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Preface 
 
 
 
 
Data analysis involves numerical and statistical analysis techniques, which have been 
widely used in many fields such as sciences, biology, research, industry, business and 
even sports, since the 1960s. The first author of this textbook, Raj Kamal, himself used 
analytical techniques in the  1970s for obtaining solutions using matrix multiplication, 
inversion, transpose, determinants, linear equations, simultaneous equations using 
matrices and least square fitting for finding parameters from observed data points, which 
can be described theoretically by superimposition of the functions. His first programme 
was in FORTRAN that  ran  on ICT1904 in 1967. A  classic book, Numerical Methods for 
Scientists and Engineers, Richard W. Hamming, McGraw-Hill,New York, 1973 (Availableat 
the ACM digital library), fuelled his interest in the field of analytics since then. Both the 
authors  learned from excellent lessons on Big Data Analytics and Advanced Big Data 
Analytics given by  Ching-Yung Lin, PhD and  adjunct  professor  at  Departments  of 
Electrical Engineering and Computer Science,ColumbiaUniversity USA, in 2017. It is here 
that an idea of writing a textbook on Big Data Analytics for young minds came to the 
authors. 

The  chess  match  of  the  legendary  Garry  Kasparov in  1997 against  the  IBM 
supercomputer,  Deep Blue, is  a  landmark  moment  in  the  history  of  computing 
technology. "It  was the dawn of a new era in artificial intelligence: a machine capable of 
beating the reigning human champion at this most cerebral game", in the words of Garry 
himself.  Nowadays, data   analytics,  decisions,  predictions   and   discovery  of  new 
knowledge, are possible with the use of AI  techniques of machine learning and deep 
learning. The rise in technology has led to production and storage of voluminous amount 

of data. Earlier, megabytes (106  B) were used and now petabytes (1015 B) plus are used for 
processing, analysis, predicting, decisions, discovering facts and generating new 
knowledge. Big Data storage, processing and analysis, face challenges from large growth 
in volume of data, variety of data, various forms and formats, increasing complexity, fast 
generation of data and the need to quickly process, analyse and use data. 

Many applications such as industry  reports,  financial reports,  social network and 
social media, cloud applications, public and commercial websites, scientific experiments, 
simulators, sensors in Internet  of Things, and e-services generate  Big Data. Big Data 
Analytics (BDA)   finds  applications  in  many  areas,  such  as  healthcare,  medicine, 
advertising, marketing, sales, and tracing anomalies in big data in these disciplines 

This textbook explains the  concepts of BDA in a simple to complex manner.  For 
example, it uses the popular Ravensburger Beneath the SeaJigsaw Puzzle (5000pieces) in 
an example to show that scaling out 

and division of the computations along with data works well in parallel processing 
shared-nothing architecture at distributed computing nodes. This student-friendly 
textbook has a number of illustrations, sample codes, case studies and real-life analytics 
for datasets such as toys, chocolates, cars, students'  GPAs and academic performance.



Classic Apache-based   Hadoop  ecosystem  tools  and  the  latest  Apache  Spark  ecosystem 
tools deploying the Python libraries  for analytics  have been described  in depth. 

 

 

Readers 
 

This textbook is an extremely useful asset for national as well as international students of 
Big Data Analytics. This book caters to the needs of undergraduate  and postgraduate 
students  of computer  science and  engineering, information  technology, and  related 
disciplines, along with professionals in the industry for developing innovative Big Data 
Analytics solutions based on Spark ecosystem tools with Python libraries, which include 
the use of machine-learning concepts. 

The book will also be a useful guide in training programmes for Big Data architects 
and analytics requiring new skills, and for those who wish to learn the latest topics. 

The main features of the book are: 

• Easy-to-understand     and   student-friendly     content,    which   includes 

illustrative  figures, examples and sample codes 

• The book explains architecture,   storage  and programming  methods  for 

Big Data analytics,  while keeping  multidisciplinary  undergraduate   and 

postgraduate  students as primary readers in mind 

• Learning objectives for each section, recall from previous  chapters  and 

introduction along with  meanings  of important   key terms  have  been 

provided in the beginning of each chapter 

•  Self-assessment  questions,  classified  into  three   difficulty  levels,  have 

been given at the end of each section in a chapter 

•  Key concepts  covered,  learning  outcomes,  objective  questions,  review 

questions and practice  exercises have been provided towards the end of 

the textbook. 
 

 

Roadmap for BDA Readers 
 

The author presumes the readers possess basic intellectual and academic background in 
mathematical and statistical methods, cloud platform for storage and applications (such 
as Amazon 53), object oriented programming, familiarity and programme-writing skills in 
Java, and the knowledge of Python libraries. 

Readers intending to learn and use Hadoop ecosystem tools need to study chapters 1 

to  4  and  6  to  9.  They need  prerequisite  programme-writing  skills in Java. Readers 
intending to learn and use the latest Spark ecosystem tool need to study chapters 1, 3 and 
5 to 10. They need familiarity and programme-writing skills in Java and Python libraries.



Learningand Assessment  Tools 
 

Learning Objectives 
 

Designof this book followsLearning Objective(LO) - oriented approach. This educational 
process emphasises on developing required skills amongst the students. The process tests 
the outcomes of the study of a course, as opposed to routine learning. This approach 
creates an ability to acquire knowledge and apply fundamental principles to analytical 
problems and applications. 

Self Assessment Exercises 
 

Each learning objective is followed by a set of questions for self-assessment. This offers 
great retention of concepts. 

Pedagogical Classification 
 

The pedagogy is arranged as per levels of difficulty-all checkpoint problems are linked 
with Learning Objectives(Los) and marked with Levelsof Difficulty(LOD), to help assess 
students' learning. These levels of difficulty have been derived as per Bloom'staxonomy. 

o o • indicates Level 1  and Level 2, i.e. knowledge and comprehension-based 

easy-to-solve problems. 

o • •  indicates   Level  3  and  Level 4,   i.e.  application   and  analysis-based 

medium to difficult problems. 
 

• ••   indicates  Level 5 and Level, 6 i.e.  synthesis  and evaluation-based  very 

difficult problems. 
 

Learning Outcomes 
 

Summary points specific to each LO  are provided at the end of each chapter. This 
helps in recapitulating the ideas initiated with the outcomes achieved. 

Chapter-end Exercises 
 

More than 300 carefully designed chapter-end questions and exercises are arranged as 
per levels of difficulty, and are framed to enhance knowledge and test new skills learnt. 
These include objective type multiple choice questions, review questions and practice 
exercises. 

 

 

Salient Features 
 

• Extensive  coverage of topics  in Big Data Analytics, such  as Big Data 

NoSQL Column-family, Object and Graph databases,  Data reporting  and 

visualization, Programming    with   open   source   Big  Data   Hadoop 

ecosystems  tools,  Spark,  Spark  ecosystem,   Streaming,   GraphX,  and



Mahout  tools,  have been  explained  using  examples  of datasets   of interest 

to    students,     such    as   toys,    chocolates,     cars    and    GPAs/academic 

performance   of students   in theory  and practical   subjects. 
 

• Latest   topics    such   as  Machine   Learning,   Regression    analysis,   K-NN, 

Predictive  analytics,  Clustering,  Decision trees,  Clusters,  and  Similar, 

frequent  item sets, Pattern  mining solutions, Classifiers, Recommenders, 

Real-time streaming  data  analytics, Graph networks  for web and social 

network analytics, and Text analytics. 

•  Systematic  approach:   Data  architecture    is  followed  by   Analytics 

architectures,  and the section on Hadoop ecosystem tools is followed by 

Spark-  and  Python-based   tools.  Each  chapter   starts   with   learning 

objectives and a quick recall from earlier  chapters.  The  introduction  is 

followed by important  key terms  in the  beginning  of each chapter  for 

easy understanding   of the  chapter  content.  The text  has been  tagged 

with descriptions    and    questions,    self-assessment     exercises    and 

illustrations  within  the  chapter,  and  each  chapter  ends  with  learning 

outcomes, MCQs, review questions and practice exercises. 

• Rich   pedagogy:  20+   programming    codes,   100+    questions,    solved 

examples  and  practice  exercises.  Dedicated  chapter   on  a  major  case 

study in the textbook,  and another  major case study in online content. 

Rich online content,  PPTs, guide to solutions  of practice  exercises  and 

list of select books and references, which makes a comprehensive 

bibliography  for anyone  interested   in pursuing  further  studies  in Big 

Data Analytics. 

 

Chapter Organization 
 

Chapter 1  gives overview of Big Data, characteristics, types and classification methods. It 
describes scalability, need of scaling up and scaling out of processing, analytics using 
massively parallel processors, and cloud, grid and distributed computing. This chapter 
introduces data architecture design, data management, data sources, data quality, data 
pre-processing and export of pre-processed data stores to cloud. Approaches of 
traditional  systems, such as SQL,  Relational Database Management System (RDBMS), 
enterprise  servers and data warehouse for data  storage and analysis, as well as the 
approaches for Big Data storage, processing and analytics have been explained in detail. It 
also includes Berkley Data Analytics architecture, and introduces cases, case studies and



applications  of BOA to its readers. 

Chapter 2  starts  with an interesting  example, explaining the  distributed  parallel 
computing architecture with shared-nothing architecture. This chapter describes basics 
of Hadoop, its ecosystem components, streaming and pipe functions, Hadoop physical 
architecture, Hadoop distributed file system (HDFS). It explains how to organize nodes for 
computations using large-scale file systems, and provides a conceptual understanding of 
MapReduceDaemon, functioning of Hadoop MapReduceframework, YARN for managing 
resources along with the application tasks. The chapter introduces Hadoop ecosystem 
interactions,  and  application support  for  analytics using AVRO,  Zookeeper, Ambari, 
HBase,Hive,Pig and Mahout. 

Chapter3  highlights NoSQL data stores, solutions, schema-less models and increasing 
flexibility of NoSQL for data manipulation. It describes NoSQL data architecture patterns, 
namely the key value pairs, graphs, column family, tabular, document and object in the 
data stores. This chapter explains the use of the shared-nothing architecture, choosing a 
distribution  model, master-slave  versus  peer-to-peer,  and  four  ways which  NoSQL 
handles Big Data problems. The chapter covers MongoDB and Cassandra databases. 

Chapter 4  describes the  MapReduce paradigm, map tasks using key-value pairs, 
grouping-by-keys and  reduce  tasks.  It   provides  the  conceptual  understanding   of 
partitioning  and combiners in the  application execution framework, and MapReduce 
algorithms by stating various examples. The chapter also describes Hive, HiveQL and Pig 
architecture, Grunt shell commands, data model, Pig Latin. It provides an understanding 
how to develop scripts and User-DefinedFunctions. 

Chapter 5 introduces Spark architecture  features, software stack components and 
their functions. It describes the steps in data analysis with Spark, and usage of Spark with 
Python advanced features. The highlight of this chapter is the description of methods of 
downloading Spark, programming with the RDDs, usage of the Spark shell, developing 
and testing Spark codes, and the applications of MLib. The chapter gives understanding of 
how to run ETL processes using the built-in functions, operators and pipelines. It  also 
covers data analytics, data reporting and data visualization aspects. 

Chapter 6 lucidly explains the classes of variables, and the ways of estimating the 
relationships, outliers, variances, probability distributions, errors and correlations 
between variables, items and entities. The chapter gives detailed descriptions of 
regression analysis, and the use of K-NN distance measures for making predictions using 
interpolations  and  extrapolations.  It   explains  machine-learning  methods  of finding 
similar items, similarities, filtering of simliars, frequent itemset mining, collaborative 
filtering, associations and association rules mining. The highlight of this chapter is the 
description of ML  methods of clustering, classifiers and recommenders, and Apache 
Mahout algorithms for big datasets. 

Chapter 7 provides understanding of the concept, model, architecture, management 
of data streams. It  describes stream sources and stream computing aspects - sampling, 
filtering, counting distinct elements, frequent itemset stream analytics, handling of large 
datasets, and mining of association rules. The chapter explains the real-time analytics 
platform, Apache SparkStreaming, and case studies on real-time sentiment analytics and 
stock price analytics. 

Chapter8 describes the modelling of databases as the graphs and representations of 
graphs using triples. The highlight of this chapter is the description of use of graphs and 
graph networks. The chapter gives methods of choosing the graph and graph parameters,



such as centralities   for analytics.  It explains the graph methods of diagnostics, decisions, 
StatsModel, and probabilities-based analytics. Another highlight is the  description of 
features of Apache Spark GraphX,and its architecture, components and applications. 

Chapter 9  describes text  mining and the  usage of ML  techniques  .    Naive-Bayes 
analysis, and support-vector machines (SVMs) for analysing text. The chapter explains 
the methods of web mining, link analytics, analysing of web graphs, PageRank methods, 
web structure  analytics, finding hubs and communities, social-network analysis, and 
representation  of social networks as graphs.  It  describes computational  methods  of 
finding the clustering in social network graphs, SimRank,counting triangles (cliques) and 
discovering the communities. 

Chapter 10  describes installation methods for Hadoop, Hive, Pig and Spark on the 
Ubuntu platform. The highlight of this chapter is deploying and exploring open-source 
Lego datasets,  schema,  processing  and  storage.  The  chapter  explains  MapReduce 
implementation for counting items in a dataset, creating Hive data tables from a CSV 
format  dataset,  and  creating Dataframes  from RDDs.  It  describes Hive and PySpark 
programmes using functions for Merge  and Join of Dataframes, the SQL-equivalentJoin, 
and the UDFs for customised query processing. The chapter explains programmes for data 
visualization using pi, bar and scatter  plots. Another highlight of the  chapter  is the 
description  of machine  learning  programmes  using  sklearn  for  SVMs,  Naive Bayes 
Classifiers,linear and polynomial regression analyses, and predictive analytics. 

Followingcontent is available towards the end of this textbook: 

1.   Solution to objective questions 
 

2.  Bibliography 
 

•     Printed and e-books 
 

•      Website resources 
 

•     Research journals 
 

•     Reference papers 
 

 

Online LearningCenter 
 

An  accompanying  web  supplement  available  at   http://www.mhhe.com/kamal/bda 
includes: 

PowerPoint slides for each chapter to supplement  lecture presentations 
 

Solution guide to practice exercises 
 

Write-up on topics 
 

An additional  case  study  using  an  open  source  large  dataset   of car 

company 

Although much care has been taken to ensure an error-free text, a few mistakes may

http://www.mhhe.com/kamal/bda
http://www.mhhe.com/kamal/bda


have  crept  in.  The  authors   shall  be  grateful   if they  are  pointed   out  by  the  readers. 
Feedback on content  of the book as well as the web supplement  available on the McGraw• 
Hill     site     from     readers      will     be     highly     appreciated      through      e-mail     to 
dr _rajkamal@hotmail.com   and preeti_ms@rediffmail.com. 

 

RAJ KAMAL 
 

PREETISAXENA

mailto:_rajkamal@hotmail.com
mailto:_rajkamal@hotmail.com
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Introductionto Big Data Analytics 
 

 
 
 
 
 
 

LEARNING OBJECTIVES 
 
 

After studyingthis chapter,you will be able to: 
 

LO  1.1  Get conceptual  understanding  of data and web data; classification of data as 

structured, semi-,  multi-  and  unstructured   data;  Big Data  characteristics, 

types, classifications and handling techniques 
 

LO   1.2   Get conceptual  understanding   of  scalability,  Massively Parallel  Processing 

(MPP), distributed, cloud and grid computing 
 

LO    1.3      Know  the   design  layers   in   data-processing   architecture    for  the   data 

management and analytics 
 

LO  1.4   Get introduced  to  data  sources,  data  quality,  data  pre-processing,  and  the 

export of data store (such as tables, objects and files) to the cloud 
 

LO 1.5 Get conceptual understanding  of data storage and analysis; comparison between 

traditional  systems such as Relational Database Management System (RDBMS), 

enterprise  servers, data warehouse  and approaches  for Big Data storage and 

analytics 
 

LO 1.6 Get knowledge of use cases and applications of Big Data in various fields. 
 

 

 1.1  ! INTRODUCTION   

 

Two Grand Masters, Magnus Carlsen and Sergey Karjakin, played the  final in World 

Chess Championship held on December 1, 2016.  Magnus Carlsen won this final and the



title  of Grand  Master.   Sergey  Karjakin,  in  order   to  win,  would  have  to  design  a new 

strategy  to defeat  Carlsen  and  other  players  next  year.  A Grand Master  typically  studies 

the  moves  made  in earlier  matches   played  by Grand  Masters,  analyzes  them  and  then 

designs  his  strategies.   Evolving  strategy   to  defeat  an  opponent   could  even  make  good 

use  of the  data  of Gary Kasparov's   matches   from  1984.  Study and analysis of a large 

number of matches helps in evolving a winning strategy. Similarly, analytics of Big Data 

could enable discovery of new facts, knowledge and strategy in a number of fields, such 

as manufacturing, business, finance, healthcare, medicine and education. 

 
1.1.1 Need of Big Data 

 

The rise in technology has led to the production and storage of voluminous amounts of 

data. Earlier megabytes (106 B) were used but nowadays petabytes  (1015 B)  are used for 

processing,   analysis,   discovering   new   facts   and   generating    new   knowledge. 

Conventional  systems  for  storage,  processing  and  analysis  pose challenges  in  large 

growth  in  volume  of data,  variety  of data,  various  forms  and  formats,  increasing 

complexity, faster  generation  of data  and need of quickly processing, analyzing and 

usage. 

Figure  1.1   shows  data  usage  and  growth.  As size  and  complexity  increase,  the 

proportion  of unstructured  data types also increase. 
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Figure   1.1 Evolution of Big Data and their characteristics 

 

An example of a traditional  tool for structured  data storage and querying is RDBMS. 

Volume, velocity and variety (3Vs) of data need the usage of number of programs and 

tools for  analyzing and processing  at  a very high  speed. When integrated  with  the 

Internet  of Things, sensors and machines data, the veracity of data is an additional V. 

(Section 1.2.3) 
 

Big Data requires new tools for processing and analysis of a large volume of data. For



example, unstructured,  NoSQL (not only SQL) data or Hadoop compatible system data. 
 

Following  are  selected  key  terms   and  their   meanings,  which  are  essential  to 

understand  the topics discussed in this chapter: 
 

Application means application  software or a collection of software components.  For 

example, software for acquiring, storing, visualizing and analyzing data. An application 

performs a group of coordinated activities, functions and tasks. 
 

Application  Programming Interface  (API) refers to a software component which enables a 

user  to  access an  application,  service  or  software  that  runs  on  a  local or  remote 

computing  platform.  An API initiates  running  of the  application  on  receiving  the 

message(s) from the  user-end.  An API sends the  user-end  messages to the  other-end 

software. The other-end software sends responses or messages to the API and the user. 
 

Data Model refers to a map or schema, which represents  the inherent  properties  of the 

data. The map shows groupings  of the  data elements,  such as records  or tables, and 

their associations. A model does not depend on software using that data. 
 

Data Repository refers to a collection of data. A data-seeking program relies upon the 

data repository  for reporting. The examples of repositories  are database, flat file and 

spreadsheet. [Repository in English means a group which can be relied upon to look for 

required things, such as special information or knowledge. For example, a repository of 

paintings by various artists.] 

Data Store refers to a data repository of a set of objects. Data store is a general concept 

for data repositories,  such as database, relational  database, flat file, spreadsheet,  mail 

server, web server and directory services. The objects in data store model are instances 

of the classes which the database schemas  define. A data store may consist of multiple 

schemas or may consist of data in only one schema. Example of only one scheme for a 

data store is a relational database. 
 

Distributed  Data Store refers to a data store  distributed  over multiple  nodes. Apache 

Cassandra is one example of a distributed data store. (Section 3. 7) 
 

Database  (DB) refers to a grouping of tables for the collection of data. A table ensures a 

systematic way for accessing, updating and managing data. A database pertains  to the 

applications, which access them. A database  is a repository  for querying the  required 

information   for  analytics,  processes,   intelligence   and  knowledge  discovery.  The 

databases   can  be  distributed   across  a  network   consisting   of  servers   and   data 

warehouses. 

Table  refers  to a presentation  which consists of row fields and  column fields. The 

values at the fields can be number, date, hyperlink, image, object or text of a document. 

Flat File means a file in which data cannot be picked from in between and must be read



from the beginning to be interpreted.  A file consisting of a single-table file is called a 

flat file. An example of a flat file is a csv (comma-separated value) file. A flat file is also a 

data repository. 
 

Flat File Database   refers  to  a database  in which  each  record  is in  a separate  row 

unrelated to each other. 
 

CSV File refers to a file with comma-separated  values. For example, CSlOl, "Theory of 

Computations",  7.8  when  a student's  grade  is 7.8  in subject code CSlOl and  subject 

"Theory of Computations". 
 

Name-Value  Pair refers to constructs  used in which a field consists of name and the 

corresponding value after that. For example, a name value pair is date, ""Oct. 20, 2018"", 

chocolates_sold, 178; 
 

Key-Value Pair refers to a construct  used in which a field is the key, which pairs with 

the corresponding value or values after the key. For example, consider a tabular record, 

""Oct. 20, 2018"";   ""chocolates_sold"", 178. The date is the primary key for finding the 

date of the record and chocolates_sold is the secondary key for finding the number of 

chocolates sold. 
 

Hash Key-Value Pair refers to the construct in which a hash function computes a key for 

indexing  and  search,  and  distributing  the  entries  (key/value  pairs)  across  an array 

of slots (also called buckets). (Section 3.3.1) 

Spreadsheet  refers to the recording of data in fields within rows and columns. A field 

means a specific column of a row used for recording information. The values in fields 

associates  a program,  such  as  Microsoft Excel 2013.   An example  of a  spreadsheet 

application  is accounting.  The application  manages, analyzes and enables new values 

either  directly or using formulae which contain the relationships  of a field with cells 

and rows. Examples of functions are SUMIF and COUNTIF, delete duplicate entries, sort 

using multiple  keys, filter  single or multiple  columns, create  a filter  using filtering 

criteria or rules for multi-fields, and create top-n lists for values or percentages. 

Stream Analytics  refers to a method of computing continuously, i.e. even while events 

take place data flows through the system. 
 

Database Maintenance   (DBM) refers to a set of tasks which improves a database. DBM 

uses   functions   for   improving   performance    (such   as   by   query   planning   and 

optimization),  freeing-up  storage  space,  updating  internal   statistics,  checking  data 

errors and hardware faults. 

Database  Administration   (DBA)     refers    to    the    function    of    managing    and 

maintaining Database Management System (DBMS)  software regularly. A database 

administering  personnel  has many responsibilities,  such as installation,  configuration, 

database  design, implementation  upgrading,  evaluation  of database  features,  reliable



backup  and recovery  methods  for the database. 
 

Database Management  System (DBMS) refers to a software system, which contains a set 

of programs specially designed for creation and management  of data stored in a database. 

Transactions can be performed with database/relational  database. 

Relational Database is a collection of data  into multiple  tables, which relate  to each 

other  through  special fields, called keys (primary  key, foreign key and unique  key). 

Relational databases provide flexibility. 

Relational Database Management  System (RDBMS) refers to a software system used for 

creation  of  relational   databases  and  management   of  data  which  are  stored  in  a 

relational   database.  RDBMS   functions  perform   the   transactions on  the   relational 

database. Examples of RDBMS are MySQL, PostGreSQL(Oracle database  created  using 

PL/SQL) and Microsoft SQL server using T-SQL. 
 

Transaction  (trans  +  action)  means  two  interrelated   sets  of operations,  actions  or 

instructions. A transaction  is a set of actions which accesses, changes, updates, appends 

or deletes various data. A command 'connect' enables transfers between DBMS software 

and a database. The database in return  connects the DBMS. An example of this is query 

transfer  from a system to a database. The database in return  transfers the answer of the 

query. 

SQL stands for Structured  Query Language. It  is a language used for schema creation 

and schema modifications, data-access control, creating an SQL client and creating an 

SQL  server  for  a database.  It  is a language  for  managing  relational  databases,  and 

viewing, querying and changing (update, insert, append or delete) databases. 
 

Database Connection refers a function DB_connect open()  which an application calls to 

connect to enable the access to the DBMS. The application calls the function DB_connect 

close () to disable the access. 
 

Database Connectivity  (DBC)    refers    to    a   standard    application    programming 

interface  (API), which provides connectivity for accessing the DBMSs. A DBC design is 

independent  of the  DB  system and OS  used. An application  written  using a DBC  can 

therefore  perform operations or actions at both the client and the DB server end. Little 

changes in code suffice for accessing the data. Two examples of DBCs are Open Database 

Connectivity (ODBC) and Java Database Connectivity 0DBC). 
 

Database Connectivity  Driver refers  to  a translation  layer which resides  between  an 

application  using the  application  and the  DBMS. The application  uses DBC  functions 

through  a DBC driver manager with which it is linked. A DBC driver manager manages 

the  drivers associated with the  DBMSs. The DBC  driver sends the  queries to a DBMS. 

Drivers exist for many data sources and all major DBMSs. 
 

DB2 is IBM  RDBMS.  DBZ has many features. For example, triggers, stored procedures



and dynamic bitmapped  indexing for number  of application types, such as traditional 

host-based   applications,  client/ server-based   applications  and  business  intelligence 

applications. 
 

Data Warehouse refers to sharable data, data stores and databases in an enterprise.  It 

consists of integrated,  subject oriented (such as finance, human resources and business) 

and non-volatile data stores, which update regularly. 
 

Data Mart is a subset of data warehouse. Data mart  corresponds  to specific business 

entity on a single subject (or functional area), such as sales or finance data mart is also 

known as High Performance Query Structures (HPQS). 
 

Process means a composition of group of structured  activities, tasks or services that 

lead to a particular  goal. For example, purchase  process for airline tickets. A process 

specifies activities with relevance rules based on data in the process. 
 

Process Matrix  refers to a multi-element  entity, each element of which relates a set of 

data or inputs to an activity (or subset of activities). 
 

Business  Process  is  an  activity,  series  of activities  or  a  collection  of inter-related 

structured  activities, tasks  or processes. A  business process serves a particular  goal, 

specific result,  service or product.  The business process is a representation,   process 

matrix  or flowchart of a sequence of activities with interleaving decision points. 
 

Business Intelligence  is a process which enables a business service to extract  new facts 

and knowledge that  enable intelligent  decisions. The new facts and knowledge follow 

from the previous results of business-data processing, aggregation and analysis. 
 

Batch Processing is processing of transactions  in batches with no interactions.  When 

one  set  of  transactions   finish,  the  results   are  stored  and  the  next  batch  starts 

processing.  Credit  card  transactions   is  a  good  example  of  the  same.  The  results 

aggregate at the end of the month for all usages of the card. Batch processing involves 

the  collection of inputs for a specified period and then  running  them  in a scheduled 

manner. 
 

Batch Transaction Processing refers to the execution of a series of transactions  without 

user interactions.  Transaction jobs are set up so they can be run to completion. Scripts, 

command-line  arguments,  control  files  or job-control   language  predefine the  input 

parameters  for the transactions. 
 

Streaming  Transaction  Processing refers  to processing for log streams,  event  streams, 

twitter   streams  and  queries.  The processing  of streaming  data  needs  a specialized 

software framework. Storm from Twitter, 54 from Yahoo, SPARK streaming, HStreaming 

and Flume are examples of frameworks for real-time streaming computations. 
 

In-memory means  operations  using CPU  memory,  such as RAM or caches. Data in-



memory is from a disk or external  data source. The operations  are fast on in-memory 

accesses of data, table or data sets, columns or rows compared to disk-accesses. 
 

Interactive Transaction  Processing  means  processing  the  transactions   which  involve 

continual exchange of information  between the computer  and user; for example, user 

interactions  during e-shopping or e-banking. The processing here is just the opposite of 

batch processing. Decision on historical  data is fast. Interactive  query processing has 

low latency. Low latencies are obtained by the various approaches: massively parallel 

processing (MPP), in-memory databases and columnar databases. 
 

Real-Time Processing refers to processing for obtaining results for making decisions in 

real  time,  processing  as  and  when  the  data  acquires  or  generates   in  live  data 

(streaming) with low latency. 
 

Real-Time Transaction  Processing means that  transactions  process at the  same time as 

the  data arrives from the  data sources. An example of such processing is transaction 

processing at an ATM machine. 
 

Extract,  Transform  and Load  (ETL) refers to the process, which enables data retrieval, 

integration,   transformation   and  storage  (load). Extract means  obtaining  data  from 

homogeneous   or  heterogeneous   data   sources.  Transform means   transforming   or 

optimizing data for the application, and storing the data in an appropriate  structure  or 

format. Load means the structured  data is loaded in the final target  database, i.e. data 

store or data warehouse. 
 

Machine is a computing node or platform for processing, computing and storing. Here, 

sets of data, programs, applications, DBs or DBMSs reside. When other remote machines 

access the resources from the machine, it is identified by a name within a network. 
 

Server is a processing,  computing  and  storing  node. A  server  generates  responses, 

sends replies and messages, and renders  the data sought. Server refers to sets of data, 

programs, applications, data-stores, DBs or DBMSs which the clients access. 
 

Service means a mechanism which enables the provisioning of access to one or more 

capabilities. An interface provides the access capabilities. The access to a capability is 

consistent  with  various  constraints  and  policies. A  service description  specifies these 

constraints   and  policies.  Examples of  services  are  web  service,  cloud  service  and 

BigQueryservice. 
 

Service-Oriented  Architecture   (SOA) is a software architecture  model which consists of 

services,  messages,  operations   and  processes.  SOA   components   distribute   over  a 

network or the Internet  in a high-level business entity. New business applications and 

an application-integration  architecture  can be developed using an SOA in an enterprise. 
 

Descriptive Analytics refers to deriving additional value from visualizations and reports.



Predictive Analytics refers to advanced analytics which enables extraction  of new facts 

and knowledge to predict or forecast. 
 

Prescriptive Analytics refers to derivation  of additional  value and undertaking  better 

decisions for new option(s); for example, maximizing profit. 
 

Cognitive Analytics  refer   to   analysis   of  sentiments,   emotions,   gestures,   facial 

expressions, and actions similar to ones the humans do. The analytics follow the process 

of learning, understanding  and representing.  [Cognitive in English means relating to the 

process of learning, understanding  and representing  knowledge. (CollinsDictionary)] 
 

This chapter  introduces  the  readers  to  the  concepts  of Big Data, scaling-up  and 

scaling-out of data processing and scalability for storage and analytics. It introduces the 

concepts of data processing architecture,  data sources, data quality and the new 

technological developments in data management  for analysis. These are supported  by 

examples and cases on Big Data analytics. This chapter aims to build a foundation before 

the in-depth study of Big Data and analytics tools facilitated by the subsequent chapters 

of the book. 

Section  1.2   introduces   Big Data  and  its  characteristics,   types  and  classification 

methods.  Section 1.3  describes  scalability, scaling up, scaling out  of processing  and 

analytics,  massively parallel  processors,  and  cloud, grid  and  distributed  computing. 

Section  1.4  introduces  data  architecture   design  and  data  management.  Section  1.5 

describes data sources, data quality, data pre-processing and export of data stores to the 

cloud. Section 1.6 describes traditional  systems, such as SQL, Relational Database 

Management System (RDBMS), enterprise  servers and data warehouse for data storage 

and analysis, as well as the approaches for Big Data storage, processing and analytics. 

Section 1. 7 describes Big Data analytics case studies and applications. 

 

 1.2  ! BIG DATA   

Following subsections  describe  the  definitions  of data,  web 

data,  Big Data, Big Data characteristics,  types,  classifications 

and handling techniques: 

Definitions ofData 

Data has several definitions. Usages can be singular or plural. 
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"Data is information, usually in the form of facts or statistics that one can analyze or use 

for further  calculations." [Collins English Dictionary] "Data is information  that  can be 

stored and used by a computer program.". [Computing] "Data is information presented 

in numbers,  letters,  or other  form". [Electrical Engineering, Circuits, Computing and 

Control] "Data is information  from  series  of observations,  measurements  or  facts".
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[Science]  "Data  is information    from  series  of behavioural   observations,   measurements 

or facts".  [Social Sciences] 
 

Definition  of Web Data 
 

Web is large scale integration  and presence of data on web servers. Web is a part of the 

Internet  that  stores web data in the form of documents and other web resources. URLs 

enable the access to web data resources. 
 

Web data is the data present on web servers (or enterprise  servers) in the form of text, 

images, videos, audios and  multimedia  files for web users.  A user  (client  software) 

interacts  with this data. A client can access (pull) data of responses from a server. The 

data  can  also publish  (push) or post  (after  registering  subscription)  from  a server. 

Internet  applications  including web sites, web services, web portals,  online business 

applications, emails, chats, tweets and social networks  provide and consume the web 

data. 
 

Some examples of web data are Wikipedia, GoogleMaps, McGraw-HillConnect, Oxford 

Bookstore and YouTube. 
 

1.   Wikipedia is a web-based, free-content  encyclopaedia project  supported  by the 

Wikimedia Foundation. 
 

2.   Google Maps is a provider  of real-time  navigation, traffic, public transport   and 

nearby places by GoogleInc. 

3.   McGraw-HillConnect is a targeted  digital teaching and learning environment  that 

saves students'  and  instructors'   time  by improving  student  performance  for  a 

variety of critical outcomes. 

4.   Oxford Bookstore is an online book store where people can find any book that they 

wish  to  buy  from  millions  of  titles.  They  can  order  their  books  online  at 

www .oxfordbookstore.com 

5.   YouTube allows billions of people to discover, watch and share originally-created 

videos by GoogleInc. 

 
1.2.1  Classification of Data-Structured, Semi-structuredand 

Unstructured 
 

Data   can   be   classified   as   structured,    semi-structured,    multi-structured     and 

unstructured. 
 

Structured data conform and associate with data schemas and data models. Structured 

data are found in tables (rows and columns). Nearly 15-20%   data are in structured  or 

semi-structured   form.  Unstructured   data  do  not  conform  and  associate  with  any



data models. 
 

Applications  produce  continuously  increasing  volumes  of  both  unstructured and 

structured data.    Data sources  generate  data  in  three  forms,  viz. structured,   semi• 

structured   and  unstructured.   (Refer  online  contents   associated  with  the  Practice 

Exercise 1.1 for four forms, viz. structured,  semi-structured,  multi-structured  and 

unstructured  sources.) 
 

Using Structured Data 
 

Structured data enables the following: 

data insert, delete, update and append 

Indexing to enable faster data retrieval 

Scalability which enables increasing or decreasing capacities and data processing 

operations such as, storing, processing and analytics 

Transactions processing which follows ACID rules (Atomicity, Consistency, Isolation 

and Durability) 

encryption and decryption for data security. 
 

Using Semi-StructuredData 
 

Examples of semi-structured data are XML  and JSON  documents.  Semi-structured  data 

contain   tags  or  other   markers,   which  separate   semantic   elements   and  enforce 

hierarchies  of records and fields within the data. Semi-structured form of data does not 

conform and associate with formal data model structures.  Data do not associate data 

models, such as the relational database and table models. 
 

Using Multi-Structured Data 
 

Multi-structured  data refers to data consisting of multiple formats of data, viz. structured, 

semi-structured  and/or  unstructured   data.  Multi-structured  data sets can have many 

formats. They are found in non-transactional  systems. For example, streaming data on 

customer interactions,  data of multiple sensors, data at web or enterprise  server or the 

data- warehouse data in multiple formats. 
 

Large-scale interconnected  systems are thus required  to aggregate the data and use 

the widely distributed resources efficiently. 

Multi- or  semi-structured   data  has  some  semantic  meanings  and  data  is in both 

structured    and   unstructured    formats.   But  as   structured    data,   semi-structured 

data nowadays represent  a few parts  of data (5-10%). Semi-structured  data type has a 

greater presence compared to structured  data. 
 

Following is an example of multi-structured  data.



EXAMPLE 1.1 

 
Give examples of multi-structured  data. 

 

SOLUTION 
 

Structured component of data:  Each chess moves is recorded  in a table in each 

match  that  players  refer  in future.  The records  consist  of serial  numbers  (row 

numbers, which mean move numbers) in the first column and the moves of White 

and Black in two subsequent  vertical columns. Volume of data, i.e. data used for 

analyzing erroneous  or best moves in the matches, keeps growing with more and 

more tables, and may eventually become 'voluminous data'. 
 

Unstructured component of data:  Social media generates  data after  each 

international  match. The media publishes the analysis of classical matches played 

between Grand Masters. The data for analyzing chess moves of these matches are 

thus in a variety of formats. 
 

Multi-structured  data:   The  voluminous  data  of  these  matches  can  be  in  a 

structured format   (i.e.  tables)  as  well  as  in  unstructured    formats   (i.e.  text 

documents,  news columns, biogs, Facebook etc.). Tools of multi-structured   data 

analytics assist the players in designing better strategies for winning chess 

championships. 
 

 
Using Unstructured Data 

 

Unstructured  data does  not  possess  data  features   such  as  a  table  or  a  database. 

Unstructured  data are found in file types such as .TXT,  .CSV. Data may be as key-value 

pairs, such as hash key-value pairs. Data may have internal  structures,  such as in e• 

mails. The data do not reveal relationships,  hierarchy  relationships  or object-oriented 

features, such as extendibility. The relationships, schema and features need to be 

separately   established.   Growth  in   data   today   can   be   characterised    as  mostly 

unstructured  data. Following are some examples of unstructured  data. 
 

 
EXAMPLE 1.2 

 
Give examples of unstructured  data. 

 

SOLUTION 
 

Examples of unstructured  data are: 
 

Mobile data: Text messages, chat messages, tweets, biogs and comments 
 

Website content  data: YouTube videos, browsing data, e-payments, web store



data, user-generated     maps 
 

Social media  data: For exchanging   data  in various  forms 
 

Texts and documents 
 

Personal  documents   and e-mails 
 

Text internal   to an organization:   Text within  documents,   logs, survey  results 
 

Satellite   images,   atmospheric    data,   surveillance,    traffic   videos,   images   from 

Instagram,    Flickr  (upload,   access,  organize,   edit  and  share   photos   from  any 

device from anywhere  in the world). 

 
 

1.2.2 Big Data Definitions
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enhanced    decision  making,   insight   discovery  and   process 

optimization (Gartner12012).    Other definitions can be found in existing literature. 
 

Industry analyst Doug Laney described the '3Vs', i.e. volume, variety and/or  velocity 

as the key "data management  challenges" for enterprises.  Analytics also describe the 

'4Vs', i.e. volume, velocity, variety  and  veracity.  A  number  of other  definitions  are 

available for Big Data, some of which are given below. 
 

"A collection of data sets so large or complex that  traditional  data processing 

applications are inadequate." - Wikipedia 

"Data of a very  large  size, typically to the  extent  that  its manipulation  and 

management  present  significant  logistical challenges."  [Oxford English 

Dictionary (traditional database of authoritative  definitions)] 

"Big Data refers to data sets whose size is beyond the ability of typical database 

software  tool to  capture,  store,  manage  and  analyze."  [The McKinsey Global 

Institute, 2011] 

 
1.2.3 Big Data Characteristics 

 

Characteristics of Big Data, called 3Vs (and 4Vs also used) are: 
 

Volume The phrase 'Big Data' contains the term big, which is related to size of the data 

and hence  the  characteristic.  Size defines the  amount  or quantity  of data,  which is 

generated  from an application(s). The size determines  the  processing  considerations 

needed for handling that data. 
 

Velocity The term  velocity refers  to the  speed of generation  of data.  Velocity is a



measure   of how  fast  the  data  generates   and  processes.   To meet  the  demands   and  the 

challenges  of processing  Big Data, the velocity  of generation   of data plays a crucial  role. 

VarietyBig Data comprises of a variety of data. Data is generated from multiple sources 

in a system. This introduces variety in data and therefore  introduces  'complexity'.  Data 

consists of various forms and formats. The variety is due to the availability of a large 

number of heterogeneous  platforms in the industry. This means that the type to which 

Big Data belongs to  is also an important  characteristic  that  needs  to be known for 

proper processing of data. This characteristic  helps in effective use of data according to 

their formats, thus maintaining the importance of Big Data. 

Veracity is also considered an important  characteristic  to take into account the quality 

of data captured, which can vary greatly, affecting its accurate analysis. 
 

The 4Vs (i.e. volume, velocity, variety  and  veracity)  data  need  tools  for  mining, 

discovering patterns,  business intelligence, artificial intelligence (AI), machine learning 

(ML),  text  analytics,  descriptive  and  predictive  analytics,  and  the  data  visualization 

tools. 

 
1.2.4 Big Data Types 

 

A task team on Big Data classified the types of Big Data (lune 2013)2.  Another team from 

IBM developed a different classification for Big Data types. 3 
 

Following are the suggested types: 
 

1.   Social networks and web data, such as Facebook, Twitter, e-mails, biogs and YouTube. 
 

2.   Transactions data and Business  Processes (BPs) data, such as credit card transactions, 

flight bookings, etc. and public agencies data such as medical records, insurance 

business data etc. 

3.   Customer master data, such as data for facial recognition and for the name, date of 

birth, marriage anniversary, gender, location and income category, 

4.  Machine-generated  data, such as machine-to-machine  or Internet  of Things data, 

and the data from sensors, trackers, web logs and computer systems log. Computer 

generated  data  is also considered  as machine  generated  data  from  data  store. 

Usage of programs for processing of data using data repositories, such as database 

or file, generates data and also machine generated data. 

5.   Human-generated data such as biometrics data, human-machine  interaction  data, e• 

mail records with a mail server and MySQL database of student  grades. Humans 

also records  their  experiences  in ways such  as writing  these  in notebooks  or



diaries,  taking  photographs    or audio  and video  clips. Human-sourced    information 

is now  almost  entirely   digitized  and  stored  everywhere   from  personal   computers 

to social networks.   Such data  are loosely structured   and often  ungoverned. 

The following  examples  illustrate   machine-generated     data. 
 

 
EXAMPLE  1.3 

 
Give three examples of the machine-generated  data. 

 

SOLUTION 
 

Examples of machine-generated  data are: 

1.   Data from  computer  systems: Logs, web logs, security/ surveillance  systems, 

videos/images etc. 

2.   Data from fixed sensors: Home automation, weather sensors, pollution sensors, 

traffic sensors etc. 

3.   Mobile sensors (tracking) and location data. 
 

 

Section 1. 7  describes Big Data Analytics use cases, case studies and applications  in 

detail. The following example illustrates the usages of Big Data generated from multiple 

types  of data  sources  for  optimizing  the  services  offered,  products,  schedules  and 

predictive tasks. 

 
EXAMPLE 1.4 

 
Think of a manufacturing and retail marketing company, such as LEGO toys. 

 

How  does  such  a  toy  company  optimize  the   services  offered,  products   and 

schedules, devise ways and use Big Data processing  and  storing  for predictions 

using analytics? 
 

SOLUTION 
 

Assume that a retail and marketing company of toys uses several Big Data sources, 

such as (i) machine-generated data from sensors (RFID readers) at the toy packaging, 

(ii) transactions data of the sales stored as web data for automated reordering by the 

retail  stores and (iii) tweets, Facebook posts, e-mails, messages, and web data for 

messages and reports. 
 

The company uses Big Data for understanding  the  toys and themes  in present 

days that  are popularly  demanded  by children,  predicting  the  future  types  and 

demands. The company using such predictive analytics, optimizes the product mix



and   manufacturing     processes    of  toys.   The   company   optimizes    the   services   to 

retailers   by  maintaining    toy  supply   schedules.   The  company   sends  messages   to 

retailers   and children  using  social media  on the arrival  of new and popular  toys. 

 

 
The following  example  illustrates   the Big Data features  of 3Vs and their  applications. 

 

 

EXAMPLE 1.5 

 
Give an example offeatures  of 3Vs in Big Data and application. 

 

SOLUTION 
 

Consider satellite images of the Earth's atmosphere  and its regions. The Volume of 

data from the satellites is large. A number  of Indian satellites, such as KALPANA, 

INSAT-lA and  INSAT-3D  generate   this  data.  Foreign  satellites   also  generate 

voluminous data continuously. Satellites record the images of full disk and sectors, 

such as east and west Asia sectors and regions. 
 

Velocity is also large. A number of satellites collect this data round the clock. Big 

Data analytics helps in drawing of maps of wind velocities, temperatures  and other 

whether parameters. 
 

Variety of images can be in visible range,  such as IR-1 (infrared  range  -1), IR• 

Z(infrared range -2), shortwave infrared (SWIR), MIR (medium range IR) and colour 

composite. 
 

Data Veracity, uncertain  or imprecise data, is as important  as Volume, Velocity 

and Variety. Uncertainty arises due to poor resolutions used for recording or noise 

in images due to signal impairments. 
 

Data processing needs increased  speed of computations  due to higher volumes. 

Need of data management, storage and increased analytics requires new innovative 

non-traditional  methods. 
 

Big Data of satellites helps in predicting weather, and mapping of different crops 

and from that estimating the expected crop yield. 
 

 
The following examples explain the uses of Big Data generated  from multiple types of 

data sources. 

 
EXAMPLE 1.6 

 
How are Big Data used in the following companies and services using analytics?



(i)  Chocolate    Marketing    Company   with   large   number    of  installed    Automatic 

Chocolate  Vending  Machines  (ACVMs) 
 

(ii) Automotive    Components    and   Predictive    Automotive    Maintenance     Services 

(ACPAMS) rendering     customer    services   for   maintenance     and   servicing    of 

(Internet)   connected   cars and its components 

(iii)Weather  data Recording,  Monitoring  and Prediction   (WRMP)  Organization. 
 

SOLUTION 
 

(i) Assume ACVM company. Each ACVM sells five flavours (FLl, FL2, FL3, FL4 and 

FLS) KitKat, Milk, Fruit and Nuts, Nougat and Oreo. The company uses Big Data 

types as: Machine-generated  data on the sale of chocolates, reports  of unfilled or 

filled   machine   transaction data.  Human-generated data  of  buyer-machine 

interactions at  the  ACVMs.  Social networks and web data on  feedback  and 

personalized  messages based  on interactions   and  human-generated   data  on 

facial recognition  of the buyers. The company uses Big Data for efficient and 

optimum planning of fill service for chocolates, sentiment analysis of buyers for 

specific flavours, ACVMs location and periods of higher-sales analysis, assessing 

needs  of predictive  maintenances  of machines,  additions  and  relocations  of 

machines, and predictions, strategies and planning for festival sales. 

(ii) ACPAMS   uses  Big  Data  types  as:  machine-generated   data  from  sensors  at 

automotive  components,  such as brakes,  steering  and engine from each car; 

transactions data stored at the service website; social networks and web data in 

the  form  of  messages,  feedback  and  reports   from  customers.  The  service 

provides messages for scheduled and predictive maintenances. The service 

generates reports   on  social networks and  updates  the  web  data  for   the 

manufacturing  plant. The service generates reports  about components qualities 

and needed areas for improvement in products of the company. 

(iii)WRMP  Organization  uses  Big Data types  as: machine-generated   data  from 

sensors at weather stations and satellites, social networks and web data and the 

reports  and alerts issued by many centers  around the world. The organization 

stores  and  processes  the  weather  records  generated  by  its  stations,  social 

networks  and web data collected from other  centers.  The organization  issues 

maps  and  weather  warnings,  predicts  weather,  rainfall  in  various  regions, 

expected dates of arrival of monsoon in different  regions, issues forecasts on 

social networks and web pages, generates social network and web data for areal 

maps of cloud and wind.



1.2.5  Big Data Classification 
 

Big Data can be classified on the basis of its characteristics  that are used for designing 

data  architecture  for processing  and  analytics. Table 1.1  gives various  classification 

methods for data and Big Data. 
 

Table  1.1 Various classification methods for data and Big Data 
 

Basis of 

Classification 

 
Examples 

 

 
Data sources 

(traditional) 

 

Data storage  such as records,  RDBMs, distributed  databases,  row-oriented  In- 

memory  data tables, column-oriented   In-memory  data tables, data warehouse, 

server, machine-generated   data, human-sourced   data, Business Process (BP) data, 

Business Intelligence  (BI) data 

Data formats 

(traditional) 

 
Structured  and semi-structured 

 

 
Big Data 

sources 

 

Data storage,  distributed  file system, Operational  Data Store (ODS),  data marts, 

data warehouse,  NoSQL database  (MongoDB, Cassandra),  sensors data, audit trail 

of financial transactions,   external  data such as web, social media, weather  data, 

health  records 

Big Data 

formats 

 
Unstructured,   semi-structured   and multi-structured   data 

 
Data  Stores 

structure 

 

Web, enterprise  or cloud servers, data warehouse,  row-oriented  data for OLTP, 

column-oriented    for OLAP, records, graph  database,  hashed  entries  for key/value 

pairs 

Processing 

data rates 

 
Batch, near-time,  real-time,  streaming 

Processing Big 

Data  rates 

 

High volume, velocity, variety  and veracity,  batch, near real-time  and streaming 

data processing, 

Analysis types 
 

Batch, scheduled,  near real-time  datasets  analytics 

Big Data 

processing 

methods 

 
Batch processing  (for example, using MapReduce, Hive or Pig), real-time 

processing  (for example, using SparkStreaming,  SparkSQL,Apache Drill) 

 
Data analysis 

methods 

 

Statistical  analysis, predictive  analysis, regression  analysis, Mahout, machine 

learning  algorithms,  clustering  algorithms,  classifiers, text analysis,  social 

network  analysis, location-based   analysis, diagnostic  analysis, cognitive analysis 

  

Human, business  process, knowledge discovery, enterprise  applications,  Data 



I Data usages       I Stores 

 

 

1.2.6  Big Data HandlingTechniques 
 

Following  are  the   techniques   deployed  for  Big  Data  storage,   applications,   data 

management and mining and analytics: 

Huge data  volumes  storage,  data  distribution,  high-speed  networks  and  high• 

performance computing 
 

Applications  scheduling  using  open  source,  reliable,  scalable,  distributed   file 

system, distributed  database, parallel and distributed  computing systems, such as 

Hadoop (Chapter 2) or Spark (Chapters 5-10) 

Open source tools which are scalable, elastic and provide virtualized environment, 

clusters of data nodes, task and thread management 

Data management  using NoSQL,  document  database,  column-oriented  database, 

graph database and other form of databases used as per needs of the applications 

and  in-memory  data  management  using  columnar  or  Parquet  formats  during 

program execution 

Data mining and analytics, data retrieval,  data reporting,  data visualization  and 

machine-learning Big Data tools. 
 
 

Self-Assessment Exercise linkedto LO 1.1 
 

1.   How do you define data, web data and Big Data? 
 

2.   How do you classify data as structured,  semi-structured,  multi-structured  and 

unstructured? 

3.   Give data example of student  records  at a University and explain structured 

data, hierarchical relationships between them. 

4.   Recall three  examples in Example 1.6. How would you classify data which you 

shall be using for analytics in these examples? 

5.   Consider the  usage  examples  of Big Data for  a  car  company. Assume that 

company manufactures  five models of cars, and each model is available in five 

colours and five shades. The company collects inputs from customers and sales 

centres,  and  inputs  of  component  malfunctions   from  service  centres   for 

different  models. The  company  also uses  social media  inputs.  Explain 3Vs 

characteristics in this company's data.



 

1.3  ! SCALABILITY AND PARALLEL PROCESSING 

Big Data needs processing of large data volume, and therefore 

needs  intensive  computations.  Processing  complex 

applications   with   large   datasets    (terabyte    to   petabyte 

datasets)  need  hundreds  of computing  nodes. Processing of 

this   much  distributed   data   within   a  short   time   and  at 

minimum cost is problematic. 

Convergence ofData Environments and Analytics 
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Big Data can co-exist with traditional  data  store. Traditional  data  stores use RDBMS 

tables  or data warehouse.  Big Data processing and analytics requires  scaling up and 

scaling out, both vertical and horizontal  computing resources. Computing and storage 

systems when run in parallel, enable scaling out and increase system capacity. 
 

Scalability enables increase or decrease in the capacity of data storage, processing and 

analytics. Scalability  is the  capability of a system to handle  the  workload  as per  the 

magnitude   of  the   work.  System  capability  needs  increment   with  the   increased 

workloads. When the workload and complexity exceed the system capacity, scale it up 

and scale it out. 
 

The following subsection describes the concept of analytics scalability. 
 

 

1.3.1  Analytics Scalabilityto Big Data 
 

Vertical  scalability  means  scaling up the  given system's  resources  and increasing  the 

system's analytics, reporting  and visualization capabilities. This is an additional way to 

solve problems  of greater   complexities.  Scaling up  means  designing  the  algorithm 

according to the architecture  that uses resources efficiently. For example, x terabyte of 

data take time t for processing, code size with increasing complexity increase by factor 

n, then scaling up means that processing takes equal, less or much less than (n x  t). 
 

Horizontal scalability  means increasing the  number  of systems working in coherence 

and scaling out the workload. Processing different  datasets  of a large dataset  deploys 

horizontal  scalability. Scaling  out means  using  more  resources  and  distributing  the 

processing and storage tasks in parallel. If r resources in a system process x terabyte  of 

data in time t, then the (p x x) terabytes process on p parallel distributed nodes such that 

the  time  taken  up  remains  t or is slightly more than  t (due to  the  additional  time 

required for Inter Processing nodes Communication (IPC).
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The  easiest   way  to  scale  up  and   scale  out   execution    of  analytics   software   is  to 

implement   it on a bigger  machine  with  more  CPUs for greater   volume,  velocity,  variety 

and complexity  of data. The software  will definitely  perform  better  on a bigger  machine. 

However,  buying  faster  CPUs, bigger  and faster  RAM  modules  and hard  disks, faster  and 

bigger  motherboards    will be expensive  compared   to the  extra  performance   achieved  by 

efficient  design  of algorithms.   Also, if more  CPUs add  in a computer,   but  the  software 

does   not   exploit    the   advantage    of  them,    then    that    will   not   get   any   increased 

performance   out of the  additional   CPUs. 
 

Alternative   ways for scaling  up and  out  processing   of analytics  software  and Big Data 

analytics    deploy   the   Massively   Parallel   Processing    Platforms    (MPPs),  cloud,   grid, 

clusters,  and distributed   computing   software. 
 

The  following   subsections    describe   computing    methods    for  high   availability    and 

scalable  computations   and analysis. 

 
1.3.2  Massively ParallelProcessingPlatforms 

Scaling uses parallel processing systems. Many programs are so     A soliwmon,for    B.tg, dat~ 

large  and/ or  complex that  it is impractical  or impossible to     parallel andl  alistir,ibl!!lt:ea 
complliltlilitg in,  ::i  de udL 

execute them on a single computer system, especially in limited     compm:ilillg env,imnment 

computer  memory. Here, it is required  to enhance  (scale) up 

the    computer    system   or   use   massive   parallel   processing   (MPPs)  platforms. 

Parallelization of tasks can be done at several levels: (i) distributing  separate tasks onto 

separate threads on the same CPU, (ii) distributing separate tasks onto separate CPUs on 

the same computer and (iii) distributing separate tasks onto separate computers. 

When making software, draw the advantage of multiple computers (or even multiple 

CPUs within the same computer) and software which need to be able to parallelize tasks. 

Multiple compute resources are used in parallel processing systems. The computational 

problem   is   broken   into   discrete   pieces   of   sub-tasks   that    can   be   processed 

simultaneously. The system executes multiple program instructions  or sub-tasks at any 

moment  in  time.  Total  time  taken  will be  much  less than  with  a  single  compute 

resource. 
 

1.3.2.1  Distributed Computing  Model 
 

A distributed  computing model uses cloud, grid or clusters, which process and analyze 

big  and  large  datasets   on  distributed   computing  nodes  connected  by  high-speed 

networks. Table 1.2 gives the requirements  of processing and analyzing big, large and 

small to medium datasets on distributed  computing nodes. Big Data processing uses a 

parallel, scalable and no-sharing program model, such as MapReduce, for computations 

on it. (Chapter 2)



Table  1.2 Distributed computing paradigms 
 

 

Distributed computing   on multiple 

processing   nodes/  clusters 

Big 

Data> 
lOM 

 

Large datasets 

below  10 M 

 

Small to medium 

datasets up to 1 M 

 

Distributed  computing Yes Yes No 

Parallel computing Yes Yes No 

Scalable computing Yes Yes No 

Shared nothing  (No in-between  data sharing 

and inter-processor   communication) 

 

Yes 
Limited 

sharing 

 
No 

Shared in-between  between  the distributed 

nodes/ clusters 

 
No 

Limited 

sharing 

 
Yes 

 

1.3.3  Cloud Computing 
 

Wikipedia defines cloud computing  as, "Cloud computing  is a type of Internet-based 

computing that  provides shared processing resources  and data to the  computers  and 

other devices on demand." 

One of the best approach for data processing is to perform  parallel and distributed 

computing  in  a  cloud-computing  environment.  Cloud usages  circumvent  the  single 

point failure due to failing of one node. Cloud design performs as a whole. Its multiple 

nodes perform automatically and interchangeably. It offers high data security compared 

to other distributed technologies. 
 

Cloud resources  can be Amazon Web Service (AWS)  Elastic Compute Cloud (EC2), 

Microsoft Azure or Apache CloudStack. Amazon Simple Storage Service (S3) provides 

simple web services interface  to store  and retrieve  any amount  of data, at any time, 

from anywhere on the web.  [Amazon EC2  name possibly drives from the feature that 

EC2 has a simple web service interface, which provides and configures the storage and 

computing capacity with minimal friction]. 
 

Cloud computing  features   are:  (i) on-demand   service  (ii) resource  pooling,  (iii) 

scalability, (iv) accountability,  and  (v) broad  network  access. Cloud services  can be 

accessed from anywhere and at any time through the Internet. A local private cloud can 

also be set up on a local cluster of computers. 
 

Cloud computing  allows availability  of computer  infrastructure   and  services  "on• 

demand"  basis. The computing  infrastructure   includes data  storage  device, 

development platform, database, computing power or software applications. 
 

Cloud services can be classified into three fundamental types:



Saas and  Pa.as as service 1.   Infrastructure   as  a  Service  (IaaS): Providing  access  to     
Olot11d servkes ofifer, la:aS,

 

resources,   such   as  hard   disks,  network   connections,     modalsforprooassinj;      a11T1a 
a na'lyzi11T1g time lar,ge  datasets 

databases storage, data center and virtual server spaces is     on complJJltiFllg  lilooles. 

Infrastructure  as a Service (IaaS). Some examples are Tata 

Communications, Amazon data centers  and virtual servers. Apache CloudStack is 

an open source software for deploying and managing a large network  of virtual 

machines, and offers public cloud services which provide highly scalable 

Infrastructure  as a Service (IaaS). 

2.   Platform  as a Service (PaaS): It  implies providing  the  runtime  environment  to 

allow developers to build applications and services, which means cloud Platform 

as a Service. Software at the  clouds support  and manage the  services, storage, 

networking, deploying,    testing,    collaborating,    hosting    and    maintaining 

applications. Examples are Hadoop Cloud Service (IBM Biglnsight, Microsoft Azure 

HD Insights, Oracle Big Data Cloud Services). 

3.   Software as a Service (Saas): Providing software applications as a service to end• 

users is known as Software as a Service. Software applications  are hosted  by a 

service  provider   and  made  available  to  customers  over  the  Internet.   Some 

examples are SQL GoogleSQL,IBM  BigSQL, HPE Vertica, Microsoft Polybase and 

Oracle Big Data SQL. 
 

 

1.3.4  Grid and Cluster Computing 
 

Grid Computing 
 

Grid Computing refers  to distributed  computing,  in which a group  of computers  from 

several  locations  are  connected  with  each  other  to  achieve  a  common  task.  The 

computer resources are heterogeneously and geographically disperse. A group of 

computers that might spread over remotely comprise a grid. A grid is used for a variety 

of purposes. A single grid of course, dedicates at an instance to a particular  application 

only.  Grid  computing   provides   large-scale   resource   sharing   which   is  flexible, 

coordinated and secure among its users. The users consist of individuals, organizations 

and resources. 
 

Grid computing suits data-intensive storage better than storage of small objects of few 

millions of bytes. To achieve the maximum benefit from data grids, they should be used 

for a large amount of data which can distribute  over grid nodes. Besides data grid, the 

other  variation  of grid, i.e., computational  grid focuses on computationally  intensive 

operations.



Features  of Grid Computing  Grid computing, similar to cloud computing, is scalable. 

Cloud computing  depends  on sharing  of resources  (for example, networks,  servers, 

storage,  applications   and  services)  to  attain   coordination   and  coherence   among 

resources similar to grid computing. Similarly, grid also forms a distributed network for 

resource integration. 
 

Drawbacks of Grid Computing Grid computing  is the  single point,  which leads to 

failure  in case of underperformance   or failure  of any of the  participating  nodes. A 

system's storage capacity varies with the number of users, instances and the amount of 

data transferred  at a given time. Sharing resources among a large number of users helps 

in reducing infrastructure  costs and raising load capacities. 
 

Cluster Computing 
 

A cluster is a group of computers connected by a network. The group works together to 

accomplish  the  same task.  Clusters are  used  mainly  for  load balancing.  They shift 

processes between nodes to keep an even load on the group of connected computers. 

Hadoop architecture  uses the similar methods (Chapter 2). 
 

Table  1.3  gives a comparison  of grid  computing  with  the  distributed  and  cluster 

computing. 
 

Table 1.3 Grid computing and related paradigms 
 

 

Distributed  computing 
 

Cluster  computing 
 

Grid computing 

 
• Loosely coupled 

• Heterogeneous 

•  Single administration 

 
• Tightly coupled 

• Homogeneous 

• Cooperative working 

• Large scale 

•  Cross organizational 

•  Geographical distribution 

• Distributed  management 

 

1.3.5  VolunteerComputing 
 

Volunteers provide computing resources to projects of importance that use resources to 

do  distributed   computing  and/ or  storage.  Volunteer  computing  is  a  distributed 

computing paradigm which uses computing resources of the volunteers. Volunteers are 

organizations   or  members  who  own  personal   computers.  Projects  examples  are 

science-related projects executed by universities or academia in general. 

Some issues with volunteer computing systems are: 
 

1.   Volunteered computers heterogeneity 
 

2.     Drop outs from the network over time 
 

3.     Their sporadic availability



4.   Incorrect  results  at  volunteers  are  unaccountable  as they  are  essentially  from 

anonymous volunteers. 
 
 

Self-Assessment  Exercise linked to LO 1.2 
 

1.   Define analytics scalability, horizontal scalability and vertical scalability. 
 

2.   How does platform  differ from software? When will a program  use Saas and 

when PaaS? 

3.   List the features of grid computing. How does it differ from cluster and cloud 

computing? 

4.   Why do we use distributed computing for analytics of large datasets? 
 
 
 

 1.4  ! DESIGNING DATA ARCHITECTURE   

The following subsections  describe  how to  design Big Data 

architecture  layers and how to manage data for analytics. 

 
1.4.1  Data Architecture Design 
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Techopedia defines Big Data architecture   as follows: "Big Data architecture  is the logical 

and/ or physical layout/structure of how Big Data will be stored, accessed and managed 

within  a Big Data or  IT  environment.  Architecture  logically defines  how Big Data 

solution will work, the core components  (hardware, database, software, storage) used, 

flow of information, security and more." 
 

Characteristics of Big Data make designing Big Data architecture  a complex process. 

Further,  faster additions of new technological innovations  increase the complexity in 

design. The requirements  for offering competing products at lower costs in the market 

make the designing task more challenging for a Big Data architect. 
 

Data analytics need the number of sequential steps. Big Data architecture  design task 

simplifies when using the  logical layers approach. Figure 1.2 shows the  logical layers 

and the functions which are considered in Big Data architecture. 
 

Five vertically aligned textboxes on the left of Figure 1.2 show the layers. Horizontal 

textboxes show the functions in each layer. 
 

