-Net, G-AT-
AC+ALSMO-GAN, SEDense, Akash Tayal., et al. HE-CNN, and 3D-CNN
achieved 0.835, 0.854, 0.882, 0.892, 0.827, 0.846, 0.874 and 0.883 for
90% of training data. Fig. 7 c) reveals an estimation of the proposed
SIH+HBAO-based deep CNN with respective sensitivity. The sensitivity
attained by SIH+HBAO-based deep CNN is 0.912 whereas the other
techniques Deep NN, CNN, OCTD-Net, G-AT-AC+ALSMO-GAN, SED-
ense, Akash Tayal., et al. HE-CNN, and 3D-CNN obtained 0.835, 0.855,
0.873, 0.892, 0.827, 0.847, 0.864, and 0.883 for 90% of the training
data.

4.8. Algorithmic analysis

The several algorithms taken for evaluation include, Sail Fish Opti-
mizer (SFO) [30]+deep CNN, Crow Search Algorithm CSA [31] +deep
CNN, AO +deep CNN and HBA +deep CNN. Furthermore, an algo-
rithmic evaluation is carried out concerning evaluation measures by
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Fig. 10. Analysis of the proposed model in a noisy environment.
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Table 4
Comparative discussion of SIH+HBAO-based deep CNN.
Training Classifications Metrics/ Deep CNN OCTD-
g Methods NN Net
data =
90%
1st Accuracy (%) 0.847 0.867 0.885
levelclassification Specificity (%) 0.847 0.866 0.894
Sensitivity (%) 0.847 0.867 0.894
2nd Accuracy (%) 0.842 0.862  0.870
levelclassification Specificity (%)  0.835 0.854  0.882
Sensitivity (%) 0.835 0.855 0.873

G-AT- SEDense  Akash HE- 3D- Proposed
AC+ALSMO-GAN Tayal., et al CNN CNN SIH+HBA
O-based
deep CNN
0.895 0.839 0.858 0.876 0.886 0.912
0.904 0.838 0.858 0.885 0.895 0.918
0.904 0.839 0.858 0.886 0.895 0.917
0.890 0.834 0.853 0.861 0.881 0.907
0.892 0.827 0.846 0.874 0.883 0.913
0.892 0.827 0.847 0.864 0.883 0.912

varying population sizes from 20-100.

Fig. 8 represents the algorithmic estimation of the proposed algo-
rithm with respective performance measures by altering the population
sizes. An evaluation utilizing testing accuracy is shown in Fig. 8 a).
When the population size is 100, the testing accuracy attained by
HBA+deep CNN is 0.905. An assessment using specificity is delineated
in Fig. 8 b). When the population size is 100, the specificity achieved by
HBA +deep CNN is 0.908 whereas other algorithms such as SFO +deep
CNN, CSA +deep CNN, AO +deep CNN and HBA +deep CNN achieved
0.857, 0.878, 0.882 and 0.891. An evaluation utilizing sensitivity is
illustrated in Fig. 8 c). The sensitivity attained by HBA +deep CNN is
0.912 whereas the existing approaches acquired 0.852, 0.876, 0.889 and
0.901 when the population size is 100.

4.9. Confusion matrix

Fig. 9 represents the confusion matrix for the 1st and 2nd classifi-
cations. A table called a confusion matrix is used to assess the perfor-
mance of a classification algorithm. A confusion matrix is used to display
and summarize a classification algorithm’s performance.

4.10. Analysis of the proposed model in a noisy environment

Fig. 10 shows the analysis of the proposed model in a noisy envi-
ronment. Multi-modal optimization algorithms in noise environments
are of great significance. When the Gaussian white noise is 0.1, the
testing accuracy obtained by the proposed SIH+HBAO-based deep CNN
is 0.884 whereas other techniques Deep NN, CNN, OCTD-Net, G-AT
AC+ALSMO-GAN, SEDense, Akash Tayal., et al, HE-CNN, and 3D-CNN
achieved 0.822, 0.841, 0.858, 0.868, 0.814, 0.833, 0.850, and 0.859,
respectively. The proposed method provided a more accurate location of
the optimum point and more local extreme points in a noisy environmen
t. So, the Proposed SIH+HBAO-based deep CNN method is better for
noisy environments than the existing methods.

4.11. Comparative discussion

The comparative discussion of the newly introduced SIH+HBAO-
based deep CNN is shown in Table 4. Using 1st level classification, the
supreme accuracy of 91.2 %, the sensitivity of 91.7 %, and specificity of
91.8 % are observed by SIH-+HBAO-based deep CNN by altering training
data 90 %. Concerning 2nd level classification, the augmented accuracy
of 90.7 %, the sensitivity of 91.2 %, and the specificity of 91.3 % are
noted by SIH+HBAO-based deep CNN when considering 90 % of
training data. Besides, by combining the HBA, and the AO algorithm, the
devised SIH+HBAO algorithm achieved enhanced exploration and
exploitation capabilities and minimised the training speed.

5. Conclusion
DME is developed in diabetic patients with an enhancement of DR. It

is formed by fluid accumulation in the macula, which directs to
impairment of vision or blindness. Therefore, earlier detection and
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classification would assist ophthalmologists in protecting DME patients
in a perfect manner. This paper proposed a proficient detection and
classification technique for DME based on the proposed SIH+HBAO-
based deep CNN. Firstly, the input image is considered from a particular
dataset followed by pre-processing is done utilizing a Gaussian filter.
Then, layer segmentation is done by Correlative-based gradient global
thresholding with active contour. After, layer segmentation, extraction
of features is carried out. Additionally, texture features like LGP and
proposed SIH with multi-kernel are extracted. The proposed SIH with
the multi-kernel feature is designed by modifying the shape index his-
togram with multi-kernel. Finally, DME 1st level and 2nd level classi-
fication is conducted utilizing Deep CNN, which is trained to employ the
HBAO algorithm. In 1st level classification, DME is classified as normal
or abnormal cases whereas 2nd level, the abnormal cases are further
classified employing Deep CNN, which is tuned using the HBAO algo-
rithm. The proposed HBAO algorithm is devised by a combination of
HBA and AO. Moreover, the SITH+HBAO-based deep CNN has acquired a
maximal accuracy of 0.912, sensitivity of 0.913 and specificity of 0.917
for 1st-level classification when considering 90 % of training data.
Future research will concentrate on the combination of DR and DME
problems in order to improve DME identification and classification.
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