

BIG DATA

ANALYTICS

BIG DATA

ANALYTICS

Introduction to Hadoop, Spark, and Machine-Learning

About the Authors

Dr Raj Kamal did his MSc at the age of 17, published his first research paper in a UK
journal at the age of 18, wrote his first programme in FORTRAN that ran at ICTl904, also
at the age of 18, and completed his PhD from Indian Institute of Technology Delhi at 22.
He was awarded a scholarship for postgraduate studies at IIT Delhi, research fellowships
of CSIR, and post-doctoral fellowships at Uppsala University, Uppsala, Sweden, (15
months) and ICTP, Trieste, Italy (3 months).

He has 51 years of research and 46 years of teaching experience, respectively. He has
so far successfullyguided 19 PhD scholars and is currently supervising 2 PhD scholars and
research students. He has published about 94 research papers in journals and 61
conference papers of both international and national repute. He is lovingly referred by a
few colleagues as the 'learning machine' and by a few others as a 'human dynamo!',
perhaps because of his constant drive for understanding emerging technologies and
passion for acquiring latest knowledge and its dissemination.

He has worked as a professor of seven subjects, viz. computer science, computer
science and engineering, information technology, electronics, electronics and
communication engineering, electrical education and physics. He has served as a faculty
member in DeviAhilyaVishwavidyalaya,Indore (25 years), Punjabi University, Patiala (17
years), Medi-CapsUniversity, Indore (3 years), KalasalingamUniversity,Tamil Nadu

(2 years), and Guru Nanak Engineering College,Andhra Pradesh, and King Mongkut's
Institute of Technology,Bangkok.

He is widely known for his books published by McGraw-HillIndia, namely, The Internet
of Things (2017), Embedded Systems (3rd Ed. 2014), Computer Architecture (Schaum series
adaptation), and Internet and Web Technologies (16th Reprint 2017). His Embedded Systems
book has international editions from McGraw-HillUSA, McGraw-HillSingapore, McGraw•
Hill China and McGraw-HillSouth Korea.

Currently, he is working as a senior professor at Prestige Institute of Engineering
Management and Research in Indore, MadhyaPradesh.

Preeti Saxena is working as an associate professor of computer science at School of
Computer Science & Information Technology in Devi Ahilya Vishwavidyalaya, Indore,
Madhya Pradesh. She has over 18 years of teaching experience at undergraduate and
postgraduate levels. She has three years of experience in a multinational software
company as a software engineer and programmer. She has published and presented 35
research papers in various international/national journals and conferences. She
completed her MCA degree with distinction in 1996 from National Institute of Technology
(earlier called MACT), Bhopal. She was awarded the 'Ramanujan GoldMedal - 2008' in her
MTech (Computer Science). She did her PhD in mobile computing. She is currently
supervising six research scholars in computer networks, mobile computing, data

analytics, augmented reality and Internet of Things (IoT). She has a passion for acquiring
knowledge on emerging technologies.

BIG DATA

ANALYTICS

Introduction to Hadoop, Spark, and Machine-Learning

Raj Kamal

Senior Professor

Prestige Institute of Engineering Management and Research

Indore, Madhya Pradesh

Preeti Saxena

Associate Professor

Devi Ahilya Vishwavidyalaya

Indore, Madhya Pradesh

McGraw Hill Educat•ion(India) Private Limited

CHENNAI

McGraw Hill Education Offices

Chennai New York St Louis San Francisco Auckland Bogota Caracas
Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

Sanjuan Santiago Singapore Sydney Tokyo Toronto

• McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited

444/1, Sri Ekambara Naicker Industrial Estate, Alapakkam, Porur, Chennai 600

116

Big Data Analytics

Copyright © 2019 by McGrawHill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by

any means, electronic, mechanical, photocopying, recording, or otherwise or

stored in a database or retrieval system without the prior written permission

of the publishers. The program listings (if any) may be entered, stored and

executed in a computer system, but they may not be reproduced for

publication.

This edition can be exported from India only by the publishers,

McGraw Hill Education (India) Private Limited. 1 2 3 4 5 6 7 8 9 D10307422 21

20 19 18

[I] :2 3 4 5 6 7 8 9 D l 03074 :2:2 :21 :20 ~ 18

Printed and bound in India.

Print-Book Edition

ISBN (13): 978-93-5316-496-6

ISBN (10): 93-5316-496-6

E-Book Edition

ISBN (13): 978-93-5316-497-3

ISBN (10): 93-5316-497-4

Managing Director: Lalit Singh

Senior Portfolio Manager: Hemant K Jha

Associate Portfolio Manager: Tushar Mishra

Senior Manager-Content Development & Production Services: Shalini Jha

Senior Content Developer: Vaishali Thapliyal

Content Developer: Malvika Shah

Production Head: Satinder S Baveja

Assistant Manager-Production: Anuj K Shriwastava

General Manager-Production: Rajender P Ghansela

Manager-Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill

Education (India), from sources believed to be reliable. However, neither

McGraw Hill Education (India) nor its authors guarantee the accuracy or

completeness of any information published herein, and neither McGraw Hill

Education (India) nor its authors shall be responsible for any errors,

omissions, or damages arising out of use of this information. This work is

published with the understanding that McGraw Hill Education (India) and

its authors are supplying information but are not attempting to render

engineering or other professional services. If such services are required, the

assistance of an appropriate professional should be sought.

Typeset at APS Compugraphics, 4G, PKT 2, Mayur Vihar Phase-III, Delhi 96, and

printed at

Cover Designer: Creative Designer

Cover Printer:

Visit us at: www .mheducation.co.in

Write to us at:info.india@mheducation.com

CIN:U22200TN1970PTC111531

Toll Free Number: 1800 103 5875

mailto:india@mheducation.com

Preface

Data analysis involves numerical and statistical analysis techniques, which have been
widely used in many fields such as sciences, biology, research, industry, business and
even sports, since the 1960s. The first author of this textbook, Raj Kamal, himself used
analytical techniques in the 1970s for obtaining solutions using matrix multiplication,
inversion, transpose, determinants, linear equations, simultaneous equations using
matrices and least square fitting for finding parameters from observed data points, which
can be described theoretically by superimposition of the functions. His first programme
was in FORTRAN that ran on ICT1904 in 1967. A classic book, Numerical Methods for
Scientists and Engineers, Richard W. Hamming, McGraw-Hill,New York, 1973 (Availableat
the ACM digital library), fuelled his interest in the field of analytics since then. Both the
authors learned from excellent lessons on Big Data Analytics and Advanced Big Data
Analytics given by Ching-Yung Lin, PhD and adjunct professor at Departments of
Electrical Engineering and Computer Science,ColumbiaUniversity USA, in 2017. It is here
that an idea of writing a textbook on Big Data Analytics for young minds came to the
authors.

The chess match of the legendary Garry Kasparov in 1997 against the IBM
supercomputer, Deep Blue, is a landmark moment in the history of computing
technology. "It was the dawn of a new era in artificial intelligence: a machine capable of
beating the reigning human champion at this most cerebral game", in the words of Garry
himself. Nowadays, data analytics, decisions, predictions and discovery of new
knowledge, are possible with the use of AI techniques of machine learning and deep
learning. The rise in technology has led to production and storage of voluminous amount

of data. Earlier, megabytes (106 B) were used and now petabytes (1015 B) plus are used for
processing, analysis, predicting, decisions, discovering facts and generating new
knowledge. Big Data storage, processing and analysis, face challenges from large growth
in volume of data, variety of data, various forms and formats, increasing complexity, fast
generation of data and the need to quickly process, analyse and use data.

Many applications such as industry reports, financial reports, social network and
social media, cloud applications, public and commercial websites, scientific experiments,
simulators, sensors in Internet of Things, and e-services generate Big Data. Big Data
Analytics (BDA) finds applications in many areas, such as healthcare, medicine,
advertising, marketing, sales, and tracing anomalies in big data in these disciplines

This textbook explains the concepts of BDA in a simple to complex manner. For
example, it uses the popular Ravensburger Beneath the SeaJigsaw Puzzle (5000pieces) in
an example to show that scaling out

and division of the computations along with data works well in parallel processing
shared-nothing architecture at distributed computing nodes. This student-friendly
textbook has a number of illustrations, sample codes, case studies and real-life analytics
for datasets such as toys, chocolates, cars, students' GPAs and academic performance.

Classic Apache-based Hadoop ecosystem tools and the latest Apache Spark ecosystem
tools deploying the Python libraries for analytics have been described in depth.

Readers

This textbook is an extremely useful asset for national as well as international students of
Big Data Analytics. This book caters to the needs of undergraduate and postgraduate
students of computer science and engineering, information technology, and related
disciplines, along with professionals in the industry for developing innovative Big Data
Analytics solutions based on Spark ecosystem tools with Python libraries, which include
the use of machine-learning concepts.

The book will also be a useful guide in training programmes for Big Data architects
and analytics requiring new skills, and for those who wish to learn the latest topics.

The main features of the book are:

• Easy-to-understand and student-friendly content, which includes

illustrative figures, examples and sample codes

• The book explains architecture, storage and programming methods for

Big Data analytics, while keeping multidisciplinary undergraduate and

postgraduate students as primary readers in mind

• Learning objectives for each section, recall from previous chapters and

introduction along with meanings of important key terms have been

provided in the beginning of each chapter

• Self-assessment questions, classified into three difficulty levels, have

been given at the end of each section in a chapter

• Key concepts covered, learning outcomes, objective questions, review

questions and practice exercises have been provided towards the end of

the textbook.

Roadmap for BDA Readers

The author presumes the readers possess basic intellectual and academic background in
mathematical and statistical methods, cloud platform for storage and applications (such
as Amazon 53), object oriented programming, familiarity and programme-writing skills in
Java, and the knowledge of Python libraries.

Readers intending to learn and use Hadoop ecosystem tools need to study chapters 1

to 4 and 6 to 9. They need prerequisite programme-writing skills in Java. Readers
intending to learn and use the latest Spark ecosystem tool need to study chapters 1, 3 and
5 to 10. They need familiarity and programme-writing skills in Java and Python libraries.

Learningand Assessment Tools

Learning Objectives

Designof this book followsLearning Objective(LO) - oriented approach. This educational
process emphasises on developing required skills amongst the students. The process tests
the outcomes of the study of a course, as opposed to routine learning. This approach
creates an ability to acquire knowledge and apply fundamental principles to analytical
problems and applications.

Self Assessment Exercises

Each learning objective is followed by a set of questions for self-assessment. This offers
great retention of concepts.

Pedagogical Classification

The pedagogy is arranged as per levels of difficulty-all checkpoint problems are linked
with Learning Objectives(Los) and marked with Levelsof Difficulty(LOD), to help assess
students' learning. These levels of difficulty have been derived as per Bloom'staxonomy.

o o • indicates Level 1 and Level 2, i.e. knowledge and comprehension-based

easy-to-solve problems.

o • • indicates Level 3 and Level 4, i.e. application and analysis-based

medium to difficult problems.

• •• indicates Level 5 and Level, 6 i.e. synthesis and evaluation-based very

difficult problems.

Learning Outcomes

Summary points specific to each LO are provided at the end of each chapter. This
helps in recapitulating the ideas initiated with the outcomes achieved.

Chapter-end Exercises

More than 300 carefully designed chapter-end questions and exercises are arranged as
per levels of difficulty, and are framed to enhance knowledge and test new skills learnt.
These include objective type multiple choice questions, review questions and practice
exercises.

Salient Features

• Extensive coverage of topics in Big Data Analytics, such as Big Data

NoSQL Column-family, Object and Graph databases, Data reporting and

visualization, Programming with open source Big Data Hadoop

ecosystems tools, Spark, Spark ecosystem, Streaming, GraphX, and

Mahout tools, have been explained using examples of datasets of interest

to students, such as toys, chocolates, cars and GPAs/academic

performance of students in theory and practical subjects.

• Latest topics such as Machine Learning, Regression analysis, K-NN,

Predictive analytics, Clustering, Decision trees, Clusters, and Similar,

frequent item sets, Pattern mining solutions, Classifiers, Recommenders,

Real-time streaming data analytics, Graph networks for web and social

network analytics, and Text analytics.

• Systematic approach: Data architecture is followed by Analytics

architectures, and the section on Hadoop ecosystem tools is followed by

Spark- and Python-based tools. Each chapter starts with learning

objectives and a quick recall from earlier chapters. The introduction is

followed by important key terms in the beginning of each chapter for

easy understanding of the chapter content. The text has been tagged

with descriptions and questions, self-assessment exercises and

illustrations within the chapter, and each chapter ends with learning

outcomes, MCQs, review questions and practice exercises.

• Rich pedagogy: 20+ programming codes, 100+ questions, solved

examples and practice exercises. Dedicated chapter on a major case

study in the textbook, and another major case study in online content.

Rich online content, PPTs, guide to solutions of practice exercises and

list of select books and references, which makes a comprehensive

bibliography for anyone interested in pursuing further studies in Big

Data Analytics.

Chapter Organization

Chapter 1 gives overview of Big Data, characteristics, types and classification methods. It
describes scalability, need of scaling up and scaling out of processing, analytics using
massively parallel processors, and cloud, grid and distributed computing. This chapter
introduces data architecture design, data management, data sources, data quality, data
pre-processing and export of pre-processed data stores to cloud. Approaches of
traditional systems, such as SQL, Relational Database Management System (RDBMS),
enterprise servers and data warehouse for data storage and analysis, as well as the
approaches for Big Data storage, processing and analytics have been explained in detail. It
also includes Berkley Data Analytics architecture, and introduces cases, case studies and

applications of BOA to its readers.

Chapter 2 starts with an interesting example, explaining the distributed parallel
computing architecture with shared-nothing architecture. This chapter describes basics
of Hadoop, its ecosystem components, streaming and pipe functions, Hadoop physical
architecture, Hadoop distributed file system (HDFS). It explains how to organize nodes for
computations using large-scale file systems, and provides a conceptual understanding of
MapReduceDaemon, functioning of Hadoop MapReduceframework, YARN for managing
resources along with the application tasks. The chapter introduces Hadoop ecosystem
interactions, and application support for analytics using AVRO, Zookeeper, Ambari,
HBase,Hive,Pig and Mahout.

Chapter3 highlights NoSQL data stores, solutions, schema-less models and increasing
flexibility of NoSQL for data manipulation. It describes NoSQL data architecture patterns,
namely the key value pairs, graphs, column family, tabular, document and object in the
data stores. This chapter explains the use of the shared-nothing architecture, choosing a
distribution model, master-slave versus peer-to-peer, and four ways which NoSQL
handles Big Data problems. The chapter covers MongoDB and Cassandra databases.

Chapter 4 describes the MapReduce paradigm, map tasks using key-value pairs,
grouping-by-keys and reduce tasks. It provides the conceptual understanding of
partitioning and combiners in the application execution framework, and MapReduce
algorithms by stating various examples. The chapter also describes Hive, HiveQL and Pig
architecture, Grunt shell commands, data model, Pig Latin. It provides an understanding
how to develop scripts and User-DefinedFunctions.

Chapter 5 introduces Spark architecture features, software stack components and
their functions. It describes the steps in data analysis with Spark, and usage of Spark with
Python advanced features. The highlight of this chapter is the description of methods of
downloading Spark, programming with the RDDs, usage of the Spark shell, developing
and testing Spark codes, and the applications of MLib. The chapter gives understanding of
how to run ETL processes using the built-in functions, operators and pipelines. It also
covers data analytics, data reporting and data visualization aspects.

Chapter 6 lucidly explains the classes of variables, and the ways of estimating the
relationships, outliers, variances, probability distributions, errors and correlations
between variables, items and entities. The chapter gives detailed descriptions of
regression analysis, and the use of K-NN distance measures for making predictions using
interpolations and extrapolations. It explains machine-learning methods of finding
similar items, similarities, filtering of simliars, frequent itemset mining, collaborative
filtering, associations and association rules mining. The highlight of this chapter is the
description of ML methods of clustering, classifiers and recommenders, and Apache
Mahout algorithms for big datasets.

Chapter 7 provides understanding of the concept, model, architecture, management
of data streams. It describes stream sources and stream computing aspects - sampling,
filtering, counting distinct elements, frequent itemset stream analytics, handling of large
datasets, and mining of association rules. The chapter explains the real-time analytics
platform, Apache SparkStreaming, and case studies on real-time sentiment analytics and
stock price analytics.

Chapter8 describes the modelling of databases as the graphs and representations of
graphs using triples. The highlight of this chapter is the description of use of graphs and
graph networks. The chapter gives methods of choosing the graph and graph parameters,

such as centralities for analytics. It explains the graph methods of diagnostics, decisions,
StatsModel, and probabilities-based analytics. Another highlight is the description of
features of Apache Spark GraphX,and its architecture, components and applications.

Chapter 9 describes text mining and the usage of ML techniques . Naive-Bayes
analysis, and support-vector machines (SVMs) for analysing text. The chapter explains
the methods of web mining, link analytics, analysing of web graphs, PageRank methods,
web structure analytics, finding hubs and communities, social-network analysis, and
representation of social networks as graphs. It describes computational methods of
finding the clustering in social network graphs, SimRank,counting triangles (cliques) and
discovering the communities.

Chapter 10 describes installation methods for Hadoop, Hive, Pig and Spark on the
Ubuntu platform. The highlight of this chapter is deploying and exploring open-source
Lego datasets, schema, processing and storage. The chapter explains MapReduce
implementation for counting items in a dataset, creating Hive data tables from a CSV
format dataset, and creating Dataframes from RDDs. It describes Hive and PySpark
programmes using functions for Merge and Join of Dataframes, the SQL-equivalentJoin,
and the UDFs for customised query processing. The chapter explains programmes for data
visualization using pi, bar and scatter plots. Another highlight of the chapter is the
description of machine learning programmes using sklearn for SVMs, Naive Bayes
Classifiers,linear and polynomial regression analyses, and predictive analytics.

Followingcontent is available towards the end of this textbook:

1. Solution to objective questions

2. Bibliography

• Printed and e-books

• Website resources

• Research journals

• Reference papers

Online LearningCenter

An accompanying web supplement available at http://www.mhhe.com/kamal/bda
includes:

PowerPoint slides for each chapter to supplement lecture presentations

Solution guide to practice exercises

Write-up on topics

An additional case study using an open source large dataset of car

company

Although much care has been taken to ensure an error-free text, a few mistakes may

http://www.mhhe.com/kamal/bda
http://www.mhhe.com/kamal/bda

have crept in. The authors shall be grateful if they are pointed out by the readers.
Feedback on content of the book as well as the web supplement available on the McGraw•
Hill site from readers will be highly appreciated through e-mail to
dr _rajkamal@hotmail.com and preeti_ms@rediffmail.com.

RAJ KAMAL

PREETISAXENA

mailto:_rajkamal@hotmail.com
mailto:_rajkamal@hotmail.com

Acknowledgements

Raj Kamal is grateful to Chairman, Dr N N Jain, Vice Chairman, Dr DavisJain, and Shri
Ketan Jain of Prestige Educational Society for providing him an opportunity to serve at
PIEMR, a great institution and platform to learn, and continue research and teaching in
new and exciting areas of engineering and technology. The author is also grateful to Dr
Manojkumar Deshpande,Director, PIEMR, for his continuous encouragement.

Raj Kamalis grateful to Sushil Mittal (wife)for her love and being a constant source of
support, and his family members, Dr Shilpi Kondaskar (daughter), Dr Atul Kondaskar
(son-in-law), Shalin Mittal (son) Needhi Mittal (daughter-in-law), and grandchildren
Arushi Kondaskar, Atharv Raj Mittal, Shruti Shreya Mittal and Ishita Kondaskar for their
love and affection.

Preeti Saxena extends her thanks to family members, Manish Saxena (husband) for
unconditional support and everlasting faith, Devansh Saxena (son) and Raghvi Saxena
(daughter) for their warmth and affection, Suvidya Saxena (mother) and Prateek Saxena
(brother) for their encouragement and well wishes.

Both the authors are also grateful to their colleagues, especially Dr Suresh Jain, Dr
(Mrs)Maya Ingle,

Dr Sanjay Tanwani, Dr Shraddha Masih, Dr Archana Chaudhary, Dr Manju
Chattopadhaya, Ms Kirti Panwar Bhati, Dr Savita Kolhe and Ms Pritika Bahad for their
support and continuous encouragement.

The authors would also like to thank the team at McGraw-HilEl ducation who initiated
the idea of writing, perhaps the first textbook on Big Data Analytics and whose agile
approach lead to the timely production of this textbook. The authors also thank the
reviewers who took out time to go through the manuscript and shared their valuable
suggestions.

Contents

Preface

Acknowledgements

List of Acronyms

1. Introductionto Big Data Analytics

1.1 Introduction

1.1.1 Need of Big Data

1.2 Big Data

1.2.1 Classification of Data-Structured, Semi-structured and

Unstructured

1.2.2 Big Data Definitions

1.2.3 Big Data Characteristics

1.2.4 Big Data Types

1.2.5 Big Data Classification

1.2.6 Big Data Handling Techniques

1.3 Scalability and Parallel Processing

1.3.1 Analytics Scalability to Big Data

1.3.2 Massively Parallel Processing Platforms

1.3.3 Cloud Computing

1.3.4 Grid and Cluster Computing

1.3.5 Volunteer Computing

1.4 Designing Data Architecture

1.4.1 Data Architecture Design

1.4.2 Managing Data for Analysis

1.5 Data Sources, Quality, Pre-Processing and Storing

1.5.1 Data Sources

1.5.2 Data Quality

1.5.3 Data Pre-processing

1.5.4 Data Store Export to Cloud

1.6 Data Storage and Analysis

1.6.1 Data Storage and Management: Traditional Systems

1.6.2 Big Data Storage

1.6.3 Big Data Platform

1.6.4 Big Data Analytics

1.7 Big Data Analytics Applications and Case Studies

1.7.1 Big Data in Marketing and Sales

1.7.2 Big Data and Healthcare

1.7 .3 Big Data in Medicine

1.7.4 Big Data in Advertising

Key Concepts Learning

Outcomes Objective Type

Questions Review

Questions

Practice Exercises

2. Introductionto Hadoop

2.1 Introduction

2.2 Hadoop and its Ecosystem

2.2.1 Hadoop Core Components

2.2.2 Features ofHadoop

2.2.3 Hadoop Ecosystem Components

2.2.4 Hadoop Streaming

2.2.5 Hadoop Pipes

2.3 Hadoop Distributed File System

2.3.1 HDFS Data Storage

2.3.2 HDFS Commands

2.4 Mapreduce Framework and Programming Model

2.4.1 Hadoop MapReduce Framework

2.4.2 MapReduce Programming Model

2.5 Hadoop Yarn

2.5.1 Hadoop 2 Execution Model

2.6 Hadoop Ecosystem Tools

2.6.1 Hadoop Ecosystem

2.6.2 Ambari

2.6.3 HBase

2.6.4 Hive

2.6.5 Pig

2.6.6 Mahout

Key Concepts Learning

Outcomes Objective Type

Questions Review

Questions

Practice Exercises

3. NoSQLBig Data Management,MongoDB and Cassandra

3.1 Introduction

3.2 NoSQL Data Store

3.2.1 NoSQL

3.2.2 Schema-less Models

3.2.3 Increasing Flexibility for Data Manipulation

3.3 NoSQL Data Architecture Patterns

3.3.1 Key-Value Store

3.3.2 Document Store

3.3.3 Tabular Data

3.3.4 Object Data Store

3.3.5 Graph Database

3.3.6 Variations of NoSQL Architectural Patterns

3.4 NoSQL to Manage Big Data

3.4.1 Using NoSQL to Manage Big Data

3.5 Shared-Nothing Architecture for Big Data Tasks

3.5.1 Choosing the Distribution Models

3.5.2 Ways of Handling Big Data Problems

3.6 MongoDBDatabase

3.7 Cassandra Databases

Key Concepts Learning

Outcomes Objective Type

Questions Review

Questions

Practice Exercises

4. MapReduce, Hive and Pig

4.1 Introduction

4.2 MapReduce Map Tasks, Reduce Tasks and MapReduce Execution

4.2.1 Map-Tasks

4.2.2 Key-Value Pair

4.2.3 Grouping by Key

4.2.4 Partitioning

4.2.5 Combiners

4.2.6 Reduce Tasks

4.2.7 Details of MapReduce Processing Steps

4.2.8 Coping with Node Failures

4.3 Composing MapReduce for Calculations and Algorithms

4.3.1 Composing Map-Reduce for Calculations

4.3.2 Matrix-Vector Multiplication by MapReduce

4.3.3 Relational-Algebra Operations

4.3.4 Matrix Multiplication

4.4 Hive

4.4.1 Hive Architecture

4.4.2 Hive Installation

4.4.3 Comparison with RDBMS (Traditional Database)

4.4.4 Hive Data Types and File Formats

4.4.5 Hive Data Model

4.4.6 Hive Integration and Workflow Steps

4.4.7 Hive Built-in Functions

4.5 HiveQL

4.5.1 HiveQLData Definition Language (DDL)

4.5.2 HiveQLData Manipulation Language (DML)

4.5.3

4.5.4

4.5.5

4.5.6

4.6 Pig

4.6.1

4.6.2

4.6.3

4.6.4

HiveQLFor Querying the Data

Aggregation

Join

Group by Clause

Apache Pig - Grunt Shell

Installing Pig

Pig Latin Data Model

Pig Latin and Developing Pig Latin Scripts

Key Concepts Learning

Outcomes Objective Type

Questions Review

Questions

Practice Exercises

5. Sparkand Big Data Analytics

5.1 Introduction

5.2 Spark

5.2.1 Introduction to Big Data Tool-Spark

5.3 Introduction to Data Analysis with Spark

5.3.1 Spark SQL

5.3.2 Using Python Advanced Features with Spark SQL

5.3.3 Data Analysis Operations

5.4 Downloading Spark, and Programming using RDDs and MLIB

5.4.1 Downloading, Installing Spark and Getting Started

5.4.2 Programming with RDDs

5.4.3 Machine Learning with MLib

5.5 Data ETL (Extract, Transform and Load) Process

5.5.1 Composing Spark Program Steps for ETL

5.6 Introduction to Analytics, Reporting and Visualizing

5.6.1 Introduction to Analytics

5.6.2 Data/Information Reporting

5.6.3 Data Visualization

Key Concepts Learning

Outcomes Objective Type

Questions Review

Questions

Practice Exercises

6. Machine LearningAlgorithmsfor Big Data Analytics

6.1 Introduction

6.2 Estimating the Relationships, Outliers, Variances, Probability

Distributions and Correlations

6.2.1 Relationships-Using Graphs, Scatter Plots and Charts

6.2.2 Estimating the Relationships

6.2.3 Outliers

6.2.4 Variance

6.2.5 Probabilistic Distribution of Variables, Items or Entities

6.2.6 Correlation

6.3 Regression Analysis

6.3.1 Simple Linear Regression

6.3.2 Least Square Estimation

6.3.3 Multiple Regressions

6.3.4 Modelling Possibilities using Regression

6.3.5 Predictions using Regression Analysis

6.3.6 K-Nearest-Neighbour Regression Analysis

6.4 Finding Similar Items, Similarity of Sets and Collaborative Filtering

6.4.1 Finding Similar Items

6.4.2 Jaccard Similarity of Sets

6.4.3 Collaborative Filtering as a Similar-Sets Finding Problem

6.4.4 Distance Measures for Finding Similar Items or Users

6.5 Frequent Itemsets and Association Rule Mining

6.5.1 Frequent Itemset Mining

6.5.2 Association Rule- Overview

6.5.3 Apriori Algorithm

6.5.4 Evaluation of Candidate Rules

6.5.5 Applications of Association Rules

6.6 Clustering Analysis

6.6.1 Overview of Clustering

6.6.2 K-Means

6.6.3 Hierarchical Clustering

6. 7 classification

6.7.1 Concept of Classification

6.7.2 K-Nearest Neighbour Classifier

6. 7 .3 Stochastic Gradient Descent Method - Logistic Regression

6. 7.4 Decision Tree Algorithm

6.7.5 Naive-Bayes Theorem - Naive Bayes Classifier

6.7.6 Support Vector Machine Classifier

6.7.7 Random Forest Classifier

6. 7 .8 AdaBoost and Other Ensemble Classifiers

6.8 Recommendation System

6.8.1 Collaborative Recommendation

6.8.2 Model for Recommendation Systems

6.8.3 Content Based Recommendation

6.8.4 Knowledge-based Recommendation

6.8.5 Hybrid Recommendation Approaches

6.9 Apache Mahout Machine-Learning Applications

Key Concepts Learning

Outcomes Objective Type

Questions Review

Questions

Practice Exercises

7. Data Stream Mining and Real-Time Analytics Platform•

SparkStreaming

7 .1 Introduction

7 .2 Data Stream Concepts and Data Stream Management

7.2.1 Data Stream Concepts

7 .2.2 Data Stream Model

7.2.3 Architecture

7.2.4 Data Stream Management System (DSMS)

7 .2.5 Example of Sources of Streams

7 .2.6 Stream Queries

7 .2. 7 Stream Processing Issues

7.2.8 Real-time Processing, Stream Processing and Batch

Processing

7.2.9 Summarizing Streaming Processing Needs

7.3 Stream Computing Aspects

7.3.1 Stream Computing

7.3.2 Sampling Data in a Stream

7.3.3 Filtering of Stream

7.3.4 Counting Distinct Elements in a Stream

7.3.5 Estimating Moments

7.3.6 Counting of l's in a Window

7.3.7 Decaying Windows

7.4 Frequent Itemsets

7.4.1 Finding Frequent Itemsets

7.4.2 Handling Large Datasets for Finding Frequent Itemsets

7.4.3 Limited Passes Algorithms

7.4.4 Counting Frequent Items in a Stream

7.5 Real-time Analytics Platform (RTAP)-SparkStreaming

7.5.1 Apache®Spark™ Streaming

7 .5.2 Real-Time Analytics Platform Applications

7.5.3 Case Studies-Real-Time Sentiment Analysis,

Negative Sentiments Prediction and Stock

Predictions

Key Concepts Learning

Outcomes Objective Type

Questions Review

Questions

Practice Exercises

8. GraphAnalytics for Big Data and SparkGraphXPlatform

Positive

Market

8.1 Introduction

8.2 Graph Model

8.2.1 Representing a Graph as Triples

8.2.2 Resource Description Framework (RDF) for Graph Databases

8.2.3 SPARQL Querying Language for RDF Graph-Database

8.2.4 NativeDBGraph Database

8.2.5 Property Graph Model

8.3 Graphs, Network Organization and Graph Analytics

8.3.1 Network Organization

8.3.2 Probabilistic Graphical Network Organizations-Bayesian and

Markov Networks

8.3.3 Graph Analytics

8.3.4 Choosing Graph Analytics

8.3.5 Use Cases of Graph Analytics

8.4 Graph Analytics Algorithms and Approaches

8.4.1 StatsModel and Probability Based Analytics

8.4.2 Technical Complexity in Analyzing Graphs

8.5 Spark GraphX Platform

8.5.1 Features of a Graph Analytics Platform-Apache

SparkGraphX

8.5.2 Dedicated Appliances for Graph

Key Concepts Learning

Outcomes Objective Type

Questions Review

Questions

Practice Exercises

9. Text, Web Content,Link, and Social Network Analytics

9 .1 Introduction

9.2 Text Mining

9.2.1 Text Mining

9.2.2 Naive Bayes Analysis

9.2.3 Support Vector Machines

9.3 Web Mining, Web Content and Web Usage Analytics

9.3.1 Web Mining

9.3.2 Web Content Mining

9.3.3 Web Usage Mining

9.4 Page Rank, Structure of Web and Analyzing a Web Graph

9.4.1 Page Rank Definition

9.4.2 Web Structure

9.4.3 Computation of PageRank and PageRank Iteration

9.4.4 Topic Sensitive PageRank and Link Spam

9.4.5 Hubs and Authorities

9.4.6 Web Communities

9 .4.7 Limitations of Link, Rank and Web Graph Analysis

9.5 Social Networks as Graphs and Social Network Analytics

9.5.1 Social Network as Graphs

9.5.2 Social Graph Network Topological Analysis using Centralities

and PageRank

9.5.3 Social Graph Network Analysis using K-core and

Neighbourhood Metrics

9.5.4 Clustering in Social Network Graphs

9.5.5 SimRank

9.5.6 Counting Triangles and Graph Matches

9.5.7 Using SparkGraph (Map-Reduce) for Network Graphs

9.5.8 Direct Discovery of Communities

Key Concepts Learning

Outcomes Objective Type

Questions Review

Questions

Practice Exercises

10. ProgrammingExamples in Analytics and Machine Learning using

Hadoop, Sparkand Python

10.1 Introduction

10.2 Installation Steps for Hadoop and Spark

10.2.1 Installation Steps for Hadoop, Hive and Pig

10.2.2 Installation Steps for the Spark on Ubuntu

10.2.3 Computing Platform Configuration

10.3 Datasets Used in the Examples, Data Deployment and Exploration

10.3.1 Counting and Sorting of Items in Datasets using MapReduce

10.3.2 Storing CSV Dataset into Hive Database

10.3.3 Storing CSV Dataset into the Spark DataFrame

10.3.4 Creating DataFrame from the RDD

10.4 Programming Steps using Hive and Pyspark

10.4.1 Merge and Join Functions for DataFrame Objects

10.4.2 Analysis and Query-Processing Using UDFs in Hive and

Pyspark

10.5 Data Visualization using Python Plotting Library

10.6 Machine-Learning Algorithms Implementation

10.6.1 Clustering Algorithm

10.6.2 Classification Algorithm Example 1: SVM Classifier

10.6.3 Classification Algorithm Example 2: Naive Bayes Classifier

10.6.4 Regression Analysis Algorithms

Practice Exercises

Bibliography

Answers to Multiple Choice Questions

Index

List of Acronyms

3V

4V

ACID

ACPAMS

ACVM

ADT

AI

AM

AMP

ANN

ANOVA

API

BASE

BFS

BI

BIRT

BLOB

BN

BNG

BP

BSON

CAC

CAP

CGPA

CF

CBF

CLI

Volume, Velocity and/ or Variety Volume,

Velocity, Variety and Veracity Atomicity,

Consistency, Isolation and Durability

Automotive Components and Predictive Automotive

Maintenance Service

Automatic Chocolate Vending Machine

Abstract Data Type

Artificial Intelligence

Application Master

Algorithms, Machines and Peoples Laboratory at University of

Berkeley

Artificial Neural Network

Analysis of Variance

Application Programming Interface

Basically Available Soft State Eventual Consistency

Breadth-First Search

Business Intelligence

Business Intelligence and Reporting Tools

Binary Large Object

Bayesian Network

Bayesian Network Graph

Business Process

Binary encoded]SON objects

Customer Acquisition Cost

Consistence Availability and Partitioning

Cumulative Grade-Point Average

Collaborative Filtering

Content Based Filtering

Command Line interface

CLTV

CQL

CRM

csv
CURD

CV

CVA

DALS

DAS

DFG

DAG

DB

DBA

DBMS

DDL

DFS

DL

DF

DFG

DML

DRM

DSMS

DSPCA

EDP

ELT

ERP

ETL

FIM

FL

FP

GP

GVUDF

IDF

IIS

Customer Lifetime Value

Cassandra Query Language

Customer Relationship Management

Comma-Separated Values

Create, Update, Read and Delete

Customer Value

Customer Value Analytics

Distributed regularized Alternating Least Squares

Direct Attached Storage

Data Flow Graph

Directed Acylic Graph

Database

Database Administrator

Database Management System

Data Definition Language

Distributed File System

Deep Learning

Data Flow

Data Flow Graph

Data Manipulation Language

Distributed Row Matrix

Data Stream Management System

Distributed Stochastic Principal Component Analysis

Electronic Data Processing

Extract, Load and Transform

Enterprise Resource Planning

Extract, Transform and Load

Frequent Item-set Mining

Flavour (for example of chocolate, candy, ice-cream)

Frequent Pattern

Grade Point

Grouped Vectorized User Defined Function

Inverse Document Frequency

IBM InfoSphere Information Server

IR Information Retrieval

IS Information Server or Service or System

JDBC

JN

)SON

HITS

HDFS

HPQS

IDE

10

Java Database Connectivity

Journal Node

JavaScript Object Notation

Hypertext-Induced Topic Selection

Hadoop Distributed File System

High Performance Query Structure

Integrated Development Environment

Input and Output

Chapter 1

Introductionto Big Data Analytics

LEARNING OBJECTIVES

After studyingthis chapter,you will be able to:

LO 1.1 Get conceptual understanding of data and web data; classification of data as

structured, semi-, multi- and unstructured data; Big Data characteristics,

types, classifications and handling techniques

LO 1.2 Get conceptual understanding of scalability, Massively Parallel Processing

(MPP), distributed, cloud and grid computing

LO 1.3 Know the design layers in data-processing architecture for the data

management and analytics

LO 1.4 Get introduced to data sources, data quality, data pre-processing, and the

export of data store (such as tables, objects and files) to the cloud

LO 1.5 Get conceptual understanding of data storage and analysis; comparison between

traditional systems such as Relational Database Management System (RDBMS),

enterprise servers, data warehouse and approaches for Big Data storage and

analytics

LO 1.6 Get knowledge of use cases and applications of Big Data in various fields.

 1.1 ! INTRODUCTION

Two Grand Masters, Magnus Carlsen and Sergey Karjakin, played the final in World

Chess Championship held on December 1, 2016. Magnus Carlsen won this final and the

title of Grand Master. Sergey Karjakin, in order to win, would have to design a new

strategy to defeat Carlsen and other players next year. A Grand Master typically studies

the moves made in earlier matches played by Grand Masters, analyzes them and then

designs his strategies. Evolving strategy to defeat an opponent could even make good

use of the data of Gary Kasparov's matches from 1984. Study and analysis of a large

number of matches helps in evolving a winning strategy. Similarly, analytics of Big Data

could enable discovery of new facts, knowledge and strategy in a number of fields, such

as manufacturing, business, finance, healthcare, medicine and education.

1.1.1 Need of Big Data

The rise in technology has led to the production and storage of voluminous amounts of

data. Earlier megabytes (106 B) were used but nowadays petabytes (1015 B) are used for

processing, analysis, discovering new facts and generating new knowledge.

Conventional systems for storage, processing and analysis pose challenges in large

growth in volume of data, variety of data, various forms and formats, increasing

complexity, faster generation of data and need of quickly processing, analyzing and

usage.

Figure 1.1 shows data usage and growth. As size and complexity increase, the

proportion of unstructured data types also increase.

Peta Complex and

unstructured data fypes

CompleK, malional
datat>aser.. tables., SQL.

suuetu red data typo

Simple and

structured data type s

Figure 1.1 Evolution of Big Data and their characteristics

An example of a traditional tool for structured data storage and querying is RDBMS.

Volume, velocity and variety (3Vs) of data need the usage of number of programs and

tools for analyzing and processing at a very high speed. When integrated with the

Internet of Things, sensors and machines data, the veracity of data is an additional V.

(Section 1.2.3)

Big Data requires new tools for processing and analysis of a large volume of data. For

example, unstructured, NoSQL (not only SQL) data or Hadoop compatible system data.

Following are selected key terms and their meanings, which are essential to

understand the topics discussed in this chapter:

Application means application software or a collection of software components. For

example, software for acquiring, storing, visualizing and analyzing data. An application

performs a group of coordinated activities, functions and tasks.

Application Programming Interface (API) refers to a software component which enables a

user to access an application, service or software that runs on a local or remote

computing platform. An API initiates running of the application on receiving the

message(s) from the user-end. An API sends the user-end messages to the other-end

software. The other-end software sends responses or messages to the API and the user.

Data Model refers to a map or schema, which represents the inherent properties of the

data. The map shows groupings of the data elements, such as records or tables, and

their associations. A model does not depend on software using that data.

Data Repository refers to a collection of data. A data-seeking program relies upon the

data repository for reporting. The examples of repositories are database, flat file and

spreadsheet. [Repository in English means a group which can be relied upon to look for

required things, such as special information or knowledge. For example, a repository of

paintings by various artists.]

Data Store refers to a data repository of a set of objects. Data store is a general concept

for data repositories, such as database, relational database, flat file, spreadsheet, mail

server, web server and directory services. The objects in data store model are instances

of the classes which the database schemas define. A data store may consist of multiple

schemas or may consist of data in only one schema. Example of only one scheme for a

data store is a relational database.

Distributed Data Store refers to a data store distributed over multiple nodes. Apache

Cassandra is one example of a distributed data store. (Section 3. 7)

Database (DB) refers to a grouping of tables for the collection of data. A table ensures a

systematic way for accessing, updating and managing data. A database pertains to the

applications, which access them. A database is a repository for querying the required

information for analytics, processes, intelligence and knowledge discovery. The

databases can be distributed across a network consisting of servers and data

warehouses.

Table refers to a presentation which consists of row fields and column fields. The

values at the fields can be number, date, hyperlink, image, object or text of a document.

Flat File means a file in which data cannot be picked from in between and must be read

from the beginning to be interpreted. A file consisting of a single-table file is called a

flat file. An example of a flat file is a csv (comma-separated value) file. A flat file is also a

data repository.

Flat File Database refers to a database in which each record is in a separate row

unrelated to each other.

CSV File refers to a file with comma-separated values. For example, CSlOl, "Theory of

Computations", 7.8 when a student's grade is 7.8 in subject code CSlOl and subject

"Theory of Computations".

Name-Value Pair refers to constructs used in which a field consists of name and the

corresponding value after that. For example, a name value pair is date, ""Oct. 20, 2018"",

chocolates_sold, 178;

Key-Value Pair refers to a construct used in which a field is the key, which pairs with

the corresponding value or values after the key. For example, consider a tabular record,

""Oct. 20, 2018""; ""chocolates_sold"", 178. The date is the primary key for finding the

date of the record and chocolates_sold is the secondary key for finding the number of

chocolates sold.

Hash Key-Value Pair refers to the construct in which a hash function computes a key for

indexing and search, and distributing the entries (key/value pairs) across an array

of slots (also called buckets). (Section 3.3.1)

Spreadsheet refers to the recording of data in fields within rows and columns. A field

means a specific column of a row used for recording information. The values in fields

associates a program, such as Microsoft Excel 2013. An example of a spreadsheet

application is accounting. The application manages, analyzes and enables new values

either directly or using formulae which contain the relationships of a field with cells

and rows. Examples of functions are SUMIF and COUNTIF, delete duplicate entries, sort

using multiple keys, filter single or multiple columns, create a filter using filtering

criteria or rules for multi-fields, and create top-n lists for values or percentages.

Stream Analytics refers to a method of computing continuously, i.e. even while events

take place data flows through the system.

Database Maintenance (DBM) refers to a set of tasks which improves a database. DBM

uses functions for improving performance (such as by query planning and

optimization), freeing-up storage space, updating internal statistics, checking data

errors and hardware faults.

Database Administration (DBA) refers to the function of managing and

maintaining Database Management System (DBMS) software regularly. A database

administering personnel has many responsibilities, such as installation, configuration,

database design, implementation upgrading, evaluation of database features, reliable

backup and recovery methods for the database.

Database Management System (DBMS) refers to a software system, which contains a set

of programs specially designed for creation and management of data stored in a database.

Transactions can be performed with database/relational database.

Relational Database is a collection of data into multiple tables, which relate to each

other through special fields, called keys (primary key, foreign key and unique key).

Relational databases provide flexibility.

Relational Database Management System (RDBMS) refers to a software system used for

creation of relational databases and management of data which are stored in a

relational database. RDBMS functions perform the transactions on the relational

database. Examples of RDBMS are MySQL, PostGreSQL(Oracle database created using

PL/SQL) and Microsoft SQL server using T-SQL.

Transaction (trans + action) means two interrelated sets of operations, actions or

instructions. A transaction is a set of actions which accesses, changes, updates, appends

or deletes various data. A command 'connect' enables transfers between DBMS software

and a database. The database in return connects the DBMS. An example of this is query

transfer from a system to a database. The database in return transfers the answer of the

query.

SQL stands for Structured Query Language. It is a language used for schema creation

and schema modifications, data-access control, creating an SQL client and creating an

SQL server for a database. It is a language for managing relational databases, and

viewing, querying and changing (update, insert, append or delete) databases.

Database Connection refers a function DB_connect open() which an application calls to

connect to enable the access to the DBMS. The application calls the function DB_connect

close () to disable the access.

Database Connectivity (DBC) refers to a standard application programming

interface (API), which provides connectivity for accessing the DBMSs. A DBC design is

independent of the DB system and OS used. An application written using a DBC can

therefore perform operations or actions at both the client and the DB server end. Little

changes in code suffice for accessing the data. Two examples of DBCs are Open Database

Connectivity (ODBC) and Java Database Connectivity 0DBC).

Database Connectivity Driver refers to a translation layer which resides between an

application using the application and the DBMS. The application uses DBC functions

through a DBC driver manager with which it is linked. A DBC driver manager manages

the drivers associated with the DBMSs. The DBC driver sends the queries to a DBMS.

Drivers exist for many data sources and all major DBMSs.

DB2 is IBM RDBMS. DBZ has many features. For example, triggers, stored procedures

and dynamic bitmapped indexing for number of application types, such as traditional

host-based applications, client/ server-based applications and business intelligence

applications.

Data Warehouse refers to sharable data, data stores and databases in an enterprise. It

consists of integrated, subject oriented (such as finance, human resources and business)

and non-volatile data stores, which update regularly.

Data Mart is a subset of data warehouse. Data mart corresponds to specific business

entity on a single subject (or functional area), such as sales or finance data mart is also

known as High Performance Query Structures (HPQS).

Process means a composition of group of structured activities, tasks or services that

lead to a particular goal. For example, purchase process for airline tickets. A process

specifies activities with relevance rules based on data in the process.

Process Matrix refers to a multi-element entity, each element of which relates a set of

data or inputs to an activity (or subset of activities).

Business Process is an activity, series of activities or a collection of inter-related

structured activities, tasks or processes. A business process serves a particular goal,

specific result, service or product. The business process is a representation, process

matrix or flowchart of a sequence of activities with interleaving decision points.

Business Intelligence is a process which enables a business service to extract new facts

and knowledge that enable intelligent decisions. The new facts and knowledge follow

from the previous results of business-data processing, aggregation and analysis.

Batch Processing is processing of transactions in batches with no interactions. When

one set of transactions finish, the results are stored and the next batch starts

processing. Credit card transactions is a good example of the same. The results

aggregate at the end of the month for all usages of the card. Batch processing involves

the collection of inputs for a specified period and then running them in a scheduled

manner.

Batch Transaction Processing refers to the execution of a series of transactions without

user interactions. Transaction jobs are set up so they can be run to completion. Scripts,

command-line arguments, control files or job-control language predefine the input

parameters for the transactions.

Streaming Transaction Processing refers to processing for log streams, event streams,

twitter streams and queries. The processing of streaming data needs a specialized

software framework. Storm from Twitter, 54 from Yahoo, SPARK streaming, HStreaming

and Flume are examples of frameworks for real-time streaming computations.

In-memory means operations using CPU memory, such as RAM or caches. Data in-

memory is from a disk or external data source. The operations are fast on in-memory

accesses of data, table or data sets, columns or rows compared to disk-accesses.

Interactive Transaction Processing means processing the transactions which involve

continual exchange of information between the computer and user; for example, user

interactions during e-shopping or e-banking. The processing here is just the opposite of

batch processing. Decision on historical data is fast. Interactive query processing has

low latency. Low latencies are obtained by the various approaches: massively parallel

processing (MPP), in-memory databases and columnar databases.

Real-Time Processing refers to processing for obtaining results for making decisions in

real time, processing as and when the data acquires or generates in live data

(streaming) with low latency.

Real-Time Transaction Processing means that transactions process at the same time as

the data arrives from the data sources. An example of such processing is transaction

processing at an ATM machine.

Extract, Transform and Load (ETL) refers to the process, which enables data retrieval,

integration, transformation and storage (load). Extract means obtaining data from

homogeneous or heterogeneous data sources. Transform means transforming or

optimizing data for the application, and storing the data in an appropriate structure or

format. Load means the structured data is loaded in the final target database, i.e. data

store or data warehouse.

Machine is a computing node or platform for processing, computing and storing. Here,

sets of data, programs, applications, DBs or DBMSs reside. When other remote machines

access the resources from the machine, it is identified by a name within a network.

Server is a processing, computing and storing node. A server generates responses,

sends replies and messages, and renders the data sought. Server refers to sets of data,

programs, applications, data-stores, DBs or DBMSs which the clients access.

Service means a mechanism which enables the provisioning of access to one or more

capabilities. An interface provides the access capabilities. The access to a capability is

consistent with various constraints and policies. A service description specifies these

constraints and policies. Examples of services are web service, cloud service and

BigQueryservice.

Service-Oriented Architecture (SOA) is a software architecture model which consists of

services, messages, operations and processes. SOA components distribute over a

network or the Internet in a high-level business entity. New business applications and

an application-integration architecture can be developed using an SOA in an enterprise.

Descriptive Analytics refers to deriving additional value from visualizations and reports.

Predictive Analytics refers to advanced analytics which enables extraction of new facts

and knowledge to predict or forecast.

Prescriptive Analytics refers to derivation of additional value and undertaking better

decisions for new option(s); for example, maximizing profit.

Cognitive Analytics refer to analysis of sentiments, emotions, gestures, facial

expressions, and actions similar to ones the humans do. The analytics follow the process

of learning, understanding and representing. [Cognitive in English means relating to the

process of learning, understanding and representing knowledge. (CollinsDictionary)]

This chapter introduces the readers to the concepts of Big Data, scaling-up and

scaling-out of data processing and scalability for storage and analytics. It introduces the

concepts of data processing architecture, data sources, data quality and the new

technological developments in data management for analysis. These are supported by

examples and cases on Big Data analytics. This chapter aims to build a foundation before

the in-depth study of Big Data and analytics tools facilitated by the subsequent chapters

of the book.

Section 1.2 introduces Big Data and its characteristics, types and classification

methods. Section 1.3 describes scalability, scaling up, scaling out of processing and

analytics, massively parallel processors, and cloud, grid and distributed computing.

Section 1.4 introduces data architecture design and data management. Section 1.5

describes data sources, data quality, data pre-processing and export of data stores to the

cloud. Section 1.6 describes traditional systems, such as SQL, Relational Database

Management System (RDBMS), enterprise servers and data warehouse for data storage

and analysis, as well as the approaches for Big Data storage, processing and analytics.

Section 1. 7 describes Big Data analytics case studies and applications.

 1.2 ! BIG DATA

Following subsections describe the definitions of data, web

data, Big Data, Big Data characteristics, types, classifications

and handling techniques:

Definitions ofData

Data has several definitions. Usages can be singular or plural.

Com:e,pruall 11.m derista nd illilg1
of alat.3, web d:aiv.a) Big

IDa1ta, Character1is~ics. types
(llassmc_atioliils an al harnall ing
te:::lmliili(l,U@S

"Data is information, usually in the form of facts or statistics that one can analyze or use

for further calculations." [Collins English Dictionary] "Data is information that can be

stored and used by a computer program.". [Computing] "Data is information presented

in numbers, letters, or other form". [Electrical Engineering, Circuits, Computing and

Control] "Data is information from series of observations, measurements or facts".

mailto:U@S
mailto:U@S

[Science] "Data is information from series of behavioural observations, measurements

or facts". [Social Sciences]

Definition of Web Data

Web is large scale integration and presence of data on web servers. Web is a part of the

Internet that stores web data in the form of documents and other web resources. URLs

enable the access to web data resources.

Web data is the data present on web servers (or enterprise servers) in the form of text,

images, videos, audios and multimedia files for web users. A user (client software)

interacts with this data. A client can access (pull) data of responses from a server. The

data can also publish (push) or post (after registering subscription) from a server.

Internet applications including web sites, web services, web portals, online business

applications, emails, chats, tweets and social networks provide and consume the web

data.

Some examples of web data are Wikipedia, GoogleMaps, McGraw-HillConnect, Oxford

Bookstore and YouTube.

1. Wikipedia is a web-based, free-content encyclopaedia project supported by the

Wikimedia Foundation.

2. Google Maps is a provider of real-time navigation, traffic, public transport and

nearby places by GoogleInc.

3. McGraw-HillConnect is a targeted digital teaching and learning environment that

saves students' and instructors' time by improving student performance for a

variety of critical outcomes.

4. Oxford Bookstore is an online book store where people can find any book that they

wish to buy from millions of titles. They can order their books online at

www .oxfordbookstore.com

5. YouTube allows billions of people to discover, watch and share originally-created

videos by GoogleInc.

1.2.1 Classification of Data-Structured, Semi-structuredand

Unstructured

Data can be classified as structured, semi-structured, multi-structured and

unstructured.

Structured data conform and associate with data schemas and data models. Structured

data are found in tables (rows and columns). Nearly 15-20% data are in structured or

semi-structured form. Unstructured data do not conform and associate with any

data models.

Applications produce continuously increasing volumes of both unstructured and

structured data. Data sources generate data in three forms, viz. structured, semi•

structured and unstructured. (Refer online contents associated with the Practice

Exercise 1.1 for four forms, viz. structured, semi-structured, multi-structured and

unstructured sources.)

Using Structured Data

Structured data enables the following:

data insert, delete, update and append

Indexing to enable faster data retrieval

Scalability which enables increasing or decreasing capacities and data processing

operations such as, storing, processing and analytics

Transactions processing which follows ACID rules (Atomicity, Consistency, Isolation

and Durability)

encryption and decryption for data security.

Using Semi-StructuredData

Examples of semi-structured data are XML and JSON documents. Semi-structured data

contain tags or other markers, which separate semantic elements and enforce

hierarchies of records and fields within the data. Semi-structured form of data does not

conform and associate with formal data model structures. Data do not associate data

models, such as the relational database and table models.

Using Multi-Structured Data

Multi-structured data refers to data consisting of multiple formats of data, viz. structured,

semi-structured and/or unstructured data. Multi-structured data sets can have many

formats. They are found in non-transactional systems. For example, streaming data on

customer interactions, data of multiple sensors, data at web or enterprise server or the

data- warehouse data in multiple formats.

Large-scale interconnected systems are thus required to aggregate the data and use

the widely distributed resources efficiently.

Multi- or semi-structured data has some semantic meanings and data is in both

structured and unstructured formats. But as structured data, semi-structured

data nowadays represent a few parts of data (5-10%). Semi-structured data type has a

greater presence compared to structured data.

Following is an example of multi-structured data.

EXAMPLE 1.1

Give examples of multi-structured data.

SOLUTION

Structured component of data: Each chess moves is recorded in a table in each

match that players refer in future. The records consist of serial numbers (row

numbers, which mean move numbers) in the first column and the moves of White

and Black in two subsequent vertical columns. Volume of data, i.e. data used for

analyzing erroneous or best moves in the matches, keeps growing with more and

more tables, and may eventually become 'voluminous data'.

Unstructured component of data: Social media generates data after each

international match. The media publishes the analysis of classical matches played

between Grand Masters. The data for analyzing chess moves of these matches are

thus in a variety of formats.

Multi-structured data: The voluminous data of these matches can be in a

structured format (i.e. tables) as well as in unstructured formats (i.e. text

documents, news columns, biogs, Facebook etc.). Tools of multi-structured data

analytics assist the players in designing better strategies for winning chess

championships.

Using Unstructured Data

Unstructured data does not possess data features such as a table or a database.

Unstructured data are found in file types such as .TXT, .CSV. Data may be as key-value

pairs, such as hash key-value pairs. Data may have internal structures, such as in e•

mails. The data do not reveal relationships, hierarchy relationships or object-oriented

features, such as extendibility. The relationships, schema and features need to be

separately established. Growth in data today can be characterised as mostly

unstructured data. Following are some examples of unstructured data.

EXAMPLE 1.2

Give examples of unstructured data.

SOLUTION

Examples of unstructured data are:

Mobile data: Text messages, chat messages, tweets, biogs and comments

Website content data: YouTube videos, browsing data, e-payments, web store

data, user-generated maps

Social media data: For exchanging data in various forms

Texts and documents

Personal documents and e-mails

Text internal to an organization: Text within documents, logs, survey results

Satellite images, atmospheric data, surveillance, traffic videos, images from

Instagram, Flickr (upload, access, organize, edit and share photos from any

device from anywhere in the world).

1.2.2 Big Data Definitions

Big Data is

h igh-vo lume,

high -ve locity andi or

high-variety
· eanililgs and varjous
d~ni,tions oHlme word

'Bigi

information asset that requires new forms of processing for Da,ta'
'--~~~~~~~

enhanced decision making, insight discovery and process

optimization (Gartner12012). Other definitions can be found in existing literature.

Industry analyst Doug Laney described the '3Vs', i.e. volume, variety and/or velocity

as the key "data management challenges" for enterprises. Analytics also describe the

'4Vs', i.e. volume, velocity, variety and veracity. A number of other definitions are

available for Big Data, some of which are given below.

"A collection of data sets so large or complex that traditional data processing

applications are inadequate." - Wikipedia

"Data of a very large size, typically to the extent that its manipulation and

management present significant logistical challenges." [Oxford English

Dictionary (traditional database of authoritative definitions)]

"Big Data refers to data sets whose size is beyond the ability of typical database

software tool to capture, store, manage and analyze." [The McKinsey Global

Institute, 2011]

1.2.3 Big Data Characteristics

Characteristics of Big Data, called 3Vs (and 4Vs also used) are:

Volume The phrase 'Big Data' contains the term big, which is related to size of the data

and hence the characteristic. Size defines the amount or quantity of data, which is

generated from an application(s). The size determines the processing considerations

needed for handling that data.

Velocity The term velocity refers to the speed of generation of data. Velocity is a

measure of how fast the data generates and processes. To meet the demands and the

challenges of processing Big Data, the velocity of generation of data plays a crucial role.

VarietyBig Data comprises of a variety of data. Data is generated from multiple sources

in a system. This introduces variety in data and therefore introduces 'complexity'. Data

consists of various forms and formats. The variety is due to the availability of a large

number of heterogeneous platforms in the industry. This means that the type to which

Big Data belongs to is also an important characteristic that needs to be known for

proper processing of data. This characteristic helps in effective use of data according to

their formats, thus maintaining the importance of Big Data.

Veracity is also considered an important characteristic to take into account the quality

of data captured, which can vary greatly, affecting its accurate analysis.

The 4Vs (i.e. volume, velocity, variety and veracity) data need tools for mining,

discovering patterns, business intelligence, artificial intelligence (AI), machine learning

(ML), text analytics, descriptive and predictive analytics, and the data visualization

tools.

1.2.4 Big Data Types

A task team on Big Data classified the types of Big Data (lune 2013)2. Another team from

IBM developed a different classification for Big Data types. 3

Following are the suggested types:

1. Social networks and web data, such as Facebook, Twitter, e-mails, biogs and YouTube.

2. Transactions data and Business Processes (BPs) data, such as credit card transactions,

flight bookings, etc. and public agencies data such as medical records, insurance

business data etc.

3. Customer master data, such as data for facial recognition and for the name, date of

birth, marriage anniversary, gender, location and income category,

4. Machine-generated data, such as machine-to-machine or Internet of Things data,

and the data from sensors, trackers, web logs and computer systems log. Computer

generated data is also considered as machine generated data from data store.

Usage of programs for processing of data using data repositories, such as database

or file, generates data and also machine generated data.

5. Human-generated data such as biometrics data, human-machine interaction data, e•

mail records with a mail server and MySQL database of student grades. Humans

also records their experiences in ways such as writing these in notebooks or

diaries, taking photographs or audio and video clips. Human-sourced information

is now almost entirely digitized and stored everywhere from personal computers

to social networks. Such data are loosely structured and often ungoverned.

The following examples illustrate machine-generated data.

EXAMPLE 1.3

Give three examples of the machine-generated data.

SOLUTION

Examples of machine-generated data are:

1. Data from computer systems: Logs, web logs, security/ surveillance systems,

videos/images etc.

2. Data from fixed sensors: Home automation, weather sensors, pollution sensors,

traffic sensors etc.

3. Mobile sensors (tracking) and location data.

Section 1. 7 describes Big Data Analytics use cases, case studies and applications in

detail. The following example illustrates the usages of Big Data generated from multiple

types of data sources for optimizing the services offered, products, schedules and

predictive tasks.

EXAMPLE 1.4

Think of a manufacturing and retail marketing company, such as LEGO toys.

How does such a toy company optimize the services offered, products and

schedules, devise ways and use Big Data processing and storing for predictions

using analytics?

SOLUTION

Assume that a retail and marketing company of toys uses several Big Data sources,

such as (i) machine-generated data from sensors (RFID readers) at the toy packaging,

(ii) transactions data of the sales stored as web data for automated reordering by the

retail stores and (iii) tweets, Facebook posts, e-mails, messages, and web data for

messages and reports.

The company uses Big Data for understanding the toys and themes in present

days that are popularly demanded by children, predicting the future types and

demands. The company using such predictive analytics, optimizes the product mix

and manufacturing processes of toys. The company optimizes the services to

retailers by maintaining toy supply schedules. The company sends messages to

retailers and children using social media on the arrival of new and popular toys.

The following example illustrates the Big Data features of 3Vs and their applications.

EXAMPLE 1.5

Give an example offeatures of 3Vs in Big Data and application.

SOLUTION

Consider satellite images of the Earth's atmosphere and its regions. The Volume of

data from the satellites is large. A number of Indian satellites, such as KALPANA,

INSAT-lA and INSAT-3D generate this data. Foreign satellites also generate

voluminous data continuously. Satellites record the images of full disk and sectors,

such as east and west Asia sectors and regions.

Velocity is also large. A number of satellites collect this data round the clock. Big

Data analytics helps in drawing of maps of wind velocities, temperatures and other

whether parameters.

Variety of images can be in visible range, such as IR-1 (infrared range -1), IR•

Z(infrared range -2), shortwave infrared (SWIR), MIR (medium range IR) and colour

composite.

Data Veracity, uncertain or imprecise data, is as important as Volume, Velocity

and Variety. Uncertainty arises due to poor resolutions used for recording or noise

in images due to signal impairments.

Data processing needs increased speed of computations due to higher volumes.

Need of data management, storage and increased analytics requires new innovative

non-traditional methods.

Big Data of satellites helps in predicting weather, and mapping of different crops

and from that estimating the expected crop yield.

The following examples explain the uses of Big Data generated from multiple types of

data sources.

EXAMPLE 1.6

How are Big Data used in the following companies and services using analytics?

(i) Chocolate Marketing Company with large number of installed Automatic

Chocolate Vending Machines (ACVMs)

(ii) Automotive Components and Predictive Automotive Maintenance Services

(ACPAMS) rendering customer services for maintenance and servicing of

(Internet) connected cars and its components

(iii)Weather data Recording, Monitoring and Prediction (WRMP) Organization.

SOLUTION

(i) Assume ACVM company. Each ACVM sells five flavours (FLl, FL2, FL3, FL4 and

FLS) KitKat, Milk, Fruit and Nuts, Nougat and Oreo. The company uses Big Data

types as: Machine-generated data on the sale of chocolates, reports of unfilled or

filled machine transaction data. Human-generated data of buyer-machine

interactions at the ACVMs. Social networks and web data on feedback and

personalized messages based on interactions and human-generated data on

facial recognition of the buyers. The company uses Big Data for efficient and

optimum planning of fill service for chocolates, sentiment analysis of buyers for

specific flavours, ACVMs location and periods of higher-sales analysis, assessing

needs of predictive maintenances of machines, additions and relocations of

machines, and predictions, strategies and planning for festival sales.

(ii) ACPAMS uses Big Data types as: machine-generated data from sensors at

automotive components, such as brakes, steering and engine from each car;

transactions data stored at the service website; social networks and web data in

the form of messages, feedback and reports from customers. The service

provides messages for scheduled and predictive maintenances. The service

generates reports on social networks and updates the web data for the

manufacturing plant. The service generates reports about components qualities

and needed areas for improvement in products of the company.

(iii)WRMP Organization uses Big Data types as: machine-generated data from

sensors at weather stations and satellites, social networks and web data and the

reports and alerts issued by many centers around the world. The organization

stores and processes the weather records generated by its stations, social

networks and web data collected from other centers. The organization issues

maps and weather warnings, predicts weather, rainfall in various regions,

expected dates of arrival of monsoon in different regions, issues forecasts on

social networks and web pages, generates social network and web data for areal

maps of cloud and wind.

1.2.5 Big Data Classification

Big Data can be classified on the basis of its characteristics that are used for designing

data architecture for processing and analytics. Table 1.1 gives various classification

methods for data and Big Data.

Table 1.1 Various classification methods for data and Big Data

Basis of

Classification

Examples

Data sources

(traditional)

Data storage such as records, RDBMs, distributed databases, row-oriented In-

memory data tables, column-oriented In-memory data tables, data warehouse,

server, machine-generated data, human-sourced data, Business Process (BP) data,

Business Intelligence (BI) data

Data formats

(traditional)

Structured and semi-structured

Big Data

sources

Data storage, distributed file system, Operational Data Store (ODS), data marts,

data warehouse, NoSQL database (MongoDB, Cassandra), sensors data, audit trail

of financial transactions, external data such as web, social media, weather data,

health records

Big Data

formats

Unstructured, semi-structured and multi-structured data

Data Stores

structure

Web, enterprise or cloud servers, data warehouse, row-oriented data for OLTP,

column-oriented for OLAP, records, graph database, hashed entries for key/value

pairs

Processing

data rates

Batch, near-time, real-time, streaming

Processing Big

Data rates

High volume, velocity, variety and veracity, batch, near real-time and streaming

data processing,

Analysis types

Batch, scheduled, near real-time datasets analytics

Big Data

processing

methods

Batch processing (for example, using MapReduce, Hive or Pig), real-time

processing (for example, using SparkStreaming, SparkSQL,Apache Drill)

Data analysis

methods

Statistical analysis, predictive analysis, regression analysis, Mahout, machine

learning algorithms, clustering algorithms, classifiers, text analysis, social

network analysis, location-based analysis, diagnostic analysis, cognitive analysis

Human, business process, knowledge discovery, enterprise applications, Data

I Data usages I Stores

1.2.6 Big Data HandlingTechniques

Following are the techniques deployed for Big Data storage, applications, data

management and mining and analytics:

Huge data volumes storage, data distribution, high-speed networks and high•

performance computing

Applications scheduling using open source, reliable, scalable, distributed file

system, distributed database, parallel and distributed computing systems, such as

Hadoop (Chapter 2) or Spark (Chapters 5-10)

Open source tools which are scalable, elastic and provide virtualized environment,

clusters of data nodes, task and thread management

Data management using NoSQL, document database, column-oriented database,

graph database and other form of databases used as per needs of the applications

and in-memory data management using columnar or Parquet formats during

program execution

Data mining and analytics, data retrieval, data reporting, data visualization and

machine-learning Big Data tools.

Self-Assessment Exercise linkedto LO 1.1

1. How do you define data, web data and Big Data?

2. How do you classify data as structured, semi-structured, multi-structured and

unstructured?

3. Give data example of student records at a University and explain structured

data, hierarchical relationships between them.

4. Recall three examples in Example 1.6. How would you classify data which you

shall be using for analytics in these examples?

5. Consider the usage examples of Big Data for a car company. Assume that

company manufactures five models of cars, and each model is available in five

colours and five shades. The company collects inputs from customers and sales

centres, and inputs of component malfunctions from service centres for

different models. The company also uses social media inputs. Explain 3Vs

characteristics in this company's data.

1.3 ! SCALABILITY AND PARALLEL PROCESSING

Big Data needs processing of large data volume, and therefore

needs intensive computations. Processing complex

applications with large datasets (terabyte to petabyte

datasets) need hundreds of computing nodes. Processing of

this much distributed data within a short time and at

minimum cost is problematic.

Convergence ofData Environments and Analytics

Sca'lab ii ify, scal11filg up,

scaUng1 out in C!lim1ilb1J.11tedl
comp1JJJtJi11tg, 21ssively

IParal lell Processi11tg (. ~PP),

doudl, griiC!I, vo luin,1te@r1i11tg1
complJ.!lti11ilg systerns

Big Data can co-exist with traditional data store. Traditional data stores use RDBMS

tables or data warehouse. Big Data processing and analytics requires scaling up and

scaling out, both vertical and horizontal computing resources. Computing and storage

systems when run in parallel, enable scaling out and increase system capacity.

Scalability enables increase or decrease in the capacity of data storage, processing and

analytics. Scalability is the capability of a system to handle the workload as per the

magnitude of the work. System capability needs increment with the increased

workloads. When the workload and complexity exceed the system capacity, scale it up

and scale it out.

The following subsection describes the concept of analytics scalability.

1.3.1 Analytics Scalabilityto Big Data

Vertical scalability means scaling up the given system's resources and increasing the

system's analytics, reporting and visualization capabilities. This is an additional way to

solve problems of greater complexities. Scaling up means designing the algorithm

according to the architecture that uses resources efficiently. For example, x terabyte of

data take time t for processing, code size with increasing complexity increase by factor

n, then scaling up means that processing takes equal, less or much less than (n x t).

Horizontal scalability means increasing the number of systems working in coherence

and scaling out the workload. Processing different datasets of a large dataset deploys

horizontal scalability. Scaling out means using more resources and distributing the

processing and storage tasks in parallel. If r resources in a system process x terabyte of

data in time t, then the (p x x) terabytes process on p parallel distributed nodes such that

the time taken up remains t or is slightly more than t (due to the additional time

required for Inter Processing nodes Communication (IPC).

mailto:1te@r1i11tg1

1proces~iilillg i1s to 1pell'fol'Jil'il

The easiest way to scale up and scale out execution of analytics software is to

implement it on a bigger machine with more CPUs for greater volume, velocity, variety

and complexity of data. The software will definitely perform better on a bigger machine.

However, buying faster CPUs, bigger and faster RAM modules and hard disks, faster and

bigger motherboards will be expensive compared to the extra performance achieved by

efficient design of algorithms. Also, if more CPUs add in a computer, but the software

does not exploit the advantage of them, then that will not get any increased

performance out of the additional CPUs.

Alternative ways for scaling up and out processing of analytics software and Big Data

analytics deploy the Massively Parallel Processing Platforms (MPPs), cloud, grid,

clusters, and distributed computing software.

The following subsections describe computing methods for high availability and

scalable computations and analysis.

1.3.2 Massively ParallelProcessingPlatforms

Scaling uses parallel processing systems. Many programs are so A soliwmon,for B.tg, dat~

large and/ or complex that it is impractical or impossible to parallel andl alistir,ibl!!lt:ea
complliltlilitg in, ::i de udL

execute them on a single computer system, especially in limited compm:ilillg env,imnment

computer memory. Here, it is required to enhance (scale) up

the computer system or use massive parallel processing (MPPs) platforms.

Parallelization of tasks can be done at several levels: (i) distributing separate tasks onto

separate threads on the same CPU, (ii) distributing separate tasks onto separate CPUs on

the same computer and (iii) distributing separate tasks onto separate computers.

When making software, draw the advantage of multiple computers (or even multiple

CPUs within the same computer) and software which need to be able to parallelize tasks.

Multiple compute resources are used in parallel processing systems. The computational

problem is broken into discrete pieces of sub-tasks that can be processed

simultaneously. The system executes multiple program instructions or sub-tasks at any

moment in time. Total time taken will be much less than with a single compute

resource.

1.3.2.1 Distributed Computing Model

A distributed computing model uses cloud, grid or clusters, which process and analyze

big and large datasets on distributed computing nodes connected by high-speed

networks. Table 1.2 gives the requirements of processing and analyzing big, large and

small to medium datasets on distributed computing nodes. Big Data processing uses a

parallel, scalable and no-sharing program model, such as MapReduce, for computations

on it. (Chapter 2)

Table 1.2 Distributed computing paradigms

Distributed computing on multiple

processing nodes/ clusters

Big

Data>
lOM

Large datasets

below 10 M

Small to medium

datasets up to 1 M

Distributed computing Yes Yes No

Parallel computing Yes Yes No

Scalable computing Yes Yes No

Shared nothing (No in-between data sharing

and inter-processor communication)

Yes
Limited

sharing

No

Shared in-between between the distributed

nodes/ clusters

No

Limited

sharing

Yes

1.3.3 Cloud Computing

Wikipedia defines cloud computing as, "Cloud computing is a type of Internet-based

computing that provides shared processing resources and data to the computers and

other devices on demand."

One of the best approach for data processing is to perform parallel and distributed

computing in a cloud-computing environment. Cloud usages circumvent the single

point failure due to failing of one node. Cloud design performs as a whole. Its multiple

nodes perform automatically and interchangeably. It offers high data security compared

to other distributed technologies.

Cloud resources can be Amazon Web Service (AWS) Elastic Compute Cloud (EC2),

Microsoft Azure or Apache CloudStack. Amazon Simple Storage Service (S3) provides

simple web services interface to store and retrieve any amount of data, at any time,

from anywhere on the web. [Amazon EC2 name possibly drives from the feature that

EC2 has a simple web service interface, which provides and configures the storage and

computing capacity with minimal friction].

Cloud computing features are: (i) on-demand service (ii) resource pooling, (iii)

scalability, (iv) accountability, and (v) broad network access. Cloud services can be

accessed from anywhere and at any time through the Internet. A local private cloud can

also be set up on a local cluster of computers.

Cloud computing allows availability of computer infrastructure and services "on•

demand" basis. The computing infrastructure includes data storage device,

development platform, database, computing power or software applications.

Cloud services can be classified into three fundamental types:

Saas and Pa.as as service 1. Infrastructure as a Service (IaaS): Providing access to
Olot11d servkes ofifer, la:aS,

resources, such as hard disks, network connections, modalsforprooassinj; a11T1a
a na'lyzi11T1g time lar,ge datasets

databases storage, data center and virtual server spaces is on complJJltiFllg lilooles.

Infrastructure as a Service (IaaS). Some examples are Tata

Communications, Amazon data centers and virtual servers. Apache CloudStack is

an open source software for deploying and managing a large network of virtual

machines, and offers public cloud services which provide highly scalable

Infrastructure as a Service (IaaS).

2. Platform as a Service (PaaS): It implies providing the runtime environment to

allow developers to build applications and services, which means cloud Platform

as a Service. Software at the clouds support and manage the services, storage,

networking, deploying, testing, collaborating, hosting and maintaining

applications. Examples are Hadoop Cloud Service (IBM Biglnsight, Microsoft Azure

HD Insights, Oracle Big Data Cloud Services).

3. Software as a Service (Saas): Providing software applications as a service to end•

users is known as Software as a Service. Software applications are hosted by a

service provider and made available to customers over the Internet. Some

examples are SQL GoogleSQL,IBM BigSQL, HPE Vertica, Microsoft Polybase and

Oracle Big Data SQL.

1.3.4 Grid and Cluster Computing

Grid Computing

Grid Computing refers to distributed computing, in which a group of computers from

several locations are connected with each other to achieve a common task. The

computer resources are heterogeneously and geographically disperse. A group of

computers that might spread over remotely comprise a grid. A grid is used for a variety

of purposes. A single grid of course, dedicates at an instance to a particular application

only. Grid computing provides large-scale resource sharing which is flexible,

coordinated and secure among its users. The users consist of individuals, organizations

and resources.

Grid computing suits data-intensive storage better than storage of small objects of few

millions of bytes. To achieve the maximum benefit from data grids, they should be used

for a large amount of data which can distribute over grid nodes. Besides data grid, the

other variation of grid, i.e., computational grid focuses on computationally intensive

operations.

Features of Grid Computing Grid computing, similar to cloud computing, is scalable.

Cloud computing depends on sharing of resources (for example, networks, servers,

storage, applications and services) to attain coordination and coherence among

resources similar to grid computing. Similarly, grid also forms a distributed network for

resource integration.

Drawbacks of Grid Computing Grid computing is the single point, which leads to

failure in case of underperformance or failure of any of the participating nodes. A

system's storage capacity varies with the number of users, instances and the amount of

data transferred at a given time. Sharing resources among a large number of users helps

in reducing infrastructure costs and raising load capacities.

Cluster Computing

A cluster is a group of computers connected by a network. The group works together to

accomplish the same task. Clusters are used mainly for load balancing. They shift

processes between nodes to keep an even load on the group of connected computers.

Hadoop architecture uses the similar methods (Chapter 2).

Table 1.3 gives a comparison of grid computing with the distributed and cluster

computing.

Table 1.3 Grid computing and related paradigms

Distributed computing

Cluster computing

Grid computing

• Loosely coupled

• Heterogeneous

• Single administration

• Tightly coupled

• Homogeneous

• Cooperative working

• Large scale

• Cross organizational

• Geographical distribution

• Distributed management

1.3.5 VolunteerComputing

Volunteers provide computing resources to projects of importance that use resources to

do distributed computing and/ or storage. Volunteer computing is a distributed

computing paradigm which uses computing resources of the volunteers. Volunteers are

organizations or members who own personal computers. Projects examples are

science-related projects executed by universities or academia in general.

Some issues with volunteer computing systems are:

1. Volunteered computers heterogeneity

2. Drop outs from the network over time

3. Their sporadic availability

4. Incorrect results at volunteers are unaccountable as they are essentially from

anonymous volunteers.

Self-Assessment Exercise linked to LO 1.2

1. Define analytics scalability, horizontal scalability and vertical scalability.

2. How does platform differ from software? When will a program use Saas and

when PaaS?

3. List the features of grid computing. How does it differ from cluster and cloud

computing?

4. Why do we use distributed computing for analytics of large datasets?

 1.4 ! DESIGNING DATA ARCHITECTURE

The following subsections describe how to design Big Data

architecture layers and how to manage data for analytics.

1.4.1 Data Architecture Design

IOesi g n of dab arrdh itect11J1,e
II ayers and tlilleir fwnctio ns,
and data, mallilagtfililent
functions for thee ana'lytlics

Techopedia defines Big Data architecture as follows: "Big Data architecture is the logical

and/ or physical layout/structure of how Big Data will be stored, accessed and managed

within a Big Data or IT environment. Architecture logically defines how Big Data

solution will work, the core components (hardware, database, software, storage) used,

flow of information, security and more."

Characteristics of Big Data make designing Big Data architecture a complex process.

Further, faster additions of new technological innovations increase the complexity in

design. The requirements for offering competing products at lower costs in the market

make the designing task more challenging for a Big Data architect.

Data analytics need the number of sequential steps. Big Data architecture design task

simplifies when using the logical layers approach. Figure 1.2 shows the logical layers

and the functions which are considered in Big Data architecture.

Five vertically aligned textboxes on the left of Figure 1.2 show the layers. Horizontal

textboxes show the functions in each layer.

Data processing architecture consists of five layers: (i) identification of data sources,

(ii) acquisition, ingestion, extraction, pre-processing, transformation of data, (iii) data

rs
Data

up of dat.:a:s.ets

een mp on
to elm.rd, Y1.•eb etc.

l.ayer 4

Data
Syn~hronous or

p.rocess g
~111ohr01T1ous. p.ro.t~ qg

Pre-processi n:g

[va ioa Qn,

transferrna cm or

tninsendl!l'l-g)

r Jrement

lrayer ill Iden

m~ 0111 of·
tern al and

0 !.!111151:Jl!IC Ul'ie

fQril"!~

I

.

·

i

storage at files, servers, cluster or cloud, (iv) data-processing, and (v) data consumption

in the number of programs and tools.

· l

, l ,i

i

1

·
,

Figure 1.2 Design of logical layers in a data processing architecture, and

functions in the layers

Data consumed for applications, such as business intelligence, data mining,

discovering patterns/ clusters, artificial intelligence (AI), machine learning (ML), text

analytics, descriptive and predictive analytics, and data visualization.

Data ingestion, pre-processing, storage and analytics require special tools and

technologies.

Logical layer 1 (Ll) is for identifying data sources, which are external, internal or

both. The layer 2 (LZ) is for data-ingestion.

Data ingestion means a process of absorbing information, just like the

process of absorbing nutrients and medications into the body by

eating or drinking them (Cambridge English Dictionary). Ingestion is the process of

obtaining and importing data for immediate use or transfer. Ingestion may be in

batches or in real time using pre-processing or semantics.

The L3 layer is for storage of data from the LZ layer. The L4 is for data processing

using software, such as MapReduce, Hive, Pig or Spark. The top layer LS is for data

consumption. Data is used in analytics, visualizations, reporting, export to cloud or web

servers.

L1 considers the following aspects in a design:

Amount of data needed at ingestion layer 2 (L2)

Push from L1 or pull by L2 as per the mechanism for the usages

Source data-types: Database, files, web or service

Source formats, i.e., semi-structured, unstructured or structured.

L2 considers the following aspects:

Ingestion and ETL processes either in real time, which means store and use the

data as generated, or in batches. Batch processing is using discrete datasets at

scheduled or periodic intervals of time.

L3 considers the followings aspects:

Data storage type (historical or incremental), format, compression, incoming data

frequency, querying patterns and consumption requirements for L4 or LS

Data storage using Hadoop distributed file system or NoSQL data stores-HBase,

Cassandra, MongoDB.

L4 considers the followings aspects:

Data processing software such as MapReduce, Hive, Pig, Spark, Spark Mahout,

Spark Streaming

Processing in scheduled batches or real time or hybrid

Processing as per synchronous or asynchronous processing requirements at LS.

LS considers the consumption of data for the following:

Data integration

Datasets usages for reporting and visualization

Analytics (real time, near real time, scheduled batches), BPs, Bis, knowledge

discovery

Export of datasets to cloud, web or other systems

1.4.2 Managing Data for Analysis

Data managing means enabling, controlling, protecting, delivering and enhancing the

value of data and information asset. Reports, analysis and visualizations need well•

defined data. Data management also enables data usage in applications. The process for

managing needs to be well defined for fulfilling requirements of the applications.

Data management functions include:

1. Data assets creation, maintenance and protection

2. Data governance, which includes establishing the processes for ensuring the

availability, usability, integrity, security and high-quality of data. The processes

enable trustworthy data availability for analytics, followed by the decision making

at the enterprise.

3. Data architecture creation, modelling and analysis

4. Database maintenance, administration and management system. For example,

RDBMS (relational database management system), NoSQL

5. Managing data security, data access control, deletion, privacy and security

6. Managing the data quality

7. Data collection using the ETL process

8. Managing documents, records and contents

9. Creation of reference and master data, and data control and supervision

10. Data and application integration

11. Integrated data management, enterprise-ready data creation, fast access and

analysis, automation and simplification of operations on the data,

12. Data warehouse management

13. Maintenance of business intelligence

14. Data mining and analytics algorithms.

Self-Assessment Exercise linked to LO 1.3

1. How are data architecture layers used for analytics?

2. Explain the function of each of the five layers in Big Data architecture design

(Figure 1.2).

3. List the functions of the ELT at data ingestion layer and at data storage layer.

4. List the functions in data management.

~a

an

~

1

1.5 DATA SOURCES, QUALITY, PRE-PROCESSING AND STORING

The following subsections describe data sources, data quality

data pre-processing and data store export to the cloud.

1.5.1 Data Sources

ID.i,ta, sources, data q1JJtalit:y,

data, pFe-[proceissilmg, a nd
dat3, store export to the
doud

Applications, programs and tools use data. Sources can be external, such as sensors,

trackers, web logs, computer systems logs and feeds. Sources can be machines, which

source data from data-creating programs.

Data sources can be structured, semi-structured, multi-structured or unstructured.

Data sources can be social media (Ll in Figure 1.2). A source can be internal. Sources can

be data repositories, such as database, relational database, flat file, spreadsheet, mail

server, web server, directory services, even text or files such as comma-separated

values (CSV) files. Source may be a data store for applications (L4 in Figure 1.2).

1.5.1.1 Structured Data Sources

Data source for ingestion, storage and processing can be a file, database or streaming

data. The source may be on the same computer running a program or a networked

computer. Examples of structured data sources are SQL Server, MySQL, Microsoft Access

database, Oracle DBMS, IBM DB2, Informix, Amazon SimpleDB or a file-collection

directory at a server.

A data source name implies a defined name, which a process uses to identify the

source. The name needs to be a meaningful name. For example, a name which identifies

the stored data in student grades during processing. The data source name could be

StudentName_Data_ Grades.

A data dictionary enables references for accesses to data. The dictionary consists of a

set of master lookup tables. The dictionary stores at a central location. The central

location enables easier access as well as administration of changes in sources. The name

of the dictionary can be UniversityStudents_DataPlusGrades. A master-directory server can

also be called NameNode.

Microsoft applications consider two types of sources for

processing: (i) machine sources and (ii) file sources. 4

- c::liili ne cd:rta, sources

d' file da,b sources 1ifll

icrosoft appl ica1Dion s

(i) Machine sources are present on computing nodes, such as servers. A machine

identifies a source by the user-defined name, driver-manager name and source-

driver name.

(ii) File sources are stored files. An application executing the data, first connects to a

driver manager of the source. A user, client or application does not register with the

source, but connects to the manager when required. The process of connection is

simple when using a file data source in case the file contains a connection string

that would otherwise have to be built using a call to a connect-function driver.

Oracle applications consider two types of data sources: (i) :~~~!~~~:f~!~:~rc!s~~~s
database, which identifies the database information that the iim Oracle applications

software needs to connect to database, and (ii) logic-machine,

which identifies the machine which runs batches of applications and

master business functions. 5 Source definition

identifies the machine. The source can be on a network. The definition in that case also

includes network information, such as the name of the server, which hosts the machine

functions.

The applications consider data sources as the ones where the database tables reside

and where the software runs logic objects for an enterprise. Data sources can point to:

1. A database in a specific location or in a data library of OS

2. A specific machine in the enterprise that processes logic

3. A data source master table which stores data source definitions. The table may be

at a centralized source (enterprise server) or at server-map for the source.

Specific database inst..ililce

A database can be in an IBM i data library'' [IBM i is a on11e as data sourcasin

computer operating system in which IBM i considers
 119_~1_i

sy_ste_rm_-_ 1 _

everything as an object, each possessing persistence. The

system IBM i offers Unix-like file directories using an integrated file

system.].

IBM applications consider data sources for applications and tools as one which

identifies either (i) a specific database instance or (ii) file on a remote system that stores

data. 6 Data sources can be shared. The access to source is restricted according to the

roles assigned to both the source and the application that use it.

EXAMPLE 1.7

(i) How would you name the data sources of the student grade-sheets?

(ii) How does an analytics application (Analysis_APP)access student grade-sheet

data source, using the Data Dictionary or data-source master-table for the

grade-sheets of students?

(iii) How does the application connect and access the data source of students'

grade-sheets?

Assume each student can have a grade-sheet for each of the six semesters in UG

Computer Science programme.

SOLUTION

(i) Assume SemID is distinct key for a semester. StudID is a key assigned to a

student, whether in CS or another subject, and whether in UG or PG. A StudID is

unique. Data source can be file data source named 'UG_CS_Sem_StudID_Grades'

for all UG CS student grades. UG_CS_Sem_StudID_Gradedsatabase consists of

maximum six grade sheets UG_CS_SemID_StudID_Gradesi,.e., one for each

semester. Assume that Analysis_APPdoes not connect or directly links to the

data source UG_CS_Sem_StudID_Gradedsatabase. Then, the Analysis_APPlinks

to a Data Dictionary or data source master table, which is data repository for the

pointers of all six semesters of UG Computer Science program and other subject

programs.

(ii) Assume that Analysis_APP associates to Oracle data-source master-table. The

table stores the data-source definitions for all UG and PG, and all subjects and

semester grades of the students. The data-source master-table stores the

pointers of all semester grades. The table thus points to

UG_CS_Sem_StudID_GradeDsB for the student identified by StudID.

(iii) Assume that application deploys Microsoft DB. Then, first Analysis_APPlinks to

a Driver Manager. The Driver Manager then calls the ODBC functions in the

Driver Manager. The application identifies the target driver for the

UG_CS_Sem_StudID_Gradedsata source with a connection handle. When the

Driver Manager loads the driver, the Driver Manager builds a table of pointers

to the functions in that driver. It uses the connection handle passed by the

application to find the address of the function in the target driver and calls that

function by address.

1.5.1.2 Unstructured Data Sources

Unstructured data sources are distributed over high-speed networks. The data need

high velocity processing. Sources are from distributed file systems. The sources are of

file types, such as .txt (text file), .csv (comma separated values file). Data may be as key•

value pairs, such as hash key-values pairs. Data may have internal structures, such as in

e-mail, Facebook pages, twitter messages etc. The data do not model, reveal

relationships, hierarchy relationships or object-oriented features, such as extensibility.

1.5.1.3 Data Sources - Sensors, Signals and GPS

The data sources can be sensors, sensor networks, signals from machines, devices,

controllers and intelligent edge nodes of different types in the industry M2M

communication and the GPS systems.

Sensors are electronic devices that sense the physical environment. Sensors are

devices which are used for measuring temperature, pressure, humidity, light intensity,

traffic in proximity, acceleration, locations, object(s) proximity, orientations and

magnetic intensity, and other physical states and parameters. Sensors play an active

role in the automotive industry.

RFIDs and their sensors play an active role in RFID based supply chain management,

and tracking parcels, goods and delivery.

Sensors embedded in processors, which include machine-learning instructions, and

wireless communication capabilities are innovations. They are sources in IoT

applications.

1.5.2 Data Quality

Data quaIity is high wh en it represents the rea I-worId construct

!Dab gua1i,tyd'emnit:iions:
oa,ta,irelevanc,.irecency,

to which references are taken. High quality means data, which ralillge,rroblillstness and

enables all the required operations, analysis, decisions, . irel_ia_b_ilify_i. _

planning and knowledge discovery correctly. A definition for

high quality data, especially for artificial intelligence applications, can be data with five

R's as follows: Relevancy, recency, range, robustness and reliability. Relevancy is of

utmost importance.

A uniform definition of data quality is difficult. A reference can be made to a set of

values of quantitative or qualitative conditions, which must be specified to say that data

quality is high or low.

1.5.2.1 Data Integrity

Data integrity refers to the maintenance of consistency and accuracy in data over its

usable life. Software, which store, process, or retrieve the data, should maintain the

integrity of data. Data should be incorruptible. For example, in Example 1.7 the grades

of students should remain unaffected upon processing.

1.5.2.2 Data Noise, Outliers, Missing and Duplicate Values

Noise One of the factors effecting data quality is noise. Noise in data refers to data

giving additional meaningless information besides true (actual/required) information.

Noise refers to difference in the value measured from true value due to additional

influences. Noisy data means data having large additional information. Result of data

analysis is adversely affected due to noisy data.

Noise is random in character, which means frequency with which it occurs is variable

over time. The values show nearly equal positive and negative deviations. A statistical

analysis of deviation can select the noise in data and true values can be retrieved.

Outliers A factor which effects quality is an outlier. An outlier in data refers to data,

which appears to not belong to the dataset. For example, data that is outside an

expected range. Actual outliers need to be removed from the dataset, else the result will

be effected by a small or large amount. Alternatively, if valid data is identified as outlier,

then also the results will be affected. The outliers are a result of human data-entry

errors, programming bugs, some transition effect or phase lag in stabilizing the data

value to the true value.

Missing Values Another factor effecting data quality is missing values. Missing value

implies data not appearing in the data set.

Duplicate Values Another factor effecting data quality is duplicate values. Duplicate

value implies the same data appearing two or more times in a dataset.

The following example explains noise, outliers, missing values and duplicate data.

EXAMPLE 1.8

Consider use cases of noise, outliers, missing values and duplicate data. Write the

effect on the analysis in each case.

SOLUTION

Following are the examples of machine-generated data.

1. Noise: Recall WRMP organization for weather recording. Consider noise in wind

velocity and direction readings due to external turbulences. The velocity at

certain instances will appear too high and sometimes too low. The directions at

certain instances will appear inclined more towards the north and sometimes

more towards the south.

2. Outlier: Consider an outlier in the students' grade-sheets in one subject out of

five in the fourth-semester result of a student. A result in a semester shows 9.0

out of 10 points in place of 3.0 out of 10. Data 9.0 is an outlier. The student

semester grade point average (SGPA) will be erroneously declared and the

student may even be declared to have failed in that semester.

3. Missing values: Consider missing values in the sales figures of chocolates. The

values not sent for certain dates from an ACVM. This may be due to the failure

of power supply at the machine or network problems on specific days in a

month. The chocolate sales not added for a day can be added in the next day's

sales data. The effect over a month on the average sales per day is not

significant. However, if the failure occurred on last day of a month, then the

analysis will be erroneous.

4. Duplicate values: Consider duplicate values in the sales figures of chocolates

from an ACVM. This may be due to some problem in the system. The number of

duplicates for sales when sent and added, then sales result analysis will get

affected. It can even result in false alarms to a service, which maintains the

supply chain to the ACVMs.

Assume network problems on certain instances. The ACVM may not get an

acknowledgement of the sales figures from the server, leading to sending an

incorrect sales record once again. If this happens then sales figures of

chocolates get recorded twice at that instance. For example, if the chocolate

sales data gets added twice in a specific day's sales data, the calculation of

monthly sales data is adversely affected.

1.5.3 Data Pre-processing

Data pre-processing is an important step at the ingestion 1ayer

Need of dab jpre-
prucessingfoiraata

store

(Figure 1.2). For example, consider grade point data in Example rr.ortabilicy aimd '-!lsa1bilit};· in
appli'ca;tion,s allild se11Vices

1.8. The outlier needs to be removed. Pre-processing is a must
before data mining and analytics. Pre-processing is also a must

before running a Machine Learning (ML) algorithm. Analytics needs prior screening of

data quality also. Data when being exported to a cloud service or data store needs pre•

processing.

Pre-processing needs are:

(i) Dropping out of range, inconsistent and outlier values

(ii) Filtering unreliable, irrelevant and redundant information

(iii)Data cleaning, editing, reduction and/ or wrangling

(iv)Data validation, transformation or transcoding

(v) ELT processing.

Data Cleaning

Data cleaning refers to the process of removing or correcting incomplete, incorrect,

inaccurate or irrelevant parts of the data after detecting them. For example, in Example

1.8 correcting the grade outliers or mistakenly entered values

means cleaning and correcting the data.

Data Cleaning Tools Data cleaning is done before mining of

data. Incomplete or irrelevant data may result into misleading

decisions. It is not always possible to create well-structured

N@i:!dS of d~1t:11 pre•

:processillllg usl n g1 daan iliilQI,

en ri c,h ment, eoliti ng
irech.L:1dlio1i1 al!lld "'1fi:lrng Ii n g1

:rinet'hods

data. Data can generate in a system in many formats when it is obtained from the web.

Data cleaning tools help in refining and structuring data into usable data. Examples of

such tools are OpenRefine and DataCleaner.

Data Enrichment

Techopedia definition is as follows: "Data enrichment refers to operations or processes

which refine, enhance or improve the raw data."

Data Editing

Data editing refers to the process of reviewing and adjusting the acquired datasets. The

editing controls the data quality. Editing methods are (i) interactive, (ii) selective, (iii)

automatic, (iv) aggregating and (v) distribution.

Data Reduction

Data reduction enables the transformation of acquired information into an ordered,

correct and simplified form. The reductions enable ingestion of meaningful data in the

datasets. The basic concept is the reduction of multitudinous amount of data, and use of

the meaningful parts. The reduction uses editing, scaling, coding, sorting, collating,

smoothening, interpolating and preparing tabular summaries.

Data Wrangling

Data wrangling refers to the process of transforming and mapping the data. Results from

analytics are then appropriate and valuable. For example, mapping enables data into

another format, which makes it valuable for analytics and data visualizations.

Data Format used during Pre-Processing ,.-------~
Needl of dara fol'TilITlat conver•

Examples of formats for data transfer from (a) data storage, (b)

analytics application, (b) service or (d) cloud can be:

(i) Comma-separated values CSV (Example 1.9)

(ii) Java Script Object Notation 0SON) as batches of object

arrays or resource arrays (Example 3.3)

(iii)Tag Length Value (TLV)

(iv) Key-value pairs (Section 3.3.1)

(v) Hash-key-value pairs (Example 3.2).

sion ot1 dlata, ('SV, llSON,
ke -v-alue1p.riirs orotl'ii@r ct~ta

from D:rta, Store;: for exampl'e..
illil tihe form otrtablles

mailto:N@i:!dS
mailto:ii@r
mailto:ii@r
mailto:ii@r

CSVFormat

An example is a table or Microsoft Excel file which needs conversion to CSV format. A

student_record.xlsx converts to student_record.csv file. Comma-separated values (CSV)

file refers to a plain text file which stores the table data of numbers and text. When

processing for data visualization of Excel format file, the data conversion will be done

from csv to xlsx format.

Each CSV file line is a data record. Each record consists of one or more fields,

separated from each other by commas. RFC 4180 standard specifies the various

specifications. A CSV file may also use space, tab or delimiter tab-separated formats for

the values in the fields. This is a loose terminology. The following example explains the

conversion process.

EXAMPLE 1.9

Consider the example of a table in a grade sheet. A CSV file is easily understandable

when the table's first row specifies the column heads. Three columns of the first

row are Subject Code, Subject Name and Grade and three columns of the second row

are CSlOl, "Theory of Computations" and 7.8, as shown below:

Subject Code l I' l I

CSHH

CSl
=:::::::

• T~ol'y of Compl!litnitio.tlS '

' Comp'lllter Arclntectuse"
::==

SOLUTION

The first and second lines in the CSV file are:

Subject Code, Subject Name, Grade

CS101, ""Theory of Computations?", 7.8.

CS102, ""Computer Architecture?", 7.8.

The two consecutive double-quotes mean that one of the double quotes is

retained in the text "Theory of Computations". That one specifies that characters

are inside the double quotes and represent a string.

Data Format Conversions

Transferring the data may need pre-processing for data-format conversions. Data

sources store need portability and usability. A number of different applications, services

and tools need a specific format of data only. Pre-processing before their usages or

storage on cloud services is a must.

1.5.4 Data Store Export to Cloud

Figure 1.3 shows resulting data pre-processing, data mining,

analysis, visualization and data store. The data exports to cloud

services. The results integrate at the enterprise server or data

warehouse.

Export: olfda:ta fio.rm, dab
sou 11ees t,o llli!M, .t ior:osofit,
Oracle, Amamn, Raok~pac@
or Hadbop clo1.1d seNk:es

Data pre-processing. analysis, applic:;ationsand integration processes.

D;,lilil· I Ill r,ation wt :t, the 'Enleri;irfse

Serve or Oma i:,~eho1.15:e

Figure 1.3 Data pre-processing, analysis, visualization, data store export

1.5.4.1 Cloud Services

Cloud offers various services. (Section 1.3.3) These services can be accessed through a

cloud client (client application), such as a web browser, SQL or other client. Figure 1.4

shows data-store export from machines, files, computers, web servers and web services.

The data exports to clouds, such as IBM, Microsoft, Oracle, Amazon, Rackspace, TCS,

Tata Communications or Hadoop cloud services.

~port Ci data store after

pre-,pr~es:s:ing ·of data1
from mac i-e and

Jile data w r-ces

ComptJters,.

 web serve~ ijnd

we $el"lrii;e:s

iMS

:Sr:!lfliei'1 St:ofil&J!;

i:itwotl

PLATFCIRM APPLICAiJ'IO

CioDgle.App En.,g;ine.

S.-uit,eflex, MS. Az" re,

Wi d'o!N$ Live, Amamn

EC2 Ser.re • E.C2, TCS

C _ P.and GllG' "d

SQL on Hadoap

·tGoogl.eSQ.11.,.mM
BigSQL HPIE Ve -- ita,,.

ic;mscrft Pol\fbase1

Oracle Sig Data SQ.ll.

1- DATA CENTEFI -,

00

AMBZ.Of'I Web Services

IHD

Figure 1.4 Data store export from machines, files, computers, web servers and

web services

1.5.4.2 Export of Data to AWS and Rackspace Clouds

The following example explains the export processes to Amazon and Rackspace clouds.

EXAMPLE 1.10

(a) How do the rows in MySQL database table export to Amazon AWS?

(b) How do the rows in MySQL database table export to Rackspace?

SOLUTION

(a) Following are the steps for export to an EC2 instance:

(i) A process pre-processes the data from data-rows at table in MySQL database

and creates a CSV file.

(ii) An EC2 instance provides an AWS data pipeline.

(iii)The CSV file exports to Amazon 53 using pipeline. The CSV file then copies into

an 53 bucket. 7 Coping action deploys an EC2 instance.

(iv)AWS notification service (SNS) sends notification on completion.8

(b) Following are the steps for export to Rackspace9:

(i) An instance name has maximum 255 characters. One or more databases create

a database instance. The process of creation can be configured to create an

instance now or later. Each database can have a number of users.

(i) Default port number for binding of MySQL is port 3306.

(ii) A command mysqldump - u root - p database_name > database_name.sql exports to

Rackspace cloud.

(iii)When a database is at a remote host then a command mysqldump- h host_name -

u user_name - p database_name > database_name.sql exports to the cloud

database.

Google cloud platform provides a cloud service called BigQuery.1° Figure 1.5 shows

BigQuery cloud service at Google cloud platform. The data exports from a table or

partition schema,)SON, CSV or AVRO files from data sources after the pre-processing.

Goo I Oo

Oeita Stor-e
adwp

Figure 1.5 BigQuerycloud service at Googlecloud platform

Data Store first pre-processes from machine and file data sources. Pre-processing

transforms the data in table or partition schema or supported data formats. For

example,)SON, CSV and AVRO. Data then exports in compressed or uncompressed data

formats. (Avro is a data serialization system in Hadoop related tools for Big Data.)

Cloud service BigQuery consists of bigquery.tables.create; bigquery.dataEditor;

bigquery.dataOwner; bigquery.admin; bigquery.tables.updateData and other service

functions. Analytics uses GoogleAnalytics 360. BigQuery cloud exports data to a Google

cloud or cloud backup only.

Self-Assessment Exercise linked to LO 1.4

(

tr

a

e

1. Whyis data quality important in discoveringnew knowledgeand decisionmaking?

2. List the examples of cloud services for exporting data stores.

3. How is conversion to CSV file before data store beneficial? How is conversion to

tables from CSV files from data store beneficial?

4. List the usages of three types of services that clouds offer. List Big Data cloud

services, to data sources export from data store, and perform cloud during

analytics, visualizations and intelligence discovery.

5. Consider databases storing the daily sales figures of chocolates, such as KitKat,

Milk, Fruit and Nuts, Nougat and Oreo, each at every machine in Example 1.6(i).

How will you name the data sources in ACVMs analytics? How will the ACVMs

sales be analyzed for each type of chocolate using the data-source master•

tables?

 1.6 ! DATA STORAGE AND ANALYSIS

The following subsections describe data storage and analysis,

and comparison between Big Data management and analysis

with traditional database management systems.

1.6.1 Data Storage and Management: Traditional
Systems

1.6.1.1 Data Store with Structured or Semi-Structured

Data

Dab1 stor;;rige. :imalysis. om
pa nson tietweet!ll a,olitiornal,
systems.. such as ReJatio1ii1all
1Database Aan• igemel!ilt
Syst'E!f.'iil r;RJDB · · 5), n,t:eJpr1ise
serve!rs and cfab
wa rehm11se, Approacliiles for
Big1 Data storage, process•
i1n11; and an\:l'ly;tlcs

Traditional systems use structured or semi-structured data. The following example

explains the sources and data store of structured data.

EXAMPLE 1.11

What are the sources of structured data store?

SOLUTION

The sources of structured data store are:

Traditional relational database-management system (RDBMS) data, such as

MySQL DB2, enterprise server and data warehouse

Business process data which stores business events, such as registering a

customer, taking an order, generating an invoice, and managing products in

pre-defined formats. The data falls in the category of highly structured data.

The data consists of transaction records, tables, relationships and metadata that

build the information about the business data.

Commercial transactions

Banking/ stock records

E-commerce transactions data.

The following example explains the sources and data store of semi-structured data.

EXAMPLE 1.12

Give examples of sources of data store of semi-structured data.

SOLUTION

Examples of semi-structured data are:

XML andJSON semi-structured documents7•8

A comma-separated values (CSV) file. The CSV stores tabular data in plain text.

Each line is a data record. A record can have several fields, each filed separated

by a comma. Structured data, such as database include multiple relations but

CSV does not consider the relations in a single CSV file. CSV cannot represent

object-oriented databases or hierarchical data records. A CSV file is as follows:

Preeti,1995,MCA,Object Oriented Prograrnrning,8.75

Kirti,2010, M.Tech., Mobile Operating System, 8.5

Data represent the data records for columns and rows of a table. Each row has

names, year of passing, degree name, course name and grade point out of 10.

Rows are separated by a new line and the columns by a comma.

]SON Object Data Formats: CSV does not represent object-oriented records,

databases or hierarchical data records.]SON and XML represent semi•

structured data and represent object-oriented and hierarchical data records.

Example 3.5 explains CSV and JSON objects and the hierarchical data records in

the JSON file format.

1.6.1.2 SQL

An RDBMS uses SQL (Structured Query Language). SQL is a language for viewing or

changing (update, insert or append or delete) databases. It is a language for data access

control, schema creation and data modifications.

SQL was originally based on the tuple relational calculus and relational algebra. SQL

can embed within other languages using SQL modules, libraries and pre-compilers. SQL

does the following:

1. Create schema, which is a structure which contains description of objects (base

tables, views, constraints) created by a user. The user can describe the data and

define the data in the database.

2. Create catalog, which consists of a set of schemas which describe the database.

3. Data Definition Language (DDL) for the commands which depicts a database, that

include creating, altering and dropping of tables and establishing the constraints.

A user can create and drop databases and tables, establish foreign keys, create

view, stored procedure, functions in the database etc.

4. Data Manipulation Language (DML) for commands that maintain and query the

database. A user can manipulate (INSERT/UPDATE) and access (SELECT) the data.

5. Data Control Language (DCL) for commands that control a database, and include

administering of privileges and committing. A user can set (grant, add or revoke)

permissions on tables, procedures and views.

SQL is a language for managing the RDBMS. A relational DB is a collection of data in

multiple tables, which relate to each other through special fields, called keys (primary

key, foreign key and unique key). Relational databases provide flexibilities. Relational

database examples are MySQL PostGreSQL Oracle database, Informix, IBM DB2 and

Microsoft SQL server.

1.6.1.3 Large Data Storage usingRDBMS

RDBMS tables store data in a structured form. The tables have

rows and columns. Data management of Data Store includes the

provisions for privacy and security, data integration,

compaction and fusion. The systems use machine-generated

data, human-sourced data, and data from business processes

(BP) and business intelligence (BI).

lirradlitiolillal systetlilils Rellati

CWTtal1 aatalbase 1is rnlliediollil ot
dl:ab 'ililltO llillll!lltiplle t.ablles vih
iohi rrel.ates

to each other tmirou gh

speciall iffieldis, ca ll~d 1keys

A set of keys and relational keys access the fields at tables, and retrieve data using

queries (insert, modify, append, join or delete). RDBMSs use software for data

administration also.

Online content associated with Practice Exercise 1.12 describes the use of tables in

relational databases in detail.

1.6.1.4 Distributed Database Management System

A distributed DBMS (DDBMS) is a collection of logically

interrelated databases at multiple system over a computer

network. The features of a distributed database system are:

1. A collection of logically related databases.

U.,shlbutoot m!I i1s ai colle:tion,

Olrllogit-allyrinterrel'atte.dl

databases at mlllltiple systenris
over a comptrter network.

2. Cooperation between databases in a transparent manner. Transparent means that

each user within the system may access all of the data within all of the databases

as if they were a single database.

3. Should be 'location independent' which means the user is unaware of where the

data is located, and it is possible to move the data from one physical location to

another without affecting the user.

1.6.1.5 In-Memory Column Formats Data

A columnar format in-memory allows faster data retrieval when only a few columns in a

table need to be selected during query processing or aggregation. Data in a column are

kept together in-memory in columnar format. A single memory access, therefore, loads

many values at the column. An address increment to a next memory address for the

next value is fast when compared to first computing the address of the next value,

which is not the immediate next address. The following example explains the in•

memory columnar format.

EXAMPLE 1.13

Consider analysis of monthly sales of chocolates on ACVMs (Example 1.6) in

company's annual profit reports.

(i) How does sales analysis become easy in-memory columnar format?

(ii) How does during an analysis the access is made to few columns in place of from

entire datasets?

SOLUTION

All the column 1 values for several days' record is physically together in-memory at

consecutive addresses. All the column 2 values are then physically together at the

next successive addresses. Then, the column 3 and other columns store at the

columnar database in-memory.

The data stores for each record order in successive columns, so that the

lOOth entry at column 1 and the lOOth entry for column 2 belong to the same record

and same input accessible from a single row-key. Column vector refers to a vector

whose elements are values at column fields.

Analytics, therefore, can be executed faster when data is in the column format,

and more rows and few columns need to be selected during analysis. Successive

days' sales of each flavour of chocolate stores in successive values in one column

from row r to (r + 30) in a month, thirty row-keys for 30 days, and 365 row keys in a

year.

Aggregation functions and other analysis functions are easy to run due to

successive memory addresses for sales for each day for each flavour. Examples of

aggregation functions are sum, count, maximum, minimum, average, minimum and

maximum deviation from a specified value.

Online Analytical Processing (OLAP) in real-time transaction processing is fast when

using in-memory column format tables. OLAP enables real-time analytics. The CPU

accesses all columns in a single instance of access to the memory in columnar format in•

memory data-storage.

Online Analytical Processing (OLAP) enables online viewing of analyzed data and

visualization up to the desired granularity (fineness or coarseness) enables view by

rolling up (finer granulates to coarse granulates data) or drilling down (coarser

granulates data to finer granulates). OLAP enables obtaining online summarized

information and automated reports for a large database.

Metadata describes the data. Pre-storing of calculated values provide consistently fast

response. Result formats from the queries are based on Metadata.

1.6.1.6 In-Memory Row Format Databases

A row format in-memory allows much faster data processing during OLTP (online

transaction processing). Refer Example 1.13. Each row record has corresponding values

in multiple columns and the on-line values store at the consecutive memory addresses

in row format. A specific day's sale of five different chocolate flavours is stored in

consecutive columns c to c+S at memory. A single instance of memory accesses loads

values of all five flavours at successive columns during online processing. For example,

the total number of chocolates sold computes online. Data is in-memory row-formats in

stream and event analytics. The stream analytics method does continuous computation

that happens as data is flowing through the system. Event analytics does computation

on event and use event data for tracking and reporting events.

1.6.1.7 EnterpriseData-Store Server and Data Warehouse

Enterprise data, after data cleaning process, integrate with the server data at warehouse.

Enterprise data server use data from several distributed sources which store data using

various technologies. All data merge using an integration tool. Integration enables

collective viewing of the datasets at the data warehouse (Figure 1.3).

Enterprise data integration may also include integration with application(s), such as

analytics, visualization, reporting, business intelligence and knowledge discovery.

Heterogeneous systems execute complex integration processes when integrating at an

enterprise server or data warehouse. Complex application-integration means the

integration of heterogeneous application architectures and processes with the

databases at the enterprise. Enterprise data warehouse store the databases, and data

stores after integration, using tools from number of sources.

Online contents associated with Practice Exercises 1.9 and 1.10 give details of

commercial solutions for complex application-integration of processes.

Following are some standardised business processes, as defined in the Oracle

application-integration architecture:

1. Integrating and enhancing the existing systems and processes

2. Business intelligence

3. Data security and integrity

4. New business services/products (Web services)

5. Collaboration/knowledge management

6. Enterprise architecture/SOA

7. e-commerce

8. External customer services

9. Supply chain automation/visualization

10. Data centre optimization

Figure 1.6 shows Steps 1 to 5 in enterprise data integration and management with Big

Data for high performance computing using local and cloud resources for analytics,

applications and services.

Slep.s: in enteir1p -~ dqta c100 applie2tjon:s in e,gr.atio,- and 1T1anagement . · · igh

putlng wing ocal and cl'oud iresCN,11rce.s:

l

Ora e , siQ iddlew-a~.

Oracle Cli1tapg:s:e a md
Extemall l!)a,ta

Data Reports, Data Vis al1za· ion,

Busi , ess ntel igen£e Decisi'on:;;.,.

Knowledge disc-ovsy

Data goYemam,e and ata

am.a:genflent l'il.Ode~ Data , ased

o ot on SQL or NoSQL

1Dah1 Anaty,;"s, Teoo MaLytics, oisy

Te-xt analr · ·s and lililtural - npage
proc:.es.sing;; analytit,s wit s.otjal,
networlc messages, pa,ge.s, grap -

databases

Figure 1.6 Steps 1 to 5 in Enterprise data integration and management with Big•

Data for high performance computing using local and cloud

resources for the analytics, applications and services

1.6.2 Big Data Storage

Following subsections describe Big Data storage concepts:

1.6.2.1 Big Data NoSQL or Not Only SQL

NoSQL databases are considered as semi-structured data. Big

Data Store uses NoSQL. NOSQL stands for No SQL or Not Only SQL.

The stores do not integrate with applications using SQL. NoSQL is

also used in cloud data store. Features ofNoSQLare as follows:

NDSQI!.. or Nott Oimly SQL
class of Mrt-rela:tiolillall data
storage systmils, ilileNilDlle

data mcdels and! ml!illliple
S"(:liilertrn:a:S

1. It is a class of non-relational data storage systems, and the flexible data models and

multiple schema:

(i) Class consisting of uninterrupted key/value or big hash table [Dynamo (Amazon

53)]

(ii) Class consisting of unordered keys and usingJSON (PNUTS)

(iii)Class consisting of ordered keys and semi-structured data storage systems

[BigTable,Cassandra (used in Facebook/ Apache) and HBase]

(iv)Class consisting ofJSON (MongoDB)

(v) Class consisting of name/value in the text (CouchDB)

(vi)May not use fixed table schema

(vii)Do not use the JOINS

(viii)Data written at one node can replicate at multiple nodes, therefore Data storage is

fault-tolerant,

(ix) May relax the ACID rules during the Data Store transactions.

(x) Data Store can be partitioned and follows CAP theorem (out of three properties,

consistency, availability and partitions, at least two must be there during the

transactions)

Consistency means all copies have the same value like in traditional DBs. Availability

means at least one copy is available in case a partition becomes inactive or fails. For

example in web applications, the other copy in other partition is available. Partition means

parts which are active but may not cooperate as in the distributed DBs.

1.6.2.2 Coexistence of Big Data, NoSQL and Traditional Data Stores

Figure 1.7 shows co-existence of data at server, SQL, RDBMS with NoSQL and Big Data at

Hadoop, Spark, Meses, 53 or compatible Clusters.

Table 1.4 gives various data sources for Big Data along with its examples of usages and

the tools used.

Table 1.4 Various data sources and examples of usages and tools

Data Source

Examples of Usages

Example of Tools

Relational

databases

Managing business applications

involving structured data

Microsoft Access, Oracle, IBM DB2, SQL

Server, MySQL, PostgreSQL Composite, SQL

on Hadoop [HPE (Hewlett Packard

Enterprise) Vertica, IBM BigSQL, Microsoft

Polybase, Oracle Big Data SQL]

Analysis

databases (MPP,

columnar,

In-memory)

High performance queries and

analytics

Sybase IQ, Kognitio, Terradata, Netezza,

Vertica, ParAccel, ParStream, Infobright,

Vectorwise,

NoSQL databases

(Key-value pairs,

Columnar format,

documents,

Key-value pairs, fast read/write

using collections of name-value

pairs for storing any type of data;

Columnar format, documents,

Key-value pair databases: Riak DS (Data

Store), OrientDB, Column format databases

(HBase, Cassandra), Document oriented

databases: CouchDB,MongoDB; Graph

DBl (u;Ho Billion row I
Ml

Objects, graph) objects, graph DBs and DSs databases (Neo4j, Tetan)

Hadoop clusters

Ability to process large data sets

across a distributed computing

environment

Cloudera, Apache HDFS

Web applications

Access to data generated from web

applications

Google Analytics, Twitter

Cloud data

Elastic scalable outsourced

databases, and data administration

services

Amazon Web Services, Rackspace,

GoogleSQL

Individual data Individual productivity MS Excel, CSV, TLV,JSON,MIME type

Multidimensional

Well-defined bounded exploration

especially popular for financial

applications

Microsoft SQL Server Analysis Services

Social media data

Text data, images, videos

Twitter, Linkedin

Blg IOata Cl~,, Mltl oo IB'j'te to Peta byte)

H doo.p Dls.tr,lbuted Fii Sysi · j'jlj

(H DFSI, Ceph, Sl

Ir h~wlultFle e,Jl'o, orit-ra Byt,es.

so ial edl.i, Data, M Soll as, fl as,
.111$ a - di~ t 'fi1es1 Not o , I~ SQl or

N'Cl·SQl 0112,-oDS., (S ridra,I Riak

,[Mi 1-~ ~o Billio - 9lytM) Dotu ents, hna11i;,es, Videos

'ftad lion I Rli>B s, sat, b s,

Of:· - , Sylt - , SQl!. s Mr,
Com . urting; Logs, '

sen.re:r, 1Enteriprise server

Figure 1.7 Coexistence ofRDBMSfor traditional server data, NoSQL and Hadoop,

Spark and compatible Big Data Clusters

1.6.3 Big Data Platform

A Big Data platform supports large datasets and volume of data. The data generate at a

higher velocity, in more varieties or in higher veracity. Managing Big Data requires large

resources of MPPs, cloud, parallel processing and specialized tools. Bigdata platform

should provision tools and services for:

1. storage, processing and analytics,

2. developing, deploying, operating and managing Big Data environment,

3. reducing the complexity of multiple data sources and integration of applications

into one cohesive solution,

4. custom development, querying and integration with other systems, and

5. the traditional as well as Big Data techniques.

Data management, storage and analytics of Big data captured at the companies and

services require the following:

1. New innovative non-traditional methods of storage, processing and analytics

2. Distributed Data Stores

3. Creating scalable as well as elastic virtualized platform (cloud computing)

4. Huge volume of Data Stores

5. Massive parallelism

6. High speed networks

7. High performance processing, optimization and tuning

8. Data management model based on Not Only SQL or NoSQL

9. In-memory data column-formats transactions processing or dual in-memory data

columns as well as row formats for OLAP and OLTP

10. Data retrieval, mining, reporting, visualization and analytics

11. Graph databases to enable analytics with social network messages, pages and data

analytics

12. Machine learning or other approaches

13. Big data sources: Data storages, data warehouse, Oracle Big Data, MongoDBNoSQL,

Cassandra NoSQL

14. Data sources: Sensors, Audit trail of Financial transactions data, external data such

as Web, Social Media, weather data, health records data.

1.6.3.1 Hadoop

Big Data platform consists of Big Data storage(s), server(s) and data management and

business intelligence software. Storage can deploy Hadoop Distributed File System (HDFS),

NoSQL data stores, such as HBase, MongoDB,Cassandra. HDFS system is an open source

storage system. HDFS is a scaling, self-managing and self-healing file system.

The Hadoop system packages application-programming model. Hadoop is a scalable and

reliable parallel computing platform. Hadoop manages Big Data distributed databases.

Figure 1.8 shows Hadoop based Big Data environment. Small height cylinders represent

MapReduce and big ones represent the Hadoop.

1.6.3.2 Mesos

Mesos v0.9 is a resources management platform which enables sharing of cluster of nodes

by multiple frameworks and which has compatibility with an open analytics stack [data

processing (Hive,Hadoop, HBase,Storm), data management (HDFS)].

LJ LJ LJ LJ

Hadao,p Di

SV,ste,

[J c J I[J [J

f,-1 igiH.roJume :Social eclia Dahl,, Mess:a~

s, Malls .and t fl s, or O·n . S.Q.L

Op t naJ Data Store ,[,ODS)

,&:1~d Cl'.i;i,er~iomd s.~t-efll~

Web se er, Enterpri!ie server and

ICC!IMFUt ng Lo s

Figure 1.8 Hadoop based Big Data environment

1.6.3.3 Big Data Stack

A stack consists of a set of software components and data store units. Applications,

machine-learning algorithms, analytics and visualization tools use Big Data Stack (BDS) at

a cloud service, such as Amazon EC2, Azure or private cloud. The stack uses cluster of high

performance machines.

Table 1.5 gives Big Data management, storage and processing tools.

Table 1.5 Tools for Big Data environment

Types

Examples

MapReduce

Hadoop, Apache Hive, Apache Pig, Cascading, Cascalog, mrjob (Python MapReduce

library), Apache 54, MapR, Apple Acunu, Apache Flume, Apache Kafka

NoSQL

Databases

MongoDB,Apache CouchDB,Apache Cassandra, Aerospike, Apache HBase, Hypertable

Processing

Spark, IBM BigSheets, PySpark, R, Yahoo! Pipes, Amazon Mechanical Turk, Datameer,

Apache Solr /Lucene, ElasticSearch

Servers

Amazon EC2, 53, GoogleQuery, Google App Engine, AWS Elastic Beanstalk, Salesforce

Heroku

Storage

Hadoop Distributed File System, Amazon 53, Mesos

1.6.4 Big Data Analytics

DBMS or RDBMS manages the traditional databases. Data analysis need pre-processing of

raw data and gives information useful for decision making. Analysis brings order,

structure and meaning to the collection of data. Data is collected and analyzed to answer

questions, test the hypotheses or disprove theories.

1.6.4.1 Data Analytics Definition

Data Analytics can be formally defined as the statistical and mathematical data analysis

that clusters, segments, ranks and predicts future possibilities. An important feature of

data analytics is its predictive, forecasting and prescriptive capability. Analytics uses

historical data and forecasts new values or results. Analytics suggests techniques which

will provide the most efficient and beneficial results for an enterprise. Data analysis helps

in finding business intelligence and helps in decision making.

Data analysis can be defined as,

"Analysis of data is a process of inspecting, cleaning, transforming and modeling

data with the goal of discovering useful information, suggesting conclusions and

supporting decision making." (Wikipedia)

1.6.4.2 Phases in Analytics

Analytics has the following phases before deriving the new facts, providing business

intelligence and generating new knowledge.

1. Descriptive analytics enables deriving the additional value from visualizations and

reports

2. Predictive analytics is advanced analytics which enables extraction of new facts and

knowledge, and then predicts/forecasts

3. Prescriptive analytics enable derivation of the additional value and undertake better

decisions for new option(s) to maximize the profits

4. Cognitive analytics enables derivation of the additional value and undertake better

nt St m Pro ss.i-

---~

I

decisions.

Analytics integrates with the enterprise server or data warehouse.

Figure 1.9 shows an overview of a reference model for analytics architecture. The figure

also shows on the right-hand side the Big Data file systems, machine learning algorithms

and query languages and usage of the Hadoop ecosystem.

Ser,,i1t,es.1 Rep,o Ing. Data V,irualitatloos, 01.AP;,

Adwm:e Analytl !Predl :e/Pr 5trignlY Analyti

~----,,------,-----..----~

rr di iolili1!1 DatttStore~ \Mlrehowe

Business Analytics

and lntelllge,nce

Applic.atiOf'l:s.

I Ofe:anlzed l

Mahout (Dis.tribub!-d

and scalable library

of michlne le.arnio.g

algtltit.hms)

Gl"iPhX.

PySpark,
Sp;artSQL,.

Hiv,eQL

=r State
HOFS tHadoop File

- - • • - - • • - - System) ror Big Data

~--~---~---~ ot Mesos

Data S()uf't
I

E l@ ,, s , oat seurees,
&t,er~I P.ata, Sources .aool 8.ig Data .Soun;es;

~--------------~

sources for

I Ac:quirinl!J ~tia

Figure 1. 9 Traditional and Big Data analytics architecture reference model

The captured or stored data require a well-proven strategy to calculate, plan or analyze.

When Big Data combine with high-powered data analysis, enterprise achieve valued

business-related tasks. Examples are:

Determine root causes of defects, faults and failures in minimum time.

Deliver advertisements on mobiles or web, based on customer's location and buying

habits.

Detect offender before that affects the organization or society.

1.6.4.3 Berkeley Data Analytics Stack (BDAS)
lmAs co111sirsting10Hhe

The importance of Big Data lies in the fact that what one does ~raprocmfnq.~ra

with it rather than how big or large it is. Identify whether the ma1r11a9emrnem:andiresol!!lrc.e
mana9elllllem: layers

gathered data is able to help in obtaining the following findings:

1) cost reduction, 2) time reduction, 3) new product planning and

development, 4) smart decision making using predictive analytics and 5) knowledge

discovery.

Big Data analytics need innovative as well as cost effective techniques. BOAS is an open•

source data analytics stack for complex computations on Big Data.11 It supports efficient,

large-scale in-memory data processing, and thus enables user applications achieving

three fundamental processing requirements; accuracy, time and cost.

Berkeley Data Analytics Stack (BDAS) consists of data processing, data management and

resource management layers. Following list these:

1. Applications, AMP-Genomicsand Carat run at the BOAS. Data processing software

component provides in-memory processing which processes the data efficiently

across the frameworks. AMP stands for Berkeley's Algorithms, Machines and Peoples

Laboratory.

2. Data processing combines batch, streaming and interactive computations.

3. Resource management software component provides for sharing the infrastructure

across various frameworks.

Figure 1.10 shows a four layers architecture for Big Data Stack that consists of Hadoop,

MapReduce, Spark core and SparkSQL,Streaming, R, Graphx, MLib, Mahout, Arrow and

Kafka.

Figure 1.10 Four layers architecture for Big Data Stack consisting of Hadoop,

MapReduce, Spark core and SparkSQL,Streaming, R, GraphX, MLib,

Mahout, Arrow and Kafka

Self-Assessment Exercise linked to LO 1.5

1. What are the traditional systems for data storage? How does in-memory

columnar format help in OLAP? Give an example.

2. What are hierarchical and object oriented records?

3. What is enterprise server? How does enterprise server data store differ from a

web server?

4. What are the functions of data integration software? How does application

integration along with data integration help in business processes, intelligence

and analytics?

5. What are the functions in SQL? List the differences between SQL data store and

NoSQL data store.

6. How does a Big Data stack help in analytics tasks?

7. How does a Berkeley Data analytics stack help in analytics tasks?

1.71 BIG DATA ANALYTICS APPLICATIONS AND CASE STUDIES

Many applications such as social network and social media,

cloud applications, public and commercial web sites, scientific

experiments, simulators and e-government services generate

Big Data. Big Data analytics find applications in many areas.

Some of the popular ones are marketing, sales, health care,

medicines, advertising etc. Following subsections describe these

use cases, applications and case studies.

Bi g1 [)ata 1U1se cas@S,
a ~p1i,caith:ms and c21se
srudiii:!S in Va riOIJ!JS fiie:lcJs,

such as mar1ket1il!llg, sales
a ndl ih,eal:lltcarre

1.7.1 Big Data in Marketingand Sales

Data are important for most aspect of marketing, sales and advertising. Customer Value

(CV) depends on three factors - quality, service and price. Big data analytics deploy large

volume of data to identify and derive intelligence using predictive models about the

individuals. The facts enable marketing companies to decide what products to sell.

A definition of marketing is the creation, communication and delivery of value to

customers. Customer (desired) value means what a customer desires from a product.

Customer (perceived) value means what the customer believes to have received from a

product after purchase of the product. Customer value analytics (CVA) means analyzing

what a customer really needs. CVA makes it possible for leading marketers, such as

Amazon to deliver the consistent customer experiences. Following are the five application

areas in order of the popularity of Big Data use cases:

1. CVA using the inputs of evaluated purchase patterns, preferences, quality, price and

mailto:cas@S

post sales servicing requirements

2. Operational analytics for optimizing company operations

3. Detection of frauds and compliances

4. New products and innovations in service

5. Enterprise data warehouse optimization.

An example of fraud is borrowing money on already mortgage assets. Example of timely

compliances means returning the loan and interest installments by the borrowers.

A few examples in service-innovation are as follows: A company develops software and

then offers services like Uber. Another example is of a company which develops software

for hiring services, and then offers costly construction machinery and equipment. That

service company might be rendering the services by hiring themselves from the multiple

sources and locations of big construction companies.

Big data is providing marketing insights into (i) most effective content at each stage of a

sales cycle, (ii) investment in improving the customer relationship management (CRM),

(iii) addition to strategies for increasing customer lifetime value (CLTV), (iv) lowering of

customer acquisition cost (CAC). Cloud services use Big Data analytics for CAC, CLTV and

other metrics, the essentials in any cloud-based business

Big Data revolutionizes a number of areas of marketing and sales. Louis Columbus12

recently listed the ways of usages. (Refer online content for solution of Practice Exercise

1.14.)

Contextual marketing means using an online marketing model in which a marketer

sends to potential customers the targeted advertisements, which are based on the search

terms during latest browsing patterns usage by customers.

For example, if a customer is searching an airline for flights on a specific date from Delhi

to Bangalore, then a smart travel agency targeting that customer through advertisements

will show him/her, at specific intervals, better options for another airline or different but

cheap dates for travel or options in which price reduction occurs gradually.

The following example explains the use of search engine optimization.

EXAMPLE 1.14

Why does the search engine at a company product website of a travel agency need

optimization?

SOLUTION

Consider a travel agency website offers search results for flights between two

destinations A and C, which do not connect directly. The search shows the results in

order of increasing travel cost through stopover at an intermediate airport B. Assume

that search results show up just mechanically, without embedding intelligence and

optimization. The customers find uncomfortable solutions with such searches. The

searches show the cheaper options but sometimes show results such as the customer

would reach C through stopover at B after 8 hours or even sometimes on the next

day.

The searches at that travel agency do not consider stopover options at different Bs,

options available in different airlines to cut short travel time from B to C at cheaper

costs, or newly introduced flights. The searches therefore need optimization for

parameters of travel cost, multiple intermediate stopovers and airlines that will

provide maximum customer convenience as well as cost.

Big data algorithms and advanced analytics techniques enable price optimization for a

given product or service, and pricing decisions, especially in the commodity driven

industries where products are inelastic. Inelastic product means a situation in which the

service, required quantity or supply of a product remains unaffected by the price changes.

1. 7.1.1 Big Data Analytics in Detection of Marketing Frauds
IBig1 dah d~l'O}lfflOOt 1in

Fraud detection is vital to prevent financial loses to users. Fraud ifira111a cM:ection11re'latedlto

means someone deceiving deliberately. For example, mortgaging _m_a,_ke_----~ ·t1_ng_ 1

the same assets to multiple financial institutions, compromising

customer data and transferring customer information to third party, falsifying company

information to financial institutions, marketing product with compromising quality,

marketing product with service level different from the promised, stealing intellectual

property, and much more.

Big Data analytics enable fraud detection. Big Data usages has the following features-for

enabling detection and prevention of frauds:

1. Fusing of existing data at an enterprise data warehouse with data from sources such

as social media, websites, biogs, e-mails, and thus enriching existing data

2. Using multiple sources of data and connecting with many applications

3. Providing greater insights using querying of the multiple source data

4. Analyzing data which enable structured reports and visualization

5. Providing high volume data mining, new innovative applications and thus leading to

new business intelligence and knowledge discovery

6. Making it less difficult and faster detection of threats, and predict likely frauds by

using various data and information publicly available.

1. 7.1.2 Big Data Risks

Large volume and velocity of Big Data provide greater insights

but also associate risks with the data used. Data included may be

erroneous, less accurate or far from reality. Analytics introduces

new errors due to such data.

Big Data can cause potential harm to individuals. For example,

Ei.gi Data llarge vol umil!',
veloGit.y :and! verac'iity data

provide gmmr in~ g hts
for r:datl, secu1nity, pliivacy,

1mcre21si ng costs, and! ba.dl

a na tymcs a nd bad data 1nisks

a.sscx:ia:teis

when someone puts false or distorted data about an individual in a blog, Facebook post,

WhatsApp groups or tweets, the individual may suffer loss of educational opportunity, job

or credit for his/her urgent needs. A company may suffer financial losses.

Five data risks, described by Bernard Marr are data security, data privacy breach, costs

affecting profits, bad analytics and bad data.13 (Solutions in online content accompanying

the book for Practice Exercise 1.15)

Companies need to take risks of using Big Data and design appropriate risk management

procedures. They have to implement robust risk management processes and ensure

reliable predictions. Corporate, society and individuals must act with responsibility.

1. 7.1.3 Big Data Credit Risk Management

Financial institutions, such as banks, extend loans to industrial and household sectors.

These institutions in many countries face credit risks, mainly risks of (i) loan defaults, (ii)

timely return of interests and principal amount. Financing institutions are keen to get

insights into the following:

1. Identifying high credit rating business groups and individuals,

2. Identifying risk involved before lending money

3. Identifying industrial sectors with greater risks

4. Identifying types of employees (such as daily wage earners in construction sites) and

businesses (such as oil exploration) with greater risks

5. Anticipating liquidity issues (availability of money for further issue of credit and

rescheduling credit installments) over the years.

The insight using Big Data decreases the default rates in returning of loan, greater

accuracy in issuing credit and faster identification of the non-payment or fraud issues of

the loan receiving entities. (Example of fraud is using the same assets for drawing credit

from two or more institutions or hiding earlier outstanding loans and loan defaults.)

One innovative way to manage credit risks and liquidity risks is use of available data and

Big Data. High volume of data analysis gives greater insight into the default patterns,

emerging patterns and thus credit risks.

Big Data analytics monitors social media, interactions data, contact addresses, mobile

numbers, website, financial status, activities or job changes to find the emerging credit

risk that may affect a customer loan returning capacity. Digital footprints across social

media provide a valuable alternative data source for credit risk analysis. The data

companies assist in rating the customer in application processing and also during the

period of repayment of a loan. Friends on Facebook and their credit rating, comments and

assets posted also help in determining the risks.

The data insights from the analytics lead to credit and liquidity risk management and

faster reactions. Three benefits are (i) minimize the non-payments and frauds, (ii)

identifying new credit opportunities, new customers and revenue streams, thereby

broadening the company high credit rating customers base and (iii) marketing to low risk

businesses and households.

1. 7.1.4 Big Data And Algorithmic Trading

Wikipedia gives a definition of algorithm trading as follows: "Algorithmic trading is a

method of executing a large order (too large to fill all at once) using automated pre•

programmed trading instructions accounting for variables such as time, price and

volume." Complex mathematics computations enable algorithmic trading and business

investment decisions to buy and sell. The input data are insights gathered from the risk

analysis of market data. Big data bigger volume, velocity and variety in the trading

provide an edge over other trading entities

1.7.2 Big Data and Healthcare

Big Data analytics in health care use the following data sources:

(i) clinical records, (ii) pharmacy records, (3) electronic medical

records (4) diagnosis logs and notes and (v) additional data, such

as deviations from person usual activities, medical leaves from

Eig1 iOa:t:a llarge volume.
velocity a ndl veracity data

prov.iale grener insights in,
hea1lth ca ire s'!{S!erm,s and
mooiGili1le

job, social interactions. Healthcare analytics using Big Data can facilitate the following:

1. Provisioning of value-based and customer-centric healthcare,

2. Utilizing the 'Internet of Things' for health care

3. Preventing fraud, waste, abuse in the healthcare industry and reduce healthcare

costs (Examples of frauds are excessive or duplicate claims for clinical and hospital

treatments. Example of waste is unnecessary tests. Abuse means unnecessary use of

medicines, such as tonics and testing facilities.)

4. Improving outcomes

5. Monitoring patients in real time.

Value-based and customer-centric healthcare means cost effective patient care by

improving healthcare quality using latest knowledge, usages of electronic health and

medical records and improving coordination among the healthcare providing agencies,

which reduce avoidable overuse and healthcare costs.

Healthcare Internet of Things create unstructured data. The data enables the monitoring

of the devices data for patient parameters, such as glucose, BP, ECGs and necessities of

visiting physicians.

Prevention of fraud, waste, and abuse uses Big Data predictive analytics and help resolve

excessive or duplicate claims in a systematic manner. The analytics of patient records and

billing help in detecting, anomalies such as overutilization of services in short intervals,

different hospitals in different locations simultaneously, or identical prescriptions for the

same patient filed from multiple locations.

Improving outcomes is possible by accurately diagnosing patient conditions, early

diagnosis, predicting problems such as congestive heart failure, anticipating and avoiding

complications, matching treatments with outcomes and predicting patients at risk for

disease or readmission.

Patient real-time monitoring uses machine learning algorithms which process real-time

events. They provide physicians the insights to help them make life-saving decisions and

allow for effective interventions. The process automation sends the alerts to care

providers and informs them instantly about changes in the condition of a patient.

1.7.3 Big Data in Medicine

Big Data analytics deploys large volume of data to identify and derive intelligence using

predictive models about individuals. Big Data driven approaches help in research in

medicine which can help tpatients. Big Data offers potential to transform medicine and

the healthcare system-Dr. Eric Schadt and Sastry Chilukuri.14

Following are some findings: building the health profiles of individual patients and

predicting models for diagnosing better and offer better treatment,

1. Aggregating large volume and variety of information around from multiple sources

the DNAs, proteins, and metabolites to cells, tissues, organs, organisms, and

ecosystems, that can enhance the understanding of biology of diseases. Big data

creates patterns and models by data mining and help in better understanding and

research,

2. Deploying wearable devices data, the devices data records during active as well as

inactive periods, provide better understanding of patient health, and better risk

profiling the user for certain diseases,

1.7.4 Big Data in Advertising

The impact of Big Data is tremendous on the digital advertising

industry. The digital advertising industry sends advertisements

using SMS, e-mails, WhatsApp, Linkedln, Facebook, Twitter and

other mediums.

Big Data technology and analytics provide insights, patterns

and models, which relate the media exposure of all consumers to

Eig1 data ir;,9:;;il ,time a ngly.tics
foir faster insights, emergil"llg

trends ancll patterns, .illltdl

gain actiollilab'le 1ilil1Siglrrrt:s for
facing' corn peti1tiolillS fi:"orin
similarpiroducts in oligibl

adverlDisi ng and bl!.llil1cdillltg1
r@latioliilslrriips

the purchase activity of all consumers using multiple digital channels. Big Data help in

identity management and can provide an advertising mix for building better branding

exercises.

Big Data captures data of multiple sources in large volume, velocity and variety of data

unstructured and enriches the structured data at the enterprise data warehouse. Big data

real time analytics provide emerging trends and patterns, and gain actionable insights for

facing competitions from similar products. The data helps digital advertisers to discover

new relationships, lesser competitive regions and areas.

Success from advertisements depend on collection, analyzing and mining. The new

insights enable the personalization and targeting the online, social media and mobile for

advertisements called hyper-localized advertising.

Nielson Inc. CEO, Mitch Barns described Big Data's big impact on the future of

advertising. Advertising nowadays limits no longer to TV, radio and print. Advertisers use

along with these multiple devices and mediums. For example, advertisement of the

introduction of new courses by an institution or introduction of new flights by an Airline

needs media other than TV and requires targeted and cost effective solutions.

Advertising on digital medium needs optimization. Too much usage can also effect

negatively. Phone calls, SMSs, e-mail-based advertisements can be nuisance if sent

without appropriate researching on the potential targets. The analytics help in this

direction. The usage of Big Data after appropriate filtering and elimination is crucial

enabler of BigData Analytics with appropriate data, data forms and data handling in the

right manner.

Self-Assessment Exercise linked to LO 1.6

1. How do data inputs help in Big Data based Customer value analytics?

mailto:r@latioliilslrriips

2. How does Big Data help in credit risk management in financial institutions?

3. How does Big Data Analytics enable prevention of fraud, waste and abuse of

healthcare system?

4. Why does Big Data offer the potential to transform the medicine and healthcare

system?

5. Why are the Cloud services used for Big Data Analytics for customer acquisition,

customer lifetime value analytics and other metrics?

3Vs

4Vs

application integration

Big Data analytics

Big Data characteristics

Big Data types

Business intelligence

Business process

cloud

cost of acquisition

credit risk

CSV data format

customer value

data

data analytics

data architecture

database

data cleaning

data consumption

data cube

data ingestion

data integration

data management

data mining

data patterns

data pre-processing

data source

data store

data warehouse

descriptive analytics

distributed database

ELT

Enterprise server

ETL

event analytics

Hadoop

Hash-key value pair

in-memory column format

in-memory row format

]SON data format

key-value pair

knowledge discovery

logic machine

machine learning

Management Information Services

Massively Parallel Processing

multi-dimensional data cube

multi structured data

Noise

NoSQL

OLAP

OLTP

online analytic processing

Outlier

predictive analytics

prescriptive analytics

RDBMS

real-time analytics

semi-structured data

SQL

stream analytics

structured data

web data

LO 1.1 .

Data is raw information, usually in the form of facts or statistics that one can

analyze or that one can use for further calculations and computations.

Data are structured, semi-structured, multi-structured and unstructured.

Four types of Big Data: Social networks and web data, transactions and business

processes data, machine generated data and human generated data.

Analytics helps in gathering, organizing, analyzing and reporting meaningful

patterns in data. Analytics leads to communicate to user the meaningful patterns in

data, helps data visualization, predictions and knowledge discovery..

Big Data is a collection of datasets very large and / or complex that traditional data

processing applications are inadequate and has 3Vs or 4Vs as characteristics•

volume, velocity, variety and veracity.

LO 1.2 .

Scalability is the capability of a system to handle increasing workloads. Analytics

scalability for Big Data uses distributed computing model. Scalability means multiple

independent computational tasks submitted to multiple computing nodes which

function coherently.

Analytic scalability for Big Data deploys parallel computing, massive parallel

processing, cloud computing, cluster or grid computing.

LO 1.3 .

Big Data architecture provides the logical and/ or physical layout/structure of how

big data will be stored, accessed and managed.

Data architecture design consists of five logical layers: data sources identification,

ingestion and acquisition, data storage, data processing and consumption, such as

applications, analysis, visualizations, business processes, business intelligence,

knowledge discovery.

Management functions enable controlling, protecting, delivering and enhancing the

value of data and information assets.

LO 1.4 .

Data sources are data-repositories, such as RDBMS and spreadsheets from which the

application seeks the data. Data sources are machines which drive data from data

creating programs or form data store.

High quality data means data with five R's: Relevancy, recency, range, robustness

and reliability.

Data-Store exports after pre-processing the data from data sources, servers,

computers and service to the cloud. Cloud services and platforms can be sourced

from IBM, Microsoft, Oracle, Google, Amazon, Rackspace, TCS and Tata

Communications.

Big Data applications use cloud services: Hadoop Cloud Service (IBM Biglnsight,

Microsoft Azure HD Insights, Oracle Big Data Cloud Services and SQL on Hadoop. SQL

used are Apache SparkSQL,GoogleSQLI,BM BigSQL, HPE Vertica, Microsoft Polybase,

Oracle Big Data SQL or GoogleBigQuery).

LO 1.5

· Traditional systems use structured or semi-structured data, tables, RDBMS such as DB2,
MySQL,]SON and XML represent semi-structured data and are best suited for
representing object oriented records or hierarchical data records.

Big Data systems use new innovative non-traditional methods of storage, processing

and analytics. They use distributed Data Stores. Big Data tools use scalable as well as

elastic virtualized platform (cloud computing), huge volume of Data Stores, massive

parallelism, high-speed networks and graph databases. Analytics deploy social

network messages and pages for Big Data analytics.

Big Data storage can deploy Hadoop distributed file system, MongoDB, NoSql data

stores. For example, HBase, Cassandra. HDFS are open source storage systems.

LO 1.6

Data are important for most aspects of marketing and sales, credit risks

management, fraud detection, healthcare, medicine and advertising.

Big data analytics deploy a large volume of data to identify and derive intelligence

using predictive models about individuals.

Big Data analytics enables fraud detection and helps manage credit risks and

liquidity risks.

Big Data analytics also uses social media, interactions data, contact addresses,

mobile numbers, website, financial status, activities or job changes for credit risk

analysis.

I Objective Type Questions 1111
Select one correct-answeroption for each questions below:

1.1 Data are usually required for:

(a) Calculation

(b) Planning

(c) Input to a software tool

(d) Calculate, plan, analyze and visualize something, obtaining intelligence or discover

new knowledge

1.2 Web data is (i) data present at web servers, (ii) data accessible using the Internet, (iii)

data which can be used in mobile and web applications, (iv) information in the form

of documents and other web resources, (v) data at documents and resources which

are accessible from the Internet such that each resource identifies by an URL of the

data server store, and (vi) data in the documents interlink by hypertext links, and

accessed using the Internet.

(a) all are true

(b) all except ii

(c) all except iii and iv

(d) ii to vi

1.3 Big Data analytics (i) deal with a large amount of data, (ii) manage, organize,

process, analyze, share using traditional software tools running on require hundreds

of computing nodes and large volume of storage devices, (iii) deal with fast

generation of needed data, (iv) results in quick processing, analysis and usages, and

has increased complexity due to multi-structured, (v) need processing of complex

applications with large datasets, and (vi) deal with variety of data, various forms and

formats, such as sensors, machine generated data, social media data

(a) iii to vii

(b) all except ii

(c) all except vi

(d) all

1.4 Big Data has (i) structured, semi-structured, and unstructured data formats, (ii)

unstructured data format, (iii) stores as column-oriented, record-based, graph•

based, hashed or key/value pairs, (iv) stores as column-oriented, row-oriented, and

graph-based, (v) batch or real time processing needs, and (vi) real time processing

needs.

(a) i, iii and v

(b) ii to v

(c) ii, iv and vi

(d) all except ii

1.5 Data architecture design considers:

(a) Four design layers with the lowest being identification of internal and external

data sources

(b) Four design layers with the lowest being ingestion strategy and acquisition, and

next identification of internal and external data sources.

(c) Five layers with data consumption for analytics, business processes, business

intelligence, data mining, pattern recognition and knowledge discovery

(d) Five layers with data storage, processing and analytics being the highest layer

1.6 Data sources:

(i) In the Microsoft Applications are of two types: machine data sources and file data

sources.

(ii) In the Oracle applications are of three types: file data sources, database data

sources and logic-machine data sources which use the network functions or a

server.

(iiilln the IBM applications are of three types: machine data sources, database

instances data sources and file data sources.

(iv)Can be sensors, sensor networks, devices, controllers, intelligent edge nodes in

industrial M2M and signals from the machines.

(v) Data is of high quality if they enable all the required operations, analysis, decisions,

planning, and knowledge discovery.

(vi)A definition for high quality data can be five R's: Relevancy, recency, range,

robustness and reliability.

(vii)Data noise, outliers, missing-values and duplicate-values affect the data quality.

Applications such as analytics, data visualization and data mining need data

cleaning, integrity, enrichment, editing, reduction and/ or wrangling.

(a) all

(b) all except ii, v and vi

(c) all except vi

(d) (d) all except ii and iii

1.7 NoSQL features are:

(i) The systems do not use the concept ofjoins (in distributed data storage systems)

(ii) Data written at one node and replicates to multiple nodes, therefore identical and

fault-tolerant, and can be partitioned

(iii)Can offer relaxation in one or more of the ACID properties

(iv)Out of three properties (consistency, availability and partitions), two are at least

present for the application/service/process.

(a) i, ii and iii

(b) i to iv

(c) all except iii

(d) all except ii

1.8 Big Data platform should enable the following:

(i) Storage, processing and analytics

(ii) Developing, deploying, operating and managing a Big Data environment in an

enterprise

(iii)Reducing the complexity of multiple data sources and integrate the applications

into one cohesive solution

(iv) Custom development, querying and integration with other systems involve the

complexity

(v) Needs traditional as well as new and innovative techniques.

(a) i to iii

(b) all except v

(c) all except iv

(d) all are true

1.9 Vertical scalability means scaling up by:

(a) Using the giving system resources and increasing the systems analytics, reporting

and visualization capabilities requiring additional ways to solve problems of

greater complexities

(b) Adding computers in parallel

(c) Adding computers serially

(d) Adding computers in serially as well as parallel

1.10 Grid Computing refers to (i) distributed computing, in which a group of computers

from several locations are connected with each other to achieve a common task, (ii)

remotely connected computers using Internet, (iii) computer resources

heterogeneously and geographically disperse, (iv) a group of computers that might

spread over remotely forming a grid, (v) computing using cloud, and (vi)

computations and no under-performance even on failure of any of the participating

nodes.

(a) all

(b) all except ii, v and vi

(c) all except vi

(d) all except ii and iii

1.11 Cloud computing environment (i) performs parallel and distributed computing for

processing and analyzing large datasets on computing nodes, (ii) is on-demand

service (iii) enables software, infrastructure and platform resource pooling, (iv) has

scalability, (v) has no accountability, and (vi) has restricted network access.

(a) all are true

(b) all except v

(c) i to iv

(d) all except vi

1.12 Predictive analytics (i) predicts the trends, (ii) enable undertaking of the preventive

maintenance in future from the earlier analyzes of equipment and device failure

rates, (iii) enable managing the future campaigns and adopting integrated

marketing strategy using previous studies of effect of campaigns at different media

types, regions, targeted age groups, (iv) predicts by identifying patterns, clusters

with similar behaviour, and (v) predicts based on earlier anomalous features

detection, anomaly detection and filtering.

(a) i to iii

(b) all except iv

(c) all except v

(d) all are true

1.13 Automatic Chocolate Vending Machines company can use for selling (i) event

analytics followed next by predictive analytics, (ii) manage each flavour supply•

chain maintenance with optimization, (iii) manage the regular preventive

maintenance of the machines, (iv) predict about changes in user preferences for

chocolates in general and for specific flavours and (v) predict future festive season

sales, (vi) visualize with finer and coarse granulates and multi-dimensional data

cubes, (vii) predicts declining or rising sales, and (viii) plan strategies for boosting

sales.

(a) iv, v and vii

(b) all except iii and viii

(c) all

(d) all except vi

1.14 Use Cases for Marketing and Sales Application areas are: (i) customer value analytics

using the inputs of evaluated purchase patterns preferences, quality, price and post

sales servicing requirements, (ii) operational analytics for company operations

optimization, (iii) detection of frauds and compliances, (iv) new products and

services innovation, and (v) enterprise Data Warehouse Optimization.

(a) ii to v

(b) all except ii

(c) all five and have popularity in order from (i) to (v)

(d) all except iii

1.15 Big Data usage risks are: (i) data security risk, (ii) data privacy risk, (iii) cost affecting

the profits, (iv) bad analytics results, (v) bad data, and (vi) data filtering.

(a) i and ii

(b) all except iii

(c) all except v

(d) all are true except vi

1.16 Automotive Maintenance Service Center Application in a company can (i) use

analytics followed by predictive analytics, (ii) predict failure of components from

periodic analysis of data, (iii) provide emergency services, (iv) improve the quality of

components in future cars, (v) record driver rash driving habits and issue warnings,

(vi) understand customer preferences, (vii) manage regular preventive maintenance

of the automobile, (viii) visualization with finer and coarse granulates and multi•

dimensional data cubes for maintenance needs, (viii) predict declining or rising

sales, and (ix) plan strategies for boosting sales.

(a) i to vii

(b) all except iv and vii

(c) all except vi, viii and ix

(d) all except vii and viii

II Review Questions 1111
1.1 Describe the data, web data and Big Data. (LO 1.1)

1.2 Draw a diagram showing evolution of Big Data and their characteristics over the

time as size, complexity increased and as unstructured data increased. (LO 1.1)

1.3 What do you mean by 3Vs characteristics of Big Data? What are the challenges faced

from large growth in volume of data? (LO 1.1)

1.4 What do you mean by analytical scalability? What are vertical scalability and

horizontal scalability? (LO 1.2)

1.5 Explain uses of massive parallel processing and cluster computing in Big Data

scenario. (LO 1.2)

1.6 Describe grid computing features. Compare these with cluster computing. (LO 1.2)

1. 7 Define Big Data architecture. Draw five layers in architecture design and explain

functions in each layer. (LO 1.3)

1.8 What do you mean by data management? List the data management functions. (LO

1.3)

1.6 What are the data sources considered in Microsoft Storage applications, IBM

databases and Oracle Data Stores? (LO 1.4)

1.9 What do you mean by the data noise, outliers, duplicate data and data anomaly?

Why does the filtering require during pre-processing? Explain the following data

processing steps: inspecting, cleaning, transforming, modeling and visualizing data.

(LO 1.4)

1.10 Show using a figure how data store export using machine data sources and file data

sources, computers, web servers, web services, Amazon, Rackspace and Hadoop

cloud services. (LO 1.4)

1.11 How do the table rows in MySQL database export to Amazon AWS and Rackspace?

(LO 1.4)

1.12 Define distributed databases. How do they differ from distributed Data Stores?

Describe features of distributed database databases. (LO 1.6)

1.13 How does the data analytics enable predictive, forecasting and prescriptive

capabilities? How does the data analytics enable use of historical data to forecast

potential values or results? Describe methods of analytics results reporting and

visualization. (LO 1.6)

1.14 What are the requirements for data management, storage and analytics of captured

Big data at the Companies and services? (LO 1.6)

1.15 Explain traditional and Big Data analytics architecture reference models. (LO 1.6)

1.16 Describe ways of usages of Big Data analytics in marketing, sales and advertising.

(LO 1.6)

1.17 What are the risks in Big Data usages? How does Big Data used in credit risk

management? (LO 1.6)

1.18 Describe ways of usages of Big Data analytics in healthcare systems and medicine.

(LO 1.6)

II Practice Exercises 1111
1.1 Diagrammatically show sources of structured, semi-structured, multi-structured and

unstructured data. (LO 1.1)

1.2 Give examples of data resources at the enterprise server of an education institution.

(LO 1.1)

1.3 List the unstructured data forms used in 'Automotive Components and Predictive

Automotive Maintenance Services'. (LO 1.1)

1.4 List usages of Big Data analytics in a company for car manufacturing, marketing,

sales and maintenance of car service centres. (LO 1.1)

1.5 Estimate how many massively parallel processing nodes will be required to process

data at 4 Tera instructions per second when a single processor processes 1 Gega

instructions per second. Assume 10% time is taken up in inter-process

communications. (LO 1.2)

1.6 Show architectural design layers in 'Automotive Components and Predictive

Automotive Maintenance Services'. (LO 1.3)

1.7 Take examples given in Examples 1.9. Consider example of a table in a student

examination grade sheet for a semester. Fill the fields with presume values for two

students in the same semester in the same course. Create CSV and JSON files. What

are the benefits you can foresee in usingJSON file in this case? (LO 1.4)

1.8 Take a student grade sheet in a semester examination in a course. Fill the presumed

values for a student. Now create the hash and key-value pairs associated with a hash

in traditional data. (LO 1.5)

1.9 Give details of the features of IBM 115 and Oracle Data Integrator. (LO 1.5)

1.10 Give details of features of integration and application integration solutions:

Microsoft SQL-Server Integration-Services (SSIS), Informatica and Pentaho data•

integration, SAS data-management advanced and SAP® Businessobjects'"

Integration. (LO 1.5)

1.11 What are the analytics phases? Take example of automotive maintenance and

services. How will the results of analytics be used? (LO 1.5)

1.12 How will RDBMS make tables for the sales data of ACVMs? [Refer Example 1.6(i)]

(LO 1.5)

1.13 Write five applications for NoSQL Databases? (LO 1.5)

1.14 Give details of Louis Columbus ten ways using which Big Data analytics is

revolutionizing marketing and sales. [Section 1.7 .1] (LO 1.6)

1.15 Describe five data risks, described by Bernard Marr. [Section 1.7.1.2] (LO 1.6)

1http://www.gartner.com/it-glossary/big-data

2 https:// statswiki.unece.org/ display/bigdata/Classification-of- Types-of-Big-Data

3 https://www.ibm.com/ developerworks/library /bd-archpatternsl/

4 https:// docs.microsoft.com/ en-us/sql/odbc/reference/data-sources

5 https:/I docs.oracle.com/ cd/El7984_0l/ doc.898Ie14695Iundrstnd_ datasources.htm

6

https:/ /www .ibm.com/ support/knowledgecenter / en/SSMPHH_9.5.0Icom.ibm.guardium95.doc/
common_tools/topics/ datasources.html

7 http:/ Idocs.aws.amazon.com/ datapipeline/latest/DeveloperGuide/ dp-object-
copyactivity .html

8 http:/ Idocs.aws.amazon.com/ datapipeline/latest/DeveloperGuide/ dp-object-
snsalarm.html

9 https:// support.rackspace.com/how-to / cloud-database-instance-parameters/

10 https:/ / cloud.google.com/bigquery Idocs/loading-data

11 https://amplab.cs.berkeley.edu/software/

12 https://www.forbes.com/sites/louiscolumbus/2016/05/09/ten-ways-big-data-is•
revolutionizing-marketing-and-sales/#5e90bc21cff3

13 https://www.linkedin.com/pulse/5-biggest-risks-big-data-bernard-marr

http://www.gartner.com/it-glossary/big-data
http://www.ibm.com/
http://www.forbes.com/sites/louiscolumbus/2016/05/09/ten-ways-big-data-is
http://www.linkedin.com/pulse/5-biggest-risks-big-data-bernard-marr

14 https://www.mckinsey.com/industries/pharmaceuticals-and-medical-
products/ our-insights/the-role-of-big-data-in-medicine

Note:

o o • Level 1 & Level 2 category

o • • Level 3 & Level 4 category

• • • Level 5 & Level 6 category

http://www.mckinsey.com/industries/pharmaceuticals-and-medical-
http://www.mckinsey.com/industries/pharmaceuticals-and-medical-

Chapter 2

Introductionto Hadoop

LEARNING OBJECTIVES

After studying this chapter,you will be able to:

LO 2 .1 Get conceptual understanding of Hadoop core, components of Hadoop

ecosystem, and streaming and pipe interfaces for inputs to

MapReduce

LO 2.2 Get understanding of Hadoop Distributed File System (HDFS), and

physical-organiza-tion of nodes for computing at clusters of large•

scale files

LO 2.3 Get knowledge of MapReduce Daemon framework, and MapReduce

programming model

LO 2.4 Get knowledge of functions of Hadoop YARN, management and

scheduling of resources, and parallel processing of the application•

tasks

LO 2.5 LO 2.5 Get introduced to functions of Hadoop ecosystem-tools

RECALL FROM CHAPTER 1

Requirements for Big Data processing and analytics are:

1. Huge volume of data stores

2. Flexible, scalable and distributed storage and computations

3. Distributed data blocks and tasks, and processing at the clusters

4. Mapping of the data at the physical nodes

5. Reducing the complexity of multiple data sources, and sending the

computational results to the applications

6. Developing, deploying, operating and managing in Big Data environment

of an enterprise

7. Integration of solutions into a cohesive solution

8. Uses of large resources of MPPs, cloud, specialized tools and parallel

processing and use of high speed networks [Section 1.5.3].