Data processing architecture  consists of five layers: (i) identification  of data sources, 

(ii) acquisition, ingestion, extraction,  pre-processing, transformation  of data, (iii) data
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storage at files, servers, cluster or cloud, (iv) data-processing, and (v) data consumption 

in the number of programs and tools. 
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Figure  1.2 Design of logical layers in a data processing architecture,  and 

functions in the layers 
 

Data  consumed   for   applications,   such   as  business   intelligence,   data   mining, 

discovering patterns/ clusters,  artificial intelligence  (AI),  machine  learning  (ML),  text 

analytics, descriptive and predictive analytics, and data visualization. 
 

Data ingestion, pre-processing, storage and analytics require special tools and 

technologies. 
 

Logical layer  1   (Ll)  is for identifying  data  sources, which are external,  internal  or 

both. The layer 2 (LZ) is for data-ingestion. 

Data   ingestion    means    a   process   of   absorbing   information,   just    like   the 

process     of     absorbing     nutrients      and     medications     into     the     body     by 

eating  or drinking  them  (Cambridge English Dictionary). Ingestion  is the  process  of 

obtaining  and  importing  data  for  immediate  use  or  transfer.  Ingestion  may be  in 

batches or in real time using pre-processing or semantics. 
 

The L3  layer is for storage of data from the  LZ  layer. The L4  is for data processing 

using software, such as MapReduce, Hive, Pig or Spark. The top layer LS  is for data 

consumption. Data is used in analytics, visualizations, reporting, export to cloud or web 

servers.



L1 considers the following aspects in a design: 

Amount of data needed at ingestion layer 2 (L2) 

Push from L1 or pull by L2 as per the mechanism for the usages 
 

Source data-types: Database, files, web or service 
 

Source formats, i.e., semi-structured,  unstructured  or structured. 

L2 considers the following aspects: 

Ingestion and ETL processes either  in real time, which means store and use the 

data  as generated,  or in batches.  Batch processing is using discrete  datasets  at 

scheduled or periodic intervals of time. 

L3 considers the followings aspects: 
 

Data storage type (historical or incremental), format, compression, incoming data 

frequency, querying patterns  and consumption requirements  for L4 or LS 

Data storage using Hadoop distributed  file system or NoSQL data stores-HBase, 

Cassandra, MongoDB. 

L4 considers the followings aspects: 
 

Data processing  software  such as MapReduce, Hive, Pig, Spark, Spark Mahout, 

Spark Streaming 

Processing in scheduled batches or real time or hybrid 
 

Processing as per synchronous or asynchronous processing requirements  at LS. 

LS considers the consumption of data for the following: 

Data integration 
 

Datasets usages for reporting and visualization 
 

Analytics  (real  time,  near  real  time,  scheduled  batches),  BPs, Bis, knowledge 

discovery 

Export of datasets to cloud, web or other systems 
 

 

1.4.2  Managing Data for Analysis 
 

Data managing means enabling, controlling, protecting,  delivering and enhancing the 

value of data  and  information  asset. Reports, analysis and visualizations  need well• 

defined data. Data management  also enables data usage in applications. The process for 

managing needs to be well defined for fulfilling requirements  of the applications.



Data management   functions  include: 
 

1.   Data assets creation, maintenance and protection 
 

2.   Data governance,  which  includes  establishing  the  processes  for  ensuring  the 

availability, usability, integrity,  security and high-quality  of data. The processes 

enable trustworthy  data availability for analytics, followed by the decision making 

at the enterprise. 

3.   Data architecture  creation, modelling and analysis 
 

4.   Database maintenance,  administration   and  management  system.  For  example, 

RDBMS (relational database management system), NoSQL 

5.   Managing data security, data access control, deletion, privacy and security 
 

6.   Managing the data quality 
 

7.   Data collection using the ETL process 
 

8.   Managing documents, records and contents 
 

9.   Creation of reference and master data, and data control and supervision 
 

10. Data and application integration 
 

11. Integrated   data  management,  enterprise-ready   data  creation,  fast  access  and 

analysis, automation and simplification of operations on the data, 

12. Data warehouse management 
 

13. Maintenance of business intelligence 
 

14. Data mining and analytics algorithms. 
 
 

Self-Assessment  Exercise linked to LO 1.3 
 

1.   How are data architecture  layers used for analytics? 
 

2.   Explain the function of each of the five layers in Big Data architecture  design 

(Figure 1.2). 
 

3.   List the functions of the ELT at data ingestion layer and at data storage layer. 
 

4.   List the functions in data management.
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1.5     DATA  SOURCES, QUALITY, PRE-PROCESSING  AND  STORING 
 

The following subsections describe data sources, data quality 

data pre-processing  and data store export to the cloud. 
 

 

1.5.1 Data Sources 
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Applications, programs  and tools use data.  Sources can be external, such as sensors, 

trackers,  web logs, computer  systems logs and feeds. Sources can be machines, which 

source data from data-creating programs. 

Data sources can be structured,  semi-structured,  multi-structured   or unstructured. 

Data sources can be social media (Ll in Figure 1.2). A source can be internal.  Sources can 

be data repositories,  such as database, relational  database, flat file, spreadsheet,  mail 

server,  web server,  directory  services,  even  text  or  files such  as comma-separated 

values (CSV) files. Source may be a data store for applications (L4 in Figure 1.2). 
 

1.5.1.1 Structured Data Sources 
 

Data source for ingestion, storage and processing can be a file, database or streaming 

data. The source may be on the  same computer  running  a program  or a networked 

computer. Examples of structured  data sources are SQL Server, MySQL, Microsoft Access 

database,  Oracle DBMS,  IBM DB2, Informix,  Amazon SimpleDB or  a  file-collection 

directory at a server. 
 

A  data  source name  implies a defined name, which a process uses to identify the 

source. The name needs to be a meaningful name. For example, a name which identifies 

the  stored  data in student  grades during processing. The data source name could be 

StudentName_Data_ Grades. 
 

A data dictionary  enables references  for accesses to data. The dictionary consists of a 

set of master  lookup tables. The dictionary  stores  at a central  location. The central 

location enables easier access as well as administration  of changes in sources. The name 

of the dictionary can be UniversityStudents_DataPlusGrades.  A master-directory  server can 

also be called NameNode.
 

Microsoft  applications  consider  two  types  of  sources  for 

processing: (i) machine sources and (ii) file sources. 4 

-        c::liili  ne cd:rta, sources 

d' file  da,b  sources 1ifll 

icrosoft  appl ica1Dion s

(i) Machine sources are  present  on computing  nodes, such as servers. A  machine 

identifies a source by the user-defined  name, driver-manager  name and source- 

driver name.



(ii) File sources are stored files. An application executing the data, first connects to a 

driver manager of the source. A user, client or application does not register with the 

source, but connects to the manager when required. The process of connection is 

simple when using a file data source in case the file contains a connection string 

that would otherwise have to be built using a call to a connect-function  driver. 

Oracle applications  consider  two types  of data  sources:  (i)      :~~~!~~~:f~!~:~rc!s~~~s 
database,  which  identifies  the  database  information  that  the     iim  Oracle  applications 

software needs to connect  to database,  and (ii) logic-machine, 

which identifies the machine which runs batches of applications and 

master business functions. 5 Source definition 

identifies the machine. The source can be on a network. The definition in that case also 

includes network information, such as the name of the server, which hosts the machine 

functions. 

The applications consider data sources as the ones where the database tables reside 

and where the software runs logic objects for an enterprise. Data sources can point to: 
 

1.   A database in a specific location or in a data library of OS 
 

2.   A specific machine in the enterprise that processes logic 
 

3.   A data source master table which stores data source definitions. The table may be 

at a centralized source (enterprise server) or at server-map for the source. 

Specific  database  inst..ililce 

A  database  can  be  in  an  IBM i  data  library''   [IBM i  is  a     on11e as data  sourcasin

computer    operating    system   in   which   IBM   i   considers
     119_~1_i 
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everything   as  an  object,  each  possessing  persistence.   The 

system IBM i offers Unix-like file directories  using an integrated  file 

system.]. 
 

IBM applications  consider  data  sources  for  applications  and  tools  as  one  which 

identifies either (i) a specific database instance or (ii) file on a remote system that stores 

data. 6  Data sources can be shared. The access to source is restricted  according to the 

roles assigned to both the source and the application that use it. 
 

 
EXAMPLE  1.7 

 
(i)    How would you name the data sources of the student  grade-sheets? 

 

(ii) How does an analytics  application  (Analysis_APP)access student  grade-sheet 

data  source,  using the  Data Dictionary or  data-source  master-table  for  the 

grade-sheets of students?



(iii)  How  does  the   application    connect   and  access  the   data   source   of  students' 

grade-sheets? 

Assume  each  student   can have  a grade-sheet    for each  of the  six semesters   in UG 

Computer  Science programme. 
 

SOLUTION 
 

(i) Assume SemID is distinct  key for a semester.  StudID is a key assigned to  a 

student, whether in CS or another subject, and whether in UG or PG. A StudID is 

unique. Data source can be file data source named 'UG_CS_Sem_StudID_Grades' 

for all UG  CS  student  grades. UG_CS_Sem_StudID_Gradedsatabase consists of 

maximum  six grade  sheets  UG_CS_SemID_StudID_Gradesi,.e., one  for  each 

semester. Assume that  Analysis_APPdoes not connect or directly links to the 

data source UG_CS_Sem_StudID_Gradedsatabase. Then, the Analysis_APPlinks 

to a Data Dictionary or data source master table, which is data repository for the 

pointers of all six semesters of UG Computer Science program and other subject 

programs. 

(ii) Assume that  Analysis_APP associates to Oracle data-source  master-table.  The 

table stores the data-source definitions for all UG and PG, and all subjects and 

semester  grades  of the  students.  The  data-source  master-table   stores  the 

pointers of     all     semester     grades.     The     table     thus     points     to 

UG_CS_Sem_StudID_GradeDsB for the student identified by StudID. 

(iii) Assume that application deploys Microsoft DB. Then, first Analysis_APPlinks to 

a Driver Manager. The Driver Manager then  calls the  ODBC  functions  in the 

Driver Manager. The application identifies the target driver for the 

UG_CS_Sem_StudID_Gradedsata  source with a connection  handle. When the 

Driver Manager loads the driver, the Driver Manager builds a table of pointers 

to the  functions  in that  driver.  It  uses the  connection  handle  passed by the 

application to find the address of the function in the target driver and calls that 

function by address. 
 
 

1.5.1.2 Unstructured Data Sources 
 

Unstructured  data  sources are  distributed  over high-speed  networks.  The data  need 

high velocity processing. Sources are from distributed  file systems. The sources are of 

file types, such as .txt (text file), .csv (comma separated values file). Data may be as key• 

value pairs, such as hash key-values pairs. Data may have internal  structures,  such as in 

e-mail,  Facebook  pages,  twitter   messages  etc.  The  data   do  not   model,  reveal 

relationships, hierarchy relationships or object-oriented features, such as extensibility.



1.5.1.3  Data Sources - Sensors, Signals and GPS 
 

The  data  sources  can be  sensors,  sensor  networks,  signals from  machines,  devices, 

controllers and  intelligent   edge  nodes  of  different   types   in  the   industry   M2M 

communication and the GPS systems. 

Sensors  are  electronic  devices that  sense  the  physical  environment.   Sensors  are 

devices which are used for measuring temperature,  pressure, humidity, light intensity, 

traffic  in  proximity,  acceleration,   locations,  object(s)  proximity,  orientations   and 

magnetic intensity,  and other  physical states  and parameters.  Sensors play an active 

role in the automotive industry. 
 

RFIDs  and their  sensors play an active role in RFID based supply chain management, 

and tracking parcels, goods and delivery. 
 

Sensors embedded in processors, which include machine-learning  instructions,  and 

wireless   communication   capabilities   are   innovations.   They   are   sources   in   IoT 

applications. 

1.5.2 Data Quality 
 

Data quaIity is high wh en it represents  the rea I-worId construct 
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planning  and knowledge discovery correctly.  A definition  for 

high quality data, especially for artificial intelligence applications, can be data with five 

R's as follows: Relevancy, recency, range,  robustness  and reliability.  Relevancy is of 

utmost importance. 
 

A uniform definition of data quality is difficult. A reference  can be made to a set of 

values of quantitative  or qualitative conditions,  which must be specified to say that data 

quality is high or low. 

1.5.2.1 Data Integrity 
 

Data integrity refers  to the  maintenance  of consistency and accuracy in data over its 

usable life. Software, which store, process, or retrieve  the  data, should maintain  the 

integrity of data. Data should be incorruptible.  For example, in Example 1.7 the grades 

of students should remain unaffected upon processing. 

1.5.2.2 Data Noise, Outliers, Missing and Duplicate Values 
 

Noise  One of the  factors  effecting data quality is noise. Noise in data refers  to data 

giving additional meaningless information  besides true  (actual/required)  information. 

Noise refers  to  difference  in the  value measured  from true  value due to  additional 

influences. Noisy data means data having large additional information.  Result of data



analysis is adversely affected due to noisy data. 
 

Noise is random in character, which means frequency with which it occurs is variable 

over time. The values show nearly equal positive and negative deviations. A statistical 

analysis of deviation can select the noise in data and true values can be retrieved. 

Outliers  A factor which effects quality is an outlier. An outlier in data refers to data, 

which  appears  to  not  belong  to  the  dataset.  For example,  data  that  is outside  an 

expected range. Actual outliers need to be removed from the dataset, else the result will 

be effected by a small or large amount. Alternatively, if valid data is identified as outlier, 

then  also the  results  will be affected. The outliers  are a result  of human  data-entry 

errors,  programming  bugs, some transition  effect or phase lag in stabilizing the  data 

value to the true value. 
 

Missing Values Another  factor  effecting data quality is missing values. Missing value 

implies data not appearing in the data set. 
 

Duplicate  Values  Another  factor  effecting data  quality is duplicate  values. Duplicate 

value implies the same data appearing two or more times in a dataset. 
 

The following example explains noise, outliers, missing values and duplicate data. 
 

 

EXAMPLE 1.8 

 
Consider use cases of noise, outliers, missing values and duplicate data. Write the 

effect on the analysis in each case. 
 

SOLUTION 
 

Following are the examples of machine-generated  data. 
 

1.   Noise: Recall WRMP organization for weather recording. Consider noise in wind 

velocity and  direction  readings  due to external  turbulences.  The velocity at 

certain instances will appear too high and sometimes too low. The directions at 

certain  instances will appear inclined more towards the north  and sometimes 

more towards the south. 

2.   Outlier: Consider an outlier in the students'  grade-sheets  in one subject out of 

five in the fourth-semester  result of a student. A result in a semester shows 9.0 

out of 10  points  in place of 3.0  out of 10.  Data 9.0  is an outlier. The student 

semester  grade  point  average  (SGPA)  will be  erroneously  declared  and  the 

student may even be declared to have failed in that semester. 

3.   Missing values: Consider missing values in the sales figures of chocolates. The 

values not sent for certain dates from an ACVM. This may be due to the failure



of power  supply at the  machine  or network  problems  on specific days in a 

month. The chocolate sales not added for a day can be added in the next day's 

sales  data.  The  effect  over  a  month  on  the  average  sales  per  day  is  not 

significant. However, if the failure occurred  on last day of a month, then  the 

analysis will be erroneous. 

4.   Duplicate  values:  Consider duplicate  values in the  sales figures of chocolates 

from an ACVM. This may be due to some problem in the system. The number of 

duplicates  for sales when  sent  and added, then  sales result  analysis will get 

affected. It  can even result  in false alarms to a service, which maintains  the 

supply chain to the ACVMs. 

Assume network  problems on certain  instances. The ACVM  may not get an 

acknowledgement  of the  sales figures from the  server, leading to sending an 

incorrect   sales  record   once  again.  If  this  happens   then   sales  figures  of 

chocolates get recorded  twice at that  instance.  For example, if the  chocolate 

sales data  gets  added twice in a specific day's  sales data,  the  calculation  of 

monthly sales data is adversely affected. 
 

1.5.3 Data Pre-processing 
 

Data pre-processing is an important  step at the ingestion 1ayer 
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(Figure 1.2). For example, consider grade point data in Example    rr.ortabilicy  aimd '-!lsa1bilit};·  in 
appli'ca;tion,s   allild  se11Vices 

1.8. The outlier needs to be removed. Pre-processing is a must 
before data mining and analytics. Pre-processing is also a must 

before running  a Machine Learning (ML) algorithm. Analytics needs prior screening of 

data quality also. Data when being exported to a cloud service or data store needs pre• 

processing. 
 

Pre-processing needs are: 
 

(i)   Dropping out of range, inconsistent and outlier values 
 

(ii) Filtering unreliable, irrelevant and redundant  information 

(iii)Data cleaning, editing, reduction and/ or wrangling 

(iv)Data validation, transformation  or transcoding 

(v)  ELT processing. 
 

Data Cleaning 
 

Data cleaning refers  to the  process  of removing  or correcting  incomplete,  incorrect, 

inaccurate or irrelevant parts of the data after detecting them. For example, in Example



1.8 correcting  the grade outliers or mistakenly entered  values 

means cleaning and correcting the data. 
 

Data  Cleaning  Tools  Data cleaning is done before mining of 

data. Incomplete or irrelevant  data may result into misleading 

decisions. It  is not  always possible to  create  well-structured 
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data. Data can generate  in a system in many formats when it is obtained from the web. 

Data cleaning tools help in refining and structuring  data into usable data. Examples of 

such tools are OpenRefine and DataCleaner. 
 

Data Enrichment 
 

Techopedia definition is as follows: "Data enrichment  refers to operations  or processes 

which refine, enhance or improve the raw data." 
 

Data Editing 
 

Data editing refers to the process of reviewing and adjusting the acquired datasets. The 

editing controls the data quality. Editing methods are (i) interactive,  (ii) selective, (iii) 

automatic, (iv) aggregating and (v) distribution. 
 

Data Reduction 
 

Data reduction enables  the  transformation   of acquired  information  into  an  ordered, 

correct and simplified form. The reductions  enable ingestion of meaningful data in the 

datasets. The basic concept is the reduction of multitudinous  amount of data, and use of 

the  meaningful  parts.  The reduction  uses editing,  scaling, coding, sorting,  collating, 

smoothening, interpolating  and preparing tabular summaries. 
 

Data Wrangling 
 

Data wrangling  refers to the process of transforming  and mapping the data. Results from 

analytics are then  appropriate  and valuable. For example, mapping enables data into 

another format, which makes it valuable for analytics and data visualizations. 
 

Data Format used during  Pre-Processing                                  ,.-------~ 
Needl of dara fol'TilITlat conver•

Examples of formats for data transfer from (a) data storage, (b) 

analytics application, (b) service or (d) cloud can be: 

(i) Comma-separated values CSV (Example 1.9) 

(ii) Java  Script Object Notation  0SON) as batches  of object 

arrays or resource arrays (Example 3.3) 

(iii)Tag Length Value (TLV) 
 

(iv) Key-value pairs (Section 3.3.1) 
 

(v) Hash-key-value pairs (Example 3.2). 
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CSVFormat 
 

An example is a table or Microsoft Excel file which needs conversion to CSV format. A 

student_record.xlsx  converts to student_record.csv  file. Comma-separated values (CSV) 

file refers to a plain text  file which stores the table data of numbers  and text. When 

processing for data visualization of Excel format file, the data conversion will be done 

from csv to xlsx format. 
 

Each CSV  file line  is a  data  record.  Each record  consists  of one  or  more  fields, 

separated   from  each  other  by  commas.  RFC   4180 standard   specifies  the  various 

specifications. A CSV file may also use space, tab or delimiter tab-separated  formats for 

the values in the fields. This is a loose terminology. The following example explains the 

conversion process. 

 
EXAMPLE 1.9 

 
Consider the example of a table in a grade sheet. A CSV file is easily understandable 

when the table's  first row specifies the column heads. Three columns of the first 

row are Subject Code, Subject Name and Grade and three columns of the second row 

are CSlOl, "Theory of Computations" and 7.8, as shown below: 
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SOLUTION 

 

The first and second lines in the CSV file are: 

Subject Code, Subject Name, Grade 

CS101, ""Theory of Computations?", 7.8. 
 

CS102, ""Computer Architecture?", 7.8. 
 

The  two  consecutive  double-quotes  mean  that   one  of  the  double  quotes  is 

retained  in the text "Theory of Computations". That one specifies that  characters 

are inside the double quotes and represent  a string. 
 

 

Data Format Conversions 
 

Transferring  the  data  may  need  pre-processing  for  data-format   conversions.  Data 

sources store need portability and usability. A number of different applications, services 

and tools need  a specific format  of data  only. Pre-processing  before their  usages or



storage  on cloud services  is a must. 

1.5.4   Data Store Export to Cloud 
 

Figure 1.3  shows resulting  data  pre-processing,  data  mining, 

analysis, visualization and data store. The data exports to cloud 

services. The results integrate  at the enterprise  server or data 

warehouse. 
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Figure   1.3 Data pre-processing, analysis, visualization, data store export 
 

1.5.4.1 Cloud Services 
 

Cloud offers various services. (Section 1.3.3)  These services can be accessed through  a 

cloud client (client application), such as a web browser, SQL or other client. Figure 1.4 

shows data-store export from machines, files, computers, web servers and web services. 

The data exports  to clouds, such as IBM, Microsoft, Oracle, Amazon, Rackspace, TCS, 

Tata Communications or Hadoop cloud services.
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Figure   1.4 Data store  export  from machines,  files, computers,   web servers  and 

web services 
 

1.5.4.2 Export of Data to AWS and Rackspace  Clouds 
 

The following  example  explains  the  export  processes  to Amazon and Rackspace  clouds. 
 

 

EXAMPLE 1.10 
 

 

(a) How do the rows in MySQL database  table  export  to Amazon AWS? 

(b) How do the rows in MySQL database  table  export  to Rackspace? 

SOLUTION 

(a) Following  are the  steps  for export  to an EC2 instance: 
 

(i)  A  process  pre-processes    the  data  from  data-rows   at table  in MySQL database 

and creates  a CSV file. 

(ii) An EC2 instance  provides  an AWS data pipeline. 
 

(iii)The CSV file exports  to Amazon  53 using  pipeline.  The CSV file then  copies into 

an 53 bucket. 7 Coping action  deploys  an EC2 instance. 

 

(iv)AWS notification   service  (SNS) sends notification   on completion.8



(b) Following  are the  steps  for export  to Rackspace9: 
 

(i) An instance name has maximum 255 characters. One or more databases create 

a database  instance. The process of creation  can be configured to create  an 

instance now or later. Each database can have a number of users. 

(i) Default port number for binding of MySQL is port 3306. 
 

(ii) A command mysqldump  - u root - p database_name > database_name.sql exports to 

Rackspace cloud. 
 

(iii)When a database is at a remote host then a command mysqldump- h host_name   - 

u  user_name -  p  database_name   >    database_name.sql   exports  to  the   cloud 

database. 

 

Google cloud platform  provides a cloud service called BigQuery.1° Figure 1.5  shows 

BigQuery cloud service at  Google cloud platform.  The data  exports  from  a table  or 

partition schema, )SON, CSV or AVRO files from data sources after the pre-processing. 
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Figure 1.5 BigQuerycloud service at Googlecloud platform 

 

Data Store first  pre-processes  from machine  and  file data  sources. Pre-processing 

transforms   the  data  in  table  or  partition   schema  or  supported  data  formats.  For 

example, )SON, CSV and AVRO. Data then exports in compressed or uncompressed data 

formats. (Avro is a data serialization system in Hadoop related tools for Big Data.) 
 

Cloud service BigQuery consists of bigquery.tables.create;  bigquery.dataEditor; 

bigquery.dataOwner; bigquery.admin; bigquery.tables.updateData and other service 

functions. Analytics uses GoogleAnalytics 360.  BigQuery cloud exports data to a Google 

cloud or cloud backup only. 
 

 

Self-Assessment  Exercise linked to LO 1.4



 

( 

tr 
 

a 

e 

1.   Whyis data quality important in discoveringnew knowledgeand decisionmaking? 
 

2.  List the examples of cloud services for exporting data stores. 
 

3.   How is conversion to CSV file before data store beneficial? How is conversion to 

tables from CSV files from data store beneficial? 

4.   List the usages of three  types of services that  clouds offer. List Big Data cloud 

services, to data  sources export  from data  store,  and perform  cloud during 

analytics, visualizations and intelligence discovery. 

5.   Consider databases storing the daily sales figures of chocolates, such as KitKat, 

Milk, Fruit and Nuts, Nougat and Oreo, each at every machine in Example 1.6(i). 

How will you name the data sources in ACVMs analytics? How will the ACVMs 

sales be analyzed for each type  of chocolate  using the  data-source  master• 

tables? 
 

 
 

 1.6 ! DATA STORAGE AND ANALYSIS   

The following subsections describe data storage and analysis, 

and comparison between  Big  Data management  and analysis 

with traditional database management systems. 

 
1.6.1  Data Storage  and Management: Traditional 
Systems 

 

1.6.1.1   Data Store  with  Structured   or Semi-Structured 

Data 
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Traditional  systems use  structured or  semi-structured   data.  The following example 

explains the sources and data store of structured data. 

 

EXAMPLE 1.11 

 
What are the sources of structured data store? 

 

SOLUTION 
 

The sources of structured data store are: 
 

Traditional  relational   database-management  system  (RDBMS)  data,  such  as 

MySQL DB2, enterprise  server and data warehouse



Business   process   data   which   stores   business   events,   such   as  registering    a 

customer,   taking   an  order,   generating    an  invoice,  and  managing   products   in 

pre-defined    formats.   The  data  falls   in the  category   of highly  structured    data. 

The data  consists  of transaction   records,  tables,  relationships   and metadata   that 

build the information   about  the business  data. 

Commercial  transactions 
 

Banking/  stock records 
 

E-commerce   transactions    data. 
 

The following  example  explains  the  sources  and data  store  of semi-structured     data. 
 
 

EXAMPLE 1.12 

 
Give examples of sources of data store of semi-structured  data. 

 

SOLUTION 
 

Examples of semi-structured  data are: 
 

XML andJSON semi-structured  documents7•8 
 

A comma-separated values (CSV) file. The CSV stores tabular data in plain text. 

Each line is a data record. A record can have several fields, each filed separated 

by a comma. Structured  data, such as database include multiple relations  but 

CSV does not consider the relations  in a single CSV file. CSV cannot represent 

object-oriented databases or hierarchical data records. A CSV file is as follows: 
 

Preeti,1995,MCA,Object  Oriented Prograrnrning,8.75 
 

Kirti,2010, M.Tech., Mobile Operating System, 8.5 
 

Data represent  the data records for columns and rows of a table. Each row has 

names, year of passing, degree name, course name and grade point out of 10. 

Rows are separated by a new line and the columns by a comma. 

]SON  Object Data Formats: CSV  does not  represent   object-oriented  records, 

databases or  hierarchical   data   records.  ]SON   and  XML  represent    semi• 

structured  data  and represent  object-oriented  and hierarchical  data  records. 

Example 3.5 explains CSV and JSON objects and the hierarchical  data records in 

the JSON file format. 
 
 
1.6.1.2  SQL



An RDBMS   uses  SQL   (Structured    Query  Language).   SQL   is  a  language   for  viewing  or 

changing  (update,  insert  or append  or delete)  databases.   It is a language for data access 

control, schema creation and data modifications. 
 

SQL was originally based on the tuple relational  calculus and relational  algebra. SQL 

can embed within other languages using SQL modules, libraries and pre-compilers. SQL 

does the following: 
 

1.   Create  schema, which is a structure  which contains  description  of objects (base 

tables, views, constraints)  created by a user. The user can describe the data and 

define the data in the database. 

2.   Create catalog, which consists of a set of schemas which describe the database. 
 

3.   Data Definition  Language  (DDL) for the  commands which depicts a database, that 

include creating, altering and dropping of tables and establishing the constraints. 

A user can create  and drop databases  and tables, establish foreign keys, create 

view, stored procedure, functions in the database etc. 

4.   Data Manipulation   Language  (DML) for  commands  that  maintain  and  query  the 

database. A user can manipulate (INSERT/UPDATE) and access (SELECT) the data. 

5.   Data  Control Language   (DCL) for commands that  control  a database,  and include 

administering  of privileges and committing. A user can set (grant, add or revoke) 

permissions on tables, procedures and views. 

SQL is a language for managing the RDBMS. A relational  DB is a collection of data in 

multiple tables, which relate to each other through  special fields, called keys (primary 

key, foreign key and unique key). Relational databases provide flexibilities. Relational 

database  examples  are  MySQL  PostGreSQL Oracle database,  Informix,  IBM DB2  and 

Microsoft SQL server. 
 

1.6.1.3 Large Data Storage usingRDBMS
 

RDBMS tables store data in a structured  form. The tables have 

rows and columns. Data management of Data Store includes the 

provisions  for  privacy  and  security,  data  integration, 

compaction  and  fusion. The  systems  use  machine-generated 

data,  human-sourced  data,  and data  from business  processes 

(BP) and business intelligence (BI). 
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A set of keys and relational  keys access the fields at tables, and retrieve  data using 

queries (insert, modify, append, join or delete). RDBMSs use software for data 

administration  also. 
 

Online content  associated with Practice Exercise 1.12 describes the  use of tables in



relational   databases  in detail. 
 

1.6.1.4 Distributed   Database  Management  System 
 

A distributed DBMS (DDBMS) is a collection of logically 

interrelated databases  at  multiple  system  over  a  computer 

network. The features of a distributed database system are: 
 

1.  A collection of logically related databases. 
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2.   Cooperation between databases in a transparent  manner. Transparent  means that 

each user within the system may access all of the data within all of the databases 

as if they were a single database. 

3.   Should be 'location independent'  which means the user is unaware of where the 

data is located, and it is possible to move the data from one physical location to 

another without affecting the user. 

1.6.1.5 In-Memory  Column Formats Data 
 

A columnar format in-memory allows faster data retrieval when only a few columns in a 

table need to be selected during query processing or aggregation. Data in a column are 

kept together  in-memory in columnar format. A single memory access, therefore,  loads 

many values at the  column. An address increment  to a next memory address for the 

next  value is fast when compared  to first  computing  the  address  of the  next  value, 

which  is not  the  immediate  next  address.  The  following example  explains  the  in• 

memory columnar format. 

 
EXAMPLE 1.13 

 
Consider  analysis  of  monthly  sales  of  chocolates  on  ACVMs (Example 1.6)  in 

company's annual profit reports. 

(i) How does sales analysis become easy in-memory columnar format? 
 

(ii) How does during an analysis the access is made to few columns in place of from 

entire datasets? 
 

SOLUTION 
 

All the column 1 values for several days' record is physically together  in-memory at 

consecutive addresses. All the column 2 values are then physically together  at the 

next  successive addresses.  Then, the  column 3  and  other  columns  store  at the 

columnar database in-memory. 

The  data  stores  for  each  record  order  in  successive  columns,  so  that   the 

lOOth entry at column 1 and the lOOth entry for column 2 belong to the same record



and same input accessible from a single row-key. Column vector refers to a vector 

whose elements are values at column fields. 
 

Analytics, therefore,  can be executed faster when data is in the column format, 

and more rows and few columns need to be selected during  analysis. Successive 

days' sales of each flavour of chocolate stores in successive values in one column 

from row r to (r +  30) in a month, thirty row-keys for 30 days, and 365 row keys in a 

year. 

Aggregation  functions  and  other  analysis  functions  are  easy  to  run  due  to 

successive memory addresses for sales for each day for each flavour. Examples of 

aggregation functions are sum, count, maximum, minimum, average, minimum and 

maximum deviation from a specified value. 
 

 

Online Analytical   Processing  (OLAP) in real-time  transaction  processing  is fast when 

using  in-memory  column format  tables.  OLAP  enables  real-time  analytics.  The CPU 

accesses all columns in a single instance of access to the memory in columnar format in• 

memory data-storage. 
 

Online Analytical Processing  (OLAP)  enables  online  viewing of analyzed  data  and 

visualization  up to the  desired  granularity  (fineness or coarseness)  enables view by 

rolling  up  (finer  granulates   to  coarse  granulates   data)  or  drilling  down  (coarser 

granulates data to finer granulates). OLAP enables obtaining online summarized 

information and automated reports for a large database. 
 

Metadata describes the data. Pre-storing of calculated values provide consistently fast 

response. Result formats from the queries are based on Metadata. 
 

1.6.1.6 In-Memory Row Format Databases 
 

A  row  format  in-memory  allows much  faster  data  processing  during  OLTP  (online 

transaction  processing). Refer Example 1.13. Each row record has corresponding values 

in multiple columns and the on-line values store at the consecutive memory addresses 

in row format.  A  specific day's  sale of five different  chocolate  flavours is stored  in 

consecutive columns c to c+S  at memory. A single instance  of memory accesses loads 

values of all five flavours at successive columns during online processing. For example, 

the total number of chocolates sold computes online. Data is in-memory row-formats in 

stream and event analytics. The stream analytics method does continuous computation 

that happens as data is flowing through  the system. Event analytics does computation 

on event and use event data for tracking and reporting events. 
 

1.6.1.7 EnterpriseData-Store  Server and Data Warehouse 
 

Enterprise data, after data cleaning process, integrate with the server data at warehouse. 

Enterprise data server use data from several distributed  sources which store data using



various  technologies.  All data  merge using  an  integration   tool.  Integration   enables 

collective viewing of the datasets at the data warehouse (Figure 1.3). 
 

Enterprise data integration  may also include integration  with application(s), such as 

analytics, visualization, reporting, business intelligence and knowledge discovery. 

Heterogeneous systems execute complex integration  processes when integrating  at an 

enterprise   server  or  data  warehouse.  Complex application-integration    means  the 

integration    of  heterogeneous   application   architectures    and   processes   with   the 

databases  at the  enterprise.  Enterprise  data warehouse  store the  databases, and data 

stores after integration, using tools from number of sources. 

Online  contents   associated  with  Practice  Exercises  1.9   and  1.10   give  details  of 

commercial solutions for complex application-integration  of processes. 
 

Following are some standardised  business processes, as defined in the Oracle 

application-integration  architecture: 

1.   Integrating and enhancing the existing systems and processes 
 

2.   Business intelligence 
 

3.   Data security and integrity 
 

4.   New business services/products  (Web services) 
 

5.   Collaboration/knowledge management 
 

6.   Enterprise architecture/SOA 
 

7.   e-commerce 
 

8.   External customer services 
 

9.    Supply chain automation/visualization 
 

10. Data centre optimization 
 

Figure 1.6 shows Steps 1 to 5 in enterprise  data integration  and management with Big 

Data for high performance  computing  using local and cloud resources  for analytics, 

applications and services.
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Figure  1.6 Steps 1 to 5 in Enterprise data integration  and management with Big• 

Data for high performance computing using local and cloud 

resources for the analytics, applications and services 
 

1.6.2 Big Data Storage 
 

Following subsections describe Big Data storage concepts: 
 

1.6.2.1 Big Data NoSQL or Not Only SQL 
 

NoSQL  databases  are  considered  as  semi-structured   data.  Big 

Data Store uses NoSQL. NOSQL stands for No SQL or Not Only SQL. 

The stores do not integrate with applications using SQL. NoSQL is 

also used in cloud data store. Features ofNoSQLare as follows: 
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1.   It is a class of non-relational  data storage systems, and the flexible data models and 

multiple schema: 

(i) Class consisting of uninterrupted   key/value  or big hash table  [Dynamo (Amazon 

53)] 
 

(ii) Class consisting of unordered keys and usingJSON (PNUTS) 
 

(iii)Class consisting   of  ordered   keys  and  semi-structured   data   storage   systems 

[BigTable,Cassandra (used in Facebook/ Apache) and HBase]



(iv)Class consisting  ofJSON (MongoDB) 
 

(v) Class consisting  of name/value   in the text  (CouchDB) 

(vi)May not use fixed table  schema 

(vii)Do not use the JOINS 
 

(viii)Data written   at one node  can replicate  at multiple  nodes,  therefore   Data storage  is 

fault-tolerant, 

(ix) May relax  the ACID  rules  during  the Data Store transactions. 
 

(x) Data  Store  can  be  partitioned    and  follows  CAP  theorem   (out  of three   properties, 

consistency, availability   and  partitions,    at  least   two  must   be  there   during   the 

transactions) 

Consistency  means  all copies have the  same value like in traditional  DBs. Availability 

means  at least one copy is available in case a partition  becomes inactive  or fails. For 

example in web applications, the other copy in other partition is available. Partition means 

parts which are active but may not cooperate as in the distributed DBs. 
 

1.6.2.2 Coexistence of Big Data, NoSQL and Traditional  Data Stores 
 

Figure 1.7 shows co-existence of data at server, SQL, RDBMS  with NoSQL and Big Data at 

Hadoop, Spark, Meses, 53 or compatible Clusters. 
 

Table 1.4 gives various data sources for Big Data along with its examples of usages and 

the tools used. 
 

Table 1.4 Various data sources and examples of usages and tools 
 

 

Data Source 
 

Examples  of Usages 
 

Example  of Tools 

 

 
Relational 

databases 

 

 
Managing business  applications 

involving structured data 

Microsoft Access, Oracle, IBM DB2, SQL 

Server, MySQL, PostgreSQL Composite, SQL 

on Hadoop [HPE (Hewlett Packard 

Enterprise)  Vertica, IBM BigSQL, Microsoft 

Polybase, Oracle Big Data SQL] 

Analysis 

databases  (MPP, 

columnar, 

In-memory) 

 

 
High performance  queries and 

analytics 

 
Sybase IQ, Kognitio, Terradata,  Netezza, 

Vertica, ParAccel, ParStream,  Infobright, 

Vectorwise, 

 

NoSQL databases 

(Key-value pairs, 

Columnar format, 

documents, 

 

Key-value pairs, fast read/write 

using collections  of name-value 

pairs for storing  any type of data; 

Columnar format,  documents, 

 

Key-value pair databases:  Riak DS (Data 

Store), OrientDB, Column format  databases 

(HBase, Cassandra), Document oriented 

databases:  CouchDB,MongoDB; Graph 
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Objects, graph) objects, graph DBs and DSs databases  (Neo4j, Tetan) 

 

 
Hadoop clusters 

Ability to process large data sets 

across a distributed  computing 

environment 

 

 
Cloudera, Apache HDFS 

 
Web applications 

Access to data generated  from web 

applications 

 
Google Analytics, Twitter 

 

 
Cloud data 

 

Elastic scalable outsourced 

databases,  and data administration 

services 

 
Amazon Web Services, Rackspace, 

GoogleSQL 

Individual data Individual productivity MS Excel, CSV, TLV,JSON,MIME type 

 

 
Multidimensional 

Well-defined bounded  exploration 

especially popular  for financial 

applications 

 

 
Microsoft SQL Server Analysis Services 

Social media data 
 

Text data, images, videos 
 

Twitter, Linkedin 
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Figure  1.7 Coexistence ofRDBMSfor traditional  server data, NoSQL and Hadoop, 

Spark and compatible Big Data Clusters 

 
1.6.3 Big Data Platform 

 

A Big Data platform  supports large datasets  and volume of data. The data generate  at a 

higher velocity, in more varieties or in higher veracity. Managing Big Data requires large 

resources  of MPPs, cloud, parallel  processing  and  specialized tools.  Bigdata platform



should  provision  tools and services  for: 
 

1.   storage, processing and analytics, 
 

2.   developing, deploying, operating and managing Big Data environment, 
 

3.   reducing  the  complexity of multiple  data  sources and integration  of applications 

into one cohesive solution, 

4.    custom development, querying and integration with other systems, and 
 

5.   the traditional as well as Big Data techniques. 
 

Data management,  storage  and analytics of Big data  captured  at the  companies and 

services require the following: 
 

1.   New innovative non-traditional  methods of storage, processing and analytics 
 

2.   Distributed Data Stores 
 

3.   Creating scalable as well as elastic virtualized platform (cloud computing) 
 

4.   Huge volume of Data Stores 
 

5.   Massive parallelism 
 

6.   High speed networks 
 

7.   High performance processing, optimization and tuning 
 

8.   Data management model based on Not Only SQL or NoSQL 
 

9.   In-memory  data  column-formats  transactions   processing  or  dual in-memory data 

columns as well as row formats for OLAP and OLTP 
 

10. Data retrieval, mining, reporting, visualization and analytics 
 

11. Graph databases to enable analytics with social network  messages, pages and data 

analytics 

12. Machine learning or other approaches 
 

13. Big data sources: Data storages, data warehouse, Oracle Big Data, MongoDBNoSQL, 

Cassandra NoSQL 

14. Data sources: Sensors, Audit trail of Financial transactions  data, external  data such 

as Web, Social Media, weather data, health records data. 
 

1.6.3.1 Hadoop 
 

Big Data platform  consists of Big Data storage(s), server(s) and data  management  and 

business intelligence software. Storage can deploy Hadoop Distributed File System (HDFS), 

NoSQL data stores, such as HBase, MongoDB,Cassandra. HDFS system is an open source



storage  system.  HDFS  is a scaling,  self-managing   and self-healing  file system. 
 

The Hadoop  system  packages  application-programming      model.  Hadoop  is a scalable  and 

reliable   parallel   computing   platform.   Hadoop  manages   Big Data  distributed    databases. 

Figure  1.8  shows Hadoop based Big Data environment.  Small height cylinders represent 

MapReduce and big ones represent the Hadoop. 
 

1.6.3.2 Mesos 
 

Mesos v0.9 is a resources management platform which enables sharing of cluster of nodes 

by multiple frameworks and which has compatibility with an open analytics stack [data 

processing (Hive,Hadoop, HBase,Storm), data management (HDFS)]. 
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Figure  1.8 Hadoop based Big Data environment 
 

1.6.3.3 Big Data Stack 
 

A  stack  consists  of a set  of software  components  and  data  store  units.  Applications, 

machine-learning  algorithms, analytics and visualization tools use Big Data Stack (BDS) at 

a cloud service, such as Amazon EC2, Azure or private cloud. The stack uses cluster of high 

performance machines. 
 

Table 1.5 gives Big Data management, storage and processing tools. 
 

Table 1.5 Tools for Big Data environment 
 

 

Types 
 

Examples 

 
MapReduce 

 

Hadoop, Apache Hive, Apache Pig, Cascading, Cascalog, mrjob (Python MapReduce 

library), Apache 54, MapR, Apple Acunu, Apache Flume, Apache Kafka 

NoSQL 

Databases 

 

 
MongoDB,Apache CouchDB,Apache Cassandra, Aerospike, Apache HBase, Hypertable 



 

 
Processing 

 

Spark,  IBM BigSheets,   PySpark,   R, Yahoo!  Pipes,  Amazon   Mechanical    Turk,  Datameer, 

Apache   Solr /Lucene,   ElasticSearch 

 
Servers 

 

Amazon   EC2, 53,  GoogleQuery,    Google  App  Engine,   AWS Elastic   Beanstalk,    Salesforce 

Heroku 

 

Storage 
 

Hadoop  Distributed    File System,  Amazon   53, Mesos 

 

1.6.4 Big Data Analytics 
 

DBMS or RDBMS manages the traditional  databases. Data analysis need pre-processing of 

raw  data  and  gives  information   useful  for  decision  making.  Analysis brings  order, 

structure  and meaning to the collection of data. Data is collected and analyzed to answer 

questions, test the hypotheses or disprove theories. 
 

1.6.4.1 Data Analytics  Definition 
 

Data Analytics can be formally defined as the statistical  and mathematical  data analysis 

that  clusters, segments, ranks and predicts future  possibilities.  An important  feature  of 

data  analytics  is its predictive,  forecasting  and  prescriptive  capability.  Analytics uses 

historical data and forecasts new values or results. Analytics suggests techniques  which 

will provide the most efficient and beneficial results for an enterprise.  Data analysis helps 

in finding business intelligence and helps in decision making. 
 

Data analysis can be defined as, 
 

"Analysis of data is a process of inspecting, cleaning, transforming  and modeling 

data with the goal of discovering useful information,  suggesting conclusions and 

supporting decision making." (Wikipedia) 
 

1.6.4.2 Phases in Analytics 
 

Analytics has  the  following phases  before  deriving  the  new facts, providing  business 

intelligence and generating new knowledge. 
 

1.   Descriptive analytics enables deriving the  additional  value from visualizations  and 

reports 

2.   Predictive analytics is advanced analytics which enables extraction  of new facts and 

knowledge, and then predicts/forecasts 

3.   Prescriptive analytics enable derivation  of the additional value and undertake  better 

decisions for new option(s) to maximize the profits 

4.    Cognitive analytics  enables derivation  of the  additional  value and undertake  better
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decisions. 
 

Analytics  integrates   with the  enterprise   server  or data warehouse. 
 

Figure  1.9 shows an overview of a reference model for analytics architecture.  The figure 

also shows on the right-hand  side the Big Data file systems, machine learning algorithms 

and query languages and usage of the Hadoop ecosystem. 
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Figure   1. 9 Traditional and Big Data analytics architecture  reference model 
 

The captured or stored data require a well-proven strategy to calculate, plan or analyze. 

When Big Data combine  with  high-powered  data  analysis,  enterprise   achieve  valued 

business-related tasks. Examples are: 
 

Determine root causes of defects, faults and failures in minimum time. 
 

Deliver advertisements  on mobiles or web, based on customer's location and buying 

habits. 

Detect offender before that affects the organization or society. 
 

1.6.4.3  Berkeley Data Analytics Stack (BDAS) 
lmAs co111sirsting10Hhe 

The importance  of Big Data lies in the fact that  what one does     ~raprocmfnq.~ra 

with it rather  than  how big or large it is. Identify whether  the     ma1r11a9emrnem:andiresol!!lrc.e 
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gathered  data is able to help in obtaining the following findings: 

1) cost reduction, 2) time reduction, 3) new product planning and 

development,  4)  smart  decision  making  using  predictive  analytics  and  5)  knowledge 

discovery.



Big Data analytics  need  innovative   as well as cost effective  techniques.   BOAS  is an open• 
 

source  data  analytics  stack  for complex  computations    on Big Data.11 It  supports efficient, 

large-scale  in-memory  data  processing,  and  thus  enables  user  applications  achieving 

three fundamental processing requirements; accuracy, time and cost. 
 

Berkeley Data Analytics Stack (BDAS) consists of data processing, data management and 

resource management layers. Following list these: 

1.   Applications, AMP-Genomicsand Carat run at the BOAS. Data processing software 

component  provides  in-memory  processing  which  processes  the  data  efficiently 

across the frameworks. AMP stands for Berkeley's Algorithms, Machines and Peoples 

Laboratory. 

2.   Data processing combines batch, streaming and interactive computations. 
 

3.  Resource management  software component provides for sharing the infrastructure 

across various frameworks. 
 

Figure 1.10  shows a four layers architecture  for Big Data Stack that consists of Hadoop, 

MapReduce, Spark core and SparkSQL,Streaming, R, Graphx, MLib, Mahout, Arrow and 

Kafka. 
 

 
 

Figure 1.10  Four layers architecture  for Big Data Stack consisting of Hadoop, 

MapReduce, Spark core and SparkSQL,Streaming, R, GraphX, MLib, 

Mahout, Arrow and Kafka 
 

 

Self-Assessment  Exercise linked to LO 1.5 
 

1.   What  are  the  traditional   systems  for  data  storage?  How  does  in-memory 

columnar format help in OLAP? Give an example. 

2.   What are hierarchical and object oriented records?



3.   What is enterprise  server? How does enterprise  server data store differ from a 

web server? 

4.   What  are  the  functions  of data  integration   software?  How does  application 

integration  along with data integration  help in business processes, intelligence 

and analytics? 

5.   What are the functions in SQL? List the differences between SQL data store and 

NoSQL data store. 
 

6.   How does a Big Data stack help in analytics tasks? 
 

7.   How does a Berkeley Data analytics stack help in analytics tasks? 
 

 
 
 

1.71  BIG DATA ANALYTICS APPLICATIONS AND CASE STUDIES 

 

Many applications  such  as  social network  and  social media, 

cloud applications, public and commercial web sites, scientific 

experiments,  simulators  and  e-government   services generate 

Big Data. Big Data analytics find applications  in many areas. 

Some of the  popular  ones are  marketing,  sales, health  care, 

medicines, advertising etc. Following subsections describe these 

use cases, applications and case studies. 
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1.7.1  Big Data in Marketingand Sales 
 

Data are important  for most aspect of marketing, sales and advertising. Customer Value 

(CV) depends on three factors - quality, service and price. Big data analytics deploy large 

volume  of data  to  identify  and  derive  intelligence  using predictive  models about  the 

individuals. The facts enable marketing companies to decide what products to sell. 
 

A  definition  of marketing  is the  creation,  communication  and  delivery  of value to 

customers.  Customer (desired) value means  what  a customer  desires  from  a product. 

Customer (perceived) value means what the  customer believes to have received from a 

product  after purchase of the product. Customer value analytics (CVA) means analyzing 

what  a customer  really  needs.  CVA  makes it  possible for  leading  marketers,  such  as 

Amazon to deliver the consistent customer experiences. Following are the five application 

areas in order of the popularity of Big Data use cases: 

1.   CVA using the inputs of evaluated purchase patterns,  preferences, quality, price and
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post  sales servicing  requirements 
 

2.   Operational analytics for optimizing company operations 
 

3.   Detection of frauds and compliances 
 

4.   New products and innovations in service 
 

5.   Enterprise data warehouse optimization. 
 

An example of fraud is borrowing money on already mortgage assets. Example of timely 

compliances means returning  the loan and interest installments by the borrowers. 
 

A few examples in service-innovation  are as follows: A company develops software and 

then offers services like Uber. Another example is of a company which develops software 

for hiring services, and then  offers costly construction  machinery  and equipment. That 

service company might be rendering the services by hiring themselves from the multiple 

sources and locations of big construction companies. 
 

Big data is providing marketing insights into (i) most effective content at each stage of a 

sales cycle, (ii) investment  in improving the customer relationship  management  (CRM), 

(iii) addition to strategies for increasing customer lifetime value (CLTV), (iv) lowering of 

customer acquisition cost (CAC). Cloud services use Big Data analytics for CAC, CLTV and 

other metrics, the essentials in any cloud-based business 
 

Big Data revolutionizes  a number  of areas of marketing  and sales. Louis Columbus12 

recently listed the ways of usages. (Refer online content  for solution of Practice Exercise 

1.14.) 
 

Contextual marketing  means using an online  marketing  model in which a marketer 

sends to potential  customers the targeted  advertisements,  which are based on the search 

terms during latest browsing patterns  usage by customers. 
 

For example, if a customer is searching an airline for flights on a specific date from Delhi 

to Bangalore, then a smart travel agency targeting that customer through advertisements 

will show him/her,  at specific intervals, better  options for another airline or different but 

cheap dates for travel or options in which price reduction occurs gradually. 
 

The following example explains the use of search engine optimization. 
 

 

EXAMPLE 1.14 

 
Why does the search engine at a company product  website of a travel  agency need 

optimization? 
 

SOLUTION



Consider a travel agency website offers search results for flights between two 

destinations A and C, which do not connect directly. The search shows the results in 

order of increasing travel cost through  stopover at an intermediate  airport B. Assume 

that  search results  show up just  mechanically, without  embedding intelligence  and 

optimization.  The customers  find uncomfortable  solutions with such searches. The 

searches show the cheaper options but sometimes show results such as the customer 

would reach C  through  stopover at B  after 8 hours or even sometimes on the next 

day. 
 

The searches at that travel agency do not consider stopover options at different Bs, 

options available in different airlines to cut short travel time from B to C  at cheaper 

costs, or  newly introduced  flights. The  searches  therefore  need  optimization  for 

parameters   of travel  cost, multiple  intermediate   stopovers  and  airlines  that  will 

provide maximum customer convenience as well as cost. 
 

 

Big data algorithms and advanced analytics techniques  enable price optimization for a 

given product or service, and pricing decisions, especially in the commodity driven 

industries where products are inelastic. Inelastic product means a situation in which the 

service, required quantity or supply of a product remains unaffected by the price changes. 
 

1. 7.1.1 Big Data Analytics in Detection of Marketing Frauds 
IBig1 dah  d~l'O}lfflOOt  1in 

Fraud detection is vital to prevent financial loses to users. Fraud     ifira111a cM:ection11re'latedlto 

means someone deceiving deliberately. For example, mortgaging   _m_a,_ke_----~           ·t1_ng_ 1  

the same assets to multiple financial institutions,  compromising 

customer data and transferring  customer information  to third party, falsifying company 

information to financial institutions, marketing product with compromising quality, 

marketing  product  with service level different  from the  promised, stealing intellectual 

property,  and much more. 
 

Big Data analytics enable fraud detection. Big Data usages has the following features-for 

enabling detection and prevention of frauds: 
 

1.   Fusing of existing data at an enterprise  data warehouse with data from sources such 

as social media, websites, biogs, e-mails, and thus enriching existing data 

2.   Using multiple sources of data and connecting with many applications 
 

3.   Providing greater insights using querying of the multiple source data 
 

4.   Analyzing data which enable structured  reports and visualization 
 

5.   Providing high volume data mining, new innovative applications and thus leading to 

new business intelligence and knowledge discovery



6.   Making it less difficult and faster detection  of threats,  and predict likely frauds by 

using various data and information publicly available. 
 

1. 7.1.2 Big Data Risks
 

Large volume and velocity of Big Data provide greater  insights 

but also associate risks with the data used. Data included may be 

erroneous, less accurate or far from reality. Analytics introduces 

new errors due to such data. 
 

Big Data can cause potential harm to individuals. For example, 
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when someone puts false or distorted  data about an individual in a blog, Facebook post, 

WhatsApp groups or tweets, the individual may suffer loss of educational opportunity, job 

or credit for his/her  urgent needs. A company may suffer financial losses. 

Five data risks, described by Bernard Marr are data security, data privacy breach, costs 

affecting profits, bad analytics and bad data.13 (Solutions in online content accompanying 

the book for Practice Exercise 1.15) 
 

Companies need to take risks of using Big Data and design appropriate  risk management 

procedures.  They have  to  implement  robust  risk  management  processes  and  ensure 

reliable predictions. Corporate, society and individuals must act with responsibility. 
 

1. 7.1.3 Big Data Credit Risk Management 
 

Financial institutions,  such as banks, extend  loans to industrial  and household sectors. 

These institutions  in many countries face credit risks, mainly risks of (i) loan defaults, (ii) 

timely return  of interests  and principal  amount. Financing institutions  are keen to get 

insights into the following: 

1.   Identifying high credit rating business groups and individuals, 
 

2.   Identifying risk involved before lending money 
 

3.   Identifying industrial sectors with greater risks 
 

4.   Identifying types of employees (such as daily wage earners in construction sites) and 

businesses (such as oil exploration) with greater risks 

5.   Anticipating liquidity issues (availability of money for further  issue of credit  and 

rescheduling credit installments) over the years. 
 

The insight  using Big Data decreases  the  default  rates  in returning  of loan, greater 

accuracy in issuing credit and faster identification of the non-payment  or fraud issues of 

the loan receiving entities. (Example of fraud is using the same assets for drawing credit 

from two or more institutions  or hiding earlier outstanding loans and loan defaults.)



One innovative way to manage credit risks and liquidity risks is use of available data and 

Big Data. High volume of data  analysis gives greater  insight  into the  default patterns, 

emerging patterns  and thus credit risks. 
 

Big Data analytics monitors  social media, interactions  data, contact  addresses, mobile 

numbers, website, financial status, activities or job changes to find the emerging credit 

risk that  may affect a customer loan returning  capacity. Digital footprints  across social 

media  provide  a  valuable  alternative   data  source  for  credit  risk  analysis.  The  data 

companies assist in rating  the  customer  in application  processing and also during  the 

period of repayment of a loan. Friends on Facebook and their credit rating, comments and 

assets posted also help in determining the risks. 
 

The data insights from the analytics lead to credit and liquidity risk management  and 

faster  reactions.  Three  benefits  are  (i)  minimize  the  non-payments   and  frauds,  (ii) 

identifying new credit opportunities, new customers and revenue streams, thereby 

broadening the company high credit rating customers base and (iii) marketing to low risk 

businesses and households. 
 

1. 7.1.4 Big Data And Algorithmic Trading 
 

Wikipedia gives a definition  of algorithm  trading  as follows: "Algorithmic trading  is a 

method  of executing  a large order  (too large to fill all at once) using automated  pre• 

programmed   trading   instructions   accounting  for  variables  such  as  time,  price  and 

volume." Complex mathematics  computations  enable algorithmic  trading  and business 

investment  decisions to buy and sell. The input data are insights gathered  from the risk 

analysis  of market  data.  Big data  bigger  volume, velocity  and  variety  in the  trading 

provide an edge over other trading entities 

1.7.2 Big Data and Healthcare 
 

Big Data analytics in health care use the following data sources: 

(i) clinical records, (ii) pharmacy records, (3) electronic medical 

records (4) diagnosis logs and notes and (v) additional data, such 

as deviations from person  usual activities, medical leaves from 
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job, social interactions. Healthcare analytics using Big Data can facilitate the following: 
 

1.   Provisioning of value-based and customer-centric  healthcare, 
 

2.   Utilizing the 'Internet  of Things' for health care 
 

3.   Preventing  fraud, waste, abuse in the  healthcare  industry  and reduce  healthcare 

costs (Examples of frauds are excessive or duplicate claims for clinical and hospital 

treatments.  Example of waste is unnecessary tests. Abuse means unnecessary use of 

medicines, such as tonics and testing facilities.)



4.   Improving outcomes 
 

5.   Monitoring patients in real time. 
 

Value-based and  customer-centric  healthcare  means  cost  effective  patient   care  by 

improving  healthcare  quality  using latest  knowledge, usages of electronic  health  and 

medical records  and improving coordination  among the  healthcare  providing agencies, 

which reduce avoidable overuse and healthcare costs. 
 

Healthcare Internet of Things create unstructured  data. The data enables the monitoring 

of the devices data for patient  parameters,  such as glucose, BP, ECGs  and necessities of 

visiting physicians. 
 

Prevention of fraud, waste, and abuse uses Big Data predictive analytics and help resolve 

excessive or duplicate claims in a systematic manner. The analytics of patient records and 

billing help in detecting, anomalies such as overutilization  of services in short intervals, 

different hospitals in different locations simultaneously, or identical prescriptions  for the 

same patient filed from multiple locations. 
 

Improving outcomes is possible by accurately diagnosing patient conditions, early 

diagnosis, predicting problems such as congestive heart failure, anticipating and avoiding 

complications,  matching  treatments  with  outcomes and predicting  patients  at risk for 

disease or readmission. 
 

Patient real-time monitoring uses machine learning algorithms which process real-time 

events. They provide physicians the insights to help them make life-saving decisions and 

allow  for  effective  interventions.   The  process  automation   sends  the  alerts  to  care 

providers and informs them instantly about changes in the condition of a patient. 

 
1.7.3 Big Data  in Medicine 

 

Big Data analytics deploys large volume of data to identify and derive intelligence using 

predictive  models  about  individuals.  Big Data driven  approaches  help  in  research  in 

medicine which can help tpatients.  Big Data offers potential  to transform  medicine and 

the healthcare system-Dr.  Eric Schadt and Sastry Chilukuri.14 
 

Following are  some findings: building  the  health  profiles  of individual  patients  and 

predicting models for diagnosing better and offer better treatment, 
 

1.   Aggregating large volume and variety of information  around from multiple sources 

the  DNAs, proteins,   and  metabolites  to  cells,  tissues,  organs,  organisms,  and 

ecosystems, that  can enhance  the  understanding   of biology of diseases. Big data 

creates patterns  and models by data mining and help in better  understanding  and 

research,



2.   Deploying wearable devices data, the devices data records during active as well as 

inactive periods,  provide better  understanding   of patient  health,  and better  risk 

profiling the user for certain diseases, 
 

1.7.4 Big Data  in Advertising 
 

The impact of Big Data is tremendous  on the digital advertising 

industry.  The digital advertising  industry  sends advertisements 

using SMS,  e-mails, WhatsApp, Linkedln, Facebook, Twitter and 

other mediums. 
 

Big Data technology  and  analytics  provide  insights,  patterns 

and models, which relate the media exposure of all consumers to 
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the purchase  activity of all consumers using multiple digital channels. Big Data help in 

identity  management  and can provide an advertising  mix for building better  branding 

exercises. 
 

Big Data captures data of multiple sources in large volume, velocity and variety of data 

unstructured  and enriches the structured  data at the enterprise  data warehouse. Big data 

real time analytics provide emerging trends and patterns,  and gain actionable insights for 

facing competitions from similar products. The data helps digital advertisers  to discover 

new relationships, lesser competitive regions and areas. 
 

Success from  advertisements  depend  on collection,  analyzing  and  mining.  The new 

insights enable the personalization  and targeting  the online, social media and mobile for 

advertisements called hyper-localized advertising. 
 

Nielson  Inc.  CEO,   Mitch  Barns  described  Big Data's  big  impact  on  the  future   of 

advertising. Advertising nowadays limits no longer to TV, radio and print. Advertisers use 

along with  these  multiple  devices and  mediums.  For example,  advertisement   of the 

introduction  of new courses by an institution  or introduction  of new flights by an Airline 

needs media other than TV and requires targeted and cost effective solutions. 
 

Advertising  on digital  medium  needs  optimization.  Too much  usage  can  also effect 

negatively.  Phone  calls,  SMSs, e-mail-based  advertisements   can  be  nuisance  if  sent 

without  appropriate   researching  on the  potential  targets.  The  analytics  help  in  this 

direction.  The usage of Big Data after  appropriate  filtering  and  elimination  is crucial 

enabler of BigData Analytics with appropriate  data, data forms and data handling in the 

right manner. 
 

 

Self-Assessment  Exercise linked to LO 1.6 
 

1.   How do data inputs help in Big Data based Customer value analytics?

mailto:r@latioliilslrriips


2.   How does Big Data help in credit risk management in financial institutions? 
 

3.   How does Big Data Analytics enable prevention  of fraud,  waste  and  abuse of 

healthcare system? 

4.   Why does Big Data offer the potential to transform  the medicine and healthcare 

system? 

5.   Why are the Cloud services used for Big Data Analytics for customer acquisition, 

customer lifetime value analytics and other metrics? 
 
 

 

3Vs 
 

4Vs 
 

application integration 
 

Big Data analytics 
 

Big Data characteristics 
 

Big Data types 

Business intelligence 

Business process 

cloud 

cost of acquisition 
 

credit risk 
 

CSV data format 

customer value 

data 

data analytics 

data architecture 

database 

data cleaning 
 

data consumption 

data cube 

data ingestion



data integration 

data management 

data mining 

data patterns 
 

data pre-processing 

data  source 

data  store 
 

data warehouse 

descriptive   analytics 

distributed   database 

ELT 

Enterprise   server 
 

ETL 
 

event  analytics 
 

Hadoop 
 

Hash-key  value pair 
 

in-memory   column  format 

in-memory   row format 

]SON data format 
 

key-value pair 

knowledge discovery 

logic machine 

machine learning 

Management Information Services 

Massively Parallel Processing 

multi-dimensional data cube 

multi structured  data 

Noise 

NoSQL 

OLAP 

OLTP



online analytic processing 

Outlier 
 

predictive analytics 

prescriptive analytics 

RDBMS 

real-time analytics 

semi-structured  data 

SQL 

stream analytics 

structured  data 

web data 

 
 
 

 

 
LO 1.1                                                                                                                              . 

 

Data is raw  information,  usually  in the  form  of facts  or  statistics  that  one  can 

analyze or that one can use for further calculations and computations. 

Data are structured,  semi-structured,  multi-structured  and unstructured. 
 

Four types of Big Data: Social networks  and web data, transactions  and business 

processes data, machine generated data and human generated data. 

Analytics  helps  in  gathering,   organizing,  analyzing  and  reporting   meaningful 

patterns  in data. Analytics leads to communicate to user the meaningful patterns  in 

data, helps data visualization, predictions and knowledge discovery.. 

