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Abstract
Background Nonlinear Energy Sinks (NESs) have been successfully deployed to control hazardous stall-induced aeroe-

lastic responses.

Purpose This study investigates the effectiveness of NES, its parameters and location on airfoil for optimal suppression of

stall flutter oscillations.

Methods A mathematical model encompassing a pitch-plunge airfoil is considered. A NES is attached to the chord of the

airfoil. Through succinct numerical simulations, we demonstrate the role of NES in possibly reducing the oscillatory

instabilities that arise due to a dynamic stall behaviour.

Results We show that amplitude reductions of 30% are possible upon suitably tuning the NES in both deterministic and

stochastic flow cases. Heuristically extending the scope of study to multi-NES resulted in minimal improvement in the

suppression of oscillatory instabilities.

Conclusion This is possibly the first study to successfully demonstrate amplitude reductions in stall-induced aeroelastic

instabilities using NESs. We believe that the findings presented in this study may augment safer operating conditions for

aeroelastic systems fraught with dynamic stall-driven instabilities.

Keywords Stall flutter � Dynamic stall � Nonlinear energy sink

Introduction

With the growing need for slender structures with

maneuverability and performance, operating elastic struc-

tures under fluid loading is a perfect recipe for encoun-

tering dynamical instabilities [1]. The dynamical

(aeroelastic) instabilities pose grave risks to the structural

integrity by either causing abrupt failure through the first

passage of time or due to gradual accumulation of fatigue

damage [2]. There has been close attention provided to

aeroelastic structures such as aircraft wings, wind turbine

blades, helicopter blades, micro aerial vehicles etc., par-

ticularly with regards to reporting and investigating

potential instabilities [3].

The problem of studying aeroelastic instabilities is a

radically different paradigm if nonlinearities and stochas-

ticity are present in the underlying system [4]. While

nonlinearities may arise in the structure and/or the flow -

identifying these nonlinearities, as well as modeling them,
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can be demanding tasks [5]. Usually, structural nonlinear-

ities under attached flow conditions give rise to the clas-

sical flutter instability [6] characterized as a phase-locking

behavior by Venkatramani and co-workers [7]. Aerody-

namic nonlinearities, on the other hand, are more complex

and occur due to unsteady separated flow around the airfoil

[8] at high angles of attack (AoA). The periodic separation

and re-attachment of flow around the airfoil is called

dynamic stall, and stall flutter is the instability that arises

due to the interaction between the airfoil and the dynamic

stall nonlinearity. Typically, onset of dynamic stall is

marked by a rise in the lift beyond the static stall angle,

mostly due to the formation of a vortex at the leading-

edgeof an airfoil. Next, the leading-edgevortex convects

towards the trailing edge causing an additional generation

of lift, manifesting a delay in stall, while pitching moment

reduces sharply. Lastly, the vortex is shed from the trailing

edge causing a significant reduction in the lift [7]. To

provide a better visualization of this aerodynamic/aeroe-

lastic phenomena to a reader, a schematic of the same is

provided in Fig. 1. The aeroelastic outcome of above set of

events, i.e. stall flutter is characterised by violent torsional

oscillations that occur via a sub-critical Hopf bifurcation

[9]. For more details into the numerical representation of

dynamic stall and its associated nonlinear dynamics, one

can refer to the detailed study carried out by Venkatramani

and co-workers [10]. The large amplitudes of oscillation of

a structure under stall flutter, as well as the corresponding

fatigue damage levels, make stall flutter a more dangerous

phenomenon as compared to classical flutter [11].

Stochasticity is yet another complexity that an aeroe-

lastic system is often fraught with. The uncertainty/

stochasticity may be present in the structural parameters

[12] or the input flow [4, 13, 14]. Given that the in-field

conditions are ridden with randomly time-varying wind

gusts, it is typical in the hitherto literature to emphasize on

noise-induced instabilities and transitions in nonlinear

aeroelastic systems [14]. The impact of these aeroelastic

instabilities on the structural integrity cannot be underes-

timated. Indeed, scenarios involving subcritical transitions

[11], transient growth [15], and discontinuity-induced

bifurcations [10] exist - more so in stall flutter problems -

as illustrated by Venkatramani and co-workers [11, 14].

Such abrupt and premature dynamical transitions accrue

large amounts of fatigue damage.

Noting the same, there have been attempts by Venka-

tramani et al. to develop a suite of measures that can

foretell an impending random LCO [2, 16, 17]. However,

these methods work only under specific types of noise-

induced intermittency and only under structural (polyno-

mial) nonlinearities. Attempts were made to use the critical

slowing down (presaging a Hopf bifurcation) to warn of

catastrophic aeroelastic transitions early [18, 19]. However,

these techniques were developed under deterministic con-

ditions under tailored structural nonlinearities. In other

words, a generalized aeroelastic instability prediction

technique seems to be in its developmental stage in hitherto

works [20]. Given that instability prediction in aeroelastic

systems - especially under dynamic stall conditions

remains elusive, it is pragmatic to counter these instabili-

ties by developing suppression strategies. To that end,

several methods of suppression of vibratory instabilities

have been documented in hitherto literature. Suppression of

oscillatory instabilities - both by an active and passive

strategy - is ubiquitously found in other engineering sys-

tems [21, 22]. Active methods of suppression involve the

use of actuators and sensors in a feedback loop, and recent

work has also seen the use of proportional-integral

observers/controllers [23, 24]. However, active methods

take a toll on the aircraft payload [25]. This is accounted

for by using passive methods of suppression such as the

linear tuned vibration absorber, and the nonlinear energy

sink, which are designed as lightweight additions to the

primary system - i.e., the airfoil [26].

Success in mitigating aeroelastic instabilities was

achieved by using a linear tuned vibration absorber

(LTVA) and in turn, showed reductions in LCO amplitude

and an improvement in the flutter speed [27]. However, the

LTVA lost effectiveness when it was detuned [27]. In order

to tackle this problem, the use of a nonlinear energy sink

(NES) was proposed. The NES uses an essentially non-

linear stiffness, which allows it to suppress vibrations over

a broad band of frequencies [28]. Most of the energy is

transferred from the primary oscillator to the NES in a

passive and irreversible manner [29, 30]. This is referred to

as Targeted Energy Transfer (TET) [26, 31]. This passive

method of suppression has been applied in various

mechanical systems in several forms [32, 33], summaries

of which can be found in [34, 35].

Fig. 1 A schematic of stall instability and flow separation leading to

high amplitude torsional oscillations in an airfoil. The streamlines

represent the flow of air around the stalled airfoil. Stall instability

consists of several stages or modules [8] eventually culminating in

dangerous high amplitude stall flutter oscillations
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Lee et al. [36] used the NES to suppress LCOs of a

pitch-plunge wing section subjected to steady aerodynam-

ics. They showed TET occurs via a 1:1 resonance capture,

stating that is feasible to partially or even completely

suppress aeroelastic instabilities using the NES. However,

the effectiveness of the NES has come into question in

recent years on using more rigorous models of aerody-

namic loading, such as quasi-steady aerodynamics [37].