Big Data store should also manage the variety of data formats. Hadoop is

scalable and parallel computing platform to handle Big Data (Section 1.6.3.1,

Figure 1.8). Hadoop distributed file system design is for storing and analytics

of Big Data. HDFS packages Big Data in a distributed data store along with

processing using a programming model.

This chapter focuses on Hadoop, its ecosystem, HDFS based programming

model, MapReduce, Yarn, and introduces to ecosystem components, such as

AVRO, Zookeeper, Ambari, HBase, Hive, Pig and Mahout.

2.1 ! INTRODUCTION

A programming model is centralized computing of data in which the data is

transferred from multiple distributed data sources to a central server.

Analyzing, reporting, visualizing, business-intelligence tasks compute

centrally. Data are inputs to the central server.

An enterprise collects and analyzes data at the enterprise level. The

computations are at an enterprise server or data warehouse integrated with

the applications (Figure 1.6). An example is computations using Oracle

application integration architecture (Section 1.6.1.7). The computing nodes

need to connect to a central system through high-speed networks.

Assume that a centralized server does the function of collection, storing and

analyzing. For example, at an ACVM Company enterprise server. The data at

the server gets collected from a large number of ACVMs which the company

locates in multiple cities, areas and locations. The server also receives data

from social media (Example 1.6 (i)). Applications running at the server does

the following analysis:

1. Suggests a strategy for filling the machines at minimum cost of logistics

2. Finds locations of high sales such as gardens, playgrounds etc.

3. Finds days or periods of high sales such as Xmas etc.

4. Finds children's preferences for specific chocolate flavors

5. Finds the potential region of future growth

6. Identifies unprofitable machines

7. Identifies need of replicating the number of machines at specific

locations.

Another programming model is distributed computing that uses the

databases at multiple computing nodes with data sharing between the nodes

during computation. Distributed computing in this model requires the

cooperation (sharing) between the DBs in a transparent manner. Transparent

means that each user within the system may access all the data within all

databases as if they were a single database. A second requirement is location

independence. Analysis results should be independent of geographical

locations. The access of one computing node to other nodes may fail due to a

single link failure.

The following example shows why the simply scaling out and division of the

computations on a large number of processors may not work well due to data

sharing between distributed computing nodes.

EXAMPLE 2.1

Consider a jigsaw Puzzle Ravensburger Beneath the Sea (5000 pieces).

Children above 14 years of age will assemble the pieces in order to solve

the puzzle. What will be the effect on time intervals for solution in three

situations, when 4, 100 and 200 children simultaneously attempt the

solution.

SOLUTION

Let the time taken by a single child to solve the puzzle be T. Assume 4

children sit together and solve the puzzle by dividing the tasks. Each child

assembles one-fourth part of the picture for which they pick the pieces

from a common basket (Distributed computing and centralized data

model).

Alternatively, each child assembles one-fourth part of the picture for

which the pieces are distributed in four baskets. The child in case does not

find a piece in his/her basket, then searches for it in another basket

(Distributed databases and distributed computing tasks with data sharing

model).

Partitioning of assembling jobs into four has an issue. A child may

complete his/her part much later than the remaining children. Beneath•

the-sea portion is too complex, while upper-depth-sea portion is just

plain. The children combine all four parts and finally complete the puzzle.

Each one has to look into the other three parts to find a match and

complete the task. Time taken to solve the puzzle is [T/4 + TI (4) + Tc (4)],

where TI (4) is the time taken in seeking from others the pieces not

available to a child during intermediate phases, and Tc (4) in combining

the results of the four children. Scaling factor is slightly less than 4. The

proposed distributed model works well.

Assume a second situation in which 100 children assemble their parts of

50 pieces each, and finally combine all 100 parts and complete the puzzle.

Each child must seek a piece, not available with her /him during the

intermediate phase. Combining also becomes difficult and a time•

consuming exercise compared to the four children case because each child

now matches the results with the remaining 99 counterparts to arrive at

the final solution. The time taken to solve the puzzle is [T/100 + TI (100) +

Tc (100)],

where TI (100) and Tc (100) are the time taken in seeking pieces not

available with the child and combining results of 100 children,

respectively. Scaling is by factor less than 100. The distributed model has

issues like sharing pieces, seeking pieces not available and combining

issues. Issues are at the intermediate as well as at the end stages.

If 200 children attempt to solve the puzzle simultaneously at the same

time then finally combining all 200 portions of the Beneath the Sea, the

integration of 200 portions will be tedious and will be a far more time•

consuming exercise than with 4 or 100. The time taken to solve the puzzle

is [T/200 + TI (200)

+ Tc (200)], where TI (200) and Tc (200) is the time taken in seeking the

pieces not available and combining, respectively. Scaling up is by factor

much less than 200 and may even be less than even 100. The distributed

model with pieces sharing between the children is unsatisfactory because

TI (200) + Tc (200)< T/200.

Problem of inter-children interactions exponentially grows with the

number of children in the proposed distributed model with seeking pieces

in intermediate phases. Time TI becomes significantly high.

Alternatively, the picture parts and corresponding pieces of each part

distribute to each participating child distinctly (Distributed computing

model with no data sharing). Time TI taken in seeking a piece not

available with him/her is zero. The time taken in joining the assembled

picture portions is only at the end. Problem of inter-children interactions

during solving the puzzle does not exist.

Traditionally, a program when executes calls the data inputs. Centralized

computing model requires few communication overheads. Distributed

computing model requires communication overheads for seeking data from a

remote source when not available locally, and arrive at the final result. The

completion of computations will take more and more time when the number

of distributed computing nodes increase.

Distributed pieces of codes as well as the data at the computing nodes

Transparency between data nodes at computing nodes do not fulfil for Big

Data when distributed computing takes place using data sharing between local

and remote. Following are the reasons for this:

• Distributed data storage systems do not use the concept of joins.

• Data need to be fault-tolerant and data stores should take into account

the possibilities of network failure. When data need to be partitioned

into data blocks and written at one set of nodes, then those blocks need

replication at multiple nodes. This takes care of possibilities of network

faults. When a network fault occurs, then replicated node makes the data

available.

• Big Data follows a theorem known as the CAP theorem. The CAP states

that out of three properties (consistency, availability and partitions), two

must at least be present for applications, services and processes.

Recall Table 1.2. Consider distributed computing model which requires no

sharing between data nodes. The model is equivalent to distribution of the

picture's parts and corresponding pieces of each part to each participating

child distinctly. Multiple tasks of an application also distribute, run using

machines associated with multiple data nodes and execute at the same time in

parallel.

The application tasks and datasets needed for computations distribute at a

number of geographic locations and remote servers. The enterprise uses MPPs

or computing clusters when datasets are too large. Application is divided in

number of tasks and sub-tasks. The sub-tasks get inputs from data nodes at the

same cluster. The results of sub-tasks aggregate and communicate to the

application. The aggregate results from each cluster collect using APis at the

application.

(i) Big Data Store Model

A model for Big Data store is as follows:

Data store in file system consisting of data blocks (physical division of data).

The data blocks are distributed across multiple nodes. Data nodes are at the

racks of a cluster. Racks are scalable. A Rack has multiple data nodes (data

servers), and each cluster is arranged in a number of racks.

Data Store model of files in data nodes in racks in the clusters Hadoop

system uses the data store model in which storage is at clusters, racks, data

nodes and data blocks. Data blocks replicate at the DataNodes such that a

failure of link leads to access of the data block from the other nodes replicated

at the same or other racks.

(ii) Big Data Programming Model

Big Data programming model is that application in

which application jobs and tasks (or sub-tasks) is

scheduled on the same servers which store the data

18i g ID ah pirog rarnrni ngi
mod' Ir applica:t:ion jobs

nm1 on the samme sewers
wlrni:oh ston:1 tfuli!' data for

for processing. iprocessillilg. and parallel

runn iWlg of time jobs

Job means running an assignment of a set of

instructions for processing. For example, processing the queries in an

application and sending the result back to the application is a job. Other

example is instructions for sorting the examination performance data is a job.

Job scheduling means assigning a job for processing following a schedule. For

example, scheduling after a processing unit finishes the previously assigned

job, scheduling as per specific sequence or after a specific period.

Hadoop system uses the programming model, where jobs or tasks are

assigned and scheduled on the same servers which hold the data. Hadoop is

one of the widely used technologies. Google and Yahoo use Hadoop. Hadoop

creators created a cost-effective method to build search indexes. Facebook,

Twitter and Linkedln use Hadoop. IBM implemented Biglnsights and uses

licensed Apache Hadoop. Oracle implements Hadoop system with Big Data

Appliance, IBM with Infosphere and Microsoft with Big Data solutions.

Following are important key terms and their meaning.

Cluster Computing refers to computing, storing and analyzing huge amounts

of unstructured or structured data in a distributed computing environment.

Each cluster forms by a set of loosely or tightly connected computing nodes

that work together and many of the operations can be timed (scheduled) and

can be realized as if from a single computing system. Clusters improve the

performance, provide cost-effective and improved node accessibility

compared to a single computing node. Each node of the computational cluster

is set to perform the same task and sub-tasks, such as MapReduce, which

software control and schedule.

Data Flow (DF) refers to flow of data from one node to another. For example,

transfer of output data after processing to input of application.

Data Consistency means all copies of data blocks have the same values.

Data Availability means at least one copy is available in case a partition

becomes inactive or fails. For example, in web applications, a copy in the other

partition is available. Partition means parts, which are active but may not

cooperate as in distributed databases (DBs).

Resources means computing system resources, i.e., the physical or virtual

components or devices, made available for specified or scheduled periods

within the system. Resources refer to sources such as files, network

connections and memory blocks.

Resource management refers to managing resources such as their creation,

deletion and controlled usages. The manager functions also includes managing

the (i) availability for specified or scheduled periods,

(ii) prevention of resource unavailability after a task finishes and (iii)

resources allocation when multiple tasks attempt to use the same set of

resources.

Horizontal scalability means increasing the number of systems working in

coherence. For example, using MPPs or number of servers as per the size of

the dataset. Processing different datasets of a large data store running similar

application deploys the horizontal scalability.

Vertical scalability means scaling up using the giving system resources and

increasing the number of tasks in the system. For example, extending

analytics processing by including the reporting, business processing (BP),

business intelligence (BI), data visualization, knowledge discovery and

machine learning (ML) capabilities which require additional ways to solve

problems of greater complexities and greater processing, storage and inter•

process communication among the resources. Processing different datasets of

a large data store running multiple application tasks deploys vertical scalability.

Ecosystem refers to a system made up of multiple computing components,

which work together. That is similar to a biological ecosystem, a complex

system of living organisms, their physical environment and all their inter•

relationships in a particular unit of space.

Distributed File System means a system of storing files. Files can be for the set

of data records, key-value pairs, hash key-value pairs, relational database or

NoSQL database at the distributed computing nodes, accessible after referring

to their resource-pointer using a master directory service, look-up tables or

name-node server.

Hadoop Distributed File System means a system of storing files (set of data

records, key-value pairs, hash key-value pairs or applications data) at

distributed computing nodes according to Hadoop architecture and

accessibility of data blocks after finding reference to their racks and cluster.

NameNode servers enable referencing to data blocks.

Scalability of storage and processing means the execution using varying number

of servers according to the requirements, i.e., bigger data store on greater

number of servers when required and on smaller data when smaller data used

on limited number of servers. Big Data Analytics require deploying the dusters

using the servers or cloud for computing as per the requirements.

Utility Cloud-based Services mean infrastructure, software and computing

platform services similar to utility services, such as electricity, gas, water etc.

Infrastructure refers to units for data-store, processing and network. The IaaS,

Saas and PaaS are the services at the cloud (Section 1.3.3).

This chapter describes on Hadoop's core components, such as MapReduce,

HDFS and YARN, and Hadoop ecosystem components, such as HBase, Hive, Pig,

and Mahout. Section 2.2 describes Hadoop, its ecosystem components,

streaming and pipe functions. Section 2.3 describes Hadoop physical

architecture, Hadoop distributed file system (HDFS) basics. The section

describes how to organize the nodes for computations using large-scale file

system. Section 2.4 gives a conceptual understanding of MapReduce Daemon

and functioning of Hadoop MapReduce framework.

Section 2.5 describes Hadoop YARN for managing of resources along with

application tasks. Section 2.6 describes the Hadoop ecosystem interactions,

analytics application support with AVRO, Zookeeper, Ambari, HBase, Hive, Pig

and Mahout.

2.2 ! HADOOP AND ITS ECOSYSTEM

Apache initiated the project for developing storage

and processing framework for Big Data storage and

processing. Doug Cutting and Machael J. Cafarelle the

creators named that framework as Hadoop. Cutting's

son was fascinated by a stuffed toy elephant, named

Hadoop, and this is how the name Hadoop was

H,adnop c::ore, COffiJPOllil@iliiltS

of IH.ricfaop ecosystem,
str@~lmiling1 ~liildl pipe
,imrtterfaces rer ilillputs to

ap'R.oouo~

mailto:COffiJPOllil@iliiltS
mailto:COffiJPOllil@iliiltS
mailto:str@~lmiling1

derived.

The project consisted of two components, one of them is for data store in

blocks in the clusters and the other is computations at each individual cluster

in parallel with another.

Hadoop components are written in Java with part of native code in C. The

command line utilities are written in shell scripts.

Hadoop is a computing environment in which input data stores, processes

and stores the results. The environment consists of clusters which distribute

at the cloud or set of servers. Each cluster consists of a string of data files

constituting data blocks. The toy named Hadoop consisted of a stuffed

elephant. The Hadoop system cluster stuffs files in data blocks. The complete

system consists of a scalable distributed set of clusters.

Infrastructure consists of cloud for clusters. A cluster consists of sets of

computers or PCs. The Hadoop platform provides a low cost Big Data platform,

which is open source and uses cloud services. Tera Bytes of data processing

takes just few minutes. Hadoop enables distributed processing of large

datasets (above 10 million bytes) across clusters of computers using a

programming model called MapReduce. The system characteristics are

scalable, self-manageable, self-healing and distributed file system.

Scalable means can be scaled up (enhanced) by adding storage and

processing units as per the requirements. Self-manageable means creation of

storage and processing resources which are used, scheduled and reduced or

increased with the help of the system itself. Self-healing means that in case of

faults, they are taken care of by the system itself. Self-healing enables

functioning and resources availability. Software detect and handle failures at

the task level. Software enable the service or task execution even in case of

communication or node failure.

The hardware scales up from a single server to thousands of machines that

store the clusters. Each cluster stores a large number of data blocks in racks.

Default data block size is 64 MB. IBM Biglnsights, built on Hadoop deploys

default 128 MB block size. Hadoop framework provides the computing features

of a system of distributed, flexible, scalable, fault tolerant computing with

high computing power. Hadoop system is an efficient platform for the

distributed storage and processing of a large amount of data.

Hadoop enables Big Data storage and cluster computing. The Hadoop system

manages both, large-sized structured and unstructured data in different

formats, such as XML, JSON and text with efficiency and effectiveness. The

Hadoop system performs better with clusters of many servers when the focus

is on horizontal scalability. The system provides faster results from Big Data

and from unstructured data as well.

Yahoo has more than 100000 CPUs in over 40000 servers running Hadoop,

with its biggest Hadoop cluster running 4500 nodes as of March 2017,

according to the Apache Hadoop website. Facebook has 2 major clusters: a

cluster has 1100-machines with 8800 cores and about 12 PB raw storage. A 300-

machine cluster with 2400 cores and about 3 PB (1 PB = 1015 B, nearly 250 B)

raw-storage. Each (commodity) node has 8 cores and 12 TB (1 TB= 1012, nearly

240 B = 1024 GB) of storage.

2.2.1 Hadoop Core Components

Figure 2.1 shows the core components of the Apache Software Foundation's

Hadoop framework.

Figure 2.1 Core components ofHadoop

The Hadoop core components of the framework are:

1. Hadoop Common - The common module contains the libraries and

utilities that are required by the other modules of Hadoop. For example,

Hadoop common provides various components and interfaces for

distributed file system and general input/ output. This includes

serialization, Java RPC (Remote Procedure Call) and file-based data

structures.

2. Hadoop Distributed File System (HDFS) - A Java-based distributed file

system which can store all kinds of data on the disks at the clusters.

3. MapReduce vl - Software programming model in Hadoop 1 using

Mapper and Reducer. The vl processes large sets of data in parallel and

in batches.

4. YARN - Software for managing resources for computing. The user

application tasks or sub-tasks run in parallel at the Hadoop, uses

scheduling and handles the requests for the resources in distributed

running of the tasks.

5. MapReduce v2 - Hadoop 2 YARN-basedsystem for parallel processing of

large datasets and distributed processing of the application tasks.

2.2.1.1 Spark

Spark is an open-source cluster-computing framework of Apache Software

Foundation. Hadoop deploys data at the disks. Spark provisions for in-memory

analytics. Therefore, it also enables OLAP and real-time processing. Spark does

faster processing of Big Data.

Spark has been adopted by large organizations, such as Amazon, eBay and

Yahoo. Several organizations run Spark on clusters with thousands of nodes.

Spark is now increasingly becoming popular. Chapters 5 to 9 will describe

Spark and its components in detail.

2.2.2 Features of Hadoop

Hadoop features are as follows:

1. Fault-efficient scalable, fiexible and modular design which uses simple and

modular programming model. The system provides servers at high

scalability. The system is scalable by adding new nodes to handle larger

data. Hadoop proves very helpful in storing, managing, processing and

analyzing Big Data. Modular functions make the system flexible. One can

add or replace components at ease. Modularity allows replacing its

components for a different software tool.

2. Robust design of HDFS: Execution of Big Data applications continue even

when an individual server or cluster fails. This is because of Hadoop

provisions for backup (due to replications at least three times for each

data block) and a data recovery mechanism. HDFS thus has high

reliability.

3. Store and process Big Data: Processes Big Data of 3V characteristics.

4. Distributed clusters computing model with data locality: Processes Big Data at

high speed as the application tasks and sub-tasks submit to the

DataNodes. One can achieve more computing power by increasing the

number of computing nodes. The processing splits across multiple

DataNodes (servers), and thus fast processing and aggregated results.

5. Hardware fault-tolerant: A fault does not affect data and application

processing. If a node goes down, the other nodes take care of the residue.

This is due to multiple copies of all data blocks which replicate

automatically. Default is three copies of data blocks.

6. Open-source framework: Open source access and cloud services enable

large data store. Hadoop uses a cluster of multiple inexpensive servers or

the cloud.

7. Java and Linux based: Hadoop uses Java interfaces. Hadoop base is Linux

but has its own set of shell commands support.

Hadoop provides various components and interfaces for distributed file

system and general input/ output. This includes serialization, Java RPC

(Remote Procedure Call) and file-based data structures in Java.

HDFS is basically designed more for batch processing. Streaming uses

standard input and output to communicate with the Mapper and Reduce

codes. Stream analytics and real-time processing poses difficulties when

streams have high throughput of data. The data access is required faster than

the latency at DataNode at HDFS.

YARN provides a platform for many different modes of data processing, from

traditional batch processing to processing of the applications such as

interactive queries, text analytics and streaming analysis.

These different types of data can be moved in HDFS for analysis using

interactive query processing tools of Hadoop ecosystem components, such as

Hive or can be provided to online business processes with the help of Apache

HBase.

2.2.3 Hadoop Ecosystem Components

Hadoop ecosystem refers to a combination of IHl.ldoop ernsystI!Jllil: AViRD,

Zooiee]:>@r, ~ig, IHi:oJe.

technologies. Hadoop ecosystem consists of own 5-qoop. rnbarii. · ahmirt
5'pafk. HlJ11k a nd f1h.urme

family of applications which tie up together with the

Hadoop. The system components support the storage,

processing, access, analysis, governance, security and operations for Big Data.

The system enables the applications which run Big Data and deploy HDFS.

The data store system consists of clusters, racks, DataNodes and blocks.

Hadoop deploys application programming model, such as MapReduce and

HBase.YARN manages resources and schedules sub-tasks of the application.

HBase uses columnar databases and does OLAP. Figure 2.2 shows Hadoop

core components HDFS, MapReduce and YARN along with the ecosystem.

Figure 2.2 also shows Hadoop ecosystem. The system includes the application

support layer and application layer components- AVRO, ZooKeeper, Pig, Hive,

Sqoop, Ambari, Chukwa, Mahout, Spark, Flink and Flume. The figure also

shows the components and their usages.

mailto:@r

nd

or

Se lalilan,t on

For distributed•

scalable library and

Ml applicatioos.

Far C.Oordination

among

Component:s

Zoo Keeper-

Figure2.2 Hadoop main components and ecosystem components

The four layers in Figure 2.2 are as follows:

(i) Distributed storage layer

(ii) Resource-manager layer for job or application sub-tasks scheduling and

execution

(iii} Processing-framework layer, consisting of Mapper and Reducer for the

MapReduce process-flow

(iv) APis at application support layer (applications such as Hive and Pig).

The codes communicate and run using MapReduce or YARN at

processing framework layer. Reducer output communicate to APis

(Figure 2.2).

AVRO enables data serialization between the layers. Zookeeper enables

coordination among layer components.

The holistic view of Hadoop architecture provides an idea of implementation

of Hadoop components of the ecosystem. Client hosts run applications using

Hadoop ecosystem projects, such as Pig, Hive and Mahout.

Most commonly, Hadoop uses Java programming. Such Hadoop programs

run on any platform with the Java virtual-machine deployment model. HDFS is

a Java-based distributed file system that can store various kinds of data on the

computers.

2.2.4 Hadoop Streaming

HDFS with MapReduce and YARN-basedsystem enables parallel processing of

large datasets. Spark provides in-memory processing of data, thus improving

the processing speed. Spark and Flink technologies enable in-stream

processing. The two lead stream processing systems and are more useful for

processing a large volume of data. Spark includes security features. Flink is

emerging as a powerful tool. Flink improves the overall performance as it

provides single run-time for streaming as well as batch processing. Simple and

flexible architecture of Flink is suitable for streaming data.

2.2.5 Hadoop Pipes

Hadoop Pipes are the C++ Pipes which interface with MapReduce. Java native

interfaces are not used in pipes. Apache Hadoop provides an adapter layer,

which processes in pipes. A pipe means data streaming into the system at

Mapper input and aggregated results flowing out at outputs. The adapter layer

enables running of application tasks in C++ coded MapReduce programs.

Applications which require faster numerical computations can achieve higher

throughput using C++ when used through the pipes, as compared to Java.

Pipes do not use the standard I/0 when communicating with Mapper and

Reducer codes. Cloudera distribution including Hadoop (CDH) version CDH

5.0.2 runs the pipes. Distribution means software downloadable from the

website distributing the codes. IBM PowerLinux systems enable working with

Hadoop pipes and system libraries.

Self-Assessment Exercise linked to LO 2.1

1. How are core Hadoop components used for Big Data analytics?

2. Explain the meaning of distributed computing model with data

locality?

3. Why are the Hadoop system and ecosystem components shown in the

four layers? Explain by an example.

5. Differentiate between MapReduce vl and MapReduce v2.

2.3 ! HADOOP DISTRIBUTED FILE SYSTEM

Big Data analytics applications are software

applications that leverage large-scale data. The

applications analyze Big Data using massive parallel

processing frameworks. HDFS is a core component of

Hadoop. HDFS is designed to run on a cluster of

computers and servers at cloud-based utility services.

Hadoop DistrribllJJtr.ed

Fine S . stem (H[[)FS';. ~nnol
p:hy:;irnl-o.n]a niz.ati-o n of

node.sfur rnlillputiilmg atr

cl u strers of la rge-m:1le 1ii les

HDFS stores Big Data which may range from GBs (1 GB= 230 B) to PBs (1 PB=

1015 B,

nearly the 250 B). HDFS stores the data in a distributed manner in order to

compute fast. The distributed data store in HDFS stores data in any format

regardless of schema. HDFS provides high throughput access to data-centric

applications that require large-scale data processing workloads.

2.3.1 HDFS Data Storage

Hadoop data store concept implies storing the data at a number of clusters.

Each cluster has a number of data stores, called racks. Each rack stores a

number of DataNodes. Each DataNode has a large number of data blocks. The

racks distribute across a cluster. The nodes have processing and storage

capabilities. The nodes have the data in data blocks to run the application

tasks. The data blocks replicate by default at least on three DataNodes in same or

remote nodes. Data at the stores enable running the distributed applications

including analytics, data mining, OLAP using the clusters. A file, containing the

data divides into data blocks. A data block default size is 64 MBs (HDFS division of

files concept is similar to Linux or virtual memory page in Intel x86 and

Pentium processors where the block size is fixed and is of 4 KB).

Hadoop HDFS features are as follows:

(i) Create, append, delete, rename and attribute modification functions

(ii) Content of individual file cannot be modified or replaced but appended

with new data at the

end of the file

(iii) Write once but read many times during usages and processing

(iv) Average file size can be more than 500 MB.

The following is an example how the files store at a Hadoop cluster.

EXAMPLE 2.2

Consider a data storage for University students. Each student data, stuData

which is in a file of size less than 64 MB (1 MB= 220B). A data block stores

the full file data for a student of stuData_idN, where

N = 1 to 500.

(i) How the files of each student will be distributed at a Hadoop cluster?

How many student data can be stored at one cluster? Assume that

each rack has two DataNodes for processing each of 64 GB

(1 GB= 230B) memory. Assume that cluster consists of 120 racks, and

thus 240 DataNodes.

(ii) What is the total memory capacity of the cluster in TB ((1 TB= 240B)

and DataNodes in each rack?

(iii) Show the distributed blocks for students with ID= 96 and 1025.

Assume default replication in the DataNodes = 3.

(iv) What shall be the changes when a stuData file size s 128 MB?

SOLUTION

(i) Data block default size is 64 MB. Each students file size is less than

64MB. Therefore, for each student file one data block suffices. A data

block is in a DataNode. Assume, for simplicity, each rack has two

nodes each of memory capacity = 64 GB. Each node can thus store 64

GB/64MB= 1024 data blocks= 1024 student files. Each rack can thus

store 2 x 64 GB/64MB= 2048 data blocks = 2048 student files. Each

/ .

data block default replicates three times in the DataNodes. Therefore,

the number of students whose data can be stored in the cluster =

number of racks multiplied by number of files divided by 3 = 120 x

2048/3 = 81920. Therefore, the maximum number of 81920

stuData_IDNfiles can be distributed per cluster, with N = 1 to 81920.

(ii) Total memory capacity of the cluster = 120 x 128 MB = 15360 GB = 15

TB. Total memory capacity of each DataNode in each rack= 1024 x 64

MB= 64 GB.

(iii) Figure 2.3 shows a Hadoop cluster example, and the replication of

data blocks in racks for two students of IDs 96 and 1025. Each stuData

file stores at two data blocks, of capacity 64 MB each.

(iv) Changes will be that each node will have half the number of data

blocks.

I I
I I
I I
L - - - - -;r, ----------'

./_/' i ,,,
'

Dai.i'No. e 1

I el~k96 I

· ataNode 2

~ I J~~ I
rne Stud :1025

Data ooea DataNo e239

Rick 1 Ric:kl Ftac.k 110

Figure 2.3 A Hadoop cluster example, and the replication of data

blocks in racks for two students of IDs 96 and 1025

2.3.1.1 Hadoop Physical Organization

ld~ntiiiic~ion ,of data-

The conventional file system uses directories. A lb'lo(Jks,Oat.aNodes and

directory consists of folders. A folder consists of files. IR'3d:sus1111g · asit@ll'N@s.
.:ind Namef,,iodes ffm preca•

When data processes, the data sources identify by s.s11111g flile eta.ta at slalfle inode5

pointers for the resources. A data-dictionary stores

the resource pointers. Master tables at the dictionary store at a central

location. (Section 1.5.1 for the details). The centrally stored tables enable

administration easier when the data sources change during processing.

Similarly, the files, DataNodes and blocks need the identification during

processing at HDFS. HDFS use the NameNodes and DataNodes. A NameNode

stores the file's meta data. Meta data gives information about the file of user

application, but does not participate in the computations. The DataNode stores

the actual data files in the data blocks.

Few nodes in a Hadoop cluster act as NameNodes. These nodes are termed as

MasterNodes or simply masters. The masters have a different configuration

supporting high DRAM and processing power. The masters have much less

local storage. Majority of the nodes in Hadoop cluster act as DataNodes and

TaskTrackers. These nodes are referred to as slave nodes or slaves. The slaves

have lots of disk storage and moderate amounts of processing capabilities and

DRAM. Slaves are responsible to store the data and process the computation

tasks submitted by the clients.

Figure 2.4 shows the client, master NameNode, primary and secondary

MasterNodes and slave nodes in the Hadoop physical architecture.

mailto:N@s

Second

1B lraoker I I l ~'2.- I !-I Task 1l ~ker -[

Data Node I 11 ID~ NMe I !I Oata !Nooe !I

M~ i 1Peduce ~ ~ ~- 11 Red~e I ~ I Red~~ I

Second

IM1as-ter

Figure 2.4 The client, master NameNode, MasterNodes and slave

nodes

Clients as the users run the application with the help of Hadoop ecosystem

projects. For example, Hive, Mahout and Pig are the ecosystem's projects. They

are not required to be present at the Hadoop cluster. A single MasterNode

provides HDFS, MapReduce and Hbase using threads in small to medium sized

clusters. When the cluster size is large, multiple servers are used, such as to

balance the load. The secondary NameNode provides NameNode management

services and Zookeeper is used by HBase for metadata storage.

The MasterNode fundamentally plays the role of a coordinator. The

MasterNode receives client connections, maintains the description of the global

file system namespace, and the allocation of file blocks. It also monitors the

state of the system in order to detect any failure. The Masters consists of three

components NameNode, Secondary NameNode and JobTracker. The NameNode

stores all the file system related information such as:

• The file section is stored in which part of the cluster

• Last access time for the files

• User permissions like which user has access to the file.

Secondary NameNode is an alternate for NameNode. Secondary node keeps a

copy of NameNode meta data. Thus, stored meta data can be rebuilt easily, in

case of NameNode failure. The JobTracker coordinates the parallel processing of

data.

Masters and slaves, and Hadoop client (node) load the data into cluster, submit

the processing job and then retrieve the data to see the response after the job

completion.

2.3.1.2 Hadoop 2

Single NameNode failure in Hadoop 1 is an operational limitation. Scaling up

was also restricted to scale beyond a few thousands of DataNodes and few

number of clusters. Hadoop 2 provides the multiple NameNodes. This enables

higher resource availability. Each MN has the following components:

An associated NameNode

Zookeeper coordination client (an associated NameNode), functions as a

centralized repository for distributed applications. Zookeeper uses

synchronization, serialization and coordination activities. It enables

functioning of a distributed system as a single function.

Associated JournalNode ON). The JN keeps the records of the state,

resources assigned, and intermediate results or execution of application

tasks. Distributed applications can write and read data from a JN.

The system takes care of failure issues as follows:

One set of resources is in active state. The other one remains in standby state.

Two masters, one MNl is in active state and other MN2 is in secondary state.

That ensures the availability in case of network fault of an active NameNode

NMl. The Hadoop system then activates the secondary NameNode NM2 and

creates a secondary in another MasterNode MN3 unused earlier. The entries

copy from JNl in MNl into the JN2, which is at newly active MasterNode MN2.

Therefore, the application runs uninterrupted and resources are available

uninterrupted.

2.3.2 HDFS Commands

Figure 2.1 showed Hadoop common module, which contains the libraries and

utilities. They are common to other modules of Hadoop. The HDFS shell is not

compliant with the POSIX. Thus, the shell cannot interact similar to Unix or

Linux. Commands for interacting with the files in HDFS require /bin/hdfs dfs

<args>, where args stands for the command arguments. Full set of the Hadoop

shell commands can be found at Apache Software Foundation website. -

copyToLocal is the command for copying a file at HDFS to the local. -cat is

command for copying to standard output (stdout). All Hadoop commands are

invoked by the bin/Hadoop script. % Hadoop fsck I -files -blocks

Table 2.1 gives the examples of command usages.

Table 2.1 Examples of usages of commands

HDFS shell

command

Example of usage

-mkdir

Assume stu_filesdir is a directory of student files in Example 2.2. Then

command for creating the

directory is $Hadoop hdfs-mkdir/user/stu_filesdir creates the

directory named stu_files_dir

-put

Assume file stuData_id96 to be copied at stu_filesdir directory in Example

2.2. Then $Hadoop hdfs-put stuData_id96 /user/ stu filesdir

copies file for student of id96 into stu_filesdir directory

-ls

Assume all files to be listed. Then $hdfs hdfs dfs-ls command does

provide the listing.

-cp

Assume stuData_id96 to be copied from stu_filesdir to new students'

directory newstu_filesDir. Then $Hadoop hdf s-cp stuData _ id96

/user/stu_filesdir newstu_filesDir copies file for student of ID 96

into stu_filesdir directory

Self-Assessment Exercise linked to LO 2.2

1. (i) What does the create, append, delete, rename and attribute modification

methods mean in the HDFS? (ii) Why is the content of an individual file not

modified or replaced but appended at the end of the file? (iii) Why is the

write once but read many times concept used in HDFS?

2. What are the functions of NameNode, DataNode, slave node and

Fr

Master Node?

3. What are the benefits of multiple MasterNodes?

4. What are the usages of meta data?

5. Make a data-store model using HDFS for SGPs, SGPAs and CGPAs of each

student. Assume 50 UG and 10 PG courses offered at the university.

Total intake capacity is 5000 each year. Each student information can

extend up to 64 MB. How will the files of 5000 students be stored using

HDFS? What shall be the minimum memory requirements in 20 years?

(SGP means subject grade point awarded to a student, SGPA semester

grade point average, and CGPA cumulative grade-point average.)

2.4 l MAPREDUCE FRAMEWORK AND PROGRAMMING MODEL

Figure 2.4 showed MapReduce functions as integral

part of the Hadoop physical organization. MapReduce

is a programming model for distributed computing.

Mapper means software for doing the assigned task

after organizing the data blocks imported using the

.ripHeducs 1Daem11Dliil

I amei wrk a1IT1d
ap Reduce P'rro.g raml!ilili ng

mode'I for pairal lel
iprocessirmg wry liarge data

keys. A key specifies in a command line of Mapper. The command maps the key

to the data, which an application uses.

Reducer means software for reducing the mapped data by using the

aggregation, query or user-specified function. The reducer provides a concise

cohesive response for the application.

Aggregation function means the function that groups the values of multiple

rows together to result a single value of more significant meaning or

measurement. For example, function such as count, sum, maximum, minimum,

deviation and standard deviation.

Querying function means a function that finds the desired values. For example,

function for finding a best student of a class who has shown the best

performance in examination.

MapReduce allows writing applications to process reliably the huge amounts

of data, in parallel, on large clusters of servers. The cluster size does not limit as

such to process in parallel. The parallel programs of MapReduce are useful for

performing large scale data analysis using multiple machines in the cluster.

Features of MapReduce framework are as follows:

1. Provides automatic parallelization and distribution of computation based

on several processors

2. Processes data stored on distributed clusters of DataNodes and racks

3. Allows processing large amount of data in parallel

4. Provides scalability for usages of large number of servers

5. Provides MapReduce batch-oriented programming model in Hadoop

version 1

6. Provides additional processing modes in Hadoop 2 YARN-basedsystem and

enables required parallel processing. For example, for queries, graph

databases, streaming data, messages, real-time OLAP and ad hoc analytics

with Big Data 3V characteristics.

The following subsection describes Hadoop execution model using MapReduce

Framework.

2.4.1 Hadoop MapReduce Framework

MapReduce provides two important functions. The distribution of job based on

client application task or users query to various nodes within a cluster is one

function. The second function is organizing and reducing the results from each

node into a cohesive response to the application or answer to the query.

The processing tasks are submitted to the Hadoop. The Hadoop framework in

turns manages the task of issuing jobs, job completion, and copying data around

the cluster between the DataNodes with the help of JobTracker (Figure 2.4).

Daemon refers to a highly dedicated program that runs in the background in a

system. The user does not control or interact with that. An example is

MapReduce in Hadoop system [Collins English language dictionary gives one of

Daemon meaning as 'a person who concentrates very hard or is very skilled at

an activity and puts in lot of energy into it'].

MapReduce runs as per assigned Job by JobTracker, which keeps track of the

job submitted for execution and runs TaskTracker for tracking the tasks.

MapReduce programming enables job scheduling and task execution as follows:

A client node submits a request of an application to the JobTracker. A

JobTracker is a Hadoop daemon (background program). The following are the

steps on the request to MapReduce: (i) estimate the need of resources for

processing that request, (ii) analyze the states of the slave nodes, (iii) place the

mapping tasks in queue, (iv) monitor the progress of task, and on the failure,

restart the task on slots of time available. The job execution is controlled by two

types of processes in MapReduce:

1. The Mapper deploys map tasks on the slots. Map tasks assign to those

nodes where the data for the application is stored. The Reducer output

transfers to the client node after the data serialization using AVRO.

2. The Hadoop system sends the Map and Reduce jobs to the appropriate

servers in the cluster. The Hadoop framework in turns manages the task of

issuing jobs, job completion and copying data around the cluster between

the slave nodes. Finally, the cluster collects and reduces the data to obtain

the result and sends it back to the Hadoop server after completion of the

given tasks.

The job execution is controlled by two types of processes in MapReduce. A

single master process called JobTracker is one. This process coordinates all jobs

running on the cluster and assigns map and reduce tasks to run on the

TaskTrackers. The second is a number of subordinate processes

called TaskTrackers. These processes run assigned tasks and periodically report

the progress to the JobTracker.

Figure 2.4 showed the job execution model of MapReduce. Here the JobTracker

schedules jobs submitted by clients, keeps track of TaskTrackers and maintains

the available Map and Reduce slots. The JobTracker also monitors the execution

of jobs and tasks on the cluster. The TaskTracker executes the Map and Reduce

tasks, and reports to the JobTracker.

2.4.2 MapReduce ProgrammingModel

MapReduce program can be written in any language including JAVA, C++ PIPEs

or Python. Map function of MapReduce program do mapping to compute the

data and convert the data into other data sets (distributed in HDFS). After the

Mapper computations finish, the Reducer function collects the result of map and

generates the final output result. MapReduce program can be applied to any

type of data, i.e., structured or unstructured stored in HDFS.

The input data is in the form of file or directory and is stored in the HDFS. The

MapReduce program performs two jobs on this input data, the Map job and the

Reduce job. They are also termed as two phases- Map phase and Reduce phase.

The map job takes a set of data and converts it into another set of data. The

individual elements are broken down into tuples (key/value pairs) in the

resultant set of data. The reduce job takes the output from a map as input and

combines the data tuples into a smaller set of tuples. Map and reduce jobs run in

isolation from one another. As the sequence of the name MapReduce implies,

the reduce job is always performed after the map job.

The MapReduce v2 uses YARN based resource

scheduling which simplifies the software development.

Here, the jobs can be split across almost any number of

servers. For example, the ACVM Company can find the

· 1apReclm::e a ndl Yl!:FIN
bassd remur(e! soherh.1!11 irrng1

splits thejolos r nto su btasks
wliilicliii nm across m.rnmber of
SE!l'V~l"5 in parall 1:!11..

number of chocolates KitKat, Milk, Fruit and Nuts, Nougat and Oreo sold every

hour at the number of ACVMs installed all over in the multiple cities on separate

servers [Refer Example 1.6(i)]. A server maps the keys for KitKat and another for

Oreo. It requires time to scan the hourly sales log sequentially. By contrast,

MapReduce programmer can split the application task among multiple sub•

tasks, say one hundred sub-tasks, where each sub-task processes the data of the

selected set of ACVMs. The results of all the sub-tasks then aggregate to get the

final result, hourly sales figures of each chocolate flavor from all ACVMs of the

company. Finally, the aggregated hourly results appear from the hourly log of

transactions filed at Hadoop DataNodes. The company enterprise server runs

analytics and applications consider the results as if from a single server

application. The following example shows the usage of HDFS and the map and

reduce functions.

EXAMPLE 2.3

Consider Example 1.6(i) of ACVMs selling KitKat, Milk, Fruit and Nuts,

Nougat and Oreo chocolates. Assume 24 files are created every hour for each

day. The files are at file_l, file_2, , file_24. Each file stores as key-value

pairs as hourly sales log at the large number of machines.

(i) How will the large number of machines, say 5000 ACVMs hourly data

for each flavor sales log store using HDFS? What will be the strategy to

restrict the data size in HDFS?

(ii) How will the sample of data collected in a file for 0-1,1-2, ... 12-13,13-14,

15-16, up to 23-24 specific hour-sales log for sales at a large number of

machines, say 5000?

(iii) What will be the output streams of map tasks for feeding the input

streams to the Reducer?

(iv) What will be the Reducer outputs?

SOLUTION

5000 machines send sales data every hour for KitKat, Milk, Fruit and Nuts,

Nougat and Oreo chocolates, i.e., a total of 5 flavors. Assume each sales data

size= 64 B, then data bytes 64 x 5 x 5000 B = 1600000B

will accumulate (append) each hour in a file.

Sales data are date-time stamped key-value pairs. Each of 24 hour hourly

log files will use initially 24 data blocks at a DataNode and replicated at

three DataNodes. A data file in one year will accumulate 1600000x 24 x 365 B

= 14016000000B = nearly 16 GB. Each data block can store 64 MB. Therefore,

16 GB/64 MB= 250 data blocks in each file each year.

However, hourly and daily sales analytics is required only for managing

supply chain for chocolate fill service and finding insight into sales during

holidays and festival days compared to other days. Therefore, a strategy can

be designed to replace the hourly sales data each month and create new

files for monthly sales data.

A file sample-data of key-value pairs for hour-sales log in file_16 for sales

during 15:00-16:00will be as follows:

ACVM_idlOKitKat, 23

ACVM_id2206Milk, 31

ACVM_id20reo, 36

ACVM_idlOFruitNuts, 18

ACVM_id16Nougat, 8

ACVM id1224KitKat, 48

ACVM_id4837Nougat, 28

Map tasks will map the input streams of key values at files, file_l, file_2, ...

.. file_23, file_24 every hour. The resulting 5000 key value pairs maps each

hour with keys for ACVM_idNKitKats(N = 1 to 5000). The output stream

from Mapper will be as follows:

(ACVM_idlOKitKat, 0), (ACVM_id1224KitKat, 3), .. , .. ,

... , ... , .. , .. , ... , , , ... , .. , .. , ...

Hourly 5 output streams of mapped tasks for all chocolates of all 5000

machines will be input to the reduce task.

The Reducer processes each hour using 5 input streams, sums all

machines sales and generates one output (ACVMs_KitKat, 109624),

(ACVMs_Milk, 128324), (ACVMs_FruitNuts, 9835), (ACVMs_Nougat,

2074903), and (ACVMs_Oreo,305163). The reduced output serializes and is

input to the analytics applications each hour.

Chapter 4 describes MapReduce programming in detail.

Self-Assessment Exercise linked to LO 2.3

1. Why is mapping required when processing the stored data at HDFS?

2. How do Jobracker and TaskTracker function?

3. How does MapReducer along with the YARN resources manager enable

faster processing of an application?

4. Consider HDFS DataNodes in a cluster. Draw a diagram depicting 10

data nodes storing the data of 4 groups of students. Using the diagram,

show the execution of MapReduce sub-tasks for each group in parallel

on the DataNodes in a cluster.

2.5 ! HADOOP YARN

YARN is a resource management platform. It manages

computer resources. The platform is responsible for

providing the computational resources, such as CPUs,

memory, network 1/0 which are needed when an

application executes. An application task has a number

of sub-tasks. YARN manages the schedules for running

IHadoop 'tt'ARN for
management a1rruj
sGheclu Ii ng of rresol.!Jlrces
foq::iarallel rrunni11T1g1 of
a ppli c:a;th1n ta sJ{s

of the sub-tasks. Each sub-task uses the resources in allotted time intervals.

YARN separates the resource management and processing components. YARN

stands for Yet Another Resource Negotiator. An application consists of a number

of tasks. Each task can consist of a number of sub-tasks (threads), which run in

parallel at the nodes in the cluster. YARN enables running of multi-threaded

applications. YARN manages and allocates the resources for the application sub•

tasks and submits the resources for them at the Hadoop system.

2.5.1 Hadoop 2 Execution Model

Figure 2.5 shows the YARN-basedexecution model. The figure shows the YARN

components-Client, Resource Manager (RM), Node Manager (NM), Application

Master (AM) and Containers.

Figure 2.5 also illustrates YARN components namely, Client, Resource Manager

(RM), Node Manager (RM), Application Master (AM) and Containers.

List of actions of YARN resource allocation and scheduling functions is as

follows:

• A MasterNode has two components: (i) Job History Server and (ii) Resource

Manager(RM).

• A Client Node submits the request of an application to the RM. The RM is

the master. One RM exists per cluster. The RM keeps information of all the

. - -- - • - ·--

1Reso1J rc,e

,oj{ - - -
 tiode I na~r

I · al"l~ge:r ·

slave NMs. Information is about the location (Rack Awareness) and the

number of resources (data blocks and servers) they have. The RM also

renders the Resource Scheduler service that decides how to assign the

resources. It, therefore, performs resource management as well as

scheduling.

• Multiple NMs are at a cluster. An NM creates an AM instance (AMI) and

starts up. The AMI initializes itself and registers with the RM. Multiple

AMis can be created in an AM.

• The AMI performs role of an Application Manager (ApplM),that estimates

the resources requirement for running an application program or sub•

task. The ApplMs send their requests for the necessary resources to the

RM. Each NM includes several containers for uses by the subtasks of the

application.

• NM is a slave of the infrastructure. It signals whenever it initializes. All

active NMs send the controlling signal periodically to the RM signaling

their presence.

J 1Node Manager

dient

Gil n,t

-· - -- - -- - -- - -- - -- - .• J

- - -1

r:. ~S~itJ~

1· IP !RedU.«! Statu:s

1Res · roe 1Request

------)-c

-·--··---~

Figure 2.5 YARN-basedexecution model

• Each NM assigns a container(s) for each AMI. The container(s) assigned at

an instance may be at same NM or another NM. ApplM uses just a fraction

of the resources available. The ApplM at an instance uses the assigned

container(s) for running the application sub-task.

• RM allots the resources to AM, and thus to ApplMs for using assigned

containers on the same or other NM for running the application subtasks

in parallel.

Self-Assessment Exercise linked to LO 2.4

1. What are the resources required for running an application? How they

are allocated?

2. List the functions of YARN.

3. Explain using Example 2.3, how the Application Master coordinates the

execution of all tasks submitted for an application and requests for

appropriate resource containers to executethe task.

4. List the functions of Client, Resource Manager, Node Manager,

Application Master and Containers

2.6 l HADOOP ECOSYSTEM TOOLS

A simple framework of Hadoop enabled development

of a number of open-source projects has quickly

emerged (Figure 2.2). They solve very specific problems

related to distributed storage and processing model.

Table 2.2 gives the functionalities of the ecosystem

tools and components.

IHadbop 'ffARN for
managemem alilld
sGheGtu Ii ng of rresol.!Jlrces
forparallel rrunnillllgr Oli'
a p!Jli c.a,ti on tai5ks

Table 2.2 Functionalities of the ecosystem tools and components

Ecosystem

Tool Functionalities

ZooKeeper -

Coordination

service

Provisions high-performance coordination service for distributed

running of applications and tasks (Sections 2.3.1.2 and 2.6.1.1)

Avro-Data

serialization

and transfer

utility

Provisions data serialization during data transfer between application

and processing layers (Figure 2.2 and Section 2.4.1)

Oozie

Provides a way to package and bundles multiple coordinator and

workflow jobs and manage the lifecycle of those jobs (Section 2.6.1.2)

Sqoop

(SQL-to-

Hadoop)-A

data-transfer

software

Provisions for data-transfer between data stores such as relational DBs

and Hadoop (Section 2.6.1.3)

Flume - Large

data transfer

utility

Provisions for reliable data transfer and provides for recovery in case of

failure. Transfers large amount of data in applications, such as related to

social-media messages (Section 2.6.1.4)

Ambari-A

web-based tool

Provisions, monitors, manages, and viewing of functioning of the

cluster, MapReduce, Hive and Pig APis (Section 2.6.2)

Chukwa-A

data collection

system

Provisions and manages data collection system for large and distributed

systems

HBase -A

structured

data store

using database

Provisions a scalable and structured database for large tables (Section

2.6.3)

Cassandra - A

database

Provisions scalable and fault-tolerant database for multiple masters

(Section 3.7)

Hive -A data

warehouse

system

Provisions data aggregation, data-summarization, data warehouse

infrastructure, ad hoc (unstructured) querying and SQL-like scripting

language for query processing using HiveQL (Sections 2.6.4, 4.4 and 4.5)

Pig-A high-

level dataflow

Provisions dataflow (DF) functionality and the execution framework for

language parallel computations (Sections 2.6.5 and 4.6)

Mahout-A

machine

learning

software

Provisions scalable machine learning and library functions for data

mining and analytics (Sections 2.6.6 and 6.9)

The following subsections describe the Hadoop Ecosystem tools.

2.6.1 Hadoop Ecosystem

Consider ZooKeeper, Oozie, Sqoop and Flume.

2.6.1.1 Zookeeper

Designing of a distributed system requires designing and developing the

coordination services. Apache Zookeeper is a coordination service that enables

synchronization across a cluster in distributed applications (Figure 2.2). The

coordination service manages the jobs in the cluster. Since multiple machines

are involved, the race condition and deadlock are common problems when

running a distributed application.

Zookeeper in Hadoop behaves as a centralized repository where distributed

applications can write data at a node called JournalNode and read the data out

of it. Zookeeper uses synchronization, serialization and coordination activities.

It enables functioning of a distributed system as a single function.

ZooKeeper's main coordination services are:

1 Name service -A name service maps a name to the information associated

with that name. For example, DNS service is a name service that maps a

domain name to an IP address. Similarly, name keeps a track of servers or

services those are up and running, and looks up their status by name in

name service.

2 Concurrency control - Concurrent access to a shared resource may cause

inconsistency of the resource. A concurrency control algorithm accesses

shared resource in the distributed system and controls concurrency.

3 Configuration management - A requirement of a distributed system is a

central configuration manager. A new joining node can pick up the up-to-

date centralized configuration from the ZooKeeper coordination service as

soon as the node joins the system.

4 Failure - Distributed systems are susceptible to the problem of node

failures. This requires implementing an automatic recovering strategy by

selecting some alternate node for processing (Using two MasterNodes with

a NameNode each).

2.6.1.2 Oozie

Apache Oozie is an open-source project of Apache that schedules Hadoop jobs.

An efficient process for job handling is required. Analysis of Big Data requires

creation of multiple jobs and sub-tasks in a process. Oozie design provisions the

scalable processing of multiple jobs. Thus, Oozie provides a way to package and

bundle multiple coordinator and workflow jobs, and manage the lifecycle of

those jobs.

The two basic Oozie functions are:

• Oozie workflow jobs are represented as Directed Acrylic Graphs (DAGs),

specifying a sequence of actions to execute.

• Oozie coordinator jobs are recurrent Oozie workflow jobs that are

triggered by time and data availability.

Oozie provisions for the following:

1. Integrates multiple jobs in a sequential manner

2. Stores and supports Hadoop jobs for MapReduce, Hive, Pig, and Sqoop

3. Runs workflow jobs based on time and data triggers

4. Manages batch coordinator for the applications

5. Manages the timely execution of tens of elementary jobs lying in

thousands of workflows in a Hadoop cluster.

2.6.1.3 Sqoop

The loading of data into Hadoop clusters becomes an important task during data

analytics. Apache Sqoop is a tool that is built for loading efficiently the

voluminous amount of data between Hadoop and external data repositories that

resides on enterprise application servers or relational databases. Sqoop works

with relational databases such as Oracle, MySQL, PostgreSQLand DB2.

Sqoop provides the mechanism to import data from external Data Stores into

HDFS. Sqoop relates to Hadoop eco-system components, such as Hive and

HBase. Sqoop can extract data from Hadoop or other ecosystem components.

Sqoop provides command line interface to its users. Sqoop can also be

accessed using Java APis. The tool allows defining the schema of the data for

import. Sqoop exploits MapReduce framework to import and export the data,

and transfers for parallel processing of sub-tasks. Sqoop provisions for fault

tolerance. Parallel transfer of data results in parallel results and fast data

transfer.

Sqoop initially parses the arguments passed in the command line and prepares

the map task. The map task initializes multiple Mappers depending on the

number supplied by the user in the command line. Each map task will be

assigned with part of data to be imported based on key defined in the command

line. Sqoop distributes the input data equally among the Mappers. Then each

Mapper creates a connection with the database using JDBC and fetches the part

of data assigned by Sqoop and writes it into HDFS/Hive/HBase as per the choice

provided in the command line.

2.6.1.4 Flume

Apache Flume provides a distributed, reliable and available service. Flume

efficiently collects, aggregates and transfers a large amount of streaming data

into HDFS. Flume enables upload of large files into Hadoop clusters.

The features of flume include robustness and fault tolerance. Flume provides

data transfer which is reliable and provides for recovery in case of failure. Flume

is useful for transferring a large amount of data in applications related to logs of

network traffic, sensor data, geo-location data, e-mails and social-media

messages.

Apache Flume has the following four important components:

1. Sources which accept data from a server or an application.

2. Sinks which receive data and store it in HDFS repository or transmit the

data to another source. Data units that are transferred over a channel

from source to sink are called events.

3. Channels connect between sources and sink by queuing event data for

transactions. The size of events data is usually 4 KB. The data source is

considered to be a source of various set of events. Sources listen for events

and write events to a channel. Sinks basically write event data to a target

and remove the event from the queue.

4. Agents run the sinks and sources in Flume. The interceptors drop the data

or transfer data as it flows into the system.

2.6.2 Ambari

Apache Ambari is a management platform for Hadoop. It is open source. Ambari

enables an enterprise to plan, securely install, manage and maintain the clusters

in the Hadoop. Ambari provisions for advanced cluster security capabilities,

such as Kerberos Ambari.

2.6.2.1 Features

Features of Ambari and associated components are as follows:

1. Simplification of installation, configuration and management

2. Enables easy, efficient, repeatable and automated creation of clusters

3. Manages and monitors scalable clustering

4. Provides an intuitive Web User Interface and REST APL The provision

enables automation of cluster operations.

5. Visualizes the health of clusters and critical metrics for their operations

6. Enables detection of faulty node links

7. Provides extensibility and customizability.

2.6.2.2 Hadoop Administration

Hadoop large clusters pose a number of configuration and administration

challenges. Administrator procedures enable managing and administering

Hadoop clusters, resources and associated Hadoop ecosystem components

(Figure 2.2). Administration includes installing and monitoring clusters.

Ambari also provides a centralized setup for security. This simplifies the

administering complexities and configures security of clusters across the entire

platform. Ambari helps automation of the setup and configuration of Hadoop

using Web User Interface and REST AP Is.

IBM Biglnsights provides an administration console. The console is similar to

web UI at Ambari. The console enables visualization of the cluster health, HDFS

directory structure, status of MapReduce tasks, review of log records and access

application status. Single harmonized view on console makes administering the

task easier. Visualization can be up to individual components level on drilling

down. Nodes addition and deletion are easy using the console.

The console enables built-in tools for administering. Web console provides a

link to server tools and open-source components associated with those.

2.6.3 HBase

Similar to database, HBase is an Hadoop system database. HBase was created for

large tables. HBase is an open-source, distributed, versioned and non-relational

(NoSQL) database. Features ofHBase features are:

1. Uses a partial columnar data schema on top of Hadoop and HDFS.

2. Supports a large table of billions of rows and millions of columns.

3. Provides small amounts of information, called sparse data taken from large

data sets which are storing empty or presently not-required data. For

example, yearly sales data of KitKats from the data of hourly, daily and

monthly sales (Example 2.3).

4. Supports data compression algorithms.

5. Provisions in-memory column-based data transactions.

6. Accesses rows serially and does not provision for random accesses and

write into the rows.

7. Provides random, real-time read/write access to Big Data.

8. Fault tolerant storage due to automatic failure support between DataNodes

servers.

9. Similarity with Google BigTable.

HBase is written in Java. It stores data in a large structured table. HBase

]21217 16 28 2 S8 B

12J2!7 t6 29 l4 44 J5

1224 12l2J7 U5 4 41 23 37

i6 J2i217 46 r1 2"i 1 8

.. B 1212.H 16 5 22 16 ...s

provides scalable distributed Big Data Store. HBase data store as key-value pairs.

HBase system consists of a set of tables. Each table contains rows and columns,

similar to a traditional database. HBase provides a primary key as in the

database table. Data accesses are performed using that key.

HBASE applies a partial columnar scheme on top of the Hadoop and HDFS. An

HBase column represents an attribute of an object, such as hourly sales of

KitKat, Milk, Fruit and Nuts, Nougat and Oreo sold every hour at an ACVM

(Example 2.3).

The following example shows a structured table considering Examples 1.6 and

2.3.

EXAMPLE 2.4

Recapitulate Examples 1.6 and 2.3. Consider ACVMs selling KitKat, Milk,

Fruit and Nuts, Nougat and Oreo chocolates. Following is the table for

hourly sales of chocolates at multiple ACVMs.

ACVM_ID

Date Hour KUKat 1\illlk Fruit Nougat Oreo

 (DT) (hr) Hourly Hourly and Nuts Hourly Hourly

 mmddY.Y Sale Sale'(r\,UIS) Hourly Sale Sale Sale

 (KKHS) (FNHS) (NHS) f;OHS.1

,

(i) How does the HBase store the table?

(ii) How will the records created using shell command 'put'?

SOLUTION

Format of the HBase that stores rows line by line is:

Row-Key Column-Family:

Value}

{Column-Qualifier: Version:

HBase data model specifies the column qualifiers. For example, column

qualifiers are DT, HR, KKHS, MHS, FNHS, NHS and OHS. Version corresponds

to a number reflecting the time stamp which identifies the data of columns

uniquely. Version is a number reflecting server time-stamp by default.

Value is the value in the column field for the qualifier. The first row stores

in the HBase as follows:

ACVM id: '2 2 0 6' { 'OT' : 16 0 0 0 8 0 0 0 0 0 2 4 : '12121 7' , 'HR' :

1600008007319: '16', 'KKHS': 1600081010821: '28',

'MHS ' : 1 6 0 0 0 8 2 0 1 0 5 8 2 : ' 2 3 ' , ' FNHS ' : 1 6 0 0 0 8 2 0 1 8 0 0 1 :

'38', 'NHS': 1600080158868: '8', 'OHS':

1600038028229: '50'}

Write similarly for other rows of hourly sales table.

The records are put in rows and columns as follows:

hbase (main) 001:0> put 'ACVM_id',

' 2 2 0 6' , 'OT' ,

'121217',

row(s)

in

'HR',

021120

'16',

seconds

'HourlySales: KKHS','28' 0

hbase

'HourlyS

(

les

main)

: M

002:0>

S', '23'

put

0 row

'ACVM id',

(s) in 001120

'2206',

seconds

hbase (main) 003:0> put 'ACVM_id', '2206',

'HourlySales: FNHS' ,'38' 0 row (s) in 021120 seconds

hbase (main)

'HourlySales:

004: 0>

NHS', '8'

put

0 row(s)

'ACVM_id',

in 001120

'2206',

seconds

hbase (main)

'HourlySales:

005: 0>

OHS', '50'

put

0 row (s)

'ACVM_id',

in 001120

'2206',

seconds

2.6.4 Hive

Apache Hive is an open-source data warehouse software. Hive facilitates

reading, writing and managing large datasets which are at distributed Hadoop

files. Hive uses SQL. Hive puts a partial SQL interface in front of Hadoop.

Hive design provisions for batch processing of large sets of data. An

application of Hive is for managing weblogs. Hive does not process real-time

queries and does not update row-based data tables.

Hive also enables data serialization/ deserialization and increases flexibility in

schema design by including a system catalog called Hive Metastore. HQL also

supports custom MapReduce scripts to be plugged into queries.

Hive supports different storage types, such as text files, sequence files

(consisting of binary key/value pairs) and RCFiles (Record Columnar Files), ORC

(optimized row columnar) and HBase.

Three major functions of Hive are data summarization, query and analysis.

Hive basically interacts with structured data stored in HDFS with a query

language known as HQL (Hive Query Language)

which is similar to SQL. HQL translates SQL-like queries into MapReduce jobs

executed on Hadoop automatically.

Sections 4.4 and 4.5 will describe the Hive and HiveQL in detail.

2.6.5 Pig

Apache Pig is an open source, high-level language platform. Pig was developed

for analyzing large-data sets. Pig executes queries on large datasets that are

stored in HDFS using Apache Hadoop. The language used in Pig is known as Pig

Latin.

Pig Latin language is similar to SQL query language but applies on larger

datasets. Additional features of Pig are as follows:

(i) Loads the data after applying the required filters and dumps the data in

the desired format.

(ii) Requires Java runtime environment for executing Pig Latin programs.

(iii) Converts all the operations into map and reduce tasks. The tasks run on

Hadoop.

(iv) Allows concentrating upon the complete operation, irrespective of the

individual Mapper and Reducer functions to produce the output results.

Section 4.6 will describe the usages of Pig in detail.

2.6.6 Mahout

Mahout is a project of Apache with library of scalable machine learning

algorithms. Apache implemented Mahout on top of Hadoop. Apache used the

MapReduce paradigm. Machine learning is mostly required to enhance the

future performance of a system based on the previous outcomes. Mahout

provides the learning tools to automate the finding of meaningful patterns in

the Big Data sets stored in the HDFS.

Mahout supports four main areas:

• Collaborative data-filtering that mines user behavior and makes product

recommendations.

• Clustering that takes data items in a particular class, and organizes them

into naturally occurring groups, such that items belonging to the same

group are similar to each other.

• Classification that means learning from existing categorizations and then

assigning the future items to the best category.

• Frequent item-set mining that analyzes items in a group and then

identifies which items usually occur together.

Section 6.9 will describe Mahout architecture and usages.

Self-Assessment Exercise linked to LO 2.5

1. Why is ZooKeeper required to behave as a centralized repository where

the distributed applications can write the data?

2. What are the functions which Ambari perform? How does Ambari

enable administering of clusters and Hadoop components?

3. Make a table of ecosystem tools and their functions which are required

for analyzing performances from SGPs, SGPAs and CGPAs of each

student. Assume that programmes are Master of Science in Computer

Science, Master of Computer Appliations and Master of Technology in

Computer Science.

4. What are the activities which Mahout supports in the Hadoop system?

active node

administering cluster

Ambari

application master

AVRO Chukawa

cluster

columnar data

container

data Block

data node

data replication

Flink

Flume

Hadoop

Hadoop Common

Hadoop pipes

Hadoop streaming

HBase

HDFS

Hive

Mahout

managing cluster

Mapper

Map Reduce

node manager

Oozie

parallel tasks

Pig

primary master

Rack

Reducer

resource

resource manager

resource scheduling

row-based data

secondary master

serialization

shell command

slave node

Spark

standby node

synchronization

YARN

ZooKeeper

LO 2.1

• Hadoop is an open-source framework that uses cloud-based utility

computing services. Tera Bytes of data processing takes just a few minutes.

• Hadoop system has features of fault tolerant, scalable, flexible, modular

design and distributed clusters computing model with data locality.

• Hadoop core components are Hadoop Common, that uses the libraries and

utilities, HDFS, MapReduce and YARN.

• Hadoop ecosystem includes the application support layer and application

layer components - AVRO, ZooKeeper, Sqoop, Ambari, Chukwa, Flink and

Flume, Pig, Hive, Spark and Mahout.

• HDFS with MapReduce YARN-basedsystem enables parallel processing of

large data sets.

LO 2.2

• HDFS is a Java-based distributed file system that can store various types of

data.

• Hadoop stores the data in a number of clusters. Each cluster has a number

of Data Store called Racks. Each Rack stores a number of DataNodes. Each

DataNode has a large number of Data Blocks. The data blocks replicate by

default at least on three DataNodes in the same or remote nodes.

• Files, data blocks and DataNodes need identification during processing at

Hadoop DataNodes. The concept of the NameNode and DataNode associate

the HDFS. A NameNode stores meta data for the files.

• Meta data gives information about the file of user application, but does not

participate in the computations. DataNode stores the actual data files in

the data blocks.

• Provision for multiple NameNodes enables higher resources availability.

LO 2.3

• MapReduce functions are an integral part of Hadoop physical organization.

• MapReduce is a programming model for distributed computing.

MapReduce allows writing applications to process huge amounts of data, in

parallel, on large clusters of servers reliably.

• The parallel programs of MapReduce are useful for performing large-scale

data analysis using multiple CPUs at nodes in a cluster.

LO 2.4

• YARN separates the resource management and processing components. An

application consists of a number of tasks and each task can consist of a

number of sub-tasks (threads), which run in parallel. YARN enables

running of multi-threaded applications. YARN manages and allocates the

resources for the application sub-tasks and submits the resources for them

at the Hadoop.

• YARN schedules and handles the resource requests of large scale,

distributed applications.

LO 2.5

• Avro is a data transfer utility which provisions a system which enables

data serialization for transfer between the application and processing

layers.

• ZooKeeper is a coordination service for the distributed running of

applications and tasks.

• Sqoop is a data-transfer software for data-transfer between data stores and

relational DBs.

• Ambari is a web-based tool which provisions, monitors, manages, viewing

of functioning of clusters, MapReduce, Hive and Pig APis.

• Cassandra is a database which provisions a scalable and fault-tolerant

database for multiple masters.

• Chukwa is a data collection system for large and distributed systems.

• HBase is a structured data store using database that provisions for a

scalable and structured database for large tables.

• Hive is a data warehouse system which provisions for queries, data

aggregation, summarizing, infrastructure-like enterprise data warehouse,

data summarization, ad hoc (unstructured) querying and HiveQL which is

SQL-like scripting language.

• Pig is a high-level dataflow language which provistons for dataflow

functionality and the execution framework for parallel computations.

• Mahout is a software library for the machine learning algorithms.

Ii Objective Type Questions 1111
Select one correct-answeroption for each questions below:

2.1 Programming model for Big Data is (i) centralized computing of input

results of the applications from multiple computing nodes, (ii) the

distributed computing of an application at the same time. Data sets and

the application run at the MPPs at a number of geographic locations and

remote servers. (iii) Distributed computing of the data sets using

application tasks at the multiple computing nodes. (iv) Computing of the

application codes transferred to the multiple nodes which store data sets

and compute at cluster.

(a) i

(b) ii to iv

(c) iii and iv

(d)iv

2.2 Core components of Hadoop are (i) Hadoop Common which contains the

libraries and utilities required by other modules of Hadoop, (ii) a Java•

based distributed file system, (iii) MapReduce, (iv) YARN, (v) AVRO and

ZooKeeper, (vi) Pig, Hive, Sqoop and (v) Ambari.

(a) all are true

(b) (i) to (iv)

(c) all except vi

(d) ii to vi

2.3 (i) HDFS design is for batch processing and cannot be used for stream

analytics. (ii) Spark can be used for Hadoop stream analytics. (iii) YARN has

made it possible to process applications, such as interactive queries, text

analytics and streaming analysis. (iv) Flume can be used stream analytics.

(v) Spark and Flink technologies are the most suitable for in-stream

processing.

(a) all except iv

(b) all except ii

(c) all except i

(d) all

2 .4 Hadoop distributed file system: (i) identifies the file by directories and

folders which associate with file system, (ii) identifies the data sources for

processing and uses the resource pointers which store in the data

dictionary, (iii) identifies the data block using data dictionary master

tables stored at a central location, (iv) identifies using centralized tables,

and (v) identifies from file meta data at the application.

(a) none

(b) ii to v

(c) ii, iv and v

(d) all except ii

2.5 (i) HDFS uses the client, master NameNode, primary and secondary

MasterNodes and slave nodes. (ii) YARN components use Client, Resource

Manager (RM), Node Manager (RM), Application Master (AM) and

Containers. (iii) YARN uses the client, master NameNode, primary and

secondary MasterNode and slave nodes. (iv) MapReduce v2 when Hadoop

uses YARN-basedsystem, which enables parallel processing of large data

sets. (v) Slaves are responsible to store the data and process the

computation tasks submitted by the clients.

(a) Only i

(b) all except ii ad iv.

(c) all except iii

(d) all

2.6 (1) Hadoop shell commands are (i) - copyToLocal for copying a file at HDFS

to the local and (ii) - cat for copying to standard output (stdout). (2) When

file stuData_id96 to be copied at stu_filesdir directory, then command is

(iii) $Hadoop hdfs-put stuData_id96 /user/ stu_filesdir, and (iv) $Hadoop

hdfs-cp stuData_id96 /user/ stu_filesdir.

(a) ii to iv

(b) i to iii

(c) all

(d) only i and iii

2.7 (i) NM is a slave of the infrastructure. (ii) AM signals whenever it

initializes. (iii) All active AMs send the controlling signal periodically to

the RM when signaling their presence. (iv) NM accepts the request and

queues up the resources for application program or sub-tasks. When the

requested resources become available on slave nodes, (v) the RM grants

the Application Master usage permission for the specific intervals for the

containers on specific slave NMs. The systems do not use the concept of

joins (in distributed data storage systems), and (vi) A Client Node submits

request of an application to the RM. The RM is the master.

(a) all except ii to iv

(b) all

(c) only iii and iv

(d) ii to iv

2.8 HBASE (i) applies a partial columnar scheme on top of the MapReduce. It is

(ii) an open-source, distributed, versioned, non-relational (NoSQL)

database, (iii) written in Java, (iv) stores large unstructured table and (v)

provisions for the scalable distributed Big Data Store. Data stores as key•

value pairs and (vi) consists of a set of tables. Each table contains rows and

columns. Therefore, it is similar to a traditional database and (vii)

provisions a primary key as in the database table.

(a) i to iii

(b) all except v

(c) all except i and iv

(d) all

2. 9 (i) Ambari is a structured data store using database that provisions for a

scalable and structured database for large tables. (ii) Zookeeper in Hadoop

behaves as a centralized repository where distributed applications can put

data at a node. (iv) Cassandra is a data collection system for large and

distributed systems. (v) Zookeeper is a coordination service that enables

synchronization across a cluster in distributed applications.

(a) all

(b) only ii and iii

(c) all except ii and iii

(d)none

2.10 (i) Ambari is a web-based tool which provisions, monitors, manages,

viewing of cluster functioning. (ii) Ambari and Biglnsights have provisions

for viewing. Their uses are for administering the Hadoop. (iii) Avro is a

data transfer utility between application and application support layer.

(iii) Cassandra is a database which provisions a scalable and fault-tolerant

database for multiple masters. (iv) Chukwa is a data collection system for

large and distributed systems. (v) HBase is a structured data store using

database that provisions for a scalable and structured database for large

tables.

(a) all correct except iii

(b) all except iii and v

(c) all except iv

(d) all except ii and iii

2.11 (i) Hadoop 1 and 2 provisions for multiple NameNodes. (ii) Each

MasterNode (MN) has NameNode, Avro coordination client, and

JournalNode (JN). (iii) A JN keeps the records of the state, resources

required, intermediate results or cluster tasks execution. (iv) Application

tasks and subtasks at the cluster can write data and read data from a JN.

(a) all correct except iii

(b) all except iii and iv

(c) all except ii

(d)only iv

2.12 (i) Oozie provides a way to package and bundle multiple coordinator and

workflow jobs and manage the lifecycle of those jobs. (ii) Flink provisions

for reliable data transfer and provides for recovery in case of failure.

Transfers large amount of data in applications. (iii) Chukwa provisions

data serialization during data transfer between application and processing

layers.

(iv) Sqoop provisions for data transfer between data stores such as

relational DBs and Hadoop. (v) Chukwa provisions and manages data

collection system for large and distributed systems.

(a) all correct except iii

(b) all except iii and v

(c) all except iv

(d) all except ii and iii

II Review Questions 1111
2.1 Why is the application program layer different from support layer in Big

Data platform? Explain the Hadoop features. (LO 2.1)

2.2 List Hadoop two core components. Describe their usages. (LO 2.1)

2 .3 Explain using a diagram the distributed storage, resource manager layer,

processing framework and application APis layers in Hadoop. (LO 2.1)

2.4 Give the meanings of Hadoop distributed file system, clusters, Racks,

DataNodes, Data Blocks, MasterNode, NameNode and metadata of files.

Explain these. (LO 2.2)

2.5 How do multiple NameNodes ensure high availability of Data in HDFS? (LO

2.2)

2.6 How does MapReduce function as a programming model for distributed

computing? (LO 2.3)

2.7 How does MapReduce enables process huge amounts of data, in parallel, on

large clusters of servers reliably. (LO 2.3)

2.8 List the resources required to run an application. How does the separation

of resource management and processing components help the number of

tasks and sub-tasks (threads) when running in parallel? (LO 2.4)

2.9 How does YARN resource manager do the following: (i) keep track of the

active node managers and available resources and (ii) allocate the

containers to the appropriate sub-tasks and monitors the Application

Master? (LO 2.4)

2.10 Why are AVRO and Zookeeper essential in Hadoop programming for Big

Data applications? (LO 2.5)

II Practice Exercises 1111
2.1 Recapatulate Example 2.3. Assume a company collects data from a large

number of automatic chocolate vending machines (ACVMs) distributed

over a large number of geographic locations in the cities and areas in each

city. Each ACVM sells five different flavors of chocolates: KitKat, Milk,

Fruit and Nuts, Nougat and Oreo. When will the centralized processing and

analytics model and when will Hadoop programming be used? Each

machine communicates data for the analytics every hour to the company's

central data warehouse. (LO 2.1)

2.2 Make a data store model using HDFS for SGPs, SGPAs and CGPAs of each

student in 50 UG and 10 PG offerred at the university with 5000 students

intake capacity each year. Each student information can extend up to 64

MB. (LO 2.2)

2.3 Recapatilate Example 1.6 of a Automotive Components and Predictive

 Automotive Maintenance Services (ACPAMS) company which renders

customer services for maintenance and servicing of (Internet) connected

cars and its components. Assume that number of centres are 8192 (=213) ,

number of car serviced by each centre per day equals 32 (==25). Each car

has 256 (=28) components, which requires maintenance or servicing in the

company's car. The service centre also collects feedback after every service

and send responses to customer requests. The feedback and responses text

takes on average 128 B(=27 B) and each service or responses records in a

report of average 512 B (= 29) text. The company stores the centres data for

maximum 10 years and follows last-in first-out data replacement policy.

How will the files of ACPAMS be stored using HDFS? What shall be the

minimum memory requirement during 10 years? (LO 2.2)

2.4 Consider a car company selling five models of car:]agaur Land Rover, Hexa,

Zest, Nexon and Safari Storme. Assume each day the model sells at 600 show

rooms with average 400 car sales average per week in a year. The files for

each model are at file_l, file_2, , file_5. Each file stores as the key-value

pairs the daily sales log at the company large number of showrooms.

(i) Calculate how and how much will the showrooms weekly each model

sales-log store using HDFS?

(ii) Write the sample of data collected in a file for day 1, 2, , 365 starting

January 1 from the showrooms.

(iii) What will be the output streams of map tasks for feeding the input

streams to the Reducer?

(iv) What will be the Reducer outputs? (LO 2.3)

2.5 Recapitulate a list of actions of YARN resource allocation and scheduling

functions in Section 2.5.1 Figure 2.5. Show the directions of sequences and

step number over each arrow 1 to show the sequence of action to allocation

of a container. (LO 2.4)

2.6 Recapitulate Practice Exercise 2.4, Consider a car company selling Jaguar

Land Rover, Hexa, Zest, Nexon and Safari Storme models of car. Following

Date (OT)

mmddyy

Jagaur Land

Rover Weekly

Sales (JLRWS)

Hexa

Weekly

Sales

(HWS)

Zest

Weekly

Sales

(ZWS)

Nexon

Weekly

Sales

(NWS)

Safari

Storme

Weekly

Sales

(SSWS)

220 121217

28

23

138

148

50

10 121217 49 34 164 115 38

122 121217 40 141 123

37

88

16

121217

13

25

127

158

174

28 121217 12 122 116 128 57

-

- - - -

-

-

-

-

-

-

-

-

-

is the table for the weekly sales log at the multiple car company

showrooms.

CCSR-
id

(i) How the HBase stores the table in five weeks.

(ii) How will the records created using shell command 'put' for 35 entries

given above?

(LO 2.5)

Note:

o o • Level 1 & Level 2 category

o • • Level 3 & Level 4 category

• • • Level 5 & Level 6 category

Chapter 3

NoSQLBig Data Management,
MongoDB and Cassandra

LEARNING OBJECTIVES

After studyingthis chapter,you will be able to:

LO 3.1 Get conceptual understanding ofNoSQLdata stores, Big Data solutions,

schema-less models, and increased flexibility for data manipulation

LO 3.2 Get knowledge of NoSQL data architecture patterns namely, key-value

pairs, tabular, column family, BigTable, Record Columnar (RC),

Optimized Row Columnar (ORC) and Parquet, document, object and

graph data stores, and the variations in architectural patterns

LO 3.3 Get conceptual understanding of NoSQL data store management,

applications and handling problems in Big Data

LO 3.4 Solve Big Data analytics using shared-nothing architecture, choosing a

distribution model among master-slave and peer-to-peer models, and

get the knowledge of four ways by which the NoSQL handles the Big

Data problems

LO 3.5 Apply the MongoDBdatabases and query commands

LO 3. 6 Use the Cassandra databases, data model, clients, and integrate them

with Hadoop

RECALL FROM PREVIOUS CHAPTERS

Big Data use new tools for processing and analysis of large volume of data. Big

Data sources are Hadoop or Spark compatible file system, structured,

unstructured or NoSQL data Store (Table 1.1). Big Data distributed computing

uses shared-nothing paradigm, no in-between data sharing and inter-processor

communication. (Table 1.2)

Chapter 1 introduced NoSQL. NoSQL data stores can store semi-structured or

unstructured data. NoSQL stands for No-SQL or Not Only SQL. NoSQL databases

can coexists with SQL databases. NoSQL data applications do not integrate

with SQL databases applications. NoSQL databases store Big Data. Examples of

NoSQL data stores are key-value pairs, hash key,)SON files, BigTable, HBase,

MongoDB,Cassandra, and CouchDB(Section 1.6.2.1).

This chapter focuses on providing detailed concepts of NoSQL data

architectural patterns, management of Big Data, data distribution models,

handling of Big Data problems using NoSQL, MongoDB for document and

Cassandra for columnar stores.

3.1 ! INTRODUCTION

Big Data uses distributed systems. A distributed system consists of multiple

data nodes at clusters of machines and distributed software components. The

tasks execute in parallel with data at nodes in clusters. The computing nodes

communicate with the applications through a network.

Following are the features of distributed-computing architecture (Chapter

2):

1. Increased reliability and fault tolerance: The important advantage of

distributed computing system is reliability. If a segment of machines in a

cluster fails then the rest of the machines continue work. When the

datasets replicate at number of data nodes, the fault tolerance increases

further. The dataset in remaining segments continue the same

computations as being done at failed segment machines.

2. Flexibility makes it very easy to install, implement and debug new

services in a distributed environment.

3. Sharding is storing the different parts of data onto different sets of data

nodes, clusters or servers. For example, university students huge

database, on sharding divides in databases, called shards. Each shard

may correspond to a database for an individual course and year. Each

shard stores at different nodes or servers.

4. Speed: Computing power increases in a distributed computing system as

shards run parallelly on individual data nodes in clusters independently

(no data sharing between shards).

5. Scalability: Consider sharding of a large database into a number of shards,

distributed for computing in different systems. When the database

expands further, then adding more machines and increasing the number

of shards provides horizontal scalability. Increased computing power

and running number of algorithms on the same machines provides

vertical scalability (Section 1.3.1).

6. Resources sharing: Shared resources of memory, machines and network

architecture reduce the cost.

7. Open system makes the service accessible to all nodes.

8. Performance: The collection of processors in the system provides higher

performance than a centralized computer, due to lesser cost of

communication among machines (Cost means time taken up in

communication).

The demerits of distributed computing are: (i) issues in troubleshooting in a

larger networking infrastructure, (ii) additional software requirements and

(iii) security risks for data and resources.

Big Data solutions require a scalable distributed computing model with

shared-nothing architecture. A solution is Big Data store in HDFS files. NoSQL

data also store Big Data, and facilitate random read/write accesses. The

accesses are sequential in HDFS data.

HBase is a NoSQL solution (Section 2.6.3). Examples of other solutions are

MongoDB and Cassandra. MongoDB and Cassandra DBMSs create HDFS

compatible distributed data stores and include their specific query processing

languages.

Following are selected key terms used in database systems.

Class refers to a template of program codes that is extendable. Class creates

instances, called objects. A class consists of initial values for member fields,

called state (of variables), and implementations of member functions and

methods called behavior. An implementation means program codes along with

values of arguments in the functions and methods Oava Class uses methods,

C++ functions.) An abstract class consists of at least one abstract member or

method.

Object is an instance of a class in Java, C++, and other object-oriented

languages. Object can be an instance of another object (for example, in

JavaScript).

Tupple is an ordered set of data which constitutes a record. For example, one

row record in a table. A row in a relational database has column fields or

attributes. Example of a tupple is 0LRWSale,Week 1, 138, Week 2, 232, ..., week

52, 186) in an RDBMS table. Here, JLRWSalemeans Jaguar Land Rover Weekly

Sale. 0LRWSale,Week 1, 138) is also a tupple, and gives JLR week 1 sales= 138.

(Week 2, 232, ..., week 52, 186) means week 2 sales = 232 abd 52 sales = 186 JLRs.

Transaction means execution of instructions in two interrelated entities, such

as a query and the database.

Database transactional model refers to a model for transactions, such as the one

following the ACID

(Section 3.2) or BASE properties (Section 3.2.3).

My SQL refers to a widely used open-source database, which excels as a content

management server.

Oracle refers to a widely used object-relational DBMS, written in the C++

language that provides applications integration with service-oriented

architectures and has high reliability. Oracle has also released the NoSQL

database system.

DB2 refers to a family of database server products from IBM with built-in

support to handle advanced Big Data analytics.

Sybase refers to database server based on relational model for businesses,

primarily on UNIX. Sybase was the first enterprise-level DBMS in Linux.

MS SQL server refers to a Microsoft-developed RDBMS for enterprise-level

databases that supports both SQL and NoSQL architectures.

PostgreSQL refers to an enterprise-level, object-relational DBMS. PostgreSQL

uses procedural languages like Perl and Python, in addition to SQL.

This chapter describes NoSQL data architecture patterns, NoSQL for

increasing the flexibility in data store architecture, NoSQL usages in Big Data

management, and the solutions, such as MongoDBand Cassandra. Section 3.2

describes NoSQL data stores for Big Data usages, schema-less models, and

increasing the flexibility for data manipulation. Section 3.3 describes NoSQL

data-architecture patterns: Key-value stores, graph stores, column family

stores, tabular stores, document stores, object data stores, and variations of

NoSQL architectural patterns. Section 3.4 describes NoSQL for managing Big

Data, solutions for Big Data, and types of Big Data problems. Section 3.5

describes use of shared-nothing architecture, choosing a distribution model,

master-slave versus peer-to-peer, and four ways by which NoSQL handles Big

Data problems. Sections 3.6 describes MongoDBand query commands used in

the applications. Section 3.7 describes Cassandra databases, data-model,

clients and integration with Hadoop and applications.

3.2 ! NOSQL DATA STORE

SQL is a programming language based on relational

algebra. It is a declarative language and it defines the

data schema . SQL creates databases and RDBMSs.

RDBMS uses tabular data store with relational

algebra, precisely defined operators with relations as

the operands. Relations are a set of tuples. Tuples are

NoSQIL d~t:;i stora IBig Dm,
so'IIJ.!ll!iions, sohern1,~l'ess
mod~ls, an([! i ncrt!:3Silillgi

fileld bi lity ifor cara
man ipll.!lla:tion

named attributes. A tuple identifies uniquely by keys called candidate keys.

Transactions on SQL databases exhibit ACID properties. ACID stands for

atomicity, consistency, isolation and durability.

ACID Properties in SQL Transactions

Following are the meanings of these characteristics during the transactions.

Atomicity of transaction means all operations in the transaction must

complete, and if interrupted, then must be undone (rolled back). For example,

if a customer withdraws an amount then the bank in first operation enters the

withdrawn amount in the table and in the next operation modifies the balance

with new amount available. Atomicity means both should be completed, else

undone if interrupted in between.

Consistency in transactions means that a transaction must maintain the

integrity constraint, and follow the consistency principle. For example, the

difference of sum of deposited amounts and withdrawn amounts in a bank

account must equal the last balance. All three data need to be consistent.

Isolation of transactions means two transactions of the database must be

isolated from each other and done separately.

Durability means a transaction must persist once completed.

Triggers, Views and Schedules in SQLDatabases

Trigger is a special stored procedure. Trigger executes when a specific action(s)

occurs within a database, such as change in table data or actions such as

UPDATE, INSERT and DELETE. For example, a Trigger store procedure inserts

new columns in the columnar family data store.

View refers to a logical construct, used in query statements. A View saves a

division of complex query instructions and that reduces the query complexity.

Viewing of a division is similar to a view of a table. View does not save like

data at the table. Query statement when uses references to a view, the

statement executes the View. Query (processing) planner combines the

information in View definition with the remaining actions on the query. A

query planner plans how to break a query into sub-queries for obtaining the

required answer. View, hides the query complexity by dividing the query into

smaller, more manageable pieces.

Schedule refers to a chronological sequence of instructions which execute

concurrently. When a transaction is in the schedule then all instructions of the

transaction are included in the schedule. Scheduled order of instructions is

maintained during the transaction. Scheduling enables execution of multiple

transactions in allotted time intervals.

Join in SQL Databases

SQL databases facilitate combining rows from two or more tables, based on the

related columns in them. Combining action uses Join function during a database

transaction. Join refers to a clause which combines. Combining the products

(AND operations) follows next the selection process. A Join operation does

pairing of two tuples obtained from different relational expressions. Joins, if

and only if a given Join condition satisfies. Number of Join operations specify

using relational algebraic expressions. SQL provides JOIN clause, which

retrieves and joins the related data stored across multiple tables with a single

command,Join. For example, consider an SQL statement:

Select KitKatSales From TransactionsTbl INNER JOIN

ACVMSalesTbl ON TransactionsTbl.KitKatSales =

TransactionsTbl.KitKatSales;

The statement selects those records in a column named Ki tKa tSales

which match the values in two tables: one TransactionsTbl and other

ACVMSalesTbl.

Relational databases and RDBMS developed using SQL have issues of

scalability and distributed design. This is because all tuples need to be on the

same data node. The database has an issue of indexing over distributed nodes.

They do not model the hierarchical, object-oriented, semi-structured or graph

databases.

Database Tables have relationships between them which are represented by

related fields. RDBMS allows the Join operations on the related columns. The

traditional RDBMS has a problem when storing the records beyond a certain

physical storage limit. This is because RDBMS does not support horizontal

scalability (Section 1.3.1).

For example, consider sharding a big table in a DBMS into two. Assume

writing first 0.1 million records (1 to 100000) in one table and from 100001 in

another table. Sharding a database means breaking up into many, much

smaller databases that share nothing, and can distribute across multiple

servers. Handling of the Joins and managing data in the other related tables

are cumbersome processes, when using the sharding.

The problem continues when data has no defined number of fields and

NoSQL DB does not require specialized RDBMS like
NoSQl or No1t Ol!illy SQ:L is
Olass mflllcn111-felationa'I dat

a
a,

storage and hardware for processing. Storage can be stora.ge SY.5.~rms, fie:wibl~

on a cloud. Section 1.6.2.1 introduced NoSQL data

storage system. NoSQL records are in non-relational

sch~rma.

. .,I

formats. For example, the data associated with the choice of chocolate flavours

of the users of ACVM in Example 1.6(i). Some users provide a single choice,

while some users provide two choices, and a few others want to fill three best

flavours of their choice.

User Id Choitt

Dairy Milk

2 Dairy Milk. Kit Kat

3 KitKat. Snicker, Munch

Defining a field becomes tough when a field in the database offers choice

between two or many. This makes RDBMS unsuitable for data management in

Big Data environments as well as data in their real forms.

SQL compliant format means that database tables constructed using SQL and

they enable processing of the queries written using SQL. 'NoSQL' term conveys

two different meanings: (i) does not follow SQL compliant formats, (ii)"Not

only SQL" use SQL compliant formats with variety of other querying and

access methods.

3.2.1 NoSQL

A new category of data stores is NoSQL (means Not Only SQL) data stores.

NoSQL is an altogether new approach of thinking about databases, such as

schema flexibility, simple relationships, dynamic schemas, auto sharding,

replication, integrated caching, horizontal scalability of shards, distributable

tuples, semi-structures data and flexibility in approach.

Issues with NoSQL data stores are lack of standardization in approaches,

processing difficulties for complex queries, dependence on eventually

consistent results in place of consistency in all states.

3.2.1.1 Big Data NoSQL or Not-Only SQL

da:tta lillod'els and litnumlt,ipile

data store systems. They use flexible data models. The records use multiple

schemas.

NoSQL data stores are considered as semi-structured data. Big Data Store

uses NoSQL. Figure 1.7 showed co-existence of data store at server or cloud

with SQL, RDBMS with NoSQL and Big Data at Hadoop, Spark, Mesos, 53 or

compatible Clusters. However, no integration takes place with applications

that are based on SQL. NoSQL data store characteristics are as follows:

1. NoSQL is a class of non-relational data storage system with flexible data

model. Examples of NoSQL data-architecture patterns of datasets are

key-value pairs, name/value pairs, Column family

Big-data store, Tabular data store, Cassandra (used in Facebook/ Apache),

HBase, hash table [Dynamo (Amazon 53)], unordered keys using JSON

(CouchDB),]SON (PNUTS),]SON (MongoDB), Graph Store, Object Store,

ordered keys and semi-structured data storage systems.

2. NoSQL not necessarily has a fixed schema, such as table; do not use the

concept of Joins (in distributed data storage systems); Data written at

one node can be replicated to multiple nodes. Data store is thus fault•

tolerant. The store can be partitioned into unshared shards.

Features in NoSQL Transactions NoSQL transactions have following features:

(i) Relax one or more of the ACID properties.

(ii) Characterize by two out of three properties (consistency, availability

and partitions) of CAP theorem, two are at least present for the

application/ service/ process.

(iii) Can be characterized by BASE properties (Section 3.2.3).

Big Data NoSQL solutions use standalone-server, master-slave and peer-to•

peer distribution models.

Big Data NoSQL Solutions NoSQL DBs are needed for Big Data solutions. They

play an important role in handling Big Data challenges. Table 3.1 gives the

examples of widely used NoSQL data stores.

Table 3.1 NoSQL data stores and their characteristic features
NoSQL

Data

store

Description

Apache's

HBase

HDFS compatible, open-source and non-relational data store written inJava;

A column-family based NoSQL data store, data store providing BigTable-like

capabilities (Sections 2.6 and 3.3.3.2); scalability, strong consistency,

versioning, configuring and maintaining data store characteristics

Apache's

MongoDB

HDFS compatible; master-slave distribution model (Section 3.5.1.3);

document-oriented data store withJSON-like documents and dynamic

schemas; open-source, NoSQL, scalable and non-relational database; used by

Websites Craigslist, eBay, Foursquare at the backend

Apache's

Cassandra

HDFS compatible DBs; decentralized distribution peer-to-peer model

(Section 3.5.1.4); open source; NoSQL; scalable, non-relational, column-

family based, fault-tolerant and tuneable consistency (Section 3. 7) used by

Facebook and Instagram

Apache's

CouchDB

A project of Apache which is also widely used database for the web.

CouchDB consists of Document Store. It uses the)SON data exchange format

to store its documents,JavaScript for indexing, combining and transforming

documents, and HTTP APis

Oracle

NoSQL

Step towards NoSQL data store; distributed key-value data store; provides

transactional semantics for data manipulation, horizontal scalability, simple

administration and monitoring

Riak

An open-source key-value store; high availability (using replication

concept), fault tolerance, operational simplicity, scalability and written in

Erlang

CAP Theorem Among C, A and P, two are at least present for the

application/service/process. Consistency means all copies have the same value

like in traditional DBs. Availability means at least one copy is available in case a

partition becomes inactive or fails. For example, in web applications, the other

copy in the other partition is available. Partition means parts which are active

but may not cooperate (share) as in distributed DBs.

1. Consistency in distributed databases means that all nodes observe the same

data at the same time. Therefore, the operations in one partition of the

database should reflect in other related partitions in case of distributed

database. Operations, which change the sales data from a specific

showroom in a table should also reflect in changes in related tables

which are using that sales data.

2. Availability means that during the transactions, the field values must be

available in other partitions of the database so that each request receives

a response on success as well as failure. (Failure causes the response to

request from the replicate of data). Distributed databases require

transparency between one another. Network failure may lead to data

unavailability in a certain partition in case of no replication. Replication

ensures availability.

3. Partition means division of a large database into different databases

without affecting the operations on them by adopting specified

procedures.

Partition tolerance: Refers to continuation of operations as a whole even in case

of message loss, node failure or node not reachable.

Brewer's CAP (c.onsistency, Availability and £.artition Tolerance) theorem

demonstrates that any distributed system cannot guarantee C, A and P

together.

1. Consistency- All nodes observe the same data at the same time.

2. Availability- Each request receives a response on success/failure.

3. Partition Tolerance-The system continues to operate as a whole even in

case of message loss, node failure or node not reachable.

Partition tolerance cannot be overlooked for achieving reliability in a

distributed database system. Thus, in case of any network failure, a choice can

be:

• Database must answer, and that answer would be old or wrong data (AP).

• Database should not answer, unless it receives the latest copy of the data

(CP).

The CAP theorem implies that for a network partition system, the choice of

consistency and availability are mutually exclusive. CA means consistency and

availability, AP means availability and partition tolerance and CP means

consistency and partition tolerance. Figure 3.1 shows the CAP theorem usage

in Big Data Solutions.

il:mt:eril CV {I/ ,.-ab iity

[[

I Caiiillilot lbe
SQL

C'Ol .

I I]

ROB!MS1

~~
Po~

O;n!! Da
C.as;sa;rndra,.

DVf\lam _Dl\

IRi

IHbase,
IMa!fitgQ,08,;

Redis,
IM:elim~helDB

Figure 3.1 CAP theorem in Big Data solutions

3.2.2 Schema-less Models

Schema of a database system refers to designing of a structure for datasets and

data structures for storing into the database. NoSQL data not necessarily have a

fixed table schema. The systems do not use the concept of Join (between

distributed datasets). A cluster-based highly distributed node manages a single

large data store with a NoSQL DB.

Data written at one node replicates to multiple nodes. Therefore, these are

identical, fault-tolerant and partitioned into shards. Distributed databases can

store and process a set of information on more than one computing nodes.

N oSQL data model offers relaxation in one or more of the ACID properties

(Atomicity, consistence, isolation and durability) of the database. Distribution

follows CAP theorem. CAP theorem states that out of the three properties, two

must at least be present for the application/service/process. (Section 3.2.1).

Figure 3.2 shows characteristics of Schema-less model for data stores. ER

stands for entity-relation modelling.

Relations in a database build the connections between various tables of data.

For example, a table of subjects offered in an academic programme can be

connected to a table of programmes offered in the academic institution. NoSQL

swucturebei used
No need tm:rt.1 t

into data·_ase

~ but at :tiE! stage
amil e\l'efi! a_ft:er first

record some ode'l is

stl~I

EJOCeptions m
rulesbutc

used· ppm ,.

new e1erm,em is

noo-.d· _ ru ·"Le

fmaUilg excep m and

zation ofd ta

data stores use non-mathematical relations but store this information as an

aggregate called metadata.

Metadata refers to data describing and specifying an object or objects.

Metadata is a record with all the information about a particular dataset and the

inter-linkages. Metadata helps in selecting an object, specifications of the data

and, usages that design where and when. Metadata specifies access permissions,

attributes of the objects and enables additions of an attribute layer to the

objects. Files, tables, documents and images are also the objects.

11\eQUtleS no tpre'!OOtlS

.owledge of data

· ·
! .

INo iii(- 10&1 a.at.a .1

_mmatic Iv
determ· es arnd uses

meta.data how :to index
data as 'the data loa(lls

INkloelB· . g becOlil'iles a

slatisti . g:JIA;Ja;!SS,:

Qweries writt:en for . .

-

' ·

Figure 3.2 Characteristics of Schema-less model

3.2.3 Increasing Flexibility for Data Manipulation

Consider database 'Contacts'. They follow a fixed schema. Now consider

students' admission database. That also follow a fixed schema. Later, additional

data is added as the course progresses. NoSQL data store characteristics are

schema-less. The additional data may not be structured and follow fixed

schema. The data store consists of additional data, such as documents, blogs,

Facebook pages and tweets.

NoSQL data store possess characteristic of increasing flexibility for data

manipulation. The new attributes to database can be increasingly added. Late

binding of them is also permitted.

BASE is a flexible model for NoSQL data stores. Provisions of BASE increase

flexibility.

BASE Properties BA stands for basic availability, S stands for soft state and E

stands for eventual consistency.

1. Basic availability ensures by distribution of shards (many partitions of huge

data store) across many data nodes with a high degree of replication. Then,

a segment failure does not necessarily mean a complete data store

unavailability.

2. Soft state ensures processing even in the presence of inconsistencies but

achieving consistency eventually. A program suitably takes into account

the inconsistency found during processing. NoSQL database design does

not consider the need of consistency all along the processing time.

3. Eventual consistency means consistency requirement in NoSQL databases

meeting at some point of time in future. Data converges eventually to a

consistent state with no time-frame specification for achieving that. ACID

rules require consistency all along the processing on completion of each

transaction. BASE does not have that requirement and has the flexibility.

BASE model is not necessarily appropriate in all cases but it is flexible and is

an alternative to SQL-likeadherence to ACID properties. Example 3.11 (Section

3.3.5) explains the concept of BASE in transactions using graph databases.

Schema is not a necessity in NoSQL DB, implying information storage

flexibility. Data can store and retrieve without having knowledge of how a

database stores and functions internally.

Following is an example to understand the increasing flexibility for data

manipulation.

EXAMPLE 3.1

Use examples of database for the students in various university courses to

demonstrate the concept of increasing flexibility in NoSQL DBs.

SOLUTION

Figure 3.3 shows increasing flexibility concept using additional data models.

, ~ itiem att utes appended as

 COIUIJ"Se p:rogressie:$ ·t;t, N'.oSQL iOBs

textu · · doc ernts

Id

 IFacultyM

Qedit

Co ~_110 1

.iademic Ye.a:r

Co-urse_lO
,At;a,me . "i!'e;ar

Seimiester
IF.am Powe Po i ts
Tc1,!1ib;J •. s

V"tdeos

Add" ii;;m · tt ibll!it~ appernded as <;,oul$e

prOFmesw•th 1NoSQl,.IOBs and illilC . :Stiern

mgrap ~

Figure 3.3 Increasing flexibility in NoSQL DB of students

Self-Assessment Exercise linked to LO 3.1

1. Explain when will you use the following: MongoDB, Cassandra, CouchDB,

Oracle NoSQL and Riak.

2. How does CAP theorem hold in NoSQL databases?

3. How do ACID and BASE properties differ?

4. Why is the consistency not enforcable in NoSQL distributed databases during

a transaction processing?

5. List characteristics of NoSQL data store.

6. Why is metadata a must when using NoSQL data store?

3.3 l NOSQL DATA ARCHITECTURE PATTERNS

NoSQL data stores broadly categorize into

architectural patterns described in the following

subsections:

3.3.1 Key-Value Store

The simplest way to implement a schema-less data

store is to use key-value pairs. The data store

characteristics are high performance, scalability and

flexibility. Data retrieval is fast in key-value pairs data

INoSQIL d\3:ta-.ajrchlteduir@
paittemnis. namely lt@y•

value palrs, ,oolum n
farmif[Y. mgiTabl'@. RC, OR[,

Pair,c1u et am~ tabula'r da~
rtore.s, dC1r].11m1ent: stores.
object dab stores. gra;ph
d~t.abais~s. and d~~
mires wiith Va'rii.rliions mi

:.:rrd111t@di1 ral 1pattems

store. A simple string called, key maps to a large data string or BLOB (Basic

Large Object). Key-value store accesses use a primary key for accessing the

values. Therefore, the store can be easily scaled up for very large data. The

concept is similar to a hash table where a unique key points to a particular

item(s) of data. Figure 3.4 shows key-value pairs architectural pattern and

example of students' database as key-value pairs.

Kt-yl val,uesl

V'al'LIH2

N·l 'llal11.11 N-l

KeyN \t.aluesN

N umbe-r of kev-valU!!s pair, N cin be

a r.,,tty large nuMb@r

Figure 3.4 Example of key-value pairs in data architectural pattern

Advantages of a key-value store are as follows:

1. Data Store can store any data type in a value field. The key-value system

stores the information as a BLOB of data (such as text, hypertext, images,

video and audio) and return the same BLOB when the data is retrieved.

Storage is like an English dictionary. Query for a word retrieves the

meanings, usages, different forms as a single item in the dictionary.

Similarly, querying for key retrieves the values.

mailto:lt@y
mailto:lt@y
mailto:lt@y
mailto::rrd111t@di1
mailto:nuMb@r

2. A query just requests the values and returns the values as a single item.

Values can be of any data type.

3. Key-value store is eventually consistent.

4. Key-value data store may be hierarchical or may be ordered key-value

store.

5. Returned values on queries can be used to convert into lists, table•

columns, data-frame fields and columns.

6. Have (i) scalability, (ii) reliability, (iii) portability and (iv) low operational

cost.

7. The key can be synthetic or auto-generated. The key is flexible and can be

represented in many formats: (i) Artificially generated strings created

from a hash of a value, (ii) Logical path names to images or files, (iii) REST

web-service calls (request response cycles), and (iv) SQL queries.

The key-value store provides client to read and write values using a key as

follows:

(i) Get (key), returns the value associated with the key.

(ii) Put (key, value), associates the value with the key and updates a

value if this key is already present.

(iii) Multi-get (keyl, key2,

associated with the list of keys.

.. ' keyN), returns the list of values

(iv) Delete (key), removes a key and its value from the data store.

Limitations of key-value store architectural pattern are:

(i) No indexes are maintained on values, thus a subset of values is not

searchable.

(ii) Key-value store does not provide traditional database capabilities, such as

atomicity of transactions, or consistency when multiple transactions are

executed simultaneously. The application needs to implement such

capabilities.

(iii) Maintaining unique values as keys may become more difficult when the

volume of data increases. One cannot retrieve a single result when a key•

value pair is not uniquely identified.

(iv) Queries cannot be performed on individual values. No clause like 'where'

in a relational database usable that filters a result set.

Table 3.2 gives a comparison between traditional relational data model with

the key-value store model.

Table 3.2 Traditional relational data model vs. the key-value store model

Traditional relational model

Key-value store model

Result set based on row values Queries return a single item

Values of rows for large datasets are indexed No indexes on values

Same data type values in columns Any data type values

Typical uses of key-value store are: (i) Image store, (ii) Document or file store,

(iii) Lookup table, and

(iv) Query-cache.

Riak is open-source Erlang language data store. It is a key-value data store

system. Data auto-distributes and replicates in Riak. It is thus, fault tolerant and

reliable. Some other widely used key-value pairs in NoSQL DBs are Amazon's

DynamoDB,Redis (often referred as Data Structure server), Memcached and its

flavours, Berkeley DB, upscaledb (used for embedded databases), project

Voldemort and Couchbase.

Concept of Hash Key The following example explains the hash and key-value

pairs associated with a hash in traditional data.

EXAMPLE 3.2

Consider an example. Assume that student name is key, k. Each student

grade sheet entry has a number of values or set of (secondary) key-value

pairs. For example, semester grade point average (SGPAs) values and

cumulative grade point average (CGPA) value. How will the hash function be

used?

SOLUTION

A hash function generates an index, Ik for k. Ik should ideally be unique and

should uniquely map to k. Ik is a number with few digits only, compared to a

number of characters (0-255 bytes) in the main key k used as input for the

hash function. Assume that total 20 numbers of entries are present between

slots indices between 00 to 99. Student name may consist of several

characters, but index will be just two digits.

Hash table refers to using associated key-value pairs. A set of pairs retrieve by

using a hash key. The hash key is a computed index using hash function for a

column. The analytics may use the hash table. The table contains hash keys in

the table-columns. The entries (values) across an array of slots (also called

buckets). The buckets correspond to the key for the pairs at column. The values

are in the associated rows of that column.

3.3.2 Document Store

Characteristics of Document Data Store are high performance and flexibility.

Scalability varies, depends on stored contents. Complexity is low compared to

tabular, object and graph data stores.

Following are the features in Document Store:

1. Document stores unstructured data.

2. Storage has similarity with object store.

3. Data stores in nested hierarchies. For example, inJSON formats data model

[Example 3.3(ii)], XML document object model (DOM), or machine-readable

data as one BLOB. Hierarchical information stores in a single unit called

document tree. Logical data stores together in a unit.

4. Querying is easy. For example, using section number, sub-section number

and figure caption and table headings to retrieve document partitions.

5. No object relational mapping enables easy search by following paths from

the root of document tree.

6. Transactions on the document store exhibit ACID properties.

Typical uses of a document store are: (i) office documents, (ii) inventory store,

(iii) forms data, (iv) document exchange and (v) document search.

The demerits in Document Store are incompatibility with SQL and complexity

for implementation. Examples of Document Data Stores are CouchDB and

MongoDB.

Real-life Datasets Section 10.3 will describe a very large real-life dataset for Big

Data analytics as an examples. An application later analyses the structures in

csv, json or other, and creates data stores in new forms (Sections 10.3.2 to

10.3.4). Runs in next step ETL, analytics or other functions. (Sections 10.4 to

10.6). This feature is called late binding (schema-on-read, or schema-on-need).

CSV and JSON File Formats CSV data store is a format for records [Example 1.9

and Example 3.3(i)]. CSV does not represent object-oriented databases or

hierarchical data records.]SON and XML represent semistructured data, object•

oriented records and hierarchical data records.]SON (lava Script Object

Notation) refers to a language format for semistructured data. JSON represents

object-oriented and hierarchical data records, object, and resource arrays in

JavaScript.

The following example explains the CSV and]SON object concept and aspects

of CSV andJSON file formats.

EXAMPLE3.3

Assume Preeti gave examination in Semester 1 in 1995 in four subjects. She

gave examination in five subjects in Semester 2 and so on in each

subsequent semester. Another student, Kirti gave examination in Semester

1 in 2016 in three subjects, out of which one was theory and two were

practical subjects. Presume the subject names and grades awarded to them.

(i) Write two CSV files for cumulative grade-sheets for both the students.

Point the difficulty during processing of data in these two files.

(ii) Write a file in]SON format with each student grade-sheet as an object

instance. How does the object-oriented and hierarchical data record in

]SON make processing easier?

SOLUTION

(i) Two CSV file for cumulative grade-sheets are as follows:

CSV file for Preeti consists of the following nine lines each with four

columns:

Semester, Subject Code, Subject Name, Grade

1, CSlOl, ""Theory of Computations?", 7.8.

1, CS102,1, ""Computer Architecture?", 7.8.

2, CS204, ""Object Oriented Programming?", 7 .2.

2, CS205, '"'Data Analytics?", 8.1.

The CSV file for Kirti consist of following five lines each with five

columns: Semester, Subject Type, Subject Code, Subject Name, Grade

1, Theory, EllOl, ""Analog Electronics?", 7.6.

1, Theory, El102,1, ""Principles of Analog Communication?", 7.5.

1, Theory, El103, ""Digital Electronics?", 7.8.

1, Practical, CS104, ""Analog ICs"", 7.2

1, Practical, CS105, ""Digital ICs'"', 8.4

A column head is a key. Number of key-value pairs are (4 x 9) = 36 for

preetiGradeSheet.csv and (5 x 5) = 25 for kirtiGradeSheet.csv.

Therefore, when processing student records, merger of both files into a

single file will need a program to extract the key-value pairs

separately, and then prepare a single file.

(ii) JSON gives an advantage of creating a single file with multiple

instances and inheritances of an object. Consider a single JSON file,

studentGradeSheetsjson for cumulative grade-sheets of many students.

Student_Grades object is top in the hierarchy. Each student_name object

is next in the hierarchy with object consisting of student name, each

with number of instances of subject codes, subject types, subject titles

and grades awarded. Each student name object-instance extends in

student grades object-instances.

Part of the file construct can be as follows:

0: {

_id: o,
m.asterfile: ~students_Grades~,

in:stancetype: ·~single'•,

mandatory: true,

..,description": "Uni.queLy identifies student grade master file Object

Students Gradea ~

~resourcedefs.,,.: {

~1/,l: {

_id:1,

name: ~studentNamen,

instancetype: ~multiple~,

~descriptionn: ~Identifies a semester of the studentName andn

re:aourcedefe: {

~120 0.... {

id:200

studentName: ~Kirti1•

instancetype: ~single'•

resourcedefs:

"'201.... {

id: 201 semester: ~1.,,.,

subjectType: ~Theory'••

subjectCode: ~EL101~,

subjectName: ~Analog Blectronicen

Grade: 7.6

type: '-'string",

''descriptLon" : ~ instance Grade for a subject Analog Blectronics~

}
·~2 02 ,. : {

_ id:202,

'-'203 {_id:203

semester: v.1 n
I

aubject'I'ype: ~Theory•

subjectCode: ~B1102n

subjectName: ~Principles of Analog Communication.,,.

Grade: 7.5, type= ~string"

}

{.-.
}

XML (extensible Markup Language) is an extensible, simple and scalable

language. Its self-describing format describes structure and contents in an easy

to understand format. XML is widely used. The document model consists of root

element and their sub-elements. XML document model has a hierarchical

structure. XML document model has features of object-oriented records. XML

format finds wide uses in data store and data exchanges over the network. An

XML document is semi-structured.

Document store appears quite similar to a key-value store and an object store.

They are complex in implementation and are SQL incompatible. They have no

object-relational layer for mapping and thus enable agile development of text

analytics. No sharding of data takes place into the tables. Although the values

stored as documents, follows structure and encoding of the managed data

The database stores and retrieves documents, such as XML,]SON, BSON

(Binary-encoded Script Object Notation (for objects)). The documents are self•

describing, hierarchical tree-structured consisting of maps, collections and

scalar values. The documents stored are similar to each other but do not have to

be the same. Some of the popular document data stores are CouchDB,MongoDB,

Terrastore, OrientDB and RavenDB.

Certain NoSQL DBs enable ACID rule-based transactions also. Examples of

document data stores are MongoDB,Apache Couchbase and MarkLogic.

CouchDBuses the JSON store data, HTTP APis for connectivity, JavaScript for

the query language and MapReduce for processing.

Document JSON Format CouchDB Database Apache CouchDB is an open•

source database. Its features are:

1. CouchDB provides mapping functions during querying, combining and

filtering of information.

2. CouchDB deploys JSON Data Store model for documents. Each document

maintains separate data and metadata (schema).

3. CouchDBis a multi-master application. Write does not require field locking

when controlling the concurrency during multi-master application.

4. CouchDBquerying language is JavaScript. Java script is a language which

documents use to transform.

5. CouchDB queries the indices using a web browser. CouchDB accesses the

documents using HTTP APL HTTP methods are Get, Put and Delete (Section

3.3.1).

6. CouchDB data replication is the distribution model that results in fault

tolerance and reliability.

Document JSON Format-MongoDB Database MongoDB Document database

provides a rich query language and constructs, such as database indexes

allowing easier handling of Big Data.

Example of Document in Document Store:

"'id.,,.: "'1001"

"'Student Name":

{

"'First": "'Ashish",

•Middle•: "'Kumar•,

•La.st• : •Ra.i"'

}

"'Category": "'Student",

"'Class•: •s.Tech.•,

•semester•: ~v1r•,
~Branchg: •computer Bngineeringg,

"'Mobile": "'12345"

}

The document store allows querying the data based on the contents as well.

For example, it is possible to search the document where student's first name is

"Ashish", Document store can also provide the search value's exact location. The

search is by using the document path. A type of key accesses the leaf values in

the tree structure. Since the document stores are schema-less, adding fields to

documents (XML or]SON) becomes a simple task.

Document Architecture Pattern and Discovering Hierarchical Structure

Following is example of an XML document in which a hierarchical structure

discovers later. Figure 3.5 shows an XML document architecture pattern in a

document fragment and document tree structure.

a

IR001i

<a>

<h>

»<.<cl> 4 </d>
<e> 7</e,, r-lb .>[,</ti>

co-

</o

<d.> 4 </d>

<f>6 </f;i,

I I] II II
4 7 4 6

(at XML doc:,ument fragment (b t Tree lll!flresell'taticm of 'k-agment

Figure 3.5 XML document architecture pattern

The document store follows a tree-like structure (similar to directory

structure in file system). Beneath the root element there are multiple branches.

Each branch has a related path expression that provides a way to navigate from

the root to any given branch, sub-branch or value.

XQuery and XPath are query languages for finding and extracting elements

and attributes from XML documents. The query commands use sub-trees and

attributes of documents. The querying is similar as in SQL for databases. XPath

treats XML document as a tree of nodes. XPath queries are expressed in the

form ofXPath expressions. Following is an example ofXPath expressions:

EXAMPLE 3.4

Give examples of XPath expressions. Let outermost element of the XML

document is a.

SOLUTION

An XPath expression / a/b/ c selects c elements that are children of b

elements that are children of element a that forms the outermost element

of the XML document.

An XPath expression / a/b[c=5] selects elements b and c that are children of

a and value of c element is 5.

An XPath expression / a[b/ c]/ d selects elements c and d where c is child of

b and b and d are children of a.

XML and JSON both are designed to form a simple and standard way of

describing different kinds of hierarchical data structures. They are popularly

used for storing and exchanging data. The following example explains the

concept of Document Store inJSON and XML for hierarchical records.

EXAMPLE 3.5

Give the structures of XML and JSON document fragments for a student

record.

SOLUTION

Following are the structures:

{ .;:;.student a>

~tudent~ : [

namev i t A[lhi.9h Jain

rollNo 234,5

}

{

• name i:r: Sancleep Joshi

IOllNo 1234G~

}

- st udent;»

~name>Ashish J'ain~/na.me:>

~IoLlNo.:>1.2345 ·"/roll.No""

,;,;.· :::i.tudent>

-<.~tudent>

..::name;.Sancleep Jof:;hei /name;,,

<roLlNo;;.1234 6 - /rollNo;r.

c../ s tu.dent -.

<·~tudent9>

··at JSON (b) .. 'l\IL equivalent

When compared with XML, JSON has the following advantages:

• XML is easier to understand but XML is more verbose than JSON.

• XML is used to describe structured data and does not include arrays,

whereas JSON includes arrays.

•]SON has basically key-value pairs and is easier to parse fromJavaScript.

• The concise syntax of]SON for defining lists of elements makes it

preferable for serialization of text format objects.

Document Collection A collection can be used in many ways for managing a

large document store. Three uses of a document collection are:

1. Group the documents together, similar to a directory structure in a file•

system. (A directory consists of grouping of file folders.)

2. Enables navigating through document hierarchies, logically grouping

similar documents and storing business rules such as permissions, indexes

and triggers (special procedure on some actions in a database).

3. A collection can contain other collections as well.

3.3.3 TabularData

Tabular data stores use rows and columns. Row-head field may be used as a key

which access and retrieves multiple values from the successive columns in that

row. The OLTP is fast on in-memory row-format data.

Oracle DBs provide both options: columnar and row format storages.

Generally, relational DB store is

in-memory row-based data, in which a key in the first column of the row is at a

memory address, and values in successive columns at successive memory

addresses. That makes OLTP easier. All fields of a row are accessed at a time

together during OLTP. Different rows are stored in different addresses in the

memory or disk. In-memory row-based DB stores a row as a consecutive

memory or disk entry. This strategy makes data searching and accessing faster

during transactions processing.

In-memory column-based data has the keys (row-head keys) in the first column

of each row at successive memory addresses. The next column of each row after

the key has the values at successive memory addresses. The values in the third

column of each row are at the next memory addresses in succession, and so on

up to N columns. The N can be a very large number. The column-based data

makes the OLAP easier. All fields of a column access together. All fields of a set

of columns may also be accessed together during OLAP. Different rows are

stored in different addresses in the memory or disk, but each row values are

now not at successive addresses. In-memory column-based DB store a column as

a consecutive memory or disk entry. This strategy makes the analytics

processing fast.

Following subsections describe NoSQL format data stores based on tabular

formats.

3.3.3.1 Column Family Store

Columnar Data Store A way to implement a schema is the divisions into

columns. Storage of each column, successive values is at the successive memory

addresses. Analytics processing (AP) In-memory uses columnar storage in

memory. A pair of row-head and column-head is a key-pair. The pair accesses a

field in the table.

All values in successive fields in a column consisting of multiple rows save at

consecutive memory addresses. This enables fast accesses during in-memory

analytics, which includes CPU accesses and analyses using memory addresses in

which values are cached from the disk before processing. The OLAP (on-line AP)

is also fast on in-memory column-format data. An application uses a

combination of row head and a column head as a key for access to the value

saved at the field.

Column-Family Data Store Column-family data-store has a group of columns as

a column family. A combination of row-head, column-family head and table•

column head can also be a key to access a field in a column of the table during

querying. Combination of row head, column families head, column-family head

and column head for values in column fields can also be a key to access fields of

a column. A column-family head is also called a super-column head.

Examples of columnar family data stores are HBase, BigTable, HyperTable and

Cassandra. The following example explains a column-family data store and why

OLAP is fast in-memory column data store in memory:

EXAMPLE 3.6

Consider Example 1.6(i). Assume in-memory columnar storage. Data for a

large number of ACVMs with an ACVM_ID each, store in column 1. Data for

each day sales at each ACVM for KitKat, Milk, Fruit and Nuts, Nougat and

Oreo store in Columns 2 to 6. Each row has six cells (ID -five sales data).

(i) How do the column key values store in memory?

(ii) How do the values store in the memory in columnar storage format?

(iii) How does analytics of each day's sales help?

(iv) Why do in-memory columnar storage result in fast computations

during analytics?

(v) How are a column family and column-family head (key) specified?

(vi) How do a column-families group specify?

(vii) How do row groups form? What is the advantage of division into sub•

groups?

SOLUTION

Assume the following columnar storage at memory:

(i) Column and row keys

Addresses 1000, 2000, 3000, , 6000 save the column keys. Address

1000 stores string 'ACVM_ID'. Then the adresses 1001, 1002, , 1999

store the row keys, means ACVM_IDs.

Chocolate name of five flavours store at addresses 2000, 3000, 4000,

5000, and 6000.

(ii) Column field values

Column 1 ACVM_IDs store at address 1001 to 1999 for 999 ACVMs. Sales

in a day for KitKat, Milk, Fruit and Nuts, Nougat and Oreo store at

addresses 2001 to 2999, 3001 to 3999, 4001 to 4999, 5001 to 5999, and

6001 to 6999.

Table 3.3 gives sample values in the columns for a day's sales data. The

table also gives the keys for row groups, rows (ACVM_IDs), a column

family group, two column families and five column heads for 5 flavours

of chocolates. The table gives a row group of just 100 rows, just for the

sale of assumption.

Figure 3.6 shows fields in columnar storage and addresses in memory.

The figure shows ACVM_IDs as well as each day's sales of each flavour

of chocolate at 999 ACVMs. Following are the addresses assigned to the

fruit

201 215 md 500 457 199 108 <no 222 117
Nub

3998 3999 4000 4001 4002 4999 4999 5000 5001 5002 ssss ssss 0000 6001 fi0,02

~--------······-----------··-······----·

values in fields of Table 3.3:

Table 3.3 Each day's sales of chocolates on 999ACVMs

ACVM_ID

Nestle Chocolate Flavours Group

Popular Flavours

Family

Costly Flavours Family

KitKat

Milk

Fruit and

Nuts

Nougat

Oreo

Row-group_l for IDs 1 to

100

1 360 150 500 101 222

2

289

175

457

145

317

....

Row-group_m for IDs 901

to 999

....

998 123 201

385 199

310

999 75 215 560 108 250

VFajelulde I ACVM _ ID , I 2

19981999 IXitlcat 1360 1289 I 11231 75 I ~k 1150 1,1s I
Address 1000 1001 1002 1998 1999 2000 2001 2001

I

2998 2999 3000 3001 .30,02
J

~....----,,-----,.~----,-~----.-~---~.....-~....----,...----,.~----.-~-.-~--.--~......----,...----,.~----.-~---.

,•••••••••••••••••••••••••••••••••••••••

Faniily1 Faniiy2

I-- '

BOO 801

I Cdumnfam<lyG"oqi 1 I

7000

Figure 3.6 Fields in columnar storage and addresses in memory.

(iii) An analytics application computes the results, such as (a) total sales of

each flavour, KitKat, Milk, Fruit and Nuts, Nougat and Oreo, each day,

(b) Each ACVM requirement for refilling at each ACVM each day, (c) ID

of maximum sales of chocolates each day, (d) cluster of ACVMs

showing highest sales, classification of ACVMs as low, moderate and

high sales.

(iv) Consider first address of sales data for KitKat, address., kk = 1001 of

machine ID, ACVMid at address, =1000. Total sales at all 999 ACVMs in

a day requires the sum of values between address 1001 to 1999.

Increment to the next address is fast when compared to the case when

during the execution the value addresses compute from a table of

pointers for them. When values are in the row storage format, the

chocolate KitKat sales data at the machines will be at addresses 1001,

1007, 1013, ... The table of pointers or computations of address., kk + n x

N + 1, where N is number of columns for each row, is required, and n =

0, 1, 2, ... , 998, 999. The processing takes longer compared to

instruction for increment of pointed address to next memory address.

Therefore, analytics of (a), (b), (c) and (d) is quicker fast in case of In•

memory columnar storage compared to row format storage in

memory.

(v) Columns in Table 3.3 for KitKat and Milk form a group as one family.

Columns for Fruit and Nuts, Nougat, and Oreo form a group as second

family. The key for one family is 'Popular Flavours Family' and second

family is 'Costly Flavours Family'. The keys of column families can save

at the addresses 800, 801, ...

(vi) Two column-families in Table 3.3, Popular Flavours Family and Costly

Flavours Family form a super group, 'Nestle Chocolate Flavours'. The

key for super group of column-families group is 'Nestle Chocolate

Flavours'. The keys of column-family super groups can save at the

addresses 700, 701, 702, ...

(vii) A set of fields in all column families for ACVMs, say of IDs 1 to 100 can

be grouped into row-group_l. Number of row-groups can then be

processed as separate sub-tables, parallelly in Big Data environment.

The keys of row groups can save at the addresses 600, 601, 602, ...

Columns Families Two of more columns in data-store group into one column

family. Table 3.3 considered two families.

Sparse Column Fields A row may associate a large number of columns but

contains values in few column fields. Similarly, many column fields may not

have data. Columns are logically grouped into column families. Column-family

data stores are then similar to sparse matrix data. Most elements of sparse

matrix are empty. Data stores at memory addresses is columnar-family based

rather than as row based. Metadata provide the column-family indices of not

empty column fields.

That facilitates OLAP of not empty column families faster. For example,

assume hash key in a column heading field and values in successive rows at one

column family. For another key, the values will be in another column family.

Grouping of Column Families Two or more column-families in data store form

a super group, called super column. Table 3.3 consists of one such group (super

column), 'Nestle Chocolate Flavours Group'.

Grouping into Rows When number of rows are very large then horizontal

partitioning of the table is a necessity. Each partition forms one row-group. For

example, a group of 1 million rows per partition. A row group thus has all

column data store in the memory for in-memory analytics. Practically, row

groups are chosen such that memory required for the group is above, say 10 MB

and below the maximum size which can cached and buffered in memory, say 1

GB for in-memory analytics.

Data caching, buffering in memory and storing back at disk takes time. So

frequent disk accesses remain controlled. Therefore, minimum row-group size

of 10 MB is practical (Table 3.3 considered a row group of just 100 rows for the

purpose of explaining the addressing and use of keys in a columnar-family data

store).

Characteristics of Columnar Family Data Store Columnar family data store

imbibes characteristics of very high performance and scalability, moderate level

of flexibility and lower complexity when compared to the object and graph

databases. Advantages of column stores are:

1. Scalability: The database uses row IDs and column names to locate a column

and values at the column fields. The interface for the fields is simple. The

back-end system can distribute queries over a large number of processing

nodes without performing any Join operations. The retrieval of data from

the distributed node can be least complicated by an intelligent plan of row

IDs and columns, thereby increasing performance. Scalability means

addition of number of rows as the number of ACVMs increase in Example

1.6(i). Number of processing instructions is proportional to the number of

ACVMs due to scalable operations.

2. Partitionability: For example, large data of ACVMs can be partitioned into

datasets of size, say

1 MB in the number of row-groups. Values in columns of each row-group,

process in-memory at a partition. Values in columns of each row-group

independently parallelly process in-memory at the partitioned nodes.

3. Availability: The cost of replication is lower since the system scales on

distributed nodes efficiently. The lack of Join operations enables storing a

part of a column- family matrix on remote computers. Thus, the data is

always available in case of failure of any node.

4. Tree-like columnar structure consisting of column-family groups, column

families and columns. The columns group into families. The column

families group into column groups (super columns). A key for the column

fields consists of three secondary keys: column-families group ID, column•

family ID and column-head name.

5. Adding new data at ease: Permits new column Insert operations. Trigger

operation creates new columns on an Insert. The column-field values can

add after the last address in memory if the column structure is known in

advance. New row-head field, row-group ID field, column-family group,

column family and column names can be created at any time to add new

data.

6. Querying all the field values in a column in a family, all columns in the family

or a group of column-families, is fast in in-memory column-family data

store.

7. Replication of columns: HDFS-compatiblecolumn-family data stores replicate

each data store with default replication factor= 3.

8. No optimization for Join: Column-family data stores are similar to sparse

matrix data. The data do not optimize for Join operations.

Column-family data store in a format in which store set of column family field•

values which are not empty (null or zero). Metadata of the matrix consists of

hash keys that reference each set distinctly.

Typical uses of column store are: (i) web crawling, (ii) large sparsely populated

tables and (iii) system that has high variance.

HDFS is highly reliable for very long running queries. However, IO operations

are slow. Columnar storage is a solution for faster IOs. Columnar storage in

memory stores the data actually required for the IOs. Only columns needing the

access load during execution. Also, a columnar-object data store can be

compressed or encoded. The encoding is according to the data type. Also, the

executions of different columns or column partitions can be in parallel at the

cluster data-nodes.

3.3.3.2 BigTable Data Store

Examples of widely used column-family data store are Google's BigTable, HBase

and Cassandra. Keys for row key, column key, timestamp and attribute uniquely

identify the values in the fields (Refer Example 2.4)

Following are features of a BigTable:

1. Massively scalable NoSQL. BigTable scales up to lOOs of petabytes.

2. Integrates easily with Hadoop and Hadoop compatible systems.

3. Compatibility with MapReduce, HBase APis which are open-source Big

Data platforms.

4. Key for a field uses not only row_ID and Column_ID (for example,

ACVM_ID and KitKat in Example 3.6) but also timestamp and attributes.

Values are ordered bytes. Therefore, multiple versions of values may be

present in the BigTable.

5. Handles million of operations per second.

6. Handle large workloads with low latency and high throughput

7. Consistent low latency and high throughput

8. APis include security and permissions

9. BigTable, being Google's cloud service, has global availability and its

service is seamless.

The following example explains the use of rowID, ColumID and Column

attributes in BigTable formats.

EXAMPLE 3.7

Consider Example 3.6. Consider column fields which have keys to access a

field not only by row ID and Column ID but also include the timestamp and

attributes in a row. Show the column-keys for accessing column fields of a

column.

SOLUTION

Table 3.4 gives keys for each day's sales of KitKat chocolates at ACVMs. First

row-headings are the column-keys.

Table 3.4 Each day's sales of KitKat chocolates at ACVMs

Co] umn-keys Kit K.alSaJesDalt' KllK.alSaJesNumber

3.3.3.3 RC File Format

Hive uses Record Columnar (RC) file-format records for querying. RC is the best

choice for intermediate tables for fast column-family store in HDFS with Hive.

Serializability of RC table column data is the advantage. RC file is DeSerializable

into column data. A table such as that shown in Example 3.6 can be partitioned

into row groups. Values at each column of a row group store as the RC record.

=~~========::c=

150 .5 1 1

175 457 145

The RC file records store data of a column in the row group (Serializability means

query or transaction executable by series of instructions such that execution

ensures correct results).

The following example explains the use of row groups in the RC file format for

column of a row group:

EXAMPLE 3.8

Consider Example 3.6. Practically, row groups have millions of rows and in•

memory between 10 MB and 1 GB. Assume two row groups of just two rows

each. Consider the following values given in Table 3.3.

Row-group_l for lDs J lo 2

123

75

Make a file in RC format.

Row- rou _mt'ol'" IDJi 998 to 999

Jg;; sm

:56 2 0

SOLUTION

The values in each column are the records in file for each row group. Each

row-group data is like a column of records which stores in the RC file.

Row group_J • I ' I I

9 .

..A..C. VM - ID

-t;;; Kit Kat
----===========1.....--

Milk
+--

Fruit and Nuts
::=============== ==============I.....--

... Nougat

...O..reo

RC file for row group_l will consists of records 1, 2; 360, 289; ..., 222, 317;

on serialization of column records. RC file for row group _m will consists of

l998, 999; 123, 75; ..., 310, 250;

3.3.3.4 ORC File Format

An ORC (Optimized Row Columnar) file consists of row-group data called stripes.

ORC enables concurrent reads of the same file using separate RecordReaders.

Metadata store uses Protocol Buffers for addition and removal of fields.1

ORC is an intelligent Big Data file format for HDFS and Hive.2 An ORC file

stores a collections of rows as a row-group. Each row-group data store in

columnar format. This enables parallel processing of multiple row-groups in an

HDFS cluster.

An ORC file consists of a stripe the size of the file is by default 256 MB. Stripe

consists of indexing (mapping) data in 8 columns, row-group columns data

(contents) and stripe footer (metadata). An ORC has two sets of columns data

instead of one column data in RC. One column is for each map or list size and

other values which enable a query to decide skipping or reading of the mapped

columns. A mapped column has contents required by the query. The columnar

layout in each ORC file thus, optimizes for compression and enables skipping of

data in columns. This reduces read and decompression load.

Lightweight indexing is an ORC feature. Those blocks of rows which do not

match a query skip as they do not map on using indices data at metadata. Each

index includes the aggregated values of minimum, maximum, sum and count

using aggregation functions on the content columns. Therefore, contents•

column key for accessing the contents from a column consists of combination of

row-group key, column mapping key, min, max, count (number) of column

fields of the contents column. Table 3.5 gives the keys used to access or skip a

contents column during querying. The keys are Stripe_ID, Index-column key,

and contents-column name, min, max and count.

Table 3.5 Keys to access or skip a content column in ORC file format

Stri _m

In ColuHmilJ I

lit: .otumn i lk.ej' I

Contents- tents Ccu:irerrlEi Count mum r

Colln.trnm name 1\-mliimum Maxiamm of content- tum!lil

value value lfie]ds

Index Co1LJHflill 2

Iadex column 2 ke·v I

Cotum1::r1-

name

Miniimll!lm 'Ma:d.ml'.l!m Cmtmf of IIIWll I

valrue value of colunnn rfie!ld.

Consider Example 3.6. ORC key to access during a query consist of not only

column head 'KitKat' (Table 3.3) but also column minimum and maximum sales

on an ACVM, count of number of fields in values 'KitKat'. Analytics operations

frequently need these values. Ready availability of these values from the index

data itself improves the throughput in Big Data HDFS environment. These values

do not need to compute again and again using aggregation functions, such as

min, max and count.

An ORC thus, optimizes for reading serially the column fields in HDFS

environment. The throughput increases due to skipping and reading of the

required fields at contents-column key. Reading less number of ORC file

content-columns reduces the workload on the NameNode.

3.3.3.5 Parquet File Formats

Parquet is nested hierarchical columnar-storage concept. Nesting sequence is

the table, row group, column chunk and chunk page. Apache Parquet file is

columnar-family store file. Apache Spark SQL executes user defined functions

(UDFs) which query the Parquet file columns (Section 5.2.1.3). A programmer

writes the codes for an UDF and creates the processing function for big long

queries.

A Parquet file uses an HDFS block. The block stores the file for processing

queries on Big Data. The file compulsorily consists of metadata, though the file

need not consist of data.

The Parquet file consists of row groups. A row-group columns data process in-

memory after data cache and buffer at the memory from the disk. Each row

group has a number of columns. A row group has Ncol columns, and row group

consists of Ncol column chunks. This means each column chunk consists of

values saved in each column of each row group.

A column chunk can be divided into pages and thus, consists of one or more

pages. The column chunk consists of a number of interleaved pages, Npg· A page

is a conceptualized unit which can be compressed or encoded together at an

instance. The unit is minimum portion of a chunk which is read at an instance

for in-memory analytics.

An ORC array <int> has two columns, one for array size and the other for

contents. Parquet format file does not consist of extra column per nesting level.

Similarly, ORC has two columns, one is for each Map, List size, min, max and the

second is for the contents. Parquet format file does not consist of extra column

per nesting level, just one column per leaf in the schema.

[Parquet in English means 'a floor covering made of small rectangular wooden

blocks (tiles) fitted together in a pattern. Similarly, Parquet objects have pages

as the tiles. Pages build a column chunk. Column chunks build a row group. Row

groups build the table. A page is like a tile consisting of column fields. The

values read or write at an instance or used for encoding or compression. The

values are not read separately from a page.]

Table 3.6 gives the keys used to access or skip the contents page. Three keys

are: (i) row-group _ID, (ii) column-chunk key and (iii) page key.

Table 3.6 Combination of keys for content page in the Parquet file format

oEu_nrn Chank .L key

P g 1 k Page ~ ke .r

Page m ilrey

R w-gr u.p_JD

Co tumn Chun .. 2 ,. y

Page Ike r P e 2 ke·
·,11,

Page key na

3.3.4 Object Data Store

An object store refers to a repository which stores the:

1. Objects (such as files, images, documents, folders, and business reports)

2. System metadata which provides information such as filename,

creation_date, last_modified, language_used (such as Java, C, C#, C++,

Smalltalk, Python), access permissions, supported query languages)

3. Custom metadata which provides information, such as subject, category,

sharing permissions.

Metadata enables the gathering of metrics of objects, searches, finds the

contents and specifies the objects in an object data-store tree. Metadata finds

the relationships among the objects, maps the object relations and trends.

Object Store metadata interfaces with the Big Data. API first mines the metadata

to enable mining of the trends and analytics. The metadata defines classes and

properties of the objects. Each Object Store may consist of a database. Document

content can be stored in either the object store database storage area or in a file

storage area. A single file domain may contain multiple Object Stores.

Data definition and manipulation, DB schema design, database browsing, DB

administration, application compilation and debugging use a programming

language.

Eleven Functions SupportingAPis An Object data store consists of functions

supporting APis for: (i) scalability, (ii) indexing, (iii) large collections, (iv)

querying language, processing and optimization (s), (v) Transactions, (vi) data

replication for high availability, data distribution model, data integration (such

as with relational database, XML, custom code), (vii) schema evolution, (viii)

persistency, (ix) persistent object life cycle, (x) adding modules and (xi) locking

and caching strategy.

Object Store may support versioning for collaboration. Object Store can be

created using IBM 'Content Platform Engine'. Creation needs installing and

configuring the engine (Engine is software which drives forward.). Console of

the engine makes creation of process easy. Amazon 53 and Microsoft Azure

BLOB support the Object Store.

Amazon S3 (Simple Storage Service) 53 refers to Amazon web service on the

cloud named 53. The 53 provides the Object Store. The Object Store differs from

the block and file-based cloud storage. Objects along with their metadata store

for each object store as the files. 53 assigns an ID number for each stored object.

The service has two storage classes: Standard and infrequent access. Interfaces

for 53 service are REST, SOAP and Bit Torrent. 53 uses include web hosting,

image hosting and storage for backup systems. 53 is scalable storage

infrastructure, same as used in Amazon e-commerce service. 53 may store

trillions of objects.

The following example lists Object Store development platforms:

EXAMPLE 3.9

List the functions of Minio, Riak, VERSANT Object Database (VOD),

GEMSTONE, Amazon 53 and Microsoft Azure BLOB that support using Object

Store APis.

SOLUTION

1. An open-source multi-clouds object storage server is Minic, which is API

compatible with Amazon 53 API and number of widely used public and

private clouds. Compatibility enables data export to 53 and usages of

APis.

2. Riak CS (Cloud Storage) is object storage management software on top of

Riak. It models on open-source distributed-database which is Amazon•

compliant. This means database exports to 53 and use 53 APis.

3. VOD consists of 11 functions supporting APis listed above. VOD enables

use by multiple concurrent users. VOD supports cross-platform

operating systems (OSs), such as Linux, Windows NT, AIX, HP-UX and

Solaris (both 32 and 64 bits for all platforms).

4. GEMSTONE Object DB APis development language is SmallTalk. The

platform supports in-memory DBs, object-oriented processing and

distributed caches. GEMSTONE provides cross platform support, OSs

AIX, Linux, MacOS and Solaris.

3.3.4.1 Object Relational Mapping

The following example explains object relational mapping.

EXAMPLE 3.10

How does an HTML object and XML based web service relate with tabular

data stores?

SOLUTION

Figure 3. 7 shows the object relational mapping of HTML document and XML

web services store with a tabular data store.

HfMl

XML Web

Se ice,

Using the Object Relet ona Mapplngs Using the Object Relationeil Meippinp

Figure 3.7 HTML document and XML web services

3.3.5 Graph Database

One way to implement a data store is to use graph database. A characteristic of

graph is high flexibility. Any number of nodes and any number of edges can be

added to expand a graph. The complexity is high and the performance is

variable with scalability. Data store as series of interconnected nodes. Graph

with data nodes interconnected provides one of the best database system when

relationships and relationship types have critical values.

Data Store focuses on modeling interconnected structure of data. Data stores

based on graph theory relation G = (E, V), where E is set of edges e1, e2, ••• and V

is set of vertices, v1, v2, •••, vn·

Nodes represent entities or objects. Edges encode relationships between

nodes. Some operations become simpler to perform using graph models.

Examples of graph model usages are social networks of connected people. The

connections to related persons become easier to model when using the graph

model.

The following example explains the graph database application in describing

entities relationships and relationship types.

EXAMPLE 3.11

Let us assume a car company represents a node entity, which has two

connected nodes comprising two

model entities, namely Hexa and Zest. Draw graph with directed lines,

joining the car company with two entities. (i) How do four directed lines

relate to four weeks and two directed lines? One directed line corresponds

to a car model. Only directed line corresponds to weekly total sales. (ii) How

will the yearly sales compute? (iii) Show the path traversals for

computations exhibit BASE properties.

SOLUTION

(i) Figure 3.8 shows section of a graph database for the sales of two car

models.

"""'Ae

:
of a \II~

~

Figure 3.8 Section of the graph database for car-model sales

(ii) The yearly sales compute by path traversals from nodes for weekly

sales to yearly sales data.

(iv) The path traversals exhibit BASE properties because during the

intermediate paths, consistency is not maintained. Eventually when all

the path traversals complete, the data becomes consistent.

Graph databases enable fast network searches. Graph uses linked datasets,

such as social media data. Data store uses graphs with nodes and edges

connecting each other through relations, associations and properties.

Querying for data uses graph traversal along the paths. Traversal may use

single-step, path expressions or full recursion. A relationship represents key. A

node possesses property including ID. An edge may have a label which may

specify a role.

Characteristics of graph databases are:

1. Use specialized query languages, such as RDF uses SPARQL

2. Create a database system which models the data in a completely different

way than the key-values, document, columnar and object data store

models.

3. Can have hyper-edges. A hyper-edge is a set of vertices of a hypergraph. A

hypergraph is a generalization of a graph in which an edge can join any

number of vertices (not only the neighbouring vertices).

4. Consists of a collection of small data size records, which have complex

interactions between graph-nodes and hypergraph nodes. Nodes represent

the entities or objects. Nodes use Joins. Node identification can use URI or

other tree-based structure. The edge encodes a relationship between the

nodes.

When a new relationship adds in RDBMS, then the schema changes. The data

need transfer from one field to another. The task of adding relations in graph

database is simpler. The nodes assign internal identifiers to the nodes and use

these identifiers to join the network. Traversing the joins or relationships is fast

in graph databases. It is due to the simpler form of graph nodes. The graph data

may be kept in RAM only. The relationship between nodes is consistent in a

graph store.

Graph databases have poor scalability. They are difficult to scale out on

multiple servers. This is due to the close connectivity feature of each node in the

graph. Data can be replicated on multiple servers to enhance read and the query

processing performance. Write operations to multiple servers and graph queries

that span multiple nodes, can be complex to implement.

Typical uses of graph databases are: (i) link analysis, (ii) friend of friend

queries, (iii) Rules and inference, (iv) rule induction and (v) Pattern matching.

Link analysis is needed to perform searches and look for patterns and

relationships in situations, such as social networking, telephone, or email

records (Sections 9.4 and 9.5). Rules and inference are used to run queries on

complex structures such as class libraries, taxonomies and rule-based systems.

Examples of graph DBs are Neo4J, AllegroGraph, HyperGraph, Infinite Graph,

Titan and FlockDB.Neo4J graph database enable easy usages by Java developers.

Neo4J can be designed fully ACID rules compliant. Design consists of adding

additional path traversal in between the transactions such that data consistency

is maintained and the transactions exhibit ACID properties.

Spark provides a simple and expressive programming model that includes

supports to a wide range of applications, including graph computation. Chapter

8 describes Graph Databases.

3.3.6 Variations of NoSQLArchitecturalPatterns

Six data architectures are SQL-table,key-value pairs, in-memory column-family,

document, graph and object. Selected architecture may need variations due to

business requirements. Business requirements are ease of using an architecture

and long-term competitive advantage. The following example explains the

requirements for the database of students of a University that offers multiple

courses in their various academic programmes for several years:

EXAMPLE 3.12

List the selection requirements for the database of University students in

successive years. The University runs various Under Graduate and Post

Graduate programmes. Students are registered to Multiple courses in a

programme.

SOLUTION

Following are the selection requirements:

1. Scalability: Since the University archives the data for several years, data

store should be scalable.

2. Search ability: Search of required information needs to be fast.

3. Quarrying ability: All applications need to query the data. Query

retrieves the required data among the Big Data of several years.

4. Security: Database needs security and fault tolerance.

5. Affordability: Open source is a requirement.

6. Interoperability: Needs ease in search from different platforms. Search

from any computer operating system, such as Windows, Mac, Linux,

Android and iOS should be feasible.

7. Importability: Database needs to import data from other platforms, such

as import of slides, video lectures, tutorials, e-books, webinars should be

facilitated in store.

8. Transformability: Queries may be written in one language and may

require transformation to another language, such as HTML.

Analysis of the above requirements suggests the document architecture

pattern will be more suitable.

Kelly-McCreary, co-founder of 'NoSQL Now' suggested that when selecting a

NoSQL-pattern, the pattern may need change and require variation to another

pattern(s). Some reasons for this are:

1. Focus changing from performance to scalability

2. Changing from modifiability to agility

3. Greater emphasis on Big Data, affording capacity, availability of support,

ability for searching and monitoring the actions

Steps for selecting a NoSQL data architectural pattern can be as follows:

1. Select an architecture

2. Perform a use-case driven difficulty analysis for each of the six

architectural patterns. Difficulties may be low, medium or high in the

following processes: (i) ingestion, (ii) validation of structure and its fields,

(iii) updating process using batch or record by record approach, (iv)

searching process using full text or by changing the sorting order, and (v)

export the reports or application results in HTML, XML or]SON.

3. Estimate the total efforts for each architecture for all business

requirements.

Process the choice of architecture using trade-off. For example, between the

MongoDBdocument data store and Cassandra column-family data store.

Self-Assessment Exercise linked to LO 3.2

1. Compare traditional relational model and key-value pairs model.

2. When will you use the document data store?

3. Why is metadata must in a NoSQL Data Store?

4. How do interactions among graph nodes and hypergraph nodes

differentiate?

5. List and compare the features of BigTable, RC, ORC and Parquet data

stores.

6. What are the characteristics of the object data store model?

7. Data architecture pattern can be selected from among the six

architectures, namely relational SQL table, CLAP-suitable in-memory

column, key-value pairs, column-family, document and graph DBs.

Explain with an example, how and when each of these is used.

3.4 l NOSQL TO MANAGE BIG DATA

The following subsections describe how to use a NoSQL

data store to manage Big Data.

3.4.1 Using NoSQLto Manage Big Data

NoSQL dab stm@

:m:aft'agemeirrrtt. applica·tiHs

and h1adling1 probleffilsriliil

Bi~ Data

NoSQL (i) limits the support for Join queries, supports sparse matrix like

columnar-family, (ii) characteristics of easy creation and high processing speed,

scalability and storability of much higher magnitude of data (terabytes and

petabytes).

NoSQL sacrifices the support of ACID properties, and instead supports CAP and

BASE properties (Sections 3.2.1.1 and 3.2.3). NoSQL data processing scales

horizontally as well vertically.

3.4.1.1 NoSQL Solutions for Big Data

Big Data solution needs scalable storage of terabytes and petabytes, dropping of

support for database Joins, and storing data differently on several distributed

servers (data nodes) together as a cluster. A solution, such as CouchDB,

DynamoDB,MongoDBor Cassandra follow CAP theorem (with compromising the

consistency factor) to make transactions faster and easier to scale. A solution

must also be partitioning tolerant.

Characteristics of Big Data NoSQL solution are:

1. High and easy scalability: NoSQL data stores are designed to expand

horizontally. Horizontal scaling means that scaling out by adding more

machines as data nodes (servers) into the pool of resources (processing,

memory, network connections). The design scales out using multi-utility

cloud services.

2. Support to replication: Multiple copies of data store across multiple nodes of

a cluster. This ensures high availability, partition, reliability and fault

tolerance.

3. Distributable: Big Data solutions permit sharding and distributing of shards

on multiple clusters which enhances performance and throughput.

4. Usages of NoSQL servers which are less expensive. NoSQL data stores require

less management efforts. It supports many features like automatic repair,

easier data distribution and simpler data models that makes database

administrator (DBA) and tuning requirements less stringent.

5. Usages of open-source tools: NoSQL data stores are cheap and open source.

Database implementation is easy and typically uses cheap servers to

manage the exploding data and transaction while RDBMS databases are

expensive and use big servers and storage systems. So, cost per gigabyte

data store and processing of that data can be many times less than the cost

ofRDBMS.

6. Support to schema-less data model: NoSQL data store is schema less, so data

can be inserted in a NoSQL data store without any predefined schema. So,

the format or data model can be changed any time, without disruption of

application. Managing the changes is a difficult problem in SQL.

7. Support to integrated caching: NoSQL data store support the caching in

system memory. That increases output performance. SQL database needs a

separate infrastructure for that.

8. No inflexibility unlike the SQL/RDBMS, NoSQL DBs are flexible (not rigid)

and have no structured way of storing and manipulating data. SQL stores

in the form of tables consisting of rows and columns. NoSQL data stores

have flexibility in following ACID rules.

3.4.1.2 Types of Big Data Problems

Big Data problems arise due to limitations of NoSQL and other DBs. The

following types of problems are faced using Big Data solutions.

1. Big Data need the scalable storage and use of distributed servers together

as a cluster. Therefore, the solutions must drop support for the database

Joins

2. NoSQL database is open source and that is its greatest strength but at the

same time its greatest weakness also because there are not many defined

standards for NoSQL data stores. Hence, no two NoSQL data stores are

equal. For example:

(i) No stored procedures in MongoDB(NoSQL data store)

(ii) GUI mode tools to access the data store are not available in the market

(iii) Lack of standardization

(iv) NoSQL data stores sacrifice ACID compliancy for flexibility and processing

speed.

A comparison of NoSQL with SQL/RDBMS shows that NoSQL data model are

schema-less, no pre-defined schema, multiple data architecture patterns,

complex to implement vertical scalability, variable consistency and very week

adherence to ACID rules. Table 3. 7 gives a comparison.

Table 3.7 Comparison ofNoSQLwith SQL/RDBMS

Features NoSQL Data store SQL/RDBMS

Model Schema-less model Relational

Schema

Dynamic schema Predefined

Types of data

architecture

patterns

Key/value based, column-family based, document

based, graph based, object based

Table based

Scalable

Horizontally scalable
Vertically

scalable

Use ofSQL

No Yes

Dataset size

preference

Prefers large datasets

Large dataset

not preferred

Consistency

Variable Strong

Vendor support

Open source Strong

ACID properties

May not support, instead follows Brewer's CAP

theorem or BASE properties

Strictly follows

Self-Assessment Exercise linked to LO 3.3

1. Why does Big Data need scalable storage and uses distributed servers

together as a cluster?

2. Why does Big Data solution possess CAP or BASE and may drop support for

ACID properties?

3. Why does a Big Data solution drop support for the database Joins?

4. Compare NoSQL data stores with SQL databases.

3.5 l SHARED-NOTHING ARCHITECTURE FOR BIG DATA TASKS

The columns of two tables relate by a relationship. A relational algebraic

equation specifies the relation. Keys share between two or more SQL tables in

RDBMS. Shared nothing (SN) is a cluster architecture. A node does not share

data with any other node.

Big Data store consists of SN architecture. Big Data

store, therefore, easily partitions into shards. A

partition processes the different queries on data of the

different users at each node independently. Thus, data

processes run in parallel at the nodes. A node

maintains a copy of running-process data. A

coordination protocol controls the processing at all SN

nodes. An SN architecture optimizes massive parallel

data processing.

9h 21red-1r1otlriii ng
arclmit"ed:,u re. choosing a
d istri burt:i,on m odel, rn :;:ist@~•

S:lal\i'f! versl!Jls 1pee:r-to-Jleer.
and knO'W,ledge of ifm1u
wa:y5 lby 'llrrtlcih NoSQ L
lhandlestliile. Bill] Daita,

1pro1DlerITTs

Data of different data stores partition among the number of nodes (assigning

different computers to deal with different users or queries). Processing may

require every node to maintain its own copy of the application's data, using a

coordination protocol. Examples are using the partitioning and processing are

Hadoop, Flink and Spark.

The features of SN architecture are as follows:

1. Independence: Each node with no memory sharing; thus possesses

computational self-sufficiency

2. Self-Healing: A link failure causes creation of another link

3. Each node functioning as a shard: Each node stores a shard (a partition of

large DBs)

4. No network contention.

3.5.1 Choosing the Distribution Models

Big Data requires distribution on multiple data nodes at clusters. Distributed

software components give advantage of parallel processing; thus providing

horizontal scalability. Distribution gives (i) ability to handle large-sized data,

and (ii) processing of many read and write operations simultaneously in an

application. A resource manager manages, allocates, and schedules the

resources of each processor, memory and network connection. Distribution

increases the availability when a network slows or link fails. Four models for

distribution of the data store are given below:

3.5.1.1 Single Server Model

mailto::ist@~

Simplest distribution option for NoSQL data store and access is Single Server

Distribution (SSD) of an application. A graph database processes the

relationships between nodes at a server. The SSD model suits well for graph DBs.

Aggregates of datasets may be key-value, column-family or BigTable data stores

which require sequential processing. These data stores also use the SSD model.

An application executes the data sequentially on a single server. Figure 3.9(a)

shows the SSD model. Process and datasets distribute to a single server which

runs the application.

3.5.1.2 Sharding Very Large Databases

Figure 3.9(b) shows sharding of very large datasets into four divisions, each

running the application on four i,j, k and l different servers at the cluster. DBi,

DBj, DBk and DB1 are four shards.

P.P "catic
requi" ed da:ta:sets

disbiibuted per

st:.a:rnce

Smile~
ru 1f, grthe

app ic:a . om

D'Bi o:rn

 Sen,erj

~

~

ID'Bkon

~rv,er,t

Servers

u k I
irn ac uster

[a]

Figure 3.9 (a) Single server model (b) Shards distributed on four servers

in a cluster.

The application programming model in SN architecture is such that an

application process runs on multiple shards in parallel. Sharding provides

horizontal scalability. A data store may add an auto-sharding feature. The

performance improves in the SN. However, in case of a link failure with the

application, the application can migrate the shard DB to another node.

3.5.1.3 Master-Slave Distribution Model

A node serves as a master or primary node and the other nodes are slave nodes.

Master directs the slaves. Slave nodes data replicate on multiple slave servers in

mongod

morngod

mongod B-EJ

Master Slave Distribution (MSD) model. When a process updates the master, it

updates the slaves also. A process uses the slaves for read operations. Processing

performance improves when process runs large datasets distributed onto the

slave nodes. Figure 3.10 shows an example of MongoDB. MongoDB database

server is mongod and the client is mongo.

Master-Slave ReplicationProcessing performance decreases due to replication

in MSD distribution model. Resilience for read operations is high, which means

if in case data is not available from a slave node, then it becomes available from

the replicated nodes. Master uses the distinct write and read paths.

Complexity Cluster-based processing has greater complexity than the other

architectures. Consistency can also be affected in case of problem of significant

time taken for updating.

I I

I I

Figure 3.10 Master-slave distribution model. Mongo is a client and

mongod is the server

3.5.1.4 Peer-to-Peer Distribution Model

Peer-to-Peer distribution (PPD) model and replication show the following

characteristics: (1) All replication nodes accept read request and send the

responses. (2) All replicas function equally. (3) Node failures do not cause loss of

write capability, as other replicated node responds.

Cassandra adopts the PPD model. The data distributes among all the nodes in a

cluster.

Performance can further be enhanced by adding the nodes. Since nodes read

and write both, a replicated node also has updated data. Therefore, the biggest

advantage in the model is consistency. When a write is on different nodes, then

Dbk<00

Ncrnle la

l\'e,p catto
i"ii du~ r l

write inconsistency occurs.

Figure 3.11 shows the PPD model.

AppUa s

l

i

Rs licatlon

Dbl on

~P icatfo Dbi,an

 · 1111 iDI · e:t l Server ~2 iJ1 cl - r 3 N~delS

Figure3.11 Shards replicating on the nodes, which does read and write

operations both

3.5.1.5 Choosing Master-Slave versus Peer-to-Peer

Master-slave replication provides greater scalability for read operations.

Replication provides resilience during the read. Master does not provide

resilience for writes. Peer-to-peer replication provides resilience for read and

writes both.

Sharing Combining with Replication Master-slave and sharding creates

multiple masters. However, for each data a single master exists. Configuration

assigns a master to a group of datasets. Peer-to-peer and sharding use same

strategy for the column-family data stores. The shards replicate on the nodes,

which does read and write operations both.

3.5.2 Ways of HandlingBig Data Problems

Figure 3.12 shows four ways for handling Big Data problems.

computations.

For spGiiMf ng up

the ri!spoose on

read requests

Vhen !!)at. Sforl!'

is at bigE!r sizE!

Data blocb in a

dustier

For hi

performance

from queries

whlt;h span at
multiple nodes

SeparatirfJg

the concerns.

in evaluation

of query

Figure 3.12 Four ways for handling big data problems

Following are the ways:

1. Evenly distribute the data on a cluster using the hash rings: Consistent hashing

refers to a process where the datasets in a collection distribute using a

hashing algorithm which generates the pointer for a collection. Using only

the hash of Collection_ID, a Big Data solution client node determines the

data location in the cluster. Hash Ring refers to a map of hashes with

locations. The client, resource manager or scripts use the hash ring for

data searches and Big Data solutions. The ring enables the consistent

assignment and usages of the dataset to a specific processor.

2. Use replication to horizontally distribute the client read-requests: Replication

means creating backup copies of data in real time. Many Big Data clusters

use replication to make the failure-proof retrieval of data in a distributed

environment. Using replication enables horizontal scaling out of the client

requests.

3. Moving queries to the data, not the data to the queries: Most NoSQL data stores

use cloud utility services (Large graph databases may use enterprise

servers). Moving client node queries to the data is efficient as well as a

requirement in Big Data solutions.

4. Queries distribution to multiple nodes: Client queries for the DBs analyze at

the analyzers, which evenly distribute the queries to data nodes/ replica

nodes. High performance query processing requires usages of multiple

nodes. The query execution takes place separately from the query

evaluation (The evaluation means interpreting the query and generating a

plan for its execution sequence).

Self-Assessment Exercise linked to LO 3.4

1. List pros and cons of distribution using sharding.

2. List characteristics of master-slave distribution model.

3. List the benefits of peer-to-peer nodes data distribution model.

4. How is a hash ring used in the distribution of Big Data?

3.6 ! MONGODB DATABASE

MongoDBis an open source DBMS. MongoDBprograms

create and manage databases. MongoDB manages the · cmgoliJJB am'bases am:d

collection and document data store. MongoDB queryrnfrTlilmtillilds

functions do querying and accessing the required

information. The functions include viewing, querying, changing, visualizing and

running the transactions. Changing includes updating, inserting, appending or

deleting.