Big Data is a collection of datasets very large and / or complex that traditional  data 

processing  applications  are  inadequate  and  has  3Vs or  4Vs as characteristics• 

volume, velocity, variety and veracity. 

LO 1.2                                                                                                                              . 
 

Scalability is the  capability of a system to handle  increasing workloads. Analytics 

scalability for Big Data uses distributed computing model. Scalability means multiple 

independent  computational  tasks  submitted  to  multiple  computing  nodes  which



function  coherently. 
 

Analytic scalability    for   Big  Data   deploys   parallel    computing,    massive   parallel 

processing,   cloud computing,   cluster  or grid computing. 

LO 1.3                                                                                                                              . 
 

Big Data architecture  provides the logical and/ or physical layout/structure   of how 

big data will be stored, accessed and managed. 

Data architecture  design consists of five logical layers: data sources identification, 

ingestion and acquisition, data storage, data processing and consumption,  such as 

applications, analysis, visualizations, business processes, business intelligence, 

knowledge discovery. 

Management functions enable controlling, protecting, delivering and enhancing the 

value of data and information assets. 

LO 1.4                                                                                                                              . 
 

Data sources are data-repositories,  such as RDBMS and spreadsheets from which the 

application  seeks the data. Data sources are machines which drive data from data 

creating programs or form data store. 

High quality data means data with five R's: Relevancy, recency, range, robustness 

and reliability. 

Data-Store  exports   after   pre-processing   the   data  from  data   sources,  servers, 

computers  and service to the  cloud. Cloud services and platforms  can be sourced 

from IBM,  Microsoft,   Oracle,   Google,  Amazon,   Rackspace,   TCS  and   Tata 

Communications. 

Big Data applications  use cloud services: Hadoop Cloud Service (IBM  Biglnsight, 

Microsoft Azure HD Insights, Oracle Big Data Cloud Services and SQL on Hadoop. SQL 

used are Apache SparkSQL,GoogleSQLI,BM BigSQL, HPE Vertica, Microsoft Polybase, 

Oracle Big Data SQL or GoogleBigQuery). 
 

LO 1.5 
 

·   Traditional systems use structured  or semi-structured  data, tables, RDBMS such as DB2, 
MySQL, ]SON   and  XML represent   semi-structured   data  and  are  best  suited  for 
representing  object oriented records or hierarchical data records. 

Big Data systems use new innovative non-traditional  methods of storage, processing 

and analytics. They use distributed Data Stores. Big Data tools use scalable as well as 

elastic virtualized platform (cloud computing), huge volume of Data Stores, massive



parallelism,    high-speed    networks    and   graph   databases.    Analytics   deploy   social 

network  messages  and pages for Big Data analytics. 

Big Data  storage   can  deploy  Hadoop  distributed    file  system,  MongoDB, NoSql data 

stores.  For example,  HBase, Cassandra.  HDFS  are open source  storage  systems. 
 

LO 1.6 
 

Data  are   important   for  most   aspects   of  marketing   and   sales,  credit   risks 

management, fraud detection, healthcare, medicine and advertising. 

Big data analytics deploy a large volume of data to identify and derive intelligence 

using predictive models about individuals. 

Big Data analytics  enables  fraud  detection  and  helps  manage  credit  risks  and 

liquidity risks. 

Big Data analytics  also  uses  social media,  interactions   data,  contact  addresses, 

mobile numbers, website, financial status,  activities or job changes for credit  risk 

analysis. 
 

I   Objective Type Questions 1111 
Select one correct-answeroption for each questions below: 

 

1.1 Data are usually required for: 

(a) Calculation 

(b) Planning 
 

(c) Input to a software tool 
 

(d) Calculate, plan, analyze and visualize something, obtaining intelligence or discover 

new knowledge 

1.2 Web data is (i) data present at web servers, (ii) data accessible using the Internet,  (iii) 

data which can be used in mobile and web applications, (iv) information in the form 

of documents and other web resources, (v) data at documents and resources which 

are accessible from the Internet  such that each resource identifies by an URL of the 

data server store, and (vi) data in the documents interlink  by hypertext  links, and 

accessed using the Internet. 

(a) all are true 
 

(b) all except ii



(c) all except iii and iv 
 

(d) ii to vi 
 

1.3 Big Data analytics  (i)  deal with  a  large  amount  of data,  (ii) manage,  organize, 

process, analyze, share using traditional  software tools running on require hundreds 

of  computing  nodes  and  large  volume  of  storage  devices,  (iii) deal  with  fast 

generation  of needed data, (iv) results in quick processing, analysis and usages, and 

has increased  complexity due to multi-structured,   (v) need processing of complex 

applications with large datasets, and (vi) deal with variety of data, various forms and 

formats, such as sensors, machine generated data, social media data 

(a) iii to vii 
 

(b) all except ii 

(c) all except vi 

(d) all 

1.4 Big Data has  (i)  structured,   semi-structured,   and  unstructured   data  formats,  (ii) 

unstructured data  format,  (iii)  stores  as  column-oriented,   record-based,  graph• 

based, hashed or key/value pairs, (iv) stores as column-oriented,  row-oriented,  and 

graph-based,  (v) batch or real time processing needs, and (vi) real time processing 

needs. 

(a) i, iii and v 
 

(b) ii to v 
 

(c) ii, iv and vi 
 

(d) all except ii 
 

1.5 Data architecture  design considers: 
 

(a) Four design layers with the  lowest being identification  of internal  and external 

data sources 

(b) Four design layers with the  lowest being ingestion  strategy  and acquisition, and 

next identification of internal and external data sources. 

(c) Five layers  with  data  consumption  for  analytics,  business  processes,  business 

intelligence, data mining, pattern  recognition and knowledge discovery 

(d) Five layers with data storage, processing and analytics being the highest layer 
 

1.6 Data sources:



(i)   In the  Microsoft  Applications   are  of two types:  machine   data  sources  and  file data 

sources. 

(ii) In  the   Oracle  applications    are  of  three   types:   file  data   sources,   database   data 

sources   and  logic-machine    data   sources   which   use  the   network   functions   or  a 

server. 

(iiilln   the  IBM applications  are  of  three   types:  machine  data  sources,  database 

instances data sources and file data sources. 

(iv)Can be sensors,  sensor  networks,  devices, controllers,  intelligent  edge nodes  in 

industrial M2M and signals from the machines. 

(v) Data is of high quality if they enable all the required operations, analysis, decisions, 

planning, and knowledge discovery. 

(vi)A definition  for  high  quality  data  can  be  five R's: Relevancy, recency,  range, 

robustness and reliability. 

(vii)Data noise, outliers,  missing-values and duplicate-values  affect the  data quality. 

Applications  such  as  analytics,  data  visualization  and  data  mining  need  data 

cleaning, integrity, enrichment, editing, reduction and/ or wrangling. 

(a) all 
 

(b) all except ii, v and vi 
 

(c) all except vi 
 

(d) (d) all except ii and iii 
 

1.7 NoSQL features are: 
 

(i)  The systems do not use the concept ofjoins (in distributed data storage systems) 
 

(ii) Data written  at one node and replicates to multiple nodes, therefore  identical and 

fault-tolerant,  and can be partitioned 

(iii)Can offer relaxation in one or more of the ACID properties 
 

(iv)Out of three  properties  (consistency, availability and partitions),  two are at least 

present for the application/service/process. 

(a) i, ii and iii 
 

(b) i to iv 
 

(c) all except iii 
 

(d) all except ii



1.8 Big Data platform should enable the following: 

(i)   Storage, processing and analytics 

(ii) Developing, deploying, operating  and  managing  a Big Data environment  in  an 

enterprise 

(iii)Reducing the complexity of multiple data sources and integrate  the  applications 

into one cohesive solution 

(iv) Custom development,  querying  and  integration  with  other  systems involve the 

complexity 

(v) Needs traditional as well as new and innovative techniques. 

(a) i to iii 

(b) all except v 

(c) all except iv 

(d) all are true 

1.9 Vertical scalability means scaling up by: 
 

(a) Using the giving system resources and increasing the systems analytics, reporting 

and  visualization  capabilities  requiring   additional  ways  to  solve  problems  of 

greater complexities 

(b) Adding computers in parallel 
 

(c) Adding computers serially 
 

(d) Adding computers in serially as well as parallel 
 

1.10  Grid Computing refers to (i) distributed  computing, in which a group of computers 

from several locations are connected with each other to achieve a common task, (ii) 

remotely connected    computers    using    Internet,     (iii)   computer    resources 

heterogeneously  and geographically disperse, (iv) a group of computers that might 

spread   over  remotely   forming   a  grid,   (v)  computing   using  cloud,  and   (vi) 

computations and no under-performance  even on failure of any of the participating 

nodes. 

(a) all 
 

(b) all except ii, v and vi 
 

(c) all except vi 
 

(d) all except ii and iii



1.11  Cloud computing environment  (i)  performs parallel and distributed  computing for 

processing  and  analyzing  large  datasets  on  computing  nodes,  (ii) is on-demand 

service (iii) enables software, infrastructure  and platform resource pooling, (iv) has 

scalability, (v) has no accountability, and (vi) has restricted network access. 

(a) all are true 

(b) all except v 

(c) i to iv 

(d) all except vi 
 

1.12 Predictive analytics (i) predicts the trends, (ii) enable undertaking  of the preventive 

maintenance  in future  from the  earlier  analyzes of equipment  and device failure 

rates, (iii)  enable   managing   the   future   campaigns   and   adopting   integrated 

marketing strategy using previous studies of effect of campaigns at different media 

types, regions, targeted  age groups,  (iv) predicts  by identifying  patterns,  clusters 

with  similar  behaviour,  and  (v) predicts  based  on  earlier  anomalous  features 

detection, anomaly detection and filtering. 

(a) i to iii 
 

(b) all except iv 

(c) all except v 

(d) all are true 

1.13 Automatic  Chocolate Vending  Machines  company  can  use  for  selling  (i)   event 

analytics  followed next  by predictive  analytics,  (ii) manage  each flavour supply• 

chain maintenance    with   optimization,   (iii)  manage   the   regular   preventive 

maintenance  of the  machines,  (iv) predict  about changes in user  preferences  for 

chocolates in general and for specific flavours and (v) predict future festive season 

sales, (vi) visualize with  finer  and coarse granulates  and multi-dimensional  data 

cubes, (vii) predicts declining or rising sales, and (viii) plan strategies  for boosting 

sales. 

(a) iv, v and vii 
 

(b) all except iii and viii 
 

(c) all 
 

(d) all except vi 
 

1.14  Use Cases for Marketing and Sales Application areas are: (i) customer value analytics



using  the  inputs  of evaluated   purchase   patterns   preferences,   quality,  price  and post 

sales   servicing   requirements,     (ii)  operational    analytics   for  company   operations 

optimization, (iii)  detection    of  frauds   and   compliances,    (iv)  new   products    and 

services  innovation,   and (v) enterprise   Data Warehouse  Optimization. 

(a) ii to v 
 

(b) all except  ii 
 

(c) all five and have popularity   in order  from  (i) to (v) 

(d) all except  iii 

1.15 Big Data usage risks are: (i) data security risk, (ii) data privacy risk, (iii) cost affecting 

the profits, (iv) bad analytics results, (v) bad data, and (vi) data filtering. 

(a) i and ii 

(b) all except iii 
 

(c) all except v 
 

(d) all are true except vi 
 

1.16 Automotive  Maintenance  Service Center  Application  in  a  company  can  (i)  use 

analytics followed by predictive  analytics, (ii) predict  failure of components  from 

periodic analysis of data, (iii) provide emergency services, (iv) improve the quality of 

components in future cars, (v) record driver rash driving habits and issue warnings, 

(vi) understand  customer preferences, (vii) manage regular preventive maintenance 

of the  automobile, (viii) visualization with finer and coarse granulates  and multi• 

dimensional  data  cubes for maintenance  needs,  (viii) predict  declining  or  rising 

sales, and (ix) plan strategies for boosting sales. 

(a) i to vii 
 

(b) all except iv and vii 
 

(c) all except vi, viii and ix 
 

(d) all except vii and viii 
 

II   Review Questions        1111 
1.1 Describe the data, web data and Big Data. (LO 1.1) 

 

1.2 Draw a diagram showing evolution of Big Data and their  characteristics  over the 

time as size, complexity increased and as unstructured  data increased. (LO 1.1)



1.3  What  do you mean  by 3Vs characteristics    of Big Data? What  are the  challenges  faced 

from large growth  in volume  of data?  (LO 1.1) 

1.4 What  do you  mean  by  analytical  scalability?  What  are  vertical  scalability  and 

horizontal scalability? (LO 1.2) 

1.5 Explain uses  of massive  parallel  processing  and  cluster  computing  in  Big Data 

scenario. (LO 1.2) 

1.6 Describe grid computing features. Compare these with cluster computing. (LO 1.2) 
 

1. 7 Define Big Data architecture.  Draw five layers in architecture  design and explain 

functions in each layer. (LO 1.3) 

1.8 What do you mean by data management?  List the data management  functions. (LO 

1.3) 
 

1.6 What  are  the  data  sources  considered  in  Microsoft  Storage  applications,  IBM 

databases and Oracle Data Stores? (LO 1.4) 
 

1.9 What do you mean by the  data noise, outliers, duplicate  data and data anomaly? 

Why does the  filtering  require  during  pre-processing?  Explain the  following data 

processing steps: inspecting, cleaning, transforming,  modeling and visualizing data. 

(LO 1.4) 

1.10 Show using a figure how data store export using machine data sources and file data 

sources,  computers,  web servers,  web services, Amazon, Rackspace and  Hadoop 

cloud services. (LO 1.4) 

1.11 How do the table rows in MySQL database export to Amazon AWS and Rackspace? 

(LO 1.4) 
 

1.12 Define distributed  databases.  How do they  differ  from  distributed  Data Stores? 

Describe features of distributed database databases. (LO 1.6) 
 

1.13 How  does  the   data   analytics   enable  predictive,   forecasting   and  prescriptive 

capabilities? How does the  data analytics enable use of historical  data to forecast 

potential  values or  results?  Describe methods  of analytics  results  reporting  and 

visualization. (LO 1.6) 

1.14 What are the requirements  for data management, storage and analytics of captured 

Big data at the Companies and services? (LO 1.6) 
 

1.15 Explain traditional  and Big Data analytics architecture  reference models. (LO 1.6) 
 

1.16 Describe ways of usages of Big Data analytics in marketing,  sales and advertising.



(LO 1.6) 
 

1.17 What  are  the  risks  in  Big Data usages? How does Big Data used  in  credit  risk 

management? (LO 1.6) 

1.18  Describe ways of usages of Big Data analytics in healthcare  systems and medicine. 

(LO 1.6) 

 

II  Practice Exercises      1111 
1.1 Diagrammatically show sources of structured,  semi-structured,  multi-structured  and 

unstructured  data. (LO 1.1) 
 

1.2 Give examples of data resources at the enterprise  server of an education institution. 

(LO 1.1) 
 

1.3 List the  unstructured   data forms used in 'Automotive Components and Predictive 

Automotive Maintenance Services'. (LO 1.1) 
 

1.4 List usages of Big Data analytics in a company for car manufacturing,  marketing, 

sales and maintenance of car service centres. (LO 1.1) 

1.5 Estimate how many massively parallel processing nodes will be required to process 

data  at 4 Tera instructions  per  second when a single processor  processes  1  Gega 

instructions per   second.   Assume   10%    time   is   taken   up   in   inter-process 

communications. (LO 1.2) 

1.6 Show  architectural   design  layers  in  'Automotive  Components  and  Predictive 

Automotive Maintenance Services'. (LO 1.3) 
 

1.7 Take examples given in Examples 1.9.  Consider example  of a table  in a student 

examination grade sheet for a semester. Fill the fields with presume values for two 

students  in the same semester in the same course. Create CSV and JSON files. What 

are the benefits you can foresee in usingJSON file in this case? (LO 1.4) 

1.8 Take a student grade sheet in a semester examination in a course. Fill the presumed 

values for a student. Now create the hash and key-value pairs associated with a hash 

in traditional  data. (LO 1.5) 

1.9 Give details of the features of IBM 115 and Oracle Data Integrator.  (LO 1.5) 
 

1.10  Give details  of  features   of  integration   and  application   integration   solutions: 

Microsoft SQL-Server Integration-Services  (SSIS),  Informatica  and  Pentaho  data• 

integration, SAS     data-management     advanced    and    SAP®     Businessobjects'"



Integration.   (LO 1.5) 
 

1.11 What  are  the  analytics  phases?  Take  example  of  automotive  maintenance   and 

services. How will the results of analytics be used? (LO 1.5) 

1.12 How will RDBMS make tables for the sales data of ACVMs? [Refer Example  1.6(i)] 

(LO 1.5) 
 

1.13 Write five applications for NoSQL Databases? (LO 1.5) 
 

1.14 Give details  of  Louis  Columbus  ten   ways  using  which  Big Data  analytics  is 

revolutionizing marketing and sales. [Section 1.7 .1] (LO 1.6) 

1.15 Describe five data risks, described by Bernard Marr. [Section 1.7.1.2] (LO 1.6) 
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Note: 

o o • Level 1 & Level 2 category 
 

o • • Level 3 & Level 4 category 
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Chapter 2 
 
 
 

Introductionto Hadoop 
 
 
 
 
 
 

 

LEARNING OBJECTIVES 
 

 

After studying this chapter,you will be able to: 
 

LO 2 .1 Get conceptual understanding  of Hadoop core, components  of Hadoop 

ecosystem, and   streaming    and   pipe   interfaces    for   inputs   to 

MapReduce 
 

LO 2.2   Get understanding   of Hadoop Distributed  File System (HDFS),  and 

physical-organiza-tion of nodes for computing  at clusters  of large• 

scale files 
 

LO 2.3  Get knowledge  of MapReduce Daemon framework,  and  MapReduce 

programming  model 
 

LO 2.4  Get knowledge of functions  of Hadoop YARN, management  and 

scheduling  of resources,  and parallel  processing  of the  application• 

tasks 
 

LO 2.5  LO 2.5 Get introduced to functions of Hadoop ecosystem-tools 
 

 
 

RECALL FROM CHAPTER  1 
 

Requirements for Big Data processing and analytics are: 
 

1.   Huge volume of data stores



2.   Flexible, scalable and distributed  storage and computations 
 

3.   Distributed data blocks and tasks, and processing at the clusters 
 

4.   Mapping of the data at the physical nodes 
 

5.  Reducing  the  complexity  of  multiple  data  sources,  and  sending  the 

computational  results to the applications 
 

6.  Developing, deploying, operating  and managing in Big Data environment 

of an enterprise 

7.   Integration  of solutions into a cohesive solution 
 

8.   Uses of large  resources  of MPPs, cloud, specialized  tools  and  parallel 

processing and use of high speed networks [Section 1.5.3]. 

Big Data store  should  also manage the  variety  of data  formats.  Hadoop is 

scalable and parallel  computing  platform  to handle  Big Data (Section 1.6.3.1, 

Figure 1.8).  Hadoop distributed  file system design is for storing  and analytics 

of Big Data. HDFS  packages  Big Data in a distributed  data  store  along with 

processing using a programming model. 
 

This chapter  focuses on Hadoop, its ecosystem, HDFS  based programming 

model, MapReduce, Yarn, and introduces  to ecosystem  components,  such as 

AVRO, Zookeeper, Ambari, HBase, Hive, Pig and Mahout. 
 

 
 

2.1  ! INTRODUCTION 
 

A  programming  model is centralized computing  of data  in which the  data  is 

transferred    from  multiple   distributed   data   sources  to  a  central   server. 

Analyzing,   reporting,     visualizing,    business-intelligence     tasks    compute 

centrally. Data are inputs to the central server. 
 

An enterprise  collects and analyzes data at the enterprise  level. The 

computations  are at an enterprise  server  or data warehouse  integrated  with 

the   applications   (Figure  1.6).   An  example   is  computations   using  Oracle 

application  integration   architecture   (Section  1.6.1.7).   The  computing  nodes 

need to connect to a central system through  high-speed networks. 
 

Assume that a centralized  server does the function of collection, storing and



analyzing. For example, at an ACVM Company enterprise  server. The data at 

the server gets collected from a large number  of ACVMs which the  company 

locates in multiple  cities, areas  and locations.  The server  also receives  data 

from social media (Example 1.6  (i)). Applications running  at the  server  does 

the following analysis: 

1.   Suggests a strategy for filling the machines at minimum cost of logistics 
 

2.   Finds locations of high sales such as gardens, playgrounds etc. 
 

3.   Finds days or periods of high sales such as Xmas etc. 
 

4.   Finds children's preferences  for specific chocolate flavors 
 

5.   Finds the potential region of future growth 
 

6.   Identifies unprofitable  machines 
 

7.  Identifies   need   of  replicating   the   number   of  machines   at  specific 

locations. 

Another   programming   model   is  distributed    computing   that   uses  the 

databases  at multiple  computing  nodes with data sharing between  the nodes 

during   computation.   Distributed   computing   in  this   model  requires   the 

cooperation  (sharing) between the DBs in a transparent   manner.  Transparent 

means  that  each user  within  the  system  may access all the  data  within  all 

databases  as if they were a single database. A second requirement  is location 

independence.    Analysis  results   should   be   independent    of  geographical 

locations. The access of one computing node to other  nodes may fail due to a 

single link failure. 
 

The following example shows why the simply scaling out and division of the 

computations  on a large number  of processors may not work well due to data 

sharing between distributed  computing nodes. 
 

 

EXAMPLE  2.1 
 

 

Consider  a jigsaw  Puzzle Ravensburger  Beneath  the  Sea (5000   pieces). 

Children above 14 years of age will assemble the pieces in order to solve 

the puzzle. What will be the effect on time intervals  for solution in three 

situations,  when  4,  100  and  200   children   simultaneously   attempt   the 

solution.



SOLUTION 
 

Let the  time taken  by a single child to solve the  puzzle be T. Assume 4 

children sit together  and solve the puzzle by dividing the tasks. Each child 

assembles one-fourth  part  of the  picture  for which they  pick the  pieces 

from  a  common  basket   (Distributed  computing   and  centralized   data 

model). 
 

Alternatively,  each child assembles  one-fourth  part  of the  picture  for 

which the pieces are distributed  in four baskets. The child in case does not 

find  a piece  in his/her   basket,  then  searches  for  it  in  another  basket 

(Distributed databases and distributed  computing tasks with data sharing 

model). 
 

Partitioning   of assembling jobs  into  four  has  an  issue.  A  child  may 

complete his/her  part much later than  the remaining  children.  Beneath• 

the-sea  portion  is too  complex,  while  upper-depth-sea   portion   is just 

plain. The children combine all four parts and finally complete the puzzle. 

Each one  has  to  look into  the  other  three  parts  to  find  a match  and 

complete the task. Time taken to solve the puzzle is [T/4 + TI  (4) + Tc (4)], 

where  TI  (4)   is the  time  taken  in  seeking  from  others  the  pieces  not 

available to a child during  intermediate   phases, and Tc  (4)  in combining 

the results  of the four children.  Scaling factor is slightly less than  4. The 

proposed distributed  model works well. 
 

Assume a second situation in which 100 children assemble their parts of 

50 pieces each, and finally combine all 100 parts and complete the puzzle. 

Each child  must  seek  a  piece,  not  available  with  her /him   during  the 

intermediate    phase.   Combining  also  becomes   difficult   and   a  time• 

consuming exercise compared to the four children case because each child 

now matches the results with the remaining  99 counterparts  to arrive at 

the final solution. The time taken to solve the puzzle is [T/100 + TI (100)  + 

Tc (100)], 

where  TI  (100) and  Tc (100) are  the  time  taken  in  seeking  pieces  not 

available   with   the   child   and   combining   results    of   100  children, 

respectively.  Scaling is by factor less than  100. The distributed  model has 

issues  like sharing  pieces,  seeking  pieces  not  available  and  combining 

issues. Issues are at the intermediate  as well as at the end stages.



If 200 children  attempt  to solve the puzzle simultaneously  at the  same 

time then  finally combining all 200 portions  of the Beneath the  Sea, the 

integration  of 200 portions  will be tedious  and will be a far more time• 

consuming exercise than with 4 or 100. The time taken to solve the puzzle 

is [T/200 + TI (200) 

+ Tc (200)], where TI  (200) and Tc (200) is the  time taken  in seeking the 

pieces not available and combining, respectively.  Scaling up is by factor 

much less than  200 and may even be less than  even 100. The distributed 

model with pieces sharing between the children  is unsatisfactory  because 

TI (200)  + Tc (200)< T/200. 
 

Problem  of inter-children   interactions   exponentially  grows  with  the 

number of children in the proposed distributed  model with seeking pieces 

in intermediate  phases. Time TI becomes significantly high. 
 

Alternatively,  the  picture  parts  and corresponding  pieces of each part 

distribute  to  each  participating   child  distinctly  (Distributed  computing 

model  with  no  data  sharing).  Time  TI  taken  in  seeking  a  piece  not 

available with him/her is zero. The time taken  in joining  the  assembled 

picture portions  is only at the end. Problem of inter-children  interactions 

during solving the puzzle does not exist. 
 
 
 

Traditionally,  a program  when  executes  calls the  data  inputs.  Centralized 

computing  model requires  few communication  overheads.  Distributed 

computing model requires  communication  overheads  for seeking data from a 

remote  source when not available locally, and arrive  at the  final result. The 

completion  of computations  will take more and more time when the number 

of distributed  computing nodes increase. 
 

Distributed pieces  of codes  as well  as the  data  at  the  computing nodes 

Transparency  between  data  nodes  at  computing  nodes  do not  fulfil for Big 

Data when distributed  computing takes place using data sharing between local 

and remote. Following are the reasons for this: 

•       Distributed data storage systems do not use the concept of joins. 
 

• Data need to be fault-tolerant   and data stores should take into account 

the  possibilities  of network  failure.  When data  need  to be partitioned



into data blocks and written  at one set of nodes, then those blocks need 

replication  at multiple nodes. This takes care of possibilities of network 

faults. When a network fault occurs, then replicated node makes the data 

available. 

•  Big Data follows a theorem  known as the CAP theorem.  The CAP  states 

that out of three properties  (consistency, availability and partitions),  two 

must at least be present for applications, services and processes. 

Recall Table 1.2. Consider distributed  computing  model which requires  no 

sharing  between  data  nodes. The model is equivalent  to distribution   of the 

picture's  parts  and  corresponding  pieces of each part  to each participating 

child  distinctly.  Multiple  tasks  of an  application  also distribute,   run  using 

machines associated with multiple data nodes and execute at the same time in 

parallel. 
 

The application  tasks and datasets  needed for computations  distribute  at a 

number of geographic locations and remote servers. The enterprise  uses MPPs 

or computing  clusters  when datasets  are too large. Application is divided in 

number of tasks and sub-tasks. The sub-tasks get inputs from data nodes at the 

same  cluster.  The  results  of sub-tasks  aggregate  and  communicate  to  the 

application. The aggregate  results  from each cluster  collect using APis at the 

application. 

(i) Big Data Store Model 
 

A model for Big Data store is as follows: 
 

Data store in file system consisting of data blocks (physical division of data). 

The data blocks are distributed  across multiple  nodes. Data nodes are at the 

racks of a cluster.  Racks are  scalable. A  Rack has multiple  data  nodes  (data 

servers), and each cluster is arranged in a number of racks. 
 

Data Store model  of files  in data nodes  in racks in the  clusters Hadoop 

system uses the  data store  model in which storage  is at clusters,  racks, data 

nodes  and  data  blocks. Data blocks replicate  at  the  DataNodes such that  a 

failure of link leads to access of the data block from the other nodes replicated 

at the same or other racks. 

(ii) Big Data Programming  Model



Big Data programming  model  is that  application  in 

which application jobs and tasks (or sub-tasks) is 

scheduled  on the  same servers  which store  the  data 
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Job  means   running   an   assignment   of  a  set   of 

instructions for  processing.   For  example,   processing   the   queries   in  an 

application  and  sending  the  result  back  to  the  application  is  a job.  Other 

example is instructions  for sorting the examination  performance  data is a job. 
 

Job scheduling  means assigning a job for processing following a schedule. For 

example, scheduling  after  a processing  unit  finishes the  previously  assigned 

job, scheduling as per specific sequence or after a specific period. 
 

Hadoop  system  uses  the  programming   model,  where  jobs  or  tasks  are 

assigned and scheduled  on the  same servers which hold the  data. Hadoop is 

one of the widely used technologies.  Google and Yahoo use Hadoop. Hadoop 

creators  created  a cost-effective  method  to build  search  indexes.  Facebook, 

Twitter  and  Linkedln  use  Hadoop.  IBM  implemented   Biglnsights  and  uses 

licensed  Apache Hadoop. Oracle implements  Hadoop system  with  Big Data 

Appliance, IBM with Infosphere and Microsoft with Big Data solutions. 
 

Following are important  key terms and their meaning. 
 

Cluster Computing refers to computing,  storing  and analyzing huge amounts 

of unstructured   or structured  data  in a distributed  computing  environment. 

Each cluster  forms by a set of loosely or tightly  connected  computing  nodes 

that  work together  and many of the operations  can be timed (scheduled) and 

can be realized  as if from a single computing  system. Clusters improve  the 

performance,  provide  cost-effective  and  improved  node  accessibility 

compared to a single computing node. Each node of the computational  cluster 

is set to  perform  the  same task  and  sub-tasks,  such  as MapReduce, which 

software control and schedule. 
 

Data Flow (DF) refers to flow of data from one node to another.  For example, 

transfer  of output data after processing to input of application. 
 

Data Consistency means all copies of data blocks have the same values. 
 

Data Availability means  at  least  one  copy  is available  in  case  a partition 

becomes inactive or fails. For example, in web applications, a copy in the other



partition   is available. Partition  means  parts,  which  are  active but  may not 

cooperate as in distributed  databases (DBs). 
 

Resources  means   computing   system resources,  i.e., the  physical or virtual 

components  or  devices,  made  available  for  specified  or  scheduled  periods 

within   the   system.   Resources   refer   to   sources   such   as  files,  network 

connections and memory blocks. 
 

Resource  management refers  to managing  resources  such as their  creation, 

deletion and controlled usages. The manager functions also includes managing 

the (i) availability for specified or scheduled periods, 

(ii)  prevention   of  resource   unavailability   after   a  task   finishes   and   (iii) 

resources  allocation  when  multiple  tasks  attempt   to  use  the  same  set  of 

resources. 
 

Horizontal scalability means  increasing  the  number  of systems  working  in 

coherence.  For example, using MPPs or number  of servers  as per the  size of 

the dataset.  Processing different  datasets  of a large data store running similar 

application deploys the horizontal  scalability. 
 

Vertical scalability  means  scaling up using the  giving system resources  and 

increasing   the   number   of  tasks  in  the   system.  For  example,  extending 

analytics processing by including the reporting,  business processing (BP), 

business   intelligence   (BI),  data   visualization,   knowledge   discovery   and 

machine  learning  (ML)  capabilities  which  require  additional  ways to  solve 

problems  of greater  complexities  and greater  processing,  storage  and inter• 

process communication  among the resources. Processing different  datasets  of 

a large data store running multiple application tasks deploys vertical scalability. 
 

Ecosystem  refers  to a system made up of multiple  computing  components, 

which  work together.  That  is similar  to  a biological ecosystem,  a complex 

system  of living organisms,  their  physical  environment   and  all their  inter• 

relationships  in a particular  unit of space. 
 

Distributed  File System means a system of storing files. Files can be for the set 

of data records,  key-value pairs, hash key-value pairs, relational  database  or 

NoSQL database at the distributed  computing nodes, accessible after referring 

to their  resource-pointer   using a master  directory  service, look-up tables or 

name-node server. 
 

Hadoop  Distributed   File System means  a system  of storing  files (set of data



records,    key-value    pairs,    hash    key-value    pairs    or   applications     data)    at 

distributed      computing      nodes     according     to    Hadoop     architecture       and 

accessibility   of data  blocks  after  finding  reference   to their   racks  and  cluster. 

NameNode  servers  enable  referencing   to data  blocks. 

Scalability  of storage and processing means the execution using varying number 

of servers  according  to the  requirements,   i.e., bigger  data  store  on greater 

number of servers when required  and on smaller data when smaller data used 

on limited number of servers. Big Data Analytics require deploying the dusters 

using the servers or cloud for computing as per the requirements. 
 

Utility Cloud-based   Services mean  infrastructure,    software  and  computing 

platform  services similar to utility services, such as electricity, gas, water etc. 

Infrastructure  refers to units for data-store,  processing and network. The IaaS, 

Saas and PaaS are the services at the cloud (Section 1.3.3). 
 

This chapter  describes  on Hadoop's core components,  such as MapReduce, 

HDFS and YARN, and Hadoop ecosystem components, such as HBase, Hive, Pig, 

and   Mahout.   Section  2.2   describes   Hadoop,  its   ecosystem   components, 

streaming    and   pipe   functions.   Section   2.3    describes   Hadoop   physical 

architecture,    Hadoop  distributed   file  system   (HDFS) basics.  The  section 

describes  how to organize  the  nodes for computations  using large-scale  file 

system. Section 2.4 gives a conceptual  understanding   of MapReduce Daemon 

and functioning of Hadoop MapReduce framework. 
 

Section 2.5  describes  Hadoop YARN for managing  of resources  along with 

application  tasks.  Section 2.6  describes  the  Hadoop ecosystem  interactions, 

analytics application  support with AVRO, Zookeeper, Ambari, HBase, Hive, Pig 

and Mahout. 
 

 
 

2.2  ! HADOOP  AND ITS ECOSYSTEM 

Apache initiated  the  project  for developing  storage 

and processing  framework  for Big Data storage  and 

processing. Doug Cutting and Machael J. Cafarelle the 

creators  named that framework as Hadoop. Cutting's 

son was fascinated by a stuffed toy elephant,  named 

Hadoop,  and  this  is  how  the   name  Hadoop  was 

 

 
H,adnop  c::ore,  COffiJPOllil@iliiltS 

of IH.ricfaop ecosystem, 
str@~lmiling1  ~liildl  pipe 
,imrtterfaces  rer ilillputs  to 

ap'R.oouo~

mailto:COffiJPOllil@iliiltS
mailto:COffiJPOllil@iliiltS
mailto:str@~lmiling1


derived. 
 

The project  consisted  of two components,  one of them  is for data  store  in 

blocks in the clusters and the other is computations  at each individual cluster 

in parallel with another. 
 

Hadoop components  are written  in Java with part  of native  code in C. The 

command line utilities are written  in shell scripts. 
 

Hadoop is a computing  environment  in which input  data  stores,  processes 

and stores the results. The environment  consists of clusters which distribute 

at the  cloud or set of servers.  Each cluster  consists  of a string  of data  files 

constituting   data  blocks.  The  toy  named   Hadoop  consisted   of  a  stuffed 

elephant.  The Hadoop system cluster  stuffs files in data blocks. The complete 

system consists of a scalable distributed  set of clusters. 
 

Infrastructure   consists  of cloud for  clusters.  A  cluster  consists  of sets  of 

computers or PCs. The Hadoop platform provides a low cost Big Data platform, 

which is open source and uses cloud services. Tera Bytes of data processing 

takes  just   few  minutes.   Hadoop  enables  distributed   processing   of  large 

datasets  (above 10 million bytes) across clusters of computers  using a 

programming   model   called  MapReduce.  The   system   characteristics    are 

scalable, self-manageable, self-healing and distributed  file system. 
 

Scalable  means   can  be  scaled  up  (enhanced)   by  adding   storage   and 

processing units as per the requirements.  Self-manageable means creation  of 

storage  and processing  resources  which are used, scheduled  and reduced  or 

increased with the help of the system itself. Self-healing means that  in case of 

faults,  they  are  taken   care  of  by  the  system  itself.  Self-healing  enables 

functioning  and resources  availability. Software detect and handle failures at 

the task level. Software enable the  service or task execution  even in case of 

communication  or node failure. 
 

The hardware  scales up from a single server to thousands  of machines that 

store the clusters. Each cluster  stores a large number  of data blocks in racks. 

Default data  block size is 64 MB.  IBM  Biglnsights, built  on Hadoop deploys 

default 128 MB block size. Hadoop framework provides the computing features 

of a system  of distributed,   flexible, scalable, fault  tolerant   computing  with 

high  computing   power.  Hadoop  system  is  an  efficient  platform   for  the 

distributed  storage and processing of a large amount of data.



Hadoop  enables  Big Data storage  and  cluster  computing.   The Hadoop  system 

manages    both,   large-sized    structured     and   unstructured      data   in  different 

formats,   such  as  XML,  JSON and  text  with  efficiency   and  effectiveness.    The 

Hadoop  system  performs   better   with  clusters   of many  servers  when  the  focus 

is on horizontal    scalability.   The  system  provides   faster  results   from  Big Data 

and from  unstructured    data  as well. 
 

Yahoo  has  more  than   100000 CPUs in  over  40000 servers   running   Hadoop, 

with   its   biggest   Hadoop   cluster    running    4500  nodes   as  of  March   2017, 

according   to  the  Apache  Hadoop  website.   Facebook   has  2  major   clusters:   a 

cluster  has 1100-machines   with  8800 cores  and about  12 PB raw storage.  A 300- 

machine   cluster   with  2400 cores  and  about  3  PB (1  PB   =  1015  B,  nearly  250  B) 

raw-storage.  Each (commodity) node has 8 cores and 12 TB (1 TB= 1012, nearly 

240  B = 1024  GB) of storage. 
 

 

2.2.1  Hadoop Core Components 
 

Figure 2.1 shows the  core components  of the  Apache Software Foundation's 

Hadoop framework. 

 

 
 

Figure 2.1 Core components ofHadoop 
 

The Hadoop core components of the framework are: 
 

1. Hadoop  Common  -  The  common  module  contains  the  libraries  and 

utilities that  are required  by the other modules of Hadoop. For example, 

Hadoop  common   provides   various   components   and   interfaces   for 

distributed file   system   and   general    input/ output.    This   includes 

serialization,  Java  RPC (Remote  Procedure   Call) and  file-based  data



structures. 
 

2. Hadoop Distributed  File System (HDFS)  -  A Java-based  distributed   file 

system which can store all kinds of data on the disks at the clusters. 

3.   MapReduce  vl   -  Software  programming   model  in  Hadoop  1    using 

Mapper and Reducer. The vl  processes large sets of data in parallel and 

in batches. 

4.  YARN -  Software  for  managing  resources   for  computing.  The  user 

application tasks  or  sub-tasks  run  in  parallel   at  the   Hadoop,  uses 

scheduling  and  handles  the  requests  for  the  resources  in  distributed 

running  of the tasks. 

5.  MapReduce v2 - Hadoop 2 YARN-basedsystem for parallel processing of 

large datasets and distributed  processing of the application tasks. 

2.2.1.1 Spark 
 

Spark is an  open-source  cluster-computing   framework  of Apache  Software 

Foundation. Hadoop deploys data at the disks. Spark provisions for in-memory 

analytics. Therefore, it also enables OLAP and real-time processing. Spark does 

faster processing of Big Data. 
 

Spark has been adopted  by large organizations,  such as Amazon, eBay and 

Yahoo. Several organizations  run Spark on clusters with thousands  of nodes. 
 

Spark is now increasingly  becoming popular.  Chapters  5 to 9 will describe 

Spark and its components in detail. 
 

 

2.2.2  Features of Hadoop 
 

Hadoop features are as follows: 
 

1. Fault-efficient scalable, fiexible and modular design which uses simple and 

modular programming model. The system provides servers at high 

scalability. The system is scalable by adding new nodes to handle larger 

data. Hadoop proves very helpful in storing,  managing,  processing  and 

analyzing Big Data. Modular functions make the system flexible. One can 

add or replace components at ease. Modularity allows replacing its 

components for a different software tool.



2. Robust design of HDFS: Execution of Big Data applications  continue  even 

when  an individual  server  or  cluster  fails. This is because  of Hadoop 

provisions  for backup  (due to replications  at least three  times for each 

data  block)  and  a  data   recovery   mechanism.   HDFS   thus   has  high 

reliability. 
 

3.   Store and process Big Data: Processes Big Data of 3V characteristics. 
 

4.  Distributed  clusters computing  model with data locality:  Processes Big Data at 

high speed  as  the   application   tasks   and   sub-tasks   submit   to  the 

DataNodes. One can achieve more  computing  power by increasing  the 

number of  computing   nodes.  The  processing   splits  across  multiple 

DataNodes (servers), and thus fast processing and aggregated results. 
 

5.   Hardware  fault-tolerant: A   fault  does  not  affect  data  and  application 

processing. If a node goes down, the other nodes take care of the residue. 

This is due to multiple copies of all data blocks which replicate 

automatically. Default is three copies of data blocks. 
 

6.   Open-source  framework: Open source  access  and  cloud  services  enable 

large data store. Hadoop uses a cluster of multiple inexpensive servers or 

the cloud. 

7.   Java and Linux based: Hadoop uses Java interfaces.  Hadoop base is Linux 

but has its own set of shell commands support. 
 

Hadoop  provides  various  components   and  interfaces   for  distributed   file 

system   and  general   input/ output.   This  includes   serialization,   Java  RPC 

(Remote Procedure Call) and file-based data structures  in Java. 
 

HDFS   is  basically  designed  more  for  batch   processing.   Streaming  uses 

standard   input  and  output  to  communicate  with  the  Mapper  and  Reduce 

codes.  Stream  analytics  and  real-time   processing  poses  difficulties  when 

streams have high throughput  of data. The data access is required  faster than 

the latency at DataNode at HDFS. 
 

YARN provides a platform for many different modes of data processing, from 

traditional    batch   processing   to   processing   of  the   applications   such   as 

interactive  queries, text analytics and streaming analysis.



These  different  types  of data  can  be  moved  in  HDFS for  analysis  using 

interactive  query processing tools of Hadoop ecosystem components,  such as 

Hive or can be provided to online business processes with the help of Apache 

HBase. 
 

 

2.2.3  Hadoop Ecosystem Components 
 
Hadoop ecosystem   refers    to    a    combination    of     IHl.ldoop  ernsystI!Jllil:  AViRD, 
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family of applications  which tie up together  with the 

Hadoop. The system components  support the storage, 

processing, access, analysis, governance, security and operations  for Big Data. 
 

The system enables the  applications  which run  Big Data and deploy HDFS. 

The  data  store  system  consists  of  clusters,  racks,  DataNodes  and  blocks. 

Hadoop  deploys  application  programming   model,  such  as  MapReduce and 

HBase.YARN manages resources and schedules sub-tasks of the application. 
 

HBase uses columnar  databases  and  does OLAP.  Figure 2.2  shows Hadoop 

core  components  HDFS, MapReduce and  YARN  along  with  the  ecosystem. 

Figure 2.2 also shows Hadoop ecosystem. The system includes the application 

support  layer and application layer components-  AVRO, ZooKeeper, Pig, Hive, 

Sqoop, Ambari,  Chukwa, Mahout,  Spark,  Flink and  Flume. The  figure  also 

shows the components and their usages.
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Figure2.2 Hadoop main components and ecosystem components 
 

The four layers in Figure 2.2 are as follows: 
 

(i)    Distributed storage layer 
 

(ii) Resource-manager  layer for job or application sub-tasks scheduling and 

execution 

(iii} Processing-framework  layer, consisting of Mapper and Reducer for the 

MapReduce process-flow 
 

(iv) APis at application  support  layer  (applications  such as Hive and Pig). 

The  codes  communicate   and   run   using   MapReduce  or  YARN at 

processing   framework   layer.  Reducer  output   communicate   to  APis 

(Figure 2.2). 

AVRO   enables  data   serialization   between   the   layers.  Zookeeper  enables 

coordination  among layer components. 
 

The holistic view of Hadoop architecture  provides an idea of implementation 

of Hadoop components  of the ecosystem. Client hosts run applications  using 

Hadoop ecosystem projects, such as Pig, Hive and Mahout.



Most commonly, Hadoop uses Java programming.  Such Hadoop programs 

run on any platform with the Java virtual-machine  deployment model. HDFS is 

a Java-based distributed  file system that can store various kinds of data on the 

computers. 
 

 

2.2.4  Hadoop Streaming 
 

HDFS with MapReduce and YARN-basedsystem enables parallel processing of 

large datasets.  Spark provides in-memory  processing of data, thus improving 

the   processing   speed.   Spark   and   Flink  technologies   enable   in-stream 

processing. The two lead stream  processing  systems and are more useful for 

processing  a large volume of data.  Spark includes  security  features.  Flink is 

emerging  as a powerful  tool.  Flink improves  the  overall  performance  as it 

provides single run-time  for streaming as well as batch processing. Simple and 

flexible architecture  of Flink is suitable for streaming data. 
 

 

2.2.5  Hadoop Pipes 
 

Hadoop Pipes are the C++  Pipes which interface  with MapReduce. Java native 

interfaces  are not  used in pipes. Apache Hadoop provides  an adapter  layer, 

which  processes  in pipes. A  pipe  means  data  streaming  into  the  system  at 

Mapper input and aggregated results flowing out at outputs. The adapter  layer 

enables running  of application  tasks in C++ coded MapReduce programs. 

Applications which require  faster numerical  computations  can achieve higher 

throughput  using C++ when used through  the pipes, as compared to Java. 
 

Pipes do not use the  standard  I/0  when communicating  with  Mapper and 

Reducer  codes. Cloudera  distribution   including  Hadoop  (CDH)  version  CDH 

5.0.2   runs  the  pipes.  Distribution  means  software  downloadable  from  the 

website distributing  the codes. IBM PowerLinux systems enable working with 

Hadoop pipes and system libraries. 
 
 

Self-Assessment Exercise linked  to LO 2.1 
 

1.   How are core Hadoop components used for Big Data analytics? 
 

2. Explain  the   meaning   of  distributed   computing   model  with  data 

locality?



3.   Why are the Hadoop system and ecosystem components  shown in the 

four layers? Explain by an example. 

5.   Differentiate between MapReduce vl and MapReduce v2. 
 
 
 

 

2.3 ! HADOOP  DISTRIBUTED   FILE SYSTEM 

Big Data  analytics  applications  are  software 

applications that leverage large-scale data. The 

applications  analyze Big Data using massive parallel 

processing frameworks. HDFS is a core component  of 

Hadoop.  HDFS is  designed  to  run  on  a  cluster  of 

computers and servers at cloud-based utility services. 
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HDFS stores Big Data which may range from GBs  (1 GB= 230   B) to PBs (1 PB= 

1015 B, 

nearly  the  250  B). HDFS  stores  the  data  in a distributed  manner  in order  to 

compute  fast. The distributed  data  store  in HDFS  stores  data  in any format 

regardless  of schema. HDFS provides  high throughput   access to data-centric 

applications that require large-scale data processing workloads. 
 

 

2.3.1  HDFS Data  Storage 
 

Hadoop data  store  concept  implies storing  the  data  at a number  of clusters. 

Each cluster  has  a number  of data  stores,  called racks. Each rack  stores  a 

number  of DataNodes. Each DataNode has a large number  of data blocks.  The 

racks distribute  across a cluster. The nodes have processing and storage 

capabilities.  The nodes  have the  data  in data  blocks to run  the  application 

tasks. The data blocks replicate  by default at least on three DataNodes  in same or 

remote  nodes. Data at the stores enable running  the distributed  applications 

including analytics, data mining, OLAP using the clusters. A file, containing  the 

data divides  into data blocks.  A data block default size is 64 MBs  (HDFS  division of 

files concept  is similar  to  Linux or virtual  memory  page  in  Intel  x86 and 

Pentium processors where the block size is fixed and is of 4 KB). 
 

Hadoop HDFS features are as follows:



(i)    Create, append, delete, rename and attribute modification functions 
 

(ii) Content of individual file cannot be modified or replaced but appended 

with new data at the 

end of the file 
 

(iii)  Write once but read many times during usages and processing 
 

(iv) Average file size can be more than 500 MB. 
 

The following is an example how the files store at a Hadoop cluster. 
 
 

EXAMPLE  2.2 
 

 

Consider a data storage for University students. Each student  data, stuData 

which is in a file of size less than 64 MB (1 MB= 220B).  A data block stores 

the full file data for a student of stuData_idN, where 

N = 1 to 500. 
 

(i)   How the files of each student will be distributed  at a Hadoop cluster? 

How many student  data  can be stored  at one cluster?  Assume that 

each rack has two DataNodes for processing each of 64 GB 

(1 GB= 230B)  memory. Assume that  cluster consists of 120 racks, and 

thus 240 DataNodes. 
 

(ii)  What is the total memory capacity of the cluster in TB ((1 TB= 240B) 

and DataNodes in each rack? 
 

(iii) Show the  distributed   blocks  for  students   with  ID=  96 and  1025. 

Assume default replication  in the DataNodes = 3. 
 

(iv) What shall be the changes when a stuData file size s 128 MB? 
 

SOLUTION 
 

(i)   Data block default  size is 64 MB. Each students  file size is less than 

64MB. Therefore, for each student  file one data block suffices. A data 

block is in a DataNode. Assume, for simplicity,  each  rack  has two 

nodes each of memory capacity = 64 GB. Each node can thus store 64 

GB/64MB=  1024 data blocks=  1024 student  files. Each rack can thus 

store  2  x  64 GB/64MB=  2048 data blocks =  2048 student  files. Each



/   . 

data  block default  replicates   three  times  in the  DataNodes.  Therefore, 

the  number   of students   whose  data  can  be  stored   in  the  cluster   = 

number   of racks  multiplied   by number   of files  divided  by 3 =  120  x 

2048/3      = 81920.    Therefore, the maximum number of   81920 

stuData_IDNfiles can be distributed  per cluster, with N = 1  to 81920. 
 

(ii)  Total memory capacity of the cluster =  120 x  128 MB  = 15360  GB  = 15 

TB. Total memory capacity of each DataNode in each rack=  1024  x 64 

MB= 64 GB. 
 

(iii)  Figure 2.3  shows a Hadoop cluster  example,  and the  replication  of 

data blocks in racks for two students  of IDs 96 and 1025. Each stuData 

file stores at two data blocks, of capacity 64 MB each. 

(iv) Changes will be that  each node will have half the  number  of data 

blocks. 
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Figure 2.3 A Hadoop cluster example, and the replication of data 

blocks in racks for two students of IDs 96 and 1025



2.3.1.1  Hadoop Physical Organization 
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pointers  for the  resources.  A  data-dictionary   stores 

the  resource  pointers.   Master  tables  at  the  dictionary   store  at  a  central 

location. (Section 1.5.1 for the details). The centrally stored tables enable 

administration  easier when the data sources change during processing. 
 

Similarly, the  files, DataNodes and  blocks  need  the  identification   during 

processing  at HDFS.  HDFS  use the  NameNodes and DataNodes. A NameNode 

stores the file's meta data. Meta data gives information  about the file of user 

application, but does not participate  in the computations. The DataNode stores 

the actual data files in the data blocks. 
 

Few nodes in a Hadoop cluster act as NameNodes. These nodes are termed  as 

MasterNodes or simply masters.  The masters  have a different  configuration 

supporting  high  DRAM  and  processing  power. The masters  have  much  less 

local storage.  Majority of the  nodes in Hadoop cluster  act as DataNodes and 

TaskTrackers. These nodes are referred  to as slave nodes or slaves. The slaves 

have lots of disk storage and moderate  amounts of processing capabilities and 

DRAM. Slaves are responsible  to store the data and process the computation 

tasks submitted by the clients. 
 

Figure  2.4   shows  the  client,  master  NameNode,  primary   and  secondary 

MasterNodes and slave nodes in the Hadoop physical architecture.
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Figure 2.4 The client, master NameNode, MasterNodes and slave 

nodes 
 

Clients as the  users  run  the  application  with the  help of Hadoop ecosystem 

projects. For example, Hive, Mahout and Pig are the ecosystem's projects. They 

are  not  required  to  be  present  at  the  Hadoop cluster.  A  single  MasterNode 

provides HDFS,  MapReduce and Hbase using threads  in small to medium sized 

clusters.  When the  cluster  size is large, multiple  servers  are used, such as to 

balance  the  load. The secondary  NameNode provides  NameNode management 

services and Zookeeper is used by HBase for metadata  storage. 
 

The   MasterNode   fundamentally    plays   the   role   of  a   coordinator.    The 

MasterNode receives client connections,  maintains  the description  of the global 

file system  namespace,  and the  allocation  of file blocks. It  also monitors  the 

state of the system in order to detect any failure. The Masters consists of three 

components  NameNode, Secondary NameNode and JobTracker. The NameNode 

stores all the file system related information  such as: 

•       The file section is stored in which part of the cluster 
 

•        Last access time for the files 
 

•        User permissions like which user has access to the file. 
 

Secondary NameNode is an alternate  for NameNode. Secondary node keeps a



copy of NameNode meta data. Thus, stored  meta data can be rebuilt  easily, in 

case of NameNode failure. The JobTracker coordinates  the parallel processing of 

data. 
 

Masters and slaves, and Hadoop client (node) load the data into cluster, submit 

the processing job and then  retrieve  the data to see the response  after the job 

completion. 
 

2.3.1.2 Hadoop 2 
 

Single NameNode failure  in Hadoop 1  is an operational  limitation.  Scaling up 

was  also restricted   to  scale beyond  a  few thousands   of DataNodes  and  few 

number  of clusters.  Hadoop 2  provides the  multiple  NameNodes. This enables 

higher resource availability. Each MN has the following components: 
 

An associated NameNode 
 

Zookeeper coordination  client (an associated NameNode), functions as a 

centralized repository for distributed  applications. Zookeeper uses 

synchronization,  serialization and coordination activities. It enables 

functioning of a distributed  system as a single function. 

Associated JournalNode  ON). The JN keeps  the  records  of the  state, 

resources  assigned, and intermediate  results  or execution  of application 

tasks. Distributed applications can write and read data from a JN. 

The system takes care of failure issues as follows: 
 

One set of resources  is in active state. The other one remains in standby state. 

Two masters,  one MNl is in active state  and other  MN2 is in secondary  state. 

That  ensures  the  availability  in case of network  fault of an active NameNode 

NMl. The Hadoop system  then  activates  the  secondary  NameNode NM2 and 

creates  a secondary  in another  MasterNode  MN3 unused  earlier.  The entries 

copy from JNl in MNl into the JN2, which is at newly active MasterNode MN2. 

Therefore, the application runs uninterrupted  and resources are available 

uninterrupted. 
 

 

2.3.2  HDFS Commands 
 

Figure 2.1 showed Hadoop common module, which contains  the  libraries  and 

utilities. They are common to other  modules of Hadoop. The HDFS  shell is not



compliant   with  the  POSIX. Thus,  the  shell  cannot   interact    similar   to  Unix  or 

Linux.  Commands   for  interacting    with  the  files  in HDFS require   /bin/hdfs   dfs 

<args>, where  args  stands  for  the  command   arguments.    Full set  of the  Hadoop 

shell   commands    can   be   found   at   Apache   Software   Foundation    website.    - 

copyToLocal      is the command for copying a file at HDFS to the local. -cat     is 

command  for copying to standard  output  (stdout). All Hadoop commands  are 

invoked  by the  bin/Hadoop  script.  %       Hadoop     fsck       I   -files           -blocks 

Table 2.1 gives the examples of command usages. 
 

Table 2.1  Examples of usages of commands 
 

 

HDFS shell 

command 

 
 

Example  of usage 

 

 
-mkdir 

 

Assume  stu_filesdir   is  a  directory   of  student   files  in  Example  2.2.   Then 

command  for creating  the 

directory    is   $Hadoop       hdfs-mkdir/user/stu_filesdir                      creates    the 

directory  named stu_files_dir 

 
 

-put 

 

Assume file stuData_id96   to be copied  at  stu_filesdir   directory   in Example 

2.2.  Then      $Hadoop  hdfs-put      stuData_id96       /user/       stu      filesdir 

copies file for student  of id96 into stu_filesdir  directory 

 

-ls 

 

Assume  all files to  be  listed.  Then  $hdfs     hdfs        dfs-ls      command  does 

provide the listing. 

 

 
 

-cp 

 

Assume   stuData_id96    to   be   copied   from   stu_filesdir    to   new   students' 

directory newstu_filesDir.      Then        $Hadoop       hdf   s-cp       stuData    _ id96 

/user/stu_filesdir             newstu_filesDir          copies file for student  of ID 96 

into stu_filesdir  directory 

 

Self-Assessment  Exercise linked  to LO 2.2 
 

1.   (i) What does the create,  append,  delete, rename  and attribute  modification 

methods  mean in the HDFS?  (ii) Why is the content  of an individual file not 

modified  or replaced  but  appended  at the  end of the  file? (iii) Why is the 

write once but read many times concept used in HDFS? 
 

2.   What   are   the    functions    of   NameNode,   DataNode,   slave   node   and



 

 
Fr 

Master Node? 
 

3.   What are the benefits of multiple MasterNodes? 
 

4.   What are the usages of meta data? 
 

5.  Make a data-store  model using HDFS for SGPs, SGPAs and CGPAs of each 

student.  Assume 50  UG  and  10  PG courses  offered  at the  university. 

Total intake  capacity is 5000  each year.  Each student  information  can 

extend up to 64 MB. How will the files of 5000  students  be stored using 

HDFS? What shall be the minimum memory requirements  in 20 years? 

(SGP  means  subject grade  point  awarded  to a student,  SGPA semester 

grade point average, and CGPA cumulative grade-point  average.) 
 
 
 

 

2.4 l MAPREDUCE    FRAMEWORK   AND PROGRAMMING   MODEL 

Figure  2.4   showed  MapReduce  functions  as  integral 

part  of the Hadoop physical organization.  MapReduce 

is a programming  model for distributed  computing. 
 

Mapper means  software  for doing the  assigned  task 

after  organizing  the  data  blocks  imported  using  the 
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keys. A key specifies in a command line of Mapper. The command maps the key 

to the data, which an application uses. 
 

Reducer means   software   for   reducing   the   mapped   data   by  using   the 

aggregation,  query  or user-specified  function.  The reducer  provides  a concise 

cohesive response for the application. 
 

Aggregation  function means  the  function  that  groups  the  values  of multiple 

rows  together   to   result   a  single  value   of  more   significant   meaning   or 

measurement.  For example, function  such as count, sum, maximum, minimum, 

deviation and standard  deviation. 
 

Querying function means a function that  finds the desired values. For example, 

function   for  finding  a  best  student   of  a  class  who  has  shown  the   best 

performance  in examination. 
 

MapReduce allows writing  applications  to process reliably the huge amounts



of data, in parallel, on large clusters of servers. The cluster size does not limit as 

such to process in parallel. The parallel programs  of MapReduce are useful for 

performing large scale data analysis using multiple machines in the cluster. 
 

Features of MapReduce framework are as follows: 
 

1. Provides automatic  parallelization  and distribution  of computation  based 

on several processors 

2.   Processes data stored on distributed  clusters of DataNodes and racks 
 

3.   Allows processing large amount of data in parallel 
 

4.   Provides scalability for usages of large number of servers 
 

5.   Provides   MapReduce  batch-oriented    programming   model   in  Hadoop 

version 1 
 

6. Provides additional processing modes in Hadoop 2 YARN-basedsystem and 

enables required  parallel processing. For example, for queries, graph 

databases,  streaming  data, messages, real-time  OLAP  and ad hoc analytics 

with Big Data 3V characteristics. 
 

The following subsection describes Hadoop execution model using MapReduce 

Framework. 
 

 

2.4.1  Hadoop MapReduce Framework 
 

MapReduce provides two important  functions. The distribution  of job based on 

client application  task or users query to various  nodes within  a cluster  is one 

function. The second function is organizing and reducing the results from each 

node into a cohesive response to the application or answer to the query. 
 

The processing tasks are submitted  to the Hadoop. The Hadoop framework in 

turns  manages the task of issuing jobs, job completion, and copying data around 

the cluster between the DataNodes with the help of JobTracker (Figure 2.4). 
 

Daemon refers to a highly dedicated program that runs in the background  in a 

system.  The  user  does  not  control   or  interact   with  that.   An  example  is 

MapReduce in Hadoop system [Collins English language dictionary  gives one of 

Daemon meaning as 'a person who concentrates  very hard or is very skilled at 

an activity and puts in lot of energy into it'].



MapReduce runs as per assigned Job by JobTracker, which keeps track  of the 

job submitted for execution and runs TaskTracker for tracking the tasks. 

MapReduce programming  enables job scheduling and task execution as follows: 
 

A  client  node  submits  a  request   of  an  application   to  the  JobTracker.  A 

JobTracker  is a Hadoop daemon  (background  program).  The following are the 

steps  on  the  request  to  MapReduce: (i)  estimate  the  need  of resources  for 

processing that  request,  (ii) analyze the states of the slave nodes, (iii) place the 

mapping  tasks in queue, (iv) monitor  the  progress  of task, and on the failure, 

restart  the task on slots of time available. The job execution is controlled by two 

types of processes in MapReduce: 

1. The Mapper  deploys map  tasks  on the  slots. Map tasks  assign to those 

nodes where  the  data  for the  application  is stored.  The Reducer output 

transfers  to the client node after the data serialization using AVRO. 

2. The Hadoop system  sends  the  Map and  Reduce jobs  to the  appropriate 

servers in the cluster. The Hadoop framework in turns manages the task of 

issuing jobs, job completion  and copying data around the cluster between 

the slave nodes. Finally, the cluster collects and reduces the data to obtain 

the result  and sends it back to the Hadoop server after completion  of the 

given tasks. 

The job  execution  is controlled  by two types  of processes  in MapReduce. A 

single master process called JobTracker is one. This process coordinates  all jobs 

running   on  the  cluster  and  assigns  map  and  reduce  tasks  to  run  on  the 

TaskTrackers.    The    second    is    a    number     of    subordinate     processes 

called TaskTrackers. These processes run assigned tasks and periodically report 

the progress to the JobTracker. 
 

Figure 2.4 showed the job execution model of MapReduce. Here the JobTracker 

schedules jobs submitted  by clients, keeps track of TaskTrackers and maintains 

the available Map and Reduce slots. The JobTracker also monitors the execution 

of jobs and tasks on the cluster. The TaskTracker executes the Map and Reduce 

tasks, and reports  to the JobTracker. 
 

 

2.4.2  MapReduce ProgrammingModel 
 

MapReduce program  can be written  in any language including JAVA, C++ PIPEs



or Python.  Map function  of MapReduce program  do mapping  to compute  the 

data and convert  the data into other  data sets (distributed  in HDFS). After the 

Mapper computations  finish, the Reducer function collects the result of map and 

generates  the  final output  result.  MapReduce program  can be applied  to any 

type of data, i.e., structured  or unstructured  stored in HDFS. 
 

The input data is in the form of file or directory and is stored in the HDFS. The 

MapReduce program  performs two jobs on this input data, the Map job and the 

Reduce job. They are also termed  as two phases-   Map phase and Reduce phase. 

The map job  takes  a set of data and converts  it into another  set of data. The 

individual  elements   are  broken  down  into  tuples  (key/value   pairs)  in  the 

resultant  set of data. The reduce job takes the output  from a map as input and 

combines the data tuples into a smaller set of tuples. Map and reduce jobs run in 

isolation  from one another.  As the  sequence  of the  name MapReduce implies, 

the reduce job is always performed after the map job.
 

The MapReduce v2 uses YARN based resource 

scheduling which simplifies the software development. 