Bichiou et al. [37] concluded that the NES has a limited

impact on delaying the onset of flutter or reducing LCO

amplitudes. Pidaparthi et al. [38] worked on NES designs

based on the stochastic optimization approach, and Perez

et al. [39] used the genetic algorithm to optimize a flap-

NES configuration and showed a reasonable amount of

suppression in the oscillation amplitude. Furthermore,

[30, 40, 41] demonstrated effective TET in stochastically

excited vibrating systems. Wu et al. [42] performed

vibration analyses and developed a method for stochastic

optimization of NES under random excitation, with some

success regarding the effectiveness of the NES as a sup-

pression method.

In the wake of minimal attention devoted so far in

suppressing oscillatory instabilities that arise in nonlinear

aerodynamic problems such as stall flutter, and noting the

importance of the same under stochastic wind conditions,

the present study aims to address this end of concern. To

that end, numerical simulations are performed in a NACA

0012 pitch-plunge airfoil subjected to nonlinear aerody-

namic loads (dynamic stall). The aerodynamic forces are

modeled using the well-established Leishman-Beddoes

(LB) stall model. We commence the investigations under

deterministic conditions. The bifurcation routes are estab-

lished. Key NES parameters are identified through para-

metric sweeps. We present scenarios wherein certain

pivotal NES parameters, hand-in-hand, with the structural

configuration can give rise to considerable amplitude

reductions in the instability regimes. Enarmed with these

insights, we unravel the effectiveness of NES in sup-

pressing stall-induced instabilities under stochastic wind

conditions. We show that the probabilistic nature of the

input wind can affect the performance of NES, in turn

underscoring the need for further research towards this end.

Furthermore, the application of multiple nonlinear energy

sinks in aeroelastic problems has been studied in hitherto

literature taking into consideration classical flutter by

Zhang et al. [43], observing similar TET characteristics and

suppression capabilities as the single NES case of Lee et al.

[25]. In order to provide a glimpse into possible future

work, we study the effectiveness of multiple NESs in a

deterministic stall-flutter problem.

The rest of the paper is organized as follows:

Sect. ‘‘Targeted Energy Transfer’’ provides a brief intro-

duction to the preliminary ideas of TET and the underlying

mechanism behind NES suppression of oscillatory insta-

bilities. Section ‘‘Mathematical Model’’ presents the

mathematical model of the aeroelastic system as well as the

Leishman-Beddoes model, and the Karhunen-Loeve

Expansion for stochastic flows. Section ‘‘Methodology’’

provides insight into the methodology adopted for the

study. Section ‘‘Results and Discussions’’ presents and

discusses the results obtained. The salient findings that

emerge from this study are summarized in Sect. ‘‘Con-

cluding Remarks’’. Lastly, preliminary studies into a mul-

tiNES-Airfoil system are undertaken, and the salient results

are outlined in Sect. ‘‘Preliminary Study into Multiple

NESs’’.

Targeted Energy Transfer

Targeted energy transfer (TET) refers to a unidirectional,

irreversible transfer of energy from a source to a sink, and

is observed in a wide range of physical phenomena [26]. In

the case of dynamical systems, TET employs a strongly

nonlinear, passive attachment (the NES) to a primary

system, in order to drastically alter the dynamics of the

same [26]. Upon externally applying loads to the primary

system, the NES allows for rapid transfer of energy to itself

- from where it is then dissipated due to the damping in the

system. The energy transfer is thus directed in a one-way,

irreversible method. A schematic detailing of the same is

provided in Fig. 2. The energy transfer between the pri-

mary system and the NES occurs when the instantaneous

frequencies of the two approach each other, achieving what

is known as internal resonance. Due to the frequency-en-

ergy dependency of the NES, the instantaneous frequency

of the NES is increased when energy is localized in it,

leading to a mismatch of frequencies with the primary

system, making the energy transfer unidirectional [44].

In Fig. 2, an NES is attached to the primary system, a

linear oscillator (LO). The stiffness and damping coeffi-

cients of the LO are k1 and c1 respectively, and those of the

Fig. 2 A sketch of a linear oscillator with NES attached. x1, _x1, x2 and
_x2 are the state variables of the linear oscillator and NES respectively
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NES are k2 and c2 respectively. We denote the masses of

the LO and NES as m1 and m2 respectively. The NES is

assumed to have no linear stiffness term. The equations of

motion of the coupled system are

m1 €x1 þ c1 _x1 þ k1x1 þ c2ð _x1 � _x2Þ þ k2ðx1 � x2Þ3 ¼ 0

m2 €x2 þ c2ð _x2 � _x1Þ þ k2ðx2 � x1Þ3 ¼ 0

�

ð1Þ

The essential nonlinearity of the NES (provided by the

cubic stiffness term) gives the NES leeway in resonance

frequency, i.e., there is no single resonance frequency as in

the case of tuned mass dampers [45]. This enables the NES

to engage in energy transfer across a broad band of exci-

tation frequencies. It helps to note that, analogous to linear

normal modes in vibrating systems, there exist nonlinear

normal modes (NNMs) - defined as synchronous oscillation

of the system [46]. It is the nonlinear interactions between

these NNMs and their energy dependencies that play a key

role in TET. An in-depth investigation into this is beyond

the scope of this study, however, excellent work on the

same can be found in [26, 44].

The work of Gendelman, Vakakis and co-workers

[47, 48] ascertained that the energy pumping phenomenon

in TET was a result of a 1:1 transient resonance capture,

i.e., where the internal frequencies of the primary system

and the NES match. Subsequently, the NES was applied to

Multi Degree-of-Freedom (MDOF) linear oscillators,

where it was shown that the NES could separately interact

with the multiple linear modes of the system and extract

energy from them through a series of resonance capture

cascades, resulting in robust broadband suppression of

oscillations [26].

Deriving impetus from this conclusion, the NES was

implemented in several other systems, particularly the Van

der Pol oscillator [49], in order to study the NES effec-

tiveness in the case of Limit Cycle Oscillations. On

observing suppression of LCOs, the NES was then applied

to in-flow airfoils. The NES suppression mechanism was

shown to be a series of transient resonance captures

between the modes of the wing and the NES, i.e., when the

NES and respective modal frequencies match and unidi-

rectional energy transfer is achieved [25].

The application of singular nonlinear energy sinks has

seen success in several mechanical systems, prompting the

entry of researchers into the avenues of varied NES con-

figurations, including parallel nonlinear energy sinks, or

multiple nonlinear energy sinks. Vaurigaud, Savadkoohi

and co. have studied targeted energy transfer in such sys-

tems both experimentally and theoretically [50, 51],

observing robust energy absorption by the parallel NESs.