MongoDB is (i) non-relational, (ii) NoSQL, (iii) distributed, (iv) open source, (v)

document based,

(vi) cross-platform, (vii) Scalable, (viii) flexible data model, (ix) Indexed, (x)

multi-master (Section 3.5.1.3), and (xi) fault tolerant. Document data store in

)SON-like documents. The data store uses the dynamic schemas.

The typical MongoDB applications are content management and delivery

systems, mobile applications, user data management, gaming, e-commerce,

analytics, archiving and logging.

Features Following are features of MongoDB:

1. MongoDB data store is a physical container for collections. Each DB gets its

own set of files on the file system. A number of DBs can run on a single

MongoDB server. DB is default DB in MongoDB that stores within a data

folder. The database server of MongoDBis mongod and the client is mongo.

2. Collection stores a number of MongoDB documents. It is analogous to a

table of RDBMS. A collection exists within a single DB to achieve a single

purpose. Collections may store documents that do not have the same

fields. Thus, documents of the collection are schema-less. Thus, it is

possible to store documents of varying structures in a collection.

Practically, in an RDBMS, it is required to define a column and its data

type, but does not need them while working with the MongoDB.

3. Document model is well defined. Structure of document is clear, Document is

the unit of storing data in a MongoDBdatabase. Documents are analogous

to the records of RDBMS table. Insert, update and delete operations can be

performed on a collection. Document useJSON (lavascript Object Notation)

approach for storing data. JSON is a lightweight, self-describing format

used to interchange data between various applications. JSON data basically

has key-value pairs. Documents have dynamic schema.

4. MongoDBis a document data store in which one collection holds different

documents. Data store in the form of JSON-style documents. Number of

fields, content and size of the document can differ from one document to

another.

5. Storing of data is flexible, and data store consists of JSON-like documents.

This implies that the fields can vary from document to document and data

structure can be changed over time; JSON has a standard structure, and

scalable way of describing hierarchical data (Example 3.3(ii)).

6. Storing of documents on disk is in BSON serialization format. BSON is a

binary representation of]SON documents. The mongo JavaScript shell and

MongoDB language drivers perform translation between BSON and

language-specific document representation.

7. Querying, indexing, and real time aggregation allows accessing and analyzing

the data efficiently.

8. Deep query-ability-Supports dynamic queries on documents using a

document-based query language that's nearly as powerful as SQL.

9. No complex Joins.

10. Distributed DB makes availability high, and provides horizontal scalability.

11. Indexes on any field in a collection of documents: Users can create indexes

on any field in a document. Indices support queries and operations. By

default, MongoDB creates an index on the _id field of every collection.

12. Atomic operations on a single document can be performed even though

support of multi-document transactions is not present. The operations are

alternate to ACID transaction requirement of a relational DB.

13. Fast-in-place updates: The DB does not have to allocate new memory

location and write a full new copy of the object in case of data updates.

This results into high performance for frequent update use cases. For

example, incrementing a counter operation does not fetch the document

from the server. Here, the increment operation can simply be set.

14. No configurable cache: MongoDB uses all free memory on the system

automatically by way of memory-mapped files (The operating systems use

the similar approach with their file system caches). The most recently used

data is kept in RAM. If indexes are created for queries and the working

dataset fits in RAM, MongoDB serves all queries from memory.

15. Conversion/mapping of application objects to data store objects not needed

Dynamic Schema Dynamic schema implies that documents in the same

collection do not need to have the same set of fields or structure. Also, the

similar fields in a document may contain different types of data. Table 3.8 gives

the comparison with RDBMS.

Table 3.8 Comparison ofRDBMS and MongoDB databases

RDBMS

MongoDB

Database

Data store

Table Collection

Column Key

Value Value

Records / Rows / Tuple

Document/ Object

Joins

Embedded Documents

Index Index

Primary key

Primary key (_id) is default key provided by MongoDB itself

Any relational DB has a typical schema design that shows the number of tables

and the relationship between these tables. While in MongoDB, there is no

concept of relationship.

Replication Replication ensures high availability in Big Data. Presence of

multiple copies increases on different database servers. This makes DBs fault•

tolerant against any database server failure. Multiple copies of data certainly

help in localizing the data and ensure availability of data in a distributed system

environment.

MongoDBreplicates with the help of a replica set. A replica set in MongoDBis

a group of mongod (MongoDb server) processes that store the same dataset.

Replica sets provide redundancy but high availability. A replica set usually has

minimum three nodes. Any one out of them is called primary. The primary node

receives all the write operations. All the other nodes are termed as secondary.

The data replicates from primary to secondary nodes. A new primary node can

be chosen among the secondary nodes at the time of automatic failover or

maintenance. The failed node when recovered can join the replica set as

secondary node again. Replica set starts a mongod instance by specifying -

replSet option before running these commands from mongo (MongoDb Client).

Table 3.9 gives the commands used for replication (Recoverability means even on

occurrences of failures; the transactions ensure consistency).

Table 3.9 MongoDBClient commands related to replica set

Commands

Description

rs.initiate() To initiate a new replica set

rs.conf () To check the replica set configuration

rs.status() To check the status of a replica set

rs.add() To add members to a replica set

Figure 3.13 shows a replicated dataset after creating three secondary members

from a primary member.

Figure 3.13 Replicated set on creating secondary members

Auto-sharding Sharding is a method for distributing data across multiple

machines in a distributed application environment. MongoDBuses sharding to

provide services to Big Data applications.

A single machine may not be adequate to store the data. When the data size

increases, do not provide data retrieval operation. Vertical scaling by increasing

the resources of a single machine is quite expensive. Thus, horizontal scaling of

the data can be achieved using sharding mechanism where more database

servers can be added to support data growth and the demands of more read and

write operations.

Sharding automatically balances the data and load across various servers.

Sharding provides additional write capability by distributing the write load over

a number of mongod (MongoDBServer) instances.

(Figure 3.10) Basically, it splits the dataset and distributes them across multiple

DBs, called shards on the different servers. Each shard is an independent DB.

The whole collection of shards forms a single logical DB. If a DB has a 1 terabyte

dataset distributed amongst 20 shards, then each shard contains only 50 Giga

Byte of data.

A shard stores lesser data than the actual data and handles lesser number of

operations in a single instance. For example, to insert data into a collection, the

application needs to access only the shard that contains the specified collection.

A cluster can thus easily increase its capacity horizontally.

Data Types Table 3.10 gives data types which MongoDBdocuments support.

Table 3.10 Data types which MongoDBdocuments support

Type

Description

Double

Represents a float value.

String

UTF-8 format string.

Object

Represents an embedded document.

Array

Sets or lists of values.

Binary

data

String of arbitrary bytes to store images, binaries.

Object id

Objectlds (MongoDB document identifier, equivalent to a primary key) are:

small, likely unique, fast to generate, and ordered. The value consists of 12-

bytes, where the first four bytes are for timestamp that reflects the instance

when Objectld creates.

Boolean

Represents logical true or false value.

Date

BSON Date is a 64-bit integer that represents the number of milliseconds

since the Unix epoch (Jan 1, 1970).

Null

Represents a null value. A value which is missing or unknown is Null.

Regular

Expression

RegExp maps directly to a JavaScript RegExp

32-bit

integer

Numbers without decimal points save and return as 32-bit integers.

Time stamp

A special timestamp type for internal MongoDB use and is not associated

with the regular date type. Timestamp values are a 64-bit value, where first

32 bits are time, t (seconds since the Unix epoch), and next 32 bits are an

incrementing ordinal for operations within a given second.

64-bit

integer

Number without a decimal point save and return as 64-bit integer.

Min key

MinKey compare less than all other possible BSON element values,

respectively, and exist primarily for internal use.

Max key

MaxKey compares greater than all other possible BSON element values,

respectively, and exist primarily for internal use.

Rich Queries and Other DB Functionalities MongoDB offers a rich set of

features and functionality compared to those offered in simple key-value stores.

They can be comparable to those offered by any RDBMS. MongoDB has a

complete query language, highly-functional secondary indexes (including text

search and geospatial), and a powerful aggregation framework for data analysis.

MongoDBprovides functionalities and features for more diverse data types than

a relational DB, and at scale. Table 3.11 gives a comparison of features.

Table 3.11 Comparison of features MongoDBwith respect to RDBMS

Features RDBMS MongoDB

Rich Data Model No Yes

Dynamic Schema No Yes

Typed Data Yes Yes

Data Locality No Yes

Field Updates Yes Yes

Complex Transactions Yes No

Auditing Yes Yes

Horizontal Scaling No Yes

The ability to derive a document-based data model is also a distinct advantage

of MongoDB. The method of storing data in the form of BSON (Binary JSON)

helps to store the data in a very rich way while can hold arrays and other

documents.

MongDB Query Language and Database Commands Table 3.12 gives MongoDB

commands for querying the DBs.

Table 3.12 MongoDBquerying commands

Command

Functionality

Mongo

Starts MongoDB; (*mongo is MongoDB client). The default

database in MongoDB is test.

db.help()

Runs help. This displays the list of all the commands.

db.stats()

Gets statistics about MongoDB server.

Use <database name)

Creates database

Db

Outputs the names of existing database, if created earlier

Dbs

Gets list of all the databases

db.dropDatabase ()

Drops a database

db .database

name.insert()

Creates a collection using insert ()

db.sdatabase name>.

find()

Views all documents in a collection

db.edatabase

name=.update ()

Updates a document

db.sdatabase
name> .remove ()

Deletes a document

Following explains the sample usages of the commands:

To Create database Command use - use command creates a database; For

example, Command use lego creates a database named leqo. (A sample

database is created to demonstrate subsequent queries. The Lego is an

international toy brand). Default database in MongoDBis test.

To see the existence of databaseCommand db - db command shows that lego

database is created.

To get list of all the databasesCommand show dbs - This command shows

the names of all the databases.

To drop database Command db. dropDatabase () - This command drops a

database. Run use lego command before the db. dropDatabase () command to

drop lego Database. If no database is selected, the default database test will be

dropped.

To create a collection Command insert () -To create a collection, the easiest

way is to insert a record (a document consisting of keys (Field names) and

Values) into a collection. A new collection will be created, if the collection does

not exist. The following statements demonstrate the creation of a collection

with three fields (ProductCategory, Productld and ProductName) in the lego:

db. lego. insert

"'ProductCategory" : 11,Ai:rplane'',

~Product!dn: 10725,

HProductName.,..: ,..,Lost TempleP

To add array in a collection Command insert() - Insert command can also

be used to insert multiple documents into a collection at one time.

db. lego. insert

(

1'ProductCatego:ry" : 1'Airplanep,

''Product Id"": 1072 5,

"'ProductName ,. : "Loo t Temple''

L
{

.,,ProductCategory" : ,,,Airplane1',

.,,ProductidP: 31047,

... ProductName ... : ''Propeller Plane""

L
{

~ProductCatego:ry": ~Airplane ... 1

1'Productld": 31049,
1'Produc tN ame" : "'Twin Spin He1 i copt e rP

To view all documents in a collection Command db. <database

name>. find () - Find command is equivalent to select query of RDBMS. Thus,

"select * from lego" can be written as db. lego. find () in MongoDB.

MongoDBcreated unique objecteld ("_id") on its own. This is the primary key of

the collection. Command db. <database name>. find() .pretty() gives a

prettier look.

To update a document Command db. <database name>. update () - Update

command is used to change the field value. By default, multi attribute is false. If

{multi: true} is not written then it will update only the first document.

To delete a document Command db. <database name>. remove () - Remove

command is used to delete the document. The query db. <database

name>. remove (("ProdctID": 10725)) removes the document whose

productld is 10725.

Self-Assessment Exercise linked to LO 3.5

1. Compare MongoDBand RDBMS?

2. Give example that demonstrates the uses of various data types of MongoDB.

3. List the functions ofMongoDB query language and database commands.

4. How will you consider MongoDB as complete query language, which

imbibes highly-functional secondary indices (including text search and

geospatial), and provides a powerful aggregation framework for data

analysis?

3.7 ! CASSANDRA DATABASES

Cassandra was developed by Facebook and released by

Apache. Cassandra was named after Trojan

mythological prophet Cassandra, who had classical

allusions to a curse on oracle. Later on, IBM also

released the enhancement of Cassandra, as open

Cassandra dratabases,
d~ta-mod~I a ndl C!li~n1ts,
and 1i1IT1te,;ira,fli,on tith1 t!Tite
IHadoop

source version. The open source version includes an IBM Data Engine which

processes No SQL data store. The engine has improved throughput when

workload of read-operations is intensive.

Cassandra is basically a column family database that stores and handles

massive data of any format including structured, semi-structured and

unstructured data.

Apache Cassandra DBMS contains a set of programs. They create and manage

databases. Cassandra provides functions (commands) for querying the data and

accessing the required information. Functions do the viewing, querying and

changing (update, insert or append or delete), visualizing and perform

transactions on the DB.

Apache Cassandra has the distributed design of Dynamo. Cassandra is written

in Java. Big organizations, such as Facebook, IBM, Twitter, Cisco, Rackspace,

eBay, Twitter and Netflix have adopted Cassandra.

Characteristics of Cassandra are (i) open source, (ii) scalable (iii) non•

relational (v) NoSQL (iv) Distributed (vi) column based, (vii) decentralized, (viii)

fault tolerant and (ix) tuneable consistency.

Features of Cassandra are as follows:

1. Maximizes the number of writes - writes are not very costly (time

consuming)

2. Maximizes data duplication

3. Does not support Joins, group by, OR clause and aggregations

4. Uses Classes consisting of ordered keys and semi-structured data storage

systems

5. Is fast and easily scalable with write operations spread across the cluster.

The cluster does not have a master-node, so any read and write can be

handled by any node in the cluster.

6. Is a distributed DBMS designed for handling a high volume of structured

data across multiple cloud servers

7. Has peer-to-peer distribution in the system across its nodes, and the data

is distributed among all the nodes in a cluster (Section 3.5.1.4).

Data Replication Cassandra stores data on multiple nodes (data replication) and

thus has no single point of failure, and ensures availability, a requirement in

CAP theorem. Data replication uses a replication strategy. Replication factor

determines the total number of replicas placed on different nodes. Cassandra

returns the most recent value of the data to the client. If it has detected that

some of the nodes responded with a stale value, Cassandra performs a read

repair in the background to update the stale values.

Components at Cassandra Table 3.13 gives the components at Cassandra and

their description.

Table 3.13 Components of cassandra

Component

Description

Node

Place where data stores for processing

Data Center

Collection of many related nodes

Cluster

Collection of many data centers

Commit log

Used for crash recovery; each write operation written to commit log

Mem-table Memory resident data structure, after data written in commit log, data

write in mem-table temporarily

SST able

When mem-table reaches a certain threshold, data flush into an SSTable

disk file

Bloom filter

Fast and memory-efficient, probabilistic-data structure to find whether an

element is present in a set, Bloom filters are accessed after every query.

Scalability Cassandra provides linear scalability which increases the

throughput and decreases the response time on increase in the number of nodes

at cluster.

Transaction Support Supports ACID properties (Atomicity, Consistency,

Isolation, and Durability).

Replication Option Specifies any of the two replica placement strategy names.

The strategy names are Simple Strategy or Network Topology Strategy. The

replica placement strategies are:

1. Simple Strategy: Specifies simply a replication factor for the cluster.

2. Network Topology Strategy: Allows setting the replication factor for each

data center independently.

Data Types Table 3.14 gives the data types built into Cassandra, their usage and

descriptions

Table 3.14 Data types built into Cassandra, their usage and description

CQL

Type

Description

ascii US-ASCII character string

bigint 64-bit signed long integer

blob Arbitrary bytes (no validation), BLOB expressed in hexadecimal

boolean True or false

counter Distributed counter value (64-bit long)

decimal Variable-precision decimal integer, float

double

64-bit IEEE-754 double precession floating point integer, float

float 32-bit IEEE-754 single precession floating point integer, float

inet

IP address string in 1Pv4 or 1Pv6 format, used by the python-cql driver and

CQL native protocols

int

32-bit signed integer

list

A collection of one or more ordered elements

map

AJSON-style array of literals: {literal: literal, literal: literal ... }

set

A collection of one or more elements

text

UTF-8 encoded string

timestamp

Date plus time, encoded as 8 bytes since epoch integers, strings

varchar

UTF-8 encoded string

varint

Arbitrary-precision integer

Cassadra Data Model Cassandra Data model is based on Google's BigTable

(Section 3.3.3.2). Each value maps with two strings (row key, column key) and

timestamp, similar to HBase (Example 2.4). The database can be considered as a

sparse distributed multi-dimensional sorted map. Google file system splits the

table into multiple tablets (segments of the table) along a row. Each tablet,

called METAl tablet, maximum size is 200 MB, above which a compression

algorithm used. MET AO is the master-server. Querying by METAO server

retrieves a METAl tablet. During execution of the application, caching of

locations of tablets reduces the number of queries.

Cassandra Data Model consists of four main components: (i) Cluster: Made up

of multiple nodes and keyspaces, (ii) Keyspace: a namespace to group multiple

column families, especially one per partition,

(iii) Column: consists of a column name, value and timestamp and (iv) Column•

family: multiple columns with row key reference. Cassandra does keyspace

management using partitioning of keys into ranges and assigning different key•

ranges to specific nodes.

Following Commands prints a description (typically a series of DDL

statements) of a schema element or the cluster:

DESCRIBE CLUSTER

DESCRIBE SCHEMA

DESCRIBE KEYSPACES

DESCRIBE KEYSPACE <keyspace name>

DESCRIBE TABLES

DESCRIBE TABLE <table name>

DESCRIBE INDEX <index name>

DESCRIBE MATERIALIZED VIEW <view name>

DESCRIBE TYPES

DESCRIBE TYPE <type name>

DESCRIBE FUNCTIONS

DESCRIBE FUNCTION <function name>

DESCRIBE AGGREGATES

DESCRIBE AGGREGATE <aggregate function name>

Consistency Command CONSISTENCY shows the current consistency level.

CONSISTENCY <LEVEL> sets a new consistency level. Valid consistency levels are

ANY, ONE, TWO, THREE,QUORUM, LOCAL_ONE, LOCAL_QUORUM,

EACH_QUORUM, SERIAL AND LOCAL_SERIAL. Following are their meanings:

1. ALL: Highly consistent. A write must be written to commitlog and

memtable on all replica nodes in the cluster.

2. EACH_QUORUM: A write must be written to commitlog and memtable on

quorum of replica nodes in all data centers.

3. LOCAL_QUORUM: A write must be written to commitlog and memtable on

quorum of replica nodes in the same center.

4. ONE: A write must be written to commitlog and memtable of at least one

replica node.

5. TWO, THREE: Same as One but at least two and three replica nodes,

respectively.

6. LOCAL_ONE: A write must be written for at least one replica node in the

local data center.

7. ANY: A write must be written to at least one node.

8. SERIAL: Linearizable consistency to prevent unconditional update.

9. LOCAL_SERIAL: Same as Serial but restricted to the local data center.

Keyspaces A keyspace (or key space) in a NoSQL data store is an object that

contains all column families of a design as a bundle. Keyspace is the outermost

grouping of the data in the data store. It is similar to relational database.

Generally, there is one keyspace per application. Keyspace in Cassandra is a

namespace that defines data replication on nodes. A cluster contains one

keyspace per node.

Create Keyspace Command CREATE KEYSPACE <Keyspace Name> WITH

replication = {'class': '<Strategy name>', 'replication factor': '<No. of

replicas>'}AND durable_ writes= '<TRUE/FALSE>';

CREATE KEY sPACE statement has attributes replication with option class

and replication factor, and durable_write.

Default value of durable_writes properties of a table is set to true. That

commands the Cassandra to use Commit Log for updates on the current

Keyspace true or false. The option is not compulsory.

1. ALTER KEYSPACE command changes (alter) properties, such as the number

of replicas and the durable_writes of a keyspace: ALTER KEYSPACE

<Keyspace Name> WITH replication = ['class': '<Strategy name>',

'replication factor': '<No. of replicas>'};

2. DESCRIBE KEYSPACE command displays the existing keyspaces.

3. DROP KEYSPACE command drops a keyspace:

4. Re-executing the drop command to drop the same keyspace will result in

configuration exception.

5. Use KEYSPACE command connects the client session with a keyspace.

Cassandra Query Language (CQL) Table 3.15 gives the CQL commands and their

functionalities.

Table 3.15 CQL commands and their functionalities

Command

Functionality

CQLSH

A command line shell for interacting with Cassandra through

CQL

HELP

Runs help. This displays the list of all the commands

CONSISTENCY

Shows the current consistency level

EXIT

Terminate the CQL shell

SHOW HOST

Displays the host

SHOW VERSION

Displays the details of current cqlsh session such as host,

Cassandra version, or data type assumptions

CREATE KEYSPACE

<Keyspace Name>

Creates keyspace with a name

DESCRIBE KEYSPACE

<Keyspace Name>

Displays the keyspace with a name

ALTER KEYSPACE

<Keyspace Name>

Modifies keyspace with a name

DROP KEYSPACE

=Keyspace Name>

Deletes keyspace with a name

CREATE (TABLE I
COLUMNFAMILY)

Creates a table or column family

COLLECTIONS

Lists the Collections

The following example provides the sample usages of the commands.

EXAMPLE3.13

Give the examples of usages of various CQL commands.

SOLUTION

(1) Create Table Command: CREATE TABLE command creates a table in the

current keyspace:

CREATE (TABLE COLUMNFAMILY) <tablename>

('<column-definition>', '<column-definition>')

(WITH <option> AND <option>);

Primary key is a column used to uniquely identify a row. Therefore,

defining a primary key is compulsory while creating a table. A primary

key is made of one or more columns of a table.

Example: Create a table Productinfo in the keyspace lego, with primary key

field Productld.

Use lego;

Create table Productinfo(Productid int primary

key, ProductType text);

(2) Describe Tables Command: DESCRIBE TABLE Command displays all the

tables in the current keyspace:

DESCRIBE TABLE <TABLE NAME>;

Example: Display the details of a table Productinfo:

DESCRIBE TABLE Productinfo;

(3) Alter Tables Command:

ALTER TABLE Command ALTER (TABLE COLUMNFAMILY)

<tablename> (ADD I DROP) <column name>

The above command adds a column in the table or to delete a column of

the table:

Example: Add a column dateOfManufacturing in the table Productinfo:

ALTER TABLE Product Info add dateOfManufacturing

times tamp;

* timestamp is a datatype used for date fields.

(4) Cassandra CURD Operations: (CURD-Create, Update, Read and Delete

data into tables) :

(a) Insert Command:

INSERT command creates data in a table:

INSERT INTO <tablename> (<columnl name>, <column2

name>) VALUES (<valuel>, <value2>) USING

<option>

(b) Update Command:

UPDATE command updates data in a table. The following keywords

are used while updating data in a table:

Where - This clause is used to select the row to be updated.

Set - Set the value using this keyword.

Must - Includes all the columns composing the primary key.

If a given row is unavailable, then UPDATE creates a new row.

UPDATE <tablename> SET <column name>= <new value>

<column name>= <value> WHERE <condition>

[A WHERE clause can be used only on the columns that are a part of

primary key or have a secondary index on them.]

(c) Select Command

SELECT command reads the data from a table. The command can

read a whole table, a single column, or a particular cell:

SELECT <column name(s)> FROM <Table Name>

To select all records:

SELECT* FROM <Table Name>

To select records that fulfils required condition:

SELECT <columnl, column2, .. > FROM <Table Name>

where <Condition>

Example: Select Product Type, Product Id, Product Name, and Product

Cost of Product whose Productld is 31047:

SELECT Product Type, Product Id, Product Name, and

Product Cost

from Productinfo where Productid 31047;

(d) Delete Command

DELETE command deletes data from a table:

DELETE FROM <identifier> WHERE <condition>;

Example: Delete row from a table where Product id is 31047:

DELETE FROM Productinfo WHERE Productid = 31047;

(5) Creating a Table with List

CREATE Table command is used for creating a table with a list.

The following query creates a table with two columns, one is the

primary key and the other has multiple items (List):

CREATE TABLE data (<column name>, <data type>

PRIMARY KEY, <column name list<data type>);

Example : Create a sample table Contactlnfo with three columns: Sno, name

and Emailid. To store multiple Email Ids, use a list:

create table Contactinfo (Sno int Primary key,

Name text, emailid list <text>);

(6) Insert Command for inserting data into a list

INSERT Command also inserts data into a list. To insert data into the

elements in a list, enter all the values separated by a comma within

square braces []:

INSERT INTO <table name> (columnl, column2,)

VALUES (valuel, value2, [list valuel, list value2,

... J)

Example: Insert data of three persons into the Contactlnfo Table:

Insert into Contactinfo

values

(Sno, Name, Email Id)

(1,

'rahul@yahoo.com']);

'Rahul', ['rahul@gmail.com',

mailto:rahul@yahoo.com
mailto:rahul@gmail.com

Insert into Contactinfo (Sno, Name, Email Id)

values (1, 'Geetika', ['geetika@gmail.com',

'geetika@yahoo.com']);

Insert into Contactinfo (Sno, Name, Email Id)

values (1, 'Deepika', ['deepika@gmail.com',

'deepika@yahoo.com']);

(7) Update Command for updating Data into a List

UPDATE command also updates data into a list:

UPDATE <table Name> SET <New data> where

<condition>.

Example : Add one more email Id to the emailld list in Contactlnfo table :

UPDATE Contactinfo SET emailid

['preeti@ymail.com'] where SNo=l.

emailid +

CassandraClient A relational database client connects to DB server using

drivers. Java JDBC driver API enables storing and retrieving data. Cassandra has

peer-to-peer distribution architecture. Several instances require the clients. The

driver enables the use of different languages for connecting to DBs. Cassandra

does not include the drivers.

A client-generation layer enables the database interactions. AVRO project

provides the client generation layer. Third party sources provide Cassandra

clients in Java, Ruby, C#, Python, Perl, PHP, C++, Scala and other languages. The

Cassandra client can be included in the applications.

CassandraHadoop SupportCassandra 2.1 has Hadoop 2 support. The setup and

configuration overlays a Hadoop cluster on the Cassandra nodes. A server is

configured for the NameNode andJobTracker. Each Cassandra node then installs

the TaskTracker and Data Node.

The nodes in the Cassandra cluster can read data from the data in the Data

Node in HDFS as well as from Cassandra. A client application sends the

MapReduce input to Job Tracker/Resource Manager. RM/JobTracker sends a

MapReduce request of job to the Task Trackers/Node Managers and clients such

mailto:geetika@gmail.com
mailto:geetika@yahoo.com
mailto:deepika@gmail.com
mailto:deepika@yahoo.com
mailto:preeti@ymail.com

as MapReduce and Pig. The Reducer output writes to Cassandra. The client gets

the results from Cassandra.

Self-Assessment Exercise linked to LO 3.6

1. List the differences between Cassandra, Google BigTable and HBase data

models.

2. Compare Cassandra and RDBMS.

3. List the data types used in Cassandra.

4. How are the Cassandra query language and database commands used?

5. List the components in Casandra and their uses.

6. Write the syntax to create keyspace in Cassandra. State when the ALTER

keyspace is used.

7. How are the Cassandra CQL collections used?

ACID properties

aggregation

application

availability

BASE

BigTable

BLOB

BSON

CAP theorem

Cassandra

client

cluster

column family

consistency

data architecture pattern

database

data model

data node

data tree

data type

de serialization

distributed database

distribution model

document data store

Dynamo DB

fixed table schema

hash ring

hierarchal record

indexing

Java object

Join

)SON

key-value pair

keyspace

Master-slave

MongoDB

Multi-master DB

NoSQL

object data store

OLAP

pattern

peer-to-peer

Persistency

Querying

RDBMS

relationship map

replication

Scalability

schema-less

serialization

server

sharding

shared nothing

sorted keys

SQL

transaction

XML

XPath

LO 3.1

• A new category of data stores is NoSQL (Not Only SQL) databases. NoSQL is

an altogether new approach of thinking about data stores.

• NoSQL data model offers relaxation in one or more of the ACID properties,

instead follows CAP theorem and BASE.

• NoSQL DBs possess greater flexibility for data manipulation (compared to

SQL).

• NoSQL data does not need fixed schema. The data model may drop support

to Joins in Big Data environment.

LO 3.2

• Key-value pairs data store can be used as Big Data NoSQL database .

• Key-value pair is a simplest way to implement a schema-less data store .

The pairs can store any data type in the value field. The store uses a

primary-key access; therefore, the store can be easily scaled up to large

data, and data retrieves fast using keys as the indices.

• NoSQL DB also stores the hierarchical information in a single unit, called

document store. 'Document' stores unstructured data. Data stores in nested

hierarchies. Data have no object-relational layer for the mapping.

Document data store can be at multiple NameNodes and thus enables

higher resources availability.

• Column-family data stores are similar to sparse matrix data. Columns are

logically grouped into column families. Column families can logically

group as super column. Data stores in memory are column-based than

row-based. This facilitates faster OLAP processing. The table can be

partitioned into row groups (or stripes). Data stores can be in columnar

data RC, ORC and Parquet formats.

• An object data store consists of functions for supporting using APis.

• Graph database with interconnected data nodes provides one of the best

database systems. They enable fast network searches.

• A selected architecture needs variations due to business requirements .

Business requirements are easy to use and have long-term competitive

advantage.

LO 3.3

• Big Data solution emphasizes on scalable storage of a much higher

magnitude of data (of terabytes and petabytes) by dropping support for

database Joins, storing data differently and using several distributed

servers (data nodes) together as a cluster.

• Big Data NoSQL solution provides high scalability, supports replication, no

schema or no fixed data model, support integrated caching: not inflexible

like SQL/RDBMS DBs and have flexibility in following ACID rules.

LO 3.4

• SN architecture features are independence, self-healing and no network

contention. Each node data functions as a shard of the DB.

• Distribution models are (i) single server, (ii) sharding, (iii) master-slave,

(iv) multi-master (v) peer-to-peer, and (vi) hash ring based.

LO 3.5

• MongoDBis (i) non-relational, (ii) distributed, (iii) open source, (iv) NoSQL,

(v) document-based,

(vi) Cross-platform, (vii) scalable, (viii) flexible, (ix) indexed, (x) deep

querying ability, (xi) scalable multi-master data store with no single points

of failure and (xii) provisions the data modeling flexibility.

• Querying, indexing and real-time aggregation functions access and analyze

the data efficiently, and conversion/mapping of application objects to

database objects is not needed.

LO 3.6

• Cassandra is (i) open source, (ii) scalable (iii) non-relational (iv) peer-to•

peer distributed system

(v) NoSQL (vi) column-based, (vii) decentralized, (viii) fault tolerant and

(ix) tunable consistency.

• Cassandra Data model is based on Google's BigTable. Each value maps with

two strings (row key, column key) and timestamp, similar to HBase.

• Cassandra data model consists of four main components: (i) Cluster: made

up of multiple nodes and keyspaces, (ii) Keyspace: a namespace to group

multiple column families, especially one per partition, (iii) Column:

consists of a column name, value and timestamp and (iv) Column-family:

multiple columns with row key reference.

I Objective Type Questions 1111
Select one correct-answeroption for each questionsbelow:

3.1 Big Data NoSQL data store (i) transactions show ACID properties, (ii) used

in distributed environment, (iii) NoSQL DBs possess increasing flexibility

for data manipulation, (iv) follows a fixed data storage schema (v) use the

concept ofJoins, and (vi) must follow CAP theorem.

(a) ii and iii

(b) all

(c) ii, iii and vi

(d) iii and iv

3.2 High scalability, flexibility and performance and low complexity are the

characteristics of

(i) key-value pair, (ii) document (iii) column-family, and (iv) graph

databases.

(a) only i and ii

(b) only i

(c) only ii

(d) iii and iv

3.3 The advantages of a key-value store are: (i) can store any data type in the

value field, (ii) stores the information as a BLOB of data (such as, text,

hypertext, images, video and audio), but does not return the same BLOB

when data is retrieved, (iii) scalability, (iv) reliability, (v) portability, and

(vi) low operational cost.

(a) all except i

(b) all

(c) all except ii

(d) ii to vi

3.4 An object data store consists of functions for supporting (i) scalability, (ii)

indexing, (iii) large collections, (iv) querying language, processing and

optimization (s), (v) transactions, (vi) data replication for high availability,

data distribution model, data integration (such as with relational database,

XML, custom code), (vii) schema evolution, (viii) persistency, (ix)

persistent object life cycle, (x) adding modules, (xi) locking and caching

strategy, and (xii) object store may support versioning for collaboration.

(a) i to v, ix to xiii

(b) all

(c) all except viii, ix ad xii

(d) all except iii, vi and viii

3.5 Graph database with interconnected data nodes (i) provides one of the best

data store system, (ii) provides one of the highly complex data store

system, (iii) enables fast network searches, (iv) uses linked datasets, (v)

used in social media data, (vi) consists of small data size records with

complex interactions between graph nodes but not between the

hypergraph nodes

(vii) uses graph with nodes and edges connecting each other through the

relations, associations and properties, and (viii) BASE properties.

(a) i, iii, iv and viii

(b) ii to v

(c) ii to vi

(d) all except vi

3.6 Selecting a NoSQL data architectural pattern can be as follows: (i)
performing a use-case driven difficulty analysis for all architectural
patterns. Assign the difficulties level, such as low, medium or high in
the following processes (iii) ingestion, (iv) validation of structure and
its fields,
(v) updating process using near real-time approach, (vi) searching
process using partial text or by changing the sorting order, (vii)
exporting the reports or application results in HTML, XML or JSON,
and estimating total efforts for each architecture for all the business
requirements.

(a) all

(b) all except v and vi

(c) i to v

(d) all except ii

3.7 Big Data solution emphasizes on scalable storage of a much higher

magnitude of data (of terabytes and petabytes) by (i) supporting database

Joins, (ii) storing data differently and using several distributed servers

(Data Nodes) together as a cluster, (iii) must perform transactions using

ACID properties, (iv) implementing CAP theorem without compromising

the consistency factor) to make transactions faster and easier to scale, and

(v) must be partitioning tolerant.

(a) ii and v

(b) all except i, iii

(c) all except iii and iv

(d) all

3.8 Big Data NoSQL solution: (i) have high and easily scalability, (ii) supports

replication, {iii) use multiple copies of data store across multiple nodes of

the cluster, (iii) maintains NoSQL Servers, (iv) NoSQL data store

implementation is easy and typically uses cheap servers to manage the

exploding data and transaction while RDBMS databases are expensive and

it uses big servers and storage systems, and (v) storing and processing data

cost per gigabyte in the case of NoSQL can be many times more than the

cost of RDBMS.

(a) i, ii and v

(b) all except i, iii

(c) all except iii and iv

(d) i to iv

3.9 Big Data NoSQL-solutionshould be (i) schema-less or not fixed data model,

(ii) without any predefined schema, {iii) the format or data model can be

changed any time, (iv) without application disruption and (v) with change

in management, (v) support integrated caching, and (vi) not inflexible like

SQL/RDBMS DBs.

(a) i to v

(b) all

(c) all except iii

(d) i to iv

3.10 A Big Data solution does the following: (i) unevenly distributes data on a

cluster, (ii) distributes using token rings, {iii) uses replication and vertical

distribution of the client read requests, (iv) creates backup copies of data

in batches, (v) moves queries to the data, and data to queries, (vi)

distributes queries to multiple nodes, and (vii) query execution takes place

separately from query evaluation.

(a) ii to iv

(b) vi and vii

(c) none

(d) iv to vii

3.11 MongoDBis (i) non-relational, (ii) distributed, (iii) open source, (iv) NoSQL,

(v) document-based, (vi) cross-platform, (vii) scalable, (viii) data modeling

inflexibility, (ix) indexed, and

(x) scalable multi-master data store with no single point of failure.

(a) all except viii

(b) all except v and vi

(c) i to vi

(d) i to vii

3.12 MongoDBfeatures are: (i) document model is well defined, (ii) structure of

document is clear, stores documents on disk in the (iii) BSON serialization

format, (iv) JSON format, and

(v) querying, indexing, real-time aggregation and allows accessing and

analyzing the data efficiently.

(a) all

(b) i, iii and iv

(c) all except iv

(d) iii, iv and v

3.13 Cassandra data model is based on (i) Google's BigTable. Each value maps

with two strings (row key, column key) and timestamp, similar to HBase,

(ii) graph database (iii) distributed

(iv) NoSQL (v) column-based, (vi) centralized, (vii) fault tolerant and (vii)

tuneable consistency.

(a) all

(b) i, iii and iv

(c) all except i

(d) all except ii and vi

3.14 Cassandra data model consists of four main components: (i) Cluster: made

up of multiple nodes and keyspaces, (ii) Keyspace: a namespace to group

multiple column families, especially one per partition, (iii) Column:

consists of a column name, value and timestamp, (iv) Column-family:

multiple columns with row key reference, (v) provides a prompt in

Cassandra query language shell (CQLSh) that allows keying and execution

of commands in Cassandra Query Language (CQL).

(a) i to iii

(b) ii and iii

(c) all

(d) i, ii and iv

3.15 Cassandra features are as follows: (i) maximizes the number of writes -

writes are not very costly (time consuming), (ii) maximizes data

duplication, (iii) does not support Joins, group by, OR clause and

aggregations, (iv) uses Classes consisting of ordered keys and semi•

structured data storage systems, (v) is fast and easily scalable with write

operations spread across the cluster, and (vi) the cluster does not have a

master node, so any read and write can be handled by any node in the

cluster.

(a) all except i and iii

(b) all

(c) all except iv

(d) all except iii and vi

II Review Questions 11:1
3.1 When should data store be NoSQL instead of relational database? Why do

Big Data analytics use NoSQL data stores? (LO 3.1)

3.2 How does NoSQL data store possess increasing flexibility in adding data?

(LO 3.1)

3.3 How does CAP theorem apply in distributed data models? How is it

applicable to NoSQL systems? What is eventual consistency in NoSQL

stores? (LO 3.1)

3.4 Compare NoSQL databases with SQL databases in terms of the data model,

schema, type of data architecture patterns, scalability, use of SQL Joins,

data size preferences, consistency, ACID properties and top IT companies

support. (LO 3.1)

3.5 Describe the pros and cons of (i) key-value data store, (ii) document data

store, (iii) object data store, and (iii) graph database. (LO 3.2)

3.6 Why should the column-family data store be used for the student grade•

sheets of a semester examinations showing semester subject grade-points

(SGPs) (between 1 and 10) and semester grade point averages (SGPAs)?

What does sparse data mean in student grade-sheets columnar data. (LO

3.2)

3.7 Describe the characteristics of column-family data stores. How do they suit

the OLAP operations? How does BigTable store the data? (LO 3.2)

3.8 Describe the pros and cons of (i) RC, (ii) ORC and (iii) Parquet file format

data stores.

3.9 Describe graph database characteristics. How are BASE properties

exhibited in graph DBs?

(LO 3.2)

3.10 How are replication and sharding used? Explain how does sharding help in

minimizing the downtime? (LO 3.3)

3.11 What are the features of shared-nothing (SN) architecture? How does Big

Data Store SN system partition? How does a partition process the different

queries? (LO 3.4)

3.12 Describe four ways for handling Big Data problems. (LO 3.4)

3.13 Explain MongoDB commands for querying the DBs? How can one achieve

transaction and locking in MongoDB? How will MongoDB command be

used to insert a document in a database called 'Toys' and collection called

'Train'? (LO 3.5)

3.14 Discuss the cluster and failover model in Cassandra. Compare the peer-to•

peer model that Cassandra supports with the master-slave model that

other data stores, such as MongoDBsupport. What are the pros and cons of

each model? (LO 3.5)

3.15 What are the important design considerations when using a column-family

data store like Cassandra? List and explain usages of data types built into

Cassandra. (LO 3.6)

3.16 List and explain usages of Cassandra Query Language (CQL) commands and

their functionalities. How does the table data store create using CQL? (LO

3.6)

II Practice Exercises 1111
3.1 List ten examples where NoSQL data stores are required. (LO 3.1)

3.2 Show the increasing flexibity in NoSQL DB of car company by appending

customer post-sales feedbacks, maintenance and service centre feedbacks

about the models, and the customer region-wise preference analysis

reports. (LO 3.1)

3 .3 A company manufactures and sells car through large number of

showrooms. Each car showroom records in main table and transaction

tables.

Assume that each week company records the car sells. The table data are

as follows:

Showroom
ID (SR_ID)

Week

Number

(counting

1.1.2018)

(wkNum)

Jagaur Land

Rover Sales

Number

(JLRSNum)

Hexa

Sales

Number

(HSNum)

Zest

Sales

Number

(ZSNum)

Nexon

Sales

Number

(NSNum)

Safari

Storme

Sales

Number

(SSSNum)

124 1 2 8 4 7

10

125 1 1 7 9 6 9

126 1 1 9 4 8

3

Jagaur Land Rover Cost

Rs. 0LRC)

Hexa Cost Rs. (HC)
Zest Cost
Rs. (ZC)

Nexon Cost
Rs. (NC)

Safari Storme Cost

Rs. (SSC)

20M

0.8M 0.75M 0.7M

lM

Write the (key/values) pairs in a week that estimate the total sales per

week per showroom.

(LO 3.2)

3.4 Recall Practice Exercise 2.6 and Exercise 3.3. Consider a car company

selling Jagaur Land Rover, Hexa, Zest, Nexon and Safari Storme models of

Car. Assign IDs as keys in rows 1 to 999999 and cloumn 1, row O column

head is 'show room ID'

Assume key (at column-head) row O corresponds to Jagaur Land Rover

Weekly Sales (JLRWS) in cloumn 2. JLRWS values for different showrooms

are in successive rows from row 1 to 999999. The values save in same

column at successive memory addresses starting from address 1000000.

How the total showrooms sales calculation of JLRWS will be faster than

row format? How will the addresses be assigned? (LO 3.2)

3.5 Geographic Information Systems (GIS), like Google Maps stores geographic

information in BigTable. How will the values be retrieved during the

following: (a) Identification of a location using its longitude and latitude

coordinates, (b) Storage of items once, and then provides multiple access

paths (queries) to let one view the data. (LO 3.2)

3.6 Using graph database model, how will the followings store: student id,

contact info, admission info, and five courses each in four semesters and

SGPs, SGPAs and CGPAs at the end of each semester and division awarded?

(LO 3.2)

3.7 Recall Example 3.12 which listed selection requirements for the data

architecture pattern the database of University students. Write logical

reasons for each. (LO 3 .2)

3.8 Listed selection requirements for the data architecture pattern for the

ACVMs Chocolate sales data [Table 3.3]. (LO 3.3)

3.9 Give two examples each of usages of single server, sharding, master-slave

and peer-to- peer distribution models. (LO 3.4)

3.10 Make a table in which left column gives the outputs using MongoDB

querying commands. Fill the right column of the table giving action on the

command. (LO 3.5)

3.11 Complete the following table fields for actions directed by Cassandra these

command.

Actions directed by the command

Code

Create a Table with Set:

Table name: Contactinfo

Fields: Sno (primary key), Name, set of Contact numbers)

Inserting 3 Datasets in table Contactinfo, and read them

Updating a set, adding one more contact number to person with Sno = 1, and

reading all the data.

Collections: Map Collection

Actions directed by the command

Code

Create a Table with Map

Table name: Contactinfo

Fields: Sno (primary key), Name, Map of address)

Inserting 3 Datasets in table Contactinfo, and read them

Updating a Map, adding one more address to person with Sno = 1, and reading all

the data.

(LO 3.6)

3.12 Recapitulate Practice Exercise 3.3. Consider car company selling]agaur

Land Rover, Hexa, Zest, Nexon and Safari Storme models of cars. How will the

CQL commands be used to create the table for weekly sales log at multiple

car company showrooms?

CCSR-

id

Date
(DT)

mmddyy

]a9aur Land

Rover Weekly

Sales (JLRWS)

Hexa

Weekly

Sales

(HWS)

Zest

Weekly

Sales

(ZWS)

Nexon

Weekly

Sales

(NWS)

Safari Storme

Weekly Sales

(SSWS)

220 121217

28 23

138 148

50

10 121217 49 34 164 115 38

122 121217 40 141 123 37 88

16 121217

13 25 127 158 174

28 121217

12 122 116 128

57

-

-

-

-

-

-

-

- -

- - - - -

(LO 3.6)

1 https:/ / cwiki.apache.org/ confluence/ display/Hive/LanguageManual

+ORC#LanguageManualORC-ORCFileFormat

2 http:/ /www.semantikoz.com/blog/ orc-intelligent-big-data-file-format-

hadoop-hive/

Note:

o o • Level 1 & Level 2 category

o • • Level 3 & Level 4 category

• • • Level 5 & Level 6 category

http://www.semantikoz.com/blog/orc-intelligent-big-data-file-format-

Chapter 4

MapReduce, Hive and Pig

LEARNING OBJECTIVES

After studying this chapter,you will be able to:

LO 4 .1 Get understanding of MapReduce, map tasks using the key-value store,

grouping by keys, reduce tasks using combiners, and coping with

node failures

LO 4.2 Get knowledge of composing MapReduce programs for calculations,

such as counting,

summing, and algorithms for relational algebraic operations,

projections, unions, intersections, natural joins, grouping,

aggregation operations and the matrix multiplication

LO 4 .3 Get understanding of Hive, architecture, installation, comparison of

Hive data store with traditional databases

LO 4.4 Apply HiveQL for querying, sorting, aggregating, querying scripts,

MapReduce Joins and sub-queries

LO 4.5 Get knowledge of Pig architecture, Grunt shell commands, data model,

Pig Latin, developing scripts and extensibility using UDFs.

RECALL FROM EARLIER CHAPTERS

Hadoop stores and processes data on large clusters (thousands of nodes) of

commodity hardware. Hadoop is a software framework for writing distributed

applications. Hadoop processes Big Data (multi-terabyte datasets) in parallel

and in a reliable and fault-tolerant way. The Hadoop distribution model is a

method in which both computations and the data distribute and handle large•

sized data.

(Section 2.3)

MapReduce functions are an integral part of the Hadoop physical

organization. MapReduce is a programming model for the distributed

computing environment. Applications using MapReduce v2, process huge

amounts of data, in parallel, on a large number of data nodes reliably (Sections

2.4 and 2.5).

Figure 2.2 showed the main components and the ecosystem components of

Handoop, such as AVRO, Zookeeper, Ambari, HBase, Hive, Pig and Mahout

(Section 2.6).

This chapter focuses on details of MapReduce, Hive and Pig programming

and their use in Big Data applications.

4.1 ! INTRODUCTION

The data processing layer is the application support layer, while the

application layer is the data consumption layer in Big-Data architecture design

(Figure 1.2). When using HDFS, the Big Data processing layer includes the APis

of Programs such as MapReduce and Spark.

The application support layer includes HBase which creates column-family

data store using other formats such as key-value pairs or JSON file (Section

3.3.3). HBase stores and processes the columnar data after translating into

MapReduce tasks to run in HDFS.

The support layer also includes Hive which creates SQL-like tables. Hive

stores and processes table data after translating it into MapReduce tasks to

run in HDFS. Hive creates SQL-like tables in Hive shell. Hive uses HiveQL

processes queries, ad hoc (unstructured) queries, aggregation functions and

summarizing functions, such as functions to compute maximum, minimum,

average of selected or grouped datasets. HiveQL is a restricted form of SQL.

The support layer also includes Pig. Pig is a data-flow language and an

execution framework (Section 2.6.4). Pig enables the usage of relational

algebra in HDFS. MapReduce is the processing framework and YARN is the

resource managing framework (Section 2.6.5).

Figure 4.1 shows Big Data architecture design layers: (i) data storage, (ii) data

processing and data consumption, (iii) support layer APis for MapReduce, Hive

and Pig running on top of the HDFS Data Store, and (v) application tasks. Pig is

a dataflow language, which means that it defines a data stream and a series of

transformations.

Hive and Pig are also part of the ecosystem (Figure 4.1). Big Data storage and

application-support APis can use Hive and Pig for processing data at HDFS.

Processing needs mapping and finding the source file for data. File is in the

distributed data store. Requirement is to identify the needed data-block in the

cluster. Applications and AP Is run at the data nodes stored at the blocks.

The smallest unit of data that can be stored or retrieved from the disk is a

block. HDFS deals with the data stored in blocks. The Hadoop application is

responsible for distributing the data blocks across multiple nodes. The tasks,

therefore, first convert into map and reduce tasks. This requirement arises

because the mapping of stored values is very important. The number of map

tasks in an application is handled by the number of blocks of input files.

Suppose stored files have key-value pairs. Mapping tells us whether the key

is in file or in the value store, in a particular cluster and rack. Reduce task uses

those values for further processing such as counting, sorting or aggregating.

Application sub-task assigned for processing needs only the outputs of

reduce tasks. For example, a query needs the required response for a data

store. In Example 2.3, a sub-task may just need total daily sales of specific

chocolate flavours to compute the analytics and data visualization.

Figure 4.1 Big Data architecture design layers

A reader must learn the following new selected key terms and their

meanings besides the key terms given in the previous three chapters.

MapReduce programming model refers to a programming paradigm for

processing Big Data sets with a parallel and distributed environment using

map and reduce tasks.

YARN refers to provisioning of running and scheduling parallel programs for

map and reduce tasks and allocating parallel processing resources for

computing sub-tasks running in parallel at the Hadoop for a user application.

The YARN resources management enables large-scale data analytics using

multiple machines (data nodes) in the HDFS cluster.

Script refers to a small program (codes up to few thousand lines of code) in a

language used for purposes such as query processing, text processing, or

refers to a small code written in a dynamic high-level general-purpose

language, such as Python or PERL.

SQL-like scripting language means a language for writing script that processes

queries similar to SQL. SQL lets us: (i) write structured queries for processing

in DBMS, (ii) create and modify schema, and control the data access, (iii)

create client for sending query scripts, and create and manage server

databases, and (iv) view, query and change (update, insert or append or delete)

databases.

NoSQL DBs refers to DBs with no prior fixed schema, schema-less models, and

databases which possess increasing flexibility for data manipulation.

NoSQL data model refers to ones offering relaxation in one or more of the ACID

properties (Atomicity, Consistence, Isolation and Durability) of the database. A

theorem known as CAP ~onsistency, Availability and r.artitions) states that

out of three properties, at least two must be present for the

application/service/process. NoSQL relies upon another model known as the

BASE model. This model has three principles: Basic availability (the availability

of data even in the presence of multiple failures), Soft state (data consistency

is the developer's problem and should not be handled by the database),

Eventual consistency (when no new changes occur on existing data, eventually

all accesses to that data will return the last updated value).

Data-architecture patterns refer to formats used in NoSQL DBs. The examples are

Key-Value Data Stores, Object Data Stores, Column family Big Data Stores,

Tabular Data Stores and Document Stores.

Key-Value Data Store refers to a simplest way to implement a schema-less

database. A string called key maps to values in a large data string or BLOB

(basic large object). Key-value stores use primary key access. Therefore, the

storage easily scales up and data retrievals are fast.

Object Data Store refers to a repository which stores the (i) objects (such as files,

images, documents, folders and business reports), (ii) system metadata which

provides information such as filename, creation_date, last_modified,

language_used (such as Java, C, C#, C++, Smalltalk, Python),

access_permissions, supported Query languages, and (iii) Custom metadata

which provides information such as subject, category and sharing permission.

Tabular Data Store refers to table, column-family or BigTable like Data Store.

Column family Big Data store refers to a storage in logical groups of column

families. The storage may be similar to columns of sparse matrix. They use a

pair of row and column keys to access the column fields.

BigTable Data Store is a popular column-family based Data Store. Row key,

column key and timestamp uniquely identify a value. Google BigTable, HBase

and Cassandra DBs use the BigTable Data Store model.

Document Store means a NoSQL DB which stores hierarchical information in a

single unit called document. Document stores data in nested hierarchies; for

example in XML document object model,]SON formats data model or

machine-readable data as one BLOB.

Tuple means an ordered list of elements. An n-tuple relates to set theory, a

collection (sequence) of "n" elements. Tuples implement the records.

Collection means a well-defined collection of distinct objects in a set, the

objects of a set are the elements. That also means a store within a single DB to

achieve a single purpose. A collection may be analogous to a table ofRDBMS.A

collection in a database also refers to storage of a number of documents. A

collection may store documents which do not have the same fields. Thus,

documents in the collection are schema-less. Thus, it is possible to store

documents of varying structures in a collection.

Aggregate refers to collection of data sets in the key value, column family or

BigTable data stores which usually require sequential processing.

Aggregation function refers to a function to find counts, sum, maximum,

minimum, other statistical or mathematical function using a collection of

datasets, such as column or column-family.

Sequence refers to an enumerated collection of objects, (the repetitions can be

there) which contain members similar to a set. Sequence length equals the

number of elements (can also be infinite). Sequence should reflect an order

which matters, unlike a set.

Document refers to a container for the number of collections. The container

can be a unit of storing data in a database, such as MongoDB.

Projection refers to a unary operation (single input or operand) written as ITattri,

attr2, ... , attrn where (attrl, attr2, ... , attm) is a set of n attribute names. Projection

returns a set obtained by selecting only the n attributes. A generalized

projection includes a method using attribute values. ITstudent_Id, sum (GPA), sum (SGPA)·

Natural join is where two tables join based on all common columns. Both the

tables must have the same column name and the data type.

Inner join is the default natural join. It refers to two tables that join based on

common columns mentioned using the ON clause. Inner Join returns all rows

from both tables if the columns match.

Node refers to a place for storing data, data block or read or write

computations.

Data center in a DB refers to a collection of related nodes. Many nodes form a

data center or rack.

Cluster refers to a collection of many nodes.

Keyspace means a namespace to group multiple column families, especially one

per partition.

Indexing to a field means providing reference to a field in a document of

collections that support the queries and operations using that index. A DB

creates an index on the _id field of every collection.

This chapter describes MapReduce programming, Hive and Pig APis in the

MapReduce programming model and the HDFS data storage environment.

Section 4.2 describes the MapReduce paradigm, map tasks using key-value

pairs, grouping by keys and reduce tasks using partitioning and combiners in

the application execution framework. Section 4.3 describes algorithms for

using MapReduce. Section 4.4 describes Hive, architecture, installation and

comparison with traditional databases. Section 4.5 describes HiveQL, querying

the data, sorting and aggregating, scripts, joins and sub-queries. Section 4.6

introduces Pig architecture, grunt shell commands, data model, Pig Latin,

developing scripts and extensibility using UDFs.

4.21 MAPREDUCE MAP TASKS, REDUCE TASKS AND

MAPREDUCE EXECUTION

Big data processing employs the MapReduce

programming model. A Job means a MapReduce

program. Each job consists of several smaller units,

called MapReduce tasks. A software execution

framework in MapReduce programming defines the

apReduce. map, tasks usilllg

~he k.ey-vatue. store. g r:ou
pilliig iby k:@ys, r@cluce_

tasks using combineirs. and

copi'ng1 wi~h node faJtures

mailto:k:@ys
mailto:r@cluce_

parallel tasks. The tasks give the required result. The Hadoop MapReduce

implementation uses Java framework.

Figure 4.2 shows MapReduce programming model.

In ll D ID ut Da

Figure 4.2 MapReduce Programming Model

The model defines two important tasks, namely Map and Reduce. Map takes

input data set as pieces of data and maps them on various nodes for parallel

processing. The reduce task, which takes the output from the maps as an input

and combines those data pieces into a smaller set of data. A reduce task always

run after the map task (s).

Many real-world situations are expressible using this model. Such Model

describes the essence of MapReduce programming where the programs

written are automatically parallelize and execute on a large cluster.

EXAMPLE 4.1

How can a car company quickly compute an aggregation function using

the number of cars of a specific car-model sold at the company

showrooms as input? Use the concept of division of an application task

into a number of sub-tasks (running in parallel).

SOLUTION

The company's showrooms sell a specific model. Assume the analysis

requires us to find the aggregate number N. The N computes by counting

the number of cars of that model which have been sold over a specific

period (Practice Exercise 3.3). N is a very large number. The application

process will require a long time to count this sequentially from the sales

figures.

The programming-model splits the application task into number of n

sub-tasks, running in parallel. Each sub-task thus takes up and counts N/n

sales entries for the car-model. Each sub-task fetches the items containing

information of car sales separately. The results of all the application sub•

tasks later combine at the end to send the result to the application. High

volumes of data (Big Data) need the splitting and parallel processing of the

tasks.

MapReduce simplifies software development practice. It eliminates the need

to write and manage parallel codes. The YARN resource managing framework

takes care of scheduling the tasks, monitoring them and re-executing the

failed tasks. Following explains the concept:

EXAMPLE 4.2

How does MapReduce enable query processing quickly in Big Data

problems?

SOLUTION

MapReduce provides two important functions for query processing. The

distribution of task based on user's query to various nodes within the

cluster is the first function. The other function is organizing and reducing

the results from each node into a cohesive answer to a query.

The input data is in the form of an HDFS file. The output of the task also gets

stored in the HDFS. The compute nodes and the storage nodes are the same at

a cluster, that is, the MapReduce program and the HDFS are running on the

same set of nodes. This configuration results in effectively scheduling of the

sub-tasks on the nodes where the data is already present. This results in high

efficiency due to reduction in network traffic across the cluster.

A user application specifies locations of the input/ output data and translates

into map and reduces functions. A job does implementations of appropriate

interfaces and/ or abstract-classes. These, and other job parameters, together

comprise the job configuration. The Hadoop job client then submits the job

(jar/ executable etc.) and configuration to the JobTracker, which then assumes

the responsibility of distributing the software/configuration to the slaves by

scheduling tasks, monitoring them, and provides status and diagnostic

information to the job-client. Figure 4.3 shows MapReduce process when a

ma Output

client submits a job, and the succeeding actions by the JobTracker and

TaskTracker.

SU!li

..fob'lirsc~eli

l

Figure 4.3 MapReduce process on client submitting a job

JobTracker and Task Tracker MapReduce consists of a single master

JobTracker and one slave TaskTracker per cluster node. The master is

responsible for scheduling the component tasks in a job onto the slaves,

monitoring them and re-executing the failed tasks. The slaves execute the

tasks as directed by the master.

The data for a MapReduce task is initially at input files. The input files

typically reside in the HDFS. The files may be line-based log files, binary

format file, multi-line input records, or something else entirely different.

These input files are practically very large, hundreds of terabytes or even

more than it.

Most importantly, the MapReduce framework operates entirely on key,

value-pairs. The framework views the input to the task as a set of (key, value)

pairs and produces a set of (key, value) pairs as the output of the task, possibly

of different types (Section 2.4.2). Example 2.3 explained the process of

converting input files into key-values.

4.2.1 Map-Tasks

Map task means a task that implements a mapl), which runs user application

codes for each key-value pair (kl, vl). Key kl is a set of keys. Key kl maps to a

group of data values (Section 3.3.1). Values vl are a large string which is read

from the input file(s).

The output of map() would be zero (when no values are found) or

intermediate key-value pairs (kz, v2). The value v2 is the information for the

transformation operation at the reduce task using aggregation or other

reducing functions.

Reduce task refers to a task which takes the output v2 from the map as an

input and combines those data pieces into a smaller set of data using a

combiner. The reduce task is always performed after the map task.

The Mapper performs a function on individual values in a dataset

irrespective of the data size of the input. That means that the Mapper works

on a single data set. Figure 4.4 shows logical view of functioning of map().

ma~ Keyl, value I) List (Keyl. value2~

lnpu i the mrm O

key-va-1ue , a· .

Z.flro or interrmed" e
outpu~ ~ \!al u
iiJi: I~ ffi · U~Bii

Figure 4.4 Logical view of functioning of map()

Hadoop Java API includes Mapper class. An abstract function map() is present

in the Mapper class. Any specific Mapper implementation should be a subclass

of this class and overrides the abstract function, map().

The Sample Code for Mapper Class

public claeB SampleMapper extende Mapper~kl, Vl, k2, v2>

{

void map (kl key, V1 value, Context context) throwB IOException,

InterruptedException

{ .. }

Individual Mappers do not communicate with each other.

Number of Maps The number of maps depends on the size of the input files, i.e.,

the total number of blocks of the input files. Thus, if the input files are of 1 TB in

size and the block size is 128 MB, there will be 8192 maps. The number of map

task Nmap can be explicitly set by using setNumMapTasks(int). Suggested number

p

pt

tii' =

is nearly 10-100 maps per node. Nmap can be set even higher.

4.2.2 Key-Value Pair

Each phase (Map phase and Reduce phase) of MapReduce has key-value pairs as

input and output. Data should be first converted into key-value pairs before it is

passed to the Mapper, as the Mapper only understands key-value pairs of data

(Section 3.3.1).

Key-value pairs in Hadoop MapReduce are generated as follows:

InputSplit - Defines a logical representation of data and presents a Split data for

processing at individual map().

RecordReader - Communicates with the InputSplit and converts the Split into

records which are in the form of key-value pairs in a format suitable for reading

by the Mapper. RecordReader uses TextlnputFormat by default for converting

data into key-value pairs. RecordReader communicates with the InputSplit until

the file is read.

Figure 4.5 shows the steps in MapReduce key-value pairing.

Generation of a key-value pair in MapReduce depends on the dataset and the

required output. Also, the functions use the key-value pairs at four places: map()

input, map() output, reduce() input and reduce() output.

I.Ii.

Q
::c
c·
0
~
!'

_.....
m
E

lnp- pl cord

E
£J'1

0 \fdR d@'_

Ill CL

c

..5: I ?ut5.Plit Reoo.i'dR.ead~

Figure 4.5 Key-value pairing in MapReduce

4.2.3 Grouping by Key

When a map task completes, Shuffle process aggregates (combines) all the

Mapper outputs by grouping the key-values of the Mapper output, and the value

v2 append in a list of values. A "Group By" operation on intermediate keys

creates v2.

Shuffle and Sorting Phase

Here, all pairs with the same group key (kz) collect and group together, creating

one group for each key. So, the Shuffle output format will be a List of <k2, List

(vz)», Thus, a different subset of the intermediate key space assigns to each

reduce node. These subsets of the intermediate keys (known as "partitions") are

inputs to the reduce tasks.

Each reduce task is responsible for reducing the values associated with

partitions. HDFS sorts the partitions on a single node automatically before they

input to the Reducer.

4.2.4 Partitioning

The Partitioner does the partitioning. The partitions are the semi-mappers in

MapReduce. Partitioner is an optional class. MapReduce driver class can specify

the Partitioner. A partition processes the output of map tasks before submitting

it to Reducer tasks. Partitioner function executes on each machine that

performs a map task. Partitioner is an optimization in MapReduce that allows

local partitioning before reduce-task phase. Typically, the same codes

implement the Partitioner, Combiner as well as reduce() functions. Functions for

Partitioner and sorting functions are at the mapping node. The main function of

a Partitioner is to split the map output records with the same key.

4.2.5 Combiners

Combiners are semi-reducers in MapReduce. Combiner is an optional class.

MapReduce driver class can specify the combiner. The combiner() executes on

each machine that performs a map task. Combiners optimize MapReduce task

that locally aggregates before the shuffle and sort phase. Typically, the same

codes implement both the combiner and the reduce functions, combiner() on

map node and reducer() on reducer node.

The main function of a Combiner is to consolidate the map output records

with the same key. The output (key-value collection) of the combiner transfers

over the network to the Reducer task as input.

This limits the volume of data transfer between map and reduce tasks, and

thus reduces the cost of data transfer across the network. Combiners use

grouping by key for carrying out this function. The combiner works as follows:

(i) It does not have its own interface and it must implement the interface at

reduce().

(ii) It operates on each map output key. It must have the same input and

output key-value types as the Reducer class.

(iii) It can produce summary information from a large dataset because it

replaces the original Map output with fewer records or smaller records.

4.2.6 Reduce Tasks

Java API at Hadoop includes Reducer class. An abstract function, reduce() is in

the Reducer. Any specific Reducer implementation should be subclass of this

class and override the abstract reduce().

Reduce task implements reduce() that takes the Mapper output (which

shuffles and sorts), which is grouped by key-values (kz, v2) and applies it in

parallel to each group. Intermediate pairs are at input of each Reducer in order

after sorting using the key. Reduce function iterates over the list of values

associated with a key and produces outputs such as aggregations and statistics.

The reduce function sends output zero or another set of key-value pairs (k3, v3)

to the final the output file. Reduce: {(k2, list (v2) -> list (ks, v3)}

Sample Code for Reducer Class

public class ExarrpleReducerextenda Reducer<k2, v2, k3, v3>

void reduce (k2 key, Iterable<v2~ values, Context context) throws

IOBxception, InterruptedBxception

{ ... }

4.2.7 Details of MapReduce Processing Steps

Execution of MapReduce job does not consider how the distributed processing

implements. Rather, the execution involves the formatting (transforming) of

data at each step.

r--------
~HURF1.LJE _I;

ocess
I_ __ ., __

Figure 4.6 shows the execution steps, data flow, splitting, partitioning and

sorting on a map node and reducer on reducer node.

Example 2.3 described sales data of the five types of chocolates in a large

number of ACVMs (Automatic Chocolate Vending Machines). The example gave

answers to the following: (i) how hourly data log for each flavor sales on large

number of ACVMs save using HDFS, (ii) how the sample of data-collect in a file

each for 0-1,1-2, ... 12-13,13-14, 15-16, ... for up to 23-24 specific hour sales, (iii)

what will be output streams of map tasks which are the input streams to the

reduce() tasks, and (iv) what will be the Reducer outputs.

Let us explore another example, Automotive Components and Predictive

Automotive Maintenance Services (ACPAMS). ACPAMS is an application of

(Internet) connected cars which renders services to customers for maintenance

and servicing of (Internet) connected cars [Chapter 1 Example 1.6(ii)].

Fran other .Nodes

,
II - . II
I

J
I

SORT lR!E!DlJol:
O!Jtput

lfi~$

r-- -- ---.

I SiHU!WlJE I
I I

II Piro(:~ JI

RR - Rl!:tc:ltdRefldff

1 - ln9ut rtt..,""'alakJe, pairs

2 -lnte'~~p,M:I

.3. -Firlll!II ~v-rhif:I

Frum other 'Nodes

Figure 4.6 MapReduce execution steps

EXAMPLE 4.1

Describe the MapReduce processing steps of a task of ACPAMS.

SOLUTION

Figure 4. 7 shows processing steps of an ACPAMS task in MapReduce. Steps

119,

03 1 11 :ii.

09_.:il.

oa 1

°'

2312

B jl

are inputs, mapping, combining, shuffling and reducing for the output to

application task.

01,.1

-

Ul 1
l 1, 2 01.

.

~ - H
r· ,

01_. 4

03 1

09; 1

0-9 1

23 3

I I

Sh1;1ffie

an-cl Sort

Figure 4. 7 MapReduce processing steps in ACP AMS application

The application submits the inputs. The execution framework handles all other

aspects of distributed processing transparently, on clusters ranging from a

single node to a few thousand nodes. The aspects include scheduling, code

distribution, synchronization, and error and fault handling.

The following example explains how the ACPAMS company receives

alerts/messages.

EXAMPLE 4.4

Describe the MapReduce processing steps to illustrate how the ACP AMS

receives alerts/messages.

SOLUTION

The ACPAMS Company can receive the alerts/messages every hour from

several sensors of the automotive components installed in the number of

cars. A server maps the keys for filling fuel, changing of the coolant, etc. It

requires a lot of time to scan the hourly maintenance log sequentially

because there are a million cars registered for the ACP AMS service. Each car

is equipped with nearly 50 sensor-based components sending

alerts/message every minute. By contrast, the MapReduce programmer can

split the application task among multiple subtasks, say one hundred sub•

tasks, and each sub-task processes the data of a selected set of a Service

users.

The results of all the sub-tasks aggregate and produce the final result for

hourly maintenance requirement of each component of the cars registered

at ACPAMS Company. Finally, the aggregated hourly results appear from

the hourly log of transactions files at Hadoop data nodes. The whole system

maintains transparency, without knowing the presence of a distributed

parallel system processing data of a hundred million records. Table 4.1 gives

examples of assigning Ids to alerts/messages.

Table 4.1 Examples of Alert/Messageid (say, total 50 Ids, i.e., one for each

sensor component)

Alert/ ~·lessageld Detail§

::::=====

O] _

02

03

04

0.5

Fuel fiD-io reqmst

Filter requrrement

AUgnment aimd balrun.cimg lieqlllirnm t

Enrg.ioe . iiL mess

Coolant <Jrumge reque: t

Assumption: Let 60 files for each hour create every day. The files are

file_l, file_2, ... , file_60. Each file saves as a key-value pair at the large

number of the company's machines. The log contains information in the

following format:

maintenance service Id:(<CarRegistrationNumber>_<alert/rnesssageld-)

Thus, every line entry becomes the key, and the value will be the instance

number.

Sample data of one of such file out of 60 files (file_lO) saved as hour•

maintenance-service log for the maintenance service during 15:00-16:00will

be as follows:

MP09CA2331_01

MP04NP0123_03

MP09HA1493_01

MP03SA5231_06

MP09CA2331_04

MP09CC4614_01

(i) The input files are using NLinelnputFormat input format.

(ii) Map tasks will map the input streams of key values at files, file_l,

file_2, file_59, file_60 every hour.

(iii) The map function extracts the alert/message Id from each line of the

input files. They are the values after underscore in each line.

(iv) The resulting 1 million x 50 key-value pairs (since there are 50 sensors

assumed per car) map each hour with keys for RegistrationNumber _N

(N = 1 to 50). The output stream from Mapper will be as follows:

(01, 1), (03, 1), (01, 1), .. , .. , ... ,

The (key, value) contains (alert/message Id, the instance number)

06 J'

Rlp1111t. Ke . -Vaht IP-al OlJl.~Ut of

huffier'

Mapper in ACPAMS

Set of ata

utput C nvert .iraro another set of dam

Ke~ Value

K r -Allerl!M sage]d

~a lu - N11m Ji of instaace

MP 9CAZ331_0l

MP04NPO. ·3_03

MP09HAM9.3_09

MF 3 A.523 J._06

MP09HAJ49J_ l

MF 4YQHW_Ol

MPOS:PS S t _...]

MP 9CA...JJm_OI

MP04NH5555_ ~

MP2 :F.4.1690_ .1

: 0 l J . '(H l :~

Combiner in ACPAMS

Input

Output

Key-Value Pain {ootput of

Mapper)

Key-Value Pam {Group-By-key

at Olde itseH)

(Ol,1)~ (03,l)~(09,1). (06~l),(Ol,1)~ (01.l)~

(23, 1), (01.1), (23, u, (23, l)

(Ol,l)~(03,l), {09,1), (06,l), (01,2), (23,l),

(01.,1)~ {23,2)

Shuffle in ACPAMS

Key- Va!lue Pa.Lli: output of

Combiner

I utpin Key-Vah1 Pai~ 5 (moved to oth 1r

nod s ased om !ke r vailue

06J , en, .. 23.l ..

Sort in ACPAMS

·

·

1.1). 01.....

Reducer - Takes the output from Map (after the sort phase) as an input

and combines the data tuples into a smaller set of tuples. Following are

some examples of Reduce function in Alert/Message Count.

Input

(ourtpu~· of [m.a-,(

,t · Tuple.s • OU

Converts in .ni 5Jil.H1Her set · tuple

(By using the aggire~te fusetion

The output of the reducel), which is the final result of MapReduce Job

provides a number of alert or messages at an hourly basis for the complaint

raised by each component of the cars registered at the ACPAMS Company.

Then the analyst decides which components need maintenance on high to

low priority. The report of ACAMPS helps the company in improving the

manufacturing of its car components.

The following example gives pseudocodes for an algorithm:

EXAMPLE 4.5

Write pseduocodes for MapReduce algorithm for the ACPAMS.

SOLUTION

Figure 4.8 gives pseudocodes for the ACPAMS algorithm in MapReduce.

class Mapper {

method Map (file id a; file f) {

for all term i E file f do {

t = Substring (i6 26 After_}

Bmit (term t, count 1,}}}

class Reducer {

method Reduce (term t 6 counts [cl, cz ,] } {

Bum~ 0

for all count c E counts [cl
6

cz , ] do {

sum ~ sum+ c}

Bmit (term t6 count Bum}}}

Figure 4.8 Pseudocodes for the ACPAMS algorithm in MapReduce

Emit() function is for output in MapReduce. The Mapper emits an

intermediate key-value pair for each alert/message in a document. The

Reducer sums up all counts for each alert/message.

4.2.8 Coping with Node Failures

The primary way using which Hadoop achieves fault

tolerance is through restarting the tasks. Each task

nodes (TaskTracker) regularly communicates with the

master node, JobTracker. If a TaskTracker fails to

communicate with the JobTracker for a pre-defined

period (by default, it is set to 10 minutes), a task node
I

Nooo,fBi'h.ue, ocrn rs

wen ttiie TdSkTiracter
fans. t.o com 1im.!l111ic-at2
\V11h tna Jblblira.clter fur a
p:re-d@liined periodl. llilte
Jbblira(~.erirestnil:s the
laslffradceirfm cop11ligwith
the lfltU::I~ faih.JHQ..

failure by the JobTracker is assumed. The JobTracker knows which map and

reduce tasks were assigned to each TaskTracker.

If the job is currently in the mapping phase, then another TaskTracker will be

assigned to re-execute all map tasks previously run by the failed TaskTracker.

All completed map tasks also need to be assigned for re-execution if they belong

to incomplete jobs. This is because the intermediate results residing in the failed

TaskTracker file system may not be accessible to the reduce task.

mailto:p:re-d@liined

If the job is in the reducing phase, then another TaskTracker will re-execute

all reduce tasks that were in progress on the failed TaskTracker.

Once reduce tasks are completed, the output writes back to the HDFS. Thus, if

a TaskTracker has already completed nine out of ten reduce tasks assigned to it,

only the tenth task must execute at a different node.

Map tasks are slightly more complicated. A node may have completed ten map

tasks but the Reducers may not have copied all their inputs from the output of

those map tasks. Now if a node fails, then its Mapper outputs are inaccessible.

Thus, any complete map tasks must also be re-executed to make their results

available to the remaining reducing nodes. Hadoop handles all of this

automatically. MapReduce does not use any task identities to communicate

between nodes or which reestablishes the communication with other task node.

Each task focuses on only its own direct inputs and knows only its own outputs.

The failure and restart processes are clean and reliable.

The failure of JobTracker (if only one master node) can bring the entire

process down; Master handles other failures, and the MapReduce job eventually

completes. When the Master compute-node at which the JobTracker is executing

fails, then the entire MapReduce job must restart. Following points summarize

the coping mechanism with distinct Node Failures:

(i) Map TaskTracker failure:

- Map tasks completed or in-progress at TaskTracker, are reset to idle on

failure

- Reduce TaskTracker gets a notice when a task is rescheduled on another

TaskTracker

(ii) Reduce TaskTracker failure:

- Only in-progress tasks are reset to idle

(iii) Master JobTracker failure:

- Map-Reduce task aborts and notifies the client (in case of one master

node).

Self-Assessment Exercise linked to LO 4.1

1. Show MapReduce process diagrammatically to depict a client submitting a

job, the workflow ofJobTracker and TaskTracker, and TaskTrackers creating

the outputs.

2. Assume an input file size of 10 TB and a data block size of 128 MB. How many

map tasks are required? Assume that each node does 100 maps. How many

nodes are involved in processing? How will you change the number of map

tasks per node to 120 using a Java statement?

3. Explain function of Group By, partitioning and combining using one example

for each.

4. How does the data convert to (key, value) pairs before passing to the

Mapper? How do the InputSplit and RecodReader function?

5. How are the failures of Map TaskTracker, Reduce TaskTracker and Master

JobTracker handled in MapReduce?

6. How does the execution framework handle all aspects of distributed

processing after a client node submits the job to the designated node of

a cluster (the JobTracker)? Explain the concept using a diagram.

4.31 COMPOSING MAPREDUCE FOR CALCULATIONS AND

ALGORITHMS

The following subsections describe the use of

MapReduce program composition in counting and

summing, algorithms for relational algebraic

operations, projections, unions, intersections, natural

joins, grouping and aggregation, matrix multiplication

and other computations.

4.3.1 Composing Map-Reduce for

Calculations

The calculations for various operations compose are:

Com posi111g · apfll@c1li.!!lc@

1progra ms for caicu latiollils,
sue h as rnu nti ng allilol
su m m illilg1: and a lgorith lills

1forir@lamonal a'lgebraic
opera:tiollils, mdh as

1projecti on s, !!!ll\'lliollil5,
1imerserJIJcms, natural joiliils,

grouping. a Qrg regati on
operatioas an dl liJlil:nirix
m ul1tiplicath::,ni

mailto:apfll@c1li.!!lc
mailto:1forir@lamonal

Counting and Summing Assume that the number of alerts or messages

generated during a specific maintenance activity of vehicles need counting for a

month. Figure 4.8 showed the pseudocode using emit() in the map() of Mapper

class. Mapper emits 1 for each message generated. The reducer goes through the

list of ls and sums them. Counting is used in the data querying application. For

example, count of messages generated, word count in a file, number of cars sold,

and analysis of the logs, such as number of tweets per month. Application is also

in business analytics field.

Sorting Figure 4.6 illustrated MapReduce execution steps, i.e., dataflow,

splitting, partitioning and sorting on a map node and reduce on a reducer node.

Example 4.3 illustrated the sorting method. Many applications need sorted

values in a certain order by some rule or process. Mappers just emit all items as

values associated with the sorting keys which assemble as a function of items.

Reducers combine all emitted parts into a final list.

Finding Distinct Values (Counting unique values) Applications such as web

log analysis need counting of unique users. Evaluation is performed for the total

number of unique values in each field for each set of records that belongs to the

same group. Two solutions are possible:

(i) The Mapper emits the dummy counters for each pair of field and groupld,

and the Reducer calculates the total number of occurrences for each such

pair.

(ii) The Mapper emits the values and groupld, and the Reducer excludes the

duplicates from the list of groups for each value and increments the

counter for each group. The final step is to sum all the counters emitted

at the Reducer. This requires only one MapReduce job but the process is

not scalable, and hence has limited applicability in large data sets.

Collating Collating is a way to collect all items which have the same value of

function in one document or file, or a way to process items with the same value

of the function together. Examples of applications are producing inverted

indexes and extract, transform and load operations.

Mapper computes a given function for each item, produces value of the

function as a key, and the item itself as a value. Reducer then obtains all item

values using group-by function, processes or saves them into a list and outputs

to the application task or saves them.

Filteringor ParsingFiltering or parsing collects only those items which satisfy

some condition or transform each item into some other representation.

Filtering/ parsing include tasks such as text parsing, value extraction and

conversion from one format to another. Examples of applications of filtering are

found in data validation, log analysis and querying of datasets.

Mapper takes items one by one and accepts only those items which satisfy the

conditions and emit the accepted items or their transformed versions. Reducer

obtains all the emitted items, saves them into a list and outputs to the

application.

Distributed Tasks Execution Large computations divide into multiple

partitions and combine the results from all partitions for the final result.

Examples of distributed running of tasks are physical and engineering

simulations, numerical analysis and performance testing.

Mapper takes a specification as input data, performs corresponding

computations and emits results. Reducer combines all emitted parts into the

final result.

Graph Processing using Iterative Message Passing Graph is a network of

entities and

relationships between them. A node corresponds to an entity. An edge joining

two nodes corresponds to a relationship. Path traversal method processes a

graph. Traversal from one node to the next generates a result which passes as a

message to the next traversal between the two nodes. Cyclic path traversal uses

iterative message passing.

Web indexing also uses iterative message passing. Graph processing or web

indexing requires calculation of the state of each entity. Calculated state is

based on characteristics of the other entities in its neighborhood in a given

network. (State means present value. For example, assume an entity is a course

of study. The course may be Java or Python. Java is a state of the entity and

Python is another state.)

A set of nodes stores the data and codes at a network. Each node contains a list

of neighbouring node IDs. MapReduce jobs execute iteratively. Each node in an

iteration sends messages to its neighbors. Each neighbor updates its state based

on the received messages. Iterations terminate on some conditions, such as

completion of fixed maximal number of iterations or specified time to live or

negligible changes in states between two consecutive iterations.

Mapper emits the messages for each node using the ID of the adjacent node as a

key. All messages thus group by the incoming node. Reducer computes the state

again and rewrites a node new state.

Cross Correlation Cross-correlation involves calculation using number of

tuples where the items co-occur in a set of tuples of items. If the total number of

items is N, then the total number of values= N x N. Cross correlation is used in

text analytics. (Assume that items are words and tuples are sentences). Another

application is in market-analysis (for example, to enumerate, the customers who

buy item x tend to also buy y). If N x N is a small number, such that the matrix

can fit in the memory of a single machine, then implementation is

straightforward.

Two solutions for finding cross correlations are:

(i) The Mapper emits all pairs and dummy counters, and the Reducer sums

these counters. The benefit from using combiners is little, as it is likely

that all pairs are distinct. The accumulation does not use in-memory

computations as N is very large.

(ii) The Mapper groups the data by the first item in each pair and maintains

an associative array ("stripe") where counters for all adjacent items

accumulate. The Reducer receives all stripes for the leading item, merges

them and emits the same result as in the pairs approach.

[Stripe means a set of arrays associated with a dataset or a set of rows that

belong to a common key with each row having a number of columns.]

The grouping:

• Generates fewer intermediate keys. Hence, the framework has less sorting

to do.

• Greatly benefits from the use of combiners.

• In-memory accumulation possible.

• Enables complex implementations.

• Results in general, faster computations using stripes than "pairs".

4.3.2 Matrix-VectorMultiplicationby MapReduce

Numbers of applications need multiplication of n x n matrix A with vector B of

dimension n. Each element of the product is the element of vector C of

dimension n. The elements of C calculate by relation,
l'il

CJ = I,a~·b1. An example of calculations is given below,
j=l

5 4 4

Assume A = 2 .3 and B = 1 .

4 2 l .3

l x 4 + 5 x 1 + 4 x Jl
Multiplication C = ..\ x ll = 2 x 4 + l x l + 3 x 3

[
4x4+2xl+lxJ

••• (_4.1)

Hence,

21]
C= 18

[21

... (4.!)

Algorithm for using MapReduce: The Mapper operates on A and emits row-wise

multiplication of each matrix element and vector element (aij x bj V i). The

Reducer executes sum() for summing all values associated with each i and emits

the element ci. Application of the algorithm is found in linear transformation.

4.3.3 Relational-AlgebraOperations

Explained ahead are the some approaches of algorithms for using MapReduce

for relational algebraic operations on large datasets.

4.3.3.1 Selection

Example of Selection in relational algebra is as follows: Consider the attribute

names (ACVM_ID, Date, chocolate_flavour, daily_sales). Consider relation

R = {(524, 12122017, KitKat, 82), (524, 12122017, Oreo, 72), (525, 12122017,

KitKat, 82), (525, 12122017, Oreo, 72), (526, 12122017, KitKat, 82), (526, 12122017,

Oreo, 72)}.

Selection AcvM_ID <= 525 (R) selects the subset R= {(524, 12122017, KitKat, 82),

(524, 12122017, Oreo, 72), (525, 12122017, KitKat, 82), (525, 12122017, Oreo, 72)}.

Selection chocolate_flavour = Oreo selects the subset {(524, 12122017,Oreo, 72), (525,

12122017,Oreo, 72), (526, 12122017,Oreo, 72)}.

The test() tests the attribute values used for a selection after the binary

operation of an attribute with the value(s) or value in an attribute name with

value in another attribute name and the binary operation by which each tuple

selects. Selection may also return false or unknown. The test condition then does

not select any.

The Mapper calls test() for each tuple in a row. When test satisfies the selection

criterion then emits the tuple. The Reducer transfers the received input tuple as

the output.

4.3.3.2 Projection

Example of Projection in relational algebra is as follows:

Consider attribute names (ACVM_ID, Date, chocolate_flavour, daily_sales).

Consider relation R = {(524, 12122017,KitKat, 82), (524, 12122017,Oreo, 72)}.

Projection II AcvM_ID (R) selects the subset {(524)}.

Projection, II chocolate_flavour, o.s* daily_sales selects the subset {(KitKat,0.5 x 82), (Oreo,

0.5 x 72)}.

The test() tests the presence of attribute (s) used for projection and the factor

by an attribute needs projection.

The Mapper calls test() for each tuple in a row. When the test satisfies, the

predicate then emits the tuple (same as in selection). The Reducer transfers the

received input tuples after eliminating the possible duplicates. Such operations

are used in analytics.

4.3.3.3 Union

Example of Union in relations is as follows: Consider,

Rl = {(524, 12122017,KitKat, 82), (524, 12122017,Oreo, 72)}

R2 = {(525, 12122017,KitKat, 82), (525, 12122017,Oreo, 72)}

and R3 = {(526, 12122017,KitKat, 82), (526, 12122017,Oreo, 72)}

Result of Union operation between Rl and R3 is:

Rl U R3 = {(524, 12122017, KitKat, 82), (524, 12122017, Oreo, 72), (526,

12122017, KitKat, 82), (526, 12122017, Oreo, 72)}

The Mapper executes all tuples of two sets for union and emits all the resultant

tuples. The Reducer class object transfers the received input tuples after

eliminating the possible duplicates.

4.3.3.4 Intersection and Difference

IntersectionExample of Interaction in relations is as follows: Consider,

Rl = {(524, 12122017,Oreo, 72)}

R2 = {(525, 12122017,KitKat, 82)}

and R3 = {(526, 12122017,KitKat, 82), (526, 12122017,Oreo, 72)}

Result of Intersection operation between Rl and R3 are

Rl n R3 = {(12122011,Oreo)}

The Mapper executes all tuples of two sets for intersection and emits all the

resultant tuples. The Reducer transfers only tuples that occurred twice. This is

possible only when tuple includes primary key and can occur once in a set. Thus,

both the sets contain this tuple.

Difference Consider:

Rl = {(12122017,KitKat, 82), (12122017,Oreo, 72)}

and R3 = {(12122017,KitKat, 82), (12122017,Oreo, 25)}

Difference means the tuple elements are not present in the second relation.

Therefore, difference set_l is

Rl - R3 = (12122017,Oreo, 72) and set_2 is R3 - Rl = (12122017,Oreo, 25).

The Mapper emits all the tuples and tag. A tag is the name of the set (say, set_l

or set_2 to which a tuple belongs to). The Reducer transfers only tuples that

belong to set_l.

SymmetricDifference Symmetric difference (notation is A fl B (or A e B)] is

another relational entity. It means the set of elements in exactly one of the two

relations A or B. R3 e Rl = (12122017,Oreo, 25).

The Mapper emits all the tuples and tag. A tag is the name of the set (say, set_l

or set_2 this tuple belongs to). The Reducer transfers only tuples that belong to

neither set_l or set_2.

4.3.3.5 Natural Join

Consider two relations Rl and R2 for tuples a, band c. Natural Join computes for

Rl (a, b) with R2 (b, c). Natural Join is R (a, b, c). Tuples b joins as one in a

Natural Join. The Mapper emits the key-value pair

(b, (Rl, a)) for each tuple (a, b) of Rl, similarly emits (b, (R2, c)) for each tuple (b,

c) ofR2.

The Mapper is mapping both with Key for b. The Reducer transfers all pairs

consisting of one with first component Rl and the other with first component

R2, say (Rl, a) and (R2, c). The output from the key and value list is a sequence of

key-value pairs. The key is of no use and is irrelevant. Each value is one of the

triples (a, b, c) such that (Rl, a) and (R2, c) are present in the input list of values.

The following example explains the concept of join, how the data stores use

the INNER Join and NATURAL Join of two tables, and how the Join compute

quickly.

EXAMPLE 4.6

An SQL statement "Transactions
INNER JOIN KitKatStock ON Transactions.ACVM ID

KitKatStock.ACVM_ID"; selects the records that have matching values in

two tables for transactions of KitKat sales at a particular ACVM. One table is

KitKatStock with columns (KitKat_Quantity, ACVM_ID) and second table is

Transactions with columns (ACVM_ID, Sales_Date and KitKat_SalesData).

1. What will be INNER Join of two tables KitKatStock and Transactions?

2. What will be the NATURAL Join?

SOLUTION

1. The INNER JOIN gives all the columns from the two tables (thus the

common columns appear twice). The INNER JOIN of two tables will

return a table with five column: (i) KitKatStock.Quantity, (ii)

KitKatStock. KitKat_ACVM_ID, (iii) Transactions.ACVM_ID,

(iv)Transactions.KitKat_SalesDate, and (v)

Transactions.KitKat_SalesData.

2. The NATURAL JOIN gives all the unique columns from the two tables.

The NATURAL JOIN of two tables will return a table with four columns:

(i) KitKatStock.Quantity, (ii) KitKatStock.ACVM_ID, (iii)

Transactions.KitKat_SalesDate, and (iv) Transactions.KitKat_SalesData.

Values accessible by key in the first table KitKatStock merges with

Transactions table accessible by the common key ACVM_ID.

NATURAL JOIN gives the common column once in the output of a query,

while INNER JOIN gives common columns of both tables.

Join enables fast computations of the aggregate of the number of chocolates

of specific flavour sold.

4.3.3.6 Grouping and Aggregation by MapReduce

Grouping means operation on the tuples by the value of some of their attributes

after applying the aggregate function independently to each attribute. A

Grouping operation denotes by <grouping attributes> i <function-list> (R).

Aggregate functions are countl), suml), avgl), min() and max().

Assume R= {(524, 12122017, KitKat, 82), (524, 12122017, Oreo, 72), (525,

12122017, KitKat, 82), (525, 12122017, Oreo, 72), (526, 12122017, KitKat, 82), (526,

12122017, Oreo, 72)}. Chocolate_flavour i count ACVM_ID, sum (daily_sales

(chocolate_flavour)) will give the output (524, KitKat, sale_month), (525, KitKat,

sale_month), and (524, Oreo, sale_month), (525, Oreo, sale_month), for all

ACVM_IDs.

The Mapper finds the values from each tuple for grouping and aggregates

them. The Reducer receives the already grouped values in input for aggregation.

4.3.4 MatrixMultiplication

Consider matrices named A (i rows andj columns) and BG rows and k columns)

to produce the matrix C;(i rows and k columns). Consider the elements of

matrices A, B and C as follows:

an a12 · • a1j

~ = a21 a22 · • a2j

b11 b l2 • blt

,g = D.21 b22 • b21r;:

CH CL2 • C 11(

C: = ~2 L C22 • C21(... (_4.3")

c
(I K \

A.B = C; Each element evaluates as follow:

First row of C

C first column element = (a11b11+ a12b21 + + a1j.bji). Second column element =

(a11b12+ a12b22+ + a1j·bjz).

The kth column element= (a11b1k+ a12b2k+ + a1j bjk).

Second row of C

C first column element= (a21b11+ a22b21 + + a2j"bj1). Second column element =

(a21b12+ a22b22+ + azj·bjz).

The kth column element= (a21b1k+ a22b2k+ + azj· bjk).

The ith row of C

C first column element = (ai1b11+ ai2b21 + + aij.bj1). Second column element =

(ailb12+ ai2b22+ + aij·bj2). The kth column element= (ai1b1k+ ai2b2k+ + aij.bjk).

Consider two solutions of matrix multiplication.

Matrix Multiplication with Cascading of Two MapReduce Steps

Table 4.2 gives the names, attributes, relations RM RB and Re, tuples in A, B, C,

natural Join of RA and RB, keys and values, and seven steps for multiplication of

A and 8.

Table 4.2 Seven steps for multiplication of A and B for cascading of two

MapReduce Steps

. I Step desertptton

m Name ~

2 Sp iify attrti1but of K.ey, lbll1i1 pBliirs , J. J ,

of each lenremt [row number, co1Jllffilrli

ll.llllm Ji' val IJl]

J R = A. {I,.l, v

4 Coasider tllJ)l of Jr_ ~ nirn.d , i, j ii

:S Find natural Jrun ~ R - _ andRg =
Mattix: elements n.ij bJ y ts common

ro tltil]

Get tapl for fi111dlliag Prodhict t

7 , oupin and aggrregatlon of luple

tt'l!b atrt:rfhut I and K

(.i!. k, CjJ

mp1 s .t j, k, v • vb

f'ou.rr-component tuple

'.ii.j,k '!,f)(v -

-cI, Jo 5 SUM_ - v x "'mi.

The product A.B = Natural join of tuples in the relations RA and R8 followed by

grouping and aggregation. Natural Join of A (I,J, v) and B (J, K, vb), having only

attribute J in common = Tuples (i, j, k, va, vb) from each tuple (i, j, va> in A and

tuples 0, k, vb) in B.

1. MapReduce tasks for Steps 5 and 6: Five-component tuple represents the pair

of matrix elements

(aij, bjk). Requirement is product of these elements. That means four-

component tuple (i,j, k, va x vb),

from equation (4.4) for elements Cik = Sum (aij.bjk) j= 1 to J'

(a) Mapper Function: (i) Mapper emits the key-value pairs 0, (A, i, aij)) for

each matrix element aij, and (ii) Mapper emits the key-value pair 0, (B,

k, bjk)) for each matrix element aij.

(b) Reduce Function: Consider the tuples of A = (A, i, aij) for each key j,

consider tuples of

B = (B, k, bjk) for each key j. Produce a key-value pair with key equal to

(i, k) and

value= aij x bjk· A and Bare just the names, may be represented by 0101

and 1010.

2. Next MapReduce Steps 7: Perform <I, K> i SUM (va x vb). That means do

grouping and aggregation, with I and K as the grouping attributes and the

sum of vax vb as the aggregation.

(c) The Mapper emits the key-value pairs (i, k, v.) for each matrix element

of C inputs with key i and k, and vc from earlier task of the reducer va x

(d) Reducer groups (i, k, vc) in C using [C, I, k, sum (vc)] from aggregated

values of vc from sum (v.). Aggregation uses the same memory

locations as used by elements vc· C is just the name, may be

represented by 1111.

Matrix Multiplication with One MapReduce Step MapReduce tasks for Steps 5

to 7 in a single step.

(e) Map Function: For each element aij of A, the Mapper emits all the key•

value pairs

[{i, k), (A, j, aij)] for k = 1, 2, ... , up to the number of columns of B.

Similarly, emits all the key-value pairs [(i, k), (B, j, bjk)] for i = 1, 2, ... ,

up to the number of rows of A. for each element bjk of B.

(f) Reduce Function: Consider the tuples of A = (A, i, aij) for each key j.

Consider tuples of

B = (B, k, bjk) for each key j. Emits the key-value pairs with key equal to

(i, k) and value = sum of (aij x bjk) for all values j.

Memory required in one step MapReduce is large as compared to two steps in

cascade. This is due to the need to store intermediate values of vc and then sum

them in the same Reducer step.

Self-Assessment Exercise linked to LO 4.2

1. How does MapReduce program implement counting, filtering and parsing?

2. How does MapReduce collate all items which have the same value?

3. How does MapReduce perform graph analysis in a network of computing

nodes to build a spanning tree information at a particular node?

4. How does MapReduce program collate and process items with the same

value of the function together in an ETL operation?

5. How does MapReduce program implement <grouping attributes> s
<function-list> (R)?

:Uses Dalia sto Ires

kl create a es

~ ilart!riSQL

4.4 ! HIVE

Hive was created by Facebook. Hive is a data

warehousing tool and is also a data store on the top of H1w. arrchirteii:1wre.
inst ~~aticm. rnmparisolill

Hadoop. An enterprise uses a data warehouse as large otl-nveam sto.rewitlh

data repositories that are designed to enable the

tracking, managing, and analyzing the data. (Section

1.6.1. 7) Hive processes structured data and integrates data from multiple

heterogeneous sources. Additionally, also manages the constantly growing

volumes of data.

Figure 4.9 shows the main features of Hive.

Figure 4. 9 Main features of Hive

Hive Characteristics

1. Has the capability to translate queries into MapReduce jobs. This makes

Hive scalable, able to handle data warehouse applications, and therefore,

suitable for the analysis of static data of an extremely large size, where the

URl Co mandl

eta store

fast response-time is not a criterion.

2. Supports web interfaces as well. Application APis as well as web-browser

clients, can access the Hive DB server.

3. Provides an SQL dialect (Hive Query Language, abbreviated HiveQL or

HQL).

Results of HiveQL Query and the data load in the tables which store at the

Hadoop cluster at HDFS.

Limitations

Hive is:

1. Not a full database. Main disadvantage is that Hive does not provide

update, alter and deletion of records in the database.

2. Not developed for unstructured data.

3. Not designed for real-time queries.

4. Performs the partition always from the last column.

4.4.1 Hive Architecture

Figure 4.10 shows the Hive architecture.

Web Browser User App icatio. J DBC/009-C .Ap ii!:.atio

.

Figure4.10 Hive architecture

Components of Hive architecture are:

• Hive Server (Thrift) - An optional service that allows a remote client to

submit requests to Hive and retrieve results. Requests can use a variety of

programming languages. Thrift Server exposes a very simple client API to

execute HiveQL statements.

• Hive CLI (Command Line Interface)- Popular interface to interact with

Hive. Hive runs in local mode that uses local storage when running the CLI

on a Hadoop cluster instead of HDFS.

• Web Interface - Hive can be accessed using a web browser as well. This

requires a HWI Server running on some designated code. The URL http://

hadoopi-port no> / hwi command can be used to access Hive through the

web.

• Metastore- It is the system catalog. All other components of Hive interact

with the Metastore. It stores the schema or metadata of tables, databases,

columns in a table, their data types and HDFS mapping.

• Hive Driver - It manages the life cycle of a HiveQL statement during

compilation, optimization and execution.

4.4.2 Hive Installation

Hive can be installed on Windows 10, Ubuntu 16.04 and MySQL. It requires three

software packages:

• Java Development kit for Java compiler (Iavac) and interpreter

• Hadoop

• Compatible version of Hive withJava- Hive 1.2 onward supports Java 1.7 or

newer.

Steps for installation of Hive in a Linux based OS are as follows:

1. Install Javac and Java from Oracle Java download site. Download jdk 7 or a

later version from

http://www.oracle.com/technetwork/java/javase/ downloads/jdk7-

downloads-1880260.html, and extract the compressed file.

All users can access Java by Make java available to all users. The user has to

move it to the location "/usr/local/" using the required commands

http://www.oracle.com/technetwork/java/javase/
http://www.oracle.com/technetwork/java/javase/

2. Set the path by the commands

JAVA_HOME=/usr/local/jdkl.7.0_71,

$]AV A_HOME/bin

for jdkl.7.0_71, export

export PATH=$PATH:

(Can use alternative install /usr/bin/java usr/local/java/bin/java 2)

3. Install Hadoop http://apache.claz.org/hadoop/common/hadoop-2.4.1/

4. Make shared HADOOP, MAPRED, COMMON, HDFS and all related files,

configure HADOOP and set property such as replication parameter.

5. Name the yarn.nodemanager.aux-services. Assign value to

mapreduce_shuffle. Set namenode and datanode paths.

6. Download http://apache.petsads.us/hive/hive-0.14.0/. Use ls command to

verify the files$ tar zxvf apache-hive-0.14.0-bin.tar.gz, $ ls

OR

Hive archive also extracts by the command apache-hive-0.14.0-bin apache•

hive-0.14.0-bin.tar .gz. , $ cd $HIVE_HOME/conf,$ cp hive-env.sh.template

hive-env.sh, export HADOOP_HOME=/usr/local/hadoop

7. Use an external database server. Configure metastore for the server.

4.4.3 Comparison with RDBMS (TraditionalDatabase)

Hive is a DB system which defines databases and tables. Hive analyzes structured

data in DB. Hive has certain differences with RDBMS. Table 4.3 gives a

comparison of Hive database characteristics with RDBMS.

Table 4.3 Comparison of Hive database characteristics with RDBMS

Characteristics

Hive

RDBMS

Record level queries

No Update and Delete

Insert, Update and Delete

Transaction support

No

Yes

Latency

Minutes or more

In fractions of a second

Data size

Peta bytes

Tera bytes

http://apache.claz.org/hadoop/common/hadoop-2.4.1/
http://apache.petsads.us/hive/hive-0.14.0/

Data per query Peta bytes Gigabytes

Query language

HiveQL

SQL

Support JDBC/ODBC

Limited

Full

4.4.4 Hive Data Types and File Formats

Hive defines various primitive, complex, string, date/time, collection data types

and file formats for handling and storing different data formats. Table 4.4 gives

primitive, string, date/time and complex Hive data types and their descriptions.

Table 4.4 Hive data types and their descriptions

Data Type

Name

Description

TINYINT

1 byte signed integer. Postfix letter is Y.

SMALLINT

2 byte signed integer. Postfix letter is S.

INT

4 byte signed integer

BIGINT

8 byte signed integer. Postfix letter is L.

FLOAT

4 byte single-precision floating-point number

DOUBLE

8 byte double-precision floating-point number

BOOLEAN

True or False

TIMESTAMP

UNIXtimestamp with optional nanosecond precision. It supports

java.sql.Timestamp format "YYYY-MM-DD HH:MM:SS.fffffffff"

DATE

YYYY-MM-DDformat

VARCHAR

1 to 65355 bytes. Use single quotes('') or double quotes("")

CHAR

255 bytes

DECIMAL

Used for representing immutable arbitrary precision. DECIMAL (precision,

scale) format

UNION

Collection of heterogeneous data types. Create union

NULL

Missing values representation

Table 4.5 gives Hive three Collection data types and their descriptions.

Table 4.5 Collection data-types and their descriptions

Name

Description

STRUCT

Similar to 'C' struc, a collection of fields of different data types. An access to field

uses dot notation.

For example, struct ('a', 'b')

MAP

A collection of key-value pairs. Fields access using [] notation.

For example, map ('keyl', 'a', 'keyz', 'b')

ARRAY

Ordered sequence of same types. Accesses to fields using array index.

For example, array ('a', 'b')

Table 4.6 gives the file formats and their descriptions.

Table 4.6 File formats and their descriptions

File

Format

Description

Text file

The default file format, and a line represents a record. The delimiting

characters separate the lines. Text file examples are CSV, TSV,JSONand XML

(Section 3.3.2).

Sequential

file

Flat file which stores binary key-value pairs, and supports compression.

RCFile

Record Columnar file (Section 3.3.3.3).

ORCFILE

ORC stands for Optimized Row Columnar which means it can store data in an

optimized way than in the other file formats (Section 3.3.3.4).

Record columnar file means one that can be partitioned in rows and then

partitioned with columns. Partitioning in this way enables serialization.

4.4.5 Hive Data Model

Table 4. 7 below gives three components of Hive data model and their

descriptions.

Table 4.7 Components (also called data units) of Hive Data Model

Name

Description

Database

Namespace for tables

Tables

Similar to tables in RDBMS

Support filter, projection.join and union operations

The table data stores in a directory in HDFS

Partitions

Table can have one or more partition keys that tell how the data stores

Buckets

Data in each partition further divides into buckets based on hash of a column

in the table.

Stored as a file in the partition directory.

4.4.6 Hive Integration and Workflow Steps

Hive integrates with the MapReduce and HDFS. Figure 4.11 shows the dataflow

sequences and workflow steps between Hive and Hadoop.

1
IExe"ci.Jtro

[n.gi E!
9

1 8

 M tcr

Figure 4.11 Dataflow sequences and workflow steps

Steps 1 to 11 are as follows:

I STEP I

No. OPERATION

1

Execute Query: Hive interface (CLI or Web Interface) sends a query to Database

Driver to execute the query.

2

Get Plan: Driver sends the query to query compiler that parses the query to check

the syntax and query plan or the requirement of the query.

3

Get Metadata: Compiler sends metadata request to Metastore (of any database,

such as MySQL).

4

Send Metadata: Metastore sends metadata as a response to compiler.

5

Send Plan: Compiler checks the requirement and resends the plan to driver. The

parsing and compiling of the query is complete at this place.

6

Execute Plan: Driver sends the execute plan to execution engine.

7

Execute Job: Internally, the process of execution job is a MapReduce job. The

execution engine sends the job to JobTracker, which is in Name node and it

assigns this job to TaskTracker, which is in Data node. Then, the query executes

the job.

8

Metadata Operations: Meanwhile the execution engine can execute the

metadata operations with Metastore.

9

Fetch Result: Execution engine receives the results from Data nodes.

10

Send Results: Execution engine sends the result to Driver.

11

Send Results: Driver sends the results to Hive Interfaces.

4.4.7 Hive Built-in Functions

Hive supports a number of built-in functions. Table 4.8 gives the return types,

syntax and descriptions of the examples of these functions.

Table 4.8 Return types, syntax, and descriptions of the functions

Syntax Description

BIG INT round(double

a)

Returns the rounded BIGINT (8 Byte integer) value of the 8 Byte

double-precision floating point number a

BIG INT

floor(double

a)

Returns the maximum BIGINT value that is equal to or less than

the double.

BIG INT

ceil(double a)

Returns the minimum BIGINT value that is equal to or greater

than the double.

double

rand(),

rand(int seed)

Returns a random number (double) that distributes uniformly

from o to 1 and that changes in each row. Integer seed ensured
that random number sequence is deterministic.

string

concate(string

strl, string

str2, ...)

Returns the string resulting from concatenating strl with str2,

.....

string

substr(string

str, int start)

Returns the substring of str starting from a start position till

the end of string str.

string

subs tr(string

str, int start,

int length)

Returns the substring of str starting from the start position

with the given length.

string

upper(string

str), ucase

(string str)

Returns the string resulting from converting all characters of

str to upper case.

string

lower(string

str),

lcase(string

str)

Returns the string resulting from converting all characters of

str to lower case.

string

trim (string

str)

Returns the string resulting from trimming spaces from both

ends. trim ('12A34 56') returns '12A3456'

string

ltrim(string

str);

rtrim(string

str)

Returns the string resulting from trimming spaces (only one

end, left or right hand side or right-handside spaces trimmed).

ltrim('12A34 56') returns '12A3456' and rtrim(' 12A34 56 ')

returns '12A3456'.

string

rtrim(string

str)

Returns the string resulting from trimming spaces from the

end (right hand side) of str.

int
year(string

date)
Returns the year part of a date or a timestamp string.

int
month(string

date)

Returns the month part of a date or a timestamp string.

int
day(string

date)

Returns the day part of a date or a timestamp string.

Following are the examples of the returned output:

SELECT floor(l0.5) from marks; Output= 10.0

SELECT ceil(l0.5) from marks; Output= 11.0

Self-Assessment Exercise linked to LO 4.3

1. How does Hive install? What are the features of Hive? What are the

components of the Hivearchitecture?

2. Give reasons for Hive provided with distinct integer types: TINYINT,

SMALLINT, INT and BIGINT.

3. Howdoes Hiveuse text, sequential, RC and ORC files?

4. How does the Hive use Collection data types: STRUCT, MAP and ARRAY?

5. How does Hive integrate with MapReduce and HDFS?

6. Give one example each of usages of round(), floorl), ceil(), rand() and

upper() built-in functions in Hive.

4.5 l HIVEQL

Hive Query Language (abbreviated HiveQL) is for

querying the large datasets which reside in the HDFS

environment. HiveQL script commands enable data

definition, data manipulation and query processing.

HiveQL supports a large base of SQL users who are

acquainted with SQL to extract information from data

Hi'll@QIL for CijUeryiliilg,

sortiliilg, ag-g reyati ng1,

querj,iing1 scripts, :;umd
hp Red um sonptrstor Joins

and SIJlb-{j,l.!!leries

mailto:ll@QIL

warehouses.

HiveQL

Process

Engine

HiveQLis similar to SQL for querying on schema information at the Metastore.

It is one of the replacements of traditional approach for MapReduce program.

Instead of writing MapReduce program in Java, we can write a query for

MapReduce job and process it.

Execution

Engine

The bridge between HiveQL process Engine and MapReduce is Hive Execution

Engine. Execution engine processes the query and generates results same as

MapReduce results. It uses the flavor of MapReduce.

The subsections ahead give the details of data definition, data manipulation

and querying data examples.

4.5.1 HiveQLData Definition Language(DDL)

HiveQL database commands for data definition for DBs and Tables are CREATE

DATABASE, SHOW DATABASE (list of all DBs), CREATE SCHEMA, CREATE TABLE.

Following are HiveQL commands which create a table:

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [sdatabase name=]

<table name>

[(<column name> <data type> [COMMENT <column comment=], ...)]

[COMMENT <table comment=]

[ROW FORMAT <row formats]

[STORED AS <file forrnat-]

Table 4.9 gives the row formats in a Hive table.

Table 4.9 Hive Table Row Formats

DELIMITED

Specifies a delimiter at the table level for structured fields. This is default.

Syntax: FIELDS TERMINATED BY, LINES TERMINATED BY

SERDE

Stands for Serializer /Deserializer. SYNTAX: SERDE 'serde.class.narne'

HiveQL database commands for data definition for the DBs and Tables are

CREATE DATABASE, SHOW DATABASE (list of all DBs), CREATE SCHEMA, CREATE

TABLE.

The following example uses HiveQL commands to create a database

toys companyDB.

EXAMPLE 4.7

How do you create a database named toys_companyDB and table named

toys_tbl?

SOLUTION

$HIVE_HOME/binhive - service di hive=set

hive.cli.print.current.db=true; hive>

CREATE DATABASE toys_companyDB

hive>USE toys_companyDB

hive (toys_companyDB)> CREATE TABLE toys_tbl (

-puzzle code STRING,

=pieces SMALLINT

=cost FLOAT);

hive (toyscompany)» quit;

&ls/home/binadmin/Hive/warehouse/toys_companyDB.db

The following example uses the command CREATE TABLE to create a table

toy _products.

EXAMPLE 4.8

How do you create a table toy _products with the following fields?

 Fltid Data type

u tCategmy stt ag

Pr uctlcl 1Dt

~

p

nr-tNariite

lll ~PFice

trlng

float

SOLUTION

CREATE TABLE IF NOT EXISTS toy _products (ProductCategory String,

Productld int, ProductName String, ProductPrice float)

COMMENT'Toy details'

ROW FORMATDELIMITED

FIELDS TERMINATEDBY '\t'

LINES TERMINATEDBY '\n'

STORED AS TEXTFILE;

The option IF NOT EXISTS, Hive ignores the statement in case the table

already exists.

Consider the following command:

A command is

CREATE DATABASEISCHEMA [IF NOT EXISTS] <database name>;

IF NOT EXISTS is an optional clause. The clause notifies the user that a

database with the same name already exists. SCHEMA can be also created in

place of DATABASE using this command

A command is written to get the list of all existing databases.

SHOW DATABASES;

A command is written to delete an existing database.

DROP (DATABASEISCHEMA)

[RESTRICT I CASCADE];

[IF EXISTS] <database name>

The following example gives the sample usages of the commands.

EXAMPLE 4.9

Give examples of usages of database commands for CREATE, SHOW and DROP.

SOLUTION

CREATE DATABASE IF NOT EXISTS toys companyDB;

SHOW DATABASES;

default toys_companyDB

*Default database is test.

fP111.ZZle_

Delete dtabase using the command:

Drop Database toys companyDB.

4.5.2 HiveQL Data Manipulation Language (DML)

HiveQL commands for data manipulation are USE <database name>, DROP

DATABASE, DROP SCHEMA, ALTER TABLE, DROP TABLE, and LOAD DATA.

The following is a command for inserting (loading) data into the Hive DBs.

LOAD DATA [LOCAL] INPATH '<file path>' [OVERWRITE] INTO

TABLE <table name> [PARTITION (partcoll=vall,

partcol2=val2 ...)]

LOCAL is an identifier to specify the local path. It is optional. OVERWRITE is

optional to overwrite the data in the table. PARTITION is optional. vall is value

assigned to partition column 1 (partcoll) and valz is value assigned to partition

column 2 (partcolz).

Command

Functionality

Script Example

LOAD

DATA

Insert data in a

table

LOAD DATA LOCAL INPATH '/home/user/

jigsaw _puzzle_info.txt'

OVERWRITE INTO TABLE toy_tbl;

The following is an example for usages of data manipulation commands,

INSERT, ALTER, and DROP.

EXAMPLE 4.10

Consider an example of a toy company selling Jigsaws. Consider a text file

named jigsaw_puzzle_info.txt in /home/user directory. The file is text file

with four fields: Toy-category, toy-id, toy-name, and Price in US$ as follows:

How will you use (i) LOAD (insert), (ii) ALTER and (iii) DROP commands?

SOLUTION

(i) Insert the data of this file into a table using the following commands:

LOAD DATALOCAL INPATH '/home/user/ jigsaw_puzzle_info.txt'

OVERWRITEINTO TABLEjigsaw_puzzle;

(ii) Alter the table using the following commands:

ALTERTABLE<name> RENAMETO <new name>

ALTERTABLE<name> ADD COLUMNS(<col spec> [, <col spec> ...])

ALTERTABLE<name> DROP [COLUMN]<column name>

ALTER TABLE <name> CHANGE <column name> <new name> <new

type>

ALTERTABLE<name> REPLACECOLUMNS(<col spec-], <col spec> ...])

The following query renames the table from jigsaw _puzzle to toy _tbl:

ALTERTABLEjigsaw_puzzle RENAMETO toy_tbl;

The following query renames the column name ProductCategory to

ProductCat:

ALTERTABLEtoy_tbl CHANGEProductCategory ProductCat String;

The following query renames data type of ProductPrice from float to

double:

ALTERTABLEtoy_tbl CHANGEProductPrice ProductPrice Double;

The following query adds a column named ProductDesc to the

toy _tbl table:

ALTERTABLEtoy_tbl ADD COLUMNS(ProductDesc String COMMENT

'Product Description');

The following query deletes all the columns from the toy_tbl table

and replaces it with ProdCat and ProdName columns:

ALTER TABLE toy_tbl REPLACE COLUMNS (ProductCategory INT

ProdCat Int, ProductName STRINGProdName String);

(iii) The following query deletes a column named ProductDesc from the

toy_tbl table:

ALTER TABLE toy_tbl DROP COLUMN ProductDesc;

A table DROP using the following command: DROP TABLE [IF EXISTS]

table_name;

The following query drops a table named jigsaw _puzzle:

DROP TABLE IF EXISTS jigsaw _puzzle;

4.5.3 HiveQLFor Queryingthe Data

Partitioning and storing are the requirements. A data warehouse should have a

large number of partitions where the tables, files and databases store. Querying

then requires sorting, aggregating and joining functions.

Querying the data is to SELECT a specific entity satisfying a condition, having

presence of an entity or selecting specific entity using GroupBy .

SELECT [ALL I DISTINCT] <select expression>, <select

expression>, ...

FROM <table name>

[WHERE <where condition>]

[GROUP BY <column List>]

[HAVING <having condition>]

[CLUSTER BY <column List>I [DISTRIBUTE BY <column

List>] [SORT BY <column List>]]

[LIMIT number];

4.5.3.1 Partitioning

Hive organizes tables into partitions. Table partitioning refers to dividing the

table data into some parts based on the values of particular set of columns.

Partition makes querying easy and fast. This is because SELECT is then from the

smaller number of column fields. Section 3.3.3.3 described RC columnar format

and serialized records. The following example explains the concept of

partitioning, columnar and file records formats.

EXAMPLE 4.11

Consider a table T with eight-column and four-row table. Partition the

table, convert in RC columnar format and serialize.

SOLUTION

Firstly, divide the table in four parts, tr1, tr2, tr3 and tr4 horizontally row•

wise. Each sub-table has one row and eight columns. Now, convert each sub•

table tr1, trz, tr3 and tr4 into columnar format, or RC File records [Recall

Example 3.7 on how RC file saves each row-group data in a format using

SERDE (serializer / des-serializer)].

Each sub-table has eight rows and one column. Each column can serially

send data one value at an instance. A column has eight key-value pairs with

the same key for all the eight.

Table Partitioning

Create a table with Partition using command:

CREATE [EXTERNAL] TABLE <table name> (<column name 1>

<data type 1>,)

PARTITIONED BY (<column name n> <data type n> [COMMENT

<column comment>], ...);

Rename a Partition in the existing Table using the following command:

ALTER TABLE <table name> PARTITION partition spec

RENAME TO PARTITION partition_spec;

Add a Partition in the existing Table using the following command:

ALTER TABLE <table name> ADD [IF NOT EXISTS] PARTITION

partition_spec

[LOCATION

'location2']

'locationl'] partition spec [LOCATION

• • • I

partition_spec: (p column

p_col_value, ...)

p col_value, p column

Drop a Partition in the existing Table using the following command:

ALTER TABLE <table name> DROP [IF EXISTS] PARTITION

partition spec, PARTITION partition spec;

The following example explains concept of add, rename and drop a partition.

EXAMPLE 4.12

How will you add, rename and drop a partition to a table, toys_tbl?

SOLUTION

(i) Add a partition to the existing toy table using the command:
ALTER TABLE toy_tbl ADD PARTITION

(category='Toy_Airplane')

'/Toy_Airplane/partAirplane';

(ii) The following query renames a partition:

location

ALTER TABLE

(category='Toy_Airplane')

(name='Fighter');

toy_tbl

RENAME

PARTITION

TO PARTITION

(iii) Drop a Partition in the existing Table using the command:

ALTER TABLE toy_tbl DROP [IF EXISTS] PARTITION

(category='Toy_Airplane');

The following example explains how querying is facilitated by using

partitioning of a table. A query processes faster when using partition. Selection

of a product of a specific category from a table during query processing takes

lesser time when the table has a partition based on a category.

EXAMPLE 4.13

Assume that following file contains toys_tbl.

/table/toy_tbl/filel

Category, id, name, price

Toy_Airplane, 10725, Lost Temple, 1.25

Toy_Airplane, 31047, Propeller Plane, 2.10

Toy_Airplane, 31049, Twin Spin Helicopter, 3.45

Toy_Train, 31054, Blue Express, 4.25

Toy_Train, 10254, Winter Holiday Toy_Train, 2.75

A table toy_tbl contains many values for categories of toys. Query is

required to identify all toy _airplane fields. Give reasons why partitioning

reduces query processing time.

SOLUTION

Here, a table named toy _tbl contains several toy details (category, id, name

and price). Suppose it is required to identify all the airplanes. A query

searches the whole table for the required information. However, if a

partition is created on the toy _tbl, based on category and stores it in a

separate file, then it will reduce the query processing time.

Let the data partitions into two files, file 2 and file 3, using category.

/table/toys/toy_airplane/file2

toy_airplane, 10725, Lost Temple, TP, 1.25

toy_airplane, 31047, Propeller Plane, 2.10

toy_airplane, 31049, Lost Temple, 3.45

/table/toys/toy_train/file3

Toy_Train, 31054, Blue Express, 4.25

Toy_Train, 10254, Winter Holiday Toy_Train, 2.75

Advantages of Partition

1. Distributes execution load horizontally.

2. Query response time becomes faster when processing a small part of the

data instead of searching the entire dataset.

Limitations of Partition

1. Creating a large number of partitions in a table leads to a large number of

files and directories in HDFS, which is an overhead to NameNode, since it

must keep all metadata for the file system in memory only.

2. Partitions may optimize some queries based on Where clauses, but they

may be less responsive for other important queries on grouping clauses.

3. A large number of partitions will lead to a large number of tasks (which

will run in separate JVM) in each MapReduce job, thus creating a lot of

overhead in maintaining JVM start up and tear down (A separate task will

be used for each file). The overhead of JVM start up and tear down can

exceed the actual processing time in the worst case.

4.5.3.2 Bucketing

A partition itself may have a large number of columns when tables are very

large. Tables or partitions can be sub-divided into buckets. Division is based on

the hash of a column in the table.

Consider bucketed column Cbucket_i· First, define a hash_function H() according

to type of the bucketed column. Let the total number of buckets = Nbuckets· Let

Cbucket_i denote ith bucketed column. The hash value hi = hashing function

H(Cbucket) mod (Nbuckets).

Buckets provide an extra structure to the data that can lead to more efficient

query processing when compared to undivided tables or partition. Buckets store

as a file in the partition directory. Records with the same bucketed column will

always be stored in the same bucket. Records kept in each bucket provide

sorting ease and enable Map task Joins. A Bucket can also be used as a sample

dataset.

CLUSTERED BY clause divides a table into buckets. A coding example on

Buckets is given below:

EXAMPLE 4.14

A table toy_tbl contains many values for categories of toys. Assume the

number of buckets to be

created= 5. Assume a table for Toy_ Airplane of product code 10725.

1. How will the bucketing enforce?

2. How will the bucketed table partition toy_ airplane_ l O 7 2 5 create

five buckets?

3. How will the bucket column load into toy_ t.b I?

4. How will the bucket data display?

SOLUTION

#Enforce bucketing

set hive.enforce.bucketing=true;

#Create bucketed Table for toy _airplane of product code 10725 and create

cluster of 5 buckets

CREATE TABLE IF NOT EXISTS

toy_airplane_10725(ProductCategory STRING,

Productid INT, ProductName STRING, PrdocutMfgDate

YYYY-MM-DD, ProductPrice_US$ FLOAT) CLUSTERED BY

(Price) into 5 buckets;

Load data to bucketed table.

FROM toy_airplane_10725 INSERT OVERWRITE TABLE

toy_tbl SELECT ProductCategory, Productid,

ProductName, PrdocutMfgDate, ProductPrice;

• To display the contents for Price_US$ selected for the Productld from

the second bucket.

SELECT DISTINCT Productid FROM toy_tbl_buckets

TABLE FOR 10725(BUCKET 2 OUT OF 5 ON Price US$);

4.5.3.3 Views

A program uses functions or objects. Constructing an object instance enables

layered design and encapsulating the complexity due to methods and fields.

Similarly, Views provide ease of programming. Complex queries simplify using

reusable Views. A HiveQLView is a logical construct.

A View provisions the following:

• Saves the query and reduces the query complexity

• Use a View like a table but a View does not store data like a table

• Hive query statement when uses references to a view, the Hive executes

the View and then the planner combines the information in View

definition with the remaining actions on the query (Hive has a query

planner, which plans how a query breaks into sub-queries for obtaining

the right answer.)

• Hides the complexity by dividing the query into smaller, more manageable

pieces.

4.5.3.4 Sub-Queries (Using Views)

Consider the following query with a nested sub-query.

EXAMPLE 4.15

A table toy_tbl contains many values for categories of toys. Assume a table

for Toy_Airplane of product code 10725.Consider a nested query:

FROM (

SELECT * toy _tbl_Join people JOINToy_Airplane

ON (Toy_Airplane.Productld= productld.id) WHERE productld=10725

) toys_ catalog SELECT prdocutMfgDate WHERE prdocutMfgDate = '2017-

10-23';

Create a View for using that in a nested query.

SOLUTION

create a view named toy_tbl_MiniJoin

CREATE VIEW toy _tbl_MiniJoin AS

SELECT * toy _tbl_Join people JOINToy_Airplane

ON (Toy_Airplane.Productld= productld.id) WHERE productld=10725

) toys_ catalog SELECT prdocutMfgDate WHERE prdocutMfgDate = '2017-

10-23';

4.5.4 Aggregation

Hive supports the following built-in aggregation functions. The usage of these

functions is same as the SQL aggregate functions. Table 4.10 lists the functions,

their syntax and descriptions.

Table 4.10 Aggregate functions, their return type, syntax and descriptions

Return

Type

Syntax Description

BIG INT

count(*),

count(expr)

Returns the total number of retrieved rows.

DOUBLE

surntcol),

sum(DISTINCT

col)

Returns the sum of the elements in the group or the sum of the

distinct values of the column in the group.

DOUBLE

avg (col),

avg (DISTINCT

col)

Returns the average of the elements in the group or the

average of the distinct values of the column in the group.

DOUBLE

min (col)

Returns the minimum value of the column in the group.

DOUBLE

max(col)

Returns the maximum value of the column in the group.

Usage examples are:

Example: SELECT ProductCategory, count (*) FROM toy _tbl GROUP BY

ProductCategory;

Example: SELECT ProductCategory, sum(ProductPrice) FROM toy_tbl GROUP

BY ProductCategory;

4.5.5 Join

A JOIN clause combines columns of two or more tables, based on a relation

between them. HiveQLJoin is more or less similar to SQL JOINS. Following uses

of two tables show the Join operations.

Table 4.11 gives an example of a table named toy_tbl of Product categories,

Productid and Product name.

Table 4.11 Table of Product categories, Product Id and Product name

ProductCategory

Productld

ProductName

Toy_Airplane

10725

Lost temple

Toy_Airplane

31047

Propeller plane

Toy_Airplane

31049

Twin spin helicopter

Toy_Train

31054

Blue express

Toy_Train 10254

Winter holiday Toy_Train

Table 4.12 gives an example of a table named price of ID or Product ID and

ProductCost.

Table 4.12 Table of ID and Product Cost

Id

ProductPrice

10725 100.0

31047 200.0

31049 300.0

31054 450.0

10254 200.0

Different types of joins are follows:

JOIN

LEFT OUTER JOIN

RIGHT OUTER JOIN

FULL OUTER JOIN

JOIN Join clause combines and retrieves the records from multiple tables. Join is

the same as OUTER JOIN in SQL. A JOIN condition uses primary keys and foreign

keys of the tables.

SELECT t.Productid, t.ProductName, p.ProductPrice

FROM toy_tbl t JOIN price p

ON (t.Productid = p.Id);

LEFT OUTER JOIN A LEFT JOIN returns all the values from the left table, plus the

matched values from the right table, or NULL in case of no matching JOIN

predicate.

SELECT t.Productid, t.ProductName, p.ProductPrice

FROM toy_tbl t LEFT OUTER JOIN price p

ON (t.Productid = p.Id);

RIGHT OUTER JOIN A RIGHT JOIN returns all the values from the right table,

plus the matched values from the left table, or NULL in case of no matching join

predicate.

SELECT t.Productid, t.ProductName, p.ProductPrice

FROM toy_tbl t RIGHT OUTER JOIN price p

ON (t.Productid = p.Id);

FULL OUTER JOIN HiveQL FULL OUTER JOIN combines the records of both the

left and the right outer tables that fulfill the JOIN condition. The joined table

contains either all the records from both the tables, or fills in NULL values for

missing matches on either side.

SELECT t.Productid, t.ProductName, p.ProductPrice

FROM toy_tbl t FULL OUTER JOIN price p

ON (t.Productid = p.Id);

4.5.6 Group by Clause

GROUP BY, HAVING,ORDER BY DISTRIBUTEBY, CLUSTER BY are HiveQL clauses.

An example of using the clauses is given below:

EXAMPLE 4.16

How do SELECT statement uses GROUP BY, HAVING, DISTRIBUTE BY,

CLUSTER BY? How does clause GROUP BY used in queries on toy_tbl?

SOLUTION

(i) Use of SELECT statement with WHEREclause is as follows:

SELECT [ALL DISTINCT] <select expression>,

<select expression>, ...

FROM <table name>

[WHERE <where condition>]

[GROUP BY <column List>]

[HAVING <having condition>]

[CLUSTER BY <column List>I [DISTRIBUTE BY <column

List> J [SORT BY <column List>]]

[LIMIT number];

(ii) Use of the clauses in queries to toy _tbl is as follows:

SELECT* FROM toy WHERE ProductPrice > 1.5;

SELECT ProductCategory, count (*) FROM toy_tbl

GROUP BY ProductCategory;

SELECT ProductCategory, sum(ProductPrice) FROM

toy_tbl GROUP BY ProductCategory;

Self-Assessment Exercise linked to LO 4.4

1. What are the results after execution of the following command?

CREATE TABLE IF NOT EXISTS toy_products

(ProductCategory String, Productid int, ProductNarne

String, ProductPrice float)

COMMENT 'Toy details'

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'

LINES TERMINATED BY '\n'

STORED AS TEXTFILE;

2. What do the following statements mean?

ALTER TABLE <puzzle info> RENAME TO

<jigsaw_puzzle info>

ALTER TABLE <jigsaw_puzzle info> ADD COLUMNS

(<puzzle code_narne>[,<pieces> [,<puzzle_cost> [, ...])

ALTER TABLE <jigsaw_puzzle info> DROP [COLUMN]

<puzzle cost_US$>

3. How do you create partitions and buckets in a Hive database?

4. Consider sales table for all five car models at a large number of

showrooms. How are the sales figures of a specific model queried?

5. Explain the meaning of the following statements:

SELECT [ALL I DISTINCT] <select expression>, <select

expression>, ...

FROM <table name>

[WHERE <where condition>]

[GROUP BY <column List>]

[HAVING <having condition>]

[CLUSTER BY <column List>I [DISTRIBUTE BY <column

List>] [SORT BY <column List>]]

[LIMIT number];

4.6 ! PIG

Apache developed Pig, which:

Is an abstraction over MapReduce

Is an execution framework for parallel processing

Reduces the complexities of writing a MapReduce

program

Pig, arnh iteah.11re. 6ru nt

shell colilITlmands,
dsta model. Pi g1 l!.a~illil,
dev~opiimg scripts, anol
12Xtens:ibi lint !JSlliilg U D'Fs

• Is a high-level dataflow language. Dataflow language means that a Pig

operation node takes the inputs and generates the output for the next

node

• Is mostly used in HDFS environment

• Performs data manipulation operations at files at data nodes in Hadoop.

1. Applications ofApache Pig

Applications of Pig are:

• Analyzing large datasets

• Executing tasks involving adhoc processing

• Processing large data sources such as web logs and streaming online data

• Data processing for search platforms. Pig processes different types of data

• Processing time sensitive data loads; data extracts and analyzes quickly .

For example, analysis of data from twitter to find patterns for user

behavior and recommendations.

2. Features

(i) Apache PIG helps programmers write complex data transformations

using scripts (without using Java). Pig Latin language is very similar to

SQL and possess a rich set of built-in operators, such as group.join, filter,

limit, order by, parallel, sort and split. It provides an interactive shell

known as Grunt to write Pig Latin scripts. Programmers write scripts

using Pig Latin to analyze data. The scripts are internally converted to

Map and Reduce tasks with the help of the component known as

Execution Engine, that accepts the Pig Latin scripts as input and converts

these scripts into MapReducejobs. Writing MapReduce tasks was the only

way to process the data stored in HDFS before the Pig.

(ii) Creates user defined functions (UDFs) to write custom functions which

are not available in Pig. A UDF can be in other programming languages,

such as Java, Python, Ruby, Jython,]Ruby. They easily embed into Pig

scripts written in Pig Latin. UDFs provide extensibility to the Pig.

(iii) Process any kind of data, structured, semi-structured or unstructured

data, coming from various sources.

(iv) Reduces the length of codes using multi-query approach. Pig code of 10

lines is equal to MapReduce code of 200 lines. Thus, the processing is very

fast.

(v) Handles inconsistent schema in case of unstructured data as well.

(vi) Extracts the data, performs operations on that data and dumps the data

in the required format in HDFS. The operation is called ETL (Extract

Transform Load).

(vii) Performs automatic optimization of tasks before execution.

(viii)Programmers and developers can concentrate on the whole operation

without a need to create mapper and reducer tasks separately.

(ix) Reads the input data files from HDFS or the data files from other sources

such as local file system, stores the intermediate data and writes back the

output in HDFS.

(x) Pig characteristics are data reading, processing, programming the UDFs

in multiple languages and programming multiple queries by fewer codes.

This causes fast processing.

(xi) Pig derives guidance from four philosophies, live anywhere, take

anything, domestic and run as if flying. This justifies the name Pig, as the

animal pig also has these characteristics. Table 4.13 gives differences

between Pig and MapReduce.

Table 4.13 Differences between Pig and MapReduce

Pig

MapReduce

A dataflow language A data processing paradigm

High level language and flexible Low level language and rigid

PerformingJoin, filter, sorting or ordering

operations are quite simple

Relatively difficult to perform Join, filter,

sorting or ordering operations between

datasets

Programmer with a basic knowledge of SQL

can work conveniently

ComplexJava implementations require

exposure to Java language

Uses multi-query approach, thereby

reducing the length of the codes

significant! y

Require almost 20 times more the number of

lines to perform the same task

No need for compilation for execution;

operators convert internally into

MapReduce jobs

Long compilation process for Jobs

Provides nested data types like tuples, bags

and maps

No such data types

Table 4.14 gives differences between Pig and SQL.

Table 4.14 Differences between Pig and SQL

Pig

SQL

Pig Latin is a procedural language

A declarative language

Schema is optional, stores data without assigning a

schema

Schema is mandatory

Nested relational data model Flat relational data model

Provides limited opportunity for Query optimization
More opportunity for query

optimization

Pig and Hive codes, both create MapReduce jobs when execute. Hive in some

cases, operates on HDFS in a similar way Apache Pig does. Table 4.15 gives a few

significant points that set Pig apart from Hive.

Table 4.15 Differences between Pig and Hive

Pig

Hive

Originally created at Yahoo

Originally created at Facebook

Exploits Pig Latin language

Exploits HiveQL

Pig Latin is a dataflow language

HiveQL is a query processing
language

Pig Latin is a procedural language and it fits in pipeline

paradigm

HiveQL is a declarative language

Handles structured, unstructured and semi-structured

data

Mostly used for structured data

3. Pig Architecture

Firstly, Pig Latin scripts submit to the Apache Pig Execution Engine. Figure 4.12

shows Pig architecture for scripts dataflow and processing in the HDFS

environment.

Figure 4.12 Pig architecture for scripts dataflow and processing

The three ways to execute scripts are:

1. GruntShell: An interactive shell of Pig that executes the scripts.

2. Script File: Pig commands written in a script file that execute at Pig

Server.

3. Embedded Script: Create UDFs for the functions unavailable in Pig built•

in operators. UDF can be in other programming languages. The UDFs can

embed in Pig Latin Script file.

ParserA parser handles Pig scripts after passing through Grunt or Pig Server.

The Parser performs type checking and checks the script syntax. The output is a

Directed Acyclic Graph (DAG). Acylic means only one set of inputs are

simultaneously at a node, and only one set of output generates after node

operations. DAG represents the Pig Latin statements and logical operators.

Nodes represent the logical operators. Edges between sequentially traversed

nodes represent the dataflows.

Optimizer The DAG is submitted to the logical optimizer. The

optimization activities, such as split, merge, transform and reorder operators

execute in this phase. The optimization is an automatic feature. The optimizer

reduces the amount of data in the pipeline at any instant of time, while

processing the extracted data. It executes certain functions for carrying out this

task, as explained as follows:

PushUpFilter: If there are multiple conditions in the filter and the filter can be

split, Pig splits the conditions and pushes up each condition separately.

Selecting these conditions at an early stage helps in reducing the number of

records remaining in the pipeline.

PushDownForEachFlatten: Applying flatten, which produces a cross product

between a complex type such as a tuple, bag or other fields in the record, as late

as possible in the plan. This keeps the number of records low in the pipeline.

ColumnPruner: Omitts never used columns or the ones no longer needed,

reducing the size of the record. This can be applied after each operator, so that

the fields can be pruned as aggressively as possible.

MapKeyPruner: Omitts never used map keys, reducing the size of the record.

LimitOptimizer: If the limit operator is immediately applied after load or sort

operator, Pig converts the load or sort into a limit-sensitive implementation,

which does not require processing the whole dataset. Applying the limit earlier

reduces the number of records.

Compiler The compiler compiles after the optimization process. The optimized

codes are a series of MapReduce jobs.

Execution Engine Finally, the MapReduce jobs submit for execution to the

engine. The MapReducejobs execute and it outputs the final result.

4.6.1 Apache Pig - Grunt Shell

Main use of Grunt shell is for writing Pig Latin scripts. Any shell command

invokes using sh and ls. Syntax of sh command is:

grunt> sh shell command parameters

Syntax ofls command:

grunt> sh ls

Grunt shell includes a set of utility commands. Included utility commands are

clear, help, history, quit and set. The shell includes commands such as

exec, kill and run to control the Pig from the Grunt shell.

4.6.2 Installing Pig

Following are the steps for installing Pig:

1. Download the latest version from - https://pig.apache.org/

2. Download the tar files and create a Pig directory

$ cd Downloads/

$ tar zxvf pig-0.15.0-src.tar.gz

$ tar zxvf pig-0.15.0.tar.gz

$ mv pig-0.15.0-src.tar.gz/* /home/Hadoop/Pig/

3. Configure the Pig

export PIG HOME /home/Hadoop/Pig

export PATH= $PATH:/home/Hadoop/pig/bin

export PIG CLASSPATH $HADOOP HOME/conf

4.6.3 Pig LatinData Model

Pig Latin supports primitive data types which are atomic or scalar data types.

Atomic data types are int, float, long, double, char[], byte[]. The language also

defines complex data types. Complex data types are tuple, bag and map. Table

4.16 gives data types and examples.

Table 4.16 Data types and examples

Data type

Description

Example

bag Collection of tuples {(1,1), (2,4)}

tuple Ordered set of fields (1,1)

map (data map) Set of key-value pairs [Numberst]

int Signed 32-bit integer 10

long Signed 64-bit integer lOL or 101

float 32-bit floating point 22.7F or 22.7f

double 64-bit floating point 3.4 or 3.4e2 or 3.4E2

char array Char[], Character array data analytics

byte array BLOB (Byte array) ffoo

A simple atomic value is known as a field. For example, 'Oreo' or '10' are fields.

Atomic means non-divisible. NULL denotes an unknown or non-existent value in

Pig Latin.

Tuple Tuple is a record of an ordered set of fields. A tuple is similar to a row in a

table of RDBMS. The elements inside a tuple do not necessarily need to have a

schema associated to it. A tuple represents by'()' symbol. For example, (1, Oreo,

10, Cadbury)

Indices of the fields access the fields in each tuple. Tuples are ordered, like $1

from above tuple will return a value 'Oreo'.

Figure 4.13 shows Pig data model with fields, Tuple and Bag.

f
Fields

ha I Orao (.adbury 10.0

I Perk adbu,y 5.0

Tuple

Figure 4.13 Pig Data Model with fields, Tuple and Bag

Bag A bag is an unordered set of tuples. A bag can contain duplicate tuples as it

is not mandatory that they need to be unique. Each tuple can have any number

of fields (flexible schema). A bag can also have tuples with different data types.

{} symbol represents a bag. It is similar to a table in RDBMS, but unlike a table

in RDBMS, it is not necessary that every tuple contains the same number of

fields or that the fields in the same position (column) have the same type. For

example, {{Oreo, 10), (KitKat, 15, Cadbury)}

There are two types of bag: outer bag or relations and inner bag. Outer bag or

relation is a bag of tuples. Here relations are similar as relations in relational

databases. To understand it better let us take an example: {(Oreo, Cadbury),

(KitKat, Nestle), (Perk, Cadbury)}. This bag explains the relation between

the Chocolate brand and their brand company.

A bag can be a field in a relation; in that context, it is known as an inner bag.

Thus, an inner bag contains a bag inside a tuple. Figure 4.14 shows a relation and

keys and their values: (Cadbury, {(Oreo,10), (Perk,s)}) (Nestle {{Kitkat,15)})

/K_,~

Map

{

I a I I 1Prlce

I Name I Oreo I Price

ts.o

10_0

I Na I I e I 5.0

<.., ->

Figure 4.14 Relation and corresponding keys and their values (key-value

pairs)

Relation A relation is a bag of tuples. The relations in Pig Latin are unordered

(there is no guarantee that tuples are processed in any particular order).

Map A map (or data map) is a set of key-value pairs. The key needs to be of type

chararray and should be unique (similar to a column name). Map can be indexed

and value associated with it can be accessed from the keys. The value might be

of any type. [] symbol represents Map. The key and value separate by '#' symbol.

For example, [type#Oreo, price#lO]

4.6.4 Pig Latinand Developing Pig Latin Scripts

Pig Latin enables developing the scripts for data analysis. A number of operators

in Pig Latin help to develop their own functions for reading, writing and

processing data. Pig Latin programs execute in the Pig run-time environment.

Pig Latin

Statements in Pig Latin:

1. Basic constructs to process the data.

2. Include schemas and expressions.

3. End with a semicolon.

4. LOAD statement reads the data from file system, DUMP displays the result

and STORE stores the result.

5. Single line comments begin with - - and multiline begin with/* and end

with*/

6. Keywords (for example, LOAD, STORE, DUMP) are not case-sensitive.

7. Function names, relations and paths are case-sensitive.

Figure 4.15 shows the order of processing Pig statements-Load, dump and

store.

cl !

~q

(<
I

Figure 4.15 Order of processing Pig statements-Load, dump, and store

Usedlmr A.drlilioo.

Operato1S In Pig Latin

* I %

C~arison

Ofoerarors

Usedl for

=

EqJmalH.y Not eqnnl Less thilo

equ to equal [O

BooJean
Openrton

Used for

AND OR NOJ

LogiC31 OR Loglcal

NOJ

4.6.4.1 Apache Pig Execution

Pig Execution Modes Local Mode: All the data files install and run from a local

host using the local file system. Local mode is mostly used for testing purpose.

COMMAND: pig -x local

MapReduce Mode: All the data files load or process that exists in the HDFS. A

MapReducejob invokes in the back-end to perform a particular operation on the

data that exists in the HDFS when a Pig Latin statement executes to process the

data.

COMMAND: pig -x mapreduce or pig

Pig Latin Script Execution Modes

• Interactive Mode - Using the Grunt shell.

• Batch Mode - Writing the Pig Latin script in a single file

with . pig extension.

• Embedded Mode - Defining UDFs in programming languages such as Java,

and using them in the script.

4.6.4.2 Commands

• To get the list of pig commands: pig-help;

• To get the version of pig: pig -version.

• To start the Grunt shell, write the command: pig

LOAD Command The first step to a dataflow is to specify the input.

Load statement in Pig Latin loads the data from PigStorage.

To load data from HBase: book load 'MyBook' using

HBaseStorage();

For reading CSV file, PigStorage takes an argument which indicates which

character to use as a separator. For example, book LOAD

'PigDemo/Data/Input/myBook.csv' USING PigStorage (,);

For reading text data line by line: book

'PigDemo/Data/Input/myBook.txt' USING PigStorage()

(lines: chararray);

LOAD

AS

To specify the data-schema for loading: book = LOAD 'MyBook' AS

(name, author, edition, publisher);

Store Command Pig provides the store statement for writing the processed

data after the processing is complete. It is the mirror image of

the load statement in certain ways.

By default, Pig stores data on HDFS in a tab-delimited file using PigStorage:

STORE processed into '/PigDemo/Data/Output/Processed';

To store in HBaseStorage with a using clause: STORE processed into

'processed' using HBaseStorage();

To store data as comma-separated text data, PigStorage takes an argument to

indicate which character to use as a separator: STORE processed into

'processed' using PigStorage(',');

Dump Command Pig provides dump command to see the processed data on the

screen. This is particularly useful during debugging and prototyping sessions. It

can also be useful for quick adhoc jobs.

The following command directs the output of the Pig script on the display

screen:

DUMP processed;

Relational Operations

The relational operations provided at Pig Latin operate on data. They transform

data using sorting, grouping,joining, projecting and filtering. Followings are the

basic relational operators:

Foreach FOREACH gives a simple way to apply transformations based on

columns. It is Pig's projection operator. Table 4.17 gives examples using

FOREACH.

Table 4.17 Applying transformations on columns using FOREACH operator

Load an entire record, but then

remove all but the name and

phone fields from each record

A = load 'input' as (name: chararray,

rollno: long, address: chararray, phone:

chararray, preferences: map []);

B = foreach A generate name, phone;

Tuple projection using dot

operator

A= load 'input' as (t:tuple (x:int,

y:int));

B = foreach A generate t.x, t.$1;

Bag projection

A= load 'input' as (b:bag{t: (x:int,

y:int) }) ;

B = foreach A generate b.x;

Bag projection

A= load 'input' as (b:bag{t: (x:int,

y:int) }) ;

B = foreach A generate b. (x, y);

Add all integer values

A= load 'input' as (x:chararray, y:int,

z:int);

Al= foreach A generate x, y + z as yz;

B = group Al by x;

C = foreach B generate SUM(Al.yz);

FilterFILTER gives a simple way to select tuples from a relation based on some

specified conditions (predicate). It is Pig's select command.

Loads an entire record, then selects the tuples with marks

more than 75 from each record

A= load 'input' as

(name:chararray,

rollno:long,

marks: float);

B = filter A by marks

> 75.0;

Find name (char array) that do not match a regular

expression by preceding the text without a given

character string. Output is all names that do not start

with P.

A= load 'input' as

(name:chararray,

rollno:long,

marks:float);

B = filter A by not

name matches 'P.*';

Group GROUP statement collects records with the same key. There is no direct

connection between group and aggregate functions in Pig Latin unlike SQL.

Collects all records with the same value for the

provided key into a bag. Then it can pass to aggregate

function, if required or do other things with that.

A= load 'input' as

(name: chararray,

rollno:long, marks:

float);

grpd = group A by marks;

B = foreach grpd

generate name, COUNT(A);

Order by ORDER statement sorts the data based on a specific field value,

producing a total order of output data.

The syntax of order is similar to group.

Key indicates by which the data sort.

A= load 'input' as (name:

chararray, rollno: long,

marks: float);

B = order A by name;

To sort based on two or more keys (For example, A = load 'input' as

first sort by, then sort by), indicate a set of keys by (name: chararray,

whichthed~asort. rollno:long, marks:float);

No parentheses around the keys when multiple B = order A by name, marks;

keys indicate in order

DistinctDISTINCT removes duplicate tuples. It works only on entire tuples, not

on individual fields:

Removes the tuples having the

same name and city.

A= load 'input' as (name: chararray,

city: chararray);

B = distinct A;

JoinJOIN statement joins two or more relations based on values in the common

field. Keys indicate the inputs. When those keys are equal, two tuples are joined.

Tuples for which no match is found are dropped.

Join selects tuples from one input to put together

. .
with tuples from another mput.

A= load 'inputl' as

(name:chararray,

rollno:long);
.

B = load 'input2' as

(rollno:long, marks:float);

C = join A by rollno, B by

rollno

A= load 'inputl' as (name:

chararray, fathername:

chararray, rollno: long);
Also based on multiple keys join. All cases must

have the same number of keys, and they must be
B = load 'input2' as (name:

of the same or compatible types. chararray, rollno: long,
marks: float);

C = join A by (name,

rollno), B by (name, rollno)

Pig also supports outer joins. Tuples which do not have a match on the other

side are included, with null values being filled for the missing fields in outer

joins. Outer joins can be left, right or full. A left outer join means tuples from the

left side will be included even when they do not have a match on the right side.

Similarly, a right outer join means tuples from the right side will be included

even when they do not have a match on the left side. A full outer join implies

tuples from both sides are taken even when they do not have matches.

Limit LIMIT gets the limited number of results.

Outputs only first five tuples

from the relation.

A= load 'input' as (name: chararray,

city: chararray);

B = Limit A 5;

Sample SAMPLE offers to get a sample of the entire data. It reads through all of

the data but returns only a percentage of rows on random basis. Thus, results of

a script with sample will vary with every execution. The percentage it will

return is expressed as a double value, between O and 1. For example,

0.2 indicates 20%.

Outputs only 10% tuples from

the relation

A= load 'input' as (name:chararray,

city: chararray);

B = sample A 0.1;

Split SPLIT partitions a relation into two or more relations

Outputs A relation A splits into

two relations P and Q

A= load 'input' as (name:chararray,

rollno:long, marks:float);

Split A into P if marks >50.0, Q if

marks :S:: 50.0;

Parallel PARALLEL statement is for parallel data processing.

Any relational operator in Pig Latin can attach PARALLEL. However, it controls

only reduce-side parallelism, so it makes sense only for operators that force a

reduce phase, such as group, order, distinct,join or limit.

Generating MapReduce job with

10 reducers

A= load 'input' as (name: chararray,

marks: float);

B = group A by marks parallel 10;

EVAL Functions Following are the evaluation functions:

Function

Name

Description

AVG

Compute the average of the numeric values in a in a single-column bag

SUM

Compute the sum of the numeric values in a single-column bag

MAX

Get the maximum of numeric values or chararrays in a single-column bag

MIN

Get the minimum of numeric values or chararrays in a single-column bag

COUNT and

COUNT_STAR

Count the number of tuples in a bag

CONCAT

Concatenate two fields. The data type of the two fields must be the same,

either chararray or bytearray.

DIFF

Compare two fields in a tuple

IsEmpty

Check if a bag or map is empty (has no data)

SIZE

Compute the number of elements based on the data type

TOKENIZE

Split a string and output a bag of words

Piggy Bank Pig users share their functions from Piggy Bank. Register is keyword

for using Piggy bank functions.

User-Defined Functions (UDFs) A programmer defines UDFs which perform

functionalities not present as built-in Pig function. A programmer can use UDFs

for filtering data or performing further analysis. A programmer can write UDF

using a programming language, such as Java, Python, Ruby,Jython or)Ruby.

A UDF should extend a Filter function or Eval function and must contain a core

method called exec, which contains a Tuple.

The UDF class extends the Evalfunc class which is the base for all Eval

functions. All evaluation functions extend the Java class 'org.apache.pig.Evalfunc'.

It is parameterized with the return type of the UDF which is a Java String in this

case.

Filter functions are Eval functions that return a Boolean value. The UDF class

when extends the Filterfunc class can be used anywhere a Boolean expression is

appropriate, including the FILTER operator or Bincond expression.

The following example gives the codes for developing a user-defined function

(UDF) returning Boolean after checking the age.

EXAMPLE 4.17

Write a UDF 'IsCorrectAge' which checks if the age given is correct or not.

UDF should return a Boolean value: True or False. If the Tuple is null or zero

then also it should return False. Use Java. Create a JAR file and then export.

Later register the JAR file. The JAR files are in the library files of Apache Pig

at the time of loading.

SOLUTION

Followings are the codes for the user-defined function IsCorrectAge.

public clans I~CorrectAge extend~ FilterFunc {

@Override

Public Boolean exec {Tuple tuple) throws IOException

if (tuple== null I I tuple.size() == 0) {

return false,

try

Object object= tuple.get(O};

if {object== null)

return false;

Inti= {Integer} object;

if < i == as 11 i == 2 o I I i

return true;

21 11 i 2 5) {

else {

return false,

catch (BxecException e} {

throw new IOHxception(e);

Once I sCorrectAge create, the following command registers a JAR file

into the library of JAR files:

register myudf.jar;

A= load 'input' as (name chararray, age int);

X = filter A by IsCorrectAge(age);

Self-Assessment Exercise linked to LO 4.5

1. How does Apache Pig execution engine function for faster data processing?

mailto:@Override

2. List the Grunt shell commands and the use of each command.

3. When is Hive and when is Pig used?

4. How are tuple and map used?

5. How are projections used?

6. Write the functions of GROUP, JOIN, FILTER, LIMIT, ORDER BY, PARALLEL,

SORT and SPLIT.

7. How will a UDF return the difference of maximum and minimum sales

from sales data values in Pig Latin?

aggregation

bag

BLOB

bucketing

collating

collection data type

combining

command line interface

composing

cross correlation

data definition

data manipulation language

deserializer

diagnostic operator

difference

dynamic partition

EVAL

filtering

graph processing

Group By

grouping by keys

having()

Hive

Hive data units

Hive File Format

HiveQL

inner Join

InnerSplit

intersection

iterative message passing

JobTracker

key-value pair

left Join

managed table

map (a Pig data type)

MapReduce metadata

Metastore

natural Join

ORC

outer Join

parallel tasks

parsing

partitioning

Pig

Piggy Bank

Pig Latin

projection

querying table

RCFile

RecordReader

relation

relational operator

right join

sequential file

serializer

shuffle and store

sorting

SQL-like script

static partition

tuple

user-defined function

views

LO 4.1

1. An application consists of a number of tasks. A MapReduce program for an

application task is termed as a job. Each job consists of several smaller

units, called MapReduce tasks. They run in parallel for the application

task. MapReduce programming is a software execution framework that

defines the parallel tasks, the results combine and application obtains the

consolidated result.

2. MapReduce implements a data model, which represents data as key-value

pairs.

3. Reduce task implements using Reducer function that takes Mapper output

(which is shuffled and sorted), that is grouped key-value data (kz, v2) and

applies it in parallel to each group. Another set of key-value pairs (ks, v3)

are the final output file.

4. Coping with node failures is done by the TaskTracker, which when fails to

communicate with the JobTracker for a pre-defined period, the JobTracker

restarts.

LO 4.2

1. MapReduce functions have a number of applications:

(a) Counting, summing, run algorithms for the relational algebra

operations, projections, union, intersection, natural Join, grouping and

aggregation.

(b) Collating, filtering and parsing. Collating is a method to collect all the

items which have same value of function.

(c) Graph processing using iterative message passing.

(d) Web Indexing also uses the method of iterative message-passing. A

state of each entity calculates based on characteristics of the other

entities in its neighborhood in a given network of entities and

relationships between them.

(e) Multiplication of matrix with a vector and of matrix with a matrix.

2. When multiplying two matrices, two cascaded MapReduce operations

require much less memory than a single step MapReduce.

LO 4.3

1. Apache Hive is an open-source data-warehouse software. Data

summarization, analysis and querying are major functions of Hive. Hive

facilitates reading, writing and managing large datasets residing in

distributed Hadoop files using SQL-like scripts. Hive supports serialization,

deserialization and user-defined functions.

2. Hive includes a system catalog, called Hive Metastore. Hive provides

increased flexibility in schema design.

3. Hive supports primitive and collection data types. Hive supports text files,

sequence Files (consisting of binary key/value pairs), RCFiles (Record

Columnar Files), ORC (optimized row columnar) and HBase file format

types. Hive considers database, tables, partitions, bucketed tables and

buckets as

data units.

LO 4.4

1. HiveQL has SQL-like script statements for (i) data definition, (ii) data

manipulation, (iii) creating, dropping, and using the databases and tables,

(iv) selection by where, GroupBy and Having clauses.

2. The partitions are must in large dataset tables in the databases of a data

warehouse. Hive command creates partitions. HiveQL commands create

buckets, views and sub-queries.

3. HiveQL has the command provision for join, sorting and aggregation.

4. HiveQL plug-ins the custom MapReduce scripts into queries.

LO 4.5

1. Pig is an open-source high-level language platform. Pig applications are

mainly for analyzing large datasets. Pig executes queries in the HDFS

environment. Processes any kind of data: structured, semi-structured or

unstructured data from various sources.

2. Pig language used is known as Pig Latin. Pig Latin programming is in Java.

Pig is SQL-like query language applied on a larger dataset, and provides

additional features. Pig Grunt shell enables development. Pig Grunt shell

enable development of Pig Latin scripts.

3. Pig converts all the operations into Map and Reduce tasks that process on

Hadoop efficiently. Programmers write scripts using Pig Latin to analyze

data. The scripts internally convert into Map and Reduce tasks.

4. Pig application is ETL operations (Extract, Transform and Load). The

language allows a detailed step-by-step procedure by which the data must

be transformed. Pig is designed to handle any kind of data. Pig

programming language can handle inconsistent schema data as well.

5. Helps programmers write complex data transformations without knowing

Java. Possess a rich set of built-in data types, such as Bag (collection of

tuples) and Map (set of key-value pairs). Possess a rich set of built-in

operators, such as group, join, filter, limit, order by, parallel, sort and split.

6. Allows programmers to write User-Defined Functions (UDF) to write

custom functions in other programming languages, such as Java, Python,

Ruby, Jython or]Ruby. UDF easily embeds in Pig scripts and provides

extensibility to Pig.

Ii Objective Type Questions 1111
Select one correct-answeroption for each of the following questions:

4.1 (i) A user application specifies the input/ output data locations, (ii) The

application supplies map and reduce functions by the implementation of

appropriate interfaces and/ or abstract classes, (iii) Application task

configures the job and specifies other job parameters, (iv) Map takes

output dataset as pieces of data from the Reducer and maps them on

various nodes for parallel processing, and (v)The reduce task, which takes

the input at Mapper combines those data pieces into a smaller set of data.

(a) ii and iii

(b) all

(c) i, ii and iii

(d) i, iv and v

4.2 (i) MapReduce implies, the reduce task is mostly performed after the map

task, (ii) Map takes input dataset as pieces of data and maps them on

various nodes for sequential processing,

(iii) MapReduce framework may not operate entirely on (key-value) pairs,

and (iv) The framework views the output to the task as a set of (key,

value) pairs and produces a set of (key, value) pairs as the input of the task,

possibly of different types.

(a) none

(b) only iv

(c) only ii

(d) all

4.3 (i) Partitioner does the partitioning, (ii) The partitions are the semi•

mappers in MapReduce,

(iii) Combiners are semi-reducers in MapReduce, (iv) Combiners process

the input of map tasks before submitting it to Reducer tasks, (v) Reduce

task implements using Reduce function (or Reducer) that takes Mapper

output (which is shuffled and sorted), that is (grouped key-value data) (kz,

v2) and applies it in parallel to each group, and (vi) Reduce function

iterates over the list of values associated with a key and produces outputs,

such as aggregations and statistics.

(a) all except ii and iii

(b) all

(c) i to v

(d) all except iv

4.4 MapReduce program composes the (i) Count, (ii) find distinct values, (iii)

search unique value, (iv) group using attributes, and does aggregating, (v)

summing, (vi) relational-algebra operations, (vii) projections, (viii) union,

(ix) intersection, (x) difference, (xi) natural Join,

(xii) multiplication of two matrices, and (xiii) multiplication of matrix and

vector.

(a) all except ii, iii, iv, xii and xiii

(b) all

(c) all except ii to vi

(d) all except xii and xiii

4.5 (i) Graph processing needs iterative message passing, (ii) Graph processing

uses are in web indexing, (iii) A state of each entity calculates based on

characteristics of the other entities in its neighborhood in a given network

of entities and relationships between them, (iv) Mapper class emit() emits

the messages for each node using ID of the non-adjacent node as a key, (v)

All messages groups by the incoming node, and (vi) Reducer class method

computes the state again and rewrites a node with the new state.