Here, the jobs can be split across almost any number of 

servers. For example, the ACVM  Company can find the 
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number  of chocolates KitKat, Milk, Fruit and Nuts, Nougat and Oreo sold every 

hour at the number of ACVMs installed all over in the multiple cities on separate 

servers [Refer Example 1.6(i)]. A server maps the keys for KitKat and another  for 

Oreo. It  requires  time  to  scan the  hourly  sales log sequentially.  By contrast, 

MapReduce programmer   can  split  the  application  task  among  multiple  sub• 

tasks, say one hundred  sub-tasks, where each sub-task processes the data of the 

selected set of ACVMs. The results of all the sub-tasks then aggregate to get the 

final result, hourly sales figures of each chocolate flavor from all ACVMs  of the 

company. Finally, the aggregated  hourly results  appear  from the hourly log of 

transactions   filed at Hadoop DataNodes. The company  enterprise   server  runs 

analytics  and  applications   consider  the  results   as  if  from  a  single  server 

application.  The following example shows the usage of HDFS  and the map and 

reduce functions. 
 

 

EXAMPLE  2.3 
 

 

Consider  Example  1.6(i)  of ACVMs  selling  KitKat, Milk, Fruit  and  Nuts, 

Nougat and Oreo chocolates. Assume 24 files are created every hour for each



day.  The  files  are  at  file_l,  file_2,  .... ,  file_24.  Each  file stores   as key-value 

pairs  as hourly  sales log at the  large  number  of machines. 
 

(i) How will the  large  number   of machines,   say 5000 ACVMs hourly   data 

for each  flavor  sales log store  using  HDFS?  What  will be the  strategy   to 

restrict   the  data  size in HDFS? 

(ii)   How will the  sample  of data  collected  in a file for 0-1,1-2, ...  12-13,13-14, 

15-16, up to 23-24 specific  hour-sales   log for sales  at a large  number   of 

machines,   say 5000? 

(iii)  What will be the  output  streams  of map tasks  for feeding the  input 

streams to the Reducer? 

(iv) What will be the Reducer outputs? 
 

SOLUTION 
 

5000 machines  send sales data every hour for KitKat, Milk, Fruit and Nuts, 

Nougat and Oreo chocolates, i.e., a total of 5 flavors. Assume each sales data 

size= 64 B, then data bytes 64 x 5 x 5000 B = 1600000B 

will accumulate (append) each hour in a file. 
 

Sales data are date-time  stamped key-value pairs. Each of 24 hour hourly 

log files will use initially  24 data  blocks at a DataNode and replicated  at 

three DataNodes. A data file in one year will accumulate 1600000x 24 x 365  B 

= 14016000000B = nearly 16 GB. Each data block can store 64 MB. Therefore, 

16 GB/64 MB= 250 data blocks in each file each year. 
 

However, hourly and daily sales analytics  is required  only for managing 

supply chain for chocolate fill service and finding insight into sales during 

holidays and festival days compared to other days. Therefore, a strategy can 

be designed  to replace  the  hourly  sales data  each month  and create  new 

files for monthly sales data. 
 

A file sample-data  of key-value pairs for hour-sales log in file_16 for sales 

during 15:00-16:00will be as follows: 
 

ACVM_idlOKitKat, 23 
 

ACVM_id2206Milk, 31 
 

ACVM_id20reo, 36



ACVM_idlOFruitNuts,   18 
 

ACVM_id16Nougat,  8 

 
 
 
 
 
 

 
ACVM id1224KitKat,  48 

 

ACVM_id4837Nougat,  28 
 

 
 

Map tasks will map the input streams of key values at files, file_l, file_2, ... 

.. file_23, file_24 every hour. The resulting  5000 key value pairs maps each 

hour  with  keys for ACVM_idNKitKats(N =  1  to 5000). The output  stream 

from Mapper will be as follows: 
 

(ACVM_idlOKitKat, 0),  (ACVM_id1224KitKat, 3), .. ,    .. , 

... ,  ...  ,  .. ,     .. ,     ... ,     .... ,  .... ,  ...  ,  .. ,     .. ,     ... 
 

Hourly 5  output  streams  of mapped  tasks  for all chocolates  of all 5000 

machines will be input to the reduce task. 
 

The  Reducer  processes   each  hour   using  5   input   streams,   sums  all 

machines    sales   and   generates    one   output    (ACVMs_KitKat, 109624), 

(ACVMs_Milk,  128324),    (ACVMs_FruitNuts,   9835),    (ACVMs_Nougat, 

2074903), and (ACVMs_Oreo,305163). The reduced  output  serializes and is 

input to the analytics applications each hour. 

Chapter 4 describes MapReduce programming  in detail. 

Self-Assessment Exercise linked  to LO 2.3 
 

1.   Why is mapping required  when processing the stored data at HDFS? 
 

2.   How do Jobracker  and TaskTracker function? 
 

3.   How does  MapReducer  along  with  the  YARN resources   manager   enable 

faster processing of an application? 

4.  Consider HDFS  DataNodes in a cluster.  Draw a diagram  depicting  10



data  nodes  storing  the  data  of 4 groups of students.  Using the diagram, 

show the execution  of MapReduce sub-tasks for each group in parallel 

on the DataNodes in a cluster. 
 
 
 

 

2.5 ! HADOOP  YARN 

YARN is a resource  management  platform.  It  manages 

computer  resources.  The  platform  is responsible  for 

providing  the  computational  resources,  such as CPUs, 

memory, network 1/0 which are needed when an 

application executes. An application task has a number 

of sub-tasks. YARN manages the schedules for running 
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of the sub-tasks. Each sub-task uses the resources in allotted time intervals. 
 

YARN separates  the resource  management  and processing components. YARN 

stands for Yet Another Resource Negotiator. An application consists of a number 

of tasks. Each task can consist of a number  of sub-tasks (threads), which run in 

parallel  at the  nodes  in the  cluster.  YARN  enables  running  of multi-threaded 

applications. YARN manages and allocates the resources for the application sub• 

tasks and submits the resources for them at the Hadoop system. 
 

 

2.5.1   Hadoop 2 Execution Model 
 

Figure 2.5  shows the YARN-basedexecution model. The figure shows the YARN 

components-Client,   Resource Manager (RM), Node Manager (NM), Application 

Master (AM) and Containers. 
 

Figure 2.5 also illustrates YARN components  namely, Client, Resource Manager 

(RM), Node Manager (RM), Application Master (AM) and Containers. 
 

List of actions  of YARN  resource  allocation  and  scheduling  functions  is as 

follows: 

•      A MasterNode has two components: (i) Job History Server and (ii) Resource 

Manager(RM). 
 

• A  Client Node submits the request  of an application  to the RM. The RM is 

the master. One RM exists per cluster. The RM keeps information  of all the
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slave  NMs. Information    is  about   the  location   (Rack Awareness)   and  the 

number   of  resources    (data  blocks  and  servers)   they   have.  The  RM also 

renders   the  Resource   Scheduler   service   that   decides   how  to  assign  the 

resources.     It,   therefore,    performs   resource   management    as  well  as 

scheduling. 

• Multiple NMs are at a cluster. An NM creates  an AM instance  (AMI) and 

starts  up. The AMI initializes  itself and registers  with  the  RM. Multiple 

AMis can be created in an AM. 

• The AMI performs role of an Application Manager (ApplM),that  estimates 

the  resources  requirement   for running  an  application  program  or sub• 

task. The ApplMs send their  requests  for the  necessary  resources  to the 

RM. Each NM includes several containers  for uses by the subtasks of the 

application. 

• NM is a slave of the  infrastructure.   It signals whenever  it initializes. All 

active NMs send the  controlling  signal periodically  to the  RM signaling 

their presence. 
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Figure 2.5  YARN-basedexecution model 
 

• Each NM assigns a container(s)  for each AMI. The container(s)  assigned at 

an instance may be at same NM or another  NM. ApplM uses just  a fraction 

of the  resources  available. The ApplM at  an instance  uses the  assigned 

container(s) for running the application sub-task. 

• RM allots  the  resources  to AM, and  thus  to ApplMs for using  assigned 

containers  on the same or other  NM for running  the application  subtasks 

in parallel. 
 
 

Self-Assessment  Exercise linked  to LO 2.4 
 

1. What are the resources  required  for running  an application?  How they 

are allocated? 

2.   List the functions of YARN. 
 

3. Explain using Example 2.3, how the Application Master coordinates  the 

execution  of all tasks  submitted  for  an  application  and  requests  for 

appropriate  resource containers to executethe  task. 

4.  List  the   functions   of  Client,  Resource   Manager,   Node  Manager, 

Application Master and Containers 
 
 
 

 

2.6 l HADOOP ECOSYSTEM TOOLS 

A  simple framework  of Hadoop enabled  development 

of  a  number   of  open-source   projects   has   quickly 

emerged (Figure 2.2). They solve very specific problems 

related  to  distributed   storage  and  processing  model. 

Table  2.2  gives  the  functionalities   of the  ecosystem 

tools and components. 
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Table 2.2  Functionalities of the ecosystem tools and components 
 

Ecosystem 

Tool                                                             Functionalities



 

ZooKeeper - 

Coordination 

service 

 
Provisions high-performance   coordination  service for distributed 

running  of applications  and tasks (Sections 2.3.1.2 and 2.6.1.1) 

Avro-Data 

serialization 

and transfer 

utility 

 
 

Provisions  data serialization  during  data transfer  between  application 

and processing  layers (Figure 2.2 and Section 2.4.1) 

 
Oozie 

 

Provides a way to package and bundles  multiple  coordinator  and 

workflow jobs and manage the lifecycle of those jobs (Section 2.6.1.2) 

Sqoop 

(SQL-to- 

Hadoop)-A 

data-transfer 

software 

 

 
 

Provisions  for data-transfer   between  data stores such as relational  DBs 

and Hadoop (Section 2.6.1.3) 

 

Flume - Large 

data transfer 

utility 

 

Provisions for reliable data transfer  and provides  for recovery  in case of 

failure. Transfers  large amount  of data in applications,  such as related  to 

social-media  messages (Section 2.6.1.4) 

 

Ambari-A 

web-based tool 

 

Provisions, monitors,  manages, and viewing of functioning  of the 

cluster,  MapReduce, Hive and Pig APis (Section 2.6.2) 

Chukwa-A 

data collection 

system 

 
Provisions and manages data collection  system for large and distributed 

systems 

HBase -A 

structured 

data store 

using database 

 
 

Provisions  a scalable and structured   database  for large tables (Section 

2.6.3) 

 

Cassandra - A 

database 

 

Provisions  scalable and fault-tolerant   database  for multiple  masters 

(Section 3.7) 

 

Hive -A  data 

warehouse 

system 

 

Provisions  data aggregation,  data-summarization,   data warehouse 

infrastructure, ad hoc (unstructured)   querying  and SQL-like scripting 

language for query processing  using HiveQL (Sections 2.6.4, 4.4 and 4.5) 

Pig-A   high- 

level dataflow 

 
Provisions  dataflow (DF) functionality  and the execution  framework  for 



language parallel  computations   (Sections 2.6.5  and 4.6) 

Mahout-A 

machine 

learning 

software 

 
 

Provisions  scalable machine  learning  and library functions  for data 

mining and analytics  (Sections 2.6.6 and 6.9) 

 

The following subsections describe the Hadoop Ecosystem tools. 
 

 

2.6.1  Hadoop Ecosystem 
 

Consider ZooKeeper, Oozie, Sqoop and Flume. 
 

2.6.1.1 Zookeeper 
 

Designing of a distributed  system requires  designing and developing the 

coordination  services. Apache Zookeeper is a coordination  service that  enables 

synchronization   across  a cluster  in distributed   applications  (Figure 2.2).  The 

coordination  service manages the jobs in the  cluster.  Since multiple  machines 

are  involved,  the  race  condition  and  deadlock  are  common  problems  when 

running a distributed  application. 
 

Zookeeper in Hadoop behaves  as a centralized  repository  where  distributed 

applications  can write data at a node called JournalNode  and read the data out 

of it. Zookeeper uses synchronization,  serialization  and coordination  activities. 

It enables functioning of a distributed  system as a single function. 
 

ZooKeeper's main coordination  services are: 
 

1 Name service -A  name service maps a name to the information  associated 

with that  name. For example, DNS  service is a name service that  maps a 

domain name to an IP address. Similarly, name keeps a track of servers or 

services those  are up and running,  and looks up their  status  by name in 

name service. 

2 Concurrency control  - Concurrent  access to a shared  resource  may cause 

inconsistency  of the  resource.  A  concurrency  control  algorithm  accesses 

shared resource in the distributed  system and controls concurrency. 

3 Configuration  management  - A requirement   of a distributed  system is a 

central  configuration  manager. A new joining  node can pick up the up-to-



date  centralized   configuration    from  the  ZooKeeper  coordination    service  as 

soon as the  node joins  the  system. 

4 Failure  -  Distributed  systems  are  susceptible  to  the  problem  of node 

failures. This requires  implementing  an automatic  recovering  strategy  by 

selecting some alternate  node for processing (Using two MasterNodes with 

a NameNode each). 
 

2.6.1.2 Oozie 
 

Apache Oozie is an open-source  project  of Apache that  schedules Hadoop jobs. 

An efficient process for job handling  is required.  Analysis of Big Data requires 

creation  of multiple jobs and sub-tasks in a process. Oozie design provisions the 

scalable processing of multiple jobs. Thus, Oozie provides a way to package and 

bundle  multiple  coordinator   and  workflow jobs,  and  manage  the  lifecycle of 

those jobs. 
 

The two basic Oozie functions are: 
 

• Oozie workflow jobs  are  represented   as Directed Acrylic Graphs (DAGs), 

specifying a sequence of actions to execute. 

• Oozie  coordinator   jobs   are   recurrent  Oozie  workflow  jobs   that   are 

triggered by time and data availability. 

Oozie provisions for the following: 
 

1.   Integrates  multiple jobs in a sequential manner 
 

2.   Stores and supports Hadoop jobs for MapReduce, Hive, Pig, and Sqoop 
 

3.   Runs workflow jobs based on time and data triggers 
 

4.   Manages batch coordinator  for the applications 
 

5.  Manages  the   timely   execution   of  tens   of  elementary   jobs   lying  in 

thousands  of workflows in a Hadoop cluster. 
 

2.6.1.3 Sqoop 
 

The loading of data into Hadoop clusters becomes an important  task during data 

analytics.  Apache  Sqoop  is  a  tool  that   is  built  for  loading  efficiently  the 

voluminous amount of data between Hadoop and external  data repositories  that 

resides  on enterprise  application  servers  or relational  databases.  Sqoop works



with relational databases such as Oracle, MySQL, PostgreSQLand DB2. 
 

Sqoop provides the mechanism to import  data from external  Data Stores into 

HDFS. Sqoop relates  to  Hadoop  eco-system  components,   such  as  Hive and 

HBase. Sqoop can extract data from Hadoop or other ecosystem components. 
 

Sqoop  provides  command  line  interface   to  its  users.  Sqoop  can  also  be 

accessed using Java APis. The tool allows defining the  schema of the  data for 

import.  Sqoop exploits MapReduce framework  to import  and export  the  data, 

and  transfers   for parallel  processing  of sub-tasks.  Sqoop provisions  for fault 

tolerance.   Parallel  transfer   of data  results  in  parallel  results  and  fast  data 

transfer. 
 

Sqoop initially parses the arguments  passed in the command line and prepares 

the  map  task.  The  map  task  initializes  multiple  Mappers  depending  on  the 

number  supplied  by the  user  in  the  command  line.  Each map  task  will be 

assigned with part of data to be imported based on key defined in the command 

line. Sqoop distributes  the  input  data  equally among the  Mappers. Then each 

Mapper creates a connection with the database using JDBC and fetches the part 

of data assigned by Sqoop and writes it into HDFS/Hive/HBase as per the choice 

provided in the command line. 
 

2.6.1.4 Flume 
 

Apache Flume provides a distributed,  reliable and available service. Flume 

efficiently collects, aggregates  and transfers  a large amount  of streaming  data 

into HDFS. Flume enables upload of large files into Hadoop clusters. 
 

The features  of flume include robustness  and fault tolerance.  Flume provides 

data transfer  which is reliable and provides for recovery in case of failure. Flume 

is useful for transferring  a large amount of data in applications related to logs of 

network   traffic,   sensor   data,   geo-location   data,   e-mails  and   social-media 

messages. 
 

Apache Flume has the following four important  components: 
 

1.   Sources which accept data from a server or an application. 
 

2. Sinks which receive data and store it in HDFS repository  or transmit  the 

data  to  another  source.  Data units  that  are  transferred   over a channel 

from source to sink are called events.



3.  Channels  connect  between  sources  and  sink by queuing  event  data  for 

transactions.  The size of events  data  is usually 4 KB.  The data  source  is 

considered to be a source of various set of events. Sources listen for events 

and write events to a channel. Sinks basically write event data to a target 

and remove the event from the queue. 

4.  Agents run the sinks and sources in Flume. The interceptors  drop the data 

or transfer  data as it flows into the system. 

 

2.6.2  Ambari 
 

Apache Ambari is a management  platform for Hadoop. It is open source. Ambari 

enables an enterprise  to plan, securely install, manage and maintain the clusters 

in the  Hadoop. Ambari provisions  for  advanced  cluster  security  capabilities, 

such as Kerberos Ambari. 
 

2.6.2.1 Features 
 

Features of Ambari and associated components are as follows: 
 

1.   Simplification of installation,  configuration and management 
 

2.   Enables easy, efficient, repeatable  and automated  creation of clusters 
 

3.   Manages and monitors scalable clustering 
 

4.  Provides  an  intuitive  Web User  Interface  and  REST  APL The  provision 

enables automation  of cluster operations. 

5.   Visualizes the health of clusters and critical metrics for their operations 
 

6.   Enables detection of faulty node links 
 

7.   Provides extensibility and customizability. 
 

2.6.2.2 Hadoop Administration 
 

Hadoop large clusters pose a number of configuration  and administration 

challenges.   Administrator   procedures   enable   managing   and   administering 

Hadoop  clusters,   resources   and  associated   Hadoop  ecosystem  components 

(Figure 2.2). Administration  includes installing and monitoring  clusters. 
 

Ambari also  provides  a  centralized   setup  for  security.  This  simplifies  the 

administering  complexities and configures security of clusters across the entire



platform.   Ambari  helps  automation    of the  setup   and  configuration    of Hadoop 

using  Web User Interface   and REST AP Is. 
 

IBM Biglnsights   provides   an administration     console.  The  console  is similar  to 

web UI at Ambari.  The console  enables  visualization   of the  cluster  health,   HDFS 

directory   structure,   status  of MapReduce  tasks,  review  of log records  and  access 

application   status.  Single harmonized   view on console  makes  administering    the 

task  easier.  Visualization   can  be up to  individual   components    level  on  drilling 

down. Nodes addition  and deletion  are easy using  the  console. 
 

The  console  enables  built-in   tools  for  administering.    Web console  provides   a 

link to server  tools  and open-source   components   associated  with  those. 
 

 

2.6.3  HBase 
 

Similar to database, HBase is an Hadoop system database. HBase was created for 

large tables. HBase is an open-source,  distributed,  versioned  and non-relational 

(NoSQL) database. Features ofHBase features are: 
 

1.   Uses a partial columnar data schema on top of Hadoop and HDFS. 
 

2.    Supports a large table of billions of rows and millions of columns. 
 

3. Provides small amounts of information,  called sparse data taken from large 

data  sets  which  are  storing  empty  or  presently  not-required   data.  For 

example, yearly  sales data  of KitKats from the  data  of hourly,  daily and 

monthly sales (Example 2.3). 

4.    Supports data compression algorithms. 
 

5.   Provisions in-memory column-based data transactions. 
 

6. Accesses rows  serially  and  does not  provision  for random  accesses and 

write into the rows. 

7.   Provides random, real-time read/write access to Big Data. 
 

8.   Fault tolerant storage due to automatic failure support between DataNodes 

servers. 

9.    Similarity with Google BigTable. 
 

HBase is written  in Java.  It  stores  data  in  a large  structured table.  HBase
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provides  scalable  distributed   Big Data Store.  HBase data  store  as key-value  pairs. 
 

HBase system  consists  of a set of tables.  Each table  contains  rows  and columns, 

similar   to  a  traditional     database.    HBase  provides    a  primary    key  as  in  the 

database  table.  Data accesses  are performed   using  that  key. 
 

HBASE  applies  a partial   columnar   scheme  on top  of the  Hadoop  and  HDFS.  An 

HBase  column   represents     an  attribute    of  an  object,   such  as  hourly   sales  of 

KitKat,  Milk,  Fruit   and  Nuts,  Nougat   and  Oreo  sold  every   hour   at  an  ACVM 

(Example  2.3). 

The following example shows a structured  table considering Examples 1.6 and 

2.3. 
 
 

EXAMPLE 2.4 
 

 

Recapitulate  Examples 1.6  and  2.3.  Consider ACVMs  selling KitKat, Milk, 

Fruit  and  Nuts,  Nougat  and  Oreo chocolates.  Following is the  table  for 

hourly sales of chocolates at multiple ACVMs. 
 

 

ACVM_ID 
 

Date Hour KUKat 1\illlk Fruit Nougat Oreo 

 (DT) (hr) Hourly Hourly and Nuts Hourly Hourly 

 mmddY.Y  Sale Sale'(r\,UIS) Hourly Sale Sale Sale 

   (KKHS)  (FNHS) (NHS) f;OHS.1 

 
 
 

 
, 

 

 
 
 
 
 

(i)   How does the HBase store the table? 
 

(ii)  How will the records created using shell command 'put'? 
 

SOLUTION 
 

Format of the HBase that stores rows line by line is:
 

Row-Key  Column-Family: 

Value} 

 

{Column-Qualifier:   Version:



HBase data  model  specifies  the  column qualifiers.  For example,  column 

qualifiers are DT, HR, KKHS, MHS, FNHS, NHS and OHS. Version corresponds 

to a number reflecting the time stamp which identifies the data of columns 

uniquely.  Version  is  a  number  reflecting  server  time-stamp   by  default. 

Value is the value in the column field for the qualifier. The first row stores 

in the HBase as follows: 
 

ACVM id:       '2 2 0 6' {    'OT'    :  16 0 0 0 8 0 0 0 0 0 2 4  :      '12121   7'  , 'HR'   : 

1600008007319: '16',           'KKHS':      1600081010821: '28', 

'MHS '  : 1 6 0 0 0 8 2 0 1 0 5 8 2 :          ' 2 3 ' ,      ' FNHS '  : 1 6 0 0 0 8 2 0 1 8 0 0 1  : 

'38', 'NHS':               1600080158868: '8',                 'OHS': 

1600038028229:        '50'} 
 

Write similarly for other rows of hourly sales table. 

The records are put in rows and columns as follows: 

hbase         (main)        001:0>        put        'ACVM_id', 

 
 
 
 
 

 
' 2 2 0 6'  ,       'OT'   ,

'121217', 

row(s) 

 

 

in 

'HR', 

021120 

'16', 

seconds 

'HourlySales: KKHS','28' 0 

hbase 

'HourlyS 

( 

les 

main) 

:           M 

002:0> 

S',     '23' 

put 

0   row 

'ACVM id', 

( s)    in    001120 

'2206', 

seconds 

hbase            (main)           003:0>           put           'ACVM_id',           '2206', 

'HourlySales:          FNHS' ,'38'        0    row  ( s)    in    021120     seconds 
 

hbase            (main) 

'HourlySales: 

004:   0> 

NHS',      '8' 

put 

0   row(s) 

'ACVM_id', 

in  001120 

'2206', 

seconds 

hbase            (main) 

'HourlySales: 

005:   0> 

OHS',      '50' 

put 

0   row  (s) 

'ACVM_id', 

in  001120 

'2206', 

seconds 

 

2.6.4  Hive 
 

Apache  Hive  is  an  open-source   data  warehouse   software.  Hive  facilitates 

reading, writing  and managing  large datasets  which are at distributed  Hadoop 

files. Hive uses SQL. Hive puts a partial SQL interface in front of Hadoop. 
 

Hive  design  provisions   for  batch   processing   of  large   sets   of  data.  An 

application  of Hive is for managing  weblogs. Hive does not  process  real-time 

queries and does not update row-based data tables. 
 

Hive also enables data serialization/ deserialization  and increases flexibility in



schema design by including  a system catalog called Hive Metastore.  HQL  also 

supports custom MapReduce scripts to be plugged into queries. 
 

Hive  supports   different   storage   types,  such  as  text   files,  sequence  files 

(consisting of binary key/value  pairs) and RCFiles (Record Columnar Files), ORC 

(optimized  row columnar) and HBase. 
 

Three  major  functions  of Hive are  data  summarization,  query  and analysis. 

Hive basically  interacts   with  structured   data  stored  in  HDFS  with  a  query 

language known as HQL (Hive Query Language) 

which is similar to SQL.  HQL  translates   SQL-like  queries  into  MapReduce jobs 

executed on Hadoop automatically. 
 

Sections 4.4 and 4.5 will describe the Hive and HiveQL in detail. 
 
 

2.6.5  Pig 
 

Apache Pig is an open source, high-level language platform.  Pig was developed 

for analyzing  large-data  sets. Pig executes  queries  on large  datasets  that  are 

stored in HDFS using Apache Hadoop. The language used in Pig is known as Pig 

Latin. 
 

Pig Latin language  is similar  to  SQL  query  language  but  applies  on larger 

datasets. Additional features of Pig are as follows: 
 

(i) Loads the data after applying the required  filters and dumps the data in 

the desired format. 

(ii)   Requires Java runtime  environment  for executing Pig Latin programs. 
 

(iii)  Converts all the operations  into map and reduce tasks. The tasks run on 

Hadoop. 
 

(iv) Allows concentrating   upon  the  complete  operation,  irrespective  of the 

individual Mapper and Reducer functions to produce the output results. 

Section 4.6 will describe the usages of Pig in detail. 
 

 

2.6.6  Mahout 
 

Mahout  is  a  project   of  Apache  with  library   of  scalable  machine   learning 

algorithms.  Apache implemented  Mahout on top  of Hadoop. Apache used the



MapReduce   paradigm.    Machine   learning    is  mostly   required    to  enhance    the 

future    performance     of  a  system   based   on  the   previous    outcomes.    Mahout 

provides   the  learning   tools  to  automate   the  finding  of meaningful   patterns    in 

the Big Data sets stored  in the  HDFS. 
 

Mahout  supports   four main  areas: 
 

• Collaborative   data-filtering    that   mines  user  behavior   and  makes  product 

recommendations. 
 

• Clustering   that  takes  data  items  in a particular    class,  and  organizes   them 

into  naturally    occurring   groups,   such  that   items  belonging   to  the  same 

group  are similar  to each other. 

• Classification   that  means  learning   from  existing  categorizations    and  then 

assigning  the  future  items  to the best  category. 
 

• Frequent    item-set    mining    that    analyzes    items   in   a  group    and   then 

identifies  which  items  usually  occur  together. 

Section  6.9 will describe Mahout architecture  and usages. 
 

 

Self-Assessment  Exercise linked  to LO 2.5 
 

1.   Why is ZooKeeper required  to behave as a centralized  repository  where 

the distributed  applications can write the data? 

2. What  are  the  functions  which  Ambari  perform?  How does  Ambari 

enable administering  of clusters and Hadoop components? 

3.  Make a table of ecosystem tools and their  functions which are required 

for  analyzing  performances   from  SGPs, SGPAs   and  CGPAs   of  each 

student.  Assume that  programmes  are Master of Science in Computer 

Science, Master of Computer Appliations and Master of Technology in 

Computer Science. 
 

4.   What are the activities which Mahout supports in the Hadoop system? 
 

 
 



active  node 

administering    cluster 

Ambari 

application   master 
 

AVRO Chukawa 

cluster 

columnar   data 

container 

data Block 

data  node 

data  replication 
 

Flink 

Flume 

Hadoop 

Hadoop  Common 

Hadoop  pipes 

Hadoop  streaming 

HBase 

HDFS 

Hive 

Mahout 

managing   cluster 
 

Mapper 
 

Map Reduce 

node  manager 

Oozie 

parallel  tasks



Pig 
 

primary master 
 

Rack 

Reducer 

resource 

resource manager 

resource scheduling 

row-based data 

secondary master 

serialization 

shell command 

slave node 

Spark 

standby node 

synchronization 

YARN 

ZooKeeper 

 
 

 

 
 

 

LO 2.1 
 

 

• Hadoop  is  an   open-source   framework   that   uses   cloud-based   utility 

computing services. Tera Bytes of data processing takes just a few minutes. 

• Hadoop system has features  of fault tolerant,  scalable, flexible, modular 

design and distributed  clusters computing model with data locality. 

•       Hadoop core components  are Hadoop Common, that uses the libraries and



utilities, HDFS, MapReduce and YARN. 
 

• Hadoop ecosystem includes the application  support  layer and application 

layer components  - AVRO, ZooKeeper, Sqoop, Ambari, Chukwa, Flink and 

Flume, Pig, Hive, Spark and Mahout. 

• HDFS   with MapReduce YARN-basedsystem enables parallel processing  of 

large data sets. 
 

LO 2.2 
 

 

• HDFS   is a Java-based distributed  file system that can store various types of 

data. 

• Hadoop stores the data in a number  of clusters. Each cluster has a number 

of Data Store called Racks. Each Rack stores a number  of DataNodes. Each 

DataNode has a large number  of Data Blocks. The data blocks replicate by 

default at least on three DataNodes in the same or remote nodes. 
 

• Files, data blocks and DataNodes need identification  during processing  at 

Hadoop DataNodes. The concept of the NameNode and DataNode associate 

the HDFS. A NameNode stores meta data for the files. 

• Meta data gives information  about the file of user application, but does not 

participate  in the  computations.  DataNode stores  the  actual data files in 

the data blocks. 

•       Provision for multiple NameNodes enables higher resources availability. 
 

LO 2.3 
 

 

•        MapReduce functions are an integral part of Hadoop physical organization. 
 

•        MapReduce   is   a   programming    model   for   distributed    computing. 

MapReduce allows writing applications to process huge amounts of data, in 

parallel, on large clusters of servers reliably. 

• The parallel programs  of MapReduce are useful for performing  large-scale 

data analysis using multiple CPUs at nodes in a cluster.



LO 2.4 
 

 

• YARN   separates the resource management  and processing components. An 

application  consists of a number  of tasks  and each task can consist  of a 

number of  sub-tasks   (threads),   which  run   in  parallel.  YARN   enables 

running  of multi-threaded   applications.  YARN  manages and allocates the 

resources for the application sub-tasks and submits the resources  for them 

at the Hadoop. 
 

• YARN      schedules   and   handles   the   resource   requests   of  large   scale, 

distributed  applications. 
 

LO 2.5 
 

 

• Avro is a data  transfer  utility  which  provisions  a system which  enables 

data  serialization   for  transfer   between  the  application  and  processing 

layers. 

• ZooKeeper  is  a  coordination   service  for  the   distributed   running   of 

applications and tasks. 

• Sqoop is a data-transfer  software for data-transfer  between data stores and 

relational DBs. 

• Ambari is a web-based tool which provisions, monitors,  manages, viewing 

of functioning of clusters, MapReduce, Hive and Pig APis. 

• Cassandra  is a database  which  provisions  a  scalable  and  fault-tolerant 

database for multiple masters. 

•        Chukwa is a data collection system for large and distributed  systems. 
 

• HBase is  a  structured   data  store  using  database  that  provisions  for  a 

scalable and structured  database for large tables. 

• Hive  is  a  data  warehouse   system  which  provisions  for  queries,  data 

aggregation,  summarizing,  infrastructure-like   enterprise  data warehouse, 

data summarization,  ad hoc (unstructured)   querying and HiveQL which is 

SQL-like scripting language.



• Pig   is  a  high-level    dataflow    language    which   provistons    for   dataflow 

functionality and the  execution   framework   for parallel  computations. 
 

•        Mahout  is a software  library  for the  machine  learning  algorithms. 
 

Ii  Objective Type Questions 1111 
Select one correct-answeroption for each questions below: 

 

2.1 Programming  model  for  Big Data is (i) centralized  computing  of input 

results of  the   applications   from  multiple   computing   nodes,   (ii)  the 

distributed  computing  of an application  at the  same time. Data sets and 

the application  run at the MPPs at a number  of geographic  locations and 

remote  servers.   (iii)  Distributed   computing   of  the   data   sets   using 

application  tasks at the multiple  computing  nodes. (iv) Computing of the 

application  codes transferred  to the multiple nodes which store data sets 

and compute at cluster. 
 

(a) i 
 

(b) ii to iv 
 

(c) iii and iv 
 

(d)iv 
 

2.2 Core components  of Hadoop are (i) Hadoop Common which contains  the 

libraries  and utilities  required  by other  modules  of Hadoop, (ii) a Java• 

based  distributed  file system,  (iii)  MapReduce, (iv) YARN,  (v) AVRO  and 

ZooKeeper, (vi) Pig, Hive, Sqoop and (v) Ambari. 

(a) all are true 
 

(b) (i) to (iv) 
 

(c) all except vi 
 

(d) ii to vi 
 

2.3  (i) HDFS  design  is for batch  processing  and  cannot  be used  for  stream 

analytics. (ii) Spark can be used for Hadoop stream analytics. (iii) YARN has 

made it possible to process applications,  such as interactive  queries, text



analytics and streaming  analysis. (iv) Flume can be used stream  analytics. 

(v) Spark  and  Flink  technologies   are  the  most  suitable  for  in-stream 

processing. 

(a) all except iv 

(b) all except ii 

(c) all except i 

(d) all 

2 .4 Hadoop distributed   file system:  (i) identifies  the  file by directories  and 

folders which associate with file system, (ii) identifies the data sources for 

processing and  uses  the   resource   pointers   which  store   in  the   data 

dictionary,   (iii) identifies  the  data  block  using  data  dictionary  master 

tables stored  at a central  location, (iv) identifies using centralized  tables, 

and (v) identifies from file meta data at the application. 

(a) none 
 

(b) ii to v 
 

(c) ii, iv and v 
 

(d) all except ii 
 

2.5 (i)  HDFS uses  the   client,  master   NameNode,  primary   and  secondary 

MasterNodes and slave nodes. (ii) YARN components  use Client, Resource 

Manager (RM), Node  Manager   (RM), Application   Master   (AM) and 

Containers.  (iii) YARN  uses  the  client,  master  NameNode, primary  and 

secondary  MasterNode and slave nodes. (iv) MapReduce v2 when Hadoop 

uses YARN-basedsystem, which enables parallel  processing  of large data 

sets. (v)  Slaves  are   responsible   to   store   the   data   and   process   the 

computation  tasks submitted by the clients. 

(a) Only i 
 

(b) all except ii ad iv. 

(c) all except iii 

(d) all



2.6 (1) Hadoop shell commands are (i) - copyToLocal for copying a file at HDFS 

to the local and (ii) - cat for copying to standard  output  (stdout). (2) When 

file stuData_id96 to be copied at stu_filesdir  directory,  then  command  is 

(iii) $Hadoop hdfs-put  stuData_id96 /user/   stu_filesdir,  and (iv) $Hadoop 

hdfs-cp stuData_id96 /user/   stu_filesdir. 

(a) ii to iv 

(b) i to iii 

(c) all 

(d) only i and iii 
 

2.7 (i)  NM is  a  slave  of  the   infrastructure.    (ii)  AM signals  whenever   it 

initializes.  (iii) All active AMs send the  controlling  signal periodically  to 

the  RM when  signaling their  presence.  (iv) NM accepts  the  request  and 

queues up the  resources  for application  program  or sub-tasks. When the 

requested  resources  become available on slave nodes, (v) the  RM grants 

the Application Master usage permission  for the specific intervals  for the 

containers  on specific slave NMs. The systems do not use the  concept  of 

joins  (in distributed  data storage systems), and (vi) A Client Node submits 

request of an application to the RM. The RM is the master. 

(a) all except ii to iv 
 

(b) all 
 

(c) only iii and iv 
 

(d) ii to iv 
 

2.8 HBASE (i) applies a partial columnar scheme on top of the MapReduce. It is 

(ii) an   open-source,    distributed,    versioned,    non-relational    (NoSQL) 

database,  (iii) written  in Java, (iv) stores large unstructured   table and (v) 

provisions for the  scalable distributed  Big Data Store. Data stores as key• 

value pairs and (vi) consists of a set of tables. Each table contains rows and 

columns.  Therefore,   it  is  similar  to  a  traditional   database   and  (vii) 

provisions a primary key as in the database table. 

(a) i to iii



(b) all except  v 
 

(c) all except  i and iv 
 

(d) all 
 

2. 9 (i) Ambari is a structured  data store using database  that  provisions  for a 

scalable and structured  database for large tables. (ii) Zookeeper in Hadoop 

behaves as a centralized  repository  where distributed  applications can put 

data  at a node.  (iv) Cassandra  is a data  collection  system  for large  and 

distributed  systems. (v) Zookeeper is a coordination  service that  enables 

synchronization  across a cluster in distributed  applications. 

(a) all 
 

(b) only ii and iii 
 

(c) all except ii and iii 
 

(d)none 
 

2.10  (i) Ambari  is  a  web-based  tool  which  provisions,  monitors,   manages, 

viewing of cluster functioning.  (ii) Ambari and Biglnsights have provisions 

for viewing. Their uses are for administering  the  Hadoop. (iii) Avro is a 

data  transfer  utility  between  application  and  application  support  layer. 

(iii) Cassandra is a database which provisions a scalable and fault-tolerant 

database  for multiple masters.  (iv) Chukwa is a data collection system for 

large and distributed  systems. (v)  HBase is a structured  data  store  using 

database  that  provisions  for a scalable and structured   database  for large 

tables. 

(a) all correct except iii 

(b) all except iii and v 

(c) all except iv 

(d) all except ii and iii 
 

2.11  (i)  Hadoop   1    and   2   provisions   for   multiple   NameNodes.  (ii)  Each 

MasterNode (MN)  has   NameNode,   Avro   coordination    client,    and 

JournalNode   (JN). (iii)  A  JN keeps  the  records  of the  state,  resources



required,  intermediate  results  or cluster  tasks execution.  (iv) Application 

tasks and subtasks at the cluster can write data and read data from a JN. 

(a) all correct except iii 

(b) all except iii and iv 

(c) all except ii 

(d)only iv 
 

2.12  (i) Oozie provides a way to package and bundle multiple  coordinator  and 

workflow jobs and manage the lifecycle of those jobs. (ii) Flink provisions 

for  reliable  data  transfer   and  provides  for  recovery  in  case  of failure. 

Transfers  large  amount  of data  in applications.  (iii)  Chukwa provisions 

data serialization  during data transfer  between application and processing 

layers. 

(iv)  Sqoop  provisions   for  data  transfer   between   data  stores   such  as 

relational   DBs  and  Hadoop.  (v) Chukwa  provisions  and  manages  data 

collection system for large and distributed  systems. 

(a) all correct except iii 

(b) all except iii and v 

(c) all except iv 

(d) all except ii and iii 
 

II  Review Questions        1111 
2.1 Why is the application  program  layer different  from support  layer in Big 

Data platform? Explain the Hadoop features. (LO 2.1) 
 

2.2 List Hadoop two core components. Describe their usages. (LO 2.1) 
 

2 .3 Explain using a diagram the distributed  storage, resource  manager  layer, 

processing framework and application APis layers in Hadoop. (LO 2.1) 

2.4 Give the  meanings  of  Hadoop  distributed   file  system,  clusters,  Racks, 

DataNodes, Data Blocks, MasterNode,  NameNode and  metadata   of files. 

Explain these. (LO 2.2)



2.5 How do multiple NameNodes ensure high availability of Data in HDFS? (LO 

2.2) 
 

2.6 How does MapReduce function  as a programming  model for distributed 

computing? (LO 2.3) 
 

2.7 How does MapReduce enables process huge amounts of data, in parallel, on 

large clusters of servers reliably. (LO 2.3) 

2.8 List the resources required  to run an application. How does the separation 

of resource  management  and processing  components  help the number  of 

tasks and sub-tasks (threads) when running in parallel? (LO 2.4) 

2.9 How does YARN resource  manager  do the following: (i) keep track  of the 

active  node   managers   and   available  resources   and   (ii)   allocate   the 

containers to  the  appropriate   sub-tasks  and  monitors  the  Application 

Master? (LO 2.4) 

2.10  Why are AVRO  and Zookeeper essential  in Hadoop programming  for Big 

Data applications? (LO 2.5) 

 

II   Practice Exercises       1111 
2.1 Recapatulate  Example 2.3.  Assume a company  collects data  from a large 

number  of automatic  chocolate  vending  machines  (ACVMs)  distributed 

over a large number of geographic locations in the cities and areas in each 

city. Each ACVM  sells five different  flavors  of chocolates:  KitKat, Milk, 

Fruit and Nuts, Nougat and Oreo. When will the centralized  processing and 

analytics  model  and  when  will  Hadoop  programming   be  used?  Each 

machine communicates data for the analytics every hour to the company's 

central data warehouse. (LO 2.1) 

2.2 Make a data store  model using HDFS for SGPs,  SGPAs and CGPAs  of each 

student  in 50 UG and 10 PG offerred at the university  with 5000  students 

intake  capacity each year. Each student  information  can extend  up to 64 

MB. (LO 2.2)



 

2.3 Recapatilate Example   1.6  of  a  Automotive    Components and   Predictive 

 Automotive Maintenance     Services   (ACPAMS) company which   renders 

customer   services  for  maintenance    and  servicing   of (Internet)   connected 

cars  and  its components.    Assume  that  number   of centres   are  8192 (=213)    , 

number  of car serviced by each centre  per day equals 32 (==25).    Each car 

has 256 (=28)   components,  which requires  maintenance  or servicing in the 

company's car. The service centre also collects feedback after every service 

and send responses to customer requests. The feedback and responses text 

takes on average 128 B(=27   B)  and each service or responses  records  in a 

report  of average 512  B (= 29)   text. The company stores the centres data for 

maximum  10 years  and follows last-in  first-out  data  replacement  policy. 

How will the  files of ACPAMS  be stored  using HDFS? What shall be the 

minimum memory requirement  during 10 years? (LO 2.2) 

2.4 Consider a car company selling five models of car: ]agaur  Land Rover, Hexa, 

Zest, Nexon and Safari Storme.  Assume each day the model sells at 600 show 

rooms with average 400 car sales average per week in a year. The files for 

each model are at file_l, file_2, .... ,  file_5. Each file stores as the key-value 

pairs the daily sales log at the company large number of showrooms. 

(i)  Calculate how and how much will the  showrooms weekly each model 

sales-log store using HDFS? 

(ii)  Write the sample of data collected in a file for day 1, 2, .... ,  365 starting 

January  1 from the showrooms. 
 

(iii) What will be the  output  streams  of map tasks  for feeding the  input 

streams to the Reducer? 

(iv) What will be the Reducer outputs? (LO 2.3) 
 

2.5 Recapitulate  a list of actions of YARN resource  allocation  and scheduling 

functions in Section 2.5.1 Figure 2.5. Show the directions  of sequences and 

step number over each arrow 1    to show the sequence of action to allocation 

of a container.  (LO 2.4) 
 

2.6 Recapitulate  Practice Exercise 2.4, Consider a car company selling Jaguar 

Land Rover, Hexa, Zest, Nexon and Safari Storme models of car. Following
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is  the   table   for   the   weekly   sales   log   at   the   multiple    car   company 

showrooms. 
 
 
 

CCSR- 
id 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(i)    How the HBase stores the table in five weeks. 

 

(ii) How will the  records  created  using shell command  'put'  for 35  entries 

given above? 

(LO 2.5) 
 
 

 
Note: 

 

o o • Level 1 & Level 2 category 

o • • Level 3 & Level 4 category 
 

• • • Level 5 & Level 6 category
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LEARNING OBJECTIVES 
 

 

After studyingthis chapter,you will be able to: 
 

LO 3.1  Get conceptual understanding  ofNoSQLdata stores, Big Data solutions, 

schema-less models, and increased flexibility for data manipulation 
 

LO 3.2  Get knowledge of NoSQL data architecture  patterns  namely, key-value 

pairs, tabular,  column  family, BigTable, Record Columnar  (RC), 

Optimized Row Columnar (ORC)  and Parquet,  document,  object and 

graph data stores, and the variations in architectural  patterns 
 

LO  3.3   Get conceptual  understanding   of  NoSQL  data  store  management, 

applications and handling problems in Big Data 
 

LO 3.4  Solve Big Data analytics using shared-nothing  architecture,  choosing a 

distribution  model among master-slave  and peer-to-peer  models, and 

get the knowledge of four ways by which the NoSQL handles the Big 

Data problems 
 

LO 3.5  Apply the MongoDBdatabases and query commands 
 

LO 3. 6  Use the Cassandra databases, data model, clients, and integrate  them 

with Hadoop



RECALL FROM PREVIOUS  CHAPTERS 
 

Big Data use new tools for processing and analysis of large volume of data. Big 

Data  sources   are   Hadoop  or   Spark  compatible   file  system,   structured, 

unstructured   or NoSQL data Store (Table 1.1).  Big Data distributed  computing 

uses  shared-nothing   paradigm,  no in-between  data  sharing  and  inter-processor 

communication. (Table 1.2) 
 

Chapter 1 introduced  NoSQL. NoSQL data stores can store semi-structured  or 

unstructured  data. NoSQL stands for No-SQL or Not Only SQL. NoSQL databases 

can coexists  with  SQL  databases.  NoSQL  data  applications  do not  integrate 

with SQL databases applications.  NoSQL databases store Big Data. Examples of 

NoSQL data stores  are key-value pairs, hash key, )SON files, BigTable, HBase, 

MongoDB,Cassandra, and CouchDB(Section 1.6.2.1). 
 

This   chapter   focuses   on  providing   detailed   concepts   of  NoSQL data 

architectural   patterns,   management   of Big Data, data  distribution   models, 

handling  of Big Data problems  using  NoSQL,  MongoDB for  document  and 

Cassandra for columnar stores. 
 

 
 

3.1  ! INTRODUCTION 

 

Big Data uses distributed  systems. A distributed  system consists  of multiple 

data nodes at clusters of machines and distributed  software components. The 

tasks execute in parallel with data at nodes in clusters. The computing  nodes 

communicate with the applications through  a network. 
 

Following are the  features  of distributed-computing   architecture   (Chapter 

2): 
 

1.   Increased  reliability   and  fault   tolerance:  The  important    advantage   of 

distributed  computing system is reliability. If a segment of machines in a 

cluster  fails then  the  rest  of the  machines  continue  work.  When the 

datasets  replicate  at number  of data nodes, the fault tolerance  increases 

further. The   dataset    in   remaining    segments   continue    the   same 

computations  as being done at failed segment machines.



2.   Flexibility makes  it  very  easy  to  install,  implement   and  debug  new 

services in a distributed  environment. 

3.  Sharding  is storing the different  parts  of data onto different  sets of data 

nodes,   clusters   or   servers.   For  example,   university   students   huge 

database,  on  sharding  divides  in databases,  called  shards.  Each shard 

may correspond  to a database  for an individual  course  and year.  Each 

shard stores at different nodes or servers. 

4.  Speed:  Computing power increases  in a distributed  computing  system as 

shards run parallelly on individual data nodes in clusters independently 

(no data sharing between shards). 

5.   Scalability: Consider sharding of a large database into a number of shards, 

distributed for  computing   in  different   systems.   When  the  database 

expands further,  then adding more machines and increasing the number 

of shards  provides  horizontal   scalability.  Increased  computing  power 

and  running   number   of  algorithms   on  the  same  machines  provides 

vertical scalability (Section 1.3.1). 

6.   Resources  sharing:  Shared resources  of memory,  machines  and  network 

architecture  reduce the cost. 
 

7.   Open system makes the service accessible to all nodes. 
 

8.   Performance:  The collection of processors  in the  system provides higher 

performance than   a  centralized   computer,   due   to   lesser   cost   of 

communication among   machines   (Cost   means   time   taken   up   in 

communication). 
 

The demerits  of distributed  computing are: (i) issues in troubleshooting  in a 

larger  networking  infrastructure,   (ii)  additional  software  requirements   and 

(iii) security risks for data and resources. 
 

Big Data  solutions  require   a  scalable  distributed   computing  model  with 

shared-nothing  architecture.  A solution is Big Data store in HDFS files. NoSQL 

data  also  store  Big Data,  and  facilitate  random   read/write    accesses.  The 

accesses are sequential in HDFS data. 
 

HBase is a NoSQL  solution  (Section 2.6.3). Examples of other  solutions  are



MongoDB and   Cassandra.  MongoDB and  Cassandra  DBMSs create   HDFS 

compatible distributed  data stores and include their  specific query processing 

languages. 
 

Following are selected key terms used in database systems. 
 

Class  refers  to a template  of program  codes that  is extendable.  Class creates 

instances,  called objects. A  class consists of initial values for member  fields, 

called state  (of variables),  and  implementations   of member  functions  and 

methods called behavior. An implementation  means program codes along with 

values of arguments  in the  functions  and methods  Oava Class uses methods, 

C++  functions.) An abstract  class consists of at least one abstract  member  or 

method. 
 

Object is  an  instance   of  a  class  in  Java,  C++,   and  other   object-oriented 

languages.  Object  can  be  an  instance   of  another   object  (for  example,  in 

JavaScript). 
 

Tupple is an ordered  set of data which constitutes  a record. For example, one 

row record  in a table.  A  row in a relational  database  has  column  fields or 

attributes.  Example of a tupple is 0LRWSale,Week 1, 138, Week 2, 232, ..., week 

52,  186)  in an RDBMS table. Here, JLRWSalemeans Jaguar Land Rover Weekly 

Sale. 0LRWSale,Week 1, 138) is also a tupple, and gives JLR week 1  sales= 138. 

(Week 2, 232, ..., week 52, 186) means week 2 sales = 232 abd 52 sales = 186 JLRs. 
 

Transaction means execution  of instructions  in two interrelated   entities,  such 

as a query and the database. 
 

Database transactional  model refers to a model for transactions,  such as the one 

following the ACID 

(Section 3.2) or BASE properties  (Section 3.2.3). 
 

My SQL refers to a widely used open-source database, which excels as a content 

management  server. 
 

Oracle  refers  to  a  widely  used  object-relational   DBMS,  written   in  the  C++ 

language that  provides  applications  integration  with service-oriented 

architectures   and  has  high  reliability.  Oracle has  also released  the  NoSQL 

database system. 
 

DB2 refers  to  a family of database  server  products  from  IBM with  built-in 

support to handle advanced Big Data analytics.



Sybase refers  to  database  server  based  on  relational  model  for  businesses, 

primarily on UNIX. Sybase was the first enterprise-level  DBMS in Linux. 
 

MS SQL  server  refers  to  a  Microsoft-developed  RDBMS  for  enterprise-level 

databases that supports both SQL and NoSQL architectures. 
 

PostgreSQL  refers  to  an  enterprise-level,   object-relational   DBMS.  PostgreSQL 

uses procedural languages like Perl and Python, in addition to SQL. 
 

This   chapter   describes   NoSQL data   architecture    patterns,    NoSQL for 

increasing  the flexibility in data store architecture,  NoSQL usages in Big Data 

management,  and the solutions, such as MongoDBand Cassandra. Section 3.2 

describes  NoSQL  data  stores  for  Big Data usages,  schema-less  models,  and 

increasing  the  flexibility for data manipulation.  Section 3.3  describes  NoSQL 

data-architecture    patterns:   Key-value  stores,  graph  stores,  column  family 

stores, tabular  stores,  document  stores,  object data  stores,  and variations  of 

NoSQL architectural   patterns.  Section 3.4 describes NoSQL for managing  Big 

Data, solutions  for  Big Data, and  types  of Big Data problems.  Section  3.5 

describes use of shared-nothing   architecture,   choosing a distribution  model, 

master-slave  versus peer-to-peer,  and four ways by which NoSQL handles Big 

Data problems. Sections 3.6 describes MongoDBand query commands used in 

the   applications.   Section  3.7   describes   Cassandra  databases,   data-model, 

clients and integration  with Hadoop and applications. 
 

 
 

3.2  ! NOSQL DATA  STORE 

SQL  is a programming  language based  on relational 

algebra. It is a declarative language and it defines the 

data schema .  SQL creates databases and RDBMSs. 

RDBMS uses   tabular    data   store   with   relational 

algebra, precisely defined operators  with relations  as 

the operands. Relations are a set of tuples. Tuples are 
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named attributes.  A tuple identifies uniquely by keys called candidate keys. 
 

Transactions   on  SQL  databases  exhibit  ACID  properties.   ACID  stands  for 

atomicity, consistency, isolation and durability. 
 

ACID Properties in SQL Transactions



Following are the meanings of these characteristics  during the transactions. 
 

Atomicity  of  transaction   means  all  operations   in  the  transaction   must 

complete, and if interrupted,  then must be undone (rolled back). For example, 

if a customer withdraws an amount then the bank in first operation  enters the 

withdrawn  amount in the table and in the next operation  modifies the balance 

with new amount  available. Atomicity means both should be completed,  else 

undone if interrupted  in between. 
 

Consistency   in transactions means  that   a  transaction   must  maintain   the 

integrity  constraint,  and follow the  consistency  principle.  For example,  the 

difference  of sum of deposited  amounts  and withdrawn  amounts  in a bank 

account must equal the last balance. All three data need to be consistent. 
 

Isolation of transactions   means  two transactions   of the  database  must  be 

isolated from each other and done separately. 
 

Durability means a transaction  must persist once completed. 
 

Triggers, Views and Schedules in SQLDatabases 
 

Trigger is a special stored procedure. Trigger executes when a specific action(s) 

occurs  within  a database,  such  as change  in table  data  or  actions  such  as 

UPDATE,  INSERT and DELETE. For example, a Trigger store procedure  inserts 

new columns in the columnar family data store. 
 

View refers to a logical construct,  used in query statements.  A View saves a 

division of complex query instructions  and that reduces the query complexity. 

Viewing of a division is similar to a view of a table. View does not save like 

data  at  the  table.  Query  statement   when  uses  references   to  a  view,  the 

statement  executes the View. Query (processing) planner  combines the 

information  in View definition  with  the  remaining  actions  on the  query.  A 

query planner  plans how to break a query into sub-queries  for obtaining  the 

required  answer. View, hides the query complexity by dividing the query into 

smaller, more manageable pieces. 
 

Schedule refers  to a chronological  sequence  of instructions  which  execute 

concurrently.  When a transaction  is in the schedule then all instructions  of the 

transaction   are included  in the  schedule.  Scheduled order  of instructions  is 

maintained  during the transaction.  Scheduling enables execution  of multiple 

transactions  in allotted time intervals.



Join in SQL Databases 
 

SQL databases facilitate combining rows from two or more tables, based on the 

related columns in them. Combining action uses Join function during a database 

transaction.  Join refers  to a clause which combines. Combining the  products 

(AND  operations)  follows next  the  selection  process.  A Join  operation  does 

pairing  of two tuples  obtained  from different  relational  expressions. Joins, if 

and only if a given Join condition  satisfies. Number of Join operations  specify 

using  relational   algebraic   expressions.   SQL   provides  JOIN clause,  which 

retrieves  and joins the related  data stored across multiple tables with a single 

command,Join.  For example, consider an SQL statement: 
 

Select KitKatSales From TransactionsTbl INNER JOIN 

ACVMSalesTbl ON TransactionsTbl.KitKatSales  = 

TransactionsTbl.KitKatSales; 
 

The  statement   selects  those  records  in  a  column  named  Ki tKa tSales 

which  match  the  values  in two tables:  one  TransactionsTbl          and  other 

ACVMSalesTbl. 

Relational   databases   and  RDBMS   developed   using   SQL   have   issues  of 

scalability and distributed  design. This is because all tuples need to be on the 

same data node. The database has an issue of indexing over distributed  nodes. 

They do not model the hierarchical,  object-oriented,  semi-structured  or graph 

databases. 
 

Database Tables have relationships  between them which are represented  by 

related  fields. RDBMS  allows the Join operations  on the related  columns. The 

traditional  RDBMS  has a problem when storing  the records beyond a certain 

physical  storage  limit. This is because  RDBMS  does not  support  horizontal 

scalability (Section 1.3.1). 
 

For example,  consider  sharding  a big table  in a DBMS  into  two. Assume 

writing first 0.1 million records  (1 to 100000)  in one table and from 100001  in 

another   table.  Sharding  a  database  means  breaking  up  into  many,  much 

smaller  databases  that   share  nothing,   and  can  distribute   across  multiple 

servers. Handling of the Joins and managing  data in the other  related  tables 

are cumbersome processes, when using the sharding. 
 

The  problem  continues  when  data  has  no  defined  number  of fields  and
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formats. For example, the data associated with the choice of chocolate flavours 

of the users  of ACVM  in Example 1.6(i). Some users provide  a single choice, 

while some users provide two choices, and a few others want to fill three best 

flavours of their choice. 

 
User  Id               Choitt 

Dairy Milk 

2                    Dairy Milk. Kit Kat 

3                    KitKat. Snicker, Munch 
 

 

Defining a field becomes tough  when  a field in the  database  offers choice 

between two or many. This makes RDBMS unsuitable  for data management  in 

Big Data environments  as well as data in their real forms. 
 

SQL compliant format means that database tables constructed  using SQL and 

they enable processing of the queries written  using SQL. 'NoSQL'  term conveys 

two different  meanings:  (i) does not  follow SQL  compliant  formats,  (ii)"Not 

only  SQL"  use  SQL  compliant  formats  with  variety  of other  querying  and 

access methods. 
 

 

3.2.1  NoSQL 
 

A  new category  of data  stores  is NoSQL  (means Not Only SQL)  data  stores. 

NoSQL  is an altogether  new approach  of thinking  about  databases,  such as 

schema  flexibility,  simple  relationships,   dynamic  schemas,  auto  sharding, 

replication,  integrated  caching, horizontal  scalability of shards,  distributable 

tuples, semi-structures  data and flexibility in approach. 
 

Issues with  NoSQL  data  stores  are  lack of standardization   in approaches, 

processing   difficulties   for   complex   queries,   dependence    on   eventually 

consistent results in place of consistency in all states. 
 

3.2.1.1 Big Data NoSQL or Not-Only  SQL 
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data  store  systems. They use flexible data  models. The records  use multiple 

schemas.



NoSQL data  stores   are  considered    as  semi-structured  data.  Big Data  Store 

uses  NoSQL. Figure  1.7 showed  co-existence    of data  store  at  server   or  cloud 

with  SQL,  RDBMS with  NoSQL and  Big Data  at  Hadoop,  Spark,  Mesos,  53 or 

compatible    Clusters.   However,   no  integration  takes   place  with  applications 

that  are based  on SQL. NoSQL  data  store  characteristics    are as follows: 
 

1. NoSQL  is a class of non-relational  data  storage  system  with  flexible  data 

model.   Examples   of  NoSQL data-architecture   patterns   of  datasets    are 

key-value  pairs,  name/value  pairs,  Column family 

Big-data  store,  Tabular  data  store,  Cassandra  (used in Facebook/  Apache), 

HBase,  hash  table   [Dynamo  (Amazon  53)],  unordered  keys  using  JSON 

(CouchDB), ]SON  (PNUTS), ]SON (MongoDB),  Graph  Store,  Object  Store, 

ordered keys and semi-structured  data  storage  systems. 
 

2.  NoSQL not  necessarily   has  a fixed  schema,  such  as table;  do not  use  the 

concept of Joins   (in  distributed  data  storage   systems);   Data  written   at 

one  node  can  be  replicated   to  multiple   nodes.  Data  store  is thus  fault• 

tolerant. The store  can be partitioned  into unshared shards. 

Features in NoSQL Transactions NoSQL transactions  have following  features: 

(i) Relax one or more  of the ACID properties. 

(ii) Characterize    by  two  out  of three   properties  (consistency,    availability 

and   partitions)   of  CAP theorem,   two   are   at   least   present    for   the 

application/ service/ process. 

(iii)  Can be characterized by BASE properties  (Section  3.2.3). 
 

Big Data  NoSQL solutions   use  standalone-server,     master-slave    and  peer-to• 

peer  distribution models. 
 

Big Data NoSQL Solutions NoSQL DBs are  needed  for Big Data solutions.  They 

play  an  important  role  in  handling   Big Data  challenges.   Table  3.1  gives  the 

examples  of widely used NoSQL data  stores. 
 

Table 3.1 NoSQL data  stores  and their  characteristic  features 
NoSQL 

Data 

store 

 

 

Description



 
Apache's 

HBase 

HDFS compatible,  open-source  and non-relational   data store written  inJava; 

A column-family  based NoSQL data store, data store providing  BigTable-like 

capabilities  (Sections 2.6 and 3.3.3.2);  scalability, strong  consistency, 

versioning,  configuring  and maintaining  data store characteristics 

 
 

Apache's 

MongoDB 

 

HDFS compatible;  master-slave  distribution  model (Section 3.5.1.3); 

document-oriented   data store withJSON-like documents  and dynamic 

schemas; open-source,  NoSQL, scalable and non-relational   database;  used by 

Websites Craigslist, eBay, Foursquare  at the backend 

 

 

Apache's 

Cassandra 

 

HDFS compatible  DBs; decentralized  distribution  peer-to-peer   model 

(Section 3.5.1.4); open source; NoSQL; scalable, non-relational,   column- 

family based, fault-tolerant   and tuneable  consistency  (Section 3. 7) used by 

Facebook and Instagram 

 

 

Apache's 

CouchDB 

 

A project  of Apache which is also widely used database  for the web. 

CouchDB consists of Document  Store. It uses the )SON  data exchange  format 

to store its documents,JavaScript    for indexing, combining  and transforming 

documents,  and HTTP APis 

 
Oracle 

NoSQL 

 

Step towards  NoSQL data store; distributed  key-value data store; provides 

transactional   semantics  for data manipulation,  horizontal  scalability, simple 

administration   and monitoring 

 
 

Riak 

 

An open-source  key-value store; high availability  (using replication 

concept), fault tolerance,  operational  simplicity, scalability and written  in 

Erlang 

 

CAP Theorem Among  C,   A   and   P,   two   are   at   least   present   for  the 

application/service/process.    Consistency means all copies have the same value 

like in traditional  DBs. Availability  means at least one copy is available in case a 

partition  becomes inactive or fails. For example, in web applications, the other 

copy in the other partition  is available. Partition means parts which are active 

but may not cooperate (share) as in distributed  DBs. 

1.  Consistency in distributed  databases means that  all nodes  observe  the same 

data at the same time. Therefore, the operations  in one partition  of the 

database  should reflect in other  related  partitions   in case of distributed 

database. Operations,  which  change  the   sales   data   from  a  specific 

showroom  in  a table  should  also reflect  in  changes  in  related  tables 

which are using that sales data.



2. Availability  means that  during the transactions,  the field values must be 

available in other partitions  of the database so that each request receives 

a response  on success as well as failure. (Failure causes the response  to 

request from  the   replicate   of  data).  Distributed   databases   require 

transparency between  one  another.  Network  failure  may lead to  data 

unavailability in a certain partition  in case of no replication.  Replication 

ensures availability. 

3. Partition means  division  of  a  large  database  into  different  databases 

without affecting   the   operations    on   them   by   adopting   specified 

procedures. 

Partition  tolerance: Refers to continuation  of operations  as a whole even in case 

of message loss, node failure or node not reachable. 
 

Brewer's  CAP  (c.onsistency, Availability and £.artition  Tolerance)  theorem 

demonstrates   that   any  distributed   system  cannot   guarantee   C,  A   and  P 

together. 

1.   Consistency- All nodes observe the same data at the same time. 
 

2.   Availability- Each request receives a response on success/failure. 
 

3. Partition  Tolerance-The  system continues  to operate  as a whole even in 

case of message loss, node failure or node not reachable. 

Partition   tolerance   cannot  be  overlooked  for  achieving  reliability   in  a 

distributed  database system. Thus, in case of any network failure, a choice can 

be: 
 

•       Database must answer, and that answer would be old or wrong data (AP). 
 

•       Database should not answer, unless it receives the latest copy of the data 

(CP). 
 

The CAP theorem  implies that  for a network  partition  system, the choice of 

consistency and availability are mutually exclusive. CA means consistency and 

availability,  AP means  availability  and  partition   tolerance   and  CP   means 

consistency and partition  tolerance.  Figure 3.1  shows the CAP theorem  usage 

in Big Data Solutions.