The equations of motion of the parallel NES coupled

system can be obtained as

m1 €yþ C _yþ Kyþ ms1 €y1 þ ms2 €y2 ¼ 0

ms1 €y1 þ cs1ð _y1 � _yÞ þ ks1ðy1 � yÞ3 ¼ 0

ms2 €y2 þ cs2ð _y2 � _yÞ þ ks2ðy2 � yÞ3 ¼ 0

8<
: ð2Þ

Parallel NESs work on a similar principle to that of the

single NES, where energy transfer takes place from the

primary system to the NES via a series of resonance cap-

tures. This mechanism is illustrated in Fig. 3. We under-

stand that there exists an activation energy [52] beyond

which robust TET occurs and the NES is able to reduce

LCO amplitudes. In the case of single NES, there exists

only one activation energy level to be achieved for robust

TET. On the inclusion of multiple NESs in parallel, we

widen the range of initial energy level required to activate

the NES [52], thus possibly improving the suppression

regime of the NESs. The parallel NESs were primarily

introduced to suppress ’high branch responses’ [53] which

arise from increased excitations of the primary system.

Given that the present study deals with stall flutter, which

is prone to ’high branch responses’ [10, 54] - the premise of

using multiple NESs could provide avenues to suppress the

high amplitude torsional oscillations that arise with dif-

ferent dynamical signatures.

Mathematical Model

The structure pertaining to the aeroelastic system is con-

sidered to be a two dimensional airfoil with pitch and

plunge DoFs constrained using torsional and translational

springs attached at the elastic axis (see Fig. 4). The NES is

modeled as a spring-mass-damper system attached at an

offset distance d from the mid chord. The plunge deflection

is denoted by h, and a is the pitch angle. The chord length

is denoted by c and b ¼ c=2 represents the mid-chord

length. The elastic axis is located at a distance ahb from the

Fig. 3 A representation of a primary system with two NESs attached

in parallel. The energy transfer takes place from the region of higher

concentration (primary system) to that of lower energy concentration

(NESs)
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mid-chord, while the centre of mass is located at a distance

vab along the chord from the elastic axis.

The NES has an essentially nonlinear stiffness ks and a

linear damping coefficient cs, and a mass ms. The gov-

erning equations of motion of the airfoil-NES system are

given as in [55]

m €hþ Sa€aþ khhþ csð _hþ d _a� _zÞ þ ksðhþ da� zÞ3 ¼ �L

Ia€aþ Sa €hþ kaaþ dcsðd _aþ _z� _hÞ þ dksðdaþ z� hÞ3 ¼ M

ms€zþ csð _zþ d _a� _hÞ þ ksðzþ da� hÞ3 ¼ 0

8><
>: ð3Þ

Here, the lift L and moment M are functions of the pitch

and plunge displacements (a and h respectively), their time

derivatives (symbolized by €a, €h and _a, _h) as well as the

airflow speed U. Note that L and M effectively represent

the aerodynamic forcing, and in this case a nonlinear

aerodynamical behavior - dynamic stall - and the mathe-

matical modeling of the same are detailed in the next

subsection. These equations are then nondimensionalized.

The symbol 00 indicates a double derivative with respect to

time s given as s ¼ Ut=b, where U is the dimensional

airflow speed, t is dimensional time and b is half-chord

length.

n00 þ vaa
00 þ �x2

V2
nþ 2

�x
V
ksðn0 þ da0 � v0Þ

þ �x2b2

V2
gsðnþ da� vÞ3 ¼ � 1

pl
CLðsÞ

va
r2a

n00 þ a00 þ 1

V2
aþ 2

db2

V
ksðda0 þ v0 � n0Þ

þ d �k
V2

gsðdaþ v� nÞ3 ¼ 2

plr2a
CMðsÞ

2 v00 þ 2
�x
V
ks v

0 þ da0 � n0ð Þ þ �x2b2

V2
gs vþ da� nð Þ3¼ 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð4Þ

Here, Vð¼ U=bxaÞ is the non-dimensional airflow speed,

xa is the uncoupled pitch natural frequency, and x is the

ratio of uncoupled pitch and plunge natural frequencies. l

represents the non-dimensional mass of the airfoil, given

by l ¼ m=pqb2, where q is the density of air, and m is the

mass of the airfoil. ra is the radius of gyration about the

elastic axis given by given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ia=mb2

p
, where Ia is the

moment of inertia. Sa represents the wing static moment

about the elastic axis [1], ks (=cs=2
ffiffiffiffiffiffiffiffi
khm

p
) and gs (=ks=kh)

represent the nondimensionalized damping and stiffness

coefficients of the NES respectively. � is the mass ratio of

the NES with respect to the wing (ms=m), and k is a con-

stant defined as b4ðkh=kaÞ. The offset distance d was nor-

malized by the half-chord length b, to obtain d. This varies
within the range ½�1; 1�, where �1 and 1 correspond to

extreme trailing and leading edges of the airfoil respec-

tively [36]. The non-dimensional structural parameters are

chosen from Sai Vishal et al. [10], and are presented in

Table 1.

The Leishman-Beddoes Model

The lift and moment coefficients CL and CM are estimated

using the state-space formulation of the LB model, as it is

primarily used in engineering applications [56]. The

modeling of aerodynamic loads under dynamic stall con-

ditions involves accounting for different stages viz. flow

separation, vortex shedding, and flow reattachment phases,

including the loads in the attached flow regime [8]. Indeed,

the attached flow regime is accounted for by the Wagner

formulation for unsteady aerodynamics,

Fig. 4 A sketch of the airfoil

section with NES attached.

U represents the oncoming

airflow velocity

Table 1 non-dimensional struc-

tural parameters of the aeroe-

lastic system [10]

l ra va ah x

100 0.5 0.25 �0.5 0.2
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ClðsÞ ¼ pðn00 � aha
00 þ a0Þ

þ 2p½að0Þ þ n0ð0Þ þ ð0:5� ahÞa0ð0Þ�/ðsÞ

þ 2p
Z s

0

/ðs� s0Þ½a0ðs0Þ

þ n00ðs0Þ þ ð0:5� ahÞa00ðs0Þ�ds0;

ð5Þ

CmðsÞ ¼ pð0:5þ ahÞ½að0Þ þ n0ð0Þ
þ ð0:5� ahÞa0ð0Þ�/ðsÞ þ pð0:5þ ahÞ

�
Z s

0

/ðs� s0Þ½a0ðs0Þ

þ n00ðs0Þ þ ð0:5� ahÞa00ðs0Þ�ds0þ
p
2
ahðn00 � aha

00Þ � ð0:5� ahÞ
p
2
a0 � p

16
a00:

ð6Þ

Here, /ðsÞ is the Wagner function given by

/ðsÞ ¼ 1� 0:165eð�0:0455sÞ � 0:335eð�0:3sÞ. These equa-

tions then feed into the ODEs that make up the equations of

motion of the system, given in Sect. ‘‘Methodology’’.

The LB model estimates the aerodynamic load coeffi-

cients by using the perpendicular and chord-wise compo-

nents of the force. The load coefficients are given by

Ci ¼ giðx; â; qÞ i ¼ c;N;m

here c, N, m represent the non-dimensional coefficients of

the chord-wise force, normal force, and pitching moment

respectively [10]. â is the effective angle of incidence

given by

â ¼ sin aþ n0 cos a
r

The Leishman-Beddoes model was initially developed

using experimental data at subsonic speeds [57], and then

was modeled in the state-space form [58]. Using the latter,

x ¼ ½x1; x2. . .x12�T are the twelve aerodynamic states.