(a) i, iii, iv and vi

(b) i to v

(c) ii to vi

(d) All except iv

4.6 Hive (i) does not have commands to update or delete using the record level

queries, (ii) does not support transactions on the DB, (iii) supports to

create, drop and use functions, (iv) latency for query operations is much

less than a second for Big Data of petabytes, and (v) provides limited

JDBC/ODBC connectivity functions.

(a) i, iii, iv and vi

(b) iii to v

(c) ii to vi

(d) All except iv

4.7 Hive architecture consists of (i) Hive Server, (ii) CLI, (iii) web interface, (iv)

metastore, and

(v) Hive driver. (vi) Usages of Hive metastore are to provide names of

tables, databases, columns in a table.

(a) ii to v

(b) all

(c) ii to iv

(d) i, ii, iv, v

4.8 HiveQL data manipulation commands are (i) USE, (ii) DROP DATABASE, (iii)

DROP SCHEMA, (iv) ALTER TABLE, (v) DROP TABLE, (vi) DELETE TABLE,

(vii) DELETE DATABASE, (viii) INSERT TABLE, (ix) INSERT DATABASE, and

(x) LOAD DATA.

(a) all except ii, iii and v

(b) all except i, iii

(c) all except vi to ix

(d) i to iv

4.9 HiveQL (i) Join clause combines and retrieves the records from multiple

tables, (ii) Join is same as OUTER JOIN in SQL, (iii) JOIN condition uses

primary keys and foreign keys of the tables, (iv) JOIN clause combines the

columns of two or more tables, based on a related column between them,

(v) JOIN is same as SQL JOIN, (vi) A LEFT JOIN returns all the values from

the left table, plus the matched values from the right table, or NULL in case

of no matching JOIN predicate, (vii) A RIGHT JOIN returns all the values

from the right table, plus not matched values from the left table, or NULL

in case of no matchingjoin predicate, (viii) FULL OUTER JOIN combines the

records of both the left and the right outer tables those fulfill the JOIN

condition, and (ix) the joined table contains either all the records from

both the tables, or fills in NULL values for missing matches on either side.

(a) all except v and vii

(b) all

(c) all except iii and x

(d) i to vii

4.10 Pig (i) reads the input data files from HDFS or the data files from other

sources such as the local file system, (ii) stores the intermediate data and

writes back the output in HDFS, (iii) processes any kind of data: structured,

semi-structured or unstructured data coming from various sources, (iv)

allows programmers to write User-Defined Functions (UDFs) to write

custom functions,

(v) UDFs written in several other programming languages, (vi) UDF easily

embed in Pig scripts written in Linux, (vii) exploits multi-query approach,

thereby reducing the length of codes; ten lines is equal to MapReduce code

of two hundred lines, which enables spreads processing, and (viii) Pig read

data, processing, programming the UDFs in multiple languages and

programming multiple queries by fewer code enabling fast processing are

guided by four philosophies: live anywhere, take anything, domestic and

run like flying.

(a) i to vi

(b) all except vi

(c) all except iii to v

(d) all

4.11 Pig (i) helps programmers write complex data transformations using

scripts (without using Java) that possess a rich set of built-in operators

such as (ii} Bag, (iii} BLOB, (iv) Map, (v) Group,

(vi) Join, (vii} Filter, (viii} Limit, (ix) Order by, (x) parallel, (xi) sort and (xii}

split.

(a) all except i

(b) all except i, x and xii

(c) all except ii, iii and iv

(d) ii to ix and xi

4.12 Pig (i) is a dataflow language, (ii) low level language, (iii) performs Join,

filter, sorting or ordering operations, (iv) uses multi-query approach,

thereby increasing the length of the codes, (v) no need for compilation, (vi)

on execution, operators convert internally into a MapReduce job, (vii}

provides nested data types like tuples, bags, and maps. MapReduce on the

other hand, (viii) is a data processing paradigm, (ix) relatively difficult to

perform Join, filter, sorting or ordering operations between datasets, (x)

ComplexJava implementations require exposure to Java language, (xi) Jobs

have a long compilation process, and (xii) nested data types, such as

tuples, buckets and views.

(a) all except ii, iv and xii

(b) all except v, x, xi and xii

(c) ito x

(d) all except vi and xi

II Review Questions llil
4.1 List and explain the features of the MapReduce programming model? How

does MapReduce program enable parallel processing? (LO 4.1)

4.2 How does a Map task implement using key-value pairs in an input file?

What are the uses of Shuffle in processing the aggregates for all the

Mapper output by grouping key values of the Mapper output and the value

which gets appended in a list of values? (LO 4.1)

4.3 How does 'Group By' operate for creating Mapper output? What are the

roles of partitioning and combining? (LO 4.1)

4.4 How does MapReduce program find the distinct values and count the

unique values? (LO 4.2)

4.5 How does the MapReduce implement the relational algebraic functions,

union, projection, difference, intersection, natural join, grouping and

aggregation? Explain each with an example. (LO 4.2)

4.6 How do MapReduce tasks implement a matrix multiplication by a vector?

(LO 4.2)

4. 7 Describe the Hive architecture components. Why are HiveQL, SQL-like

scripts used in place of RDBMS, such as MySQL for Big Data? (LO 4.3)

4.8 What are the types of built-in functions available in Hive? What are the

uses of each of these? (LO 4.3)

4.9 Why should partitions be created in databases and tables in Hive data

warehouse for very large datasets? (LO 4.4)

4.10 What are aggregation commands provisioned in HiveQL? What are the

partitioning commands? (LO 4.4)

4.11 An enterprise needs to create and use a Hive data warehouse with very

large databases and tables. Why are the usages of RCFile and ORCFile

formats, creation of large number of partitions, buckets and views

required in the databases and tables? (LO 4.4)

4.12 What are the differences between Pig programming model with

MapReduce, relational database and Hive programming models? (LO 4.5)

4.13 Describe Pig data types and operators: Group, Join, Filter, Limit, Order by,

parallel, sort and split. (LO 4.5)

4.14 Describe usages of Pig operations: parallel, split and defining a UDF. Give

one example of each. (LO 4.5)

II Practice Exercises 1111
4.1 MapReduce program imports the following at the beginning:

import org.apache.hadoop.fs.Path

import org.apache.hadoop.mapreduce.Mapper

import org.apache.hadoop.mapreduce.Job

import org.apache.hadoop.mapreduce.Reducer

import org.apache.hadoop.io.Text

import

org.apache.hadoop.mapreduce.lib.input.FileinputFormat

import

org.apache.hadoop.mapreduce.lib.output.FileOutputFormat

import org.apache.hadoop.fs.Path

What are the functions that each Class provides in the program? (LO 4.1)

4.2 A company manufactures and sells cars through a large number of

showrooms. Each car showroom records in main table and transaction

tables. Recapitulate Practice Exercise 3.3 Table data. Describe the steps for

composing MapReduce program parallel tasks for calculating aggregated

annual sales of each model for all showrooms. (LO 4.2)

4.3 Recapitulate Section 4.3.4. Consider that two MapReduce cascaded

programs multiply 3 x 4 matrix A with another matrix 4 x 6 matrix B.

Calculate the number of tuples in each matrix, tuples after natural join.

List each step for using these tuples, grouping and aggregation of tuples

with attributes. Now calculate these numbers again for 8192 x 4096 matrix

multiplication by 4096 x 32768 matrix. (LO 4.2)

4.4 Install Hive and demonstrate usages of each data type and collection types

listed in Tables 4.6 and 4.7. (LO 4.3)

4.5 Create a HiveQL table for grade-sheet of your five-course semester

examination with SGPA (Semester Grade Point average) in a semester.

Now, write commands to create partitions in the table in RCFile formats.

How will the table serialize? (LO 4.4)

4.6 Insert the Hive-table above in all University students' data warehouse.

Write commands for joining four tables for four-semester examinations.

How will that be used for calculating CGPA (Cumulative Grade Point

average)? (LO 4.4)

4.7 Recapitulate Examples 4.10 to 4.13. Create a HiveQL data warehouse for

toys_company manufacturing 1600 different toys and 2000 puzzle product

categories, up to 20 product types for each, and each puzzle product of

product types 100, 200, 400, 800, 1600, 2400 and 500 pieces. (LO 4.4)

4.8 Recapitulate Example 1.6. Create Pig user-defined functions (UDFs) for

selecting the sales of each flavour of chocolate from the multiple ACVMs.

(LO 4.5)

4.9 Select and list the Pig data types, operations and their usages during

processing the data tables created in Practice Exercise 4.7. (LO4.5)

Note:

o o • Level 1 & Level 2 category

o • • Level 3 & Level 4 category

• • • Level 5 & Level 6 category

Chapter 5

Spark and Big Data Analytics

LEARNING OBJECTIVES

After studying this chapter, you will be able to:

LO 5.1 Get understanding of the Spark architectural features, software stack

components and their functions

LO 5.2 Get knowledge of analysis steps using Spark, Spark along with Python, advanced

features, UDFs, vectorized UDFs, grouped vectorized UDFs and Python analytics

libraries

LO 5.3 Get understanding of the methods of downloading Spark, getting started in

programming with Spark, Spark shell, Spark context, developing and testing

codes, programming with RDDs and the applications of MLib

LO 5.4 Get understanding of the ETL processes using built-in functions, operators and

ETL pipelines

LO 5.5 Get Introduced to analytics, data/information reporting and visualizing methods

RECALL FROM EARLIER CHAPTERS

~ CHAPTER 1

Spark, Spark SQL and Apache Drill are advanced processing methods for Big Data. They

also enable

real-time processing. Berkeley Data Analytics Stack (BOAS) is an open-source data

analytics stack. The stack consists of number of software components and frameworks

for complex computations using

Big Data.

-. CHAPTER 2

The four layers of the Hadoop ecosystem are:

1. Data store layer: Stores Big Data HDFS.

2. Data processing layer: Processes the stored data using programs, such as

MapReduce,YARN, HBaseand Cassandra.

3. Applications support layer: APis supporting the processing of applications at the

data processing layer, such as Pig, Hive, HiveQL, Sqoop, Ambari, Chukwa.

4. Applications layer: Tools such as Spark, Flink, Flume, Mahout, and Processes ETL,

Analytics, BP, BI, Data Visualization, R-Descriptive Statistics, Machine learning,

Data mining (Section 2.2.3

and Figure 2.3).

-. CHAPTER 3

When the Big Data Store is at clusters HDFS, the applications access the data

sequentially. When it is using NoSQL databases, the data read/write access by

applications is random-access. The access to a resource is as per the specified resource

pointer (address) for the access.

-. CHAPTER 4

MapReduce tasks processes in parallel and in a distributed environment. A program

composes the MapReduce tasks for the calculations and uses the relational-algebraic

operations, 'grouping by' and aggregation functions (Section 4.3).

Hive creates databases which load into the enterprise data warehouse. Hive composes

the queries and does data aggregation and summarization (Section 4.4). HiveQL functions

query the DBs, tables, partitions and buckets, and executes the SQL like operations and

UDFs (Section 4.5).

Pig functions executes query on large datasets which are stored in HDFS. Pig

programming model enables writing complex data transformations without knowing

Java [due to a rich set of built-in functions and operators such as group,join, filter, limit,

order by, parallel, sort and split, and possessing of a rich set of built-in data types such as

Bag (collection of tuples) and Map (set of key-value pairs)] (Section 4.6).

This chapter focuses on Apache Spark using the data sources at HDFS, any Hadoop

compatible data source, such as HBase, Cassandra and Ceph, or Object Store S3. Spark

provides in-memory, distributed and faster cluster-computing, and consists of APls in

Java, Scala, Python and R.

5.11 INTRODUCTION

Pig or Hive are high-level scripting languages that are used with the Apache Hadoop.

They have SQL like commands for queries. The commands before executing, translate to

Map and Reduce parallel-tasks. They process the queries, built-in functions, aggregation

operations and User Defined Functions (UDFs). They enable ease in programming for

these functions. They run ETL processes using Big Data Store.

Pig and Hive programs use complex data types and operations. The scripts and

programs use the datasets distributed in the HDFS Data Store.

Applications such as data analytics, stream analytics and graph analytics, and machine

learning require the following:

In-memory processing: In-memory processing is fast when compared to processing data

most of the times, from the disk or remotely distributed nodes. This is because the

processor takes much less time in accessing the memory compared to the disk or remote

data node. In-memory processing also facilitates real-time processing and streaming

data analysis. DAG-basedacyclic data flow further boosts the processing speed.

Application tasks processing Framework: Application tasks require processing in a

framework which uses HDFS as well Hadoop compatible data sources, such as HBase,

Cassandra, Ceph, cloud-based Objects Store Service or Amazon 53. The tasks require

support which facilitates running the Hive, Pig, and other Hadoop ecosystem tools in

Java, Python, R and Scala. APls using Python shell and Scala shell facilitate the

interactive running of the applications. Many applications such as statistical,

mathematical and graph analytics, and machine learning algorithms require APls

designed in these languages.

These features ease the programming for complex analytics, machine learning and

other solutions.

AdventofApache®Spark™

Berkeley's Algorithms, Machines and feoples Laboratory (AMP) developed Berkeley Data

Analytics Stack (BOAS) which support efficient, large-scale in-memory data processing,

and includes applications fulfilling three fundamental processing requirements:

accuracy, time and cost. AMP first developed Spark in 2009 and later passed on the

project to Apache. A new version is Spark 2.3.1.

Apache® Spark™ uses in-memory data processing. Thus, processing is fast since there is

no delay. The reason is that processor in-memory read and write operations are fast

compared to read from disk and write to disk. Apache® Spark™ uses the DAGs and acyclic

data-flows, and data from HDFS compatible data sources and cloud-based Data Stores. It

provides APIs for programming in R, Python, Java and Scala.

Open Source Analytics Tools

Following are the tools:

1. R and its library provide various statistical analysis functions. R now analyses large

data sets also since R integrates with Big Data platforms, such as Spark.

2. Python is a widely used language due to its analysis and statistics libraries, such as

numpy, scipy, scikit-learn, pandas, StatsModel.

3. Storm is for real-time continuous data streams.

4. Pig is a data flow language with SQL like operations and uses UDFs. Pig enables easy

coding compared to MapReducefor the complex tasks.

5. Hive is for creation of data warehouse, integration of databases and applications,

and uses SQL like scripts and UDFs. Coding is easy compared to MapReduce.

Pandas is an open source Python package, and consists of BSD-licensed library

functions using the Panda (Panel Data). (5.3.2.1) The Pandas give high performance, easy•

to-use data structures and data analysis tools. Pandas enrich the Python programming

language.

The most popular open source analytics tools are Apache Spark, Python, R, Apache Pig

and Hive, according to a study.

Spark is for high volume unstructured data. Spark seamlessly integrates with Spark

SQL which uses the structured data, Spark Streaming is for streaming data, Spark

Graphx for graph databases, Spark MLib for machine-learning library, and Spark Arrow

for columnar in-memory analytics. Spark provides easy programmability with inclusion

of APis for programmers to develop applications in Python, R, Java or Scala.

Reader needs to learn the following new select key term, and their meanings besides

the ones given in the previous chapters:

User Defined Functions (UDFs) refer to custom functions which are not built-in a

programming language but user adds them and they can be written in a language, such

as Java, Python, Ruby,Jython,]Ruby or Scala. They easily embed into scripts written in

that programming language. Examples of languages with provisions of UDFs are Hive, Pig

and Spark. The UDFs provide extensibility to the programming language.

Vectorized UDFs (VUDFs) refer to custom functions using series data-structure (meaning

one dimensional array or tuples).

Grouped Vectorized UDFs (GVUDFs) refer to custom functions written using DataFrame as

inputs.

Dataframe in Spark refers to a distributed collection of data that organizes into the

named columns. The concept of the DataFrame in Spark is similar to database table in a

relational database. The data frame concept in R is the basis of the data frame concept in

Spark. Scala and Java APis for DataFrames are just dataset of rows.

SchemaRDD is the name of Spark DataFrame in the earlier versions of Spark.

SerDe refers to Serializer/Deserializer functions (methods). Java syntax is SERDE,

'serde.class.name'. SerDe use in codes for obtaining records from unstructured data. The

serializer function saves the records and the deserializer function loads (extracts) the

records.

Data pipeline means data collected from various data sources passes through in-between

phases (stages) of processing. The output of each stage is the input to the next in the

pipeline. Processing in-between uses a chain of function calls in an application or

process, such as ETL.

Graph refers to a non-linear data structure with properties attached to each vertex and

edge. Computations perform at each node in a graph structure using path traversals

between the vertices (Section 8.2).

Directed Acyclic Graph (DAG) refers to a directed graph with no cyclic traversal. Here,

one set of inputs simultaneously applies at a DAG node input, and after the operations

(computations) at the node, only one set of outputs is generated. The node represents

the statements and operators, which execute at the node in the graph.

Nested tables in databases refer to one column tables. Oracle RDBMS uses PL/SQL. A

database stores the rows of a nested table in no particular order. While the SQL assigns

the rows in consecutive subscripts starting at 1 so that each row accesses like an array

element, PL/SQL accesses a nested table in no order.

Parquet refers to nested hierarchical columnar storage in group of rows, wherein each

row has a number of columns, each column has one chunk, and each chunk has a number

of pages.

In-memory refers to data read from the memory during computations and data written

to the memory at same data node, thus ensuring fasten memory accesses. Disk accesses

and remote node accesses make computations slow.

Columnar in-memory analytics refers to usages of optimized layout columnar tables

(nested tables, Hive ORC tables). That provides the easier data locality using successive

memory addresses. The CPUs and GPUs provide higher performance for native

vectorized optimization during analytics and OLAP. Apache Arrow™ enables usages of in•

memory columnar analysis and grouped vectorized UDFs.

ETL (Extract, Transform and Load) refers to operations on a database or Data Store using a

tool or program (maximum) to code up to few thousand lines of code. ETL tools pull the

data from various data sources and store (load) it in the appropriate Data Store after

applying the required transformation

operation.

Shell means an environment to write and run programming scripts; for example the

scripts for query processing similar to SQL.

Schema refers to a blueprint for organization or structuring of a database or table or

dataset. The blueprint tells how the database constructs. A construction may use division

of the data into rows. Relational-database construction may use the division into

database tables. Schema for a database is defined as set of formulae, called integrity

constraints, imposed. (Formulae may be just sentences.)

SQL refers to a language for (i) writing structured queries for processing using a

relational database;

(ii) schema creation, schema modifications and data access control; (iii) creating client

for sending query scripts, creating server databases and managing the databases; and (iv)

viewing, querying and changing (update, insert or append or delete) the databases.

Metastore refers to the system objects, files, catalog, schema or tables, databases,

columns in a table, their data types, and mapping with HDFS or any other storage

formats. Metastore provides access to them during computation.

Cassandra refers to a distributed DBMS designed for handling a high volume of

structured data across multiple servers. Cassandra is HDFS compatible. Cassandra DBs

distribution model is peer-to-peer distribution in a system across its nodes. Data

distributes among all the nodes in a cluster.

Software stack refers to a group of programs. Stack programs work in tandem (together

or in conjunction) and produce a result. Software stack also refers to any set of

applications that works in a specific and defined order. For example, LAMP is a software

stack that consists of a group of open source components, namely Linux, Apache, MySQL,

Perl, PHP or Python.

Ad hoc query refers to a "for this purpose" query, "on the fly" query or a "just so"

query. It's the kind of SQL query that is loosely used when required. For example, var

newSqlQuery = "SELECT * FROMtable WHEREid = " + toy_puzzleid. It

will be different each time this code executes, depending on the value of toy_puzzleld

(Example 4.7).

This chapter focusses on Spark and data analysis with Spark. Section 5.2 introduces

Spark architecture features, software stack components and their functions. Section 5.3

describes steps in data analysis with Spark and using Spark with advanced Python

features. Section 5.4 describes methods of downloading Spark, programming with RDDs,

Spark shell and developing and testing Spark codes, and applications of MLib. Section 5.5

describes ETL processes using the built-in functions and operators, and ETL pipelines.

Section 5.6 describes data analytics, data reporting and data visualization.

5.21 SPARK

Apache® Spark™ is a fast and general compute engine. Apache®

Spark™ powers the analytics applications up to 100 times

faster. It supports HDFS compatible data. Spark has a simple and

expressive programming model.

~pa1nk arcltrlitec~u rall featmes,
soflrt.•.r.ue stack components
and tliileir 1i"liln otiom;

Expressive program model implements a number of mathematical and logic operations

with smaller and easier written codes which a compiler as well as programmer can

understand easily. The model, therefore, gives programming ease for a wide range of

applications. Applications of expressive codes are in analytics, Extract Transform Load

(ETL), Machine Learning (ML), stream processing and graph computations.

Spark runs on both Windows and UNIX-likesystems, such as Linux and Mac OS.Java is

essential for running Spark applications. Executing a spark application on a computer

system therefore requires setting a JDK path using JAVA_HOME environment variable or

system variable, PATH. Spark 2.3.1 runs onJava 8+, Python 2.7+/3.4+ and R 3.1+, and Scala

2.11.x.The multiple languages, Python and Scala shells provide great ease in programming

for complex analytics, machine learning and other solutions.

Following subsections describe Spark and introduce data analysis using Spark.

5.2.1 Introductionto Big Data Tool-Spark

Figure 5.1 shows the main components in the Apache Software Foundation's Spark

framework, which includes data storage, APis and resources management bonded with

functions in Spark core.

pnxe-S$

nd nmcms to

w th 5l(lra;g e

Ji.1?1 de:fiinirrg he

e - ient Dim med

(IUlOs), m~

g. mernory ~~--.

errt ii!!ild ~u t

Includes. i

engine a 1

interact i ,

systems,.

uses of R : l i

Datasets

schedulin .

mar1a1em l
recove

Figure 5.1 Main components of the Spark architecture

Main components of the Spark architecture are:

1. Spark HDFS file system for data storage: Storage is at an HDFS or Hadoop compatible

data source (such as HDFS, HBase,Cassandra, Ceph), or at the Objects Store 53

2. Spark standard API enables the creation of applications using Scala,Java, Python and

R

3. Spark resource management can be at a stand-alone server or it can be on a

distributed computing framework, such as YARN or Mesos.

Ceph refers to an open source, scalable object, block, file storing unified system. Ceph

provides for dynamic replication and redistribution. Ceph provides HDFS compatible

mechanisms for Big data in petabytes or exabytes. An application uniquely accesses the

object, block and file stores in a system using Ceph. Ceph is highly reliable.

Apache Mesos is an open source project developed at University of Berkeley, and now

passed to Apache. It manages computing clusters. Its implementation is in C++. Apache

released a stable version 1.3.0 of Mesos in June 2017. Apache Mesos enables fine-grained

sharing of CPU, RAM, IOs and other across frameworks. Mesos offers them resource. Each

resource contains a list of agents. Each agent has the Hadoop and MapReduceexecuters.

53 (Simple Storage Service) refers to an Amazon web service on the cloud named 53 which

provides Object Stores for data (Section 3.3.4).

5.2.1.1 Features of Spark

Figure 5.2 shows the main features of Spark.

11'1-mer:nory

Apac eSpar.k

QJmp ·ng

engime

Apache Spark

stack

ll gh-1\eVe

-

Cooc.jse and

oonsi'stent

i l

Figure 5.2 Main features of Spark

The features of Spark:

1. Spark provisions for creating applications that use the complex data. In-memory

Apache Spark computing engine enables up to 100 times performance with respect to

Hadoop.

2. Execution engine uses both in-memory and on-disk computing. Intermediate results

save in-memory and spill over to disk.

3. Data uploading from an Object Store for immediate use as a Spark object instance.

Spark service interface sets up the Object Store.

4. Provides high performance when an application accesses memory cache from the

disk.

5. Contains API to define Resilient Distributed Datasets (RDDs). ROD is a programming

abstraction. ROD is the core concept in Spark framework. ROD represents a collection

of Object Stores distributed across many compute nodes for parallel processing.

Spark stores data in ROD on different partitions. A table has partitions into columns

or rows. Similarly, an ROD can also be considered as a table in a database that can

hold any type of data. RDDs are also fault tolerant.

6. Processes any kind of data, namely structured, semi-structured or unstructured data

arriving from various sources.

7. Supports many new functions in addition to Map and Reduce functions.

.______---.---______.


~~~~~~~~~~~~~~~~ 

 

~~~-.-~~~~~~ 

!

!

8. Optimizes data processing performance by slowing the evaluation of Big Data queries.

9. Provides concise and consistent APis in Scala, Java and Python. Spark codes are in

Scala and run on JVM environment.

10. Supports Scala,Java, Python, Clojure and R languages.

11. Provides powerful tool to analyze data interactively using shell which is available in

either Scala (which runs on the Java VM and is thus a good way to use existing Java

libraries) or Python. The tool also provides for learning the usages of APL

5.2.1.2 Spark Software Stack

Figure 5.3 shows a five-layer architecture for running applications when using Spark stack.

!~

Appllcat~s
Support Laver

t
Pr0(:e$$ing

~~~~~~-S-~~'_('~Co ~~~~~.  '--~En_g_in_e~~

~~-1H-D~             ~~         ti~~-s~-~-u-~~~ 

 

Parallel  Ta  k5l 
                               milt   OU

~~~~~~~~~~~~~~~~ Man  ~ment


Figure 5.3 Five-layer architecture for running applications using Spark stack

The main components of Spark stack are SQL, Streaming, R, Graphx, MLib and Arrow at

the applications support layer. Spark core is the processing engine. Data Store provides the

data to the processing engine. Hadoop, YARN or Mesos facilitates the parallel running of

the tasks and the management and scheduling of the resources.

Spark Stack

Spark stack imbibes generality to Spark. Grouping of the following forms Spark stack:

Spark SQL for the structured data. The SQL runs the queries on Spark data in the

traditional business analytics and visualization applications. Spark SQL enables Spark

datasets to use JDBC or ODBC APL HQL queries also run in Spark SQL. Runs UDFs for inline

SQL, distributed DataFrames, Parquet, Hive and Cassandra Data Stores.

Spark Streaming is for processing real-time streaming data. Processing is based on

micro-batches style of computing and processing. Streaming uses the DStream which is

basically a series of RDDs, to process the real-time data.

SparkR is an R package used as light-weight front end for Apache Spark from R. Spark

API uses SparkR through the RDD class. A user can interactively run the jobs from the R

shell on a cluster. An RDD API is in the distributed lists in R.

Spark MLibis Spark's scalable machine learning library. It consists of common learning

algorithms and utilities. MLib includes classification, regression, clustering, collaborative

filtering, dimensionality reduction and optimization primitives. MLib applies in

recommendation systems, clustering and classification using Spark.

Spark Graphx is an API for graphs. Graphx extends the Spark RDD by introducing the

Resilient Distributed Property. GraphX computations use fundamental operators (e.g.,

subgraph, joinVertices and aggregateMessages). GraphX uses a collection of graph

algorithms for programming. Graph analytics tasks are created with ease using GraphX.

Spark Arrow for columnar in-memory analytics and enabling usages of vectorised UDFs

(VUDFs). The Arrow enables high performance Python UDFs for SerDe and data pipelines.

Self-Assessment Exercise linked to LO 5.1

1. How does Spark process as a fast and general compute engine? What does

expressive programming model mean?

2. List the main components of Spark stack and the functions of each.

3. List the advanced provisions in Spark SQL compared to HiveQL.

4. List the main features of Spark?

5.31 INTRODUCTION TO DATA ANALYSIS WITH SPARK

"Analysis of data is a process of inspecting, cleaning,

transforming and modeling data with the goal of discovering

useful information, suggesting conclusions and supporting

decision-making." (Wikipedia)

For examples, consider a car company. Assume that company sells

five models of cars. Each model is available in 16 different colours

Steps i 111 olata, aliTlalrysts with
Spa~k, usl ngi Spar.1k w,lth

tP)i'ih 0111 3rnl311ilcedl fenu res,
'U DFs, vector,ized <IJl[):Fs,
group vectori1zed ILJ1[!!1Fs
and Pvtlmon, I ibr,a ri1es for t:h e
ana11ysis

and shades. Sales are processed through a large number of showrooms, all over the

country. An analyses of annual sales and annual profits model-wise, colour-wise, region•

wise and showroom-wise help the company in discovering useful information and making

Sp,.a.~QL_,. _ !DF's. t:_ ln ne SQL eirw;l

Distr but.ea Deti!framesr Pa.rttl.l t,
Applications

H'lve(U., ~i.;1;1ndraCQL Qye ns; Support

Pr.O<le~ng
for Analysis

...._~~~~~~~~~~

!

suggestive conclusions. The company does predictive analytics from the results of the

analyses and decides the future strategies for manufacturing, sales and out-reaches to

customers on the basis of the results of the analytics.

Figure 5.4 shows the steps between acquisition of data from different sources,

applications of the analyzed data, and application support by Spark for the analyses.

1 l

' ! I

I

Organized

Data Store
...._~~~~~~~~~~~~~~~~- Layer

Figure 5.4 Steps between acquisition of data from different sources and its
applications

Following are the steps for analyzing the data:

1. Data Storage: Store of data from the multiple sources after acquisition. The Big Data

storage may be in HDFS compatible files, Cassandra, Hive, HDFS or S3.

2. Data pre-processing: This step requires:

(a) dropping out of range, inconsistent and outlier values,

(b) filtering unreliable, irrelevant and redundant information,

(c) data cleaning, editing, reduction and/or wrangling,

(d) data-validation, transformation or transcoding.

3. Extract, transform and Load (ETL))for the analysis

4. Mathematical and statistical analysis of the data obtained after querying relevant

data needing the analysis, or OLAP,

5. Applications of analyzed data, for example, descriptive, predictive and prescriptive

analytics, business processes (BPs), business process automation (BPA), business

intelligence (BI), decision modelling and knowledge discovery.

5.3.1 Spark SQL

Spark SQL is a component of Spark Big Data Stack. Spark SQL components are DataFrames

(SchemaRDDs)S, QLContextandJDBCserver. Spark SQL at Spark does the following:

1. Runs SQL like scripts for query processing, using catalyst optimizer and tungsten

execution engine

2. Processes structured data

3. Provides flexible APis for support for many types of data sources

4. ETL operations by creating ETL pipeline on the data from different file-formats, such

asJSON,Parquet, Hive, Cassandra and then run ad-hoc querying.

Spark SQL has the following features for analysis:

1. SparkR, PySpark, Python, Java and other language support for coding for data

analysis.

2. Provisioning of JDBC and ODBC APis: Applications in Java and Microsoft programs

(such as Excel) need to connect to databases using JDBC (Object Database

Connectivity) and ODBC (Object Database Connectivity). Spark APis enable that

connectivity,

3. Spark SQL enables users to extract their data from different formats, such as Hive,

]SON and Parquet, and then transform that into required formats for ad hoc

querying. [Ad hoc query is a query 'just for this purpose' or query 'on the fly.' For

example, var newToyQuery = "SELECT * FROM table WHERE id = " + toy_puzzleld. The

result will be different each time this code executes, depending on the value of

toy_puzzleld.

4. Spark SQL processing support inclusion of Hive. Hive support enables the use of Hive

tables, database and data warehouse, UDFs and SerDe (serialization and

deserialization).

5. Spark SQL supports HiveQL and Cassandra CQL for query processing.

6. Spark Streaming for support to OLTP and structured streaming.

Figure 5.5 shows the connectivity of applications with Spark SQL which connects to

Object Stores in different formats.

Sparl.S(l!J il.reC.lt/

C~ndraCQL,.

0.;uerymg Pr~rrrg

dra •

a en 1Pn;u:es3

.

Sp an R1 IP ¢.p;arlc,

Sp.rrlc;:Sve;.a g I
01..A!P

Sjllafk-Ca.~n :

Con11e1::to1-Ja1tt 1

CaS,$a'JiJ!lra'DB

Figure 5.5 Connectivity between the applications and Spark SQL

JDBC Server An application reads the data tables in RDBMS using a JDBC client 0DBC API

at the application). Many applications in Java connect to databases using JDBC driver and

server. Spark SQL API provides JDBC connectivity. Command for using JDBC server is as

follows:

./sbin/start-thriftserver.sh -- master sparkMaster

Hive Server (Thrift) enables a remote Hive client or JDBC driver to send a request to Hive

and the server sends response to that (Section 4.4.1). The requests can be in Scala, Java,

PythonorR.

JSON, Hive, Parquet Objects Section 3.3.2 explained JSON object data formats and files.

Section 4.4 explained Hive, HiveQL database and QL commands for data definition of

databases, tables, columns, partitions and views, and their querying.

HDFS is highly reliable for very long running queries. However, IO operations are slow.

Columnar storage is a solution for faster IOs. Columnar storage stores the data portion,

presently required for the IOs. Load-only columns access during processing. Also, a

columnar object Data Store can be compressed or encoded according to the data type. Also,

executions of different columns or column partitions can be in parallel at the data nodes.

Section 3.3.3.3 and Section 3.3.3.4 described record columnar (RC) file, and optimized row

columnar (ORC) file formats respectively. Hive RC file records store in columns and can be

partitioned into row groups. An ORC file consists of row-groups row data called stripes.

ORC enables concurrent reads of the same file using separate RecordReaders.1 Metadata

stored using protocol buffers for addition and removal of fields.

Parquet is a nested hierarchical columnar storage concept. Apache Parquet file is a

columnar storage file (Section 3.3.3.5).The file uses an HDFS block. The block saves the file

for running big long queries on Big Data. Each file compulsorily consists of metadata,

though a file need not consist of data. An application retrieves the columnar data quickly

from Parquet files.

Apache Parquet three projects specify the usages of files for query processing or

applications. The projects are (i) parquet-format for specifying formats and Thrift

definitions of metadata, (ii) parquet-mr for implementing the sub-modules in the core

components for reading and writing a nested, column-oriented data stream, and (iii)

parquet-compatibility for compatibly for read-write in multiple languages.

Spark DataFrame (SchemaRDD) A DataFrame is a distributed collection of data organized

into named columns. DataFrame can be used for transformation using filter, join, or

groupby aggregation functions.

Example 5.8 in Section 5.4.2 will explain schema creation for DataFrames and usage of

RDDs. Earlier, DataFrame in Spark was called SchemaRDD. Section 5.4.2 describes

SchemaRDDand creation of RDDs from row objects. An RDD method converts Spark

DataFrames to RDDs. Each RDD consists of a number of row objects.

Creating Spark DataFrame (SchemaRDD) from Parquet andJSON Objects DataFrames

can be created from different data sources. Examples of data sources are]SON datasets,

Hive tables, Parquet row groups, structured data files, external databases and existing

RDDs. Section 10.4 will describe Hive and PySpark programs using functions, Merge and

Join in Dataframes of large datasets.

The following example explains the creation and usages of Dataframes from the Parquet

and]SON objects:

EXAMPLE 5.1

Assume a table toyPuzzleTypeCostTblwith four columns. Figure 5.6 shows the sample

table toyPuzzleTypeCostTbl. The columns are puzzle type, puzzle code, number of

puzzle pieces and puzzle cost. DataFramel named toyPuzzleTypeCodes consists of

columns 1 and 2. DataFrame2 named toyPuzzleCodesCostconsists of Columns 2 and 4.

The table consists of multiple rows in each row group. The dashed lines point to the

columns in the two data frames.

,uzzrerype

puzzreCode p zz11ePieres

![)UZZieCost

puzzle_ Orud.eo l,0725 mo . .3.5

puzzle_ 0Md.eill 1082:5 200 .3.5

puz:de_ Gmd.eo l.0975 400 m.J:5

toyPumeTypeCmtlbl

Row

Oroupl

Row plllme_Jtmgle

Oroup2 pirnz:z11e ..Jungle

31047 3,00

J 11047 300

Row

Group3 1
puz:de_ Schoo]

,l!llzzle_Forest

IU409 800

..II

0.90

D.!11mFmme royPDmelypeCod.es

Columns 1 ao.d 2

Dataf'rJJm.e toyPw::z!leCodesCost

Columns 2 and 4

Figure 5.6 Sample table toyPuzzleTypeCostTblrows, row groups and

DataFrames

(i) Create a sqlContext from a given SparkContext 'sc'.

(ii) Create a four columns DataFrame using the Parquet file named

"toyPuzzleTypeCostTbl".

(iii) How will a DataFrame create using a JSON file format file "toyPuzzleTypeCostTbl"?

Create two DataFrames using Java and SqlContext, one with columns for puzzle

type and puzzle code, and the other for puzzle code and cost.

(iv) How will two DataFramesjoin using puzzle code as a join key to create a DataFrame

of three columns, 1, 2 and 4?

SOLUTION

(i) The following statement creates sqlContext from Spark Context sc:

SqlContext sqlContext

org.apache.spark.sql.SQLContext(sc)

(ii) The following statement creates a DataFrame named toyTypeCost:

DataFrame toyTypeCost

sqlContext.parquetFile("toyPuzzleTypeCostTbl")

[DataFrame created will have four columns.]

(iii) DataFrame creates using Load()method at the sqlContext.

new

To display the contents of Table:

"toyPuzzleTypeCostTbl"

spark.sql ("SELECT* FROM toyPuzzleTypeCostTbl ")

To create DataFrarne toyPuzzleTypeCostTbl

DataFrarne

toyPuzzleTypeCostTbl sqlContext.Load

("toyPuzzleTypeCostTbl", "json")

The following statements create two DataFrames using DataFrame

toyPuzzleTypeCostTbl.One frame of two columns, 1 and 2, puzzle type and puzzle

code:
DataFrarne toyTypeCodes toyPuzzleTypeCostTbl.

select(toyPuzzleTypeCostTbl

toyPuzzleTypeCostTbl ['puzzleCode'J)

['puzzleType' J,

Second frame of two columns, 2 and 4, puzzle code and puzzle cost

DataFrarne toyCodesCost

toyPuzzleTypeCostTbl.select(toyPuzzleTypeCostTbl

['puzzleCode'], toyPuzzleTypeCostTbl ['puzzleCost'J)

(iv) DataFramel (toyTypeCodes) has two columns, 1 and 2, as puzzleType and

puzzleCode, respectively. The frame joins dataFrame2 (toyCodesCost)column 4 as

puzzleCost and resultant is a joined new-dataFrame toyTypeCodesCost consisting of

columns 1, 2 and 4. Join key is puzzleCode. Following statements use join() method

and joining key.

Format of the statement is

dataFrame. join (dataframel, dataframe2.col ("JoinKey")

("]oinKey")

and the statement is

dataFrarne.join(toyTypeCodes,

toyCodesCost.col("puzzleCode").

equalTo (toyTypeCodesCost ("puzzleCode")))

dataframeNew

Using HiveQL for Spark SQLSpark SQL programming provides two contexts, SQLContext

and HiveContext. While using HiveContext, then, commands access the Hive Server only

and use HiveQL commands. SQLContextis a subset of Spark SQL. SQLContextdoes not need

I, I

34 164

14] 123 37

I

the HiveServer (Thrift). Therefore, when needing access to the HiveServer, specify the

HiveContext. HiveQL is recommended for Spark SQL. Many resources are available in Hive

readily and can directly be used.

Use of Aggregation and Statistical Functions Aggregation functions can be used for

analysis. Hive consists of count (*), count (expr); sum (col), sum (DISTINCT col), avg (col),

avg (DISTINCT col), min (col) and DOUBLE max(col) (Table 4.10). The statistical functions

stdev(), sampleStdev(), variance, sampleVariance() can be used for analysis with

DataFrames in input.

Consider the example below to find sum of the sales of the Jaguar Land Rover model and

trace the showroom that recorded the best sales.

EXAMPLE 5.2

'

Recall Practice Exercise 3.11. Consider the annual car sales data in the following format:

ca rShow room sc umul ative Year lySa les
~~~~~~ 
Car ShowroomID 

(csID)   
 
 

")     0  

 
]212J7                49 

nnn        40

 
 
 
 

(i)    Find the Jagaur  Land Rover annual sale figure over all showrooms. 
 

(ii)   Find the  showroom ID  and Land Rover sales figure for the  showroom giving 

maximum Jaguar Land Rover sales. 
 

SOLUTION 
 

(i)  The following query returns  the sum of the Jagaur  Land Rover annual sale in 

column 3 of the table: 
 

SELECT sum (JLRDS)FROM CarShowroomsCumulativeYearlySales 
 

(ii)   The following nested query statement returns the csID and maximum annual sale 

value for Land Rover: 
 

SELECT csID, saleJL (max (map (csID, ID,  JLRDS, saleJL))) 

FROM CarShowroomsCumulativeYearlySales



5.3.2  Using Python Advanced  Features with  Spark SQL 
 

Python  is  a general  purpose,  interpreted,   interactive,  object  oriented  and  high  level 

programming language. Python defines the basic data types, containers, lists, dictionaries, 

sets, tuples, functions and classes. Python Standard Library is very extensive. The libraries 

for regular expressions, documentation generation, unit testing, web browsers, threading, 

databases, CGI, email, image manipulation and a lot of other functionalities are available in 

Python. 
 

Python programming is a strong combination of performance  and features in the same 

bundle of codes. Spark SQL binds with Python easily. Python has the expressive program 

statements.   Spark  SQL  features  together   with  Python  help  a  programmer   to  build 

challenging applications for Big Data. The following example explains the use of PySpark, 

Python along with the Spark SQL: 

 
EXAMPLE 5.3 

 
(i)   How is HiveContext and Spark SQL used? 

 

(ii)   How does PySpark use a row object? 
 

(iii) Assume a JSON file, toyTypeProductTbl  of row objects. Assume the use of a row object 

toyPuzzleProduct  for query (Table 4.13). How do a file load and query sent to the 

file? 
 

 
ProdndCate   ry                   Productld                   ProdndName

Row Objectl 

Row Object:'., 

Row   bje t3 

To  _A:irplruie 

Toy_Airplill.!lle 

Lost Temple

 

SOLUTION 
 

(i)    Import Spark SQL using the following statement: 
 

Import Spark SQL 
 

(ii)   Then use the following command for importing a row object, toyPuzzleTypeCost: 
 

#   Now use the variable named hiveCtx using Hive Context 

from 

# sc statement using statement 

hiveCtx =    HiveContext (sc) 

from pyspark.sql import HiveContext, toyPuzzleTypeCost 
 

(iii)  A file loads using hiveCtx and input loads at the file



input=  hiveCtx.jsonFile(toyTypeProductTbl) 
 

input.registerTempTable  ("toyPuzzleProduct") 
 

The queries raised for finding Product_ID_Name using SELECT command.
 

Product_ ID_Name      hiveCtx. sql  ( "SELECT  ID, 

toyPuzzleProduct ORDER BY ProductCategory") 

 

name  FROM

 
 

5.3.2.1 Python Libraries  for Analysis 
 

NumPy and SciPyare open source downloadable libraries for numerical (Num) analysis and 

scientific (Sci) computations  in Python  (Py). Python  has open source library  packages, 

NumPy, SciPy, Scikit-learn,  Pandas  and  StatsModel, which  are  widely  used  for  data 

analysis. Python library, matplotlib functions plot the mathematical functions. 
 

Spark added a Python API support for UDFs. The functions take one row at a time. That 

requires overhead (additional codes) for SerDe.Earlier data pipelines first defined the UDFs 

in Java or Scala, and then invoked them from Python. Spark 2.3 provisions for vectorized 

UDFs (VUDFs)  and  Apache Arrow facilitates  VUDFs,  which  enables  high  performance 

Python UDFs for SerDe and data pipelines. 
 

NumPy NumPy includes (i) N-dimensional array object, array and vector mathematics; 

(ii) linear algebraic functions, Fourier transform and random number functions; (iii) 

sophisticated  (broadcasting)  functions;  and  (iv) tools  for  integrating  with  C/C++  and 

Fortran codes. 
 

NumPy provides multi-dimensional efficient containers of generic data and definitions of 

arbitrary  data types. NumPy integrates  easily with a wide variety  of databases. NumPy 

provides  import,  export  (load/save)  files, creation  of arrays,  inspection  of properties, 

copying, sorting and reshaping, addition and removal of elements in the arrays, indexing, 

sub-setting  and slicing of the  arrays,  scalar and vector mathematics  (such as +, - ,  x,   +, 

power, sqr, sin, log, ceil - round up to nearest int, floor - round down up to the nearest int, 

round-  round to nearest integer). NumPy also provides statistical functions. 
 

Table 5.1 gives the examples of NumPy functions for data analysis problems. 
 

Table 5.1  Examples of NumPy functions for data analysis problems 
 

Function 
 

Description Function Description 

 
np.loadtxt('file.txt') 

 
Loads a text file 

np.mean(arr, 

axis= o) 
Returns mean along a 

specific axis 

 
np.genfromtxt('file  .csv', 

delimiter=',') 

 
Loads a csv file with comma as the 

delimiter  between  records 

 

np.sum(); 

np.minl), 

Returns the sum and 

minimum  of the 

array 



 
np.savetxt('file.txt,'   arr, 

delimiter='') 

 
Saves a text file which is an array of 

strings separated  by a space each. 

 
np.max(arr, 

axis= o) 

Returns the 

maximum along a 

specific axis 

np.genfromtxt('file  .csv', 

arr, delimiter=',') 

 

Saves a CSV file which is an array of 

strings separated  by a comma each. 

 
np.var(arr) 

Returns the variance 

of array 

 

 
arr.sort() 

 

 
Sorts an array 

 
np.std(arr, 

axis= o) 

Returns the standard 

deviation  of a specific 

axis 

 

 
np.add (arrl,  arr2) 

 
Performs a vector addition  of array  1 

and array 2 

 

 
np.corr() 

Returns the 

correlation 

coefficient 

 

SciPy SciPy adds on top of NumPy. It includes MATLAB files and special functions, such as 

routines for numerical integration  and optimization. SciPy defines some useful functions 

for computing distances between a set of points. 
 

SciPy includes (i) interactions  with NumPy, (ii) creation of dense and open mesh grids, 

(iii) shape manipulation  functions, (iv) polynomial and vectoring functions, (v) real and 

imaginary functions, and casting an object to a data type, and (vi) matrix  creation  and 

matrices routines and usages of spark matrices. 
 

Table 5.2 gives few examples of SciPyfunctions for scientific computational problems. 
 

Table 5.2 Examples of SciPyfunctions for data analysis problems 
 

Function                              Description                            Function                Description 

 

np.c jb,   c]             Create Stacked column-wise  array                    
np.cast  ['f]    Casts an object into a data 
(np.pi)            type 

 

from 

numpy 

import           Creates a polynomial object
b.flatten()           Flattens the array 

poly ID              p 

p = polyID 

([2, 3, 4])
 

np.vsplit  (c,       
Functions for vertically  splitting  and               A.I,                Inverses, transposes,  and 

2) and 

np.hsplit  (d,      
horizontally  splitting  the array at the end      A.T,              conjugate transposes  the 

2)                             
of the second index                                            A.H               matrix, A

 
 

np.select        Returns values from a list of 
linalg.det(A)      Returns the determinate   of A                                  ([c<4],             arrays depending  on the 

[c*2])             conditions



f mb e  data 

an-a   sis/ 
manipul.rlio 

Ami  rarv matrix 

dii!ta home- or 

eJ;,erog;eneorrs v 

typed;  now ii!Rd 

okrmn l~ibeled 

Se  est 

DataPra    e 

and  l?'anel 

$et:t        a:nd ft!  '-'V 

lrn:te>:fn   • 
nt-e  llgen     bel• 

ba1,ed  d.im! $eU 

T    e-$eriies 

spe.cifii: 

un         alitles 

Grc11ap8y 

um,t ons  fur sp it• 

apg:ity-corrab ne 

o erations 

ggr~    ·oo an 

transfo  rmatfo 

perat ons   en laJEe 

data setsr     es, 

da    bases 

i 

 

 

np.img(c) 
Returns the imaginary  part of the array 

elements 

A np.matrix 

([3,  4],  [5, 

6]) 

 

 
Creates a matrix

 

Panda Panda derives its name from usages of a data structure  called Panel. The first three 

characters Pan in Panda stand for the term 'panel'. The next two characters  da in Panda 

stand for data. The Panda package considers three data structures:  Series, DataFrame and 

Panel. 
 

DataFrame is a container for Series. Panel is a container for DataFrame objects. The Panel 

objects can be inserted  or removed similar to as in a dictionary.  DataFrame may be a 

DataFrame of statistical  or observed datasets. The data need not be labeled. This means 

datasets, objects and DataFrames can be placed into a Panda data structure without labels. 
 

Panel is a container for three-dimensional  data. Panel is a widely used term in 

econometrics. Three axes describe operations  involving panel data. For example, panel 

data  in  econometric  analysis.  Items  can  be  considered  as  along  axis O    of  an  inside 

DataFrame (set of columns). Index (rows) of each of the DataFrames correspond to axis 1 

(major axis).  Columns of each of the DataFrames correspond to axis 2 (minor axis).  Panel 

4D consists of labels as O - axis, items - axis 1, major axis - axis 2 and minor axis - axis 3. 
 

Figure 5.7  shows the main features of Pandas package.
 
 
 

 

 
 

:S.trrudLires: 

· 
 

 
 
 
 
 

i 

 
 
 

Pow  - 

l          l 

l 
l   · 

 
c 

 

 
JU.Icing,  rub• 

i                               · 
 
i    l 

 

 
 
 
 
 
f      i                                       l

o        i 
,                                                                                                        

,                                                                                                                                                                                                                                                                                                              l 
· 

 

 

Figure 5. 7 Main features of Panda for data analysis



Pandas  package  includes  the following provisions: 
 

1.    Database style Dataframes merge, join, and concatenation of objects 
 

2.   RPy interface for R functions plus additional functions 
 

3.   Panda   ecosystem   has   statistics,   machine   learning,   integrated    development 

environment (IDE), API and several out of core features 

4.    SQL like features: SELECT, WHERE, GROUPBY,JOIN, UNION, UPDATE and DELETE 
 

5.   GroupByfeature of split-apply-combine with the steps as: (i) an object such as table, 

file or document splits into groups, (ii) iterate through the groups and select a group 

for  aggregation,  transformation   and/or   filtration.  The  instance  method  can  be 

dispatched  and  applied  in  a  manner  similar  to  the  aggregation/transformation 

function 

6.   Size mutability,  which  means  that   columns  can  be  inserted   and  deleted  from 

DataFrame and higher dimensional objects 
 

7.   Slicing and  dicing a collection  of DataFrame objects. The names  of axes can be 

somewhat arbitrary  in a Panel. (Arbitrary means the axes need not be named al, a2, 

... ,   an,  and  can be year,  car  model, sales, ...).  If slicing function  slices the  first 

dimension, the lower dimension objects are obtained. 
 

5.3.2.2 User-Defined  Functions  (UDFs) 
 

The functions take one row at a time. This requires overhead for SerDe. Data exchanges 

take  place  between  Python  and  JVM. Earlier  the  data  pipeline  (between  data  and 

application) defined the UDFs in Java or Scala, and then invoked them from Python while 

using Python libraries for analysis or other application. SparkSQLUDFs enable registering 

of themselves in Python,Java and Scala. 
 

The SQL calls the UDFs. This is a very popular way to expose advanced functionality to 

SQL users. User codes call the registered UDFs into the SQL statements without writing the 

detailed codes. The following example demonstrates how a UDF is created in PySpark. 

 
EXAMPLE 5.4 

 
Recapitulate    Example   5.1     table,    toyPuzzleTypeCostTbl.              Create    a    UDF, 

udfCostPlus    ()  in pandas. The table column puzzleCost        creates using 

jigsaw_puzzle_info.txt from an RDD.  Write a UDF  which increases the  costs in the 

column, puzzle_cost_uso         by 10%.(The UDF takes one row at a time as input.) 
 

SOLUTION 
 

Following are the Python statements



from pyspark.sql.functions  import udf 

[Useudf to define a row at a time udf.] 
 

@udfCostPlus('float') 

[Input and output costs are two values both for a single float variable, v.] 
 

def plusTenPercent(v): 

return v +   0.1 xv; 
 

df.withColumn('v4', puzzle cost_USD (df.v)) 

[Data Frame df    has v4 as puzzleCost        in the fourth column.] 
 

 

Dataset at Example 5.2 consists of car sales data. Column 1  represents  car showroom ID. 

The ID key is present  in all date fields on which the sales were recorded during the year. 

Corresponding to an ID, column 3 has the Jaguar Land Rover sales figures in more than 300 

rows for more than 300 dates. Sales figures of four other models are in columns 4, 5, 6 and 

7. 
 

The product  sales analysis is widely performed  in many businesses. Writing a UDF for 

analysis of sales once and using it for different products whenever and wherever desired 

reduces coding efforts. This also integrates new functions (UDFs) in higher level language 

with their  lower level language implementations.  Also, writing  UDFs  are  helpful when 

built-in functionalities in a currently used tool needs additional functionalities. 
 

A UDF using aggregation function max() calculates the Land Rover sales and traces the 

showroom giving maximum  Jaguar  Land Rover sales.  The UDF is of great  help to perform 

similar analyses on different models of the car. 
 

Java  class  can  be  created  user  defined  method  (UDF) productSalesAnalysis             (). 

Python scripts can also create the UDF to find that sales point ID and total yearly sale for 

that sales point from which the total is highest for a product. The UDF will be reusable not 

only for car sales analysis but also for analysis of sales of many companies, such as ACVM 

or Toy Company. 
 

Python provides a register function: hiveContext          {sc)   . registerFunction            {).  The 

command  can  be  hiveContext           {sc).         registerFunction               {"csIDnl",          int: 

bestYearlySalesModell, LongType  (),                 ("csIDn2",                  int: 

bestYearlySalesModel2, LongType {), ...    )  .     cslDnl   is  car-showroom   IDl, 

bestYearlySalesModell is best yearly sale of model 1. 
 

5.3.2.3 Vectorized User Defined Functions (VUDFs) 
 

Python UDFs express data in detail. Therefore, Python UDFs, block-level UDFs with block• 

level arguments and return  types, conversions or transformations  are widely used in ETL

mailto:@udfCostPlus


or ML applications. Spark Arrow facilates columnar in-memory analytics, which results in 

high performance of Python UDFs, SerDe and data pipelines. 
 

VUDFs use series data structure  (meaning one-dimensional array or tuples). Spark 2.3 

(2018)   provisions for using vectorized  UDFs (VUDFs). Apache Arrow 0.8.0  (release date 

December 18, 2017)  facilitates usages of VUDFs. Pandas UDF, pandas_ UDF uses the function 

to create a VUDF with (i) pandas.Series as input to the UDF, (ii) pandas.Series as output 

from the  UDF,  (iii) no grouping  using GroupBy, (iv) output  size same as input,  and (v) 

returns the same data types as specified type in return pandas.Series. 
 

The following example explains the use of VUDF. 
 

 
EXAMPLE  5.5 

 
Recapitulate Example 5.1 toyPuz    z leTypeCos   t Tbl.   Create a vectorized UDF (VUDF). 

First  define  a pandas_UDFCostPlusfor  increasing  cost puzzle_cost_USD of toys in 

puzzle_Costs RDD created from jigsaw_puzzle_info.txt., 
 

SOLUTION 
 

Following are the Python statements from pyspark.sql.functions import pandas_udf: 
 

from pyspark.sql.functions  import pandas_udf 

[Usepandas_udf to define a vectorized udf.] 
 

@pandas_udfCostPlus  ('float') 

[Input/ output are both a pandas.Series of elements with data type float.] 
 

def vectorized_plusTenPercent  (v): 

return v4 +   0.1 
 

df.withColumn('v4', vectorized_ plusTenPercent  (df.v)) 

[Useudf to define a DataFrame vudf.] 
 
 

5.3.2.4 Grouped Vectorized  UDFs (GVUDFs) 
 

Grouped Vectorized UDFs (GVUDFs) use Panda library split-apply-combine  pattern in data 

analysis. The GVUDF group function operates on all the data for a group, such as operate 

on all the data, "for each car showroom, compute yearly sales". 
 

GVUDF steps are: 

1. Splits a  Spark DataFrame into  groups  based  on  the  conditions  specified in  the 

groupby operator 

2.   Applies a vectorized user-defined function (pandas.DataFrame ->  pandas.Dataframe)

mailto:@pandas_udfCostPlus


to each group 
 

3.    Combines into new group 
 

4.   Returns the results as a new Spark DataFrame 
 

Pandas  GVUDF,  pandas_GVUDF, (i)  uses  the  function  similar  to  pandas_VUDF, (ii) 

pandas.DataFrame  as input  to  the  GVUDF,  (ii) pandas.DataFrame  as  output  from  the 

GVUDF, (iii) grouping semantics defined using clause GroupBy, (iv) output size can be any 

and  can  be  grouped  and  can  be  distinct  from  input,  and  (v) returns   data  type  is a 

StructType.   The   type   defines   a   column   name   and   the   type   of   the   returned 

pandas.DataFrame. 
 

The following example explains GVUDF for adding 10% in a cost of group of rows for toy 

products. 
 

 
EXAMPLE  5.6 

 
Add 10% cost in each value of item cost in a group of rows. Use GVUDF to define a 

DataFrame costTenPercetPlusGVUDF. 
 

SOLUTION 
 

Following are the Python statements from pyspark.sql.functions import pandas_udf: 
 

from pyspark.sql.functions  import pandas_udf 

[Usepandas_udf to define a grouped vectorized udf.] 
 

@pandas_udf(df.schema) 

#   Input/output are both a pandas.DataFrame 

def costTenPercetPlus  (pdf): 

return pdf.assign(v=add(pdf.v  +   O.lxpdf.v)) 
 

df.groupby('id') .apply(costTenPercetPlus) 
 

 

5.3.3  Data Analysis Operations 
 

Examples of operations required in the above analysis are given below: 
 

1.   Filtering single and multiple columns 
 

2.   Creating a top-ten list with values or percentages 
 

3.   Setting up sub-totals 
 

4.   Creating multiple-field criteria filters 
 

5.   Creating unique lists from repeating field data

mailto:@pandas_udf


6.   Finding duplicate  data  with  specialized arrays,  and  using the  remove  duplicates 

command and removing outliers 

7.   Multiple key sorting 
 

8.   Counting the number of unique items in a list 
 

9.   Using SUMIF and COUNTIF functions 
 

10. Working with database functions, such as DSUM and DMAX 
 

11. Converting lists to tables. 
 

5.3.3.1 Removing Outliers for Data Quality Improvement  for Analysis 
 

Outliers are data which appear  as they  do not belong to the  data set. The Outliers are 

generally results of human data-entry errors, programming bugs, some transition  effect or 

phase lag in stabilizing the data value to the true value. 
 

The actual outliers need to be removed from the data set. For example, missing decimal 

in the cost of a toy US$ 1.85 will make the cost 100 times more for a single toy. The result 

will thus be affected by a small or large amount. When valid data is identified as an outlier, 

then also the results are affected. 
 

The statistical  mean is computed from the product  of each observed value v of Values 

with  probability  (or weight)  P and  then  taking  the  average. The variance  equals the 

difference of a value with respect  to the mean, then  square that,  and then  average the 

results. Standard deviation isjust the square root of the variance. 
 

The following example explains the Python codes for removing outliers. 
 

 
EXAMPLE  5.7 

 
How will you remove outliers in values in a column? 

 

SOLUTION 
 

Transform ROD string or other to numeric data so that  statistical methods compute 

and remove those who have larger distanceNumerics.
 

distanceNumerics 

(string)) 

 

distances.map   (PySpark  string:  float

 

stats=  distanceNumerics.stats() 

[stats() means a statistical function, such as meanl), stdev()]' 
 

statdev = std.stdev() 
 

mean=  stats.mean() 
 

reasonableDistances        distanceNumerics.filter    (PySpark



values:  maths.fabs   (values-mean) <   3  xstdev) 

[Assume that  distances that  are reasonable are less than  three  times the standard 

deviation. Distance means difference with respect to mean or peak value.] 
 

print   reasonableDistances.collect() 

[Print the values within reasonable distances.] 
 

 
Self-Assessment Exercise linkedto LO 5.2 

 

1.    What  are   the   steps  between   acquisition   of  data   from   different   sources, 

applications of analyzed data, and applications support by Spark for analyses? 

2.   What are the different sources from which the Dataframes are created for query 

processing? 

3.   What are grouped vectorized UDFs? How do they differ from UDFs? 
 

4.   List the  actions  of the  count(*), count(expr);  sum(col), sum(DISTINCTcol), avglcol), 

avg(DISTINCTcol), min(col) and DOUBLE max(col) aggregation functions. 

5.   How is a four-column Dataframe created using a parquetFile? 
 

6.   List the actions of each statement in codes given in Example 5.7. 
 
 
 

 

5.41 DOWNLOADING   SPARK,  AND PROGRAMMING 

USING RODS AND MLIB 

The following subsections describe downloading of Spark, getting 

started   in  programming  with  RDDs   and  introduces   Machine 

learning with the MLib: 
 

 

5.4.1  Downloading,   Installing Spark and Getting 

Started 
 

Spark 2.3.1  uses Scala 2.11.x   API when using compatible  Scala 

 

 
IDo•·ffilioo.dillilg   5park. 
gettirng st.altedl in, 

1progra  m mi n.g1 \!l'ith  Sp:a rk, 

Spair:k slnlel I, Spar:k context 
devel opillilg .amii tesmhmg1 the 
codes, rp,rogrnrm rn illilg  .vith 
tllile IR DUs. :allildl a ppli cations 
ofr, Lib

version 2.11.x.  Initially select the choices for the download: (i) Choose a Spark  Release: 2.3.1 

(Iune, 2018),   (ii) Choose a package  type: pre-built  for Hadoop 2.7  or later,  (iii)  Choose  a 

download type: Direct Download, and (iv) Verify this release using the 1.2.0  signatures  and 

checksums. 
 

Spark new versions run onJava 8+, Python 2.7+/3.4+  and R 3.1+. Programmers using Scala



2.11 download  the  Spark source  package  and build the  Scala 2.11 support  in that. 
 

Downloading Steps for downloading are: 
 

(i) Programmer     gets     Spark     from     the     Apache     Spark     project     website 

http://spark.apache.org/   downloads.html. 

Assume that  Spark version is 2.3.1. Spark uses HDFS  and YARN client libraries in 

Hadoop. Built-in libraries are available for Spark SQL,  Spark Streaming, MLib and 

GraphX (graph). Spark 2.3.1 is pre-packaged with Hadoop 2. 7. When a download is 

pre-packaged for   no   Hadoop  version,   then   install   Hadoop  from   the   site 

http://apache.claz.org/hadoop/common/hadoop-2.7 /.  The make shared  HADOOP, 

MAPRED, COMMON, HDFS and all related files, configure HADOOP and set property 

such as replication  parameter.  Name the  yarn.nodemanager.aux-services.  Assign 

value to mapreduce_shuffle. Set namenode and datanode paths. 
 

export HADOOP_HOME=/usr/local/hadoop 

Download that  from http:/ Ispark.apache.org/ downloads.html and unzip using the 

command: 
 

$ tar -xvzf -/spark-2.3.1-bin-hadoop2.7.tgz 
 

$  ls 
 

Set Path by the commands: 
 

$  cd $SPARK HOME/conf 
 

$  cp spark-env.sh.ternplate spark-env.sh 
 

Spark artifacts host at Maven Central. Maven dependency adds using the following 

coordinates: 
 

groupID: org.apache.spark 

artifactID: spark-core 2.2 

version 2.2.1 

Scala and Java users can include Spark in their projects using its Maven coordinates 

and later pointing to a Java installation or with Java installed in the system PATH. 
 

(ii)   When using Python and running the Python shell, use command: 
 

cd spark-2.3.1-bin-hadoop2.7 
 

.      /bin/pyspark 
 

Python users can also install Spark from PyPI. Python has provision of compound

http://spark.apache.org/
http://spark.apache.org/
http://apache.claz.org/hadoop/common/hadoop-2.7
http://apache.claz.org/hadoop/common/hadoop-2.7
http://apache.claz.org/hadoop/common/hadoop-2.7
http://apache.claz.org/hadoop/common/hadoop-2.7
http://apache.claz.org/hadoop/common/hadoop-2.7


data  types.  Python  provides  lists,  known  as arrays  in other  languages.  Lists can be 

indexed,  sliced and manipulated   with  built-in  Python  functions.   Spark Python  shell 

is bin/pyspark. 

(iii)  Programmers requiring Hive databases and HiveQL, do so by the command: 
 

apache-hive-0.14.0-bin  apache-hive-0.14.0-bin.tar.gz 
 

and extracts the Hive archive. 
 

(iv) Programmers can also use an external database server. This requires configuration 

of Metastore for that server. 

(v) When using Scala interactive  shell running  on JVM, install Javac and Java from 

Oracle  Java   download   site.   Download  Jdk   8     or   a   later    version    from 

http:/ /www.oracle.com/technetwork/java/javase/   downloads/jdk8-downloads• 

xxxxx.html and extract the compressed file. 

update-alternatives     --Install 

usr/local/java/bin/java  8~ 

/usr/bin/java     java

 

(vi) Make Java available to all the users to access Java. Move download to the location 

"/usr/local/" using the required commands. Set the path by the commands: 
 

export JAVA_HOME=/usr/local/jdk8u152 

export PATH=$PATH: $JAVA HOME/bin 

(vii) When using Scala, run the shell by the command: 
 

cd spark-2.2.1-bin-hadoop2.7 
 

./bin/spark-shell 
 

Spark Core Concept: Driver and  Context A  Spark  application  consists  of  a  driver 

program  that  executes various operations  in parallel on a cluster. The driver  program 

contains  the  main function  of an application  and defines distributed  databases  on the 

cluster, and then applies operations to them. 
 

A driver program can be the Spark shell itself. A driver program accesses Spark through 

an object, SparkContext which represents  a connection to a computing cluster. The Spark 

shell automatically creates the SparkContext, referred by sc. 
 

A driver program uses the sc. The driver program distributes to multiple worker nodes 

(machines) in  a  cluster.  Each worker  node  has  an  executor  (machine). The  executor 

executes multiple tasks in parallel. 
 

A driver program manages executors. For example, when method count() executes then

http://www.oracle.com/technetwork/java/javase/


different 

executors    count   the   elements   in  different    ranges   of  an  RDD.   For  example,   elements 

(columns)  in RDD  for  a table  in the  rows  1  to 100  count on one executor, 101  to 200  on 

another, and so on. An executor may run four tasks, by dividing the range into four parts. 
 

Testing  the  Installation Use "README.md".  It  is main  documentation  file. The total 

number of lines is 127 and the first line is'# Apache Spark' 
 

»>  mainDocLines  =     sc. textFile (README.md) [ROD   named   mainDocLines 
creates.] 

 

>>>  mainDocLines.count() 
 

127 

If 127 is displayed, it means the installation of Apache Spark and Python is successful. 

Alternatively, create a text filejigsaw_puzzle_info.txt in Example 4.10 given below. 

Write a line counting program: 

>>> toycostsDocLines = sc.textFile(jigsaw_puzzle   info.txt) 

[ROD named toycostsDocLines creates.] 

>>> toycostsDocLines.count() 

Test shows successful installation, if the number of lines matches. 
 

Spark  Supported File Formats  Table 5.3   describes the Spark supported file formats and 

their descriptions. 
 

Table 5.3 File formats and their descriptions 
 

File 

Format 

 
Description 

 
Text File 

 

Saves unstructured   data. Text file is the default file format.  A line represents  a record. The 

delimiting characters  separate  the lines.  Text file examples are CSV, TSV,JSONand XML. 

 

Sequence 

File 

 

Saves  structured    data.  Like a  flat  file  which  stores  binary   key-value  pairs,  supports 

compression.  Example of application  is HDFS file format used for key-value pairs. 

 
Object 

File 

 

Saves structured  data in Object Store.  An Object file transfers  by serialization;  for example, 

using  Java  Serialization.   Applications   save  data  from  a  Spark job  which  shared   code 

consumes or saves data onto cloud object store service 53. 

 

Protocol 

buffer 

 

Saves  structured   data  in  protocol   buffer.  An  application   in  a  programming   language 

requires  efficient and fast protocol buffer. 

 

 
]SON 

 

Saves semi-structured   data  in text-based  format.  Programming  language  libraries  mostly 

require  one per line. [(Section 3.3.2 and Section 1.6.1 Example 1.12 (ii)] 



  
 

CSV 
 

Saves structured  data in text-based  format, such as spreadsheet 

 

 

5.4.2 Programming with  RDDs 
 

Spark Resilient Distributed Dataset (RDD)  is a collection of objects distributed  on many 

computing nodes. Each RDD can split into multiple partitions, which may be computed in 

parallel on different nodes of a cluster. 
 

Characteristics of RDDs 
 

1.    fault-tolerant abstraction which enables In-Memory cluster computations, 
 

2.   immutable (thus read-only) and partitioned distributed collection of objects, 
 

3.   have interface  which enables transformations  that  apply the  same to many data 

objects, 

4.   create  only through  the  deterministic  operations  on either  (i) data in stable Data 

store such as file or (ii) operations on other RDDs, 

5.    are parallel data structures, 
 

6.    enable efficient execution of iterative algorithms, 
 

7.    enable efficient execution of interactive data-mining, 
 

8.    the commands to them enable the intermediate-results  explicitly persist in memory, 

and 

9.   the command to them controls the partitioning  so that placement of data optimizes 

and partitions can be manipulated using operators. 
 

Spark RDD is immutable (not capable of or not susceptible to change). A new RDD creates 

on transform and action commands. Commands create RDDs in two ways: (i) load an external 

dataset as a distributed collection of objects, or (ii) use a driver (program) for distributing a 

collection of objects. 
 

Two operations,  transform and  action can  be  performed  on  an  RDD.  Each  dataset 

represents  an object. The transform-command  invokes the methods using the objects to 

create new RDD(s). Action is an operation  that  (i) returns  a value into a program or (ii) 

exports data to a Data Store. Transform and action are different because of the way in 

which Spark computes RDDs.  Transform  operations  create  RDDs  from each other.  The 

action command does the computation when a first-time action takes place on an RDD and 

returns a value or sends data to a Data Store. 
 

The following example explains the command for creation of the RDD, and transform and



action  commands  for operations   on the RDD textFile. 
 

 
EXAMPLE  5.8 

 
Recapitulate Example 4.10 of a toy company selling Jigsaws. Consider a text file named 

jigsaw_puzzle_info.txt in/home/user directory. The three lines in the text file are: 
 

 
 

(i)   How will you create  RDD puzzle_Costs from jigsaw_puzzle_info.txt? Use Spark 

Context (sc). 
 

(ii)  A new RDD must have the lines having the string "puzzle_cost_USD".How will 

you use transform  command to get  new RDD  textf'ile, puzzle_cost_USD?How 

many lines will puzzle_cost_USDpossess? 

(iii)  How will an action command display first line from the filtered text? 
 

SOLUTION
 

(i) 
 

RDD creates from text file at Spark Core using the following command:45, 
 

>>> puzzle_Costs =    sc.textFile("jigsaw_puzzle  info.txt") 
 

[sc stands for SparkContext.] 
 

Alternatively, without using sc then create RDD using the following command: 
 

puzzle_Costs 

spark.read.textFile("jigsaw_puzzle  info.txt") .rdd
 

(ii)   A   transformation command   is  filter().   The   following  statement    does  the 

transformation  using filter(): 
 

>>>puzzle cost_USD =     puzzle_Costs. filter  (pyspark line: 

"puzzle cost_USD" in line) 

puzzle_cost_USDRDD will have first two lines only. (Third line has the cost in 

cents.) 

(iii)  An action command to get the first line is first(). The following statement does the 

action using first(): 
 

>>> puzzle_Costs_USD.first() 
 

The result puzzle_cost_USDfirst line will display as follows:



## puzzle code_Garden  10725 pieces  100 puzzle cost_USD 

1. 35 
 

 

Examples  of Transform Commands  Examples of the  transform  command are  filterl), 

mapl),   mapValues(),   flatMap(),   sortl),   pratitionBy(),   groupByKey(),  reduceByKey(), 

aggregateByKey(),   pipe(),    coalescel),    sample(),    unionl),    join(),    cogroupt),    and 

crossProduct(). 
 

Examples of Action Commands Examples of the action command are: reducef), collect() 

[Returns  the  elements  themselves],  count()  [Returns  the  number  of elements  in  the 

dataset], first(), takel), countByKey(),lookup() [used when RDDs hash/range partitioned], 

foreach() and save() [Returns the dataset to a Data store]. 
 

RDDsPersistence Command persist         enables the RDDs to reuse intermediate  results in 

later operations. The following example explains the command, persist         for an ROD, and 

action command count ( )  . 

 
EXAMPLE 5.9 

 
Recapitulate Example 5.8 (ii) of a toy company selling Jigsaws. The RDD has two lines 

after filter(). 
 

(i)   How will the intermediate results be used? 
 

(ii)   What will be the output of action commands count() and first()? 
 

SOLUTION 
 

(i) RDD persist command saves intermediate  results of actions using the following 

command: 
 

>>> puzzle_Costs_USD.persist 
 

(ii)   The action command count() will do the action as follows: 
 

>>> puzzle_Costs_USD.count() 
 

2 
 

[The result will display 2 as two lines remained after filter() in Example 5.8(ii).] 

Action for display first line will be use the command: 

>>> puzzle_Costs_USD.first() 
 

The result puzzle_cost_USDfirst line will display as follows: 
 

## puzzle code_Garden  10725 pieces  100 puzzle cost USD



Data Type 

Name 

 

Description 

TINYINT 
 

1 byte signed integer. Postfix letter  is Y 

SMALLINT 
 

2 bytes signed integer. Postfix letter  is S 

INT 
 

4 bytes signed integer 

BIGINT 
 

8 byte signed integer. Postfix letter  is L 

FLOAT 
 

4 byte single-precision  floating-point number 

 

DOUBLE 
 

8 byte double-precision  floating-point number 

BOOLEAN 
 

True or False 

 

 
TIMESTAMP 

 

UNIXtimestamp with optional nanosecond  precision. It supports java.sql.Timestamp 

format  "YYYY-MM-DD HH:MM:SS.fffffffff'Java has j ava.   SQL. TimeStamp and 

Python has datetime.  Datetime 

DATE 
 

YYYY-MM-DDformat 

 

STRING 
 

Use single quote('')  or double quote("").  Python,Java and Scala use string, String and 

 

1. 35 
 
 

Removing Data Spark auto-monitors the usages of caches. Spark removes the caches using 

'least   recently   used   partitions    removed   first'   strategy.   A   programmer    can   use 

RDD.unpersist()to remove caches. 
 

RDDsPartitioningand ParallelizingSpark RDD partitioning  enables execution of each 

partition in parallel. 
 

puzzle_cost_USD = sc.parallelize(["puzzle  cost_USD", 
""puzzle cost_USD"]) 

 

Dataframe (SchemaRDD) SchemaRDDis similar  to  a table  in  a traditional  

database. SchemaRDDin earlier Spark versions is now named as Dataframe. The schema is 

blueprint for  the  organization  of data  in an  ROD  (similar to  traditional  database  

schema). The blueprint tells how the RDD constructs. The SchemaRDDreturns  on the 

queries loading or execution. A SchemaRDDis composed of row objects. The 

SchemaRDDhas additionally the 

'Data Type' information for each column. A row object wraps the arrays of basic data types. 

Table 5.4 provides Spark data types and their descriptions. These are similar to HiveQL. 

Table 5.4 Spark data types and their descriptions



 String,  respectively    to define  a string   variable. 

 

VARCHAR 
 

1  to  65355 bytes  use  single  quotes   (' ') or double  quotes   (" ") 

 

CHAR 
 

255 bytes 

 
DECIMAL 

 

Used  for representing   immutable    arbitrary  precision.   DECIMAL   (precision,   scale)  format 

Java  has  j ava  .Math.   BigDecimal   and Python decimal.    Decimal. 

UNION 
 

Collection of heterogeneous   data types. 

NULL 
 

Missing values representation 

 

Table 5.5  provides three  Collection data types available in Spark SQL and HiveQLand 

their descriptions. 
 

Table 5.5 Three Collection data types: STRUCT, MAP and ARRAY and their descriptions 

(same as HiveQL) 
 

Name 
 

Description 

 

 
 
STRUCT 

 

Similar to 'C' struct.  Fields are accessed using dot notation. 

For example, struct    (  'a'   '    'b'    ) 

An example is row object STRUCT<Coll:Coll_Type, ... =. Python,Java  and Scala 

have structures named Row. 

 
MAP <KEY_ TYPE, 

VAL_TYPE> 

 

A collection of key-value pairs.  Fields are accessed using[] notation. 

For example,  map    (  'keyl',       'a'   '     'key2',         'b'    )  .   Scala and Java  use 

Map and Python diet 

 
 
ARRAY <DATA TYPE> 

 

Ordered sequence of same types.  Fields are accessed using array index. 

For example, array    (  'a'   '    'b').      Scala uses Seq,Java List    and Python 

list,     tuple    or array. 

 

Row objects represent  records inside SchemaRDDsand are simply fixed-length arrays of 

fields. 
 

A SchemaRDDexample is given below: 
 

 
EXAMPLE  5.1 

 
Recapitulate Example 4.10  of a toy company selling Jigsaws. Consider the following 

table object named toyPuzzleTypeCostTbland row objects named toyPuzzleTypeCost.



 

.. 
 
 

puzzlecode 

 
 

I     .. 

 

 
pu.zzle _oost_ USD 

puzzle , Ga1mm 10725 m U:S 

 

 31407 300 2.85 

 

 
81049 800 .E.37 

 

(i) What  will be the  SchemaRDD for  the  table  as array  of rows  with  four  columns 

each? 

(ii)   Which command  will be used to access a row for puzzle_School? 
 

(iii)  What   is   an   alternative     method    to   create    Schema   ROD    for   row   objects 

toyPuzzleTypeCost   from toyPuzzleTypeCostTbl? 
 

SOLUTION 
 

(i)    SchemaRDD will be as follows: 
 

1--   toyPuzzleTypeCostTbl: ARRAY (nullable =    true) 
 

[The table  is an array  of rows. An array  may not have any element.] 

1-- element:  STRUCT toyPuzzleTypeCost   (containsNull  = false) 
 

[The data  type  of element   (row)  of the  array  named  toyPuzzleTypeCostTbl   is a 

STRUCT named  toyPuzzleTypeCost.] 
 

I       --          toyPuzzleTypeCost:    STRUCT    (toy_type:   STRING, 

puzzle code: STRING, pieces:  SMALLINT, puzzle cost USD: 

FLOAT) 

[The  array   element   is a data  structure  of four  columns   of data  types  STRING, 

STRING,  SMALLINT  and FLOAT, respectively.] 

I-   -  toy_type: STRING (nullable =    false) 
 

I-   -  puzzle code: STRING (nullable =    false) 
 

I-   -  pieces: SMALLINT (nullable =    false) 
 

I-   -  puzzle cost_USD: FLOAT (nullable =    false) 
 

(ii) Command  to access the row having  key puzzle_School  in Python  is: 
 

toyPuzzleTypeCostTbl.map(toyPuzzleTypeCost: 

puzzle School). 
 

[The returned data type will be STRUCT.] 
 

(iii)  Python  commands  to create  toyPuzzleTypeCostTbl   ROD are:



toyPuzzleTypeCostRDD     sc.parallelize([Row    (toy_type 

"puzzle_Garden",  puzzle_code=  "10725",  pieces     100, 

puzzle cost_USD = 1.35)] 

[Created row  toyPuzzleTypeCost ROD with a tuple using parallelize method 

of Spark Context, sc] 

toyPuzzleTypeCostSchemaRDD= 

(toyPuzzleTypeCostRDD) 

HiveContext(sc) .inferSchema

 

[Created    row-schema,     toyPuzzleTypeCostSchemaRDD using    method, 

inferSchema of Hive Context inbuilt in Spark Context, sc] 
 

toyPuzzleTypeCostSchemaRDD.registerTempTable 

("toyPuzzleTypeCostTbl") 
 

[Created ROD using registerTempTable method for the row object schema. Table 

toyPuzzleTypeCostTblcreates toyPuzzleTypeCostSchemaRDD.] 
 
 

Numeric  Operations on RDD Spark provides several descriptive statistics operations  on 

RDDs 

containing  numeric  data.  Table  5.6    provides  description  of  numeric  ROD  operations 

available in Spark. 
 

Table 5.6 Numeric RDD Operations 
 

Method 
 

Description 

 

 
count() 

 

Returns the number  of elements  in an RDD.  Returns BIGINT of 8 bytes.  For 

example, Command toyPuzzleTypeCostTbl.count() returns  12 in the table in 

Example 5.10. 

sum() 
 

Returns the sum of the elements 

mean() 
 

Returns the sum of the elements  divided by the number  of elements 

min() 
 

Returns the minimum value of the elements 

max() 
 

Returns the maximum value of the elements 

stdev() 
 

Returns the statistical  parameter,  standard  deviation of the elements 

sampleStdevt) 
 

Returns the statistical  parameter,  standard  deviation of a sample of the elements 

variance() 
 

Returns the statistical  parameter,  variance  of the elements 



sample Variance()    Returns the statistical  parameter,  variance  of a sample of the elements 

 
Shared  Variables  The variables  in HDFS  have multiple  copies in the  data  nodes  of a 

cluster.  While mapping  or  reducing  functions  for  execution  on  a  cluster  node,  the 

operations take place on separate copies of all variables used in the function. These copies 

also updated, but the copies or changes do not pass on to the driver program. Usages of 

read and write instructions for the variables are inefficient. 

Broadcast variables and accumulators enable the implementation of shared variables. 

Broadcast  Variables  Spark also attempts to distribute broadcast variables using efficient 

broadcast algorithms to reduce communication cost. Broadcast variables are created from 

a value denoted by a variable v and running  method  sc .broadcast     (v). The broadcast 

variable is a wrapper around v. 

 
EXAMPLE 5 .11 

 
Recapitulate Example 5.8 (ii) of a toy company selling Jigsaws. The RDD has two lines 

after filter(). How will you use the intermediate  results and execute action commands 

count() and first()? 
 

SOLUTION 
 

Recapitulate Example 5.10. Python code accesses the value of the broadcast variable as 

follows: 
 

>>>  broadcastVar         =     Sc.broadcast       (   [   ("puzzle_Garden",           "10725", 

100,     1.35)]) 
 

The result will be: <pyspark.broadcast.Broadcast object at Ox102789flO>. The value 

can be accessed by calling the value method as follows: 
 

>>> broadcastVar.value 

Result will be [("puzzle_Garden", "10725", 100, 1.35)] 
 

 

Accumulators 
 

Spark supports  accumulators  of numeric  type.  A  programmer  can  provide  additional 

support to other data types. Accumulators are special variables. They add the values using 

associative and commutative operations. They also support parallel run: for example, in 

count()     or sum(). 
 

An accumulator variable creates from an initial value v. Later the value accumulates into 

that using+= operator. For example, in count()     initial value is 0. The command to create 

accumulating variable is sc.  accumulator    ( v).



 
 
 
 
 
 
 

 
Re,g,of!'.53iom 

generalized     ear 

r            m,  log stic 

regre.ss oo,. su 

reg~lm1 

IJ. h!.-isiatimg 
ast squares;  Featl.l ,e 

tra    furr.nactloo£ 

stan    'dlzl!ltloo 

Tree e11!.E!ll!l 

Elandom   forests 

EXAMPLE  5.12 

 
Recapitulate Example 5.10. How does Python code access the value of the accumulator 

variable? 
 

SOLUTION 
 

Python code accumulates the value using variable v as follows: 
 

>>> accumColumns   = sc.broadcast(O) 

>>> accumColumns 

The result will be <Accumulator id = 0, value = O>. 
 

When following command executes: 
 

>>>               sc .parallelize (  [1. 35, 2. 85, 1. 37]). foreach (x: 
accumColumns.add(x)) 

The result will be 5.57. 
 
 

5.4.3 Machine  Learning with  MLib 
 

Apache MLib is a component of Spark that is open source downloadable from Apache Spark 

website. Figure 5.8 shows the main usages of MLib (machine learning library). 
 

 
 
 
 
 
 
 
 
 
 

, 

 
i 

l                          ,I 
 

 
R.ei;amlim:mdatiom 

l 

le 

Decls  ornttee.s... 

·

. 
 

 
 
 

Figure 5.8  Main usages of MLib machine learning library 
 

Spark Support ML pipelines. An ML pipeline means data taken from data sources, passes



through   the  machine  learning   programs   in between  and  the  output  becomes  input  to the 

application.   Decision tree,  knowledge  discovery,  clustering   and mining  are examples  of ML 

pipeline  application. 

Spark  2.3  supports  Python UDFs, VUDFs, block-level UDFs with block-level arguments 

and return  types, complex object types  (array map and structure),  and conversions or 

transformations  of object types. These features are widely used for the ML applications. 
 

ML datasets are RDDs, thus use HDFS, HBase or local files. MLib APis are interoperable 

with Spark SQL. MLib  Python implementation  adds Python APis. MLib interoperates  with 

NumPy in Python. 
 

Chapter 6 will describe ML algorithms in detail. 
 
 

Self-Assessment Exercise linked to LO 5.3 
 

1.   what are the steps for downloading a Spark version? 
 

2.   List the Spark supported file formats and their usages. 
 

3.   Write  the  use  of transform  commands  in  RDD  programming,  filtert),  map(), 

mapValues(),  flatMap(),   sortl),   pratitionBy(),   groupByKey(),  reduceByKey(), 

aggregateByKey(), pipel),  coalescel),  sample(),  unionl),  joinl),  cogroup(),  and 

crossProduct(). 

4.   How do broadcast  variables  and  accumulators  enable  the  implementation  of 

shared variables? 

5.   Create, using inferSchema method ofHiveContext inbuilt in Spark Context sc, row• 

schema toyPuzzleTypeCostSchemaRDD. 
 

6.   What does machine learning mean? What are the main usages of MLib? 
 
 
 

 

5.51 DATA  ETL (EXTRACT,  TRANSFORM   AND LOAD) PROCESS 

 

The ETL process combines the following three functions into one:
 

1.   Extract which does the acquisition of data from Data Store 

querying or from another program, 

2.   Transform which does the change of data into a desired file, 

HI!.. processes 1D1si n g1 bl.!lil1t-'ilfil 
fu nctions a ndl qperairor,s, 
andl Ertpipeli'nes

columnar,  tabular  or  other.  Transformation  converts  the  previous  form  of the 

extracted  data  into  a new form. Transformation  occurs by using rules  or lookup



 
 
 
 

 
Ca         d    OB 

tables.   Transformation     uses   the   functions,    namely   joint],   groupBy(),   cogroupl), 

filter(},  mapl),  mapValues(),   flatMap(),  sortf),  pratitionBy(),   groupByKey(), 

reduceByKey(),       aggregateByKey(),        pipel),       coalescel),       samplel),       unionl), 

crossProduct().   Spark  2.3 includes  transformation    functions   on complex  objects  like 

arrays,   maps  and  set  of  columns.   Pandas   provide   powerful   transformation     UDFs, 

VUDFs  and GVUDFs. 

3. Load which  does the  process  of placing  transformed    data  into  another   Data Store  or 

data warehouse  for usage by an application   or for analysis. 
 

Python,   Spark  SQL   and  HiveQL support   ETL  programming    and  extracting    by  query• 

processing  and text  processing. 
 

 

5.5.1 Composing Spark Program Steps for ETL 
 

Spark 2.3  ETL Pipeline Apache Spark 2.3+ includes usage of UDFs, VUDFs and Data Source 

API v2. These facilitate  the  creation  of ETL  pipelines  easily. Figure 5.9 shows an ETL 

pipeline using Spark SQL for ETL Process and Data Source API v2 in Spark 2.3. 
 
 
 
 

 
J50.N                                             ive                          Emel                  

 
 

 

 
 

Ell 

Pipeline 

 
 
 

nd 

 

 

 

 
Figure 5.9 ETL pipeline using Spark SQL



Extract 
 

Skipping Corrupt or Bad Records or Files A record can sometimes be bad. For example, 

"toyPuzzle_Type", toyPuzzle_Airplane. Here the data type in schema is string, but quotes 

are missing in toyPuzzle_Airplane. Use the following command to ignore bad records or 
file:spark.sql.files.ignoreCorruptFile=s true. 

Spark  supports  parser   for  text  file  formats  in JSON and  CSV with  three   modes: 

PERMISSIVE, DROPMALFORMEDOR FAILFAST. Reading data requires a parser in a SELECT 

for querying or load for extraction process. 
 

Extract  and Load: Multi-line JSON/CSV Support Load and Save files: SerDe uses codes for 

obtaining records from unstructured data. Save process uses serializer codes and Loading 

(extracting) process uses deserializer. 
 

The following example explains the codes for sequence File, ]SON  and CSV file load and 

save functions for obtaining records/rows/files. 

 
EXAMPLE 5.13 

 
Using Python, 

 

(i)   How does a sequence file load? 
 

(ii)   How does a text file 'jigsaw_puzzle_info.txt' load? (Example 4.10) 

(iii)  How does a file productCodesCosts save as a TextFile in Python? 

(iv) How does aJSONstudentSemGrades file load? 

(v)  Assume record  field names  are  "StuName, "rolltsum",  "enrollrsum",  "Semllr", 

"coursellr", "subjectlli", "subject'lype",  "SemSubjGrade" in a CSV file line. How 

does StuSemRecord(line)load from aJSONfile 'studentSemGrades'? 

(vi) How does StuSemRecord(line)save as CSV format file? 
 

SOLUTION 
 

(i)   Load a sequence file using the following statement: 
 

val data=              sc.sequenceFile(inFile 

"org.apache.hadoop.io.Text", 

"org.apache.hadoop.io.IntWritable") 

(ii)  Load a text filejigsaw_puzzle_info.txt using the following statement: 
 

hiveCtx.textFile 

(file:///home/PySpark/hive/'jigsaw_puzzle  info.txt')



(iii)  Save the text file productCodesCosts using the following statement: 
 

productCodesCosts.saveAsTextFile(outputFile) 
 

(iv)  Load  an   unstructured ]SON   file   studentSemGrades using   the   following 

statement: 
 

import json

studentGradesData 

json.loads(studentSemGrades)) 

 

input.map        (hiveCtx:

 

(v)   Load  StuSemRecord(line) from a CSV file    'studentSemGrades' using 

the following statement: 
 

import stringIO 
 

import csv 
 

 
 
 
 

def  StuSemRecord(line):  """Parse a CSV line""" 
 

reader = csv. DictReader  (input, fieldNames    ["StuName, 

"rollNum", "enrollNum", "SemID", "courseID", "subjectID", 

"subjectType", "SemSubjGrade"J) 

return  reader. next () 
 

input=  hiveCtx.textFile(inputFile) .map(StuSemRecord) 
 

(vi)  Save   StuSemRecord(line) from a CSV file    'studentSemGrades' using 

following statement: 

def  writeStuSemRecords(records)  """Write a CSV line""" 

output =scv.DictWriter(output,   fieldNames     ["StuName, 

"rollNum", "enrollNum", "SemID", "courseID", "subjectID", 

"subjectType", "SemSubjGrade"]) 

for record in records 

writer.writerow(record) 

return   [ output . getva1ue ( )  J 
 

hiveCtx.mapPartitions(writeStuSemRecords)  .saveAsTextFile 

(outputFile)



Transformation The following example explains Spark SQL transformations  in Spark 2.3. 

The example shows complex objects, nested tables (one column rows) and array 

transformations  and uses the DataframeWriter APL 

 
EXAMPLE 5.14 

 
Use Spark 2.13  SQL APis and DataframeWriter APL 

 

(i)   How does a table-column schema create for a nested table (single Column table) 

tbl_puzzleCost? (Example 5.1) Text file is 'jigsaw_puzzle_info.txt'.  (Example 

4.10) 
 

(ii) How does the value filter using a row from table 'tbl_puzzleCost' for a puzzle 

costing above USO 1.00?(Example 5.1) 

(iii) How does yearlysales compute from table for Jaguar Land Rover Yearly sales, 

JLRDS (Example 5.2) from CarShowroomsCummulativeYearlySalestable? 

(iv) CREATE Hive-SerDe table. Create a table  similar to one in Example 5.1. Use 

DataframeWriter APL 
 

(v)  CREATE Hive-SerDetable. Create a table similar to one in Example 5.1. Use Hive. 
 

SOLUTION 
 

(i)   Table schema for a nested table (single Column table) tbl puzzleCost creates: 
 

FROM tbl_puzzleCost; 
 

tbl nested 
 

1--   key: string (nullable =    false) 
 

1--   values: array (nullable =    false) 
 

1--   element: float (containsNull =    false) 
 

(ii) The following Spark SQL statement  filters an array  or row or nested table, 

tbl_puzzleCost: 
 

SELECT FILTER(values, v4 -> v4 > 1.00) AS v4 
 

FROM tbl_puzzleCost; 
 

(iii)  The following Spark SQL aggregation function for the sum of an array or row or 

nested table elements, JLRDS in CarShowroomsCurnrnulativeYearlySales 

row tbl JLDR:



SELECT REDUCE  (values, (value, JLRDS) ->   value +    JLRDS) 

AS yearlyJLRSales FROM tbl JLRDS; 

(iv) The following statements create a Hive-SerDetable using the DataframeWriter: 
 

CREATE Hive-serde tables 

df.write.format("hive") 

.option("fileFormat", "avro") 
 

saveAsTable("tbl_puzzleTypeCodeCosts") 
 

CREATE TABLE tbl_puzzleTypeCodeCosts  (puzzleType STRING,

puzzleCode STRING, 

FLOAT) 

STORED AS ORC 

puzzlePieces   SMALLINT, puzzleCost

 

(v)  The following statements create a table using Hive: 
 

CREATE TABLE tbl_puzzleTypeCodeCosts  (puzzleType STRING,

puzzleCode STRING, 

FLOAT) 

USING hive 

puzzlePieces   SMALLINT, puzzleCost

 

OPTIONS (fileFormat 'ORC') 
 

 
 

Self-Assessment Exercise linked to LO 5.4 
 

1.   What are the three ETL functions in Data Store? 
 

2.   How do line records extract from a multiline JSON file? 
 

3.   How do values filter from a column 'puzzleCost' for puzzle costing below USD 1.00? 
 

4.   What are the program steps for creating a Hive-SerDetable using the DataframeWriter? 
 
 
 

 

5.61 INTRODUCTION   TO ANALYTICS,   REPORTING 

AND VISUALIZING 
 

"Analytics  is  the  discovery,  interpretation,   and  communication  of  meaningful 

patterns  in data."  Since Big Data analytics require  extensive  computations,  the



 

 
 
 

IO-es<:riptil,re,  P1edicrn,e .aiild P.escripmre   AA 

Elusiirness A.Aalytics,  am  ,other forms  of Analytic 

 

 
 
 
Statistic 

 
 
 
 

~, 

s 

 !Data  lM  ·  ,              !Pattern 

ch,11sterAn   vsis..    llil 

IOetecticm 

 

Oe$ .'   ·puve 
Tee nigue:s 

  

 

1 

1 

algorithms   and  software  used  for  analytics   combine  the  most  current   mef  nu~ 

computer science, statistics and mathematics." (Wikipedia)
 

Analytics needs interpretation,  reporting  of meaningful patterns 

and gaining insight into new knowledge. Visualization is an 

effective method  for examining the  interpretations   of reports. 

Alillal,ytl   cs, da.tat,imorm.atio   n 
1reporrn n 91 ana v,irnal izillllg 

11i11eillnlods

The subsections ahead introduce analytics, reporting and visualization methods. 

 

5.6.1  Introduction to Analytics 
 

Some examples of open source tools for analytics are Python, R, Apache Spark, Apache 

Storm, Pig and Hive. Examples of commercial tools are SAS, Tableau, Excel, QlikViewand 

Splunk. Figure 5.10 shows a framework for applications and analytics using Spark. 
 
 
 
 
 

I                                                                                        I 

Analytics 

App1icatioos 

 
M"mmg. 

,omv 
 

 
 

Spark S.trnamililg 

OL~P 

Spa rlc$.Ql,. IHiveCU; 

G1S$alildra(QL 

Q.uerymg  !Processing 
'------,,-----' 

App1icatioos 

Sq>port  fer 
Anaiy'sis

 

llm$:Pectin&de.millil&; 
IE;xbi!Ct,. lramsform and toad processes 

'----------.-------,,..---------,,------' 

 

Data 

/la.ess

 

 

'--------------------' 

(Kganized 

l 
Data  S.mf"e

Figure  5.10 Processing framework for applications and Big Data analytics using 
Spark 

 

Spark Stack provides support  to applications  for analysis of huge data from multiple 

sources and Data Stores. Analytics also use machine learning and neural networks, which 

enable predictive  modeling  and  decisions. Analytics use  data  mining,  pattern  mining, 

cluster analysis and detect anomalies. 
 

Applications use the  results  derived from the  descriptive, predictive  and prescriptive 

analytics, business analytics and other  forms of analytics. The applications also use the



results   derived   from   reporting    and   visualizations.    Common   applications    are   decision 

making  about  further   actions  required,  knowledge  discovery  and knowledge  management. 
 

The example  below explains  the usages of analytics  in different  domains. 
 

 

EXAMPLE   5.15 

 
(i)   How does analytics help a manufacturing company for toys and puzzles? 

 

(ii)  How does analytics  helps  a company for  chocolates, which  sells its products 

through ACVMs? 

(iii) How does analytics help a manufacturing,  sales and service company for cars of 

different models? 
 

SOLUTION 
 

(i) An analysis of sales figures for toys and puzzles, lets the toy company understand 

the preferences of children in different age groups, regions and income groups. 

The knowledge of preferences enables appropriate  manufacturing,  supply, sales, 

quality enhancement  and promotion  activities. The predictive  analytics enable 

the company to take steps from the forecast about future growth, estimate the 

direction for future  innovations in children toys and puzzles, and plan for the 

desired products mix in future. 

The company organizes quizzes in schools of science, mathematics,  geography 

and  other  subjects  and  awards  brilliant  students,  as  a  part  of promotional 

activity. The company also analyses the impact on sales after this activity. 

(ii)  Analysis of sales figures and machine-users data by the company for chocolates 

being sold through ACVMs lets the company understand  the following: (a) users 

and their  needs, (b) chocolate preferences  for specific flavours among children 

and youth in different regions in the country, different areas of cities, age groups, 

and sales in specific periods in a year. Detailed analysis enables the appropriate 

manufacturing, supply-chain, sales, innovations and promotional activities. 

The predictive  analytics  enable  the  company to  know the  predictions  about 

growth  in  profits,  sales, identify  future  installation-areas  for  ACVMs,  design 

relocation strategy   and   understand   directions   of  future   innovations   and 

promotional  strategy,  needs,  and  desired  product-mix  of the  company.  The 

company also analyzes the impact of rewarding chocolate buyers on birthdays, 

marriage   anniversaries   and  festival  periods.  Company  plans  incentives  for 

frequent  buyers. The company also organizes quizzes in schools and colleges.



Company rewards  brilliant  school students  as a part  of promotional   strategy. 
 

(ii)   Analysis of sale figures, customer, and service center feedbacks by the company 

for cars in different models, lets the company understand the followings: (a) users 

preferences  for the different models and colour shades, (b) car model's sales in 

different  regions in the  country, age groups, and sales in specific periods in a 

year.  Detailed analysis  enables  the  appropriate   product  mix, manufacturing, 

supply-chain management,  competition, advertisement  strategy,  innovations in 

design and shades, and facilitates promotional activities. 

Predictive analytics enables company to know the predictions  about growth in 

profits,  sales  and  competition;  identify  car  showrooms  future  expansion  in 

different regions, and understand  the direction for future  innovations, such as 

use  of  IoT  for  studies  on  functioning   of  car  components   and  IoT  based 

maintenance   services.  The  company  can  plan  future   expansion   in  plant 

machinery and ideal future product-mix strategy of the company. The company 

can also analyze the impact of incentives to showrooms for higher sales growth, 

festive-period incentives to buyers, and organizing the cultural events in order to 

design appropriate promotional activities. 
 
 

5.6.2 Data/InformationReporting 
 

Reports are essential after any analysis.  Some important  reasons for generating  reports 

are: 

1.   Provide   cross-databases    and    the    data    sheets    [Cross-database    created    by 

application/ system software so as to enable access to different database formats.] 

2.   Enable accesses to multi-business system data 
 

3.   Provide multi-data source correlations 
 

4.   Present related businesses data integrated in a Data Store 
 

5.   Enable more data applications for business control and operations analysis. 
 

Data OrganizationGuidelines for ReportsSome guidelines for organizing data in reports 

are: 

1.   Must have abstract, context introduction and conclusion sections 
 

2.   Divide the contents in sections or split it into multiple sheets with one context in one 

sheet 

3.   Place similar  items  under  the  same heading  or  in the  same  column  in  case of



Pa     l!i report 

elements-labe s, 

spreadsheets 
 

4.   Insert figures, charts or graphical plots to enhance the readability of the report 
 

5.   Position critical data appropriately 
 

6.   Avoid blank text areas or rows and columns in case of sheets. 
 

Data FormatGuidelines Some guidelines for formatting data in reports are: 

1.   Use section and subsection headings or column labels to identify contents 
 

2.   Use appropriate font, alignment, format, pattern, border or capitalization style 
 

3.   Use text borders or cell borders to distinguish data 
 

4.   Maintain same formats  for paragraphs,  section headings, subsection headings and 

captions of table and figures. 
 

Report Designer A  report  designer  has  three  components:  (i) report,  (ii)  Data Tools 

Platform/Web Tools Platform (DTP/WTP),and (iii) chart designers. Users can add a custom 

designer at their end. The designer outputs to process at a design engine, which 

communicates the  outputs  in XML format  to the  Report Engine. Figure 5.11  shows the 

features of the components of a report designer. 
 
 
 

                

l

 
 

 

 
 

 
 

Figure 5.11 Features of the components of report designer 
 

Open Source Eclipse Business Intelligence and Reporting Tool (BIRT) 
 

BIRT  is an open  source software project  created  by the  Eclipse Foundation.  It's  latest 

version is 4.8.0  was released in June 2018.  BIRT includes Eclipse Report Designer (ERO),



Ecl[ps:e Eclipse Eel-~ 

Re?('.I 

lile:signet 

IDTP, 

WTP 

Ch:ar:t. 

Desigr:iet 

 

[§]          ...---...... 

Eclipse Report  Engine  (ERE)   and  Eclipse  Charting  Engine  (ECE).  BIRT creates   reports   and 

enables  data  visualization   of the  reports.   Reports  can be embedded  into  rich Java, Java  EE 

client  and web applications. 

Figure 5.12 shows the architecture  of BIRT. 
 

 
 
 

Edlp:s~ 
Ot:1Sltlm 

De  · zner 

Pitesentatr:on 

Word, Power Po[filt.; IPostSc;f'i'.p  ,   P'O~.  lrlT  IL,  CS\f 

Report  IE•lne  &Jldi ,Chartt!'lg  1Engl111e

~............,    ~~                                       '
 

 

 
eFJOO:  D.esigm   1Engine 

~ 
 

 

 

Figure 5.12 BIRT architecture  design and report engine components 
 

Data explorer  creates  views of multi-dimensional  cubes from the  datasets  provided. 

Cubes enable building of dynamic cross-tables. A  dimension in the view can be used to 

design report parameters. 
 

ReportEngine  The figure shows that  report  document and data process occurs at four 

service plug-ins - data transformation,  charting, presentation  and generation services. 
 

Transformation  service plug-in presents  the  data after  sorting, summarizing, filtering 

and grouping. The transformations  are performed  as per the  needs of user. A  program 

function performs the transformation  in the ETL process, but BIRT does that  for simple 

data sources, such as Java objects or flat files. BIRT does provision for complex operations, 

such as grouping on sums, percentages of overall totals. 
 

Charting services at the  engine generate  the  charts.  The Charting Engine is used to 

design and generate the charts. A chart can be separate or embedded within the generated 

reports,  such as BIRT reports.  Charting engine API (CE API) in Java/Java EE adds charting 

capabilities to their  applications. The design and report  engines make use of CE API for 

generating the charts. 
 

BIRT 'viewer' enables preview reports at an Apache Tomcat server included in the BIRT. 

The server fulfills the client request for preview. The outputs are web output  as a single 

HTML document, paginated HTML,  PDF,  XLS, DOC, PPT, and Postscript. Additionally, the 

viewer has functionality for exporting the data to CSV, printing and Table of Contents. 

 
5.6.3 Data Visualization



Data    visualization      is    a    technique      that     entails     the     creation      and     study     of 

the  visual  representation    of data,  meaning  "information   that  has been  abstracted   in some 

schematic  form,  including  attributes   or variables  for the  units  of information".   A primary 

goal  of  data  visualization  is  to  communicate  information  clearly  and  efficiently  via 

statistical graphics, plots and information graphics. Data visualization tools have shifted 

the interpretation  of data from dashboard displays to quick digestion of real-time analysis 

and custom analysis. (Wikipedia) 
 

Data Display can be accessed via PC  dashboards  or mobile terminals  and interpreted 

thereafter.  Display improves the  reading  of reports.  Reports include the  functions  for 

display of the  analysis of a wide variety of charts, multi-dimensional  analysis, real-time 

analytics, and slicing and dicing views of reports. Data visualization tools have completely 

changed the concept dashboard displays for interpretations. 
 

Data visualization uses techniques which data or information  encodes in visual objects 

such as points, lines or bars. Communication of information using visual objects to viewers 

is more efficient and clear. Data visualization relates to a number of fields: information and 

statistical  graphics,  scientific information  visualization  and  exploratory  data  analytics. 

Visualization communicates clearly and stimulates the viewer's attention and engagement. 
 

Table 5.7 describes data visualization tools and their usages. 
 

Table 5. 7 Data visualization tools and their usages 
 

Data 

Visualization 

Tool 

 

 
Description 

 
matplotlib 

 

Python matplotlib  for plotting  mathematical  functions.  Several libraries  such as vispy, 

bokeh, seaborn, pygal, folium build up on matplotlib  for data visualization. 

 

 
Chart.js 

 

A  tiny  widely used open  source  library  that  supports  just  six chart  types:  line, bar, 

radar,  polar, pie and doughnut.  Employs HTMLS  canvas element  for rendering  charts. 

Not used when the application  is big and complex. 

 
Google Charts 

 

Shows charts  in HTMLS/SVG   and many charts  including  interactive   charts  and most 

commonly used chart types like bar, area, pie and gauges. 

 
 
 
Tableau 

 

Public version  is open  source.  Tableau  is an  easy-to-learn   popular  data  visualizing 

tool.  Tableau  communicates   insights  through   data  visualization.   The  charts  easily 

embed  in any web page. Supports  a wide variety  of charts,  graphs,  maps  and other 

graphics.  Tableau's  visuals  enable  quick  investigation   of a hypothesis.   Commercial 

version includes additional  facilities for handling  over a million rows. 

 
D3Js 

 

D3 (Data Driven Documents) is free and open source, deploys HTML,  CSS and SVG, and 

shows the amazing charts  and diagrams.  It has rich features  and is quite interactive. 



 

 
FusionCharts 

 

Includes  over  90+   chart  types,  965  maps,  collection  of business  dashboards  and  live 

demos. The charts  and maps are highly customizable  and have attractive  interactions. 

The tool supports  to (i) JSON  and XML data formats  and (ii) export  the charts  in 

PNG, JPEG,  SVG or PDF formats. FusionCharts is a commercial tool. 

 

 
QlikView 

 

Is a fast processing  tool with usages for the intuitive  GUis, interactive  plotting  of data, 

slicing   and   dicing   features    in   data   visualizing,    and   creating    highly   useful 

visualizations  and dashboards. 

 

 
Splunk 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
Is a machine  log analytic  tool. It includes  powerful visualization  features  and easy to 

use tool due to its web interface.  Features  are events  list, table  visualization,  charts, 

gauges,  maps,  Trellis  layout  for  visualizations,   dashboard   creation   with  XML  and 

Drilldown and dashboard  interactivity. 
 

 

Self-Assessment Exercise linked to LO 5.5 
 

1.      what do the terms analytics and analysis mean? 
 

2.    List the functions of Report Designer. 
 

3.    List the services of the Report Engine. 
 

4.    Explain events list, table visualization, charts, gauges, maps, and Trellis layout for 

visualization. 
 
 

 
 

accumulator 

ad hoc query 

aggregation 

analytics 

BIRT 

broadcast 

Ceph 

data visualization 
 

DataFrame 

data pipeline 

data source 

dicing



drill down analysis 
 

ETL 
 

ETL pipeline 

Graphx 

GroupBy 

grouped  VUDF 

HDFS 

HiveContext 

Hive Server 

immutability 

JDBC 

matplotlib 
 

Mesos 

metadata 

metastore 

Mlib 

ML pipeline 

nested  table 

NumPy 

ODBC 

Outliers 

Pandas 

Parquet 

PySpark 

Python 

query  processing 
 

RDD 
 

RDD programming 

Report  Designer 

Report  Engine



S3 
 

SchemaRDD 

SciPy 

SequenceFile 

Ser De 

slicing Spark 

SparkContext 

Spark SQL 

Spark Streaming 
 

Tableau 

transform 

UDF 

Vectorized  UDF 

Viewer 

 
 
 

 
 

 

LO 5.1 
 

1.   Apache® Spark™  is a fast and general compute engine. Apache® Spark™  powers  analytics 

applications   up to 100 times  faster. 

2.   It supports   HDFS compatible   data.  Spark  has  a simple  and  expressive   programming 

model. 

3. Spark standard   API enables  creation  of the  application   APis using  Scala, Java, Python 

and  R. Spark  consists   of  software   stack  with  Spark  SQL,   Spark  Streaming,   Spark 

Arrow, SparkR, MLib and GraphX components. 

L05.2 
 

1. Spark  SQL is a Spark module  for structured  data;  SQL runs  the  queries  on Spark data 

in  traditional    business   analytics   and  visualization    applications.    Spark  SQL  enables 

Spark datasets  to use JDBC API or ODBC APL



2.   Dataframes   can be created  from  different  data  sources.  Examples  of data  sources  are 

]SON datasets,   Hive tables,  Parquet   row groups,  structured  data  files, external   Data 

Stores and RDDs. 
 

3. Spark and Python  provide  powerful  Big Data analysis  tools. Python  provisions  Python 

NumPy,  SciPy, Pandas  consists  of advanced  functions   for analytics,  and  provides  an 

Integrated   Development  Environment   (IDE). 

4.   Python  Pandas  library  functions  provide  database  style Dataframes,   Merge.join,   and 

concatenation of objects,  RPy interface  for R functions  plus additional  functions,   SQL 

like  features:   SELECT,  WHERE, GROUPBY,  JOIN, UNION, UPDATE and  DELETE,  size 

mutability   which  means  columns  can  be  inserted   and  deleted  from  Dataframe   and 

higher  dimensional   objects.  Pandas  GroupBy feature   of split-apply-combine    enables 

group  vectorized  UDFs. 

LOS.3                                                                                                                             . 
 

1. Spark  2.3.1. Spark  runs  on Windows  and  UNIX-like systems,  Linux,  Mac OS. Spark 

runs  on Java  8+,  Python   2.7+/3.4+ and  R 3.1+. Spark  2.3.1 uses  Scala 2.11 API when 

using compatible  Scala version  2.11.x. 

2. Spark  Resilient   Distributed   Dataset   (RDD) is a  collection   of objects  distributed    on 

many  computing   nodes.  Each RDD can  split  into  multiple   partitions,   which  may  be 

computed  in parallel  on different  nodes  of the cluster. 

3.   Spark  RDD  is immutable   (not  capable  of or  not  susceptible   to  change).  A  new  RDD 

creates  on transform and action commands. 
 

4.   Spark  supports   Python   UDFs, VUDFs, block-level   UDFs with  block-level   arguments 

and  return   types,   complex   object  types,   array   map  and  structure  conversions   or 

transformations. 

5.   Spark MLib supports  ML pipelines.  MLib is widely used for the ML applications. 
 

LOS.4                                                                                                                             . 
 

1.    Data ETL has three  Data Store functions   - Extract,  Transform   and Load. Applications 

using  Spark 2.3 with  Spark Arrow use the ETL data pipeline  between  data  sources  and 

applications. 

2.   Extract does  the   acquiring    of  data   from   a  Data  Store   (by  querying   or  another 

program).   Transform   does the  change  of data  into  a desired  format.   Transform uses 

joint), groupBy(),     cogroupl),     filter(),     mapt),     mapValues(),     flatMap(),     sortf), 

pratitionBy(), groupByKey(),   reduceByKey(),   aggregateByKey(),    pipe(),   coalescel),



sample(),  unionl),  crossProduct(). 
 

3. Load saves the  transformed    data  into  another   Data Store for usage by an application 

or for analysis. 
 

LOS.5 
 

1.   Analytics is the discovery, interpretation  and communication of meaningful patterns 

in  data.  Spark Stack provides  support  to  applications  for  analysis  of data  from 

multiple  sources  and  Data  Stores.  Analytics  use  machine  learning  and  neural 

networks,  which  enable  predictive  modeling  and  decisions  based  on  the  data. 

Analytics use data mining, pattern mining, clusters analysis and detect anomalies. 

2.   Reporting of results of analysis using appropriate  tools is an essential step. Eclipse 

Foundation created BIRT. BIRT includes Eclipse Report Designer (ERD), Eclipse Report 

Engine (ERE) and Eclipse Charting Engine (ECE). 

3.  Data visualization is a technique  that  entails the  creation  and study of data using 

visual representations  such as charts, plots and graphics. Examples of data 

visualization tools   are   matplotlib,    Chartjs,    Google  charts,    Tableau,   D3Js, 

FusionCharts, QlikViewand Splunk. 
 

I   Objective Type Questions   1111 
Select one correct-answeroption for each questions below: 

 

5.1 Spark uses for data storage (i) HDFS file system, (ii) Hadoop compatible data source, 

such as HDFS, (iii) HBase, Cassandra and Ceph, and (iv) Amazon S3. Spark standard 

API enables creation of the application APis in (v) Scala, (vi) Java, (vii) Python, (viii) 

Pandas. Spark resources management can be at (ix) stand-alone server, and (x) at a 

distributed computing framework, such as YARN and Mesos. 

(a)  all except iv, v and ix 
 

(b)  all 
 

(c)  all except viii, ix and x 
 

(d)  all except iii, viii and ix 
 

5.2 Spark  Stack includes  (i) Spark SQL,  (ii) Spark  Streaming,  (iii) Spark Arrow, (iv) 

SparkR, 

(v) MLib, (vi) GraphX, (vii) SparkContext, (viii) HiveContext and Pig, (ix) Cassandra, 

and 

(x) PySpark.



(a)   all except  viii and ix 
 

(b)  all except  iii and v 
 

(c)   all except  viii and ix 
 

(d)  ii, iii, vii, viii 
 

5.3 Steps  between  acquisition  of  data  from  different  sources,  and  applications  of 

analyzed data, and applications support by Spark for the analyses are as follows: (i) 

Storage of data from the multiple sources after acquisition, (ii) Partitioning of tables, 

(iii) Data pre-processing, 

(iv) filtering unreliable, irrelevant and redundant  information, (v) Extract, transform 

and load (ETL) for analysis using Python or Scala, (v) Mathematical and statistical 

analysis of the data obtained after querying relevant  data needing in the analysis, 

and  (vi) applications  of analyzed  data;  for  example,  descriptive,  predictive  and 

prescriptive analytics. 

(a)  all except ii and iii 

(b)  all except v and vi 

(c)  all except i and iv 

(d)  all except ii 

5.4 A Parquet file consists of (i) row groups and (ii) column groups. (iii) Each row can 

have number of columns, but each column has only one column chunk. (iv) A page is 

a conceptualized unit in a column chunk. (v) Only one page can store in a chunk. (vi) 

ORC array has two columns, one for array size and other for array dimensions. (vii) 

Parquet format file consists of an extra column per nesting level. 

(a)  all 
 

(b)  i to v 
 

(c)  i, iii, iv 
 

(d)  all except vi and vii 
 

5.5 When using HiveQLand Spark SQL, the  aggregation  functions  can be used for (i) 

analysis and 

(ii) filtering. Hive aggregation functions consist of (iii) count(*) and count(expr); (iv) 

sumtcol), 

(v) sum (DISTINCT col), (vi) Avg (col), (vii) avg (DISTINCT col), (viii) GroupBy,with 

(vii) Dataframes as input.



(a)   i, ii, iii, iv and vi 
 

(b)  i to v 
 

(c)  all except ii and viii 
 

(d)  all except v and vii 
 

5.6 NumPy  provides  (i)  one-dimensional   efficient  containers   of  generic   data,   (ii) 

definitions of non-arbitrary  data-types, (iii) easy integration  with a wide variety of 

Data Stores, (iv) import, export (load/save) files, (iv) creation of arrays, (v) inspection 

of properties, copying, sorting, and reshaping, 

(vi) addition and removal of elements in the arrays, indexing, sub-setting and slicing 

of the arrays, (vii) scalar and vector mathematics  (such as +,  -,   x,  +, power, sqr, sin, 

log), (viii) recoil (round  up to nearest  int), and  (ix) base (round  down up to the 

nearest int), round (round to nearest integer). 

(a)  iii to vii 
 

(b)  ii to v 
 

(c)  ii to viii 
 

(d)  All except ix 
 

5.7 Spark supports following file formats: (i) text files (ii) CSV, (iii) TSV, (iv) JSON, (v) doc 

file, (vi) XML, (vi) sequenceFiles (vii) ObjectFiles,and (viii) protocol buffers. 

(a)  all except v 
 

(b)  all except iii and viii 

(c)  ii to iv and vi to vii 

(d)  i, ii, iv, vi 

5.8 An  ROD    (i)  is   a   fault-tolerant    abstraction,    (ii)  enables   in-memory   cluster 

computations, 

(iii) is mutable, (iv) partitioned  distributed collection of objects, (v) enables efficient 

execution  of  non-interactive   data  mining,  and  (vi) RDDs   create  only  through 

operations which are deterministic. 

(a)  all except ii to iv 
 

(b)  all except i, iii 
 

(c)  all except vi 
 

(d)  all except iii and v



5.9 Transform command examples are (i) filter(}, (ii) reduce(), (iii) collect(), (iv) map(), 

(v) mapValues(), (vi) flatMap(), (vii) sortl), (viii) pratitionBy(), (ix) groupByKey(), 

(x) reduceByKey(), (xi) sample(),  (xii) unionl),  (xiii) joint),  (xiv) cogroupl),  (xv) 

crossProduct(). Action command examples are (xvi) aggregateByKey(), (xvii) pipe(), 

(xviii) coalesce(), 

(xix) count(), and (xx) first(). 
 

(a)  all except ii, iii, xi, xviii 
 

(b)  all ii, iii, xvi, xvii and xviii 
 

(c)  all except iii and xiv 
 

(d)  all xvi to xviii 
 

5.10  Dataframes  represent  (i) ML datasets,  thus  uses HDFS,  (ii) ML datasets,  thus  uses 

HBaseor local files. (iii) MLib APis are interoperable with Spark SQL. (iv) MLib Python 

implementation  adds Python APis. (v) MLib does not interoperate  with NumPy in 

Python. 

(a)  i to iii 
 

(b)  all except v 

(c)  all except ii 

(d)  all 

5.11  SerDe uses codes for obtaining the records from (i) structured  data. (ii) A data saving 

process uses deserializer codes and (iii) Loading (extracting)  process uses serializer. 

Apache Spark 2.3+ provisions for (iv) UDFs, (v) VUDFs and (vi) Data Source API vl. 

(vii) ETL pipeline refers to data collected from (viii) in-between processing using a 

chain of function calls. 

(a)  all except v and vi 
 

(b)  all except i 
 

(c)  all except ii, iii and iv 
 

(d)  iv, v, vii and viii 
 

5.12  Spark Stack provides the  (i) support  to  applications  for the  analysis of data,  (ii) 

unstructured multiple  sources,  (iii) Data Stores. The  (iv) analytics  use  machine 

learning algorithms, 

(v) neural networks, (vi) descriptive modeling, and (vii) enables decisions. Analytics 

use the algorithms for (viii) data mining, (ix) pattern  mining (x) clustering, and (xi)



anomaly  detection. 
 

(a)   all except  ii, v and vi 
 

(b)  all except  v and ix 

(c)   all except  ii and vi 

(d)  all except  vi and xi 

5.13  Process for preparing a report document and data consists of service plug-ins for (i) 

data  transformation,   (ii) charting,  (iii) summarizing  (iii) presentation,   and  (iv) 

generation  services. Transform services plug-in presents  the data after (v) sorting, 

(vi) filtering, and (vii) grouping. 

(a)  all except ii, v and vi 
 

(b)  all except iii 
 

(c)  all except vii 
 

(d)  all except vi and vii 
 

5.14  Data visualizing tool Tableau is (i) open source completely, (ii) easy-to-learn  data 

visualizing tool, (iii) communicates predictions through  data visualization. (iv) The 

charts can be easily embed in any web page. (v) Supports a wide variety of charts and 

graphs, but not maps. 

(vi) Tableau's visuals enables quick investigation of a hypothesis. 

(a)  ii, iv and vi 

(b)  all except iii 
 

(c)  all except i 
 

(d)  all except iii and vi 
 

II   Review Questions 

5.1 What  are   the   features   present   in   the   Spark  architecture    that   enable   fast 

computations and usages of expressive programming model? (LO 5.1) 

5.2 Describe the functions of Spark SQL, Spark Streaming and Graphx? (LO 5.1) 
 

5.3 How do Spark and Python provide a powerful Big Data analysis tool? (LO 5.2) 
 

5.4 How does Parquet file usage differ from the usages ofRCFileand ORCFile? (LO 5.2) 
 

5.5 How does Dataframe create fromJSON datasets and Hive tables? (LO 5.2)



5.6 What are the aggregation   commands  provisioned   in Spark SQL?  (LO 5.2) 
 

5.7 How do NumPy, SciPy and Pandas Python libraries provision for advanced functions 

for analytics, and create an integrated development environment (IDE)? (LO 5.2) 

5.8 How does the Spark version download, install, and start the use of SparkContext? (LO 

5.3) 
 

5.9 How does the  Spark Resilient Distributed Dataset (RDD)  programming  collect the 

objects? 

(LO 5.3) 
 

5.10 Explain method of creation  of RDDs using the transform  and action commands. (LO 

5.3) 
 

5.11 Describe the machine learning algorithms available in Spark MLib. (LO 5.3) 
 

5.12 How does the Spark 2.3 with Spark Arrow enable the creation of the ETL data pipeline 

between data sources and applications? (LO 5.4) 

5.13 How does a tool help in reporting of results of analysis? (LO 5.5) 
 

5.14 What are the actions performed by the Eclipse Report Designer (ERD), Eclipse Report 

Engine (ERE) and Eclipse Charting Engine (ECE). (LO 5.5) 
 

5.15 Define data visualization,  statistical  graphics,  plots and information  graphics.  (LO 

5.5) 
 

5.16 How do the following visualization tools matplotlib, Chart.js, Google charts, Tableau, 

D3Js, FusionCharts, QlikViewand Splunk differ? (LO 5.5) 

 

I!  Practice  Exe re ises      1111 
5.1 List Spark stack components and give examples of their applications. (LO 5.1) 

 

5.2 A company manufactures and sells cars through a large number of showrooms. Each 

car   showroom  keeps  their   records   in  a  main  table   and  transaction   tables. 

Recapitulate table in Practice Exercise 3.3. Describe the steps for analyzing the sales 

from HDFS compatible files. (LO 5.2) 

5.3 How does the Parquet file structure  look like for a large number of student semester 

grade sheets? A semester grade sheet consists of University Name, Department Name, 

Student name, enrollment  number, class, roll number, program of study, batch (for 

example  2017-2010), semester,   subjects  type   (theory/practical/project/on-line), 

subject  names,  credit,  credits  awarded,  semester  grade  point  average  (SGPA),



Prod net Category 

Toy_Auplan.e 

 

 

unzs 

 
I         I 

 

Lost Temple 

Toy_Airpbne 3W47 PFop  ler Plane 

To _AirP.l0J11e 

Toy_Trnb!ID 

'H049 

3W54 

Tu•Il.1! Spin He.U opter 

Blue Bxpre.ss 

Toy_Trat!IU [02;;;4. Wmter  HoHda.y Toy _Trrun 

 

cumulative  grade  point  average  (CGPA),  and general  performance   analysis.  (LO  5.2) 
 

5.4 List the  steps  for  downloading  Spark and  Python  libraries  for  analytics  and  for 

creating Hive and PySpark contexts. (LO 5.3) 

5.5 Compose the SchemaRDDfor a table. The table, named toys_tbl is as follows: (Product 

categories, Productld and Product name are three columns) (LO 5.3) 

 
Table of Product  Categories.   Productld   and Product  Name 

 

 
I 

 

 
 
 
 
 
 
 

5.6 Composethe SchemaRDDfor grade sheets specified in Practice Exercise 5.3. (LO 5.3) 
 

5.7 Write the RDD program steps for calculating SGPA and CGPA of a student program of 

study from file created in Practice Exercise 5.3. (LO 5.3) 

5.8 Write the program steps for creating an ETL pipeline for monthly and yearly sales 

analysis from a table. The table consists of data of toys_company manufacturing 1600 

different toys and 2000 puzzle product  categories, up to 20 product types for each 

puzzle product of product types 100, 200, 400, 800, 1600,2400 and 500 pieces. (LO 5.4) 

5.9 List the  steps  for  reporting  using  the  BIRT  tool  on  analysis of sales of the  toy 

company in above Practice Exercise 5.7. (LO 5.5) 

5.10 List the  steps for viewing charts for analysis of sales of the toy company in above 

Practice Exercise 5.7. (LO 5.5) 
 

 
 
 

1 

https:// cwiki.apache.org/ confluence/ display/Hive/LanguageManual+ORC#LanguageManualOR 
ORCFileFormat 

 

2 https://www.tecmint.com/install-java-jdk-jre-in-linux/ 
 

3 https://www.vultr.com/  docs/how-to-manually-install-java-8-on-ubuntu-16-04 
 

4 https://data-flair.training/biogs/    create-rdds-in-apache-spark/ 
 

5 http:// data-flair.training/forums/topic/how-to-create-rdd

http://www.tecmint.com/install-java-jdk-jre-in-linux/
http://www.vultr.com/


 

Note: 
 

o o • Level 1 & Level 2 category 
 

o • • Level 3 & Level 4 category 
 

• • • Level 5 & Level 6 category



Chapter 6 
 
 
 

Machine LearningAlgorithmsfor 
Big Data Analytics 

 
 
 
 
 
 

 

LEARNING OBJECTIVES 
 

 

After studyingthis chapter,you will be able to: 
 

LO  6.1   Understand   metric,  feature   and  category  variables,  evaluate  and 

estimate the     relationships,      outliers,     variances,     probability 

distribution,  and the correlations  between the variables in variables, 

items or entities 
 

LO  6.2   Apply  regression   analysis  using  linear,  non-linear   and  multiple 

regression models, 

K-Nearest  Neighbours  (KNN) distance   measures,   and  predict   the 

expected results 
 

LO 6.3  Discover similar items and the similarities using distance measures 
 

LO 6.4  Apply methods  for Frequent-Itemsets   Mining (FIM), market-basket 

model, association-rules  mining,  Apriori algorithm,  and  method  of 

evaluation  of Candidate Rules. Get knowledge of FIM and association 

rule applications and find the associations and similarities 
 

LO 6.5   Apply methods  of unsupervised  machine-learning   for  clustering  a 

collection, K-means, determine  the number  of clusters,  and perform



cluster  diagnostics 
 

LO 6.6  Apply methods  of supervised  machine-learning   for classification; K• 

Nearest  Neighbour  (KNN) classifier,  decision  trees   and  Random• 

Forest, AdaBoost  and   other   ensemble,   Naive  Bayes  classifiers, 

Artificial Neural Networks and SVM-basedclassifiers 
 

LO  6.7   Design a  recommender   system  using  approaches   of Collaborative 

Filtering (CF),   Contents-based   Filtering   (CBF),   Knowledge-based 

Filtering (KBF) and hybrid approaches for making recommendations 
 

LO 6.8  Get knowledge of Apache Mahout Architecture,  the ML algorithms  for 

clustering, classification,    collaborative     filtering,     and    design 

recommender  in Big Data environment 
 

 
RECALL FROM EARLIER CHAPTERS 

 

The most  popular  open-source  analytics-tools  are Apache Spark, Python,  R, 

Apache Pig, and Hive, according to a study (Section 5.1). Spark with multiple 

languages,  Python  and  Scala  shells  provide  great ease  in programming for 

complex analytics, machine learning and other solutions (Section 5.2). 
 

Big Data analysis requires  scalable distributed  computations.  Spark scalable 

MLib (machine-learning   library)  consists  of the  widely used  ML  algorithms 

and  utility  functions  for  large  datasets.  MLib includes  the  algorithms  for 

optimization-primitives,  regression, collaborative filtering, dimensionality 

reduction, cluster analysis, classification and recommender. 
 

Uses of Machine Learning (ML) and Artificial Neural Networks (ANN) are in 

analytics,  predictive  modeling  and decisions. The analytics  methods  include 

data mining, pattern  mining, clusters analysis and detection of anomalies. 
 

Apache Mahout consists of ML algorithms for Big Data analysis (Section 2.2.3 

Figure 2.2). 
 

This Chapter focusses on the ML methods of regression analysis based 

predictions,  finding  similarities,  FIM, clustering,  classifiers,  recommenders, 

and introduces  Mahout Architecture  and features  for the  ML applications  in 

Big Data analytics.



6.1 ! INTRODUCTION 
 

Analytics uses the  mathematical  equations,  formulae  and  models. Analytics 

also uses the  statistics,  AI, ML and DL, and predict  the behaviour  of entities, 

objects  and  events.  Statistics  refers  to  studying  organization,  analysis  of a 

collection  of  data,  making  interpretations    and  presentation    of  analyzed 

results. 
 

Artificial Intelligence   (AI)  refers  to  the  science  and  engineering  of making 

computers perform tasks, which normally require human intelligence. For 

example,  tasks  such  as predicting  future  results,  visual  perception,   speech 

recognition, decision making and natural  language processing. 
 

Two concepts in AI, 'machine  learning'  and 'deep learning'  provide powerful 

tools for advanced analytics and predictions. 
 

Google-owned company Deep  Mind developed  an Artificial Intelligence  (AI) 

program  called AlphaZero, which  played  100  chess games in 24  hours,  and 

defeated Stockfish, the highest-rated  chess program  by 28 games to O  with 72 

games  drawn.  This was a historical  moment.  It  became  a milestone  in the 

history of AI, ML and DL. 
 

The former  world  champion,  Garry Kasparov, noted  that  achievement  of 

AlphaZero has history-shaping  potential. "The ability of a machine to replicate 

and surpass centuries  of human  knowledge, is a world-changing  tool". (Garry 

Kasparov, "Deep Thinking  -  Where Artificial Intelligence Ends and Human Creativity 

Begins", published by the author himself, 2017) 

Machine Learning - Definition and Usage Examples 
 

Machine Leaming (ML) is a field of computer  science based on AI which deals 

with learning from data in three  phases, i.e. collect, analyze  and predict. It  does 

not rely on explicitly programmed  instructions. 
 

An ML  program  learns  the  behavior  of a process. The program  uses data 

generated  from various sources for training. Learning from the outcomes from 

common   inputs   improves   future   performance   from   previous   outcomes. 

Learning applies in many fields of research  and industry. Learning from study 

of data enables efficient and logical decisions for future actions. 
 

Advanced ML  techniques  use unsupervised,  semi-supervised  or supervised



learning.  Supervised learning  uses a known  dataset  (called training dataset). 

Learning  enables  creation  of a model program for evaluating  outcomes.  The 

program   makes   future   predictions    and   leads   to   knowledge   discovery. 

Supervised learning  uses output  datasets,  which are used to train  a machine 

(program)  such that  the program  leads to the desired outputs.  Unsupervised 

learning does not use output datasets to train a machine. 
 

Deep   Leaming  (DL)   refers   to  structured    learning   (DSL)   or  hierarchical 

learning. DL methods are advanced methods, such as artificial neural networks 

(ANN)  such as artificial  neural  networks  (ANN)  or neural  nets,  deep neural 

networks,  deep belief networks  and recurrent  neural  networks.  Learning can 

be unsupervised,  semi-supervised  or supervised. Applications of DL and ANN 

include  computer  vision,  speech  recognition,  Natural  Language  Processing 

(NLP), audio   recognition,   social  network   filtering,   machine   translation, 

bioinformatics  and drug design. DL methods give results comparable to and in 

some cases superior to human experts. 
 

The present chapter describes the ML methods and introduces Mahout 

Architecture,  features  and its ML applications.  Section 6.2  describes methods 

of estimating  relationships,  outliers, variances, probability distribution,  errors 

and  correlations   in  variables,   items   and   entities.   Section  6.3   describes 

regression analysis using linear, non-linear  and multiple-regressor  models and 

KNN distance   measures   for   making   predictions.    [Regressor   means   an 

independent  (explanatory) variable in regression equation.] 
 

Section  6.4  describes  methods  of  finding  similar  items,  similarities  and 

filtering  of similar  items.  Section  6.5  describes  frequent-itemset   mining  by 

collaborative    filtering    of   similar   itemsets.    Section   6.5    also   describes 

associations  and  association  rules  mining.  Section 6.6  describes  methods  of 

finding the clusters. Section 6. 7 describes the classifiers for classifying data in 

datasets. Section 6.8 introduces recommendation  system and collaborative, 

content,   knowledge  and  hybrid  recommendation   approaches.   Section  6.9 

describes Apache Mahout and ML algorithms for Big Datasets. 
 

The following sections use a convention for fonts when denoting an absolute 

value,  mean  value,  function  value,  vector  element,  set  member,  entity  or 

variable using a character  or set of characters,  entities 

or elements.



1.    [u]   represents   absolute   value  of  u,  means  value  without   sign.  For 

example, consider 1-  31  and I+ 31, the value of both is 3. 

2.  x represents  mean, average or expected value of x. 
 

3.  F  (y, x) represents  a function with an expression, which finds value of F 

from the given values of y and x. F  (y, x) values depend on one or more 

dependent  variables as a function of one or more independent  variables. 

For example, F depends y as well as xis F (y, x) = 1/sqrt  {(y + x)2  + k2}.   The 

F also depends on constant  k. Another example is y = F (x), for example, y 

=   cos (x). F  (x) represents   a function  F,  which  gives value  of y, is a 

dependent  variable. The xis an independent  variable. 
 

4.   V denotes a vector V (vi,  V2 ... ). V is in bold font. Vl and V2 are in text 

font and are elements 1 and 2 of V. The V consists of number of elements 

Vl, V2 ... 

5.    [o] represents  length of vector U. 
 

6.  S denotes  a set S (A,  B,  C ... ). Font S is in French script MT or distinct 

font for English S. The A, Band  Care  in text font (no bold), and are the 

members  of S.  The  members  can  be  vectors  or  subsets.  They, when 

denoted in bold, represent  vector elements. 
 
 
 

 

6.21 ESTIMATING THE RELATIONSHIPS,  OUTLIERS, VARIANCES, 

PROBABILITY DISTRIBUTIONS  AND CORRELATIONS 

Methods  of  studying   relationships   use  variables. 

Types of variables used are as follows: 
 

Independent  variables  represent  directly measurable 

characteristics.  For example, year  of sales figure or 

semester   of  study.  Dependent  variables  represent 

the   characteristics.    For   example,   profit   during 

successive  years  or  grades  awarded  in  successive 

semesters.   Values  of  a  dependent   variable   depend 

 

 
~et1nic..  feawre and 

categoiry wrialbl es, 
Re'latiollilslmi ps, oll.!ltiliers~ 
vari aaoas.  probabl  11,ty 

distributiion,   and the 
comrelat,ioliils  beti'VOOIITI   tihe 

van altiles~ "rte ms, or e:ntiti:es 
 

 
on  the  value  of  the



independent  variable. 
 

Predictor variable is an independent  variable,  which computes  a dependent 

variable  using some equation,  function  or graph,  and does a prediction.  For 

example, predicts sales growth of a car model after five years from given input 

datasets  for the sales, or predicts  sentiments  about higher  sales of particular 

category of toys next year. 
 

Outcome variable represents  the  effect of manipulation(s)  using a function, 

equation   or   experiment.   For  example,   CGPA   (Cumulative  Grade  Points 

Average) of the student  or share of profit to each shareholder  in a year using 

profit as the dependent  variable. CGP A of a student  computes from the grades 

awarded  in  the  semesters  for  which  student  completes  his/her   studies.  A 

company  declares  the  share  of profit  to  each  shareholder   in  a year  after 

subtracting  requirements  of money for future growth from the profit. 
 

Explanatory  variable  is an independent  variable, which explains the behavior 

of the dependent  variable, such as linearity coefficient, non-linear  parameters 

or probabilistic  distribution  of profit-growth  as a function of additional 

investment  in successive years. 
 

Response variable is a dependent  variable  on which a study, experiment  or 

computation   focuses. For example,  improvement   in  profits  over  the  years 

from the investments  made in successive years or improvement  in class 

performance   is  measured   from  the  extra   teaching   efforts  on  individual 

students  of a class. 
 

Feature variable is a variable representing  a characteristic.  For example, apple 

feature  red,  pink,  maroon,  yellowish,  yellowish  green  and  green.  Feature 

variables  are  generally  represented   by  text  characters.   Numbers  can  also 

represent   features.  For example,  red  with  1,  orange  with  2,  yellow with  3, 

yellowish green 4 and green 5. 
 

Categorical  variable is a variable  representing   a category.  For example, car, 

tractor  and truck belong to the same category, i.e., a four-wheeler  automobile. 

Categorical variables are generally represented  by text characters. 
 

Independent  and dependent  variables may exhibit a relation  or correlation. 

The relationships  may be linear, nonlinear,  positive, negative, direct, inverse, 

scattered  or spread. A data point for dependent  variable can be an outlier with 

no relationship.



Data analysis  requires  studying  relationships   graphically,  mathematically 

and  statistically,   studying  the  outliers,  anomalies,  variances,  correlations, 

features,  categories and probability  distributions  using a set of variables, and 

other     characteristics.     The    relationship     involves    some    quantifiable 

independent   variables  and  the  resulting  dependent  variable  or  entity.  The 

following  subsections   explain   methods   of  estimating   the   relationships, 

outliers, variances, correlations  and probability distributions  between a set of 

variables. 
 

 

6.2.1  Relationships-Using Graphs, Scatter Plots and 

Charts 
 

A  relationship  between  two or more  quantitative   dependent  variables  with 

respect  to an independent  variable can be well-depicted  using graph,  scatter 

plot or chart with data points, shown in distinct shapes. Conventionally, 

independent  variables are on the x-axis, whereas the dependent  variables on 

the  y-axis  in  a graph.  A  line  graph  uses  a  line  on  an  x-y  axis to  plot  a 

continuous function. 
 

A scatter  plot is a plot in which dots or distinct  shapes represent  values of 

the  dependent  variable  at the  multiple  values  of the  independent   variable 

[Section 10.5]. Whether two variables are related  to each other  or not, can be 

derived from statistical analysis using scatter plots. 
 

A data point is (xi, Yi) when dependent  variable value = Yi at the independent 

variable value= xi. The 

i =  1,  2 ... n for number  of data  points  =  n. The i varies with the  position  of 

projection  of the point on X-axis. Scatter plot represents  data points by dots. 

The dot can also be a bubble, triangle,  circle, cross or vertical  bar.  Size or 

colour of dot distinguishes the dependent  variables on the same plot. 
 

Another method is quantifying two or more dependent  variables by columns 

of different widths with filled colours, shades or patterns.  The width quantifies 

the  dependent   variable.  The  column-position   quantifies   the  independent 

variable. 
 

Examples of dependent   variables  are  sales  of five car  models  in  a year, 

grades in five courses taken in a semester.



6.2.1.1  Linear and Non-linear Relationships 
 

A linear relationship  exists between two variables, say x and y, when a straight 

line (y = a0  + a1 .x) can fit on a graph, with at least some reasonable  degree of 

accuracy. The a1   is the linearity  coefficient. For example, a scatter  chart  can 

suggest a linear relationship,  which means a straight  line. Figure 6.1  shows a 

scatter  plot, which fits a linear relationship  between  the number  of students 

opting for computer courses in years between 2000 and 2017. 
 

 

350                                                          

• 
•

 

2SO 
 

zoo 
 

1.50 
 

1.00 

- 
... 

•   
T

 

• 

•   •
•        I                                                                            I                                                       I                                                                                              I 

2010 

 
Year 

 

Figure 6.1 Scatter plot for linear relationship  between students opting 

for computer courses in years between 2000 and 2017 
 
 

 
A  linear  relationship   can  be  positive  or  negative.  A  positive  relationship 

implies if one variable  increases  in value, the  other  also increases  in value. A 

negative relationship,  on the other  hand, implies when one increases  in value, 

the  other  decreases  in  value.  Perfect,  strong  or  weak  linearship   categories 

depend upon the bonding between the two variables. 
 

A non-linear  relationship  is said to exist between  two quantitative  variables 

when a curve (y = a0 + a1 .x + a2.x2  + •••  )  can be used to fit the data points. The fit 

should  be  with  at  least  some  reasonable  degree  of accuracy  for  the  fitted 

parameters,  a0,   a1,    a2  •••  Expression for y then  generally  predicts  the values of 

one quantitative  variable from the values of the other quantitative  variable with 

considerably more accuracy than a straight  line.



 
 
 
 
 
 
 
 
 

 
31) 

Consider an example of non-linear  relationship:  The side of a square  and its 

area  are not  linear.  In fact, they  have quadratic  relationship.  If the  side of a 

square doubles, then its area increases four times. The relationship  predicts the 

area from the side. 
 

Figure 6.2 shows a scatter  plot in case of a non-linear  relationship  between 

side of square and its area. 
 

 
 
 
 
 
 
 
 
 
 
 

 
20 

 

1.0 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

...      • 

 

 
 
 
 
 
 
 
 
 
 
 
 

.
.
..
.
... 

 
 
 
 
 

..    
•
 

• 

•  
• 

 

 

... 

.... 
-...

0                     I                                            I                                           I                                            I                                            I                                            I 

0                2                4 
 

Lengt~ of Ski 

 

Figure 6.2 Scatter plot in case of a non-linear  relationship  between side 

of square and its area 
 

 

6.2.2   Estimatingthe Relationships 
 

Estimating  the  relationships  means  finding a mathematical  expression,  which 

gives the value of the variable according to its relationship  with other variables. 

For example,  assume Ym  =  sales of a car model m in xth year  of the  start  of 

manufacturing  that  model. Assume that  computations  show that  the ym relates 

by a mathematical  expression (ym= a0 + a1.xm  + a2.xm2)    up to an acceptable degree 

of accuracy, when a0 = 490, a1   = 10 and a2 = 5. 
 

Estimated first year sales, Ym(l)  = (490 + 10)  = 500, second year Ym(2)  = (490 + 10 x  

2  +  5  x  22)    =  530, third year Ym(3)   =  (490 +  10 x  3  +  5  x  32)   =  565, if fit with the 

desired  accuracy,  then  the  results   are  showing  that   the  expression   of ym 

estimates  the relationship  between model m sales in next and other years. The 

ym can also predict the sales in 6th or later years. Predictions  are up to a certain



degree of certainty. 
 

 

6.2.3 Outliers 
 

Outliers  are  data, which appear  as they  do not  belong to the  dataset  (Section 

5.3.3.1).  Outliers are data points that are numerically far distant from the rest of 

the  points   in  a  dataset,   are  termed   as  outliers.   Outliers  show  significant 

variations  from the rest of the points (Section 1.5.2.2).  Identification  of outliers 

is important  to improve  data quality or to detect  an anomaly. The estimating 

parameters   mathematically,  statistically,  describing  an outcome,  predicting  a 

dependent  variable value, or taking the decisions based on the datasets given for 

the analysis are sensitive to the outliers. 
 

There are several reasons for the presence of outliers in relationships.  Some of 

these are: 

•       Anomalous situation 
 

•        Presence of a previously unknown fact 
 

•        Human error (errors due to data entry or data collection) 
 

• Participants  intentionally  reporting  incorrect  data (This is common in self• 

reported measures   and   measures   that   involve  sensitive   data   which 

participant  doesn't want to disclose) 

•        Sampling error (when an unfitted  sample is collected from population). 
 

Population means any group of data, which includes all the data of interest.  For 

example, when analysing 1000 students who gave an examination  in a computer 

course,  then  the  population  is  1000.   100  games  of chess  will represent   the 

population in analysis of 100 games of chess of a grandmaster. 
 

Sample means a subset of the population.  Sample represents  the population  for 

uses, such as analysis and consists of randomly selected data. 
 

 

6.2.4 Variance 
 

A random variable is a variable whose possible values are outcomes of a random 

phenomenon. A  random  variable  is  a  function  that   maps  the  outcomes  of 

unpredictable  processes  to  numerical  quantities.   A  random  variable  is also 

called stochastic variable or random quantity.  Randomness can be around some



expected mean value or outcome, and with some normal deviation. 
 

Variance measures  by the  sum  of squares  of the  difference  in values  of a 

variable with respect to the expected value. Variance can alternatively  be a sum 

of squares of the difference with respect to value at an origin. Variance indicates 

how widely data points  in a dataset  vary. If data points  vary greatly  from the 

mean value in a dataset,  the variance  is large; otherwise,  the variance  is less. 

The variance is also a measure of dispersion with respect to the expected value. 
 

A high variance indicates that the data in the dataset  is very much spread out 

over a large area  (random  dataset),  whereas  a low variance  indicates  that  the 

data is very similar in nature. 
 

No variance is sometimes  hard  to understand   in real  datasets.  The following 

example illustrates  no variance: 
 

 

EXAMPLE 6.1 

 
Consider an examination  where everyone gets the same grades. What does it 

signify? 
 

SOLUTION 
 

Some measurement   problem  may have  taken  place in a situation  where 

either  the semester  examination  questions  were so easy that  everyone got 

full marks, or it was so hard that everyone got a zero. Now consider the two 

types  of examinations.  After  each  examination,  everyone  gets  the  same 

score on the test, i.e., everyone gets 'A' grade in one test and everyone gets 

'B' in the second test. This is again not telling much 
 

about  the  study  or  intelligent   quotient   of the  students.   Now, these  no 

variance results signify the extreme case and hard to understand  or explain. 

But in general, differences in scores are always found. 
 
 

6.2.4.1 Standard Deviation and Standard Error Estimates 
 

The variance  is not  a  standalone  statistical  parameter.   Estimations  of other 

statistical  parameters,  such as standard  deviation  and standard  error  are also 

used. 
 

Standard Deviation With the  help of variance,  one can find out the  standard



1 

1 

deviation.  Standard  deviation,  denoted bys,  is the square root of the variance. 

The s  says, "On an average how far do the  data  points  fall from the  mean or 

expected outcome?" Though the interpretation   is the same as variance but s is 

squared  rooted,  therefore,   less  susceptible  to  the  presence  of outliers.  The 

formulae for the population and the sample standard  deviations are as follows: 

Tbe Population  Standard  Deviation: a= ~JN_.---J·-~ ~:~·  ~                L'     -Li 
"'-it=  u 

 

(.6.la)

The Sample Standard  Deviation: <J = ~, .---I=i '2x.',s1= 
.       x1  -x-)2  ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     {6.1 bi

 

where N is number of data points in population,  S is number in the sample, m is 

expected  in the  population  or average  value of x, and x is expected  x in the 

sample. 
 

StandardErrorThe standard  error  estimate  is a measure  of the  accuracy of 

predictions  from a relationship.  Assume the linear relationship  in a scatter  plot 

of y (Figure 6.1). The scatter  plot  line, which  fits, is defined  as the  line that 

minimizes the  sum of squared  deviations  of prediction  (also called the sum of 

squares error). The standard error of the estimate is closely related  to this 

quantity and is defined below: 
 

(1 
eat 
= ·                                                                                                                                                                                                                                           ... (6.2)

 

where sest is the standard  error  in the estimate, y is an observed value, y¢ is a 

predicted  value, and N is the  number  of values observed. The standard  error 

estimate  is a measure  of the dispersion  (or variability)  in the predicted  values 

from the expression  for relationship.  Following are three  interpretations   from 

the sest: 

1. When sest  is small, most of the observed values (y) dots are fairly close to 

the fitting line in the scatter  plot, and better  is the estimate based on the 

equation of the line. 

2. When the sest is large, many of the observed values are far away from the 

line. 

3.   When the standard  error is zero, then no variation exists corresponding  to 

the computed  line for predictions.  The correlation  between  the observed



 

 
 
 
 
 
 
 
 
 
 
 

-30"     -lo"       -10" 

and estimation  is perfect. 
 

 

6.2.5  Probabilistic Distribution of Variables, Items  or 

Entities 
 

Probability is the chance of observing a dependent  variable value with respect to 

some independent  variable. Suppose a Grandmaster  in chess has won 22 out of 

100 games, drawn 78 times, and lost none. Then, probability  P of winning Pw  is 

0.22,   P of drawn  game  P0   is 0.78   and  P of losing,  PL  =  0.  The  sum  of the 

probabilities is normalized to 1, as only one of the three possibilities exist. 

Probability distribution is the distribution  of P values as a function of all possible 

independent  values, variables, situations,  distances or variables. For example, if 

P is given by a function P(x), then P varies as x changes. Variations in P(x) with x 

can be discrete or continuous.  The values of P are normalized  such that  sum of 

all P values  is 1. Assuming distribution   is around  the  expected  value  r, the 

standard  normal distribution  formula is:
 

1 
P(x)=--

a
e 
,Jii 

 

-(i:-:1)2- 
--2.- 

1a 

 

 
(45.3)

Normal distribution  relates to Gaussian function. Figure 6.3 shows a PDF with 

normal distribution  around x = x standard  deviation = s and variance = s2• 

 

 
 

Figure 6.3 Probability distribution  function as a function of x assuming 

normal distribution  around x = x, and standard  deviation = s 
 

The figure also shows the percentages  of areas in five regions with respect to 

the total area under the curve for P(x). The variance for probability distribution 

represents  how individual data points relate to each other within a dataset. The



variance is the average of the squared differences between each data value and 

the mean. 
 

Moments (0, 1, 2  ...)  refer  to the  expected  values to the  power of (0, 1, 2,) of 

random  variable  variance  (Section 6.2.5.3).   The variance  is the  second central 

moment of a distribution,  which equals to the square of the standard  deviation, 

and the covariance of the random variable with itself, and it is often represented 

by s2 or var (x). The variance is computed as follows: 

<i1'      I.(.x, - x)2 
(6.4) 

N 

Assume  that   probability   distribution    (PDF) is  normal,   called   Gaussian 

distribution,   which  is like  a bell-shaped  curve  (Figure  6.3).   The  PDF of the 

normal distribution  is such that  68% of area under the PDF is within (x.+ s) and ( 

r, - s), 95% of area under  the PDF is within  (x" +  zs) and (x, - zs) and 99.7%  is 

within(x..  + ss) and (x..  - ss). 

Standard deviation and empirical rule help in computing the population 

distribution   over  68%,   95%   and  99. 7%  of  data  under   normally   distributed 

population.  This further  helps  in forecasting.  The following example  explains 

the meaning  of population,  expected values, normalized  probabilities,  PDF and 

interpretation   using mean value. 
 

 

EXAMPLE  6.2 
 

 

Assume that N students  gave the examination.  Let N1   is number  of students 

obtained  grade pointer  average =  1, N2  got 2,  ..., N10  got 10.  Highest-grade 

pointer  is 10.0.  Grade pointer  obtained  is not  a random  variable.  Grade 

pointer variation  is a random variable with an expected value and standard 

deviation. 

Expected value among the distributed  X; values, where i varies discretely 

from 0.0 to 10.0 will depend on the expected performance  of the student.  If 

teaching in the class is very good and students  prepare  for the examination 

very  well, then  expected  value  of GPA  is 8.0  for  very  good performing 

students  and standard  deviation found is 1.0. 
 

(i)    What do you mean by population? What do you mean by sample?



(ii)   What will be the normalized probabilities? 
 

(iii)  How will you define Probability Distribution Function (PDF)? 
 

(iv) How will you interpret the results in terms of normal distribution? 
 

(v)   When will you interpret the  results  as poor  and  poorer  in terms  of 

normal distribution? 
 

SOLUTION 
 

(i) Population  is GPA of all the  students  of the  university  who gave the 

examination.  Population  size is N. Sample means datasets  used in the 

analysis. It can be N or less than N students and GPA of each one. 
 

(ii) Probability that  students  obtained  grade pointer  1 is ( i;;) ,  2 is ( ~ ) ,  ... 

on normalization  of probability. (N = N1   + N2 + •••• ) 
 

(iii)  PDF represents  a curve for independent  variable x between GPA  = 0 and 

GPA  = 10, such that the sum of all P values is 1, where P; is the ratio of 

number of students getting GPA  = i with respect to the total population 

N or the sample. 
 

-(.\"-xt2 
1                -?-,•

P(x)=   --e             "i.tr 

a{2; 

between x = 0 and 10.0, wheres= 1.0 and x- = 8.0. 

(6.5)

 

(iv)  GPA value is 8.0 and standard  deviation is 1.0, which means 68% of the 

students  will get GPAs between  7.0 and 9.0,  95% between  6.0 and 10.0, 

and 99.7% between 5.0 and 10.0. 

 

(v) The expected value of 3.0  (less than  3.0)  and standard  deviation of 1.0 

means poor   performance   of  students   because   68%   students   get 

between  2.0 and 4.0.  The expected value of 3.0-  {less than  3.0,  say 2.5) 

and standard  deviation  of 1.5  means poorer  performance  of students 

because 68% students get between 1.0 and 4.0. 

 
 

6.2.5.1 Kernel Functions



({irn 

A probability or weight can be represented  by a kernel function1  like a Gaussian 

or  tri-cube  function.  (Kernel in  English means  some  thing  central  and  key 

(important)  part.  For example, the  kernel  inside a walnut's  shell is important 

because  it is the  edible part.  Kernel in an operating  system is key or central 

component.) 
 

Kernel  function  is  a  function  which  is  a  central   or  key  part  of  another 

function.   For  example,   Gaussian  kernel   function   is  the   key  part   of  the 

probability   distribution    function   [Equation   (6.5)].   Figure   6.3   shows   the 

probability  normal  distribution,   which  is a  Gaussian  function  based  on  the 

Gaussian kernel function. 
 

A kernel function 1, K* defines as 

K*(u)   = A.KOui). 
 

where  A  > 0. Gaussian kernel function is 

K*<. .x) = [-1JJ-~:l 

(6.6u) 
 
 
 

 
c.6.6b)

and   when   u   =     { T I                      the    distribution    function    is   proportional    to 

a 

1                _
-n
-;
-
,
l
_
")
.:_

:
 

P(x)  =     ~e        L.tT       • 

o'V'.2n: 
 

 

A = ( O' .[2") in Equation  ( 6 .3). 

Tricube kernel function is: 
 

K*(u)  = e,70/81)  (1- lul3)31t.K(l.u). 
 

where [u] s 1. 
 

6.2.5.2 Moments 

 

 
 
e,6.6c)

 

Moments (0,  1,  2,  ...)  refer  to  expected  values to the  powers  of (0, 1,  2  ...)  of 

random  variable  variance.  oth moment  is 1,  1st moment  =  E(x) =  r, (expected 

value), znd moment is squared V[(xi  - x,)2]  = sum of product  of (xi - xJ2, and P(x = 

xJ



Here, P is the probability  at x = xi when i is varying from 1 to n, for n values of 

random variable x. The ,th   moment is ,th   power of variance v((xi - xY]. Moments 

are   evaluated   from   the   results   obtained   for   the   randomly   distributed 

probabilistic  values  of the  variable,  such  as sales.  1st   moment  assigns  equal 

weight to variances of outliers and inliers, i.e., equal weight for variance of each. 

znd moment  assigns higher  weight to outliers  compared  to inliers. 3rd  moment 

assigns greater  weight to outliers  compared  to inliers. Moment can be defined 

with respected to the origin, and in that case, x- is considered 0. 
 

Let P is along y  axis and variable  x on x axis. Central  moment  means  that 

moments  compute  taking  x, equals  to  variable  x  at  x  axis  point  where  the 

probability curve partitions  equally by a vertical axis, parallel to they  axis. 
 

6.2.5.3 Unequal Variance Welch's t-test 
 

A test in statistics is unequal-variance  t test, also called Welch t test. 
 

(i) The test assumes that two groups of data are sampled data which consist 

of Gaussian distributed  populations  (Equation (6.3)). 

(ii) The test does not assume those two populations  have the same standard 

deviation. 

Unequal variances t-test  is a two-sample location test. It  tests the hypothesis 

that  two populations  have equal means. (Hypothesis  means making assumption 

statements   about  certain  characteristics   of the  population.  For example,  an 

assumption   that   most   students    of  a   specific  professor   will  excel  as  a 

programmer.  Hypothesis when tested  for a decade may pass or fail depending 

up on whether  the statistically  significant results show that the students  of that 

professor really excelled as programmers.) 
 

Welch's t-test  is an adaptation  of student's  t-test  in statistics.  The t-test  is 

more  reliable  when  the  two  samples  have  unequal  variances  and  unequal 

sample sizes. 
 

6.2.5.4 Analysis of Variance (ANOVA) 
 

An ANOVA test is a method which finds whether the fitted results are significant 

or not. This means that the test finds out (infer) whether  to reject or accept the 

null hypothesis. Null hypothesis is a statistical test that means the hypothesis  that 

"no significant  difference  exists between the specified populations".  Any observed



difference is just due to sampling or experimental  error. 
 

Consider two specified populations  (datasets) consisting of yearly sales data of 

Tata Zest and Jaguar Land Rover models. The statistical  test is for proving that 

yearly sales of both the models, means increments  and decrements  of sales are 

related  or not. Null hypothesis  starts  with the  assumption  that  no significant 

relation exists in the two sets of data (population). 
 

The analysis (ANOV A) is for disproving or accepting the null hypothesis.  The 

test  also finds whether  to accept  another  alternate  hypothesis.  The test  finds 

that whether testing groups have any difference between them or not. 
 

Analysis of variance  (ANOV A)  is a useful technique  for comparing  more than 

two populations,  samples,  observations  or results  of computations.  It  is used 

when multiple  sample cases are involved. Variation  between  samples and also 

within  sample  items  may  exist.  For  example,  compare  the  effect  of three 

different  types  of teaching  methodologies  on students.  This may be done by 

comparing   the  test  scores  of  the  three   groups  of  20   students   each.  This 

technique  provides  inferences  about  whether  the  samples  have  been  drawn 

from populations  having the same mean. It is done by examining the amount of 

variation  within  each  of these  samples,  relative  to  the  amount  of variation 

between the samples. 
 

F-test  F-test  requires  two  estimates  of population  variance-  one  based  on 

variance  between  the  samples  and  the  other  based  on variance  within  the 

samples. These two estimates are then compared for F-test:

F =   El(V) 

E2(V_) 

 
(6.7)

 

where El(V)  is an estimate  of population  variance between the two samples and 

E2(V)  is an  estimate  of population  variance  within  the  two  samples.  Several 

different F-tables exist. Each one has a different level of significance. Thus, look 

up the numerator  degrees of freedom and the denominator  degrees of freedom 

to find the critical value. 
 

The  value  of  F   calculated   using  the   above-mentioned   formula   is  to  be 

compared  to the  critical value of F  for the  given degrees  of freedom.  If the  F 

value   calculated   is  equal   or   exceeds  the   critical   value,  then   significant 

differences between  the means of samples exist. This reveals that  the  samples 

are not drawn from the same population and thus null hypothesis is rejected.



6.2.5.5  No Relationship Case 
 

Statistical  relationship   is a  dependence  or  association  between  two  random 

variables  or  bivariate  data.  Bivariate  means  'two  variables'.  In other  words, 

there  are two types of data. Relationships between variables need to be studied 

and analyzed before drawing conclusions based on it. One cannot determine  the 

right  conclusion  or  association  when  no  relationship   between  the  variables 

exists. 
 

 

6.2.6  Correlation 
 

Correlation means analysis which lets us find the association or the absence of 

the relationship  between  two variables, x and y. Correlation gives the strength 

of  the  relationship   between   the  model  and  the   dependent   variable   on  a 

convenient 0-100%  scale. 
 

R-Square Risa   measure  of correlation  between the predicted  values y and the 

observed  values  of x. R-squared (R2)     is  a  goodness-of-fit  measure  in  linear• 

regression  model. It  is also known as the coefficient of determination.  R2   is the 

square  of R,  the  coefficient  of multiple  correlations,  and  includes  additional 

independent  (explanatory) variables in regression equation. 
 

Interpretationof R-squaredThe larger the R2,   the better  the regression  model 

fits the  observations,  i.e., the  correlation   is better.  Theoretically,  if a model 

shows 100%  variance,  then  the  fitted  values are always equal to the  observed 

values, and therefore,  all the data points would fall on the fitted regression line. 
 

Correlation differs from a regression  analysis. Regression analysis predicts the 

value of the dependent  predictor  or response variable based on the known value 

of the independent  variable, assuming a more or less mathematical  relationship 

between two or more variables within the specified variances. 
 

6.2.6.1 Correlation Indicators of Linear Relationships 
 

Correlation is a statistical  technique  that  measures  and describes the 'strength' 

and  'direction'   of the  relationship  between  two variables.  Let us explore  the 

relations between only two variables. The significant questions are: 
 

Does y increase  or decrease with x? For example, expenditure  increases with 

income  or  does  the  number   of  patients   decrease  with  proper   medication. 

(Direction)



[~Jx 

-~·l2Li(r~.t- 

(i)    Suppose y does increase with x; then, how fast? 

(ii)  Is this relationship  strong? 

(iii) Can reliable predictions  be made? That is, if one tells the income, can the 

expenditure  be predicted? 
 

Relationships  and  correlations  enable  training  model on sample  data  using 

statistical   or   ML   algorithms.   Statistical   correlation    is  measured   by  the 

coefficient of correlation.  The most common correlation  coefficient, called the 

Pearson product-moment   correlation coefficient.  It  measures  the  strength   of the 

linear   association   between   variables.   The  correlation   r  between   the   two 

variables x and y is:

r =                L{[(.t'i-x)Jx[(}';-Y>J}~ 
t.n     1)                     a,                o_'tl 

 

 
(.6.8u)

 

where  n  is the  number  of observations  in the  sample,  xi is the  x value  for 

observation i, x- is the sample mean of x, Yi is they  value for observation  i, y- is 

the  sample mean  of y, sx is the  sample  standard  deviation  of x,  and  sy is the 

sample standard  deviation of y. 

Summation is over all n values of i, i = 1, 2, ..., n. 
 

[r2 is square of sample correlation  coefficient between the observed outcomes 

and the  observed predictor  values, and includes intercept  on y-axis in case of 

linear regression.] 
 

Use  of  Statistical  Correlation  Assume  one  sample  dataset   is  {u1,      •••,  u) 

containing n values of a parameter  r. The ru,i  is i-th data point in dataset u. (i = 1, 

2, ... ,  n). Another sample dataset is {v1,  •••, vn} 

containing  n values of r.  rv,i is i-th data point  in dataset  v. Let the  correlation 

among two samples is being  measured.  Sample Pearson  correlation  metric  c; 

measures how well two sample datasets fit on a 

straight line.

I..-(1:. .... - ~ )(.')·j -  ~) 

C,(U, 1,')  = ---;:::::======== 

.             .                                                ~Li(r6'.i                               ~)2 
 

where the summations are over the values of parameter  in the datasets. 

Three other similarities based on correlation  are: 

 
 
... (.6.8b)



(i) Constrained Pearson correlation  - It is a variation  of Pearson correlation 

that uses midpoint instead of mean rate. 

(ii)  Spearman rank  correlation  - It  is similar to Pearson  correlation,  except 

that the ratings are ranks. 

(iii) Kendall's G correlation  - It is similar to the Spearman rank correlation,  but 

instead  of using  ranks  themselves,  only the  relative  ranks  are  used  to 

calculate the correlation. 
 

Numerical value of correlation  coefficient ranges from + 1.0 to -1.0.  It gives an 

indication   of both  the  strength   and  direction   of the  relationship   between 

variables. 
 

In general, a correlation  coefficient r > O  indicates a positive relationship;  r < O 

indicates  a negative  relationship;  r  =  O   indicates  no relationship   (or that  the 

variables are independent  of each other and not related). Here r = + 1.0 describes 

a  perfect   positive   correlation   and  r   =   -1.0    describes   a  perfect   negative 

correlation. 
 

The closer the coefficients are to + 1.0 and -1.0,  the greater  is the strength of the 

relationship  between the variables. 
 

Table 6.1  gives rough  guidelines  on the  strength  of the relationship  (though 

many experts would somewhat disagree on the choice of boundaries). 
 

Table 6.1 The strength  of the relationship  as a function of r 
 

 

Value  ofr 
 

Strength of relationship 

 

-1.0 to -0.5 or 1.0 to 0.5 

 

Strong 

 

-0.5 to -0.3 or 0.3 to 0.5 Moderate 

 

-0.3 to -0.1 or 0.1 to 0.3 

 

Weak 

 

-0.1 to 0.1 
 

None or very weak 

 

 

Correlation is only appropriate  for exammmg the relationship  between 

meaningful  quantifiable  data  (such as, temperature,   marks, score) rather  than 

categorical   data,  such  as  gender,   color  etc.  Figure  6.4   shows  perfect   and



... 

 

imperfect, linear   positive and   negative    relationships, and the strength and 

direction of the  relationship between  variables     

 

180 
 

 
 
 
 
 

1 

 
 
 
 
 
 
 
 

.,.. 
•• 

 

 

•• 

•• 

•••  
• •

15                  ].1[)                     5             20             25      3'0            35 
 
 

 
 
 
 
 

1-80 

1lO--·U 

 

140 
 

120 

 

 

.. .-..... 
•  • 

 

 
 
 
 
 
 
 
 

...... 
- 

Perfect Positive Li near 
 

 
 
 
 

.. .... _ 

ruu - ...... ...
flu                                                                   ·-.,...

  

.....
80                                                                      

••
 

....... 

20                                                                                           • 
40 

0                 I                                                   I                                   I                                                   I                                  I                                                    I                                  I 

0                                                15             s          30 
 

 
Perfect Negative Linear 

RelatlonstiIp tr= -1~



••
•   

•   • 

 
-------==------------------ 

.---..-------------------.-------,--- 

--------- 
 

-:r--...-....-.ia-- 

• 

 
 
 
 

 
100--------------------- 

80-+---------•.-...,---• ----•-------~ 
G0--------~.---.---------- 

40---------...---------------
•
-------

 
20-+-------------------------•----0-+----,--- ..,------,...-------,.-------.---r------r-----,

0                                                                                   2              30 
 

 
No R@latlonsMp  (r ... 0) 

 

 
 
 

DO 

1ao-----------------.-.---.-- 
 

100                                         ••    •• 

140--------------------- 

120-------------~------------• 

:um-------------                     ----- 

80-t------------•-•-            ---

60---------------.--.-. .-------
~------------------------------ 

20------ 

0---...                    ---, 
0 

 
PosJtivl! Linear R.elatlonship (r = 0.9) 

 

Figure  6.4 Perfect and imperfect, linear positive and negative 

relationships,  and the strength  and direction of the 

relationship  between variables 
 

 
Self-Assessment   Exercise  linked  to LO 6.1 

 

1.   Define non-linear  relation. Plot on the same graph, a company car sales,

mailto:R@latlonsMp


y for its two models every year between 2012 to 2017, using the formula 

(ym = a0  + a1 .xm + a2.xm 2).   How will you predict the sales in 2010? Assume 

for first model a0  = 490, a1    = 10 and a2   = 5. Assume for second model a0  = 

4900, a1    = 100 and a2    = 50. Assume, xm  = 0  for year 2011, xm  =  1  for 2012 

and xm = 6 for 2017. 

2. How does the P(x) vary in normal  distribution  when expected mean is 

at x = 6.0 and standard  deviation s is 1.0? Show a plot of P(x) and x and 

points at deviations of 1.0, 2.0 and 3.0 (means at  a, 2 a and 3 a). 
 

3.  Define mean, variance and standard  deviation. How do the oth moment, 

1st moment, 2nd moment and 3rd moment  compute from the values and 

their probabilities? 

4.  When will you perform t-test and F-test? 
 

5. What does variable R-squared mean? How is the correlation  parameter 

between predicted  valued and observed value evaluated? When do you 

use R, r, R2 and when r2? 

6.  Consider correlation  r between two variables. How do you interpret r > 

o, r < o and r = o? 
 

7.  How is the inference made that two variables do not correlate? 
 
 
 

 

6.3  l REGRESSION ANALYSIS 

Correlation  and regression  are two analyses based on 

multivariate  distribution.  A multivariate  distribution 

means a distribution  in multiple variables. 
 

Suppose  a  company  wishes  to  plan  the 

manufacturing   of Jaguar  cars for coming years.  The 

company looks at sales data regressively,  i.e., data of 

 

 
IR~ rassien :a n:a 11ysi1s 
u s.illilg I  irneJ r a ndl non- 
Iii near 1reg res.sion  modE!ls. 
lK-Neairest-Nei qhbou rs, and 

u sillllg di s:t.3nce measures  tor 
predictions

previous   years'   sales.  Regressive  analysis   means   estimating   relationships 

between   variables.  Regression  analysis  is  a  set  of  statistical   steps,  which 

estimate  the  relationships   among  variables.  Regression  analysis  may require



many  techniques   for  modeling  and  performing   the  analysis  using  multiple 

variables.  The  aim  of  the  analysis  is  to  find  the  relationships   between   a 

dependent   variable   and  one  or  more  independent,   outcome,  predictor   or 

response variables. Regression analysis facilitates prediction  of future values of 

dependent  variables. 
 

It  helps to find how a dependent  variable  changes  when  variation  is in an 

independent  variable  among a set of them,  while the  remaining  independent 

variables in the set are kept fixed. 
 

Non-linear regression equation is as follows: 
.,                  . 

y = a0  + a1.x  + a2~:r"'"  + a3..i'.                                                                    (,6.9) 
 

where  number  of terms  on the  right-hand   side are  3  or 4.  Linear regression 

means  only  the  first  two  terms   are  considered.  The  following  subsections 

describe regression analysis in detail. 
 

 

6.3.1  Simple Linear Regression 
 

Linear regression  is a simple and widely used algorithm.  It  is a supervised  ML 

algorithm   for   predictive   analysis.   It   models   a  relationship    between   the 

independent  predictor  or explanatory,  and the dependent  outcome or variable, 

y using a linearity equation.
 

)"'  = ftao~ a1) = "o + a1.x~ 
 

where a0  is a constant and a1  is the linearity coefficient. 

 

('6.lO)

 

Simple linear regression  is performed  when the requirement   is prediction  of 

values  of one variable,  with  given values  of another  variable.  The following 

example explains the meaning of linear regression. 
 

 

EXAMPLE  6.3 
 

 

How can a university  student's  GPA be predicted  from his/her  high school 

percentage  (HSP) of marks? 
 

SOLUTION 
 

Consider a sample of ten  students  for whom their  GP As and high  school 

scores, HSPs, are known. Assume linear regression. Then,



• 

• 

GPA=  b1.HSP  +A                                                                                                                        ...({iJ  1) 
 

Figure  6.5  shows  a  simple  linear  regression   plot  for  the  relationship 

between the college GPA and the percentage  of high school marks. Plot the 

values on a graph, with high school scores in percentage  on the x axis and 

GPA on they  axis. 
 

 

10.0                                                                                   

• 
• 8.0 

~
! 

-t   6.CJ,
 

a                                    • • 
4.0                                •

 
 

2.0 
• •     

20               40    60      80                100 
 

High School :Ps:centages
 

Figure  6.5 Linear regression relationship  between college GPAand 

percentage  of high school marks 
 

Whenever  a perfect  linear  relationship   between  GPA  and  high  school 

score exists, all 10 points on the graph would fit on a straight line. However, 

this  is never  the  case. Whenever  an  imperfect  linear  relationship   exists 

between these two variables, a cluster  of points on the graph, which slope 

upward, may be obtained. In other words, students  who got more marks in 

high school should get more GPA in college as well. 
 

One variable, denoted  by x, is regarded  as the predictor,  explanatory  or 

independent  variable. The other  variable, denoted  by y, is regarded  as the 

response, outcome or dependent  variable. 
 

 
 

The purpose  of regression  analysis is to come up with an equation  of a line 

that  fits through  a cluster of points with minimal amount of deviation from the 

line. The best-fitting  line is called the regression line. The deviation of the points 

from the line is called an 'error'.  Once this regression  equation  is obtained, the 

GPA of a student in college examinations can be predicted provided his/her  high



school percentage  is given. Simple linear  regression  is actually the  same as a 

correlation  between independent  and dependent  variables. 
 

Figure 6.6  shows a simple linear  regression  with  two regression  lines with 

different regression  equations. Looking at the scatter  plot, two lines can fit best 

to summarize the relation between GPA and high school percentage. 
 
 

10, 
 

9 
 

8 
 

1 
 

6 
 

5 
 

4 
 

3 
 

2 
 

1 
 

0 
0,                         20                     40                      60          00                    too 

 

 

Figure  6.6  Linear regression relationship  with two regression lines with 

different coefficient in regression equation 
 

Following notations  can be used for examining  which  of the  two lines is a 

better  fit: 
 

1.  Yi denotes the observed response for experimental  unit i 
 

2.   xi denotes the predictor  value for experimental  unit i 

3.   Yi is the predicted response (or fitted value) for experimental  unit i 
 

Then, the equation for the best fitting line using a sum of the error  estimating 

function is: 
 

                                                                                                         (<iJ 2) 
 

where  a'0     and  a'i are  the  coefficients  in  Equation  (6.10).   Use of the  above 

equation  to  predict  the  actual  response  Yi,   leads  to  a  prediction   error   (or 

residual error) of size:



 

({iJ   3) 
 

 

6.3.2 Least SquareEstimation 
 

Assume n data-points,  i = 1, 2, ..• ,  n. A line out of two lines (Figure 6.6) that  fits 

the data best will be one for which the  sum of the  squares  of the n prediction 

errors (one for each observed data point) is as small as possible. This is the 'least 

squares criterion',  which says that  the best fit is one, which 'minimizes the sum 

of the  squared  prediction  errors'.  This implies that  when the  equation  of the 

best fitting line is: 
 

 

 
 

where b0  and b1    are the coefficients which minimize the errors. The coefficients 

values make the sum of the squared prediction errors as small as possible. Thus, 

 

                                                                                               (,6.  l 5) 

Q is also called chi-square function. To minimize~= .L:t~·,-(b0   +_bLx/, 

compute the derivative with respect to b0  and b11   set to 0, respectively, and get 

the 'least squares estimates'  for b0  and b1   as follows: 
 
 
 

and 

(,6.16)

 

 

~~    (x--x)(v--v, b    -   .Li1:J       t               .   t       .

i-           I,l'Z         -2 
.       l (.X· --~l 
1:               I 

-·- (.6.17)

 

The  derivative   of  a  dependent   variable  with  respect  to  the  independent 

variable  is also called a gradient.  Sections 6. 7 .1.3  and 6. 7 .3 describe the use of 

'gradient    descent',   i.e.,  a  gradient's    descent   towards   convergence   when 

optimizing for minimum values of gradient  descent. 
 

For obtaining the best-fit line here, the sum of the squared prediction  error  Q 

is minimized. Since the objective in the regression  analysis is to minimize Q, Q is 

called objective function.



6.3.3  Multiple  Regressions 
 

A  criterion  variable  can be  predicted  from  one  predictor  variable  in  simple 

linear  regression.  The criterion  can be predicted  by two or more variables  in 

multiple  regressions. The following example explains the  meaning  of multiple 

regression and coefficients. 
 

 

EXAMPLE 6.4 

 
Recall Example 6.3  where an assumption  that  university  examination  GPA 

depends on past examination  HSP was made. Now assume that GPA depends 

on HSP as well as internal  assessment (IA) at the university. 
 

(i)    How will you predict  a student  GPA  on the  basis of the  HSP and IA 

during university study? 
 

(ii)  What do the coefficients tell? 
 

SOLUTION 
 

(i)   Regression analysis requirement  is to find a linear combination  of HSP 

and IA that best predicts overall GPA. Regression relation gives GPA: 

GPA = bL.HSP+ b2.IA  + b0~ 
 

where b0,   b1  and b2  are regression coefficients. 

( 6 .18)

 

(ii) With multiple  independent  variables, the coefficients tell how much the 

dependent (response)   variable   is  expected   to   increase   when   the 

independent  (predictor) variable increases by unit value, holding all the 

other  independent  variables  constant.  Remember, the  units  by which 

the  variables  are  measured  differ  for different  models. For example, 

assume y = 1 + 2x1  + 3x2•  When x2  is constant, for each change of 1 unit in 

x1,y  changes 2 units. 
 
 
 

Multiple  regressions  are  used  when  two  or  more  independent   factors  are 

involved. These regressions  are also widely used to make short-  to mid-term 

predictions  to assess which factors  to include and which to exclude. Multiple 

regressions can be used to develop alternate  models with different factors.



More  than  one  variable   can  be used  as a predictor   with  multiple   regressions. 

However,  it is always  suggested   to use a few variables   as predictors   necessarily, 

to get a reasonably   accurate   forecast.  The prediction   takes  the  form: 
 

                                                                       (6.19) 
 

where  a  is the  intercept   of line  on  the  y  axis  (means  value  of y  when  all 

independent   variable   values  =   0).  The  c1,      c2,    ••• ,    and  en    are   coefficients, 

representing  the contributions  (weights) of the independent  variables x1,   x2,  ••• , 

xn in the calculation of y. 
 

Multiple regression  analysis, often referred  to simply as regression  analysis, 

examines  the  effects  of  multiple  independent   variables  on  the  value  of  a 

dependent  variable or outcome. 
 

Statistical significance means  that   the  observer   can  be  confident  that   the 

findings  are  real,  and  not just  a coincidence,  for the  given  data.  Regression 

calculates   a  coefficient   for  each   independent    variable   and   its  statistical 

significance,  to  estimate   the   effect  of  each  independent   variable   on  the 

dependent  variable. An example of a regression  study is to examine the effect of 

education, experience, gender and social background on income. 
 

 

6.3.4  Modelling Possibilities using Regression 
 

Regressions  range  from  simple  models  to  highly  complex  equations.   Two 

primary  uses  for  regression   are  forecasting  and  optimization.   Consider  the 

following examples: 

1. Using linear  analysis on sales data with monthly  sales, a company could 

forecast sales for future months. 

2.   For the  funds  that  a  company  has  invested  in  marketing   a  particular 

brand, an analysis of whether  the investment  has given substantial  returns 

or not can be made. 

3.  Suppose  two  promotion   campaigns  are  running   on  TV and  Radio  in 

parallel.  A  linear  regression  can  confine  the  individual  as well  as the 

combined impact of running these advertisements  together. 

4.  An insurance   company  exploits  a  linear  regression  model  to  obtain  a 

tentative  premium table using predicted  claims to Insured Declared Value



ratio. 
 

5.   A financial company may be interested  in minimizing its risk portfolio and 

hence want to understand  the top five factors or reasons for default by a 

customer. 
 

6.  To predict the characteristics  of child based on the characteristics  of their 

parents. 

7.   A company faces an employment  discrimination  matter  in which a claim 

that women are being discriminated  against in terms of salary is raised. 

8.  Predicting the prices of houses, considering the locality and builder 

characteristics  in a locality of a particular  city. 
 

9.  Finding relationships  between  the structure  and the biological activity of 

compounds through  their physical, chemical and physicochemical traits  is 

most commonly performed with regression techniques. 

10. To predict compounds with higher bioactivity within groups. 
 

 

6.3.5  Predictions using Regression  Analysis 
 

Regression analysis is a powerful technique  used for predicting  the  unknown 

value  of  a  variable  from  the  known  value  of  another   variable.  Regression 

analysis  is generally  a  statistical  method  to  deal  with  the  formulation   of a 

mathematical    model   depicting   the   relationship    amongst   dependent    and 

independent   variables.  The  dependent   variable  is  used  for  the  purpose   of 

prediction  of the values. One or more variables whose values are hypothesized 

are called independent  variables. The prediction  for the dependent  variable can 

be made by accurate selection of independent  variables to estimate a dependent 

variable. 
 

Two steps for predicting the dependent  variable: 
 

1. Estimation step: A  function  is hypothesized   and  the  parameters   of the 

function are estimated from the data collected on the dependent  variable. 

2.   Prediction  step: The  independent   variable  values  are  then  input  to  the 

parameterized function   to   generate    predictions    for   the   dependent 

variable.



Consider an example of data that  contain  two variables, viz., crop yield and 

rainfall.  Assume that  the yield depends  on rainfall  (in certain  critical  growth 

phases). Using past yield data  as a function  of rainfall,  the  crop yield can be 

predicted.  The application  of linear  regression  upon  these  two variables  will 

generate a linear equation, y = a + b.x, where y and x variables denotes crop yield 

and rainfall, respectively. Constants, a and bare  the model's parameters  known 

as the intercept  and slope of the equation. 
 

 

6.3.6  K-Nearest-Neighbour  Regression  Analysis 
 

Consider the  saying, 'a person  is known by the  company he/she  keeps.' Can a 

prediction   be  made  using  neighbouring   data  points?  K-Nearest  Neighbours 

(KNN) analysis is an ML based technique  using the concept, which uses a subset 

of K = 1, 2 or 3 neighbours in place of a complete dataset. The subset is a training 

dataset. 
 

Assume that  population  (all data points of interest)  consist of k-data points. A 

data  point  independent  variable  is xi,  where  i =  1  to k.  K-Nearest Neighbours 

(KNN) is an algorithm, which is usually used for classifiers. However, it is useful 

for regression  also. Predictions  can use all k examples (global examples) or just 

K examples (K-neighbours with K =  1, 2 or 3). It  predicts  the unknown  value Yp 

using predictor  variable  xP  using  the  available values  at the  neighbours.  The 

training  dataset  consists of available values of y ni at xni with n, = 1 to K, where n, 

is the K-the neighbour, means just the local examples. 

A subset of training  dataset  restricts  k to K-neighbours, where K =  1, 2 or 3. 

This means  using  local values  near  the  predictor  variable.  K  =  1   means  the 

nearest  neighbour  data  points.  K  =  2  means  the  next  nearest  neighbour  data 

points (xi,YJ K = 3 means the next to next nearest neighbour data points (xi,Yi). 
 

First find all available neighbouring  target  (xi, yi) cases and then  predict  the 

numerical  value  to  be  predicted   based  on  a  similarity  measure.  Prediction 

methods are as follows: 

(i) Simple interpolation,   when  predictor   variable  is  outside  the  training 

subset 

(ii)   Extrapolation, when predictor variable is outside the training  subset 
 

(iii)  Averaging, local linear regression or local-weighted regression.



lf2 

L--"l:llJ                   ..£...i=J .        j               ~ 

KNN analysis assumes that  weight is inversely proportional  to the  square  of 

distance (w a n-2),     inverse of the distance  (a n')   or inverse  of qth  power of the 

distance   (a  v-q)  called  Euclidean  DEu'   Manhattan   DMa   and   Minkowski  DMi 

distances, respectively. When predicting,  a weight assignment may require 

computations   using  a  kernel  function1    like  a  Gaussian  or  tri-cube  function 

(Section 6.2.5.1) in cases where the dependent  variable varies according to the 

kernel function. 
 

Assume continuously  varying values as a function  of independent  variables. 

Assume v denotes  the number  of variables, independent  as well as dependent. 

The following equations  give the  KNN distances  in v-dimensional  space for the 

purpose of using weights. 
 

Euclidean Distance  The following equation  computes  the  Euclidean distance 

DEu: 

Sum of the squared Euclidean distance, [ r»:  12  = [""'  ~·         (x·  -   x~i J. and 

Euclidean  distance DEu = [L;~1 (xi - .t; >2 J                                                                                                C   6.20~.") 
 

Sum is over v dimensions.  If one independent   and one dependent  variable, 

then v = 2. For example, ifv = 2  and two data points are (xyy)  and (x_;+i,Yj+1),     then 

Euclidean distance between the points is as follows: 
 

Euclidean distance DEu = [(xj  - xj+1)2   + (yj - Yj+1)2]1!2                                    (6.20b) 
 

Euclidean distance  for three  variables  v =  3  (two independent  variables  and 

one dependent  variable case) consists of three  terms  on the right-hand  side in 

Equation (6.20b). 
 

ManhattanDistance The following equation  computes the Manhattan  distance 

DMa:
 

Manhattan 

DMa  =  L;~J 0-\- x;j] 

 

distance                              DMa 
 

 
 
c_6.20c)

 

Manhattan  distance for three  variables v = 3 (two independent  variables and 

one dependent  variable case) consists of three  terms  on the right-hand  side in 

Equation (6.20c). 
 

Comparison between  Euclidean   and   Manhattan Distances    Basically,



Euclidean   distance   is the  direct   path   distance   between   two  data  points   in  v• 

dimensional    metric   spaces.  Manhattan    distance   is the  staircase   path   distance 

between   them.   Staircase   distance   means  to  move  to  the  next  point,  first  move 

along  one metric  dimension   (say, x axis) from the first point, and then move to 

the next along another  dimension (say, y axis). 

When v =  2, Euclidean distance is the diagonal distance between the points on 

an  x-y  graph.  Manhattan   distances  are  faster  to  calculate  as  compared  to 

Euclidean   distances.   Manhattan    distances   are   proportional    to   Euclidean 

distances in case of linear regression. 
 

Minkowski  Distance  The following equation  computes the Minkowski distance 

DMi:

Minkowski  distance  DM:i =  { L: L 

 

liq 

[c. xi - xf/l]} 

 

 
(6.20d)

 

Hamming  Distance  When predictions  are on the basis of categorical variables, 

then  use the Hamming distance.  It  is a measure  of the number  of instances  in 

which corresponding  values are found. 

Hamming  Distance~~=    L,;Jx.- - -11~                                                                                                                                                (.6.10e) 

when xi= xe, then DH= 0 and when xi not equal to xc, then DH= 1. For example, 

Hamming distance DH= 1  between  10100111100  and 11100111100  because just 

one substitution  is needed, change second bit from Oto 1  at 10th place from the 

right to left positioned bits. Hamming distance DH= 4 between 111001  00000  and 

011001  11100  because we need four substitutions,  change 3rd, 4th, 5th and from O 

to 1 and 11th bit from 1 to O 
 

An application  is in text  analytics.  Hamming distance  DH  =  3 between  'Bank 

notes' and 'Java notes'. The distance=  3 because the required  number of changes 

is 3 at B, n and k among two strings. Another application of Hamming distance is 

in counting  the  number  of data  points  off from  the  regression  curve  (Refer 

Section  6.4.4.6).    Another   application   is  in  counting   the  wrong  or  distinct 

characters  when comparing two document sentences. 
 

Normalization   Concept   Normalization   factor   in   p-norm   form   in   a   v• 

dimensional space is 
 

x, = Jr1·x,  where N =  (L;~l lxir rip                                                                  C. 6.:! l)



1040                                                                                ],  4 

H2.3                                                                                 ]. 8) 

l5                      3                       1- 24                                                                               1,     9 

2 01.                       4                     1298                                                                        o. 6) 

5                        ]4..:.8                                                                                                      ],  4) 

]541                                                                        us 

.. 

Here, xi is fh component  of the vector X.  The total number  of components  are 

v. Two-dimensional space v = 2, three-dimensional  v = 3. 

The following example explains the meaning of distances, use of Euclidean and 

Manhattan   distances,  use  distances  for  predictions,  and  the  KNN  regression 

analysis. 
 

 

EXAMPLE  6.5 
 

 

Assume dataset  S with two subsets of sets Jspi and Zspi  for sales and sales 

percent increase (SPI) for Jaguar Land Rover and Zest models of Tata Motors 

Company. Assume S is training  dataset  and consists of data points  as per 

the following table. 

Table 6.2 An example of two car models,Jaguar,  and Zest (JLRS and ZS), sales 

and sales percent increase (SPI) in years between 2012 and 2018 
 

 

Year Number or 
 

Cilr model 
 

Car  model 
 

Car  model 
 

Car  model 

y- years f rorn Jaguar M~ SPI over· Z~l   sales, SPI over 

 the base sales,  J LRS: previous ZS previous  year 
1•rear2012   Yb

 year  (:ri.11,                                            (1\11,  ~;)

J~) 

l!I                             ii•                                                                                                ,1,1,1,1 

 
 

 
.                                                                                                                                                                                 · 

i 
 
 
 

 

M = 0 means Jaguar Land Rover, and M = 1  means Zest. 
 

(i) Draw two plots, one with  scatter  set of points  with Y and ZS,  which 

means  columns  1  and  5  data,  second  plot  between  Yb  and Jspi    with 

columns 2 and 4. 

(ii) Find the  Euclidean  2-NN  distance  between  third  and  first  row data 

points (2014,  11232)  and (2012,  10000). 

(iii)  What is the Manhattan  2-NN distance between the third  and first row 

data points (2014,  11232)  and (2012,  10000)?



(iv)  What  are  seven  Hamming   distance   terms   of Equation   (6.20e) between 

fourth and  six  column   vectors  Jspi   and  Zspi?  Interpret    the  summed 

DHa· 

(v) Assume data point for JLRS as missing for 2015. How do you predict car 

sales in 2015 assuming missing row for 2015? Use Euclidean distances 

using 1-NN. How do the results differ when using 2-NN and 3-NN? 

(vi) How do you predict car sales for 2011? Use Euclidean distances. 
 

(vii) How will you  use  1-NN, 2-NN and  3-NN for  estimation   regression 

coefficient? 

(viii)How will you calculate Euclidean distances  DEu  between  values Jspi in 

columns 4 for Yb = 3 and 5? 

(ix) How will you  calculate  DEu  between  value  for  column  2  Yb  =  0  and 

column 2 Zspi value in column 6 for Yb = 1, 3 and 4? 
 

SOLUTION 
 

(i) Figure 6. 7 shows scatter  set of points  one for Y and ZS, which means 

data points in columns 1 and 5, and second for Yb andJspi' which means 

data points in columns 2 and 4.



• 
•     • 

+       • 
 

:ZS 
 
 
 
 
 
 
 
 

o-+----,----,----.----.---.---.---.--~ 

20U       2,c,12     zois      101        2o:t5    2.011.6        2£017       2MB      2019 

1" 

 
11 

 

10 

9-+---------!---------~ 
B-+------~-----------~-~ 

 

7-----------------~ 

J~p1            6-+------------:·------- 
 

 

 
 
 
 
 
 

 
D-----,---,-~---,--,--~-~, 

0            1                   2            3              4                              s            7 

 

 

Figure  6. 7 Scatter plots for two set of data points, one between Y and 

ZS, and second between Yb andJspi 
 

(ii) Using the equation, DEu =  [(x_; - x_; + 1)2  + (yj - yj +  1)2]\   find the Euclidean 2- 

NN distance between third  and first row data points (2014,  11232)  and 

{2012, 10000)  DEu = [{2014 -  2012)2    + {11232  -  10000)2]Yz =  [{2)2  +  {1232)2]Yz 
 

= 1232.001.



(iii)  Using  the  equation,   DMa  =  [(xj  - xj  +  1)    +  (yj  - Yj  +    1)].     Manhattan  2-NN 

distance  between  third  and  first  row  data  points  (2014, 11232) and 

(2012, 10000)= [(2014- 2012)+ (11232 - 10000)]= [2 + 1232]= 1234. 
 

(iv) Hamming distances  need to compute  between  fourth  and six column 

vectors Jspi and Zspi are {1, 0, 0, o, 0, 1, o} because only in these the Jspi 

and Zspi differ. That also means that in two years out of seven, increase 

in sales percentage  differs for Jaguar Land Rover and Zest models. 
 

(v)   Lets JLRS missing for 2015 (independent  or predictor  variable).  Since 

2014 and 2016 are its 1-NN. Let us choose 1-NN of year  2014, that  is 

2013.DEu (2014, 2013) = v{(2014 - 2013)2 +  (1123 -1040)2}  = 83. Predicted 

JLRS (2015) =  1123 +   83 =  1246 by extrapolation,  assuming DEu  (2014, 

2013) = DEu (2014, 2015). (weight factors 1) 
 

Years 2012 and 2016 are 2-NNsof 2014. Let us consider DE)2014, 2016) = 

175. Thus,  the  predicted  JLRS(2015) =   (1298 -  175/2)  =   1210 using 

interpolation  (weight factor=  1 per year change). 

Similar computations  can be made for DE)2014, 2017) as 3-NN of 2014 

is 2017.DEu 3-NN= 305. PredictedJLRS(2015) = (1123 + 305/3) = 1225. 

(vi) Predicting  the car sales for 2011 is an example of extrapolation,  when 

predictor  variable  is outside  the  training  subset. JLR(2012) is closet 

point. DEu (2012, 2013) = 40.  PredictedJLRS(2011) = 1000 - 40 = 960. 
 

(vii) K-NN algorithm   is  used  for  estimating   regression   coefficient.  For 

example, use a weighted average of the k-nearest neighbours, weighted 

by the inverse of their distance. Compute the Euclidean from the query 

example to the labeled examples. 

1.    Order the labeled examples by increasing distance. 
 

2.   Find a heuristically optimal number k of nearest neighbours. 
 

3. Calculate an inverse  distance  weighted  average  with  the  k-nearest 

multivariate  neighbours. 

(viii)Euclidean distances between values Jspin in columns 4 for Yb  = 3 and 5



.                                                          .    2                                           2]1n 
DE11 = [ (Y~ -Y~)    +c_J5P~  -JJPi5) 

=  ((3 -  5.,2 + (9 -  10/]1!2 =  ((-1/   + (-1/in 
 

DEu = [5]~ = :!.~36 
 

(ix) DEu between its value for column 2 Yb = O  and value of Zspi in column 6 

for Yb=  1, 3, and 4 
 

 

 
 

 
 

 
 
 

 

Self-Assessment Exercise linked to LO 6.2 
 

1.   How does regression  analysis predict  the value of the dependent  variable  in 

case of linear regression? 

2.  (i)  Define  objective   function   for  least   square   fitting   of  coefficients   in 

regression  equation. 

(ii) How are the best-fitting  regression  coefficients evaluated? 
 

3.  When are  multiple  regressions  used?  How do multiple  regressions  predict 

intermediate term?  How do  multiple  regressions   assess  which  factors  to 

include   and   which   to   exclude?   How  do  multiple   regressions   help   in 

developing alternate  models with different  factors? 
 

4.   How is KNN regression  used for predicting,  considering  two variables  and K 

= 3? Use training  dataset given in Example 6.5. 
 

5. How do KNN regression  computations  differ when using Euclidean and 

Manhattan  distances? Consider two variables and K = 3. Use the training 

dataset given in Example 6.5.



 

 
 

6.41 FINDING SIMILAR ITEMS,  SIMILARITY OF SETS AND 

COLLABORATIVE   FILTERING 

Similar item search refers  to  a  data  mmmg  method 

which  helps  in discovering  items  which  have 

similarities in datasets. (Data mining means discovering 

previously  unknown  interesting   patterns   and 

knowledge from apparently unstructured  data. The 

process  of data mining uses the  ML  algorithms.  Data 

mmmg enables analysis, categorization and 

summarization  of data and relationships  among data.) 

 

 
1F:i11i1dli'ng1  si m ii~ r items, 
applications  ofNear• 
NEigliilbouir  search.  Jacc::ard 
similair,iey  of ~s; sirmil:;ririicy 

of documents;   col la borativa 

filtering  31S  ~   sJirrmilar..S@t 
,proti:il'en;i: and Eu ~lidea. 
Jaccardl., Cosi11T1e. ~dlit and 
Ham m ifilg  cfiis.ta ncas

 

The following subsections  describe  methods  of finding  similar  items  using 

similarities,  application  of near-neighbour   search, Jaccard  similarity  of sets, 

similarity  of documents,  Collaborative Filtering  (CF)  as a similar-set  problem, 

and the distance measures for finding similarities. 
 

 

6.4.1  Finding Similar Items 
 

An analysis  requires  many  times  to  find  similar  items.  For example,  finding 

similar excellent performance  of students  in Python programming,  similar 

showrooms of  a  specific  car  model  which   show  high   sales  per   month, 

recommending books on similar topic such as in Internet  of Things by Raj Kamal 

from McGraw-HillHigher Education, etc. 

6.4.1.1 Application of Near Neighbour Search 
 

Similar items can be found using Nearest Neighbour Search (NNS). The search 

finds that  a point  in a given set is most  similar  (closest) to a given point.  A 

dissimilarity  function  having larger value means less similar. The dissimilarity 

function is used to find similar items. 
 

NNS algorithm  is as  follows: Consider  set  S  having  points  in  a  space  M. 

Consider  a  queried  point  q  EM,    which  means  q  is  member  of  M. k-NNS 

algorithm finds the k-closet (1-NN) points to q in S.

mailto:S@t


Three problems with the Pearson similarities (6.2.6.1): 
 

1.   Do not  consider  the  number  of items  in which  two  users'  preferences 

overlap. (e.g., 2 overlap items==> 1, more items may not be better.) 

2.    If two users overlap on only one item, no correlation  can be computed. 

3.   The correlation  is undefined if series of preference values are identical. 

Greater distance  means greater  dissimilarity.  Dissimilarity coefficient relates 

to  a distance  metric  in  metrics  space  in v-dimensional  space. An algorithm 

computes   Euclidean,  Manhattan   and  Minkowski  distances   using  Equations 

(6.20a) to (6.20d). 
 

Distance metric  is symmetric  and  follows triangular   inequality.  Meaning of 

triangular  inequality  can be understood  by an example. Consider three  vectors 

of lengths x.y, and z. Then, triangular  inequality means 

z < x + y. It is similar to the theorem  of inequality that the third side of a triangle 

is less than the sum of two other sides, and never equal. The theorem  applies to 

v-dimensional  space also. Dissimilarity can be asymmetric,  i.e., triangular 

inequality is not true (Bergman divergence). 
 

Consider a linear search (also referred  as Naive search) algorithm,  Naive, one 

of meaning  is simple in English. Search requires  computations  of distances  to 

every other  point.  The algorithm  running  time  is large. The time function,  0 

(v.c) which measures  the efficiency of the  search algorithm  in terms  of means 

v.c. The v is dimensionality  of M and c is cardinality  of S. Cardinality refers to 

the  number  of relationships.  For example,  one independent  variable  and two 

dependent  variables  in a relationship,  then  cardinality  is 3.  Cardinality in the 

context  of databases  means  the  uniqueness  of values  contained  in a column 

fields. 
 

Note: Space partitioning   followed  by  the  search  algorithm   is  an  efficient 

method using a k-d tree or R-tree data structure.  Search is made after arranging 

the  tree-like  data  structure.   Space partitioning   problems  become  complex in 

case of high dimensionality. 
 

Naive   search  algorithm   outperforms   space  partitioning   approaches   when 

using high dimensional spaces Mand  high cardinality.2 

The following example explains the NNS approach to find similar items.



EXAMPLE 6.6 
 

 

Assume a set S consists of data of a large number  of students.  The dataset 

consists  of grade  points  (GPs) in each  of the  five subjects  of study  in a 

semester. The total dataset  is for six semesters. Each semester examination 

awards SGPAs  (Semester Grade Point averages). CGPAi (Cumulative GPA of 

ith semester)  calculates after end of ith semester  after  adding the  SGPAs of 

previous  semesters.  Assume that  each student  GP is on a 10-point scale. A 

student  performance  in a subject is high (H) if GP is 8.0 or close within ±1.0. 

A student  performance  in a subject is excellent  (E) if GP is 9.0 or close by 

within ±1.0. 

(i) How will you choose independent  and dependent  variables? What does 

metric space mean? 
 

(ii) How will you define a metric space for finding similar performances  in 

a specific subject? How will you define a metric  space M for finding 

similar performance  from SGPAs  of the  first semester?  How will you 

define a metric space for finding similar performances  from CGPAs of a 

semester? 
 

(iii) What will you consider S for finding similarities by NNS? 
 

(iv) What does nearest  neighbour  search mean when search is for students 

with similar excellent performance? 

(v)   How will you find students  of similar excellent performance  by the GPs 

of a subject, say Java Programming in the second semester? 

(vi) How will you find similar excellent performances  by the CGPA? 

(vii) How will you find similar high performances  by the SGPA? 

(viii)How will you compute Euclidian and Manhattan  distances with respect 

to query point GP = 8.0 ±1.0? How will you compute dissimilarity? 

(ix) What do you mean  by dimensionality  of M? What do you mean  by 

cardinality of S? 
 

SOLUTION



(i) Independent    variables   are  student   ID,  year  of study,  semester   period, 

name and   type   (theory     or   practical)    of  five   subjects.    Dependent 

variables   are  GP, GP A, SGP A  and  CGP A.  Metric  space  means  a space  in 

which   variables    are   quantifiable.    For  example,   GP, GPA, SGPA and 

CGPA. 
 

(ii) Metric   space  for  finding   similar   performances     in  a  specific   subject, 

Metric space   M  for   finding   similar   performance     in   SGP A   of  first 

semester, Metric  space  for finding  similar  performances    from  CGP A  of 

a semester: 

(iii)  Members  of set S are input vectors, each having elements  {studentID, 

CGPA [or SGPA, GPA, 

T_GPA  (GPA of theory  subject), P_GPA  (GPA of practical  subject)]} for 

each student  for finding the similarities by NNS using three  distances 

Dl, 02,  03  of first, second and third nearest neighbours. 

(iv) Nearest    neighbour    search    for   students    with    similar   excellent 

performance   means  search  of studentIDs  awarded  CGPA  within  the 

distance 1.0 from 9.0. 

(v)  Students  of similar excellent performance  by the GPs of a subject, say 

Java Programming, in the second semester means Student IDs with GPs 

inJava programming within the distance ±1.0  from 9.0. 

(vi)  Similar excellent performance  by the CGPA means similar performance 

of students_IDs with CGPA within the distance ±1.0  from 9.0. 

(vii) Similar high performance  by the  SGPA means similar performance  of 

students_IDs with SGPA within the distance ±1.0 from 8.0. 

(viiikomputation   of Euclidian distances with respect query point GP = 8.0 ± 

1.0 
 

Computation of Manhattan  distances with respect query point GP  = 8.0 
 

± 1.0 
 

(ix) Dimensionality of M equals the number of independent  and dependent 

variables in metric space for which distances are quantifiable.



Cardinality     of   S   means   number    of   relationships,    number    of 

independent   but  unrelated   and  dependent   unrelated   variables.  For 

example, subject_name and subject_type is related to each other. 

Therefore, subject_name and subject_type are counted as one variable 

when computing cardinality. 
 

 

6.4.2Jaccard Similarity of Sets 
 

Let A and B be two sets. Jaccard similarity coefficient of two sets measures using 

notations  in set theory as shown below: 

IAnBI 
Jc.A. B) = IA uBI 

 

A n B means the number of elements or items that are same in sets A and B. A 

U  B means the number  of elements  or items present  in union of both the sets. 

Assume two set of students  in two computer courses, Computer Applications CA, 

and Computer Science CS in a semester. Set CA 40 students  opted for Java out of 

60  students.   Set CS  30  students   opted  for Java  out  of 50  students.  Jaccard 

similarity  coefficient Jjava  (CA,  CS)  =  30/(60    +  50)  x   100%  =  27%.  Two sets are 

sharing 27% of the members for Java course. 

( n is symbol for intersection  in set theory.  U is symbol for union in set theory.) 
 

6.4.2.1 Similarity of Documents 
 

An application of Jaccard similarity coefficient is in Natural Language Processing 

(NLP) and   text    processing.   It    quantifies   the    similarity    in   documents. 

Computational steps are as follows: 
 

1. Find Bag of Words (Section 9.2.1.4)  and remove words such as is, are, does, 

at, in, .... 

2.   Assign weighting  factor  is the  Term  frequency  and  Inverse  Document 

Frequency (TF-IDF). Consider the frequency of words in the document. 
 

3.  Find k-shingles. A shingle is a word of fixed length. The k-shingles are the 

number  of times the similar shingles extracted  from a document  or text. 

Examples of a shingle are Java, GP, 8.0, Python, 80%, Programming. 
 

4.   Find n-grams. A gram is a contiguous sequence of fixed length item (word



or set of characters,  letters,  words in pairs, triplets,  quadruplets,  ... )  in a 

document  or text. The n-grams are the number  of times the similar items 

(1-grams, 2-grams, ..) extracted  from a document or text. The 3-gram 

examples are lava GP 8.0, Python Programming 7 .8, Big Data Analytics, 23A 

240C 8LP, the numbers of which are extracted  from the text. 
 

5.  Compute Jaccard  similarity  coefficient using Equation (6.22) between  the 

documents. 

A number  of other  methods exist for computing  similarity of documents.  One 

method  is Latent Semantic Indexing method  (LSI). The computational  steps are 

as follows: 

•        Steps 1 and 2 are the same as above. 
 

• Consider  documents   into  word   space.  Reduce  dimensionality   of  the 

projection space.   An  algebraic   model   is   one   that   represents    text 

documents  as vectors  or identifiers,  such as how many times  a word  is 

present in  a  document,   the   index   terms   or   deploy   singular   value 

decomposition method. 

•  Use Cosine Similarity measure between the documents. 

Refer Section 9.2 for details on text analysis. 

 

6.4.3  Collaborative Filtering as a Similar-Sets  Finding 

Problem 
 

An analysis   requires    finding   similar   sets   using   collaborative    filtering. 

Collaborative filtering refers to a filtering algorithm, which filters the items sets 

that have similarities with different items in a dataset. 
 

CF  finds the  sets with items having the  same or close similarity  coefficients. 

Following are some examples of applications of CF: 

• Find those sets of students  in computer  application, and computer  science 

who opt for the Java Programming subject in a semester. 

• Find sets of students  in Java Programming  subjects to whom same teacher 

taught  and they showed excellent performance. 

An algorithm finds the similarities between the sets for the CF. Applications of



CF  are in many ML  methods,  such as association  rule  mining,  classifiers, and 

recommenders. 
 

 

6.4.4 Distance Measuresfor Finding Similar Items or Users 
 

Distance  measures  compute  the  dissimilarities.  Complement  of dissimilarity 

gives similarity. The following subsections describe the distance measures. 
 

6.4.4.1 Definition of a Distance 
 

Distance can be defined in a number  of ways. Distance is the measure of length 

of  a  line  between  two  values  in  a  two-dimensional   map  or  graph.   Set  of 

Equations (6.20) measures distances. 
 

For example,  distance  between  (2014, 6%)  and  (2018, 8%)  on a scatter  plot 
when year  is on the x axis and profit%  on they   axis is Distance = v [(2014 - 

2018)2 + (6  - 8) 2]   
= v (16 +  4) = 4.47, using Equation (6.20b). Distance can also be 

similarly defined in v-dimensional space using Equation (6.20a). 
 

Distances between  all members  in a set of points can be computed  in metrics 

space using a mathematical  equation. Metrics space means measurable or 

quantifiable  space. For example, profit and year on a scatter  plot are in metric 

space of two dimensions. Probability  distribution  function values are in metric 

space. 
 

Consider student-performance   measures 'very good' and 'excellent'. These 

parameters   are  in  non-metric   space.  How are  they  made  measurable?  They 

become  measurable  when  very  good is specified  as grade  point  average  8.5 

which implies that  a score between 8.0 to 9.0 is very good, and define 9.5 which 

implies that a score between 9.0 to 10.0 is excellent on a 10-point scale. 
 

Consider a chart  between  number  of students  passing  in examination  with 

best grades vs languages C++, Java, Node.js and Python. Languages are in non• 

metric  space. They become  measurable  when  numbers,  say 0, 1,  2  and  3  are 

assigned for a language for the purpose of using distance measure for similarity 

analysis. 
 

Distance can be defined as the reciprocal of weight in v-dimensional space. For 

example, a point at unit distance  can be taken  as weight w =  1,  and a point at 

distance = 2, w = Yz  and so on. 
 

Distance  can  also  be  defined  as  dissimilarity  coefficient  in  v-dimensional



~          r:7~,      '~             '·.2 

space. Greater  distance  means  greater  dissimilarity.  Subtracting  dissimilarity 

coefficient from 1 gives similarity coefficient. Many different algorithms exist to 

compute  distance  and  thus  similarity  between  entities,  number  of users  or 

items. An algorithm  computes the distances DEu, DMa, DMi' DHa [Equations ( 6.20a 

to e)] or any other  distance  metric,  for example, Jaccard  distance  D1a,  cosine 

distance Dew edit distance DEd· 
 

Jaccard similarity, Cosine similarity, edit distance  or correlation  methods  are 

used to find out similarities between users. 

6.4.4.2 Euclidean Distance 

Euclidean distance  ~u=      [r:1l~.--x/Jt2 ~     refer Equation (6.20a) in Section 6.3.6 

for details.) 
 

6.4.4.3 Jaccard Distance 
 

Equation  (6.22) gives J  (A,  B). Jaccard   distance,   DJa  (A,  B)  measures   the 

dissimilarity  between  two sets. It  is equal to result  of subtraction  of J accard 

similarity coefficient]  (A, B) from 1. 

Dla (a', ffi)   =  l - J (8, -3) 
 

(Refer Section 6.4.2 for details.) 
 

6.4.4.4 Cosine Distance 

(0.23")

 

Cosine similarity is a measure  of similarity in the inner-product  space between 

two vectors of finite magnitudes. Cosine distance Dcos is measure of dissimilarity 

between vectors. A measure of cosine distance is in terms of the angle between 

the   vectors.   Cosine  similarity   has   low  complexity.   Cosine  distance   has 

applications  in text mining, finding similarity of documents,  and similarities  in 

sparse vectors, column-vectors (fields) and matrices (Section 3.3.3.1). 
 

Let U and V be two non-zero vectors, two documents in the vector space. 

L u.r-
Dcai<.ll~V)= ~.  ~·              ' 

.·k·v          £.i,·    • 

C.6.23£l)

 

where  U,  and  Vi are components  of U  and V,  respectively,  and  summation  in 

numerator  is over i = 1 to N, where N is the number of elements of the vectors. 

No Triangular   Inequality   Property   Cosine distances  do not exhibit triangular



v, 

inequality   property,   while  the  Euclidean  distances   exhibit  triangular    inequality 

(Section  6.4.1.1). 
 

Vector  Cosine-Based Similarity  Vector  cosine  similarity in terms  of angle 

between two vectors U and V is given by equation: 

l].lf 

~  .....    = cos-l  (U,      =   rnu11-11v11J                                                                                                (6.23h) 
 

Consider Example 6.5.  Let each model have  Sales Percentage  Increase  (SPI) 

values in successive years. The similarity  between  SPis of two models, M1    and 

M2,   is measured  by treating  each model as a vector of SPis and computing  the 

cosine of the angle formed by the SPI vectors. 

Formally, if P is m x  n SPI matrix  for a model M, then  the similarity between 

two models, Mi and Mj is defined  as the  cosine in the  n-dimensional  vectors 

space corresponding  to the ith and /h columns of P. 

The   following   example   illustrates    computing   of  cosine   and   Euclidean 

similarities to find similar items. 
 

 

EXAMPLE 6.7 
 

 

Consider members of a dataset  S in five-dimensional metric space. Assume 

S subsets  are  JLR  and Z. Data subset  members  consist  of values  in two 

column vectorsJspi and Zspi of the elements SPis. Data subset JLR consists of 

percentage  increase  in sales number  in a year  of Tata Jaguar  Land Rovers 

cars,  and  Z  consists  of Zest cars  SPis. (Example 6.5)  Assume dataset  S 

consists of data points as per Table 6.2. 
 

(i) Represent   members   of  dataset   S   of  table   data   points   in  five• 

dimensional metric space consisting of three  independent  variables Y, 

Yb, Mand two dependent  variables Jspi and Zspi· 
 

(ii)  Represent the members of six subsets for values in columns 1, 2, 3 and 

5  as elements  of vectors  Y,  Yb,  and  matrices  (M, Jspi) and  (M,  Zspi), 

respectively. 

(iii)  Represent  the table data points in two-dimensional  metric  spaces (Yb, 

Jspi) and (Yb, Zspi).



(iv)  Represent the  table  data  points  in three-dimensional  metric  space  (Yb, 

Jspi, Zspi). 
 

(v) How will you  calculate  the  cosine  distance,   cosine  similarity and  angle 

between the vectors  Jspi and Zspi? 
 

(vi)  How   will   you   calculate    Euclidean    similarity  using   six   neighbour 

distances  DEu starting   from  Zspi for Yb= 0 and Zspi values  in columns  6 for 

Yb= 1 to 5? 
 

SOLUTION 
 

(i)    8{2012, 0, (0,5), (1,3)}, {2013, 1, (0,4), (1,4)}, {2014, 2, (0,8), (1,8)}, {2015, 

3, (0,9), (1,9)} ,   {2016, 4, (0,6),  (1,6)}, {2017, 5, (0,10),  (1,10)}, {2018, 6, 

(0,8), (1,8)} 

(ii)  Y = {2012, 2013, 2014, 2015, 2016, 2017, 2018}, Yb= {O,  1, 2, 3, 4, 5, 6}, (M, 

Jspi = {{0,5),  (0, 4), (0, 8), (0, 9), (0. 6), (0, 10), (0, 8)}, and  (M, Zspi)  = {(1, 3), 

(1, 4), (1, 8), (1, 9), (1, 6), (1, 4), 

(1, 7)} 
 

(iii)  (Yb, Jspi) =   {(0,5), (0,4),  (0,8),  (0,9),  (0,6),  (0,10),  (0,8)} and  (Yb, Zspi) = 
 

{{0,3), (0,4), (0,8), (0,9), (0,6), (0,4), (0,8)} 
 

(iv)  (Yb,Jspi' Zspi)  = {{(0,5,   3), (1,4, 4), (2,8, 8), (3,9, 9), (4,6, 6), (5,10, 4), (6,8, 

8)}. 
 

(v)   Dcos Ospi, Zspi) = {(5  x 3) + (4 x 4) + (8 x 8) + (9 x 9) + (6 x 6) + (10 x 4) + (Bx 

s)}/v {52   + 42+ s2+  92 + 62+ 102 + s2}   x v{32  + 42+ s2+  92+ 62+ 42  + s2}    = o.951 
 

Cosine similarity= 1 - Dcos Ospi, Zspi) =  1- 0.951 = 0.049 
 

Angle betweenjspi,  Zspi = cos-1(Dcos)    = 87.191 

(vi)  Use Equation  (6.20b) for the  computations. 

1. DEu (Yb=  0, Yb= 1) = v{(0-1)2  + (3 - 4)2}; 
 

2. DEu (Yb= 1, Yb= 2) = v{(l  - 2)2 + (4 - 8)2}; 
 

3. DEu (Yb=  2, Yb= 3) = v{(2 - 3)2  + (8-  9)2}



4. DEu (Yb=  3, Yb= 4) = v{(3 - 4)2 + (9 - 6)2} 
 

5. DEu (Yb=  4, Yb= 5) = v{(4 - 5)2  + (6 - 4)2} 

 

6. DEu (Yb=  5, Yb= 6) = v{(5 - 6)2 + (4 - 8)2} 
 

Euclidean similarity  coefficient=  1  - v'[Sum  of all square of all six DEu 

values  using  1-NN}  divided  by  {v(62   +   Sum of square  of all six Jspi 

values)} 

(vii) Euclidean similarity=  1 - v{22  +  172  +  22  +  102  +  52   +  172}/     {v(62  +  386} = 

-0.305 
 

 
Differing Similarity Coefficients for  SPis Calculated from  Cosine distances 

and  Euclidean Distances The  following  section  explains  the  use  of cosine 

distance and the situations in which Dcos does not find similarity correctly. 
 

Consider a comparison  between  the  cosine and  Euclidean similarities  when 

finding  similar  items.  Several situations  exist  in which  predictions  from two 

computational  approaches  differ. The reason is that  triangular  inequality holds 

true for Euclidean distances, while does not hold true for cosine distances. 
 

Certain dimensions have widely different values. For example, let us compare 

sales JLRS and ZS in column 3 and 5 of Table 6.2. ZS values are nearly ten times 

the value of JLRS values. A solution is normalizing  the values in all dimensions 

by dividing with the mean values using Equation (6.21). However, that  also may 

give differing and incorrect results using Dcos· 
 

Cosine singularity  is found to exhibit  correct  results  for similarities  in text 

documents.  Cosine similarity  is very  efficient to evaluate  situations  of sparse 

vectors   and  those   where   one  needs  to  consider   non-zero   values  in  the 

dimensions. 
 

Concept  of  Sparse   and  Dense  Vectors  Sparse vector  uses  a hash-map  and 

consists of non-zero values. Hash-map is a collection, which stores data in (key• 

value)  format  (Section  3.3.1).  Format  is also  called  random  access.  Hashing 

means  to convert  a large value or string  into  shorter  value or string  so that 

indexing for searching is fast. 
 

For example,  assume  a vector,  which  consists  of array  elements,  (subject,



number of students  opting, average GPA). 
 

1.   Dense vectors have elements (Hive, 40, 8.0),  (lava, 30, 8.5),  (FORTRAN, 0, 0), 

(Pascal, 0, 0). Dense vector  consists of all elements,  whether  the  element 

value is O  or not 0. 

2.   Sparse vectors will be two only with elements  (4,  40,  8.0)  and (3,  30,  8.5). 

Random access Sparse vector means access to elements  (key, value pairs) 

using key. Sparse vector  consists of elements  for which key is such that 

value is not O  (Section 3.3.1). 

3.  Sparse vector  has an associated  hash-map  in form of a hash-table.  First 

row-   Pascal, 1, second row-   FORTRAN, 2, third  row-  Java, 3 and fourth 

row-Hive. 
 

4.  Hashing  is a process  of assigning  a small number  or  small-sized  string 

indexing,  searching  and  memory  saving  purposes.  Hash process  uses  a 

hash  function,  which  results  into  not-colliding  values.  In  case  of two 

colliding numbers,  the  process  assigns a new number.  Sequential  access 

sparse vectors mean two parallel accessing vectors, i.e., one to access keys 

and the other for values. 
 

6.4.4.5 Edit Distance 
 

Edit distance  DEd  is a distance  measure  for  dissimilarity  between  two  set  of 

strings  or words.  DEd  equals  the  minimum  number  of inserts  and  deletes  of 

characters   needed  to  transform   one  set  into  another.   Applications  of  edit 

distances  are in text  analytics  and natural  language processing,  similarities  in 

DNA sequences etc. DNA sequences are strings of characters. 

Levenshtein  suggested a method  for finding edit distance,  minimum  number 

of operations  of deletion,  insertion  or substitution   of a character  in a set  of 

strings  to transform  one into  another.  The cost of substitution  is taken  as 2. 

Thus,  edit  distance  from  computation   using  that  method  is also  called  the 

Levenshtein 

method.3 
 

6.4.4.6 Hamming Distance 
 

If both U and V  are vectors,  Hamming distance  DHa  is equal to the  number  of



different    elements    between    these   two   vectors.    Recall   Example   6.5   (iv) for 

Hamming  distance   between  Jspi   and  Zspi.  Hamming  similarity-coefficient 

between car models Jaguar Land Rover and Zest is (1- 2/7) = 0.7. [70%] 
 

If M is a matrix, then DHa is equal to the number of different elements between 

the rows of M ignoring the columns. 

DHa  between  two strings  of equal length  is the number  of positions  at which 

the corresponding  characters  differ. DHa is also equal to the minimum number of 

substitutions  required to transform  one string into the other. DHa is also equal to 

the minimum number of errors that need correction  using transformation  or 

substitution. 

Hamming distance  is therefore  another  distance  measure  for measuring  the 

edit distance between two sets of strings, words or sequences. 
 
 

Self-Assessment  Exercise linked  to LO 6.3 
 

1.   Why is triangular  inequality  in a distance measure important? 
 

2.   How will you compute Jaccard  similarity  coefficients  between  datasets  for 

Jspi and Zspi. Use data Table 6.2 as the training  dataset. 
 

3.   Why does similarity in documents  computed? 
 

4. Write applications  of Euclidean, Jaccard,  Cosine, Edit and Hamming distance 

measures. 

5.   Explain   how   Euclidean,  Jaccard,   Cosine   and   Hamming   distance 

measures can be applied for analyzing the dataset given in Table 6.2? 

 
 
 

 

6.5  l FREQUENT   ITEMSETS   AND ASSOCIATION   RULE  MINING 

 

The  following subsections  describes  frequent  itemset  mining,  market  basket 

model, association rules mining, and their applications. 
 

 

6.5.1 Frequent Itemset  Mining 
 

Extracting knowledge from a dataset  is the main goal of data analytics and data



mining.   Data  mining   mainly   deals  with   the  type   of 

patterns  that   can  be  mined.   A method   of  mining   is 

Frequent    Patterns     (FPs)  mining    method.    Frequent 

patterns  occur  frequently   in transactional    data. 

Frequent itemset  refers   to   a   set   of  items   that 

frequently  appear  together,  for example, Python  and 

Big Data Analytics. Students  of computer  science 

frequently  choose these subjects for in-depth  studies. 

Frequent itemset  refers to a frequent  iternset, which is a 

subset of items that appears frequently  in a dataset. 

 

 
 
 

Frequent lltelilTl-setiS    n nlilg 
fl ·     1,. applications   of 1F1I 

market DaSk@t  rn oo~'I, 
lif11f1Tliliil@ tlirte a ssociatiorm 
rules,  U5.e!  of Ap1riiori 
a lgoiriliih m,  e  a hill:rtlicm 
of candid ate ru las, 
ap,p'lica;t:i:ons.  off associ31Diolill 
rules, and  filiildi n g1 tnhe 

J1SSOGiatiOll'll    and! Siliflilarit'

 

Frequent  Itemset Mining (FIM) refers  to a data mining method  which helps in 

discovering  the  itemsets  that   appear  frequently   in  a  dataset.  For  example, 

finding a set of students  who frequently  show poor performance  in semester 

examinations.   Frequent subsequence is  a  sequence   of  patterns  that   occurs 

frequently.  For example, purchasing  a football follows purchasing  of sports kit. 

Frequent substructure refers to different structural forms, such as graphs, trees or 

lattices, which may be combined with itemsets or subsequences. 
 

FIM is one of the  popular  techniques  to  extract  knowledge  from  data.  The 

technique  has  been  an  essential  part  of data  analysis  and  data  mining.  The 

extraction   is based  on frequently  occurring  events.  An algorithm  specifies a 

given minimum frequency threshold for considering an itemset as frequent. The 

extraction  generally depends on the specified threshold. 
 

FIM finds the  regularities  in data. Frequent  itemset  mining  is the preceding 

step to the association rule learning algorithm. Most often the algorithm is used 

for analyzing a business. For example, customers  of supermarkets,  mail order 

companies and online shops use FIM to find a set of products that are frequently 

bought  together.  This provides the knowledge of important pairs of items that 

occur  much  more  frequently  than  the  items  bought  independently.   A sales 

person can learn the pattern  of what should be bought together for sales. 
 

The analysis results in: 
 

•       Improvement  of arrangement  of products in shelves and on catalog pages 
 

•       Marketing and sales promotion 
 

•       Planning of products that a store should stock up

mailto:DaSk@t


•        Support cross-selling (suggestion of other products) and product bundling. 
 

 

6.5.2  Association  Rule-   Overview 
 

An important  method  of data mining is association  rule mining or association 

analysis. The method has been widely used in many application areas for 

discovering  interesting  relationships  which are present  in large datasets.  The 

objective is to find uncovered  relationships  using some strong rules. The rules 

are  termed   as  association  rules  for  frequent   itemsets.   Mahout  includes  a 

'parallel frequent  pattern  growth'  algorithm. The method analyzes the items in 

a group and then  identifies which items typically appear together  (association) 

(Section 6.8). A formal statement  of the association rule problem is: 
 

Let I   = {I1,   I2,  ••• ,  Id}  be a set of d distinct  attributes,  also called literals. Let T = 

{t1,   t2,  ••• ,  t)  be set of n transactions  and contain  a set of items such that  T c  I. 

An association rule is an implication  of the form, X   ..   Y, where X, Y belong to 

sets of items called itemsets (X, Y c  I), and X and Y are disjoint itemsets 

(X n Y = 0). Here, X is called antecedent,  and Y consequent. 
 

Explanation: 

1.  c   means  'subset  of,   c   means  'proper   (strict)  subset  of,   n  means 

intersection  and 0  means disjoint, no commonality in members. 

2. Consider an If() then  () form of a rule. The If part of the rule (A) is known 

as antecedent and the THEN  part of the rule (B) is known as consequent. The 

condition is antecedent. Result is consequent. 
 

 

6.5.3  AprioriAlgorithm 
 

Apriori  algorithm  is used  for  frequent   itemset  mining  and  association  rule 

mining.  Apriori  algorithm   is  considered   as  one  of  the   most  well-known 

association rule algorithms. The algorithm simply follows a basis that any subset 

of a large itemset must be a large itemset. This basis can be formally given as the 

Apriori  principle.  The Apriori  principle  can  reduce  the  number  of itemsets 

needed to be examined. Apriori principle suggests if an itemset is frequent, then 

all of its subsets  must  also be frequent.  For example, if itemset  {A,  B, C}  is a 

frequent  itemset, then all of its subsets {A}, {B}, {C}, {A, B},  {B, C} and {A,  C} must 

be frequent.  On the  contrary,  if an itemset  is not  frequent,  then  none  of its



supersets  can be frequent.  This results  into a smaller list of potential  frequent 

itemsets as the mining progresses. 
 

Support is an indication of how popular an itemset is. That is the frequency of 

the itemset for appearing in a database. 
 

Assume X and Y are two itemsets. Apriori principle holds due to the following 

property  of support measure: 

V  X, Y: (X CY) ~  s (X) z s(Y)                                              (6.24) 

Explanation: V  means for all, and  c  means 'subset of and can be 'equal to or 

included in'. Support of an itemset never exceeds the support of its subsets. This 

is known as the anti-monotone   property  of support. 
 

The algorithm uses k-itemsets  (An itemset which contains k items is known as 

a k-itemset)  to explore  (k- 1)-itemsets in order  to mine frequent  itemsets  from 

transactional   database  for  the  Boolean  association  rules  (If Then  rule  is  a 

Boolean association rule, as it checks if true or false). 
 

The frequent  itemset algorithm uses candidate generation  process. The groups 

of candidates  are  then  tested  against  the  dataset.  Apriori  uses breadth-first 

search method and a hash tree structure  to count candidate  itemsets. Also, it is 

assumed  that  items  within  an  itemset  are  kept  in  lexicographic  order.  The 

algorithm  identifies the frequent  individual items in the database  and extends 

them  to larger  and larger  itemsets  as long as those  itemsets  are found in the 

database.  The frequent  itemsets  provide the general  trends  in the  database  as 

well. 
 

 

6.5.4  Evaluationof CandidateRules 
 

Apriori algorithm evaluates candidates for association as follows: 
 

Ck: Set of candidate-itemsets  of size k 
 

F1:  Set of frequent  itemsets of size k 
 

f 1  = {large items} 
 

for (k=l; Fk != O; k-«) do  { 
 

Ck+i = New candidates generated  from Fk 
 

for each transaction  t in the database do



 
 
 
 
 

 
Database                         Iteration  1:Ceindid.ate l ltemset 

 
 
 

 
fre-  uant 

Increment   the  count  of all candidates   in Ck+ 1  that are contained in t 
 

Fk+i = Candidates in Ck+i with minimum support 
 

} 
 

Steps of the algorithm can be stated in the following manner: 
 

1.   Candidate itemsets are generated  using only large itemsets of the previous 

iteration. The  transactions   in  the  database   are  not  considered   while 

generating  candidate itemsets. 

2.   The large itemset of the previous iteration is joined with itself to generate 

all itemsets having size higher by 1. 

3.   Each generated  itemset that does not have a large subset is discarded. The 

remaining itemsets are candidate itemsets. 

Figure 6.8 shows Apriori algorithm process for adopting the subset of frequent 

itemsets as a frequent  itemset. 
 

 
~riori     -  Example 

 
 
 
 
 
 
 
 
 
 
 
 

· 

{~~·ITI 
ueratlon  3: 011ndlc1ate 3 ltems:el 

 

Figure  6.8 Apriori algorithm process for adopting the subset of frequent 

itemsets as a frequent  itemset 
 

It is observed in the Apriori example that every subset of a frequent  itemset is 

also frequent.  Thus, a candidate  itemset  in Ck+1   can be pruned  even if one of its 

subsets is not contained in Fk· 
 

The Apriori algorithm  adopts the fact that  the subset of a frequent  itemset  is



also a frequent  itemset. The algorithm  thus  reduces the number  of candidates 

being  considered  by  only  considering  the  itemsets  whose  support   count  is 

greater  than the minimum support  count. All infrequent  itemsets are pruned  if 

they have an infrequent  subset. 
 

Apriori   algorithm   also   possesses   certain   disadvantages.   The   algorithm 

requires  multiple  scans of a database. The process for generation  of a complex 

candidate  exploits more time, space and memory. Therefore, Big Data analytics 

need  alternatives   to Apriori  algorithm  to  cut  down on the  size of candidate 

pairs.  Section  7.4   will  describe  Park,  Chen  and  Yu  (PCY), multistage   and 

multihash  algorithms. 
 

 

6.5.5  Applications of Association Rules 
 

FIM is a popular technique for market basket analysis. 
 

6.5.5.1 Market Basket Model 
 

Market basket analysis is a tool for knowledge discovery about co-occurrence  of 

items. A co-occurrence  means two or more things occur together.  It can also be 

defined  as  a  data  mining  technique   to  derive  the  strength   of  association 

between pairs of product items. If people tend to buy two products  (say A and B) 

together,   then   the   buyer   of  product   A   is  a  potential   customer   for  an 

advertisement  of product B. 
 

The concept  is similar  to  the  real  market  basket  where  we select  an  item 

(product)   and   put   it   in   a  basket   (itemset).   The  basket   symbolizes  the 

transactions.  The number  of baskets is very high as compared to the items in a 

basket. A set of items that  is present  in many baskets  is termed  as a frequent 

itemset.  Frequency  is  the  proportion   of baskets  that   contain  the  items  of 

interest. 
 

Market basket analysis can be applied to many areas. The following example 

explains the market basket model using application examples. 
 

 

EXAMPLE 6.8 

 
Suggest application examples of the market basket model. 

 

SOLUTION



Application 1: 
 

1.   Iterns = Products 
 

Baskets =   Sets of products  a customer  purchases  at  one time  from  a 

store. 

Example of an application: Given that,  many people buy chocolates and 

flowers together: 
 

·    Run sales on flowers; raise price of chocolates. 
 

The  knowledge   is  useful  when   many  buy  chocolates   and  flowers 

together. 

Application 2: 
 

2.   Items= Words 
 

Baskets = Web pages 
 

Unusual words appearing  together  in a large number  of documents,  for 

example, 'research'  and 'plastic' may provide interesting  information. 
 

 

Market  basket  analysis  generates  If-Then scenario  rules.  For example,  if X 

occurs then Y is likely to occur too. If item A is purchased,  then  item B  is likely 

to be purchased too. The rules are derived from the experience. This may be the 

result of frequencies of co-occurrence of items in past transactions. 
 

The rules can be used in several analytical strategies. The rules can be written 

in format If {A} Then {B}.  The If part  of the rule (A)  is known as antecedent  and 

the THEN part of the rule (B) is known as consequent.  The condition is antecedent 

and the result is consequent. 
 

If-then  rules  about  the  contents  of baskets:  {p1,    P: ... ,  Pk}   ~   q means,  "If a 

basket contains all of P» Pz •.• , Pk then it is likely to contain q," 
 

Scale of analysis: 
 

• Amazon sells more  than  12  million products  and  can store  hundreds  of 

millions of baskets. 
 

•       www has 1000 million words and several billion pages.



•       75  million credit  card transactions   in a month  in India (RBI  statistics  of 

June, July 2016)  at Point of Sales (POS) terminals.
 

Market  basket  analysis  signifies shopping  carts  and 

supermarket   shoppers   at  once.  The  analysis  is  the 

mining of transaction  data to identify relations between 

different   products.   This  is  normally   performed   to 

Applications  of Fl  1  in 
ma rlteit a11ul Jtjics,  1meidlic.:flli 
am  ly1::i(s, w-eb  W1sage 
analytics.   fraud dirtecmon. 
cl isrkstrE!.!111ii  a1uil,ym cs

identify products  that  a customer  is likely to buy, given the products  that  they 

have already bought (or added to basket). The approach behind Amazon's users 

who bought a particular  product  also reviewed or bought other list of items is a 

well-known example of market basket analysis. 
 

The  applications  of market  basket  analysis  in various  domains  other  than 

retail are: 

• Medical analytics: Market basket  analysis can be used for conditions  and 

symptom analysis. This helps in identifying  a profile of illness in a better 

way. The analysis is also useful in genome  analysis, molecular  fragment 

mining, drug design and studying the role of biomarkers  in medicine. The 

analysis can also help to reveal biologically relevant  associations between 

different  genes. Further,  it can also help to find the effect of environment 

on gene expressions. 

• Web usage analytics: FIM approaches  can be used with viewing data  on 

websites. The information  contained  in association rules can be exploited 

to learn  about website browsing of visitor's  behavior,  developing website 

structure by  making  it  more  effective  for  visitors,  or  improving  web 

marketing  promotions.  The results  of this type of analysis can be used to 

inform  website  design  (how items  are  grouped  together)  and  to  power 

recommendation engines  (Section  6.8).   Results  are  helpful  in  targeted 

marketing.   For  example,  advertising  content  that  people  are  probably 

interested  in, based on past behavior of users. 

• Fraud detection  and technical  dependence  analysis: Extract knowledge so 

that normal behavior patterns  may be obtained in illegal transactions  from 

a  credit  card  database  in  order  to  detect  and  prevent  fraud.  Another 

example  can be to find frequently  occurring  relationships   or FIM rules



between the various parties involved in the handling of the financial claim. 

Some examples are: 
 

•  Financial institutions  to analyze credit card purchases  of customers  to 

build profiles    for   fraud    detection    purposes    and    cross-selling 

opportunities. 
 

•  Insurance   institution   builds  the  profiles  to  detect   insurance   claim 

fraud. The profiles of claims help to determine  if more than  one claim 

belongs to a particular  victim within a specified period of time. 

• Click stream   analysis  or  web  link  analysis:  Click stream   refers  to  a 

sequence of web pages viewed by a user. Analysis of clicks is the process of 

extracting  knowledge from web logs. This helps to discover the unknown 

and potentially  interesting  patterns  useful in the  future.  It  facilitates  an 

understanding   of the behavior  of website visitors. This knowledge can be 

used  to  enhance   the  way  that   web  pages  are  interconnected    or  for 

increasing the sales of the commercial websites. 

• Telecommunication  services analysis: Market basket analysis can be used 

to  determine   the   type   of  services  being   utilized   and  the   packages 

customers  are purchasing.  This knowledge can be used to plan marketing 

strategies for  customers   who  are  interested   in  similar  services.  For 

example, telecommunication   companies  can offer TV Internet,  and web• 

services by creating  combined offers. The analysis might also be useful to 

determine  capacity requirements. 

• Plagiarism  detection:  It  is the  process  of locating  instances  of similar 

content or idea within a work or a document. Plagiarism detection can find 

similarities  among statements  that  may lead to similar paragraphs  if all 

statements are  similar  and  that   possibly  lead  to  similar  documents. 

Formation of relevant  word and sentence  sequences for detection  of 

plagiarism  using association  rule  mining  technique  is also very popular 

technique. 

6.5.5.2 Finding Association 
 

Association rules intend  to tell how items of a dataset  are associated with each



other.  The concept  of association  rules was introduced  in 1993  for discovering 

relations between items in sales data of a large retailing company. 
 

The following examples give rules between items found associated in the sales 

data of a retailer. 
 

 

EXAMPLE  6.9 
 

 

Suggest association rules between items found in the sales data of a retailer, 

and rules for course choice for a computer science student in college. 
 

SOLUTION 
 

1.   {Bread} ~{Butter} 
 

The rule suggests a relationship  between the sales of bread and butter. A 

customer who buys bread also buys butter. 
 

2.    {Chocolates}~  {a Gift Box} 
 

The rule suggests a that relationship  between the sales of chocolates and 

empty gift boxes exists. A customer who buys chocolates also buys a gift 

box. 

3.   {Java programmingl  r+    {advanced web technology} and 

{Python programming} ~  {Big Data Analytics} 
 

The rules suggest relationships  between Java and advanced web 

technology, and Python programming  and data analytics. Students who 

opt for Java programming  also want to learn advanced web technology, 

and  those  who  opt  for  Python  programming   also  opt  for  Big Data 

Analytics. 

4.   {DataMiningj  r+    {DataVisualization} 
 

The rule may be that  90% of students  who select data mining as a major 

subject will opt for the data visualization course as well. 

5.    {Computer Graphics, Modeling Techniques} ~  {Animation} 
 

The  rule  may  be  that   students   who  study  computer   graphics   and 

modeling   techniques   courses   are   likely  to  choose  the   course   on 

animation in higher semesters.



J accard 

Association analysis is applicable to several domains. Some of them are 

marketing,  bioinforrnatics,  web mining,  scientific data  analysis, and intrusion 

detection systems. 
 

The applications might be to find: products that are often purchased  together, 

types  of  DNA   sensitive  to  a  new  drug,  the  possibility  of  classifying  web 

documents automatically, geophysical trends or patterns  in seismicity to predict 

earthquakes  and automate the malicious detecting characteristics. 
 

In medical diagnosis, for example, considering the co-morbid (co-occur) 

conditions   can  help  in  treating   the  patient   in  better   way.  This  helps  in 

improving patient care and medicine prescription. 
 

6.5.5.3 Finding Similarity 
 

Section  6.4  describes  finding  similarity  of  an  item  attribute,   such  as  sales 

percentage  increase  using Euclidean or cosine similarity  coefficients.  Section 

6.4.2   describes  Jaccard  similarity  of  sets.  The  similarity  of  sets  applies  to 

recommenders  and collaborative filtering. 
 

Let A  and  B  be  two  itemsets.  Jaccard  similarity  index  of two  itemsets  is 

measured in terms of set theory using the following equation:
 

.                                             .           .              .             . 
iternsets similarity  index 

 
= l - 

 

IAnBj 
IAuBI 

 

 
x l 00%.

Explanation:  n means intersection,  number of those elements or items which 

are the  same in set A and B. U  means  union,  number  of elements  or items 

present  in union of A and B. 
 

 

EXAMPLE 6.10 
 

 

(i)   How will you define similarity in purchase of a car model? 
 

(ii) How will you specify frequent  threshold  for FIM? How will you use 

association rule to find and count the cities where more than threshold 

numbers buy a specific car model? 
 

SOLUTION 
 

(i)   Assume two sets of car customers, youth Y and family F. Assume in set



Y, 40 out of 100 youths and F 50 out of 200 families opted for the Tata 

Zest  car  model.  Jaccard  similarity  index  Jzest   (Y,   F)   =   40/    (100   + 

200 ).100%   =   13%.  Two sets  are  sharing   13%  of the  members  who 

purchased  a Zest. 

(ii) FIM involves  finding  similarity  index  in  large  number  of sets  after 

specifying the  similarity  index threshold  which defines an itemset  as 

frequent. Assume N sets of car customers, youth Y 1,    Y 2,     •..  ,   YN'   and N¢ 

sets of families F1,      F2,     ...   ,    FN¢   in N¢¢  cities. Assume that  meaning  of 

frequent  is that  10% or more of Yi+  Fi buying Zest among the various 

car models. Assume all other  models sell less than  that  in the  cities. 

Here i = 1, 2, ... ,  N¢¢. 
 

Let set X is a set, which has Xi as member if youth buy or if family buy the 

Zest car model frequently  in the ith City. Initialize value, j = O  for frequent 

item sets. Then association rule for the FIM in the present  case is: 
 

If (Jzest (Y, i, F)>10%) Then (City Xi is a member ofX andj  = j + 1)}(6.26) 
 

The rule is used for all cities for i =  1, 2,  ... ,  N¢;  Here j is the  number  of 

cities where frequent  item set {Youth, Zest). FIM gives a set of j cities and 

youth, where youth buy Zest more than 10% of all car buyers. 
 

 
 
 

Self-Assessment Exercise linked  to LO 6.4 
 

1.   How does frequent itemset mining function mine the association rule? 
 

2. Why does Apriori principle that  'if an itemset is frequent,  then all of its 

subsets must also be frequent'  hold true? 

3.   What are the features of Apriori principle that enable frequent  itemsets 

mining? 

4.   How do you evaluate candidates for the associations? 
 

5.  How does concept  of market  basket  model apply for frequent  itemset 

mining?



6.  List five examples where the assocation rule and count of frequent  item 

sets apply. 
 

 
 
 
 

6.6 l CLUSTERING   ANALYSIS 

The  following  subsections   describe   clustering   and 

cluster analysis methods. 
 

 

6.6.1   Overview of Clustering 
 

Clustering  of a collection  means  'a process  (method)  of 

grouping   a   collection   of  objects   into   subsets   or 

 

 
Clh!!lst@r1i1IT1Q1  :a  col lec:tio n, 

cl u ster a na lys;is,  K-m sans 
a ndl othil~r metllmds~ 
det:eooini1111g  ~he liH.Jmber 

or clusters  and! duister 
di;g1IT1ostks

clusters'  according  to  their  distinct  characteristics   in  the  group.  Clustering 

forms one or more clusters,  such that  objects within one cluster  are similar to 

each other  while the objects belonging to different  clusters  are dissimilar. The 

process  can assign  restriction   on further  additions  of similar  objects  or  add 

further   new  dissimilarity  conditions.  This limits  the  number  of objects  in  a 

cluster in a collection. 
 

Clustering  and  cluster  analysis  need  segmentation   of a  population   into  a 

number of subgroups using unsupervised techniques  of data mining. 
 

For example, consider a university  course. Assume a cluster  of students  that 

has distinct  characteristic,  i.e., students  mostly get high grade  points  (GPs)  in 

semester  examinations.  Input  datasets  consist  of university  course  students 

(GPs) in semester examinations. Clustering algorithm computes the cluster from 

the  input  datasets  only. The  following  example  gives the  results  of cluster 

analysis for students with high GPs in both theory and practical courses. 
 

 

EXAMPLE 6.11 
 

 

Consider a superset  D of all data of students  enrolled  S in a university.  D 

consists of computer  courses as members  of set C. C consists  of GPs in a 

semester   examination   as  members   of  subset  S.  S  consists  of  GPs as 

members of GPs in theory T subjects as well as practical  P subjects.

mailto:Clh!!lst@r1i1IT1Q1


 

 
 
 

•    •• 
6  ---------·--·------------ 

 
10 

Assume  the  following:   Only  one  cluster   with  centroid    exists   at  Theory 

GPA_ T =  8.25  and Practical GPA_P  = 8.25.  The similarity criterion  function is 

that  GPAs in theory  and practical  both  are high, i.e., (GPA_T, GPA_P) are 

within= (8.25  ±  1.75,  8.25±  1.75).  The number  criterion  function is when 8% 

and above students  in the  set C, then  a cluster  of high GPA_T with  high 

GPA_P  exists. This means the  circle that  surrounds  the  points  within  the 

cluster has periphery  diameter=  3.5, twice of 1. 75. 
 

How does a plot show a cluster of members in S high GPAs in theory  T as 

well as practical P subjects in number of university courses C? 
 

SOLUTION 
 

Consider  plot  of the  P_GPAs  and  T_GPAs, GPAs in  practical  subjects  as 

independent  variable  along the  x axis and the  GPAs in theory  subjects as 

dependent  variable  along the  y axis. Figure 6.9  shows cluster  1   and  the 

results  of cluster  analysis of students  with criterion  1. The cluster  consists 

of students  with high GPAs in theory  T as well as practical  P subjects in a 

number of university courses C in a semester  S. 

Each dot  in  Figure  6. 9  corresponds   to  a  distinct  enrolled   student   in 

university computer courses (set C) for semester examination  (set S). 
 
 

llniU     Ge      aid (R2.5 ..  8.2:5) 
..,, 

 

 

 
 
 

...        .~•  •••           Ill ••  "·  -   J• 

OUfl:1811' 1  (jf 

sruden.ts '!Mth 

hilh  -GPA.s In 

·               e,ory ilS well 
as puctieal 

-   
:subject$

... 

.... "-  
· .... 

 

 
..... 

----------•

+-------------------·......               Eu-c:llclean 

dm:ances 

O.:v 
between 

two, poim 
 

 

Figure   6.9 Result of cluster analysis of students'  cluster 1 with high 

GPAs in theory subjects T as well as practical subjects Pin



a number  of university   courses  C and semesters 
 

 
 

Partitions Example 6.11 considers  one  cluster.  It  considers  one  of the  four 

possible partitions  and  assumes  a starting  centroid  point= (8.25, 8.25). Opted 

criterion  is considering distances up to 1.75 from a centroid  for inclusion in the 

cluster  of similar students.  The figure also shows the centroid  of the cluster at 

(8.25, 8.25) and a circle for criteria  for the distances. Students in the cluster are 

those whose practical subject GPAs are between  6.5 and 10.0 and theory  subject 

GPAs between 6.5 and 10.0. 
 

Other three options can be as follows: 
 

2-  GPA in practical  subjects between 4.5 and 6.0 and theory  GPA between  6.5 

and 10.0 
 

3-    GPA practical  subjects between  6.5 and 10.0 and theory  GPA between  4.5 

and 6.0 
 

4-  GPA practical subjects below 4.5 and theory GPA below 4.5. 
 

CentroidFigure 6.9 in Example 6.11 shows centroid (a central point of a cluster) 

GPAs  of practical  subjects  (P_GPAs)  and  GPAs  (T_GPAs)  for data  points  of in 

subset S of set of students  C. Example 6.11 considers centroid  as point for the 

student  sub-groups where means of both the GPAs (P_GPAs) and GPAs (T_GPAs) 

are high (near 8.0). 
 

Distance MetricsA distance  metric  is Euclidean distance,  DEu  (Equations 6.20a 

and b). A  circle  of radius  corresponds  to  maximum  DEu  around  the  centroid 

when using the  criterion  of inclusion  in the  cluster  (Figure 6.9). When DEu  is 

used, then the boundary data points lie on the circle. 

A  distance  metric  is Manhattan  distance,  DMa   (Equation 6.20c). When DMA   is 

used then the boundary points lie on a rectangle around the cluster. 

CriterionFunctionCluster 1 in the figure shows a circle, which specifies that all 

data  points  within  the  circle  are  at  a distance  1. 75 from  the  centroid  8.25. 

Criterion  function  for cluster  1  can also put addition  criterion  that  more than 

8% data points of all students  in set C fall inside the cluster and have practical P 

and theory T GPAs values (data points) (8.25± 1.75, 8.25± 1.75). 
 

Input  Vector  Input  column  vectors  of each  data  point  in  the  figure  have



elements   in  the  metric   space.  The  column   vectors   are  Y  (Year),  CC   (Course• 

code),   ID  (Student-ID),    SC   (Semester-code),     P _T  (subject   type   (practical    or 

theory)),   SubjID (Subject  code) and  GP (grade  point). 
 

Output   Vector   T_GPA (Grade  point  average   of theory   subjects),  P _GPA (Grade 

point  average  of practical   subjects)  are  output   column  vectors  for input  column 

vector  ID. 
 

Unsupervised       Learning      Clustering     methods     use    unsupervised      learning 

methods.   Unsupervised    learning   refers  to  a process   in which  an  ML  algorithm 

does  not  use  known   outputs    for  the   selected   inputs   for  taking   decisions   or 

making   predictions.    A  training   dataset   consists   of outputs   for  selected   inputs. 

This means  that  cluster  computations    use input vectors only. 
 

Clustering  Applications    Clustering   of   a   collection   has   applications    in 

education, business analysis, sales analysis, customer groups analysis, resources 

planning,  sports,  astrology,  fraud  detection,  production  control  and scientific 

investigation.  Section 6.6.2.1  describes use cases. 
 

Clustering a large dataset  of performances  of students  has many applications. 

For example,  student  performance  analysis which  enables  finding a subset  of 

students  with  high  performances  practical  and theory  subjects  and finding  a 

subset of students  as potential  programmers  from high performance  in 

programming  subjects. 
 

Clustering Algorithms  Following are the categories of clustering algorithms: 
 

1.   Partitions/centroid    based  K-means (Section  6.6.1),   K-medoids, Fuzzy k• 

means, Mean-shift clustering and other related methods 
 

2.   Connectivity  and  spectrum  based  hierarchical  clustering  (Section 6.6.2). 

When closeness relates to connectivity then spectral clustering 
 

3.   Probabilistic  distribution  based Latent-Dirichlet-Allocation  (LOA)  (Section 

6.9),   Gaussian  Mixture  Model  (GMM), Expectation  Maximization  (EM) 

clustering  and others,  [Expectation  Maximization  (EM)  algorithm  uses a 

set of parameters  that maximize the probability of the chosen PDF for data 

as a metric.] 

4. Dimensionality   reduction   based   Principal   Component   Analysis  (PCA) 

(Section 6.9)



5.   Density based Density-Based Spatial Clustering of Applications with Noise 

(DB SCAN) 
 

6.   Neural Networks/Deep Learning-Auto-encoders,    self-organizing maps 
 

The following Examples 6.12  and 6.13  explain the usages of clustering  concept 

in two different cases. 
 

 

EXAMPLE 6.12 

 
How does clustering  express the gene for a living cell that  is undergoing  a 

biological process? 
 

SOLUTION 
 

Genes  are   expressed   differently   whenever   a  living  cell  undergoes   a 

biological process. Clustering of cells in the biological process enables the 

study of gene expression. This is required  for understanding  the underlying 

biological processes. This study is required  to be carried  out for different 

developmental  phases, different  body tissues,  different  clinical conditions 

and different organisms. 
 

 
 

Recall Example 1.5. The following example explains  how clustering  analysis 

helps a ACVMs company. 
 

 

EXAMPLE 6.13 
 

 

(i) Recapitulate  Example 1.6(i) of an ACVM Company. The company sells 

chocolates of say, five flavours. How does the clustering  concept help 

the company to plan future strategies? 

(ii) The ACVM company has to select new ACVMs in a city irrespective  of 

whether  these  machines  were  installed  or not  previously.  How does 

clustering guide the company? 
 

SOLUTION 
 

(i) The company  wants  to  analyze  sales performance  of all flavours  of 

chocolates in order to check which flavour sells widely or which ACVM



needs filling frequently. The cluster analysis could further  be extended 

for the sale of a particular  flavour at many ACVMs in various cities. The 

clustering  algorithm  helps to find customer  preferences  in a specific 

set of regions. 

The company needs to establish its sale points by putting  its ACVMs in 

different regions. The location for installing ACVMs can be found using 

the clustering algorithm  so that more of its customers receive a supply 

of their favourite flavours. 
 

(ii) The demand  for new sales point  is to be analyzed. Firstly, regions  of 

city where youth  population  is high, such as regions with hostels and 

the  regions  of minimum  concentration   of other  vendors  need  to be 

identified.  Clusters  of  sparse  or  subserviced  areas  and  clusters  of 

higher  sales potential  need  to  be  first  identified  for  installing  new 

ACVMs. Finding these  options of course may require  mathematical  or 

statistical analysis. 
 

 

The above examples require  a study of problems based on grouping objects of 

similar types or characteristics.  This requires  applying exploratory  data mining 

techniques   for  statistical  data  analysis.  These  techniques   are  used  in  many 

fields, including ML, pattern  recognition,  image analysis, information  retrieval 

and bioinformatics. 
 

Difference  With Respect  to  Classification Clustering  finds  only the  similar 

objects.  Classification differs  from  clustering  in the  sense  that  classification 

assigns  a  class to  each  distinct  set  of characteristics   in  the  collection.  For 

example, classification will assign four classes of students,  as per four criterion 

functions.  For example, a collection of students  in Figure 6.9  can be classified 

into  one  of the  four  classes:  (i) good overall  performing   students,   (ii)  poor 

performance  in practical subjects, (iii) poor performance  in theory, and (iv) poor 

performance  in both  type  of subjects.  Section 6. 7 describes  classification  and 

classifying methods in detail. 
 

Clustering  on the  other  hand  discovers  a large  number  of close-by points 

which form a distinct  set in a collection. How much large and how much close 

depends on the chosen criterion function.



The following subsections describe selected clustering algorithms. 
 

 

6.6.2  K-Means 
 

MacQueen (1967)   developed  K-means algorithm.  This is one  of the  simplest 

unsupervised   learning  algorithms   for  clustering.  The  algorithm   groups  the 

objects based on the attributes  (features) into k number  of groups where k is a 

positive integer number. 
 

The grouping  of data results  into k clusters  (C1,   C2,   ••• ,  CK) represented  by K 

centroids. A centroid  is fundamentally  a central representative  of a cluster. The 

centroid  of each  cluster  is the  mean  of all the  instances  belonging  to  that 

cluster. All objects of the cluster have similar characteristics,  and fall within  a 

criterion function specified for the cluster. 
 

Criterion Function A  criterion  function  assumes  that  at  least  p  number  of 

objects have similar characteristics,  and are within the specified distances from 

a cluster centroid. A centroid may be assumed in the criterion,  i.e., it is the one 

for which the sum of square of distances is least for all points of each cluster of a 

collection. The following example explains the use ofK-means method. 
 

 

EXAMPLE  6.14 
 

 

How will you consider the criterion  function  in K-means method?  Assume 

partitioning  into k clusters. Assume the cluster problem  similar to the one 

in Example 6.11. 
 

SOLUTION 
 

When partitioning  N objects into k-clusters, the optimization  of number  of 

clusters  and  their  centroid  positions  uses  a criterion   function.  K-means 

method takes assumptions about similarity criterion. Assume that similarity 

is when T_GPAs are within 1.25 and P _GPAs also within 1.25. Assume that K• 

means method centroids, Cl, CZ, ... , Ck  are ones for which the sum of square 

of distances  is least  for all points  taken  into  the  clusters,  C1,    C2  ••• ,  Ck, 

respectively.  This  means  that  the  sum  is  1.25   xl.25   +  1.25  xl.25   at  the 

farthest  point in an ith cluster. 
 

Assume criterion that p = 0.08 x N, 8% of all students within a cluster.



K-means methods  evaluates Cl, C2, ...  using the data points and criterion 

function  assumptions.  Considering Example 6.11,  C1    =  (8.25, 8.25).  Another 

cluster C2   may evaluate to (8.25, 3.25).  Number of objects in C1,    C2  ...   may 

evaluate and come out to be 18%, 10%, ....  but at least 8%. 
 

 

6.6.2.1 K-means Use Cases 
 

Clustering  can  also provide  a significant  way to  solve a number  of real-life 

situations. The following are the use cases where K-means is fast and efficient: 

• Identifying  abnormal  data  items  in  a very  large  dataset.  For example, 

identifying potentially fraudulent  credit card transactions,  risky loan 

applications and medical claim fraud detection. 

• The feature  similarities  information  helps  the  K-means algorithm  to be 

used in an image retrieval  system 

• Applied to many use cases in healthcare  and helps to better  characterize 

sub-populations and  diseases  by  medical   conditions.   Some  examples 

include: 

•  Finding    diabetic/non-diabetic      or    hypertension/non-hypertension 

group structure  from the input value. 
 

•  Identifying  similar patients  based on their  attributes  to explore costs, 

treatments  or results. 

•  To   forecast   the   possible   type   (cause)   of   future    treatment     or 

hospitalization  of affected patients. 

•  Help researchers   discover  new  insights  by  segmenting  patients   and 

providing them with effective treatments. 

• To  find  the  segment  of  customers   and  customer   category  using  the 

spending behavior 

characteristic. 
 

6.6.2.2 Overview of the K-means Method 
 

Computations  are needed  for finding the  distances  between  the  data  and the 

corresponding   cluster   centroid.   A   distance   is  taken   as  Euclidean,  squared



lilg 

Euclidean,  Manhattan   or  Cosine  distance   (Equations  ( 6.20a) to  (6.20d)  and 

Section 6.4.4). 
 

Figure 6.10 shows the steps in K-means clustering. 
 
 

Input: cclll!lffllil 

vectors 

 

I     iPll.!!t co 1)1             111 

'!.lectors a· ectmv 

llllillil:i   he 

lfil     nber 
of  ch,!&el'$ 

 

I ."ti     -~ 

centroids

 
Oit:erio:rn ihrJ1n[tt0111S 

Id f(i           1------· ctui~   
0

 

 
it1;!raiti\!E!

k  ~                                                 ~sti     tbe 
cri~rion   s.a  ":sfies 

 
 

01!J~tco   umn 
'i.led'Cll"S(f    e<:to 

tRe    ,          each 

d1J5t,er- Ouq:JIJ.lt 
(:         I  •                                 I   fi1  ve(t'O:r:£

 

Figure6.10  Steps in K-means clustering 
 

K-means can be executed in the following steps: 
 

1. Randomly  initialize  the  k  cluster  centroid  points  (=  Cl,  CZ,   ... ,  Ck)    as 

partition  centers which mean partitions  with these cluster centroids. 

2. Go through  each of the data points and assign points to a cluster where the 

distance from a centroid is minimum. 

3.  Identify the centroid  of the new cluster formed. It is the average of all the 

data  points  in  a  cluster.  In  other  words,  the  algorithm   calculates  the 

average  of all the  points  in  a  cluster,  and  moves the  centroid  to  that 

average location. 

4.   The process  is repeated  until  no change  in the  clusters  takes  place  (or 

possibly until some other stopping condition is met). 

5.    Steps of iterative relocation algorithm: 
 

(1)  Input: N (objects) and k (the number of clusters) 
 

(2) Output:  A  set  of k clusters,  which  uses  criterion-functions   f{k)   (For 

example, minimizing   the   sum   of   squared    distances    (Euclidean 

distances) for each cluster



 
i 

(3)  Algorithm  steps: 
 

(i)   Initialize  k centroids   as the  initial  solution. 
 

(ii) (Re) compute   memberships    for the  objects  using  the  current   cluster 

centroids 
 

(iii)Update  centroid   of the  cluster  according   to new memberships    of the 

objects. 

(iv)Repeat from   Step  (ii)  until   there   is  no  object   change   the   cluster 

centroid. 

Iterative   methods   compute  the  centroid   values  for each  cluster.  Centroids  are 

the  concentration     points   for  clusters.   The  mean  or  median   are  typical  choices 

for a centroid   metrics. 

Figure    6.11   shows  the   iterative   method   actions   in  K-means  clustering 

(Consider students  GPA example similar to Example 6.11). 
 

 
10 

•      • 

• 
 

 

• 
 
 
 
 
 

0  .     ~~~~~~~~~~~~~~~~~~~ 

0                                                                                           8                    10 
 
 
 

Figure6.11 Iterative method actions in K-means clustering 
 

Properties of  K-means Clustering Algorithm The  properties   of  K-means 

clustering algorithm are: 
 

1. Number  of clusters  which  form  are  always k  clusters,  where  k  is the 

number of partition  centers.



2.   Each cluster consists of at least one object in each cluster. 
 

3.   The clusters are flat (non-hierarchical)  and they do not overlap. 
 

4.  Every member  object of a cluster  is closer to its cluster  than  any other 

cluster. 

The  algorithm  has  a number  of variations,  depending  on  the  method  for 

selecting the initial centroids,  the choice for the measure of similarity, and the 

way that the centroid  is computed. Most commonly, the Euclidean data exploits 

the  mean as the  centroid  and selects the  initial centroids  randomly.  The four 

other features ofK-means clustering algorithm are as follows: 
 

1. The K-means method  is numerical,  unsupervised,  non-deterministic   and 

iterative 

2.   The method is well suited if the clusters are globular 
 

3.  The  centroid   depends  on  the  distance   function  that   is  measured   by 

Euclidean distance  (Sum of Squared distance  (SSD)),  cosine similarity  or 

correlation 

4.  Centroid  is the  mean  of the  points  in  the  cluster  for  SSD  and  cosine 

similarity; the median for Manhattan  distance. 

The K-means algorithm  converges  to  a  solution,  which  is typically  a local 

minimum. The space requirements of the algorithm  are O (n x  d), where n is the 

number  of points and d is the number  of attributes.  Here, only the data points 

are stored. The time requirements are O (n x  k x  Ix d), where k is the number  of 

clusters, and I is the number  of iterations  required  for convergence. I is usually 

small as most of the convergence happens in the first few iterations. 
 

Thus, the time required  by K-means is efficient, as well as simple, as long as 

the number of clusters is significantly less than n. 
 

0  (f (n)) measures the efficiency of an algorithm  in terms of function f (n). If f 

(n) =  n2,    then  the  requirement   of the  algorithm  is proportional   to  n2•    The 

requirement   may  be  measured  for  memory  or  may be  for  run  time.  Space 

requirement    O  (n  x    d)  means   that   memory   taken   by  the   algorithm   is 

proportional  to n x d. 0 is called as the big O notation. 