 

 
 

il:mt:eril  CV                                {I/  ,.-ab   iity 

[                                           [ 

I     Caiiillilot  lbe 
SQL 

 

 

C'Ol                                                      . 

I                                                                                                                                                                                                                              I                    ] 
 
 
 
 

 
 

ROB!MS1 

~~ 
Po~ 

O;n!!        Da 
C.as;sa;rndra,. 

DVf\lam  _Dl\ 

IRi 

IHbase, 
IMa!fitgQ,08,; 

Redis, 
IM:elim~helDB

 

Figure 3.1 CAP theorem  in Big Data solutions 
 

 

3.2.2   Schema-less  Models 
 

Schema of a database system refers to designing of a structure  for datasets  and 

data structures  for storing into the database. NoSQL data not necessarily have a 

fixed  table  schema.  The  systems  do  not  use  the  concept  of Join  (between 

distributed  datasets). A cluster-based  highly distributed  node manages a single 

large data store with a NoSQL DB. 
 

Data written  at one node replicates  to multiple  nodes. Therefore,  these  are 

identical,  fault-tolerant   and partitioned   into shards.  Distributed  databases  can 

store and process a set of information  on more than one computing nodes. 
 

N oSQL  data  model offers relaxation  in one or more  of the  ACID  properties 

(Atomicity, consistence,  isolation  and durability)  of the  database.  Distribution 

follows CAP theorem.  CAP theorem  states that  out of the three  properties,  two 

must at least be present for the application/service/process.    (Section 3.2.1). 
 

Figure  3.2  shows  characteristics   of Schema-less  model  for  data  stores.  ER 

stands for entity-relation  modelling. 
 

Relations in a database build the connections  between various tables of data. 

For example,  a table  of subjects  offered  in an  academic  programme   can be 

connected  to a table of programmes  offered in the academic institution.  NoSQL
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data  stores  use non-mathematical   relations  but  store  this  information  as an 

aggregate called metadata. 
 

Metadata refers   to  data   describing   and  specifying  an  object  or  objects. 

Metadata is a record with all the information  about a particular  dataset  and the 

inter-linkages.  Metadata helps in selecting an object, specifications of the data 

and, usages that design where and when. Metadata specifies access permissions, 

attributes   of the  objects  and  enables  additions  of an  attribute   layer  to  the 

objects. Files, tables, documents and images are also the objects. 
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Figure 3.2  Characteristics of Schema-less model 
 

 

3.2.3  Increasing Flexibility  for Data Manipulation 
 

Consider  database   'Contacts'.   They  follow  a  fixed  schema.  Now  consider 

students'  admission database. That also follow a fixed schema. Later, additional 

data  is added  as the  course  progresses.  NoSQL  data  store  characteristics   are 

schema-less.  The  additional   data  may  not  be  structured   and  follow  fixed 

schema. The data  store  consists  of additional  data,  such as documents,  blogs, 

Facebook pages and tweets. 
 

NoSQL data  store  possess  characteristic   of  increasing   flexibility  for  data 

manipulation.  The new attributes  to database  can be increasingly  added. Late 

binding of them is also permitted.



BASE is a flexible  model  for  NoSQL data  stores.   Provisions   of BASE increase 

flexibility. 
 

BASE Properties   BA  stands   for  basic  availability,   S  stands   for  soft  state  and  E 

stands  for eventual   consistency. 
 

1. Basic availability  ensures by distribution  of shards (many partitions  of huge 

data store) across many data nodes with a high degree of replication. Then, 

a segment failure does not necessarily mean a complete data store 

unavailability. 
 

2. Soft state ensures  processing  even in the  presence  of inconsistencies  but 

achieving consistency  eventually.  A program  suitably takes  into  account 

the  inconsistency  found  during  processing.  NoSQL database  design does 

not consider the need of consistency all along the processing time. 

3. Eventual consistency means  consistency  requirement in NoSQL databases 

meeting  at some point  of time in future.  Data converges  eventually  to a 

consistent  state with no time-frame  specification for achieving that. ACID 

rules require  consistency  all along the processing  on completion  of each 

transaction.  BASE does not have that requirement and has the flexibility. 
 

BASE model is not necessarily appropriate  in all cases but it is flexible and is 

an alternative  to SQL-likeadherence  to ACID properties.  Example 3.11  (Section 

3.3.5)  explains the concept of BASE in transactions  using graph databases. 
 

Schema  is  not   a  necessity   in  NoSQL DB, implying  information   storage 

flexibility.  Data can  store  and  retrieve  without  having  knowledge  of how  a 

database stores and functions internally. 
 

Following is  an  example  to  understand the  increasing  flexibility  for  data 

manipulation. 
 

 
EXAMPLE 3.1 

 

 

Use examples of database  for the students  in various university  courses to 

demonstrate  the concept of increasing flexibility in NoSQL DBs. 
 

SOLUTION 
 

Figure 3.3 shows increasing flexibility concept using additional data models.
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Figure 3.3  Increasing flexibility in NoSQL DB of students 
 
 

 

Self-Assessment Exercise linked to LO 3.1 
 

1. Explain when  will you  use  the  following: MongoDB, Cassandra,  CouchDB, 

Oracle NoSQL and Riak. 
 

2.   How does CAP theorem  hold in NoSQL databases? 
 

3.   How do ACID and BASE properties  differ? 
 

4.   Why is the consistency not enforcable in NoSQL distributed  databases  during 

a transaction  processing? 
 

5.   List characteristics  of NoSQL data store. 
 

6.   Why is metadata a must when using NoSQL data store? 
 
 
 

 

3.3 l NOSQL  DATA ARCHITECTURE  PATTERNS



NoSQL   data stores broadly categorize      into 

architectural patterns described in   the   following 

subsections:    

 

 
 
 
 

 
  
 

 
 

 

  

 

 
 
 

 
 
 

3.3.1   Key-Value Store 
 

The  simplest  way  to  implement  a  schema-less  data 

store is  to   use   key-value   pairs.   The   data   store 

characteristics are  high  performance,  scalability  and 

flexibility. Data retrieval  is fast in key-value pairs data 
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store.  A  simple string  called, key maps to a large  data  string  or BLOB  (Basic 

Large Object). Key-value store  accesses use  a primary  key for  accessing  the 

values. Therefore,  the  store  can be easily scaled up for very  large  data.  The 

concept  is similar  to a hash  table  where  a unique  key points  to a particular 

item(s)  of data.  Figure  3.4  shows  key-value  pairs  architectural   pattern   and 

example of students'  database as key-value pairs. 
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Figure   3.4 Example of key-value pairs in data architectural  pattern 
 

Advantages of a key-value store are as follows: 
 

1. Data Store can store any data type in a value field. The key-value system 

stores the information  as a BLOB  of data (such as text, hypertext,  images, 

video and audio) and return  the  same BLOB  when the  data  is retrieved. 

Storage  is like  an  English  dictionary.  Query  for  a  word  retrieves   the 

meanings,  usages,  different   forms  as  a  single  item  in  the  dictionary. 

Similarly, querying for key retrieves the values.
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2.   A query just  requests  the values and returns  the values as a single item. 

Values can be of any data type. 
 

3.   Key-value store is eventually consistent. 
 

4.  Key-value data  store  may be hierarchical   or may be ordered  key-value 

store. 

5.   Returned  values  on  queries  can  be  used  to  convert   into  lists,  table• 

columns, data-frame fields and columns. 
 

6.  Have (i) scalability, (ii) reliability,  (iii) portability  and (iv) low operational 

cost. 

7.   The key can be synthetic  or auto-generated.  The key is flexible and can be 

represented in  many  formats:  (i) Artificially  generated   strings  created 

from a hash of a value, (ii) Logical path names to images or files, (iii) REST 

web-service calls (request response cycles), and (iv) SQL queries. 

The key-value store  provides  client to read  and write  values using a key as 

follows: 
 

(i)    Get   (key),    returns  the value associated with the key. 
 

(ii)  Put      (key,       value),       associates  the  value with the  key and updates  a 

value if this key is already present.
 

(iii) Multi-get           ( keyl,         key2, 

associated with the list of keys. 

 

.. '  keyN),     returns   the  list  of  values

 

(iv)  Delete      (key),    removes a key and its value from the data store. 

Limitations of key-value store architectural  pattern  are: 

(i)   No indexes  are  maintained   on  values,  thus  a  subset  of values  is not 

searchable. 
 

(ii) Key-value store does not provide traditional  database capabilities, such as 

atomicity of transactions,  or consistency when multiple transactions  are 

executed simultaneously.   The  application   needs  to  implement   such 

capabilities. 

(iii) Maintaining  unique values as keys may become more difficult when the



volume  of data  increases.   One cannot  retrieve   a single  result  when  a key• 

value  pair  is not uniquely  identified. 
 

(iv)  Queries  cannot  be performed   on individual   values.  No clause  like 'where' 

in a relational   database  usable  that  filters  a result  set. 

Table  3.2  gives a comparison  between  traditional  relational  data model with 

the key-value store model. 
 

Table 3.2 Traditional relational  data model vs. the key-value store model 
 

 

Traditional  relational  model 
 

Key-value  store  model 

Result set based on row values Queries return  a single item 

Values of rows for large datasets  are indexed No indexes on values 

Same data type values in columns Any data type values 

 

Typical uses of key-value store are: (i) Image store, (ii) Document or file store, 

(iii) Lookup table, and 

(iv) Query-cache. 
 

Riak is open-source  Erlang language  data  store.  It  is a key-value data  store 

system. Data auto-distributes  and replicates in Riak. It is thus, fault tolerant  and 

reliable.  Some other  widely used key-value pairs  in NoSQL DBs are Amazon's 

DynamoDB,Redis (often referred  as Data Structure  server), Memcached and its 

flavours,   Berkeley  DB,   upscaledb   (used  for  embedded   databases),   project 

Voldemort and Couchbase. 
 

Concept  of Hash Key The following example explains the hash and key-value 

pairs associated with a hash in traditional  data. 
 

 

EXAMPLE  3.2 

 

Consider an example.  Assume that  student  name  is key, k. Each student 

grade  sheet  entry  has a number  of values or set of (secondary) key-value 

pairs. For example, semester grade point average (SGPAs) values and 

cumulative grade point average (CGPA) value. How will the hash function be 

used? 
 

SOLUTION



A hash function generates  an index, Ik for k. Ik should ideally be unique and 

should uniquely map to k. Ik is a number with few digits only, compared to a 

number  of characters  (0-255  bytes) in the main key k used as input for the 

hash function. Assume that total 20 numbers of entries are present between 

slots  indices  between   00   to  99.   Student  name  may  consist  of  several 

characters,  but index will be just two digits. 
 

 

Hash table refers to using associated key-value pairs. A set of pairs retrieve  by 

using a hash key. The hash key is a computed  index using hash function  for a 

column. The analytics may use the hash table. The table contains  hash keys in 

the  table-columns.  The  entries  (values) across  an  array  of slots  (also called 

buckets). The buckets correspond  to the key for the pairs at column. The values 

are in the associated rows of that column. 
 

 

3.3.2 Document  Store 
 

Characteristics  of Document Data Store are  high performance  and flexibility. 

Scalability varies, depends  on stored  contents.  Complexity is low compared  to 

tabular, object and graph data stores. 
 

Following are the features in Document Store: 
 

1.   Document stores unstructured  data. 
 

2.   Storage has similarity with object store. 
 

3. Data stores in nested hierarchies.  For example, inJSON formats data model 

[Example 3.3(ii)], XML document object model (DOM), or machine-readable 

data as one BLOB.  Hierarchical  information  stores  in a single unit  called 

document tree. Logical data stores together  in a unit. 

4. Querying is easy. For example, using section number,  sub-section number 

and figure caption and table headings to retrieve document partitions. 

5.   No object relational  mapping enables easy search by following paths from 

the root of document tree. 

6.   Transactions  on the document store exhibit ACID properties. 
 

Typical uses of a document store are: (i) office documents,  (ii) inventory  store, 

(iii) forms data, (iv) document exchange and (v) document search.



The demerits   in Document   Store  are  incompatibility    with  SQL  and  complexity 

for   implementation.      Examples   of  Document    Data   Stores   are   CouchDB  and 

MongoDB. 
 

Real-life   Datasets  Section  10.3 will describe  a very  large  real-life  dataset   for Big 

Data  analytics   as  an  examples.   An application   later   analyses   the  structures    in 

csv, json   or  other,   and  creates   data   stores   in  new  forms   (Sections   10.3.2 to 

10.3.4). Runs  in  next   step  ETL, analytics   or  other   functions.    (Sections   10.4 to 

10.6). This feature  is called late binding  (schema-on-read,    or schema-on-need). 
 

CSV and JSON File Formats  CSV  data  store  is a format  for records   [Example  1.9 

and   Example   3.3(i)].  CSV  does   not   represent   object-oriented      databases    or 

hierarchical    data  records.  ]SON and XML represent semistructured  data, object• 

oriented   records   and  hierarchical   data   records.  ]SON  (lava  Script  Object 

Notation) refers to a language format for semistructured  data. JSON represents 

object-oriented   and  hierarchical  data  records,  object, and  resource  arrays  in 

JavaScript. 
 

The following example explains the CSV and ]SON object concept and aspects 

of CSV andJSON file formats. 
 

 

EXAMPLE3.3 

 
Assume Preeti gave examination  in Semester 1 in 1995 in four subjects. She 

gave  examination   in  five  subjects  in  Semester   2   and  so  on  in  each 

subsequent  semester. Another  student,  Kirti gave examination  in Semester 

1  in  2016 in three  subjects,  out  of which  one was theory  and  two were 

practical subjects. Presume the subject names and grades awarded to them. 
 

(i)   Write two CSV files for cumulative grade-sheets  for both the students. 

Point the difficulty during processing of data in these two files. 
 

(ii) Write a file in ]SON format with each student  grade-sheet  as an object 

instance. How does the object-oriented  and hierarchical  data record in 

]SON make processing easier? 

SOLUTION 

(i)   Two CSV file for cumulative grade-sheets  are as follows: 
 

CSV file for Preeti  consists of the following nine lines each with four



columns: 
 

Semester,  Subject Code, Subject  Name, Grade 
 

1, CSlOl, ""Theory  of Computations?",    7.8. 
 

1, CS102,1, ""Computer   Architecture?",    7.8. 
 
 
 

2, CS204, ""Object  Oriented  Programming?",    7 .2. 
 

2, CS205, '"'Data  Analytics?",  8.1. 
 

The  CSV   file  for  Kirti  consist   of  following   five  lines  each  with   five 

columns:  Semester,  Subject Type, Subject  Code, Subject Name, Grade 

1, Theory,  EllOl,  ""Analog  Electronics?",   7.6. 
 

1, Theory,  El102,1,  ""Principles   of Analog Communication?",    7.5. 
 

1, Theory,  El103, ""Digital  Electronics?",   7.8. 
 

1, Practical,  CS104, ""Analog  ICs"", 7.2 
 

1, Practical, CS105, ""Digital ICs'"', 8.4 
 

A column head is a key. Number of key-value pairs are (4 x  9) = 36 for 

preetiGradeSheet.csv and   (5    x      5)  =     25  for   kirtiGradeSheet.csv. 

Therefore, when processing student records, merger of both files into a 

single  file  will  need   a  program   to   extract   the   key-value   pairs 

separately, and then prepare  a single file. 

(ii)  JSON gives  an  advantage   of  creating   a  single  file  with  multiple 

instances  and  inheritances   of an object. Consider a single JSON file, 

studentGradeSheetsjson for cumulative  grade-sheets  of many students. 

Student_Grades  object is top in the hierarchy.  Each student_name object 

is next in the hierarchy  with object consisting  of student  name, each 

with number  of instances  of subject codes, subject types, subject titles 

and  grades  awarded.  Each student  name  object-instance   extends  in 

student grades object-instances. 

Part of the file construct  can be as follows:



0:      {  

_id: o,
m.asterfile: ~students_Grades~, 

in:stancetype:  ·~single'•, 

mandatory: true, 

..,description": "Uni.queLy   identifies student grade master file Object 

Students  Gradea  ~ 

~resourcedefs.,,.: { 

~1/,l:        { 

_id:1, 

name: ~studentNamen, 

instancetype: ~multiple~, 

~descriptionn: ~Identifies a semester of the studentName andn 

re:aourcedefe:     { 

~120   0....       { 

id:200 

studentName: ~Kirti1• 

instancetype:  ~single'• 

resourcedefs: 

"'201....    { 

id: 201 semester: ~1.,,., 

subjectType: ~Theory'•• 

subjectCode: ~EL101~, 

subjectName: ~Analog Blectronicen 

Grade: 7.6 

type: '-'string", 

''descriptLon"  :   ~ instance Grade for a subject Analog Blectronics~ 

} 
·~2 02 ,. :     { 

_ id:202, 

'-'203 .... {_id:203 

semester: v.1 n 
I 

aubject'I'ype: ~Theory• 

subjectCode: ~B1102n 

subjectName: ~Principles of Analog Communication.,,. 

Grade: 7.5, type= ~string" 
 

 
 
 

} 

{.-. 
}



XML (extensible   Markup  Language)  is  an  extensible,  simple  and  scalable 

language. Its self-describing format describes structure  and contents  in an easy 

to understand  format. XML is widely used. The document model consists of root 

element   and  their   sub-elements.   XML document   model  has  a  hierarchical 

structure.  XML document  model has features  of object-oriented  records.  XML 

format  finds wide uses in data store and data exchanges over the network. An 

XML document is semi-structured. 
 

Document store appears quite similar to a key-value store and an object store. 

They are complex in implementation  and are SQL incompatible.  They have no 

object-relational  layer for mapping  and thus  enable agile development  of text 

analytics. No sharding  of data takes place into the tables. Although the values 

stored as documents, follows structure  and encoding of the managed data 
 

The  database   stores  and  retrieves   documents,   such  as  XML,  ]SON,  BSON 

(Binary-encoded  Script Object Notation  (for objects)). The documents  are self• 

describing,  hierarchical   tree-structured    consisting  of  maps,  collections  and 

scalar values. The documents stored are similar to each other but do not have to 

be the same. Some of the popular document data stores are CouchDB,MongoDB, 

Terrastore,  OrientDB and RavenDB. 
 

Certain  NoSQL  DBs enable  ACID  rule-based  transactions   also. Examples  of 

document data stores are MongoDB,Apache Couchbase and MarkLogic. 
 

CouchDBuses the JSON store data, HTTP APis for connectivity, JavaScript for 

the query language and MapReduce for processing. 
 

Document JSON Format CouchDB Database  Apache  CouchDB is  an  open• 

source database. Its features are: 
 

1. CouchDB provides  mapping  functions  during  querying,  combining  and 

filtering of information. 

2.  CouchDB deploys JSON Data Store model for documents.  Each document 

maintains  separate data and metadata  (schema). 

3.  CouchDBis a multi-master  application. Write does not require field locking 

when controlling the concurrency during multi-master  application. 
 

4.   CouchDBquerying  language is JavaScript. Java script is a language which



documents   use to transform. 
 

5.  CouchDB queries the  indices using a web browser.  CouchDB accesses the 

documents using HTTP APL HTTP methods are Get, Put and Delete (Section 

3.3.1). 
 

6.   CouchDB data  replication  is the  distribution  model that  results  in fault 

tolerance and reliability. 

Document  JSON Format-MongoDB  Database   MongoDB Document  database 

provides  a  rich  query  language  and  constructs,   such  as  database   indexes 

allowing easier handling of Big Data. 
 

Example of Document in Document Store: 
 

 

"'id.,,.:    "'1001" 

"'Student     Name": 

{ 

"'First": "'Ashish", 

•Middle•: "'Kumar•, 

•La.st•     :       •Ra.i"' 

} 

"'Category": "'Student", 

"'Class•:  •s.Tech.•, 

•semester•: ~v1r•, 
~Branchg: •computer Bngineeringg, 

"'Mobile":  "'12345" 

} 

The document  store  allows querying the  data based on the contents  as well. 

For example, it is possible to search the document where student's  first name is 

"Ashish", Document store can also provide the search value's exact location. The 

search is by using the document  path. A type of key accesses the leaf values in 

the tree  structure.  Since the document  stores are schema-less, adding fields to 

documents (XML or ]SON)   becomes a simple task. 
 

Document   Architecture   Pattern    and  Discovering Hierarchical  Structure 

Following is example  of an XML  document  in which  a hierarchical  structure 

discovers later.  Figure 3.5 shows an XML document  architecture   pattern   in a 

document fragment and document tree structure.
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Figure  3.5 XML document architecture  pattern 
 

The  document   store   follows  a  tree-like   structure    (similar  to   directory 

structure  in file system). Beneath the root element there  are multiple branches. 

Each branch has a related path expression that  provides a way to navigate from 

the root to any given branch, sub-branch or value. 
 

XQuery and XPath are query  languages for finding and extracting  elements 

and attributes  from XML  documents.  The query commands  use sub-trees  and 

attributes  of documents. The querying is similar as in SQL for databases. XPath 

treats  XML  document  as a tree  of nodes. XPath queries  are  expressed  in the 

form ofXPath expressions. Following is an example ofXPath expressions: 
 

 

EXAMPLE 3.4 

 
Give examples  of XPath expressions.  Let outermost   element  of the  XML 

document is a. 
 

SOLUTION 
 

An  XPath  expression  / a/b/ c  selects  c  elements   that   are  children   of  b 

elements  that  are children  of element  a that  forms the outermost  element 

of the XML document. 
 

An XPath expression / a/b[c=5] selects elements b and c that  are children of



a and value of c element is 5. 
 

An XPath expression / a[b/ c]/ d selects elements c and d where c is child of 

b and b and d are children of a. 
 
 

XML and JSON both  are  designed  to  form  a  simple  and  standard   way of 

describing  different  kinds of hierarchical  data  structures.  They are popularly 

used  for  storing  and  exchanging  data.  The  following  example  explains  the 

concept of Document Store inJSON and XML for hierarchical  records. 
 

 

EXAMPLE  3.5 
 

 

Give the  structures   of XML and JSON document  fragments  for  a student 

record. 
 

SOLUTION 
 

Following are the structures: 
 
 

{                                                                                                                                    .;:;.student   a>

~tudent~     :        [ 

 
namev  i      t  A[lhi.9h     Jain 

rollNo     234,5 

} 

{ 

•   name i:r:        Sancleep  Joshi 

IOllNo    1234G~ 

} 

- st udent;» 

~name>Ashish     J'ain~/na.me:> 

~IoLlNo.:>1.2345     ·"/roll.No"" 

,;,;.·   :::i.tudent> 

-<.~tudent> 

..::name;.Sancleep   Jof:;hei     /name;,, 

<roLlNo;;.1234     6 - /rollNo;r. 

c../ s tu.dent -. 

<·~tudent9>
 
 
 

··at    JSON                                                                     (b)  ..    'l\IL  equivalent 
 

 
 

When compared with XML, JSON has the following advantages: 
 

•      XML  is easier to understand  but XML is more verbose than JSON. 
 

• XML is used  to  describe  structured   data  and  does  not  include  arrays, 

whereas JSON includes arrays. 

•       ]SON has basically key-value pairs and is easier to parse fromJavaScript.



• The  concise  syntax  of ]SON  for  defining  lists  of  elements   makes  it 

preferable for serialization of text format objects. 

Document Collection A collection  can be used in many ways for managing  a 

large document store. Three uses of a document collection are: 

1.   Group the  documents  together,  similar to a directory  structure  in a file• 

system. (A directory consists of grouping of file folders.) 
 

2. Enables  navigating   through   document   hierarchies,   logically  grouping 

similar documents and storing business rules such as permissions, indexes 

and triggers (special procedure  on some actions in a database). 

3.   A collection can contain other collections as well. 
 

 

3.3.3  TabularData 
 

Tabular data stores use rows and columns. Row-head field may be used as a key 

which access and retrieves  multiple values from the successive columns in that 

row. The OLTP is fast on in-memory row-format data. 
 

Oracle  DBs provide   both   options:   columnar   and   row   format   storages. 

Generally, relational DB store is 

in-memory  row-based data, in which a key in the first column of the row is at a 

memory  address,  and  values  in  successive  columns  at  successive  memory 

addresses.  That makes OLTP  easier. All fields of a row are accessed at a time 

together  during  OLTP.  Different rows are  stored  in different  addresses  in the 

memory  or  disk.  In-memory  row-based  DB   stores  a  row  as  a  consecutive 

memory or disk entry. This strategy  makes data searching  and accessing faster 

during transactions processing. 
 

In-memory  column-based data has the keys (row-head keys) in the first column 

of each row at successive memory addresses. The next column of each row after 

the key has the values at successive memory addresses. The values in the third 

column of each row are at the next memory addresses in succession, and so on 

up to N columns. The N can be a very large number.  The column-based  data 

makes the OLAP easier. All fields of a column access together.  All fields of a set 

of columns  may  also be  accessed  together   during  OLAP.  Different  rows  are 

stored  in different  addresses  in the  memory  or disk, but  each row values are 

now not at successive addresses. In-memory column-based DB store a column as



a   consecutive     memory    or   disk   entry.    This   strategy    makes   the    analytics 

processing   fast. 
 

Following   subsections    describe   NoSQL format   data   stores   based   on  tabular 

formats. 
 

3.3.3.1 Column Family Store 
 

Columnar Data Store  A  way to  implement   a  schema  is the  divisions  into 

columns. Storage of each column, successive values is at the successive memory 

addresses.  Analytics  processing   (AP) In-memory   uses  columnar   storage   in 

memory. A pair of row-head and column-head  is a key-pair. The pair accesses a 

field in the table. 
 

All values in successive fields in a column consisting of multiple rows save at 

consecutive  memory  addresses.  This enables  fast  accesses during  in-memory 

analytics, which includes CPU accesses and analyses using memory addresses in 

which values are cached from the disk before processing. The OLAP (on-line AP) 

is   also   fast   on   in-memory   column-format    data.   An  application   uses   a 

combination  of row head  and a column head as a key for access to the  value 

saved at the field. 
 

Column-Family Data Store Column-family data-store  has a group of columns as 

a column  family. A  combination  of row-head,  column-family  head  and table• 

column head can also be a key to access a field in a column of the table during 

querying. Combination of row head, column families head, column-family head 

and column head for values in column fields can also be a key to access fields of 

a column. A column-family head is also called a super-column head. 
 

Examples of columnar family data stores are HBase, BigTable, HyperTable and 

Cassandra. The following example explains a column-family data store and why 

OLAP is fast in-memory column data store in memory: 
 

 

EXAMPLE 3.6 

 
Consider Example 1.6(i). Assume in-memory  columnar  storage.  Data for a 

large number  of ACVMs with an ACVM_ID each, store in column 1. Data for 

each day sales at each ACVM for KitKat, Milk, Fruit and Nuts, Nougat and 

Oreo store in Columns 2 to 6. Each row has six cells (ID -five sales data). 
 

(i)    How do the column key values store in memory?



(ii)  How do the values store in the memory in columnar storage format? 

(iii) How does analytics of each day's sales help? 

(iv) Why  do  in-memory   columnar   storage  result   in  fast  computations 

during analytics? 

(v)   How are a column family and column-family head (key) specified? 

(vi) How do a column-families group specify? 

(vii) How do row groups form? What is the advantage  of division into sub• 

groups? 
 

SOLUTION 
 

Assume the following columnar storage at memory: 

(i) Column and row keys 

Addresses  1000,  2000,   3000,   ....,  6000  save the  column  keys. Address 

1000  stores  string  'ACVM_ID'. Then the  adresses  1001,  1002,  ....,  1999 

store the row keys, means ACVM_IDs. 
 

Chocolate name  of five flavours  store  at  addresses  2000,  3000,  4000, 

5000,  and 6000. 
 

(ii)  Column field values 
 

Column 1 ACVM_IDs  store at address 1001 to 1999 for 999 ACVMs. Sales 

in a day for KitKat, Milk, Fruit  and  Nuts, Nougat and  Oreo store  at 

addresses  2001  to 2999,  3001  to 3999,  4001  to 4999,  5001  to 5999,  and 

6001 to 6999. 
 

Table 3.3 gives sample values in the columns for a day's sales data. The 

table also gives the  keys for row groups, rows (ACVM_IDs),  a column 

family group, two column families and five column heads for 5 flavours 

of chocolates. The table gives a row group of just  100 rows, just  for the 

sale of assumption. 

Figure 3.6 shows fields in columnar  storage and addresses in memory. 

The figure shows ACVM_IDs as well as each day's sales of each flavour 

of chocolate at 999 ACVMs. Following are the addresses assigned to the



fruit  

201     215      md     500     457  199   108  <no    222   117 
Nub   

3998    3999   4000    4001   4002 4999   4999    5000   5001   5002 ssss  ssss  0000    6001   fi0,02 

 

~--------······-----------··-······----· 

values  in fields of Table 3.3: 
 

Table 3.3 Each day's sales of chocolates on 999ACVMs 
 

  
 
 
 
ACVM_ID 

 

Nestle  Chocolate   Flavours   Group 

Popular   Flavours 

Family 

 
Costly  Flavours   Family 

 
KitKat 

 
Milk 

Fruit  and 

Nuts 

 
Nougat 

 
Oreo 

 
 
Row-group_l   for IDs 1 to 

100 

1 360 150 500 101 222 
 

2 
 

289 
 

175 
 

457 
 

145 
 

317 

.... .... ....  .... .... 

       

 
 
Row-group_m  for IDs 901 

to 999 

.... .... ....  .... . ... 
 

998 123 201 
 

385 199 
 

310 

999 75 215 560 108 250 

 

VFajelulde I      ACVM _ ID ,  I        2 
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~....----,,-----,.~----,-~----.-~---~.....-~....----,...----,.~----.-~-.-~--.--~......----,...----,.~----.-~---. 
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Figure   3.6 Fields in columnar storage and addresses in memory.



(iii)  An analytics application  computes the results, such as (a) total sales of 

each flavour, KitKat, Milk, Fruit and Nuts, Nougat and Oreo, each day, 

(b) Each ACVM requirement  for refilling at each ACVM each day, (c) ID 

of  maximum   sales  of  chocolates   each  day,  (d)  cluster   of  ACVMs 

showing highest  sales, classification  of ACVMs  as low, moderate  and 

high sales. 

(iv)  Consider first  address  of sales data  for KitKat, address.,  kk  =  1001  of 

machine ID, ACVMid at address,  =1000.  Total sales at all 999 ACVMs in 

a  day  requires   the  sum  of  values  between   address   1001   to  1999. 

Increment  to the next address is fast when compared to the case when 

during  the  execution  the  value  addresses  compute  from  a table  of 

pointers  for them.  When values  are  in the  row  storage  format,  the 

chocolate KitKat sales data at the machines will be at addresses  1001, 

1007,  1013,  ... The table of pointers  or computations  of address., kk + n x 

N + 1, where N is number of columns for each row, is required,  and n = 

0,   1,   2,   ... ,    998,   999.   The  processing   takes   longer   compared   to 

instruction  for increment  of pointed address to next memory address. 

Therefore,  analytics of (a), (b), (c) and (d) is quicker fast in case of In• 

memory columnar   storage   compared   to   row   format   storage   in 

memory. 

(v)   Columns in Table 3.3  for KitKat and Milk form a group as one family. 

Columns for Fruit and Nuts, Nougat, and Oreo form a group as second 

family. The key for one family is 'Popular Flavours Family' and second 

family is 'Costly Flavours Family'. The keys of column families can save 

at the addresses 800, 801, ... 

(vi) Two column-families in Table 3.3,  Popular Flavours Family and Costly 

Flavours Family form a super group,  'Nestle Chocolate Flavours'. The 

key  for  super  group  of column-families  group  is  'Nestle  Chocolate 

Flavours'.  The keys of column-family  super  groups  can  save at  the 

addresses 700, 701, 702, ... 

(vii) A set of fields in all column families for ACVMs, say of IDs 1  to 100 can



be  grouped  into  row-group_l.   Number  of row-groups  can  then  be 

processed  as separate  sub-tables,  parallelly  in Big Data environment. 

The keys of row groups can save at the addresses 600, 601, 602, ... 

 

 

Columns  Families  Two of more columns in data-store  group  into one column 

family. Table 3.3 considered two families. 
 

Sparse  Column  Fields  A  row may associate  a large  number  of columns  but 

contains  values in few column  fields. Similarly, many  column  fields may not 

have data. Columns are logically grouped  into column families. Column-family 

data  stores  are  then  similar  to  sparse  matrix  data.  Most elements  of sparse 

matrix  are empty. Data stores  at memory  addresses  is columnar-family  based 

rather  than  as row based. Metadata  provide the  column-family indices of not 

empty column fields. 
 

That  facilitates  OLAP   of  not  empty  column  families  faster.  For  example, 

assume hash key in a column heading field and values in successive rows at one 

column family. For another  key, the values will be in another  column family. 
 

Grouping  of Column Families Two or more column-families in data store form 

a super group, called super column. Table 3.3  consists of one such group (super 

column), 'Nestle Chocolate Flavours Group'. 
 

Grouping   into  Rows When  number  of rows  are  very  large  then  horizontal 

partitioning  of the table is a necessity. Each partition  forms one row-group. For 

example,  a group  of 1   million  rows per  partition.  A  row group  thus  has  all 

column  data  store  in the  memory  for  in-memory  analytics.  Practically,  row 

groups are chosen such that memory required  for the group is above, say 10 MB 

and below the maximum size which can cached and buffered in memory, say 1 

GB for in-memory analytics. 
 

Data caching, buffering  in memory  and  storing  back at  disk takes  time.  So 

frequent  disk accesses remain  controlled.  Therefore,  minimum  row-group  size 

of 10 MB is practical  (Table 3.3 considered  a row group of just  100 rows for the 

purpose of explaining the addressing  and use of keys in a columnar-family  data 

store). 
 

Characteristics of Columnar  Family  Data  Store  Columnar family data  store 

imbibes characteristics  of very high performance  and scalability, moderate  level



of flexibility  and  lower  complexity  when  compared  to  the  object  and  graph 

databases. Advantages of column stores are: 

1. Scalability: The database uses row IDs and column names to locate a column 

and values at the column fields. The interface  for the fields is simple. The 

back-end system can distribute  queries over a large number  of processing 

nodes without  performing  any Join operations.  The retrieval  of data from 

the distributed  node can be least complicated by an intelligent  plan of row 

IDs and  columns,  thereby   increasing   performance.   Scalability  means 

addition of number  of rows as the number  of ACVMs increase in Example 

1.6(i). Number of processing instructions  is proportional  to the number  of 

ACVMs due to scalable operations. 
 

2. Partitionability:  For example, large data of ACVMs can be partitioned  into 

datasets of size, say 

1 MB  in the number  of row-groups. Values in columns of each row-group, 

process  in-memory  at a partition.  Values in columns  of each row-group 

independently  parallelly process in-memory at the partitioned  nodes. 

3.   Availability:  The cost  of replication  is lower  since the  system  scales on 

distributed  nodes efficiently. The lack of Join operations  enables storing a 

part  of a column- family matrix  on remote  computers.  Thus, the  data is 

always available in case of failure of any node. 
 

4.  Tree-like columnar structure consisting  of column-family  groups,  column 

families  and  columns.  The  columns  group  into  families.  The  column 

families group into column groups (super columns). A key for the column 

fields consists of three  secondary keys: column-families group ID, column• 

family ID and column-head name. 

5.   Adding new data at ease:  Permits  new  column  Insert operations.  Trigger 

operation  creates  new columns on an Insert. The column-field values can 

add after the last address in memory if the column structure  is known in 

advance.  New row-head  field, row-group  ID  field, column-family  group, 

column family and column names can be created  at any time to add new 

data.



6. Querying all the field values in a column in a family, all columns in the family 

or a group  of column-families,  is fast in in-memory  column-family  data 

store. 

7. Replication of columns: HDFS-compatiblecolumn-family data stores replicate 

each data store with default replication factor= 3. 

8.   No optimization  for Join: Column-family data  stores  are  similar  to  sparse 

matrix data. The data do not optimize for Join operations. 

Column-family data store in a format in which store set of column family field• 

values which are not empty  (null or zero). Metadata  of the  matrix  consists of 

hash keys that reference each set distinctly. 
 

Typical uses of column store are: (i) web crawling, (ii) large sparsely populated 

tables and (iii) system that has high variance. 
 

HDFS is highly reliable for very long running  queries. However, IO operations 

are  slow. Columnar  storage  is a solution  for faster  IOs. Columnar  storage  in 

memory stores the data actually required  for the IOs. Only columns needing the 

access  load  during   execution.   Also,  a  columnar-object   data   store   can  be 

compressed  or encoded. The encoding is according to the  data type. Also, the 

executions  of different  columns or column partitions  can be in parallel  at the 

cluster data-nodes. 
 

3.3.3.2 BigTable Data Store 
 

Examples of widely used column-family data store are Google's BigTable, HBase 

and Cassandra. Keys for row key, column key, timestamp and attribute uniquely 

identify the values in the fields (Refer Example 2.4) 
 

Following are features of a BigTable: 
 

1.   Massively scalable NoSQL. BigTable scales up to lOOs of petabytes. 
 

2.   Integrates  easily with Hadoop and Hadoop compatible systems. 
 

3.   Compatibility  with  MapReduce, HBase APis which  are  open-source  Big 

Data platforms. 
 

4.  Key for  a  field  uses  not  only  row_ID   and  Column_ID (for  example, 

ACVM_ID  and KitKat in Example 3.6)  but  also timestamp  and attributes. 

Values are ordered  bytes. Therefore,  multiple  versions  of values may be



present  in the BigTable. 
 

5.   Handles million of operations per second. 
 

6.   Handle large workloads with low latency and high throughput 
 

7.   Consistent low latency and high throughput 
 

8.   APis include security and permissions 
 

9.   BigTable, being  Google's cloud  service,  has  global  availability  and  its 

service is seamless. 

The  following  example  explains  the  use  of  rowID, ColumID and  Column 

attributes  in BigTable formats. 
 

 

EXAMPLE 3.7 

 
Consider Example 3.6.  Consider column fields which have keys to access a 

field not only by row ID and Column ID but also include the timestamp  and 

attributes  in a row. Show the column-keys for accessing column fields of a 

column. 
 

SOLUTION 
 

Table 3.4 gives keys for each day's sales of KitKat chocolates at ACVMs. First 

row-headings are the column-keys. 
 

Table 3.4  Each day's sales of KitKat chocolates at ACVMs 
 

Co] umn-keys Kit K.alSaJesDalt'                                  KllK.alSaJesNumber
 

 
 
 
 
 
 

3.3.3.3 RC File Format 
 

Hive uses Record Columnar (RC) file-format records for querying. RC is the best 

choice for intermediate  tables for fast column-family store in HDFS with Hive. 

Serializability of RC table column data is the advantage. RC file is DeSerializable 

into column data. A table such as that  shown in Example 3.6 can be partitioned 

into row groups. Values at each column of a row group store as the RC record.
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150 .5 1     1 

175 457 145 

 

The RC  file records  store  data  of a column  in the  row group  (Serializability  means 

query  or transaction   executable  by series of instructions  such that  execution 

ensures correct results). 
 

The following example explains the use of row groups in the RC file format for 

column of a row group: 
 

 

EXAMPLE 3.8 
 

 

Consider Example 3.6. Practically, row groups have millions of rows and in• 

memory between  10 MB and 1  GB. Assume two row groups of just two rows 

each. Consider the following values given in Table 3.3. 
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123 

 

75 
 

 

Make a file in RC format. 

Row-  rou  _mt'ol'" IDJi 998 to 999 

Jg;;                                             sm 
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SOLUTION 
 

The values in each column are the records in file for each row group. Each 

row-group data is like a column of records which stores in the RC file. 
 

Row group_J                                                  •   I         '      I       I 

9  . 

 

 

..A..C. VM - ID
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----===========1.....-- 
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+-- 
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::===============             ==============I.....-- 

... Nougat 

...O..reo  

 

RC file for row group_l  will consists of records  1, 2; 360,  289;  ...,  222,  317; 

on serialization  of column records. RC file for row group _m will consists of



l998,  999; 123, 75; ..., 310,  250; 

 

 

3.3.3.4 ORC File Format 
 

An ORC (Optimized Row Columnar) file consists of row-group data called stripes. 

ORC  enables  concurrent  reads  of the  same file using separate  RecordReaders. 

Metadata store uses Protocol Buffers for addition and removal of fields.1 
 

ORC  is an intelligent  Big Data file format  for HDFS  and  Hive.2 An ORC  file 

stores  a  collections  of rows  as  a  row-group.  Each row-group  data  store  in 

columnar format. This enables parallel processing of multiple row-groups  in an 

HDFS cluster. 
 

An ORC file consists of a stripe the size of the file is by default 256 MB. Stripe 

consists  of indexing  (mapping)  data  in  8  columns,  row-group  columns  data 

(contents)  and stripe  footer  (metadata).  An ORC  has two sets of columns data 

instead  of one column data in RC. One column is for each map or list size and 

other values which enable a query to decide skipping or reading of the mapped 

columns. A mapped column has contents  required  by the query. The columnar 

layout in each ORC file thus, optimizes for compression  and enables skipping of 

data in columns. This reduces read and decompression load. 
 

Lightweight indexing  is an ORC  feature.  Those blocks of rows which do not 

match a query skip as they do not map on using indices data at metadata.  Each 

index includes the  aggregated  values of minimum,  maximum,  sum and count 

using  aggregation   functions   on  the  content   columns.  Therefore,   contents• 

column key for accessing the contents  from a column consists of combination of 

row-group  key, column  mapping  key, min,  max,  count  (number)  of column 

fields of the contents  column. Table 3.5 gives the keys used to access or skip a 

contents  column  during  querying.  The keys are  Stripe_ID, Index-column  key, 

and contents-column  name, min, max and count. 
 

Table 3.5  Keys to access or skip a content column in ORC file format
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Consider Example 3.6.  ORC  key to access during  a query consist  of not only 

column head 'KitKat' (Table 3.3) but also column minimum and maximum sales 

on an ACVM,  count of number  of fields in values 'KitKat'. Analytics operations 

frequently  need these values. Ready availability of these values from the index 

data itself improves the throughput  in Big Data HDFS environment.  These values 

do not need to compute  again and again using aggregation  functions,  such as 

min, max and count. 
 

An ORC thus, optimizes for reading serially the column fields in HDFS 

environment.   The throughput   increases  due  to  skipping  and  reading  of the 

required   fields  at  contents-column   key.  Reading  less  number   of  ORC   file 

content-columns  reduces the workload on the NameNode. 
 

3.3.3.5 Parquet File Formats 
 

Parquet  is nested  hierarchical  columnar-storage   concept.  Nesting sequence  is 

the  table,  row group,  column  chunk  and  chunk  page. Apache Parquet  file is 

columnar-family  store  file. Apache Spark SQL  executes  user  defined functions 

(UDFs)  which query  the  Parquet  file columns  (Section 5.2.1.3).   A  programmer 

writes  the  codes for an UDF  and creates  the  processing  function  for big long 

queries. 
 

A  Parquet  file uses an HDFS  block. The block stores  the  file for processing 

queries on Big Data. The file compulsorily consists of metadata,  though  the file 

need not consist of data. 
 

The Parquet file consists of row groups. A row-group columns data process in-



memory  after  data  cache and buffer  at the  memory  from the  disk. Each row 

group has a number  of columns. A row group has Ncol  columns, and row group 

consists  of Ncol   column  chunks.  This means  each  column  chunk  consists  of 

values saved in each column of each row group. 

A column chunk can be divided into pages and thus, consists of one or more 

pages. The column chunk consists of a number of interleaved  pages, Npg·  A page 

is a conceptualized  unit  which can be compressed  or encoded  together  at an 

instance. The unit is minimum portion  of a chunk which is read at an instance 

for in-memory analytics. 
 

An ORC  array  <int> has two columns,  one for array  size and the  other  for 

contents.  Parquet format file does not consist of extra column per nesting level. 

Similarly, ORC has two columns, one is for each Map, List size, min, max and the 

second is for the contents.  Parquet format file does not consist of extra column 

per nesting level, just one column per leaf in the schema. 
 

[Parquet in English means 'a floor covering made of small rectangular  wooden 

blocks (tiles) fitted together  in a pattern.  Similarly, Parquet  objects have pages 

as the tiles. Pages build a column chunk. Column chunks build a row group. Row 

groups  build the  table.  A  page is like a tile  consisting  of column  fields. The 

values read  or write  at an instance  or used for encoding  or compression.  The 

values are not read separately from a page.] 
 

Table 3.6 gives the keys used to access or skip the contents  page. Three keys 

are: (i) row-group _ID, (ii) column-chunk key and (iii) page key. 
 

Table 3.6 Combination of keys for content page in the Parquet file format 
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3.3.4  Object Data Store



An object store refers to a repository which stores the: 
 

1.   Objects (such as files, images, documents, folders, and business reports) 
 

2.  System   metadata    which    provides    information    such   as   filename, 

creation_date, last_modified,  language_used   (such  as Java,  C,   C#, C++, 

Smalltalk, Python), access permissions, supported  query languages) 

3.  Custom metadata  which provides  information,  such as subject, category, 

sharing permissions. 

Metadata  enables  the  gathering   of metrics  of objects,  searches,  finds  the 

contents  and specifies the  objects in an object data-store  tree.  Metadata  finds 

the  relationships   among  the  objects,  maps  the  object  relations   and  trends. 

Object Store metadata  interfaces with the Big Data. API first mines the metadata 

to enable mining of the trends  and analytics. The metadata  defines classes and 

properties  of the objects. Each Object Store may consist of a database. Document 

content  can be stored in either the object store database storage area or in a file 

storage area. A single file domain may contain multiple Object Stores. 
 

Data definition  and manipulation,  DB  schema design, database  browsing, DB 

administration,  application compilation and debugging use a programming 

language. 
 

Eleven Functions SupportingAPis An Object data store  consists of functions 

supporting   APis for:  (i) scalability,  (ii) indexing,  (iii)  large  collections,  (iv) 

querying  language, processing  and optimization  (s), (v) Transactions,  (vi) data 

replication  for high availability, data distribution  model, data integration  (such 

as with  relational  database,  XML,  custom  code), (vii) schema  evolution,  (viii) 

persistency,  (ix) persistent  object life cycle, (x) adding modules and (xi) locking 

and caching strategy. 
 

Object Store may support  versioning  for collaboration.  Object Store can be 

created  using  IBM 'Content  Platform  Engine'.  Creation  needs  installing  and 

configuring  the  engine  (Engine is software which drives forward.).  Console of 

the  engine  makes  creation  of process  easy. Amazon 53  and  Microsoft Azure 

BLOB support the Object Store. 
 

Amazon S3 (Simple Storage Service) 53 refers to Amazon web service on the 

cloud named 53. The 53 provides the Object Store. The Object Store differs from 

the block and file-based cloud storage. Objects along with their  metadata  store



for each object store as the files. 53 assigns an ID number for each stored object. 

The service has two storage classes: Standard  and infrequent  access. Interfaces 

for  53 service  are  REST,  SOAP  and  Bit Torrent.  53 uses include  web hosting, 

image   hosting   and   storage   for   backup   systems.   53   is   scalable   storage 

infrastructure,    same  as  used  in  Amazon  e-commerce  service.  53  may  store 

trillions of objects. 
 

The following example lists Object Store development platforms: 
 

 

EXAMPLE  3.9 
 

 

List the functions  of Minio,  Riak, VERSANT  Object Database (VOD), 

GEMSTONE, Amazon 53 and Microsoft Azure BLOB that support using Object 

Store APis. 
 

SOLUTION 
 

1. An open-source multi-clouds object storage server is Minic, which is API 

compatible with Amazon 53 API and number  of widely used public and 

private  clouds. Compatibility enables  data  export  to 53 and usages of 

APis. 

2.   Riak CS (Cloud Storage) is object storage management  software on top of 

Riak. It  models on open-source  distributed-database   which is Amazon• 

compliant. This means database exports to 53 and use 53 APis. 

3.   VOD consists of 11 functions  supporting  APis listed above. VOD enables 

use by   multiple   concurrent    users.   VOD    supports    cross-platform 

operating  systems (OSs),  such as Linux, Windows NT, AIX, HP-UX  and 

Solaris (both 32 and 64 bits for all platforms). 

4.   GEMSTONE  Object DB  APis development   language  is  SmallTalk. The 

platform supports   in-memory   DBs, object-oriented    processing   and 

distributed  caches.  GEMSTONE  provides  cross  platform   support,  OSs 

AIX, Linux, MacOS and Solaris. 
 
 

3.3.4.1 Object Relational Mapping 
 

The following example explains object relational mapping.



EXAMPLE 3.10 

 
How does an HTML object and XML based web service relate  with tabular 

data stores? 
 

SOLUTION 
 

Figure 3. 7 shows the object relational  mapping of HTML document and XML 

web services store with a tabular data store. 
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Figure   3.7 HTML document and XML web services 
 

 
 

3.3.5   Graph Database 
 

One way to implement  a data store is to use graph database. A characteristic  of 

graph is high flexibility. Any number  of nodes and any number  of edges can be 

added  to  expand  a  graph.  The  complexity  is  high  and  the  performance   is 

variable  with  scalability. Data store  as series  of interconnected   nodes.  Graph 

with data nodes interconnected  provides one of the best database system when



relationships  and relationship  types have critical values. 
 

Data Store focuses on modeling  interconnected  structure   of data. Data stores 

based on graph theory relation G = (E, V), where E is set of edges e1,   e2,    ••• and V 

is set of vertices, v1,  v2,  •••,  vn· 

Nodes  represent   entities   or  objects.  Edges  encode  relationships   between 

nodes.  Some  operations   become  simpler  to  perform   using  graph   models. 

Examples of graph  model usages are social networks  of connected  people. The 

connections  to related  persons  become easier to model when using the graph 

model. 
 

The following example explains the graph  database  application  in describing 

entities relationships  and relationship  types. 
 

 

EXAMPLE 3.11 
 

 

Let us  assume  a  car  company  represents   a node  entity,  which  has  two 

connected nodes comprising two 

model  entities,  namely  Hexa and  Zest. Draw graph  with  directed  lines, 

joining  the  car company with two entities.  (i) How do four directed  lines 

relate to four weeks and two directed  lines? One directed  line corresponds 

to a car model. Only directed line corresponds  to weekly total sales. (ii) How 

will the   yearly   sales   compute?   (iii)   Show  the   path   traversals    for 

computations  exhibit BASE properties. 
 

SOLUTION 
 

(i) Figure 3.8  shows section of a graph  database  for the  sales of two car 

models.
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Figure  3.8 Section of the graph database for car-model sales 
 

(ii) The yearly  sales compute  by path  traversals  from  nodes  for weekly 

sales to yearly sales data. 
 

(iv) The  path   traversals   exhibit   BASE   properties   because   during   the 

intermediate  paths, consistency is not maintained.  Eventually when all 

the path traversals  complete, the data becomes consistent. 
 

 

Graph databases  enable  fast  network  searches.  Graph uses  linked  datasets, 

such  as  social  media  data.  Data  store  uses  graphs  with  nodes  and  edges 

connecting each other through  relations, associations and properties. 
 

Querying for data  uses graph  traversal  along the  paths.  Traversal  may use



single-step, path expressions  or full recursion.  A relationship  represents  key. A 

node  possesses  property  including  ID.  An edge may have  a label which  may 

specify a role. 
 

Characteristics of graph databases are: 
 

1.   Use specialized query languages, such as RDF uses SPARQL 
 

2. Create a database system which models the data in a completely different 

way  than   the  key-values,  document,   columnar   and  object  data  store 

models. 

3.  Can have hyper-edges. A hyper-edge  is a set of vertices of a hypergraph.  A 

hypergraph  is a generalization  of a graph  in which an edge can join  any 

number of vertices (not only the neighbouring vertices). 
 

4.  Consists of a collection  of small data  size records,  which  have  complex 

interactions  between graph-nodes  and hypergraph  nodes. Nodes represent 

the entities  or objects. Nodes use Joins. Node identification  can use URI or 

other  tree-based  structure.  The edge encodes a relationship  between  the 

nodes. 
 

When a new relationship  adds in RDBMS, then the schema changes. The data 

need transfer  from one field to another.  The task of adding relations  in graph 

database  is simpler. The nodes assign internal  identifiers  to the nodes and use 

these identifiers to join the network. Traversing the joins or relationships  is fast 

in graph databases. It is due to the simpler form of graph nodes. The graph data 

may be kept  in RAM  only. The relationship  between  nodes  is consistent  in a 

graph store. 
 

Graph  databases  have  poor  scalability.  They  are  difficult  to  scale  out  on 

multiple servers. This is due to the close connectivity feature of each node in the 

graph. Data can be replicated  on multiple servers to enhance read and the query 

processing performance.  Write operations  to multiple servers and graph queries 

that span multiple nodes, can be complex to implement. 
 

Typical uses  of graph  databases  are:  (i) link  analysis,  (ii) friend  of friend 

queries,  (iii) Rules and inference,  (iv) rule induction  and (v) Pattern  matching. 

Link  analysis  is  needed   to  perform   searches   and  look  for  patterns    and 

relationships   in  situations,   such  as  social  networking,   telephone,   or  email



records (Sections  9.4  and 9.5).  Rules and inference  are used to run  queries  on 

complex structures  such as class libraries, taxonomies and rule-based systems. 
 

Examples of graph  DBs are Neo4J, AllegroGraph, HyperGraph, Infinite Graph, 

Titan and FlockDB.Neo4J graph database enable easy usages by Java developers. 

Neo4J can be designed  fully ACID  rules  compliant.  Design consists  of adding 

additional path traversal  in between the transactions  such that data consistency 

is maintained  and the transactions  exhibit ACID properties. 
 

Spark provides  a simple  and  expressive  programming  model  that  includes 

supports to a wide range of applications, including graph computation.  Chapter 

8 describes Graph Databases. 
 

 

3.3.6 Variations of NoSQLArchitecturalPatterns 
 

Six data architectures  are SQL-table,key-value pairs, in-memory column-family, 

document,  graph  and object. Selected architecture  may need variations  due to 

business requirements.  Business requirements  are ease of using an architecture 

and  long-term   competitive   advantage.  The  following  example  explains  the 

requirements   for the  database  of students  of a University that  offers multiple 

courses in their various academic programmes  for several years: 
 

 

EXAMPLE 3.12 

 
List the  selection  requirements   for the  database  of University  students  in 

successive years.  The University  runs  various  Under  Graduate  and  Post 

Graduate programmes.  Students are registered to Multiple courses in a 

programme. 
 

SOLUTION 
 

Following are the selection requirements: 
 

1.   Scalability: Since the University archives the data for several years, data 

store should be scalable. 
 

2.   Search ability: Search of required  information  needs to be fast. 
 

3.  Quarrying  ability:  All  applications   need  to  query  the   data.  Query 

retrieves the required  data among the Big Data of several years. 

4.  Security: Database needs security and fault tolerance.



5.   Affordability: Open source is a requirement. 
 

6.  Interoperability:  Needs ease in search from different  platforms.  Search 

from  any computer  operating  system,  such  as Windows, Mac, Linux, 

Android and iOS should be feasible. 

7. Importability: Database needs to import data from other platforms, such 

as import of slides, video lectures, tutorials,  e-books, webinars should be 

facilitated in store. 

8.   Transformability:  Queries  may  be  written   in  one  language  and  may 

require transformation  to another  language, such as HTML. 

Analysis of the  above requirements   suggests  the  document  architecture 

pattern  will be more suitable. 
 
 

Kelly-McCreary, co-founder  of 'NoSQL Now' suggested that  when selecting  a 

NoSQL-pattern, the pattern  may need change and require  variation  to another 

pattern(s).  Some reasons for this are: 
 

1.   Focus changing from performance  to scalability 
 

2.   Changing from modifiability to agility 
 

3.  Greater emphasis  on Big Data, affording capacity, availability of support, 

ability for searching and monitoring the actions 

Steps for selecting a NoSQL data architectural  pattern  can be as follows: 
 

1.   Select an architecture 
 

2.   Perform   a  use-case   driven   difficulty   analysis   for   each   of  the   six 

architectural patterns.   Difficulties may be  low, medium  or  high  in the 

following processes: (i) ingestion, (ii) validation  of structure  and its fields, 

(iii)  updating   process  using  batch  or  record  by  record  approach,   (iv) 

searching process using full text or by changing the sorting order, and (v) 

export the reports  or application results in HTML, XML or ]SON. 

3.  Estimate   the   total    efforts   for   each   architecture    for   all   business 

requirements. 

Process the choice of architecture   using trade-off.  For example, between  the



MongoDBdocument data store and Cassandra column-family data store. 
 

 

Self-Assessment Exercise linked  to LO 3.2 
 

1.   Compare traditional  relational  model and key-value pairs model. 
 

2.   When will you use the document data store? 
 

3.   Why is metadata  must in a NoSQL Data Store? 
 

4. How  do  interactions    among   graph   nodes   and   hypergraph    nodes 

differentiate? 

5.   List and compare  the  features  of BigTable, RC,  ORC  and Parquet  data 

stores. 

6.   What are the characteristics  of the object data store model? 
 

7.  Data  architecture    pattern    can   be   selected   from   among   the   six 

architectures, namely  relational  SQL  table,  CLAP-suitable in-memory 

column,  key-value  pairs,  column-family,  document   and  graph  DBs. 

Explain with an example, how and when each of these is used. 
 
 
 

 

3.4 l NOSQL TO MANAGE BIG DATA 

The following subsections describe how to use a NoSQL 

data store to manage Big Data. 
 

 

3.4.1 Using NoSQLto Manage  Big Data 

 

 
NoSQL dab  stm@ 

:m:aft'agemeirrrtt. applica·tiHs 

and h1adling1  probleffilsriliil 

Bi~  Data

 

NoSQL (i) limits  the  support   for Join  queries,  supports   sparse  matrix  like 

columnar-family,  (ii) characteristics  of easy creation and high processing speed, 

scalability  and  storability  of much  higher  magnitude  of data  (terabytes  and 

petabytes). 
 

NoSQL sacrifices the support of ACID properties,  and instead supports CAP and 

BASE   properties   (Sections  3.2.1.1   and  3.2.3).   NoSQL data  processing   scales 

horizontally  as well vertically.



3.4.1.1 NoSQL Solutions for Big Data 
 

Big Data solution needs scalable storage of terabytes  and petabytes,  dropping of 

support  for database Joins, and storing  data differently  on several distributed 

servers   (data  nodes)  together   as  a  cluster.  A   solution,  such  as  CouchDB, 

DynamoDB,MongoDBor Cassandra follow CAP theorem  (with compromising the 

consistency  factor) to make transactions   faster  and easier to scale. A solution 

must also be partitioning  tolerant. 
 

Characteristics of Big Data NoSQL solution are: 
 

1. High and  easy scalability: NoSQL data   stores   are  designed  to  expand 

horizontally.  Horizontal  scaling means  that  scaling out by adding  more 

machines  as data nodes  (servers)  into the  pool of resources  (processing, 

memory, network  connections).  The design scales out using multi-utility 

cloud services. 
 

2.  Support  to replication: Multiple copies of data store across multiple nodes of 

a cluster. This ensures high availability, partition,  reliability and fault 

tolerance. 

3.   Distributable: Big Data solutions permit sharding and distributing  of shards 

on multiple clusters which enhances performance  and throughput. 

4.   Usages of NoSQL servers  which are less expensive. NoSQL data stores require 

less management  efforts. It  supports  many features  like automatic  repair, 

easier data distribution  and simpler data models that makes database 

administrator  (DBA) and tuning requirements  less stringent. 

5.    Usages  of open-source   tools: NoSQL data stores  are cheap and open source. 

Database  implementation   is  easy  and  typically  uses  cheap  servers  to 

manage  the  exploding  data  and transaction   while RDBMS  databases  are 

expensive and use big servers  and storage  systems. So, cost per gigabyte 

data store and processing of that data can be many times less than the cost 

ofRDBMS. 

6.  Support to schema-less  data model: NoSQL data store is schema less, so data 

can be inserted  in a NoSQL data store without  any predefined  schema. So, 

the format or data model can be changed any time, without  disruption  of



application. Managing the changes is a difficult problem in SQL. 
 

7.   Support to integrated caching: NoSQL  data  store  support  the  caching  in 

system memory. That increases output performance.  SQL database needs a 

separate infrastructure  for that. 

8.   No inflexibility unlike the  SQL/RDBMS,  NoSQL DBs are flexible (not rigid) 

and have no structured  way of storing  and manipulating  data. SQL stores 

in the  form of tables  consisting  of rows and columns. NoSQL  data  stores 

have flexibility in following ACID rules. 

3.4.1.2 Types of Big Data Problems 

Big Data  problems  arise  due  to  limitations   of  NoSQL and  other   DBs. The 

following types of problems are faced using Big Data solutions. 
 

1.  Big Data need the scalable storage and use of distributed  servers together 

as a cluster. Therefore,  the solutions must drop support  for the  database 

Joins 

2. NoSQL database is open source and that  is its greatest  strength  but at the 

same time its greatest  weakness also because there  are not many defined 

standards  for NoSQL  data  stores.  Hence, no two NoSQL  data  stores  are 

equal. For example: 

(i)    No stored procedures  in MongoDB(NoSQL data store) 
 

(ii)   GUI mode tools to access the data store are not available in the market 
 

(iii)  Lack of standardization 
 

(iv) NoSQL data stores sacrifice ACID compliancy for flexibility and processing 

speed. 

A comparison  of NoSQL with  SQL/RDBMS  shows that  NoSQL  data model are 

schema-less,   no  pre-defined   schema,   multiple   data   architecture    patterns, 

complex to implement  vertical  scalability, variable  consistency  and very week 

adherence to ACID rules. Table 3. 7 gives a comparison. 
 

Table 3.7  Comparison ofNoSQLwith SQL/RDBMS 
 

Features                                     NoSQL Data store                                  SQL/RDBMS



Model Schema-less model Relational 

Schema 
 

Dynamic schema Predefined 

Types of data 

architecture 

patterns 

 
Key/value  based, column-family  based, document 

based, graph based, object based 

 

 

Table based 

 

Scalable 
 

Horizontally  scalable 
Vertically 

scalable 

Use ofSQL 
 

No Yes 

Dataset size 

preference 

 
Prefers large datasets 

Large dataset 

not preferred 

Consistency 
 

Variable Strong 

Vendor support 
 

Open source Strong 

 
ACID properties 

 

May not support,  instead  follows Brewer's CAP 

theorem  or BASE properties 

 

Strictly follows 

 

 

Self-Assessment Exercise linked to LO 3.3 
 

1.   Why  does  Big Data  need  scalable  storage   and  uses  distributed   servers 

together  as a cluster? 
 

2.   Why does Big Data solution  possess CAP  or BASE and may drop support  for 

ACID properties? 
 

3.   Why does a Big Data solution drop support  for the database Joins? 
 

4.    Compare NoSQL data stores with SQL databases. 
 
 
 

 

3.5 l SHARED-NOTHING     ARCHITECTURE   FOR BIG DATA TASKS 
 

The  columns  of two  tables  relate  by  a  relationship.   A  relational   algebraic 

equation  specifies the relation.  Keys share between  two or more SQL tables in 

RDBMS.  Shared nothing  (SN) is a cluster  architecture.   A node does not  share 

data with any other node.



Big Data store  consists of SN architecture.   Big Data 

store,   therefore,    easily   partitions    into   shards.   A 

partition  processes the different queries on data of the 

different users at each node independently.  Thus, data 

processes   run   in   parallel   at   the   nodes.   A   node 

maintains  a  copy  of running-process   data.  A 

coordination  protocol controls the processing at all SN 

nodes. An SN  architecture   optimizes  massive parallel 

data processing. 
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Data of different  data stores partition  among the number  of nodes (assigning 

different  computers  to  deal with  different  users  or queries).  Processing  may 

require  every node to maintain  its own copy of the application's  data, using a 

coordination  protocol. Examples are using the partitioning  and processing  are 

Hadoop, Flink and Spark. 
 