These are then directly coupled with the structural gov-

erning equations in the state space form

x0 ¼ f ðx; â; q;V ;MÞ;

Here, V is the non-dimensional flow speed, M is the Mach

number and q is the non-dimensional effective pitch rate,

given by q ¼ 2a0.
The first eight states of x represent the unsteady attached

flow regime as mentioned in Eqs. 5 and 6. It is obtained by

modifying Wagner’s function from the unsteady aerody-

namic model [1], and taking into account flow compress-

ibility and the Mach number M. The states x9, x10 and x12
model the flow separation regime and represent the delayed

normal force component, trailing edge separation point

location, and the delayed version of the trailing edge sep-

aration point location respectively. State x11 accounts for

the extra lift generated due to the formation of the leading-

edgevortex, when the value of x9 crosses a certain critical

normal force value.

The total loads are given as the summation of aerody-

namic forces from the unsteady attached flow regime, the

flow separation & reattachment regime and the vortex

formation regime.

Cn ¼ CI
n þ Cf

n þ Cv
n; Cm ¼ CI

m þ Cf
m þ Cv

m; Cc ¼ Cf
c:

ð7Þ

The superscripts, I, f, and v indicate impulsive loads from

the attached flow, flow separation, and vortex components,

respectively. The aerodynamic load coefficients are thus

given by

Cf
N ¼CC

N

1þ ffiffiffiffiffiffi
x10

p

2

� �2

ð8Þ

Cf
m ¼ ½K0 þ K1ð1� x̂þ K2 sinðpx̂2ÞÞ�CC

N

1þ
ffiffiffî
x

p

2

 !2

ð9Þ

Cf
c ¼ 0:97CNa

CC
N

CNa

� �2 ffiffiffiffiffiffi
x10

p ð10Þ

x̂ ¼
x10; if x10 [ x12

x12; if x12 � x10

� �
ð11Þ

The state x11 accounts for the extra lift generated due to the

formation of leading-edgevortex, when the value of x9
crosses an empirically obtained critical normal force (CN1)

value. The coefficients K0, K1 and K2 are experimentally

determined coefficients related to the position of the

aerodynamic center and the shape of the moment break at

stall. The normal force and moment coefficients generated

due to leading-edgevortex are given as

Cv
N ¼x11 ð12Þ

Cv
m ¼ � 1

4

�
1� cos

�
psv
Tv1

��
; if sv � 2Tv1

0; if sv � 2Tv1

8<
:

9=
; ð13Þ

Where Tv1 is the experimentally obtained value of time

taken for the leading-edgevortex to travel one chord dis-

tance. sv is the time that starts when jx9j ¼ CN1 and pro-

gresses until reset to 0 by the condition jx9j\CN1. Post

this, Eq. 7 sums up the total aerodynamic load coefficients.

The equations of motion of the airfoil (Eq. 4) sans NES

terms then can be converted into first order ODEs as

x013
x014
x015
x016

8>>><
>>>:

9>>>=
>>>;

¼ f̂ ða; a0; n; n0;Cl;CmÞ: ð14Þ
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Here, the state variables x13, x14, x15 and x16 represent the

pitch displacement and velocity, and plunge displacement

and velocity of the airfoil, respectively.

The Karhunen-Loeve Expansion for Stochastic
Flows

The fluctuations in the flow are generated using the Kar-

hunen-Loeve expansion (KLE) as in [13, 59]. It is evident

that in deterministic settings VðsÞ ¼ V , however, in the

case of stochasticity, the flow speed is subject to variation

with time. These variations are characterized by the noise

intensity of the flow, r as well as the time scale of the flow.

The stochastic process is simulated as a bi-orthogonal

decomposition of its correlation function, i.e., the oncom-

ing flow is represented as a random process involving an

expansion of a set of deterministic functions viðsÞ and a

vector of independent orthogonal random variables giðhÞ
defined in the probability space ðX; n;PÞ and h 2 x (where

x is the sample space) [60]. The expression for stochastic

flow is [14]

Vðs; hÞ ¼ Vm þ
X
i� 1

ffiffiffiffi
ki

p
viðsÞgiðhÞ ð15Þ

For ease of representation, dependence on h is ignored in

the present work. The deterministic functions viðsÞ are

obtained by using the Liouville-Neumann series as a

solution to Fredholm’s equationZ
X
Cðs; s0Þviðs0Þds ¼ kiviðsÞ ð16Þ

where C is the correlation function of VðsÞ. We then have

an eigenvalue problem where (numerically), Equation (16)

is discretized into matrix form and solved. The eigen-

vectors obtained are used as approximations for the

eigenfunctions viðsÞ. We take the number of eigenvalues

thus obtained to be n. For the sake of simplicity, the pro-

cess VðsÞ is assumed to be Gaussian in nature, with a target

auto-correlation function

RVV ;tgtðsÞ ¼ r2 expð�c1s
2
lagÞ ð17Þ

Here, r is the variance of the process, representative of the

noise intensity of the flow. slag is the time lag for which the

correlation is calculated, and c1 is the correlation coeffi-

cient. The correlation length is defined as the time taken for

RVV ;tgtðsÞ to go to 0. Lower values of c1 correspond to

longer time scales. Changes in time scales result in pro-

duction of vastly different dynamical responses, and the

present work aims to identify the effect of NES during the

interplay of time scales and dynamic stall aerodynamics.

The number of terms to be used in Equation (15) is given

by finding the minimum number of ki satisfying

Xz
i¼1

ki � 0:99
Xn
i¼1

ki ð18Þ

The variation of flow about a mean flow speed Vm is shown

in Fig. 5, along with corresponding plots of the target auto-

correlation function as in [60]. Details of the implemen-

tation of KLE to simulate randomly time-varying input

winds to an aeroelastic system can be found in [13, 60] and

are not elaborated here for the sake of brevity.

We further tabulate the noise intensity, time scales and

corresponding correlation lengths used in the present work

for simplicity (see Table 2).

Methodology

The methodology adopted for the study was as follows -

First, we present the aeroelastic response of the system

without the NES attachment and compare it with Sai Vishal

et al. [10]. Then, the NES is included to the aeroelastic

system. The NES parameters for the preliminary study

were chosen from existing relevant literature [36, 55] and

results are obtained. Keeping the mass, stiffness and

damping fixed, a sweep of offset distance (d) is first per-

formed to tune d for the given parameters.

It is necessary to clarify at this juncture that the current

work aims to study the effectiveness of the NES in the case

of stall flutter, and the parametric sweep exercise per-

formed to obtain NES parameters will only provide us with

’tuned’ NES parameters. With more in-depth optimization

procedures such as evolution or other meta-heuristic

methods, it is possible to obtain optimized parameters for

the NESs that may further improve LCO amplitude

suppression.

Then, for a multi-parameter sweep, the (non-dimen-

sional) NES parameters were considered - mass ratio (�),

damping coefficient (ks), stiffness coefficient (gs), and

Fig. 5 a Flow fluctuations about Vm ¼ 6 along with b plots corre-

sponding to a correlation length of 1000
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normalized offset distance (d). As the NES is designed to

be a lightweight attachment [26] with a limit on the mass

ratio [28], we have limited the NES mass ratio to 10% of

airfoil mass. NES stiffness coefficient gs is varied over a

wide range. In order to tune the NES suitably for robust

TET, we consider gs values within the range [10,300]. NES

offset distance d is varied in the range ½�0:9; 0:9� following
the nondimensionalizing in Sect. ‘‘Mathematical Model’’.