Advantage  of K-means is that  computing  the  distances  between  points  and



group centres  has linear complexity O  (n). Disadvantages are (i) need to choose 

k, the number  of groups/classes  required  to form the clusters, (ii) need to start 

and randomly choose the cluster centres,  the results may be choice dependent. 

Thus, there is less consistency of the results compared to other methods. 
 

6.6.2.3 K-medoids Algorithm 
 

A  medoid  is similar  to  a mean  or  centroid,  but  restricts  to  members  of the 

dataset.  A dataset  may have more than  one medoid. The K-medoids algorithm 

initializes k data points as exemplars (centers), which shift iteratively for 

minimizing  dissimilarities.  The algorithm  K-medoids does clustering  using an 

algorithm, which   has   flavours   of   k-means   algorithm    and   medoid-shift 

algorithm. 
 

1.   Step 1: Choose a set of medoids. 
 

2.    Step 2: Compute distances from each medoid to other points. 
 

3.  Step 3:  Cluster  the  data  points  according  to  their  similarities  with  the 

medoid. 
 

4.    Step 4: Optimize the set of medoids using iterative process. 
 

The sum of pair of dissimilarities  minimizes in K-medoids compared to 

minimizing the sum of squared Euclidean distances. The algorithm  is based on 

partitioning  technique  of clustering, which clusters the data set of n objects into 

k clusters. 
 

Use of medoid is in graphs  and other  non-metric  spaces. Non-metric  means 

non-quantifiable.  Medoids mean  the  objects in a cluster  or dataset  such that 

average of dissimilarities  minimizes taking all cluster members (objects). Recall 

that    distance   is   a   measure   of   dissimilarity.   Computation   of   minimum 

dissimilarity considers minimum distances of all pairs of points within a cluster. 

Median is v-dimensional data point. 

6.6.2.4 Determining the Number of Clusters 

K-means algorithm  finds k clusters  in a given dataset.  The K-means algorithm 

partitions  the  objects into  k non-empty  subsets. Thus, k signifies assumption 

about formation  of a number  of clusters. The data points represent  the objects. 

Choice of k is either  random  or as per specific initial starting  data points that 

the user specified.



A partition  technique generates  specific number of flat disjoint clusters (say, k 

clusters).  Each object belongs to a specific cluster.  Each object in a cluster  is 

closer to the centroid than to the centroid of any other cluster. The centroid can 

be an arithmetic  mean of the attribute  values of all the objects in case of real• 

valued  data.  The  centroid  can  be  the  rank  value  of the  objects  in  case  of 

categorical  data. The iterative  relocation  algorithm  is an excellent  method  for 

finding k partitions/  clusters/ centroids. 
 

When  partitioning   n  objects  into  k clusters,  optimization  uses  a  criterion 

function. For example, criterion that more than 10% of all students within (8.25± 

1.25,   8.25±   1.25)   GPAs in  practical  and  theory  belong  to  the  same  cluster 

(Example 6.11). 
 

A useful tool for determining  k is the  silhouette  value, s. A  silhouette  value 

computes  from  the  similarity  of an  object  with  own  cluster  objects  (means 

cohesion  in  the  objects)  instead  of other  clusters  (means  separation   in  the 

objects of all other clusters). 
 

The s  ranges  from -1  to + 1. Value -1  represents  complete  separation  and + 1 

means complete cohesion. + 1  means an object matches perfectly with an object 

in its own cluster and completely mismatches  outside the cluster objects. When 

most objects of a cluster have high silhouette  value, it means the cluster is well 

configured. 

6.6.2.5 Diagnostics Method 
 

Clustering  validation  tool  does cross validation  and  validates  initial  centroid 

choices. A  diagnostic  tool uses the  output  of clustering  for the  decisions. For 

example, Microsoft Windows Server 2003  resource  kit includes ClusDiag.exe, a 

tool for cluster diagnostics and verification tool for web files and events. It does 

basic verification and analyses configuration. It collects logs of files and events. 

6.6.2.6 Reasons to Choose and Cautions 
 

K-means algorithm  finds k clusters in a given dataset, but one of the important 

questions  is about the value of k to be selected.  It  is suggested  to choose the 

value of k randomly or define it based on a domain requirement.  However, if k + 

1 clusters do not make significant change in the data points of clusters, from the 

case with k clusters  do not increase  one more cluster. Thus, select an optimal 

value of k such that introducing  a new cluster may just be of little benefit.



. 

Clustering   explores   similarities    or  cohesiveness    in  a  significant    number   of 

objects   or  elements    of  the   vectors.   A  point   to  remember    is  that   improper 

criterion    function   can  lead  to  erroneous    results   for  clusters.   One  should   be 

cautious   while   making   predictions    using   current    data   points.   For  example, 

consider   prediction    from  clustering   analysis  in Example  6.11.  Clustering is not 

including  teachers  and  resources  availability  for  studying  computer  courses. 

Non-inclusion can lead to erroneous predictions. 
 

 

6.6.3  Hierarchical Clustering 
 

'Hierarchical   clustering   algorithms   create   a  hierarchical   decomposition   of 

objects of a given data set using some criterion'.  Figure 6.12  shows the original 

object points and one hierarchical  cluster representation  of those object points . 

...  . 
• • 

. .. ...    . . 
Original object posrts 

 

 
 

Figure  6.12 Original object points and one hierarchical  cluster 

representation  of those object points 
 

 

EXAMPLE  6.15 
 

 

How will you consider hierarchical  clustering to solve the problem of ACVM 

owner for identifying distinct groups in their customer bases? 
 

SOLUTION 
 

Suppose the ACVM owner want to identify distinct groups in their customer 

bases, and then use this knowledge to develop targeted  sales and marketing 

programs  for a particular  flavour of chocolate. They definitely require  the 

formation  of a hierarchy  of nearest  ACVMs targeting  high sale campaigns 

for that  flavour  of chocolate.  The hierarchical  clustering  may solve their 

problem  efficiently.  Recall Example  1.6.   Figure  6.13   shows  hierarchical 

clustering. The hierarchy  is (i) clusters of C city-regions showing high sales 

per day and (ii) clusters  of j set of regions  R 1    and R2 showing high total



•   • 

sales per day. 
 
 

 
~ 

•    • • • 
•               • 

 

 
 

e 
• • •••••

.   •. 
• 

• 

• • • • 
•   •  • 

.
•  

•. 
• 

• • 

•..••.•.
 

 
Original object points 

~1                    9u 
 

Hiera rchi-ca I  cluste-rlng
 

Figure   6.13 Hierarchical clustering of (i) original object points in city 

C showing high total sales per day, (ii) clusters ofj set of 

regions R 1   and R2 showing high total sales per day. 
 

 
Hierarchical  clusters  may correspond  to meaningful  taxonomies  as well. For 

example, evolutionary  relationships  among animals in biological sciences, and 

product  catalogs in the web (online) world. It  can also be used to represent  file 

systems of any operating  system. 
 

Hierarchical  clustering  generally  produces  consistent  results.  The results  of 

hierarchical  algorithms  are represented  by a tree-structured   graph  known as a 

dendrogram.  The  dendrogram   basically  records  the  sequences  of merges  or 

splits. 
 

The individual objects are arranged along the bottom of the dendrogram. They 

are referred  to as leaf nodes. Object clusters  are formed by joining  individual 

objects  or existing  object clusters  with  the join  point  referred  to  as a node. 

Figure 6.14  shows dendrogram  structure  nodes. Each dendrogram  node has a 

right  and  left sub-branch  of clustered  objects. The vertical  axis is labeled  as 

distance,  and is used for distance measures  between  objects or object clusters. 

The height of the node represents  the distance value between the right and left 

sub-branch clusters. 

•        Each node represents  a group. 
 

•        Root node represents  the group containing complete data set. 
 

•        Leaf node represents  single object of the data set. 
 

• Internal  node has two children  (sub-branches)  representing   the  internal 

groups or leaf nodes (objects).



As the name implies, hierarchical  clustering builds a hierarchy  of clusters. Any 

number  of clusters  can be obtained  by 'cutting'  the dendrogram  at the proper 

level. 

 
2.5 

 

 
2.0 

•   1.5 

 
~   1.0 

 
0.5 

 
Node

 
0.0    ' 

 

Figure 6.14  Dendrogram structure 
 

There are two ways to do this: one is to start  from the bottom,  with all the 

objects as clusters and then, at each step, merge the two of them. This is known 

as agglomerative  (bottom-up)  hierarchical  clustering.  The other  one is called 

divisive (top-down) hierarchical  clustering  and starts  from the top, with all the 

objects in a big cluster,  and at each step  performs  a split. Both the  methods 

produce dendrograms. 
 

Agglomerative Clustering Algorithm is  the   more   popular   hierarchical 

clustering  technique.  The computation  of similarity  is the  key operation.  The 

basic algorithm is straightforward. 
 

1.   Consider each data object as a cluster. 
 

2.  Compute the similarity between each pair of objects (cluster). 
 

3.   Repeat until only a single cluster remains: 
 

(i)   Merge the two clusters having the smallest dissimilarity 
 

(ii)  Update the similarities between a pair of clusters. 
 

Online Contents  (OLC)  for BDACh060LC6_1  for hierarchical  clustering,  which 

accompany this book describe in detail different approaches including 

agglomerative-divisive-distance   measures  for  defining  the  distance  between 

clusters in the different algorithms (Solution of Practice Exercise 6.12). 
 

A dataset consisting of n object points the space and the time requirement  for



agglomerative hierarchical  clustering is: 
 

1. 0 (N2)  space to store the distance matrix, most of them are O (N2)   or more 

but one can stop at any arbitrary  number of clusters. 
 

2.  0 (n3)  time in most of the cases. There are n steps and at each step the size 

n2   distance matrix must be updated  and searched. The complexity can be 

reduced  to  O  (n2    log(n))  time  for  some  of  the  approaches   by  using 

appropriate  data structures. 

Advantage  of  hierarchical   clustering   is  in  finding  the   underlying   finer 

structure.  For example, resource planning for filling the ACVMs or for installing 

ACVMs in appropriate  regions of the city (Figure 6.13 ). 
 

Hierarchical   clustering   is  not  used  in  Big Data  environment   because  of 

scalability  and  partition   ability  issues.  Another  disadvantage  of hierarchical 

clustering  in Big Data analytics  is a large n and the time complexity of O (n3) 

compared to O (n) linear complexity in K-means and GMM. 
 
 

Self-Assessment  Exercise linked  to LO 6.5 
 

1. Write meanings  of partition,  input vector,  output  vector,  centroid  and minimizing 

distance  method. 
 

2.   Why is clustering  an unsupervised  machine  learning  method? 
 

3.   What does a machine  learn during  running  of a clustering  algorithm? 
 

4.   How do the cluster  size and criterion  function  relate? 
 

5. How is minimization   performed  using Euclidean  squared  distance  for finding  the 

cluster  centroids? 

6. Write  effects  of using  in Euclidean  squared,  Euclidean  distance  and  Manhattan 

distance  used  in  K-means  clustering   on  cluster  size  and  centroid.   How does  it 

effect the cluster  size? 

7.   Why does time complexity  of K-means equal O (n)? 
 

8.   When is hierarchial  clustering useful?



6.7 ! CLASSIFICATION 

Classification refers     to     learning     from     existing 

categorizations  and forming groups of objects showing 

similar characteristics.     For    example,    categorize 

students  good in theory  and practical  subjects both as 

'very good'. 
 

Classification   is   a   supervised    learning    method. 

 

 
IK-nearest neigh l:::oll!I~  (KNN) 
cllassmier, dsci sion trees 
!RandomJFo  reist  irla ssifiier, 
AdalBoost  an IJI oolhiSr 
E!n Se!!iiiibl@  clr:mi11iiE!rs. Nawe 
lflaiyes cla,ssirliier  and SVM• 
lb.a sed cllassffiier

Classifier is  an  ML  algorithm  for  classification,  which  decides  usage  of the 

experience, and emulates certain human decisions. 
 

The  classification  techniques   are  used  in  many  fields,  including  machine 

learning, pattern  recognition, image analysis, information retrieval and 

bioinformatics.   Classification  is  an  exploratory   data-mining   method,  which 

creates groups of objects of similar types or characteristics. 
 

Consider  an  automatic   chocolate   vending   machine   (ACVM)   for  vending 

chocolates of say, five flavours. 
 

The chocolate company needs to establish its sale points by putting  its ACVMs 

in a particular  region. The location of putting  these ACVMs  can be found by a 

clustering  algorithm  so that  all its ACVMs receive supply based on the analysis 

of customers favourite flavours. 
 

The company surveys the sales performance  of each flavour in order to check 

which flavour is giving wider  sales, and needs  enhanced  supply frequency  to 

ACVMs.  The survey  could be further   extended  for the  sales promotion  of a 

particular  flavour in its various cities. 
 

 

6. 7 .1 Concept of Classification 
 

A classifier needs training,  which means learning  from existing categorizations 

and  forming  groups  of objects  showing  similar  characteristics.   Training  is a 

learning process which uses training  dataset T and generates  a model program, 

M. Training  dataset means  a subset  E of an exemplary  dataset  which includes 

training  variables. T includes value of the target  variables and predictors  also. 

The training  algorithm generates  a 'Model', which is a program which gives the 

output  vectors  for taking  the  decision of the  class to which the  input  vector 

belongs. (Remember, a set of data points  can be represented  by a vector  in v-



 

- 

dimensional space.) 
 

Figure 6.15  shows the  steps  during  the  learning  phase  of a classifier.  The 

learning  needs (i) training  dataset  T, which includes P, both as the inputs. The 

classifier consists  of a training  algorithm  and  creates  a model program  from 

inputs  and  outputs  ET  (estimated  target  variables).  The algorithm  creates  a 

model  program  M for  internal  uses  of a classifier  and  its  copy M¢. The M¢ 

estimates  target  variable(s) are inputs to a decider D program  to decide which 

data  points  to  put  in  which  class. It  emulates  certain  human  decisions  for 

classification. 
 

 

 
 

 
 

     ------J-"•    ·         edel Pro.l!IJam 

 

 
 

 
 
 
 

Figure  6.15 Steps during the learning phase of a classifier 
 

A  dataset  for  testing  or  evaluating  tests  the  decisions  of the  Model and 

Decider. The test  dataset  is a subset,  whose members  are  the  input  vectors, 

Predictors P and target  output vectors (variables) ET for taking the decision for 

the class to which input vectors belong. If decision from model passes the test, 

then the model will predict correct decisions and the class from future inputs. 
 

Predictor  can be: (i) a continuous  value, such as grade point; (ii) text, such as 

Java; {iii)  string,  such as 'GPA 2:   8.0';  and  (iv) a category,  such as 'very good', 

'potential  researcher',  'high performance',  'Zest model', 'red apple'. 
 

The following example  gives the  understanding   of steps  in classification  of 

students   with  high  GPs in  both  theory   and  practical   courses.  Consider  a 

classifier  for  classifying  'very  good performing   students'   and  thus,  who  are 

potential innovators.



EXAMPLE  6.16 
 

 

Recall Example 6.11.  Consider the  student  ID,  his/her   T_GPAs  in theory 

subjects and P_GPAs in practical subjects. GPAs means grade points average 

computed from grade points in the semester  examination.  Assume the data 

points similar to ones in Figure 6. 9. 
 

How  will  you  specify:  (i)  training   dataset,   (ii)  target   variables,   (iii) 

predictors   (predictor  variables),  (iv) features,  (v) training  algorithm,  (vi) 

model  program,   (vii)  exemplary   (Test)  dataset,   (viii)  estimated   target 

variables, and (ix) decider which categorizes and forms the classes (groups 

of objects) in a classifier? (x) What do you mean by field in a record of data 

points? 
 

SOLUTION 
 

(i)   Training  dataset:  75%  of the  student  data  consisting  of student  ID, 

his/her  T_GPAs in theory subjects and P_GPAs in practical subjects. 
 

(ii) Target  means,  a  feature  as  a target  variable  which  is found  using 

learning  examples. Target is to find whether  a student  group belongs 

to one with high GPA in theory and practical subjects, and both. Target 

variables are T_ GPAs and P _ GPAs. 
 

(iii) Predictors    (Predictor    variables):    Subject   of   study,   subject-wise 

attendance  in class, number of hours a student studies a subject etc. 

(iv) Features:  Gender, Age, Coaching (Yes/No), Residence  (Rural/Urban), 

High T_ GPAs and P _ GPAs 
 

(v)   Training algorithm steps are as follows: 
 

•      Define a training  set. 
 

• Choose a learning algorithm. For example, Support Vector Machines, 

Naive Bayes or Decision Trees. 

•      Complete the design. Run the algorithm. 
 

•      Evaluate the accuracy of the learned model from test dataset. 
 

(vi) Model  Program:   Classification  technique   (or  classifier)  which 

systematically builds the classification model from an input dataset.



(vii) Test dataset: Remaining 25% of the student  data consisting of student 

ID, his/her  T_GPAs in theory subjects and P _GPAs in practical subjects. 

(viii)Estimated target variables: GPA in semester examinations. 

(ix) Record of data  points:  Record is a container  for T which consists  of 

fields. For example, training grade sheets of the students  is a record. 

(x) Fields in the record: Fields are a part  of a record. A field consists of a 

value, feature,  characteristic,  outcome  or category.  Example of input 

fields are T_GPA, P _GPA, Semester, High T_ GPAs and P _GPAs  in input 

vectors  at  a  student   record.   Example of feature  variable  fields  are 

'Excellent', 'Potential Programmer'. 
 

 
6.7.1.1 Concept of Supervised Learning 

 

Methods  of  ML   are  fundamentally   driven   by  data.  On  the   basis  of  data 

availability these  methods  are broadly  classified into  supervised  learning  and 

unsupervised  learning.  Supervised learning refers  to a case when  an algorithm 

uses training  data to take decisions or make predictions. 
 

Supervised learning uses a known output  dataset for the input dataset  (called 

the training  dataset). The Model (program) then learns to make predictions. The 

output  datasets  are used to train the machine and get the desired outputs. Test 

dataset tests the Model and Decider to verify themselves. The developed Model 

makes  predictions   for  an  unknown   output   for  the  further   input   datasets. 

However, in unsupervised  learning,  no output  and input  datasets  are provided 

to train the machine. 
 

Table  6.3  illustrates   the  difference  between  supervised  and  unsupervised 

learning. 
 

Table 6.3  Supervised vs unsupervised  learning 
 

  

Supervised Learning 
 

Unsupervised Learning 

Training 

set 

 
Used 

 
Not  used 

 

Input 
 

Observations 
 

Latent variables 



 

variables   

Output 

variables 

 
Observations 

 
Observations 

 

Labels 
 

All data are labeled 
 

All data are unlabeled 

 

 
 

Goal 

 

To approximate  the mapping  function 

exactly in a way that  on new data input, 

it can predict  the output  variables  for 

that  data. 

 

To model the underlying 

structure  or distribution  in the 

data in order to learn more 

about the data 

Application 

examples 

 
Classification and regression  problems 

 

Clustering and association 

problems 

The following example shows how classification  forms the groups  of objects 

with similar characteristics  from analysis of student  performances  in different 

courses. 
 

 

EXAMPLE  6.17 
 

 

Show the  results   of  a  classifier  for  classification  of  students   showing 

potential  as scientists  and  researchers,   data  architects  and programmers 

after analysis of the GPAs in different courses, i.e., theory and 

practical. 
 

SOLUTION 
 

Figure 6.16  shows results of classification of student  groups into courses as 

potential  classification into classes (groups) of students  in different  courses 

as  potential   (1) scientists   and  researchers,   (2) data  architects   and  (3) 

programmers.



 

 
 

ctaS"S tlc:at o111     into 

dafi'es     m11..1p:s;} of 

stude   ts in di   eirent 
ooutises as   pD'te       - 

(  ~          s ·e    mamd 
ireseillK   E!ll"S      i 

GPAs.  n T'ofE. we 

 

 

i                i 

 
I 

.                                                        I 

.
 

 
 
 
 
 

o...._~~~~~~~~~~~~~~~~~~~ 

 
i 

 
 

 
(  ~                           ramrne 

-                 in

0                          2                                                                                         10 
 

 
 

Figure6.16 Classification on the basis of performances  of the student 

groups 
 

 
 

6.7.1.2  Clustering and Classification Differences 
 

Clusteringand classification differ as shown below, though both the methods 

characterize  the objects into groups by one or more features.  Classification is a 

supervised  learning  method,  whereas  clustering  is an  unsupervised   learning 

method used to form groups of objects with similar characteristics. 
 

Table 6.4  compares  and  highlights  the  characteristics   of classification  and 

clustering. 
 

Table 6.4  Classification vs clustering 
 

 

Property 
 

Classification 
 

Clustering 

 

Supervision 
 

Supervised  learning 
 

Unsupervised  learning 

Training 

set 

 
Used 

 
Not used 

 

Labels 
 

All data are labeled 
 

All data are unlabeled 

 

Datasets 
 

Consist of attributes  and class labels 
 

Consists of attributes 

 

 

Process 

 

Employs algorithms  to categorize  new 

data according  to the observations  of 

 

Statistical  concepts  are used. 

Datasets are split into sub-sets 



 the training  set with similar features 

 

 

Goal 

 

To find which class a new object 

belongs to from a set of predefined 

classes 

 

To group a set of objects in order 

to find the relationship  between 

them 

 

The category structure  is known in classification task, whereas the clustering 

deals with object collections, whose class labels are unknown. 
 

Examples of classification  techniques  include  decision  tree  classifiers,  rule• 

based  classifiers,  Support  Vector  Machines  (SVM) and  Naive  Bayes Classifier 

(Section 6.7.4).   Each classifier employs a learning  algorithm  to build a model 

that best fits the relationship  between the objects of a class. 
 

6.7.1.3 Classifiers 
 

Classifiers for Big Data analytics require parallel and scalable computations  with 

shared-nothing   architecture  for efficiency. Parallel means computations  of the 

same set of codes simultaneously on multiple data nodes (Section 1.2.1).  Scalable 

means linear  relation  between  data volume and the  required  total  number  of 

computation   steps  and  thus,  computational   time.  This means  if 10  MB  data 

require  time  =  T for processing,  then  100  MB  will take  lOT. Shared  nothing 

means    during    computations,    no   inter-processor     communications,    thus 

processors spend no time on them (Example 2.1). 
 

Naive Bayes and complementary  Naive Bayes are efficient between medium to 

large datasets  (> 1 M up to 100 M), but mostly suitable for text data variables and 

medium to high overhead  for training.  Random  Forest  uses all four types  of 

predictor  variables:  continuous,  text,  words  or categorical.  Random Forest  is 

able to handle  conditional  and non-linear  relationships  and thus, the  complex 

classification problems.  It  exhibits high performance  computations  above 10 M 

dataset. 
 

Certain classifiers do sequential  computations  with  shared  architecture.   For 

example, Support Vector  Machines  (SVMs). The SVM  classifier is efficient for 

computational  needs of small (0.1 Mor less) to medium I- 1 M) datasets. 
 

Stochastic  Gradient  Descent  (SGD) algorithms, such as logistic regression  are 

sequential,  incremental  efficient (fast) and used when computational  needs are 

of small I- 0.1 M) to medium I« 10 M) dataset. Predictor  variables can be of any 

of the four types. Section 6.7.3 describes SGD.



Hidden   Markov   and  multi-level   perceptron   are  also  sequential   algorithms. 

OLCs    accompanying     the   book   describe    the   Hidden Markov and  multi-level 

perceptron (Solution of Practice Exercises 6.15 and 6.16). 
 

 

6. 7 .2 K-Nearest  Neighbour  Classifier 
 

Recall Sections 6.3.6 and 6.4.1.1 for applications  of K-NN in regression  and in 

similar items search (k is 1 for nearest  neighbour,  2 for next to nearest  and 3 for 

next to next nearest.  Training dataset  consists of k-closest examples in feature 

space. Feature  space  means,  space with  categorization  variables  (non-metric 

variable). For example, Grade A, B, C, D awarded in an examination  are feature 

space variables. The k-NN learning is learning based on instances, and thus also 

works lazily because instance close to the input vector for test or prediction may 

take  time  to occur  in the  training  dataset.  An object classification  criteria  is 

majority  vote. k-NN is also called the  lazy algorithm.  The following example 

explains this method. 
 

 

EXAMPLE 6.18 

 
Assume that  when  CGPA  (cummulative  grade  point  average)  is  8.0 and 

above up to the  maximum  10.0), a student  performance  is classified as A. 

When CGPA is 6.5 and above below 8.0, performance  is B. When CGPA is 5.0 

and above below 6.5, performance  is C. When CGPA is 4.0 and above below 

5.0, performance  is D. When CGPA is less than 4.0, performance  is F (poor). 
 

A  training   dataset   consists  of  data  of  40  students.   Training  dataset 

consisting of vectors  1, 2, ... to 40 are (StudentIDl, 8.1, A), (StudentID2, 7.6, 

A),  (StudentID3,   6.6,  B),  (StudentID3,   4.6,  D),  (StudentID4,   8.8,  A), 

(StudentID2, 5.6, C),  (StudentID5, 6.7, B), (StudentlD6, 5.2, C), (StudentlD7, 

4.5, D), (StudentID8,  7.9, B), (StudentID9,  6.8, B), (StudentIDlO, 9.1, A), 

(StudentIDll, 7.1,   B),   (StudentID12,   7.9,   B),   (StudentID13,   6.0,   B), 

(StudentID14, 8.0, A), ... 
 

How will a 1-NN classifier classify a student of ID 250 with CGPA 7.2? 
 

SOLUTION 
 

The training  algorithm will follow the following steps (Fig. 6.15): 
 

(i)    Find the distance  for each value of CGPA,  distances  of CGPAs and the



output  variable  class, A, B,  C, D,  or F from the  training  dataset  of 40 

students. 

(ii) Assign frequencies  for class =  A, B,  C,  D,  or F for each range  of grade 

points. 

(iii)  Build  and  update  the  table  with  the  additional   datasets   given  of 

training,  if required. 

Table 6.5 gives guidelines  of the  table  between  the  range  of CGPA  and 

frequency of output variables = A, B, C, D and F. 
 

Table 6.5 Range of CGPAs and frequency of output variables = A, B, C, D and F. 
 

 
CGPA Minimum 

 

CGPA 

Maximum 

 
Freq  (A) 

 
Freq  (B) 

 
Freq  (C) 

 
Freq  (D) 

 
Freq  (F) 

 

8.a 9.b or 10.0 
 

>O 
 

0 
 

0 
 

0 
 

0 

 

6.c 7.d 
 

0 
 

>O 
 

0 
 

0 
 

0 

 

5.e 6.f 
 

0 
 

0 
 

>O 
 

0 
 

0 

 

4.g 4.h 
 

0 
 

0 
 

0 >O 
 

0 

 

O.i 3J 
 

0 
 

0 
 

0 
 

0 >O 

 

The values of a, b, c, d, e, f, g, h, i and j build up gradually as the number of 

training  input  vectors  and output  vectors  keep increasing,  eventually  8.a 

reaching  8.0, 9.b reaching>   9.9 and so on. Time taken  and the number  of 

inputs and output  vectors may be such that  final output  values may take a 

long time. 
 

Model develops a program to read the table and compute output  variable 

estimate for test dataset and unclassified input vector. 
 

Decider Program: When input vector is for ID250, find the distance  of 7 .2 

with the input vectors.ID! distance is 0.9.  Successive input vector distances 

from vector 11  to 140 are 0.9, 0.4, 0.6, 2.6,0.8,  1.6, 0.5, 2.0, 2.7, 0.5, 0.4, 1.9,0.1, 

... ,  Nearest neighbours  have distances=  0.4 from studentID 250.Using CGPA 

range and student CGPA, the decider will output the predictor variable as B. 

Classifier places that student  in class B.



 

6. 7 .3  Stochastic  GradientDescent Method - Logistic 

Regression 
 

Stochastic in  English  means   a  process   or  system  connected   with  random 

probability, chance or randomness.  Gradient equals to change in a function value 

with  respect  to a very small change  in a parameter  value. For example,  in a 

function y(x1,   x2,  ••• ,  xv>  in v-dimensional  space, gradient  of y with respect  to xi 

equals differentiation  of y with respect to xi = dy/ dx, where i = 1, 2, ..., v. 
 

Gradient  descent means  decremental  change  in gradient.  Gradient  descent  is 

used  for  reaching  convergence  for  each  value  of xi  iteratively.  It  reaches  a 

minimum  value for each x during  optimizing  the  set of parameters  or values 

which  are  input  to  an  objective  or  other  function.  The  gradient   descends 

iteratively to a minimum value. Incremental  or decremental  change means 

successive  increment  or  decrement  in x that  leads to  approach  towards  the 

optimum value of y. 
 

Recall Section 6.3.3.  It explained how the best fit could be reached by using the 

'least  squares  criterion',  which says that  best fit is one, which 'minimizes  the 

sum of the  squared  prediction  errors.'  Here, Object function  Q  = L:tt)'j-)'1>2· 
Equation  (6.15) is minimized  to obtain  coefficients  of the  regression  equation 

(6.14), y¢i =  b0    +  b1xi  which gives best  fit, i.e., minimizes  Q.  To minimize  Q  = 

r:t•'j -(bo  + bix/    take the gradient  (derivative) with respect to ho and b1,  set to 

0, respectively, and get the 'least squares estimates'  for b0  and b.from Equations 

(6.16) and (6.17). 
 

The  method  is  called  logistic  regression  when  we  consider  a  generalized 

objective function as follows: 

Qi;_:,.·)= 1v1 [r:1 Ql~··)J.                                                                                        {-6.:2T) 

where N is the number  of data points summed using the input vector, Qi  is i-th 

observation  of y for input  variables y, being  estimated  such that  the  sum is 

minimized and parameters  r coefficients are optimized. 
 

Steps in an  SGD  algorithm  are:  (i)  choose  a starting  input  vector  Y and  a 

learning rate e, i.e., the rate by which y decrements  in next computations  to get 

the  minimum  sum  (Equation  6.27)  and  minimized  regression  coefficients  for



computing  Y, and  (ii) randomly  change  (scuffle) the  exemplary  input  vectors 

and corresponding  output  vectors which are used as examples for learning. For 

i-th observation  1 tom, find 
 

 
 

Here, -  is the mathematical  symbol for gradient,  which computes gradient  of 

Qi(y).  b1  is the linear regression coefficient in Equation (6.28). 
 

SGD  classifier trains  and learns the computation  of objective function  values 

and classifies based on predictor  values for each class. 
 

Logistic regression  uses hash  values for the  features,  which means  training 

algorithm  assigns each feature  a hash value, which is used for indexing, search 

and predictor  variable. 
 

OLCs   accompanying  the  book  gives  examples  of  the   Stochastic  gradient 

descent  method  for logistic regression  and classification  (Solution of Practice 

Exercise 6.13). 
 

 

6. 7 .4 Decision Tree Algorithm 
 

Tree-based learning algorithms are simpler and efficient supervised learning 

methods.  They provide  accurate,  persistent  and ease of analysis to predictive 

models. Tree-based algorithms  are used for solving classification and regression 

problems.  They are suitable  for representing   non-linear  relationships  as well. 

Some of examples of tree-based  learning algorithms  are decision trees, Random 

Forest and gradient boosting. 
 

Following are the important  terms related to Decision Trees: 
 

1.   Root Node: Represents the entire dataset. 
 

2.   Splitting:  A process of dividing a node into two or more sub-nodes 
 

3.   Decision Node: When a sub-node splits into further  sub-nodes 
 

4.   Leaf/Terminal   Node: Nodes that do not split further 
 

5.   Pruning:  Process  of removing  sub-nodes  of a decision  node  (opposite  of 

splitting) 

6.   Branch/Sub-Tree:   A sub-section of the entire tree



7.   Parent  Node: A node divided into sub-nodes 
 

8.   Child Node: A node derived from a parent node. 
 

Decision  Tree  is a supervised  learning  algorithm,  having a desired response 

value that is mostly used in classification problems. Decision tree works for both 

categorical and continuous input and output variables. 
 

The decision steps are as follows: 
 

First, split the dataset  when classifying a response  variable. That is based on 

most  significant  splitter/ differentiator   in  input  variables  into  two  or  more 

subsets. 
 

The decision trees segregate the datasets based on all values of three variables 

and identify the variable, which creates  the best homogeneous  sets of datasets 

(which are heterogeneous  to each other). The following example explains how 

decision trees segregate student  datasets based on all values of three variables. 
 

 
EXAMPLE  6.19 

 

 

Consider a dataset  of 100  students  with three  variables  Gender (Boy/Girl), 

Branch (CS/EC) and GPA score of previous year (8.0 to 10.0).  40 out of these 

100 enrolled in coaching class for learning the programming.  It  is required 

to create a model to predict who will enroll in coaching class. (CS: Computer 

Science, EC means Electronics and Communication). 
 

SOLUTION 
 

First segregate  the students  who took admission in coaching classes based 

on  each   significant   input   variable   and   find  which   variable   is  most 

significant among the three  (Gender, branch, GPA). 

Figure 6.17  suggests that variable GPA identifies the best homogeneous sets 

compared to the other two variables.



 
 
 
 
 
 
 
 
 

 
Splito      ra  ch 

 

 
80%                         26.61% 

 

·                                                                                                                                                                                                                                                                                                                                                                                                                         ~plito       M 
 

Figure  6.17  Example of decision trees for creating the best 

homogeneous sets of students 
 

 
 

Types of decision  tree  are based on the type of response variables: 
 

1. Categorical-variable   Decision Tree: Decision  tree,   which  has  categorical 

response  variable.  For example,  consider  the  above  illustrated   student 

problem, where the  response  variable  is "Student  will enroll in coaching 

class or not" and the answer is YES or NO. 
 

2. Continuous-variable   Decision Tree:   Decision  tree,   which  has  continuous 

response variable. 

Table 6.6 gives features of decision trees. 
 

Table 6.6  Features of decision trees 
 

 

Feature 
 

Description 

 
 

 
Application 

Examples 

 

1. Identify the best combination  of products  and marketing  strategies 

that  target  specific sets of consumers  in a marketing  area. 

2. Customer behavior  analysis, customer  retention   strategy  planning 
 

3. Fraud detection  in industries 
 

4. Diagnosis of diseases 

 

 
 
 
 
 
 

Advantages 

 

1. Decision tree  output  in the form of graphical  representation   is very 

easy to understand. 

2. Useful in predicting  significant  response  variable. 
 

3. Not influenced  by outliers  and missing values to a fair degree as 

compared  to other  techniques  of modeling. 



 4. Handles both numerical  and categorical  variables. 
 

5. Decision tree  is a non-parametric   method.  Thus, decision trees  have no 

assumptions  about space distribution  and classifier structure. 

 
 
 

Disadvantages 

 

1. Over fitting  is a problem  associated with decision tree models. Setting 

constraints  on model parameters   and pruning  solve this problem. 
 

2. When the numerical  variables  are continuous,  the decision tree loses 

information  while categorizing  the variables  in different  categories. 

 

6. 7.4.1 Evaluating a Decision Tree 
 

Different  decision-tree  building  algorithms  are  used. Each algorithm  aims to 

search  a variable,  which gives the  maximum  information  gain or divides the 

data in the most homogenous way. 
 

For example, split on GPA in the above example suggests the student  enrolls in 

coaching class more than the Gender of the student. 
 

A decision tree  exploits various metrics.  For example, Gini index, chi-square 

and Entropy and Information  Gain. Metrics find out the best split variables. A 

decision  tree  algorithm  CART  (Classification and  Regression  Tree)  uses  Gini 

index to split the node. The decision tree resulted by CART algorithm is a binary 

decision tree (each node will have only two child nodes). 
 

The selection of two items from a population  at random  must be of the same 

class and the probability for this is 1 if the population is pure. 

1.   Gini index  is  used  for  categorical  response   variable  "Success"  (p)  or 

"Failure" (q). 
 

2.   Generates binary splits only. 
 

3.   Higher the value of Gini, higher the homogeneity. 

Steps to calculate Gini for a split. 

1.   Calculate Gini for sub-nodes, using formula  sum of square  of probability 

for success and failure 

(p2 + q2). 

2. Calculate Gini for split using weighted Gini score of each node of that split. 

The following example explains the computation  of Gini score and when the 

node split will take place on GPA.



EXAMPLE    6.20 
 

 

(i)    How will the split on Gender compute? 

(ii)   How will the split on GPA compute? 

SOLUTION 

(i)    To find Split on Gender: Calculate, 
 

Gini for sub-node Female= (0.5) x  (0.5) + (0.5) x  (0.5) =0.50 
 

Gini for sub-node Male= (0.33) x (0.33) + (0.67) x (0.67) =0.5578 
 

Weighted Gini for Split Gender =  (40/100) x  0.50 +  (60/100) x  0.5578 = 

0.53468 
 

(ii)   Similarly, for Split on GPA: Calculate, 
 

Gini for sub-node ~9.0  = (0.80) x (0.80) + (0.20) x (0.20) = 0.68 
 

Gini for sub-node <9.0  = (0.27) x  (0.27) + (0.73) x  (0.73) = 0.6058 
 

Weighted  Gini for  Split Class =  (25/100) x  0.68 +  (75/100) x  0.6058 = 

0.62435 
 

Gini score for Split  on GPA is higher than Split on Gender. Hence, the node 

split will take place on GPA. 
 

 

The next  category  of algorithm  is based  on the  chi-square.  This finds  the 

statistical  significance between  the  differences  between  sub-nodes  and parent 

node. The calculation is based on the sum of squares of standardized  differences 

between observed and expected frequencies of the response variable. 
 

The algorithm is used for categorical response variable "Success" or "Failure". 

The algorithm generates  two or more splits. 
 

The  generated   tree  is known  as CHAID  (Chi-square  Automatic  Interaction 

Detector)  which  detects  using the  rule  that  "higher  the  value  of chi-Square, 

higher is the statistical significance of differences between the sub-node and the 

Parent node". Calculation of chi-square of each node uses the term:



 

 
 
 
 
 

L6                   24                                                 82 

24                    36                    .8~                       .61 

3.3] 

1 

 

 

(-6.29) 
 

 

Steps to calculate chi-square for a split: 
 

(i)    Calculate the chi-square for an individual node. 
 

(ii) Calculated  the  chi-square  of Split using  the  sum  of all chi-square  of 

success and failure of each node of the split. 

The following example explains chi-square calculation. 
 

 

EXAMPLE 6.1 
 

 

How will split compute for Gender and GPA using chi-square calculation? 
 

SOLUTION 
 

To find Split on Gender: Calculate, 
 
 
 
 
 
 

 
.                                                                                                                                                                                                                                                                                                                                                    . 

 

 
 

To find Split on GPA: Calculate, 
 

11I 1. II·•
 

 

I I                       •

 
l                     JS 

~                          I                   ..,                         - 

 

3.[6                   :2..58
 

J 

Tot&1 e.bi-sqnare: 

 

45                    L83 
 
 
9.0C, 

 

lA9

 

Chi-square  also  suggests  the  GPA  split is more  significant  compare  to 

Gender  since Chi-square for GPA  split is much higher  than  Chi-square for 

Gender split.



A  category  of algorithm  is based on entropy  computations  and information 

gain. Entropy in thermodynamics  is a measure  of disorder  or randomness  of a 

system.  Statistical  studies  suggest  similar  concept  to  characterize   the  (im) 

purity of an arbitrary  dataset (randomness in dataset). A pure node requires less 

information  to describe  it, and an impure  node requires  more information.  If 

the subset or the dataset  is completely homogeneous, then  the entropy  is zero 

and if the sample is an equally divided (50%-  50%),it has entropy of one. 
 

The formula for statistical entropy is: 
 

                                                                                                ("6.30) 
 

Here p is probability  of success in that  node. Entropy is used with categorical 

response  variable.  The  split  is decided  when  the  entropy  is lower  than  the 

parent  node  and  other  splits.  The lesser  the  entropy  value,  the  better   split 

variable it is. 
 

Steps to calculate entropy for a split: 
 

1.   Calculate entropy of parent node. 
 

2. Calculate  entropy   of  each  individual  node  of  split  and  calculate  the 

weighted average of all sub-nodes available in split. 

The  following  example  explains  the  use  of entropy   computations   for  the 

dataset used to calculate Gini in Example 6.20. 
 

 

EXAMPLE  6.22 
 

 

How will you split and compute entropies for Gender and GPA using entropy 

calculation? How much is the information gain? 
 

SOLUTION 
 

1.   Entropy for the  parent  node =  -  (40/100) log, (40/100) -  (60/100) log, 

(60/100) = 0.971.  The node is impure. 
 

2.   Entropy  for  the  female  node  =   -  (20/40)   log2    (20/40)   -  (20/40)   log2 

(20/40)   =  1   and  for  male  node,  -  (20/60)   log2  (20/60)   -  (40/60)   log2 

(40/60)  = 0.92 

3.   Entropy for split Gender =Weighted entropy  of sub-nodes  =  (40/100) x



1.0 + (60/100)  x 0.92 

= 0.95 
 

4.   Entropy for GPA~ 9.0 node=  - (20/25)   log, (20/25)   -  (5/25)   log2  (5/25)   = 

0. 72, and for 

GPA< 9.0, -  (20/75)   log2  (20/75)   -  (55/75)   log2  (55/75)   = 0.84. 
 

5.   Entropy for split GPA= (25/100)  x 0.72 + (75/100)  x 0.84 = 0.81 
 

Entropy for Split on GPA is the lower than entropy  for Split on Gender, so 

the tree will split on GPA. Information gain from entropy as (1- Entropy). 
 
 
 

The basics of decision trees and the decision-making process involved to select 

the  best  splits  in modeling  such  tree  structure   is presented   in this  section. 

Decision tree  can be applied  on regression  problems  as well as classification 

problems. 
 

6.7.4.2 Decision Trees in R 
 

Multiple packages are available to implement  decision tree  in R programming, 

such as ctree  and rpart.  The rpart  programs  build classification  or regression 

models using a two-phase  procedure.  The resultant  models can be represented 

as binary trees. 
 

First phase is the splitting process using a selected data variable. The process 

continues  recursively either  until the sub-groups reach a default minimum size 

or until no improvement  can be made. The second phase consists of using cross• 

validation to trim back the full tree. 
 

Regression  analysis,  time  series  analysis  and  Markov model  use  statistical 

techniques   in  ML   algorithms   for  predictions.   A   regression   algorithm   is  a 

supervised  ML algorithm.  This means that  they predict  the value for new data 

(output value) on learning from model dependencies  and relationships  between 

the target output and input features. 
 

Six widely used ML Regression analysis algorithms are as follows: 
 

1.  Simple Linear Regression Model-  Single input variable and multiple input 

linear regression 

2.   Multivariate Regression Algorithm



3.   Multiple Regression Algorithm 
 

4.  Support Vector Machines Algorithm -  Use epsilon-insensitivity  (margin of 

tolerance) loss function to solve regression problems 

5.   Logistic Regression Classifier Algorithm -   It  uses SGD  method  (Table 6.8) 

and is used for classification (Section 6.7.3) 
 

6.   LASSO (Least Absolute Selection Shrinkage Operator) Algorithm 
 
 

6.7.5  Naive-Bayes Theorem - Naive Bayes Classifier 
 

Naive Bayes is a simple classifier. It is the probabilistic  and statistical  classifier. 

It  is based  on Bayes theorem   (from  Bayesian statistics)  with  strong  (Naive) 

independence   assumptions  and  maximum  posteriori   hypothesis.  It  is also  a 

supervised learning technique,  which uses non-parametric  approach  (Posteriori 

means at the back of something. For example, hypothesis). The classifier 

assumption is that features have strong independences. 
 

The classifier exploits one of the most basic text classification techniques  with 

a variety  of applications  in email spam detection,  personal  email sorting  and 

document categorization. 
 

The technique uses the probabilities of every feature belonging to each class to 

make a prediction.  Makes simpler calculation  of probabilities  by assuming that 

the  probability   of  a  particular   feature  belonging  to  a  given  class  value  is 

independent   of all other  features.  This type  of assumption  is termed  as class 

conditional independence.  The probabilities  can be looked up in a single scan of 

the database and stored in a small table. This makes it a fast and space efficient 

method. 
 

The use of this method  is in decider program  for the classifier. The training 

program  trains  on maximum likelihood which means maximum probability  of 

occurrences. 
 

Naive Bayes is widely used for text classification. Vectorization  of data points 

need one pass for vectorization  and other  for the algorithm.  Since the method 

uses vector implicitly (for example, a bag of word as input), a single pass suffices 

(Pass means  the  number  of times  the  input  vectors  are  re-examined  during 

training).



In addition, Naive Bayes classifier requires  a small amount of training  data to 

estimate  the parameters,  viz., means and variances  of the variables, which are 

necessary  for classification. However, training  needs high overheads  and more 

time. 
 

Section  9.2.1.3 will  give  details.  A  word  contained   (and  its  occurrences) 

represents   text  in  a  document.  The  bag-of-words  model  is commonly  used 

methods of document classification where the (frequency of) occurrence of each 

word is used as a feature  for training  a classifier (Wikipedia). Section 9.2.2 will 

describe Naive Bayes Analysis in detail. 
 

Bayes theorem  describes the conditional probability of an event. The theorem 

basis is that  conditions  that  might be related  to the  event. The probability  P 

(AIB)  of Event A  occurring  and Event B  has already  occurred  is given by the 

formula: 
 

Pc..41B)  = PtA and B)/Pr..B) = P(A n BVP(B)                                                        (6.31) 
 

Probability  of conditions  A or B  is equal to the  probability  of both A and B 

happening  divided by Probability of B alone. ( n  is symbol for intersection  in set 

theory.  U  is symbol for union in set theory). 
 

Naive Bayes classifiers are efficient in terms of CPU and memory consumption. 

The classifiers are not sensitive to irrelevant  features.  They have the ability to 

handle real and discrete data as well as streaming  data well. The classifiers can 

also be trained  very quickly. The only disadvantage is that they assume 

independence  of features.  Overall, Naive Bayes outperforms  by other  classifiers 

most of the times and is used as a baseline in many researches. 
 

 

6. 7 .6 SupportVector Machine Classifier 
 

Support Vector  Machine  (SVM) is a  method  in  a  set  of related  supervised 

learning method that  uses  a  vector,  which  has  in  general,  v elements  in  v• 

dimensional  space. The vector  classifies the  data  points.  Following is a brief 

introduction. 
 

A data point in the space is represented  by a vector. A data point represents  by 

(xl,  x2, ... ,   xn) in n-dimensional  space. Consider two-dimensional  space, with 

data points (xl, x2) and axes Xl and X2. Each data-point  if considered as a vector 

element has two components, xl, and x2. (Two sets of words in text analysis). A



hyperplane is  a  subspace  of  one  dimension  less  than   its  ambient   space  in 

geometry.   If  a  space  is  3-dimensional,   then   its  hyperplanes   are   the   2- 

dimensional planes. However, if the space is 2-dimensional, its hyperplanes  are 

1-dimensional which means lines. 
 

The algorithm  finds  Support  Vector  (SV) to  maximize  boundary  distances. 

Figure 6.18 shows car sales in different showrooms. A star corresponds  to Jaguar 

sales in a year at different  showrooms and dot corresponds  to Zest sales of Tata 

Zest model. Xl axes in feature space and X2 is in metric spaces (sales number). 
 

Figure 6.18 shows the  separating  hyperplanes  using three  hyperplanes  A, B, 

and C  for classification  of data points. A hyperplane  is equivalent  to a line in 

case of 2-dimensional space. 

 

 
 

Figure  6.18 Three hyperplanes  A, B, and C for classification of data 

points 
 

The planes  are  iteratively  chosen  to  maximize  distances.  SV  curve  can be 

specified by not only a plane, but also by a kernel function (such as Gaussian or 

tri-cube). 
 

Both positive  and  negative  support  vectors  can be used  in features  space. 

Negative SV means the features, which exclude in classification, are used by the 

classifier. 
 

 

6.7.7  Random Forest Classifier 
 

Random  Forest  (RF) uses  all four  categories  of predictor   variables.  It  is an 

ensemble learning method. Its applications are in classification as well as 

regression.  RF has high overheads.  Its architecture   is based on a decision tree. 

The  training  program  trains  a  regression  tree  or  decision  tree  (Section  6.7 

Figure 6.15).



RF  uses  a  tree   learning   algorithm   modified  that   selects,  such  that   each 

candidate splits in the learning process and uses a random subset of features for 

learning (to take decisions). 
 

For example, Let I (T)  = Training input features or values and O [I (T)]  = Output 

exemplary features or values of I. RF selects a bootstrap  sample, randomly from 

input  and  output  examples  (T). Decision or  regression  tree  D  trains  on the 

samples=  1 to S of d, (Is, Os). 
 

Training algorithm uses bootstrap  aggregating method. It puts tree learners  in 

bags  (containers).  Training  dataset   input  vectors  and  corresponding   output 

variables bootstrap  the  sample repeatedly,  and fits with the decision tree. The 

prediction   variable  can  either   be  estimated   by  vote  (frequency  of  correct 

decisions or regression) or by using the averaging formula, in Equation (6.27). 
 

D(S)  = Maximum vote frequency (s)/Total sample features or 

D(S) = s-1[L:=1d.,(y)J                                                                                     (_6.32) 

The   advantage   of  RF    is  that   it   effectively   programs   the   conditional 

relationships  and non-linear  functions,  kernel  or other  complex functions.  Its 

applications   are  when  the  data  points  are  less  than   10  M. It  has  parallel 

execution with shared nothing architecture. 
 

 

6. 7 .8 AdaBoost and OtherEnsemble  Classifiers 
 

AdaBoost means  adaptive  boosting.  It builds  a  strong  learner  from  a linear 

combination of weak learners. 
 

It initially assumes uniform weight of training  examples. Weight means 

importance  of an example  with  respect  to other  examples. Assume a trainer 

algorithm using a sample (example) sin trained vector T. 

The Ts: e ~   {-  1,  1}. It means training  example Ts weight is - 1  or +  1  to start 

with. Ts  is a week  classifier,  as it  cannot  generate   a predictor  variable  and 

classify. Each classifier is considered  sequentially. When its algorithm  increases 

its weight, then other weights correspondingly  reduce. 

Now increase  the  weights  of variables  those  Te,  which are misclassified and 

need  greater   importance.  Assume weight  of Ts  is e(s). Finally, the  classifier 

adapts and forms linear combinations of those Te whose weights were increased.



The equation  for Decider D(S) using the linear combination  of features  is given 

by: 

D("S) = K[L:1{£(.S )X  dj()')} J.                                                                      {6.33) 

where K  =  ~ s  E(s)   is the  sum of the  weights  of each sample, and ds(y) is the 
.L.rs::L 

feature of sample s. 
 

OLCs   accompanying  the  book  will  describe  an  example  of  application   of 

AdaBoost. 
 

 

Self-Assessment Exercise linked  to LO 6.6 
 

1. List the meaning  of the terms,  training  example,  input  vector,  predictor  variable, 

continuous  variable,  categorical  variable  and feature  hashing. 

2.   What is vectorization?  How does a vector  differ from a bag of words? 
 

3. How does decision  tree  algorithm  CART  (Classification  and Regression  Tree) use 

the Gini index to split a node. How is the entropy  calculated? 
 

4.   When will you use Naive Bayes, Random Forest and Support vector Classifiers? 
 

5.   List features  of the N aive Bayes classifier. 
 

6.   How do parallel  computations   with shared  nothing  architectures   help in efficient 

Big Data analysis? Which are the classifiers supporting  these  features? 
 

7.   How does AdaBoost generate  a strong  classifier? 
 

8.   What are the limitations of AdaBoost and Random Forest classifiers? 
 
 
 

 

6.8 l RECOMMENDATION SYSTEM 
 

Recommender refers    to    a   machine    learning    (ML)  tool    that    enables 

recommendations after  extractions  of features  in the  itemsets  from multiple 

datasets. Example is a product  recommender,  such as book recommender. 

Recommendation  of a recommender  enables the selection of the right product 

among  the   high  recommendation   products.   A   recommender's    need  arises 

because  a  customer   finds  it  difficult  to  search  the   right   product   due  to



information  overload.  Figure 6.19  shows the  steps  in user-based  collaborative 

filtering (CF) and content-based  filtering (CBF) recommenders. 
 

 
 

 
 
 
 
 

Tbp NI 

recornmendenens 

 
 

 

 
 
 
 
 

Figure 6.19 Steps in user-based CF and CBF recommenders 
 

 

6.8.1  Collaborative Recommendation 
 

A  recommender   generates   by  collaborative   filtering   (CF)   and  gives  either 

prediction  or  recommendation   (Figure 6.19).   Prediction  is a numerical  value 

(Rij), suggesting the  predicted  score of item j for the  user i. Recommendation 

can be a list of top-N items that the user will like the most. 
 

Group forms for similar users which means in neighbourhoods.  Similar means 

not  distant.   The  recommender   is  an  application   of  near-neighbour   search 

method.  The already  rated  items are significant  in searching  for a neighbour. 

Once a neighbour of a user is found, different algorithms can be used to combine 

the preference  of neighbours to generate recommendations. 
 

6.8.1.1 Collaborative Filtering 
 

CF algorithm makes recommendations  by calculating the similarities in itemsets 

in-between different items in the datasets. The algorithm predicts the likeliness 

of an item that it has not rated based on a set of historical preference judgments 

from a community of users. 
 

CF  is different  from content-based  filtering  (CBF)  which is built  around  the 

attributes  of a given item (Figure 6.19).  Item features do not capture everything. 

User's interests  may change. CF on the other hand relies on the behavior of the



users. 
 

Top-N  Recommendations A    step   in   a   CF    system   is   to   find   Top-N 

Recommendations  (Figure 6.19). Top-N recommendation  is used to recommend 

a  set  of N top-ranked   items  that  will be  of interest   to  a  certain  user.  For 

example, a user of a website recommends a list of books (or other products) that 

may be of his/her  interest  before leaving the website. Top-N  recommendation 

techniques  analyze the user-item  matrix to discover relations between different 

users or items. 
 

The two approaches to collaborative filtering are: 
 

•        Model-based  collaborative  filtering  -  Based on  ML  techniques   (Section 

6.8.2) 
 

• Memory-based collaborative  filtering  - Based on similarity between  users 

and items 

Memory-based  Collaborative  Filtering Memory-based  techniques   are  best 

suited to   real-life   applications   due  to   their   effectiveness.   Memory-based 

collaborative  filtering  can be achieved through  two approaches,  i.e., one based 

on items,  and  the  other  on users,  and  termed  as user-based  and  item-based 

approaches. 
 

6.8.1.2 User-Based Top-N Recommendation Algorithm 
 

An algorithm does the following: 
 

Identify the k most similar users (nearest neighbours)  to the active user using 

the Pearson correlation or vector space model. Every user is treated  as a vector in 

the v-dimensional item space. The similarities between the active user and other 

users are computed between the vectors (Sections 6.3.6 and 6.4.4). 

• The  corresponding   rows  are  aggregated  in  the  user-item  matrix,  R to 

identify  a set  of items,  C, purchased  by the  group  together  with  their 

frequencies. 
 

• Recommend the top-N  most frequent  items in set C that  the  active user 

has not purchased. 
 

Pearson  correlation  model: (i) Does not consider  overlapping  preferences  of 

two users,  (ii) Computation  of only one item in case of two user  overlapping



preferences,   (iii)  Correlation  does  not  give added  weights  when  a  series  of 

preference  values are equal. Pearson  correlation  using weights is an option to 

consider these issues. 
 

User-based CF recommends items by finding similar users. 
 

•        Users who were interested  in the past, are likely to agree again. 
 

•        Exploit the opinion of similar users to predict a user's opinion for an item 
 

• Similarity  between  users  is  calculated  by  looking  at  their   overlap  in 

opinions for other items. 

User-based nearest-neighbour  CF Algorithm, performs the following steps: 
 

• Calculate the similarity or weight, wi,j, which reflects distance, correlation 

or weight, between two users or two items, i and j 

• Identify a prediction  for the new user by taking the weighted average of all 

the ratings  of the user, item on a certain  item or user, or using a simple 

weighted average 
 

•        Suggestions for Top-N  recommendation 
 

• The task  to  generate  a top-N   recommendation   requires  finding  k most 

similar users   or   items   (nearest    neighbours)    after   computing    the 

similarities 

• Aggregate  the  neighbours  to get  the  top-N   most  frequent  items  as the 

recommendation. 

6.8.1.3 Item-based Collaborative Filtering 
 

An item-based CF recommends  items by finding similar items. Amazon initially 

developed  the  item-based  method.  The method  calculates  similarity  between 

items and makes recommendations.  Different items that are purchased  together 

are involved to draw inferences about the relationship  between items. The more 

often two items (say, chocolate, gift box and greeting  card) appear  in the same 

shopping  cart  or  user  history,  they  are  considered  as  associated  with  one 

another.  Association between  two items specifies by the  observations,  such as 

when a customer  adds a greeting  card to the purchase  cart, the algorithm  will 

suggest things that  are associated with items in the cart like chocolate and gift 

box, over things that are not associated, such as electronic items.



• Items  that  are  purchased  together  in the  past  are  likely to be selected 

again. 

• Similarity  between  items  is decided  by looking  at  their  overlap  in the 

purchase pattern  for items. 

Exploit the full or a sample of the user-item  database to generate  a prediction. 

Users part of a group show similar interest.  A prediction  of preferences  on new 

items  for  a  new  user  (or  active  user)  can  be  evaluated  by  identifying  the 

neighbours. 
 

Problems  with   User-based  Collaborative  Filtering  Following  are   some 

problems associated with using user-based collaborative filtering: 
 

• User  Cold-Start  Problem:  The  technique   of  filtering   is  based  on  user 

history, but what if the user history is not available? This is referred  as the 

"cold start"  problem, and it can apply both to new items and to new users. 

Not enough information  exists about a new user to decide the similarity. 
 

• Sparsity: Users have rated  only a few items when recommending  from a 

large dataset of itemsets. This makes it hard to find similar users. 
 

•        Scalability: For millions of ratings, computations  become slow. 
 

User-based  vs   Item-based  Collaborative  Filtering  User-based   similarity 

between  users is dynamic. Pre-computing  the user neighbourhood  can lead to 

poor  predictions.   User  similarities   have  a  much  vast  domain.  Item-based 

similarity between  items is more static, and hence it enables pre-computation 

which   improves   online   performance.    An  item-based   similarity   is   more 

meaningful. 
 

Let a user assign a rating to an item, such as a book on a topic. The similarity 

between  two users  of the  items  can be measured  by treating  each user  as a 

vector  of rating  frequencies  and computing  the cosine of the angle formed by 

the frequency vectors. The basis of recommendation  is similarity. (Vector cosine 

similarity between two sets of data points (vectors  A and B) is given by Equation 

(6.23b)). 
 

Formally, if P is an m x  n user-item  matrix,  then  the  similarity  between  two 

items j  and  i  is defined  as the  cosine  of the  angles  between  v-dimensional 

vectors corresponding  to the i-th and j-th columns of matrix P.



 
 
 
 
 
 

 

or~ .. 
~                      s.,,,_ 

Re~m    e  da~i~n~"'-   ... ._ 

Figure 6.20  shows prediction  on an item and top 10 recommendation  list for a 

user. 
 

 
 
 
 
 
 
 
 

.. 
 

 
 
 

Figure 6.20  Prediction on an item and top 10 recommendation  list for a 

user 
 

6.8.1.4 Computations of Prediction and Recommendation 
 

Next step in a collaborative filtering system is to obtain predictions  or 

recommendations.  A subset of nearest  neighbours  of the active user is chosen 

based   on  their   similarities   in  the   neighbourhood-based    CF   algorithm.   A 

weighted aggregate of their ratings is used to generate  predictions  for the active 

user. 
 

Weighted   Sum  of  Others'   Ratings   Calculate  a weighted  average  of all the 

ratings on a certain item i to make a prediction  for the active user according to 

the following formula: 

                                                                             {6.34) 

where  ~ and ~  are the  average  ratings  for the user a, and user u on all other 

rated items, and wa,u 

is the weight between  the  user  a and user u. The summations  are overall the 

users u E U who have rated the item i. 
 

Simple  Weighted  Average  Use the  simple  weighted  average  to  predict  the 

rating Pu,i for user u on item iin case of item-based prediction. 
 

Item-based   Top-N   Recommendation  Algorithms   These  algorithms  consider 

the scalability problem of user-based top-N  recommendation  algorithms.



•        Compute k most similar items for each item according to the similarities. 
 

• Identify the set C as candidates of recommended  items by taking the union 

of the k most similar items and removing  each of the  items in the  set U 

that the user has already purchased. 
 

•      Calculate the similarities between each item of the set C and the set U . 
 

• The resulting  set  of the  items  in  C, sorted  in decreasing  order  of the 

similarity, will be the recommended  item-based Top-N  list. 
 

The combined distribution  of a set of items may result into different from the 

distributions  of the  individual  items  in the  set. The method  can suggest sub• 

optimal recommendations  in such cases. Higher-order  item-based top-N 

recommendation  algorithms can be used in such situations to consider all 

combinations 

of items. 
 

 

6.8.2  Model for Recommendation  Systems 
 

Figure  6.15   showed  model  building  approach   for  building   classifier  using 

machine   learning.   Similarly,  a  model  building  for  recommender   approach 

utilizes machine learning. They can quickly recommend a set of items since they 

use pre-computed  models. They use the association rules, regression, clustering, 

neural network, Bayesian classifiers, decision trees and matrix completion 

techniques. 
 

Matrix completion  means filling the  missing entries  in sparse matrices.  The 

recommender  uses user-item  matrices.  The matrix  completion  algorithm  uses 

an algorithm  similar  to principal  component  analysis  (Section 6.9).  A  model• 

based  technique  analyzes  the  user-item  matrix  to  identify  relations  between 

items. These relations  are used to compare the list of top-N  recommendations. 

Model-based techniques  resolve the  sparsity  of data problems  associated with 

recommendation  systems. 
 

A model-based recommender  is an association-rule-based  technique. The 

following example explains how the  association  rule  (Section 6.5.2)  applies in 

designing a recommender  system for books. 
 

 

EXAMPLE  6.23



How does  association  rule  help  in designing  a recommender   system  for 

books? 
 

SOLUTION 
 

An online bookstore  posts recommendations  for buying books and suggests 

the  offers after  a buyer makes a purchase.  For example, if a buyer  selects 

the  book  'Data Analytics',  a  list  of related  books,  such  as Data Mining, 

Statistical Concepts, Machine Learning, Big Data Analytics will be offered as 

recommendations  for future  purchase.  The association  rules suggests that 

when a book on data analytics is purchased,  25% of the times a book on Big 

Data analytics, 20% of the times a book on data mining, 20% of the times a 

book  on  statistical   concepts,  and  20%  of the  time  a  book  on  machine 

learning is bought along with it. 
 

Association rules can also be used to plan market  strategies  for the store. 

For example, the book on Big Data analytics can be promoted for the sales of 

the other three books with or without a discount. 
 
 

Websites and  services  such as Amazon, Facebook, YouTube and  Google use 

association  rules  mining.  The  recommender   looks  at  patterns   of  activities 

between  different  users  and  different  products  to  produce  the 

recommendations. 

1.   Online bookstore: 'Customer who bought this, also bought'. 
 

2.   Online shopping site: 'You may like this'. 
 

3.  Social  web:  Recommended   applications,   such   as  'Jobs  you   may  be 

interested'  in .... 

4.    Search engine: Similar advertising 
 

 

6.8.3  Content Based Recommendation 
 

Content-based filtering is built around the attributes  and preferences  of a given 

item. The recommender  evaluates the contents  or items on the preferences  of 

others  with a similar point of view. When anyone buys a product  online, most 

websites   automatically   recommend   other   products   that   she/he    may  be 

interested  to buy. Figure 6.19 illustrated  these steps.



6.8.4  Knowledge-based Recommendation 
 

A Knowledge-based Filtering (KBF) recommender  builds on explicit knowledge 

about  user  preferences,   the  number   of  items  of  specific  attributes   and  a 

criterion   function  for  the  recommendation   means  positive  recommendation 

criterion for the given context. 
 

Advantage of KBF recommender  is that  it applies in scenarios where  CF and 

CBF   have  difficulties  in  uses.  For  example,  cold  start   difficulty.  Another 

advantage is applicability in complex domains, such as purchase of house, where 

ratings  are mostly unavailable.  Another  advantage  is applicability  when using 

the conversations with experts. 
 

A    disadvantage    is   problem   associated   with   acquiring    difficulties   for 

knowledge. A definitive recommendation  in explicit form is difficult without full 

knowledge. 
 

 

6.8.5  Hybrid Recommendation  Approaches 
 

Hybrid filtering is a combination  of collaborative  and content  base filtering for 

recommendations.   CF   and  CBF  have  following  issues  in  making 

recommendations  to new users. 
 

CF Issues Three CF issues are (i) sparsity  issue (Section 6.8.1.3), (ii) early rater 

issues, such as that  several times a proper  rating  can be true  if rendered  after 

longer usages, and (iii) preference  of a group of users does not account for low 

ratings by certain users. 
 

CBF Issues Three CBF issues are (i) description  of contents  difficulties in format 

accessible to a new user, (ii) over-special need of new user, making 

recommendation    outside   the   specialized   information    available,   and   (iii) 

difficulty in comparing subjective domains information. 
 

Hybrid approach  combines CF and CBF. The approach  combines both types of 

information,  applying both filters, CF and CBF. 
 
 

Self-Assessment  Exercise linked  to LO 6.7 
 

1.    Howdoes a recommender provide top 10 recommendations? 
 

2.   List  the   difference  in   approaches   of  recommender-based   on   user-based



collaborative  filtering  (CF) and content-based filtering (CBF). 
 

3.   When is collaborative filtering used? 
 

4.   Howdoes a model-based recommender use the association rule? 
 

5.   Compare knowledge-based filtering and content-based  filtering. 
 
 
 

 

6.9  l APACHE  MAHOUT  MACHINE-LEARNING  APPLICATIONS 

Big Data requires  fast and efficient processing  of very 

large  datasets   at  the  cluster  of  machines.  Big Data 

analysis uses datasets  with over 1  million data points. 

Mahout has high efficiency for above 10 M data points 

in shared-nothing   environment.  Mahout in sequential 

shared environment  has higher time efficiency for less 

than 1 M data points. 

 
 
Apac::liile   1allilmrt: arc::liili1-  

te..rtu ~ and  conn pon~ntrs 

and their  applic::atiornis  fm 
cl ustteri  n ~. era ssiftc~tion, 
col laboratii~1iil1teri  ng  aliild 
rec::omm @llilder  sy~tem:

 

Mahout  computational  tasks  execute  fast when  using multiple  machines  as 

well  as  multi-core   processing  units,  distributed   over  the  cloud,  tasks  runs 

parallel, and run in shared nothing-computational   environment. 
 

Mahout  requires   installing  JVM and  integrated   development   environment 

(IDE).  For example,  Eclipse, installing  Apache  Maven and  then  the  Mahout. 

(Maven in English means a person with good knowledge or understanding   of a 

subject. Apache Maven is a build automation  tool used primarily for 

Java projects). 
 

Mahout  is a scalable generalized  tensor  and  linear  algebra  solving engine. 

Mahout  vectors  specify  in  three  Java  Classes: SequentialAccessSparseVector, 

RandomAccessSparseVector, and DenseVector 

(Section 6.4.4.4).   Sequential access sparse means accessing two parallel vectors, 

one of keys and other  of values. Random access means accessing vectors using 

key, index or hash followed by values, in 

any order. 
 

Mahout is a tool from Apache Foundation that  runs the ML algorithms  on Big 

Data  in  a  parallel   computing   environment.   Mahout  primarily   focuses  on 

clustering   and  classification,  collaborative  filtering  and  regression   analysis.

mailto:@llilder


Mahout  consists  of tools  to  automate  finding  of meaningful  patterns   at  big 

datasets stored in data store at HDFS. 
 

Features of Mahout are as follows: 
 

1. Mahout  is  designed  on  top  of  Apache  Hadoop,  using  the   supported 

algebraic platforms like fast computing Apache Spark paradigm and 

MapReduce (Spark is fast compared to MapReduce). 
 

2.   Offers effective and faster algorithms to analyze large datasets. 
 

3.  Contains     several      Spark     and     MapReduce     enabled      clustering 

implementations,  such as k-means, fuzzy k-means, Canopy, Dirichlet and 

mean shift. 

4. Supports   distributed    Naive   Bayes  and   complementary    Naive   Bayes 

classification implementations, 
 

5. Designed for a distributed  computing  environment,  but  includes 

contributions  that  run on a single node or on a non-Hadoop cluster  also, 

such as 'Taste' collaborative-filtering  recommender, 

6.  Mahout, besides collaborative filtering baser recommender,  includes other 

recommenders also,   say   (i)  SVD    recommender    (ii)  KNN-item-based 

recommender  (linear interpolation  item based recommender),  (iii} cluster• 

based recommender. 

7.   Exploits Apache Hadoop library to scale effectively in the cloud. 
 

8.   Includes  APis  for  distributed   and   in-core   first   and  second  moment 

routines,  distributed  row matrix  (DRM), distributed  and scalable libraries 

for matrix  and vector, distributed  and local principal  component  analysis 

(DSPCA and SPCA)andstochastic singular value decomposition (DSSVD and 

SSVD ),  singular   value  decomposition   (SVD), Distributed   Cholesky  QR 

(thinQR), Distributed  regularized  Alternating  Least Squares  (DALS), Java 

libraries  for common mathematics  and statistical  operations  (focused on 

linear algebra) and primitive Java Collection Interfaces. 

9.  Provides an easy to use framework  for processing  large volume of data, 

hence is suitable in big data environment.



(Principal Component Analysis (PCA) means a linear transformation   method  for 

finding  the  directions   of  maximum  variance  in  high-dimensional   data  and 

project  those  for  transformation   onto  a smaller  dimensional  subspace  while 

retaining   most  of the  information.  PCA identifies  patterns in  data  sets  and 

detect the correlation  among the variables. When there  is a strong correlation, 

then try for reducing the dimensionality.  PCA applies in a number  of use cases, 

such as stock market predictions, and the analysis of gene expression data.) 
 

Mahout  0.13.0   released  on 17  April 2017  enables  easier  implementations   of 

most  modern  machine  learning  and  deep  learning  algorithms.  The versions 

include  the  open-source  distributed   scalable linear  algebra  library  ViennaCL, 

the  Java   wrapper   library   interface   JavaCPP  and   the   graphics   processor 

manufacturer,  NVIDIA CUDA bindings directly into Mahout. The new version of 

Mahout makes it easier to run matrix  mathematics  on graphics  cards (used in 

computers   for  fast  graphic   computations).   Future  versions  of  Mahout  will 

include support for inclusion of native iterative solvers, according to Apache. 
 

Mahout  is  used  by  big  companies,   such  as  Adobe,  Facebook,  Linkedln, 

Foursquare, Twitter and Yahoo. The companies use Mahout for the following: 
 

(i) Recommendation engine on Foursquare- Foursquare helps in finding out 

places, food, and entertainment available in a particular  area 

(ii)   Pattern  mining on Yahoo! as anti-spam 
 

(iii)  Research Gate, the  professional  network  for scientists  and researchers, 

uses Mahout's recommendation  algorithms 

(iv) Twitter  uses Mahout's Latent-Dirichlet-Allocation  (LOA) implementation 

for user interest  modeling 

(v) ADOBE  AMP uses  Mahout's   clustering   algorithms   to  increase   video 

consumption by better  user targeting. 

Figure 6.21 shows Mahout architecture.



 
ms 

--------- 

- 

 

 
FreqLI-ent 

it,em:se_      IRegr·es    om   DI 

Bus:lnes, 
Lqk

ini   e                              
R
 

------------------------          ...-.----------i         D1antdlsStahraar.la!d~

Utl  ltl 

ILU    ru  N@ci,o I                                                                                                                                                                                                                                                                                    
A  _                          e ~sdoo{D

 
Ubraries 

-+-----

 
 

Figure 6.21  Mahout architecture 
 

Mahout implements ML methods as: 
 

1. Collaborative  Filtering -  Enables making  automatic  predictions   about 

interests  of a user. The methods consider the preferences  from many users 

to  make  predictions  (collaborating).  Collaborative filtering  methods  are 

used by recommender  systems and similar itemsets  mining. For example, 

user-based, weighted matrix factorization SVD++, and parallel SGD (in 

sequentially    in     shared-data      environment),      item-based,      matrix 

factorization  with  alternating   least  squares,  matrix  factorization   with 

alternating least  squares  with  implicit  feedback,  using  parallel  scalable 

shared nothing   (MapReduce)  as  well  as  sequential   algorithms.   Some 

popular  websites  that   make  use  of  the  collaborative   filtering  include 

Amazon, Netflix and iTunes. 

2. Clustering -  Take  items  in  a  particular   class and  organize  them  into 

groups,  such that  items belonging to the  same group  are similar to each 

other.  Mahout  includes  the  ML  algorithms  for k-means,  fuzzy k-means, 

Canopy, Dirichlet, and mean-shift for the clusters analysis (Section 6.9). 
 

3.  Classification  -  Learns  from  existing  categorizations   and  then  assigns 

unclassified  items  to  the  best  category.  For example,  Naive  Bayes and 

Random Forest using parallel scalable algorithm  (parallel shared-nothing) 

and logistic regression,  support  vector, Hidden Markov model and multi• 

layer perceptron  (sequentially shared data environment).

mailto:N@ci


4.  Frequent Itemset  Mining-Analyses   items in a group and identifies which 

items typically appear together. 

Clustering algorithms are canopy, k-means, fuzzy k-means, streaming k-means 

and spectral clustering, using parallel scalable (MapReduce) as well as sequential 

algorithms. Table 6. 7 gives brief descriptions of them. 
 

Table 6. 7 Clustering methods 
 

 

Canopy 

clustering 

 

Pre-processes  the data before using a k-means or hierarchical  clustering 

algorithm 

 

K-means 

clustering 

 

Deduces partition  of n observations  into k clusters  in which each 

observation  belongs to the cluster with the nearest  mean 

 

Mean shift 

clustering 

 

Retrieves modes or clusters  in 2-dimensional  space, where the number 

of clusters  is unknown 

 
Fuzzy k-means 

 

Discovers soft clusters  where a particular  point can fall into more than 

one cluster 

 

Hierarchical 

clustering 

 

Builds a hierarchy  of clusters  using either  an agglomerative  (bottom-up) 

or divisive (top-down)  approach 

 

Spectral 

clustering 

 

Finds cluster  points using Eigenvectors  of matrices  derived from the 

data 

MinHash 

clustering 

 
Estimates similarity  between  two datasets  quickly 

Dirichlet 

process 

clustering 

 

 

Performs  Bayesian mixture  modeling 

 

Latent Dirichlet 

Allocation 

 

Automatically  and jointly  cluster words into topics and documents into 

mixtures  of topics 

Three  other   categories   of  Mahout  algorithm   belong  to  the  collaborative 

filtering, classification or frequent itemset mining. Mahout provides two 

collaborative-filtering  algorithms: 
 

1. One is distributed  item-based collaborative filtering. The method estimates 

a user's preference  for an item based on the preferences  for similar items



and row matrices. 
 

2. Other is collaborative  filtering  using a parallel  matrix  factorization.  The 

method the items the user might prefer  among a matrix  of items which a 

user has not seen so far. 

Table 6.8  Brief descriptions  of collaboration filtering, Classification and 

frequent  itemset Hadoop-compatible algorithms 
 

 

Algorithm 
 

Description 

 

Collaborative Filtering 

Distributed  item- 

based collaborative 

filtering 

 
Estimates a user's preference  for an item on the basis of the 

preferences  for similar items and row matrices 

Collaborative 

filtering  using a 

parallel matrix 

factorization 

 
 

Finding the items, the user might prefer  among a matrix  of items, 

which a user has not seen so far. 

 

Classification 

 

Bayesian 
 

Classifies objects into binary  categories;  Naive Bayes classification. 

 
 

Random Fores ts 

 

Provides a collective learning  method  for classification  (and 

regression)  that  operate  by constructing   a multitude  of decision 

trees 

 
Stochastic Gradient 

Descent (SGD) 

 

Iterative  learning  algorithm  in which each training  example is used 

to pull the model slightly to give more closer to correct  answer for 

that  one example (Logistic regression  algorithm  uses the SGD) 

  

 

Frequent Itemset  Mining 

Parallel frequent 

pattern  growth 

algorithm 

 
Analyzes items in a group and then  identifies  which items typically 

appear  together 

 

Mahout Recommender Engine  Mahout  provides  recommender   engines  of



several  types,  such  as  (i) user-based  recommenders,   (ii) item-based 

recommenders,  and (iii} several other algorithms. Mahout has a non-distributed, 

non-Hadoop-based  recommender  engine. A text document  is the input and has 

user preferences  for items. The output  of this  engine would be the  estimated 

preferences  of a particular  user for other  items. Five components  in Mahout to 

build a recommender  engine are as follows: 
 

1. Data Model- The object of this class holds a file that  contains  the users, 

items and preferences  details of a product. 

2. User  Similarity-  A  measure  that   returns   a  number   representing   how 

similar the given two users are. 

3.   Item Similarity- Defines a notion of similarity between two items. 
 

4.   User Neighbourhood-  For finding the neighbourhood  of a given user. 
 

5.  Recommender-   Takes  data  model,  neighbourhood   and  user  similarity 

together  to produce recommendations. 

A data model is prepared  from large datasets  and is passed as an input to the 

recommender    engine.   The   recommender    engine   generates   the 

recommendations  for a particular  user. 
 
 

Self-Assessment  Exercise linked  to LO 6.8 
 

1. Why does Mahout  compute  faster  in case of data  points  above  lM  compared  to 

sequential  non-scalable  programming? 

2.   List the features  of Mahout 0.13 version  and expected  new version features. 
 

3. List  and  differentiate    between   two  Mahout   collaborative-filtering     algorithms, 

collaborative   filtering  using  a parallel  matrix  factorization   and  and  distributed 

item-based  collaborative  filtering. 

4.  Write  meanings   of  distributed   row  matrix   (DRM), distributed   and 

scalable libraries for matrix  and vector, distributed  and local principal 

component analysis (DSPCA and SPCA) and stochastic singular value 

decomposition (DSSVD and SSVD), singular value decomposition (SVD).



 

 
 

AdaBoost 
 

ANOVA 
 

Apache Mahout 

Apriori algorithm 

Artificial intelligence 

association rules 

Bayesian classification 

category variable 

candidate rules 

chi-square 

classification 

clustering 

collaborative filtering 

confidence level 

correlation 

cosine similarity 

data mining 

decision tree 

dimension 

distance measure 

distribution  function 

edit distance 

entropy 
 

Euclidean distance 

explanatory variable 

F-test



feature variable 

frequent  itemset 

Gini index 

hypothesis 

interaction  variable 

Jaccard similarity 

K-mean 
 

K-NN 
 

kernel function 

Manhattan  distance 

market basket model 

moment 

multiple regression 

multivariate  regression 

Naive Bayes classifier 

non-linear  transformation 

null hypothesis 

objective function 

outcome variable 

outlier 

Pearson correlation 

population 

predictor  variable 
 

probability distribution  function 
 

Random Forest 

recommender 

regression model 

relationship



response variable 

sample 

scatter plot 

similar itemsets 

similarity 

similarity coefficient 
 

singular value decomposition 

standard  deviation 

standard  error of estimate 

statistical inference 

statistical significance 

stochastic gradient  descent 

supervised learning 

support vector 

test dataset 

training  data 

unequal variance 

unsupervised  learning 

user neighbourhood 

variable 

variance 
 

Welch's t-test 
 
 
 
 

 
 

 

LO 6.1



1.   Mathematical  and statistical  methods  estimate  the relationships,  outliers, 

variances,  probability  distribution  and correlations  in variables, items or 

entities.  Scatter plot depicts the  relationship  between  two variables,  and 

suggests whether  they have linear or non-linear relationship. 

2.   Variance means dispersion with respect to the expected. Moments (0,  1, 2, 

...) refer to expected values to the powers of (0, 1, 2, ...) of random-variable 

variance. 

3. Correlation  is a statistical  technique  that  is used to measure  and describe 

the strength  and direction of the relationship  between two variables. 
 

LO 6.2 
 

 

1.   Linear and non-linear  regression  model-based analysis predicts the values 

of one  variable,  given  the  values  of another   variable.  More than  one 

variable can be used as predictor  with multiple regressions. 

3.   Regression  analysis  is  a  powerful  technique   used  for  predicting   the 

unknown value of a variable from the known value of another variable. 

4.   K-NN method  uses Euclidean, Manhattan,  Hamming and  other  distance 

measures for  regression   analysis.  K-NN predicts   using  interpolation, 

extrapolation  and averaging methods using weights. 
 

LO 6.3 
 

 

1.   Methods  of finding  similar  items  and  similarities  are  nearest  neighbour 

search, J accard similarity and collaborative filtering. 

2.  The similar items and similarities use the distance measures. The distance 

measures are Euclidean,Jaccard,  cosine, edit and Hamming distances. 
 

LO 6.4 
 

 

1.   Frequent  Itemset Mining (FIM) is one of the popular techniques  to extract 

knowledge from the data. The technique  has been an essential part of data 

analysis  and  mining.  The  extraction   is  based  on  frequently   occurring



events. 
 

2. Market  basket   analysis  is  a  tool  of  knowledge   discovery  about   co• 

occurrence  of items. A  co-occurrence  means two or more things  happen 

together. It  can  also be  defined  as a  data  mining  technique  to  derive 

strength  of association between a pair of product items. 

3. Objective  of  generation    of  association   rules   is  to   find   uncovered 

relationships  using some strong rules. 

4. Apriori algorithm  is used for frequent  itemset mining and association rule 

mining. Apriori algorithm  simply follows a basis that  any subset of a large 

itemset  must be a large itemset.  This is called the Apriori principle,  and 

can reduce the number  of itemsets which an algorithm  needs to examine. 

Apriori principle  suggests, if an itemset  is frequent,  then  all of its subsets 

must also be frequent. 
 

LO 6.5 
 

 

1. Cluster analysis means  finding the  grouping  of the  objects  (datasets)  of 

similar types or characteristics.  ML algorithms  methods  are K-means, K• 

medoids, Fuzzy K-means, Canopy, and Dirichlet for clusters analysis. 

2.   A clustering algorithm finds k clusters in a given dataset using k centroids. 
 

LO 6.6 
 

 

1.   Methods of machine  learning  are supervised  and unsupervised  learning. 

Clustering and classification differ. Clustering is identification  of groups of 

similar  objects.  Classification means  splitting  the  datasets  into  subsets 

with similar features using statistical concepts. 

2. Classifiers  use  training   datasets,   input   vectors,   output   vectors   and 

predictor  variables.  Classifier algorithm  components  are training,  model 

and decider programs. 

3.  Classfiers, for example Random Forest, use decision tree algorithms which 

evaluate decision tree.



4. Naive Bayes is a simple, probabilistic  and statistical  classifier. Naive Bayes 

classifier basis is Bayes' Theorem  (from Bayesian statistics)  with  strong 

(Naive)  independence   assumptions  and  maximum  posteriori  hypothesis. 

The classifier uses are in text and documents. 

5.  Classification  methods   are   k-nearest    neighbour,   Stochastic   Gradient 

Descent -  Logistic Regression,  Support  Vector  Machine, Random Forest 

and AdaBoost classifiers. 
 

LO 6.7 
 

 

1. Recommender system is a system that  evaluates contents  or items on the 

preferences  of others with a similar point of view. The two approaches  to 

collaborative filtering are (i) memory-based  collaborative filtering - based 

on similarity between users and items, and (ii) model-based collaborative 

filtering - based on ML techniques. 

2. Collaborative filtering  predicts  the  likeliness of an item that  she/he  has 

not  rated  based  on  a  set  of  historical   preference  judgments   from  a 

community of users. 
 

3.   Collaborative  filtering   builds  around   the   attributes   of  a  given  item. 

Collaborative filtering relies on the behavior of the users. 
 

LO 6.8 
 

 

1. Apache Mahout is scalable generalized  tensor  and linear  algebra  solving 

engine, which runs the ML algorithms  on Big Data in parallel  computing 

environment. Mahout   enables   clustering,   classification,   collaborative 

filtering, regression   and   recommender.   Mahout   consists   of  tools  to 

automate  finding  of meaningful  patterns   at  big datasets  stored  in data 

store at HDFS. 

2. Contains     several      Spark     and     MapReduce     enabled      clustering 

implementations, such  as  K-means,  Fuzzy K-means,  Canopy, Dirichlet, 

supports distributed    Naive   Bayes  and   complementary    Naive   Bayes 

classification implementations.



I   Objective Type Questions 1111 
Select one correct answer option for each of the following questions: 

 

6.1 Mahout  includes  APis for  (i) distributed   and  in-core  first  and  second 

moment routines, 

(ii) distributed  row matrix (ORM), (iii) distributed  and scalable libraries for 

tensor,  matrix  and vector,  (iv) distributed  and local principal  component 

analysis  and  stochastic   singular   value  decomposition,   (v)  distributed 

Cholesky  QR   (thinQR),  (vi)  distributed    regularized    alternating    least 

squares,   (vii) Java  libraries   for  common  mathematics   and  statistical 

operations,  (viii) focuses on linear  algebra for matrices  and vectors,  and 

(ix) primitive C++ and well as Java collections 

(a)  i to viii 
 

(b)  all 
 

(c)  all except i and v 
 

(d)  i to v, viii and ix 
 

6.2 (i) Regression analysis is a technique  used for predicting,  (ii) predicts  the 

unknown value of a variable from the known value of another variable. (iii) 

Regression analysis is a statistical  method.  (iv) Regression deals with the 

formulation  of  conceptual   model   depicting   a  relationship    amongst 

dependent and  independent   variables.  (v) The  independent   variable  is 

used  for  the  purpose  of prediction   of the  values.  (vi) More  than  one 

variable whose values are hypothesized  are called independent  variables. 

(vii) The prediction  for the  dependent  variable  can be made by accurate 

selection of the independent  variables to estimate a dependent  variable. 

(a)  none 
 

(b)  all 
 

(c)  all except v and vi 
 

(d)  iii to vii 
 

6.3 (i) The standard  error  of the  estimate  is a measure  of the  dispersion  (or



variability)   in the 

(ii)   predicted     values    in   a   regression,     (iii)   probabilistic   values   in  a 

regression.  (iv) When the sest is small, most of the observed values (y) dots 

are close to the regression  line in a scatter  plot and better  is the estimate 

based on the equation  of the line. (v) When the sest is small, many of the 

observed  values  are  far  away from  the  regression  line.  (vi) When  the 

standard   error  is  zero,  then  no  variation   exists  corresponding   to  the 

computed line. The correlation  is perfect. 

(a)  iv 
 

(b)  all 
 

(c)  all except ii to v 
 

(d)   all except iii and v 
 

6.4 (i)  Coefficient  values   suggest  which   relationships   in  the   model  are 

statistically  significant and (ii) the p-values in regression  analysis suggest 

the nature   of  those   relationships.   (iii)  The  coefficients  describe  the 

mathematical relationship   between  each  independent   variable  and  the 

dependent  variable. (iv) The p-values for the coefficients indicate whether 

these relationships  are statistically significant. 

(a)  all except ii 
 

(b)  iii and iv 
 

(c)  all 
 

(d)  ii to iv 
 

6.5 A hypothesis  test  requires  (i) stating  the hypotheses,  (ii) null hypothesis, 

(iii) alternative  hypothesis, (iv) F-test hypothesis, and (v) t-test hypothesis. 

Also required  is (vi) preparing  plan for the analysis. (vii) The analysis plan 

means   how  to  use  sample  data   to  accept   or  reject   the   alternative 

hypothesis. 

(a)  i, iii, iv and vi 
 

(b)  i to v



(c)  ii to vi 
 

(d)   i, ii, iii, vi 
 

6.6 K-mean based algorithm  (i) classifies or groups the  objects based on the 

attributes (features)  into  k number   of groups.  k is  a  positive  integer 

number.  (ii) The grouping  of data results  into k clusters  (Cl, C2,  ...  ,  CK), 

each has A centroid. (iii) Centroid is fundamentally  a center representative 

of a cluster. (iv) The centroid of each cluster is calculated as the mean of all 

the  instances  belonging  to  that  cluster.  (v)  The clusters  are  formed  by 

maximizing  the  sum of squares  of distances  between  the  data  and  the 

corresponding  cluster centroid. 

(a)  all except v 
 

(b)  i, ii, iii, v 
 

(c)  ii to v 
 

(d)   all except iii 
 

6. 7 (i) Clustering finds to which class a new object belongs to from the set of 

predefined classes. 

(ii) Classification groups a set of objects in order  to find the  relationship 

between   them.   Clustering   and   classification   differ  in  terms   of  (iii) 

supervised and unsupervised  learning, 

(iv) use of training  datasets,  no training  datasets  usage (v) labels (all the 

data  labeled,  unlabeled),  (vi) datasets  consisting  of attributes   and  class 

labels, (vii) process  algorithms  (categorization  of new data  according  to 

the  observations  of the  training  set,  usages  of statistical  concepts  and 

splitting of datasets sub-sets with similar features), respectively. 

(a)  all except i 
 

(b)  all except iii and iv 
 

(c)   all except i, iii 
 

(d)  all 
 

6.8 Formal statement  of the association rule problem is stated as: Let I  = {11     12, 

'



... , Id} be a set of d distinct attributes,  also called literals. Let T = {t1,   t2,  .•• ,  tn} 
 

be set of transactions  and (i) contains a set of items such that T c I.  (ii) An 

association rule is an implication of the form X ---. Y, 

(iii) where X, Y belongs to sets of items called itemsets  (X, Y c  I), and (iv) 

X and Y are union of itemsets (X U  Y=0 ). Here, (v) Xis called consequent, 

and (vi) Y antecedent. 

(a)  i, ii and v 
 

(b)  all except i, v 
 

(c)  i to iii 
 

(d)  i to iv 
 

6.9 Apriori algorithm is simple as (i) it follows a basis that any subset of a large 

itemset  must be a large itemset,  called Apriori principle.  (ii) The Apriori 

principle can reduce the number  of itemsets need to examine. (iii) Apriori 

principle  suggests  if itemset  {A,  B, C}  is a frequent  itemset,  then  all its 

subsets {A},  {B},  {C}, {A,  B},  {B,  C} and {A,  C} need not be frequent.  (iv) On 

contrary,  if an itemset  is not frequent,  then  none of its supersets  can be 

frequent.  (v) Apriori advantage is that the principle results in to a smaller 

list of potential  frequent  itemsets as mining progresses. (vi) The algorithm 

requires  multiple  scans  of the  database.  (vii) The  complex  generation 

process for candidate exploits more time, space and memory. 

(a)  i to v 
 

(b)  all but vi and vii 
 

(c)  all except iii 
 

(d)  i to iv 
 

6.10  (i) A recommender  system is a system that  evaluates contents  or items on 

the  preferences  of others  with a similar point  of view. (ii) Collaborative 

filtering predicts the likeliness of an item that  he/she  has not rated based 

on a set of historical preference judgments  from a community of users. (iii) 

Collaborative filtering is similar from content-based  filtering, (iv) which is 

built  around  the  attributes   of a given  item.  (v) Item  features  capture



everything.    When   user's    interest    changes    then   also   the   collaborative 

filtering  does not  on the  other  hand  rely on the  behavior  of the  users. 

(a)   i, ii, iv 
 

(b)  all except v 

(c)   all except iii 

(d)   all except i 

6.11  Item-based collaborative  filtering uses (i) full or (ii) a sample of the user• 

item  database  to  (iii) generate  a prediction.  (iv) Users of a group  shows 

dissimilar interest.  (v) A prediction  of preferences  on new items for a new 

user  (or active user) can be evaluated  by identifying  the neighbours.  (vi) 

Jaccard Similarity,   (vii)  cosine   similarity,   (viii)  edit-distance   or   (ix) 

correlation  methods are used to find similarities between users. 

(a)  all except viii 

(b)  all except iv 

(c)  i to vii 

(d)  all except i 
 

6.12  User-based nearest  neighbour  collaborative  filtering  algorithm,  performs 

the  following  steps:  (i) Calculate  the  similarity  or  weight  wi,  j'   which 

reflects distance, correlation  or weight between  two users or two items, i 

and j.  (ii) Identify a prediction  for the  new user by taking  the  weighted 

average of all the ratings  of the user or item on a certain  item or user, or 

(iii) using variance.  (iv) Suggest top-N  recommendations.   (v) The task to 

generate  a top-N  recommendation  requires finding k most similar users or 

items  (nearest   neighbours)   after   computing   the   similarities,   and  (vi) 

aggregate  the  neighbours  to get  the  top  N  most  frequent  items  as the 

recommendation. 

(a)  all 
 

(b)  i, iii and iv 
 

(c)  all except iv



( d)   all except  iii 
 

6.13  The decision trees  (i) aggregate  the  datasets  based on all values of three 

variables and   identify    the    variable,    which   creates    the    (ii)   best 

heterogeneous sets  of  datasets   (which  are  (iii) homogeneous  to  each 

other). (iv) Decision tree output in the form of (v) graphical representation 

is very easy to understand.   (vi) Useful in predicting  significant  response 

variable. (vii) Influenced by outliers and missing values to a fair degree as 

compared to other  techniques  of modeling. (viii) Handles both numerical 

and statistical  variables. (ix) Decision tree is considered  a non-parametric 

method.  Thus,  (x) decision  trees  have  no  assumptions  about  the  space 

distribution  and the classifier structure. 

(a)  all 
 

(b)  iv, v, vi, viii, ix, and x 
 

(c)   all except i 
 

(d)   all except i and x 
 

6.14 Naive Bayes is (i) simple, (ii) probabilistic  and (iii) statistical  classifier. (iv) 

The classifier base is Bayes theorem  (from Bayesian statistics) with strong 

(Naive)  independence   assumptions  and  maximum  posteriori  hypothesis. 

(v) It  is an unsupervised  learning  technique,  which uses non-parametric 

approach.  (vi)  The   classifier   exploits   one   of  the   most   basic   text 

classification  techniques   with  a  variety  of  applications  in  email  spam 

detection, personal   email  sorting   and  document   categorization.   (vii) 

Classifier assumes class conditional dependence. 

(a)  all except vi and vii 
 

(b)  all except ii 
 

(c)   All except v and vii 
 

(d)  All except iii and vi 
 

II   Review Questions      11:1



6.1 Describe  the   approaches   used   in   linear,   multivariate    and   multiple 

regression algorithms. (LO 6.1) 

6.2 How are correlations  indicators  used for evaluating  linear  relationships? 

What do the strength  and direction of the relationship  describe? (LO 6.1) 
 

6.3 How do Euclidean and Manhattan  distances  perform  regression  analysis 

and predictions? How do the weights apply? (LO 6.2) 

6.4 How are  Jaccard  distance,  cosine  distance  and  edit  distance  used  for 

finding similar items? (LO 6.3) 

6.5 How does frequent  pattern   mining  enable  knowledge  discovery  from  a 

large number of itemsets? (LO 6.4) 
 

6.6 Describe the Apriori algorithm.  (LO 6.4) 
 

6. 7 How are methods of collaborative filtering used? (LO 6.4) 
 

6.8 How does clustering a large dataset help in knowledge discovery about the 

datasets? (LO 6.5) 
 

6.9 Compare the characteristics  features  of K-means, K-medoids, Canopy and 

hierarchical  clustering techniques.  (LO 6.5) 

6.10  What are the differences between clustering  and classification algorithms, 

and between  supervised  and unsupervised  learning?  Explain functions  of 

training,  model and decider programs.  (LO 6.6) 

6.11  How is a decision tree used? (LO 6.6) 
 

6.12  Compare the  characteristic   features  of K-NN,  SGD, Naive   Bayes, Random 

Forest, Support Vector and AdaBoost classifiers. (LO 6.6) 
 

6.13 What are the  steps in item-based  collaborative  filter when used for 

recommender?  (LO 6. 7) 
 

6.14  List and  explain  the  features  of Mahout  0.13.  List the  machine  learning 

algorithms, which Mahout implements.  (LO 6.8) 

6.15  How is principal component analysis used in machine learning algorithms? 

(LO 6.8) 
 

6.16  How   do   algorithms    provided    in   Mahout   perform    clustering    and



 

 
 
 
 
 
 

000]      OHJ]l7              xH 

000]      orn~n       x2l 

000]      0]03]1      x3l 

classification? (LO 6.8) 
 

 

II   Practice Exercises       1111 
6.1 Consider student  expected grades in an examination.  Assume that  grades 

have  probabilistic   distributions.   Consider  grade   point   as  a  variable. 

Assume that probability of student  awarded grade point 1.0 is 1 %, 2.0 is 4%, 

3.0 is 8%, 4.0 is 16%, 5.0 is 24%, 6.0 is 26%, 7.0 is 11% and 

8.0  is 10%.  (i)  What are the  mean, variance  and  standard  deviation?  (ii) 

Compute the  oth   moment,  1st  moment,  z=' moment  and 3rd  moment.  (iii) 

How  do  moment   and  variance   relate?   (iv)  Interpret   the   parameters 

computed. (LO 6.1) 
 

6.2 Recapitulate  Practice Exercise 3.1.  Consider a car company selling Jaguar 

Land Rover, Hexa, Zest, Nexon and Safari Storme models of cars. Table 6.9 

gives a dataset  for sales of these cars at 2000  showrooms for each date in 

2017.  Total 2000  x  365 rows per year. Total columns are 2000  x  365  x  7 per 

year. Variables for sales are denoted as x followed by day of the year (1 or 

2, ... , 365) followed by the model_ID, (1, 2, 3, 4 or 5) in columns 3 to 7. Using 

interaction    variables   concept,   list   the   steps   to   find   whether    any 

relationship  between the monthly sales figures of car models exists or not. 

Table 6.9  Sales data for cars of 5 models at 2000  showrooms for each date in 

2017



 
 
 
 
 
 
 
 
 
 

 

2000 n21n 
 
 

 

x363...:. 
 

2000 t2.~sn  ~632  

..::.000 

_ooo 

 

 
12· 

 

n 

 

 
x3641 

63 

x.3642 

x.3633                                x.3635 

x.3641             x  644             :.'(     64 

200()- izs rrs x:3651 :13652 x365-:3                 x3654                  655 

 

~LO s.n 
 

6.3 Show a simple linear regression  chart for varying weekly sales of cars of a 

specific model, say Tata Zest all over the  country.  Plot the  values  on a 

graph, with week of the year on the x axis and weekly sales on the y axis. 

How are variance  and moments  0, 1,  2  and 3  estimated?  Assume the plot 

fits a line Sales at 52nd week=  Sales at 1st week of the year+  0.001 x  52 x 

Sales at  1st week. How can the  sales at  lOOth week be predicted  from 

regression analysis? (LO 6.2) 

6.4 List the steps to use the linear regression model to find the rate of monthly 

sales growth of each car model combined at all showrooms. (LO 6.2) 

6.5 List the steps to prepare  a new table. Table 6.10 gives yearly accumulated 

sales of each model from  2010 to  2017, i.e., total  8  rows for 8 years  of 

accumulated yearly sales and total columns are 8 x 7 per year. Variables for 

sales are denoted ass  followed by day of the year (1 or 2, ... ,  8). Use values 

in each cell in terms of variable s. Table 6.9 format can be as shown below. 

Table 6.10  Yearly sales data for cars of 5 models accumulated over all 

showrooms and all dates in a year during 2010 to 2017



· S)                               1
 

y 

Sales (HY                                                111 111 
 

 
Hexndall 

1. 

.   ~        .                                                      •                                                      .

...mo 

20U 

on 

 

 
s ... 2 

s32                      s33 

s 4                     s15 

24                  s-.::..5 

34                     sJ.S

4          2013 

s         _014 

6          2015 

'1'         20.l6 

s42 s43 ~                   845

8             0!7 82                        83 
 

s8;5 
 

 
LO  ,.2)

 

6.6 List the steps to find regression coefficients in linear model and non-linear 

model, moments, variance and standard  deviation of actual yearly sales vs 

estimates from the coefficient values for each car model. (LO 6.2) 

6. 7 List the  steps  to  find  regression   coefficients  using  linear  model  and 

Euclidean distances. 

(LO 6.2) 
 

6.8 List the steps in coding for determining  the jaccard,  cosine and Euclidean 

similarity coefficients. (LO 6.3) 
 

6.9 List the  steps  for finding  the  association,  association  rules,  filtering  the 

frequent itemsets   for  computer   science  books  on  two  programming 

languages, Java and Python. (LO 6.4) 

6.10  Assume a graph with price discount given between 0% to 40 % with respect 

to total sales realised to that  customer.  Show the dots for each customer. 

How will the company optimize the profit using that data and take pricing 

discount decisions using clustering algorithm. (LO 6.5) 
 

6.11  Describe hierarchial  approaches  including agglomerative-divisive-distance 

measures to defining the distance between clusters in different algorithms. 

(LO 6.5) 
 

6.12  List the steps in Schoastic Gradient Descent and logistic regression. Give an 

example of using SGD logistic regression. (LO 6.6)



6.13  List the  steps  in  a  AdaBoost classifier.  Give an  example  of using  SGD 

logistic AdaBoost. 

(LO 6.6) 
 

6.14  List the steps for using the hidden  Markov deep learning  algorithm.  Give 

an example of using the hidden Markov. (LO 6.6) 

6.15  List the steps for using the multi-level perceptron  deep learning algorithm. 

Give an example of using multi-level perceptron.  (LO 6.6) 
 

6.16  List the steps for cluster analysis and find whether  clustering shows higher 

sales in certain  group of showrooms in festive months,  i.e., Octobers and 

Decembers in most of years compared to other months. (LO 6.6) 

6.17  List the steps for the decision trees from the data in Table 6.9.  (LO 6.6) 
 

6.18  List the  steps for collaborative  recommendation,   and mining the  similar 

itemsets in the problem in Practice Exercise 6.6. (LO 6. 7) 

6.19  List the  coding  steps  using  Mahout  0.13   and  Python  libraries  for  the 

algorithms listed in Table 6.6. (LO 6.8) 
 

 
 
 

1 https://  en.wikipedia.org/wiki/Kernel   (statistics) 
 

2 Weber, Roger; Schek, Hans-J.; Blott, Stephen, 'A quantitative  analysis and 

performance   study  for  similarity   search   methods   in  high  dimensional 

spaces' 
 

3 https://  en.wikipedia.org/wiki/Levenshtein_distance 
 

 
 
 

Note: 
 

o o • Level 1 & Level 2 category 
 

o • • Level 3 & Level 4 category 
 

• • • Level 5 & Level 6 category



Chapter7 
 
 

 

Data StreamMining and Real• 
Time Analytics Platform• 
SparkStreaming 

 
 
 
 
 
 

 

LEARNING OBJECTIVES 
 

 

After studying this chapter,you will be able to: 
 

LO 7 .1  Get conceptual  understanding   of data  stream,  model,  architecture, 

management,  sources, querying and stream processing issues 
 

LO 7.2    Get knowledge of methods of sampling, filtering and counting distinct 

elements in stream computing 
 

LO 7 .3 Get knowledge of methods of finding the frequent itemsets in a stream, 

handling the large datasets and mining the association-rules 
 

LO 7.4     Get   introduced    to    a   real-time    analytics    platform-Apache 

SparkStreaming, and applications of real-time analytics to sentiments 

analysis, and the stock prices analysis 
 
 

RECALL FROM EARLIER CHAPTERS 
 

Apache® Spark™ is a fast and dynamic compute engine with in-memory 

processing.  Processing requires  read of instructions  and data,  and write of 

results.  The  in-memory  data  processing  results  in  fast  computations.  In-



memory read and write operations  take place without  any delay as compared 

to read from disk and write to disk operations.  Fast computations  also result 

due to the use of DAGs and acyclic dataflows. Spark processes the data stored 

at HDFS and compatible cloud stores, such as Ceph or 53. Spark has the APis 

which facilitate programming in R, Python,Java  and Scala (Section 5.1). 
 

SparkStreaming  is a  software  component  in  Spark  stack.  The  software 

processes real-time streaming data using micro-batches. SparkStreaming 

processes DStream (or discretized stream) which consists of a series of RDDs 

as the real-time data. 
 

This chapter focuses on streaming data concepts, stream analytics and real• 

time analytics. 
 

 
 

7 .1 ! INTRODUCTION 

 

Data stream  in general  means  continuously  flowing data  in  sequences.  A 

theoretical  definition of stream is an unbounded  sequence of data items and 

records,  which may or may not be related,  or correlated  with  each other. 

Examples  of  the   stream   are   computer   network   traffic,   data   of  stock 

quotations,  online videos, telephone  conversations,  transactions  in database 

and transmission  of sensors data. 
 

Streaming data originates from several sources. Examples include data and 

images from satellites, IoT devices, Internet  websites and social media posts. 

Many applications require  streaming  data for various services. Processing of 

data stream  helps extraction  of knowledge-structures   from the continuous, 

rapid flowing data stream. 
 

Some important  key terms and their meanings are given below: 
 

Apache® Spark™ refers to a fast and general compute engine. Apache® Spark™ 

powers  analytics  applications   up  to  100   times  faster.  It   supports   HDFS 

compatible data. Spark has a simple and expressive programming model. The 

multiple languages, Python, and Scala shells provide great ease in programming 

for complex analytics, machine  learning, and other solutions. 
 

Spark software stack  refers   to  SparkSQL, SparkStreaming,   Spark  Arrow, 

Sparkle, MLib, and GraphX.



Scalability  can refer to many different system parameters,  such as how much 

added traffic can it handle,  how easy is it to add more storage  capacity, or 

even how many more transactions  process. 
 

This  chapter   describes  methods   of  processing,  analyzing,  mining  the 

streaming  datasets  and SparkStreaming-a    real-time  analytics platform  for 

Big Data. Section 7 .2 describes the concept, model, architecture,  management 

of data stream  and gives examples of sources. Section 7 .3 describes stream 

computing  aspects-sampling,    filtering  and counting  distinct  elements  in a 

stream.   Section  7.4   describes  the   methods   of  frequent   itemset   stream 

analytics,  handling  large  datasets  and  association  rule  mining.  Section 7.5 

describes  real-time  analytics  platform-Apache    SparkStreaming,  and  case 

studies on real-time sentiment  analytics and stock prices analytics. 
 
 
 

7.21 DATA STREAM CONCEPTS AND DATA STREAM 

MANAGEMENT 

The following subsections describe the concept, 

model, architecture     and   management    of   data 

streams. 
 

 

7 .2.1  Data StreamConcepts 

 
 
Data1 strsa m rnllilc::@tl)t. 
modteli ngi, illKihi'tech.!lre.. 
rrna n:agem@llt  so1JJJirc@s_. 

m~:rifi'lil   qu@f)iing1  ;u:ial issllll!S

 

A stream is a sequence of data elements or symbols made available over time. 

Data stream transmits  from a source and receives at the processing end in a 

network. 
 

An application  processes a data stream differently. Processing is in micro• 

batches instead of processing batches. Processing of stream can be 

comprehended  as filling milk in bottles on a conveyor belt and capping them, 

one at a time successfully rather  than in a large batch at the same time. 
 

Standard operations  do not apply on stream as they may have unlimited or 

infinite data, and at an instance may not be available completely. Formally, 

streams   are   partial   data   (potentially   unlimited),   and   not   finite   data. 

Programmers  use the  term  "stream"  in computer  science in several ways. 

Some of these are:

mailto:rnllilc::@tl
mailto:rnllilc::@tl
mailto:rnllilc::@tl
mailto:rnllilc::@tl
mailto:so1JJJirc@s_
mailto:qu@f


(i) Stream   is  communication     of  bytes   or  characters    over   sockets   in  a 

computer   network. 

(ii) A  program   uses  stream   as  an  underlying    data  type  in  inter-process 

communication channels. 

(iii)  Stream   Java   class  objects   perform    I/Os.  Java   encapsulates     Stream 

Classes  in java.io   package.  Java  defines   two  types   of  streams:   Byte 

Stream   and  Character   Stream.  Java  has  several   IO  classes  for  inputs 

and outputs,  such as ObjectOutputStream,    ObjectinputStream,    and 

FilterOutputStream. A stream  object  is a logical interface   to a file. That 

file  can  refer   to  a  disk  file,  screen,   keyboard,   port,   or  a  file  on  a 

secondary  storage  device. 

(iv)  A  stream   is  a  source   or  sink  of  data   in  UNIX. It  usually  comprises 

individual bytes or characters.  Stream behaves as an abstraction  when 

reading or writing files, or communicating over network sockets. UNIX 

recognizes  three  standard  input  and output  streams  called standard 

input (stdin), standard output (stdout) and standard error (stderr). 

(v) A UNIX utility sed (stream editor) parses and transforms  text using a 

simple compact programming language. 

(vi) A Linux stream is a data transfer  entity in a Linux shell that transfers 

data from one process to another  through  a pipe, or from one file to 

another as a redirect. 

(vii) Perl and Python implement  the stream as an iterator.  An iterator  is a 

useful abstraction  of an input stream. 

(viii)A stream  is an abstraction  of a construct  that  sends or receives  an 

unknown number  of bytes in some programming  languages. C ++ uses 

this  abstraction  to  perform  input  and  output.  Here, a stream  is an 

entity where a program can either insert or extract characters. 

(ix) Oracle streams  enable  information  sharing.  A  message  is a unit  of 

shared piece of information.  Oracle streams can share the messages in 

the stream. The stream  propagates  information  within a database  or 

from one database to another.



(x) HTTP Live  Streaming   (also  known   as  HLS) is  an  HTTP-based  media 

streaming communication    protocol   implemented    by Apple  Inc. It  is a 

part of Apple's QuickTime, Safari, OS X and iOS software. 

Streaming is a term  which is popular  in the  field of media as well. Here, 

streaming  means listening to music or watching video in 'real time' instead 

of first downloading and then listening or viewing 

the content. The contents transmit  in a compressed format over the Internet 

and the  receiver  plays the  contents  instantly.  A continuous  stream  of data 

flows between the source and receiver ends, and is processed in 

real time. 
 

 

7 .2.2  Data StreamModel 
 

Stream  is data  in  motion.  Three  approaches  for updating  the  end-points 

(sinks) are (i) non-overlapping, 

(ii) slow (batch processing) and (iii) fast (near real-time).  Following are the 

different  ways of modeling data stream,  querying, processing  and 

management. 
 

(a) Graph model Stream can be modeled as a graph of nodes connected  by 

the   edges.  The  edges  model  the   stream   of  data  moving  between   the 

operators.  The data  processes  at  the  node.  Each node  in the  graph  is an 

operator  or adapter.  The node can have inputs,  zero inputs  and outputs  or 

zero outputs. One node output connects to the input of the next node. Figure 

7.1 shows graph-based  stream as data model for processing at an operator  or 

adapter. 

 

 
 

Figure 7 .1 Graph-based stream data model for processing at an 

operator  or adapter 
 

(b) Relation-orientedstream-tuplesmodel Stream dataflow can be modeled 

as tuples flow. Individual data items may be relational  tuples in a data stream 

model.



Data  sink  may  be  Parquet   nested   column-oriented     data  stream   or  RDBMS 

row-oriented    storage  in tables.  Parquet  is nested hierarchical  columnar-storage 

concept. Nesting sequence is table, row groups within  a table, column chunk 

within the row groups, page chunks with the column chunk. Chunk pages are 

inside a column  chunk,  column chunks  inside a row group  and row groups 

inside a table (Section 3.3.3.5). 
 

Examples of tuple model stream of data are Borealis, STREAM and 

TelegraphCQ. Figure  7 .2  shows  relational   tuple-based   data  stream   model. 

Arrow shows the stream S flowing from the source to sink. S consists of infinite 

(means unbounded) time-ordered  multiple sets of tuples. Each tuple consists of 

(Timestamp t, Key, Values). Sink is Parquet nested column-oriented  or RDBMS 

tabular store. 
 

Relatlon....a,lentedstre.am mo~I
 
 

 
{Timestamp t, 

Key, 'Values) 

 
 

 
[Timestamp 't, 

Kev, Villues~ 

 
 
 

(Timestamp t.. 
Key, values) 

 

Pa  ,          i.ret,nested 

c:l!lllmn.n-mientedi 
or RD         S 

Tabularstme

A data stre.am Sas an Infinite, time-ordered multiple set of Wples  
Sink

 

Figure  7 .2 Relation-oriented  stream-tuples  model (Time stamp for 

real-time streaming data) 
 

Stream  dataflow  can  be  modeled  as  Parquet   nested   sequences  (Section 

3.3.3.5).  The  sequences  in  data  stream  are  page  chunks  nested  in  column 

chunks  in  each  column.  First the  (i) page  chunks,  which  nest  in a column 

chunk, then (ii) page chunks of the next column chunk, then (iii) the remaining 

column chunks which nest at a row group in the table, then  (iv) the next row 

group, and so on. Thus, all Parquet tabular  data transfer  as the stream  in the 

column-oriented  data stream. 
 

Processing   in   data   stream   model   can   also   include   some   data   from 

conventional  stored relations,  if required.  That means queries on data stream 

may perform join operations between data stream and stored relational data. 
 

A data stream is a potentially unbounded  and time-ordered  sequence of data 

items  (relational  tuples)  in  the  data  stream  model.  The receiving  software 

receives the sequences in order and sees the data items only once. Each tuple



consists  of a set of attributes,   like a row in a database   table.  The tuples  have  a 

schema-like   traditional   database.   One of the  attributes   in the  tuple  schema  is a 

timestamp,   usually  represented    by t. The timestamp  denotes the logical arrival 

time of the tuple into the system. 
 

(c) Object-based data   stream   model  Stream  dataflows  can be modeled  as 

objects.  Cougar and  Tribeca  are  two  examples  of object-based  data  stream 

models. Cougar models sensors' data as a stream of objects. Tribeca models the 

network monitoring data as a stream of objects. 
 

(d) XML-baseddata stream   model  NiagaraCQ is anXML-based data  stream 

model. It provides scalable continuous query processing over XML documents. 

It  performs  operations  over millions of simultaneous  queries by dynamically 

grouping them according to their structural  similarities. 
 

(e) Window-baseddata stream  model  Stream data direction  can be towards 

fixed   window,   sliding   window   or   landmark   window-sinks   (end-points) 

[Window means a time window during which the data stream  is looked at an 

instance. Suppose an application software queries streaming data at each 

successive 220 time-units  in time = Twindow· Then, 230 bits queried for 1  or O  takes 

(210   =  1024)  x   Twindow  time units  (minimum). One time  unit  corresponds  to a 

time interval  in which a bit 1  or O  can arrive in the stream. Application query 

caches the arriving bit in one time unit. Stream data unpredictably  changes in 

both size and frequency, and thus it can happen  in certain time units that no 

bits may be arriving. [210 Twindow time-units  may receive less or much less than 

230 bits.] 
 

Examples of  stream   processing modeling systems Examples of modeling 

systems for stream processing are: 

1. COUGAR is a sensor  DBMS.  It  models the  sensors'  data  as abstract  data 

type (ADT) and sensors data as time series. 

2.  Tribeca is an  older  stream  processing  system  for  network  monitoring 

applications.  An application  program  expresses  queries  using a specific 

dataflow-oriented query  language.  It  cannot   support  join  operations. 

Tribeca provides windowed aggregates.  It  also supports  other  operators 

that split and merge streams. Group-by splits the  streams whereby union 

merges the streams.



3.   Borealis is   a   distributed    stream   processing   engine   from   Brandeis 

University, Brown University and MIT. Borealis builds on their  previous 

engines, Aurora and Medusa for stream processing. 

Borealis, current   version  includes  various  modules,  such  as  a  stream 

processing  engine.  The version  provides  the  core  functionality  of low 

latency in stream processing using a rich set of 

stream-oriented   operators.  Borealis includes coordinator,  load manager, 

load shedder and fault tolerance  modules. Also includes graphical query 

editor, system visualizer, and stream connection generator. 

4.   STREAM  is a  data  stream  management   system  developed  at  Stanford 

University.  The  project   reinvestigated   data  management    and  query 

processing  in the  presence  of multiple,  continuous,  rapid,  time-varying 

data  stream.  The STREAM  prototype  supports  continuous  queries  over 

stream  as well as stored  relations.  To achieve  this,  STREAM  supports 

three types   of  operators:   stream-to-relation,    relation-to-stream    and 

relation-to-relation. 

5.   TelegraphCQ project developed at University of California, Berkeley, is a 

suite of  technologies   for   continuously   adaptive   query   processing. 

TelegraphCQ handles a large number of queries over high volume, highly 

variable data   stream.   It   continuously   processes   the   incoming   data 

without any storage. 
 

 

7 .2.3  Architecture 
 

Big Data stores at the: 
 

(i)   HDFS (Distributed at data nodes in clusters), or 
 

(ii)  DFS   compatible  data  store,  such  as  HBase, Cassandra,  Ceph  or  53 

(Section 5.2). 
 

Figure 7 .3 shows a query processing architecture.



 

 
 
 
 
 

emory 

 
 
 
 
 
 
 
 
 
 

 
 

Figure  7 .3 Data stream architecture  for processing 
 

Figure  7 .3  shows that  large  data  blocks  in  received  stream  store  at  HDFS 

compatible data store  or static data at disk. Data shards  load at memory from 

data  store  or  disk  for  future  uses  (Section  3.2).  The  figure  also  shows that 

streaming   data   shards   load  at  memory   in  real-time   applications.   A  user 

application uses a query repository, which continuously sends queries for 

processing of the shards in-memory. The responses of queries save at an output 

buffer before they are finally retrieved by the application. 

The processing  model  can also use hybrid  architecture,   referred  as lambda 

architecture for processing  streaming  data and back-end jobs at the  same time. 

The system manages  stream  flow over real-time  data  until  data  elements  are 

pushed to a batch system. The data then become available to access and process 

as batch data from disk static data store or HDFS. 
 

 

7.2.4 Data StreamManagementSystem (DSMS) 
 

Fundamentally  basis of traditional  data management  systems are on the notion 

of determined  and static  data  storage.  The streaming  data  basis is altogether 

different.  The data  requires  collection  and  parsing  before  using  and  deletion 

from the system. 
 

Responses against the queries are precise in static DBMS.  Streaming data can 

unpredictably   change   in  both   size  and   frequency,   and  thus   results   into 

approximate responses. 
 

Management  and processing  of streaming  data are different  from traditional 

DBMSs.  These systems build primarily  on the concept of persistence  and static



data  collections  while the  streaming   data  require   parsing  and processing   at once 

when  they  arrive  in the  system. 

Data Stream  Management  System (DSMS) is a data-intensive  application in which 

the data models as a transient  data stream. DSMS is an application program that 

manages  streaming  data. The usage of the  program  is different  than  using of 

persistent  relations in DBMS. 
 

Some  popular   applications   of  DSMS are  network   monitoring, 

telecommunications  data  management,  web applications  and sensor  networks. 

Individual data items model as relational  tuples in the data stream  model. For 

example,  data  of network  measurements,   call  records,  web  page  visits,  and 

sensor readings. Table 7.1 highlights the differences between DBMS and DSMS. 
 

Table 7 .1 Comparison between DBMS and DSMS 
 

 

DBMS 
 

DSMS 

Stores  sets  of records  with 

no pre-defined  time concept 

 

Provides on-line analysis of rapidly changing stream  of data 

Suitable for applications 

that require  persistent  data 

storage and complex 

querying 

 

Suitable for real-time,  continuous,  ordered  (arrival time or 

timestamp)  sequence of data elements.  Also, for data that  is 

large to store entirely  and continuous  querying  environment 

Persistent  relations 

(relatively  static, stored) 

 

Transient  stream  (on-line analysis) 

One-time queries Continuous queries 

Requires random  access Implements  sequential  access 

Unbounded  disk storage Bounded main memory 

Only current  state is 

important 

 

Past or historical  data is important 

No real-time  services 

requirements 

 

Real-time requirements 

Relatively low update  rate Very high arrival rate (usually in multi-GBs) 

Assume precise data Data get stale or imprecise  later 

Access plan determined  by 

query processor 1    physical 

database  design 

 

Unpredictable  data arrival  and varying characteristics   of the 

data 



Traditional   DBMSs do not  directly   support   real-time   continuous   queries.   The 

data  is available  on disk or memory  for random  access to them.  Some or all input 

data  that   are  to  be  operated    on  and  arrive   as  one  or  more   continuous    data 

stream  in the  data  stream  model. 
 

Data  stream   differs   from   the   conventional    stored   relational    model   in  the 

following  ways: 

•      The data elements in the stream arrive in real time . 
 

•       Size of the data stream is unbounded . 
 

•      The data processes in the order in which the data elements arrive . 
 

•      The processed elements delete or archive . 
 

• The buffer  is relatively  small than  the  size of the  data  stream  and  not 

accessible easily. 
 

These are two types of data streams: 
 

1. Transactionaldata stream: They carry  data  related  to the  interactions 

between different entities. For example: 
 

(i)   ATM transactions  - Withdrawals/ deposits by users from bank accounts 
 

(ii)  Telecommunication - Phone calls by callers to dialed numbers 
 

(iii) Web access by clients of resources at servers. 
 

2. Measurementdata stream:They carry data related to measured values or 

metric of entity states. For example: 
 

(i) Sensor  networks   -   Traffic  density  values,  presence,   or  absence  of 

obstacles in the path 
 

(ii)  IP network - IP packet in and out at router interfaces 
 

(iii) Climate data -Temperature and moisture records. 
 

Many systems support  handling  of streams.  Several major research  projects 

relate to relation-oriented  stream databases. 
 

Following are examples of commercial databases for streams: 
 

(i)   StreamBase (commercial version of Aurora/Borealis)



(ii)   Truviso (commercial version of TelegraphCQ); Cisco acquired it in May 

2012  extending  existing relational  databases to build TelegraphCQ and 

Truviso syntaxes. They are extensions  of PostgreSQL that  incorporate 

data stream 

(iii) TIBCO Business Events, Oracle Business Activity Monitoring 
 

 

7 .2.5  Example of Sources of Streams 
 

The sources of streaming data range from simple computer programs to Internet 

of Things (IoT) applications.  The sources of stream  include sensory machines, 

satellites,  instruments,   IoT application  areas,  websites,  published  information 

from service providers and social media posts. 
 

Some useful applications of data stream are: 
 

1. Making data-driven  marketing  decisions in real time. It requires the use of 

data from trends  analyses of real-time  sales, and analysis of social media, 

and the sales distribution. 

2.   Monitoring  and  detection  of potential  failures  of system  using  network 

management tool 

3.   Monitoring of industrial or manufacturing  machinery in real time 
 

4.   A sensor network or IoT controlled by another entity, or a set of entities 
 

5.   Watching online video lectures, and rewinding or forwarding them 
 

6. Subscribing to the daily news alerts, weather  forecasting services or other 

similar subscription based services 

7.   Using location  based  services,  such  as finding  nearest  point-of-interest 

(POI) 
 

8.   Getting location-based advertisements  or notifications 
 

9.   Watching on-demand movie, listening to online music, watching television 
 

10. Navigation using GPS 
 

11. Playing online games 
 

12. Response stream from a web server



13. Using social networks, such as Facebook and Twitter 
 

14. Traffic  management,   pollution  control,  flight  traffic  control,  war  field 

surveillance using sensor networks. 

DSMS deals with streams and processes them differently from traditional  data 

management  systems. A traditional  system builds primarily  on the  concept  of 

persistence  and static data collections. Streaming data requires  traversing  and 

processing at once before collection or deletion in the system. 
 

 

7 .2.6 StreamQueries 
 

Data is static  in a relational  database.  Thus, applications  send queries  to the 

database and obtain the results. They are one-time queries or transient  queries. 

Data in stream changes frequently. The results of the queries against the stream 

also change. The queries are defined as continuous queries or persistent  queries. 

They process continuously as data continue to arrive. 
 

Their query processing results can be obtained in two forms. The results store 

and  update   when  data  arrives   or  they  make  data  stream   for  the  results 

themselves.  For example, aggregation  queries  mostly use the  first form, while 

join queries may use the stream form. 
 

The  queries   may  also  be  classified  as  predefined   and   ad  hoc  queries. 

Continuous  queries  are  generally  predefined  and  therefore   register  with  the 

database server. 
 

Ad hoc queries can be issued online along with the flowing data stream. They 

can be either  one-time queries or continuous  queries. Ad hoc queries make the 

design of a DSMS difficult. Firstly, they do not optimize since they're  not known 

in advance.  Secondly, they  may require  reference  to an already  streamed  (or 

discarded) data for correct results. 
 

Another issue related to queries in DBMS and DSMS is that the former mostly 

leads to exact query results while the later mostly approximate-query  results. 
 

Query Languages 
 

1.   Relation-based query   language   is  based   on   SQL-like syntax.   These 

languages provide better  support  for windows and ordering. Examples are 

Esper, CQL (STREAM),  StreaQuel (TelegraphCQ),AQuery and GigaScope.



2.  Object-based  query   languages   are   based   on   object-oriented    stream 

modeling. These languages classify stream-elements  according to type 

hierarchy. Examples are Tribeca and COUGAR. 

3.  Procedure-based languages  are those where user functions  (procedures) 

specify the dataflow. For example, Aurora provides graphical  interface  to 

users for constructing  query plans. 

Examples of query languages are given below: 
 

STREAMContinuous  Query  Language  (CQL)  CQL developed at Stanford is an 

extension of SQL. The following example gives usages of CQL syntaxes. 
 

 

EXAMPLE 7.1 

 
Consider a network  security monitoring  system. (i) How does STREAM CQL 

create a stream? (ii) How does STREAM CQL remove a stream? (iii) How does 

STREAM CQL use time within the query? 
 

SOLUTION 
 

(i)   Creating stream: CQL syntax is: 
 

CREATE STREAM network admin( 

communication_time TIMESTAMP, 

ticker_symbol VARCHAR (10), 

num_packets INTEGER, 

bytes_per_packet NUMERIC (9,  0) 

)  ; 
 

(ii)  Removing stream: CQL Syntax is: 
 

DROP STREAM network admin; 
 

(iii)  Actual data  stream  generally  arrives  over network  and must be in a 

specific format for the database to use it. 

STREAM CQL stream uses time within the query: 
 

SELECT ticker symbol,



SUM(num_packets 

SUM(num_packets) 

*          bytes_per_packet)      I

 

FROM network admin [RANGE 5 MINUTES] 

GROUPBY ticker symbol; 

 
The following example gives usages of Truviso syntaxes. 

 

 

EXAMPLE 7.2 
 

 

How   does    Truviso    syntax    create    stream    and   use    system-generated 

timestamps? 
 

SOLUTION 
 

(i)    Create a stream with time stamp: 
 

CREATE STREAM network_admin( 
 

communication time   TIME STAMP   CQTIME   USER 

GENERATED, 

ticker_symbol VARCHAR (10), 

num_packets INTEGER, 

bytes_per_packet  NUMERIC (7,  2) 
 

)  ; 
 

(ii) Queries can be issued  against both relations  and stream. If a stream is 

involved, then it specifies the window as follows: 
 

SELECT ticker symbol, 

SUM(num_packets 

SUM(num_packets) 

*          bytes_per_packet)      I

 

FROM network admin< VISIBLE '5 MINUTES' > 
 

GROUPBY ticker symbol;



Example  7.3 explains usages ofTelegraphCQ TIMESTAMP COLUMN modifier. 
 

 

EXAMPLE  7.3 
 

 

How is query in TelegraphCQ used by giving a separate window specification? 
 

SOLUTION 
 

TelegraphCQ has a separate window specification: 
 

SELECT ticker_syrnbol,
 

SUM(nurn_packets 

SUM(nurn_packets) 
 

FROM network adrnin 

 

*               bytes_per_packet)        I

 

GROUPBY   ticker symbol 

MINUTES']; 

 

WINDOW 

 

network adrnin  [   '5

 

 

7.2.7 Stream  Processing   Issues 
 

Stream  processing  refers  to  a method  of continuous  computation  that  takes 

place as data is flowing through  the  system. The processing  can be helpful to 

gather statistics and/ or monitor the streaming data. It can also, help in studying 

the source of streaming data and forecast the future behavior. 
 

The unbounded  size, frequency,  velocity  and variety  of data  in stream  add 

challenges to the system. Following issues surface during stream processing: 
 

Size of the  streaming data  not  fixed Batch or static processing is a method of 

stored data processing. The calculations of execution time and usage of memory 

for algorithm are easy because processing of static data depends on the size. The 

size of streaming  data  size is variable  and  is rather   unbounded.  Therefore, 

algorithm  works differently. Algorithms cannot  iterate  over the complete data. 

The  processing  can  be  possible  on  a  piece  of data  comprising  specific  data 

elements or recent data elements. 
 

Need of   scalable    processing    Very   high   data   volume   requires   scalable 

processing.   As  applications   grow,  their   data   processing   needs   also  grow. 

Fulfilling demands of growing users can accelerate data processing requirements 

as the application demand grows.



Size is a vital  aspect   of scale  that   needs  consideration    in  case  of processing 

large  datasets   and  distribution    systems.   System  capacity   need  to  increase   for 

handling  greater   amounts  of data,  commonly  referred   as system  scalability  issue. 

Variationin the frequencyof data streamThe  frequency of data stream varies 

significantly over time. These variations  are unpredictable  or depend on social 

and  public  trends.  For example,  streaming  data  on  social networks  such  as 

Facebook and Twitter  can increase  in volume during  holidays or festivals. The 

variations can be periodic also, for example, in the evenings or weekends. 
 

Need of near real-time processing The streaming  data management  systems 

require  near real-time  processing. Managing and processing data in motion is a 

typical capability of streaming  data systems. The data requires  processing when 

the data is in motion on place after the collection. The analogy can be found in 

sensor  data  processing.  The computations  need  completion  in real  time.  The 

processing needs to be fast for streaming sensor data. 
 

Need of processing large data streams from different domainsData streams 

can vary with domain. The streams  can source from several applications.  Data 

arrives as large data streams from different domains. For example, satellite data, 

scientific instruments,  sensors,  social networks,  stock data, process industries, 

traffic controls and network logs. Processing of variety (formats, types, 

compression) of data is another challenge. 
 

Need of events-processingThe processing may be required  for different events 

representing    measurements,   such  as  position,   particle   mass,  temperature, 

number  of tweets  per  minute,  stock  update,  number  of items  manufactured 

during last one hour, number of vehicles passed in an hour, number of login on 

Amazon on a festival day, etc. 
 

Need of filtering to eliminate undesirabledata elements Another  important 

processing  need  is for  searching  the  required  data  from  a  data  stream  and 

filtering the stream to eliminate undesirable data elements. 
 

A   restriction   in  data  streaming   systems  is  must.  They  should  carry  out 

relatively  simple computations,  say one record  processing  at an instance.  The 

other  requirements   may be near  real-time  computations,  at times  in-memory 

and independent  computations. 
 

The processing  function  often  provides  the  service to a system or a stream 

source.  The  function   does  not   interact   with   system   or  source   (one-way



communication).    They  do  not  even  provide   any  feedback   of the  system.   Most 

stream-based   systems  are also subscriber-based    systems. 
 

 

7 .2.8   Real-time  Processing, Stream  Processing and  Batch 

Processing 
 

A system is a real-time  system if it provides the output  guaranteed  within hard 

"real-world" time deadlines. Software, which continuously processes a stream or 

stored  stream,  achieves nearly real-time  performance.  Time limitation  is not a 

concern in stream processing. No fixed time deadline exists on the output of the 

system   after   receiving   an  input.   These  requirements    for  streaming   data 

processing  are  reasonably  different  from batch  processing.  Data management 

and analysis are inclusive in batch processing. 
 

 

7.2.9  Summarizing Streaming Processing Needs 
 

Stream processing needs are: 
 

(i) Computations are a function of a single data element or a smaller piece of 

recent data. They have no access to the complete data. 

(ii)  Processing algorithms must be relatively fast and simple 
 

(iii) Need  to  complete   each  computation   in  near   real-time   while  static 

processing has more latency 

(iv) Computations are generally independent 
 

(v) Asynchronous processing,  i.e., the  source of data does not interact  with 

the stream processing system directly 

(vi) Requirements  of high-volume  processing  with  low latency  because  no 

information exists about when the next data will arrives. 
 
 

Self-Assessment  Exercise linked  to LO 7.1 
 

1.   List ten examples from two different domains for data streams. 
 

2. How does a data-stream   model as a relation-oriented   stream  tuples?  What 

are the benefits of the relational  tuples model? 

3.   Draw the data-stream  processing architecture.



4.   List the  characteristics     of Data Stream  Management    System  (DSMS). 
 

5.   List the  features   of different   types  of data  stream   query  languages. 
 

6.   What are the issues in data stream processing in case of data with high 

velocity and volume? 
 
 
 
 

7 .3 lSTREAM  COMPUTING  ASPECTS 

Many applications require Big Data stream computing. 

Stream computing is a way to analyze and process Big 

Data in real  time  to gain current  insights.  Following 

subsections  describe  the  methods  of  stream 

computing, sampling data in a stream, filtering of data 

in a stream and counting of distinct elements: 

 

 
Strelm   COliflllp!J!Il:irrtg1 

a1specus-sampli  n ~. 

fiiltering  and counting 
dis~iliitd  E!l~1i11'TJE!lfTJ1tS i n 3 

sneam

 

 

7.3.1 StreamComputing 
 

Stream computing has many uses, such as financial sectors for business 

intelligence,  risk management,  marketing  management,  etc. Stream computing 

is also used in search engines and social network analysis. 
 

The computing pulls the data from the stream, process the data, and streams it 

back out as a single flow. Such computing is required  to process a huge amount 

of data at a high speed. 
 

Usually, a Big Data stream  computing  implements  in a distributed  clustered 

environment,   as the  amount  of data  is enormous.  Rate of receiving  data  in 

stream  is high,  and the  results  are  required  in real time  to take  appropriate 

decisions or to predict new trends in the immediate future. 
 

Stream computing uses algorithms that analyze data in real time at high speed 

and with accuracy. Stream computing is one effective way to support Big Data by 

providing  extremely  low-latency  velocities with  massively parallel  processing 

architectures. 
 

Stream  computing  is becoming the  fastest  and most  efficient way to obtain 

useful knowledge from Big Data. Organizations can react quickly when problems 

appear, or to predict new trends for the future.



The efficiency  of data  stream  algorithms   is measured   using  some  fundamental 

characteristics: 

1.    Number of passes (scans) the algorithm must make over the stream 
 

2.   Available memory 
 

3.   Running time of the algorithm. 
 

Data stream  algorithms  usually have limited  memory  availability. They may 

take   certain   action   until   the   dataset   arrives   completely   (for  which   the 

application  is waiting). On the other  hand, the usual online algorithms  require 

action as soon as every piece of data arrives. 
 

 

7 .3.2 Sampling Data in a Stream 
 

Sampling in data stream  means the process of selecting a few data items from 

the   incoming   stream   of  data   items   for   analysis.   Methods   of  obtaining 

representative    sample  data  items  from  a  stream   can  be  classified  in  two 

categories: 
 

Obtaining a Representative Sample 
 

Two categories of sampling methods are probabilistic and non-probabilistic. First 

category,  probabilistic  sampling  is a  statistical  technique  used  for  making  a 

choice of data items for processing. The basis of the choice is the probability  of 

sampling the  data  items. For example, if probability  value chosen  is 0.01,  the 

method takes up 1 out of 100 data items for analysis. 
 

Probabilistic   sampling  technique   obtains   the   representative    sample.  The 

sample chosen is an actual representative  of the population. 
 

Five probabilistic  sampling methods  are simple random  sampling, systematic 

sampling, cluster sampling, stratified sampling and multistage sampling. 
 

Second category is non-probabilistic.  Non-probability sampling uses arbitrary 

or  purposive  sample  selection  instead  of  sampling  based  on  a  randomized 

selection. This introduces bias and increases variance to the measurement  data. 
 

Reservoir sampling is a random  sampling  method.  The method  chooses  a 

sample of limited data items from a list containing a very large number of items 

randomly.  The list is larger  than  one that  upholds  in the  main  memory.  An 

example of reservoir sampling method is given below:



EXAMPLE  7.4 
 

 

Using the  reservoir  sampling  method,  illustrate  the  probability  that  the 

incoming item is stored  in the  main memory, while choosing a sample of 

limited data items from a very large number of items? 
 

SOLUTION 
 

Let k be the number of items selected from an infinite stream of data items. 

Suppose when processing a sequence of items, the program processes one at 

a time. Hence, for n items, the probability  that  a new item is in the  main 

memory will be k/n. The algorithm works as: 
 

Select the first k items in memory. 

for ( i >  k)  { 

On the arrival of i th      i tern,   select a  new i tern  with 

probability  (k/i) 
 

Remove an old item at random, each with chance 1/k
 

with probability  (1 

instead of new item} 
 

Thus, 

 

k/i),  retain  the old  items

Items s  k,  the probability of item in memory is 1 
 

Item   k+l the probability will be k/ (k+l) 

Item   k+2 the probability will be k/ (k+2) 

 

 

Concise sampling  and counting sampling are other uniform random sampling 

methods.   Concise  method   is  like  the   reservoir   sampling  method,   with   a 

difference that a value that appears once is stored as a singleton, whereas a value 

that  appears  more than  once is stored as a (value, count) pair. This overcomes 

the restriction  of sample size due to the size of the main memory. The method 

inserts a new data item in the sample with a probability of 1/n. If the new item is 

already present in sample, the count is incremented. 
 

Counting  sampling  method is the refinement  of concise sampling in terms of 

accuracy. The method maintains the sample in the case of deletion of data items 

as well. The method  reverses  the  increment  procedure  by decrementing  the 

count value upon deleting a value. The process may lead to converting  back to



singleton    when   a  single   value   remains    in  the   sample   or  even   removing    a 

singleton  if that  single value is removed. 

General Sampling Problem 
 

Some problems encountered  while trying to find a sample of a data item from an 

infinite length data stream are: 
 

(i)   Unknown size of data set 
 

(ii)  Applications that need continuous analysis, such as surveillance analysis 
 

(iii) Irregular data rates as in the case of data network analysis. 
 

Varying the Sample Size 
 

Sample size means  the  number  of data  items,  with  respect  to  the  reference 

number  of data items, chosen to make an inference or decision. A large sample 

size can generally give inference with greater  accuracy. However, it may not be 

feasible to choose a large size. 
 

Procedures  for calculating  sample sizes are  (i) estimation,  called confidence 

interval  approach,  and (ii) hypothesis  testing.  Statistics prescribes  Chi-squared, 

T-test, Z-test, I-test,  P value for testing the significance of a statistical inference. 
 

The  number  of tables  is  available  for  sample  size  estimation   for  making 

inferences.   Estimation  is  done  for  the  minimum   sample  size  required   for 

accuracy in estimating the key proportions  P of data items D for selection. 
 

Some steps taken  into consideration  are: (i) a reasonable  estimate  of P to be 

measured in the study, (ii) the degree of accuracy D that  is desired in the study, 

-1%  -5%  or 0.01-0.05,   and {iii) the confidence level Z needed from the inference, 

95%. 
 

 

7 .3.3 Filtering of Stream 
 

Filtering  application   identifies  the   sequence  patterns   in  a  stream.   Stream 

filtering is the process of selection or matching instances of a desired pattern  in 

a continuous stream of data. 
 

For example, assume that  a data stream  consists of tuples. Following are the 

filtering steps: (i) Accept the tuples that  meet a criterion  in the stream, (ii) Pass 

the accepted tuples to another  process as a stream  and (iii) discard remaining 

tuples.



Several   filtering   techniques    exist:  Bloom  Filter   and  its  variants,    Streaming 

Quotient   Filter  (SQF), Particle   filter,  Kalman  filter,  XML filters  (such  as XFilter, 

YFilter). 
 

Conditional   matching   is simple  to  implement,   even  in case  of streaming   data 

when  a tuple  is matched   with  some  desired  value.  For example,  if the  'stock price 

field value is greater than the maximum price in 52 weeks' in the stream of data, 

then  that  price  filters  out  using  a  single  'if  '  condition.  The  complexity  of 

computation  increases when one has to check duplication  of records  or match 

more than one tuple with a loose condition (can be or cannot be accepted). Then, 

the  requirement   is revisiting  the  record  that  becomes  a memory-demanding 

computation. 
 

The following subsections  provide  an  overview  of Bloom filter,  one  of the 

popular variants of Bloom filter (Counting Bloom Filter): 

7.3.3.1 Filtering of Stream: The Bloom Filter Analysis 
 

Bloom filter  is a  simple  space-efficient  data  structure   introduced  by Burton 
 

Howard Bloom in 1970.1  The filter matches the membership  of an element in a 

dataset.  The data  structure   is a probabilistic  representation   of a vector  that 

supports membership queries. [Anand Rajaraman et al. 2]
 

The filter, since then  has been widely used in applications,  such as database 

applications, intrusion detection systems, and query filtering and routing 

applications. 
 

The filter is basically a bit vector of length m that represent  a set S = [x., x2,   •••      , 

x.} of n elements. Initially all bits are set to 0. Then, define k independent  hash 

functions, h., h2,   •••      ,  and hk. Each of which maps (hashes) some element x in set 

S to one of the m array positions with a uniform random distribution.  Number k 

is constant, and much smaller than m. That is, for each element x E   S, the bits hi 

(x) are set to 1 for 1 sis   k. [ E   is symbol in set theory for 'contained in'.] 

Figure 7.4  shows an example of a Bloom filter with k =  3.  The filter  is a bit 

vector of length  10. When a value xis  inserted  into the Bloom filter, the bits at 

position ht  (x), hz (x) and h3 (x) are set to 1. To detect whether  a value y is in the 

filter or not, the bits of position h, (y), h, (y) and h, (y) are thus checked.



 
 

Pasitions 

1           l        3       4        5        6        7       8        9       :W 
 

1
 
 
 
 
 

(at lnsertiig an ~ement   :x  .,  bit vec'b::J.-(filter) of length m • 10 
 

 
Pasitions 

1           2       l        4         5         6       7         8        9       10

 
 
 
 

 
(b~ mdiigelement    y isin  the filter 

 

Figure  7 .4 (a) Inserting an element x in bit vector (filter) of length m = 

10, 

(b) finding an element y in an example of Bloom Filter 
 

The operation results in setting a particular  bit to 1 many of times, but only the 

first operation has an effect. 

To check if an item y is in S, the bits at positions h, (y), h, (y), ...  , and h, (y) are 

checked (Figure 7.4 (b)). If any of the bits is 0, undoubtedly y is not a member of 

S. If all hi (y) are found to be 1, y may be in S. The bits may have by chance been 

set  to  1  during  the  insertion   of  other  elements.  Thus,  chance  of incorrect 

assumption  is present  with some probability. This is a false positive, where the 

Bloom filter suggests that an element y is in S even though it is not. 
 

It  has been given in the  literature  that  the  probability  of a false positive is 

equal to (1 - e-kn/m)k. 
 

7.3.3.2 Counting Bloom Filter: A Variant of Bloom Filter 
 

Process of deleting  a particular  element  in the  Bloom filter  requires  that  the 

corresponding  positions computed by k hash functions in the bit vector, be set to 

zero. This may possibly concern other  elements stored in the filter, which hash 

to any of these positions. For example, the bit position 6 is set to one by two hash 

functions h. (x) and h, (x) in Figure 7.4(a). Thus, it is not possible to delete an 

element stored in the filter.



Positions.             
1    2         l         4         5      6         1      8         g        10 

0   I        1   I      0    I      0    I       1     I       1     I      0    I       1     I        0         1     I 
Counter               0         1        0         ~         l        2        0        l        0        1 

\~~/ 
h3[11;)                                            M:t!l               hj[-11:l 

Ccunler 111t poSIUOtl   6 becomes    2 due to two "8sh func:~oris  h11ncl 

h;3. when an elew.ent  :ic   Is   Inserted In bit trector (fllter~ of lenlJtf'I m=10 
 

Figure  7 .5 An example of Counting Bloom Filter 
 

In order to perform deletion of the element, a method counting Bloom filter, a 

variant  of Bloom filter be used. The counting filter maintains  a counter for each 

bit  in the  Bloom filter. The counters  corresponding  to the  k hash  values are 

incremented   or  decremented,  whenever  an  element  in the  filter  is added  or 

deleted,   respectively.   As  soon   as  a  counter   changes   from   O     to   1,   the 

corresponding  bit in the bit vector is set to 1. When a counter changes from 1 to 

o,  the  corresponding  bit  in the  bit  vector  is set  to  o.  The  counter  basically 

maintains  the number  of elements that  hashed to the corresponding  bit by any 

of the k hash functions. 
 

 

7 .3.4 Counting  Distinct  Elements  in a Stream 
 

The count-distinct  problem relates to finding the number of dissimilar elements 

in a data stream. The stream of data contains repeated  elements. This is a well• 

known  problem  in  networking   and  databases.   Several  applications   require 

finding the dissimilar or distinct elements. For example, packets passing through 

a router,  unique  visitors  to a web site, recurring  patterns  in a DNA sequence, 

records in a large database, or elements of sensor networks. 
 

7.3.4.1   Counting  Distinct  Elements  in  a  Stream  and  Count  Distinct 
Problem 

 

If n possible elements  a1,   a2,   •••,   and an are present  then  for an exact result  n 

spaces are required. In the worst case, all n elements can be present. Let m be the 

number of distinct elements. The objective is to find an estimate of musing  only 

s storage units, where s « m. 
 

The example below gives an algorithm to compute distinct elements. 
 

 

EXAMPLE 7.5



Assume  data  items  set  (A,  B, B, C, C, D, B, A, A, D, C, B, C). Assume mis  the 

number of distinct elements. (i) What are the distinct elements? (ii) Write an 

algorithm to compute mt. 
 

SOLUTION 
 

(i)   Number of distinct elements, m = l{A, B, C, D}I = 4 
 

(ii)  Assume D will contain the list of distinct  elements, a, where i = 0,  1, 2, 

.... , m. Algorithm is as follows: 
 

Initialize a Counter c =    0; 
 

Initialize  a  data  structure  say,  D  in  which 

insertion  of an element can be done easily  ( for 

example, hash table or search tree); 

Repeat for each element ai of stream 
 

{If ai is not in D 

add ai to D; 

increment c; 

end if;} 
 

un~stream is over; 
 

output m =  c; 
 

 
If m is not very large, D fits in the main memory and an exact answer can be 

retrieved  as shown in Example 7.5.  However, the  approach  does not  scale for 

bounded storage, or if the computation  performed  for each element ai is forced 

to  be  minimized.  Another   constraint   that   takes   place  in  streaming   data 

processing is that the algorithm only observes each input element once. 
 

Several proposed streaming  algorithms  use a fixed number  of storage units in 

such case; for example, bitmap algorithm. The algorithm  uses a limited amount 

of memory for solving the counting distinct element problem. 
 

The  following  example  gives  the   bitmap   algorithm   to  compute   distinct 

elements.



--_I   1h I-;~ 

EXAMPLE  7.6 
 

 

(a) Write the bitmap  algorithm  for computing  m, the  number  of distinct 

elements. 

(b)   Find min  the following data stream: A, B, B, D, A, A, E, B, H, B, A, F, D, E. 
 

SOLUTION 
 

(a) Assume  a  large  binary  array  (bitmap)  of  size  S   with  all  members 

initializing to 0. 

Choose  a  hash  function   h  such  that   the   value  h(i)  is  uniformly 

distributed  on [S]: 

{1,... , n} ~  {1, ... ,S}. 
 

Apply the hash function on every element (i) of data stream to compute 

h(i) and mark that position in the bitmap with a 1. 

Count the number of positions in the bitmap with a 1 and call it p. 
 

 
 

Thus, m = s · In (-5-)  ., •.. 
S-p 

Let S = 4 and h(i) = i mod 4, such that: 
 

h(A)  = 1, h(B) = 2, h(C)  = 3, h(D)  = 0, h(E) = 1, and so on. 

(7.1)

 

Thus the bitmap (drawn for h(i) = 1 in the following figure) will be: 

A,   B."    B,   o, A,  A.,  e,  B.   N    a A,     ,  D,   s i 
 

----..._        ~~ 
 

1     1 0     1 

 
 
p =  s, S=4

 

(b)   Using equation  (7.1), the  estimated  number  of distinct  elements  =  4 x 

ln(4/(4 - 3)) = 5.55 ~ 6 
 

 
Streaming  algorithms  have  several  applications,  such  as monitoring  packet 

flow  in  networks,   counting  the  number   of  distinct   elements   in  a  stream,



estimating    the  distribution    of  flow  sizes  and  estimating    the  size  of  a join   in 

databases. 

7.3.4.2 The Flajolet-Martin Algorithm 
 

Flajolet-Martin  (FM) algorithm approximates the m, number of distinct (unique) 

elements,  in a stream  or a database  in one pass. The stream  consisting  of n 

elements  with  m unique  elements  runs  in O (n) time  and  needs  O  {log (m)) 

memory. Thus, the space consumption  calculates with the maximum number  of 

possible distinct elements in the stream, which makes it innovative. 
 

Following are the features of the FM algorithm:3•4 
 

(i)    Hash-based algorithm. 
 

(ii)   Needs several repetitions  to get a good estimate. 
 

(iii)  The more different  elements  in the data, the more different  hash values 

are obtained 

(iv) Different hash values suggest the  chances of one of these  values will be 

unusual  [the unusual  property  can be that  the  value ends  in many  Os 

(alternates  also exist)]. 
 

The  following  example  demonstrates   an  estimation   of number  of  distinct 

elements in a stream using the FM algorithm: 
 

 

EXAMPLE  7.7 

 
Find  an  estimation   of the  number  of distinct  elements  in  the  following 

stream: 
 

s = 2, 3, 1, 2, 3, 4, 3, 1, 2, 3, 1, 4 
 

SOLUTION 
 

Consider a hash function, say f (a)= 7s + 2 mod 5 
 

Now apply hash function  on the  input  stream,  perform  the bit calculation 

and trailing zeroes, to get:



fL... 1    +-- 
 

:5 J6  mod 5     

L'i) 7*3+2   a .5 23 mod :S     

j.  1) 7""H2           5 CJmod.5 4  roe  

f 7·  +2 mo.15 16  mod .5   001 0 

f(J 1  j+2  moos mod 5 1  OH 0 

f4 7*4+2-n 5 _o:mod   5 0    

:f1) 7*1+_  moo .s modl"'i 3    

f  1 1~1+2moo.s  
 

9 mod S 4  II  

 :D) 1    +2moo.s 23 mod"'i  3 OU 

f  1 7*1+ ...  moo.s 9 mo   ;5  4 100 

f4 1 *4+ ,;_. moo .s so mod  .5  0 000 

 

o.1 ... 

0 

Apply  hash f'unctlon  on Input  stream              -- 
 
 
 
 
 
 
 

 
           16  mod  "i 

 
 
 

 
00] 

= 

 

 
ff output is zero. then 

trailing  bits are also 

ro

0 
 
 

0 

 

(i) The maximum  number  of trailing  zeros  from  the  binary  equivalent 

trailing zero values, r = 2. 
 

(ii)  The distinct value R = 2r = 22   = 4 
 

(iii) Therefore, R = 4 means there are four( 4) distinct values as 2,3,1,4. 
 

 

7.3.4.3 Combining Estimates- Space Requirements 
 

Different  hash  functions  result  in  different  estimates  of m  (the  number  of 

distinct elements). Thus, one needs to combine all these estimates. Two ways for 

combining estimates are described below: 
 

One way is to take the average of the values of R, computed from different hash 

functions. (Example 7. 7) Taking the average can be over estimation, thus cannot 

be a good solution. Another way is to take the median of all the estimates (taking 

the median is almost correct, but is always a power of 2). 
 

Therefore, combination of the two ways mentioned  above can be a good way to 

combine the  estimates.  Thus, build the groups of hash function  and take their 

average, then take the median of the averages. 
 

Processing multiple data stream and combining limits using in-memory 

processing is feasible.



7 .3.5 Estimating Moments 
 

Recall Sections 6.2.4  and 6.2.5.  Assume a random variable X where X refers to a 

variable,  such as number  of distinct  elements  x in data  stream.  Assume that 

variable  x has  probabilistic  distribution   in values  around  the  mean  value x. 
Probabilistic  distribution  means probability  of variable  having value found =  x 

varying with variable X. Expected value among the distributed  Xi values where i 

varies  from  O    to  n  will  depend  upon  the  expected  distinct  element  count. 

Expected value will be m for expected number  of distinct  elements  in the data 

stream, and much less than m for wide variance. 
 

The variance  is the  square of the standard  deviation  in m from the expected 

value,  the  second  central  moment  of a  distribution,   and  the  cr2    or  var  (x) 

represents  covariance of the random variable with itself. The method computes 

variance for formula: 
 

                                                                                                   ... (7.2) 
 

Moments (0,  1,  2  ...)  refer  to expected  values to the  powers  of (0,  1,  2  ...)  of 

random-variable  variance (Section 6.2.5). 
 

Let P(xi) is probability that m = mi. Sum of probabilities P (m.) over all possible 

n values of x is 1. oth moment is always 1. 

 

7.3.6 Countingof l's  in a Window 
 

Streaming data are fundamentally  continuously generated  data. Continuous data 

stream may be infinite. A good example is network traffic analysis. Here, millions 

of packets arrive per second, and hundreds  of concurrent  queries are raised per 

second. 
 

Infinite Stream  Processing 
 

Figure 7 .3  showed data  stream  architecture   for processing  queries. Volume of 

data is too large that  it cannot be stored. Hardly a chance exists to look at all of 

it. Stream processing is important  for applications where new data arrives 

frequently. Important  queries may be likely to ask about the most recent data or 

summaries of data. 
 

Sliding  Time Window Method for Data Stream  Processing 
 

The sliding window model for data  stream  algorithms  is a popular  model for



infinite   data  stream   processing.   (Window  refers   to  time  interval   during   which 

stream   raised   and  processed   the   queries).   The  receiving   of  data   elements    is 

taking  place one by one. Statistical  computations    are over  a sliding  time-window 

of size  N  (not over the  whole stream)  in time-units.  Window covers the  most 

recent  data  items  arrived.  Assume that  t  is the  time  interval,  which  a query 

processing  algorithm  needs to cache a bit,  1  or 0.  Then window time  interval 

Twindow for raising the queries and processing equals to N x t. 
 

Sliding window focuses on recent  data  and hence  provides  more  significant 

and  relevant   data  in  real-world   applications.  The  network   traffic  analysis, 

requires  analysis based on the recent  past. This is more informative  and useful 

than analysis based on stale data. 
 

A useful model of stream processing is the one in which queries are processed 

for a window of length  N, where  N corresponds  to the  most-recent  elements 

received. Usually it is so that  N is very large and cannot  be stored  on storage 

device, or there  are so many streams that elements from windows for all cannot 

be stored. 
 

Counting of l's  Problem 
 

Recall Section 7 .2.2 (e). Consider a counting  problem. For a given stream  of O's 

and l's, "How many ls are present  in the last k bits?" where ks  N. The obvious 

solution is to store the most recent N bits. When new a bit comes in, discard the 

first bit. This will result into the exact answer. What happens if one cannot have 

enough  memory  to  store  N bits?  For example,  when  the  stream  processor  is 

processing,  assume  N is 1   Billion. Here, the  solution  can be an  approximate 

answer. An algorithm  called Datar-Gionis-Indyk-Motwani (DGIM) algorithm  is a 

solution for such problem in counting. 
 

7.3.6.1 DGIM algorithm 
 

DGIM algorithm suggests that store just the O [log2 (log2 N)] bits per stream. The 

algorithm uses the concept of time buckets. A time window divides in a number 

of buckets. It is different from hash buckets. 
 

Assume that  Nb =  time units  of specific duration  in which stream  ls  and Os 

arrive. When N time units  elapse, the bucket ends. A bucket stores O  (log2 Nb) 

bits, and the count of number of ls between its beginning and end of the bucket 

(which is the  size of the  bucket)  [O   (log,  (log, Nb))]. A  bucket  in the  DGIM



algorithm   is a record,   which  consists  of (i) a timestamp   placed  at  a position   at 

which   the   rightmost    bit   (which   is  the   most   recent   bit)   arrives.   Timestamp 

consists  of O (log2 Nb) bits, [Suppose the number of bits ls as well as Os arrived in a 

given bucket time = 1024  x  1024x  1024  = 230,   then the timestamp will be 11110 (= 

30 decimal),  and  (ii)  count  cnt  of  ls  between  beginning  and  rightmost  bit, 

[Suppose cnt during that  time=  224,   then  cnt =  11000  (= 24 decimal). Maximum 

value cnt  =  29 when  all bits  arrived  happens  to be ls  and none  Os  when  the 

bucket time 230  time units.] The algorithm prefixes cnt. The succeeding bucket of 

2<2   x   cnt)  time  units  can be less than  the  earlier.  Earlier  arriving  buckets  are, 

therefore,  not smaller than the later [Anand Rajaraman et al.2]. 

The size of the bucket restricts  to the power of two. Buckets do not overlap in 

timestamps. Buckets are sorted by size (number of l's). The algorithm uses either 

one or two buckets with the  same power of 2  number  of l's.  The error  is just 

equal to the time taken in storing the bucket timestamps and cnt. 
 

Suppose the last bucket has size 2<2  x  cnt), then (2cnt - 1) of its l's  are still within 

the window, an error of at most that much can be there. Minimum one bucket is 

of size not less than 2<2 x  cnt). Thus, the error can be at most 50%. 
 

Further extensions to the algorithm are also found in literature  suggesting the 

use  of the  algorithm  discussed  in  this  section  to  handle  aggregations  more 

general  than  counting  l's  in  a binary  stream.  The next  subsection  discusses 

another important  data stream algorithm using the sliding window model. 
 

 

7 .3. 7 Decaying Windows 
 

Anand Rajaraman et al.2 describe the  details of the  decaying windows method. 

Decaying windows are useful in applications  which need identification  of most 

common  elements.  The  use  of the  decaying  window  concept  is when  more 

weight assigns to recent elements. 
 

The technique  computes  a smooth aggregation  of all the  l's  ever seen in the 

stream,  with  decaying  weights.  When  it  further   appears  in  the  stream,  less 

weight is given. 
 

The effect of exponentially decaying weights is to spread out the weights of the 

stream elements as far back in time as the stream flows.



Self-Assessment    Exercise   linked   to LO 7 .2 
 

1.   Why does processing  of data stream  require  sampled datasets  in place of all 

datasets? How is a representative   sample taken from a stream? 

2. What are the uses of mean, variance,  moments,  probability  distribution  and 

standard  deviation in stream computing? 

3.   What is the information  obtained after filtering of data stream? 
 

4.   How is the sliding window used for data stream processing? 
 

5. Why is decaying window with decaying weights used for aggregation of 

all the l's ever seen in a stream? 
 
 
 
 

7 .4 lFREQUENT ITEMSETS 

Frequent  itemsets  and frequent  patterns  have several 

uses. The following subsections  describe the  methods 

of finding  frequent   itemsets  and  handling  of larger 

datasets in the main memory, and algorithms to count 

the    instances    of   frequent    itemsets    in   streams 

containing those sets: 

 

 
~~hods    of ifir~u~nt 

1memsets. art_a l)'t)ic::s. and 
h:!ndling1ll;.;irg1@    d:absets, 
aissociiatioim rfllllle 1111iini'n~1 
fo1r findi111g  and ·coun~]ng 
il!!ISGirte@S Of[PrE!!S@llllC@ Of 

those    ii~ms~:s

 

 

7 .4.1  Finding  Frequent Itemsets 
 

The  computational   model  of  finding  frequent   itemsets  typically  consists  of 

mining the number of itemsets in a flat file system. Assume that a Department  of 

Computer Science is offering five courses and students  have different  computer 

subjects. Figure 7 .6 shows the organization of the courses.

mailto:il!!ISGirte@S
mailto:il!!ISGirte@S


 

PGComp...ter PG Computer UG Computer UG Computer  UG Information 

Scienc.e Al)pllcatlons Science Ac)pllcatlons  Technolof,' 

Stt.Jdents 
Basket  1 

Students 

s.asket 2 

Stud,ent:s 

83s;ket  3 

Students 

~ke14 
 Studeriu 

B1stct 5 

P'y'thoti Python Pvthon    

 
Jav.a 

 

Numerical 
 

Pytr.on                   Data Comm-
 

 
Bts~i 

Ana Iv.sis                   Databases                   

e~oat.a 

unic.atioo

An.al';tlcs:                      Java                              Java 

 

Figure  7 .6 Courses organization 

An.alytlcs                      Databases  

 

Let us define that  if an itemset  (subjects-set) is present  in at least 3 out of 5 

course baskets, then that subjects set is a frequent  itemset [Use that criterion for 

finding whether  Java and Python  subjects  set is the  frequent  itemset].  If the 

support threshold,  Sth is raised to 0.8 (80%), then that subject set does not qualify 

as a frequent  itemset.  It  is not necessary that  an itemset  is present  in a basket 

once only, but its presence  is counted  as once only though  the itemset  may be 

present 2, 3 or more times. 
 

Let us consider  an association  rule.  Let us assume SS is a subject  set. Let a 

subject is subj. Consider the association rule that  SS    ..   subj. It implies that if SS 

is present in a basket, then subj is likely to appear in that basket. 
 

Frequent sets basket counting problem has many applications: If a sports shop 

is selling badminton  racquets, then  it is likely to sell shuttlecocks  as well. A car 

company  sells five models through  thousands  of car  showrooms.  It  wants  to 

analyze in what  areas,  the Jaguar  as well as Zest cars are  selling frequently, 

considering Sth = 80%. 
 

Assume (lava, Python) is a subject set SS. The students  in a computer  course if 

taught Java subject for study, they may be taught  Python  as well. Association 

rules are Oava, Python)   ..  Java and Oava, Python)    ..   Python. Association rule 

mining  means  finding the  course baskets  in which both  the  association  rules 

apply. Figure 7.6 shows 3 course baskets where both the pairs of rules apply. How 

does number 3 find? Assume mis  number of course baskets and nB is number of 

baskets  where  that  subject  set  taught.  Following can be the  association-rule 

mining method: 
 

Initialize        nB =    0; 
 

For     each      i    from     1     to     m,   [if       (Java      is     a    subject         in     a



course-basket CB (i))  then if (Python is also a subject 

in CB (i))  then nB = nB +  1;] 
 

if (nB>= Sth)     then subject-set SS   is frequent itemset. 
 

The present  example considers the number  of associations, p just  two. What 

about a frequent  pattern  in which p is ten or more. Remember that the number 

of items  can  be  12000K  (Products  at  Amazon)  or  web  pages  at  www  with 

thousands of words on each page. 
 

The goal of association  rule mining is to discover items that are found together 

in sufficient  number  of baskets  and to find dependencies  among these  items. 

This simply implies finding frequent itemsets. 
 

 

7 .4.2  HandlingLarge Datasets for Finding Frequent 

Itemsets 

Actual number of datasets may be very large. Finding number of disk I/Os gives 

the actual cost of mining the large datasets  stored  on the disk. The association 

rule algorithms  read the data in iterations  where all baskets read in turn.  The 

mining cost measures using number of iterations  in the algorithm over the data. 
 

Thus, the  main  memory  is a critical  resource  for  several  frequent  itemset 

algorithms. The computation  involves counting of occurrences of pairs when the 

algorithm  processes  the baskets. The counting  of various  parameters  requires 

the usage of the main memory. Swapping the count values in/ out between the 

main memory and the disk is not advisable. 
 

The counting process does not eliminate useless items in later iterations,  and 

hence wastes time without producing any useful result. 
 

Consider the simple approach to finding frequent  pairs (Similar approach  can 

be  extended  for  larger  sets  as well). It  requires  generating  all the  itemsets. 

Though the probability  of being frequent  decreases with size. It  is important  to 

count/keep  track of itemsets that turn out to be frequent till the last. 
 

The following example illustrates  the method of estimating  memory 

requirements. 
 

EXAMPLE  7.8                                                                                     

l



Compute  the  memory  required   for finding  frequent   pairs  in case of 1  million 

items. 
 

SOLUTION 
 

Assume an approach  in which the algorithm  reads the file once and counts 

the occurrences of each pair in the main memory. Considering n items in the 

basket,  count  process  generates  almost  n. (n-1)/2  pairs  using two nested 

loops. The number  of calculations  involve -  (number  of items)", This may 

result into failure if square of number of items exceed the main memory. 
 

Memory needs for number of pairs for 1 million items compute as: 

=> Number of pairs of items= 106 x  (106 -   1)/2 = s x  1011 
 

Each count value is an integer that requires 4-byte memory. 

Therefore, memory needed= 4 x  5 x  1011 bytes= 2 x  1012 = 2 TB. 

 
 

Two popular  approaches  for counting  pairs in memory:  First is to count all pairs, 

using  a  triangular   matrix.  This  approach  requires  only  four  bytes  per  pair 

(assume  integers  to  use  4  bytes).  The second  approach  maintains  a table  of 

triples  [i, j,  c] where  c is the  count  of the  pair  of items  {i, j}. This approach 

requires 

12 bytes, but only for those pairs with count > o. The second approach performs 

better  than triangular  matrix if less than one-third  of possible pairs occur. This 

approach may also require  extra space for retrieval  of structure,  such as a hash 

table. 
 

Apriori  Algorithm  Section 6.5.3  discussed the algorithm. Apriori uses iterations 

(successive passes). Algorithm Apriori limits the need for the main memory. The 

first pass needs memory proportional  to the number  of items. The second pass 

needs memory proportional  to the square of frequent items only (for counts). 
 

Several proposed  algorithms  cut  down  on the  size of candidate  pairs.  The 

following  subsection   describes   Park,  Chen  and  Yu  (PCY), multistage   and 

multihash algorithms [Anand Rajaraman et al.2]: 

7.4.2.1 Algorithm of Park, Chen and Yu 
 

Apriori Algorithm works efficiently when the counting of the candidate process 

is executing. During the first iteration, most of the memory is unused. Memory is



required   to store  individual  item  counts  only. Can one use the  unused  memory  to 

reduce  the  memory  required   in the  second  iteration? 
 

The  PCY  algorithm   takes  benefit   of the  fact  that  the  first  iteration   of Apriori 

does not use lots of main  memory  for counting   of single  items.  Iteration   1 of PCY 

algorithm  saves item  counts  as well as maintains  a hash  table with  sufficient 

buckets that  fits in memory. It also maintains  the  counts for each bucket  into 

which pairs of items are hashed. 
 

An improved  version  of PCY  exists. Between the  iterations  the  buckets  are 

replaced  by  a  bit  vector.  Instead  of  four-byte  integers,  one  bit  is  used  to 

represent  the presence and absence of a frequent bucket. Bit 1 means the bucket 

is frequent  and  bit  O   means  it  is not  a frequent  bucket.  Thus, the  memory 

requirement   is reduced  32 times. Also, frequent  items need to be selected and 

listed for the second iteration. 
 

7.4.2.2 Multistage Algorithm 
 

A refinement  of the PCY algorithm is the multistage algorithm. This algorithm uses 

several   successive  hash   tables   to  reduce   the   number   of  candidate   pairs 

subsequently.  The  algorithm   applies  more  than   two  iterations   to  find  the 

frequent  pairs. The idea is to rehash  only those pairs that  qualify for iteration  2 

of PCY after iteration  1 of PCY. Since only a few pairs contribute  to buckets in the 

middle iteration,  fewer false positives may occur. Thus, it requires  3 iterations 

over the data. The two hash functions have to be independent. 
 

7.4.2.3 Multihash Algorithm 
 

A possibility exists for getting much of the benefit of the extra iterations  of the 

multistage algorithm    in   a   single   iteration.    Multihash   algorithm    is   an 

improvement  of PCY.  The main idea is to use several independent  hash tables 

during  the  first  iteration.  This can lead to benefits  like multistage  in only 2 

iterations. 
 

 

7 .4.3  Limited Passes Algorithms 
 

Multistage and multihash  algorithms use more than two hash functions. There is 

a point  of reducing  returns  in multistage  algorithm  since the  bitmaps  mostly 

consume  all of the  main memory.  The bitmaps  occupy exactly what  one PCY 

bitmap  does  in multihash  algorithm.  But too  many  hash  functions  make  all



counts ;;?   Sth· 
 

The algorithms for finding frequent  itemsets discussed in the previous section 

process one iteration  or pass for each size of itemset  [One iteration  means one 

pass through the sequence of instructions]. 
 

Therefore, finding itemsets of size k needs k passes. Many applications do not 

require  finding every frequent  itemset. For example, the online bookstore  does 

not want to offer discount on all the books purchased  together.  Thus, they need 

to run  an algorithm  for limited  number  of iterations  in order  to find a good 

number of the frequent itemsets instead of all the frequent itemsets. 
 

Simple random  sampling  algorithm  There are certain algorithms that use two 

or fewer passes for all sizes. One of them is simple random sampling algorithm. The 

algorithm suggests selecting a random sample of the market baskets. Run Apriori 

algorithm  or its improvements  for sets of all sizes, not just  pairs  in the  main 

memory.  This  does  not  put  burden  for  disk I/ 0  increase  in the  size of the 

itemsets.  There  should  be enough  space for counts  while executing  a simple 

algorithm. The algorithm reduces the support threshold  proportionally  to match 

the  sample size. Thus, if the  sample is 1/100   of the total  number  of baskets,  s 

/100   will be the support threshold  instead of s. The smaller threshold  facilitates 

more truly frequent itemsets but requires more space. 
 

An option  to  implement  second  pass  as well can  validate  that  the  sample 

contains truly the frequent itemsets. This avoids false positives. 
 

7.4.3.1 SON Algorithm 
 

An algorithm  called SON  (Savasere, Omiecinski and Navathe) algorithm  keeps 

away from both false negatives and false positives using two passes. 
 

SON  algorithm  repetitively  read  small subsets  of the  baskets  into  the  main 

memory,  and  run  an in-memory  algorithm  to  find all the  frequent  itemsets. 

Subsets are not samples. It  is the processing of the entire  file in memory-sized 

chunks. An itemset becomes a candidate  if it is found to be frequent  in any one 

or more subsets of the baskets. 

Second pass counts all the candidate  itemsets  and determine  those which are 

frequent  in the entire  set. The idea of monotonicity  used here is that  an itemset 

cannot be frequent in the entire set of baskets unless it is frequent in at least one 

subset.



Distributed   Version   of  SON   also   implements   in   a   parallel   computing 

environment.  The implementation  distributes  the baskets  among many nodes. 

Frequent itemsets compute at multiple nodes. The candidates then distribute  to 

all the nodes and finally, accumulate the counts of all the candidates. 
 

7.4.3.2 Toivonen's Algorithm 
 

Toivonen Algorithm is similar  to  the  simple  random  sample  algorithm  but 

lowers the threshold  slightly for sampling. For example, if the sample s is 1 % of 

the baskets, use 0.008  s as the support threshold  rather  than O.Ols. The basic aim 

is not to miss any itemset  that  is frequent  in the full set of baskets. As already 

stated, the smaller threshold  results  into more deserving frequent  itemsets but 

requires more space. 
 

After preparing  the  frequent  itemsets  for the  sample,  a negative  border  is 

prepared.  An itemset is in the negative border when it is not considering that as 

frequent  in the sample, but all its immediate subsets are frequent.  For example, 

ABCD,  which is not a frequent  itemset,  is in the negative border,  if all of ABC, 

BCD, ACD and ABD are frequent itemsets. 
 

Then count all the candidate  frequent  itemsets  from the first pass and count 

their negative border in the second pass. If no itemset from the negative border 

turns  out to be frequent  in the second pass, then finally the candidates found to 

be frequent  in the whole data, considered  them  as the  frequent  itemsets.  The 

algorithm  requires  a restart  if an itemset  in the negative border  is found to be 

actually frequent. 
 

It  suggests to choose the support threshold,  which results into less probability 

of failure. Also, consider the number  of itemsets  computed  on the second pass 

that fit in the main memory. 
 

 

7 .4.4 Counting  Frequent Items  in a Stream 
 

The  algorithms  discussed  in  the  previous  subsections  find  frequent   itemsets 

from a file of baskets.  Now let us explore finding of frequent  itemsets  from a 

stream of baskets instead of a file of baskets. 
 

Several large sources of data are modeled as data streams. For example, stream 

of network packets, sensor data, etc. It is impractical and undesirable to save and 

process  all data  exactly in such scenario.  Instead,  look for algorithms  to find 

approximate  answers with say one pass over data. When processing  a stream,



remember that only a small part of it can be kept in the memory. 
 

Apriori algorithm  cannot  be used for mining  frequent  patterns  over a data 

stream.  Mining using Apriori  is fundamentally  a set  of join  operations.  This 

cannot be performed over a data stream since at any instant, a program can only 

examine  a very  limited  size window  of a data  stream.  Computation  for  any 

itemset cannot complete without considering the past and future datasets. Here, 

consideration  is only a limited size window. That is due to the massive amount of 

streaming  data. It  is difficult to mine and update  the  frequent  patterns  in the 

presence of a dynamic streaming data environment. 

Finding Frequent Items in Place of Itemsets 

A  simple  frequent  item  finding  algorithm  finds  all items  in a stream  whose 

frequency exceeds a 1/k fraction of the total count. Given a stream S = (A,  B, C, A, 

C, B, D, A), the frequency of an item ai is fi and total count n = 8. Thus fA = 3, fB =  2, 

fc = 2, f0  = 1. Fork-frequent  items (if k = 0.2), the frequent items are the set 

{ai I   fi > kn}. 
 

Here, k x n=0.2 x 8 =  1.6, therefore,  frequent  items are A, B, C. Similarly, for k = 

0.25, (k x n = 2.0),  frequent item(s) is only A. 
 

The frequent  algorithm stores a designated number of pairs of items (say 20%) 

and counter  for every pair of item (say ai, c). The algorithm  compares each new 

item against the stored items. A grouping argument  is used to support the item, 

which occurs more than n/k  times. The details are given in a research  paper by 

Karp et al5. 
 

Literature  suggests that  the frequent  item mining algorithm  sometimes does 

not solve the frequency estimation  problem accurately. Although the algorithm 

preserves  the bound on the true frequency of the items, it may results  in some 

errors.  Observation suggests that  executing the algorithm  with k =  1/ E  implies 

that the count associated with each item on termination  is at most s.n below the 

true value. 

The other  simplest  approach  is randomized sampling based  algorithm. It 

suggests collecting some number of baskets and store them as a file. Run any one 

of the frequent  itemset  algorithms  discussed in this chapter.  The approach  can 

have any two possibilities  for future.  Either the  approach  ignores  the  stream 

elements that  arrive or stores them  as another  file, which it analyzes later. An



estimate   of  the  frequent    item  sets  in  the   stream   is  obtained   on  the  process 

completion   of frequent   itemsets  algorithm. 
 

Manku   and   Motwani'"    proposed  Lossy  Counting algorithm  in  2002.   The 

algorithm saves the tuples consisting of an item, a lower bound on its count and 

a "delta"  (M value, which records the difference between the upper bound and 

the lower bound. When ith item in the stream processes, if information  about the 

item is found then  its lower bound is increased by one; else, create a new tuple 

for the item with the lower bound set to one, and fl set to = l.l/k.].  Also, delete at 

times all tuples whose upper bound is less than l.t/k,l. 
 

Accurate values of upper  and lower bounds  save on the  count  of each item. 

Thus, all items whose count exceeds n/k  must save at the end of the stream. As 

like frequent  items  algorithm,  setting  k =  1/ £  ensures  that  the  error  in any 

approximate  count  is at  most  En. A  careful  argument  demonstrates   that  the 

worst-case  memory  space use by the  algorithm  is O (;1og£u}  and for certain 

time-invariant   input  distributions,   it  is  O ( i} The  algorithm   details  are  in 
 

research paper of Manku and Motwani6•
 

 

7.4.4.1 Sampling Methods for Stream 
 

Sampling  is a  statistical  technique   used  for  processing  using  a  probabilistic 

choice  of data  item.  The  technique   considers  sampling  in  data  stream  and 

process  selects a few data  items  from the  incoming  stream  of data  items  for 

analysis. Section 7.3.2 explained these details. 
 

7.4.4.2 Frequent Itemsets  in Decaying Windows 
 

Section 7 .3. 7  described  the  decaying window method  for identifying  the  most 

common elements in a stream. The weight of ith previous item assigns as (1 - c)' :::: 
e-ci where O  < (1-   C)i:::: 1  where i z 1. Counting frequent items in a stream requires 

two modifications to the algorithm for decaying windows: 
 

1.  Stream  elements  are  baskets,  and  not  the  individual  items.  Maintain  a 

weighted count for itemsets. When a new itemset arrives, 

(i)   Multiply all previous counts by 1 - C. 
 

(ii)  Add a new itemset with an initial count of 1.



(iii)  Add 1 to an existing itemsets count. 
 

2.   Start counting an itemset only if all of its proper  subsets are already being 

counted   (Remember  from  the  Apriori  algorithm   that   if  an  itemset  is 

frequent, then all of its subsets must also be frequent). 
 
 

Self-Assessment Exercise  linked  to LO 7 .3 
 

1.   How is frequent  itemset analytics performed  in market basket model? 
 

2.   How does the Apriori algorithm for frequent  itemsets analyze? 
 

3. How does  the  Park,  Chen  and  Yu (PCY) algorithm  for  frequent   itemsets 

analyze?  How does PCY  improve  memory  usages  compared  to the  Apriori 

algorithm?  . 

4.   Make a table comparing the PCY, multisate  and multihash  algorithms. 
 

5.  List the methods for finding frequent  items in data stream and compare 

them. 

Real-time analytics platform, SparkStreaming, and real-time analytics 

applications to real-time sentiments  analytics and stock prices analytics 
 
 
 
 

7.51 REAL-TIME ANALYTICS PLATFORM (RTAP) 

-SPARKSTREAMING 

Real-time application relates to responsiveness. Data, 

when generated  fast needs fast processing  as well. An 

application   sometimes   requires   updating   the 

information  at the same rate at which it receives data. 

Late  decisions  sometime  cause  loss  of  great 

opportunities.     The    term    'analytics'     implies    the 

 

 
IR~l-time  aalr}'ltiCS 

1plaitfonr1m.  SparkStireami  ng. 

and ireal-ti me allilalyNc:s 

applicaitionisto  ,rsa'l-time 
sel1il1i!im~ts allila'lytiics Jlr!ld 
stock pri1ic~   alilalytics

identification   of  meaningful   patterns   from  data.  Thus,  real-time   analytics 

signifies finding meaningful patterns  in data at the actual time of receiving it. 
 

Real-Time Analytics Platform (RTAP) analyses the data, correlates, and predicts 

the  outcomes  in the  real time. The platform  manages  and processes  data  and



helps  timely  decision-making.    The  platform   helps  to  develop  dynamic   analysis 

applications.   The platform   leads to evolution  of business  intelligence. 
 

Following  are the widely used RTAPs: 
 

1. Apache SparkStreaming-a   Big Data platform  for data stream  analytics in 

real time. 

2.  Cisco Connected   Streaming   Analytics  (CSA)-a  platform   that   delivers 

insights from high-velocity streams of live data from multiple sources and 

enables immediate action. 

3.  Oracle  Stream  Analytics  (OSA)-a  platform   that   provides   a  graphical 

interface  to  "Fast Data". Users can analyze  streaming  data  as it arrives 

based on conditions and rules. 

4.   SAP HANA- a streaming analytics tool which also does real-time  analytics. 

The SAP platform makes it easy for developers to incorporate  smart stream 

capture and active event monitoring, alerting and event-driven  response to 

applications. 

5.  SQL  streamBlaze-an   analytics  platform,  offering a real-time,  easy-to-use 

and powerful visual development environment  for developers and analysts. 

6.   TIBCO StreamBase-streaming    analytics, which accelerates  action in order 

to quickly build applications  that  analyze and act on real-time  streaming 

data. 

7.  Informatica -  a real-time  data streaming  tool which transforms  a torrent 

of small messages and events into unprecedented  business agility. 

8.   IBM Stream Computing-a   data streaming tool that analyzes a broad range 

of streaming  data-unstructured  text,  video,  audio,  geospatial,  sensor• 

helping organizations  spot the opportunities  and risks and make decisions 

in real time. 
 

 

7 .5.1  Apache® Spark™ Streaming 
 

Continuous arrival in multiple, rapid, time-varying,  possibly unpredictable  and 

unbounded  streams  have difficulties in processing,  especially in Big Data with 

3Vs characteristics.  Streaming data processing needs computing in real time as



the  data  arrives. 
 

SparkStreaming    is an  extension   of core  Apache  Spark  APL Spark  Streaming 

applications   are  in a variety  of use cases  and  business  applications.   Some of the 

most  interesting    use  cases  of  SparkStreaming    include   Uber  (the  ride  sharing 

service),  Pinterest,   (the  content   sharing   service),  Netflix  (a subscription    service 

that  provides  access to movies  and TV shows). 
 

SparkStreaming     brings   Apache   Spark's   language   integrated    API  to  stream 

processing.   It  facilitates building of fault-tolerant  processing of streaming  data 

in real time. SparkStreaming is one of the most popular platforms to implement 

data processing and analytics software for real-time  data received from IoT and 

sensors. 
 

Figure 5.3 showed Spark stack main components, namely Core, SQL, Streaming, R, 

GraphX, MLib and Arrow in a five-layered architecture.  The architecture  presented 

the overall Apache Spark ecosystem. All software components  are also available 

when using SparkStreaming. 
 

Following are the features of data processing using SparkStreaming: 
 

1.   Combines batch processing and streaming processing in the same system 
 

2. Applies Spark's machine learning and graph processing algorithms on data 

stream 

3. Divides the stream  of data into micro-batches  of a pre-defined  interval  (N 

seconds) [The N is as per need of data stream processing]. A micro-batch  is 

used in operations  similar to Resilient Distributed Datasets (RDDs). A very 

low value of N means that  the micro-batches  may not have sufficient data 

for useful analysis. 

4.    Support Scala,Java, Rand Python language in the form of suitable APis 
 

5.   Results save at a data store for performing analytics later 
 

6. Results  also  generate   reports,   display  visuals  on  live  dashboard   and 

generate alerts on the events. 

SparkStreaming library is used for processing a real-time data stream: 
 

1. DStream (Discretized Stream)-an abstraction  of a continuous data stream 

in SparkStreaming DStream creates either from basic sources or input data



 
• 

 
utput                                                Ap.pl 

Store 

stream   from  sources,  such  as Kafka, Flume  and  Kinesis.  Stream  operators 

apply  functions   on  DStreams.  DStream  represents    streaming   data  from  a 

TCP source. 

2. Type  of  Input   Sources-(i)  Basic sources:  Sources  which  are  directly 

available  in the  StreamingContext   API, such  as a file system  or  a socket 

connection,  and  (ii) Advanced sources  which  are  available from  sources 

such as Kafka, Flume, Kinesis. 

3.   Apache Kafka-   is a real-time, fault tolerant,  scalable messaging system for 

moving data  in real time. Kafka captures  user  activity  on websites, logs, 

stock ticker data and instrumentation   data. Kafka works like a distributed 

database and is based on a partitioned  and replicated  low latency commit 

log. Apache Kafka includes client API as well as a data transfer  framework 

called Kafka Connect. 
 

4. ZooKeeper-a    centralized     service     providing     reliable     distributed 

coordination  for distributed  applications. Kafka, the messaging system for 

configuration details across the cluster. 

Figure 7. 7 shows various architecture  components  of SparkStreaming  for Big 

Data applications, analytics, live data visualization, real-time online 

recommendations  and instant fraud detection. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Am  eon   ine 

o 

Datili 
it      ons

 
Input  Data Stream  Sources 

 

Figure 7.7  Various architecture  components of SparkStreaming 

application



Table 7 .2 gives the functionalities and operators  of SparkStreaming 
 

Table 7 .2 Brief description of SparkStreaming functionalities and operators 
 

Operator 
 

.  reatlng   treamln  . 

 

 
ntext    bj    l usln     park     nf

import  org.apaob .SIP      r    -· 

im.pon   g.apach .spm:k.streru:rurng_ 

val DDm' =::maw  Spairk:COO!f. ). 

setAppNBtme nppNwne 

setMasret'(~r·, 

val ssc = imi          Sweamw.gCoatex,  roo:f 

ecoads  l 

Creates StueauuogContex1obj  ci: Wllll.e(1).  ssc cowgmed with AppNwmie~ 

Biter  Ebe creatioiil. of sse• .s'll!      eque11i1    eps debe  the  l  .i:1i.1rpnt sources  by 

creaiWJrB tnp1!111. DStnmrms. oodJ it  too snrerum118   o.mpu.~n.OOB  lbv apptyimg 

-nmnsfoHWl!ROOi:mdl ootpu.t       mrttofil  to DSnlilllS.

pend I     n  on D  tream    from  Lnpu.t  sources 

w:iito ·           o1lbel"Stream                              Re~o  a new DStream  d:wit eontains the wtJoa of die elemerr  w ·rue source 

DSll:reem lHLdl  ot!lnerDS1reruilit 

                 Wheo eel   d oa ~·o Dstre:ru:nsof(K,               (K. W) pai:      re        a ew 

DStre8llili of  K.     W} ,      [PMfS with all pairs of elements for ead!i key.

Cogrowp otmerSttream,   [ou.mT    J 

 
treanl.lng lramformatlon  operanons 

Wben callle«il.  oa a DStrell!.m of~      V  ud.   ~  W) pali!rs, :retm.n    new 

DStream  of  K.    q_  [VJ~  Seq [WJ  tuples

uaosf cmn fuc'  ,                                                                                                                                                                                                                                                                                           Retarn a :new DSmmm  by app]y1og a RDD-to-RDD   furlclion to every RD.D 

llf mtie source DStreruJ!li.   Trus can. be used to do a!ibittary RDD         tians on 

nb_eDS~am



tream ~w   p 

 
 

 

 
 

 

 
 

 
reduce  tiloc 

 

111       RDD  II ke    peration 

Remm a mew DSrren.m  by pasS:~og each e.lern .nt  of the source 1DSU-eaJil11 

thrn1!1gh  a function :func. 

Si.mHac ro map, bm eacb lnput item  an be !IIUlipped   O     more  01!1tpurt 

.iltems • 

Return  a .lite\\' n tream  mfter seilecUmg  ~he records of rhe  source   DStream 

wlliicll ifune remras  a11L]y  true. 

Return a new DStream. of sliri1g].e-element RDDs IDy  BgNeg.tt.i.irng me ele• 

ments :itnr each RDD of tlb.e source. DSt.reYt uses tlre firuactton   fulllc."   whicil 

takes two argumests aod remm   0.111:       The fun,  ~on  aoutd   

t:m.d oonun.11.:1mni.ve so that  it can be computed.   m parallel, 

CbMf!;f,S rthe ]e.ve:1  of _pru-al]eHs.m  tin  it.Ms     ·     tream b      eatilllg more.  illi few  F 

parulili 

Coum l1he  lilil.'.l!m1ber  off elemea     in each RDD of the source DS'fre;rum  mild 

uetum  a new D.  trearn  of s.[agle-eO  .me,11t RDDs 

V\1ilu.•j1called  on a D ·    trearn of    ·                meJILts m type K. retu rn m. ne    D  tream   of 

, Long) prun wl!tere  the vdl!le  of each ke   ls i   If       ueac   ~JI[     ac'.lil RDD 

o.f th    sourc  n rcearu.

iredJuceJJ  ~  Key fnlllc,  [1111mm      ·11::s]  , 
 

 
 

 
 
 
 
 

t ream h   output    perntlon 

fi    ach RDD(ifrrnc 
 
 
 
 

saveAsTe  tFiles(prefix.   [srrffix] ·    - 

saveAs     9ectF.iles(prefi:x:.    [wffix] 

av AsHadcmpiF:fil     prenx. [m1ffix] 

Re1Mmni new D   tream of  .K, v   pairs wlileo e-aliled 01Tu  a. DStream  llf  (K; 

V.   prurs.  TJrae values 1     e   ~ !Irey Ar    aw    gm · d u&ng th  gt ven reduce 
FWilictio0i. 

:Rerum  a .Iii!       •   tare   DStream where  ttte rate far each  -  ·\r Is updated    y 

appl frn:g  ~   givem fmncliollJJ  on  tt:l    previous slat  of the .ke~  Md! the .rn w 
valu     fer l1he  Ire   •  llis ean       used to m:rui1L1t.aliJ11 ill    "tfM)f   tate oo dam t'OI 

each key. 
 
 

foreaeh"  is rnhe Jill  Sit gen     Ic ma,  ut operator  tnat app ·  s  a fHctio[li.l. fl:]]IJc. 

to enc'.b RDD gem.ernt d trnm tne swearn. This ifu:rnctj.oa staou~cll pu   hmm 

dam In ellicb. RDD to an  xre::nmll  1ste.m,  sl!lcli'il as &llNillilg the RDD re files, or 

wdt:iiug it  over th  network  to ai database, 

Save ·mhe DStrearrn c  uerns as ~ext  fiiles  lb    file mirun   Rt each bates 

t:lil.rena.1 ·       generated  li!iased   on prefix and   uffix: 

•  prefLx-TIME_]N_MS [.  mliiixr. 

ff    S.aw  the DSweam  come     as S .qnen    Fl       f serialized fa .a 

o  1ects.  The file, name .rut  each batca ~nterval  1s generated  ba ed    1 

pr.em  and   lilffix.  •  p  fix-TIME_1N_M    [.sllifix]'.

'i~i     So:1w the  DSme.nm  cootemn   as Hadoop  :fil    . The file n 

batcb  :lia.tena.t d       gener atedi b      d o:a  preti.:.1 and stllffi:.l: 

.. p    fix-TIME_]N_MS  [   uflii:t]"' 

at each

mr ·       or 
 

Ptim;~s  ~:b     first te111  ii1:lements   of eveFy  bruc-h  of dl:illl.  il'!I  a DStream   o.n  th     driv- 

er m11o(le  runn.[9g  tilil   sw   0!111m~ aippHcatio:m ·   Trus :ii ..  useful frni deve~    m  I'll 

                                           ·ao.d  d    ugsing     



val              conf new 
 

SparkConf() .setAppName(StreamWordCount) .setMaster(m ster) 

 

tream   ~lP      . ti m 
 

ndm  Related Trnnaurmatl   n P         m

~T"rnd       imtowI...englJh  sHdelruerva~ 

conaiB •Win.(l)ow  w1ndo~1..eagth~ 

Hde]lflrervat) 
 

redac  B  Wtim1ow fume.. win• 

Length.   Miiaemte:r1-·01 

red11ceB ..  Ke.. AmdW11lldOVl,•(if1!1:1J     , win- 

Length. slidelin.tervru.•  [rnJmTulk!i] 

red1.11JceB   KeyAIIldWindow.ifu   • 

.im,,;FurJc. w~ilildo  .          Length    lid.e]nte.r"et 

[num'fas •   J 

,.,ta  run      data rec el   Ing  and pl'iCk::         ing 

Tlii    e t.f0JlilS1i'o matloa 0;perati       are ~1rfmmed f:       tlrJ   stream..     mta dur- 

.EBg     idlBgilElt   val for  t:hl     time equal  ~o  wfm:!wwl..     gtll. 

,.     \iV1iJ11             Length specm      the duira1ii   11   of tine wLnd w. 

•      l.ttd'.Lng w:re1rvml speelfies the inter   ail at which the window opern&l  n 

is perrormed.

 

tireMIDCl!gCOiTh~ext ·tmr(                                     SSll!l!g   t •. 

·re1 mlm  li   n   nd  top   
 

        Wait.  for 1he t   mitoo.tio11  s1gmi]   CTRL+c or     G'TERJ\.f  from  user      stop 

.s.tlieWJ.1.1:1JJ:!: prnces    . 

                            Stop   tre~:ng   pm         

The following example shows use of SparkStreaming for count functions. 
 
 

EXAMPLE  7.9 
 

 

Create a program in Scala for counting the number of words from a socket in 

every 1  second, using window of length 60 seconds and sliding interval of 10 

seconds, and save the result in windowed WordCounts. Use SparkStreaming 

context and APL 
 

SOLUTION 
 

(i) Refer Table 7 .2.  Import  SparkStreaming using  program  statements   as 

follows: 
 

import org.apache.spark. 
 

import org.apache.spark.streaming. 

(ii) Configure appName and StreamingContext using program  statements  as 

follows: 
 
 
 
 
 

val ssc = new StreamingContext(conf,  seconds (1))



Here, ssc stands  for SparkStreamingContext. 
 

(iii)  Create  a socketTextStream  at ip:port for count the words as follows: 
 

I I    Replication necessary in distributed scenario 

for fault tolerance. 

val lines      ssc.socketTextStream(args  (0), 

args(l).toint, StorageLevel.MEMORY_AND_DISK_SER) 

(iv) Compute streamWordCount using map() and reduce()  as follows: 
 

val streamWords = lines.flatMap( .split("")) 
 

val windowedWordCounts =   streamWords.map(x =>    (x, 

1)).  reduceByKeyAndWindow(  +         Seconds(60), 

Seconds ( 10) ) 

(v) Start   the   processing,   and   await   termination    using   the   program 

statement  as follows: 
 

ssc.start() 
 

ssc.awaitTermination() 
 

(vi) Print the results using the program statement  as follows: 
 

windowedWordCounts.print() 
 

 
 

7.5.2  Real-Time Analytics Platform Applications 
 

Some such applications are: 
 

1.   Fraud detection systems for online transactions 
 

2.   Log analysis for understanding  usage pattern 
 

3.   Click analysis for online recommendations 
 

4. Push notifications  to the customers  for location-based  advertisements  for 

retail 

5.   Action for emergency services such as fires and accidents in an industry 
 

6.   Any abnormal  measurements   require  immediate  reaction  in  healthcare



monitoring 
 

7.   Social media. 
 

 

7.5.3  Case Studies-Real-Time Sentiment Analysis, Positive 

Negative  Sentiments Prediction and Stock Market 

Predictions 
 

Real-time data feeds from social media (such as twitter)  are easy to get. A use of 

this  data  is for sentiment  analysis. The real-time  data feeds of stock prices at 

stock trading exchange are available. A use of these feeds is in sentiment  analysis 

and future price predictions. 
 

The following subsections considers these examples for real-time  analysis and 

predictions. 
 

7.5.3.1 Real-Time SentimentAnalysis using Tweets 
 

The  case  study  provides  the   method   of  access  of  real-time   social  media 

information  using Twitter.  Tweets are received  from the  Twitter  stream,  pre• 

processed  and then  analyzed to extract  the  features.  The method  follows the 

steps as: 
 

1. Collect  a  comprehensive   training   dataset   that   consists  of  data  about 

potential users of a system. 

2. Pull the  specific tweets  in real-time  using Twitter  API, then  process and 

load this data into a persistent  storage. 

3. The cleaning  of the  data  proceeds  with  punctuations,  stop words, URLs, 

common emoticons    and   hash    tags,   references    deletion.    Multiple 

consecutive  letters  in a word are reduced  to two (words like tooooooooo 

much ...  is replaced  with too  much). Spell checking  is also performed  to 

words that have been identified as misspelled in order to infer the correct 

word. 

4.  Classify various  types  of tweets  and  segment  them  after  estimating  the 

influence of each tweet using the predictive analysis library. Perform 

sentiment  analysis by identifying whether  people are tweeting  positive or 

negative statements  about some actions.



5. Use linguistic  concepts,  perform  opinion  mining, analyze data and bring 

out  powerful  insights.  Use important   feature  of the  analysis  based  on 

machine  learning.  Thus, applications  learn  by analyzing  ever-increasing 

amounts of data. 

6.   The goal is to build the model for predicting  the sentiments  from tweets. 

Table 7.3 presents sentimental  analysis features. 
 

Table 7 .3 Sentiment analysis features 
 

 

Feature 
 

Meaning 

NEGATION 
 

Presence  of negating  words 

POSITIVE SMILEY Presence  of common   positive   emoticons 

NEGATIVE SMILEY Presence  of common   negative  emoticons 

DONT-YOU,   OH, SO, AS FAR AS, May indicate  ironic  or sarcastic text 

LAUGH Presence  of popular  laughter  indications,  such  as haha, lol 

Tweets  sentiments   prediction   can  face  the  following  problem:  The  use  of 

negatives and positives in the same sentence. For example, "I like red color but I 

hate blue color". A classification of such sentence is that it is a neutral  sentence. 

The  application   handles  that   sentence   by  breaking  the  sentence   into  two 

subparts such that one is positive and the other is negative. The count value thus 

does not alter. 
 

This classification model adapts  to the  evolution  of tweets  and employs the 

user (or domain expert) feedbacks. 
 

The outcomes affect by: 
 

1.   Varying size of dataset 
 

2.   Different features 
 

3.   Rate with which tweets arrive 
 

4.  Changes in the  textual  content  (for example, the  changes  in vocabulary, 

meaning of words, etc.) 

Social media sentiment  analysis also needs to identify various human emotions 

like sadness, anxiety, fear, confusion, depression and anger.



7.5.3.2  Stock Market Predictions 
 

Stock  market   data  is  an  example  of  a  real-time   data  stream.  Data  stream 

algorithms compute the values over a time-window of stock trades. This window 

has fixed size and contains  n stock trades.  A  sale-purchase   is counted  as one 

trade. The parameter  studied is Volume-Weighted Average Price (VWAP). 
 

The data stream model can be relational tuples-based model with tuples 

(sale_time, ticker_symbol, num_shares,  price_per_share)  for each stock sales in 

real time. Assume stock trade i has price Pi, with Si shares changing hands, then 

compute the volume-weighted average (VWAP) stock prices from stream of stock 

sales. PvwAP (Price for VWAP) =  L PiSi +  L Si. 
 

The algorithm  first transforms  stock-sale data stream  into a relation  using a 

time-based  sliding-window operator  with sliding interval  ~T =  5 m (over last 5 

minutes)  of data.  The window length  is time  from  start  of the  day and thus 

increases as the day progresses. 
 

The  algorithm   estimates   value  of  PvwAP   continuously,   and  evaluates   the 

relation factor r periodically during trading day. 

Recapitulate   equation   (6.8a).  The  correlation   coefficient   r  between   two 

variables x and y is: 
 

r = [ l / (n -1}]    x l:{ [ {~ -  x} I~]   x [ (y1  -  y) I sy]  } ,                                                           ... (7.3) 
 

where n is the number of observations in the sample. xi is the x value(=  time since 

start of trade in a day) for ith observation.x  ts the sample mean of x values. Yi is the 

y value(=   PvwAP) for ith observation. y_  is the sample mean of y values. sx is the sample 

standard  deviation of x. sy is the sample  standard  deviation  of y. 

Compute a correlation  factor (relation)  containing  aggregates  using standard 

grouping/ aggregation  operations.  The r is also sent as another  stream  (results 

stream). 
 

Refer Sections 6.2.2 to 6.2.4. A prediction model can be building a relationship  r 

with respect to time and then predict using machine learning tools. Value of r > O 

continuously  over a window of time length,  (for example, 4 hours)  indicates  a 

continued positive relationship  (sentiment  towards the stock price). Conversely, 

r  <   0  indicates  a  negative  relationship   (sentiment)   and  r  =  0  indicates  no 

relationship   (or  that  the  variables  are  independent   of  each  other   and  not



related).   A prediction   for price  increase  or decrease   can be based  on positive  or 

negative  sentiments   during  the  period  of study  from the  start  of the trade. 
 
 

Self-Assessment Exercise linked to LO 7 .4 
 

1.   List the applicaions of real-time analytics. 
 

2.   List the platforms available for real-time  analytics. 
 

3.   How are the features in SparkStreaming  used for data stream analysis? 
 

4.   Explain transformation   functions in SparkStreaming. 
 

5.   How is real-time data stream used in making predictions? 
 

 

 
 

adapter Apache 

Spark Apriori 

algorithm 

association rule 

BDAS 

Big Data 
 

Bloom filter 
 

correlation  coefficient 
 

COUGAR 
 

counting distinct 

counting ones 

CQL 

data stream 
 

DBMS 
 

decaying window 
 

DSMS 

DStream



filtering 
 

frequent itemset 

hash function 

HDFS 

Kafka 
 

lambda architecture 

moments 

multihash algorithm 

multistage algorithm 

operator 

predictive analytics 

queries on data stream 

real-time analytics 

real-time data 

relational tuple 

representative  sample 

sample size 

sampling 
 

sentiments  analysis 

sliding window 

StreamingContext 

TelegraphCQ 

tuple 

window 

 
 

 



LO 7.1 
 

 

1.   A stream  is a sequence  of data elements  or symbols made available over 

time.  Transmitting   or  receiving  (data)  between   computer   systems  or 

networks  is  streaming  of data.  Mostly, data  stores  process  data  using 

batched processing. Processing streaming data is different from processing 

the data saved at a store. 

2. Stream processing uses graph-based  data stream  model, relation-oriented 

stream tuples model, object-based or windows-based model. 

3. Data stream  processing architecture  is as follows: Queries are required  to 

be processed on streaming  data. Applications continuously  handle queries 

from a query repository.  Streaming data is processed after load sharding at 

the memory. The queries response saves at the output buffer before finally 

being retrieve in the application. 

4.   Data Stream Management System (DSMS) manages streaming data. 
 

5.   Issues in stream processing are large data stream from different  domains, 

variation  in frequency  of data  stream,  zeros,  unbounded  sizes, need  of 

scalable, near-real  time  or  event-based  processing  and  need  of filtering 

undesirable data. 
 

LO 7.2 
 

 

1.   Stream computing uses algorithms  which analyze the data in real time at 

high  speed  and  accuracy.  Stream  computing   is  the  fastest   and  most 

efficient way  to   obtain   useful   knowledge   from   Big  Data   anaytics. 

Organizations react  quickly on appearance  of a problem  and can predict 

new trends for the future. 

2.  Sampling in data  stream  means  the  selection  of a few data  items  from 

incoming  stream  of  data  items  for  analysis.  Choice of  data  items  for 

processing is as per probabilistic sampling. 

3.   Several filtering  techniques  exist: Bloom Filter and its variant,  Streaming 

Quotient  Filter  (SQF),  Particle  filter,  Kalman filter,  XML filters  (XFilter,



YFilter)  are  some  of the  popularly   known  stream   filters.  Bloom filter  does 

conditional matching   where  a tuple  matches  with  some  desired  value.  The 

Bloom filter  is simple  to implement   and space efficient. 

4. The stream of data contains repeated  elements. Counting distinct elements 

find  the   number   of  dissimilar   elements   in  a  data   stream.   This  has 

applications in the area of networking and databases. 

5.   The sliding window model for data stream  algorithms  is the one in which 

data elements  receive one by one and statistically  compute over a sliding 

window of size N (not over the whole stream). The window covers the most 

recent data items arrived. 

6. Decaying windows technique  computes a smooth aggregation  of all the ls 

ever seen in the stream, with decaying weights. When it further  appears in 

the stream, less weight is assigned. 
 

LO 7.3 
 

 

1. Finding frequent  itemsets means finding associated items in sets which are 

found together  sufficiently in number  of baskets and to find dependencies 

among the items. 

2. Apriori   algorithm   for  frequent   itemsets   works  efficiently   when   the 

counting of the candidate process is executing. 

3. PCY algorithm takes benefit of the fact that in the first iteration  of Apriori, 

the  counting  of  single  items  does  not  require   lots  of  main  memory. 

Multistage  algorithm  uses  several  successive  hash  tables  to  reduce  the 

number  of candidate pairs subsequently. Multihash algorithm uses several 

independent  hash tables on the first iteration.  This can lead to benefit like 

multistage in only 2 iterations. 

4.  SON algorithm repetitively  reads small subsets of the baskets into the main 

memory  and  runs   an  in-memory   algorithm   to  find  all  the   frequent 

itemsets. 

5. Frequent  algorithm  helps in finding all the items in a stream. It  finds the 

associated sets whose frequency exceeds a 1/k fraction of the total count.



Lossy counting  algorithm   stores  tuples  consisting  of an item,  a lower bound 

on its  count  and  fl value which records the difference between the upper 

and lower bounds 

6. Counting  frequent  items  in a stream  requires  two  modifications  in the 

decaying window algorithm. 
 

LO 7.4 
 

 

1. Real-time application  relates  to responsiveness.  When data  is generated 

fast, it needs fast processing as well. 

2.   Apache  SparkStreaming   and  several  tools  enable  real-time   analytics. 

SparkStreaming is an extension of core Apache Spark APL SparkStreaming 

brings Apache Spark's language-integrated  API to stream processing. 

3.   SparkStreaming provides a number of transformation  functions. 
 

4. Real-time  analytics  with  regression   analysis,  statistical   functions   and 

machine-learning  tools can predict positive, negative or no correlations  in 

real time from the stream of data for applications such as stock prices. 
 

 

Objective Type Questions   1111 
Select one correct  answer  option  for each of the following questions: 

 

7.1 A  stream  processing  engine  may include  (i) the  core low-latency  stream 

processing  functionality  with (ii) a rich set of stream-oriented   operators, 

(iii) coordinator,  (iv) loader, (v) manager, 

(vi) load shedder, (vii) fault tolerance  module, (viii) graphical query editor, 

(ix) system visualizer, and 

(x) stream connection generator. 

(a)  all except viii to x 

(b)  all 
 

(c)   all except iii, vi and viii 
 

(d)  I, ii, ix and x



7 .2  DBMS (i) stored  sets of records  with  no pre-defined  time  concept,  (ii) is 

suitable for applications  that  require  persistent  data storage and complex 

querying,  (iii) sequence  of data  elements,  (iv) one-time  queries,  and  (v) 

bounded main memory. 

Data  Stream Management System (vi) provides  online  analysis  of rapidly 

changing stream of data, (vii) is suitable for real-time, continuous, ordered 

(arrival  time  or  timestamp)   (viii) persistent   relations   (relatively  static, 

stored), (ix) transient  stream  (on-line analysis), (x) implements  sequential 

access, and (xi) unbounded disk storage. 

(a)  none 
 

(b)  all except iii, v, viii and xi 
 

(c)  only ii 
 

(d)  all 
 

7 .3  Data stream model for processing can be based on (i)windows, (ii) relation• 

oriented tuples, (iii) correlation,  (iv) graph, and (v) queries. 

(a)  i, ii and iv 

(b)  all 
 

(c)  i to iii 
 

(d)  all except iv 
 

7.4 Stream processing issues are (i) unfixed size stream,  (ii) unbounded  data, 

(iii) need of scalable processing, (iv) variation  in frequency of data stream, 

(v) may need real-time processing, and 

(vi) large data streams from different domains. 

(a)  all except ii, iii, iv, xii and xiii 

(b)  all 
 

(c)   all except ii to vi 
 

(d)  all 
 

7.5 Minimum sample size required  for accuracy in estimating  proportions,  the 

following are taken  into the  consideration:  (i) A precise  estimate  of key



proportions   P to be measured in the study. 

(ii) The degree of error  D that  is desired in the study, -1%-5%   or 0.01  and 

0.05,  (iii) the confidence level Z = 95% needed from the inference, and (iv) 

null hypothesis true. 

(a)  i, iii, iv 

(b)  i to iv 
 

(c)  iii 
 

(d)  All except iv 
 

7 .6 Process of deleting a particular  element in the Bloom filter requires that (i) 

the corresponding  positions computed by k hash functions in the bit vector 

be set to 1.In order to perform deletion of the element, the concept of the 

counting Bloom filters as a variant  of Bloom filter functions as follows: (ii) 

The counting filter maintains a counter for each bit in the Bloom filter. (iii) 

The counters  corresponding  to the k hash values are incremented  or (iv) 

decremented,  whenever an element in the filter is deleted. (v) As soon as a 

counter changes from O  to 1, the corresponding bit in the bit vector reset to 

0. 
 

(a)  i, ii, iv 
 

(b)  ii to v 
 

(c)  ii and iv 
 

(d)  All except iv 
 

7. 7 The sliding window model for data stream algorithms  is for (i) infinite, (ii) 

bounded  data stream  processing. The window refers  to (iii) time interval 

(iv) number  of data  items  during  which  stream  raised  the  queries  and 

processed. (v) The data elements are received one by one and the statistics 

are computed over a sliding window of size N (not over the whole stream). 

(vi) The window covers the last arrived data items. 

(a)  i, iii and v 
 

(b)  all



(c)   ii to iv 
 

(d)  i, ii, iv, v 
 

7 .8 The goal of association rule mining is (i) to discover items that  are found 

together  in (ii) sufficient number  of baskets and (iii) to find dependencies 

among these items. (iv) This simply implies finding the frequent  itemsets. 

(v) Rule should define an itemset present in a certain percentage of baskets, 

then that set is a frequent  itemset. (vi) It is not necessary that an itemset is 

present in a basket only once. (vii) Itemset presence is counted once though 

the itemset but it may be present 2, 3 or more times in a basket. 

(a)  all except ii, iii and v 
 

(b)  all 
 

(c)   all except vi 
 

(d)  i to iv 
 

7.9 Multistage algorithm  uses (i) several successive hash tables to reduce the 

number  of candidate  pairs  subsequently.  (ii) The algorithm  applies more 

than  two iterations  to find the  frequent  pairs.  (iii) The idea is to rehash 

only those  pairs  that  qualify for iteration  3  of Park, Chen and Yu (PCY) 

algorithm  after  iteration  2  of PCY.  (iv) Only a fewer pairs  contribute  to 

buckets in the middle iteration,  (v) so fewer false positives may occur. (vi) 

It requires 3 iterations  over the data. Iteration  3 does (vii) count only those 

pairs {i, j} that satisfy the certain candidate pair conditions and (viii) both i 

and j  are frequent  items. Conditions are (ix) the  pair  uses the  first  hash 

function to a bucket whose bit in the first bitmap is 1. (x) The pair uses the 

second hash function to a bucket whose bit in the second bitmap is 0. 

(a)  all except v and vii 
 

(b)  all 
 

(c)  all except iii and x 
 

(d)  i to vii 
 

7 .10 Consider  frequent   itemsets   finding  problem  use  (i)  decaying  window 

method  for identifying  the  most common elements  in a stream.  (ii) The



weight  of ith previous  item  assigns  as (1 -  C)i:::: e-ci,  (iii) relation O  < (1 + C)i :::: 

1  exists, (iv) value of i  ~  1, and (v) start  counting an itemset  only if all its 

proper subsets already being counted. 

(a)  all 
 

(b)  all except v 
 

(c)  all except ii to iv 
 

(d)  all except iii and iv 
 

7 .11 A real-time application relates to responsiveness as soon as (i) a data source 

sends the data, 

(ii) the data stores in memory, (iii) the data generates  and (iv) the data that 

is being generated  fast must first be saved and then processed fast at any 

time.  (v) An application  sometimes  requires  updating  information  at the 

same rate  as it receives data. (vi) Late decisions sometime lead to loss of 

great opportunities. 

(a)  all except ii and iv 
 

(b)  all 
 

(c)  all except ii, iii and iv 
 

(d)  ii to v 
 

7 .12 When making the real-time sentiments  analysis for making predictions  (i) a 

correlation  coefficient (relation) r computes in real time, (ii) the coefficient 

r   accounts   for   the   aggregates   using   standard   grouping/ aggregation 

operations, (iii) The r is also sent as another  stream (results stream). 

(iv) A prediction  model can be first built using machine learning tools after 

building a relationship  r with respect to number of frequent  sets. (v) Value 

of r <  O  continuously  over a window length indicates a continued  positive 

relationship   (sentiment  towards  the  stock  price).  (vi) Conversely, r  >   O 

indicates  a negative  relationship  (sentiment)  and  (vii) r =  O   indicates  no 

relationship  (or that  the variables are independent  of each other  and not 

related). 

(a)  all except ii, iv and xii



(b)  all except  iv, v and vi 
 

( c)   all except  vii 
 

( d)   all except  ii and iv 
 

II   Review Questions        llil 
7.1 Describe various data stream  models for extracting  knowledge structures 

from a continuous stream. Give reasons for using each of these models. (LO 

7.1) 
 

7 .2  Describe Data  Stream  Management  System. How does  it  differ  from  a 

DBMS? (LO 7 .1) 
 

7 .3  Describe the  difficulties in real-time  data stream  analytics. How are they 

solved? (LO 7 .1) 

7.4 List  the   approaches   for  calculating   the   sample   size.  What  are   the 

parameters  considered  for calculating the minimum  sample size required 

for accuracy in estimating proportions?  (LO 7 .2) 

7.5 How does a stream filter function? Describe Bloom filter. (LO 7.2) 
 

7 .6  Describe an algorithm to count the distinct number  of dissimilar elements 

from data stream.(LO 7 .2) 

7. 7 How do different  algorithms  find the  associated  items in sets, which are 

together  in sufficient number  of baskets? How do you find dependencies 

among these items? (LO 7.3) 

7.8 How is  the  frequent   items  counting  done  in  a  stream?  Describe  the 

different methods used. 

(LO 7.3) 
 

7.9 What are  the  types  of applications  in which  Real-Time Analytics  (RTA) 

enables timely decisions? What are the tools used by the RTA platform? (LO 

7.4) 
 

7.10  Make a diagram for SparkStreaming  computing  architecture  components. 

(LO 7.4)



7 .11  What   are   the   features    in   Spark   and   SparkStreaming    for   stream 

computation  on Big Data? (LO 7 .4) 

7 .12 What are DStreams? What are the  functions  used for transformation   and 

processing of a DStream? (LO 7.4) 
 

 

I    Practice Exercises       1111 
7 .1   A file has data of 1000 rows similar to table given below: 

 
Table of Product categories, Productld, and Product name 

 
rrod  uc I Name 

 

To  _AH"p]M.e 0725 Lost Temple 

Toy_AH'-ptru1e JUJ47 Prr,opeller   ~11im.e 

Toy_Airplaoe 3104-9 Tw-llli  Spillli Hel!cople:r. 

Toy_Tr.aiiia 3   054 Bhle Bxpre.ss 

Toy_'.]'rntirmi 10254 Wmter Ho:lilmy Toy_Tiraio 
 

How will you use the relation-based  data stream  model? Assume no time• 

stamping of the data. (LO 7 .1) 
 

7.2 Summarize  the   commonalities   and  differences   in  data   stream   query 

languages, (i) Relation based-CQL (STREAM), StreaQuel (TelegraphCQ), (ii) 

Object-based:  Tribeca  or  ADT model-based   sources  COUGAR   and  (iii) 

Procedural-based Aurora in which a user specifies the data flow. (LO 7.1) 

7 .3 Describe  steps  for  developing  the   algorithm   for  various  data  stream 

filtering algorithms. 

(LO 7.2) 
 

7.4 List  the   steps  for  developing  the   algorithm   for  various  data   stream 

counting of the distinct elements. (LO 7 .2) 

7 .5 List the steps in algorithms Apriori,  PCY, multistate  and multihash methods 

of frequent itemsets analytics of data stream. (LO 7.3) 

7.6 Write steps in computing  the  frequent  itemsets  in data stream  using the 

decaying window method. (LO 7 .3)



7. 7  Create    80   exemplary     tuples     (sale_time,     ticker _symbol,    num_shares, 

price_per_share) on every  five minutes   from  the  start  of stock  trading   at 9 

am to 1  pm on the  relation-oriented     stream  tuples  model.  Choose your  own 

stock. ( Can  use  http://www.moneycontrol.com         charts   for  stock   quotes 

during  a  day.   Write   the   code   in  Python    or  Java,   compute    and   plot 

correlation coefficient   and stock  prices  as a function   of time  from  the  start 

of the  stock trade.  (LO 7 .4) 

 
 

 
1 B.  H. Bloom, Space/time  trade-offs in hash coding with permissible errors. 

Communications of the ACM, 13(7):422- 426, 1970. 
 

2   Anand  Rajaraman  and Jeffrey  David Ullman  in  their  book  "Mining  of 

Massive Datasets", Cambridge University Press, 2012. 
 

3  Flajolet, P. and Martin,  G.  N, "Probabilistic  counting  algorithms  for data 

base applications", Journal of Computer and System Sciences, 31(2), 182-209, 

1985 
 

4 http://algo.inria.fr/flajolet/Publications/F1Ma85.pdf 
 

5  Karp, R., Papadimitriou,  C.,  Shenker,  S.  "A simple algorithm  for finding 

frequent  elements in sets and bags", ACM Transactions  on Database Systems, 

Volume 28, Pp. 51-55, 2003 
 

6   G.   Manku  and  R.  Motwani,  "Approximate  frequency  counts  over  data 