The features of SN architecture  are as follows: 
 

1. Independence:  Each  node   with   no   memory   sharing;   thus   possesses 

computational  self-sufficiency 

2.   Self-Healing: A link failure causes creation of another  link 
 

3.   Each node functioning  as a shard: Each node stores  a shard  (a partition  of 

large DBs) 
 

4.   No network contention. 
 

 

3.5.1   Choosing the Distribution Models 
 

Big Data requires  distribution   on multiple  data  nodes  at clusters.  Distributed 

software  components   give  advantage  of parallel  processing;  thus  providing 

horizontal  scalability. Distribution  gives (i) ability to handle  large-sized  data, 

and  (ii)  processing  of many  read  and  write  operations  simultaneously  in an 

application.   A  resource   manager   manages,   allocates,   and   schedules   the 

resources  of each  processor,  memory  and  network  connection.  Distribution 

increases  the  availability when a network  slows or link fails. Four models for 

distribution  of the data store are given below: 

3.5.1.1 Single Server Model

mailto::ist@~


Simplest distribution  option  for NoSQL data  store  and access is Single Server 

Distribution    (SSD)    of   an   application.    A    graph    database    processes   the 

relationships  between nodes at a server. The SSD model suits well for graph DBs. 

Aggregates of datasets may be key-value, column-family or BigTable data stores 

which require  sequential  processing. These data stores also use the SSD model. 

An application  executes the  data  sequentially  on a single server.  Figure 3.9(a) 

shows the  SSD  model. Process and datasets  distribute  to a single server which 

runs the application. 
 

3.5.1.2 Sharding  Very Large Databases 
 

Figure 3.9(b) shows sharding  of very  large  datasets  into  four  divisions,  each 

running  the application  on four i,j,  k and l different  servers at the cluster. DBi, 

DBj, DBk and DB1  are four shards. 
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Figure  3.9 (a) Single server model (b) Shards distributed  on four servers 

in a cluster. 
 

The  application   programming   model  in  SN  architecture    is  such  that   an 

application   process  runs  on  multiple  shards  in  parallel.  Sharding  provides 

horizontal  scalability. A data store may add an auto-sharding  feature. The 

performance  improves  in the  SN.  However, in case of a link failure  with the 

application, the application can migrate the shard DB to another  node. 
 

3.5.1.3 Master-Slave Distribution  Model 
 

A node serves as a master or primary node and the other nodes are slave nodes. 

Master directs the slaves. Slave nodes data replicate on multiple slave servers in



 

 
 
 
 
 

mongod 

 
morngod 

mongod                    B-EJ 

Master Slave Distribution  (MSD) model. When a process updates  the master,  it 

updates the slaves also. A process uses the slaves for read operations. Processing 

performance  improves  when  process  runs  large  datasets  distributed  onto  the 

slave nodes.  Figure 3.10  shows an  example  of MongoDB. MongoDB database 

server is mongod and the client is mongo. 
 

Master-Slave ReplicationProcessing performance  decreases due to replication 

in MSD distribution  model. Resilience for read operations  is high, which means 

if in case data is not available from a slave node, then it becomes available from 

the replicated nodes. Master uses the distinct write and read paths. 
 

Complexity Cluster-based  processing  has  greater   complexity  than  the  other 

architectures.  Consistency can also be affected in case of problem of significant 

time taken for updating. 
 
 
 
 
 

 

I                                                          I 
 
 
 

 

I                                                          I 
 

 

Figure 3.10  Master-slave distribution  model. Mongo is a client and 

mongod is the server 
 

3.5.1.4 Peer-to-Peer Distribution Model 
 

Peer-to-Peer   distribution   (PPD) model  and  replication   show  the   following 

characteristics:   (1) All replication   nodes  accept  read  request   and  send  the 

responses. (2) All replicas function equally. (3) Node failures do not cause loss of 

write capability, as other replicated node responds. 
 

Cassandra adopts the PPD model. The data distributes  among all the nodes in a 

cluster. 
 

Performance  can further  be enhanced  by adding the nodes. Since nodes read 

and write both, a replicated  node also has updated  data. Therefore, the biggest 

advantage in the model is consistency. When a write is on different  nodes, then
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Figure 3.11  shows the PPD model. 
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Figure3.11  Shards replicating on the nodes, which does read and write 

operations both 
 

3.5.1.5 Choosing Master-Slave versus Peer-to-Peer 
 

Master-slave replication provides greater  scalability for read operations. 

Replication  provides  resilience   during  the   read.  Master  does  not  provide 

resilience  for writes.  Peer-to-peer  replication  provides  resilience  for read  and 

writes both. 
 

Sharing Combining with   Replication Master-slave   and   sharding   creates 

multiple  masters.  However, for each data a single master  exists. Configuration 

assigns a master  to a group  of datasets.  Peer-to-peer  and  sharding  use same 

strategy  for the column-family data stores. The shards  replicate  on the nodes, 

which does read and write operations both. 
 

 

3.5.2  Ways of HandlingBig Data Problems 
 

Figure 3.12 shows four ways for handling Big Data problems.
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Figure  3.12 Four ways for handling big data problems 
 
 

 
Following are the ways: 

 

1.   Evenly distribute  the data on a cluster  using the hash rings:  Consistent hashing 

refers  to a process where  the  datasets  in a collection  distribute  using a 

hashing algorithm which generates  the pointer for a collection. Using only 

the hash of Collection_ID, a Big Data solution client node determines  the 

data  location  in the  cluster.  Hash Ring refers  to  a map  of hashes  with 

locations.  The client,  resource  manager  or scripts  use the  hash  ring  for 

data  searches  and  Big Data  solutions.  The  ring  enables  the  consistent 

assignment and usages of the dataset to a specific processor. 
 

2.   Use replication   to horizontally  distribute the client read-requests:  Replication 

means creating backup copies of data in real time. Many Big Data clusters 

use replication  to make the failure-proof  retrieval  of data in a distributed 

environment.  Using replication  enables horizontal  scaling out of the client 

requests. 
 

3.  Moving queries to the data, not the data to the queries: Most NoSQL data stores 

use  cloud  utility  services  (Large graph  databases   may  use  enterprise 

servers).  Moving client node queries  to the  data  is efficient  as well as a 

requirement  in Big Data solutions. 
 

4.    Queries  distribution to multiple nodes:  Client queries  for the  DBs analyze at



the  analyzers,   which  evenly  distribute   the  queries   to  data  nodes/   replica 

nodes.   High  performance     query   processing    requires    usages   of  multiple 

nodes.   The   query    execution    takes    place   separately     from   the   query 

evaluation   (The evaluation   means  interpreting    the  query  and generating   a 

plan  for its execution   sequence). 

 
 

Self-Assessment     Exercise   linked   to LO  3.4 
 

1.   List pros and cons of distribution  using sharding. 
 

2.   List characteristics  of master-slave  distribution  model. 
 

3.   List the benefits of peer-to-peer  nodes data distribution  model. 
 

4.   How is a hash ring used in the distribution  of Big Data? 
 
 
 

 

3.6 ! MONGODB DATABASE 
 

MongoDBis an open source DBMS. MongoDBprograms 

create and  manage databases.  MongoDB manages  the        ·      cmgoliJJB  am'bases am:d 

collection    and    document    data    store.    MongoDB     queryrnfrTlilmtillilds 

functions   do  querying   and  accessing  the   required 

information.  The functions include viewing, querying, changing, visualizing and 

running  the transactions.  Changing includes updating,  inserting,  appending  or 

deleting. 
 

MongoDB is (i) non-relational,  (ii) NoSQL, (iii) distributed,  (iv) open source, (v) 

document based, 

(vi) cross-platform,   (vii) Scalable, (viii) flexible  data  model,  (ix) Indexed,  (x) 

multi-master   (Section 3.5.1.3),   and (xi) fault tolerant.  Document  data  store  in 

)SON-like documents. The data store uses the dynamic schemas. 
 

The  typical  MongoDB applications   are  content   management   and  delivery 

systems, mobile applications, user data management, gaming, e-commerce, 

analytics, archiving and logging. 
 

Features Following are features of MongoDB:



1.   MongoDB data store is a physical container  for collections. Each DB gets its 

own set of files on the  file system. A number  of DBs can run  on a single 

MongoDB server. DB  is default  DB  in MongoDB that  stores within  a data 

folder. The database server of MongoDBis mongod and the client is mongo. 

2.  Collection  stores  a number  of MongoDB documents.  It  is analogous  to  a 

table of RDBMS. A collection exists within  a single DB to achieve a single 

purpose.  Collections  may  store  documents  that  do not  have  the  same 

fields.  Thus,  documents   of  the  collection  are  schema-less.  Thus,  it  is 

possible to   store   documents   of  varying   structures    in   a  collection. 

Practically,  in an RDBMS,  it is required  to define a column and its data 

type, but does not need them while working with the MongoDB. 

3. Document model is well defined. Structure  of document is clear, Document is 

the unit of storing data in a MongoDBdatabase. Documents are analogous 

to the records of RDBMS table. Insert, update and delete operations  can be 

performed  on a collection. Document useJSON (lavascript  Object Notation) 

approach  for  storing  data. JSON is a lightweight,  self-describing  format 

used to interchange  data between various applications. JSON data basically 

has key-value pairs. Documents have dynamic schema. 

4.  MongoDBis a document  data store in which one collection holds different 

documents.  Data store  in the  form of JSON-style documents.  Number  of 

fields, content  and size of the document  can differ from one document  to 

another. 

5.   Storing of data is flexible, and data store  consists of JSON-like documents. 

This implies that the fields can vary from document to document and data 

structure  can be changed  over time; JSON has a standard  structure,  and 

scalable way of describing hierarchical  data (Example 3.3(ii)). 

6.  Storing of documents on disk  is in BSON  serialization  format.  BSON  is a 

binary representation   of ]SON documents. The mongo JavaScript shell and 

MongoDB language   drivers   perform   translation    between   BSON and 

language-specific document representation. 

7.   Querying, indexing,  and real time aggregation  allows accessing and analyzing



the data efficiently. 
 

8.   Deep   query-ability-Supports    dynamic   queries   on  documents   using   a 

document-based  query language that's  nearly as powerful as SQL. 

9.   No complex Joins. 
 

10. Distributed   DB makes availability high, and provides horizontal  scalability. 
 

11. Indexes on any field in a collection of documents:  Users can create  indexes 

on any field in a document.  Indices support  queries  and  operations.  By 

default, MongoDB creates an index on the _id field of every collection. 
 

12. Atomic operations on   a  single document can  be  performed   even  though 

support of multi-document  transactions  is not present. The operations  are 

alternate  to ACID transaction  requirement  of a relational DB. 
 

13. Fast-in-place   updates: The  DB   does  not  have  to  allocate  new  memory 

location  and write  a full new copy of the  object in case of data updates. 

This results  into  high  performance   for  frequent  update  use  cases. For 

example, incrementing  a counter  operation  does not fetch the document 

from the server. Here, the increment  operation can simply be set. 

14. No configurable cache: MongoDB uses  all  free  memory  on  the  system 

automatically  by way of memory-mapped  files (The operating  systems use 

the similar approach with their file system caches). The most recently used 

data is kept  in RAM.  If indexes  are created  for queries  and the  working 

dataset fits in RAM, MongoDB  serves all queries from memory. 
 

15. Conversion/mapping  of application objects to data store objects not needed 
 

Dynamic  Schema  Dynamic  schema   implies  that   documents   in  the   same 

collection  do not  need  to  have the  same set  of fields or structure.  Also, the 

similar fields in a document may contain different types of data. Table 3.8 gives 

the comparison with RDBMS. 
 

Table 3.8  Comparison ofRDBMS and MongoDB databases 
 

 

RDBMS 
 

MongoDB 

Database 
 

Data store 

  



Table Collection 

Column Key 

Value Value 

Records / Rows / Tuple 
 

Document/ Object 
 

Joins 
 

Embedded Documents 

Index Index 

Primary  key 
 

Primary  key (_id) is default key provided  by MongoDB itself 

 

Any relational DB has a typical schema design that shows the number of tables 

and  the  relationship   between  these  tables.  While  in  MongoDB, there   is  no 

concept of relationship. 
 

Replication Replication  ensures   high  availability  in  Big Data.  Presence   of 

multiple  copies increases  on different  database  servers. This makes DBs fault• 

tolerant  against  any database  server  failure.  Multiple copies of data  certainly 

help in localizing the data and ensure availability of data in a distributed  system 

environment. 
 

MongoDBreplicates with the help of a replica set. A replica set in MongoDBis 

a group  of mongod  (MongoDb server)  processes  that  store  the  same dataset. 

Replica sets provide redundancy  but high availability. A replica set usually has 

minimum three nodes. Any one out of them is called primary. The primary node 

receives all the write operations.  All the other  nodes are termed  as secondary. 

The data replicates  from primary to secondary nodes. A new primary  node can 

be  chosen  among  the  secondary  nodes  at  the  time  of automatic  failover  or 

maintenance.   The  failed  node  when  recovered   can join  the  replica  set  as 

secondary  node  again.  Replica set  starts  a mongod  instance  by specifying  - 

replSet option before running  these commands from mongo (MongoDb Client). 

Table 3.9 gives the commands used for replication  (Recoverability means even on 

occurrences of failures; the transactions  ensure consistency). 
 

Table 3.9  MongoDBClient commands related to replica set 
 

 

Commands 
 

Description 

rs.initiate() To initiate  a new replica set 

  



 

rs.conf () To check the replica set configuration 

rs.status() To check the status  of a replica set 

rs.add() To add members  to a replica set 

Figure 3.13  shows a replicated dataset after creating three  secondary members 

from a primary member. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.13  Replicated set on creating secondary members 

 

Auto-sharding Sharding  is  a  method  for  distributing   data  across  multiple 

machines  in a distributed  application  environment.  MongoDBuses sharding to 

provide services to Big Data applications. 
 

A single machine  may not be adequate  to store the data. When the data size 

increases, do not provide data retrieval  operation.  Vertical scaling by increasing 

the resources of a single machine is quite expensive. Thus, horizontal  scaling of 

the  data  can  be  achieved  using  sharding  mechanism  where  more  database 

servers can be added to support data growth and the demands of more read and 

write operations. 
 

Sharding automatically balances the data and load across various servers. 

Sharding provides additional write capability by distributing  the write load over 

a number of mongod (MongoDBServer) instances. 

(Figure 3.10)  Basically, it splits the dataset  and distributes  them across multiple 

DBs,  called shards  on the  different  servers.  Each shard  is an independent  DB. 

The whole collection of shards forms a single logical DB. If a DB has a 1 terabyte 

dataset  distributed  amongst  20  shards,  then  each shard  contains  only 50  Giga 

Byte of data.



A  shard stores lesser data than  the actual data and handles  lesser number  of 

operations  in a single instance. For example, to insert  data into a collection, the 

application needs to access only the shard that contains the specified collection. 

A cluster can thus easily increase its capacity horizontally. 
 

Data Types Table 3.10 gives data types which MongoDBdocuments support. 
 

Table 3.10 Data types which MongoDBdocuments support 
 

 

Type 
 

Description 

 

Double 
 

Represents  a float value. 

 

String 
 

UTF-8 format  string. 

 

Object 
 

Represents  an embedded  document. 

 

Array 
 

Sets or lists of values. 

Binary 

data 

 
String of arbitrary bytes to store images, binaries. 

 

 
 

Object id 

 

Objectlds (MongoDB document  identifier,  equivalent  to a primary  key) are: 

small, likely unique, fast to generate,  and ordered.  The value consists of 12- 

bytes, where the first four bytes are for timestamp  that  reflects the instance 

when Objectld creates. 

 

Boolean 
 

Represents  logical true  or false value. 

 
Date 

 

BSON Date is a 64-bit integer  that  represents the number  of milliseconds 

since the Unix epoch (Jan 1, 1970). 

 

Null 
 

Represents  a null value. A value which is missing or unknown  is Null. 

Regular 

Expression 

 
RegExp maps directly to a JavaScript  RegExp 

32-bit 

integer 

 
Numbers without  decimal points save and return  as 32-bit integers. 

 
 
 

Time stamp 

 

A special timestamp  type for internal MongoDB use and is not associated 

with the regular  date type. Timestamp  values are a 64-bit value, where first 

32 bits are time, t (seconds since the Unix epoch), and next 32 bits are an 

incrementing   ordinal  for operations  within  a given second. 



64-bit 

integer 

 
Number without  a decimal point save and return  as 64-bit integer. 

 
Min key 

 

MinKey compare  less than  all other  possible BSON element  values, 

respectively,  and exist primarily  for internal  use. 

 
Max key 

 

MaxKey compares  greater  than  all other  possible BSON element  values, 

respectively,  and exist primarily  for internal  use. 

 

Rich Queries  and  Other DB  Functionalities MongoDB offers  a  rich  set  of 

features and functionality  compared to those offered in simple key-value stores. 

They  can  be  comparable  to  those  offered  by  any  RDBMS.  MongoDB has  a 

complete  query language, highly-functional  secondary  indexes  (including text 

search and geospatial), and a powerful aggregation framework for data analysis. 

MongoDBprovides functionalities  and features for more diverse data types than 

a relational DB, and at scale. Table 3.11 gives a comparison of features. 
 

Table 3.11  Comparison of features MongoDBwith respect to RDBMS 
 

 

Features RDBMS MongoDB 

Rich Data Model No Yes 

 

Dynamic Schema No Yes 

Typed Data Yes Yes 

Data Locality No Yes 

Field Updates Yes Yes 

 

Complex Transactions Yes No 

Auditing Yes Yes 

Horizontal  Scaling No Yes 

 

The ability to derive a document-based  data model is also a distinct advantage 

of MongoDB. The method  of storing  data  in the  form of BSON  (Binary JSON) 

helps  to  store  the  data  in a very  rich  way while  can hold  arrays  and  other 

documents.



MongDB Query Language  and Database  Commands  Table 3.12 gives MongoDB 

commands for querying the DBs. 
 

Table 3.12  MongoDBquerying commands 
 

 

Command 
 

Functionality 

 
Mongo 

 

Starts MongoDB; (*mongo is MongoDB client).  The default 

database  in MongoDB is test. 

 

db.help() 
 

Runs help. This displays the list of all the commands. 

 

db.stats() 
 

Gets statistics  about MongoDB server. 

 

Use <database name) 
 

Creates database 

 

Db 
 

Outputs the names of existing database,  if created  earlier 

Dbs 
 

Gets list of all the databases 

db.dropDatabase  () 
 

Drops a database 

 

db .database 

name.insert() 

 
Creates a collection using insert  () 

db.sdatabase name>. 

find() 

 
Views all documents  in a collection 

db.edatabase 

name=.update  () 

 
Updates a document 

db.sdatabase 
name> .remove () 

 
Deletes a document 

Following explains the sample usages of the commands: 
 

To Create database Command use    -  use command  creates a database;  For 

example,  Command  use      lego creates   a  database   named leqo.   (A  sample 

database   is  created   to   demonstrate    subsequent   queries.   The  Lego  is  an 

international  toy brand). Default database in MongoDBis test. 
 

To see the existence of databaseCommand db  -  db command shows that  lego 

database is created. 
 

To get list of all the databasesCommand show    dbs   -  This command  shows



the  names  of all the  databases. 
 

To drop database Command db.  dropDatabase     ()  -  This command  drops  a 

database. Run use lego command before the db.  dropDatabase     () command to 

drop  lego Database. If no database  is selected, the  default database  test  will be 

dropped. 
 

To create a collection Command insert       () -To  create a collection, the easiest 

way is to  insert  a record  (a document  consisting  of keys (Field names)  and 

Values) into a collection. A new collection will be created, if the collection does 

not  exist. The following statements   demonstrate   the  creation  of a collection 

with three fields (ProductCategory, Productld and ProductName) in the lego: 

db.  lego.    insert 
 
 

 
"'ProductCategory" :     11,Ai:rplane'', 

~Product!dn: 10725, 

HProductName.,..: ,..,Lost TempleP 

 
 
 

To add array in a collection Command insert()          - Insert  command can also 

be used to insert multiple documents into a collection at one time.



db.   lego.     insert 

( 

 

 
1'ProductCatego:ry"       :       1'Airplanep, 

''Product  Id"":  1072 5, 

"'ProductName ,.  :     "Loo t   Temple'' 

L 
{ 

.,,ProductCategory"      :       ,,,Airplane1', 

.,,ProductidP:      31047, 

... ProductName  ...  :      ''Propeller       Plane"" 

L 
{ 

~ProductCatego:ry":        ~Airplane   ... 1 

1'Productld":          31049, 
1'Produc   tN ame" :      "'Twin Spin    He1 i copt  e rP 

 
 
 

 
To  view    all    documents    in    a    collection   Command    db.  <database 

name>.    find    () - Find command is equivalent  to select query of RDBMS. Thus, 

"select  *   from      lego"     can be written  as db.  lego.     find    ()   in MongoDB. 

MongoDBcreated unique objecteld ("_id") on its own. This is the primary key of 

the  collection.  Command db.  <database        name>.    find()       .pretty()         gives a 

prettier  look. 
 

To update  a document Command db.  <database        name>.   update      () - Update 

command is used to change the field value. By default, multi attribute is false. If 

{multi: true} is not written then it will update only the first document. 
 

To delete  a document Command db.  <database        name>.   remove    () - Remove 

command is   used   to   delete   the   document.   The   query   db.  <database 

name>.   remove    (   ( "ProdctID":       10725))       removes    the    document    whose 

productld  is 10725. 
 
 

Self-Assessment Exercise linked  to LO 3.5 
 

1.     Compare MongoDBand RDBMS? 
 

2.     Give example that demonstrates  the uses of various data types of MongoDB.



3.      List the functions ofMongoDB query language and database commands. 
 

4. How will you consider  MongoDB as complete  query  language,  which 

imbibes highly-functional  secondary indices (including text search and 

geospatial),  and provides  a powerful  aggregation  framework  for data 

analysis? 
 
 
 

 

3.7 ! CASSANDRA  DATABASES 

Cassandra was developed by Facebook and released by 

Apache.  Cassandra  was  named  after  Trojan 

mythological prophet Cassandra, who had classical 

allusions  to  a  curse  on  oracle.  Later  on,  IBM also 

released   the   enhancement    of  Cassandra,   as  open 

 

 
Cassandra  dratabases, 
d~ta-mod~I a ndl C!li~n1ts, 
and   1i1IT1te,;ira,fli,on     tith1 t!Tite 
IHadoop

source  version.  The open  source  version  includes  an IBM Data Engine which 

processes  No  SQL   data  store.  The  engine  has  improved  throughput   when 

workload of read-operations  is intensive. 
 

Cassandra  is  basically  a  column  family  database  that   stores  and  handles 

massive   data   of   any   format   including   structured,    semi-structured    and 

unstructured  data. 
 

Apache Cassandra DBMS  contains  a set of programs.  They create and manage 

databases. Cassandra provides functions  (commands) for querying the data and 

accessing  the  required  information.  Functions  do the  viewing, querying  and 

changing   (update,   insert   or   append   or   delete),   visualizing   and   perform 

transactions  on the DB. 
 

Apache Cassandra has the distributed  design of Dynamo. Cassandra is written 

in Java. Big organizations,  such  as Facebook, IBM, Twitter,  Cisco, Rackspace, 

eBay, Twitter and Netflix have adopted Cassandra. 
 

Characteristics   of  Cassandra  are   (i)  open  source,   (ii)  scalable  (iii)  non• 

relational  (v) NoSQL (iv) Distributed (vi) column based, (vii) decentralized,  (viii) 

fault tolerant  and (ix) tuneable consistency. 
 

Features of Cassandra are as follows:



1. Maximizes  the  number   of  writes  -  writes  are  not  very  costly  (time 

consuming) 
 

2.   Maximizes data duplication 
 

3.    Does not support Joins, group by, OR clause and aggregations 
 

4. Uses Classes consisting of ordered  keys and semi-structured   data storage 

systems 

5.   Is fast and easily scalable with write operations  spread across the cluster. 

The cluster  does not have a master-node,  so any read  and write  can be 

handled by any node in the cluster. 

6. Is a distributed  DBMS  designed for handling  a high volume of structured 

data across multiple cloud servers 

7. Has peer-to-peer  distribution  in the system across its nodes, and the data 

is distributed  among all the nodes in a cluster (Section 3.5.1.4). 

Data Replication Cassandra stores data on multiple nodes (data replication) and 

thus  has no single point  of failure, and ensures  availability, a requirement   in 

CAP  theorem.  Data replication  uses a replication  strategy.  Replication  factor 

determines  the  total  number  of replicas  placed on different  nodes. Cassandra 

returns  the most recent  value of the  data to the client. If it has detected  that 

some of the  nodes  responded  with  a stale  value,  Cassandra  performs  a read 

repair in the background to update the stale values. 
 

Components at Cassandra Table 3.13  gives the  components  at Cassandra and 

their description. 
 

Table 3.13  Components of cassandra 
 

 

Component 
 

Description 

 

Node 
 

Place where  data stores for processing 

 

Data Center 
 

Collection of many related  nodes 

Cluster 
 

Collection of many data centers 

 

Commit log 
 

Used for crash recovery;  each write operation  written  to commit log 



 

Mem-table Memory resident  data structure,  after data written  in commit log, data 

write in mem-table  temporarily 

 
SST able 

 

When mem-table  reaches  a certain  threshold,  data flush into an SSTable 

disk file 

 
Bloom filter 

 

Fast and memory-efficient,  probabilistic-data   structure  to find whether  an 

element  is present  in a set, Bloom filters are accessed after every query. 

Scalability  Cassandra  provides  linear  scalability  which  increases  the 

throughput  and decreases the response time on increase in the number of nodes 

at cluster. 
 

Transaction Support Supports   ACID    properties    (Atomicity,   Consistency, 

Isolation, and Durability). 
 

Replication Option Specifies any of the two replica placement  strategy  names. 

The strategy  names  are  Simple Strategy  or  Network  Topology Strategy.  The 

replica placement strategies are: 
 

1.   Simple Strategy: Specifies simply a replication  factor for the cluster. 
 

2.  Network Topology Strategy: Allows setting the replication  factor for each 

data center independently. 
 

Data Types Table 3.14  gives the data types built into Cassandra, their usage and 

descriptions 
 

Table 3.14  Data types built into Cassandra, their usage and description 
 

 

CQL 

Type 

 
Description 

ascii US-ASCII  character  string 

bigint 64-bit signed long integer 

blob Arbitrary  bytes (no validation),  BLOB expressed  in hexadecimal 

boolean True or false 

counter Distributed  counter  value ( 64-bit long) 

decimal Variable-precision   decimal integer,  float 
 

double 
 

64-bit  IEEE-754 double precession floating point integer,  float 



 

float 32-bit IEEE-754 single precession floating point integer,  float 

 
inet 

 

IP address  string in 1Pv4 or 1Pv6 format, used by the python-cql  driver  and 

CQL native protocols 

 

int 
 

32-bit signed integer 

 

list 
 

A collection of one or more ordered  elements 

 

map 
 

AJSON-style array of literals:  {literal: literal, literal: literal  ... } 

 

set 
 

A collection of one or more elements 

 

text 
 

UTF-8  encoded string 

 

timestamp 
 

Date plus time, encoded as 8 bytes since epoch integers,  strings 

 

varchar 
 

UTF-8  encoded string 

 

varint 
 

Arbitrary-precision   integer 

 

Cassadra Data Model  Cassandra  Data model  is based  on  Google's BigTable 

(Section 3.3.3.2).   Each value maps with two strings  (row key, column key) and 

timestamp,  similar to HBase (Example 2.4). The database can be considered  as a 

sparse  distributed  multi-dimensional  sorted  map. Google file system splits the 

table  into  multiple  tablets  (segments  of the  table)  along  a row. Each tablet, 

called  METAl tablet,  maximum  size is 200  MB, above which  a  compression 

algorithm   used.  MET AO   is  the   master-server.    Querying  by  METAO   server 

retrieves   a  METAl  tablet.   During  execution   of  the  application,   caching  of 

locations of tablets reduces the number of queries. 
 

Cassandra Data Model consists of four main components:  (i) Cluster: Made up 

of multiple  nodes and keyspaces, (ii) Keyspace: a namespace  to group multiple 

column families, especially one per partition, 

(iii) Column: consists of a column name, value and timestamp  and (iv) Column• 

family: multiple  columns  with  row  key  reference.   Cassandra  does  keyspace 

management  using partitioning  of keys into ranges and assigning different key• 

ranges to specific nodes. 
 

Following  Commands   prints    a   description    (typically   a   series   of   DDL 

statements)  of a schema element or the cluster:



DESCRIBE  CLUSTER 

DESCRIBE  SCHEMA 

DESCRIBE  KEYSPACES 

DESCRIBE   KEYSPACE   <keyspace  name> 
 

DESCRIBE TABLES 
 

DESCRIBE TABLE <table name> 

DESCRIBE INDEX <index name> 

DESCRIBE MATERIALIZED VIEW <view name> 

DESCRIBE TYPES 

DESCRIBE TYPE <type name> 

DESCRIBE FUNCTIONS 

DESCRIBE FUNCTION <function name> 

DESCRIBE AGGREGATES 

DESCRIBE AGGREGATE <aggregate function name> 
 

Consistency Command CONSISTENCY shows the current  consistency level. 

CONSISTENCY <LEVEL> sets a new consistency level. Valid consistency levels are 

ANY,    ONE,    TWO,    THREE,QUORUM, LOCAL_ONE,  LOCAL_QUORUM, 

EACH_QUORUM,  SERIAL AND LOCAL_SERIAL. Following are their meanings: 

1. ALL:   Highly  consistent.   A   write   must   be  written   to  commitlog  and 

memtable on all replica nodes in the cluster. 

2. EACH_QUORUM:  A write must be written  to commitlog and memtable  on 

quorum of replica nodes in all data centers. 

3. LOCAL_QUORUM: A write must be written  to commitlog and memtable on 

quorum of replica nodes in the same center. 

4. ONE: A write must be written  to commitlog and memtable  of at least one 

replica node. 

5. TWO, THREE:  Same  as  One but  at  least  two  and  three  replica  nodes, 

respectively.



6.  LOCAL_ONE: A write  must be written  for at least one replica node in the 

local data center. 

7.   ANY: A write must be written to at least one node. 
 

8.  SERIAL: Linearizable consistency to prevent unconditional  update. 

9.   LOCAL_SERIAL: Same as Serial but restricted to the local data center. 

Keyspaces  A keyspace  (or key space) in a NoSQL data  store  is an object that 

contains all column families of a design as a bundle. Keyspace is the outermost 

grouping  of the  data  in  the  data  store.  It  is similar  to  relational   database. 

Generally, there  is one keyspace  per  application.  Keyspace in Cassandra  is a 

namespace  that   defines  data  replication   on  nodes.  A cluster   contains   one 

keyspace per node. 
 

Create  Keyspace Command  CREATE  KEYSPACE <Keyspace Name> WITH 

replication          =   {'class':         '<Strategy  name>', 'replication   factor':  '<No. of 

replicas>'}AND durable_    writes=     '<TRUE/FALSE>'; 

CREATE KEY sPACE statement  has attributes   replication  with  option  class 

and replication factor, and durable_write. 
 

Default  value  of durable_writes  properties   of  a  table  is  set  to  true.  That 

commands  the  Cassandra  to  use  Commit  Log for  updates   on  the  current 

Keyspace true or false. The option is not compulsory. 

1.   ALTER KEYSPACE command changes (alter) properties,  such as the number 

of  replicas   and  the   durable_writes   of  a  keyspace:  ALTER   KEYSPACE 

<Keyspace Name>   WITH  replication = ['class': '<Strategy name>', 

'replication factor': '<No. of replicas>'};     

2.   DESCRIBE KEYSPACE command displays the existing keyspaces. 
 

3.  DROP KEYSPACE command drops a keyspace: 
 

4.  Re-executing the drop command to drop the same keyspace will result  in 

configuration exception. 

5.   Use KEYSPACE command connects the client session with a keyspace. 
 

Cassandra Query Language  (CQL) Table 3.15 gives the CQL commands and their 

functionalities.



Table 3.15  CQL commands and their functionalities 
 

 

Command 
 

Functionality 

 
CQLSH 

 

A command  line  shell   for  interacting   with   Cassandra  through 

CQL 

 

HELP 
 

Runs  help.  This  displays   the  list  of all the  commands 

 

CONSISTENCY 
 

Shows  the  current    consistency  level 

 

EXIT 
 

Terminate  the  CQL shell 

 

SHOW HOST 
 

Displays  the  host 

 

SHOW VERSION 
 

Displays the    details    of   current     cqlsh    session    such   as   host, 

Cassandra version,  or data  type  assumptions 

 

CREATE          KEYSPACE 

<Keyspace  Name> 

 
Creates  keyspace with  a name 

 

DESCRIBE       KEYSPACE 

<Keyspace  Name> 

 
Displays  the  keyspace with  a name 

 

ALTER             KEYSPACE 

<Keyspace  Name> 

 
Modifies  keyspace with  a name 

 

DROP                KEYSPACE 

=Keyspace  Name> 

 
Deletes  keyspace with  a name 

CREATE       (TABLE       I 
COLUMNFAMILY) 

 
Creates   a table  or column   family 

 

COLLECTIONS 
 

Lists the  Collections 

 

The following example provides the sample usages of the commands. 
 

 

EXAMPLE3.13 

 
Give the examples of usages of various CQL commands. 

 

SOLUTION 
 

(1) Create Table Command: CREATE TABLE command creates a table in the 

current  keyspace:



CREATE (TABLE        COLUMNFAMILY)    <tablename>
 

('<column-definition>',       '<column-definition>') 

(WITH <option> AND <option>); 

Primary key is a column  used  to  uniquely  identify  a row. Therefore, 

defining a primary  key is compulsory while creating  a table. A primary 

key is made of one or more columns of a table. 
 

Example: Create a table Productinfo in the keyspace lego, with primary key 

field Productld. 
 

Use lego; 
 

Create table  Productinfo(Productid int  primary 

key, ProductType text); 

(2) Describe Tables Command: DESCRIBE TABLE Command displays all the 

tables in the current  keyspace: 
 

DESCRIBE TABLE <TABLE NAME>; 
 

Example:  Display the details of a table Productinfo: 
 

DESCRIBE TABLE Productinfo; 
 

(3) Alter Tables Command: 
 

ALTER TABLE Command ALTER (TABLE   COLUMNFAMILY) 

<tablename> (ADD I                DROP) <column name> 
 

The above command adds a column in the table or to delete a column of 

the table: 

Example: Add a column dateOfManufacturing in the table Productinfo: 
 

ALTER TABLE  Product Info   add   dateOfManufacturing 

times tamp; 

* timestamp  is a datatype used for date fields. 
 

(4) Cassandra  CURD  Operations:  (CURD-Create, Update,  Read and  Delete 

data into tables) : 

(a)  Insert Command:



INSERT  command  creates  data  in a table: 
 

INSERT INTO <tablename> ( <columnl name>, <column2 

name> .... )        VALUES  (<valuel>, <value2> .... )       USING 

<option> 
 

(b)  Update Command: 
 

UPDATE command updates  data in a table. The following keywords 

are used while updating data in a table: 
 

Where - This clause is used to select the row to be updated. 

Set - Set the value using this keyword. 

Must - Includes all the columns composing the primary key. 
 

If a given row is unavailable, then UPDATE creates a new row. 
 

UPDATE <tablename> SET <column name>=  <new value> 

<column name>=  <value> .... WHERE <condition> 
 

[A WHERE  clause can be used only on the columns that  are a part  of 

primary key or have a secondary index on them.] 

(c)  Select Command 
 

SELECT  command  reads  the  data  from  a table.  The command  can 

read a whole table, a single column, or a particular  cell: 
 

SELECT <column name(s)> FROM <Table Name> 
 

To select all records: 
 

SELECT*  FROM <Table Name> 
 

To select records that fulfils required  condition: 
 

SELECT  <columnl,  column2, .. >  FROM  <Table  Name> 

where <Condition> 
 

Example: Select Product Type, Product Id, Product Name, and Product 

Cost of Product whose Productld is 31047: 
 

SELECT Product Type, Product Id,  Product Name, and 

Product Cost



from Productinfo where Productid   31047; 
 

(d)  Delete Command 
 

DELETE command deletes data from a table: 
 

DELETE FROM <identifier> WHERE <condition>; 

Example: Delete row from a table where Product id is 31047: 

DELETE FROM Productinfo WHERE Productid =  31047; 

(5) Creating a Table with List 
 

CREATE Table command is used for creating a table with a list. 
 

The  following  query  creates  a  table  with  two  columns,  one  is  the 

primary key and the other has multiple items (List): 
 

CREATE TABLE  data  (<column  name>,  <data  type> 

PRIMARY KEY, <column name list<data type>); 

Example :  Create a sample table Contactlnfo with three columns: Sno, name 

and Emailid. To store multiple Email Ids, use a list: 
 

create  table  Contactinfo   (Sno int  Primary  key, 

Name text, emailid list <text>); 

(6)  Insert Command for inserting data into a list 
 

INSERT Command also inserts  data  into a list. To insert  data  into the 

elements  in a list, enter  all the  values  separated  by a comma within 

square braces []: 
 

INSERT  INTO  <table  name>   (columnl,  column2,) 

VALUES  (valuel, value2,  [list valuel, list value2, 

... J   ) 
 

Example: Insert data of three persons into the Contactlnfo Table: 

Insert  into  Contactinfo 

values 

(Sno, Name,  Email Id)

(  1, 
 

'rahul@yahoo.com']); 

 

'Rahul', [  'rahul@gmail.com',

mailto:rahul@yahoo.com
mailto:rahul@gmail.com


Insert  into  Contactinfo (Sno, Name,  Email Id)
 

values      (1,         'Geetika', [  'geetika@gmail.com', 

'geetika@yahoo.com']); 

Insert  into  Contactinfo (Sno, Name,  Email Id)
 

values      (1,         'Deepika', ['deepika@gmail.com', 

'deepika@yahoo.com']); 
 

(7) Update Command for updating Data into a List 
 

UPDATE command also updates data into a list: 

UPDATE <table Name> SET <New data>  where

<condition>. 
 

Example :  Add one more email Id to the emailld list in Contactlnfo table : 

UPDATE  Contactinfo  SET  emailid 

['preeti@ymail.com'] where SNo=l. 

emailid  +

 

 

CassandraClient A  relational   database  client  connects  to  DB   server  using 

drivers. Java JDBC driver API enables storing and retrieving  data. Cassandra has 

peer-to-peer  distribution  architecture.  Several instances require the clients. The 

driver  enables the use of different  languages for connecting  to DBs.  Cassandra 

does not include the drivers. 
 

A  client-generation   layer  enables  the  database  interactions.   AVRO  project 

provides  the  client  generation   layer.  Third  party  sources  provide  Cassandra 

clients in Java, Ruby, C#, Python, Perl, PHP, C++, Scala and other  languages. The 

Cassandra client can be included in the applications. 
 

CassandraHadoop SupportCassandra 2.1 has Hadoop 2 support. The setup and 

configuration  overlays  a Hadoop cluster  on the  Cassandra  nodes. A  server  is 

configured for the NameNode andJobTracker.  Each Cassandra node then installs 

the TaskTracker and Data Node. 
 

The nodes in the  Cassandra cluster  can read  data from the  data in the  Data 

Node  in  HDFS   as  well  as  from  Cassandra.  A  client  application   sends  the 

MapReduce input  to Job Tracker/Resource   Manager.  RM/JobTracker  sends  a 

MapReduce request of job to the Task Trackers/Node  Managers and clients such

mailto:geetika@gmail.com
mailto:geetika@yahoo.com
mailto:deepika@gmail.com
mailto:deepika@yahoo.com
mailto:preeti@ymail.com


as MapReduce  and  Pig. The Reducer  output   writes  to Cassandra.  The client  gets 

the  results  from  Cassandra. 
 
 

Self-Assessment     Exercise   linked   to LO  3.6 
 

1.   List the  differences  between  Cassandra,  Google BigTable and  HBase data 

models. 

2.   Compare Cassandra and RDBMS. 
 

3.   List the data types used in Cassandra. 
 

4.   How are the Cassandra query language and database commands used? 
 

5.   List the components  in Casandra and their uses. 
 

6.   Write  the  syntax  to  create  keyspace  in Cassandra.  State  when  the  ALTER 

keyspace is used. 
 

7.   How are the Cassandra CQL collections used? 
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LO 3.1 
 
 

• A new category of data stores is NoSQL (Not Only SQL) databases. NoSQL is 

an altogether  new approach of thinking about data stores. 
 

• NoSQL  data model offers relaxation  in one or more of the ACID properties, 

instead follows CAP theorem  and BASE.



•      NoSQL   DBs  possess greater  flexibility for data manipulation  (compared to 

SQL). 
 

• NoSQL   data does not need fixed schema. The data model may drop support 

to Joins in Big Data environment. 
 

LO 3.2 
 
 

•      Key-value pairs data store can be used as Big Data NoSQL database . 
 

•      Key-value pair is a simplest way to implement  a schema-less  data  store . 

The pairs  can  store  any  data  type  in the  value  field. The store  uses  a 

primary-key  access; therefore,  the  store  can be easily scaled up to large 

data, and data retrieves fast using keys as the indices. 
 

• NoSQL   DB  also stores the hierarchical  information  in a single unit, called 

document store. 'Document' stores unstructured   data. Data stores in nested 

hierarchies. Data  have   no   object-relational    layer   for   the   mapping. 

Document  data  store  can  be  at  multiple  NameNodes and  thus  enables 

higher resources availability. 
 

• Column-family data stores are similar to sparse matrix  data. Columns are 

logically  grouped   into  column  families.  Column  families  can  logically 

group  as super  column.  Data stores  in memory  are  column-based  than 

row-based. This facilitates faster OLAP processing. The table can be 

partitioned  into row groups  (or stripes).  Data stores  can be in columnar 

data RC, ORC and Parquet formats. 

•      An object data store consists of functions for supporting using APis. 
 

• Graph database  with interconnected   data nodes provides  one of the best 

database systems. They enable fast network searches. 
 

•     A   selected  architecture   needs  variations  due  to  business  requirements . 

Business requirements   are  easy to  use and  have  long-term  competitive 

advantage. 
 

LO 3.3



• Big  Data   solution    emphasizes    on   scalable   storage    of  a  much   higher 

magnitude  of data  (of terabytes    and  petabytes)   by  dropping   support   for 

database Joins,   storing    data   differently    and   using   several   distributed 

servers  (data  nodes)  together   as a cluster. 

• Big Data NoSQL  solution  provides  high  scalability,   supports   replication,   no 

schema  or no fixed  data  model,  support   integrated    caching:  not  inflexible 

like SQL/RDBMS   DBs and have flexibility  in following  ACID  rules. 
 

LO 3.4 
 
 

• SN   architecture   features  are  independence,  self-healing  and no network 

contention.  Each node data functions as a shard of the DB. 

• Distribution  models are  (i) single server,  (ii) sharding,  (iii) master-slave, 

(iv) multi-master  (v) peer-to-peer,  and (vi) hash ring based. 
 

LO 3.5 
 
 

• MongoDBis (i) non-relational,  (ii) distributed,  (iii) open source, (iv) NoSQL, 

(v) document-based, 

(vi) Cross-platform,  (vii) scalable,  (viii) flexible,  (ix) indexed,  (x) deep 

querying ability, (xi) scalable multi-master  data store with no single points 

of failure and (xii) provisions the data modeling flexibility. 

• Querying, indexing and real-time aggregation functions access and analyze 

the  data  efficiently,  and  conversion/mapping    of application  objects  to 

database objects is not needed. 
 

LO 3.6 
 
 

•      Cassandra is (i) open source, (ii) scalable (iii) non-relational   (iv) peer-to• 

peer distributed  system 

(v) NoSQL  (vi) column-based,  (vii) decentralized,  (viii) fault tolerant  and 

(ix) tunable consistency.



• Cassandra Data model is based on Google's BigTable. Each value maps with 

two strings (row key, column key) and timestamp,  similar to HBase. 
 

• Cassandra data model consists of four main components:  (i) Cluster: made 

up of multiple  nodes and keyspaces, (ii) Keyspace: a namespace  to group 

multiple column  families,  especially  one  per   partition,   (iii)  Column: 

consists of a column name, value and timestamp  and (iv) Column-family: 

multiple columns with row key reference. 
 

I   Objective Type Questions   1111 
Select one correct-answeroption for each questionsbelow: 

 

3.1 Big Data NoSQL data store (i) transactions  show ACID properties,  (ii) used 

in distributed  environment,  (iii) NoSQL DBs possess increasing  flexibility 

for data manipulation,  (iv) follows a fixed data storage schema (v) use the 

concept ofJoins, and (vi) must follow CAP theorem. 

(a)  ii and iii 
 

(b)  all 
 

(c)  ii, iii and vi 
 

(d)  iii and iv 
 

3.2 High scalability, flexibility and performance  and low complexity  are the 

characteristics  of 

(i)  key-value  pair,   (ii)  document   (iii)  column-family,   and   (iv)  graph 

databases. 
 

(a)  only i and ii 
 

(b)  only i 
 

(c)  only ii 
 

(d)  iii and iv 
 

3.3 The advantages  of a key-value store are: (i) can store any data type in the 

value field, (ii) stores  the  information  as a BLOB  of data  (such as, text,



hypertext,  images, video and audio), but does not return  the  same BLOB 

when data is retrieved,  (iii) scalability, (iv) reliability,  (v) portability,  and 

(vi) low operational  cost. 
 

(a)  all except i 
 

(b)  all 
 

(c)   all except ii 
 

(d)  ii to vi 
 

3.4 An object data store consists of functions for supporting  (i) scalability, (ii) 

indexing,  (iii) large  collections,  (iv) querying  language,  processing  and 

optimization  (s), (v) transactions,  (vi) data replication  for high availability, 

data distribution  model, data integration  (such as with relational  database, 

XML, custom   code),   (vii)  schema   evolution,   (viii)  persistency,    (ix) 

persistent  object life cycle, (x) adding modules,  (xi) locking and caching 

strategy, and (xii) object store may support versioning for collaboration. 

(a)  i to v, ix to xiii 
 

(b)  all 
 

(c)   all except viii, ix ad xii 
 

(d)   all except iii, vi and viii 
 

3.5 Graph database with interconnected  data nodes (i) provides one of the best 

data  store  system,  (ii) provides  one  of the  highly  complex  data  store 

system,  (iii) enables  fast network  searches,  (iv) uses linked  datasets,  (v) 

used  in social media  data,  (vi) consists  of small data  size records  with 

complex interactions    between   graph    nodes   but   not   between   the 

hypergraph  nodes 

(vii) uses graph with nodes and edges connecting  each other through  the 

relations, associations and properties,  and (viii) BASE properties. 

(a)  i, iii, iv and viii 

(b)  ii to v 
 

(c)  ii to vi



( d)   all except  vi 
 

3.6   Selecting  a NoSQL  data  architectural   pattern   can  be  as follows: (i) 
performing  a use-case driven  difficulty analysis for all architectural 
patterns.  Assign the difficulties level, such as low, medium or high in 
the following processes (iii) ingestion, (iv) validation of structure  and 
its fields, 
(v) updating  process  using  near  real-time  approach,  (vi) searching 
process  using  partial  text  or  by  changing  the  sorting  order,  (vii) 
exporting  the  reports  or application  results  in HTML,  XML or JSON, 
and estimating  total efforts for each architecture  for all the business 
requirements. 

(a)  all 
 

(b)  all except v and vi 
 

(c)  i to v 
 

(d)   all except ii 
 

3.7 Big Data  solution   emphasizes   on  scalable  storage   of  a  much  higher 

magnitude  of data (of terabytes  and petabytes)  by (i) supporting  database 

Joins,  (ii) storing  data  differently  and  using  several  distributed   servers 

(Data Nodes) together  as a cluster,  (iii) must perform  transactions   using 

ACID  properties,   (iv) implementing  CAP  theorem  without  compromising 

the consistency factor) to make transactions  faster and easier to scale, and 

(v) must be partitioning  tolerant. 

(a)  ii and v 
 

(b)  all except i, iii 
 

(c)  all except iii and iv 
 

(d)  all 
 

3.8 Big Data NoSQL solution: (i) have high and easily scalability, (ii) supports 

replication,  {iii) use multiple copies of data store across multiple nodes of 

the cluster,   (iii)  maintains    NoSQL Servers,   (iv)  NoSQL data   store 

implementation is easy and typically  uses cheap  servers  to manage  the 

exploding data and transaction  while RDBMS databases are expensive and 

it uses big servers and storage systems, and (v) storing and processing data



cost  per  gigabyte   in the  case  of NoSQL can  be many  times  more  than  the 

cost of RDBMS. 

(a)   i, ii and v 
 

(b)  all except i, iii 
 

(c)  all except iii and iv 
 

(d)  i to iv 
 

3.9 Big Data NoSQL-solutionshould be (i) schema-less or not fixed data model, 

(ii) without  any predefined  schema, {iii) the format  or data model can be 

changed any time, (iv) without  application  disruption  and (v) with change 

in management,  (v) support  integrated  caching, and (vi) not inflexible like 

SQL/RDBMS DBs. 

(a)  i to v 
 

(b)  all 
 

(c)   all except iii 
 

(d)  i to iv 
 

3.10  A Big Data solution does the following: (i) unevenly  distributes  data on a 

cluster, (ii) distributes  using token rings, {iii) uses replication  and vertical 

distribution  of the client read requests,  (iv) creates backup copies of data 

in  batches,   (v)   moves  queries  to  the  data,  and  data  to  queries,  (vi) 

distributes  queries to multiple nodes, and (vii) query execution takes place 

separately from query evaluation. 

(a)  ii to iv 
 

(b)  vi and vii 
 

(c)  none 
 

(d)  iv to vii 
 

3.11  MongoDBis (i) non-relational,  (ii) distributed,  (iii) open source, (iv) NoSQL, 

(v) document-based,  (vi) cross-platform,  (vii) scalable, (viii) data modeling 

inflexibility, (ix) indexed, and 

(x) scalable multi-master  data store with no single point of failure.



(a)   all except  viii 
 

(b)   all except  v and vi 
 

(c)   i to vi 
 

(d)   i to vii 
 

3.12  MongoDBfeatures are: (i) document model is well defined, (ii) structure  of 

document is clear, stores documents  on disk in the (iii) BSON serialization 

format, (iv) JSON format, and 

(v) querying,  indexing,  real-time  aggregation  and  allows accessing  and 

analyzing the data efficiently. 

(a)  all 
 

(b)  i, iii and iv 

(c)  all except iv 

(d)   iii, iv and v 

3.13  Cassandra data model is based on (i) Google's BigTable. Each value maps 

with two strings  (row key, column key) and timestamp,  similar to HBase, 

(ii) graph database (iii) distributed 

(iv) NoSQL (v) column-based,  (vi) centralized,  (vii) fault tolerant  and (vii) 

tuneable consistency. 

(a)  all 

(b)  i, iii and iv 
 

(c)   all except i 
 

(d)   all except ii and vi 
 

3.14  Cassandra data model consists of four main components:  (i) Cluster: made 

up of multiple  nodes and keyspaces, (ii) Keyspace: a namespace  to group 

multiple  column  families,  especially  one  per   partition,   (iii)  Column: 

consists  of  a  column  name,  value  and  timestamp,   (iv) Column-family: 

multiple columns  with  row  key  reference,   (v)  provides  a  prompt   in 

Cassandra query language shell (CQLSh) that  allows keying and execution 

of commands in Cassandra Query Language (CQL).



(a)   i to iii 
 

(b)  ii and iii 
 

(c)  all 
 

(d)  i, ii and iv 
 

3.15  Cassandra features  are  as follows: (i) maximizes the  number  of writes  - 

writes are   not   very   costly   (time   consuming),   (ii)  maximizes   data 

duplication, (iii)  does  not   support   Joins,   group   by,  OR  clause   and 

aggregations,  (iv)  uses  Classes  consisting   of  ordered   keys  and  semi• 

structured  data storage  systems, (v) is fast and easily scalable with write 

operations  spread across the cluster,  and (vi) the cluster  does not have a 

master  node, so any read  and write  can be handled  by any node  in the 

cluster. 

(a)  all except i and iii 
 

(b)  all 
 

(c)  all except iv 
 

(d)   all except iii and vi 
 

II  Review Questions        11:1 
3.1 When should data store be NoSQL instead  of relational  database? Why do 

Big Data analytics use NoSQL data stores? (LO 3.1) 
 

3.2 How does NoSQL data store possess increasing  flexibility in adding data? 

(LO 3.1) 
 

3.3 How does  CAP  theorem   apply  in  distributed   data  models?  How is  it 

applicable  to  NoSQL systems?  What  is  eventual  consistency  in  NoSQL 

stores? (LO 3.1) 

3.4 Compare NoSQL databases with SQL databases in terms of the data model, 

schema, type  of data  architecture   patterns,  scalability, use of SQL Joins, 

data size preferences,  consistency, ACID properties  and top IT companies 

support. (LO 3.1)



3.5 Describe the pros and cons of (i) key-value data store, (ii) document  data 

store, (iii) object data store, and (iii) graph database. (LO 3.2) 

3.6 Why should the  column-family data store be used for the  student  grade• 

sheets of a semester  examinations  showing semester  subject grade-points 

(SGPs)  (between  1  and  10)  and  semester  grade  point  averages  (SGPAs)? 

What does sparse data mean in student  grade-sheets  columnar  data. (LO 

3.2) 
 

3.7 Describe the characteristics  of column-family data stores. How do they suit 

the OLAP operations? How does BigTable store the data? (LO 3.2) 

3.8 Describe the pros and cons of (i) RC, (ii) ORC and (iii) Parquet  file format 

data stores. 

3.9 Describe   graph   database   characteristics.    How  are   BASE    properties 

exhibited in graph DBs? 

(LO 3.2) 
 

3.10  How are replication  and sharding used? Explain how does sharding help in 

minimizing the downtime? (LO 3.3) 

3.11  What are the features  of shared-nothing  (SN) architecture?  How does Big 

Data Store SN system partition?  How does a partition  process the different 

queries? (LO 3.4) 

3.12  Describe four ways for handling Big Data problems. (LO 3.4) 
 

3.13  Explain MongoDB commands for querying the DBs? How can one achieve 

transaction and  locking in MongoDB? How will MongoDB command  be 

used to insert  a document  in a database called 'Toys' and collection called 

'Train'? (LO 3.5) 
 

3.14  Discuss the cluster and failover model in Cassandra. Compare the peer-to• 

peer  model  that  Cassandra  supports  with  the  master-slave  model  that 

other data stores, such as MongoDBsupport. What are the pros and cons of 

each model? (LO 3.5) 
 

3.15  What are the important  design considerations  when using a column-family 

data store like Cassandra? List and explain usages of data types built into



Cassandra.  (LO 3.6) 
 

3.16  List and explain usages of Cassandra Query Language (CQL) commands and 

their  functionalities.  How does the table data store create using CQL? (LO 

3.6) 

 

II   Practice Exercises       1111 
3.1 List ten examples where NoSQL data stores are required.  (LO 3.1) 

 

3.2 Show the increasing  flexibity in NoSQL DB of car company by appending 

customer  post-sales feedbacks, maintenance  and service centre  feedbacks 

about  the  models,  and  the   customer   region-wise  preference   analysis 

reports.  (LO 3.1) 
 

3 .3 A   company   manufactures    and   sells   car   through    large   number   of 

showrooms.  Each car  showroom  records  in main  table  and  transaction 

tables. 

Assume that  each week company records the car sells. The table data are 

as follows: 
 

 

 
 

Showroom 
ID (SR_ID) 

Week 

Number 

(counting 

1.1.2018) 

(wkNum) 

 
Jagaur Land 

Rover Sales 

Number 

(JLRSNum) 

 
Hexa 

Sales 

Number 

(HSNum) 

 
Zest 

Sales 

Number 

(ZSNum) 

 
Nexon 

Sales 

Number 

(NSNum) 

 

Safari 

Storme 

Sales 

Number 

(SSSNum) 

124 1 2 8 4 7 
 

10 

125 1 1 7 9 6 9 

126 1 1 9 4 8 
 

3 

 

Jagaur Land Rover Cost 

Rs. 0LRC) 

 

Hexa Cost Rs. (HC) 
Zest Cost 
Rs. (ZC) 

Nexon Cost 
Rs. (NC) 

Safari Storme Cost 

Rs. (SSC) 

 

20M 
 

0.8M 0.75M 0.7M 
 

lM 

 

Write the  (key/values)  pairs  in a week that  estimate  the  total  sales per



week per showroom. 

(LO 3.2) 
 

3.4 Recall Practice  Exercise  2.6  and  Exercise  3.3.  Consider  a  car  company 

selling Jagaur Land Rover, Hexa,  Zest, Nexon and Safari Storme models of 

Car. Assign IDs as keys in rows 1  to 999999  and cloumn  1, row O  column 

head is 'show room ID' 
 

Assume key (at column-head)  row O   corresponds  to Jagaur  Land Rover 

Weekly Sales (JLRWS)  in cloumn 2. JLRWS values for different  showrooms 

are  in  successive rows from  row  1   to  999999.   The values  save in same 

column  at  successive memory  addresses  starting  from  address  1000000. 

How the  total  showrooms  sales calculation  of JLRWS  will be faster  than 

row format? How will the addresses be assigned? (LO 3.2) 

3.5 Geographic Information  Systems (GIS), like Google Maps stores geographic 

information in  BigTable. How will the  values  be  retrieved   during  the 

following: (a) Identification  of a location using its longitude  and latitude 

coordinates,  (b) Storage of items once, and then  provides multiple  access 

paths (queries) to let one view the data. (LO 3.2) 
 

3.6 Using graph  database  model,  how will the  followings store:  student  id, 

contact  info, admission info, and five courses each in four semesters  and 

SGPs, SGPAs and CGPAs at the end of each semester and division awarded? 

(LO 3.2) 
 

3.7 Recall Example  3.12   which  listed  selection  requirements   for  the  data 

architecture pattern   the  database  of University  students.  Write  logical 

reasons for each. (LO 3 .2) 
 

3.8 Listed selection  requirements   for the  data  architecture   pattern   for the 

ACVMs Chocolate sales data [Table 3.3].  (LO 3.3) 
 

3.9 Give two examples each of usages of single server, sharding,  master-slave 

and peer-to- peer distribution  models. (LO 3.4) 
 

3.10  Make a  table  in  which  left  column  gives  the  outputs  using  MongoDB 

querying commands. Fill the right column of the table giving action on the 

command. (LO 3.5)



3.11  Complete the following table fields for actions directed by Cassandra these 

command. 
 

 

Actions  directed by the  command 

 

Code 

 

Create a Table with Set: 

Table  name:  Contactinfo 

Fields:  Sno (primary  key), Name, set of Contact numbers) 

 

 

Inserting  3 Datasets  in table Contactinfo,  and read them 
 

 

Updating  a set, adding one more contact  number  to person  with Sno = 1, and 

reading  all the data. 

 

Collections: Map Collection 
 

 

Actions  directed by the  command 
 

Code 

 

Create a Table with Map 
 

Table  name:  Contactinfo 
 

Fields:  Sno (primary  key), Name, Map of address) 

 

 

 

 

Inserting   3 Datasets in table Contactinfo,  and read them 
 

 

Updating a Map, adding one more address to person with Sno = 1, and reading  all 

the data. 

 

 

 

(LO 3.6) 

3.12  Recapitulate  Practice  Exercise 3.3.  Consider  car  company  selling ]agaur 

Land Rover, Hexa, Zest, Nexon and Safari Storme  models of cars. How will the 

CQL commands be used to create the table for weekly sales log at multiple 

car company showrooms? 
 

 

 

CCSR- 

id 

 

Date 
(DT) 

 

mmddyy 

 

]a9aur Land 

Rover Weekly 

Sales (JLRWS) 

Hexa 

Weekly 

Sales 

(HWS) 

Zest 

Weekly 

Sales 

(ZWS) 

Nexon 

Weekly 

Sales 

(NWS) 

 

Safari Storme 
 

Weekly Sales 

(SSWS) 

220 121217 
 

28 23 
 

138 148 
 

50 



 

10 121217 49 34 164 115 38 

122 121217 40 141 123 37 88 

16 121217 
 

13 25 127 158 174 

28 121217 
 

12 122 116 128 
 

57 

 

- 
 

- 
 

- 

 

- 
 

- 
 

- 
 

- 

- - 
 

- - - - - 

 

(LO 3.6) 
 

 
 
 

1             https:/ / cwiki.apache.org/ confluence/ display/Hive/LanguageManual 

+ORC#LanguageManualORC-ORCFileFormat 
 

2        http:/ /www.semantikoz.com/blog/ orc-intelligent-big-data-file-format- 

hadoop-hive/ 
 

 
 
 

Note: 
 

o o • Level 1 & Level 2 category 

o • • Level 3 & Level 4 category 
 

• • • Level 5 & Level 6 category

http://www.semantikoz.com/blog/orc-intelligent-big-data-file-format-


Chapter 4 
 
 
 

MapReduce, Hive and Pig 
 
 
 
 
 
 

 

LEARNING OBJECTIVES 
 

 

After studying this chapter,you will be able to: 
 

LO 4 .1 Get understanding  of MapReduce, map tasks using the key-value store, 

grouping  by keys, reduce  tasks  using  combiners,  and  coping with 

node failures 
 

LO 4.2  Get knowledge of composing MapReduce programs  for calculations, 

such as counting, 

summing, and algorithms for relational algebraic operations, 

projections,  unions,  intersections,   natural  joins,  grouping, 

aggregation operations and the matrix multiplication 
 

LO 4 .3  Get understanding   of Hive, architecture,   installation,  comparison  of 

Hive data store with traditional  databases 
 

LO 4.4   Apply HiveQL  for  querying,  sorting,  aggregating,  querying  scripts, 

MapReduce Joins and sub-queries 
 

LO 4.5  Get knowledge of Pig architecture,  Grunt shell commands, data model, 

Pig Latin, developing scripts and extensibility using UDFs. 
 

 
RECALL FROM EARLIER CHAPTERS



Hadoop  stores   and  processes   data  on  large  clusters   (thousands    of nodes)  of 

commodity   hardware.   Hadoop  is a software  framework   for writing  distributed 

applications. Hadoop  processes   Big Data  (multi-terabyte     datasets)   in parallel 

and  in a reliable   and  fault-tolerant     way.  The  Hadoop  distribution    model  is a 

method   in which  both  computations    and the  data  distribute   and  handle  large• 

sized data. 

(Section  2.3) 
 

MapReduce   functions   are   an   integral   part   of  the   Hadoop   physical 

organization.   MapReduce  is  a  programming   model   for  the   distributed 

computing   environment.   Applications  using  MapReduce v2,  process  huge 

amounts of data, in parallel, on a large number of data nodes reliably (Sections 

2.4 and 2.5). 
 

Figure 2.2  showed the main components  and the ecosystem components  of 

Handoop,  such  as AVRO,  Zookeeper, Ambari, HBase, Hive, Pig and  Mahout 

(Section 2.6). 
 

This chapter  focuses on details  of MapReduce, Hive and Pig programming 

and their use in Big Data applications. 
 

 
 

4.1  ! INTRODUCTION 

 

The  data   processing   layer   is  the   application   support   layer,  while  the 

application layer is the data consumption layer in Big-Data architecture  design 

(Figure 1.2). When using HDFS, the Big Data processing layer includes the APis 

of Programs such as MapReduce  and Spark. 
 