Varying the NES offset d has shown to have an impact on

the extent of suppression of LCO amplitudes [37, 55]. The

present work uses these parametric sweeps to find an ideal

location for the NES through a tuning process.

Through the sweeps, by varying stiffness and damping

of NES we aim to find an ideal NES offset d due to a

twofold reason - firstly, in aeroelastic systems, parameters

such as placement of elastic axis and distances from mid

chord weigh in heavily on the response dynamics of the

system [1, 8], and thus the placement of NES at different

distances from the mid chord can bring about unprece-

dented system dynamics along with possible amplitude

reduction. Secondly, from a practical standpoint, it is more

pragmatic to find an offset distance for a given set of NES

stiffness and damping parameters as it is easier to modify

and adjust the same.

In the deterministic case, bifurcation diagrams are pre-

sented along with time-histories of the system responses

with and without the NES. As stall flutter is a pitch-dom-

inant instability, i.e., characterized by violent torsional

oscillations [1], the bifurcation diagrams presented are of

pitch amplitude (a) with flow speed V as the control

parameter. The sweeps are performed with the aim of

reducing the same.

Note that we refrain from presenting the responses of the

system at higher flow speeds. This is in order to account for

the concerns regarding the accuracy of the LB model at a
values greater than 40�, beyond which there is a lack of

availability of empirically obtained parameters [7, 60].

Using the tuned NES parameters from the sweeps per-

formed in the deterministic case, the airfoil-NES system is

then subjected to stochastic flows. In this paper, we con-

sider the findings of Tripathi et al. [60], where the struc-

turally linear airfoil was subjected to nonlinear

aerodynamic behavior (dynamic stall) using the LB model,

and the stochasticity in the flow was modeled using the

KLE. It is noted that the presence of stochasticity largely

alters the behaviour of the system, even advancing the

onset of instabilities and are in-line with the existing

notions in the literature [4, 13, 14]. We attempt to use the

NES to study its impact on the system responses.

In real-life conditions, flows comprise various time

scales as well as intensities. As in Venkatramani et al. [13],

the time scale of fluctuation can be classified into ’short’

and ’long’ time scales depending on the correlation length.

In the present work, a noise intensity of r ¼ 0:3 is con-

sidered, along with flows varying with long time scales, as

in Fig. 5. These are classified as ’long’ depending on the

system time scale ssys, which is found to be 70 [60]. Thus,

our selected time scale corresponds to a ’long’ time scale

due to its correlation length of 1000. The performance of

the tuned NES is studied with regard to this. Note that this

study refrains from invoking vertical turbulence - as an

additive noise term [4], as well as presenting a detailed

probabilistic characteristic evolution of the input stochastic

wind. We believe that this would yield into a significant

transgression into characterizing noise-induced transitions

in the aeroelastic system than the chosen focus of sup-

pressing oscillatory instabilities.

Results and Discussions

This section is divided into three subsections based on the

nature of loading the airfoil-NES system is subjected to.

Sect. ‘‘Airfoil-NES Subjected to Deterministic Flows’’

deals with deterministic flows and tuning the NES to pro-

vide reduced stall flutter amplitudes. The subsequent sub-

section deals with implementing the tuned NES in a

stochastic loading case in order to understand the effec-

tiveness of NES in cases more similar to real-life scenarios.

Finally, preliminary investigations into the effectiveness of

multiple NES are presented.

Airfoil-NES subjected to deterministic flows

We begin by presenting and discussing the response of the

system when uncoupled with the NES. The bifurcation

diagram and time history are presented in Fig. 6. The

system parameters (Table 1) are chosen from the work of

Sai Vishal et al. [10], and the response obtained is in

agreement with the same.

The system initially shows a fixed point response for

flow speeds up till the branch point of V ¼ 5:6. The system

then transitions via low-amplitude LCOs into a regime of

aperiodic responses as can be seen in. The second transition

is observed at V ¼ 6:7, where the system displays high

amplitude stall flutter LCOs. Sample time histories

Table 2 Parameter values for modeling of stochastic flows using the

Karhunen Loeve Expansion [60]

Case r c1 Correlation Length

a) 0.3 0.001 100

b) 0.3 0.00001 1000
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corresponding to fixed point response, aperiodic regime as

well as full-blown stall flutter are provided in Fig. 6a, b and

c respectively. The peak amplitude continues to increase as

flow speed is increased. These sudden transitions arise due

to the discontinuous nature of the dynamic stall event.

Discontinuity-induced bifurcations [10] are extremely

harmful to structure safety due to the abrupt jumps in

system response. The high amplitude torsional oscillations

and the consequent torsional stresses were also shown to be

particularly influential in dictating the extent of fatigue

damage accumulation in the system [60]. Deriving impetus

from the same, we attempt to use the NES to suppress the

pitch LCOs.

In order to obtain preliminary results, we chose

parameters by drawing on the conclusions reached in rel-

evant literature [36, 55], provided in Table 3.

On plotting the peak amplitudes versus flow speed, we

obtained the bifurcation diagram as in Fig. 7. The reduc-

tion in amplitude was found to be minimal, only a 5%

reduction was observed. In this retrospect, the reader must

cautiously underscore the role of varying the NES param-

eters toward obtaining considerable reductions in oscilla-

tory instabilities [55]. Keeping this in mind, we in the

upcoming parts, proceed to tune the NES parameters and

later show that tuned NES parameters can suppress stall-

induced flutter instabilities even up to 30 %. In Fig. 7, there

is a slight postponement of the initial transition to aperiodic

regime, now occurring at V ¼ 5:8 instead of V ¼ 5:6 as in

the uncoupled case. Delays of instabilities were observed in

cases of classical flutter as well [55], where the flutter

speed was observed to have increased on addition of the

NES.

In order to improve the performance of the NES for the

above case, the NES mass, damping and stiffness are kept

fixed as in Table 3, and a sweep of NES offset d is per-

formed at a flow speed of V ¼ 7:5. This flow speed is

chosen as it is well within the stall flutter regime as seen in

Fig. 6. We identify the best value by choosing that d which

corresponds to the least value of peak pitch amplitude a. It
helps to note that in the case of airfoil uncoupled with NES,

the peak pitch amplitude at a flow speed of V ¼ 7:5 was

0.42 radian [10].

We found that the value of d corresponding to the least

peak pitch amplitude (demarcated in Fig. 8) was

dopt ¼ �0:3. In the case of steady aerodynamics as studied

by Lee et al. [25], negative NES offset values seemed to

show robust LCO amplitude suppression as compared to

positive values. Note that we have in comparison a com-

plex and accurate aerodynamic model (LB model) and

interestingly our findings of a negative offset distance

seems to corroborate with that found in [25]. Next, using

the obtained NES offset value, we compare the bifurcation

behaviours of the coupled and uncoupled cases; see Fig. 9.