streams", International  Conference on Very Large Data Bases, pages 346-357, 

2002. 
 

 
 
 

Note: 
 

o o • Level 1 & Level 2 category 
 

o • • Level 3 & Level 4 category 
 

• • • Level 5 & Level 6 category

http://www.moneycontrol.com/
http://www.moneycontrol.com/
http://www.moneycontrol.com/
http://www.moneycontrol.com/
http://algo.inria.fr/flajolet/Publications/F1Ma85.pdf


Chapter 8 
 

 
 

GraphAnalytics   for Big Data and Spark 
GraphxPlatform 

 

 
 
 
 
 

LEARNING OBJECTIVES 
 

 
After studying this chapter,you will be able to: 

 

LO  8.1   Model the database as graphs, and represent  the graphs using triples 
 

LO   8.2     Get knowledge  of graphs,  graph  network-organization,    choose  the  graphs  for analytics,  and 

know graph-analytics  use cases 
 

LO    8.3     Get  conceptual   understanding    of  graph   parameters,    methods,   diagnostics   and  decisions, 

statistical model,   StatsModel,   probabilities-based    graph-analytics,    and   understanding    of 

technical complexities in analyzing the graphs 
 

LO    8.4   Use  the  Apache  Spark  Graphx,  a  Big Data  graph-analytics   platform.   Know the  features, 

architecture  and components.  Apply them for graph-analytics 

 
 

RECALL FROM EARLIER CHAPTERS 
 

A Big Data store system is HDFS  (Section 2.3). Big Data store uses NoSQL format  datasets.  NoSQL  data do 

not model like relational  tables. BigDdata analytics algorithms  process the NoSQL format datasets. 
 

Graph databases  can model  the  NoSQL  databases  also. (Section  3.3.5).  A  graph  database  consists  of 

edges which  interconnect   the  data  nodes  (vertices). The interconnections   represent   the  relationships, 

associations and properties. 
 

Apache Spark includes Graphx.  Graph analytics  tasks execute  with ease using Spark Graphx.  GraphX 

extends the Spark and thus has RDD (Resilient Distributed Data) property.  The API consists of a collection 

of graph  algorithms  for analytics. Computations  in GraphX use fundamental  operators  (such as 

subgraphs,joinVertices   and aggregateMessages).  (Section 5.2) 
 

This chapter   focuses  on graph  databases,  organization   of graph  networks  and  the  graph  analytics 

platform, Graphx. 

 
 

8.1 ! INTRODUCTION



'Graph' is a set of vertices and edges. Graph theory  is the theory  of graphs and their  properties.  Examples 

of graphs  are hierarchy  graph, monotone graph,  connected  graph,  bipartite  graph, planer graph  and triangle 

free graph. 
 

Graphs have a number  of characteristics.  A graph: 

1.  Represents  a database  using graph  parameters  or properties  assigned to each vertex,  v and edge, e. 

An edge is a line joining two vertices.  Graph nodes and edges connect each other through  relations, 

associations and properties. 

2.   Represents an abstract data type for  the  relationships.   A  graph  depicts  relationships,   such  as,  a 

relationship  between two or more quantitative  dependent  variables with respect to an independent 

variable. 

3.   Represents  knowledge and reasoning  in a conceptual graph model 
 

4.   Represents  a network, such as a social network 
 

5.   Models the dataflows and program/lows  using directed  graphs: A Dataflow Graph (DFG)  represents  the 

flows of data and program.  The DFG  consists of sets of circles. A circle represents  a node (vertex). 

Each node represents  a set of computations  or a set of operations  which change the initial state to a 

new state (of entities  or  properties).   State  change  occurs  on  receiving  new  inputs  followed by 

computations  at a node. The incoming directed  edges represent  the inputs received from the other 

nodes. The outgoing directed  edges represent  the output  to the other nodes. 

6.   Computes  using path traversal,  which means going through  a finite or infinite sequence of edges in a 

graph that  connect a sequence of vertices between  initial vertex vO  and end vertex ve· Traversing  is 

along a path from vO  to ve along the connected  edges. 

7.   Analyzes data using graphic parameters, relationships,   associations  and  distribution   of properties 

along the  vertices  in the  path,  and  property  variations  on path  traversal  from  a node  to  other 

nodes along the edges 

8.   Analyzes data through the queries on data  using path  traversal,  which means  from vO   following the 

sequence of steps to ve· 

This  chapter   describes  graph  models,  graph  parameters,   graph  network   organizations   and  graph 

analytics. It also describes statistical  models for changes and distribution  of properties  on path traversal 

between the nodes. Section 8.2 describes modeling of databases  as graphs  and representations   of graphs 

using triples.  Section 8.3 describes graphs  and graph  networks.  The section also describes  choosing of a 

graph for analytics, and use cases of graph analytics. Section 8.4 describes graph parameters,  methods  of 

diagnostics   and  decisions,  StatsModel,  probabilities-based    analytics,   and  technical   complexities   in 

analyzing  the  graphs.  Section  8.5  describes  the  features   of Apache  Spark  GraphX, its  architecture, 

components,  applications,  and the considerations  of using the dedicated appliances for the graphs. 

 
 

8.2 ! GRAPH MODEL 
 

A  graph  represents   an abstract data type. The  edges  of a graph  represent   relations,   connections   or 

associations. The vertices  represent  the entities.  Each entity  can have parameters  assigned to that.  Each



node can have parameters  and property  assigned to that. 
 

A set of vertices  (nodes) V and edges (links) E define a graph  G. Relation in 

terms  of set theory  is G =  (V, E), which means  that  graph  G is a set, which 

contains two sub-sets, vertices V and edges E. 

 

 
 
,1odeing  of databases   as 

graphs  and representations 
of graphs  using  triples

1.  Elements of V represent   the  entities.  A  node or a vertex  v in set V represents   an entity,  such as 

studentID [Example two nodes: 'studentID'  and 'studentSemlSGPA'. 

2.    Elements of E represent  the relations  or associations. An edge connects  the two nodes. An edge, e 

represents  a relation  or association between  the two entities.  An example of association  is 'studies 

at'. Student  of an ID studies at a UG  course where  the studentID and UG  course are two entities  at 

two interconnected   nodes. 

Order of a graph specifies by number  of vertices N, and number of edges Ne, where N, =  IVI, and Ne= IEI. 
 

The degree  of a node  (node degree)  specifies the  number  of edges linked to a node. The degree  may 

vary from traversing  from one node to the other.  For example, three  linkages vl to v2, vl to v3, vl to v4 

mean that vl  (node-degree)  is 3. A distribution  function  represents  the variation  in degrees of the nodes 

on traversing  (Section 6.2.5). 
 

A graph model has the following features: 
 

(i) A label near an edge can specify the context  of relation  or association. A label at an edge can also 

specify a value. For example, the grade point average in Semester 1, studentSemlSGPA. 

(ii)  A label near a vertex can specify identification  for the entity. For example, studentID. 
 

(iii) A weight near the edge can specify the weight of a relationship  with respect  to other  edges of the 

same kind. 

(iv)  A property  can associate with the vertex or edge. For example, adding property. 
 

(v)   Multiple relationships  can associate a pair of vertices interconnected  by multiple edges. 

(vi) A direction  can associate with the direction of flow of relationship  or association. 

A graph, called property-graph,   consists of each vertex and edge assigned properties  (Section 8.2.5). 
 

A graph,  called directed graph, consists of directed  edges. A directed  graph  shows a sequence  of edges 

(or arcs) which  connect  a sequence  of vertices  with  a condition.  All directed  edges  are  in the  same 

direction  when a graph  has edges directed  inwards toward  a node and outwards  towards  another  node, 

such that  inward  edge(s) represent   an input  for computation  or state change  at the  node and outward 

edge(s) represent  the output(s) which is input to the next node in the graph. 
 

The number  of inward  edges in a directed  graph  is a node parameter  called in-degree.  Directed graph 

node out-degree  means the number of outgoing edges from the node. A directed graph represents  the flow 

of the relationship  using the directed  edge. For example, assume Semester  1  and SGPA are vertices  in a 

directed  graph. The edge represents  a relation  between them, i.e., it represents  that  SGPA is the result of 

the examination  of Semester 1. 
 

A graph  defines the entities  and properties  to each vertex  and edge. A graph called directed  multigraph, 

provisions  for the  multiple  parallel  edges and that  enables multiple  relationships  between  the  entities. 

Multiple parallel  edges share  the  common  source  and destination  vertices.  Directed  Acyclic Graphic  is a



 

 
 
 
 
 
 
 
 
 

Semeste 

Exam·nat on 

arts 

special kind of directed graph that contains no cycles. 
 

Consider columnar  data  store  in a tabular  representation.   Each row-group  consists  of a sequence  of 

columns. Relationships  between  columns of the  row groups  are implicit (for search  and queries  for the 

values in columns) but not explicitly specified (Section 3.3.3). 
 

Graph database  explicitly  stores  the  relationships   at each edge. A  hierarchy  graph  stores  hierarchal 

relationships.  Hierarchy  relations  between  the tables do not store but implicit in the codes for a search 

or query. 
 

The following  example  explains  the  usages  of nodes,  edges  and  properties   in  a graph  model.  The 

example gives a corresponding  tabular  Data Store. 

 
EXAMPLE  8.1 

 
Consider the students,  that  are studying Bachelor of Computer Science course and have appeared  in 

Semester 1 examination  in the department. 
 

(i)   How does a graph model show the relationships  and semester grade point averages? 
 

(ii)   How does  a table  of grade  point  averages  (GPAs)  of a student   in  a departmental   semester 

examination  correspond  to the graph model? 
 

SOLUTION 
 

(i) Figure 8.1 shows a graph model for a student  grade-sheet  database. The graph consists of nodes 

and  edges  for  a first-semester   UG  computer-science   student  of ID =   UGCS4268   .    The figure 

shows the relationships  using label and property  at vertices and edges for a student. 
 

 
 
 
 
 
 
 
 
 
 
 

i 

 

 
 
 
 

Figure8.1  Graph model of a grade sheet 
 

(ii)  Tabular  representation   in an RDBMS  mapped  with  the  above graph  model for the  Semester 

Grade Point Averages (SGPAs) is as follows:



Department ]  D 
 

Computer  Science        UG 2014_2017 

 

 
Ba     lor ln 

Computer 

S  len 

 

 
4268                                                    8.4

 
 
 

 
8.2.1   Representinga Graph as 

Triples 
 

Triple means a data entity  consisting  of three-components:   subject, predicate  and object. For example, 

consider  a sentence,  'Spark  includes  GraphX'. Here, Spark is the  subject,  includes  is the  predicate  and 

GraphX is the object. 
 

Triples  represent   the  Graph entities.  Assume a directed  graph.  A  triple  is a sentence-like  format.  A 

sentence  consists of three  elements,  'subject'  'predicate'  and 'object'.  Similarly, a triple  consists of three 

elements: source node (subject) connects to destination node (object) through  an edge (predicate). 
 

Triple has a subject-predicate-object   format  for representing   three  elements:  source  node, edge and 

destination  node. Format is instance identifier-property name-property value. For example, StudentID: 42629 

obtained:"GradePoint_Java "8.2". StudentID: 42629 is the  instance  identifier.  Obtained  is the  property 

name. Value of Property  GradePoint_Java is 8.2.Graph model represents  instance  identifier  and property 

value at two nodes and property  name as the edge connecting them. 
 

A  graph  node  defines  by a vertex  such  that  the  two  of them  connect  through   a  relationship   or 

association.  For example,  consider  a sentence,  'Raj Kamal wrote  textbook  on Internet   of Things'.  'Raj 

Kamal' is a node and 'textbook  on Internet  of Things' is next node. 
 

A graph  edge is an interconnecting   line or arrow, which represents   a relationship  or association  in a 

sentence.  Consider another  example of triple  consisting  of a subject, verb, and object in a sentence,  'Raj 

Kamal wrote a classic book on Embedded Systems'. Verb 'wrote'  relates  the subject 'Raj Kamal' and object 
'classic book on embedded  system'. Two vertices  are subject and object in the graphical  representation. 

The edge joining them represents  the verb. 
 

Following explains the representation   of a graph model Data Store as triples: 

EXAMPLE  8.2 

Recapitulate  Example 1.6(i). Consider the  sales figures of Kit Kat, Milk, Fruit and Nuts, Nougat and 

Oreo. (i) Show a graph  model for database  of yearly sales and (ii) write the triples,  which represent 

the graph. 
 

SOLUTION 
 

(i)   Figure 8.2 shows a graph model for nodes and edges showing the relationships  of yearly sales 

of chocolates.



 

 
 

Figure  8.2 Example of a graph model of yearly total sales of an ACVM company 
 

(ii)  Graph source node (subject) connects  to destination  node (object) through  an edge (predicate). 

The following set of triples represent  a graph: 

 
Yearly_Chocolate_Sales    as triples

 
Subject 

A       1 C  mpan,         Data 

ACVM C  mpnn, Sllle    Data 

Yearl,_KitKat_    3.1    s 

 
 

 
is 

quals

Yearly_Frui     ndNu         ale                          equa 
 

 
 
 
 
 
 

8.2.1.1 Graph Database as Collection of Triples 
 

A collection of triples creates a semantic database, the two features of this database are as follows: 

1.   Can add additional  properties,  relationship,  association or attribute  with each triple. 
 

2.   Can include  new entities  and relationships,  just  as a tabular  database  adds additional  rows, or a 

columnar-family  database adds additional  columns. 

 
8.2.2 Resource DescriptionFramework(RDF)for GraphDatabases 

 

A  triple  instance identifier-property name-property value uses  a  Universal  Resource  Indicator   (URI) for 

instance  identifier.  Triples form a specialized graph  database.  A triple-store   is also represented   in RDF 

(Resource Definition Framework). 
 

RDF  is a simple, yet very effective language  for representing   information  using triples.  RDF  is a W3C 

(World Wide Consortium)  standard  for storing  a graph  database.  A graph  database  is thus  a triplestore, 

which uses RDF. The features  in RDF are as follows: 

1.   An RDF data file is similar to three  columns of triples: subject-predicate-objects   and are also similar 

to triplets  of document-key-values  in the MongoDB. 

2.   A  standard  RDF  schema  provides  definitions  of classes and relationships   between  the  properties 

and classes; an RDF does not depend on a schema and is thus flexible. 

3.  Triples represent  the nodes and edges; format of triple  is 'instance-identifier',   'property-name'   and



'property-value';   and format  of identifier  is URI. An instance  identifier  is like an entity  in a SQL 

database, property  name is like a key, and property  value is like a value in a field. 
 

4.   RDF provides for inclusion of new entities  and relationships,  just  as a tabular  database  provides for 

inclusion of additional  rows, or a columnar-family  database for additional  columns. 

5.   RDF provides for inclusion of additional  properties  to the relationship,  association  and attribute  in 

a triple. 

6.   Simple concatenation  combines multiple datasets. The combined datasets  are then used as a whole. 
 

7.   Splitting the triples  into multiple lines does not change the collective meaning; therefore,  sharding 

in data collections is easy. 

The RDF  software  parses  the  lines  in data  file when  processing  the  queries,  analyzing,  visualizing, 

reporting  or any other  operation.  RDFLib  is a Python library, which enables working with RDF.  Number 

of  contributors    enriches   the   Python   RDFLib continuously.   The  library   contains   (i)  an  RDF /XML 

parser/serialize   and (ii) in-memory and persistent  graph backend. 
 

The following example explains the entries  at a graph database: 

 
EXAMPLE 8.3 

 
Recapitulate  Figure 8.2.   It showed a snippet  of graph  database  of ACVM  Company daily and yearly 

sales. Write  the triples in RDF. 
 

SOLUTION 
 

The following are steps in the RDF lines in a data file: 

Step 1: Write two lines to specify the URis for resource  location. 

i,pprefix   acvmCom  anyData:    <http://acvmcompany.org/data/> 

i,ppr fix   oalesFigure:    <http://acvmcompany.org/o    leoRecord/ 
 

te   2:  \\ rit  triple   f  r A   Vl'v1        ID.  cvm  2    .  The t           as f  ll  w  : 
 

acvmCompanyDa a:acvm8268  oalesFigure:     Yearly_  KitKat  _  Sales    '160000" 

Acv'1IICompanyDa    :     acvm8268 oalesFigure:    Ye  rly _ Prui   AndNuts _ Sales 

200000" 
 

 

8.2.3  SPARQLQuerying Language for RDF Graph-Database 
 

Spark Query Language (SPARQL)  is a query language  for RDF graph  database.  SPARQL  is W3C  accepted 

query language.  Features of SPARQL are as follows: 

1.  Allows taking  the  data without  definition  for separate  schema and considers  a schema as part  of 

the data itself (Schema information  may be provided  separately,  which enable joining  of datasets 

without  any problem) 

2.   Provides query operators  needed during graph analytics 
 

3.  Provides JOIN,  SORT, AGGREGATE operators 
 

4.   Provides syntax for specific graph path traversals 
 

5.   Includes queries for conjunctions,  disjunctions,  triple patterns  and optional patterns  in triples

http://acvmcompany.org/data/
http://acvmcompany.org/o


6.    Provides for querying  data using graph  traversal  along a path. Traversal  may be single step, path 

expression,   or  full  recursion.   RDF   (Resource  Description   Framework)   is  a  specialized  query 

language. 

[Path means a finite or infinite sequence of edges in a graph that connect a sequence of vertices. Graph 

traversal  uses a path along the connected  edges. Path expression  means an expression  consisting of path 

names using ORs. The expression  denotes  a set of paths  between  two start  and end nodes. (Sign Plus or 

OR is used between the terms in an expression to express a set of path traversals.) 
 

For example, consider  a path  expression,  V1V3 +V1V2V3   +V1V2V2V3+   ... First term  V1V3 means path 

starting  from Vl, directs to V3. The term V1V2V2V3  means Vl to V2, then V2 output back to input ofV2, 

and then V2 to V3. 
 

Path  recursion   means  repeated   traversal   of  path  till  a  certain   condition   satisfies.  The  following 

example explains how to write a SPARQL query and the output  after query processing. 

 
EXAMPLE  8.4 

 
Recapitulate  Example 8.3. (i) Write a SPARQL  query for output  of RDF  triples.  (ii) What will be the 

result from the query processor? 
 

SOLUTION 
 

(i)  The following are the steps for query in SAPRQL: 

Step 1: Specify the URis for resource  location. 

PRBFIX    acvmComanyData:<http:/  /acvmcomapny.org/data/> 

PRBFIX    SalesPigure      :<  http://acvmcomapny.org/salesRecord/> 

Step 2: Write query. 

SELBCT? property?       value 

WHERE   {acvmComanyData: acvm8268salesFigure?        property?       value} 

The  ?  mark  is a wildcard  as the  query  is for  selecting  all properties   and  their  values  for 

acvm8268 salesfigure.  If instead  of?  Yearly_KitKat_Sales is mentioned,  then  only sales figures 

for Kit Kat retrieve  from the RDF data-file. 

(ii) Following will be the output  from the query: 

Yearly_   KitKat   _ Saleo    "160000• 

Yearly_   FruitAndNuts   _ Sales     "2000oo• 
 
 

8.2.4   NativeDB GraphDatabase 
 

Relational DB  distributes  the relationships  and stores as tables. Path traversal  from a vertex  to vertices 

retrieves  the  multi-step  relationships.   An efficient  storage  mechanism  with  ease in path  traversals  is 

thus  needed,  especially  in  a Big Data  environment,   which  consists  of distributed   data-clusters   and 

parallels computing  data-nodes. 
 

Neo4j developed Native Data Store for graph  databases.1   NativeDB focuses on efficient use of available 

computing   resources.   The  design  is  architecture    aware  design.  NativeDB graph   stores  nodes  and 

relationships  directly. Direct storage makes retrievals  efficient. Figure 8.3 shows the relationships  in use 

during path traversal  and in use during operations  in NativeDB.

http://acvmcomapny.org/salesRecord/
http://acvmcomapny.org/salesRecord/


I        • 
J 

10     ~ 

Features of native data store are as follows: 
 

1.  Design provides  for  workload  of  memory  management,   query  engine,  and  query  language  at 

storage 

2.   Design provides  the  safe storage,  efficient  querying  consistently   and  without  the  aid  of other 

components 

3.   Organizes the graph data and models both graph structure,  vertex properties  and edge properties 
 

4.    Represents the graphs in-memory and on-disk 
 

5.   Caches the graph data in-memory either in batch mode or on-demand  from the on-disk 
 

6.   Enables timestamps 
 

7.   Persisting updates of graph along with the timestamps  from in-memory graph to on-disk 
 

1-------------    - - - - -----------------   --  -- ---  I 

I         •   Re              :   Relatio   hip with  previous or next   ode    I
I
I  • 

in a path  traversa                                               I 
Re ID   :   Relatio     hip LD                                             I

I        •        ProplO  :    Property  ID                                                       : 
Prev      :   previoos node                                              : 

I         •   Next  _:   next node 

In use 

~~ 
~~

 

l..
1
..!
2
Q
ndno

j 
de1~11uprey

 
 
RellO 

 

11       l~Next      1~12ndPrev 
RellD    ~                     RellD 

II   2ndNext  II   2ndNext  I 
RellD        ProplO

!     Byte O     U  Byte 1-4 !     Byte S-8  !    Byte 9-12 !!   Bvte 13-16 ! Byte 17-20 I   evte 21·24 !  Bvte 25-281  Bvte 29-32! 

 
In-use  Relationships   during  path  traversal 

 
Figure   8.3 Native data graph relationships 

 

8.   Provides  graph  data  streaming,  graph  data  updates  for  modifying  the  graph  structure   and/ or 

property  data accordingly 

9.   Provides addition of the edges, removal of vertices and updates of properties 
 

10. Performs querying of graph data by loading the graph structure  and/ or property  data 
 

11. Finds neighbours  of a vertex, retrieves  property  of an edge bypath traversals. 
 

Neo4j developed  a query  language  called Cypher for the  NativeDBs. Tests for execution  times  in the 

searches for znd, 3rd, 4th and remote  neighbours  show that the Neo4j Native Data Store is faster compared 

to  other  formats.  IBM  G  system2   for graph  analytics,  visualization  and  other  graph  applications  also 

support NativeDBs. 

 
8.2.5   Property Graph Model 

 

A property  graph  assigns property  to the  nodes and edges. The following example  explains  a property 

graph: 

 
EXAMPLE 8.5 

 
(i)  How do you  draw  a property   graph  for  a student  data?  Student  data  contains  student   Id, 

semester,  subject options, grades and teacher  field. 

(ii)   How do property  graphs model the RDBMS  tables?



Student ID Semester Subject eac:her Grade  Point 

0628 4 Java ~-  Preeti  Sa>ena 8.. 2 

40628 4 Python Mrs.  Pritilca Bahad 8.0 

40629 4 Pyth011 Mrs.  Pritilca Bahad 7.6 

40629 4 s·  Data Prof. Raj Kamal 7.4 

  An   ytics   
·-· ... ... ... ·-· 

... ... ... ·-· . .. 

 

SubjecttD Subject eacher 

CS-401 a Dr.  Pree  ·  Saxena 

CS-402 Python Mrs. Pritilca Bahad 

CS-403 8€ Data Analytics Prof.  Raj 'Kam 

CS-301 DBMS ·- 
CS-502 C1o1Jd Computing ... 

 

CDurse 10 Semester 

PGCS 2014-16 1 

PGCS 2014-16 1 

PGCS2014-16 3 

PGCS 2014-16 
 

 

L 

SOLUTION 
 

(i)  Figure 8.4 shows the property  graph of student  data with Studentld,  semester,  subject options, 

grades and teachers: 

(ii)   Figure 8.5 shows RDBMS tables to which the above property  graph model corresponds. 
 

SrudentJD:    26.28 

Q>1.rselD:   PGCS-2014- 6 

StudentJD:  42629 

C-0u,rselO:   PGCS2014-16

Obtained       Subject_ Option   Subject_Option 

Semester: 4         Semester: 4 

Subject_Option       Subject_Optjon      Obt  ·      ed 
Semester:  4           Semester:  4

 

 
 

 
Taught by 

Subject_ T itJe:  Big 

Data Analytics

 
Teacher Name:            Te.acherName: 

De  Preeti  Saxena        Mrs.   Pritb  Bahad 

 
GradePoint_Java:  82 

GradePoint_Python:    8.0 

 
Figure  8.4 Property  graph of students,  semester,  subject options, grades, and teachers 

 

Figure  8.5 RDBMS 

tables 

for 
 

 
 
 

'                                                                                                                                                            + 

r                                    Semester        SlbjectlD          
Grade

StudentlD 
1Point

Student ID      Course ID                                40628                    4                 CS.-401              8.2 

40628         PGCS 2014-16                        40629                    4                   CS.-402              7 E, 

40629         PGCS 2014-16                             ...                     ...                        ...             -· 
...             . ..                                                          4111                    2                   CS.-301               -· 

4111         PGCS 2015-17                             ...                                    ...                      ...                                    ... 
...              ...                                   4212                    s               CS.-502               ... 

4212         PGCS 2016-18                                                                           + 
t 

 

 
 
 

4 
 

 

students,  semester,  subject options, grades and teachers 
 

Three tables in the figure store the values separately.  Queries in the program  search and select the 

related  column  value. An arrow  in the  figure  shows the  link of a column  in table  with  the  next 

related  table. Property  graph model (Figure 8.4) clearly shows the relationships  and associations  as 

compared  to  RDBMS  tables  (Figure  8.5).  Property   graph  model  represents   the  relationships   or 

associations pictorially  and are thus easy to interpret.



Self-Assessment   Exercise  linked to LO 8.1 
 

1.  Howdoes Data Store model as a graph? Howis a node represented? Howis an edge represented? 
 

2.  Howdo the nodes and edges represents the properties? 
 

3.  Howdoes a graph depict relationships? Givetwo examples. 
 

4.  Howdoes a graph represent knowledge and reasoning? Give two examples of each. 
 

5.  Howdoes a graph represent parameters? Givetwo examples. 
 

6.  Howdoes a DFG represent the flows of data and program. 
 

7.  List the meaning of the terms: (i) triple 'subject-predicate-object' format, (ii) triplestore, (iii) instance 

identifier-property name-property value RDFformat,and (iv) NativeDB. 

8.  List characteristic features of the ResourceDescription Framework. 
 

9.   How does a property  graph represent  RDBMS tables? 
 
 

 

 8.3  l GRAPHS,  NETWORK  ORGANIZATION  AND  GRAPH  ANALYTICS   

 

A network  organization  means where the persons or entities interconnect  with

others and have areas of common interest,  business or study.  A model of graph 

data  store  is a network  organization.  Graph network  examples  are weblinks 

network,  social network,  business  network  and students  network.  A network 

graph  consists  of vertices  V,  interconnected   by directed   or undirected   edges 

E. 

Graphs, graph network 
organization. choosing 
graph for analytics and 
graph analytics use cases

 

A network  consists of items (entities,  persons  or web page links) and relationships  or the associations 

between  items. The graphs,  such as trees,  can store  a relational  DB.  However, relational  DBs have the 

following problems: 

1.  Mostly cumbersome to navigate 
 

2.   Difficult to scale up 
 

3.   Difficulties in adding new relationships  or associations. 
 

Graph  Data  Store  nodes  are  easy to  navigate  through   a traversal   of paths.  Path  traversals   can  be 

optimized  for faster traversing.  Scaling up and adding new relationships  or associations  are easy in the 

Graph Data Stores. 

 
8.3.1   NetworkOrganization 

 

Graph model of a network organization  helps in followings tasks: 

1.  Detecting patterns 
 

2.   Finding organization  inherent  in the network



3.    Finding communities  and micro-communities.   For example, finding the groups where  new trends 

are emerging, and the groups of similar interests 

4.   Finding   connections.   For  example,   finding   the   student-specific    connected   groups   showing 

preference  for programming  language subjects 

5.    Modeling communication.  For example, finding the  specific events which create  active interest  in 

the  specific community-groups,   such on launching  a new luxury car model which creates  interest 

in managers  and chief executive  officers, or starting  a new course on Python  which creates  deep 

interest  in postgraduate  Computer-Science students 

6.    Modeling collaborations.  For example,  finding the  collaborating  and  sharing  communities  which 

have similar interests,  finding community  sharing new techniques  and algorithms  that  has interest 

in Big Data Analytics 

7.    Modeling   influences.    For   example,    finding   the    persons    (nodes)   with   high   degrees    of 

interconnections   to large number of entities  compared to the others 

8.    Modeling  distances  between  set  of entities.  For  example,  finding  how  much  distance  a  path• 

traversal  takes place on an average when searching a common-interest   entity 
 

9.   Making  discoveries  and  providing  the  previously  unknown   information   after  the  search  and 

analysis 
 

Distance  in a graph  consisting  (V and E) refers to the number  of edges connecting  the two vertices  vl 

and v2 on the path traversal  between them. 

 
8.3.2  ProbabilisticGraphical Network Organizations-Bayesianand Markov 

Networks 
 

Probability  means the chance of observing a dependent  variable value with respect  to some independent 

variable.  Suppose a Grandmaster  in chess won 22 out of 100 matches,  78 matches  were a draw, and lost 

none of the matches.  Then, the probability  P of winning Pw is 0.22, P of drawn game P0  is 0.78 and PL of 

losing, 

PL= 0. The sum of the probabilities  normalizes to 1, as only one of the three  possibilities exist. 
 

Probability states mean that  states of P values as a function  of all possible independent  values, situations 

or   variables.   For   example,   if  probabilities    of  winning,   drawing   and   loosing   for   Chess-player 

supercomputer  AlphaZero against a Grandmaster  are P = (0.22, 0.78, 0), then the probability  function  has 

three  states. Here, the probability  state is a discrete function. Sum of P values is one. 
 

Probability  distribution means  that  distribution   of P values  as a function  of all possible  independent 

values, variables, situations,  distances or variables. For example, P is given by a function P(x) and P varies 

as x changes. Variations  in P(x) with x can be discrete  or continuous.  Here, again values are normalized 

such that sum of the P values is 1 (Section 6.2.5). 
 

The  probabilities   distribute   in  the  entities.   The  vertices   represent   the  entities.   The  probability 

distribution  function P(x) distributes  at the neighbouring  vertices of a parent.  That means vertex x has a 

property  with  probability  P(x), where  x is the  distance  from  the  parent  vertex.  Neighbouring  means 

associated, influence or effected vertices of the parent. 
 

A Bayesian  Network  Graph  (BNG) is a graph where each node represents  a random variable in a DAG. The



variable has s probabilistic  distribution  over the connected  nodes. No cyclic path traversals  occur in BNG 

during querying or computations. 
 

Markov  Network  Graph (MNG) is a Graph where each node represents  a random variable in an undirected 

graph. The variable has a probabilistic  distribution  over the connected  nodes during path traversal.  The 

cyclic path traversals  may also take place in an MNG. 
 

Propagation   of  a  property   in  a  network   implements   by  a  function,   func  (x) where  x  refers  to 

neighbourhoods   of the  associated  vertices  (vertext",   2nd, 3rd, 4th and  so on) with  respect  to  a parent 

vertex. The func () is a propagation  function which represents  an inference,  evidence, belief, expectation 

or influence as a function of distances. The distribution  (propagation)  over distance can be continuous  or 

discrete (Section 3.2.1 for definition  of distance between the vertices). 
 

Fune()  can be a user defined function  (UDF), vectorized  UDF (VDUF)  or group vectorized  UDF (GVUDF) 

[Sections 5.3.2.2 to 5.3.2.4].  Fune () can be a probability  distribution  (propagation)  function  P(x) or joint 

conditions probability  function or potential  function. 
 

Probabilistic  graphical   models,  such  as  Bayesian  networks   or  Markov  networks   have  number   of 

applications.  Probabilistic graphical  models are used in machine learning. The models provide a compact 

representation.     The   model,   for   example   Bayesian   network,   provides   solutions   for   probabilistic 

inferences.  Examples of applications  are business strategies,  risk assessments,  medical diagnosis, speech 

recognition,  assessment  of loan risk default, etc. 
 

Bayesian Network Graph (BNG) 
 

A BNG network organization  has the following features: 
 

1.  It  is a directed  graph  model  in which  non-cyclic  and  no reverse  path  traversals  take  place  for 

computations 

2.   Enables a compact representation   which gives probabilistic  relationships  among a set of variables 
 

3.   Enables the computations  of joint  probability  distributions  over the probability  state variables 
 

4.   Each node  has  a  set  of  conditional   probabilities   which  specifies  quantitatively   the  influences 

(effects)of the parent 
 

5.   The property   values  at  vertices  have  Conditional  Probability-Distribution   (CPD),  table  of graph 

nodes, node properties  and probabilities,  called Condition Probabilities Table (CPT) 

6.   An  edge  between   two   nodes   means   that   these   two   nodes   have   conditional   probabilistic 

dependency.  A missing edge between two nodes means conditional  independence  of the node from 

the parent  node. 

The following example explains the concept of CPD and CPT. 

 
EXAMPLE 8.6 

 
Assume  that  a  student   chooses  subjects  in  a  semester   examination   and  obtains  GPAs and  the 

probabilities  of obtaining GPAs in the subjects are as follows:



 

. 
 

VI .85 .15  
V:! 0. .2  
VJ 0.75 0-5  
V.4 .8 0.2  

 

 
 

I 

 
 
 
 
 
 
 
 

Number of rows in the table above depends  on the  subjects and their  nature  (theory,  practical  or 

general). 
 

Vl connects V2 by a directed  edge el towards V2. V2 connects V3 by a directed  edge e2 towards V3 

and also connects to V 4 by a directed  edge e3 towards V 4. Using this graph: 
 

(i)  Show  diagrammatically   Bayesian-Network   Graph  for  obtained   probabilities   of  GPAs with 

probability  using distribution  of probabilities  P in different  subjects, and 

(ii)   Explain the  concept  of conditional  probability  distribution   (CPD)  and  conditional  probability 

table (CPT). 
 

SOLUTION 
 

(i)  Figure  8.6  shows  Bayesian  network  graph  for  a  student   obtaining  GPAs with  probabilities 

distributions  in the GPAs: 
 

 
 

Figure  8.6 Bayesian network graph for a student  obtaining GPAs with 

probabilistic  distributions  in the GPAs 
 

(ii)   Following are the probabilities  distributions  at the nodes: 

 
VI       P      I  V2      P      2  VJ P    3  V4      P    4 

8-        P1o=0.8 

8+       P11  = 0.1.5 

 8-        P-20 = 0.8 

8+       ?21  = 0.2 

 8- 
 

8+ 

Pso =0.85 

p,1   =0.15 

 8-        p    =0.8 

8+       P41   = 0.2 

The first column shows the property  at Vl, 8- means the student  obtains below 8.0 and 8+ means 

above 8.0. The probability  distribution  values enable the computation  of conditional  probability,  cp 

values and give the CPTs. The formats of CPTs are as follows:



V1   V2  P   V21V1                    2    3P       31V2             V2 V4P      41V2             V  VlP         IVl 

-   8- 
 

21  -   8-    8- 8- 
 

31 

8- 8+ cp2101  8-  +  8-  +  8- 8+ cp3101 

8+ 8- Pwo  8+  8-  8+  8-  8+ 8- cp3110 

8+  + 2111  +  +  8+  +  8+ 8+ cp3u1 

cp2100  is probability  when the conditions  at nodes Vl  and V2 correspond  to GPs below 8.0 in both 

subjects. Similarly, other  cp values are probabilities  when conditions given at rows 1 and 2 are true. 

The CPTs enable computations  of the probability  of the conditions  such as Vl=  8+, V2 = 8+, V3 = 8+, 

V4 =  8+ being true.  Four nodes  have 24=  16 conditional  probabilities  in the  Bayesian network.  16 

conditions are possible for four nodes of the graph. 
 

 
MarkovNetworkGraph (MNG) 

 

A Markov Network Graph (MNG)  is a network  organization  which is undirected  and can have cycles in 

path traversals. 
 

Assume that  all vertices  are reachable  from a starting  vertex.  Breadth  first traversal  (search) [BFS]  is 

used when the  graph  has cycles. Therefore,  the visited vertices  are marked.  The marks  at each visited 

vertex can be stored in an array of bits (Booleans). 

 
8.3.3   GraphAnalytics 

 

Three  types  of processes  for  graph  analytics  are  (i) performing   searches  and  finding  matches,   (ii) 

performing topological analysis (for example, analyzing degree and degree distribution,  closeness, 

betweenness,  centrality  parameters),   and (iii) traversing  the  path  and studying  the  flow, [for example, 

probability  flow (variation with respect to distance)]. 
 

APis and tools of graph analytics do the following: 
 

(i) Find association  of nodes, which implies finding a node relation  or connection  with the  next  or 

previous node 

(ii)  Detect patterns,  communities  and micro-communities 
 

(iii) Do a graph  search  and  find graph  matches  for  specific connected  groups  which  show similar 

preferences 

(iv)  Find  collaborations   among  entities   having  similar  interests   (for  example,  collaborations   by 

sharing similar techniques  and algorithms) 

(v)   Do shortest  path analysis for communications 
 

(vi)  Analyze the distances between a set of common interest  entities 
 

(vii) Compute the  centralities   (degree  centrality,  closeness  centrality,  betweenness  centrality,  Eigen 

vector for centralities  of the neighbours  to a node of higher centrality  than the neighbours) 

(viii)Detect the anomaly and discover previously unknown information 
 

(ix)  Evaluate the  influence  distribution  by comparing  the  nodes of high degrees  of interconnections 

with large number of entities with respect to others,



(x)   Find the ranking from PageRank, a term used in analogy with web PageRank. 
 

Graph analytics  use the  methods  of collaborative  filtering  (Section 6.4.3), stochastic  gradient  method 

(Section  6.7.3), triangle   counting   (Section  9.5.6),   K-core  analysis  (Section  9.5.3), Web  communities 

(Section 9.4.6), social communities  (Section 9.5.8), and PageRank (Sections 9.4.1 and 9.4.3). 
 

Node distance refers  to  the  number  of edges connecting  a node  from  a node  taken  as origin.  If two 

vertices  vl  and v2 on path  traversal  are the  nearest  neighbour,  then  distance  of v2 from vl  is 1;  if the 

next nearest  neighbour  then 2; if next to next then 3, and so on. 
 

A  node  distance   is  a  measure   of  number   of  1st,  2nd,  3rd,  4th   and  so  on  and  corresponds   to  the 

neighbourhood  associated with a vertex. 

The parameters   nni,  nn2,    ....    measure  the  node  neighbourhoods,   where  nn1,   nn2,    ...    =  number  of 1st 

neighbour  node, 2nd neighbour  node, ... , respectively,  and so on to a querying node. 

The node centrality of a node  is defined  in reference  to  other  nodes  using  the  metrics.  Metrics  for 

centrality  are degree,  closeness, betweenness  or other  characteristic   of the  node, such as rank, belief, 

expectation,  evidence, reputation  or status. 
 

Nodes closeness to a vertex  u is defined, as reference  to other  connected  vertices  in Vu with u. Vu is a 

subset of vertices in V that  connect with u. The centrality  (closeness index), Cc  is function  of distances  of 

vertices.

Cc (v) = L [d (u,  v)r1• 
DEV 

 
. ..  (8.1)

 

where d (u, v) is the distance between u and v when traversing  the path, and u and v are elements  of Vu. 

Summation  is overall  connected  vertices  to  u [Closeness is inverse  of the  node  distance  in terms  of 

neighbourhood  1, 2, ... or N (Recall K-NN in Section 6.3.6). 
 

Node betweenness defines  the  extent  to  which  a vertex  is located  'between'  other  pairs  of vertices, 

measured by the number  of times a node is present  between the shortest  paths. Betweenness  Cs (v) relates 

to the number  of pairing nodes. 
 

Betweenness  centrality  of a vertex v requires  calculating the lengths of shortest  paths among all pairs (p, 

q)  of vertices  connected   to  u,  and  computations   of  summation   for  each  pairing  vertex  in  Vu·  The 

centrality  (betweenness  index), Cs (u) is function of shortest  distances with the pair of vertices. 

CB (u) = {   ra   (p, q I     u)]x[a (p,  q)f1  }.                                                               • .. (8.2) 
p •q •u EV 

a (p, q Iv) is the shortest  distance between u and pair (p, q). Divisor of the sum,  a (p, q) is the shortest 

distance between p and q. a (p, q) is the normalization  factor. Summation is overall the connected  pairs 

of vertices to vertex u. Vertex u and vertex pairs (p, q) are elements associated with Vu subset of vertices. 
 

 
EXAMPLE 8.7 

 
Figure 8.7 shows a multi-directed  graph with 12 vertices (p,  q,  r,  s,  t, u, p ', q', r ', s, t  and u),



 
q 

 
 
 
 
 
 
 
 
 

 

Figure  8.7 Graph with 12 vertices and 13 edges 
 

(i)  Compute  order   of  the  graph,   in-degrees   and  out-degrees   of  u  and  u',   and  15\        2nd,   3rd 

neighbourhoods  of u. 

(ii)   Compute the centralities,  closeness and betweenness  using Eqs (8.1) and (8.2). 
 

SOLUTION 
 

(i)   Order of the graph is given by number of vertices N, = 12  and edges Ne = 13. 

In-degrees of u = 4. Out-degrees of u = 1. In-degrees of u ' = o. Out-degrees of u ' = 7 
 

l5tneighbourhood   of u = 5 (p, q', r, s, u'). 
 

2ndneighbourhood  of u =  7  (p', q, r ', s,  t, t,  u').  [u connects  by path  traversal  through  two 

edges.] 

3rdneighbourhoods  of u =8 (p, p', r, r,  s ', t, t,  u').  [u connects  by path traversal  through  three 

edges.] 

(ii)   Centrality closeness of u, CC (u) computes as follows: 
 

Distances with the five nearest  neighbours,  p, q', r, sand  u' =  1  each. Distances with the seven 

next to nearest  neighbours  p', q, r ', s ', t, t ' and u ' = 2 each. Therefore,  Cc (u) = (1/5 + 2/7) = 0.48 

using equation  (8.1). 

Centrality betweenness  index CB of u computes as follows: 
 

Connected Number of vertices  pairs=  8 [(u', t),  (u', s), (u ', r '), (q, r), (p, q), (s, t), (q', u'),  (u', 

p')] 
 

Shortest  distances with eight nearest  pairs=  1  each. No other pairs connect u with distance=  2. 

Therefore, CB = 8. 

 
 

8.3.4   Choosing GraphAnalytics 
 

When does graph analytics help? Loshin3  in a study suggests that graph analytics can help in business or 

other problems where the following characteristics  require  analysis: 

1.  Connectivity from the number  of relationships  and association types 
 

2.  Undirected  unidentified  patterns,   undirected  graph  path  traversal,  discovering  new unidentified 

pattern   (for example,  finding  students   of new batches  opting  for  Natural  Language Processing



subject, or finding emerging pattern  for cycling near the sea beach) 
 

3.   Missing pattern   (for example,  finding  none  of computer  science  student  interested   in financial 

analysis in an organization) 

4.   Discovering new knowledge [for example, evolving interest  in Big Data Analytics course in students 

ofUG Computer Science (Example 8.5)] 

5.   Analysis using the ad hoc queries for finding reasons 
 

6.   Predicting  interactive  performance,  which means predicting  interactions  among entities  on events. 

 
8.3.5 Use Cases of Graph Analytics 

 

Following are use cases of graph analytics from different  domains including the business domain: 
 

1.   Monitoring and analysis of social media 
 

2.   Analysis of an enterprise   social network:  The analytics  enables  search  of expertise,  knowledge, 

recommending  expertise,  experts location, and detecting  of spam and anomaly 

3.   Financial  analysis  for  undertaking   the  financial  decisions,  new  knowledge  discovery,  security 

analysis, anomaly and fraud detection,  such as credit  card frauds and fake bill payments,  account 

manipulations 

4.   Commerce and trade  analysis for customer  behaviour  prediction,  planning  and strategies  for sales 

promotion,  price discovery, detecting  weak supply chain links and commerce frauds 

5.   Cellular network  analytics  in telecom  companies  for increasing  their  operations  or helping  police 

to track criminals 

6.   Disease diagnostics, patient  and disease analytics in healthcare  studies, health care quality analysis, 

medicine research  and development  in genomics 

7.   Analyzes breaches  in cyber security,  location  of breaches,  detects  denial  of service  (Dos) attack, 

and finds the attack sources. 
 

 
Self-Assessment   Exercise  linked  to LO 8.2 

 

1.   How does  a network   organization   model  the  communications,    collaborations   and  correlations   using 

the graph? 

2.   How do the  centrality   parameters   specify the  degree,  closeness  and betweenness?   Demonstrate   using 

examples. 

3.   How does propagation   of probability   distribution   function   over  the  vertices  enable  decisions?  When 

does the Bayesian network  graph  model the distribution   of influence? 

4.   When is graph analytics used? 
 

 
 
 

8.41 GRAPH  ANALYTICS  ALGORITHMS  AND  APPROACHES  



A   graph    model   for   data   store   provides   additional    information    about 

associations.  Graph  analytics  thus  enables  analysis  of additional  properties, 

besides the ones using standard  RDBMS  or data warehouse  framework. 
 

Following  are  examples   of  algorithms   for  graph   analytics   which  relate 

associations of entities: 

 
8.4.1  StatsModel and ProbabilityBased Analytics 

 

Centralities Parameters in Graphs 

 

 
 
Graph parameters, 
methods, diagnostics, 
dedsons,  statistical 
mod  I, Stats   odel, and 
probabilities-based 
analytics, and technical 
complexities in analyzing 
the graphs

 

Computations  of the centralities  of entities  in terms  of (i) in-degree  in nodes of directed  graphs  and (ii) 

out-degrees,   (iii) distribution   of degrees  among  the  nodes,  (iv) closeness,  (v) betweenness,   (vi) other 

parameters  such as effective closeness, reputation,  status  and link rank. Degree of a node is the number 

of edges linked to a node. Node closeness to other  vertices  depends  on the sum of distances  with other 

vertices.  Node betweenness  relates  to the  number  of pairing  nodes. Node relations  or connections  are 

associated with the next node and with the previous node. 
 

Computation   of  financial   worth   of  a  company   uses  three   parameters    of  centralities.   Another 

application  is monitoring  the attacks on the network. 
 

Path and Flow Analysis of Graphs 
 

Path  and  flow analysis  algorithms  analyze  the  shapes  (triangles,  hexagons,  trees  and junction   trees), 

shortest  paths and top-K shortest  paths. Algorithm for triangles  counting  finds the number  of triangular 

relationships   among  the  nodes.  Top-K  shortest   paths  means  finding  distances  of the  multiple  paths 

which connect the vertices and which have the shortest  paths among top K. Value of K is 2, 3, 4 and so on 

for top-2, top-s, top-4 and so on. 
 

Matching and Search Analytics in Graphs 
 

An algorithm   matches  the  graphs  and  subgraphs   after  a graph  search  on  path  traversals.   A  filter 

algorithm  uses the label, vertex-property,   edge-property  or geographical  location for filtering the graph 

vertices.  Collaborative filtering  algorithm  also does the  searches.  Collaborative  filtering  means  finding 

matches in a bipartite  weighted graph. 
 

A  subgraph  is graph  whose vertices  and edges are subset of another  graph. A graph  G 1 =  (V', E ') is a 

subgraph  of graph  G= (V, E) if V¢  ~   V, and  E'  ~  EA  ((vl,  v2)  EE'   ~   v l,  v2EV')   in set theory 

notations. 
 

[Set theory  uses symbols as follows: Symbol (i) ~  is for 'subset of, for example V' is subset ofV.  (ii) A 

is logic symbol for 'and'. (iii) E  is for 'element  of (for example vl, v2 EV'  means vl and v2 are elements 

of v'). 
 

Collaborative Filtering (CF) 
 

Collaborative Filtering  (CF)  is a technique   used  by  recommender   systems  (Section  6.4.3).  The  system 

collects  references  or test  information   from  many collaborating  users.  The system  makes  predictions 

about the interests  of a user and then recommends  to new users. 
 

Detection of Clusters 
 

Clustering  analysis  identifies  the  groups  of special cases. For example,  in a study of effect of discount



offered  in versus  sales, the  identification   of clusters  enables  the  price  discovery.  Another  example,  a 

system identifies a cluster of students  with deep interest  in Big Data analytics. This enables a department 

to start additional  new course in that area. 
 

Detection and Analysis of Patterns 
 

Pattern   detection   and  pattern   analysis  are  required   in  many  applications.  For  example,  identifying 

patterns  of sales increase  after an advertisement   of a car model. That helps a car company for planning 

future  advertisement   strategies.  Graphical detection  of patterns  identifies new patterns,  which may lead 

to new opportunities  (for example in education, business or health care) 
 

Anomaly Detection 
 

Anomaly detection  and  analysis  find the  abnormal  behaviour,  structure,   feature,  content  or semantic 

features.  Anomaly  detection   may  also  help  in  its  usability  and  summarising   anomaly  attributes.   It 

enables identification  of spam source and can lead to detect  frauds related  to credit card, medical claim 

or detecting  fictitious transactions. 
 

Community and Network Analysis 
 

The community  and network  analysis analyses the close-by entities,  and fully mesh-like connected  sets. 

The network graph analysis besides the centralities  analysis, also find page rank of the links. 
 

Community   and   network   analyses   use  triangle   count,   clustering   coefficient,   K-neighbourhood, 

connected  component  and K-core analysis parameters. 
 

K-neighbourhood  analysis means finding the number  of 1st  neighbour  nodes, 2nd  neighbour  nodes and 

so on. (K  = 1, 2, 3, 4 and so on). 
 

K-core analysis  means  number  of cores  within  a marked  area.  A  core  may consist  of a triangle  of 

connected  vertices.  A core may consist  of a rectangle  with interconnected   edges and diagonals. A core 

may also be a group of cores. 
 

PageRank Based Analytics 
 

PageRank is a metric for importance  of each vertex  in a graph. Assume an edge from vl  to v2 represents 

endorsement   of  importance   of  v2  by vl   by  a  connection.   The  importance   of  vl   results   from  the 

interactions  between them by creating  a relationship  between them, sharing a belief or some other  mean 

(Term PageRank borrows from web PageRank). 
 

StatsModel and Probability Based Analytics 
 

Statistical  model is a class of mathematical  models. It  considers  a set of assumptions  for the  sample data 

representing  a larger population.  A statistical  model represents,  often in considerably  idealized form, the 

data generating  process. 
 

StatsModel refers  to  a Python  module  that  provides  classes  and  functions  for  estimation   of many 

different  statistical  models, as well as for conducting  statistical-tests,  and exploring the statistical  data. 
 

Analysis of Big Data need reasoning  and prediction  under uncertainties.  Uncertainty  requires  usages of 

probabilities  and StatsModel. Many critical Big-Data graph analytics uses the inter-relationships   between 

the entities.  Graph based representations   need learning  of graph  structure,  computations  of conditional 

independence,  and probabilistic  inference. 
 

Diagnosis and Decisions based on Probabilistic Graphical Models



Bayesian networks  or  Markov networks  are  used  in various  applications,  such  as assessment  of loan 

default risk. Graph analytics algorithm  first convert  the network  into junction  trees  and then,  performs 

the graph  traversal.  This is due to use of distributed  file system in Big Data graph  database.  A network 

probabilistic graph-model  needs intensive numeric operations. 
 

Advanced Concepts in Probabilistic Graphical Models 
 

Use ofJunction Trees  Graph  (JTG) formed  for the  Bayesian  Consider four nodes BNG with 2  states per 

node (Example 8.6). That needs 24 = 16  CPT  entries  for four probable  conditions  at all four vertices when 

jointly  considered. 
 

Assume a fifteen node BNG with five states per node. Consider five states at each node in Example 8.6. 

Assume that  five states  of GPA awarded  probabilities  are PB+,  PB-, P6+, P6- and P4-. That needs 515   CPT 

table  entries.  Therefore,  515   CPT  entries  for  five probable  conditions  at  all  15  vertices  when jointly 

considered.  Therefore,  an algorithm  first reduces the Bayesian network  graph  to a JTG using a junction 

tree algorithm  0TA1).4 
 

The number  of incoming  directed  edges connect  at each junction.  A junction  tree  is a one that  has a 

root node at a junction,  which has number  of directed  edges to a set of junctions  (daughter  nodes). Each 

daughter  is again a junction,  which has number  of directed  edges to a next set of junctions.  Thus, a tree• 

like structure  exists starting  from the root. 
 

JTAl is a machine  learning  algorithm.  JTAl  is also called  clique  tree  method.  The method  extracts 

marginalization in general  graphs.  It propagates  belief (evidence collected  at the junction  from number  of 

connected   nodes  in  the  junction   tree,   also  called  inference from  that   tree).  JTAl does  the  belief 

computations  for each junction  tree. Usage ofJTG eliminates the cycles in traversals  also. 
 

Probabilistic   inferences   at junction  trees  Probabilistic  representation   of the distributions  in terms  of 

the CPTs is replaced by inference computed for each junction  tree of JTG.An algorithm  computes Potential 

Tables (POTs) which replace the use of CPTs for analyses. 
 

Knowledge Discovery 
 

Algorithms for graph  analytics along with machine  learning  algorithms  lead to new facts. They discover 

new associations during the analyses. They lead to discovery of new knowledge. 

 
8.4.2   Technical  Complexity  in Analyzing  Graphs 

 

Big Data  analytics   has  challenges   due  to  need  of  compact   representation    and  parallelism   of  the 

computations  when large datasets  execute  on the  clusters.  Following are the  technical  complexities  in 

the Graph analytics: 
 

Graph-Partitioning Complexity 
 

Triangularly  connected  nodes or similar structures  of high connectivity  may be of specific interests.  Big 

Data analytics depend on the distribution  of data in HDFS-like  files or distributed  DBs. High connectivity 

structures   pose the  problem  of partitioning   and  data  sharding.  When the  data  structures   have  such 

problems, the network  access intervals  increase significantly performance  of the algorithm  also reduces. 
 

Graph-memory Accesses Unpredictability 
 

Big Data analytics need parallelization  of computations.  Several path traversals  thus initiate  at the same 

instance.   However,  due  to  sequential   node  links  through   the  edges,  each  path  traversal   follows  a



sequence of nodes. 
 

Many traversals  are necessary when finding new patterns.  Poor locality and irregular  memory accesses 

are the problems. The memory access times are unpredictable  for each paralleled traversal.  Much time is 

thus lost in accessing memory. 
 

Analytics Problems and Topologies 
 

Graph characteristics  may inhibit the need of scalability due to performance  issues. The large graphs  and 

number of topological structures  result in complexities. 
 

Dynamic Interactions  for Graphs 
 

The dynamic computations  enable update  of cluster and subgraph.  Graphs in a Big Data application  need 

dynamic analysis of data with 3Vs characteristic.  Therefore,  rapid response  issues are complex in case of 

dynamic  interactions.   Computations  in  dynamic  graphs  have  poor  locality  and  unpredictable   access 

times from memory. The workload is also hybrid (sequential and parallel). 
 

 
Self-Assessment   Exercise  linked  to LO 8.3 

 

1.  How do the  additional  information  about  associations  enable  new parameters   from analytics 

besides the one using standard  RDBMS? 

2.  What are the graph parameters derived from graph analytics? Write equations for each of them. 
 

3.  Recapitulate Figure 6.9.  How do the  cluster results from the  graph  databases provide additional 

information compared to results shown in the figure? 

4.   How does graph-partitioning   problem result in technical  complexity during graph analytics? 
 
 
 
 

8.51  SPARK GRAPHX PLATFORM 

IBM  System G  offers a set of Big Data tools for graph  computations.  G (stands 

for  graph,   which  may  be  a  property   graph,   Bayesian   network   graph,   or 

cognitive  network  graph.  A  graph  may be static  or dynamic,  small or large, 

topological   or   semantic.   G    has  library   functions   for  graph   analytics.   G 

applications include creating and analyzing the database, visualization and 

middleware  for graph. 

 
Apache Spark Graph  Its 
features, architecture  and 
components,and   their 
applications   for graph~ 

analytics

 

Apache Spark GraphX is open source software that  provisions a number  of functions  and operators  for 

graph  stored  in HDFS  environment.   Apache Spark refers  to  a multi-component   platform  for Big Data 

computing  that  uses data  store  at a HDFS  file system,  HDFS  compatible  data  sources,  such  as HBase, 

Cassandra, Ceph or S3. Spark enables the use of data frames in Resilient  Distributed   Datasets  (RDD) (Section 

5.4.2),  and the  creation  of ETL  pipelines  (Section 5.5). An RDD  is a collection  of objects distributed   on 

many  computing  nodes.  Spark standard  APis enable  creation  of application  APis in Scala, Java, R and 

Python 

(Chapter 5). 
 

Graph analytics  need functions  which compute  degree  centralities,  degree  distribution,  separation  of 

degrees,    betweenness     centralities,     closeness    centralities,     neighbourhoods,     strongly    connected



components,   PageRank,  shortest   path,  Breadth  First  Search  (BFS), minimum  spanning  tree  (forest), 

spectral clustering  and cluster coefficient. 
 

The following subsections  describe Spark GraphX Architecture,  fundamental  operators,  algorithms  and 

their applications  for graph analytics. 

 
8.5.1  Featuresof a Graph Analytics Platform-Apache SparkGraphx 

 

Apache Spark provides  a software  component  known as GraphX. GraphX 2.2.1 released  on December 01 

2017 is a new version.  GraphX is an open source tool for graphs  and parallel  computations  for graphs. 

GraphX tool processes a Resilient Distributed Graph (RDG). GraphX tool is a stack component  ofBDAS 

(Section 1.6.4.3). 
 

GraphX   provides    a   set   of   fundamental    operators    such   as   subgraph,      j oinVertices         and 

a99re9ateMessa9es.  Apache GraphX provides  for computations   using the  property  graphs.  Identifier  in 

GraphX is 16-bit long unique-key. Edges have vertexIDs for corresponding  source-destination   paths. 
 

GraphX programming  features  are: 
 

1.    Includes a growing collection of graph algorithms  and graph creator  operators  (builders)5 

 

2.  Extends the  Spark for computing  with  Resilient Distributed  Dataset  (RDD)  (Section 5.4.2). Graph 

builders  do not repartition   the  edges by default,  they  are left in their  default  partitions   (such as 

their  original blocks in HDFS). 

3.  Introduces  a new abstraction  of graph  called directed  multigraph  which has properties  associated 

with each of the vertex and edge. 

4.   Provides several ways of building a graph; a graph builds from a collection of (V, E) [set of vertices 

and edges] in an RDD or on disk 

5.    Gives high performance  and competes with the fastest graph systems 
 

6.    Retains features  of Spark, ease in uses, flexibility, and fault tolerance 
 

7.    Unifies computations  using iterative  Graph, ETL, exploratory  analysis within the GraphX because of 

association with Spark, PySpark, as well as StatsModel 

8.  View data, in the same manner  as a graph and as a collection 
 

9.   Provides an optimized variant  of the Pregel APis 
 

10. Enables writing of user defined iterative  graph algorithms  using the Pregel 
 

Figure 8.8 shows GraphX architecture.



B 

 
A.PPUCATIONS 

 
Graph Procl!SSOf', Pregel APis and Pre,el Operaton 

 
Property        11    Structural  11       Agrept@Meuaps     11         Join     I     ~ 

 

 
 

Tria    I~ Count  I

 
Property  Graph and Graph Buildt!r 

 

Vl!rtia!s  Roos     !         I                    Edses RDDs          I 

 
 

 
HO   SComp   bl

~====;---;::::::=----==::::::;--;::::::=~1          Collectlons 

~rtlces       11       Edps      11         Properties      _ 
D  t     tor

 

Figure  8.8 GraphX Architecture 
 

GraphX operators 
 

GraphX aggregation  operator,  page rank,  connected  components  and triangle-counting   algorithms  do 

the following: 

1.  Aggregation   operator-Several    graph  analysis tasks require  aggregation  of information  about the 

neighbourhood  of each vertex. Many iterative  graph algorithms  repeatedly  aggregate  properties  of 

neighbouring  vertices.  Examples are computing  the  shortest  path  to a source, smallest  reachable 

vertex  id, connected  components   and  PageRank. The operator   applies  a user  defined  sendMsg 

function  to each edge triplet  in the  graph.  Then,  application  uses the  mergeMsg function,  which 

aggregates those messages at their  destination  vertex. 

2.    Pregel   operator-executes     in a series  of supersteps   in which  vertices  receive  the  sum  of their 

inbound  messages from the previous  superstep.  (Superstep  is a term  used in Pregel vertex-centric 

processing  in large  distributed   graphs.  Supersteps  do computations   consisting  of a sequence  of 

iterations.)  The operator  computes fresh value for property  at vertex. Then, that  sends messages to 

the  neighbouring   vertices  in  the  next  superstep.   GraphX Pregel-API provides  computation   of 

messages in parallel as a function  of the edge triplet.  A message for computation  provide accesses 

to both  attributes   of source  and destination  vertices.  When a vertex  does not  receive  a message 

that  is skipped  within  a superstep,  the  Pregel operator  terminates   the  iteration  and returns  the 

final graph  when no messages remain.  Pregel operator  in GraphX is a bulk-synchronous   parallel• 

messaging abstraction  that  constrains  to graph topology. 

3.    PageRank    algorithm-Assume     that   an  edge  from  vl   to  v2  represents    an   endorsement    of 

importance   of v2 by vl.  The function  measures  the  importance   of each  vertex  in a graph.  For 

example, if many students  opt for a teacher's  course, then, teacher's  rank is high. If many followers 

follow a twitter  account then that  account rank is high. Similarly, a web page is searched  by many 

then  that  page rank  is high. GraphX computes  PageRank statically  as well as dynamically.  Term 

PageRank is from Google web PageRanking system for searches (Refer Section 9.4.3 also). 

4.    ConnectedComponents     algorithm-labels    each  connected  component  of the  graph  with  the  ID. 

Each connected  component  ID  is an identifier  of the  lowest-numbered   vertex.  For example,  in a 

social network,  connected  component  objects can approximate  clusters. GraphX contains  an 

implementation  of the algorithm  for the ConnectedComponentsObject.

mailto:Agrept@Meuaps


The function  graph.    connectedComponents       ()  . vertices        computes  the connected  components  of 

the datasets  (for example, student-teacher   datasets,  and social network  datasets). 

1.  Degree          Computation            Objects:          Functions          graph.     inDegrees.     reduce     (max); 

graph.    out  Degrees.    reduce     (max);   graph.    degrees.     reduce     (max); computes  in-degree,  out• 

degree and degrees in a graph. These functions  analyze the degree distribution  also at the vertices. 

2.   Collection         neighbour          Ids        and         neighbours          Operators:         The        functions

collectNeighborids(edgeDirection: 

collectNeighbors(edgeDirection:                    EdgeDirection) 

EdgeDirection);

 

3.   Triangle  Count Algorithm-Determines    the number  of triangles  passing through  each vertex. The 

count  is a measure  of clustering.  A vertex  is part  of a triangle  when  it has two adjacent  vertices 

with  an edge between  them.  TriangleCount  requires  the  edges  to  be in  canonical   orientation 

(srcld  <   dstld)   [Source  vertex   ID is  srcID       and  Destination   vertex   ID is  dstID.].    Graph  is 

partitioned using             Graph.   parti     tionBy                  operator.              The             function 

graph.    triangleCount        () . vertices      counts the triangles  formed by vertices. 
 

Super step (ss) is a set of steps performed.  The following steps may take place in the framework  during 

a superstep: 

(i)   Receives and reads the messages that previous superstep  ss - 1 had sent to v 
 

(ii)  Applies  a  user-defined   function   fudt)  to  each  vertex   in  parallel,  therefore,   fudt)  essentially 

specifies the behaviour  of single vertex v at a single superstep  ss 

(iii) Can mutate  the state of v 
 

(iv)  Can send the messages to other vertices  (for example, along outgoing edges) that  the vertices will 

receive in the next superstep  ss + 1. 
 

Pregel approach  is that  all communications  [such a variable increment,  aggregation,  or applying fu~)] 

takes place between ss and ss + 1. The same fudt) applies within each ss to all the vertices in parallel. 
 

Property  Operators    in  Class Graph  [VD,   ED]   are  mapVertices         [VD2J  (),   mapEdges      [ED2J  (), 

mapTriplets         [ED2J  () } .  These functions yield a new Graph. 
 

Structural  operators  in Class Graph [VD,  ED] use subgraph    (),  mask  ()  and groupEdges    ().  Function 

reverse      (      )   returns  a new graph with all directions  reversed. 
 

The  function  graph.apply()   creates  a graph  from  RDDs  of vertices.  Apply function  arguments   are 

edges.vertices:                 RDD       [(Vertexid,             VD)];          edges:            RDD       [Edge[ED]J;          and 

defaultVertexAttr:             VD=    null) 
 

Join Operator 
 

Graph  databases  supports  JOIN  (Section  3.2). Join  Operator   joins  the  data  from  external   collections 

(RDDs)  with  the  graphs.  Also, a function  merges  extra  properties   with  an  existing  graph.  Main join 

functions  are  j oinVertices         and  outerJoinVertices           ().   The  j oinVertices        joins  the  vertices 

with the input ROD and returns  a new graph with the vertex properties  obtained by applying the user. 
 

Many examples  are  available  at  Github  site",  which  demonstrate   uses  of GraphX functions.  These 

examples guide the development  of codes for Big Data graph analytics.



Page Rank Analytics 
 

GraphX provides  static  and dynamic implementations   of PageRank as methods  of the  PageRank object: 

ranksByUsername =users.join(ranks.)map  {case  (id,    (username, rank)) => 

(username, rank) } . A Graphx operation  runs static PageRank for a fixed number  of iterations. 

The dynamic PageRank runs until the ranks converge. The run stops when the rank does not change by 

more  than  a specified  tolerance.   GraphOps enables  calling  these  algorithms  directly  as methods  on 

graph.  The function  graph.pageRank(0.0001.)vertices does the  following: When page ranking 

does not  change  during  the  run  beyond  the  specified tolerance  0.0001  (1 in 10000)  then  the  iterative 

process stops and the rank value converge. 
 

The following  explains  the  use  of PageRank  method  on graph  model  for  network  organization   of 

students  modeled as a graph. 

 
EXAMPLE  8.8 

 
Consider a graph model for a network  organization  of students  modeled as a graph.  Some student's 

text-notes  are widely exchanged with strongly connected  ones compared to the others. Assume that 

set of students  are in a file data/graphx/students.txt      and a set of relationships  between  students  is 

given  in data/graphx/stronglyConnected.txt.      What  are  the  steps  for  PageRank computations   for 

each student? 
 

SOLUTION 
 

(i)    Import GraphLoader using the program  statement  given below: 
 

irnportorg.apache.spark.graphx.GraphLoader 
 

(ii)   Load the graph edges using program  statement  as follows: 
 

val                             graph 

GraphLoader.edgeListFile(sc,"data/graphx/stronglyConnected.txt") 

Here, sc stands for Spark Context. 

(iii) Compute PageRank and get each student  page rank from the text file using program  statement 

as follows: 
 

val ranks= graph.pageRank(0.0001) .vertices 
 

PageRank method runs using Pregel operator  graph.pageRank(  ).vertices and does bulk• 

synchronous   parallel  messaging  over  the  vertices   to  compute   the  ranks   of  the  vertices. 

(Message in present  case is for computing the rank.) 

The Pregel operator  executes in a series of supersteps  in which vertices receive the sum of their 

inbound  messages from the  previous  superstep.  Pregel computes  using sequence  of iterations 

till rank converges within specified tolerance. 

(iv)  Find students  from the text file using program  statement  as follows: 
 

val Students=  sc.textFile("data/graphx/students.txt") .map {line=> 
 

val fields= line.split(",") (fields(O).toLong, fields(l))} 
 

(v)  Join  the  ranks  of the  students   and  map  them  with  the  username   and  rank.  Use program



statement  as follows: 
 

val    ranksByUsername           students.join(ranks)  .map 

(username, rank)) => (username, rank)} 

 

 
{case(id,

(vi)  Print the results  after making the strings  separated  by new lines using the program  statement 

as follows: 
 
 

8.5.2   Dedicated  Appliances  for Graph 
 

Graph  analytics  can  use  the  Berkeley  Data Analytics  Stack  (BOAS)   (Section  1.6.4.3),  can  use  GraphX 

(Section 8.5.1), IBM System G2,   NativeDB1, or the appliances dedicated for the graph-analytics. 

A  dedicated  appliance  is a computing  platform  for  in-memory  graph  computing  and  native  multi• 

threaded   (MT) processing.  In-memory  graph  computing  means  computing  using  data  first  taken  into 

RAM  memory  from  the  data  blocks which  store  the  Big Data. Native  MT processing  means  multiple 

program-threads    processing  at  the  platform   in  place  processing  at  the  cluster  of  data  nodes.  The 

appliance thus provides the faster IOs and results in very high performance  in Big Data environment. 
 

Dedicated appliances  for graph  are fully software  based. They run  graph  analytics  application  on the 

existing server/ cloud. They use triples based RDF format. They process using SPARQL query language. 
 

 
Self-Assessment   Exercise  linked  to LO 8.4 

 
1.   How  do  the   Spark  GraphX  component    enable   Big Data  analytics   and  high  performance    parallel 

computations? 

2.   How do property  graph  and directed  multigraph   provisioned  in GraphX? 
 

3.   What      are      the      uses      of     subgraph,      joinVertices       and      aggregateMessages,       PageRank, 

ConnectedComponents    and Triangle  Count algrorithms? 

4.   Describe usages of Pregel API and operator  for iterative  computing  on the ROG datasets. 
 

5.    How does Graphx unify iterative  Graph computation,  ETL, exploratory  analysis within GraphX? 
 

 

KEY CONC-EPTS 
 

aggregation 

anomaly 

association 

Bayesian network 

BOAS 

belief propagation 

betweenness 

centrality 

closeness



clustering 

collaboration 

connected  component 

connectivity  model 

correlation 

CPT 

degree distribution 

Directed Acrylic Graph 

directed graph 

directed graph in-degree 

directed graph out-degree 

directed  multigraph 

distance 

edge 
 

evidence propagation 

flow analysis 

graph 
 

graph analytics 

graph database 

graph edge 

graph model 

graph node 

graph partitioning 

graph traversal 

GraphX 

GUDF 

GVUDF 

IBM system G 
 

influence 
 

instance identifier 

interaction  modeling 

join 

junction  tree 

knowledge discovery



Markov network 

native data store 

NativeDB 

neighbourhood 

node 

node association 
 

node centrality 

node degree 

node distance 

node neighbourhood 

nodes betweenness 

nodes closeness 

order of graph 

PageRank 

path 
 

path analysis 

path expression 

path recursion 

path traversal 

pattern 

potential  table 

predictive  analytics 

Pregel API 

probabilistic  graph 

probability 

probability  distribution 

probability  states 

propagation  function 

Property  Graph 

property  h 

rank 

RDBMS 

RDF 

RDFLib



ROG 
 

relationship 
 

risk assessment 

semantic database 

Spark 

SPARQL 
 

StatsModel 

subgraph 

triangle  count 

triple 

Triplestore 

UDF 

URI 

vertex 

vertexID 

VUDF 

W3C standard 
 
 
 

  arning Qut  
 

LO 8.1                                                                                                                      .. 
 

1.  Graph models  the  data  stores  and  databases.  A semantic  database  creates  from  a collection  of 

triples. Triples format is similar to subject-predicate-object   format in English sentences. 

2.   RDF  is W3C standard  triple  format,  instance identifier-property   name-property   value. A URI represents 

the identifier. 

3.   Two features  of graph databases  are as follows: A graph (i) can add additional  properties  with each 

triple  relationship,   association  and attribute,   and  (ii) can include  new entities  and relationships, 

just as a tabular  database adds additional  rows, or columnar-family  database adds more columns. 

4.   Nodes in graph  are easy to navigate  through  traversing  the  paths  using nodes  (entities)  or edges 

(relationships). 
 

5.   NativeDB provides fast execution as compared to other graphDBs. 
 

6.   Property  graph model is used when relationships  and properties  also store in the database. 
 

LOS.2                                                                                                                       .. 
 

1.  A graph  also models a network  organization,  such as social media and web links. A Graph models



the  connections,  communications,  collaborations,  influences,  correlations   and  distances  between 

the entities. 

2.   Probabilistic   graphical   models,  such  as  Bayesian  networks   or  Markov  networks   have  several 

applications.  Graph  models  a Bayesian network  organization,   which  uses  directed  graph,  non• 

reversal  paths  and  cycles. Graph models  a Markov network  organization   that  have  undirected 

graph, can have reversal paths and cycles. 

3.   Three  types  of graph  analytics  are  (i) finding  matches  and  performing  searches,  (ii) topological 

analysis, for example analyzing the centralities,  degree, closeness and betweenness,  and (iii) paths 

between vertices and flow of properties,  such as probabilities. 
 

L08.3 
 

1.  Graph analytics  algorithms  enable the  determination   of centralities  of entities  in terms  of the  (i) 

directed  graphs  in-degree,  (ii) out-degree  at the nodes, (iii) degrees distribution  of the nodes, (iv) 

closeness, (v) betweenness,  (vi) parameters  such as effective closeness, reputation,   status  and link 

rank. 

2.   Graph analytics  algorithms  enable path  analysis, detection  of clusters,  find anomaly,  detection  of 

patterns, communities    and   perform   network    analysis.   Graph   analytics   algorithms    enable 

diagnostics  and  decisions  making  from  computations   of conditional  probability  tables, junction 

trees graph, inferences,  evidences or beliefs and potential  tables. 

3.   Big data store in distributed  database  environment  presents  technical  difficulties due to sequential 

path  traversals  resulting  in graph  partitioning   problems,  and the  slower responses  from memory 

during parallel execution of the queries. 

LOS.4                                                                                                                       .. 
 

1.  Apache GraphX is (i) software  of Spark for graphs,  (ii) creates  and computes  Resilient Distributed 

Graphs  (ROG),   and  (iii)  does  parallel   computations,   which  give  the  high  performance,   thus 

competes  with the  fastest  graph  analytics  system. GraphX has features  of Spark, such as ease of 

use, flexibility and fault tolerance. 

2.   Apache GraphX provides  for creations  and operations  on property  graphs.  Identifier  in GraphX is 

16-bit long unique key. Edges have corresponding  source and destination  vertexIDs. 
 

3.   GraphX  introduces   new  graph   abstraction,   directed   multigraph,   GraphX  library   of  a  set  of 

fundamental   operators,   such  as subgraph,  joinVertices   and  aggregateMessages  and  inclusion  of 

PageRank, ConnectedComponents,  and TriangleCount algorithms. 

4.   GraphX unifies  iterative  graph  computation,  ETL  and  exploratory  analysis  using Pregel API and 

operator. 
 

I   Objective Type Questions  1111 
Select one correct-answeroption for each questions below: 

8.1 A way of defining the centrality  of a node in reference  to other  nodes, use (i) metrics.  Metrics for 

centrality  of a node are (ii) degree, (iii) closeness,  (iv) betweenness,  or other  characteristics   of the



node such as (v) rank, (vi) belief, (vii) influence, (viii) expectation,  (ix) evidence, 

(x) reputation,  and (xi) status of a node. 

(a)  all except ii and vi 
 

(b)  all vi and xi 
 

(c)  all except ii, iii, iv and vi to x 
 

(d)  all 
 

8.2 (i) Each DAG  node represents   a variable,  traverses  in one direction  only along the  edges with no 

cyclic traversals.  (ii) When each node in a directed  graph has no cyclic traversals  then the directed 

graph  is also called acyclic graph,  (iii) directed  multigraph  provisions  multiple  parallel  edges and 

that  enables multiple relationships  between two entities,  (iv) Bayesian network graph in each node 

represents   a random  variable  in an undirected  graph.  The variable  has probabilistic  distribution 

over the connected  nodes. Cyclic path traversals  takes place in a BNG, and 

(v) each Markov network  graph node represents  a random  variable in a DAG  and that  variable has 

probabilistic  distribution  over the connected  nodes, and no cyclic path traversal  takes place. 

(a)  all except ii 
 

(b)  itoiv 

(c)  i to iii 

(d)  all 

8.3 (i) Graph model can represent  a hierarchy,  which the sequence of columns does not specify. Graph 

(ii) triple  format  is subject-predicate-object,    (iii) triple  format  can be instance  identifier-property 

name-property  value, (iv) identifier  uses a Universal Resource Indicator  (URI)  in RDF,  (v) SPARQL  is 

query language  for (vi) RDF,  and (vii) RDD.  (viii) Graph database  can add additional  properties  of 

each triple relationship,  association and attribute. 

(a)  all except vii 
 

(b)  all except i and vii 
 

(c)  ito  vi 
 

(d)  all except iv 
 

8.4 (i) Property   graph  model  does  not  show  relationships   and  associations.   (ii) Tables  in  RDBMS 

represent   the  relationships   or associations,  (iii) An RDF  data  file is similar  to three  columns  in 

triples:   subject,   predicate   and  object,  and   (iv)  also  similar  to  document-key-value    pairs   in 

MongoDB. (v) RDF  schema standard  declares the classes and relationships  between  properties  and 

classes, and (vi) RDF does not depend on a schema and is thus flexible. 

(a)  all except i and ii 
 

(b)  all except iii 
 

(c)  all except iii to v 
 

( d)  all except iv and vi 
 

8.5 Graph model  of a network  organization  can help in the  followings tasks:  (i) detect  patterns,   (ii)



finding inherent  organization  in the network,  (iii) communities  and micro-communities  modeling, 

(iv) connectivity  modeling, (v) collaboration  modeling, (vi) influence modeling, 

(vii) belief propagation,  (viii) distance modeling, (ix) closeness computations,  and 

(x) betweenness  computations. 

(a)  all except vii and viii 

(b)  all 
 

(c)  all except vii 
 

( d)  All except vi to viii 
 

8.6 Use cases of graph  analytics  are  (i) enterprise-network    analysis  (ii) social network  analytics  (iii) 

expertise  search,  (iv) knowledge  recommendation,   (v) expertise  location,  (vi) anomaly  detection, 

(vii) Spam detection,  (viii) financial analysis for financial decisions, (ix) health care quality analysis, 

and (x) detection  of cyber security breaches. 

(a)  all except vii 
 

(b)  all except i 
 

(c)  all 
 

(d)  i to viii 
 

8.7 (i) K-neighbourhood  analysis means the number  of 1st neighbour  nodes, 2nd neighbour  nodes, and 

so on. (K = 1, 2, 3, 4 and so on), (ii) The community  and network  analysis analyzes the (iii) close-by 

entities,  (iv) fully mesh-like  unconnected  sets, (v) network  graph  analysis beside centralities,  (vi) 

also does computations   of the  property of the  links,  (vii) rectangle  counts,  and  (viii) clustering 

coefficient. 

(a)  i to vi 
 

(b)  all 
 

(c)  ii to iv 
 

(d)  i to iii, v, viii 
 

8.8 (i) Apache Spark new stack component  is GraphX 2.2.1.   GraphX (ii) is a Linux based open source 

tool for graphs,  (iii) does the  graph  parallel  computations,   (iv) creates  and computes  Redundant 

Distributed   Graph  (RDG),   and  (v) provides  a  set  of  fundamental   operators   such  as  subgraph, 

joinVertices, and aggregateMessages.   GraphX (vi) does not  have functions  for property  graphs,  (vii) 

uses 64-bit long unique  key as identifier,  (viii) is a part  of BOAS  architecture,   and (ix) have Edges 

and corresponding  source and destination  vertexIDs. 

(a)  i, v to ix 
 

(b)  all except ii, iv, vi, vii 
 

(c)  all except ii and ix 
 

(d)  all 
 

8.9 (i) The Pregel operator  in GraphX is a bulk synchronous  parallel messaging abstraction,  (ii) with no 

constrains  to the topology of the graph,  (iii) the Pregel operator  executes  in a series of supersteps



in which  (iv) vertices  receive  the  sum  of their  inbound  messages  from the  (v) previous  step.  (vi) 

Superstep  is a term  used in Pregel edge-centric  processing  in large  distributed  graphs,  and  (vii) 

Pregel does computations  consisting of a sequence of iterations. 

(a)  iii, vi and vii 
 

(b)  all except ii 
 

(c)  all except ii and vi 
 

(d)  all 
 

8.10 ConnectedComponents  algorithm  in Graphx (i) labels each connected  component  of the graph with 

the  ID,  (ii)  each  connected   component   ID  is  ID  of  lowest  numbered   vertex.   (iii)  Connected 

component  objects can approximate  as clustersing  a social network,  and (iv) Graphx  contains  an 

implementation  of (v) ConnectedComponentsObject  in the algorithm. 

(a)  all 
 

(b)  all except i 

(c)  all except ii 

(d)  i to iv 

II   Review Questions      Ill 
8.1 How are the characteristics  of a graph parameterized  using the centrality  parameters?  (LO 8.1) 

 

8.2 What are the benefits  of modeling Data Store as a graph? What are the benefits of graph databases 

compared to RDBMS? (LO 8.1) 

8.3 List the differences between the RDF and NativeDB for graph Data Stores. (LO 8.1) 
 

8.4 How does a graph model a network  organization?  (LO 8.2) 
 

8.5 When does a graph model a Bayesian network organization?  (LO 8.2) 
 

8.6 Explain the uses of graph analytics for (i) finding matches and performing  searches and 

(ii) topological analysis, for example analyzing centralities,  degree, closeness and betweenness  and 

(iii) path and flow analysis. (LO 8.2) 
 

8. 7 How are  path  analysis,  clustering  detection,  anomaly  and  patterns   detection,  communities  and 

network  analysis used in applications?  (LO 8.3) 

8.8 What are the technical  complexities in Big Data graph analytics?  (LO 8.3) 
 

8.9 How are conditional  probability  tables  in Bayesian network  organization  graph  computed?  What 

are the limitations  of using CPTs? How do Potential tables differ from CPTs?  (LO 8.3) 

8.10 How do the probability  and StatsModel based analytics of graphs  enable diagnostics  and decisions 

making  from  computations   of  conditional   probability  tables,  junction   trees  graph,  inferences, 

evidences or beliefs, and the potential  tables? (LO 8.3) 

8.11 What are the operators  provided at Apache Spark Graphx architecture?  What are their uses? 

(LO 8.4)



8.12 How does a property  graph build using Graphx operators?  (LO 8.4) 
 

8.13 Describe functions of subgraph,joinVertices   and aggregateMessages  operators  in GraphX. 

(LO 8.4) 

8.14 What  are  the   applications   of  Graphx   PageRank,  ConnectedComponents   and  Triangle   Count 

Algorithms? (LO 8.4) 
 

 

I     Practice Exercises       1111 
8.1 Recapitulate  Practice  Exercise 5.5. (i) Draw the  property  graph  model for the  product  categories, 

names  and IDs and (ii) Create GraphDB using the triples  representing   the graph  in triple  'subject• 

predicate-object' format,  and  (iii)  Create  GraphDB in  RDF; instance   identifier-property    name• 

property  value format; 

Table of Product categories, Productld  and Product name 
 

 
Toy_Airplane 10725 Lost Temple 

Toy_Airplane 31047 Propeller Plaoe 

Toy_Airplan 

Toy_Traio 

31(»9 

310S4 

Twin Spin Heli opter 

Blue Express 

To _Train 10254 Wloter Holiday Toy_Train 

CL08.1) 
 

8.2 Make an RDF format database for nodes, edges and properties  given in Example 8.3. (LO 8.1) 
 

8.3 Recapitulate  Example 8.5 for property  graph  of database  of Students,  semester,  subject  options, 

grades and teachers.  Create an RDF data file using the graph shown in Figure 8.4. (LO 8.1) 

8.4 Create RDF and Native Data Store for Yearly_Car_Sales  given by following triples: 

 
Jaguar Land R     r  ale  JLRD               is 

H    a Sale (HDS 

Predicate

Z    l    ale  (ZDS equals 

equal 

qual 

 
 
 
 
!L     8.1)

 

8.5 Draw a property  graph  model for the RDF created  in Practice Exercise 8.4 for Yearly_Car_Sales.   (LO 

8.1) 
 

8.6 Draw network  organization  for property  graph shown in Figure 8.4. (LO 8.2) 
 

8.7 Consider 12 participants  in a network,  represented  by vertices Vl, V2, ... ,  up to V11 and V12. Draw 

a figure  for a network  organization  using graph  model  (i) where  V2, VS, V8, V9 follows Vl,  (ii) 

where V8 to V12 follows V2, (iv) Vl to V3, V6 to V9 follows V4, (v) V3, VS follows V8, and (vi) VlO, 

V11, V12 follows only first neighbours.  (LO 8.2) 

8.8 Find the in-degrees  and out-degrees  of each vertex.  Describe the steps to find centralities  metrics



of betweenness  and closeness. Use figure drawn in Practice Exercise 8.7. (LO 8.3) 
 

8.9 Describe steps to compute the triangles, junction  trees,  shortest  paths, and top K-shortest paths  in 

graph drawn in Practice Exercise 8.7 for Vl, V2, ... , VU and V12. (LO 8.3) 

8.10 List the  steps  for creating  text  file data/graphx/students.txt  and  a set of relationships   between 

students  is given in data/graphx/stronglyConnected.txt.      Use Figure 8.4. (LO 8.4) 

8.11 Write the program  statements  in GraphX for calculating in-degrees  and out-degrees  of each vertex. 

Describe the  steps in GraphX to find centralities  metrics  of betweenness  and closeness using text 

files created  in Practice Exercise 8.10. (LO 8.4) 

8.12 List the differences between SparkGraphx  and IBM System G. (LO 8.4) 

 
 

 
1 https://neo4j.com/product/ 

 
2 http://www.systemg.research.ibm.com/ 

 
3  David Loshin, Big Data Analytics from  Strategic  Planning  to  Enterprise  Integration   with  Tools, 

Techniques, NOSQL and Graph, Morgan Kaufmann, 2013 
 

4   https:/ Iocw.mit.edu/ courses/ electrical-engineering-and-computer-science/     6-438-algorithms-for• 

inference-fall-2014/lecture-notes/MIT6_   438Fl 4_Lecl 4.pdf 
 

5 http://spark.apache.org/ docs/latest/ graphx-programming-guide.html#graph-builders 

 
6 

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/grapm 
 
 
 
 

Note: 

o o • Level 1 & Level 2 category 
 

o • • Level 3 & Level 4 category 
 

• • • Level 5 & Level 6 category

http://www.systemg.research.ibm.com/
http://spark.apache.org/


Chapter 9 
 

 

Text, Web Content,Link, and Social Network Analytics 
 

 
 
 
 

LEARNING  OBJECTIVES 
 

 
After studying  this chapter, you will be able to: 

 

LO 9.1 Use the  methods  of text  mining  and machine  learning  (ML)-  Naive-Bayes classifier,  and support  vector  machines  for text 

analytics 
 

LO 9. 2  Get knowledge and use the methods  of mining the web-links, web-structure   and web-contents,  and analyzing the web graphs 
 

LO   9.3   Get  knowledge   and  use  methods   of  PageRanking,  analysis  of  web-structure,    and  discovering   hubs,  authorities    and 

communities  in web-structure 
 

LO   9 .4  Get concepts  representing    social networks   as graphs,  social  network  analysis  methods,  finding  the  clustering   in  social 

network  graphs,  evaluating  the SimRank, counting  triangles  (cliques) and discovering  the communities 

 
RECALL FROM EARLIER CHAPTERS 

 

Graph Data Stores  consist  of various  interconnected   data  nodes  (Section  3.3.5).  Models of graph  and graph  network  organization 

describe  the  entities  and objects, along with their  relationships,   associations  and properties   (Sections 8.2 and 8.3).  Web and social• 

network  graphs  are examples of Graph network  organization. 

Graph structure  analytics  discovers the degree of interactions,  closeness, betweenness,  ranks, influences,  probabilities  distribution, 

beliefs  and  potentials.  Analysis of the  community  and  network  discovers  the  close-by entities  and  fully mesh  like connected  sets. 

Network graph  analyzes centralities,  and computes the PageRank of the links (Section 8.4 and 8.5). 

 

 

 9.1  ! INTRODUCTION   
 

Text Analytics often  termed  as 'text  mining'  refers  to analyzing  and extracting   the  meanings,  patterns,   correlations   and structure 

hidden  in unstructured   and semi-structured   textual  data. Text data  stores  consist  of strong  temporal  dimensions,  have modularity 

over time and sources, such as topics and sentiments. 
 

Methods of machine-learning   are prevalent  in text  analytics also. For example, when a user books an air-flight  ticket  using a tablet 

or desktop, the user receives an SMS on the mobile about details of the booking and flight timings. An ML algorithm,  such as Windows 

Crotona  at the mobile reads  and learns  by itself from the SMSs  received  at the phone.  Crotona  uses the ML for the SMS  text  analysis .. 

Learning results  in SMS  alerts  to the user. An alert  is reminder  a day before  the flight. Another  alert  is two hours  before the flight, 

about the need to reach the airport.  Those alerts are system-generated   without  prior request  from the user. 
 

The reader  is required  to know the meaning  of the following select key terms: 
 

Vector refers  to  an  entity  with  number   of interrelated    elements.   For  example,  a  data  point  consists  of n-elements   in an  n• 

dimensional   space,  and  represents   a vector  to  that  point  from  the  origin  in the  space.  A  word  is a vector  of characters   as the 

elements.  Consider a vector  representation   of word 'McGraw-Hill', then  vector  VMH   = [M, c, G, r, a, w, -, H, i, 1, 1].   VMH   is vector  of 11 

elements  (characters)  that  refers to word McGraw-Hill. 

Feature refers  to  a set  of properties   associated  with  an  entity,  object  or  category.  For example,  feature  of properties,   such  as 

description  of data analysis, data cleaning, data visualization  and other  topics in a book on data analytics. 

Category  refers  to  a classification  on the  basis of set  of distinct  features  (for example,  a category  of text,  document,  cars,  toys,



students,  news or fruits). 
 

Label refers to a name assigned to a category, for example to sports-news,  latest data analytics books. 
 

Dimension refers  to  a number   of associated  values,  features   or  states,  along  the  distinct   spaces  (dimensions).  For  example,  a 

sentence  has a number  of words, each word has a number  of characters,  each word may have a feature,  and so the sentences  are in a 

three-dimensional    space. Two dimensions  are  in metric  spaces, which  mean  values  in quantifiable   spaces,  such as the  number  of 

words, probability  of occurrences  in sentences,  etc. Third  dimension  is in feature  space, measured  by a feature  such as noun, verb, 

adverb, preposition,  punctuation  marks and stop word. 

Another  example  is apples. Metric space variables  are values, such as variables  n, number of apples  of specific properties,   and P the 

probability of preferring apples  of specific  properties.   Assume,  feature  space  variables  are  four  properties,   colour, shape, type and 

freshness. Metric parameters  and properties  of apples are said to be in six-dimensional  space, two are metric  space (n and P) and four 

are feature  space. 
 

Graph data model refers to the data modelled by a set of entities.  The entities  identify by vertices V. A set of relations  or associations 

identifies  by edges E. An edge e represents   a relation  or association  between  two entities.  Nodes represent  the entities  in the graph. 

The model also represents  a hierarchy  between the parent  and children  nodes. 

Graph data network organization  refers  to a structure   created  by organizing  entities  or objects in a network,  such as social network, 

business  network  and student  network.  A network  organization  means where  persons  or entities  interconnect   with each other,  and 

have areas  of common  interest,  business  or study. A graph  enables  ease in traversing   from one entity,  person  or web page link to 

another  in the network  by following a path. Web graph  and social network  graph enable such analysis. A graph network  organization 

models the web and social networks.  Examples of social networks  are SlideShare, Linkedln, Facebook and Twitter.  The analytics  of 

social networks  finds the link ranks, clusters  and correlations.  The analytics discovers hubs and communities. 
 

Web content mining refers  to the discovery  of useful information  from web documents  and services. Search engines use web content 

mining. A search provides the links of the required  information  to the user. 
 

Hyperlinks  refer to links mentioned  in the contents  that  enable the retrieval  of contents  at web, file, object or resources  repository. 
 

Link analytics means  web structure   mining  of hyperlinks  between  web documents.  The analytics  of links and analyzing  them  for 

metrics  such as page ranks, clusters,  correlations,  hubs and communities. 

Count triangles Algorithm is an algorithm  that  finds a number  of triangular   relationships   among the  nodes. Triangular  relationships 

mean interrelations   between  each other. 
 

Graph  node centrality metric  means  the  centrality   of a node  in reference  to  other  nodes  using  certain  metrics.  Metrics  used  for 

centrality   of  a  node  are  degree,   closeness,  betweenness   or  other   characteristics    of the  node,  such  as  rank,  belief,  potential, 

expectation,  evidence, reputation  or status. 
 

Degree  centrality of a node refers  to the  number  of direct  connections.  Having more  number  of direct  connections  is not always a 

better  metric.  Better  measure  is the  fact that  the  connection  directs  to  significant  results  and tell  how the  nodes  connect  to the 

isolated node. 
 

Betweenness  centrality is a measure  that  provides  the  extent  to which a node lies on paths  between  other  nodes. A  node with high 

betweenness  signifies high influence  over what flows in the network  indicating  importance  of link and single point of failure. 
 

Closeness  centrality is the degree to which a node is near all other  nodes in a network  (directly  or indirectly).  It reflects  the ability to 

access information  through  the network. 

The present  Chapter focuses on text, web, contents,  structure  and social network  graph  analytics.  Section 9.2 describes text mining 

and usage of ML techniques=Naive-Bayes   analysis and support  vector  machines  (SVMs)  for analyzing text.  Section 9.3 describes  web 

mining, methods  to implement  the system, and analyzing the web graphs. 

Section  9.4  describes  PageRank  methods,  web structure   analytics  and  finding  the  hubs  and  communities.   Section  9.5  describes 

social network  analysis,  representation    of social networks  as graphs  and computational   methods  of finding the  clustering  in social 

network  graphs,  evaluating  the SimRank, counting  triangles  (cliques) and discovering  the communities. 

This chapter  follows a method  of notations  as mentioned  earlier  in Section 6.1 for fonts when absolute  value, mean value, function 

value, vector  element  or set member,  entity  or variable  when these  denote  by a character  or character-set.   This chapter  follows the 

notations  for the probabilities,  earlier  specified in 

Section 8.3.2.  Condition probability  P specifies as P (xilck) which means probability  of variable x = xi at condition  c = ck.



 9.2  ! TEXT MINING  
 

Today,  large  amounts   of  textual   data  is  generated   in  computing   applications.   Text  stream   arriving 

continuously  over time generates  text data. For example, news articles,  news reports,  online comments  on 

news,  online  traffic  reports,   corporate   reports,   web  searches,  and  contents   at  social  media  discussion• 

forums  (such  as Linkedin, Twitter  and Facebook), short  messages  on phones,  chat  messages, transcripts   of 

phone conversations,   biogs and e-mails. 

 

 
i.thods of text mining and 

machinele;uning(    L)• 
Naive-Bayesdassifier,and 
support vectormachines 
for text analytics

 

The abundance  of textual  data leads to problems  which relate  to their  collection,  exploration  and ways of leveraging  data. Textual 

data presents  challenges  for computing  and storage requirements,   consists of a strong temporal  dimension,  has modularity  over time 

and  have  sources  such  as topics  and  sentiments.   Examples  of text  processing  techniques   are  clustering   analysis,  classifications, 

evolution  analysis and event detection.  Following subsections  describe text mining in details: 

 

9.2.1   Text   Mining 
 

Four definitions  are: 

1.   "Text mining refers to the process of deriving high-quality  information  from text."  (Wikipedia) 
 

2.   "Text mining is the process of discovering  and extracting  knowledge from unstructured   data."  (National Center of Text Mining 
 

-The  University of Manchester+) 
 

3.   "Text  mining  is the  process  of analyzing  collections  of textual  contents   in order  to capture  key concepts  themes,  uncover 

hidden  relationships,   and discover the trends  without  requiring  that  you know the  precise  words  or terms  that  authors  have 

used to express those concepts."  (IBM2) 
 

4.    "Text mining is a technique  which helps in revealing  the patterns  and relationships   in large volumes of textual  content  that  are 

not visible to the naked eye, leading to new business  opportunities   and improvements   in processes."  (Amazon BigData Official 

Blog3) 
 

Applications  of text  mining  in  business  domains  are  predicting   stock  movements   from  analysis  of company  results,  decision 

making  for product  and  innovations   developed  at the  company  and  contextual   advertising.   Some other  applications   are  (i) mail 

filtering  (spam), (ii) drug action reports  (iii) fraud detection  (iv) knowledge management,  and (iv) social media data analysis. 

The applications  provide innovative  and insightful  results.  The results  when combined  with other  data sources, find the answers to 

the following: 

(i)   Two terms  which occur together 
 

(ii)   Information  linkage with another  information 
 

(iii)  Different categories  that can be created  from extracted  information 

(iv)  Prediction  of information  or categories. 
 

9.2.1.1 Text Mining Overview 
 

Text  mining  includes  extraction   of high-quality   information,   discovering  and  extracting   knowledge,  and  revealing  patterns   and 

relationships  from unstructured   data available in the form of text. 

The term  text analytics evolves from  provisioning   of strong  integration   with  the  already  existing  database  technology,  artificial 

intelligence,  machine  learning,  data mining and text Data Store techniques.  Information  retrieval,  natural  language processing  (NLP), 

classification,  clustering  and knowledge management   are some of such useful techniques.  Figure 9.1 shows process-pipeline   in text• 

analytics. 

9.2.1.2 Areas and Applications of Text Mining 
 

Natural   Language  Processing   (NLP) is a technique  for analyzing,  understanding   and deriving  meaning  from human  language.  NLP 

involves the computer's  understanding   and manipulation   of human  language.  NLP  algorithms  are typically based on ML algorithms. 

They automatically  learn the rules. First, they analyze set of examples from a large collection  of sentences  in a book. Then, they make 

the statistical  inferences.



 

 
 
__._, 

L Text  2.  FeatUR!S  3. Features  4.  Data Mining S.Analyz:lng 

PR!1)10Cessing 

• Text Cleanup 

 
Generation 

• Bag of  words 
 

Selectlon 

•  Reduce 

dimensionality 

  
•Oustering 

(lklsupeNsedl 

Results 

• Visu   za ·on 

•  Interpretation 

 I+ 

 
 

Information 

Unstructt.l"ed       Teict,,H-_Ret_nev_·_a1 

Knowledge 

Oisan.e,y 

 
Figure  9.1 Text analytics process pipeline 

 

NLP  contributes   to the  field of human  computer  interaction   by enabling  several  real-world  applications   such as automatic  text 

summarization,   sentiment  analysis, topic extraction,  named  entity  recognition,  parts-of-speech   tagging, relationship   extraction  and 

stemming. The common uses of NLP include text mining, machine translation   and automated  question  answering. 

Information  Retrieval    (IR)  is a process  of searching   and  retrieving   a  subset  of documents   from  the  abundant   collection  of 

documents.  IR can also be defined as extraction  of information  required  by a user. IR is an area derived fundamentally  from database 

technology.  One of the  most popular  applications  of IR is searching  the  information   on the  web. Search engines  provide  IR using 

various  advance  techniques.   For example,  the  crawler  program  is capable  of retrieving   information   from  a wide variety  of data 

sources. Search methods  use metadata  or full-text  indexing. 
 

Information    Extraction   (IE)  is a process  in which the  software  extracts  structured   information  from unstructured    and/or   semi• 

structured   documents.  IE finds the relationship  within  text  or desired  contents  from text.  IE ideally derives  from machine  learning, 

more specifically from the NLP domain. Content extraction  from the images, audio or video is an example of information  extraction. 
 

IE requires  a dictionary  of extraction  patterns  (For example, "Citizen of <x>, or "Located in -oc-") and a semantic  lexicon (dictionary 

of words with semantic category labels). 
 

Document   Clustering   is an  application   which  groups  text  documents   into  clusters.  Automating  document   organization,   topic 

extraction   and fast information   retrieval  or filtering  use the  document  clustering  method.  For example,  web document  clustering 

facilitates  easy search by users. 
 

Document   Classification    is an  application   to  classify  text  documents   into  classes  or  categories.  The  application   is useful  for 

publishers,  news sites, biogs or areas where lot of contents  are present. 
 

Web Mining  is an application  of data mining techniques.  They discover  patterns  from the web Data Store. The patterns  facilitate 

understanding.   They improve  the services of web-based  applications.  Data mining of web usage provides  the browsing  behavior  of a 

website. 

Concept  Extraction   is an application  that  deals with the extraction  of concept  from textual  data. Concept extraction  is an area of 

text classification  in which words and phrases  are classified into a semantically  similar group. 

9.2.1.3 Text Mining Process 
 

Text is most commonly used for information  exchange.  Unlike data stored  in databases,  text is unstructured,   ambiguous and difficult 

to process. Text mining is the process that  analyzes a text to extract  information  useful for a specific purpose. 
 

Syntactically, a text document  comprises characters  that  form words, which can be further  combined 

to generate  phrases  or sentences.  Text mining steps are (i) recognizing,  extracting  and using the information  present  in words. Along 

with searching  of words, mining involves search for semantic  patterns  as well. 
 

Text mining process consists  of a process-pipeline.  The pipeline  processes  execute  in several phases. Mining uses the iterative  and 

interactive   processes.  The processing  in pipeline  does text  mining  efficiently  and mines the new information.  Figure 9.2 shows five 

phases of the process pipeline. 
 

 
 

• To   eniz:ation                •Stemmi  ..           ,.. 
ext         

• POS Tagging                      •Removi ..                    • N-grams          I+  •da.ssifica     on      I+ 
• Word Sense                    Stq>words                                                         (Supervise di 

disambiguation             • Vector Spaoe 

•Patsi  ..                              
Model 

i                t               i           t        To A.A>lcation    i 
Figure  9.2 Five phases in a process pipeline 

 

The following subsection  describes these phases: 
 

9.2.1.4 Text Mining Process Phases



The five phases for processing  text are as follows: 
 

Phase  1: Text pre-processing    enables Syntactic/Semantic   text-analysis  and does the followings: 

1.  Text cleanup is a process  of removing  unnecessary  or unwanted  information.  Text cleanup  converts  the  raw data by filling up 

the  missing  values,  identifies   and  removes   outliers,  and  resolves  the  inconsistencies.   For  example,  removing   comments, 

removing  or escaping  "%20"  from URL  for the web pages or cleanup  the  typing  error,  such as teh  (the), don't   (do not)  [%20 

specifies space in a URL]. 

2.   Tokenization is a process  of splitting   the  cleanup  text  into  tokens  (words)  using  white  spaces  and  punctuation   marks  as 

delimiters. 

3.   Part of Speech  (POS) tagging is a method  that  attempts  labeling of each token  (word) with an appropriate   POS.  Tagging helps in 

recognizing  names  of people, places, organizations   and titles.  English language  set includes  the noun, verb, adverb,  adjective, 

prepositions  and conjunctions.  Part of Speech encoded in the annotation  system of the Penn Treebank  Project has 36 POS tags. 4 

4.    Word sense disambiguation is a method,  which identifies  the sense of a word used in a sentence;  that  gives meaning  in case the 

word  has multiple  meanings.  The methods,  which  resolve  the  ambiguity  of words  can be context  or proximity  based.  Some 

examples of such words are bear, bank, cell and bass. 

5.   Parsing is a method,  which  generates   a parse-tree   for each  sentence.  Parsing  attempts   and  infers  the  precise  grammatical 

relationships  between  different  words in a given sentence. 

Phase   2:  Features    Generation    is  a  process  which  first  defines  features   (variables,  predictors).   Some  of the  ways  of  feature 

generations  are: 

1.  Bag of words-Order  of words is not that  important  for certain  applications. 
 

Text document  is represented   by the  words  it contains  (and their  occurrences).  Document  classification  methods  commonly 

use the  bag-of-words  model.  The pre-processing   of a document   first  provides  a document  with  a bag of words.  Document 

classification  methods  then  use the occurrence  (frequency)  of each word as a feature  for training  a classifier. Algorithms do not 

directly apply on the bag of words, but use the frequencies. 

2.   Stemming-identifies   a word by its root. 
 

(i)   Normalizes  or unifies  variations   of the  same  concept,  such  as speak for  three  variations,   i.e., speaking,  speaks,  speakers 

denoted  by [speaking, speaks, speaker  ---+ speak] 

(ii)  Removes plurals, normalizes  verb tenses and remove affixes. 
 

Stemming reduces  the word to its most basic element.  For example, impuriflcation   r+      pure. 
 

3.   Removing  stop words from the  feature  space-they  are  the  common  words, unlikely  to help  text  mining.  The search  program 

tries to ignore stop words. For example, ignores a, at, for, it, in 

and are. 
 

4.    Vector Space Model (VSM)-is  an algebraic  model for representing   text  documents  as vector  of identifiers,  word frequencies  or 

terms  in the  document  index.  VSM uses the  method  of term  frequency-inverse   document  frequency  (TF-IDF)  and  evaluates 

how important  is a word in a document. 

When  used  in  document   classification,   VSM also  refers  to  the  bag-of-words   model.  This  bag  of words  is required   to  be 

converted  into a term-vector   in VSM.  The term vector  provides  the numeric  values corresponding   to each term  appearing  in a 

document.  The term vector is very helpful in feature  generation  and selection. 

Term frequency and inverse document frequency (IDF)  are  important   metrics  in text  analysis.  TF-IDF weighting  is most  common• 

Instead of the simple TF, IDF is used to weight the importance  of word in the document. 
 

TF-IDF  stands  for the  'term  frequency-inverse   document  frequency'.  It  is a numeric  measure  used to score  the  importance   of a 

word in a document  based on how often the word appears  in that  document  and in a given collection  of documents.  It suggests that  if 

a word appears  frequently  in a document,  then  it is an important  word, and should therefore  be high in score. But if a word appears 

in many more other  documents,  it is probably  not a unique  identifier,  and therefore  should be assigned a lower score. The TF-IDF  is 

measured  as:

 

 
where t denotes  the term vector. 

TF-IDF<t>    
No. of times t appears in a document X log No. of documents in the collection 
Total No. of terms in the document             No. of documents that contain t 

 
(9.1)



Following example suggests method  of calculating TF-IDF (t): 

 
EXAMPLE 9.1 

 
Consider a document  containing  1000 words wherein  the word toys appears  16 times.  How will the TF-IDF  weight be calculated? 

 
SOLUTION 

 

The term  frequency  (TF) for toys is then  (16/1000)   = 0.016.  Let,  there  are 10 million documents  and the word toys appear  in 1000 

of them.  Then,  the inverse document  frequency  (IDF) is calculated  as log10  (10,000,000/1,000)  = 4. 

 

TF-IDF   weight=  0.016   x  4 = 0.064 

 
Additional weight is assigned to terms  appearing  as keywords  or in titles. Documents  are usually represented   as a sparse vector  of 

terms weights and extra weights are added to the terms  appearing  in title or keywords. 

Pre-processing  of web data succeeds the conversion  of bag of words into vector space model (VSM) or simply by vector creation. 

Common Information  Retrieval Technique  - Vector space model (VSM) is an algebraic  model for representing   textual  information 

as vectors of identifiers,  such as, index terms.  Information  retrieval  methods  use VSM. 
 

Each document  or HTML page represents   by a sparse  vector  of term  weights. The sparse  matrices  represent   the term  frequencies 

(TFs). 
 

(Sparse vector  and sparse-matrix   have many  elements  as zero or null. An associated  metadata  enables  data  storing  of them  in a 

form which does not include  zeros in case of large datasets.  The metadata  then  includes indices map with the positions  in the list of 

elements  of the vector or matrix.) 
 

The following example gives the conversion  method  for evaluating  TFs and matrix in pre-processing  phase. 

 
EXAMPLE  9.2 

 
Assume that the documents  below define the document  space with five documents  di, dz, d3, d4 and ds: 

Train Document Set: 

dt: Children like the toys. 

dz: The toys are precious. 

Test Document Set: 
 

d3: There are many toys in the shop. 
 

d4: Some toys are precious  and some toys are costly as well. 

ds: The toys shop is one of the famous shops. 

How will be the documents  term vector and matrix be calculated  for features  generation/selection? 
 

SOLUTION 
 

First, create  an index vocabulary  of the words of the train  document  set using the documents  dt  and dz from the document  set. 

The index vocabulary  E(t) where tis  the term will be: 

 
I. when I=   

"children" 

2. when l = "toys" 

Eu) =    3. when I=   "precious" 

4.  when t =  "shop" 

5.  when t = "costly" 

6.  when t = "famous" 

Note that  the  stop words are already  not considered  during  the pre-processing   step. The term  frequency  (TF) is a measure  of 

how many times the terms  present  in vocabulary  E(t) are present  in the documents  ds, d4 and ds.
 

TF(l.d)=      I,count  (x.t) 

1·EJ 

 
(9.2)



I I O I O OJ 

[
0 2 

I 

I 

O 

O 

2 

I 

0 

O 

I 

 

where the count (x, t), is a simple function  defined as:

 
 
 

For example, TF ("toys", ds) = 2. 
 

Create the document  vector as: 

 

I.  if X=     t 
coumt.r.rl = 

{ 0. otherwise                                                                                     
(9.3)

 

 
Thus, the documents  d3, d4 and ds are represented   as vector as: 

v,1,r  =<TFul.dn).TFU2.dn)         TF(tn.dnJ)                                               (9.4)

 
v43 =  <TFUl.d3J.TF(r2.d3)           TFUn.d3)) 

 
v,14  = (TF<tl.d4).TF(t2.d4J        TF(tn.d4))

 
 

This gives: 

 
v45 = ( TFU I. d5 ). TF<t 2. d5 )•......  TFUn. d5 > I                                                                           (9.5)

 
l'43  = (I.I.0.1.0.0) 

 

v44 = (0,2.L0.1.01 
 

l'45  =(0.1.0.2.0.1)                                                                                    (9.6) 

The resulting  vector  i·,3   shows 1 occurrence  of the term  "children",  1 occurrence  of the term  "toys" and so on. In the i·14,  there 

is o occurrence  of the term  "children",  2 occurrences  of the term  "toys" and so on. 
 

A collection of web documents  requires  representation   as vectors. Another  representation   is a matrix with IDI  x F shape, where 

IDI  is the  cardinality  of the  document  space (total number  of documents)  and the Fis  the number  of features.  F represents   the 

vocabulary  size in the example. Matrix representation   of the vectors described  above is by 3  x 6 matrix  as follows: 

MIDIXF = 

O 

(9.7)

 
Example  9.2 shows that  the  matrices  representing   term  frequencies  tend  to be very  sparse  (with majority  of terms  zeroed).  A 

common representation   of such matrix  is thus the sparse matrices. 
 

Phase  3: Features Selection  is the  process  that  selects  a subset  of features   by rejecting   irrelevant   and/or   redundant   features 

(variables, predictors  or dimension)  according  to defined criteria.  Feature selection process does the following: 

1.  Dimensionality  reduction-Feature    selection  is one  of the  methods  of division  and  therefore,   dimension  reduction.  The basic 

objective  is to eliminate  irrelevant   and redundant   data.  Redundant  features  are  those,  which  provide  no extra  information. 

Irrelevant  features  provide no useful or relevant  information  in any context. 

Principal  Component  Analysis (PCA)  and Linear Discriminate  Analysis (LDA)  are dimension  reduction  methods.  Discrimination 

ability of a feature  measures  relevancy  of features.  Correlation  helps in finding the redundancy  of the feature.  Two features  are 

redundant   to each other  if their values correlate  with each other. 

2.   N-gram  evaluation-finding   the number  of consecutive  words of interest  and extract  them.  For example,  2-gram is a two words 

sequence,  ["tasty food", "Good one"]. 3-gram is a three  words sequence,  ["Crime Investigation  Department"]. 

3.  Noise  detection and evaluation of outliers methods  do the  identification   of unusual  or suspicious  items,  events  or observations 

from the data set. This step helps in cleaning the data. 

The feature  selection  algorithm  reduces  dimensionality   that  not  only improves  the  performance   of learning  algorithm  but  also 

reduces the storage requirement   for a dataset.  The process enhances  data understanding   and its visualization. 
 

Phase 4: Data mining techniques enable insights  about the structured   database  that  resulted  from the previous  phases. Examples of 

techniques  are: 

1.   Unsupervised  learning  (for example, clustering) 

(i)   The class labels (categories)  of training  data are unknown 

(ii)  Establish the existence  of groups or clusters  in the data 
 

Good clustering  methods  use high intra-cluster   similarity  and low inter-cluster   similarity.  Examples of uses - biogs, patterns



and trends. 

2.   Supervised  learning  (for example,  classification) 
 

(i)   The training  data is labeled indicating  the class 
 

(ii)  New data is classified based on the training  set 
 

Classification  is  correct   when  the  known  label  of  test   sample  is  identical   with  the  resulting   class  computed   from  the 

classification  model. 

Examples of uses are news filtering application,  where  it is required  to automatically  assign incoming  documents  to pre-defined 

categories; email spam filtering, where  it is identified  whether  incoming email messages are spam or not. 

Example of text classification  methods  are Naive Bayes Classifier and SVMs. 
 

3.   Identifying evolutionary patterns  in  temporal   text  streams-the   method   is useful  in  a  wide  range  of applications,   such  as 

summarizing  of events in news articles and extracting  the research  trends  in the scientific literature. 

Phase 5: Analysing results 

 
(i)    Evaluate the outcome of the complete  process. 

 

(ii)   Interpretation   of Result-  If acceptable  then  results  obtained  can be used as an input for next set of sequences.  Else, the result 

can be discarded,  and try to understand  what and why the process failed. 

(iii)  Visualization  - Prepare  visuals from data, and build a prototype. 
 

(iv)  Use the results for further  improvement  in activities at the enterprise,  industry  or institution. 
 

Open source  tools,  such as nltk are  available  for text  analytics.  Online contents  accompanying  book describe  how text  analytics 

tasks can be performed  using Python library  nltk in the solution of Practice Exercise 9.2. 

9.2.1.5 Text Mining Challenges 
 

The challenges  in the area of text mining can be classified on the basis of documents  area-characteristics.    Some of the classifications 

are as follows: 

1.   NLP  issues: 

(i)   POS Tagging 

(ii)  Ambiguity 

(iii) Tokenization 

(iv) Parsing 

(v)  Stemming 
 

(vi) Synonymy and polysemy 
 

2.   Mining techniques: 
 

(i)   Identification  of the suitable algorithm(s) 

(ii)  Massive amount  of data and annotated  corpora 
 

(iii) Concepts and semantic  relations  extraction 
 

(iv) When no training  data is available 
 

3.   Variety of data: 

(i)   Different data sources require  different  approaches  and different  areas of expertise 
 

(ii)  Unstructured   and language independency 
 

4.   Information  visualization 
 

5.   Efficiency when processing  real-time  text stream 
 

6.   Scalability 
 

9.2.1.6 Supervised Text Classification 
 

The  categorization   of text  documents   requires   information   retrieval,   ML  and  NLP  techniques.   Some important   approaches   to



PiedI ,=. 

automatic  text categorization  are based on ML techniques. 
 

The supervised text classification requires  labeled  documents  and  additional  knowledge  from  experts.  The algorithms   exploit  the 

training  data (where zero or more categories)  to learn  a classifier, which classifies new text documents  and labels each document.  A 

document  is considered  as a positive  example  for all categories  with which it is labeled, and as a negative  example to all others.  The 

task of a training  algorithm  for a text classifier is to find a weight vector which best classifies new text documents. 
 

The different  approaches  for supervised  text classification  are: 

 
(i)    K-Nearest Neighbour Method 

(ii)   Support Vector Machine 
 

(iii)  Naive Bayes Method 
 

(iv)  Decision Tree 
 

(v)   Decision Rule 
 

K-Nearest Neighbours  (KNN)  method  makes use of training  text document.  The training  documents  are the previously  categorized 

set  of documents.   They  train  the  system  to  understand   each  category.  The  classifier  uses  the  training   'model'  to  classify  new 

incoming  documents.  KNN  assumes that  close-by objects  are more  probable  in the  same category.  KNN  finds k objects  in the  large 

number  of text documents,  which have most similar query responses.  Thus, in KNN, predictions  are based on a method  that  is used to 

predict   new  (not  observed  earlier)  text  data.  The  predictions   are  by (i) majority  vote  method   (for  classification  tasks)  and  (ii) 

averaging  (for regression)  method  over a set of K-nearest examples. 
 

The decision trees  or decision rules are built to predict  the category  for an input  document.  A decision tree  or rule represents   a set 

of nested  logical if-then  conditions  on the observed  values of the text features  that  enable the prediction  of the target  variable.  The 

decision tree and decision rules are also used to classify (categorize)  the document.  Classification is done by recursively  splitting  the 

text features  into a set of non-overlapping   regions  (Refer Section 6.8).  (Section 6.7.4) 
 

The following subsections  describe Naive  Bayes Method and Support Vector Machines in detail. 

 
9.2.2 Naive Bayes Analysis 

 

Naive Bayes classifier is a simple, probabilistic  and statistical  classifier. It is one of the most basic text classification  techniques,  also 

known as multivariate  Bernoulli method.  Naive Bayes classifies using Bayes theorem  along with the Naive independence  assumptions 

(conditional  independence).  The classifier computes  condition  probabilities  for the conditional  independence  (Refer Section 8.3.2). 
 

Probability  that  a bag-of-words  ~ belong  to kth class equals  the  product  of individual  probabilities   of those  words.  P (~lck)    = II P 

(xilck), where xi is a discrete  random  variable  (word), i = 1, 2, ..., n, where n is number  of words in the bag. II is sign for the product  of 

n terms.  [P~lck) means probability  of condition  that  state the value= xi and of c = ck (Example 8.6)]. 

 

The P <xlck)  is normalized  as all distributed  probabilities  equals  1. P <xlck)  is normalized  by dividing the product  on right  hand  side 

by  Li  P (~lck) P (ck). 
 

The following example gives the method  of deciding the most likely class. 

 
EXAMPLE  9.3 

 

How is "maximum  a posteriori  (MAP)" used to obtain the most likely class and take a decision? 
 

SOLUTION 
 

Text classification  problem  uses the words  (or tokens)  of the  document  in order  to classify it on the  appropriate   class. Bayes' 

rule is applied to documents  and classes. For a document  (d) and class (c), we get:

P(d lc,P(c) 
. 

P<d) 

The "maximum  a posteriori  (MAP)" (to obtain most likely class) decision rule is applied to documents  and classes: 

(MAP is "maximum  posteriori"  = most likely class) 

 
(9.8; 

 
 
 
(9.9)



( Drop 

 
cMAP = argma.,i;,""EC( 

P(J!c)P(c)) 
P(d)               (Bayes  Rule)                                     (9.10) 

ping   the denominator)            (9.11) 

(9.12)

 

where t1,   t2,   •••,  tn are tokens of document. 
 

Multinomial Naive Bayes independence  assumptions 

 
 
 
 
(9.13)

 
Bag-of-words assumption:  Assume the position  of the word does not matter. 

Conditional independence:  Assume the feature  probabilities  Puih ), are independent  given the class(c): 

P<t1.,2   •••••   ,,.le>= P(t1  ld•Ptt2 lc) •P(t3 le) • ... •Pt,. Ir)                      (9.14) 
 

and thus, conditional  independences  are given by 
 

cMAP   = argmax""c     (Pit1.t2   .....   t. lc)P(c))                                                 (9.15n) 
 

                                     (9.15b) 

Applying multinomial  Naive Bayes classifier to text classification  where positions  ··  all word positions  in the text document,

cN8=argnuuc1ec(P(ci)_      n P(tih)) 
•EPl>.tallOM 

 
(9.16)

 

The equation  estimates  the  product  of the  probability  of each  word  of the  document  given  a particular   class (likelihood), 

multiplied  by the probability  of the particular  class (prior) to find in which class one should classify a new document. 
 

Select the one with the  highest  probability  among all the classes of set C.  Calculation  of product  of the probabilities  leads to 

float point underflow  when handling  numbers  with specific decimal point  accuracy  by computing  devices. Such small numbers 

will be rounded  to zero, implying the analysis is of no use at all. In order  to avoid this, instead  of maximizing  the product  of the 

probabilities,  the maximization  of the sum of their  logarithms  is done: 

                      (9.17) 
 

Here, choose  the  one with  the  highest  log score  rather  than  choosing  the  class with the  highest  probability.  Given that  the 

logarithm  function  is monotonic,  the decision of MAP remains  the same. 

 

 
When  compared  with  other  techniques,   such  as Random  Forest,  Max Entropy  and  SVM, the  Naive Bayes classifier  performs 

efficiently  in terms  of less CPU and memory  consumption.  Naive Bayes classifier requires  a small amount  of training  data to estimate 

the  parameters.   The classifier  is not  sensitive  to irrelevant  features  as well. Furthermore,   the  training  time is significantly  smaller 

with Naive Bayes as opposed to other  techniques. 
 

The  classifier  is popularly  used  in  a variety  of applications,   such  as email  spam  detection,   personal  email  sorting,  document 

categorization,  language detection,  authorship  identification,  age/gender   identification  and sentiment  detection. 

 

9.2.3 Support  Vector Machines 
 

Support   vector   machines   (SVM) is a set of related  supervised learning methods (the  presence  of training   data)  that  analyze  data, 

recognize  patterns,   classify text,  recognize  hand-written   characters,   classify  images,  as well as bioinformatics   and  bio  sequence 

analysis. 
 

A vector  has in general  n components,  x2, x3, ... ,  xn. A datapoint  represents   by (Xl, X2, ... ,  Xn) in n-dimensional  space. Assume for 

the sake of simplicity, that  a vector has two components,  Xl and X2 (Two sets of words in text analysis). 
 

Section  6. 7 .6  described  the  use of the  concept  of hyperplanes   for classification.  A  hyperplane is a subspace  of one dimension  less 

than  its ambient  space in geometry  (Figure 6.18). If a space is 3-dimensional  then  its hyperplanes   are 2-dimensional  planes,  while if 

the space is 2-dimensional,  its hyperplanes  are I-dimensional,  which means lines.



 

M 

The hyperplane  which separates  the two classes most appropriately   has maximum  distance  from closest data points  of the distinct 

classes. This distance  is termed  as margin. Figure 9.3 shows the concept  of support  vectors,  separating  hyperplane  and margins  when 

using Bas  a classifier. The margin  for hyperplane  Bin  Figure 9.3 is more as compared  to two hyperplanes,  A and C  shown by dotted 

lines. The margin  of the data points  from B is maximum.  Therefore,  the hyperplane  B is the maximum   margin  classifier. 
 

axi    um margi7      The encircled     I 

I          data points are    I 
L~~~~~~~o~J 

X2

A/                       
• 

 
BC 

Xl 

 
~patatin 

hyperplanes

Figure  9. 3 Support vectors,  separating  hyperplane  (B) and margins 
 

A and Care  closest (least margins)  to the  data points.  These are called the support  vectors. They support  the classifications  of the 

star and dotted  data points. [Remember that with n-dimensional  datapoints  space, a hyperplane  has the vectors  along (n - 1) axes.] 
 

The support  vectors  are  such that  a set of data  points  lies closest  to the  decision  (classification)  surface  (or hyperplane).   Those 

points  are most difficult to classify. They have direct  bearing  on the optimum  location  of the classification  surface.  Support  vectors 

along maximum margin  classification  surface are thus gives the best results. 

Thus, a SVM classifier is a discriminative  classifier formally defined by a separating  hyperplane.  The concept  applies extensively  in 

number  of application  areas of ML. Applications of SVMs are as follows: 

1.   classification  based on the outputs  taking discrete  values in a set of possible categories,  SVM can be used to separate  or predict 

if something  belongs to a particular  class or category. SVM helps in finding a decision boundary  between  two categories. 

2.   Regression  analysis, if learning  problem  has continuous  real-valued  output  (continuous  values of x, in place discrete  n values, 

(X1, X2, X3, ... , x.) 
 

3.   Pattern  recognition 

4.    Outliers detection. 
 

The following example illustrates  the discriminative  classifier method,  formally defined by a separating  a hyperplane  for taking the 

decision for effective elements  (entities,  set of words, itemsets)  in a 

training  set. 

 
EXAMPLE  9.4 

 
How is the discriminative  classifier used? 

 
SOLUTION 

 

Consider a mapping  function  (f) used for linear  separation   in the feature  space (H).  An optimal  separating  hyperplane  depends 

on the data through  dot products   in H (f(xJf(J(_j)), 
 

A kernel function  k is required  that  acts as a measure  of similarity.  Let us use k where 
 

                                                                  (9.1     ) 
 

The objective  is to select  the  hyperplane   which  separates  the  two classes most  appropriately.   This helps  in identifying   the 

right  or appropriate   hyperplane.  Figure 9.3  showed  three  hyperplanes.   A,  B  and  C.  A  and  C  are least  margin  planes  and B  is 

maximum  margin plane. 

A hyperplane,maximum    margin  classifier is the right  hyperplane.   It has maximum  distances  from the  nearest  data points  (of 

either  classes).  An important  reason for selecting the maximum  margin  classification  surface is robustness.  A hyperplane  having 

low margin has considerably  high chance of misclassifying. 

 
Binary Classification 

 

For a given training  data [xi, y(xi)] for i = 1 ...N, with xi E !Rd and Yi E {-1,1},learn a classifier f(x) such that:



 
 
 

 
A hype 

 

 
 

The above equation implies that yJ{.x)  > O  for correct  classification. 

>O    ')';=   +I 
/(X;)   { -<0   

Y;=-1                                                                                   
(9.19)

 

Figure 9.4  shows a two-class  classification.  The method  is using  one hyperplane B  for separating two-class  classification  of data 

points. 

 
I    -----               ----            I 

I             The ~ncirded      I 

l        d1ta pointsarw    l 
:          Support  VIICtOrs : 

X2 

rplane 

-----~  in two-dlss 

clanl   cation 

 
Xt 

Figure  9. 4 Concept of training set data using support  vectors 
 

Let us take  the  simplest  case of two-class  classification.  Suppose there  are two features  Xl  and X2 and  it is required to classify 

objects as shown in the Figure 9.4. Stars and dots represent the objects (itemsets,  sets of words, entities)  of two classes. The goal is to 

design a hyperplane  (B) that  classify all training vectors in two classes for linearly  separable  binary  set. 
 

The following example gives the method  to design a hyperplane (B) that classify all training vectors: 

 
EXAMPLE  9.5 

 
How will you select an appropriate hyperplane that classifies all training vectors? 

 
SOLUTION 

 

Plane Bis f(x) = wx + b where w is weight vector. Figure 9.5 shows the method  of selecting the right hyperplane. 

 

 
G1 

 

X2                                                                 X2 

 
 
 

X1                                                                   X1 

Figure  9.5 Method of selecting the right hyperplane 
 

The best choice is the hyperplane that  leaves the maximum  margin  from both the classes. Thus, Bis the right choice, since Gl 

> G2. 
 

Thus, for line segment B, 
 

ft.x) ~ I  "!/ e  x -+ class  I 

ft.x) ~ -1 "!/ e   JI.  -+ class  2                                                                      (9.20) 

 
 

Self-Assessment Exercise  linked  to LO 9.1 
 

1.   Define text analytics. 
 

2.   List the steps in text pre-processing phase. Why are tokenization and POS tagging needed? Give an example of each step. 
 

3.  How is bag-of-word used in text analysis? Give 5 examples of stemming the affix wordforms to its root word. 

4.   How do the TF-IDF weighting and sparse matrices represent the term frequencies (TFs) for use in text analysis? 
 

5.   How does maximum a posteriori (MAP) in Naive Bayes classifier enable the decision about classification? 
 

6.  How does support  vectors in SVMsclassify the data points in n-dimensional  space.



9.31 WEB MINING,  WEB CONTENT AND WEB USAGE ANALYTICS   

Web is a collection of interrelated files at web servers. Web data refers to

(i) web content-text, image and records, (ii) web structure-hyperlinks and tags, and (iii) web usage-http 

logs and application server logs. 

Features of web data are: 

1.   Volume of information and its ready availability 
 

2.   Heterogeneity 

1i n lng the  veb<II n ks, veb-
structure  and web• 
contents. and analyzing the 
vebgr.iphs

 

3.   Variety and diversity (Information on almost every topic is available using different forms, such as text, structured tables  and 

lists, images, audio and video.) 

4.   Mostly semi-structured due to the nested  structure of HTMLcode 
 

5.   Hyperlinks among pages within a website, and across different websites 
 

6.   Redundant or similar information may be present  in several pages 

7.   Mostly, the web page has multiple sections (divisions), such as main contents of the page, advertisements, navigation panels, 

common menu for all the pages of a website and copyright notices 

8.   A web form or HTMLform on a web page enables a user to enter  data that  is sent to a server for processing 
 

9.   Website contents are dynamic in nature  where  information on the web pages constantly changes,  and fast information growth 

takes place such as conversations between users, social media, etc. 

The following subsections describe web data mining and analysis methods: 

 
9.3.1  Web Mining 

 

Data Mining is a process  of discovering  patterns in large  datasets to gain knowledge. The process  can be shown  as [Raw Data - 

Patterns -   Knowledge]. Web data mining is the mining of web data. Web mining methods are in multidisciplinary domains: (i) data 

mining, ML, natural  language, (ii) processing,  statistics, databases, information retrieval, and (iii) multimedia and visualization. 
 

Web consists  of rich  features and patterns. A challenging task  is retrieving interesting content  and discovering knowledge  from 

web data. Web offers several opportunities and challenges  to data mining. 

Definition of Web Mining 
 

Web mining refers  to the use of techniques and algorithms that  extract  knowledge  from the web data  available in the  form of web 

documents and services. Weh mining applications are as follows: 

 
(i)    Extracting the fragment from a web document that represents the full web document 

 

(ii)   Identifying interesting graph patterns or pre-processing the whole web graph to come up with metrics, such as PageRank 

(iii)  User identification, session creation, malicious activity detection and filtering, and extracting usage path patterns 
 

Web Mining Taxonomy 
 

Web mining can broadly be classified into three  categories, based on the types of web data to be mined. Three ways are web content 

mining, web structure mining and web usage mining. Figure 9.6 shows the taxonomy of web mining.



 
 
 
 
 

 
st/Tab e 

ecord 

 

nks        
Docu 
Struct 

 

 
 
 
 
 

Li        l 

R 
 
 
I                                                         

ment 
ure

lntra• 

documen 

In  er• 

doaiment

 

Figure 9.6 Web mining taxonomy 
 

Web content mining is the process of extracting  useful information  from the contents  of web documents.  The content  may consist of 

text, images, audio, video or structured  records,  such as lists and tables. 

Web structure mining is the process  of discovering  structure   information  from the web. Based on the kind of structure-information 

present  in the web resources,  web structure  mining can be divided into: 

1.   Hyperlinks: the structure  that  connects  a location at a web page to a different  location, either  within the same web page (intra• 

document  hyperlink)  or on a different  web page (inter-document   hyperlink) 
 

2.   Document  Structure:  The structure   of a typical web graph  consists  of web pages as nodes, and hyper links as edges connecting 

the related  pages. 

Web usage mining is the application  of data mining techniques  which discover  interesting  usage patterns  from web usage data. The 

data contains  the identity  or origin of web users along with their  browsing behavior  at a web site. Web usage mining can be classified 

as: 

 
(i)    Web Server logs: Collected by the web server and typically include IP address, page reference  and access time. 

 

(ii)   Application   Server  Logs: Application   servers   typically   maintain   their   own  logging  and  these   logs  can  be  helpful   in 

troubleshooting   problems  with services. 

(iii) Application  Level Logs: Recording events  usually by application  software  in a certain  scope in order  to provide  an audit  trail 

that can be used to understand   the activity of the system and to diagnose problems. 

 

9.3.2 Web ContentMining 
 

Web ContentMining is the process of information  or resource  discovery from the content  of web documents  across the World Wide 

Web. Web content  mining  can be (i) direct  mining of the contents  of documents  or (ii) mining through  search  engines.  They search 

fast compared  to direct method. 

Web content  mining relates  to both, data mining as well as text mining. Following are the reasons: 

(i)   The  content   from  web  is similar  to  the  contents   obtained  from  database,  file system  or  through   any  other  mean.  Thus, 

available data mining techniques  can be applied to the web. 

(ii)   Content mining relates  to text mining because much of the web content  comprises texts. 

(iii)  Web data are mainly semi-structured   and/or  unstructured,   while data mining is structured   and the text is unstructured. 
 

Applications 
 

Following are the applications  of content  mining from web documents: 

1.   Classifying the web documents  into categories 
 

2.   Identifying  topics of web documents 

3.   Finding similar web pages across the different  web servers 
 

4.   Applications related  to relevance: 

 
(a)  Recommendations  - List of top "n" relevant  documents  in a collection or portion  of a collection



•• \,11, ··--1) 

(b)  Filters - Show/Hide documents  based on some criterion 

 
(c)  Queries - Enhance standard  query relevance  with user, role, and/or  task-based  relevance. 

 

9.3.2.1 Common Web Content Mining Techniques 
 

Pre-processing of  contents  The  pre-processing    steps  are  quite   similar  to  the  pre-processing    for  text   mining.  The  content 

preparation   involves: 

1.   Extraction  of text from HTML 

2.   Data cleaning by filling up the missing values and smoothing  the noisy data 
 

3.   Tokenizing: Generates the tokens of words from the cleaned up text 

4.   Stemming:  Reduce the words to their  roots. The different  grammatical  forms or declinations  of verbs identify and index (count) 

as the same word. For example, stemming  will ensure  that both "closed" and "closing" are derived from the same word "close". 

Stemming   algorithm,   Porter, can  be  used  here.   The  java   code  for  Porter stemming   algorithm   can  be  obtained   from 

https://tartarus.org/martin/PorterStemmer    /.java.bct, 

5.   Removing  the stop words: The common words unlikely to help in the mining process  such as articles  (a, an, the), or prepositions 

(such as, to, in, for) are removed. 
 

6.   Calculate collection wide-word frequencies:  The distinct-word  stem obtained  after  stemming  process  and removing  the stop words 

results  into a list of significant  words  (or terms).  Calculating  the  occurrence  of a significant  term  (t) in a collection  is called 

collection frequency  (CFt).  CF counts the multiple  occurrences.) 

Now, find the number  of documents  in the collection that  contains  the specific term  (t). This numeric  measure  is the document 

frequency  (DF t). 

7.   Calculate  per Document Term Frequencies  (TF). TF is a numeric  measure  that  is used  to  score  the  importance   of a word  in a 

document  based on how often it appeared  in that  document  (Refer Example 9.1). 

8.   Bag of words: Web document  is represented   by the words it contains  (and their  occurrences. 
 

The following example explains the concept of CF and DF using the data of toy sales collection. 

 
EXAMPLE  9.6 

 
Using the  table  below on collection  and document  frequencies,   which  is prepared   from the  toys sales collection,  analyze  the 

 

 
 
 
 

dJscoaot                    issss        sso

numeric  values of CFs and DFs. 

Collection frequency  (CF) and document  frequency  (DF)

Ille                          1,'67            1230 
 

SOLUTION 
 

The table  suggests  that  the  collection  frequency  (CF)  and document  frequency  (DF)  can behave  differently.  The CF  values  for 

both discount and sale are nearly  equal, but their  DF  values differ significantly.  The reason  is that  the word sale is present  in a 

large  number  of documents  and the  word  discount  in a less number  of documents.  Thus, when  a query  related  to discount is 

generated,  it must be searched  in the concerned  documents  only. 

 
Mining Tasks for Web Content Analytics 

 

Following are the tasks for web content  analytics: 

1.   classification  - A supervised  technique  which: 

 



(i)   Identifies the class or category a new web documents  belongs to from the set of predefined  classes or categories 

(ii)  Categories in the form of a term vector that are produced  during a "training"  phase 
 

(iii) Employs algorithms  using term vector to categorize  the new data according  to the observations  at the training  set. 
 

2.   Clustering - An unsupervised  technique:



(i)    Groups the web documents  (clustered)  with similar features  using some similarity  measure 
 

(ii)  Uses no pre-defined  perception  of what the groups should be 
 

(iii) Measures most common similarity  using the dot product  between two web document  vectors. 
 

3.   Identifying the association between  web documents  - Association rules help to identify correlation  between  web pages that  occur 

mostly together. 

The other  significant  mining tasks are: 

1.   Topic identification,   tracking and drift analysis - A way of organizing  the  large  amount  of information  retrieved  from the web is 

categorizing  the web pages into distinct  topics. The categorization   can be based on a similarity  metric,  which includes textual 

information   and  co-citation   relations.   Clustering   or  classification   techniques   can  automatically   and  effectively  identify 

relevant  topics and add them  in a topic-wise collection library. 

Adding a new document to a collection library includes: 

(i)   Assigning each document  to an existing topic (category) 

(ii)  Re-checking of collection for the emergence  of new topics 

(iii) Tracking the number  of views to a collection 

(iv) Identifying  the drift in a topic(s) 
 

2.   Concept hierarchy creation -  Concept  hierarchy   is  an  important   tool  for  capturing   the  general   relationship    among  web 

documents.  Creation  of concept  hierarchies   is important   to understand   a category  and  sub-categories   to which  a document 

belongs.  The clustering   algorithms   leverage  more  than  two  clusters,  which  merge  into  a cluster.  That  is merging  the  sub• 

clusters  into a cluster. 

Important  factors for creation  of concept hierarchy  include: 

(i)   Identifying  the organization  of categories,  such as flat, tree or network 
 

(ii)  Planning the maximum number  of categories  per document 
 

(iii) Building category dimensions,  such as domain, location, time, application  and privileges. 

3.   Relevance of content - Relevance or the applicability  of web content  can be measured  with respect  to any of the following basis: 
 

(i)   Document relevance  describes the usefulness  of a given document  in a specified situation. 
 

(ii)  Query-based  relevance  is the  most useful  method  to assess the  relevance  of web pages. Query-based  relevance  is used  in 

information  retrieval  tools such as search  engines.  The method  calculates  the similarity  between  query  (search) keywords 

and document.  Similarity, results  can be refined  through  additional  information  such as popularity  metric  as seen in Google 

or the term positions  in AltaVista. 

(iii) User-based relevance  is useful in personal  aspects. User profiles are maintained,  and similarity  between  the user profile and 

document  is calculated.  The relevance  is often used in push notification  services. 

(iv) Role/task-based  relevance  is quite similar to user-based  relevance.  Instead of a user, here the profile is based on a particular 

role or task. Multiple users can provide input to profile. 

 

9.3.3 Web Usage Mining 
 

Web usage mining  discovers  and analyses  the  patterns   in click streams.  Web usage mining  also includes  associated  data generated 

and collected as a consequence  of user interactions  with web resources. 

Figure 9.7 shows three  phases for web usage mining. 

 
Pre-f'rocessl11&                              Pattern   Discovery                           Pmttem A1111tysls

•   Data cleaning                                •   Statistical 

•   Feature  extraction                        •   Association  Rule 

•   Feature  reduction         Pre          •   Clustering 

•  User/session/        processed •  Classification 

page                        Olek·     •  Sequen 'al                and 

identification                strum          Pattems                    statistics 

•   Formatting                    d  ta 

•   Data 

summarization 

•   Knowledge 

Query-based 

•  OLAP 

•   Visualization



Figure 9.7  Process of web usage mining 
 

The phases are: 
 

1.   Pre-processing  -  Converts the usage information  collected  from the various  data sources  into the data abstractions   necessary 

for pattern  discovery. 

2.   Pattern  discovery  -  Exploits methods  and algorithms  developed  from fields, such as statistics,  data  mining,  ML  and pattern 

recognition. 

3.   Pattern  analysis - Filter outs uninteresting   rules or patterns  from the set found during the pattern  discovery phase. 
 

Usage  data  are  collected  at  server,  client  and  proxy  levels.  The  usage  data  collected  at  the  different   sources  represent   the 

navigation  patterns  of the overall web traffic. This includes single-user,  multi-user,  single-site  access and multi-site  access patterns. 

9.3.3.1 Pre-processing 
 

The common data mining techniques  apply on the results  of pre-processing  using vector space model (Refer Example 9.2). 

Pre-processing  is the data preparation   task, which is required  to identify: 

(i)    User through  cookies, logins or URL information 
 

(ii)   Session of a single user using all the web pages of an application 
 

(iii)  Content from server logs to obtain state variables for each active session 
 

(iv)  Page references. 
 

The subsequent  phases of web usage mining are closely related  to the smooth  execution  of data preparation   task in pre-processing 

phase. The process deals with (i) extracting  of the data, (ii) finding the accuracy of data, (iii) putting  the data together  from different 

sources,  (iv) transforming   the  data  into  the  required  format  and  (iv) structure   the  data  as per  the  input  requirements   of pattern 

discovery algorithm. 
 

Pre-processing   involves  several  steps,  such  as data  cleaning,  feature  extraction,   feature  reduction,   user  identification,   session 

identification,  page identification,  formatting  and finally data summarization. 

9.3.3.2 Pattern Discovery 
 

The  pre-processed   data  enable  the  application   of  knowledge   extraction   algorithms   based  on  statistics,   ML   and  data  mining 

algorithms.   Mining  algorithms,   such  as path  analysis,  association  rules,  sequential   patterns,   clustering   and  classification  enable 

effective processing  of web usages. The choice of mining techniques  depends  on the requirement   of the analyst.  Pre-processed  data 

of the  web access logs transform   into  knowledge  to uncover  the  potential   patterns   and  are  further  provided  to pattern   analysis 

phase. 

Some of the techniques  used for pattern  discovery of web usage mining are: 
 

Statistical techniques They are the most common methods  which extract  the knowledge about users. They perform  different  kinds 

of descriptive  statistical  analysis  (frequency,  mean,  median)  on variables  such as page views, viewing time  and length  of path  for 

navigational. 

Statistical techniques  enable discovering: 

 
(i)   The most frequently  accessed pages 

 

(ii)   Average view time of a page or average length of a path through  a site 
 

(iii)  Providing support  for marketing  decisions 
 

Association  rule  The rules  enable  relating  the  pages, which  are  most  often  referenced   together   in a single  server  session. These 

pages may not be directly  connected  to one another  using the hyperlinks. 

Other uses of association  rule mining are: 

 
(i)    Reveal a correlation  between  users who visited a page containing  similar information.  For example,  a user visited a web page 

related  to admission in an undergraduate   course to those who search an eBook related  to any subject. 

(ii)   Provide recommendations   to purchase  other  products.  For example,  recommend  to user who visited  a web page related  to a 

book on data analytics, the books on ML and Big Data analytics also.



(iii)   Provide   help  to web  designers    to  restructure      their   websites. 
 

(iv)   Retrieve   the  documents     in prior   in order   to  reduce   the  access  time  when   loading   a page  from  a remote    site. 

 
Clustering      is the  technique     that   groups   together    a set  of items   having   similar   features.    Clustering    can  be used  to: 

(i)    Establish groups of users showing similar browsing behaviors 
 

(ii)   Acquire customer  sub-groups  in e-commerce  applications 
 

(iii)  Provide personalized  web content  to users 

(iv)  Discover  groups  of  pages  having  related   content.   This  information   is  valuable  for  search  engines   and  web  assistance 

providers. 

Thus, user  clusters  and web-page  clusters  are two cases in the  context  of web usage mining.  Web page clustering  is obtained  by 

grouping  pages having similar content.  User clustering  is obtained  by grouping  users by their  similarity  in browsing behavior. 

Model-based  or distance-based   clustering  can be applied  on web usage logs. The model type  is often  specified theoretically   with 

model-based  clustering.  The model  selection  techniques   and  parameters   estimate  using  maximum  likelihood  algorithms,   such  as 

Expectation  Maximization  (EM) determines  the structure  of model. Distance-based  clustering  measures  the distance  between  pairs of 

web pages or users, and then  groups the similar  ones together  into clusters.  The most popular  distance-based  clustering  techniques 

include partitional  clustering  and hierarchical  clustering  (Section 6.6.3). 
 

Classification   The method  classifies data items into predefined  classes. Classification is useful for: 

 
(i)   Developing a profile of users belonging to a particular  class or category 

 

(ii)   Discovery  of interesting   rules  from  server  logs. For example,  3750  users  watched  a certain  movie, out  of which  2000  are 

between  age 18 to 23 and 1500 out of these lives in metro  cities. 

Classification  can  be done  by using  supervised  inductive  learning  algorithms,   such  as decision  tree  classifiers,  Naive Bayesian 

classifiers, k-nearest  neighbour  classifiers, support  vector machines. 
 

Sequential   pattern   discovery   User navigation  patterns   in web usage data gather  web page trails  that  are often visited  by users in 

the order  in which pages are visited.  Markov Model can be used to model navigational  activities  in the website. Every page view in 

this  model can be represented   as a state.  Transition  probability  between  two states  can represent   the  probability  that  a user will 

navigate  from one state  to the other.  This representation   allows for the computation  of a number  of significant  user or site metrics 

that  can lead to useful rules, pattern,  or statistics. 

9.3.3.3 Pattern Analysis 
 

The objective of pattern  analysis is to filter out uninteresting   rules or patterns  from the rules, patterns   or statistics  obtained  in the 

pattern  discovery phase. 

The most common form of pattern  analysis consists of: 

(i)   A knowledge query mechanism  such as SQL 
 

(ii)   Another  method  is to load usage data into a data cube in order to perform  Online Analytical Processing  (OLAP)  operations 
 

(iii) Visualization  techniques,   such as graphing  patterns   or assigning  the  colors  to different  values,  can often  highlight  overall 

patterns  or trends  in the data 

(iv)  Content  and structure   information  can filter out patterns  containing  pages of a certain  usage type, content  type or pages that 

match a certain  hyperlink  structure. 

Data cube enables  visualizing  data from different  angles. For example,  toys data visualization  using category,  colour and children 

preferences.   Another  example,  news  from  category,  such  as sports,  success  stories,  films  or  targeted   readers   (children,  college 

students,  etc). 

 
Self-Assessment   Exercise  linked  to LO 9.Z 

 

1.   Defineweb mining. Discussthe broad classifications of web mining and their applications. 
 

2.  List the tasks in pre-processing of web contents. 

3.  How are web-content mining tasks performed using machine learning algorithms? 
 

4.   How are topic identification, tracking and drift analysis done?



5.   List and explain three phases of web-usage mining. 
 

6.   Highlight the techniques  used for pattern  discovery in web-usage mining giving an example of each. 

 
 

 

9.41 PAGE  RANK,  STRUCTURE   Of  WEB  AND  ANALYZING   A  WEB  GRAPH  

 

Sections 9.2  and 9.3  described  text data and web contents  analysis. Hyperlinks  links exist between  the web 

contents.  Link analysis finds the answers to the following: 

1.   Can a linked (web) page rank them higher or lower? 

2.     Can the links be modeled   as edges of graphs,  structure   of web as graph  network,  and applied the tools 

same as for graph analytics? 

3.   Can web graph mining method  analyze and find a link sending spams? 

4.   Does a set of links correspond  to a hub? Do the links correspond  to an authority? 
 

5.   Does a linked page has higher  authority  compared  to others? 

 

 
Pag!!Ran king,  ;a na lysi s 
ofweb-structu~    and 
discovering hubs, authori• 
ties and communities in 
wel>-structure

 

Links analysis  applies  to  domains  of social  networks   and  e-mail.  The  following  sub-sections   describe  the  applications   of link 

analysis: 

 

9.4.1 Page Rank Definition 
 

The in-degree  (visibility)  of a link is the  measure  of number  of in-links  from  other  links. The out-degree   (luminosity)  of a link is 

number  of other  links to which that link points. 

PageRank definition according to earlier approaches 
 

Assume a web structure  of hyperlinks.  Each hyperlink  in-links to a number  of hyperlinks  and out-links  to a number  of pages. A page 

commanding  higher  authority  (rank) has greater  number  of in-degrees  than  out-degrees.  Therefore,  one measure  of a page authority 

can be in-degrees  with respect  to out-degrees. 
 

PageRank refers to the authority  of the page measured  in terms  of number  of times a link is sought after. 
 

PageRank definition according to the new approach 

Earlier approach  of page ranking  based on in-links and out-links  does not capture  the relative  authority  (importance)  of the parents. 

Page and co-authors  (1998)  defined  a page ranking  method,5  which considers  the entire  web in place of local neighbourhood   of the 

pages and considers  the relative  authority  of the parent  links (over children). 

 
9.4.2 Web Structure 

 

Web structure   models as directed-graphs   network-organization.   Vertex  of the  directed  graph  models an anchor.  Let n = number  of 

hyperlinks  at the page U. Assume u is a vector with elements  u1,   u2,   •••  un. Each page Pg (u) has anchors,  called hyperlinks.  Page Pg (v) 

consists of text document  with m number  of hyper links. v is a vector with elements  vi, vz, ••• vm· The m is number  of hyper links at Pg 

(v). A vertex  u directs  to another  Page V. A page Pg (v) may have number  of hyperlinks  directed  by out-edges  to other  page Pg (w). 

Consider the following hypotheses: 

1.   Text at the hyperlink  represents  the property  of a vertex u that describes the destination  V of the out-going  edge. 

2.   A hyperlink  in-between  the pages represents  the conferring  of the authority. 
 

Pages U and U¢ hyperlinks  u and ue out-linking  to Page V. Let Page U has three  hyperlinks  parenting  three  Pages, V one, W two, X 

two, U' one, and Y two, respectively.  Figure 9.8 shows a web structure  consisting  of pages and hyperlinks.



 

 
 

Figure  9.8 Web structure  with hyperlinks  from a parent  to one or more pages 
 

9.4.2.1 Dead Ends 
 

Dead-end web pages refer to pages with no out-links.  When a web page links to such pages, its page rank gets reduced.  Dead ends are 

on a website having poor linking structure. 

The web structure   of service  pages may have  pages with  a dead  end. The end causes no further  flows for further  action  and no 

internal  links. Good website  structures   have the pages designed  such that  they  specifically gently  guide the visitors  toward  actions 

and towards  next step. For example, if one searches  for a book title on Amazon, then  visitor gets links of other  books also on a similar 

topic. 

9.4.2.2 Analyzing and Implementing  a System with Web Graph Mining 
 

Number of metrics  analyze a system using web graph mining. Following are the examples: 
 

1.   In-degrees  and out-degrees 

2.   Closeness is centrality  metric.  Closeness, Cc(v) = I/  I',gdist(v,u), where gdist is the geodesic distance  between  vertex  v with u and 
.v 

sum is over  all u linked  with  V.  Geodesic distance  means  the  number  of edges  in a shortest   path  connecting   two vertices. 

Assume v has an edge with w, and w has an edge with u. Assume u does not have direct edge from v. Then, geodesic distance=  2 

(two edges between v and u in shortest  path). 
 

3.   Betweenness 
 

4.   PageRank and LineRank 
 

5.    Hubs and authorities 

6.   Communities parameters,  triangle  count, clustering  coefficient, K-neighbourhood 
 

7.   Top K-shortest  paths 

 
9.4.3 Computation  of PageRank and PageRank Iteration 

 

Assume that  a web graph  models the web pages. Page hyperlinks  are the property  of the graph  node (vertex). Assume a Page, Pg (v) 

in-links  from Pg (u), and Pg (u) out-linking  similar to Pg (v), to total  Nout [(Pg (u)] pages. Figure 9.9 shows Pg (v) in-links  from Pg (u) 

and other  pages. 

 

 
 

Figure  9.9 Page Pg (v) in-links from Pg (u) and other  pages 
 

Nout for page U is 7 and for V is 1 in the figure. Number of in-linking  Nin for page V is 4. Two algorithms  to compute  page rank are as 

follows: 

1.PageRank algorithm using the in-degrees as conferring authority 
 

Assume that the page U, when out-linking  to Page V "considers"  an equal fraction  of its authority  to all the pages it points to, such as 

Pgv. The following equation  gives the initially suggested page rank, PR (based on in-degrees)  of a page Pgv:



PR(Pgv) = DC·          I,    [PR(Pga)/N(Pgu)) 
Pp:Pto-+P,. 

 
(9.21)

where  N(Pgu) is the total  number  of out-links  from U. Sum is over all Pgv in-links. Normalization  constant  denotes  by nc, such that 

PR of all pages sums equal to 1. 
 

However, just  measuring  the  in-degree  does  not  account  for the  authority   of the  source  of a link. Rank is flowing among  the 

multiple  sets of the  links. When Pgv in-links  to a page Pgu, its rank  increases  and when  page Pgu out-links  to other  new links, it 

means that  N (Pgu) increases, then  rank PR(Pgv) sinks (decreases). Eventually, the PR (Pgv) converges  to a value. 

Therefore,  rank computation  algorithm  iterates  the rank flowing computations  as shown below: 

 
EXAMPLE  9.7 

 
Assume S corresponds  to a set of pages. Initialize  'V Pg E   S. Symbols mean that  initialize  all pages Pg contained  in the  S  and 

initialize Page Rank (Pgv) for each page as follows: 
 

PRinit (Pgv) = 1/ISI                                                                                                                     (9.22) 

 

How are  the  page  ranks  of the  pages  in a given  set  of pages  iterated   and  computed  till the  ranks  do not  change  (within 

specified margin, that means untill converge)? 
 

SOLUTION 
 

Iterate  and compute PR (Pgv) for each page as follows: 
 

Until ranks do not change (within specified margin)  (that means converge) 

 
for each Pgv E   S compute, 

and normalization  constant, 

 
PR(Pgv> =        I,    [PR(PguJ/N(PguJ] 

P,u:Pgu-+~ 

 

 
nc =  I, [ PRnew( Pgv)] 

Jl,YES 

for each Pgv e  S:  PR(Pgv) = nc PR(Pgv) 

 

 
(9.22) 

 
 
 
(9.23a) 

 
(9.23b)

 

 
2. PageRank algorithm using the relative authority of the parents over linked children 

 

A method  of PageRank considers  the entire  web in place of local neighbourhood   of the pages and considers  the relative  authority  of 

the parents  (children).  The algorithm  uses the relative  authority  of the parents  (children)  and adds a rank for each page from a rank 

source. 

The PageRank method  considers  assigning  weight according  to the rank of the parents.  Page rank is proportional   to the weight of 

the parent  and inversely  proportional  to the out-links  of the parent. 

Assume that  (i) Page v (Pgv) has in-links with parent  Page u (Pgu) and other  pages in set PA (v) of parent  pages to v that  means  E 

PA(v), (ii) R(v) is PageRank of Pgv, (iii) R (u) is weight  (importance/rank)    of Pgu, and (iv) ch (u) is weight of child (out-links)  of Pgu. 

Then the following equation  gives PageRank R (v) of link v:

R(v) =   L  [R(11)~ch(u)I] 
•e  PA(v) 

 
(9.25)

 

where PA(v) is a set of links who are parents  (in-links) of link v. Sum is over all parents  of v. nc is normalization  constant  whose sum 

of weights is 1. 
 

Assume that  a rank source E exists that is addition  to the rank of each page R (v) by a fixed rank value E(v) for Pgv. E(v) is fraction  a 

of[l/lPA(v)I]. 
 

An alternative  equation  is as follows:

R(v) = nc-{(1-a)      L  [1~(u)1]+ a-E(v)}. 
•ePA(v)   ~h(II) 

 
(9.26)



J+a·E 

where  nc = [1/R(v)]. R(v) is iterated  and computed  for each parent  in the set PA(v) till new value of R(v) does not change within  the 

defined margin, say 0.001 in the succeeding iterations. 
 

Significance   of a PageRank can be seen as modeling  a "random  surfer"  that  starts  on a random  page and then  at each point:  E(v) 

models  the  probability  that  a random  link jumps  (surfs)  and  connect  with  out-link  to  Pgv. R(v) models  the  probability  that  the 

random  link connects  (surf) to Pgv at any given time.  The addition  of E(v) solves the problem  of Pgv by chance  out-linking  to a link 

with dead end (no outgoing links). 
 

Therefore,  rank computation  algorithm  iterates  the rank flowing computations  as shown in Example 9.8. 

 
EXAMPLE  9.8 

 
Assume PA corresponds  to a set of parent  pages to a page v.  Initialize  V Pg E   PA (v).  Symbols mean  that  initialize  all pages u 

contained  in the set of parent  pages of PA (v) and initialize Page Rank R(v) for each page as follows: 
 

R(v) = [1/IPA(v)I] 
 

How are the page ranks  of the pages in a given set of pages iterated  and computed  till the ranks  do not change  (within specified 

margin, that means untill converges)? 
 

SOLUTION 
 

Iterate  and compute R (v) for each page as follows: 
 

Until ranks do not change that  means converges  (within specified margin, say 0.001)
 

for each v E   PA (v) compute, 
 

 
 
 

and normalization  constant, 

 

 

R v) =  n   ·   {(I-ex    L [-,Ru     v) 
OE PA(v           b ll   1 

 

 

n  =     L  [R v) 

UE  P.   v 

f  r       h v E   PA  v:   R     = n  .R  v

 

 
PageRank Iteration using MapReduce functions  in Spark Graph 

 

The computation  of PageRank using SparkGraph method  (Section 8.5), 
 

graph.pageRank(0.0001) .vertices 

ranksByUsername =  users.join(ranks) .map{case id, (username, rank)) =>  (username, rank). 

The   method    includes   conversions    to   MapReduce   functions    and   using   HDFS    compatible    files.   Functions    PageRank   (), 

ranksByUsername   ()   do  the  computations   using  the  PageRankObject.   GraphX  consists  of  these   functions   (GraphOps).  Graphx 

Operators  includes the functions  (Section 8.5). 
 

Static PageRank algorithm  runs for a fixed number  of iterations,  while dynamic PageRank runs until the computed  rank converges. 

Convergence  means  that  after  certain  iterations,   the  rank  does  not  change  significantly  and  any  change  remains  within  a pre• 

specified tolerance.  Thereafter  the iterations  stop. 
 

Assume specified tolerance  at the start  of iterations  is 0.0001 (1 in 10000). When the rank does not change beyond that  tolerance,  it 

means rank value will converge and then the iterative  process will stop. 

 
9.4.4 Topic Sensitive PageRank and Link Spam 

 

Number  of methods  have been  suggested  for computations   of topic-sensitive   page ranking,  RTs·  The RTs  (v) of a page P (v) may be 

higher  for a specific topic  compared  to other  topics. A topic  associates  with a distinct  bag of words  for which the page has higher 

probability  of surfing than  other bags for that  topic. 

Topic-sensitive   PageRank  method   uses  surfing   weights   (probabilities)   for  the  pages  containing   the   topic  or  bag  of  words 

corresponding   to a topic. Method  for creating  topic-sensitive   PageRank is to compute  the  bias to rank  R(v) and thus  increase  the 

effect of certain  pages containing  that  topic or bag of words.



Refer equation  (9.25) for computations   of R (v), and equation  (9.26) for computations   after  introducing  additional  influence  to the 

page. A method  of introducing  biasing is simple. It assumes that  a rank  source E exists that  is additional  having in-links  from other 

pages,  and  thus  adds  to  the  rank  of each  page  R  (v) by a  fixed  (uniform)  or  non-uniform   weight  factor  a. The  factor  a is a 

multiplication  factor to actual in-links without  the bias. 
 

Recapitulate  equation  (9.26). Probability  of random  jump  to page v is E(v). An alternative   equation  for topic  sensitive  PageRank, 

R(v) computation  for page P (v) is as follows: 

 

R(v) = n.:-{o-a,)-P(v)  I   [1~(U)j]+a, .E(v)}. 
IIE P.-'(,·)   cht U ~ 

 

Probability  of random jump  to page v is E (v). at = O  for page unrelated  to a topic a is not O  for page related  to a topic. at = surfing 

probability   for  in-links  for a topic  t. Further,  coefficient  (1- a)  is considered  as biasing  factor  depending  on the  web page  P (v) 

selected for a queried topic t. 

The page is having  in-links  from other  pages. Assume N, is number  of topics to which  a page is sensitive  to surfing  those  topics. 

Effect of topics  on PageRanks  increases  by using  a non-uniform   N, x  1  personalization   vector  for  surfing  probability  p. Higher  a 

means higher  p. 

Assume that  the  topics are tl,   t2, ... ,  tn. Fix the  number  Nt. RTs  is to be computed  for each of them.  Therefore,  compute  for each 

topic tj' the PageRank scores of page v as a function  of tj, which means compute  R (v, j), where j = 1, 2, ... , n. That also means compute 

the n elements  of a non-uniform  N, x  1 personalization   vector Rrs (v) for tl,  t2, ... ,  tn. 
 

Link Spam 

Effects of a  link spam can  be  nullified  using  the  topic-sensitive   PageRank  algorithm.   Link Spam tries  to  mislead  the  PageRank 

algorithm.  A link spam attempts  to make PageRank algorithm  ineffective. The spam assisting  pages connects  to the page repeatedly 

and increases  the in-degree  of a page, thereby  enhancing  the rank to a large value. 

A link spam creator  website  ws also has a page ls for whom ws attempts   to enhance  the  PageRank. The w5  has a large  number  of 

assisting pages al5  which out-links  to ls only. The als pages also prevent  the PageRank of l5 from being lost. A spam mass consists  of w5, 

ls and its als pages. 
 

Methods nullify the effect by introducing  a trust  rank for a page u used in equation  (9.29) and tracing  spam mass of in-link pages to 

the page v. 
 

Following are the steps for finding spam mass: 

1.   A distant  topic  sensitive  page has unusually  high in-degrees  compared  to the other  pages of the  same topic. A plot known as 

power-law  plot is drawn  between  the log of number  of web pages on the y-axis out-linking  to the page v and logs of them  in• 

degrees of v on the x-axis. 

2.    Plot  is nearly  linear  as the  number  exponential   decays  is within  degrees.  N  is proportional   to  exp  (-d), where  d is decay 

constant. 

3.   An unusual pattern  with marked  deviation  from near linearity  identifies  the distant  link spam mass. 

 
9.4.5  Hubs andAuthorities 

 

A hub is an index page that  out-links  to a number  of content  pages. A content  page is topic authority.  An authority  is a page that  has 

recognition  due to its useful, reliable and significant  information. 

Figure 9.lO(a) shows hubs (shaded circles) with the number  of out-links  associated  with each hub. Figure 9.IO(b) shows authorities 

(dotted  circles) with the number  of in-links and out-links associated  with each link.



 
 
 
 
 

vertices 

ub-graph 

tedtoS 

xx. s                                           1, 1 

              1, 1
 

xx. 2                                                                      
1, 1

 

              1, 1 

xx,4                                                           1, 1 
 

120.4

 

xx. 2                                                                 
200,  2 

Hubs 

(ai)                                                                                  (b) 

 

Figure  9.10 (a) Hubs (shaded circles) and (b) Authorities  (dotted  circles) 

 

 
outh2

 

In-degrees  (number  of in-edges  from  other  vertices)  can be one of the  measures  for the  authority.   However, in-degrees  do not 

distinguish  between  an in-link from a greater  authority  or lesser authority. 

Authority,  auth1  in Figure  9.lO(b) has  in-links  from  6  vertices  (in-degrees  =  6)   and  auth2   has  in-links  to just  2  (in-degree  =   2). 

However, auth1   has link with  six vertices  with  in-degrees  =  1,  1,  1,  1,  1  and  120 (total  =  125). Authority,  auth2  has  links with  two 

vertices  with in-degrees=   120 and 200 (total=  220). Auth2has association  with greater  authorities.  Therefore,  in-degrees  may not be a 

good measure  as compared  to authority. 

 

Kleinberg  (1998) developed  the  Hypertext-Induced    Topic  Selection  (HITS) algorithm.6   The  algorithm   computes   the  hubs  and 

authorities   on a specific topic t. The HITS analyses a sub-graph  of web, which is relevant  to t. Basis of computation  is (i) hubs are the 

ones, which out-link to number  of authorities,  and 

(ii) authorities  are the ones, which in-link to number  of hubs. A bipartite  graph exists for the hubs and authorities. 

Consider a specifically queried  topic t. Following are the steps: 

1.   Let a set of pages discover a root set R using standard  search engine. Root pages may limit to top 200 for t. 
 

2.    Find a sub-graph  of pages S, using a query that provides  relevant  pages for t and pointed  by pages at R. Sub-graph  S pages form 

Set for computations   as it includes  the  children  of parent  R  and limit to a random  set of maximum  50 pages returned   by a 

"reverse  link" query. 

3.  Eliminate purely navigational  links and links between  two pages on the same host. 

4.   Consider only u (llull  = 4-8) pages from a given hyperlink  as pointer  to any individual page. (Section 9.4.2) 
 

Sub-graph  for HITS  consisting  of root  set R of pages and children  of parents  in the sub-graph  S. Figure 9.11 shows subgraph  S for 

HITS consisting  of root set R of pages and all the pages pointed  to by any page of R . 
 

._      - - - - - ---     Base SIJI$.      s --- - - -- -------------· 

 
 
 
 

 
Lin lcs to 

cl s 

assocla 

 
 
 

Figure  9.11  Sub-graph for HITS consisting  of root set R of pages and base sub-graph  S including  all the pages pointed  to by 

any page of R. 
 

The left directed  leftmost  arrows from s3, s4 , s5 and s6 are pointing  to nodes in sub-graph(s)  associated  to S. The following example 

explains the algorithm  steps to compute  hub score and authority  score. 

 
EXAMPLE  9.9 

 
Assume that  v has  number   of in-links  and  v has  number   of out-links.   Assume  S corresponds   to  base  set  of pages  and  R 

corresponds  to root set. (i) Initialize  S to R.  (ii)  Initialize   '<:/    u E   S. Symbols   mean that  initialize  all pages u,  contained  in the S.



(iii) Normalization  constant  is nc. The (i) hub (v) hub score and (ii) auth authority  score of page v for each page is as follows: 

For each v E S, auth (v) = 1; hub(v) = 1; nc =  1; (9.30) 

How are the  hub and authority   of pages in a given set of pages iterated  and computed  till the  ranks  do not  change  (within 

specified margin, that  means untill converges)? Usually 20 iterations  converge the result  within margin, usually set to 0.001. 

 
SOLUTION 

 

Iterate  and compute  auth (v) and hub (v) for each page as follows: 
 

Until ranks do not change (within specified margin)  (that means converges) 
 

for each v E   S compute,  
authrvj   e   nc-    L [hub(ul].                                                                                  (9.Jla)

 
 
 

and normalization  constant, 

 

hub(v)=nc2·      L [auth(u)]. 
u:v~a 

 
nd  =  L ll[auth(v)f. 

P,VES 

nc2 =  L ll[authMf. 
P,VES 

for each  v e ~: authtv)  = nc Lauthtv]:   authtv)  = nc l .autht v): authtv): 

 
(9.Jlb) 

 

(9.32.1) 

(9.J2b) 

 
(9.J2c)

 

 
 

Difference between HITS and PageRank 
 

HITS considers  mutual  reinforcement   between  authority   and hub pages.  PageRank ranks  the  pages just  by authority   and does not 

take  into  account   distinctions   between   hubs  and  authorities.   HITS considers   the  local  neighbourhood    between   4  to  8  pages 

surrounding  the results  of a query, whereas  PageRank is applied to the entire  web. HITS  depends  on topic t, while PageRank is topic• 

independent.  PageRank effects by 

dead-ends. 

 
9.4.6   Web Communities 

 

Web communities  are web sites or collections  of websites,  which  limit the  contents  view and links to members.  Examples of web 

communities  are social networks,  such as Linkedln, SlideShare, Twitter  and Facebook. 

The communities   consist  of sites  for  do-it-yourself   sites,  social networks,  blogs or  bulletin  boards.  The issues  are  privacy  and 

reliability  of information. 
 

Metric  for  analysis  of web-community   sites  are  web graph  parameters,   such  as triangle   count,  clustering   coefficient  and  K• 

neighbourhood. 
 

K-neighbourhood  analysis means the number  of 1st neighbour  nodes, 2nd neighbour  nodes, and so on 

(K = 1, 2, 3, 4 and so on). 
 

K-core analysis means the number  of cores within a marked  area. A core may consist of a triangle  of connected  vertices. A core may 

consist of a rectangle  with interconnected   edges and diagonals. A core may also be a group of cores. 
 

Spark  Graphx  (Section  8.5)  described  functions  for  degree  centralities,   degree  distribution,   separation   of degree,  betweenness 

centralities,   closeness  centralities,   neighbourhoods,    strongly   connected   components,   triangle   counts,  PageRank,  shortest   path, 

Breadth First Search (BFS), minimum  spanning  tree  (forest), spectral  clustering  and cluster coefficient. 

 

9.4.7   Limitations  of Link, Rank and Web Graph Analysis 
 

Following are the limitations  oflink  and web graph analysis: 

1.   Search engines rely on metatags  or metadata  of the documents.  That enhances  the rank if metadata  has biased information. 
 

2.     Search engines themselves  may introduce  bias while ranking  the pages of clients higher  as the pages of advertising  companies



may provide higher  searches and hence lead to biased ranks. 
 

3.   A top authority  may be a hub of pages on a different  topic resulting  in increased  rank of the authority  page. 

4.   Topic drift and content  evolution  can affect the rank. Off-topic pages may return  the authorities. 
 

5.     Mutually reinforcing  affiliates or affiliated pages/sites  can enhance  each other's  rank and authorities. 
 

6.     The ranks may be unstable  as adding additional  nodes may have greater  influence in rank changes. 

 
Self-Assessment   Exercise  linked  to LO 9.3 

 

1.   Write and explain the equations for computing PageRank using relative authority of parent nodes. 
 

2.   Show diagramatically network organization model of directed graphs for the structure of the web. How are the page hub and page 

authority computed? 

3.   What are the metrics which Spark GraphX compute? 
 

4.    How does the equation for computing the hub of a page differ from the computing authority of a page? 

5.   How does link spam function?  How is the  link spam discovered  from the  plot between  the  number  of web pages and in• 

degrees? 

 
 
 

9.51 SOCIAL NETWORKS AS GRAPHS AND 

SOCIAL NETWORK ANALYTICS
 

A social  network is a social structure  made of individuals  (or organizations)  called "nodes," which are tied 

(connected)   by  one  or  more  specific  types  of inter-dependency,    such  as friendship,   kinship,  financial 

exchange,  dislike or relationships  of beliefs, knowledge or prestige.  (Wikipedia) 

Social networking   is the  grouping  of individuals  into  specific groups,  like small  rural  communities   or 

some other  neighbourhoods  based on a requirement.  The following subsections  describe social networks  as 

graph, uses, characteristics   and metrics. 

 

9.5.1  Social Network as Graphs 

 
 
Representation of social 
networksas graphs, 
methods of social network 
analysis, finding the 
clustering   in social netviork 
graphs, evaluating the 
Sim Ran  counting  triangles 
(cliques) and discovering 
the communities

 

Social network  as graphs  provide  a number  of metrics  for analysis.  The metrics  enable the application  of the graphs  in a number  of 

fields. Network  topological  analysis  tools  compute  the  degree,  closeness,  betweenness,   egonet,  K-neighbourhood,   top-K shortest 

paths,  PageRank,  clustering,   SimRank, connected   components,   K-cores, triangle  count,  graph  matches  and  clustering   coefficient. 

Bipartite  weighted  graph matching  does collaborative  filtering. 
 

Apache Spark Graphx and IBM System G Graph Analytics tools are the tools for social network 

analysis. 
 

Centralities, Ranking and Anomaly Detection 
 

Important  metrics  are degree  (centrality),  closeness (centrality),  betweenness  (centrality)  and eigenvector   (centrality).  Eigenvector 

consists  of elements  such as status,  rank  and other  properties.   Social graph-network   analytics  discovers  the  degree  of interactions, 

closeness, betweenness,  ranks, probabilities,  beliefs and potentials. 
 

Social network   analysis  of closeness  and  sparseness   enables  detection   of abnormality   in  persons.  Abnormality  is found  from 

properties  of vertices  and edges in network  graph. Analysis enables summarization   and find attributes  for anomaly. 
 

Social network  characteristics   from observations  in the organizations  are as follows: 

1.   Three-step  neighbourhoods   show positive  correlation  between  a person  and high performance.  Betweenness  between  vertices 

and bridges between  numbers  of structures   are not helpful  to the organization.  Too many strong  links of a person  may have a 

negative  correlation  with the performance. 

2.     Social network  of a person  shows high performance   outcome  when  the  network  exhibits  structural   diversity.  Person  with  a 

social network  with  an  abundant   number   of structural   holes  exhibits  higher  performance.   This is because  having  diverse 

relations  help an organization.



Social network  analysis enables detection  of an anomaly. An example is detection  of one dominant  edge which other  sub-graphs  are 

follow (succeed). Ego network is another  example. The network  structure  is such that a given vertex corresponds  to a sub-graph  where 

only its adjacent  neighbours  and their  mutual links are included. 
 

The analysis enables spam detection.  Spam is discovered by observation  of a near star structure. 

Figure 9.12 shows discovering  anomaly, ego-net and spam from the analysis. 

 

 
 

Figure  9.12 Discovering anomaly, ego-net and spam (using near star) from the analysis 
 

Social network  has concerns  of privacy, security  and falsehood dissimentation.   Security issues are phsishing  attacks  and malwares. 

 
9.5.2  Social Graph Network Topological Analysis using Centralities  and PageRank 

 

Social graph  network  can be topologically  analyzed.  The centralities   (degree,  closeness,  effective  closeness  and betweenness)   and 

PageRank (vertexRank  similar to PageRank in web graph  network)  are the parameters  analyzed. 
 

Degree 
 

Degree  of a graph  vertex means the total  number  of edges linked to that.  In-degree  of a vertex means the number  of in-edges  from the 

other  vertices.  Out-degree  of a vertex means the number  of out-edges  to other  vertices  to which that  vertex  directs.  Degree distribution 

function means the distribution  function  for the degrees of vertices  (Section 6.2.5 described  the common distribution  functions). 
 

Closeness 
 

Graph  vertex closeness  Cc (v) is a way of defining  the  centrality  of a vertex  in reference  to other  vertices.  Sum is the  overall vertices 

connected  to other vertices  u. The u is a subset of vertices  in set V. 

The centrality  (closeness index), c is function  of distances  of vertices. 
 

Cc(\')=      [L d (U. v)rl. 

u e V 

where d (u, v) is distance between u and v for path traversal. 
 

Effective Closeness 
 

Effective closeness  Cec(v)can  also be analyzed.  Use approximate  average  distance  from v to all other  vertices  in place of the shortest 

paths. Cec reduces  run time for cases with a large number  of edges and near linear scalability in computations. 

Betweenness 
 

Graph  vertices betweenness   means the  number  of times a vertex  exists between  the  shortest  path  and the extent  to which a vertex  is 

located 'between'  other  pairs of vertices.  Betweenness  c8  (v) of a vertex v requires  calculating  the lengths  of shortest  paths  among all 

pairs of vertices  and computations  of the summation  for each pairing vertex  in V. 

PageRank 

PageRank  is a metric  for  the  importance   of each  vertex  in a graph,  assuming  an  edge  from  vl  to  v2 represents   endorsement   of 

importance  of v2 by vl by connecting,  following, interacting,  opting for relationship,  sharing  belief or some other  means. 

Contacts Size 
 

Contacts size means a vertex  connection  to many vertices. The size of each vertex  does not convey any meaningful  information.  A big 

social graph network  will also require  high maintenance  cost. 

Indirect Contacts



Indirect  contacts  metric  means betweenness,  which is the sum of the shortest  paths  within geodesic distances  from all other  pairing 

vertices.  Three-step  contact  metric  means  a number  of edges to other  vertices  plus the number  of edges from other  vertices  within 

geodesic distances  = < 3. 
 

Both metrics  convey  meaningful  information.   The indirect  contacts  metric  has meaning  in terms  of magnitude  of betweenness 

centrality. 
 

Structure Diversity 
 

Structure  diversity metric  means that  social graph has access to diverse sub-graphs  (knowledge). 

 
9.5.3  Social GraphNetwork Analysis using K-core and NeighbourhoodMetrics 

 

K-core is a sub-graph  in a graph  network  structure.  Graph Vertex Kth neighbourhood   is number  of 1st neighbour  vertices,  2nd neighbour 

vertices  and so on to a querying  vertex that are correlated,  linked, and have weighted  correlations  or the associations. 
 

K-nearest neighbourhood (KNN)   finds  K-similar  objects,  items,  or  entities,   which  are  nearest   neighbours   after  computing   the 

similarities.  For example, KNN is K-documents  (or books) in the large number  of text  documents  (books) that  are most similar to the 

queried  document. 
 

Collaborative filtering for frequent  itemsets  uses weighted bipartite  graph  matching. 
 

Figure 9.13 shows the  K-cores and K-neighbourhood  metrics  for a social network  graph.  The figure also shows frequent  itemsets 

obtained  from collaborative  filtering  algorithm  (Sections 6.4 and 6.8.1). 

 
 
 
 
 
 
 
 
 

: 
I     Three mres                             I 
I1                                                                          1I 

 
{al                                                                  lbl 

Figure 9.13 (a) K-cores and K-neighbourhoods  with K = 1, 2, 3 and 4 and (b) Frequent  itemsets  from collaborative  filtering 

algorithm  (weighted bipartite  graph matching) 
 

Figure  9.13(a)  shows  three   cores  of  two  triangles,   one  quadrilateral,    two  cores  of  one  pentagon   and  one  traingle)   in  K• 

neighbourhoods.   K = 1, 2, 3  and 4. Figure 9.13(b) shows frequent  itemsets  from collaborative  filtering  algorithm  (weighted  bipartite 

graph matching). 

 
9.5.4  Clusteringin Social Network Graphs 

 

One of the  methods  of detecting  communities  from social graph  analysis  is finding  clustering  and cluster  coefficients.  A clustering 

coefficient  is a metric  for the  likelihood  that  two associated  vertices  of a vertex  are  also associated  with  other  vertices.  A higher 

clustering  coefficient indicates  a greater  association  and cohesiveness. 
 

Connected  components  mean components  of the datasets  (represented   by properties  of vertices)  connected  together.  For example, 

finding student-teacher    datasets,  social network  datasets,  etc. 

 
9.5.5  SimRank 

 

Similarity  can be defined  by properties   of graph  vertices.  For example  course,  subject,  student,  scientist, Java programmer,   status, 

values, or any other  salient characteristic.   Social network  analysis of graphs  computes  SimRank. 

SimRank is the metric  for measuring  similarity  between  vertices  of the same type. The computation  starts  from a vertex possessing 

specific property  and path traversals  through  the edges search the similarities.  The vertices  having similar properties  are counted  to 

the  SimRank. The counting  continues  till counts  per unit traversals  converge  within  a prefixed  margin,  say .001.  SimRank converges 

to a value which is applicable for path traversals  within, say geodesic distance,  say up to 200. The computations  are analogous to ones 

for PageRank as in Example 9.7



9.5.6  Counting  Triangles and Graph Matches 
 

One of the methods  of detecting  communities  is counting  of triangles.  A triangle  means three  vertices  forming  a triangle  with edges 

interconnecting   them. 
 

Triangle count refers to the number  of triangles  passing through  each vertex. The count is a measure  of clustering.  A vertex  is part 

of a triangle  when it has two adjacent  vertices with an edge between  them. 

Graph  matches  are  computed   using  filtering   or  search  algorithm,   which  uses  the  properties,   labels  of vertices,  edges  or  the 

geographic  locations. 
 

Figure 9.14  shows triangles  and triangles  between  similar graph  properties  found from graph  matches.  Edge labels show the GPAs 

of students  socially connected. 

 

 
 

Figure 9.14 Clustering of five triangles  and three  matches  of graphs 

 
9.5.7 Using SparkGraph(Map-Reduce)for Network Graphs 

 

Section     8.5    describes      Spark     GraphX     algorithms      for     analyzing     graphs.      Connected     components      compute      by 

graph. connectedComponents   () . vertices     method  in  SparkGraph.  Connected  Components  Algorithm  labels  each  connected 

component   of the  graph  with  an ID.  Each connected  component   ID  is ID  of the  lowest-numbered   vertex.  For example,  in a social 

network,   connected   component   objects  can  approximate   clusters.  GraphX contains   an  implementation    of the  algorithm   in  the 

ConnectedComponentsObject.    The  clusters   are  found  by discovering   close-by  connected   components   using  closeness  centrality 

metric. 
 

SparkGraphX triangle-count   algorithm  computes  the number  of triangles  passing through  each vertex.  The count  is a measure  of 

clustering.  TriangleCount  requires  the edges to be in canonical  orientation   (srcld <  dstld).  Source vertex  ID is srcld and Destination 

vertex  ID is dstID. Graph is partitioned  using Graph.partitionBy   operator. 

 

9.5.8 DirectDiscovery  of Communities 
 

Three metrics  identify groups and communities  from a social graph: 

1.   Cliques -  A  clique  forms  by a set  of vertices  when  each  of the  vertices  directly  connects  to  every  other  individual  vertex 

through  the edges. Detecting the cliques leads to direct discovery of communities. 

2.   Structurally  cohesive blocks. 
 

3.   Social circles from connections  and neighbourhoods 
 

A bridge  enables  the  link between  two groups.  Application  of analyzing  communities,   SimRanks and bridges  are  finding  a set of 

experts,  specific areas of expertise,  and ranking  the expertise  in an organization. 
 

Experience  in social science fields shows that  the  social network  of a person  is the key indicator  of the  stature  of the person  and 

his/her  success potential.  Social graph analysis enables finding key bridges and persons  with most connections. 
 

Figure 9.15 shows a social graph with two cliques and a bridge.



 

 
 

Figure    9.15  Two cliques in a social graph network  and a bridge between  the cliques 
 

Clique 1  has set of four vertices,  each connected  with three  edges to three  others.  Clique 2  has five vertices,  each  connected  by 

edges to other  four. Two edges in the figure provide the bridge between two sub graphs,  on left and right  sides. 

 
Self-Assessment   Exercise  linked  to LO 9.4 

 

1.   How do the  metrics analyze a social network graph  of persons in an organization? How do they relate  to inter-dependency, 

performance, groups, expertises, beliefs, knowledge or prestige? 

2.   Define the terms degree, closeness, betweenness, egonet, K-neighbourhood, top-K shortest paths, PageRank, clustering, SimRank, 

connected components, K-cores,triangle count, graph matches and clustering coefficient. 

3.   How the cliques discover communities from social network analysis? 
 

4.   What are the uses of Apache Graphx Connectedcomponents   and triangles  count methods  in social graph anaysis? 
 

 

KEV  CONCEPTS 
 

anomaly detection 

authority 

bag of words 

betweenness 

centralities 

clique 

closeness 

collaborative  filtering 
 

collection wide-word frequency 

concept extraction 

content  relevance 

document  frequency 

documents  classification 

documents  clustering 

effective closeness 

ego net 
 

feature  selection 

HITS algorithm 

hub 

hyperplane



in-degrees 
 

KNN 

link analysis 

marginalization 

Naive Bayes classifier 

out-degrees 

outliers 
 

PageRank 
 

part-of-speech  tagging 

pattern  analysis 

pattern  discovery 

sequential  patterns 

SimRank 

social network 
 

social network  graph 

spam detection 

structured  text 

SVM classifier 

term  frequency 

text analytics process pipeline 

text cleanup 

text features  generation 

text mining 

text pre-processing 
 

TF-IDF 
 

Top K shortest  paths 

triangles  count 

unstructured   text 

vector  space model 

web community 

web content  analytics 

web graph 

web structure 
 

web usage mining 

 

, 
L  arning  Outcomes 

 

 
L09.1 

1.   Text mining techniques  help revealing  the patterns  and relationships   in large volumes of textual  content  that  are not directly



visible. The mining leads to new business opportunities   and improvements  in processes. 

2.   Five phases in text mining are (i) text pre-processing,  (ii) feature  generation,  (iii) feature  selection, 

(iv) text  data  mining,  and (v) analysing  the results.  Text analytics  involves  provisions  of strong  integration with the  already 

existing  database,  artificial  intelligence,  machine  learning,  and text mining techniques  such as, information  retrieval,  natural 

language processing,  classification,  clustering  and knowledge management,  respectively. 

3.   Machine learning  based text classification  methods  are (i) K nearest  neighbour  classifier, (ii) Naive Bayes method,  (iii) decision 

trees, (iv) decision rules classification,  and (v) support  vector machines. 

4.   Naive Bayes classifier  is a simple,  probabilistic  and  statistical  classifier.  The classifier  computes  the  conditional   probability 

tables. 

5.   SVMs based classifier is a discriminative  classifier formally defined by a separating  hyperplane.  SVM seeks a decision surface to 

separate   the  training data  points  into  two  classes  and  makes  decisions  based  on the  support   vectors  that  select  the  only 

effective elements  in the training  set. 
 

L09.2 

1.   Web data  mining  is a process  of discovering  patterns in large datasets  to gain knowledge.  The process  can be shown as Raw 

Data r+      Patterns  r+      Knowledge. Web data refers  to (i) web content  - text,  image, records,  (ii) web structure - hyperlinks  and 

tags, and (iii) web usage - http  logs and application  server  logs. 

2.   Steps for pre-processing   of web-data  are quite  similar to pre-processing   for text mining. The steps include  collection  of wide• 

word   frequencies   and   document   frequencies.   Machine   learning   techniques    for  web  content   analytics   are   clustering, 

classification  and association  rule mining. 

3.   Web usage  mining  discovers  and  analyses  the  patterns in click stream  and  associated  data  generation   and  collection  as a 

consequence  of user interactions  with web resources  on the World Wide Web. 

4.   A link spam creator  website ws also has a page ls. ws attempts to enhance  the PageRank of ls. 

5.   A hub is an index page that out-links  to number  of content  pages.  A content  page is topic authority.  Authority  is a page that has 

recognition  due to provisioning  useful, reliable  and significant  information.  HITS algorithm  computes  the hubs and authorities 

on a specific topic t. 

6.   Web community  is website  or collection  of the  websites  that  limits  the  view of contents,  and  that  links  the  members  (for 

example,  Linkedln). Metric for analysis  of web community  sites are web graph  parameters,   such as triangle  count,  clustering 

coefficient and K-neighbourhood. 

L09.3                                                                                                                          .. 
 

1.   Link analysis enables finding the PageRank, centralities,  hubs, and authorities.   Page ranking  method  considers  the entire  web 

in place of local neighbourhoods   of the pages. PageRank of a page refers  to relative  authority  of the parents  out-linking  to the 

page. 

2.   Web structure models  as directed-graphs   network-organization.  A page  may have  a number  of hyperlinks  directed  by out• 

edges to other  pages. Text at the hyperlink  represents the property  of vertex  that  describes  the destination   of the out-going 

edge. A hyperlink  in-between  the pages represents  the conferring  of the authority. 

3.   SparkGraph  includes  conversions  to MapReduce functions  and use HDFS compatible  files. Page rank()  and ranksByUsername() 

are static and dynamic methods  compute  on the PageRankObject 
 

L09.4,                                                                                                                         .. 
 

1.   A social network  is a social structure made of individuals  (or organizations)  called "nodes",  which are tied (connected)  by one 

or more  specific types  of interdependency,   such as friendship,  kinship,  financial  exchange,  dislike or relationships   of beliefs, 

knowledge or prestige 

2.   Social  network   topological   analysis  tools  compute   the  degree,   closeness,  betweenness,   egonet,   K-neighbourhood,   Top-K 

shortest paths,  PageRank, clustering,  SimRank, connected  components,  K-cores, triangle  count,  graph  matches  and clustering 

coefficient. Bipartite  weighted  graph matching  does collaborative  filtering. 

3.   Analysis enables summarization  and find attributes for anomaly. 
 

4.   Apache Spark Graphx  includes PageRank, ConnectedComponents   and TrianglesCount  algorithms,  and fundamental  operations



for social graph analytics. 
 

5.  Analysis of cliques discovers groups and communities.  Analysis also finds the bridge between  the cliques. 
 

I   Objective Type Questions    1 111 
Select one correct-answer option for each questions  below: 

9.1 The term  text analytics evolves from (i) provisioning  of strong  integration   with the already  existing  (ii) database,  (iii) artificial 

intelligence,  (iv) machine  learning,  and (v) text Data Store techniques  such as (vi) information  retrieval,  (vii) natural  language 

processing, 

(viii) classification,  (ix) clustering,  and (x) knowledge management,  respectively. 

(a)  all except ii and iv 

(b)  ii to ix 
 

(c)  all except ii, iii, iv and vii 

(d)  all 
 

9.2 SVMs  main uses are (i) classification  based on the outputs  taking  discrete  values in a set of possible categories,  (ii) separation 

or prediction,  if something  belongs to a particular   class or category.  Other uses are (iii) finding  a decision boundary  between 

two categories,  (iv) clustering,  (v) regression  analysis, and regression,  if continuous  real-valued  output  (continuous  values of x, 

in place discrete  n values, x2, x3, ... , xn), and (vi) discriminative  classifier. 

(a)  all except iii 
 

(b)  i, ii and iv 
 

(c)  all except iv 

(d)   i to v 
 

9.3 Applications  of (i) web content  mining, and (ii) web-structure   mining of web documents  are: (iii) Classifying the web documents 

into categories,  (iv) identifying  the topics of the web documents,  (v) creation  of tables  and databases,  (vi) finding  similar web 

pages across  different  web servers,  and  (vii) relevance  or the  applicability  of web content  measured  with  respect  to a basis, 

such as making recommendations,   filtering  or querying 

(a)  all except vii 

(b)  all except ii 

(c)  all except iv 

(d)  i tov 

9.4 The HITS  analyses a (i) subgraph  of web, which is relevant  to (ii) topic t, (iii) query  q. The assumptions  are (iv) authorities   are 

the ones, which out-link  to number  of hubs, and (v) hubs are the ones, which in-link to number  of authorities.   (vi) A bipartite 

graph  exists for the hubs and authorities.   (vii) First set of pages discovers  a root  set R using standard  search  engine, then  (viii) 

finds a sub-graph  of pages S, using a query that provides relevant  pages for t and pointed  by pages at R. 

(a)  all except iii to v 

(b)  all except iii and vi 

(c)  all except vi 

(d)  all except iv and vi 
 

9.5  Web contents  mining tasks are: (i) finding clustering,  (ii) classifying, (iii) mining association  rules, and (iii) topic identification, 

tracking  and drift  analysis for adding new documents  to a collection  library.  Other tasks are: (iv) assigning  by rechecking  for 

the  emergence  of new topics,  (v) creation  of concept  hierarchy,  building  of category  dimensions,  such  as domain,  location, 

time,  application,   privileges,  and  (vi) measuring   the  relevance  or  the  applicability  of web content   on basis  of documents, 

queries, roles or tasks or user profiling. 

(a)  all except vii and viii 

(b)  all



(c)  all except vii 

(d)  All except vi to viii 
 

9.6 The most  common  form of pattern   analysis  consists  of (i) a knowledge  query  mechanism  such as SQL,  (ii) loading  usage data 

into a data cube in order to perform  OLAP operations, 

(iii) visualization  techniques,   such  as graphing   patterns   or assigning  colors  to  different  values.  The analysis  also  finds  (iv) 

content  and  structure   information   which  can filter  out  patterns   containing  pages  of a certain  usage  type,  content  type,  or 

pages that match  a certain  hyperlink  structure. 

(a)  all except iii 

(b)  all 

(c)  all except i and ii 

(d)  i to ii 
 

9.7 PageRank method  considers  (i) the entire  web in place of a local neighbourhood   of the pages, (ii) queries top 10 pages, and (iii) 

considers  the relative  authority  of the children  pages with respect  to parent  page. PageRank method considers  assigning  weight 

(iv) as 1, and (v) according  to the rank  of the parents.  (vi) PageRank is inversely  proportional   to the weight of the parent  and 

proportional   to out-links  of the parent. 

(a)  i, iii, and v 

(b)  iandv 

(c)  all except ii and vi 

(d)  all 
 

9.8 Social network   graph   analysis  tools  do  the  (i) clustering   analysis  which  means  the  number   of  1st neighbour   nodes,  2nd 

neighbour  nodes, and so on. (K = 1, 2, 3, 4 and so on), (ii) social network  community  and network  analysis. The graph  analysis 

finds the  (iii) close-by entities,  (iv) fully mesh-like  connected  sets, (v) network  graph  analysis beside centralities,   (vi) also does 

computations  of the property of the links, (vii) rectangle  counts, and (viii) clustering  coefficient. 

(a)  i to vi 
 

(b)  all except i, vi and vii 
 

(c)  ii to iv 
 

(d)  i to iii, v, viii 

I     Review Questions      Ill 
9.1 How are the features  evaluated  in the text documents?  (LO 9.1) 

 

9.2 Explain five phases and steps in the phases during text analytics.  (LO 9.1) 

9.3 When is the  Naive Bayes conditional  probabilities   based  classifier  used? When is the  support  vectors  based  discriminative• 

classifier used? Write details of each. (LO 9.1) 
 

9.4 What are the  tasks  in web data  analytics?  Describe the  pre-processing   steps and mining  tasks  in web contents  analytics.  (LO 

9.2) 
 

9.5 How is the emergence  of new topics discovered?  How do concept hierarchy  create  and build from category  dimensions,  such as 

domain, location, time, application  and privileges?  (LO 9.2) 

9.6 How does the web usage mining  discover  and analyze  patterns   in click stream,  and generate  and and collect associated  data? 

(LO 9.2) 

9.7 Describe various link analysis metrics  used for analytics. How is PageRank iterated  and computed  using relative  authority  of in• 

linking pages? How does ranking  algorithm  compute topic-sensitive  PageRank? (LO 9.3) 
 

9.8 How does structure   of web model as graph  network?  Draw a diagram  for web graph  nodes  and edges. What are the  metrics 

computed  for a web graph?  (LO 9.3) 

9.9 Describe HITS algorithm  to iterate  and compute the hubs and authorities?   (LO 9.3)



9.10 How does social graph  analysis relate  to positivity  and negativity  analysis about  the persons?  How does social graph  network 

anomaly detection  help an organization?  (LO 9.4) 

9.11 How are  social graph  analytics  metrics,  degree,  closeness,  betweenness,   egonet,  K-neighbourhood,  Top-K shortest  paths  and 

SimRank computed  by path traversals?  (LO 9.4) 
 

9.12 What are the operators  provisioned  in Apache Spark Graphx for social network  graphs  analysis? (LO 9.4) 

 

I    Practice Exercises 

9.1 List the steps in the methods  used for grouping  the text documents  into clusters,  automating  the document  organization,  topic 

extraction.  Take the example of HTML pages or your University or Company website.  (LO 9.1) 

9.2 Explain how text analytics tasks performs  using Python library  nltk. (LO 9.1) 
 

9.3 List the steps in document  clustering  method.  How do you use the clusters  for the fast information  retrieval  or filtering?  Take 

the example of student  grade cards or Company annual  reports. 

(LO 9.1) 
 

9.4 List the steps in classifying web documents  into categories,  identifying  similar pages across different  web documents  to classify 

them  as web pages of a university  or company.  (LO 9.2) 

9.5 List the  steps  in recommendations   for top  N  relevant  documents  in a collection  or portion  of a collection.  List the  steps  in 

filtering-  show/hide  documents  based on most/least   relevancy.(LO 9.2) 

9.6 Using Example 9.7, write algorithms  for PopularityRank,  SimRank and best student  search.  (LO 9.3) 
 

9.7 Rewrite PageRank and HITS algorithms  using vectors and matrices.  (LO 9.3) 

9.8 Write the steps in performing  bipartite  weighted  graph matching  in social network  graph analysis. (LO 9.4) 
 

9.9 Describe steps to compute  the triangles, junction  trees,  shortest  paths  and top K-shortest  paths  and discover the communities 

in social network  graphs  of students.  (LO 9.4) 

 

 
 

1 http://www.nactem.ac.uk/brochure/NaCTeM_Brochure.pdf 

 
2 

https:/ /www .ibm.com/ support/knowledgecenter    / en/ SS3RA 7 _18.1.1/ta_guide  _ddita/textmining/    shared_entities/tm_intro    _tm_ defined.htn 

 
3    https:/ /blogs.aws.amazon.com/bigdata/    post/Tx22THFQ9MI86F9/ Applying-Machine-Learning-to-Text-Mining-with-Amazon• 

S3-and-RapidMiner 

 
4 https:/ /www.ling.upenn.edu/   courses/Fall_2003 /lingOOl/ penn_ treebank_pos.html 

 
5   http://papers.cumincad.org/data/works/att/2873.content.pdf              "The  Anatomy  of  a  Large-Scale  Hypertextual   Web  Search 

Engine" Sergey Brin Lawrence Page, 1998 

 
6 J. Kleinberg  (1998), Authoritative   sources  in a hyperlinked   environment,   Proceedings  of the  9th ACM-SIAM  Symposium  on 

Discrete   Algorithms.   A   longer   version   appears    in   the   Journal    of  the   ACM  46,  1999.Available  from 

http://www.cis.hut.fi/Opinnot/T-61.6020/2008/pagerank_hits.pdf 

 
 

 
Note: 

o o • Level 1 & Level 2 category 

o • • Level 3 & Level 4 category 
 

• • • Level 5 & Level 6 category

http://www.nactem.ac.uk/brochure/NaCTeM_Brochure.pdf
http://www.ling.upenn.edu/
http://papers.cumincad.org/data/works/att/2873.content.pdf
http://www.cis.hut.fi/Opinnot/T-61.6020/
http://www.cis.hut.fi/Opinnot/T-61.6020/


Chapter  10 
 
 
 

Programming Examples  in Analytics 
and Machine  Learning  using  Hadoop, 
Spark  and Python 

 

 
 
 
 
 
 

LEARNING  OBJECTIVES 
 
 

After studying  this  chapter, you will be able to: 
 

LO 10.1 Learn steps for installation  of Hadoop and Spark, and storage and processing of 

Big Data and large datasets 
 

LO 10.2  Get acquainted  with  steps  of programming  for deploying  and exploring  the 

open source Lego datasets  and its schema, processing and storage of datasets, 

counting of dataset items using MapReduce, creating HBase tables from the CSV 

format datasets and creating Dataframes from the RDDs 
 

LO 10.3  Get knowledge of programming  steps in Hive and PySpark for operations  of 

Merge and Join on Dataframes,  usages of SQL-equivalent functions for join and 

processing queries, and using the UDFs 
 

LO 10.4 Get introduced  to data visualization  using Python Plotting  (graphing) library, 

Programming for pi graph, bar charts and scatter plots 
 

LO  10.5  Learn  steps  in  the  programs   and  machine   learning   algorithms   for  the 

clustering, classification, regression analysis and predictive analytics 
 

 
Readers shall also be able to learn the following from the Practice  Exercises  given at 

the end of the chapter:



1.   Big Data analytics applications in business 
 

2.   Uses of datasets for analyzing and predicting future 
 

3.   Develop codes  to  solve  problems  in  analytics,  predict   and  visualize  using 

Sklearn, PySpark and Mahout 
 

 
 
 

RECALL FROM EARLIER CHAPTERS 
 

Previous chapters  1 to 9 described the followings: 
 

Hadoop, MapReduce, map tasks using key-value pairs, Hadoop ecosystem tools, 

Hbase, Hive, HiveQL   (DDL, DML,  Querying data, Aggregation and Join), Pig (Pig 

Latin  data  model,  commands,  relational   operations,  Eval functions  and  user 

defined functions), Apache Spark 

Spark for distributed  and faster in-memory analytics, cluster computing and APis 

in Java, Scala, Python and R 

Spark architectural  features, software stack components, their functions, steps in 

data analysis with Spark, ETL  processes using built-in  functions  and operators, 

ETL pipelines, analytics, data/information   reporting,  visualizing methods, using 

Spark  with  Python  advanced  features,  and  UDFs, vectorized  UDFs, grouped 

vectorized UDFs 

Developing and testing  Spark codes, programming  with  RDDs,  applications  of 

MLib, and Machine Learning (ML) methods for analysis of datasets 
 

Apache  Mahout  architecture,   components,   their   applications   for  clustering 

analysis, classification,  Naive  Bayes analysis,  SVMs  for analytics,  collaborative 

filtering, recommender  system, and regression analysis for predictions 

Stream computing and SparkStreaming 
 

Graph databases, graph  analytics, Apache SparkGraphX, its Architecture, 

components, and their applications for graph analytics 

Text  mining,  web  content   and  web  usage  analytics,  link  analysis  and  web 

structure  analytics 

This chapter  focuses on Hadoop/Spark/PySpark   programming  examples. Programs 

explore datasets, perform analytics and demonstrate  machine learning algorithms and 

data visualization.



10.1  ! INTRODUCTION 

 

Hadoop provides Big Data storage and computing using clusters. Hadoop manages both 

large-sized structured  and unstructured  data in different formats efficiently and 

effectively.  The  formats,  such  as  XML,   CSV,  JSON, text  files.  Hadoop  ecosystem 

provides  running  of applications  on Big Data. Hadoop deploys  MapReduce, HBase 

distributed  databases and other  application  programming  models. Hadoop ecosystem 

includes Hive and Pig. Hadoop applications  support  layer and application layer 

components include Hive, Pig Spark, Spark and Mahout. 
 

Apache®  Spark™  is an advanced  Big Data analytics  tool.  Spark is fast and general 

compute engine. Spark provides in-memory, distributed  and faster cluster computing. 

Spark supports  data stored  at HDFS,  Hadoop compatible data source, such as HBase, 

Cassandra, Ceph and Amazon 53. 
 

Spark SQL includes SQLContextand JDBC  datasource  that  can read from (and write 

to) SQL databases. Spark SQL provides DataFrames(SchemaRDDs)to allow processing of 

a large amount of structured  data. Spark SQL does the following: runs SQL-like scripts 

for query processing, using catalyst optimizer and tungsten  execution  engine, processes 

structured  data, and provides flexible APis for support for many types of data sources. 
 

SparkSQL has  built-in   functions   and  operators   for  creating   ETL   pipelines  and 

analytics.  Spark SQL  does ETL  operations  by creating  ETL  pipeline  on the  data from 

different file-formats, such as ]SON, Parquet, Hive, Cassandra and then running  ad hoc 

queries. 
 

Spark enables programming  with the RDDs, and machine learning applications with 

MLib. Apache  Mahout  and  components  have  applications  for  the  development  of 

clustering, classification, collaborative filtering and recommender  system algorithms. 
 

Spark provides  APis in Java,  Scala, Python  and  R.  Spark  architecture   has  many 

features,  and  software  stack  components  for  data  analysis. Apache Spark contains 

interactive  shell for Python  programming  known  as PySpark. PySpark embibes the 

advanced features  of Python, such as UDFs, vectorized  UDFs  and grouped  vectorized 

UDFs. Python has strong libraries for analytics, machine learning and natural language 

processing. 
 

Spark  Streaming  is a  stream-processing   platform  for  data  mining  and  real-time 

analytics.   Stream  processing   requires   samples  of  streaming   data,  and  does  the 

filtering,  counting  of distinct  elements,  analysis of frequent  itemsets,  and mining of 

association  rules. The analysis gives the  count  of the  instances  of frequent  itemsets 

present  in the  stream.  Spark streaming  facilitates  real-time  sentiment  analytics  and 

stock prices analytics.



 

 
 

INLJP 

Spark is thus  one of the most important  components  for Big Data Analytics Stack. 

This chapter  focuses  on Hadoop/Spark/PySpark   program  examples.  The programs 

explore   datasets,   perform   analytics,  visulaizes  data,   and  run   machine   learning 

algorithms using famous toy company, Lego Inc. open source datasets. 
 

Section  10.2  describes  installation  methods  for  Hadoop, Hive, Pig and  Spark  on 

Ubuntu platform. 
 

Section 10.3 describes datasets  used in the  examples in subsequent  sections of this 

chapter.   The  section  describes  deploying  and  exploring   Lego datasets,   schema, 

processing and storage, MapReduce implementation  for counting items in the dataset, 

creating  Hive data tables from CSV format  dataset  and creating  Dataframe  from the 

RDDs. 
 

Section 10.4 describes Hive and PySpark programs using functions, Merge and Join of 

Dataframes,  SQL equivalent join functions and UDFs for customized query processing. 

Section 10.5 describes programs for data visualization using pi, bar and scatter plots. 

Section  10.6  describes  machine  learning  programs  using  sklearn  for  SVM, Naive 

Bayes classifiers, linear and polynomial regression analysis and predictive analytics. 
 

Practice  exercises  at the  end of the  chapter  describe the  csv files of open  source 

datasets  of  an  automobile  company.  Datasets  for  new  car  sales  can  be  used  for 

analyzing and predicting future sales. The datasets contain monthly car sales for 2007- 

2017 by the make and the data for the most popular car models. The exercises for the 

analytics shall make a reader through  in understanding  of algorithms described in the 

Chapters  5  and  6,  and  the  usage  of  PySpark  and  Mahout.  Online  solution-guide 

associated with the book explains the methods and codes for them. 
 

 

10.2  ! INSTALLATION  STEPS  FOR HADOOP  AND  SPARK 

 

The following 

subsections 

describe the  steps 

for  installation   of 

Hadoop and Spark 

processes, and configuration of platform used for computing. 
 

 

10.2.1   Installation Steps for Hadoop,  Hive and Pig 
 

Following are the steps for Hadoop Installation  for setting up of a single-node cluster 

of Hadoop 2.9.0 on Ubuntu  16.04 Operating  System.1  Latest version  is Hadoop 3.02



which is in alpha phase. Apache community has incorporated  many changes and is still 

working on some of them. 

1.    Updates all repositories 
 

sudo apt-get update 
 

2.    InstallJava  and ssh 
 

Hadoop Java Versions 
 

Version 2.7 and later of Apache  Hadoop requires Java 7. Earlier versions  (2.6 and earlier) 

support Java 6. 
 

sudo apt-get install openjdk-7-jdk 

sudo apt-get install ssh 

3.   Download Hadoop-2.9.0.tar.gz, hive-1.2.2.tar.gz, pig-0.17.0 files. 
 

The Apache™ Hadoop® project and other Hadoop-related projects at Apache are available 

at: http://hadoop.apache.org 

4.   Create  a dedicated  user  hduser.  This creates  a directory  in  "home"  name  as 

"hduser", 
 

5.  Copy the  given hadoop-2. 9. 0. tar. gz, hive-1. 2. 2. tar. gz, pig-0 .1 7. 0 

files into the "hduser" directory 
 

6.   Extract all files in the "hduser" directory: 
 

tar -xvzf hadoop-2.9.0.tar.gz 
 

7.    Go to hadoop-2.9.0/conf/ 

Following XML files are present: 

1)  core-site.xml 
 

2)  hdfs-site.xml 
 

3)  mapred-site.xml 
 

4)  yarn-site.xml 
 

7.1 Open core-site.xml  with  text  editor.  Copy the  following lines  in  to  core• 

site.xml:

http://hadoop.apache.org/


<configuration> 

<property> o:.::name::,,fs.default.name</name:> 

o:.::value:>hdfs://localhost:8020</value> 

<:/property::,, 

...::/configuration> 

7.2   Open hdf  s- site    . xml   with text  editor. Copy the following lines in to hdfs• 

site.xml: 

o:.::configuration:::- 

<Property> 

o:.::name:::-dfs.replicationc.:/name> 

o:.::value:>l...:;/value> 

<:/property> 

...::property;::, 

.c:name:::-dfs.namenode.name.dir</name> 

<Value;::.fhome/hduaer/hadoopdata/hdfs/namenodeo:.::/value> 

</property> 

...::property;::, 

.c:name:::-dfs.datanode.data.dir</name> 

<Value:::-/home/hduger/hadoopdata/hdfg/datanode</value~ 

.c:/property::,, 

< /configuration> 

7.3   Open yarn-site.xml  with  text  editor.  Copy the  following lines  in to yarn• 

site.xml: 

o:.::configuration:::• 

<Property>
 

 
 

-c /propertY'> 

<property> 

.c:name:::-yarn.nodemanager.aux-serviceso:.::/name:::• 

<Value::>MapReduce shuffle</value:>

<name :>yarn.nodemanager  .aux-eervdce s .mapre::luce.shuffle.clas fJ< I 
name>

 
...:; /propertY> 

<Value:>org.apache.hadoop.mapred.ShuffleHandlero:.::/value::,,

</configuration:> 

7.4   Open mapred-site.xml  with text editor. Copy the following lines in to mapred• 

site.xml: 

e propert.y» 

<name:;.,,mapreduce.framework.nameo:.::/name> 

o:.::value>yarn</value::,, 

< /property> 

7.5   Open hadoop-env.sh with text editor



Copy the  following  line  where  the JAVA_HOMEpath  is given  in to  hadoop• 

env.sh 
 

or below this line "# exportJAVA_HOME=/usr/lib/*********"   : 
 

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk 
 

8.   Update $HOME/.bashrc 
 

open bashrc file with command: 
 

sudo gedit -/.bashrc 
 

copy following  lines to the End of File: 

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk 

export HADOOP_HOME=/home/hduser/hadoop-2.9.0 

export HIVE HOME=/home/hduser/hive-1.2.2 

export PIG_HOME=/home/hduser/pig-0.17.1
 

export   PATH=$PATH:   $JAVA HOME/bin: 

$HIVE HOME/bin: $PIG HOME/bin 
 

export HADOOP_MAPRED_HOME=$HADOOP_HOME 

export HADOOP_COMMON_HOME=$HADOOP_HOME 

export HADOOP HDFS HOME=$HADOOP HOME 

export YARN_HOME=$HADOOP_HOME 

export 

 

$HADOOP HOME/bin:

HADOOP COMMON LIB NATIVE DIR=$HADOOP HOME/lib/native 

export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib" 

9.   Refresh the bashrc file 
 

source -/.bashrc 
 

10. Disable the SSH 
 

ssh localhost(enter  the password) 
 

ssh-keygen -t dsa -P ''  -f     -/.ssh/id dsa 
 

cat -/.ssh/id_dsa.pub  >> -/.ssh/authorized  keys 
 

11. Formatthe namenode



hadoop namenode -format 

or 

hadoop namenode -format -force 
 

12. Start hadoop 
 

start-all.sh 
 

13. Check all services of Hadoop are running  or not using JPS (Iava Virtual Machine 

Process Status Tool) command. 
 

jps 
 

Check whether the following processes are running: 
 

7770 RunJar 
 

8704 JobTracker 
 

892 9 Jps 
 

6495 RunJar 
 

8316 NameNode 
 

8610 SecondaryNameNode 
 

8460 DataNode 
 

8866 TaskTracker 
 

The installation is successful if all the above processes are displayed on console. 
 

 

10.2.2   Installation Steps for the  Spark  on Ubuntu 
 

Section 5.4 introduced  steps  for downloading  Apache Spark, getting  started,  Spark 

shell,   developing   and   testing   Spark  codes,  programming   with   the   RDDs and 

applications to MLib. The steps for installation of Spark on Ubuntu are as follows: 
 

Step 1: InstallingJava 
 

Check whether Java is already installed. 
 

java -version 
 

Step 2: Install Scala 
 

sudo apt-get install scala 
 

Check whether  Scala installed.



scala 
 

Test scala. 
 

println("Hello  World") 
 

Quit Scala 
 

:     q 
 

Step 3: Install Spark 
 

Download a pre-built for Hadoop 2.7 version of Spark (preferably, Spark 2.0 or 

later) from 
 

https://spark.apache.org/downloads.html 
 

Save . tgz file on computer. 
 

Go to terminal and change directory to where  . tgz file saved (or just move 

the file tor  home folder}, then use 
 

tar xvf spark-2.2.l-bin-hadoop2.7.tgz 
 

Extract the Spark folder and use. 
 

cd spark-2.0.2-bin-hadoop2.7.tgz 
 

mv spark-2.0.2-bin-hadoop2.7  spark 
 

Make an entry for spark in .bashrc file 
 

Edit the  Hadoop user  profile /home/hadoop/.profile     and add the  following 

lines: 
 

export SPARK_HOME=/home/hadoop/spark 

export PATH=$SPARK HOME/bin: $PATH 

Source the changed .bashrc file by the command 

source -/.bashrc 
 

Then use 

cd bin 

and then 

./spark-shell 
 

Spark shell will pop up. Here, one can load



.scala          scripts 
 

Test the environment. 
 

print(sc.version) 
 

The output should read: 
 

2.  2.  1 
 

The sc  is SparkContext that is automatically  created for you when PySpark    starts. 

Initializing  a  PySpark   session  creates  sqlContext       as well. To exit  the  PySpark 

session: 
 

quit() 

 
10.2.3   Computing PlatformConfiguration 

 

The examples presented  in this chapter  are executed on a system with the following 

configuration: 
 

Operating System Ubuntu 16.04 LTS 64-bit 
 

Processor: Intel® Core™ i7-4790 CPU@ 3.60GHzx 8 
 

RAM: 16GB 
 

Hard Disk: 116.5GB 
 

Graphics: Geforce GT 710/PCie/SSE2 
 

 
 

10.31 DATASETS USED IN THE EXAMPLES, DATA DEPLOYMENT AND 

EXPLORATION 

Analytics  requires   data.  A  collection  of  data  is  called  a 

Dataset.   A   dataset   must   be   strongly-typed,   immutable 

collection of objects that  map to a relational  schema. A rich 

dataset is needed to provide high-quality  analytics results. A 

dataset needs to be rich, which means must offer vast 

opportunity  for exploration  and offer an immense range  of 

data patterns. 
 

Here, we have chosen datasets  from Lego database. Lego is 

a   renowned   brand   of   construction-toys.   The   different 

varieties of toys are sold in sets which build a specific object. 

 

 
Ste;ps of prog ramming  tor 

depl'o~ng1  :and 11mploir1ilfilg 

tfriteo;~n1 so~irce lego 
d\:i,t3sets,  speGif)ii ng1 time 
sch em a. ~he preesssi n.g 
and! storage   of cbtasets, 
coll!lllil1ili1111g of da.t.21~ 1ite11li'ls 

rn:img ~:apRedl!llce.cireati1111g 

IH Base  t":ati:>l'es from tihe 
CSV for,rna,t datase'l!S and 
creatilfilg  IDa,talFrames from 

tlmelRiDDs.



- 

A set contains colourful interlocking  plastic bricks and other parts. The number, sizes 

and shapes of the parts vary with sets. The parts  can be assembled and connected  in 

many ways, to construct  objects, vehicles, buildings and working robots. The parts can 

be taken apart to make other objects as well. 

The Lego database contains information  about the parts  in different  Lego sets. This 

dataset  was compiled by Rebrickable3  for kaggle.com as a public dataset  [LDB4],   with 

the objective of using these files for any purpose. 
 

This dataset contains Lego sets from year 1950to July, 2017.The dataset is arranged 

in 8 CSV files. 
 

The dataset  comprises various toy themes.  There are in all 614 themes  defined in 

themes.   csv  for various Lego toys, such as Robot, Airport, Building and Train. Almost 

11,673sets are manufactured  in year starting from 1950to July, 2017(sets.   csv).  Sets 

have different number of parts (field: num_parts     in    sets.    csv). 
 

Table 10.1shows a sample row of sets.    csv   that  represents  a Tractor  set with set 

number 378-1developed in 1972.It belongs to Theme Id 397and  has 36parts  in total: 

Table 10.1 A sample row of sets.     csv   file 

 

                 Name                                                

378-]                                                                             ]972                      397 

 

 

1:\11::F+HM 
36

 

 

The inventories  of parts  and sets are also provided in the  dataset.  Inventory  Ids of 

11,681parts and their set numbers are available in inventories.       csv.    Overall there 

are    25,993 parts    (parts.     csv)     belonging    to    57    different    part    categories 

(Part_   categories.      csv),    whereas   inventory   of  parts   contains   5,80,251 parts 

(inventory_parts.        csv).   Inventory  of parts  also stores  the  colour information  of 

the part (field: color_    id  in inventory    _parts.      csv).  Similarly, the inventory of sets 

contains 2,846sets (inventory_    sets.     csv). 
 

The colours are defined in colors.      csv    where the RGB values of 133colors  and two 

values for unknown  color    and No  color    are specified. The colors are also featured 

as  transparent    and  non-transparent    using  Boolean  value  is_trans.       Sample  of 

colors.      csv    is presented  in Table 10.2. 
 

Table 10.2 Sample of colors.       csv   file



 
 
 
__             J 