The application  support  layer includes HBase which creates  column-family 

data  store  using other  formats  such as key-value pairs  or JSON file (Section 

3.3.3).   HBase stores  and  processes  the  columnar  data  after  translating   into 

MapReduce tasks to run in HDFS. 
 

The  support  layer  also includes  Hive which  creates  SQL-like  tables.  Hive 

stores  and processes  table  data after  translating   it into MapReduce tasks to 

run  in HDFS.  Hive creates  SQL-like  tables  in  Hive shell.  Hive uses  HiveQL 

processes  queries,  ad hoc (unstructured)   queries,  aggregation  functions  and 

summarizing  functions,  such as functions  to compute  maximum,  minimum, 

average of selected or grouped datasets. HiveQL is a restricted  form of SQL.



The  support  layer  also includes  Pig. Pig is a  data-flow  language  and  an 

execution   framework   (Section  2.6.4).   Pig  enables  the  usage  of  relational 

algebra  in HDFS.  MapReduce is the  processing  framework  and YARN  is the 

resource managing framework (Section 2.6.5). 
 

Figure 4.1 shows Big Data architecture  design layers: (i) data storage, (ii) data 

processing and data consumption,  (iii) support layer APis for MapReduce, Hive 

and Pig running  on top of the HDFS Data Store, and (v) application tasks. Pig is 

a dataflow language, which means that it defines a data stream and a series of 

transformations. 
 

Hive and Pig are also part of the ecosystem (Figure 4.1).  Big Data storage and 

application-support   APis can use Hive and Pig for processing  data  at HDFS. 

Processing needs mapping  and finding the  source file for data. File is in the 

distributed  data store. Requirement  is to identify the needed data-block in the 

cluster. Applications and AP Is run at the data nodes stored at the blocks. 
 

The smallest unit of data that  can be stored  or retrieved  from the disk is a 

block. HDFS  deals with the  data stored  in blocks. The Hadoop application  is 

responsible  for distributing  the data blocks across multiple  nodes. The tasks, 

therefore,  first  convert  into  map and reduce  tasks. This requirement   arises 

because the mapping of stored values is very important.  The number  of map 

tasks in an application is handled by the number of blocks of input files. 
 

Suppose stored files have key-value pairs.  Mapping tells us whether  the key 

is in file or in the value store, in a particular  cluster and rack. Reduce task uses 

those values for further  processing such as counting, sorting or aggregating. 
 

Application  sub-task  assigned  for  processing  needs  only  the  outputs   of 

reduce  tasks.  For example,  a query  needs  the  required  response  for a data 

store.  In Example 2.3,  a sub-task  may just  need  total  daily sales of specific 

chocolate flavours to compute the analytics and data visualization.



 
 
 
 

 
 

Figure  4.1 Big Data architecture  design layers 
 

A  reader   must  learn   the  following  new  selected  key  terms   and  their 

meanings besides the key terms given in the previous three chapters. 
 

MapReduce programming model  refers   to   a   programming    paradigm   for 

processing  Big Data sets with  a parallel  and  distributed  environment   using 

map and reduce tasks. 
 

YARN refers to provisioning  of running  and scheduling parallel programs  for 

map   and  reduce   tasks   and   allocating   parallel   processing   resources   for 

computing sub-tasks running  in parallel at the Hadoop for a user application. 

The  YARN  resources  management   enables  large-scale  data  analytics  using 

multiple machines (data nodes) in the HDFS cluster. 
 

Script refers to a small program  (codes up to few thousand  lines of code) in a 

language  used  for  purposes  such  as  query  processing,  text  processing,  or 

refers  to  a  small  code  written   in  a  dynamic  high-level  general-purpose 

language, such as Python or PERL. 
 

SQL-like scripting language  means a language for writing  script  that  processes 

queries similar to SQL.  SQL lets us: (i) write structured  queries for processing 

in  DBMS,  (ii)  create  and  modify  schema,  and  control  the  data  access, (iii)



create   client   for  sending   query   scripts,   and  create   and  manage   server 

databases, and (iv) view, query and change (update, insert or append or delete) 

databases. 
 

NoSQL DBs refers to DBs with no prior fixed schema, schema-less models, and 

databases which possess increasing flexibility for data manipulation. 
 

NoSQL data model refers to ones offering relaxation  in one or more of the ACID 

properties  (Atomicity, Consistence, Isolation and Durability) of the database. A 

theorem  known as CAP  ~onsistency,   Availability and r.artitions)  states  that 

out of   three    properties,     at    least    two    must    be    present    for    the 

application/service/process. NoSQL relies upon another  model known as the 

BASE model. This model has three principles: Basic availability (the availability 

of data even in the presence  of multiple failures), Soft state (data consistency 

is  the  developer's  problem  and  should  not  be  handled  by  the  database), 

Eventual consistency (when no new changes occur on existing data, eventually 

all accesses to that data will return  the last updated value). 
 

Data-architecture   patterns refer to formats used in NoSQL DBs. The examples are 

Key-Value Data Stores,  Object Data Stores,  Column family Big Data Stores, 

Tabular Data Stores and Document Stores. 
 

Key-Value   Data Store refers  to  a  simplest  way to  implement  a  schema-less 

database.  A  string  called key maps to values in a large data  string  or BLOB 

(basic large object). Key-value stores  use primary  key access. Therefore,  the 

storage easily scales up and data retrievals  are fast. 
 

Object Data Store refers to a repository which stores the (i) objects (such as files, 

images, documents,  folders and business reports),  (ii) system metadata  which 

provides    information    such   as   filename,    creation_date,     last_modified, 

language_used     (such     as    Java,     C,      C#,       C++,      Smalltalk,     Python), 

access_permissions,  supported   Query languages,  and  (iii)  Custom metadata 

which provides information  such as subject, category and sharing permission. 
 

Tabular Data Store refers to table, column-family or BigTable like Data Store. 
 

Column family Big Data store  refers  to a storage  in logical groups  of column 

families. The storage may be similar to columns of sparse matrix. They use a 

pair of row and column keys to access the column fields. 
 

BigTable  Data Store is a popular  column-family  based  Data Store.  Row key,



column key and timestamp  uniquely identify a value. Google BigTable, HBase 

and Cassandra DBs use the BigTable Data Store model. 
 

Document  Store means a NoSQL  DB which stores hierarchical  information  in a 

single unit called document.  Document stores  data in nested  hierarchies;  for 

example   in  XML   document   object  model,  ]SON   formats   data   model  or 

machine-readable  data as one BLOB. 
 

Tuple means  an ordered  list of elements.  An n-tuple  relates  to set theory,  a 

collection (sequence) of "n" elements. Tuples implement the records. 
 

Collection  means  a  well-defined  collection  of distinct  objects  in  a  set,  the 

objects of a set are the elements. That also means a store within a single DB to 

achieve a single purpose. A collection may be analogous to a table ofRDBMS.A 

collection  in a database  also refers  to storage  of a number  of documents.  A 

collection  may  store  documents  which  do not  have  the  same  fields. Thus, 

documents  in  the  collection  are  schema-less.  Thus,  it  is possible  to  store 

documents of varying structures  in a collection. 
 

Aggregate  refers  to collection of data sets in the key value, column family or 

BigTable data stores which usually require sequential processing. 
 

Aggregation  function  refers  to  a  function  to  find  counts,  sum,  maximum, 

minimum,  other  statistical  or  mathematical   function  using  a  collection  of 

datasets, such as column or column-family. 
 

Sequence refers to an enumerated  collection of objects, (the repetitions  can be 

there)  which contain  members  similar to a set. Sequence length  equals the 

number  of elements  (can also be infinite).  Sequence should reflect  an order 

which matters,  unlike a set. 
 

Document  refers  to a container  for the  number  of collections. The container 

can be a unit of storing data in a database, such as MongoDB. 
 

Projection refers to a unary operation  (single input or operand) written  as ITattri, 

attr2, ... ,  attrn where (attrl, attr2, ... ,  attm) is a set of n attribute  names. Projection 

returns a  set  obtained  by  selecting  only  the  n  attributes.   A  generalized 

projection includes a method using attribute  values. ITstudent_Id,  sum (GPA), sum (SGPA)· 

Natural join  is where two tables join based on all common columns. Both the 

tables must have the same column name and the data type.



Inner join is the default natural join. It  refers to two tables that join based on 

common columns mentioned  using the ON clause. Inner Join returns  all rows 

from both tables if the columns match. 
 

Node refers   to   a  place  for  storing   data,   data   block  or  read   or  write 

computations. 
 

Data center in a DB refers to a collection of related  nodes. Many nodes form a 

data center or rack. 
 

Cluster refers to a collection of many nodes. 
 

Keyspace means a namespace to group multiple column families, especially one 

per partition. 
 

Indexing to a  field means  providing  reference  to  a  field  in  a  document  of 

collections  that  support  the  queries  and  operations  using that  index. A  DB 

creates an index on the _id field of every collection. 
 

This chapter  describes MapReduce programming,  Hive and Pig APis in the 

MapReduce programming   model  and  the  HDFS  data  storage  environment. 

Section 4.2  describes  the  MapReduce paradigm,  map tasks  using  key-value 

pairs, grouping by keys and reduce tasks using partitioning  and combiners in 

the  application  execution  framework.  Section  4.3  describes  algorithms  for 

using  MapReduce. Section 4.4  describes  Hive, architecture,   installation  and 

comparison with traditional  databases. Section 4.5 describes HiveQL, querying 

the  data,  sorting  and aggregating,  scripts, joins  and sub-queries.  Section 4.6 

introduces  Pig architecture,   grunt  shell  commands,  data  model,  Pig Latin, 

developing scripts and extensibility using UDFs. 
 
 
 

4.21 MAPREDUCE MAP TASKS, REDUCE TASKS AND 

MAPREDUCE  EXECUTION 

Big   data    processing    employs    the    MapReduce 

programming   model.  A  Job  means   a  MapReduce 

program.  Each job  consists of several smaller units, 

called   MapReduce   tasks.   A    software   execution 

framework  in MapReduce programming  defines the 
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parallel  tasks.  The tasks  give the  required  result.  The Hadoop MapReduce 

implementation  uses Java framework. 
 

Figure 4.2 shows MapReduce programming  model. 
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Figure  4.2 MapReduce Programming Model 
 

The model defines two important  tasks, namely Map and Reduce. Map takes 

input data set as pieces of data and maps them  on various nodes for parallel 

processing. The reduce task, which takes the output from the maps as an input 

and combines those data pieces into a smaller set of data. A reduce task always 

run after the map task (s). 
 

Many real-world  situations  are  expressible  using  this  model.  Such Model 

describes  the   essence  of  MapReduce  programming   where   the   programs 

written  are automatically parallelize and execute on a large cluster. 
 

 

EXAMPLE 4.1 

 
How can a car company quickly compute  an aggregation  function  using 

the   number   of  cars   of  a  specific  car-model   sold  at  the   company 

showrooms  as input?  Use the  concept  of division of an application  task 

into a number of sub-tasks (running in parallel). 
 

SOLUTION 
 

The  company's  showrooms  sell a  specific model.  Assume the  analysis 

requires  us to find the aggregate number  N. The N computes by counting 

the  number  of cars of that  model which have been  sold over a specific 

period  (Practice Exercise 3.3).  N is a very large number.  The application 

process will require  a long time to count this sequentially  from the sales 

figures. 
 

The programming-model   splits the  application  task  into  number  of n 

sub-tasks, running  in parallel. Each sub-task thus takes up and counts N/n



sales entries for the car-model. Each sub-task fetches the items containing 

information  of car sales separately. The results  of all the application  sub• 

tasks later combine at the end to send the result to the application.  High 

volumes of data (Big Data) need the splitting and parallel processing of the 

tasks. 
 
 

MapReduce simplifies software development  practice. It eliminates the need 

to write and manage parallel codes. The YARN resource  managing framework 

takes  care  of scheduling  the  tasks,  monitoring  them  and  re-executing  the 

failed tasks. Following explains the concept: 
 

 

EXAMPLE 4.2 

 
How does MapReduce enable query processing  quickly in Big Data 

problems? 
 

SOLUTION 
 

MapReduce provides  two important  functions  for query processing. The 

distribution   of task  based  on user's  query  to various  nodes  within  the 

cluster is the first function. The other function is organizing and reducing 

the results from each node into a cohesive answer to a query. 
 
 

The input data is in the form of an HDFS file. The output of the task also gets 

stored in the HDFS. The compute nodes and the storage nodes are the same at 

a cluster, that  is, the  MapReduce program  and the HDFS are running  on the 

same set of nodes. This configuration  results  in effectively scheduling  of the 

sub-tasks on the nodes where the data is already present.  This results  in high 

efficiency due to reduction  in network traffic across the cluster. 
 

A user application specifies locations of the input/ output data and translates 

into map and reduces  functions.  A job  does implementations   of appropriate 

interfaces  and/ or abstract-classes.  These, and other job parameters,  together 

comprise the job  configuration.  The Hadoop job  client then  submits the job 

(jar/ executable etc.) and configuration  to the JobTracker, which then assumes 

the responsibility  of distributing  the software/configuration   to the slaves by 

scheduling   tasks,   monitoring   them,   and  provides   status   and  diagnostic 

information  to the job-client.  Figure 4.3  shows MapReduce process  when  a
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client  submits  a job,  and  the  succeeding  actions  by  the  JobTracker   and 

TaskTracker. 
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Figure 4.3 MapReduce process on client submitting a job 
 

JobTracker and  Task  Tracker MapReduce  consists   of  a  single  master 

JobTracker and  one  slave  TaskTracker  per   cluster   node.  The  master   is 

responsible  for  scheduling  the  component  tasks  in  a job  onto  the  slaves, 

monitoring  them  and  re-executing  the  failed tasks.  The slaves execute  the 

tasks as directed by the master. 
 

The  data  for  a MapReduce task  is initially  at  input  files. The input  files 

typically  reside  in the  HDFS.  The  files may be  line-based  log files, binary 

format  file, multi-line  input  records,  or  something  else  entirely  different. 

These  input  files are  practically  very  large,  hundreds  of terabytes  or  even 

more than it. 
 

Most  importantly,   the  MapReduce  framework  operates   entirely   on  key, 

value-pairs. The framework views the input to the task as a set of (key, value) 

pairs and produces a set of (key, value) pairs as the output of the task, possibly 

of  different   types   (Section  2.4.2).    Example  2.3    explained   the  process  of 

converting input files into key-values. 
 

 

4.2.1  Map-Tasks 
 

Map task means a task that  implements  a mapl), which runs user application 

codes for each key-value pair (kl, vl).  Key kl is a set of keys. Key kl maps to a



group  of data  values  (Section  3.3.1). Values vl   are a large string which is read 

from the input file(s). 
 

The  output   of  map()  would  be  zero   (when  no  values  are  found)  or 

intermediate  key-value pairs (kz, v2). The value v2 is the information  for the 

transformation    operation   at  the  reduce  task  using  aggregation   or  other 

reducing functions. 
 

Reduce task refers  to a task which takes the  output  v2 from the  map as an 

input  and  combines  those  data  pieces  into  a  smaller  set  of data  using  a 

combiner. The reduce task is always performed after the map task. 
 

The  Mapper  performs   a  function   on   individual   values   in   a   dataset 

irrespective  of the data size of the input. That means that  the Mapper works 

on a single data set. Figure 4.4 shows logical view of functioning of map(). 
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Figure 4.4  Logical view of functioning of map() 
 

Hadoop Java API includes Mapper class. An abstract  function map() is present 

in the Mapper class. Any specific Mapper implementation  should be a subclass 

of this class and overrides the abstract function, map(). 
 

The Sample Code for Mapper  Class 
 

public claeB SampleMapper extende Mapper~kl, Vl, k2, v2> 
 

{ 

void map (kl key, V1 value, Context context) throwB IOException, 

InterruptedException 

{ .. } 
 

 

Individual Mappers do not communicate with each other. 
 

Number  of Maps The number of maps depends on the size of the input files, i.e., 

the total number of blocks of the input files. Thus, if the input files are of 1 TB in 

size and the block size is 128 MB, there  will be 8192  maps. The number  of map 

task Nmap   can be explicitly set by using setNumMapTasks(int).    Suggested number



 
 

p 
 

 
 
 

pt 
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is nearly 10-100  maps per node. Nmap can be set even higher. 
 

 

4.2.2  Key-Value Pair 
 

Each phase (Map phase and Reduce phase) of MapReduce has key-value pairs as 

input and output. Data should be first converted  into key-value pairs before it is 

passed to the Mapper, as the Mapper only understands  key-value pairs of data 

(Section 3.3.1). 
 

Key-value pairs in Hadoop MapReduce are generated  as follows: 
 

InputSplit - Defines a logical representation   of data and presents  a Split data for 

processing at individual map(). 

RecordReader - Communicates with the  InputSplit  and converts  the  Split into 

records which are in the form of key-value pairs in a format suitable for reading 

by the  Mapper. RecordReader uses TextlnputFormat  by default  for converting 

data into key-value pairs. RecordReader communicates with the InputSplit until 

the file is read. 
 

Figure 4.5 shows the steps in MapReduce key-value pairing. 
 

Generation of a key-value pair in MapReduce depends on the dataset  and the 

required  output. Also, the functions use the key-value pairs at four places: map() 

input, map() output, reduce() input and reduce() output. 
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Figure  4.5 Key-value pairing in MapReduce 
 

 

4.2.3  Grouping by Key 
 

When  a  map  task  completes,  Shuffle process  aggregates  (combines)  all the



Mapper outputs by grouping the key-values of the Mapper output, and the value 

v2  append  in a list of values. A "Group By" operation  on intermediate   keys 

creates v2. 
 

Shuffle  and Sorting Phase 
 

Here, all pairs with the same group key (kz) collect and group together,  creating 

one group for each key. So, the Shuffle output  format will be a List of <k2, List 

(vz)», Thus, a different  subset  of the  intermediate   key space assigns to each 

reduce node. These subsets of the intermediate  keys (known as "partitions")  are 

inputs to the reduce tasks. 
 

Each  reduce  task  is  responsible   for  reducing   the  values  associated  with 

partitions.  HDFS sorts the partitions  on a single node automatically  before they 

input to the Reducer. 
 

 

4.2.4  Partitioning 
 

The Partitioner  does the  partitioning.  The partitions  are the  semi-mappers  in 

MapReduce. Partitioner  is an optional class. MapReduce driver class can specify 

the Partitioner.  A partition  processes the output of map tasks before submitting 

it  to  Reducer  tasks.  Partitioner   function   executes   on  each  machine   that 

performs  a map task. Partitioner  is an optimization  in MapReduce that  allows 

local   partitioning   before   reduce-task   phase.   Typically,  the   same   codes 

implement the Partitioner,  Combiner as well as reduce() functions. Functions for 

Partitioner  and sorting functions are at the mapping node. The main function of 

a Partitioner  is to split the map output records with the same key. 
 

 

4.2.5  Combiners 
 

Combiners  are  semi-reducers   in  MapReduce. Combiner  is an  optional  class. 

MapReduce driver  class can specify the  combiner. The combiner() executes on 

each machine  that  performs  a map task. Combiners optimize MapReduce task 

that  locally aggregates  before  the  shuffle and  sort  phase. Typically, the  same 

codes implement  both  the  combiner  and the  reduce  functions,  combiner()  on 

map node and reducer() on reducer node. 
 

The main function  of a Combiner is to consolidate  the  map output  records 

with the same key. The output  (key-value collection) of the combiner transfers 

over the network to the Reducer task as input.



This  limits  the  volume   of data  transfer   between   map  and  reduce   tasks,  and 

thus   reduces   the   cost   of  data   transfer    across   the   network.    Combiners   use 

grouping  by key for carrying  out this  function.  The combiner  works  as follows: 

(i) It  does not have its own interface  and it must implement the interface  at 

reduce(). 
 

(ii) It  operates  on each map output  key. It  must  have the  same input  and 

output key-value types as the Reducer class. 

(iii)  It  can  produce  summary  information   from  a large  dataset  because  it 

replaces the original Map output with fewer records or smaller records. 
 

 

4.2.6  Reduce Tasks 
 

Java API at Hadoop includes Reducer class. An abstract  function,  reduce() is in 

the  Reducer. Any specific Reducer implementation   should  be subclass of this 

class and override the abstract reduce(). 
 

Reduce  task  implements   reduce()  that   takes  the   Mapper  output   (which 

shuffles and  sorts), which  is grouped  by key-values  (kz, v2) and  applies  it in 

parallel to each group. Intermediate  pairs are at input of each Reducer in order 

after  sorting  using  the  key. Reduce function  iterates  over  the  list  of values 

associated with a key and produces outputs  such as aggregations  and statistics. 

The reduce function sends output  zero or another  set of key-value pairs (k3, v3) 

to the final the output file. Reduce: {(k2, list (v2) -> list (ks, v3)} 

Sample  Code for Reducer Class 
 

public class ExarrpleReducerextenda Reducer<k2, v2, k3, v3> 

 

 
void reduce (k2 key, Iterable<v2~ values, Context context) throws 

IOBxception, InterruptedBxception 

{  ... } 
 
 
 

4.2.7  Details of MapReduce Processing Steps 
 

Execution of MapReduce job does not consider  how the distributed  processing 

implements.  Rather,  the  execution  involves the  formatting  (transforming)  of 

data at each step.
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Figure 4.6  shows the  execution  steps,  data  flow, splitting,  partitioning   and 

sorting on a map node and reducer on reducer node. 
 

Example 2.3  described  sales data  of the  five types  of chocolates  in a large 

number  of ACVMs (Automatic Chocolate Vending Machines). The example gave 

answers to the following: (i) how hourly data log for each flavor sales on large 

number  of ACVMs save using HDFS, (ii)  how the sample of data-collect  in a file 

each for 0-1,1-2,   ... 12-13,13-14,  15-16,  ... for up to 23-24  specific hour sales, (iii) 

what will be output  streams  of map tasks which are the  input  streams  to the 

reduce() tasks, and (iv) what will be the Reducer outputs. 
 

Let  us  explore  another   example,  Automotive  Components  and  Predictive 

Automotive  Maintenance   Services  (ACPAMS).   ACPAMS   is  an  application   of 

(Internet)  connected  cars which renders  services to customers  for maintenance 

and servicing of (Internet)  connected cars [Chapter 1 Example 1.6(ii)]. 
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Figure  4.6 MapReduce execution steps 
 

 

EXAMPLE  4.1 
 

 

Describe the MapReduce processing steps of a task of ACPAMS. 
 

SOLUTION 
 

Figure 4. 7 shows processing  steps of an ACPAMS task in MapReduce. Steps
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are inputs,  mapping,  combining, shuffling and reducing  for the  output  to 

application task. 
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Figure  4. 7 MapReduce processing steps in ACP AMS application 
 

 
 

The application submits the inputs. The execution framework handles all other 

aspects  of distributed   processing  transparently,   on  clusters  ranging  from  a 

single  node  to  a  few thousand   nodes.  The  aspects  include  scheduling,  code 

distribution,  synchronization,  and error and fault handling. 
 

The following example explains how the ACPAMS company receives 

alerts/messages. 
 

 

EXAMPLE  4.4 
 

 

Describe the  MapReduce processing  steps  to  illustrate   how  the  ACP AMS 

receives alerts/messages. 
 

SOLUTION 
 

The ACPAMS  Company can receive  the  alerts/messages   every hour  from 

several sensors  of the  automotive  components  installed  in the  number  of 

cars. A server maps the keys for filling fuel, changing of the coolant, etc. It 

requires  a  lot  of time  to  scan  the  hourly  maintenance   log sequentially



because  there  are a million  cars registered   for the ACP AMS service.  Each car 

is equipped      with     nearly      50    sensor-based       components       sending 

alerts/message every  minute.  By contrast,   the  MapReduce  programmer    can 

split  the  application   task  among  multiple   subtasks,   say  one  hundred    sub• 

tasks,  and  each  sub-task   processes   the  data  of a selected   set  of a  Service 

users. 
 

The results   of all the  sub-tasks   aggregate   and  produce   the  final  result  for 

hourly  maintenance    requirement    of each  component   of the  cars  registered 

at  ACPAMS Company.   Finally,  the  aggregated    hourly   results   appear   from 

the  hourly  log of transactions    files at Hadoop  data  nodes.  The whole  system 

maintains    transparency,     without    knowing   the   presence    of  a  distributed 

parallel  system  processing   data  of a hundred   million  records.  Table 4.1 gives 

examples  of assigning  Ids to alerts/messages. 

Table 4.1  Examples of Alert/Messageid  (say, total 50 Ids, i.e., one for each 

sensor component) 
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Assumption:  Let 60 files for each  hour  create  every  day. The files are 

file_l,  file_2, ... ,   file_60. Each file saves as a key-value  pair  at  the  large 

number  of the  company's  machines.  The log contains  information  in the 

following format: 
 

maintenance  service Id:(<CarRegistrationNumber>_<alert/rnesssageld-) 
 

Thus, every line entry becomes the key, and the value will be the instance 

number. 
 

Sample data  of one of such file out  of 60 files (file_lO) saved as hour• 

maintenance-service  log for the maintenance  service during 15:00-16:00will 

be as follows: 
 

MP09CA2331_01



MP04NP0123_03 
 

MP09HA1493_01 
 

MP03SA5231_06 
 
 
 
 
 

MP09CA2331_04 
 

MP09CC4614_01 
 
 

 

(i)    The input files are using NLinelnputFormat  input format. 
 

(ii) Map tasks  will map the  input  streams  of key values  at  files, file_l, 

file_2, .... file_59, file_60 every hour. 
 

(iii)  The map function  extracts the  alert/message   Id from each line of the 

input files. They are the values after underscore  in each line. 

(iv) The resulting  1 million x 50 key-value pairs (since there  are 50 sensors 

assumed per car) map each hour with keys for RegistrationNumber _N 

(N = 1 to 50). The output stream from Mapper will be as follows: 

(01, 1), (03, 1), (01, 1), .. , .. , ... , 
 

The (key, value) contains (alert/message  Id, the instance number)
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Reducer   -  Takes  the  output   from  Map (after  the  sort  phase)  as an input 

and  combines   the  data  tuples   into  a  smaller   set  of tuples.   Following   are 

some examples  of Reduce function  in Alert/Message   Count. 
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The output  of the  reducel),  which  is the  final result  of MapReduce Job 

provides a number of alert or messages at an hourly basis for the complaint 

raised by each component  of the cars registered  at the ACPAMS Company. 

Then the analyst decides which components  need maintenance  on high to 

low priority.  The report  of ACAMPS helps the  company  in improving  the 

manufacturing  of its car components. 
 
 
 

The following example gives pseudocodes for an algorithm: 
 
 

EXAMPLE  4.5 
 

 

Write pseduocodes for MapReduce algorithm for the ACPAMS. 
 

SOLUTION 
 

Figure 4.8 gives pseudocodes for the ACPAMS algorithm in MapReduce.



class Mapper { 
 

method Map (file id a; file f)  { 
 

for all term i   E     file f do { 
 

t   =  Substring (i6            26     After_} 

Bmit (term t, count  1,}}} 

 
 

class Reducer { 
 

method Reduce (term t 6         counts [cl, cz , ..... ] }    { 
 

Bum~  0 
 

for all count c E    counts [cl 
6         

cz ,   .... ]    do { 
 

sum ~ sum+     c} 
 

Bmit (term t6    count Bum}}} 
 

Figure  4.8 Pseudocodes for the ACPAMS algorithm in MapReduce 
 

Emit(  )   function   is  for  output   in  MapReduce. The  Mapper  emits  an 

intermediate   key-value  pair  for  each  alert/message   in  a document.  The 

Reducer sums up all counts for each alert/message. 
 

4.2.8  Coping with Node Failures 
 

The primary  way using  which  Hadoop achieves  fault 

tolerance is  through   restarting   the  tasks.  Each task 

nodes  (TaskTracker) regularly  communicates  with the 

master node,  JobTracker.   If  a  TaskTracker   fails  to 

communicate  with  the  JobTracker  for  a  pre-defined 

period  (by default, it is set to 10 minutes),  a task node  
I
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failure  by the JobTracker  is assumed. The JobTracker  knows which  map and 

reduce tasks were assigned to each TaskTracker. 
 

If the job is currently  in the mapping phase, then another  TaskTracker will be 

assigned to re-execute  all map tasks previously run by the failed TaskTracker. 

All completed map tasks also need to be assigned for re-execution  if they belong 

to incomplete jobs. This is because the intermediate  results residing in the failed 

TaskTracker file system may not be accessible to the reduce task.

mailto:p:re-d@liined


If the job is in the reducing  phase, then  another  TaskTracker will re-execute 

all reduce tasks that were in progress on the failed TaskTracker. 
 

Once reduce tasks are completed, the output writes back to the HDFS. Thus, if 

a TaskTracker has already completed nine out of ten reduce tasks assigned to it, 

only the tenth task must execute at a different node. 
 

Map tasks are slightly more complicated. A node may have completed ten map 

tasks but the Reducers may not have copied all their  inputs from the output  of 

those map tasks. Now if a node fails, then  its Mapper outputs  are inaccessible. 

Thus, any complete  map tasks must also be re-executed  to make their  results 

available   to   the   remaining   reducing   nodes.   Hadoop  handles   all  of  this 

automatically.  MapReduce does  not  use  any  task  identities  to  communicate 

between nodes or which reestablishes  the communication  with other task node. 

Each task focuses on only its own direct inputs and knows only its own outputs. 

The failure and restart  processes are clean and reliable. 
 

The  failure  of JobTracker  (if only  one  master  node)  can  bring  the  entire 

process down; Master handles other failures, and the MapReduce job eventually 

completes. When the Master compute-node  at which the JobTracker is executing 

fails, then  the entire  MapReduce job must restart.  Following points  summarize 

the coping mechanism with distinct Node Failures: 
 

(i)    Map TaskTracker failure: 
 

- Map tasks completed or in-progress  at TaskTracker, are reset to idle on 

failure 

- Reduce TaskTracker gets a notice when a task is rescheduled  on another 

TaskTracker 
 

(ii)   Reduce TaskTracker failure: 
 

- Only in-progress tasks are reset to idle 
 

(iii)  Master JobTracker failure: 
 

- Map-Reduce task aborts  and notifies the  client  (in case of one master 

node). 
 
 

Self-Assessment Exercise linked  to LO 4.1



1.  Show MapReduce process  diagrammatically  to depict  a client  submitting  a 

job, the workflow ofJobTracker  and TaskTracker, and TaskTrackers creating 

the outputs. 

2.   Assume an input file size of 10 TB and a data block size of 128 MB. How many 

map tasks are required?  Assume that  each node does 100 maps. How many 

nodes are involved in processing?  How will you change the number  of map 

tasks per node to 120 using a Java statement? 

3. Explain function of Group By, partitioning  and combining using one example 

for each. 

4.   How  does  the  data  convert   to  (key,  value)  pairs  before  passing  to  the 

Mapper? How do the InputSplit and RecodReader function? 
 

5.   How are the  failures  of Map TaskTracker,  Reduce TaskTracker  and Master 

JobTracker  handled in MapReduce? 
 

6.  How does the  execution  framework  handle  all aspects  of distributed 

processing after a client node submits the job to the designated node of 

a cluster (the JobTracker)? Explain the concept using a diagram. 
 

 
 
 
 

4.31 COMPOSING MAPREDUCE FOR CALCULATIONS AND 

ALGORITHMS 

The   following   subsections    describe    the    use   of 

MapReduce  program   composition   in  counting   and 

summing,     algorithms      for     relational      algebraic 

operations,  projections,  unions,  intersections,  natural 

joins, grouping and aggregation, matrix multiplication 

and other computations. 
 

 

4.3.1   Composing Map-Reduce for 

Calculations 
 

The calculations for various operations  compose are: 
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Counting    and   Summing    Assume  that   the   number   of  alerts   or  messages 

generated  during a specific maintenance  activity of vehicles need counting for a 

month. Figure 4.8  showed the pseudocode  using emit() in the map() of Mapper 

class. Mapper emits 1 for each message generated.  The reducer goes through  the 

list of ls and sums them. Counting is used in the data querying application. For 

example, count of messages generated,  word count in a file, number of cars sold, 

and analysis of the logs, such as number of tweets per month. Application is also 

in business analytics field. 
 

Sorting Figure  4.6  illustrated   MapReduce  execution   steps,   i.e.,  dataflow, 

splitting, partitioning  and sorting on a map node and reduce on a reducer node. 

Example  4.3  illustrated   the  sorting  method.  Many applications  need  sorted 

values in a certain  order by some rule or process. Mappers just  emit all items as 

values associated with the sorting  keys which assemble as a function  of items. 

Reducers combine all emitted parts into a final list. 
 

Finding Distinct Values (Counting unique  values) Applications such as web 

log analysis need counting of unique users. Evaluation is performed  for the total 

number of unique values in each field for each set of records that belongs to the 

same group. Two solutions are possible: 
 

(i) The Mapper emits the dummy counters  for each pair of field and groupld, 

and the Reducer calculates the total number  of occurrences  for each such 

pair. 

(ii) The Mapper  emits the values and groupld,  and the Reducer  excludes the 

duplicates  from  the  list  of groups  for  each  value  and  increments   the 

counter  for each group. The final step is to sum all the counters  emitted 

at the Reducer.  This requires  only one MapReduce job but the process is 

not scalable, and hence has limited applicability in large data sets. 

Collating Collating is a way to collect all items which have the  same value of 

function in one document or file, or a way to process items with the same value 

of  the  function  together.   Examples  of  applications   are  producing   inverted 

indexes and extract, transform  and load operations. 
 

Mapper computes  a  given  function  for  each  item,  produces  value  of  the 

function  as a key, and the  item itself as a value. Reducer then  obtains  all item 

values using group-by function, processes or saves them into a list and outputs



to the application task or saves them. 
 

Filteringor ParsingFiltering or parsing collects only those items which satisfy 

some  condition   or  transform   each  item   into   some  other   representation. 

Filtering/ parsing   include  tasks  such  as  text  parsing,  value  extraction   and 

conversion from one format to another.  Examples of applications of filtering are 

found in data validation, log analysis and querying of datasets. 
 

Mapper takes items one by one and accepts only those items which satisfy the 

conditions  and emit the accepted  items or their  transformed  versions. Reducer 

obtains  all  the  emitted   items,  saves  them   into  a  list  and  outputs   to  the 

application. 
 

Distributed Tasks   Execution   Large   computations    divide   into   multiple 

partitions and  combine  the  results  from  all  partitions   for  the  final  result. 

Examples  of  distributed    running   of  tasks   are   physical   and   engineering 

simulations, numerical analysis and performance  testing. 
 

Mapper takes  a  specification  as  input  data,  performs  corresponding 

computations  and  emits  results.  Reducer combines  all emitted  parts  into  the 

final result. 
 

Graph Processing using  Iterative Message  Passing Graph  is a  network  of 

entities and 

relationships  between  them. A node corresponds  to an entity. An edge joining 

two nodes  corresponds  to  a relationship.  Path  traversal  method  processes  a 

graph. Traversal from one node to the next generates  a result which passes as a 

message to the next traversal  between the two nodes. Cyclic path traversal  uses 

iterative message passing. 
 

Web indexing  also uses iterative  message passing. Graph processing  or web 

indexing  requires  calculation  of the  state  of each  entity.  Calculated  state  is 

based  on characteristics   of the  other  entities  in its neighborhood  in a given 

network.  (State means present  value. For example, assume an entity is a course 

of study. The course may be Java or Python. Java is a state  of the  entity  and 

Python is another  state.) 
 

A set of nodes stores the data and codes at a network. Each node contains a list 

of neighbouring  node IDs. MapReduce jobs execute iteratively.  Each node in an 

iteration  sends messages to its neighbors. Each neighbor updates its state based 

on the  received  messages.  Iterations  terminate   on  some  conditions,  such  as



completion  of fixed maximal number  of iterations  or specified time to live or 

negligible changes in states between two consecutive iterations. 
 

Mapper emits the messages for each node using the ID of the adjacent node as a 

key. All messages thus group by the incoming node. Reducer computes the state 

again and rewrites a node new state. 
 

Cross  Correlation  Cross-correlation   involves  calculation   using  number   of 

tuples where the items co-occur in a set of tuples of items. If the total number of 

items is N, then  the total number  of values=  N x N. Cross correlation  is used in 

text analytics. (Assume that  items are words and tuples are sentences). Another 

application is in market-analysis  (for example, to enumerate,  the customers who 

buy item x tend to also buy y). If N x N is a small number,  such that the matrix 

can   fit   in   the   memory   of   a   single   machine,   then   implementation    is 

straightforward. 
 

Two solutions for finding cross correlations  are: 
 

(i) The Mapper  emits all pairs  and dummy counters,  and the Reducer  sums 

these  counters.  The benefit  from using combiners  is little, as it is likely 

that  all pairs  are  distinct.  The  accumulation  does not  use  in-memory 

computations  as N is very large. 

(ii) The Mapper groups the data by the first item in each pair and maintains 

an associative array ("stripe") where counters for all adjacent items 

accumulate. The Reducer receives all stripes for the leading item, merges 

them and emits the same result as in the pairs approach. 

[Stripe means a set of arrays  associated  with a dataset  or a set of rows that 

belong to a common key with each row having a number of columns.] 
 

The grouping: 
 

• Generates fewer intermediate  keys. Hence, the framework has less sorting 

to do. 

•        Greatly benefits from the use of combiners. 
 

•        In-memory accumulation possible. 
 

•       Enables complex implementations. 
 

•       Results in general, faster computations  using stripes than "pairs".



4.3.2  Matrix-VectorMultiplicationby MapReduce 
 

Numbers of applications  need multiplication  of n x n matrix A with vector B of 

dimension  n.  Each  element   of  the  product   is  the  element   of  vector  C  of 

dimension n. The elements of C calculate by relation, 
l'il 

CJ  = I,a~·b1.   An example of calculations  is given below, 
j=l

 

5     4                  4 

Assume  A =   2          .3      and B =    1     . 

4    2    l                   .3 

l x 4 + 5 x 1 + 4 x Jl 
Multiplication   C = ..\ x ll =    2 x 4 + l   x l  + 3 x 3 

[
4x4+2xl+lxJ 

 

 
•••  (_4.1)

 

 
Hence, 

21] 
C=     18 

[21 

 

 
...  (4.!)

Algorithm  for using MapReduce:  The Mapper operates  on A and emits row-wise 

multiplication  of each  matrix  element  and vector  element  (aij  x  bj  V  i). The 

Reducer executes sum() for summing all values associated with each i and emits 

the element ci. Application of the algorithm is found in linear transformation. 
 

 

4.3.3  Relational-AlgebraOperations 
 

Explained ahead  are the  some approaches  of algorithms  for using MapReduce 

for relational algebraic operations on large datasets. 
 

4.3.3.1 Selection 
 

Example of Selection in relational  algebra is as follows: Consider the attribute 

names (ACVM_ID, Date, chocolate_flavour, daily_sales). Consider relation 
 

R =   {(524,   12122017,   KitKat, 82),   (524,   12122017,    Oreo, 72),   (525,   12122017, 

KitKat, 82),  (525,  12122017,  Oreo, 72),  (526,  12122017,  KitKat, 82),  (526,  12122017, 

Oreo, 72)}. 
 

Selection     AcvM_ID    <=   525  (R) selects the  subset R= {(524,  12122017,   KitKat, 82), 

(524,  12122017,  Oreo, 72), (525,  12122017,  KitKat, 82), (525,  12122017,  Oreo, 72)}.



Selection      chocolate_flavour  =  Oreo  selects the subset {(524, 12122017,Oreo, 72), (525, 

12122017,Oreo, 72), (526, 12122017,Oreo, 72)}. 
 

The  test()  tests  the  attribute values  used  for  a  selection  after  the  binary 

operation  of an attribute with the value(s) or value in an attribute name with 

value in another  attribute name and the binary operation  by which each tuple 

selects. Selection may also return  false or unknown.   The test condition then does 

not select any. 
 

The Mapper  calls test() for each tuple in a row. When test satisfies the selection 

criterion  then emits the tuple. The Reducer transfers  the received input tuple as 

the output. 
 

4.3.3.2 Projection 
 

Example of Projection in relational algebra is as follows: 
 

Consider attribute names (ACVM_ID, Date, chocolate_flavour, daily_sales). 

Consider relation R = {(524,  12122017,KitKat, 82), (524, 12122017,Oreo, 72)}. 

Projection II AcvM_ID (R) selects the subset {(524)}. 

Projection, II chocolate_flavour,  o.s* daily_sales  selects the subset {(KitKat,0.5 x  82), (Oreo, 

0.5 x 72)}. 
 

The test() tests the presence of attribute (s) used for projection  and the factor 

by an attribute needs projection. 
 

The Mapper calls test()  for each tuple  in a row. When the  test  satisfies, the 

predicate  then  emits the tuple (same as in selection). The Reducer  transfers  the 

received input tuples after eliminating  the possible duplicates. Such operations 

are used in analytics. 
 

4.3.3.3 Union 
 

Example of Union in relations is as follows: Consider, 
 

Rl = {(524,  12122017,KitKat, 82), (524, 12122017,Oreo, 72)} 

R2 = {(525, 12122017,KitKat, 82), (525, 12122017,Oreo, 72)} 

and                  R3 = {(526,  12122017,KitKat, 82), (526, 12122017,Oreo, 72)} 

Result of Union operation between Rl and R3 is: 

Rl U R3 = {(524,   12122017, KitKat, 82), (524, 12122017, Oreo, 72), (526,



12122017, KitKat, 82), (526, 12122017, Oreo, 72)} 
 

The Mapper executes all tuples of two sets for union and emits all the resultant 

tuples.  The  Reducer class  object  transfers   the   received   input   tuples   after 

eliminating the possible duplicates. 
 

4.3.3.4 Intersection and Difference 
 

IntersectionExample of Interaction  in relations is as follows: Consider, 

Rl = {(524, 12122017,Oreo, 72)} 

R2 = {(525,  12122017,KitKat, 82)} 
 

and               R3 = {(526, 12122017,KitKat, 82), (526, 12122017,Oreo, 72)} 

Result of Intersection  operation between Rl and R3 are 

Rl  n R3 = {(12122011,Oreo)} 
 

The Mapper  executes  all tuples  of two sets for intersection  and emits all the 

resultant  tuples. The Reducer transfers  only tuples  that  occurred  twice. This is 

possible only when tuple includes primary key and can occur once in a set. Thus, 

both the sets contain this tuple. 
 

Difference Consider: 
 

Rl = {(12122017,KitKat, 82), (12122017,Oreo, 72)} 
 

and             R3  = {(12122017,KitKat, 82), (12122017,Oreo, 25)} 
 

Difference means the tuple  elements  are not present  in the  second relation. 

Therefore, difference set_l is 

Rl - R3 =  (12122017,Oreo, 72) and set_2 is R3 - Rl =  (12122017,Oreo, 25). 

The Mapper emits all the tuples and tag. A tag is the name of the set (say, set_l 

or set_2 to which  a tuple  belongs to). The Reducer transfers  only tuples  that 

belong to set_l. 
 

SymmetricDifference  Symmetric difference  (notation  is A fl  B  (or A e B)]  is 

another  relational  entity. It means the set of elements in exactly one of the two 

relations A or B. R3 e Rl = (12122017,Oreo, 25). 
 

The Mapper emits all the tuples and tag. A tag is the name of the set (say, set_l 

or set_2 this tuple belongs to). The Reducer  transfers  only tuples that  belong to 

neither  set_l or set_2.



4.3.3.5  Natural Join 
 

Consider two relations Rl and R2 for tuples a, band  c. Natural Join computes for 

Rl  (a, b) with R2 (b, c). Natural Join is R (a, b,  c). Tuples b joins  as one in a 

Natural Join. The Mapper emits the key-value pair 

(b, (Rl, a)) for each tuple (a, b) of Rl, similarly emits (b, (R2, c)) for each tuple (b, 

c) ofR2. 
 

The Mapper is mapping  both  with  Key for b. The Reducer transfers  all pairs 

consisting  of one with first component  Rl and the other  with first component 

R2, say (Rl, a) and (R2, c). The output from the key and value list is a sequence of 

key-value pairs. The key is of no use and is irrelevant.  Each value is one of the 

triples (a, b, c) such that (Rl, a) and (R2, c) are present  in the input list of values. 
 

The following example explains the concept  of join,  how the  data stores use 

the  INNER Join  and  NATURAL Join  of two tables,  and  how the Join  compute 

quickly. 
 

 

EXAMPLE 4.6 

 
An                        SQL                              statement                         "Transactions 
INNER   JOIN  KitKatStock   ON   Transactions.ACVM ID 

KitKatStock.ACVM_ID"; selects the records  that  have matching  values in 

two tables for transactions  of KitKat sales at a particular  ACVM. One table is 

KitKatStock with  columns  (KitKat_Quantity, ACVM_ID)  and  second table  is 

Transactions with columns (ACVM_ID, Sales_Date and KitKat_SalesData). 
 

1.   What will be INNER Join of two tables KitKatStock and Transactions? 
 

2.  What will be the NATURAL Join? 
 

SOLUTION 
 

1. The INNER JOIN gives all the  columns  from the  two tables  (thus  the 

common  columns  appear  twice). The  INNER JOIN of two  tables  will 

return  a   table   with   five   column:   (i)   KitKatStock.Quantity,   (ii) 

KitKatStock. KitKat_ACVM_ID,     (iii)         Transactions.ACVM_ID, 

(iv)Transactions.KitKat_SalesDate, and                          (v) 

Transactions.KitKat_SalesData. 

2.  The NATURAL JOIN gives all the  unique  columns from the  two tables.



The NATURAL  JOIN of two  tables  will return   a table  with  four  columns: 

(i)        KitKatStock.Quantity,           (ii)        KitKatStock.ACVM_ID,     (iii) 

Transactions.KitKat_SalesDate, and (iv) Transactions.KitKat_SalesData. 
 

Values  accessible  by  key  in  the  first  table  KitKatStock merges  with 

Transactions table accessible by the common key ACVM_ID. 
 

NATURAL JOIN gives the common column once in the output  of a query, 

while INNER JOIN gives common columns of both tables. 
 

Join enables fast computations  of the aggregate of the number of chocolates 

of specific flavour sold. 
 

 

4.3.3.6 Grouping and Aggregation  by MapReduce 
 

Grouping means operation  on the tuples by the value of some of their attributes 

after   applying  the   aggregate   function   independently   to  each  attribute.   A 

Grouping  operation   denotes  by  <grouping  attributes>   i    <function-list>  (R). 

Aggregate functions are countl), suml), avgl), min() and max(). 
 

Assume  R=  {(524,   12122017,    KitKat,  82),   (524,   12122017,    Oreo,  72),   (525, 

12122017,   KitKat, 82),  (525,  12122017,  Oreo, 72),  (526,  12122017,  KitKat, 82),  (526, 

12122017,   Oreo, 72)}. Chocolate_flavour i  count ACVM_ID, sum (daily_sales 

(chocolate_flavour)) will give the output  (524,  KitKat, sale_month), (525,  KitKat, 

sale_month), .... and (524,  Oreo, sale_month), (525,  Oreo, sale_month), .... for all 

ACVM_IDs. 
 

The Mapper finds  the  values  from  each  tuple  for  grouping  and  aggregates 

them. The Reducer  receives the already grouped values in input for aggregation. 
 

 

4.3.4 MatrixMultiplication 

Consider matrices named A (i rows andj  columns) and BG rows and k columns) 

to  produce  the  matrix  C;(i rows  and  k columns).  Consider  the  elements  of 

matrices A, B and C as follows:

an a12 ·  •   a1j 

~  = a21 a22 ·      •  a2j 

 

b11 b l2  •  blt 

,g =  D.21   b22 •  b21r;: 
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A.B  = C; Each element evaluates as follow: 
 

 
 

First row of C 
 

C first column element  =  (a11b11+   a12b21  + ....  +  a1j.bji).  Second column element  = 

(a11b12+ a12b22+ ....  + a1j·bjz). 

The kth column element=  (a11b1k+  a12b2k+ ....  + a1j bjk). 
 

Second row of C 
 

C first column element=   (a21b11+   a22b21  + ....  + a2j"bj1).  Second column element  = 

(a21b12+  a22b22+ ....  + azj·bjz). 

The kth column element=  (a21b1k+  a22b2k+ ....  + azj· bjk). 
 

The ith row of C 
 

C first column element  =  (ai1b11+   ai2b21  + ....  +  aij.bj1).   Second column element  = 

(ailb12+  ai2b22+ ....  + aij·bj2).  The kth column element=  (ai1b1k+  ai2b2k+ ....  + aij.bjk). 

Consider two solutions of matrix multiplication. 
 

Matrix Multiplication  with Cascading of Two MapReduce Steps 
 

Table 4.2 gives the names, attributes,  relations  RM RB  and Re, tuples in A, B, C, 

natural Join of RA and RB,  keys and values, and seven steps for multiplication  of 

A and 8. 

Table 4.2  Seven steps for multiplication  of A and B for cascading of two 

MapReduce Steps 
 

 
.   I                                                    Step desertptton 

 

m                                           Name                                                            ~ 

2         Sp    iify attrti1but     of  K.ey,   lbll1i1   pBliirs        , J.    J                                                 , 

of each   lenremt  [row number, co1Jllffilrli 

ll.llllm   Ji'  val IJl   ] 

J                                                                                R   = A. {I,.l,  v



 

4          Coasider  tllJ)l     of Jr_  ~ nirn.d                                 ,         i, j    ii 

:S                   Find natural Jrun   ~  R -        _           andRg = 
Mattix: elements   n.ij  bJ    y ts common 

ro    tltil] 

Get tapl     for fi111dlliag  Prodhict t 
 

 
7             ,           oupin  and aggrregatlon   of luple 

tt'l!b atrt:rfhut     I and K 

(.i!.  k,  CjJ 

mp1 s   .t  j, k, v •  vb 
 

 
 
f'ou.rr-component  tuple 

'.ii.j,k     '!,f       )(   v - 

-cI, Jo  5 SUM_ -      v  x "'mi.

 

The product A.B = Natural join of tuples in the relations RA and R8  followed by 

grouping and aggregation. Natural Join of A (I,J, v)  and B (J, K, vb), having only 

attribute  J in common = Tuples (i, j, k, va, vb) from each tuple  (i, j, va> in A and 

tuples 0, k, vb) in B. 
 

1. MapReduce  tasks for Steps  5 and 6: Five-component tuple represents  the pair 

of matrix elements 

(aij,  bjk). Requirement  is product  of these  elements.  That  means  four- 

component tuple (i,j, k, va x vb), 

from equation (4.4)  for elements Cik = Sum (aij.bjk)  j= 1 to J' 

(a)  Mapper Function: (i) Mapper emits the key-value pairs 0, (A,  i, aij))  for 

each matrix element aij, and (ii) Mapper emits the key-value pair 0, (B, 

k, bjk)) for each matrix element aij. 
 

(b)  Reduce Function: Consider the  tuples  of A =  (A, i, aij)  for each key j, 

consider tuples of 

B = (B,  k, bjk) for each key j. Produce a key-value pair with key equal to 

(i, k) and 

value= aij x bjk·  A and Bare just the names, may be represented  by 0101 

and 1010. 
 

2. Next MapReduce  Steps 7: Perform  <I,  K> i   SUM (va   x  vb). That  means  do 

grouping and aggregation, with I and K as the grouping attributes  and the 

sum of vax vb as the aggregation. 
 

(c)  The Mapper emits the key-value pairs (i, k, v.) for each matrix  element 

of C inputs with key i and k, and vc from earlier task of the reducer va x



(d)  Reducer  groups  (i, k, vc)  in C  using [C,  I,  k, sum (vc)]  from aggregated 

values  of  vc   from  sum  (v.).  Aggregation  uses  the   same  memory 

locations as  used  by  elements   vc·   C    is  just   the   name,   may  be 

represented  by 1111. 

Matrix  Multiplication   with One MapReduce  Step MapReduce tasks for Steps 5 

to 7 in a single step. 
 

(e)  Map Function: For each element  aij of A, the Mapper emits all the key• 

value pairs 

[{i,  k), (A, j, aij)]  for k =  1, 2,  ...   ,  up to the  number  of columns of B. 

Similarly, emits all the key-value pairs [(i, k), (B, j, bjk)] for i = 1, 2, ...  , 

up to the number of rows of A. for each element bjk of B. 
 

(f)   Reduce Function: Consider the  tuples  of A =  (A,  i, aij)  for each key j. 

Consider tuples of 

B = (B, k, bjk) for each key j. Emits the key-value pairs with key equal to 

(i, k) and value = sum of (aij x bjk) for all values j. 
 

Memory required  in one step MapReduce is large as compared to two steps in 

cascade. This is due to the need to store intermediate  values of vc and then sum 

them in the same Reducer step. 
 
 

Self-Assessment  Exercise linked  to LO 4.2 
 

1.   How does MapReduce program  implement  counting, filtering and parsing? 
 

2.   How does MapReduce collate all items which have the same value? 
 

3.  How does MapReduce perform  graph  analysis  in a network  of computing 

nodes to build a spanning tree information  at a particular  node? 
 

4.  How does  MapReduce  program   collate  and  process  items  with  the  same 

value of the function together in an ETL operation? 

5.   How does  MapReduce  program   implement   <grouping  attributes>  s 
<function-list> (R)?
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4.4  ! HIVE 
 

Hive  was   created   by   Facebook.   Hive   is   a   data 

warehousing  tool and is also a data store on the top of      H1w. arrchirteii:1wre. 
inst ~~aticm.  rnmparisolill 

Hadoop. An enterprise  uses a data warehouse  as large      otl-nveam  sto.rewitlh 

data   repositories    that   are   designed   to   enable   the        

tracking,  managing,  and  analyzing  the  data.  (Section 

1.6.1. 7)   Hive  processes   structured   data  and  integrates   data  from  multiple 

heterogeneous   sources.  Additionally,  also  manages  the   constantly   growing 

volumes of data. 
 

Figure 4.9 shows the main features of Hive. 
 

 
 
 

 
 

 
 

Figure  4. 9 Main features of Hive 
 

Hive Characteristics 
 

1. Has the  capability  to translate  queries  into MapReduce jobs. This makes 

Hive scalable, able to handle  data warehouse  applications,  and therefore, 

suitable for the analysis of static data of an extremely large size, where the
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fast response-time    is not a criterion. 
 

2. Supports web interfaces  as well. Application APis as well as web-browser 

clients, can access the Hive DB server. 

3.   Provides  an  SQL  dialect  (Hive Query Language, abbreviated  HiveQL or 

HQL). 
 

Results of HiveQL Query and the  data  load in the  tables  which store  at the 

Hadoop cluster at HDFS. 
 

Limitations 
 

Hive is: 
 

1. Not  a full  database.  Main disadvantage   is that  Hive does  not  provide 

update, alter and deletion of records in the database. 

2.   Not developed for unstructured  data. 
 

3.   Not designed for real-time queries. 
 

4.   Performs the partition  always from the last column. 
 

 

4.4.1  Hive Architecture 
 

Figure 4.10 shows the Hive architecture. 
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Figure4.10  Hive architecture 
 

Components of Hive architecture  are: 
 

• Hive Server (Thrift) - An optional  service that  allows a remote  client to 

submit requests  to Hive and retrieve  results. Requests can use a variety of



programming  languages. Thrift Server exposes a very simple client API to 

execute HiveQL statements. 
 

• Hive CLI (Command Line Interface)- Popular interface  to interact  with 

Hive. Hive runs in local mode that uses local storage when running the CLI 

on a Hadoop cluster instead of HDFS. 
 

• Web Interface - Hive can be accessed using a web browser  as well. This 

requires  a HWI Server running  on some designated  code. The URL http:// 

hadoopi-port  no> /  hwi command  can be used to access Hive through  the 

web. 
 

• Metastore- It is the system catalog. All other components of Hive interact 

with the Metastore. It  stores the schema or metadata  of tables, databases, 

columns in a table, their data types and HDFS mapping. 
 

• Hive Driver -  It  manages  the  life cycle of a HiveQL statement   during 

compilation, optimization  and execution. 
 

 

4.4.2  Hive Installation 
 

Hive can be installed on Windows 10, Ubuntu 16.04 and MySQL. It requires three 

software packages: 

•      Java Development kit for Java compiler (Iavac) and interpreter 
 

•      Hadoop 
 

• Compatible version of Hive withJava-  Hive 1.2 onward supports Java 1.7 or 

newer. 
 

Steps for installation  of Hive in a Linux based OS are as follows: 
 

1. Install Javac and Java from Oracle Java download site. Download jdk 7 or a 

later version from 

http://www.oracle.com/technetwork/java/javase/ downloads/jdk7- 

downloads-1880260.html, and extract the compressed file. 
 

All users can access Java by Make java available to all users. The user has to 

move it to the location "/usr/local/" using the required commands

http://www.oracle.com/technetwork/java/javase/
http://www.oracle.com/technetwork/java/javase/


2.   Set      the      path       by      the      commands 

JAVA_HOME=/usr/local/jdkl.7.0_71, 

$]AV A_HOME/bin 

for     jdkl.7.0_71,        export 

export                 PATH=$PATH:

 

(Can use alternative   install  /usr/bin/java   usr/local/java/bin/java    2) 
 

3.   Install  Hadoop  http://apache.claz.org/hadoop/common/hadoop-2.4.1/ 
 

4. Make  shared   HADOOP, MAPRED, COMMON, HDFS and   all  related    files, 

configure  HADOOP  and set property   such as replication   parameter. 

5.  Name      the      yarn.nodemanager.aux-services.        Assign      value      to 

mapreduce_shuffle.  Set namenode and datanode paths. 

6.   Download http://apache.petsads.us/hive/hive-0.14.0/.    Use ls command to 

verify the files$ tar zxvf apache-hive-0.14.0-bin.tar.gz, $ ls 
 

OR 
 

Hive archive also extracts by the command apache-hive-0.14.0-bin apache• 

hive-0.14.0-bin.tar .gz. , $  cd $HIVE_HOME/conf,$ cp hive-env.sh.template 

hive-env.sh,  export HADOOP_HOME=/usr/local/hadoop 

7.   Use an external database server. Configure metastore  for the server. 
 

 

4.4.3  Comparison with RDBMS (TraditionalDatabase) 
 

Hive is a DB system which defines databases and tables. Hive analyzes structured 

data   in  DB.   Hive  has  certain   differences   with  RDBMS.  Table  4.3  gives  a 

comparison of Hive database characteristics  with RDBMS. 
 

Table 4.3  Comparison of Hive database characteristics  with RDBMS 
 

 

Characteristics 
 

Hive 
 

RDBMS 

 

Record level queries 
 

No Update and Delete 
 

Insert,  Update and Delete 

 

Transaction  support 
 

No 
 

Yes 

 

Latency 
 

Minutes or more 
 

In fractions  of a second 

 

Data size 
 

Peta bytes 
 

Tera bytes 

http://apache.claz.org/hadoop/common/hadoop-2.4.1/
http://apache.petsads.us/hive/hive-0.14.0/


Data  per  query Peta bytes Gigabytes 

 

Query  language 
 

HiveQL 
 

SQL 

 

Support  JDBC/ODBC 
 

Limited 
 

Full 

 

 

4.4.4 Hive Data Types and File Formats 
 

Hive defines various primitive, complex, string, date/time,  collection data types 

and file formats for handling and storing different  data formats. Table 4.4 gives 

primitive, string, date/time  and complex Hive data types and their descriptions. 
 

Table 4.4  Hive data types and their descriptions 
 

 

Data Type 

Name 

 
Description 

 

TINYINT 
 

1 byte signed integer. Postfix letter  is Y. 

 

SMALLINT 
 

2 byte signed integer. Postfix letter  is S. 

 

INT 
 

4 byte signed integer 

 

BIGINT 
 

8 byte signed integer. Postfix letter  is L. 

 

FLOAT 
 

4 byte single-precision  floating-point number 

 

DOUBLE 
 

8 byte double-precision  floating-point number 

 

BOOLEAN 
 

True or False 

 
TIMESTAMP 

 

UNIXtimestamp with optional nanosecond precision.  It  supports 

java.sql.Timestamp   format  "YYYY-MM-DD HH:MM:SS.fffffffff" 

 

DATE 
 

YYYY-MM-DDformat 

 

VARCHAR 
 

1 to 65355 bytes. Use single quotes('')  or double quotes("") 

 

CHAR 
 

255 bytes 

 
DECIMAL 

 

Used for representing immutable  arbitrary precision.  DECIMAL (precision, 

scale) format 



 

UNION 
 

Collection of heterogeneous   data types. Create      union 

 

NULL 
 

Missing values representation 

Table 4.5 gives Hive three Collection data types and their descriptions. 
 

Table 4.5  Collection data-types  and their descriptions 
 

 

Name 
 

Description 

 

 
STRUCT 

 

Similar to 'C' struc, a collection  of fields of different  data types. An access to field 

uses dot notation. 

For example, struct  ('a', 'b') 

 
MAP 

 

A collection of key-value pairs. Fields access using [] notation. 

For example, map ('keyl',  'a', 'keyz', 'b') 

 

 

ARRAY 

 

Ordered sequence  of same types. Accesses to fields using array index. 

For example, array  ('a', 'b') 

Table 4.6 gives the file formats and their descriptions. 
 

Table 4.6 File formats and their descriptions 
 

 

File 

Format 

 

Description 

 
 

Text file 

 

The default file format,  and a line represents  a record. The delimiting 

characters  separate  the lines. Text file examples are CSV, TSV,JSONand XML 

(Section 3.3.2). 

Sequential 

file 

 
Flat file which stores binary key-value pairs, and supports  compression. 

 

RCFile 
 

Record Columnar file (Section 3.3.3.3). 

 
ORCFILE 

 

ORC stands for Optimized Row Columnar which means it can store data in an 

optimized  way than  in the other  file formats  (Section 3.3.3.4). 

 

Record columnar  file means  one that  can be partitioned   in rows and  then 

partitioned  with columns. Partitioning  in this way enables serialization.



4.4.5  Hive Data Model 
 

Table  4. 7   below  gives  three   components   of  Hive  data   model   and   their 

descriptions. 
 

Table 4.7  Components (also called data units) of Hive Data Model 
 

 

Name 
 

Description 

 

Database 
 

Namespace for tables 

 

 
Tables 

 

Similar to tables in RDBMS 
 

Support filter, projection.join   and union operations 
 

The table data stores in a directory  in HDFS 

 

Partitions 
 

Table can have one or more partition  keys that  tell how the data stores 

 
 
Buckets 

 

Data in each partition  further  divides into buckets based on hash of a column 

in the table. 

Stored as a file in the partition  directory. 

 

4.4.6  Hive Integration and Workflow Steps 
 

Hive integrates  with the MapReduce and HDFS. Figure 4.11  shows the dataflow 

sequences and workflow steps between Hive and Hadoop. 
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Figure  4.11 Dataflow sequences and workflow steps 
 

Steps 1 to 11 are as follows: 

I      STEP I



 

No. OPERATION 

 
1 

 

Execute  Query: Hive interface  (CLI or Web Interface)  sends a query to Database 

Driver to execute the query. 

 
2 

 

Get Plan: Driver sends the query to query compiler that  parses the query to check 

the syntax and query plan or the requirement   of the query. 

 
3 

 

Get Metadata:   Compiler sends metadata  request  to Metastore  (of any database, 

such as MySQL). 

 

4 
 

Send Metadata:   Metastore  sends metadata  as a response  to compiler. 

 
5 

 

Send Plan:  Compiler checks the requirement   and resends  the plan to driver. The 

parsing  and compiling of the query is complete  at this place. 

 

6 
 

Execute  Plan:  Driver sends the execute plan to execution  engine. 

 

 
 

7 

 

Execute Job:  Internally,  the process of execution job is a MapReduce job. The 

execution  engine sends the job to JobTracker,  which is in Name node and it 

assigns this job to TaskTracker,  which is in Data node. Then, the query executes 

the job. 

 
8 

 

Metadata Operations:   Meanwhile the execution  engine can execute the 

metadata  operations  with Metastore. 