There is a noticeable improvement in terms of decrease

in LCO amplitude from that in Fig. 7. The transition to stall

flutter beyond the aperiodic regime is also postponed

slightly, to a flow speed of V ¼ 7:2 as compared to V ¼
6:7 in the uncoupled case.

Furthermore, we observe from Fig. 8 that there are

certain d values that seem to increase the peak pitch

amplitude beyond that of the uncoupled case. A similar

observation was made by Lee et al. [36], where certain

NES parameter values caused the amplitudes of LCOs to

grow larger than in the uncoupled case. It was suggested

that this may be due to the NES being unable to prevent a

sustained resonance capture between the pitch and plunge

modes of the airfoil in the case of classical flutter.

Fig. 6 Base-line bifurcation plot

of airfoil subjected to dynamic

stall without NES, in

comparison with the results of

Sai Vishal et al. [10]. Initial

conditions are að0Þ ¼ 15�,
a0ð0Þ ¼ 0, nð0Þ ¼ 0, n0ð0Þ ¼ 0.

Time histories corresponding to

a fixed point response

b aperiodic behaviour c stall

Flutter LCOs

Table 3 non-dimensional NES

parameters [36, 55]
� ks gs d

0.15 0.5 50 �0.5
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Malatkar and Nayfeh [61] studied the dynamics of the

coupled system of Jiang et al. [62], and found that the

addition of the NES to the linear structure may lead to an

increase of amplitude instead of a decrease, over certain

frequency regimes. However, the rebuttal provided by

Vakakis et al [63] indicated that optimization of NES

parameters was required for maximising energy transfer

and reduction of vibration amplitude. In response to this,

Malatkar and Nayfeh [64] provided further results indi-

cating that weak coupling of NES to a forced linear

oscillator would lead to an increase in amplitude of oscil-

lations rather than a decrease via one way energy transfer

in lightly damped subsystems. It is speculated that this is

also due to the inability of the damping component to

effectively dissipate the localized energy in the NES. Work

on the effectiveness of NES in various problems has con-

tinued to be studied, and frequency regimes of robust

suppression are observed, indicating that parametric opti-

mization of the NES will allow for improved TET.

In the case of stall flutter, the pitch-dominant nature of

the instability suppresses the natural dynamics of the

plunge mode, and the pitch mode draws energy from the

flow and transfers it to the plunge mode [7, 11]. We must

suitably tune the NES to attempt to jeopardize the coa-

lescence of pitch and plunge frequencies [65] and prevent

Fig. 7 Comparative bifurcation

diagram obtained on using

parameters from Table 3. a
Time history of response at a

flow speed V ¼ 7:5

Fig. 8 Peak pitch amplitude a vs NES offset d

Fig. 9 Comparative bifurcation

diagram after using

dopt ¼ �0:3. a Time history of

response at flow speed V ¼ 7:5
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direct energy transfer during stall flutter. This process of

tuning the NES is achieved by performing a multi-param-

eter sweep of NES parameters and finding parameters that

lead to robust NES performance. The effect of NES mass

ratio with regards to NES performance has been studied in

the literature [41, 66], indicating that suppression as well as

increase in flutter boundary improves with higher mass

ratio values. However, keeping practicality in mind, we

limit � to 10% of the airfoil mass. In the following sweep

presented in Fig. 10, we vary the values of NES damping

while attempting to locate a ’tuned’ value of NES offset for

each of the parameter sets. The parameter values can be

found in Table 4.

The above cases were chosen to represent a larger

sample of data obtained over several sweeps, which have

been omitted for the sake of brevity. We notice in Fig. 10a

that for NES locations near the mid chord (which corre-

sponds to d ¼ 0), the peak responses are aperiodic in nat-

ure. Considering that the sweeps were all performed at a

flow speed of V ¼ 7:5, well within the stall flutter regime

(see Fig. 6), it can be inferred that the NES placed at those

locations will induce aperiodic behaviours in the system at

that flow speed.

Furthermore, on increasing the damping coefficient

value to ks ¼ 0:03, there was a comparable decrease in

pitch amplitude, which now fell to 0.36 radian. We also

note that some of the NES offset locations which previ-

ously gave rise to aperiodic behaviour, did not once the

damping was increased. This could indicate that the NES is

both effectively transferring as well as dissipating energy

from the primary system due to the increased damping,

without allowing the localized energy to leak back into the

primary system. Seeking the possibility to further the

extent of LCO amplitude reduction, we sweep through

higher values of NES stiffness, the results of which are

presented below in Fig. 11.

The significant reduction in LCO amplitude suggests

that higher NES stiffness values provide better means for

the energy transfer from the primary system to the NES

[41]. Furthermore, the need for higher damping values is

also displayed as it will reduce the introduction of aperi-

odic behaviour in the stall flutter regime at particular offset

locations. To that end, we set a high NES damping value of

ks ¼ 0:1 and perform sweeps of NES stiffness. The results

of the sweep are provided in Fig. 12, along with the

table of parameter values corresponding to the figure in

Table 6.

It was noted that the trends with regards to NES offset

were initially in agreement with the literature [36, 67] -

negative values of d showed better suppression. However,

with increase in stiffness, the tuned NES location shifted

closer to the nose of the airfoil. This may be attributed to

the effect of mass distribution within the airfoil due to the

inclusion of the NES, as mass balancing is known to have a

large impact on flutter speed and amplitude [1].

The least peak pitch amplitude was obtained using

parameters from case (c) in Table 6, corresponding to

Fig. 12c. These parameters were then chosen and a

Table 5 Parameter values for sweep with high values of NES stiffness

corresponding to Fig. 11. Minimum peak pitch amplitude is also

denoted

Case � ks gs d min(aðsÞ) [rad]

a) 0.1 0.03 130 0 0.35

b) 0.1 0.03 170 0.2 0.33

c) 0.1 0.03 200 0.2 0.33

Fig. 10 Sweep Results on

varying NES damping. Tuned d
values for Cases a and b in

Table 4 are identified by

sweeping for the lowest

amplitude value

Table 4 Parameter Values for the sweep results in Fig. 10. The cor-

responding minimum peak pitch amplitude is also denoted

Case � ks gs dopt min(aðsÞ) [rad]

a) 0.1 0.01 80 �0.4 0.40

b) 0.1 0.03 80 �0.1 0.36
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comparative bifurcation diagram was plotted showing the

coupled and uncoupled system behaviours, using flow

speed as the bifurcation parameter. The results obtained are

given in Fig. 13.

We observe that there is minimal suppression observed

up to a flow speed of V ¼ 7:2, beyond which there is a

sudden decrease in LCO amplitude. A possible explanation

for this could be that the activation energy threshold of the

NES [52], i.e., the minimum energy level beyond which

Fig. 11 Sweep results varying higher values of NES stiffness. Tuned d values for Cases a, b and c in Table 5 are also identified

Fig. 12 Sweep Results using ks ¼ 0:1 and varying high values of NES stiffness. Tuned d values for cases a, b and c in Table 6 are also identified

Table 6 Parameter values for sweep with high stiffness values cor-

responding to Fig. 12. Minimum peak pitch amplitude is also denoted

Case � ks gs d min(aðsÞ) [rad]

a) 0.1 0.1 240 �0.1 0.38

b) 0.1 0.1 270 0.9 0.31

c) 0.1 0.1 290 0.9 0.30

Fig. 13 Comparative

bifurcation diagram after tuning

NES and using values from case

c in Table 6. Time histories of

responses at a V ¼ 7:2 b
V ¼ 7:5
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significant TET occurs is crossed at the flow speed of

V ¼ 7:3, leading to robust suppression of LCO amplitude.