~~~~ 


 i:s-_t..rans

-l Ulfllmown 00 3B2 :f

4 Red C91A09' :f

36 Ttrn.11S-:Red C9M09

f stands foe false and t for true.

Figure 10.1 shows the dataset schema of the Lego database that helps in figuring out

how the files are related.

nalilile

cokir$.CIV•

id

Mme

:::I:

I
I

IL I

p.art:$.CSV

part,..;num
name

part=ai Jd

imtentary_id

I
I
I
I
I
I

..J..

I
I
I
I
---------- I

I
I

tl\elil!les.csv

d

p fl nt_ d

::E
I
I
I
I

mgb

fs :l!rans

*I

i li1 velllto rr i es..£5\1'

-·~_v d

±
"

I

'
s.et_nu:m

MmeI
I
I
I._ .·

I

Figure10.1 Schema of Lego Database [LOB]

year

heme_i

num parts.

10.3.1 Countingand Sorting of Items in Datasets using

MapReduce

Objective of ProgramMapReduce program presented in the section counts sets of

toys in the given dataset on the basis of year of introduction and sorts them from the

highest count to the lowest.

Mapper loads the input csv file (sets. csv), prepares dataframe with two columns

(year and number of parts) and passes the prepared dataframe to the reducer.

Reducer loads the dataframe obtained from the Mapper, performs an aggregate

function, count, to count the year wise sets, and sorts the sets in descending order of

count.

Mapper and Reducer programs use the dataframe to store the data extracted from

files. Section 5.3.1 describes the concept of Dataframe and Section 10.3.3 describes the

method of creating DataFrame From CSV file and the ROD.

Inputfile(s): sets. csv

Code of Mapper

#file: mapper.py

import pandas as pd #import pandas python package

#Define mapper Function

def mapper() :

#Extract records of CSV file into Dataframe dfl

dfl = pd.read_csv('/home/ ... /sets.csv')

#Prepare dataframe with two columns(year and number of

parts)only

df2 = dfl [["year", "num_parts"]] . copy ()

Now print out the data that will be passed to the

reducer

print(df2.to string(index=False))

#Execute mapper function

mapper ()

Run the Mapper Code using command on the prompt

$: python mapper.py

Output of Mapper (Note: Shown only 10 records,Total there are 11,673 records):

year num_parts

1970 471

1978 12

1987 2

1979 12

1979 12

1979 12

1979 18

1978 15

1976 147

1976 149

Note: The output of mapper.py transfers to reducer.pyin MapReduce.

Code of Reducer

#file: reducer.py

import pandas as pd#import pandas python package

import sys #import System-specific parameters

#and function module

import re

def reducer():

#import regular expressions module

#for splitting the console input data

#obtain the list of lines from stdin

data= sys.stdin.read() .splitlines()

#split each line into 2 items: 'year' and 'num_parts'

data= [re.split(r'\s+(?=\d+$)', 1) for 1 in data]

#construct the dataframe

df = pd.DataFrame(data, columns=['year' ,'num_parts'J)

#Count the rows Group by year and arrange them in

ascending order

sd=df.groupby('year')

['year'] .count() .sort values(ascending=False)

print(sd) #Display desired output

#Execute reducer function

reducer ()

Note: Regular expressions \s matches Unicode whitespace characters and \ d matches

any Unicode decimal digit. ? = ••• is lookahead assertion. The pattern character

'$' matches at the end of the string.

Run the Reducer Code using command on the prompt

$: python mapper.py I python reducer.py

The above command executes the mapper.py file and the output of mapper.py is

provided to reducer.py

(Note: The symbol "I" denotes a pipe. The Pipe is a command in Linux that allows to

use two or more commands such that output of one command serves as input to the

next.)

Output of Reducer (Counts sets on the basis of year of introduction and sorts them

from the highest count to the lowest):

year

2014 713

2015 665

2012 615

2016 596

2013 593

2011 503

2002 447

2010 444

2003 415

2009 402

2004 371

2008 349

2001 339

2005 330

10.3.2 Storing CSV Dataset into Hive Database

Create a Table in Hive

hive> create table sets(set_num string, name string,

year int, theme id int, num_parts int, category string)

row format delimited fields terminated by',';

Output of Create Table Query

OK

Time taken: 0.107 seconds

Load the Data

hive> Load data local inpath

overwrite into table sets;

'/home/... /sets.csv'

Output of Load Data Query

Loading data to table default.sets

Table default.sets stats: [numf'iles =1, numRows =O, totalSize = 507514, rawDataSize =

o]

OK

Time taken: 1.124 seconds

Initial step in this exploration process is to read in the data and print a quick

summary statistics.

10.3.3 Storing CSV Dataset into the SparkDataframe

A Spark Dataframe is a two-dimensional data structure with rows and columns. It is

similar to a matrix of data rows or a table in relational database or an Excel sheet with

column headers. Columns may contain data of different types.

A sample of one of the data file is as follows:

aet; _ nmn.,. name ye~:r.,. theme _ id,,, n-um _ pa1:ts

O 0·-1 We etabi.x Ca£Jt ie, 1970,. 414, 411

0011-2 Town Mini-Figure~,. 19'10.. B4,r 12

0011-3, Ca tle 2 .fOJ!'.' 1 Bonus Offer, 1997, 199, 2

The file format is csv (comma separated values). Each row of the data is a different

record of set (toy set), and different data fields within each row are separated by

commas. The first row is the header row and illustrates each data field. Remaining

rows contains the data values for data fields correspondingly. The entire set of one

data field (say set_num) of all the rows, is a column. The dataset can be visualized in

matrix format as:

set

- num name year theme
- id num_ pa:rts

00-1 WeetabLx CaEitle 19'70 414 471

0011.-2 ''!'own Mini-Figu.re~. 19'7a 9.4 12

0011-3 Castle 2 for 1 Bonus. Offer 1987 19-9 2

Reading the data Reading the data requires creation of a dataframe first. This can be

done in multiple ways:

Using different data formats. For example, loading the data fromJSON, CSV.

Loading data from Existing RDD (Resilient Distributed Dataset).

Programmatically specifying schema

Create a DataFrame from CSV file Pandas is a high level data processing and analysis

library of Python, which provides easy-to-use data structures. Pandas is built on

functionality provided by the Numpy package and its key data structure is the

DataFrame.

Import pandas for data processing functions with import pandas as pd. The data

from a CSV file is used to create DataFrame, using the read_csv method.

Following code creates a dataframe, toy sets, from csv file, sets. csv and print

the column name of dataframe:

Import the pandas library.

import pandas as pd

Read in the data.

toy_sets = pd.read_csv("sets.csv")

Print the names of the columns in toy_sets.

print(toy_sets.columns)

Output The code above reads the data in, and shows all the column names:

Index(['set_num', 'name',

'num_parts'], dtype ='object')

'year', 'theme id',

The shape of the data displays the number of rows and columns in the data file.

print(toy_sets.shape)

Output The toy_sets has 11673 rows, or sets, and 5 columns or data points describing

each set:

(11673, 5)

10.3.4 CreatingDataFramefrom the ROD

First create a SparkContext to connect with Apache Cluster. when operations are

required to be executed in a cluster SparkContext is needed. SparkContext

specifies to Spark how and where to access a cluster. The SparkContext already

exists when Spark shell is used. otherwise, it can be created by importing, initializing

and providing the configuration settings:

from pyspark import SparkContext

sc = SparkContext()

Two ways to prepare a DataFrame from ROD are as follows:

1. Wrap the elements that belong to the same row in Dataframe by a parenthesis at

the time of creation of ROD by parallelize function. Name the columns

by toDF function where all the columns' names are wrapped by a square

bracket.

rdd = sc.parallelize ([(10, 20, 30), (11, 21, 31), (12, 22,

3 2) J)

dataFrame = rdd.toDF(["p","q","r"J)

2. Use pyspark. sql and assign a name to each element in every row. Now convert

the ROD into a dataframe by toDF function in which there are no other names.

from pyspark.sql import Row

rdd = sc.parallelize([Row(p=lO, q=20, r=30), Row(p=ll,

q=21, r=31),

Row(p=12, q=22, r=32)])

df = rdd. toDF ()

10.4 ! PROGRAMMING STEPS USING HIVE AND PYSPARK

The following subsections describe Merge and Join functions for DataFrame objects,

analysis using UDFs for query-processing in Hive and Pyspark.

10.4.1 Merge andJoin Functionsfor Dataframe

Objects

Pandas provides a merge function as the entry point for all

standard database join operations between DataFrame

objects.

Syntax of merge function:

pd.merge(left, right, how='inner',

on=None, left on =None, right on None,

False, right index= False, sort= True)

Following are the meanings of the terms used:

1. left- First Dataframe object.

2. right - Second Dataframe object.

Steps foll' Pirogira m ming
st:~ps in Hive and 1Py5park.
rforthe operatioli'ls of ~rgei
a nd J oin Oli'I Data Firames,

usages ofSQL-eqllllivalent
rfunctiofils forjoin and

1processiliiJQ1 the queries. a nd

usiFiilQI the 11.JDFs

left index

3. how - Similar to SQL join types ('left', 'right', 'outer' and 'inner'). inner is default

value. (Table 10.3).

4. on - Columns (names) to join on. The column name should be present in both the

left and right DataFrame objects. If value of on is None, the intersection of the

columns in both DataFrames are selected to join by default.

5. left_on - Columns from the left Dataframe to use as keys.

6. right_on - Columns from the right Dataframe to use as keys.

7. left_ index - Join keys from left Dataframe is set as the index, when set as true. In

case of a Dataframe with a multilndex (hierarchical), the number of levels must

match the number of join keys from the right DataFrame.

8. right_index - Similar to left_index for the right Dataframe.

9. sort - Sort the result DataFrame by the join keys in lexicographical order. True is

default value.

Table 10.3 Merge types and their SQL equivalent names

:t..·ler e tloos • t .

[left

ight

lEfT OUTER JO]N

JtlOH'J OUt'ER mm

Use keys from left object

Use .keys fro.m 1r~1t ob_iect

outer FULL OUTER JOIN Use union of :keys

dil:lleli JNNERJOilf Use !in.1te_rsecti:on of .keys

The Join operations on DataFrames are also available in Pandas. The operations are

like SQLJOIN in RDBMS. They are high performance in-memory join with full features.

This implies Join columns with other DataFrame either on index or on a key column.

Syntax of join function

Dataframe.join(other, on= None, how='left', lsuffix ' '
rsuffix = '', sort= False)

Following are the meanings of the terms used:

1. Dataframe: First Dataframe object.

2. other- Second Dataframe object

3. on - Columns (column name, tuple/list of column names, or array-like) to join

on. The column name should be present in both the left and right DataFrame

objects.

4. how - Similar to SQLjoin types. Values are 'left', 'right', 'outer', 'inner'. left is the

default value (Table 10.3).

5. lsuffix - Suffix to use from left frame's overlapping columns. Its data type is

string.

6. rsuffix - Suffix to use from right frame's overlapping columns. Its data type is

string.

7. sort - Order result DataFrame lexicographically by the join key. If false, preserves

the index order of the calling (left) DataFrame. False is the default value.

10.4.2 Analysis and Query-Processing Using UDFs in Hive and

Pyspark

UDF is a customized function for which user specifies the code, input datasets and

output datasets. A UDF helps in query processing for total inventories for user defined

input itemsets and user defined outputs. Examples of inputs and outputs in the UDF

are as follows:

1. Input Datasets (Color), (Year), (Color and Year), (Theme and Color), (Theme,

Color and Year)

2. Output Datasets (Inventory), (Color), (Theme)

Python scripts for Customized UDF in Hive Hive provides for writing codes for the

UDFs, similar to other programming languages. A UDF enables the code to introduce

any new functions to the cluster for computations, as needed. Hive has limited built-in

Hive functions (Section 4.4.7). Each dataset specifies a schema and has several features.

The analytics require additional 'user defined functions' (UDFs) over and above built•

in functions.

UDF are implemented for actions, such as transformations and even for

aggregations. User-Defined Aggregation Functions (UDAFs) transform a group of rows

into one or more rows, meaning that one can reduce the number of input rows to a

single output row by some customized aggregation function. An example of coding in

HiveQL, that feeds the data to the Python script is given below. The code uses standard

input and reads the result from its standard out.

Custom UDF in Python Objective: Return the toys category in text format, whether

new or intermediate or old on the basis of year.

NumPy is the fundamental package for scientific computing with Python. Following

code uses Python library numpy:

#myUdf.py

import sys

import numpy as np

import datetime

#Define udf (User defined function)

#Function returns category in text format on the basis of year

def year_to rank(year):

if year>= 2015: return 'New'

elif year>= 2010: return 'Intermediate'

elif year>= 1970: return 'Old'

else: return 'Not known'

#input

for line in sys.stdin:

line =line.strip()

set_num,name,year,theme id,num_parts,category=line.split('\t')

name=name.lower()

category=year_to_rank("year")

print('\t' .join([str(set_num),str(name),

year,theme_id,num_parts,str(category)]))

The above code is saved in a file named myUdf.py

set_num name NULL NULL NULL New

00-1 weetabix castle 1970 414 471 Old

0011-2 town mini-figures 1978 84 12 Old

castle 2 for 1
0011-3 1987 199 2 Old

 bonus offer

0012-1 space mini-figures 1979 143 12 Old

0013-1 space mini-figures 1979 143 12 Old

0014-1 space mini-figures 1979 143 12 Old

0015-1 space mini-figures 1979 143 18 Old

Add Python script into Hive

It is essential to add the Python file as resource to the Hive cluster. The following

command add file myUdf.py to the Hive cluster:

hive> add file /home/ ... /Lego/myUdf. py;

Outputof add file command

Added resources: [/home/ .. ./Lego/myUdf .py]

Run a PythonUDF in Hive

hive;i. select transformtBet: _ num.,name yea:r,,them.e _ id m.J1m. _ parts category]
using python myUdf .py" as set num,narme,year,theme id,nmn parts category
from. sets limit 10·

Outputof transformQuery

Query ID= hduser1_20180301115757 _fa8bd58a-6e70-43ff-b8c3-f24fld7e444c

Total jobs= 1

Launching Job 1 out of 1

Number of reduce tasks is set to O since there's no reduce operator

Job running in-process (local Hadoop)

2018-03-0111:57:59,164 Stage-1 map= 100%, reduce= 0%

Ended job = job_local1723749830_0002

MapReduce Jobs Launched:

Stage-Stage-1: HDFS Read: 642682 HDFS Write: 507514 SUCCESS

Total MapReduce CPU Time Spent: O msec

OK

0016-1 castle mini figures 1978

weetabix

186 15 Old

00-2 promotional

house 1

1976 413 147 Old

Time taken: 1.256 seconds, Fetched: 10 row(s)

10.51 DATA VISUALIZATION USING PYTHON PLOTTING LIBRARY

Matplotlib is Python plotting library. Matplotlib is used

to generate the output for the visualization. It could be

interesting to plot a chart. The library imports using:

import pandas for data processing functions, and

import Matplotlib for visualizing the output.

Da1t.31 v~su:a'li~~,o~ 1.11s'in[II

Pytnon Pt:ottting (graJJhingQ
llfbr.ny :md IProgr::1fflfllli111g
ro:r pm ::ma mr d1~rtsand
scartteir p'lots

Plotting functions in Matplotlib

matplotlib.pyplot as plt statement.

facilitates drawing and showing the plots.

Pie Chart Plot Example

are included using import

The functions in pyplot package

Objective Let's plot a pie chart of color transparency that can visualize the

distribution of non-transparent and transparent colors.

Input file(s): colors.csv

Following is the code of plotting a pie chart:

import pandas as pd #Import pandas for processing the CSV

file I/0

import matplotlib.pyplot as plt #Import matplotlib

plotting library

#Read CSV file and Extract data into dataframe df

df = pd.read_csv('/home/ ... /colors.csv')

Apply aggregation function count and store the result

in a new

dataframe sd

sd = df. groupby ('is trans') ['is trans' J • count

y sd.values # Extract count values in array a

Define an array, expl, which specifies the fraction of

the

radius with which to offset each wedge.

expl =(0.1, 0)

labels= 'Non-Transparent',

'Transparent'

colors = ['while', 'grey']

Define Data Labels

Define wedge colors

Plot the pie chart

plt.pie(y, labels=labels, explode=expl, colors=colors,

autopct='%1.lf%%', shadow=True, startangle=90)

plt.axis('equal')

plt. show ()

The parameters of pie function are as follows:

1. x: Array of the wedge sizes.

2. explode: Array that specifies the fraction of the radius with which to offset each

wedge.

3. labels: An optional list parameter with default value None. It is a sequence of

strings providing the labels for each wedge.

4. colors: An optional array parameter with default value None. It is a sequence of

matplotlib color arguments through which the pie chart will cycle. If None, will

use the colors in the currently active cycle.

5. autopct: An optional parameter with default value None. It is a string or function

that is a label of wedges with their numeric value. The label will be placed inside

the wedge.

/

6. shadow: An optional Boolean parameter with default value False. It draws a

shadow beneath the pie.

7. startanqle: An optional float parameter with default value = None. If startangle

not None, then rotates the start of the pie chart by an angle mentioned in

degrees. The rotation is counterclockwise from the x-axis.

8. radius: An optional float parameter with default value None. It defines the radius

of the pie. If radius is None it will be set to 1.

Figure 10.2 shows a pie chart output.

Tnl sp r nt

Figure 10.2 Pie chart depicting the color transparency

Example ofBar Chart Plot

Bar chart is another visualization tool. The chart presents the data of different groups

that are being compared with each other. The plotting of bar chart requires data at x•

and y-axes.

Objective Let's plot bar chart for number of parts in each category of toys.

Aggregationfunction count is used on part_ cat_ id field. The part_ cat_ id field

is arranged in descending order before performing the aggregation.

Code for the bar chart is as follows:

import pandas as pd

import matplotlib.pyplot as plt

#Import pandas data

processing,

#CSV file I/0 functions

#Import matplotlib plotting

library

#Read CSV file and Extract data into dataframe df

df = pd.read_csv('/home/ ... /parts.csv')

Apply aggregation function count then sort function on

df

and store the result in a new dataframe sd

sd = df.groupby('part_cat_id')

['part_cat_id'J .count() .sort_values(ascending=False)

y= sd.values # Extract count values

x =sd.index # Extract index

Display the bar chart

plt.title('Bar Chart') #Define Title of the chart

plt.xlabel('Part Category Id') #Define Label of X-axis

plt.ylabel('Category Count')#Define Label of Y-axis

plt.bar(x, y,color = 'gray')# Plot the bar chart for x

and y

plt.show()# Display the bar chart

Inputfile(s) parts.csv

Figure 10.3 shows the bar chart depicting category-wise counts for parts.

i

9000.

gooo

70011

E 6000

6
u '. 000
~

400(}

u

e rC1 rt

3001)

20011

1000

0

0 60

Figure 10.3 Bar chart depicting category-wise parts counts

The result in Figure 10.3 suggests that Category 13 has the highest number of parts

(8,556), while Category 56 has the lowest number of parts (8).

Scatter FunctionSyntax

Scatter charts or scatter plots are used to plot data points on the horizontal and

vertical axes. Scatter functions are used to draw scatter plot. Before an example of

scatter plot, let us understand the various parameters of scatter function.

Syntax of scatter function is (x, y, marker = "x", s = 150, linewidths =

5, zorder = 10)

Following are the meanings of the terms used above:

1. x, y: Label or position, optional - Coordinates for each point.

2. s: Scalar or array _like, optional - Size of each point.

3. color: Label or position, optional, default: 'b' - Color of each point.

4. marker: MarkerStyle, optional, default: 'o' - Marker Symbol

5. alpha: Scalar, optional, default: None - The alpha blending value, between O

(transparent) and 1 (opaque).

6. linewidths: Scalar or array _like, optional, default: None - The linewidth of the

marker edges.

7. Zorder: Top-to-bottom order of the layers; Used when objects are overlapping in

two-dimensional view

Table 10.4 shows eight common markers in plots.

Table 10.4 Eight common Markers

Marker Symbol Marker Symbol

".,, point "v" triangle_ down

""
'

pixel """ triangle_up

"+" plus ".
<
,, triangle _left

"x" cross "> .,, triangle _right

Now, let us consider two examples of scatter plots.

Example 1 of Scatter Plot

Objective Display a scatter plot on sets data of Lego database. This scatter plot displays

the theme Id and number of parts defining the number of parts as datapoints in

each theme.

Inputfile(s) sets. csv

#Import matplotlib plotting library

import matplotlib.pyplot as plt

Import pandas for processing the CSV file I/0

import pandas as pd

#Read CSV file and Extract data into dataframe df

df = pd. read_ csv ('/home/ ... I sets. csv')
Extract features from df and store them in arrays x and

y

respectively.

x = df['theme id'] .values #Extract theme id values in

array x

y = df['num_parts'J .values #Extract num_parts values in

array y

Create Scatter plot of data points(x,y)

plt.scatter(x, y, color='gray', s=lO) #sis size of

scatter plot point

plt.xlabel('Theme Id')#Define Label of X-axis

plt.ylabel('Number of Parts') #Define Label of Y-axis

#plot the x & y axis# Define the min & max value of x

axis and y axis

as(x_min, x_max, y_min, y_max)

x min= 0

I

i
..

z ..

I •

x max 40

y_min -1

y_max 50

plt.axis([x_min, x max, y_min, y_max])

plt.title('Scatter Plot') #Define title of the scatter

plot

plt.show() #Display the scatter plot

Figure 10.4 shows a scatter plot which represents relationships between themes

(represented by themeld) and number of parts.

50

• •

40
•

•

I'

.. • ,. I • ..

r
• I t •

Ill 30
 • • •..

CL
IIJ • Ii

Q •
It •

E 20
"

::,.

' I

10 Ii
I

• • •. "
 =

I
·

1!11

I

0 • •
() s 10 rs zo ,s le 15 0

Theme Id

Figure 10.4 Scatter Plot which represents relationships between themes and

number of parts

Example 2 ofScatter Plot

This example is for displaying a scatter plot for some random datapoints. numpy

library is required for creating random number. randint () function present in this

library returns random integers from the "discrete uniform" distribution in the "half•

open" interval (low, high). If high is None (the default), then results are from (0, low).

Size parameter of ran dint function defines the number of integers to be generated.

Objective Display a scatter plot on say, 50 random datapoints generated between

(1,1) and (10,10).

Following is the code:

• •

I.

#Import matplotlib plotting library

import matplotlib.pyplot as plt

#Import NumPy for random number generation function

import numpy as np

#Generate 50 Random numbers(x, y) between (1,1) to

(10,10)

x = np.random.randint(low=l, high=lO, size=50)

y = np.random.randint(low=l, high=lO, size=50)

#Create Scatter plot of data points (x,y)

plt.scatter(x, y,color='black' ,s=lO) #sis size of point

plt.xlabel('X

plt.ylabel('Y

axis')

axis')

plt.axis([-1,11,-1,11])

plt.title('Scatter Plot')

plt. show ()

Figure 10.5 shows a scatter Plot which depict randomly generated (x, y) data points.

Output may vary if you execute the program again and again.

Scatter at

I -

• • • • • •

....

Ill: - • • • •

6 - • .. • • •
1 • • • • •

4 - •
>-

I. I. • •

2: - I. • • ..
• Ii •

I) -

0 2 4 6 8 10

xaxis

Figure 10.5 Scatter plot depicting randomly generated (x, y) data points

10.6 ! MACHINE-LEARNING ALGORITHMS IMPLEMENTATION

achlne- 'eaming programs

Uis ng IPySpa;rk for the
c U smr5 dentffiicat o11,. rgl/

and Naive !Bayes Dassflffiers
and ii near, and linear and
po1)11Tlo:m1al regress on
;;maJ ys_ls for emrb1ingi

pred dt'011iS i

Machine learning (ML) is a domain which focuses on the

development of algorithms to exploit the data and learn l

from the data to make predictions. This has an immense i

range of applications, from effective web search to stock

price prediction.

l r 1i ii

I

i'

Python libraries Seiki t-learn and Pandas are used to
l

implement the ML algorithms. The library contains

implementations of most common algorithms, including k-means, random forests,

SVMs, and logistic regression. Scikit-learn has a consistent API for accessing these

algorithms.

The following subsections provide insight into machine learning algorithms for

clustering, classification and regression in Python.

10.6.1 ClusteringAlgorithm

Let us discuss a way to figure out more features about the datasets of Lego database.

Clustering finds patterns within the data easily by grouping similar rows together.

Brief description of the K-means algorithm code is as follows:

1. Perform basic imports first. Import NumPy which is a scientific computing

module (used here for returning a matrix from an array of year and color_id

values, then matplotlib for graphing, and then K-means from sklearn).

2. Next, read the input csv files into individual dataframes and merge or join (use

inner join) those to get a final dataframe with multiple attributes.

3. Initialize k-means with the required parameters to the K-means algorithm-(i)

number of clusters (n_clusters) as 2. Change the n_clusters value to get output

for n (say, 3 or 4) numbers of clusters. (ii) Another parameter is random_state

which is an integer or None, used for initializing the internal random number

generator, which decides initialization (of centroids). Remember, K-means is

stochastic method (the results may vary even for the same input values). Hence,

in order to make the results reproducible, one can specify a value for

the random_state parameter.

4. Next, use fit () function to fit the data (learning)

5. Next, take the values found for the centroids, based on the fitment, as well as the

labels for each centroid.

6. The "labels" here are labels that the machine assigns on its own. Similarly, the

centroids also.

7. Finally, plot and visualize the machine's findings based on the data, and the

fitment according to the number of clusters defined in the code.

8. x and y axes take the min_x, max_x, min_y and, max_y values. Here, theme Id is

plotted on x-axis that has values O (minimum) to 614 (maximum). Color Id has

values between 1 to 9999.

Restrict unknown (Color Id=-1), No Color (Color Id=9999)and New colors (Color Id

from 1000 to 1007) for clearer visualization. User can implement the program for

all colours to see the difference.

9. colors= ["g.","r.","c.","y."] statement defines green, red, cyan and yellow colors

for cluster no. 1, 2, 3 and 4, respectively.

Objective of the Program The cluster example prepares 2, 3 and 4 clusters of features

theme_id and color_id. The program plots the resultant clusters using scatter plot. The

clusters are represented in various colors with centroid drawn with X marker within

each cluster. The values of centroids are also displayed.

Input file(s): sets.csv, inventories.csv, inventory _parts.csv and colors.csv

Following example implements K-means clustering algorithm and give full code:

#import the numpy, pandas, matplotlib and sklearn libraries

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

from sklearn.cluster import KMeans #KMeans Clustering

Algorithm

#Read csv files and extract data in dataframes dfl, df2,

df3 and df4

dfl pd. read_ csv ('/home/.. ./ sets. csv')

df2 pd. read_csv ('/home/ ... /inventories. csv')

df3 pd. read_ csv ('/home/. ../ inventory _parts. csv')

df4 pd. read_csv ('/home/ ... /colors. csv')

#Restrict(unknown, No Color and New colors here for better

visualization.

df4 = df4[((df4['id'] <1000) & (df4['id'] >= 0))]

#Join/Merge all the dataframes into a new dataframe say,

dfl ##

dfl = pd.merge(dfl, df2, left on="set_num", right_on

"set_num")

dfl = pd.merge(dfl, df3, left on="id", right on

"inventory_id")

dfl = pd.merge(dfl, df4, left on="color id", right on

"id")

#Extract the theme id and color id features from merged

dataframe dfl

#and Store in dataframe df

df = pd.DataFrame(dfl, columns= ['theme id', 'color_id'J)

#Store feature data from df in the 'fl' and 'f2' arrays.

fl df['theme id'] .values #Extract theme id column values

f2 df['color_id'J .values #Extract color id column values

X=np.column_stack((fl, f2))

#Obtain minimum & maximum of X and y values for drawing

axes

min x= fl.min()

max x= fl .max ()

min_y= f2. min()

max_y= f2 .max ()

#combine them into a feature matrix 'X' before entering it

into the algorithm

#Execute KMeans algorithm

K=2 #Define number of clusters 2,3,4 here

kmeans = KMeans(n clusters=K,random_state=l)

#fit the data

kmeans.fit(X)

#Obtain the values found for the Centroids & labels for

each centroid

labels= kmeans.labels

centroids= kmeans.cluster centers

#Display the centroids and labels values before plotting

them

print("Centroids for", K, "clusters are : ")

print(centroids)

print("Labels are : ")

print(labels)

#Define colours of the clusters. plot each cluster with a

#different colour. For example, 1 with green, 2 with red, 3

with Cyan,

#4 with yellow

clusters

Add more colours for drawing more than 4

colors ["g.","r.","c.","y."]

plot the scatter graph for clusters

for i in range(len(X)):

plt. plot (X [i J [0 J , X [i J [1 J , colors [labels [i J J ,

markersize=lO)

plt.scatter(fl, f2, colors="k")

plt.scatter(centroids[:, OJ, centroids[:, 1], marker="x",

s=150, linewidths=5, zorder=lO)

plt.axis([min_x, max_x, min_y, max_y])

plt.xlabel('Theme Id')

plt.ylabel('Color Id')

plt. show()

Output of the K-means algorithm Figure 10.6 shows K-means Output for 2, 3 and 4

clusters.

10.6.2 Classification Algorithm Example 1: SVMClassifier

SVM can be implemented with the help of scikit-learn library. Following is a simple

demonstration which helps in building understanding of working with Linear Support

Vector Classifier (SVC). The objective of a Linear SVC is to fit to the data provided and

returning a "best fit" hyperplane that divides or categorizes the data.

Brief description of the SVM classifier algorithm code:

1. Perform basic imports first. Import NumPy is a scientific computing module

(used here for returning a matrix from an array of year and theme_id features,

then matplotlib for graphing, and then SVC from sklearn.

2. Next, Load the data from csv files into individual dataframes and join (use inner

join) them to get a final dataframe of multiple attributes.

3. A function specifies Build_ Data_ Set using two parameters year and

theme id.

4. Next, fill the X parameter with the NumPy array containing rows of the above

mentioned two features using np. array function. Then populate they variable

with the "targets" (or labels) converted to numerical data. Here, Boolean f is

converted to O and t is converted to 1. The targets are basically binary or

multivalued in a classification model.

5. The SVM calls the Build_ Data_ Set function, builds the linear SVC. Specify the

kernel type to be used in the algorithm. Kernel type must be one of 'linear',

'poly', 'rbf (Default), 'sigmoid', 'precomputed' or a callable.

6. Next, use fit I) function to fit the predictor and target variables.

7. Calculate the feature weights and plot the scatter graph as well as classifier.

8. After being fitted, the model can also be used to predict new values using

clfr. predict (X) . For example, clfr. predict ([2 020]) to predict values in

year 2020.

Objective of the Program The SVM classifier example which classifies the input

dataset on the basis of transparency of the colors. Features selected are year and

theme_id. The program plots the resultant classes using the scatter plot. The classes

are represented using different colors. The dataset size is restricted for demonstration

purpose only. User can execute the entire code on complete dataset. Here in the

following example, we also restricted unknown (Color Id=-1), No Color (Color Id=9999)

and New colors (Color Id from 1000 to 1007) for clearer visualization. User can

implement the program for all colors to see the difference.

Inputfile(s) sets.csv, inventories.csv, inventory _parts.csv and colors.csv

Following is the complete code of SVM Classifier :

#import the numpy, pandas, matplotlib and sklearn libraries

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

from sklearn.svm import SVC #Support Vector Classifier

#Read csv file and extract data in dataframes dfl, df2, df3

and df4

dfl pd. read_csv ("/home/.. ./sets. csv")

df2 pd. read_csv ("/home/... /inventories. csv")

df3 pd. read_ csv ("/home/.. ./ inventory _parts. csv")

df4 pd. read_csv ("/home/.. ./colors.csv")

#Join/Merge all the dataframes into a new dataframe say,

df##

dfl pd.merge(dfl, df2, left on="set_num", right on

"set num")

dfl pd.merge(dfl, df3, left_on="id", right on

"inventory_id")

dfl pd.merge(dfl, df4, left on="color id", right on

"id")

dfl pd.DataFrame(dfl,

'color_id' ,'is_trans'])

columns= ['year' ,'theme id',

#Define a function to build data set with two features

#The function returns the X(predictor) and Y(target)

def Build
-

Data
-

Set(features

["year","theme id"]):

df = dfl

#Color Id=O, 9999 and 1000 to 1007 are ignored

#for better visualization

df = df[((df['id'J <1000) & (df['id'J >= O))J

X = np.array(df[features] .values)

y

(df["is trans"] .replace("f",O) .replace("t",1) .values.tolist())

return X,y

#SVM Analysis Code begins from here

x, y

clfr

Build
-
Data

-
Set()

SVC(kernel="linear", C= 1.0)

clfr.fit(X,y)

#Calculate the feature weights

w = clfr.coef [OJ

m -w [OJ I w[lJ

xx np. linspace (min (X [:, 0 J) , max (X [:, 0 J))

yy m * xx - clfr.intercept [OJ I w[lJ

#Plot the classifier

hO = plt.plot(xx,yy, "k-", label="SVM Classifier")

#plot the scatter graph for classification

plt.scatter(X[:, OJ, X[:, lJ,c=y)

plt.axis([1950,2017,0,614J)

plt.xlabel("Year")

plt.ylabel("Themes")

plt. legend ()

plt. show()

Output of SVM classifier Figure 10.7 shows SVM outputs for two different data

subsets

Salient Observations from SVM Outputs SVM does not directly provide probability

estimates. The outputs illustrated in Figures 10.7(a) and (b) are not significant. When

tried with the complete dataset (which has more than 5 lakh 70 thousand rows), the

output is not revealing any significant interpretation. Taking the time in order of 1-2

hours for classifying complete dataset since single cluster machine is used here. The

datasets have limited number of dimensions and the sample size is very large. It is

identified that SVM does not perform well due to two reasons.

Reason 1: When the dataset is large, it requires high training-time thus, training

becomes extremely slow.

Reason 2: When dataset has more noise, the target classes are overlapping.

Thus, from the practical experience, SVMs are proven to be better for small to

medium datasets and datasets with low noise. SVMs are better for datasets with larger

feature dimensions. 5•6

This also indicates that the suitability of the classifier depends upon the

characteristics of datasets.

10.6.3 ClassificationAlgorithmExample 2: Naive Bayes Classifier

Naive Bayes classification uses Bayes theorem to determine class of new data points.

Consider an example where we want to know whether various themes and the colors

used are more than 800 or not. The Naive Bayes classification algorithm is presented in

this section to classify the similar problem as in Section 10.6.2.

Brief Description of the Naive Bayes Classifier:

1. Load the data from CSV files, merge them and store them in a dataset.

2. Optional Step: Re-index the dataframe if you are interested in partial dataset so

that the data obtained becomes randomized using following syntax: df

dfl.reindex(np.random.permutation (dfl.index))

3. Extract Theme id and Color id features from dataset and store them in X.

4. Convert year field to binary feature. The year having 'num_parts' more than 800

as '1' and year having 'num_parts' less than or equal to 800 as 'o',

5. Split dataset in training set and test set so that machine can be trained using

X_ train and Y_train.

6. test_size in float represents the proportion of the dataset to include in the test

split, here taken as 0.33(33%). random_ state, is an integer or None, used for

initializing the internal random number generator, which decides the splitting of

data into train and test sets. Default is None. If random_state is None, then a

randomly-initialized RandomState object is returned. If random_state is an

integer, then it is used to seed a new RandomState object.

7. Use feature scaling for x train.

8. Import GaussianNBfrom sklearn. naive_ bayes

9. Create a classifier and fit training set to it.

10. Make a Prediction-Estimate the accuracy of the model by making predictions for

each data instance in the test dataset.

11. Estimate Accuracy-Evaluate the accuracy of the model's predicted values by

comparing the two arrays (test labels vs. preds).

12. Use the sklearn function accuracy_ score () to determine the accuracy of your

machine learning classifier. (optional)

13. Visualize the training and test result sets. Here we have drawn a curve and

created two sections: One section for those themes and colors that are using

more than 800and other section for those themes and colors that are not having

more than 800number of parts.

Objective of the Program The Naive Bayes classifier example presented in the section

classifies input dataset on the basis of number of parts (more than 800and less than•

equal to 800)in a set. Features selected are theme_ id and color_ id. The program

plots the resultant classes using scatter plot and contours. The classes are represented

using different colors. The entire dataset is considered. User can experience the

followings: handling data, summarizing data to present training and test datasets,

making a prediction, evaluating accuracy and visualization of classes in the given

example. Use the complete code for standalone implementation of the Naive

Bayes algorithm.

Input file(s) sets.csv, inventories.csv, inventory _parts.csv and colors.csv

Following is the complete code of complete code of Naive Bayes classifier

#import the numpy, pandas, matplotlib and sklearn library

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

from sklearn.naive_bayes import GaussianNB

#Read csv files and extract data in dataframes dfl, df2,

df3 and df4

dfl pd. read_ csv ('/home/ . ../ sets. csv')

df2 pd. read_ csv ('/home/ .. .! inventories. csv')

df3 pd. read_ csv ('/home/ . ../ inventory _parts. csv')

df4 pd.read_csv('/home/ .. ./colors.csv')

#Join/Merge all the dataframes into a new dataframe say, df

dfl = pd.merge(dfl, df2, left on="set_num",

right

dfl =

on="set_num")

pd.merge(dfl,

df3,

left

on="id",

right on="inventory_id")

dfl = pd.merge(dfl, df4, left on="color id", right on="id")

dfl = pd.DataFrame(dfl, columns=['year', 'theme id',

'color_id', 'is trans' , 'num_parts'])

def Build_Data_Set(features= ["theme id", "color id"]):

df = dfl

X = df.iloc[:, [1, 2] J .values

df['year'] = np.where(df['num_parts'J>800, '1', '0')

y = df['year'J .values

return X, y

Naive Bayes Classification Code begins from here

X, y = Build_Data_Set()

Splitting the dataset into the Training set and Test set

from sklearn.model selection import train_test split

X_train, X_test, y_train, y_test

test size=0.33, random_state=O)

train_test split(X, y,

Feature Scaling

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X test sc.transform(X_test)

#Define Gaussian Naive Bayes Classifier

classifier= GaussianNB()

classifier.fit(X_train, y_train)

Predicting the Test set results

y_pred = classifier.predict(X_test)

Making the Confusion Matrix

from sklearn.metrics import confusion_matrix

cm= confusion_matrix(y_test, y_pred)

Plot the Training set results

from matplotlib.colors import ListedColormap

X_set, y_set = X_train, y_train

Xl, X2 = np.meshgrid(np.arange(start = X_set[:, OJ .min() -

1, stop= X_set[:, OJ .max() + 1, step 0.01),

np.arange(start = X_set[:, lJ .min()

1 J . max () + 1, step = 0.01))

plt.contourf(Xl, X2,

classifier.predict(np.array([Xl.ravel(),

X2.ravel()J) .T) .reshape(Xl.shape),

1, stop = X_set [:,

alpha = 0. 5, cmap = ListedColormap (('grey', 'blue')))

plt.xlim(Xl.min(), Xl.max())

plt.ylim(X2.min(), X2.max())

for i, j in enumerate(np.unique(y_set)):

plt.scatter(X_set[y_set == j, OJ, X_set[y_set == j, lJ,

c = ListedColormap (('red',

7)

'green')) (i), label = j, s =

plt.title('Classifier(Training set)')

plt.xlabel('Theme Id')

plt.ylabel('Color Id')

plt. legend ()

plt. show()

#Estimate Accuracy

from sklearn.metrics import accuracy_score

print("Prediction -
" ' y_pred)

print("Accuracy = ", accuracy_score(y_test, y_pred))

Visualizing the Test set results

from matplotlib.colors import ListedColormap

X_set, y_set = X_test, y_test

Xl, X2 = np.meshgrid(np.arange(start

1, stop= X_set[:, OJ.

max() + 1, step= 0.01),

X_set[:, OJ .min() -

np.arange(start = X_set[:, lJ .min() - 1, stop

1 J . max () + 1, step = 0.01))

plt.contourf(Xl, X2,

classifier.predict(np.array([Xl.ravel(),

X2.ravel()J) .T) .reshape(Xl.shape),

X_set[:,

alpha= 0.5, cmap

plt.xlim(Xl.min(),

= ListedColormap(('cyan',

Xl.max())

'yellow')))

plt.ylim(X2.min(), X2.max())

for i, j in enumerate(np.unique(y_set)):

plt.scatter(X_set

= ListedColormap (

[y_set == j, OJ, X_set [y_set

('red' , 'green')) (i) , label = j,

j, lJ,

s = 7)

c

plt.title('Naive Bayes(Test set)')

plt.xlabel('Theme Id')

plt.ylabel('Color Id')

plt. legend ()

plt. show()

Output of Naive Bayes classifier

Figure 10.8 shows output of Naive Bayes classifier. The rows of df dataframe are

shuffled and selected first 50,000 rows only (df = df[l:50000]). The Green data points

are themes and colors with more than 800 number of parts and Red for less than equal

to 800 parts.

10.6.4 Regression Analysis Algorithms

The following subsections consider data fitting using Linear Regression and

Polynomial Regression Functions:7•8•9

Figure 10.9 Example oflinear regression

Selection of Predictor Variable The Lego toys dataset contains the Lego

.

10.6.4.1 Fitting a Linear Regression Function

Linear regression model predicts a direct proportional (linear) relationship between

the dependent variable (plotted on the vertical or y-axis) and the predictor variables

(plotted on the x-axis). Figure 10.9 shows linear regression example. The figure shows

that the model produces a straight line.

y-axis

• •
..

•

Parts/Sets/Colors and Inventories of each official Lego set. The dependent variable we

are using is the count of colors (color id aggregate), that provides the

augmentation of colors with respect to time or not.

BriefDescription of the Linear Regression Algorithm Code

1. Perform basic imports first. Import Pandas for reading the data from csv files and

creating pandas dataframes for doing data analysis, then matplotlib for graphing,

and linear model from sklearn.

2. Next, read the input csv files into individual dataframes and merge them to get a

final dataframe df of year and color id attributes.

3. Filter the undesired data, if required. Here year 2017 is not being included since

it has data up to July only. The incomplete data (not the full year data) may result

into wrong prediction.

4. Calculate the color usage in each year from 1950 to 2016 and store the year and

count value in a new dataframe called yearwise_colour_count.

5. Next, extract the independent variable or predictor (X) and dependent variable

or target (Y) values from data. For example, here the color usage depends upon

the year value. Thus, year is independent variable while color count is

dependent.

6. Apply the linear regression function from linear _model library to obtain

regression line with slope, intercept values and Next, use fit () function to fit the

predictor and target variables and to obtain a model.

7. The model can be used to predict new values. Predict the color count expected in

future year value (say, 2020 as shown in the example).

8. Visualize the scatter graph and regression line using plot function as given in the

example.

There are multiple ways to perform linear regression in Python , use the:

1. Scipy

2. Statsmodels

3. Scikit-learn library.

The following example uses Scikit-learn library for linear regression.

Objective of the Program The linear regression example presented in the section

demonstrates year wise growth of color usage. Features selected are year and color_id.

The program plots the aggregated counts of year field using scatter plot. The line of

regression will be shown to be exploited for predicting future count value. The

predictor variable will be the year value. Since the database contains Lego sets from

1950 to July 2017, we aim to predict the increase/decrease of the colors in future (say,

Year 2020)

Input file(s) sets.csv, inventories.csv, inventory _parts.csv and colors.csv

Following is the code for linear regression:

#import pandas, matplotlib and sklearn libraries

import pandas as pd

from matplotlib import pyplot as plt

from sklearn import linear model

#Read csv file and extract data in dataframes dfl, df2, df3

and df4

dfl pd. read_csv ("/home/.. ./sets. csv")

df2 pd. read_csv ("/home/.../inventories. csv")

df3 pd. read_ csv ("/home/.. ./ inventory _parts. csv")

df4 pd. read_csv ("/home/.../colors.csv")

#Join/Merge all the dataframes into a new dataframe say,

dfl##

dfl = pd.merge(dfl, df2, left on="set_num", right_on

"set num")

dfl = pd.merge(dfl, df3, left_on="id", right_on

"inventory_id")

dfl = pd.merge(dfl, df4, left on="color id", right_on

"id")

#Extract the year and color_id features from merged

dataframe dfl

#and Store in dataframe df

df = pd.DataFrame(dfl, columns=['year' ,'color id'])

#Year 2017 may be ignored since it has data up to July

#(which is not the full year data)

df = df[(df['year'J <2017)]

Count the colour usage in each year from & store as

in yearwise colour_count

yearwise_colour_count = pd.DataFrame({'count'

df. groupby ('year') ["year"] . count ()}) . reset index ()

#Extract X(predictor) and Y(target)values from

yearwise colour_count

X yearwise_colour_count.iloc[:, :-1] .values

y yearwise colour_count.iloc[:,1] .values

#Obtain Line of regression with slope, intercept and other

values

regression =linear_model.LinearRegression()

'

'

feed the linear regression with the train data to obtain

a model.

regression.fit(X,y)

#Calculate slope and intercept

slope= regression.coef_[OJ

intercept= regression.intercept

#Display slope and intercept

print("Slope = ", round(slope,2), ", Intercept "
round(intercept,2))

Obtain prediction for the year 2020

newX 2020

newy newX*slope + intercept #Using Line Equation

#Y=X*SLOPE+INTERCEPT

#output of Colour Count Predicted in year 2020

print("Colour Count predicted in", newX, " "
round(newy,0))

plot the scatter graph and regression line

plt.plot(X, y, ' . ' ' color=' gray')

plt.xlabel("YEAR")

plt.ylabel("COLOUR COUNT")

#Display Year on X axis that varies from Year 1950 to 2016

#Display Colour Count on Y axis that varies from Oto

50,000

plt.axis([1950,2020,0,50000])

#Display line of Regression

plt .plot (X, X*slope+intercept, 'k')

plt. show()

Output of the Linear Regression Figure 10.10 shows linear regression output

s

50000

•

I-
z
:::)

8
a:
::::,

40000

•

30000 •

8 20000

10000

0

t9SO

Slope = 508.66 , Iotercept = - UDl662.o9

Colour Count predicted in 2020 = 26835

Figure 10.10 Linear regression output

YEAR

Function for regression line in Scikit-learn library used in above example is as

follows:

from sklearn import linear_model

regression =linear_model.LinearRegression()

regression.fit(X, y)

slope= regression.coef_[OJ

intercept= regression.intercept

Scipy Library also provides a function for linear regression analysis. This library

provides the linregress function. Replace the above written statements with the

following statements in the complete code of linear regression while you are using

scipy library:

from scipy import stats

slope, intercept, r_values,

stats.linregress(X, y)

The output will be the same as Figure 10.10.

p_values, std err

Salient Observation The output illustrated in Figure 10.10 is inappropriate. When the

color count value is 49,904 in 2016, the predicted value of 2020 being 26,834.690 is

misleading. We can observe that the data points are following a curve and the

regression line in the figure is not fitting the curve.

The solution to this is a polynomial regression (also termed as quadratic regression)

that has quality to fit a non-linear model to the data. Curve fitting is the process of

constructing a curve, or mathematical function that has the best fit to a series of data

points.

Linear regression equation is:

Dependent variable= Constant+ Parameter* Independent variablel + ... +Parameter

* Independent variable n

Y = 0) + b J·; L + · · · + b,tX.rt (10.1)

The regression equation (10.1) is linear in the parameters. However, it is possible to

model curvature using this equation. The function parameters are linear but one can

raise independent variable by an exponent

to fit a curve. For example, by squaring the independent variable (Equation 10.2), the

model can follow a U'-shaped curve.

:v = b0 + b1.; L + · · · +

·2
b,r,1

(.10.2)

While the independent variable is squared, the model is still linear in the

parameters. Linear models can also contain log terms and inverse terms to follow

different kinds of curves and yet continue to be linear in the parameters.

10.6.4.2 Fitting a Polynomial Regression Function

Brief description of the polynomial regression algorithm code is as follows:

1. Perform basic imports first. Import Pandas for reading the data from csv files and

creating pandas dataframes for doing data analysis, then matplotlib for

visualization through graphs.

2. Next, read the input csv files into individual dataframes and merge them to get a

final dataframe df of year and color_id attributes.

3. Filter the undesired data, if required. Here, year 2017 is not being included since

it has data up to July only. The incomplete data (not the full year data) may result

into wrong prediction.

4. Calculate year wise number of colors usage and store it in a new dataframe called

data here.

5. Next, extract the independent variable or predictor (X) and dependent variable

or target (Y) values from data. For example, here the color usage depends upon

the year value. Thus, year is independent variable while color count is

dependent.

6. Define the degree of polynomial, say 2, 3, 4 and 5

7. Apply the polyfit function from numpy library with defined degree of

polynomial. The function outputs the regression coefficients. 10•11

8. Use the coefficients to obtain a polynomial. The polynomial models the

regression curve that fits the independent variables.

9. The model can be used to predict new values. Predict the color count expected in

future year value (say, 2020 as shown in the example)

10. Visualize the scatter graph and regression line using plot function as given in

this example.

Objective of the Program The polynomial regression example presented in the

section demonstrates year-wise growth of color usage. Features selected are year and

color_id. The program plots the aggregated counts of year field using scatter plot. The

growth actually forms a curve when drawn against year. The regression polynomial

fits the curve and predicts the future count value (Proven to be more accurate then

linear regression for this particular example).

Inputfile(s) sets.csv, inventories.csv, inventory _parts.csv and colors.csv

The complete source code for polynomial Regression using Scipy Library is as

follows:

#import numpy, pandas, matplotlib and sklearn libraries

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

import math# For trunc() to truncate the decimal values

#Read csv file and extract data in dataframes dfl, df2, df3

and df4

dfl pd. read_csv ("/home/.. ./sets. csv")

df2 pd. read_csv ("/home/... /inventories. csv")

df3 pd. read_ csv ("/home/. ../ inventory _parts. csv")

df4 pd. read_csv ("/home/... /colors. csv")

#Join/Merge all the dataframes into a new data frame say,

dfl##

dfl pd.merge(dfl, df2, left_on="set_num", right_on

"set num")

dfl pd.merge(dfl, df3, left_on="id", right_on

"inventory_id")

dfl pd.merge(dfl, df4, left on="color id", right_on

"id")

df = pd.DataFrame(dfl, columns=['year' ,'color_id'J)

#Year 2017 may be ignored since it has data up to July

#: Not the full year data

df = df[(df['year'J <2017)]

Count the colour usage in each year and store as

yearwise colour count

yearwise_colour_count pd.DataFrame({'count'

df. groupby ('year') ["year"] . count ()}) . reset index ()

#Extract X(predictor) and Y(target)values from

yearwise_colour count

X yearwise colour_count ['year'] .values

y yearwise_colour_count ['count'] .values

#Obtain minimum & maximum of X and y values for drawing

axes

min x= X. min ()

max x= X . max ()

min y= y .min()

max_y= y . max ()

#Initialize degree of polynomial, say 2,3,4,5

degree_of_polynomial = 2

#Fit the polynomial regression and Obtain the coefficients

values

coefs = np.polyfit(X, y, degree_of_polynomial)

#Create a polynomial from the obtained coefficients

p = np.polyld(coefs)

#prediction# Obtain prediction for the year 2020

newx 2020

newy

p(newx)

#output of Colour Count Predicted in year 2020

print("Colour Count predicted

math.trunc(round(newy,0)))

in ",newX, "= "
'

plot the scatter graph and regression curve

plt.plot(X, y, "bo", markersize= 2)

plt.plot(X, p(X), "r-", color='k') #p(X) evaluates the

polynomial at X

plt. plot (X, y, '.' , color=' gray')

plt.xlabel("YEAR")

plt.ylabel("COLOUR COUNT")

#Display Year on X axis that varies from min_x(1950) to

max x (2016)

#Display Colour Count on Y axis that varies from min_y(O)

to max_y

plt.axis([min_x,max_x,min_y,max y])

plt. show()

Output of the Polynomial Regression with Different Degrees of Polynomial

Figure 10.11 shows polynomial regression outputs for 2 and 3 degree polynomials.

Figure 10.12 shows polynomial regression outputs for 4 and 5 degrees. Figure 10.13

shows polynomial regression output for 6 degree.

8

(ii) Dfll,l"M ;;; a

50000
•

40000
•

!z
::)

30000

a:
::::J

9
8 20000

10000 1

o
l!.9SO 1'900 1970 1980 1990 2000 201,0

YEAR

Colour Count preclicted in 2020 = 43.908

~bl DftaN,111 - 3

500001

•

40000 1

~

8 30000'

IE
::::J

9
8 20000

10000

0
:l!.950 l!i)el]I 191® 19,80 19,90 '.201'.JO 2,0-U)

'tEAR

Coloor C04.lnt predicted In 2020 =- 56711

Figure 10.11 Polynomial regression outputs for 2 and 3 degrees

00

00

0

0

8

8

,,, C.,t'N = 4

50000
•

400

I
z
-

:::,
300

~
::i

9
8 2000

100

VEAR.

Colour Count predicted in 2020 = 67161

50000

40000

I
z
-

:::,
30000

ee
::i

9
8 20000,

10000

o-1-..:icmm~:i::m:i::z!::!~~!..:....---,,--~~..--~~-,-~~--.-~..J

1-9 0 l9fro

YEAR

Colour Count predicted In 2020 = 76373

Figure 10.12 Polynomial regression outputs for 4 and 5 degrees

50000

40000

I
z
-

::,
30000

B
c:.:;:
:::>

9
8 20000

10000

0-+-----==~~~~~~~-----.~~~..--~~--r-~~----.-~~

1950 19150

VEA.A

r"egPoly.py;S4~ RankWar'ning; Polyfil may be poorly condruoned
coe-fs. = np. polyfit (~ y, 6}

coaour Count predimd in 2020 = 76463

regPoly.py:34: RII.OkWamlog: Polyfit may be poorly conditioned

coefs = op.polyfit (x, y, 6)

Colour Cow:K predicted in 2020 = 76463

Figure 10.13 Polynomial regression output for 6 degree

II Practice Exercises 1111
10.1 Explore the dataset of the New Car Sales in Norway. The dataset is open source and

downloadable from at www.kaggle.com12 The dataset contains monthly car sales

for 2007-2017 by make and most popular models.

Dataset includes three csv files:

1. Norway _new _car _sales_by _make.csv:

Monthly sales of new passenger cars by make (manufacturer brand)

1. Year - year of sales

2. Month- month of sales

3. Make - car make (e.g. Volkswagen, Toyota, Tesla)

4. Quantity - number of units sold

5. Pct - percent share in monthly total

http://www.kaggle.com12/

2. Norway_new _car_sales_by_model.csv:

Monthly summary of top-20 most popular models (by make and model)

1. Year - year of sales

2. Month- month of sales

3. Make - car make (e.g. Volkswagen, Toyota, Tesla)

4. Model - car model (e.g. BMW-i3,Volkswagen Golf, Tesla 575)

5. Quantity - number of units sold

6. Pct - percent share in monthly total

3. Norway_new _car_sales_by_month.csv:

Summary statistics for car sales in Norway by month

1. Year - year of sales

2. Month- month of sales

3. Quantity - total number of units sold

4. Quantity_YoY- change YoY in units

5. Import - total number of units imported (used cars)

6. Import_YoY - change YoY in units

7. Used - total number of units owner changes inside the country (data available

from 2012)

8. Used_YoY - change YoY in units

9. Avg_C02- average C02 emission of all cars sold in a given month (in g/km)

10.Bensin_C02 - average C02 emission of bensin-fueled cars sold in a given month

(in g/km)

11.Diesel_C02 - average C02 emission of diesel-fueled cars sold in a given month

(in g/km)

12. Quantity _Diesel - number of diesel-fueled cars sold in the country in a given

month

13.Diesel_Share - share of diesel cars in total sales (Quantity_Diesel / Quantity)

14.Diesel_Share_LY- share of diesel cars in total sales a year ago

15. Quantity _Hybrid - number of new hybrid cars sold in the country (both PHEV

andBV)

16. Quantity _Electric - number of new electric cars sold in the country (zero

emission vehicles)

17.Import_Electric - number of used electric cars imported to the country (zero

emission vehicles)

Norway new car sales dataset can be used for analyzing and predicting future car sales.

Explore the dataset to solve the following problems for analysis, prediction and

visualization using Sklearn and PySpark:

1. Print year-wise total car sales and visualize the output (Hint: use bar chart for Year

vs. total car sales).

2. Print monthly total car sales and visualize for a specified year.

3. Print monthly total car sales from 2007 to 2017 and visualize them to represent the

month numbers (1 for Jan 2 for Feb) and total car sales value. (Hint: Use bar chart).

Also find the month for number of highest and lowest car sales.

4. Calculate the total amount of the sales for each manufacturer from 2007 to 2017.

Find the top 10 manufacturers based on the total sale and visualize the output.

(Hint: Sort make-wise total car sales and visualize them using bar chart).

5. Draw pie chart for the sales of all the models of "Toyota" in year 2012.

6. Find which model of each manufacturer has the highest sales in year 2015.

7. Find which model of each manufacturer has the highest sales during 2007 to 2017.

8. Find which model of each manufacturer has the lowest sales during 2007 to 2017.

9. Compare car models with percentage shares.

10. Predict (forecast) the car sales for all the months of 2020 using the month-wise car

sales quantity from the Jan 2007 to Jan 2017.

11. Plot the sales of new cars and sales of the diesel cars to see the comparison.

Similarly, plot the sales of new car and electric cars. (Hint: Use line chart).

12. Calculate year-wise share of diesel car sales in total sales.

13. Compare year-wise average consumption of C02 emission of all cars sold with year•

wise average consumption of C02 emission in benzene-fueled cars sold and diesel•

fueled cars sold.

14. Calculate and visualize year-wise new and used (import) car sales to compare the

statistics.

15. Calculate and visualize year-wise sales of all used (import) car and sales of electric•

used cars (import_electric) to make a comparison.

16. Predict the rise of green vehicles in 2018. (Hint: Green Vehicle= Import_Electric +

Quantity _Hybrid+ Quantity _Electric).

17. Forecast and visualize the diesel market share. State whether it represents growth

or reduction in the sales.

18. Rank top 10 car brands. Visualize the year-wise result using line graph.

1 https:/ /hadoop.apache.org/ Hadoop

2 https://www.edureka.co/blog/hadoop-3/

3 https://rebrickable.com/about/

4 LOB- The LEGO Parts/Sets/Colors and inventories of every official LEGO set,

available at: https://www.kaggle.com/rtatman/lego-database

5 https://www.analyticsvidhya.com/blog/2017 /09/understaing-support-vector-

machine-example-code/

6 https:/ / sadanand-singh.github .io / posts/ svmpython/

7 http://www.learndatasci.com/predicting-housing-prices-linear-regression-using•

python-pandas-statsmodels/

8 https:// codefying.com/2016/08/18/two-ways-to-perform-linear-regression-in-

python-with-numpy-ans-sk-learn/

9 http://statisticsbyjim.com/ regression/ difference-between-linear-nonlinear-

regression-models/

10 https://autarkaw.org/2008/07 /os/finding-the-optimum-polynomial-order-to-

use-for-regression/

11 https:/ / in.mathworks.com/help / matlab /ref/ polyfit.html ?requestedDomain=true

12 https:/ /www .kaggle.com/ dmi3kno/newcarsalesNorway

http://www.edureka.co/blog/hadoop-3/
http://www.kaggle.com/rtatman/lego-database
http://www.analyticsvidhya.com/blog/2017
http://www.analyticsvidhya.com/blog/2017
http://www.learndatasci.com/predicting-housing-prices-linear-regression-using
http://statisticsbyjim.com/
http://statisticsbyjim.com/

Bibliography

A. PRINTED AND E-BOOKS

[1] Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 2012

[2] Andrew Gelman, Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge

University Press, 2007

[3] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin, Bayesian Data

Analysis, 3rd Ed., CRC Press, 2013

[4] Aurelien Geron, Hands-On Machine Learning with Scikii-Learn and Tensor Flow: Concepts, Tools, and Techniques to

Build Intelligent System, O'Reilly Media, 2017

[5] Bernard Marr, Big Data in Practice: How 45 Successful Companies Used Big Data Analytics to Deliver Extraordinary

Results, Wiley, UK, 2016

[6] Carl Shan, William Chen, Henry Wang, Max Song, The Data Science Handbook: Advice and Insights from 25

Amazing Data Scientists, Paperback, The Data Science Bookshelf, 2015

[7] Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

[8] David Dietrich, Barry Heller, Beibei Yang, Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and

Presenting Data, EMC Education Services, Wiley, Indianapolis, 2015

[9] David A. Freedman, Statistical Models: Theory and Practice, Paperback, 2nd Ed., Cambridge University Press, 2009

[10] David J.C. MacKay, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003

[11] David Loshin, Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL,

and Graph, Morgan Kaufmann (Elsevier), MA 02451, 2013

[12] E. T.Jaynes, Probability Theory, The Logic of Science, Cambridge University Press, 2003

[13] Edward Capriolo, Cassandra High Performance Cookbook, Packt, 2011

[14] Edward R. Tufte, Visual Explanations: Images and Quantities, Evidence and Narrative, Google Books, 1997

[15] Erik Brynjolfsson, Andrew McAfee, The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant

Technologies, W.W. Nortan, 2014 (Also available at ACM Digital Library)

[16] Erwin Kreyszig, Advanced Engineering Mathematics, 12th Ed., Wiley, 2016 (Paperback Edition, Wiley, 2014)

[17] Francois Chollet, Deep Learning with Python, Manning, 2018

[18] Garry Kasparov, Mig Greengard, Deep Thinking- Where Artificial Intelligence Ends and Human Creativity Begins,

Google Books, 2017

[19] Garry Turkington, Hadoop: Beginner's Guide, Packt, 2013

[20] George Casella, Roger L. Berger, Statistical Inference, 2nd td., Cengage Learning, 2006

[21] Giancarlo Zaccone, Md. Rezaul Karim, Deep Learning with Tensor Flow, 2nd Ed., Packt, 2018

[22] Hadley Wickham, ggplot2: Elegant Graphics for Data Analysis, 2nd Ed., Springer, 2016

[23] I. Craig, Allen Thornton, Mathematical Statistics, 5th Ed., Macmillan, NY, 1989 [1st E. 1958]

[24] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Leaming (eBook), MIT Press, 2017

[25] Ian Robinson, Graph Databases, Paperback, O'Reilly Media, 2nd Ed., 2015

[26]JeffHawkins, Sandra Blakeslee, On Intelligence, How a New Understanding of the Brain will Lead to the Creation of

Truly Intelligent Machines, Paperback, St. Martin Griffin, 2005 [Prentice Hall, New Jersey, 2004]

[27] John A. Rice, Mathematical Statistics and Data Analysis, 3rd td., Thomson Learning, Is Indian Reprint, 2007

[28]John H. Mathews, Kurtis D. Fink, Numerical Methods Using Matlab, Paperback, Pearson, 2015

[29] John W. Foreman, Data Smart: Using Data Science to Transform Information into Insight, Paperback, Wiley,

Indianapolis, 2014

[30]Joshan D. Suereth, Scala in Depth, Manning, 2012

[31] Kevin P. Murphy, Machine Leaming: A Probabilistic Perspective, MIT Press, Cambridge, 2012

[32] M. Gopal, Applied Machine Leaming, McGraw Hill, India, 2018

[33] Malcom Gladwell, Outliers: The Story of Success, Penguin, London, 2013

[34] Max Kuhn, KjellJohnson, Applied Productive Modeling, Springer, 2013

[35] Maxim Lapan, Deep Reinforcement Learning Hands-On, Packt, 2018

[36] Michael Frampton, Complete Guide to Open Source Big Data Stack, Apress, 2018

[37] Michael G. Milton, Head First Data Analysis: A Learner's Guide to Big Numbers, Statistics, and Good Decisions,

O'Reilly Media, 2010

[38] Mike Barlow, Realtime Big Data Analytics: Emerging Architecture, O'Reilly Media, 2014

[39] Mike Driscoll, Python Interviews, Packt, 2018

[40] Mike Frampton, Mastering Apache Spark, Packt, 2017

[41] Mohammed Guller, Big Data Analytics with Spark: A Practitioner's Guide to Using Spark for Large Scale Data

Analysis, Apress, 2015

[42] Nathan Marz, Big Data: Principles and Best Practices of Scalable Realtime Data Systems, Paperback, Manning, 2015

[43] Niranjan Raychaudhuri, Scala in Action, Manning, 2012

[44] Paul C. Zikopoulos, Chris Eaton, Dirk deRoos, Tom Deutsch, George Lapis, Understanding Big Data: Analytics for

Enterprise Class Hadoop and Streaming Data, McGraw Hill, NY 2012 (India ed., 2015)

[45] Peter Norvig, Paradigms of Artificial Intelligence Programming, Case Studies in Common LISP, Paperback, Morgan

Kaufmann, California, 1992

[46] Philip E. Tetlock, Superforecasting: The Art and Science of Prediction, Broadways Books, N.Y. (Penguin), 2015

[47] PrateekJoshi, Python Machine Leaming Cookbook, Packt, 2016

[48] Richard W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill, New York, 1973 (2nd Ed.

1987, Dover. Available at the ACM Digital Library)

[49] Robert J. Kabacoff, R in Action- Data Analysis and Graphics with R, Manning, 2011

[so] Robert V. Hogg, I. Craig, Allen T. Craig, Introduction to Mathematical Statistics, 4th Ed., McMillan N.Y., 1978

[51] Romeo Kienzler, Mastering Apache Spark 2.x, z=' Ed., Packt, 2017

[52] Satnam Alag, Collective Intelligence in Action, Manning, 2008

[53] Sean Owen,RobinAnil,Ted Dunning, Ellen Friedman, Mahout in Action, Manning, 2012

[54] Sean T. Allen, Matthew Jankowski, Peter Pathirana, Storm Applied, Manning, 2015 (Also available at ACM

DigitalLibrary)

[55] Sebastian Raschka,Vahod Mirjalili,Python Machine Leaming, 2nd Ed.,Packt, 2017

[56] SeemaAcharya, Subhasini Chellappan, Big Data and Analytics, Wiley,2015

[57] SeemaAcharya, Data Analysis using R, McGrawHill,India, 2018

[58] Steven C. Chapra, Raymond Canale,Numerical Methods for Engineers, GoogleBooks,1985

[59] Stuart). Russell,Peter Norvig,Artificial Intelligence: A Modem Approach, Springer, NewYork, 1995

[60] Tanmay Deshpandey, Hadoop Real World Solutions,2nd td., Packt, 2016

[61] Trevor Hastie, Robert Tibshirani,Jerome Friedman, The Elements of Statistical Leaming: Data Mining, Inference,

and Prediction, 2nd Ed., Springer, 2001

[62] Tomasz Draba, Denny Lee,Learning PySpark, Packt, Manning, 2017

[63] Trevor Hastie, The Elements of Statistical Leaming: Data Mining, Inference, and Prediction, 2001

[64] William H. Press, Saul A. Teukolsky, WilliamT. Velterling, Brian P. Lannery, Numerical Recipes in C++: The Art of

Scientific Computing, 3rd Ed., Cambridge Press, 2002 (South Asian Ed. Foundation Books, India, 2002;

OriginallyPublished in FORTRAN,Availableas pdf open source)

[65] YifengJiang, HBase Administration Cookbook, Packt, 2012

B. WEBSITE REFERENCES

[1] https://aws.amazon.com/machine-learning/amis/ AWS Deep Learning AMis,Pre-configured Environments to

Quickly Build Deep Leaming, Applications

[2] https://arxiv.org/abs/1709.02840 (Cornell University Library), Osvaldo Simeone, A Brief Introduction to

Machine Leaming for Engineers, 2018

[3] https://web.stanford.edu/-hastie/Papers/ESLII.pdf, Trevor Hastie, Robert Tibshirani, Jerome Friedman, The

Elements of Statistical Leaming: Data Mining, Inference, and Prediction, 2nd Ed., 2001

[4] https://vuquangnguyen2016.files.wordpress.com/2018/03/applied-predictive-modeling-max-kuhn-kjell-

johnson_1518.pdf,Max Kuhn, KjellJohnson, Applied Productive Modeling, Springer, 2013

[5] http://www.freetechbooks.com/the-elements-of-data-analytic-style-t1257.html, Jeff Leek, The Elements of

Data Analytic Style, 2016

[6] https://www.cin.ufpe.br/-tfl2/ artificial-intelligence-modern-approach.9780131038059.25368.pdf,Stuart J.

Russell,Peter Norvig,Artificial Intelligence: A Modem Approach, 2005

[7] https://www.thedatasciencehandbook.com, Carl Shan, William Chen, Henry Wang, Max Song, The Data

Science Handbook: Advice and Insights from 25 Amazing Data Scientists, Paperback, 2015

[8] https://tecnoclub4u.files.wordpress.com/ 2015/ 05/hadoop _-beginners-guide.pdf, Hadoop Beginners Guide,

Packt

[9] http://barbie.uta.edu/-jli/Resources/MapReduce&Hadoop/Hadoop%20MapReduce%20Cookbook.pdf,

Srinath Perera Thllina Gunarathne, Hadoop MapReduce CookBook, Packt

http://www.freetechbooks.com/the-elements-of-data-analytic-style-t1257.html
http://www.cin.ufpe.br/-tfl2/
http://www.thedatasciencehandbook.com/
http://barbie.uta.edu/-jli/Resources/MapReduce&Hadoop/Hadoop%20MapReduce%20Cookbook.pdf
http://barbie.uta.edu/-jli/Resources/MapReduce&Hadoop/Hadoop%20MapReduce%20Cookbook.pdf

[10] http://www.ieee.org.ar/downloads/Srivastava-tut-pres.pdf, Jaideep Srivastava, University of Minnesota USA,

Web Mining: Accomplishments & Future Directions:

[11]

https://www.isical.ac.in/-acmsc/WBDA2015/slides/hg/Oreilly.Hadoop.The.Definitive.Guide.3rd.Edition.Jan.2012.p

[12] https://www.isical.ac.in/-acmsc/WBDA2015/slides/hg/Oreilly, Tom White, Hadoop: The.Definitive.Guide. 3rd.

Edition.jan, 2012pdf

[13] https://websites.pmc.ucsc.edu/-fnimmo/ eart290c_l 7/NumericalRecipesinF77.pdf,William H. Press, Saul A.

Teukolsky, William T. Velterling, Brian P. Lannery, Numerical Recipes in FORTRAN 77: The Art of Scientific

Computing, CambridgePress, 2nd Ed., Reprinted with Corrections/New Software version 2.08,1997

C. CHAPTER-WISE WEBSITE REFERENCES

Chapter 1

1http://www.gartner.com/it-glossary/big-data

2 https:// statswiki.unece.org/ display/bigdata/Classification+of+Types+of-Big-Data

3 https://www.ibm.com/ developerworks/library /bd-archpatternsl/

4 https:// docs.microsoft.com/en-us/ sql/odbc/ reference/ data-sources

5 https:// docs.oracle.com/cd/El 7984_01/doc.898/e14695/undrstnd_datasources.htm

https://www.ibm.com/support/knowledgecenter / en/ SSMPHH_9.5.0c/om.ibm.guardium95.doc/

common_tools/topics/ datasources.html

7http://docs.aws.amazon.com/ datapipeline/latest/DeveloperGuide/ dp-object-copyactivity.html

8http://docs.aws.amazon.com/ datapipeline/latest/DeveloperGuide/ dp-object-snsalarm.html

9 https:/I support.rackspace.com/how-to/ cloud-database-instance-parameters/

10 https:// cloud.google.com/bigquery/ docs/loading-data

Chapter 2

NIL

Chapter 3

1 https:// cwiki.apache.org/confluence/ display/Hive/LanguageManual+ORC#LanguageManuaOlRC•

ORCFileFormat

2 http://www.semantikoz.com/blog/orc-intelligent-big-data-file-format-hadoop-hive/

Chapter4

NIL

Chapter 5

1 https:// cwiki.apache.org/confluence/ display/Hive/LanguageManual+ORC#LanguageManualORC•

ORCFileFormat

2 https://www.tecmint.com/install-java-jdk-jre-in-linux/

3 https://www.vultr.com/ docs/how-to-manually-install-java-8-on-ubuntu-16-04

http://www.ieee.org.ar/downloads/Srivastava-tut-pres.pdf
http://www.ieee.org.ar/downloads/Srivastava-tut-pres.pdf
http://www.isical.ac.in/-acmsc/WBDA2015/slides/hg/Oreilly.Hadoop.The.Definitive.Guide.3rd.Edition.Jan.2012.p
http://www.isical.ac.in/-acmsc/WBDA2015/slides/hg/Oreilly
http://www.gartner.com/it-glossary/big-data
http://www.gartner.com/it-glossary/big-data
http://www.ibm.com/
http://www.ibm.com/support/knowledgecenter
http://docs.aws.amazon.com/
http://docs.aws.amazon.com/
http://www.semantikoz.com/blog/orc-intelligent-big-data-file-format-hadoop-hive/
http://www.tecmint.com/install-java-jdk-jre-in-linux/
http://www.vultr.com/

5 https://data-flair. training/b logs/ create-rdds-in-apache-spark/

6 http:// data-flair .training/ forums/topic/how-to-create-rdd

Chapter6

1 https:/ / en.wikipedia.org/wiki/Kernel(statistics)

3 https:// en.wikipedia.org/wiki/Levenshtein_distance

Chapter 7

4http://algo.inria.fr/ flajolet/Publications/F1Ma85p. df

Chapters

1https://neo4j.com/product/

2 http://www.systemg.research.ibm.com/

Chapter 9

1 http://www.nactem.ac.uk/brochure/NaCTeM_Brochure.pdf

2 https://www.ibm.com/ support/knowledgecenter / en/SS3RA7_18.1.1/ta_guide_ddita/

textmining/ shared_entities/tm_intro _tm_defined.html

3 https://blogs.aws.amazon.com/bigdata/post/Tx22THFQ9MI86F9/ Applying-Machine-Learning-to-Text-Mining•

with-Amazon-53-and-RapidMiner

4 https://www.ling.upenn.edu/courses/Fall_2003/lingOOl/penn_treebank_pos.html

5 http://papers.cumincad.org/data/works/att/2873.content.pdf "The Anatomy of a Large-Scale Hypertextual Web

Search Engine" Sergey Brin LawrencePage, 1998

Chapter 10

1 https:/ /hadoop.apache.org/ Hadoop

2 https://www.edureka.co/blog/hadoop-3/

3 https://rebrickable.com/about/

4 LDB- The LEGO Parts/Sets/Colors and inventories of every official LEGO set, available at:

https://www.kaggle.com/rtatman/lego-database

5 https:/ /www.analyticsvidhya.com/blog/ 2017/ 09/understaing-support-vector-machine-example-code/

6 https:// sadanand-singh.github.io/posts/ svmpython/

7 http://www.learndatasci.com/predicting-housing-prices-linear-regression-using-python-pandas-statsmodels/

https://codefying.com/2016/08/18/two-ways-to-perform-linear-regression-in-python-with-numpy-ans-sk•

learn/

9 http://statisticsbyjim.com/ regression/difference-between-linear-nonlinear-regression-models/

10 https:// autarkaw .org/ 2008/07/ OS/finding-the-optimum-polynomial-order-to-use-for-regression/

11 https:/ /in.mathworks.com/help/matlab/ ref/polyfit.html?requestedDomain=true

12 https:/ /www.kaggle.com/dmi3kno/ newcarsalesNorway

http://algo.inria.fr/
http://www.systemg.research.ibm.com/
http://www.nactem.ac.uk/brochure/NaCTeM_Brochure.pdf
http://www.ibm.com/
http://www.ling.upenn.edu/courses/Fall_2003/lingOOl/penn_treebank_pos.html
http://papers.cumincad.org/data/works/att/2873.content.pdf
http://www.edureka.co/blog/hadoop-3/
http://www.kaggle.com/rtatman/lego-database
http://www.analyticsvidhya.com/blog/
http://www.learndatasci.com/predicting-housing-prices-linear-regression-using-python-pandas-statsmodels/
http://statisticsbyjim.com/
http://www.kaggle.com/dmi3kno/newcarsalesNorway

D. PRINTED/E-JOURNAL PAPER REFERENCES

[1] IEEE Transactions on Big Data, Quarterly, Since 2015

[2] Elsevier Big Data Research Journal, Latest Issue Volume 13, Sept 2018, Quarterly Since 2016, (First Issue 2011)

[3] Springer,Journal of Big Data, Open Access, Since 2014

[4] BMC Series Springer Nature, Big Data Analytics

t .2 3 4 5 6 7 8 9 0

(. i) (c) (b) (d) (b) () (d) (b) (h)

l L~ l4 l5.

(a) (e) (d) (e) (b)

Answers to

Multiple Choice Questions

CHAPTER 1

.. 2 . 3. 4. 7. s. 9. m.

(d) (e) (b) (.) (e) (d) (b) (d) (a) (b)

[1 :3. u.. l5. 6.

(c) (d) (c) (c) "d) ()

CHAPTER2

t 3 4 5 6 7 8 9 io

(d) (b) (c) (a.) (c} (b. (,, (c) (b) (a

l .2

(d) (d)

CHAPTER3

(. .)

CHAPTER4

l. - 3 4 'i 6 1 8 9 10

(.)) ~d) (b) (en (d. (b) (. (a) 'b)

H L..:

(c) (a)

CHAPTERS

l. - 3 4 5 6 8 9

] I

(b) (d (d) k) (c) (l {,.) (d) (b) (b)

H L.: B l4

,cl) (c) b) a)

CHAPTER6

l - 3 4 5 6 8 9 1 I

(d (c (d) (b) (en () (d) •: ') (c) (.)

H U.2]3 u

(b) (dJ :b) (c..

CHAPTER 7

l. - 3 4 5 6 8 9]

.b) (b) (a) (d) (,) l) {d (b. () .d)

H D.2

fa) (b)

CHAPTERS

I. - 3 4 5 6 1 8 9 io
(dJ (e) (a) (.) (b'~ (c) (d) (b) (c) ...)

CHAPTER9

 4 7

d) (c) (b ..a) (b) (b)

Index

3Vs 2, 9, 10, 11

4Vs 9, 10

A

accumulator 233, 234

ACIDproperties 8, 35, 88, 90, 92, 93, 94, 97, 100, 115, 118, 146

AdaBoost303,317,329

adapter 62, 338, 339

adhoc query 207, 213

aggregation 5, 33, 67, 73, 109, 110, 124, 126, 138

aggregation function 147

Amazon S3 see S3

Ambari54, 73, 75, 76,80,145,204

analytics processing framework 240

anomaly 257, 390, 392

anomaly detection 212, 240, 393, 394, 403, 442

ANOVA262

Apache GraphX 40, 211, 397-401, 403, 404, 436, 440, 446

Apachervtahout20,40,61,65,73,78,204,251,252,285,323-327,330,454

Apache Spark 38, 60-62, 80, 110, 115, 145, 205,

207-235,240,245-247

Apache Spark streaming 364

API, definition 2

application integration 6, 34, 54

application master 71

application, definition 2

Apriori algorithm 286, 287, 329, 359-362

artificial intelligence 10, 19, 252

association 262, 263, 288-291, 305, 321, 329, 378, 380-390,

association rule 234, 251, 285, 286, 322, 329, 358, 454

association-rule mining 280, 285, 430

392, 398, 409, 428, 438

authority 432-435, 438-441, 448

auto-sharding 125

availability 16, 18, 20, 35, 43, 56-58, 66, 7 4, 90,

91,93,108,110,117,119,124,125,130,147,300,348

AVRO 29, 61, 62, 68, 135

B

bag 189, 193

bag of words 280, 413, 414, 427

BASE 87, 93, 94, 114, 117, 118, 147

batch processing 5, 13, 20, 60, 62, 78, 338, 346,

347,364

Bayes theorem 315

Bayesian classifier 315, 326

Bayesian network 387-389, 395, 397, 403

BOAS see Berkeley Data Analytics Stack

belief network 253, 388, 391, 395, 396, 410, 441, 442

belief propagation function 388, 391, 395

Berkeley Data Analytics Stack 40, 205

betweenness 390-393, 397, 410, 433, 440-444

big data 2, 6, 9-13

big data analytics applications 41-46

big data characteristics 10

big data classification 7, 10, 13

big data store model 56

big data types 10, 12

BigTable 35, 90, 107, 108, 138, 147

BIRT 243

BLOB 95-97, 112, 130, 147, 189

Bloom filter 130, 350-352

broadcast function 218

broadcasting variable 233, 234

BSON 100, 124, 126, 127

bucket3,29,97,171,180,181,198,356,359,360

business intelligence 5, 20, 34, 39, 43, 212, 243, 247

business process 5, 10, 30, 34, 60, 212

c

candidate rules 286

CAPtheorem 35, 56, 90-92, 118, 130

Cassandra35,36,73,85,87,90,92,117,129-136,147,207,212,213,240

Cassandra query language 130, 131, 133, 212,

213,240

category variable 254, 304, 307, 325, 409, 419, 428, 463, 467, 468, 470, 471

centrality 390-394, 397, 403, 410, 433, 442, 443, 446

Ceph 208

chi-square 270, 311-313, 349

Chukawa 73

classification 78, 303-317, 325, 326, 329, 421-423,

477, 479

clique 396, 446, 447

closeness 294, 391-393, 397, 410, 433-443

cloud computing 15, 16

cloud resources 16, 17, 20

cloud services 27-29

cluster computing 17, 57, 59, 60

cluster of machines 16, 17, 35-38, 56-66, 68

clustering 78, 292-302, 305-307, 325, 326, 329,

330,475

collaboration management 34

collaborative filtering 211, 280, 281, 291, 318-321, 323-327,

collating 160

collection data center 130

collection data type 123, 124, 127, 128, 171, 231, 416

collection frequency 427

329, 394, 444

collection map 143

collection, definition 147

column family 77, 103, 104, 106-108, 129, 131, 137, 145, 147

columnar data 103, 378

combining 88, 122, 354

command line 65, 133

command line interface 168, 172

command line utilities 58

composing MapReduce 160

composing Spark 236

concept extraction 412

conditional probability 315, 388-390, 448

conditional probability distribution 388, 389

conditional probability table 368, 389, 390, 395, 396

confidencelevel349,350

connected component 390, 445, 446

consistency 35, 57, 88, 91-93, 125, 132, 133, 147

container 71, 72, 123, 219

content-based filtering 322

correlation 263, 264, 267, 269, 278, 319, 324, 328, 370, 417, 428, 430, 442, 444

correlation coefficient 219, 263, 264, 370

cosine similarity 281-283, 320

COUGAR 340, 344

counting distinct 352, 353, 371

CPD see conditional probability distribution

CPT see conditional probability table

CQL see Cassandra query language

CQL (STREAM)see STREAM continuous query language

credit risk management 43, 44

cross correlation 161

CSV data format 3, 26-29, 31, 98, 192, 219, 229, 236-238, 459-461, 463, 464, 469-

472, 475-480, 484, 485, 487, 492-493

D

data analytics 38-40

data architecture 18, 90, 115, 118

data architecture pattern 90, 118

data block 57-60, 63-65, 70, 80, 341, 401

data cleaning 25, 427

data consistency 57

data consumption 18, 19, 146

data cube 243, 431

data definition language 31, 93, 131, 174

data ingestion 19

data integration 33, 34

data management 13, 20, 32, 37, 341, 346, 347

data manipulation language 31, 176

data mart 5

data mining 240, 277, 285, 288, 290, 295, 303, 412, 413 , 417, 425, 426, 429

data model 3, 8, 35, 55, 77, 90, 92-95, 97, 118, 127, 131, 137, 138, 146, 171, 186,

189,327,339,341,409

data node 56, 65, 86, 89, 113, 117, 122, 136, 137, 146, 155, 233, 307, 341

data noise 24, 417

data pipeline 206, 211, 218, 221, 246

data pre-processing 25, 481

data replication see replication

data source 13, 21-23, 35-37, 44, 47, 64, 65, 185, 205, 208, 212, 214, 236, 240, 243,

246,411,412,418,453

data store 3, 13, 14, 20, 27-30, 33, 35, 61, 63, 89, 92, 95, 97, 106, 107, 111, 113,

119,123,129,137

data stream management system 341-344

data visualization 243, 244, 468

data warehouse 4, 33, 73, 78, 81, 198

database administration 4, 65, 76, 111

database connectivity 4, see also JDBC, ODBC

database definition 3

database maintenance 4

DataFrame206,215,221,397,212,214-216,220,221,223,230,238,239,246,

453,454,461-466,469,470,475,476,481,483-485,487-489

DB2 see IBM DB2

DBC driver 4

DDL see data definition language

decaying window 356, 362, 371

decision tree 234, 309-311, 314, 329, 419

degree distribution 443

descriptive analytics 6, 39

deserialization 108

deserializer 175, 206

dicing 221, 244

directed acylic graph 74, 187, 205, 206

directed graph 206, 377, 378, 380, 388, 391-393,403, 432, 449

directed multigraph 378, 398

distance measure 278, 280, 281, 284, 301, 302, 328

distance, definition 224, 273

distributed computing model 15, 47, 55, 56, 86

distributed database 32, 55, 91, 92, 112, 226, 403, 453

distributed datastore 3, 54, 63

distribution function 261, 378, see also probability distribution function

distribution model 119-121

DML see data manipulation language

document classification 412, 414, 419

document clustering 412

document collection 103

document data store 97, 100

document frequency 280, 414, 415, 427

document tree 97, 101, 102

DSMS see data stream management system

DStream 364-366

DynamoDB92, 97

E

edit distance 281, 284

ego net see ego network

ego network 442

Enterprise server 27, 39, 69

entropy 313, 314

ETL5,20,186,199,206,213,235,236,246

ETL pipeline 236

Euclidean distance 222, 223, 272-274, 281, 293, 296, 296, 298, 299, 328

EVAL function 195

event analytics 33

explanatory variable 254, 263

F

feature selection 417

feature variable 254

fi~er193,195,196,229,230,238,351,352,366

see also, Bloom filter

filtering 25, 160, 224, 243 see also collaborative filtering, content-based

filtering, knowledge-based Filtering

flat-file 3, 171, 228

Flink 61, 62

flow analysis 394

Flume 61, 73, 75

frequent itemset 234, 285-288, 325, 326, 329,

357-362, 372, 444

F-test 260, 262

G

Gini index 311

graph analytics 211, 376-386, 390, 392, 393,

395,396

graph database 113-115, 137, 378, 381-383, 400, 403

graph edge 115, 161, 377, 378, 380, 381, 383, 384, 388, 389, 394, 395, 398-400,

409,433,445

graph model 113, 338, 377-380, 384, 386-388, 393, 395, 400

graph node 114, 115, 377-384

graph partitioning 396, 399

graph processing 161, 364, 382, 399, 402

grid computing 17

GroupBy152,167,178, 183-185,221,223,229,246,462,469

GVUDF206, 223

H

Hadoop 37, 38, 57-59

Hadoop Common 59, 227

Hadoop distributed file-system 37, 59-62, 65-67, 107, 154, 208, 214, 233, 341,

455,456,468

Hadoop ecosystem 39, 58-62, 73, 80

Hadoop pipes 62

Hadoop streaming 62

hash function 97, 180, 284, 350-354 see also hash-key

hash map 283, 284, 350

hash ring 122

hash table 97

hash tree 286

hash-key 3, 86, 97, 106, 107

HBase 61, 73, 76, 77, 90, 92

HDFS see Hadoop Distributed File System

HDFS shell command 67

hierarchal clustering 300, 301

HITS algorithm 438, 439

Hive61,65, 73, 78,108,109,145, 167,178,182,187, 198,213,214,454,463,466-

468

Hive data units 171

Hive file format 171

Hive server 168, 213, 214

HiveContext216,218,222,232

HiveQL 174-177, 181-183, 198, 216

horizontal scalability 15, 57

hub 438-441, 448 hyperplane

316, 421-423 hypothesis 234,

261, 262, 315

I

IaaS 16

IBM Biglnsight 16, 76

IBM DB2 4

IBM G-System 397

IBM i data-library 22

in-degree378,392,393,399,432-434,437,438,443

influence propagation function 388

in-memory column format 32, 103, 104, 106, 107, 206, 211

in-memory graph computing 401

in-memory processing 5, 205, 206

in-memory row format 33, 103, 108

inner join 89, 148, 164, 466, 477

interaction detector 312

intersection 163, 280

J
Jaccard distance 281

Jaccard similarity 279-281, 291

JDBC135, 168, 170, 213, 214

job 56

job scheduling 56

JobTracker65,66,68,69,136,150,158

join88,89,92, 148,164,181-183,194,216,365,382,400,465-467,476,478,481,

485,488

]SON 31, 90, 98-103, 123, 214-216, 218, 227, 237

K

Kafka 40, 364

kernel function 260, 261, 422

keyspace 131-133, 148

key-value pair 3, 95, 137, 150-152, 156-157, 166, 190

K-mean 295-300, 326, 475, 477

K-Nearest-Neighbour 272-274, 307, 328, 419, 444

K-Nearest-Neighbour search 276-278

KNN see K-Nearest Neighbour

K-NNS see K-Nearest-Neighbour search

knowledge discovery 240, 288, 396, 412

Knowledge-based filtering 322

L

lambda architecture 341

left outer-Join 183, 194, 466

link analysis 115, 431, 432

local partitioning see partitioning

M

machine learning 39, 73, 78, 234, 235, 252, 474

Mahout see Apache Mahout

Manhattan distance 273, 274, 279, 293

Mapper 67-70, 151-153, 156, 158, 160-166, 461, 462

MapReduce 38, 58, 67-69

market basket model 288, 289, 329

Markov network 387, 388, 390, 403

massively parallel processing 15

master-slave 120-122

matplotlib 244, 468-488

Mesos 3 7, 208, 209

metadata 33, 92, 93, 107, 111, 172

metastore 168, 169, 207

ML pipeline 234, 235

MLib 40, 211, 234, 235

moment259,261,263,324,355

MongoDB 90, 92, 100, 121, 123-128, 138

multi structured data 8

multi-dimensional data cube 243

multihash algorithm 360, 372

multi-master DB 138

multiple regression 270, 271

multistage algorithm 359, 360, 372

multivariate distribution 267

multivariate neighbours 276

multivariate regression 314

N

Naive Bayes classifier 315, 419, 420, 448,

479-481,483

name-value pair 3, 36

naturaljoin 148, 164-166

Neo4j 115, 383, 384

nested table 206, 238

node manager 71, 72

NoSQL 35-38, 88-95, 115-119, 122, 146, 147

null hypothesis 262

NumPy 218, 219, 234, 235, 467, 473-475, 477, 478, 480, 488

0

object data store 111, 147, 214

objective function 270, 309

ODBC 23, 168, 213

OLAP33, 106, 212-213, 240

OLTP33, 103, 213

online analytical Processing see OLAP

online transaction processing see OLTP

Oozie 73, 74

ORC 109, 110, 171, 214

outcome variable 254

out-degree 378, 392, 399, 432, 433, 443

outer-join 183, 194, 466

outlier 24, 25, 224, 254, 257, 258, 261, 417

p

PaaS 16

PageRank 395, 399-401, 432-437, 440, 443, 448

Pandas 205, 220-223, 246, 464-466

Panel220

parallel tasks 15

Parquetll0,111,206,214,215,339

parsing 160, 414

partition 171

partitioning 152, 178, 179

part-of-speech tagging 413

pattern analysis 431, 429

pattern discovery 429-431

pdf see probability distribution function

Pearson correlation 264

peer-to-peer 121

Pig 73, 78, 81, 145, 185-195

Pig data type 189

Pig Latin 78, 185-195

Piggy Bank 195

population 257

predictive analytics 6, 39, 241

predictor variable 254, 270, 272, 483

pre-processing 29, 38 see also data pre-processing

prescriptive analytics 6, 39

primary master 65

probability distribution function 259, 387

process 5

process matrix 5

projection 148, 163, 193

PySpark 38, 212, 213, 454, 218

Python 146, 205, 208, 217, 218, 226, 246

Q

query language 102, 344

R

Rack 56, 63, 64, 80

Random Forest 307, 316, 326, 329

RCFile see record columnar file

RDBMS4, 32, 38, 48, 88, 89

ROD 209, 211, 246, 366, 397, 398

real-time analytics 363, 372

real-time analytics platform 363

real-time processing 5, 205, 346, 347

recommender 318, 321, 322, 327, 329, 394

record columnar file 108

RecordReader151,154

Reducer67,69,153,157,158,160-166,461.462

regression model 267, 314, 328, 483-492

relation 92, 190, 193, 194

relational database management system see RDBMS

relational operator 192-195

relationship 115, 119, 124, 161, 254-256, 262, 263, 267, 328, 377-381, 383, 403

replication 107, 117, 120-122, 124, 130, 132

report-designer 242

report-engine 243

resilient distributed-dataset see ROD

resource 57

resource manager 119 resource

scheduling 69 response variable

254, 267, 311 right outer-join

183, 194, 466 row-based data

103

RTAP see real-time analytics platform

RTAP applications 368

s

S3 112, 209

Saas 17

sample 194, 257

scalability 8, 14, 47, 58, 86

scalable 58, 60, 307

scatter plot 255, 256, 471

schema-less 92, 93, 137

SchemaRDD206, 214, 230

SciPy 218, 219, 487

secondary master 65

semi-structured data 8, 31, 48, 90

sequence File 78, 227

SerDe 206

serializer function 206

server definition 6, 38

service oriented architecture 6

Services definition 6

sharding 86, 89, 120, 125

shared nothing 85, 119, 307

shell command see HDFS shell command

shuffle and sort 152 similar

items 277, 328 similarity

277, 280, 281, 291 similarity

coefficient 281

SimRank 445

singular value decomposition 324

slave node 65, 120

slicing 221

SOA see service oriented architecture

social network 441, 449, 409

sorting 160

spam detection 442

Spark see Apache Spark

Spark ecosystem 364

Spark SQL 212, 213, 246, 453

Spark Streaming 211, 364

SparkContext203,215,227

SparkContext227,465

split 194

spreadsheet 3

SQL 4, 31

SQLContext215,216,218

SQL-likescript 146 standard

deviation 258 standard error

of estimate 258 statistical

significance 271 statistical

technique 430

stream analytics 4, 363

STREAM continuous query language 344

structured data 7

structured data sources 21

support vector 421

support vector machine 316, 421, 477

SVD see singular value decomposition

SVM classifier see support vector machine

T

table 3, 32

table partitioining 178

Tableau 244

term frequency 414-416

text analytics process pipeline 412, 413

text cleanup 413

text features generation 414

text mining 409, 411, 448

text pre-processing 413

TF-IDF 414

Top K shortest paths 394

transaction 4

transform 5, 228, 235, 246

triangles count 445

triangles count Algorithm 399, 446

tuple 88, 147, 189

u

UDF see user-defined function

unstructured data 7, 9

unstructured data sources 23

user-defined function 195, 199, 206, 221, 466, 467

utility based cloud 58

v

vector space model 414-415

Vectorized UDF 206, 222

vertical scalability 14, 57

View 88, 181

VUDF see vectorized UDF

w

web community 440, 448

web content mining 410, 425, 426

web data 7, 424, 448

web graph 426

web mining 425, 448 web

structure 432, 449 web

structure mining 426

web usage mining 425, 426, 428, 429, 448

x

XML 100-103

XPath 102

y

YARN 59-61, 71, 80, 146

z

ZooKeeper61,65,66,74,80,364