Energy is transferred from the primary system to the NES

when their instantaneous natural frequencies match. There

is, then, an energy level that is associated with that value of

instantaneous frequency at which a large amount of energy

is transferred.

As the NES is modeled as a spring-mass system with a

cubic nonlinear stiffness, its total nondimensionalized

energy can be obtained by the summation of its kinetic and

potential energies [28] - i.e.,

ENES ¼ 1

2
eðv0 þ da0 � n0Þ2 þ 1

4
gsðvþ da� nÞ4 ð19Þ

Here, e is the nondimensional mass of the NES, and v0, a0

and n0 are the NES, pitch and plunge velocities respec-

tively. v, a and n are the NES, pitch and plunge displace-

ments respectively. d is the NES offset distance and gs is
the nondimensionalized stiffness coefficient of the NES.

Using this, we plot energy time histories of the NES prior

to and after crossing of the energy threshold,

The amount of energy dissipated from the NES is

dependent on the amplitude of relative motion between the

airfoil and NES, and it is observed that the threshold for the

presented case of dynamic stall lies at V = 7.2, as we note

that the total energy of the NES post V ¼ 7:2 is signifi-

cantly higher than prior to it, indicating that a large amount

of energy is being transferred from the primary structure,

i.e., the airfoil to the NES.

Next, we use the tuned NES parameters (under deter-

ministic settings) and attempt to apply it on the airfoil

subjected to randomly time-varying input wind. Suppress-

ing or reducing the effect of random LCOs due to dynamic

stall will prove extremely beneficial to the system’s life as

the fatigue damage incurred in stochastic cases has been

shown to be significantly greater than in deterministic cases

[60] and hence underscoring the need for us to undertake

this exercise.

Airfoil-NES subjected to stochastic input flows

We begin the section by introducing the behaviour of the

system when uncoupled with NES. The randomness in the

flow is modeled using the Karhunen-Loeve expansion, and

a short brief on it is provided in Sect. ‘‘The Karhunen-

Loeve Expansion for Stochastic Flows’’. Figure 5 provides

the flow profiles for a mean flow speed of Vm ¼ 5. A

classification of the nature of inflow considered in this

work can be found in Sect. ‘‘Methodology’’. The results

obtained are in accordance with [60].

As mentioned in Sect. ‘‘Methodology’’, the noise

intensity is set at r ¼ 0:3, and the time scales are ’long’,

corresponding to a correlation length of 1000. Depending

on the noise intensity and time scales, the response

dynamics of the system can be greatly varied [60]. How-

ever, for illustrative purpose this study fixes the noise

intensity and correlation length - rather than providing a

range of values for the same.

In the system response when uncoupled with NES,

(Fig. 15), we can observe ’on-off’ type intermittency

[13, 68], which consists of distinct ’on’ states of high

amplitude oscillations amidst ’off’ states of rest/no oscil-

lation. The amplitude of the ’on’ states increases with an

increase in Vm. The results of system coupled with NES are

also presented for these values of Vm as here for the sake of

continuity. Note that we do not study the responses of the

Fig. 14 Comparative energy

time histories of the NES prior

to and after crossing of

activation energy threshold.

Significant increase in energy

absorbed by NES is noted

Table 7 Parameter values of NES1 and NES2

�1 ks1 gs1 d1 �2 ks2 gs2 d2

0.1 0.1 290 0.9 0.1 0.1 290 �0.1
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system for higher values of Vm as the Leishman-Beddoes

model is restrictive for pitch values greater than 45�.
We observe reducing amplitudes of oscillations during

’on-off’ intermittent behaviour in Fig. 16. We follow the

notions suggested in Venkatramani et al [13] towards the

appearance of ’on-off’ intermittent behaviour, i.e., the stay

of VðsÞ over the critical limit Vcr for a sufficiently long

time. The cause for improved NES effectiveness may be

attributed to the same, i.e., the energy extracted from the

flow by the pitch mode (and consequentially its instanta-

neous total energy) stays in the vicinity of the threshold

activation energy for a sufficiently long time allowing for

the NES and airfoil to establish frequency relations and

transfer energy.

The reduced amplitudes in the case of long time scale

fluctuations prove that there exists merit in the use of

nonlinear energy sinks in aeroelastic systems under real-

life scenarios. Indeed, typical in-field wind gusts that

impact wind turbine blades, helicopter blades and unman-

ned aerial vehicles are often long time scales [13] and

extreme events such as cyclonic behavior could have rapid

time variations.

It is necessary to note that the appearance of intermittent

oscillatory behaviour on inclusion of the NES (in Fig. 16a)

is not an artefact of the addition of the NES worsening the

vibrations, but is simply an effect of the change of

parameters on the dynamics of the system. The parameters

influencing the appearance of intermittent oscillations in

this case is dependent on the interactions of the time scales,

noise intensity as well as system parameters [14]. Upon the

inclusion of the NES, the overall damping of the system is

subjected to change. This in turn affects the ‘‘laminar’’

Fig. 15 Response of system without NES at (a) Vm ¼ 5:6, (b) Vm ¼ 6, (c) Vm ¼ 6:6, (d) Vm ¼ 7 for a noise intensity of r ¼ 0:3 and long time

scale fluctuations

Fig. 16 Response of system coupled with NES at (a) Vm ¼ 5:6, (b) Vm ¼ 6, (c) Vm ¼ 6:6, (d) Vm ¼ 7 for a noise intensity of r ¼ 0:3 and long

time scale fluctuations
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length of the on-off intermittent behaviour observed, that

is, the occurrences of the bursts of oscillations amidst the

off states [13, 69].

The implementation of NES in short time scale fluctu-

ations is beyond the scope of this current study and is an

open problem to be considered for future work owing to

both the demanding computational efforts and the need to

update the LB model to capture such rapid stochastic

processes. The possibility of investigations into different

NES configurations and their impact on suppression of

random LCOs is also an interesting open problem to be

studied in future work.

So far we deployed NES to an airfoil subjected to

dynamic stall and showed that under both deterministic and

stochastic input flows - considerable reductions in ampli-

tudes of the oscillatory instabilities are possible. While

optimizing the NES parameters seems to be the crux - we

note that studying the physics of TET is still in its evolu-

tionary stage. Given the torsionally dominant oscillatory

instability stall flutter poses - we are inclined to believe that

a base-line investigation to the use of multiple NESs could

provide additional insights to instability suppression in

aeroelastic problems. To that end, as a tail end to this

paper, we present a rudimentary study involving two NESs

in the next subsection. For ease of computation and

understanding of the findings, the multi-NES study is

presented only under deterministic flow conditions.

Preliminary Study into Multiple NESs

Zhang et. al [43] studied the targeted energy transfer

between two NESs and a pitch-plunge airfoil subjected to

steady-state aerodynamic loading. The motivation behind

the use of two sinks was to increase the range of fre-

quencies for which the NES suppression is effective. It was

observed that in this case, the two sinks interacted with the

two modes of the airfoil, i.e., one with the plunge and the

other with the pitch mode. Deriving impetus from this, and

duly noting that in [43] the aerodynamic model was a

simplistic steady-state formulation against the complex LB

formulation adopted in this work - we embark into using

two NESs over the airfoil.

Fig. 17 A sketch of the airfoil

section with two NESs attached

Fig. 18 Bifurcation diagram for

the system with two NES

oscillators
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Presented below is the mathematical model for the air-

foil-multiNES system as well as the salient results

observed when the system was subjected to dynamic stall.

The two NESs are placed at offset distances d1 and d2.

Below are the equations of motion of the system.

m €hþ Sa€aþ khhþ cs1ð _hþ d1 _a� z1
: Þ þ ks1ðhþ d1a� z1Þ3

þcs2ð _hþ d2 _a� z2
: Þ þ ks2ðhþ d2a� z2Þ3 ¼ �L

Ia€aþ Sa €hþ kaaþ d1cs1ðd1 _aþ z1
: � _hÞ þ d1ks1ðd1aþ z1 � hÞ3

þd2cs2ðd2 _aþ z2
: � _hÞ þ d2ks2ðd2aþ z2 � hÞ3 ¼ M

ms1€zþ cs1ð _zþ d1 _a� _hÞ þ ks1ðzþ d1a� hÞ3 ¼ 0

ms2€zþ cs2ð _zþ d2 _a� _hÞ þ ks2ðzþ d2a� hÞ3 ¼ 0

8>>>>>>>>><
>>>>>>>>>:

These equations are then nondimensionalized, and the

equations are put in state-space form and ODE45 solver in

MATLAB was used to solve the system of nonlinear

ODEs.

n00 þ vaa
00 þ x2

V2
nþ 2

x
V
ks1ðn0 þ d1a

0 � v01Þ þ
x2b2

V2
gs1ðnþ d1a� v1Þ3

þ2
x
V
ks2ðn0 þ d2a

0 � v02Þ þ
x2b2

V2
gs2ðnþ d2a� v2Þ3 ¼ �CL

pl

va
r2a

n00 þ a00 þ 1

V2
aþ 2

d1b2

V
ks1ðd1a0 þ v01 � n0Þ þ d1k

V2
gs1ðd1aþ v1 � nÞ3

þ2
d2b2

V
ks2ðd2a0 þ v02 � n0Þ þ d2k

V2
gs2ðd2aþ v2 � nÞ3 ¼ 2CM

plr2a

�1v1}þ 2
x
V
ks1ðv01 þ d1a

0 � n0Þ þ x2b2

V2
gs1ðv1 þ d1a� nÞ3 ¼ 0

�2v2}þ 2
x
V
ks2ðv02 þ d2a

0 � n0Þ þ x2b2

V2
gs2ðv2 þ d2a� nÞ3 ¼ 0

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

The NES1 parameters were chosen using the results

from the previous section, which provided us with a

parameter set that displayed best suppression after tuning

(see Section ‘‘Airfoil-NES Subjected to Deterministic

Flows’’). For NES2, the mass ratio (�2), stiffness coefficient

(gs2) and damping (ks2) were kept the same as NES1, and

an offset of d2 ¼ �0:5 was chosen to obtain preliminary

results. Aperiodic behaviour is observed at higher flow-

speeds, as can be seen in Fig. 18. This calls for a sweep of

NES offset distance to find the best location for the second

NES. NES2 can be placed at any location in the airfoil

except the current location of NES1, (d1 ¼ 0:9), and the

Fig. 19 Sweep of d2 performed

to find NES2 offset. We exclude

from consideration the

positioning of NES1, and are

able to find point of least stall

flutter amplitude with two NESs

Fig. 20 Comparative

bifurcation diagram of the

system response with tuned d2,
with insets of time histories of

(a) Dynamics in aperiodic

regime (b) Stall flutter

amplitude reduction
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sweep is carried out accordingly. The results of the sweep

are given in Fig. 19.

From the sweep, an NES2 offset of d2 ¼ �0:1 is found,

which is then used to get the system response. The NES1

and NES2 parameters are tabled below.

On using these parameters, the following system

response was obtained. It was observed that the minimum

threshold energy before strong TET occurs was slightly

reduced as the NESs seemed to show better suppression at

lower flowspeeds as well. Using the tuned offset distance

also removed the aperiodic behaviour noted at higher

flowspeeds in the preliminary case.

However, the overall reduction in amplitude with two

NESs was not significantly greater than that with one NES.

We also note in Fig. 20a that the delay in reaching full-

fledged stall flutter results in the dynamics of the originally

aperiodic regime of the baseline (without NES) case being

changed to low-amplitude stall flutter oscillations.

Improving and optimizing the airfoil-multiNES system

could be the subject of future works, as well as testing

other configurations of the NES as mentioned above in the

presence of coupled structural and aerodynamic

nonlinearities.

Concluding Remarks

This study focused on studying NES performance in

deterministic and stochastic aeroelastic systems experi-

encing stall. Using systematic parametric sweeps, effective

NES parameter regimes were identified and the NES was

shown to be able to reduce the amplitudes of stall flutter

LCOs of a pitch-plunge airfoil under deterministic condi-

tions. From the multi-parameter sweep, we showed that

there exists a regime of NES stiffness values for which

efficient TET can be observed after tuning. The NES

damping coefficient purely serves as a dissipator of energy

localized in the NES, and a high value of the same ensures

quick dissipation of localized energy. If the NES damping

is not high enough, it may allow for possible leakage of

energy from the NES back to the primary system, giving

rise to some aperiodic behaviour as observed in the sweeps

in Fig. 10a.

On obtaining the tuned NES parameters through the

sweeps, a reduction of 	 30% in peak LCO amplitude was

observed.

The NES when applied in the case of stochastic loading

showed a mild-success in TET, resulting in a relatively

small reduction in oscillation amplitude during the ’on-off’

intermittent behaviour. As a tail end to NES capabilities in

suppressing stall-induced instabilities, we showed that

multi-NES seem to provide almost the same extent of

oscillatory amplitude suppression in comparison to its

single counterpart. However, the location and parameters

specific to multi-NES were not rigorously optimized, and

hence this end of finding needs a cautious interpretation.

The present study is first of its kind to systematically

investigate the effect of an NES in a nonlinear aerodynamic

problem (dynamic stall) and present the suppression of

aeroelastic (stall) flutter instability. The investigations

undertaken in this paper pave the way for study into other

NES configurations, many of which have been studied and

can be applied to the case of dynamic stall, such as the

inerter-based NES [70], and even fractional nonlinear

energy sinks [71], which uses a one-third power stiffness

term in the NES, which aids in reduction of the energy

threshold for NES effectiveness, as well as quick energy

dissipation. The applications of the same in aeroelastic

problems are very interesting open problems to be con-

sidered for future works.
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