 

9 

 

Fetch  Result:  Execution engine receives the results  from Data nodes. 

 

10 
 

Send Results:  Execution engine sends the result to Driver. 

 

11 
 

Send Results:  Driver sends the results  to Hive Interfaces. 

 

4.4.7 Hive Built-in Functions 
 

Hive supports  a number  of built-in  functions. Table 4.8  gives the return  types, 

syntax and descriptions  of the examples of these functions. 
 

Table 4.8  Return types, syntax, and descriptions  of the functions 
 
 

Syntax                                                      Description



 

BIG INT round( double 

a) 

Returns the rounded  BIGINT (8 Byte integer)  value of the 8 Byte 

double-precision  floating point number  a 

 
BIG INT 

 

floor( double 

a) 

 

Returns the maximum BIGINT value that  is equal to or less than 

the double. 

 
BIG INT 

 
ceil(double a) 

 

Returns the minimum  BIGINT value that  is equal to or greater 

than  the double. 

 

 

double 

 
rand(), 

rand(int  seed) 

 

Returns  a random  number  (double) that  distributes  uniformly 

from o to 1  and that  changes in each row. Integer  seed ensured 
that  random  number  sequence  is deterministic. 

 

 

string 

concate(string 

strl,  string 

str2, ... ) 

 
Returns the string resulting  from concatenating   strl  with str2, 

..... 

 
string 

 

substr( string 

str, int start) 

 

Returns the substring  of str starting  from a start  position till 

the end of string  str. 

 

 

string 

subs tr( string 

str, int start, 

int length) 

 
Returns the substring  of str starting  from the start  position 

with the given length. 

 

 

string 

upper( string 

str), ucase 

(string  str) 

 
Returns the string resulting  from converting  all characters  of 

str to upper  case. 

 

 
string 

lower(string 

str), 

lcase(string 

str) 

 

 

Returns the string resulting  from converting  all characters  of 

str to lower case. 

 
string 

 

trim (string 

str) 

 

Returns the string resulting  from trimming  spaces from both 

ends. trim  ('12A34 56') returns  '12A3456' 

 

 
 

string 

 

ltrim(string 

str); 

rtrim(string 

str) 

 

Returns the string resulting  from trimming  spaces (only one 

end, left or right hand side or right-handside   spaces trimmed). 

ltrim('12A34 56') returns  '12A3456' and rtrim('  12A34 56 ') 

returns  '12A3456'. 

 
string 

 

rtrim(string 

str) 

 

Returns the string resulting  from trimming  spaces from the 

end (right hand side) of str. 



 

int 
year(string 

date) 
Returns the year part  of a date or a timestamp  string. 

 

int 
month(string 

date) 

 
Returns the month  part of a date or a timestamp  string. 

 

int 
day(string 

date) 

 
Returns the day part  of a date or a timestamp  string. 

 

Following are the examples of the returned output: 

SELECT floor(l0.5) from marks; Output= 10.0 

SELECT ceil(l0.5) from marks; Output= 11.0 
 

 

Self-Assessment Exercise linked  to LO 4.3 
 

1. How does Hive install? What are  the  features  of Hive? What are  the 

components of the Hivearchitecture? 

2. Give reasons  for Hive provided  with  distinct  integer  types: TINYINT, 

SMALLINT, INT and BIGINT. 

3.  Howdoes Hiveuse text, sequential, RC and ORC files? 
 

4.   How does the Hive use Collection data types: STRUCT, MAP and ARRAY? 
 

5.  How does Hive integrate  with MapReduce and HDFS? 
 

6. Give one example each of usages of round(),  floorl), ceil(), rand()  and 

upper() built-in functions in Hive. 
 
 
 

 

4.5 l HIVEQL 

Hive  Query  Language  (abbreviated   HiveQL) is  for 

querying  the  large datasets  which reside  in the  HDFS 

environment.   HiveQL script  commands  enable  data 

definition, data manipulation and query processing. 

HiveQL supports  a large  base  of SQL  users  who  are 

acquainted  with SQL to extract  information  from data 
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warehouses. 
 

 
HiveQL 

Process 

Engine 

 

HiveQLis similar to SQL for querying  on schema information  at the Metastore. 

It is one of the replacements   of traditional approach  for MapReduce program. 

Instead  of writing   MapReduce  program   in Java,  we  can  write  a  query  for 

MapReduce job and process it. 

 
Execution 

Engine 

 

The bridge  between  HiveQL process  Engine and MapReduce is Hive Execution 

Engine. Execution  engine  processes  the  query  and  generates results  same  as 

MapReduce results.  It uses the flavor of MapReduce. 

 

The subsections  ahead give the  details of data definition,  data manipulation 

and querying data examples. 
 

 

4.5.1 HiveQLData Definition Language(DDL) 
 

HiveQL database  commands for data definition  for DBs and Tables are CREATE 

DATABASE, SHOW DATABASE (list of all DBs), CREATE SCHEMA, CREATE TABLE. 

Following are HiveQL commands which create a table: 
 

CREATE [TEMPORARY]  [EXTERNAL] TABLE [IF NOT EXISTS] [sdatabase name=] 

<table name> 
 

[(<column  name> <data type> [COMMENT <column comment=], ...)] 

[COMMENT <table comment=] 

[ROW FORMAT <row formats] 
 

[STORED AS <file forrnat-] 
 

Table 4.9 gives the row formats in a Hive table. 
 

Table 4.9  Hive Table Row Formats 
 

 
DELIMITED 

 

Specifies a delimiter  at the table level for structured fields. This is default. 

Syntax: FIELDS TERMINATED BY, LINES TERMINATED BY 

 

SERDE 
 

Stands for Serializer /Deserializer.  SYNTAX: SERDE 'serde.class.narne' 

HiveQL  database  commands  for data  definition  for the  DBs and  Tables are 

CREATE DATABASE, SHOW DATABASE (list of all DBs), CREATE SCHEMA, CREATE 

TABLE. 
 

The   following   example   uses   HiveQL commands   to   create   a   database



toys      companyDB. 
 

 

EXAMPLE  4.7 
 

 

How  do  you  create   a  database   named   toys_companyDB    and  table   named 

toys_tbl? 
 

SOLUTION 
 

$HIVE_HOME/binhive  - service  di hive=set  

hive.cli.print.current.db=true; hive> 

CREATE DATABASE  toys_companyDB 

hive>USE toys_companyDB 

hive (toys_companyDB)>  CREATE TABLE toys_tbl  ( 
 

-puzzle code  STRING, 
 

=pieces SMALLINT 
 

=cost FLOAT); 
 

hive  (toyscompany)»  quit; 
 

&ls/home/binadmin/Hive/warehouse/toys_companyDB.db 
 
 

The  following   example   uses  the  command   CREATE  TABLE to  create   a table 

toy _products. 
 

 

EXAMPLE  4.8 
 

 

How do you create  a table  toy _products   with  the  following  fields? 
 

 
 Fltid Data type 

u tCategmy stt ag 

Pr uctlcl 1Dt 

~ 

p 

nr-tNariite 

lll  ~PFice 

trlng 

float 

 

SOLUTION 
 

CREATE TABLE IF  NOT  EXISTS toy _products     (ProductCategory      String,



Productld int, ProductName   String,  ProductPrice   float) 

COMMENT'Toy details' 

ROW FORMATDELIMITED 

FIELDS TERMINATEDBY '\t' 

LINES TERMINATEDBY  '\n' 

STORED AS TEXTFILE; 

The  option   IF NOT EXISTS, Hive  ignores   the  statement  in  case  the  table 

already  exists. 
 
 

Consider  the following  command: 

A command  is 

CREATE DATABASEISCHEMA  [IF NOT EXISTS] <database name>; 
 

IF NOT EXISTS is  an  optional    clause.   The  clause   notifies   the   user   that   a 

database   with  the  same  name   already   exists.   SCHEMA  can  be  also  created   in 

place  of DATABASE using  this  command 
 

A command  is written   to get the  list of all existing  databases. 

SHOW DATABASES; 

A command  is written   to delete  an existing  database. 

DROP (DATABASEISCHEMA) 

[RESTRICT I      CASCADE]; 

[IF EXISTS]  <database  name>

 

The following  example  gives the  sample  usages  of the  commands. 
 

 

EXAMPLE 4.9 
 

 

Give examples  of usages  of database  commands   for CREATE,  SHOW and  DROP. 

SOLUTION 

CREATE DATABASE IF NOT EXISTS toys  companyDB; 

SHOW DATABASES; 

default toys_companyDB 
 

*Default database  is test.



 
 

 
fP111.ZZle_ 

Delete  dtabase using  the command: 

Drop Database toys companyDB. 

 

 

4.5.2 HiveQL Data Manipulation Language  (DML) 
 

HiveQL commands  for  data  manipulation   are  USE <database  name>,  DROP 

DATABASE, DROP SCHEMA, ALTER TABLE, DROP TABLE, and LOAD DATA. 
 

The following is a command for inserting (loading) data into the Hive DBs. 
 

LOAD DATA [LOCAL] INPATH '<file path>' [OVERWRITE] INTO 

TABLE <table name> [PARTITION (partcoll=vall, 

partcol2=val2  ... )] 

LOCAL is an identifier  to specify the local path.  It  is optional.  OVERWRITE is 

optional to overwrite the data in the table. PARTITION is optional. vall  is value 

assigned to partition column 1  (partcoll) and valz is value assigned to partition 

column 2 (partcolz). 
 

 

Command 
 

Functionality 
 

Script  Example 

 

 
LOAD 

DATA 

 

 
Insert   data  in a 

table 

 

LOAD DATA LOCAL  INPATH '/home/user/ 

jigsaw _puzzle_info.txt' 

OVERWRITE  INTO TABLE toy_tbl; 

 

The  following  is  an  example  for  usages  of data  manipulation   commands, 

INSERT, ALTER, and DROP. 
 

 
EXAMPLE  4.10 

 

 

Consider an example of a toy company selling Jigsaws. Consider a text file 

named jigsaw_puzzle_info.txt  in /home/user directory.  The file is text  file 

with four fields: Toy-category, toy-id, toy-name, and Price in US$ as follows: 
 
 
 
 

 
How will you use (i) LOAD (insert), (ii) ALTER and (iii) DROP commands? 

 

SOLUTION



(i) Insert  the  data  of this  file into  a table  using  the  following  commands: 

LOAD DATALOCAL INPATH '/home/user/   jigsaw_puzzle_info.txt' 

OVERWRITEINTO TABLEjigsaw_puzzle; 

(ii)  Alter the table  using  the  following  commands: 

ALTERTABLE<name> RENAMETO <new name> 

ALTERTABLE<name> ADD COLUMNS(<col spec> [, <col spec> ...]) 

ALTERTABLE<name> DROP [COLUMN]<column  name> 

ALTER TABLE <name>  CHANGE <column  name>  <new  name>  <new 

type> 

ALTERTABLE<name> REPLACECOLUMNS(<col spec-],   <col spec> ...]) 

The following  query  renames the  table  from jigsaw _puzzle  to toy _tbl: 

ALTERTABLEjigsaw_puzzle  RENAMETO toy_tbl; 

The  following  query  renames the  column  name  ProductCategory to 

ProductCat: 
 

ALTERTABLEtoy_tbl  CHANGEProductCategory ProductCat String; 
 

The following  query  renames data  type  of ProductPrice from  float  to 

double: 
 

ALTERTABLEtoy_tbl  CHANGEProductPrice ProductPrice  Double; 
 

The   following   query   adds   a  column   named   ProductDesc    to   the 

toy _tbl table: 
 

ALTERTABLEtoy_tbl  ADD COLUMNS(ProductDesc   String  COMMENT 

'Product Description'); 
 

The  following  query  deletes   all the  columns from  the  toy_tbl  table 

and replaces it with  ProdCat  and ProdName  columns: 
 

ALTER TABLE toy_tbl    REPLACE COLUMNS (ProductCategory  INT 

ProdCat  Int, ProductName STRINGProdName  String); 
 

(iii) The  following  query  deletes  a column  named  ProductDesc   from  the 

toy_tbl  table:



ALTER TABLE  toy_tbl  DROP  COLUMN  ProductDesc; 
 

A table  DROP  using  the  following  command:  DROP  TABLE  [IF EXISTS] 

table_name; 
 

The following query drops a table named jigsaw _puzzle: 

DROP TABLE IF EXISTS jigsaw _puzzle; 

 
 

4.5.3 HiveQLFor Queryingthe Data 
 

Partitioning  and storing are the requirements.  A data warehouse  should have a 

large number of partitions  where the tables, files and databases store. Querying 

then requires sorting, aggregating and joining functions. 

Querying the data is to SELECT a specific entity  satisfying a condition,  having 

presence of an entity or selecting specific entity using GroupBy . 
 

SELECT [ALL I                        DISTINCT] <select expression>, <select 

expression>,  ... 
 

FROM <table name> 
 

[WHERE <where condition>] 

[GROUP BY <column List>] 

[HAVING <having condition>] 

[CLUSTER BY <column List>I [DISTRIBUTE BY <column 

List>] [SORT BY <column List>]] 

[LIMIT number]; 

4.5.3.1 Partitioning 
 

Hive organizes tables  into partitions.  Table partitioning  refers  to dividing the 

table  data  into  some parts  based  on the  values  of particular   set of columns. 

Partition  makes querying easy and fast. This is because SELECT   is then from the 

smaller number  of column fields. Section 3.3.3.3  described RC columnar  format 

and   serialized   records.   The   following  example   explains   the   concept   of 

partitioning,  columnar and file records formats. 
 

 

EXAMPLE 4.11



Consider  a table  T  with  eight-column  and  four-row  table.  Partition  the 

table, convert in RC columnar format and serialize. 
 

SOLUTION 
 

Firstly, divide the  table  in four parts,  tr1,   tr2,  tr3  and tr4  horizontally  row• 

wise. Each sub-table has one row and eight columns. Now, convert each sub• 

table  tr1,   trz, tr3   and tr4  into  columnar  format,  or RC  File records  [Recall 

Example 3.7  on how RC  file saves each row-group  data  in a format  using 

SERDE (serializer / des-serializer)]. 

Each sub-table has eight rows and one column. Each column can serially 

send data one value at an instance. A column has eight key-value pairs with 

the same key for all the eight. 
 

 
 

Table Partitioning 
 

Create a table with Partition using command: 
 

CREATE [EXTERNAL] TABLE <table name> (<column name 1> 

<data type 1>,        ) 
 

PARTITIONED BY (<column name n> <data type n> [COMMENT 

<column comment>], ... ); 
 

Rename  a Partition  in the existing Table using the following command: 
 

ALTER TABLE <table name> PARTITION partition spec 

RENAME TO PARTITION partition_spec; 

Add a Partition  in the existing Table using the following command: 
 

ALTER TABLE <table name> ADD [IF NOT EXISTS] PARTITION 

partition_spec
 

[LOCATION 

'location2'] 

 

'locationl']    partition spec    [LOCATION 
 
•    •    •   I

 

partition_spec: (p column 

p_col_value,  ... ) 

 

p col_value,   p column

Drop a Partition  in the existing Table using the following command: 
 

ALTER  TABLE  <table  name>  DROP  [IF EXISTS]  PARTITION 

partition spec, PARTITION partition spec;



The following example explains concept of add, rename and drop a partition. 
 
 

EXAMPLE  4.12 
 

 

How will you add, rename and drop a partition  to a table, toys_tbl? 
 

SOLUTION 
 

(i)    Add a partition  to the existing toy table using the command: 
ALTER      TABLE toy_tbl     ADD     PARTITION

 

(category='Toy_Airplane') 

'/Toy_Airplane/partAirplane'; 
 

(ii)   The following query renames a partition: 

 

location

ALTER TABLE 

(category='Toy_Airplane') 

(name='Fighter'); 

toy_tbl 

RENAME 

PARTITION 

TO  PARTITION

 

(iii)  Drop a Partition  in the existing Table using the command: 
 

ALTER TABLE  toy_tbl  DROP  [IF EXISTS]  PARTITION 

(category='Toy_Airplane'); 

 
 

The   following  example   explains   how   querying   is  facilitated   by  using 

partitioning  of a table. A query processes faster when using partition.  Selection 

of a product  of a specific category from a table during  query processing takes 

lesser time when the table has a partition  based on a category. 
 

 

EXAMPLE  4.13 
 

 

Assume that following file contains toys_tbl. 
 

/table/toy_tbl/filel 
 

Category, id,  name, price 
 

Toy_Airplane, 10725, Lost Temple,   1.25 
 

Toy_Airplane, 31047, Propeller Plane, 2.10 

Toy_Airplane, 31049, Twin Spin Helicopter, 3.45 



Toy_Train, 31054, Blue Express, 4.25 
 

Toy_Train, 10254, Winter Holiday Toy_Train, 2.75 

A  table  toy_tbl contains  many  values  for  categories  of toys.  Query  is 

required  to identify  all toy _airplane  fields. Give reasons  why partitioning 

reduces query processing time. 
 

SOLUTION 
 

Here, a table named toy _tbl contains several toy details (category, id, name 

and  price).  Suppose it  is required  to  identify  all the  airplanes.  A  query 

searches  the  whole  table  for  the  required   information.   However,  if  a 

partition   is created  on the  toy _tbl, based  on category  and  stores  it in a 

separate file, then it will reduce the query processing time. 
 

Let the data partitions  into two files, file 2 and file 3, using category. 
 

/table/toys/toy_airplane/file2 
 

toy_airplane,  10725, Lost Temple, TP, 1.25 

toy_airplane,  31047, Propeller Plane, 2.10 

toy_airplane,  31049, Lost Temple, 3.45 

/table/toys/toy_train/file3 
 

Toy_Train, 31054, Blue Express, 4.25 
 

Toy_Train, 10254, Winter Holiday Toy_Train, 2.75 
 

 

Advantages of Partition 
 

1.   Distributes execution load horizontally. 
 

2. Query response  time becomes faster when processing  a small part  of the 

data instead of searching the entire dataset. 

Limitations of Partition 
 

1. Creating a large number  of partitions  in a table leads to a large number of 

files and directories  in HDFS, which is an overhead to NameNode, since it 

must keep all metadata  for the file system in memory only. 

2.   Partitions  may optimize  some queries  based on Where clauses, but  they 

may be less responsive for other important  queries on grouping clauses.



3.   A large number  of partitions  will lead to a large number  of tasks (which 

will run  in separate JVM) in each MapReduce job, thus  creating  a lot of 

overhead in maintaining JVM start  up and tear down (A separate  task will 

be used for each file). The overhead  of JVM start  up and tear  down can 

exceed the actual processing time in the worst case. 

4.5.3.2 Bucketing 
 

A partition  itself may have a large  number  of columns when  tables  are very 

large. Tables or partitions  can be sub-divided into buckets. Division is based on 

the hash of a column in the table. 
 

Consider bucketed column Cbucket_i· First, define a hash_function  H() according 

to type of the bucketed  column. Let the total  number  of buckets =  Nbuckets·  Let 

Cbucket_i   denote  ith  bucketed  column.  The  hash  value  hi =   hashing  function 

H(Cbucket)  mod (Nbuckets). 

Buckets provide an extra structure  to the data that  can lead to more efficient 

query processing when compared to undivided tables or partition.  Buckets store 

as a file in the partition  directory.  Records with the same bucketed column will 

always be  stored  in the  same  bucket.  Records kept  in  each  bucket  provide 

sorting  ease and enable Map task Joins. A Bucket can also be used as a sample 

dataset. 
 

CLUSTERED   BY  clause  divides  a  table  into  buckets.  A  coding  example  on 

Buckets is given below: 
 
 

EXAMPLE  4.14 
 

 

A  table  toy_tbl contains  many  values  for  categories  of toys.  Assume the 

number of buckets to be 

created=  5. Assume a table for Toy_ Airplane  of product code 10725. 
 

1.   How will the bucketing enforce? 
 

2.   How will the  bucketed  table  partition   toy_   airplane_      l O 7 2 5  create 

five buckets? 

3.   How will the bucket column load into toy_ t.b I? 
 

4.   How will the bucket data display?



SOLUTION 
 

#Enforce bucketing 
 

set hive.enforce.bucketing=true; 
 

#Create bucketed  Table for toy _airplane  of product  code 10725  and create 

cluster of 5 buckets 
 

CREATE TABLE IF NOT EXISTS 

toy_airplane_10725(ProductCategory   STRING, 

Productid INT, ProductName STRING, PrdocutMfgDate 

YYYY-MM-DD, ProductPrice_US$  FLOAT) CLUSTERED BY 

(Price) into 5 buckets; 

# Load data to bucketed table. 
 

FROM toy_airplane_10725  INSERT OVERWRITE TABLE 

toy_tbl SELECT ProductCategory,  Productid, 

ProductName, PrdocutMfgDate,  ProductPrice; 
 

• To display the  contents  for Price_US$ selected for the  Productld  from 

the second bucket. 
 

SELECT DISTINCT Productid FROM toy_tbl_buckets 

TABLE FOR 10725(BUCKET 2 OUT OF 5 ON Price US$); 
 

 
4.5.3.3 Views 

 

A program  uses functions  or objects. Constructing  an object instance  enables 

layered  design  and  encapsulating  the  complexity  due to  methods  and  fields. 

Similarly, Views provide ease of programming.  Complex queries simplify using 

reusable Views. A HiveQLView is a logical construct. 
 

A View provisions the following: 
 

•       Saves the query and reduces the query complexity 
 

•      Use a View like a table but a View does not store data like a table 
 

• Hive query statement  when uses references  to a view, the Hive executes 

the View  and  then   the   planner   combines  the   information   in  View 

definition  with  the  remaining  actions  on the  query  (Hive has  a query 

planner,  which plans how a query breaks  into  sub-queries  for obtaining



the  right  answer.) 
 

• Hides the  complexity   by dividing  the  query  into  smaller,  more  manageable 

pieces. 
 

4.5.3.4 Sub-Queries (Using Views) 
 

Consider the following query with a nested sub-query. 
 
 

EXAMPLE  4.15 
 

 

A table toy_tbl contains  many values for categories  of toys. Assume a table 

for Toy_Airplane of product code 10725.Consider a nested query: 
 

FROM ( 

SELECT * toy _tbl_Join people JOINToy_Airplane 
 

ON (Toy_Airplane.Productld= productld.id) WHERE productld=10725 
 

) toys_ catalog SELECT prdocutMfgDate WHERE prdocutMfgDate = '2017- 

10-23'; 
 

Create a View for using that in a nested query. 
 

SOLUTION 
 

# create      a  view   named  toy_tbl_MiniJoin 
 

CREATE    VIEW    toy _tbl_MiniJoin AS 

SELECT * toy _tbl_Join people JOINToy_Airplane 
 

ON (Toy_Airplane.Productld= productld.id) WHERE productld=10725 
 

) toys_ catalog SELECT prdocutMfgDate WHERE prdocutMfgDate = '2017- 

10-23'; 
 

 

4.5.4 Aggregation 
 

Hive supports  the following built-in  aggregation  functions.  The usage of these 

functions is same as the SQL aggregate functions. Table 4.10 lists the functions, 

their syntax and descriptions. 
 

Table 4.10  Aggregate functions, their return  type, syntax and descriptions



Return 

Type 

Syntax Description 

 
BIG INT 

 

count(*), 

count(  expr) 

 
Returns   the  total  number  of retrieved  rows. 

 

 
DOUBLE 

 

surntcol), 

sum(DISTINCT 

col) 

 
Returns   the  sum  of the  elements   in the  group   or the  sum  of the 

distinct   values  of the  column   in the  group. 

 
 
DOUBLE 

 

avg (col), 

avg (DISTINCT 

col) 

 
Returns   the  average   of the  elements   in the  group  or the 

average   of the  distinct   values  of the  column   in the  group. 

 

DOUBLE 
 

min  (col) 
 

Returns   the  minimum   value  of the  column   in the  group. 

 

DOUBLE 
 

max(col) 
 

Returns   the  maximum   value  of the  column   in the  group. 

 

Usage examples are: 
 

Example:  SELECT   ProductCategory,   count   (*)  FROM toy _tbl   GROUP BY 

ProductCategory; 
 

Example: SELECT ProductCategory,  sum(ProductPrice)  FROM toy_tbl  GROUP 

BY ProductCategory; 
 

 

4.5.5  Join 
 

A JOIN clause combines  columns  of two or  more  tables,  based  on a relation 

between them. HiveQLJoin is more or less similar to SQL JOINS.  Following uses 

of two tables show the Join operations. 
 

Table 4.11  gives an example  of a table  named  toy_tbl of Product  categories, 

Productid and Product name. 
 

Table 4.11  Table of Product categories, Product Id and Product name 
 

 

ProductCategory 
 

Productld 
 

ProductName 

 

Toy_Airplane 
 

10725 
 

Lost temple 

 

Toy_Airplane 
 

31047 
 

Propeller  plane 

 

Toy_Airplane 
 

31049 
 

Twin spin helicopter 



 

Toy_Train 
 

31054 
 

Blue express 

Toy_Train 10254 
 

Winter holiday Toy_Train 

 

Table  4.12  gives  an  example   of a table  named  price of ID  or  Product   ID  and 

ProductCost. 
 

Table  4.12  Table of ID and Product  Cost 
 

Id 
 

ProductPrice 

10725 100.0 

31047 200.0 

31049 300.0 

31054 450.0 

10254 200.0 
 

Different  types  of joins  are follows: 

JOIN 

LEFT OUTER JOIN 
 

RIGHT OUTER JOIN 

FULL OUTER JOIN 

JOIN Join  clause  combines  and retrieves the  records  from  multiple  tables. Join  is 

the  same  as OUTER JOIN in SQL. A JOIN condition   uses  primary   keys and  foreign 

keys of the  tables. 
 

SELECT t.Productid, t.ProductName, p.ProductPrice 
 

FROM toy_tbl t JOIN price p 
 

ON (t.Productid =   p.Id); 
 

LEFT OUTER JOIN  A LEFT JOIN returns   all the  values  from  the  left table,  plus the 

matched   values   from  the   right   table,  or  NULL in  case  of  no  matching   JOIN 

predicate. 
 

SELECT t.Productid, t.ProductName,   p.ProductPrice 
 

FROM toy_tbl t LEFT OUTER JOIN price p 
 

ON (t.Productid =    p.Id);



RIGHT  OUTER JOIN  A RIGHT JOIN  returns     all  the   values   from   the   right   table, 

plus  the  matched  values   from  the  left  table,   or  NULL in case  of no  matching  join 

predicate. 
 

SELECT t.Productid, t.ProductName, p.ProductPrice 
 

FROM toy_tbl t RIGHT OUTER JOIN price p 
 

ON (t.Productid =   p.Id); 
 

FULL OUTER JOIN HiveQL FULL OUTER JOIN combines   the  records   of both  the 

left  and  the  right   outer   tables  that   fulfill  the  JOIN condition.   The joined   table 

contains   either   all the  records   from  both  the  tables,  or fills in NULL values  for 

missing  matches  on either  side. 
 

SELECT t.Productid, t.ProductName, p.ProductPrice 
 

FROM toy_tbl t FULL OUTER JOIN price p 

ON (t.Productid =  p.Id); 

 

4.5.6  Group by Clause 
 

GROUP BY, HAVING,ORDER BY DISTRIBUTEBY,  CLUSTER  BY are HiveQL clauses. 

An example  of using  the  clauses  is given below: 
 

 

EXAMPLE 4.16 
 

 

How  do   SELECT statement   uses   GROUP BY,  HAVING, DISTRIBUTE BY, 

CLUSTER BY? How does clause  GROUP BY used in queries  on toy_tbl? 
 

SOLUTION 
 

(i)    Use of SELECT statement with  WHEREclause  is as follows: 
 

SELECT   [ALL     DISTINCT]  <select  expression>, 

<select expression>,  ... 

FROM <table name> 

[WHERE <where condition>] 

[GROUP BY <column List>] 

[HAVING <having condition>] 

[CLUSTER BY <column List>I [DISTRIBUTE BY <column 

List> J         [  SORT BY <column List>] ]



[LIMIT number]; 
 

(ii)  Use of the clauses in queries to toy _tbl is as follows: 

SELECT*  FROM toy WHERE ProductPrice > 1.5; 

SELECT ProductCategory,  count (*)  FROM toy_tbl 

GROUP BY ProductCategory; 
 

SELECT ProductCategory,  sum(ProductPrice)  FROM 

toy_tbl GROUP BY ProductCategory; 
 
 
 

Self-Assessment Exercise  linked  to LO 4.4 
 

1.   What are the results after execution  of the following  command? 
 

CREATE TABLE IF NOT EXISTS toy_products 

(ProductCategory String, Productid int, ProductNarne 

String, ProductPrice float) 
 

COMMENT 'Toy details' 

ROW FORMAT DELIMITED 

FIELDS TERMINATED BY '\t' 

LINES TERMINATED BY '\n' 

STORED AS TEXTFILE; 

2.   What do the following  statements mean? 
 

ALTER TABLE <puzzle info> RENAME TO 

<jigsaw_puzzle info> 
 

ALTER TABLE <jigsaw_puzzle info> ADD COLUMNS 

(<puzzle code_narne>[,<pieces> [,<puzzle_cost> [,   ... ]) 
 

ALTER TABLE <jigsaw_puzzle info> DROP [COLUMN] 

<puzzle cost_US$> 
 

3.   How do you create partitions and buckets in a Hive database? 
 

4. Consider  sales  table  for  all  five  car  models   at  a  large  number of 

showrooms.  How are the sales figures of a specific model queried? 
 

5.   Explain the meaning of the following  statements: 
 

SELECT [ALL I                    DISTINCT] <select expression>, <select



 

expression>,  ...  

FROM <table name> 

[WHERE <where condition>] 

[GROUP BY <column List>] 

[HAVING <having condition>] 

[CLUSTER BY <column List>I [DISTRIBUTE BY <column 

List>]  [SORT BY <column List>]] 
 

[LIMIT number]; 

 
 
 

 

4.6 ! PIG 

Apache developed Pig, which: 
 

Is an abstraction  over MapReduce 
 

Is an execution framework for parallel processing 
 

Reduces the complexities of writing a MapReduce 

program 

 

 
Pig,  arnh iteah.11re. 6ru nt 

shell  colilITlmands, 
dsta model. Pi g1 l!.a~illil, 
dev~opiimg  scripts,  anol 
12Xtens:ibi  lint  !JSlliilg  U D'Fs

 

• Is a high-level  dataflow  language.  Dataflow language  means  that  a Pig 

operation  node  takes  the  inputs  and generates  the  output  for the  next 

node 
 

•      Is mostly used in HDFS environment 
 

•      Performs data manipulation  operations  at files at data nodes in Hadoop. 
 

1. Applications ofApache Pig 
 

Applications of Pig are: 
 

•      Analyzing large datasets 
 

•      Executing tasks involving adhoc processing 
 

•      Processing large data sources such as web logs and streaming online data 
 

•      Data processing for search platforms. Pig processes different types of data



•       Processing time  sensitive  data loads; data  extracts  and analyzes quickly . 

For  example,  analysis  of  data  from  twitter   to  find  patterns   for  user 

behavior and recommendations. 
 

2. Features 
 

(i) Apache  PIG helps  programmers   write  complex  data  transformations 

using scripts  (without  using Java). Pig Latin language  is very similar to 

SQL and possess a rich set of built-in operators,  such as group.join,  filter, 

limit, order  by, parallel,  sort  and  split. It  provides  an interactive  shell 

known  as Grunt  to write  Pig Latin scripts.  Programmers  write  scripts 

using Pig Latin to analyze data. The scripts  are internally  converted  to 

Map  and  Reduce  tasks  with  the   help  of  the  component   known  as 

Execution Engine, that accepts the Pig Latin scripts as input and converts 

these scripts into MapReducejobs. Writing MapReduce tasks was the only 

way to process the data stored in HDFS before the Pig. 

(ii) Creates user  defined  functions  (UDFs)  to write  custom  functions  which 

are not available in Pig. A UDF can be in other  programming  languages, 

such as Java, Python,  Ruby, Jython, ]Ruby. They easily embed  into  Pig 

scripts written  in Pig Latin. UDFs provide extensibility to the Pig. 

(iii) Process  any kind  of data,  structured,   semi-structured   or  unstructured 

data, coming from various sources. 

(iv) Reduces the length  of codes using multi-query  approach.  Pig code of 10 

lines is equal to MapReduce code of 200 lines. Thus, the processing is very 

fast. 

(v)    Handles inconsistent  schema in case of unstructured  data as well. 
 

(vi) Extracts the data, performs  operations  on that  data and dumps the data 

in the  required  format  in  HDFS.  The  operation  is called  ETL  (Extract 

Transform Load). 

(vii) Performs automatic optimization  of tasks before execution. 
 

(viii)Programmers  and  developers  can concentrate   on the  whole  operation 

without a need to create mapper and reducer tasks separately.



(ix)  Reads the  input  data  files from  HDFS or the  data  files from  other  sources 

such as local file system,  stores  the  intermediate    data  and writes  back the 

output  in HDFS. 
 

(x) Pig characteristics     are  data  reading,   processing,   programming    the  UDFs 

in multiple   languages   and  programming    multiple   queries  by fewer  codes. 

This causes  fast processing. 

(xi)  Pig   derives    guidance    from    four   philosophies,     live   anywhere,     take 

anything,   domestic  and  run  as if flying. This justifies   the  name  Pig, as the 

animal pig  also  has  these   characteristics.     Table  4.13   gives differences 

between Pig and MapReduce. 

Table 4.13  Differences between Pig and MapReduce 
 

 

Pig 
 

MapReduce 

A dataflow language A data processing  paradigm 

High level language  and flexible Low level language  and rigid 

 

PerformingJoin,   filter, sorting  or ordering 

operations  are quite simple 

Relatively difficult to perform Join, filter, 

sorting  or ordering  operations  between 

datasets 

Programmer  with a basic knowledge of SQL 

can work conveniently 

ComplexJava  implementations   require 

exposure  to Java language 

Uses multi-query  approach,  thereby 

reducing  the length  of the codes 

significant! y 

 

Require almost 20 times more the number  of 

lines to perform  the same task 

No need for compilation  for execution; 

operators  convert  internally  into 

MapReduce jobs 

 

 

Long compilation  process for Jobs 

Provides nested  data types like tuples, bags 

and maps 

 

No such data types 

 

Table 4.14 gives differences between Pig and SQL. 
 

Table 4.14  Differences between Pig and SQL 
 

 

Pig 
 

SQL 

 

Pig Latin is a procedural  language 
 

A declarative  language 



 

 

Schema is optional,  stores  data without  assigning a 

schema 

 

Schema is mandatory 

Nested relational  data model Flat relational  data model 

 

Provides limited opportunity   for Query optimization 
More opportunity   for query 

optimization 

Pig and Hive codes, both create  MapReduce jobs when execute. Hive in some 

cases, operates on HDFS in a similar way Apache Pig does. Table 4.15 gives a few 

significant points that set Pig apart from Hive. 
 

Table 4.15  Differences between Pig and Hive 
 

 

Pig 
 

Hive 

 

Originally created  at Yahoo 
 

Originally created  at Facebook 

 

Exploits Pig Latin language 
 

Exploits HiveQL 

 
Pig Latin is a dataflow language 

 

HiveQL is a query processing 
language 

 

Pig Latin is a procedural  language  and it fits in pipeline 

paradigm 

 
HiveQL is a declarative  language 

 

Handles structured,   unstructured   and semi-structured 

data 

 
Mostly used for structured   data 

3. Pig Architecture 
 

Firstly, Pig Latin scripts submit to the Apache Pig Execution Engine. Figure 4.12 

shows Pig architecture  for scripts dataflow and processing in the HDFS 

environment. 
 



Figure  4.12  Pig architecture  for scripts dataflow and processing 
 

The three ways to execute scripts are: 
 

1.   GruntShell:  An interactive  shell of Pig that executes the scripts. 
 

2.   Script File: Pig commands  written   in  a  script  file that  execute  at  Pig 

Server. 
 

3.   Embedded Script:  Create UDFs for the functions unavailable in Pig built• 

in operators.  UDF  can be in other  programming  languages. The UDFs can 

embed in Pig Latin Script file. 

ParserA parser  handles Pig scripts after passing through  Grunt or Pig Server. 

The Parser performs type checking and checks the script syntax. The output is a 

Directed  Acyclic  Graph  (DAG).   Acylic  means   only  one  set  of  inputs   are 

simultaneously  at  a  node,  and  only  one  set  of output  generates   after  node 

operations.  DAG   represents   the  Pig Latin  statements   and  logical  operators. 

Nodes represent   the  logical operators.  Edges between  sequentially  traversed 

nodes represent  the dataflows. 
 

Optimizer    The    DAG      is    submitted     to    the     logical    optimizer.     The 

optimization  activities,  such as split, merge, transform  and reorder  operators 

execute in this phase. The optimization  is an automatic  feature. The optimizer 

reduces  the  amount   of  data  in  the  pipeline  at  any  instant   of time,  while 

processing the extracted  data. It executes certain functions for carrying out this 

task, as explained as follows: 
 

PushUpFilter: If there  are multiple  conditions  in the filter  and the filter can be 

split,  Pig  splits  the   conditions   and  pushes   up  each  condition   separately. 

Selecting these  conditions  at an early stage helps  in reducing  the  number  of 

records remaining in the pipeline. 
 

PushDownForEachFlatten: Applying  flatten,   which  produces   a  cross  product 

between a complex type such as a tuple, bag or other fields in the record, as late 

as possible in the plan. This keeps the number of records low in the pipeline. 
 

ColumnPruner: Omitts  never  used  columns  or  the   ones  no  longer  needed, 

reducing the size of the record. This can be applied after each operator,  so that 

the fields can be pruned as aggressively as possible. 
 

MapKeyPruner: Omitts never used map keys, reducing the size of the record.



LimitOptimizer: If the  limit  operator  is immediately  applied  after  load or  sort 

operator,  Pig converts  the  load or sort  into  a limit-sensitive  implementation, 

which does not require  processing the whole dataset. Applying the limit earlier 

reduces the number of records. 
 

Compiler  The compiler compiles after the optimization  process. The optimized 

codes are a series of MapReduce jobs. 
 

Execution   Engine  Finally, the  MapReduce jobs  submit  for  execution  to  the 

engine. The MapReducejobs execute and it outputs the final result. 
 

 

4.6.1  Apache  Pig - Grunt  Shell 
 

Main use  of Grunt  shell is for writing  Pig Latin scripts.  Any shell command 

invokes using sh and ls. Syntax of sh command is: 
 

grunt> sh shell command parameters 
 

Syntax ofls command: 
 

grunt> sh ls 
 

Grunt shell includes a set of utility commands. Included utility commands are 

clear,     help,   history,     quit    and set.   The shell includes   commands  such as 

exec,   kill     and run  to control the Pig from the Grunt shell. 
 

 

4.6.2  Installing  Pig 
 

Following are the steps for installing Pig: 
 

1.   Download the latest version from - https://pig.apache.org/ 
 

2.   Download the tar files and create a Pig directory 
 

$  cd Downloads/ 
 

$  tar zxvf pig-0.15.0-src.tar.gz 
 

$   tar zxvf pig-0.15.0.tar.gz 
 

$ mv pig-0.15.0-src.tar.gz/*  /home/Hadoop/Pig/ 
 

3.   Configure the Pig 
 

export PIG HOME   /home/Hadoop/Pig



export PATH=  $PATH:/home/Hadoop/pig/bin 

export PIG CLASSPATH   $HADOOP HOME/conf 

 

4.6.3 Pig LatinData  Model 
 

Pig Latin supports  primitive  data types which are atomic or scalar data types. 

Atomic data types are int, float, long, double, char[],  byte[].  The language also 

defines complex data types. Complex data types are tuple, bag and map. Table 

4.16 gives data types and examples. 
 

Table 4.16  Data types and examples 
 

Data type 
 

Description 
 

Example 

bag Collection   of tuples {(1,1),  (2,4)} 

tuple Ordered set of fields (1,1) 

map (data  map) Set of key-value pairs [Numberst] 

int Signed 32-bit  integer 10 

long Signed 64-bit integer lOL or 101 

float 32-bit  floating point 22.7F or 22.7f 

double 64-bit floating point 3.4 or 3.4e2 or 3.4E2 

char array Char[],  Character  array data analytics 

byte array BLOB (Byte array) ffoo 
 

A simple atomic value is known as a field.  For example, 'Oreo' or '10'  are fields. 

Atomic means non-divisible. NULL denotes an unknown or non-existent  value in 

Pig Latin. 
 

Tuple Tuple is a record of an ordered set of fields. A tuple is similar to a row in a 

table of RDBMS. The elements  inside a tuple  do not necessarily  need to have a 

schema associated to it. A tuple represents  by'()'  symbol. For example, (1, Oreo, 

10, Cadbury) 
 

Indices of the fields access the fields in each tuple. Tuples are ordered,  like $1 

from above tuple will return  a value 'Oreo'. 
 

Figure 4.13 shows Pig data model with fields, Tuple and Bag.
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Figure  4.13 Pig Data Model with fields, Tuple and Bag 
 

Bag A bag is an unordered  set of tuples. A bag can contain duplicate tuples as it 

is not mandatory  that they need to be unique.  Each tuple can have any number 

of fields (flexible schema). A bag can also have tuples with different data types. 
 

{}  symbol represents  a bag. It is similar to a table in RDBMS, but unlike a table 

in RDBMS,  it is not  necessary  that  every tuple  contains  the  same number  of 

fields or that  the fields in the same position  (column) have the same type. For 

example, {{Oreo, 10), (KitKat, 15, Cadbury)} 
 

There are two types of bag: outer bag or relations  and inner bag. Outer bag or 

relation  is a bag of tuples.  Here relations  are similar as relations  in relational 

databases.  To understand   it better  let  us take  an example:  {(Oreo, Cadbury), 

(KitKat, Nestle),  (Perk,  Cadbury)}. This  bag  explains  the   relation   between 

the Chocolate brand and their brand company. 
 

A bag can be a field in a relation; in that  context, it is known as an inner bag. 

Thus, an inner bag contains a bag inside a tuple. Figure 4.14 shows a relation and 

keys and their values: (Cadbury, {(Oreo,10), (Perk,s)}) (Nestle {{Kitkat,15)}) 
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Figure  4.14 Relation and corresponding  keys and their values (key-value 

pairs)



Relation A relation  is a bag of tuples. The relations  in Pig Latin are unordered 

(there is no guarantee  that tuples are processed in any particular  order). 
 

Map A map (or data map) is a set of key-value pairs. The key needs to be of type 

chararray  and should be unique (similar to a column name). Map can be indexed 

and value associated with it can be accessed from the keys. The value might be 

of any type. [] symbol represents  Map. The key and value separate by '#'  symbol. 

For example, [type#Oreo,     price#lO] 
 

 

4.6.4 Pig Latinand Developing  Pig Latin Scripts 
 

Pig Latin enables developing the scripts for data analysis. A number of operators 

in  Pig Latin  help  to  develop  their   own  functions  for  reading,  writing  and 

processing data. Pig Latin programs execute in the Pig run-time  environment. 
 

Pig Latin 
 

Statements in Pig Latin: 
 

1.   Basic constructs  to process the data. 
 

2.   Include schemas and expressions. 
 

3.   End with a semicolon. 
 

4.  LOAD statement  reads the data from file system, DUMP displays the result 

and STORE stores the result. 

5.  Single line comments  begin with - - and multiline  begin with/*   and end 

with*/ 

6.   Keywords (for example, LOAD, STORE, DUMP)  are not case-sensitive. 
 

7.   Function names, relations and paths are case-sensitive. 
 

Figure 4.15  shows the  order  of processing  Pig statements-Load,    dump  and 

store.
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Figure  4.15 Order of processing Pig statements-Load,   dump, and store 
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4.6.4.1 Apache Pig Execution 
 

Pig Execution  Modes Local Mode: All the data files install and run from a local 

host using the local file system. Local mode is mostly used for testing purpose. 
 

COMMAND:  pig     -x    local 
 

MapReduce Mode: All the data files load or process that  exists in the HDFS. A 

MapReducejob invokes in the back-end to perform a particular  operation  on the 

data that  exists in the HDFS when a Pig Latin statement  executes to process the 

data. 
 

COMMAND: pig     -x    mapreduce      or    pig 
 

Pig Latin Script  Execution  Modes 
 

•        Interactive  Mode - Using the Grunt shell. 
 

• Batch    Mode   -    Writing    the    Pig   Latin    script    in    a   single    file 

with . pig extension.



• Embedded Mode - Defining UDFs in programming  languages such as Java, 

and using them in the script. 
 

4.6.4.2 Commands 
 

•       To get the list of pig commands: pig-help; 
 

•       To get the version of pig: pig -version. 
 

•       To start the Grunt shell, write the command: pig 
 

LOAD Command  The  first   step   to   a  dataflow   is  to   specify  the   input. 

Load statement  in Pig Latin loads the data from PigStorage. 

To    load    data    from    HBase:   book      load  'MyBook'  using 

HBaseStorage(); 
 

For reading CSV file, PigStorage takes an argument  which indicates which 

character     to    use    as    a    separator.     For    example,    book      LOAD 

'PigDemo/Data/Input/myBook.csv' USING PigStorage (,);
 

For      reading       text       data       line      by      line:      book 

'PigDemo/Data/Input/myBook.txt'   USING   PigStorage() 

(lines: chararray); 

 

LOAD 

AS

 

To  specify  the   data-schema   for  loading:  book =    LOAD 'MyBook' AS 

(name, author, edition, publisher); 

Store Command Pig provides  the  store  statement   for writing  the  processed 

data    after    the    processing    is   complete.    It    is   the    mirror    image   of 

the load statement  in certain ways. 
 

By default, Pig stores data on HDFS in a tab-delimited  file using PigStorage: 
 

STORE processed into '/PigDemo/Data/Output/Processed'; 
 

To store  in  HBaseStorage with  a using clause:   STORE processed into 

'processed' using HBaseStorage(); 
 

To store data as comma-separated  text data, PigStorage takes an argument  to 

indicate  which  character   to  use  as  a  separator:   STORE processed into 

'processed' using PigStorage(','); 
 

Dump Command Pig provides dump command to see the processed data on the 

screen. This is particularly  useful during debugging and prototyping  sessions. It



can also be useful  for quick adhoc jobs. 
 

The  following   command   directs   the  output   of the  Pig  script   on  the  display 

screen: 
 

DUMP processed; 
 

Relational Operations 
 

The relational  operations  provided at Pig Latin operate on data. They transform 

data using sorting, grouping,joining,  projecting and filtering. Followings are the 

basic relational operators: 
 

Foreach FOREACH  gives  a  simple  way  to  apply  transformations    based  on 

columns.  It   is  Pig's  projection   operator.   Table  4.17   gives  examples  using 

FOREACH. 
 

Table 4.17  Applying transformations  on columns using FOREACH operator 
 

 
Load an entire  record, but then 

remove all but the name and 

phone fields from each record 

 

A = load 'input' as  (name: chararray, 

rollno: long, address: chararray, phone: 

chararray, preferences:  map []); 

B = foreach A generate name, phone; 

 
Tuple projection  using dot 

operator 

 

A=  load 'input' as (t:tuple (x:int, 

y:int)); 

B = foreach A generate t.x,  t.$1; 

 
 

Bag projection 

 

A=  load 'input'  as (b:bag{t:  (x:int, 

y:int)  })  ; 

B = foreach A generate b.x; 

 
 

Bag projection 

A=  load 'input' as (b:bag{t: (x:int, 

y:int) }) ; 

B = foreach A generate b. (x,  y); 

 

 
 
 

Add all integer  values 

 

A=  load 'input' as (x:chararray,   y:int, 

z:int); 

Al=  foreach A generate x,  y +   z as yz; 

B = group Al by x; 

C = foreach B generate SUM(Al.yz); 

FilterFILTER gives a simple way to select tuples from a relation  based on some



specified conditions (predicate). It is Pig's select command. 
 

 
 

 
Loads an entire  record,  then  selects the tuples with marks 

more than  75 from each record 

A=  load 'input'  as 

(name:chararray, 

rollno:long, 

marks: float); 

B = filter A by marks 

>   75.0; 
 
 

Find name (char array) that  do not match  a regular 

expression  by preceding  the text without  a given 

character  string.  Output is all names that  do not start 

with P. 

A=  load 'input' as 

(name:chararray, 

rollno:long, 

marks:float); 

B =  filter A by not 

name matches 'P.*'; 

Group GROUP statement  collects records with the same key. There is no direct 

connection between group and aggregate functions in Pig Latin unlike SQL. 
 
 

 
Collects all records with the same value for the 

provided  key into a bag. Then it can pass to aggregate 

function,  if required  or do other  things with that. 

A=  load 'input' as 

(name:  chararray, 

rollno:long, marks: 

float); 

grpd =  group A by marks; 

B = foreach grpd 

generate name, COUNT(A);
 

Order  by ORDER  statement   sorts  the  data  based  on  a  specific  field  value, 

producing a total order of output data. 
 

 

 

The syntax of order  is similar to group. 

Key indicates  by which the data sort. 

A=  load 'input'  as (name: 

chararray, rollno:  long, 

marks: float); 

B =  order A by name; 

  
To sort based on two or more keys (For example,      A =  load 'input' as 

first sort by, then  sort by), indicate  a set of keys by   (name: chararray, 

whichthed~asort.                                                    rollno:long, marks:float); 

No parentheses   around  the keys when multiple        B =    order A by name, marks; 

keys indicate  in order 

DistinctDISTINCT removes duplicate tuples. It works only on entire  tuples, not



on individual fields: 
 

Removes the tuples having the 

same name and city. 

A=  load 'input' as (name: chararray, 

city:  chararray); 

B =  distinct A;
 

JoinJOIN  statement joins two or more relations based on values in the common 

field. Keys indicate the inputs. When those keys are equal, two tuples are joined. 

Tuples for which no match is found are dropped. 
 

 
 
 

 
Join selects tuples from one input to put together 

.                                                                                    . 
with tuples from another  mput. 

A=  load 'inputl'   as 

(name:chararray, 

rollno:long); 
. 

B =  load 'input2'  as 

(rollno:long,  marks:float); 

C = join  A by rollno, B by 

rollno 

 
A=  load  'inputl'   as (name: 

chararray,  fathername: 

chararray,  rollno: long); 
Also based on multiple  keys join.  All cases must 

have the same number  of keys, and they must be   
B =  load 'input2'   as (name:

 

of the same or compatible  types.                               chararray,  rollno: long, 
marks:  float); 

C =  join A by (name, 

rollno), B by (name, rollno) 

Pig also supports  outer joins. Tuples which do not have a match  on the  other 

side are included, with null values being filled for the  missing fields in outer 

joins. Outer joins can be left, right or full. A left outer join means tuples from the 

left side will be included even when they do not have a match on the right side. 

Similarly, a right outer join  means tuples  from the  right  side will be included 

even when they do not have a match  on the left side. A full outer join  implies 

tuples from both sides are taken even when they do not have matches. 
 

Limit LIMIT  gets the limited number of results. 
 

Outputs only first five tuples 

from the relation. 

A=  load 'input' as (name:  chararray, 

city:  chararray); 

B =  Limit A 5;



Sample SAMPLE offers to get a sample of the entire  data. It reads through  all of 

the data but returns  only a percentage  of rows on random basis. Thus, results of 

a  script  with  sample  will vary  with  every  execution.  The  percentage  it  will 

return   is  expressed   as  a  double  value,   between   O    and   1.  For  example, 

0.2 indicates 20%. 
 

Outputs only 10% tuples from 

the relation 

A=  load 'input' as (name:chararray, 

city:  chararray); 

B =  sample A 0.1;
 

Split SPLIT partitions  a relation into two or more relations 
 

 

Outputs A relation  A splits into 

two relations  P and Q 

A=  load 'input'  as (name:chararray, 

rollno:long,  marks:float); 

Split A into P if marks >50.0,  Q if 

marks :S::      50.0;
 

Parallel PARALLEL statement  is for parallel data processing. 
 

Any relational  operator  in Pig Latin can attach PARALLEL. However, it controls 

only reduce-side  parallelism,  so it makes sense only for operators  that  force a 

reduce phase, such as group, order, distinct,join  or limit. 
 

Generating  MapReduce job with 

10 reducers 

A=  load 'input' as (name: chararray, 

marks: float); 

B =  group A by marks parallel 10;
 

EVAL Functions Following are the evaluation functions: 
 

Function 

Name 

 
Description 

 

AVG 
 

Compute the average of the numeric  values in a in a single-column  bag 

 

SUM 
 

Compute the sum of the numeric  values in a single-column  bag 

 

MAX 
 

Get the maximum  of numeric  values or chararrays  in a single-column  bag 

 

MIN 
 

Get the minimum  of numeric  values or chararrays  in a single-column  bag 

COUNT and 

COUNT_STAR 

 
Count the number  of tuples  in a bag 



 
CONCAT 

 

Concatenate  two fields. The data type of the two fields must be the same, 

either  chararray  or bytearray. 

 

DIFF 
 

Compare two fields in a tuple 

 

IsEmpty 
 

Check if a bag or map is empty (has no data) 

 

SIZE 
 

Compute the number  of elements  based on the data type 

 

TOKENIZE 
 

Split a string  and output  a bag of words 

 

Piggy Bank Pig users share their  functions from Piggy Bank. Register is keyword 

for using Piggy bank functions. 
 

User-Defined  Functions (UDFs) A  programmer   defines  UDFs  which  perform 

functionalities  not present  as built-in Pig function. A programmer  can use UDFs 

for filtering  data or performing  further  analysis. A programmer  can write UDF 

using a programming language, such as Java, Python, Ruby,Jython or )Ruby. 
 

A UDF should extend a Filter function or Eval function and must contain a core 

method called exec, which contains a Tuple. 
 

The  UDF class  extends  the  Evalfunc class  which  is  the  base  for  all  Eval 

functions. All evaluation functions extend the Java class 'org.apache.pig.Evalfunc'. 

It is parameterized  with the return  type of the UDF which is a Java String in this 

case. 
 

Filter functions are Eval functions that  return  a Boolean value. The UDF class 

when extends the Filterfunc class can be used anywhere a Boolean expression is 

appropriate,  including the FILTER operator  or Bincond expression. 
 

The following example gives the codes for developing a user-defined  function 

(UDF) returning  Boolean after checking the age. 
 

 

EXAMPLE 4.17 

 
Write a UDF 'IsCorrectAge' which checks if the age given is correct  or not. 

UDF should return  a Boolean value: True or False. If the Tuple is null or zero 

then also it should return  False. Use Java. Create a JAR file and then export. 

Later register the JAR file. The JAR files are in the library files of Apache Pig 

at the time of loading.



SOLUTION 
 

Followings are the codes for the user-defined function  IsCorrectAge. 
 

public clans I~CorrectAge extend~ FilterFunc { 

@Override 

Public Boolean exec {Tuple tuple) throws IOException 

if (tuple== null I      I         tuple.size() == 0)  { 

return false, 
 

try 
 

 
Object object= tuple.get(O}; 

if {object== null) 

return false; 

 
 
Inti=   {Integer} object; 

if     < i   ==  as  11      i   == 2 o   I       I           i 

return true; 

 
 
 
 
 
 
 
 

 
21    11      i         2 5)     {

 

else      { 
 

 
return false,

 

 

catch (BxecException e} { 

throw new IOHxception(e); 

 
 
 
 
 

Once I sCorrectAge create,  the  following command  registers  a JAR file 

into the library of JAR files: 
 

register myudf.jar; 
 

A=  load 'input'  as (name chararray,  age int); 
 

X =    filter A by IsCorrectAge(age); 
 
 
 

Self-Assessment  Exercise linked  to LO 4.5 
 

1.   How does Apache Pig execution engine function for faster data processing?

mailto:@Override


2.   List the  Grunt  shell  commands   and  the  use of each  command. 
 

3.   When  is Hive and when  is Pig used? 
 

4.   How are  tuple  and  map  used? 
 

5.   How are projections   used? 
 

6. Write  the  functions    of GROUP,  JOIN, FILTER, LIMIT, ORDER  BY, PARALLEL, 

SORT and  SPLIT. 

7. How will a UDF return  the difference of maximum and minimum sales 

from sales data values in Pig Latin? 
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LO 4.1 
 

 

1. An application consists of a number  of tasks. A MapReduce program  for an 

application  task  is termed  as a job.  Each job  consists  of several  smaller 

units,  called MapReduce tasks.  They run  in parallel  for the  application 

task.  MapReduce programming  is a software  execution  framework  that 

defines the parallel tasks, the results  combine and application  obtains the 

consolidated result.



2. MapReduce implements  a data model, which represents  data as key-value 

pairs. 

3. Reduce task implements  using Reducer function that takes Mapper output 

(which is shuffled and sorted), that  is grouped key-value data (kz, v2) and 

applies it in parallel to each group. Another set of key-value pairs (ks, v3) 

are the final output file. 

4.  Coping with node failures is done by the TaskTracker, which when fails to 

communicate with the JobTracker for a pre-defined  period, the JobTracker 

restarts. 
 

LO 4.2 
 

 

1.   MapReduce functions have a number of applications: 
 

(a) Counting,   summing,   run    algorithms    for   the   relational    algebra 

operations,  projections, union, intersection,  natural Join, grouping and 

aggregation. 

(b)  Collating, filtering  and parsing. Collating is a method  to collect all the 

items which have same value of function. 

(c)  Graph processing using iterative message passing. 
 

(d)  Web Indexing  also uses  the  method  of iterative  message-passing.  A 

state  of each  entity  calculates  based  on characteristics   of the  other 

entities in  its  neighborhood   in  a  given  network   of  entities   and 

relationships  between them. 

(e)  Multiplication of matrix with a vector and of matrix with a matrix. 
 

2. When  multiplying  two  matrices,  two  cascaded  MapReduce  operations 

require much less memory than a single step MapReduce. 
 

LO 4.3 
 

1. Apache    Hive   is    an    open-source    data-warehouse     software.    Data 

summarization,  analysis and querying  are major functions  of Hive. Hive 

facilitates reading,   writing   and  managing   large   datasets   residing   in 

distributed  Hadoop files using SQL-like scripts. Hive supports  serialization,



deserialization  and user-defined  functions. 
 

2.  Hive includes  a  system  catalog,  called  Hive Metastore.  Hive provides 

increased flexibility in schema design. 

3.  Hive supports primitive and collection data types. Hive supports text files, 

sequence  Files  (consisting  of  binary  key/value   pairs),  RCFiles (Record 

Columnar  Files), ORC  (optimized  row  columnar)  and  HBase file format 

types.  Hive considers  database,  tables,  partitions,   bucketed  tables  and 

buckets as 

data units. 
 

LO 4.4 
 

 

1. HiveQL has  SQL-like script  statements   for  (i) data  definition,  (ii) data 

manipulation,  (iii) creating,  dropping,  and using the databases  and tables, 

(iv) selection by where, GroupBy and Having clauses. 
 

2.  The partitions  are must in large dataset  tables in the databases  of a data 

warehouse.  Hive command  creates  partitions.   HiveQL  commands  create 

buckets, views and sub-queries. 
 

3.   HiveQL has the command provision for join, sorting and aggregation. 
 

4.   HiveQL plug-ins the custom MapReduce scripts into queries. 
 

LO 4.5 
 

 

1. Pig is an open-source  high-level  language  platform.  Pig applications  are 

mainly  for  analyzing  large  datasets.  Pig executes  queries  in  the  HDFS 

environment.  Processes any kind of data: structured,   semi-structured   or 

unstructured  data from various sources. 

2.   Pig language used is known as Pig Latin. Pig Latin programming  is in Java. 

Pig is SQL-like  query language  applied on a larger  dataset,  and provides 

additional  features.  Pig Grunt shell enables development.  Pig Grunt shell 

enable development of Pig Latin scripts. 

3.   Pig converts all the operations  into Map and Reduce tasks that  process on



Hadoop efficiently. Programmers  write  scripts  using Pig Latin to analyze 

data. The scripts internally  convert into Map and Reduce tasks. 

4. Pig  application   is  ETL   operations   (Extract,  Transform  and  Load). The 

language allows a detailed step-by-step  procedure  by which the data must 

be  transformed.    Pig  is  designed   to   handle   any   kind   of  data.   Pig 

programming  language can handle inconsistent  schema data as well. 

5.  Helps programmers  write complex data transformations  without  knowing 

Java. Possess a rich  set of built-in  data  types,  such as Bag (collection of 

tuples)  and  Map (set  of key-value  pairs).  Possess a rich  set  of built-in 

operators,  such as group, join, filter, limit, order by, parallel, sort and split. 

6. Allows programmers   to  write  User-Defined  Functions   (UDF)   to  write 

custom functions  in other  programming  languages, such as Java, Python, 

Ruby, Jython  or ]Ruby.  UDF  easily embeds  in Pig scripts  and  provides 

extensibility to Pig. 
 

Ii  Objective Type Questions 1111 
Select one correct-answeroption for each of the following questions: 

 

4.1  (i) A  user  application  specifies the  input/ output  data  locations,  (ii) The 

application  supplies map and reduce  functions by the  implementation  of 

appropriate interfaces   and/ or   abstract   classes,  (iii)   Application   task 

configures  the  job  and  specifies  other  job  parameters,   (iv) Map takes 

output  dataset  as pieces  of data  from  the  Reducer  and  maps  them  on 

various nodes for parallel processing, and (v)The reduce task, which takes 

the input at Mapper combines those data pieces into a smaller set of data. 

(a)  ii and iii 
 

(b)  all 
 

(c)  i, ii and iii 
 

(d)  i, iv and v 
 

4.2  (i) MapReduce implies, the reduce task is mostly performed  after the map



task,   (ii)  Map  takes   input   dataset   as  pieces   of  data   and  maps  them   on 

various  nodes  for sequential   processing, 

(iii) MapReduce  framework   may  not  operate   entirely   on (key-value)  pairs, 

and  (iv)  The  framework    views  the   output   to  the  task   as  a  set  of  (key, 

value)  pairs  and produces   a set of (key, value)  pairs  as the  input  of the  task, 

possibly  of different   types. 

(a)   none 
 

(b)   only iv 

(c)   only ii 

(d)   all 

4.3  (i) Partitioner   does  the  partitioning,   (ii) The  partitions   are  the  semi• 

mappers in MapReduce, 

(iii) Combiners are  semi-reducers  in MapReduce, (iv) Combiners process 

the  input  of map tasks before submitting  it to Reducer tasks, (v) Reduce 

task  implements  using Reduce function  (or Reducer) that  takes  Mapper 

output  (which is shuffled and sorted), that is (grouped key-value data) (kz, 

v2) and  applies  it  in  parallel  to  each  group,  and  (vi) Reduce function 

iterates  over the list of values associated with a key and produces outputs, 

such as aggregations and statistics. 

(a)  all except ii and iii 
 

(b)  all 
 

(c)  i to v 
 

(d)  all except iv 
 

4.4 MapReduce program  composes the  (i) Count, (ii) find distinct  values, (iii) 

search unique value, (iv) group using attributes,  and does aggregating,  (v) 

summing, (vi) relational-algebra  operations,  (vii) projections,  (viii) union, 

(ix) intersection,  (x) difference, (xi) natural Join, 

(xii) multiplication  of two matrices, and (xiii) multiplication  of matrix and 

vector. 

(a)  all except ii, iii, iv, xii and xiii



(b)   all 
 

( c)   all except  ii to vi 
 

( d)   all except  xii and xiii 
 

4.5  (i) Graph processing needs iterative  message passing, (ii) Graph processing 

uses are in web indexing,  (iii) A state  of each entity  calculates based on 

characteristics  of the other entities in its neighborhood  in a given network 

of entities  and relationships  between them, (iv) Mapper class emit() emits 

the messages for each node using ID of the non-adjacent  node as a key, (v) 

All messages groups by the incoming node, and (vi) Reducer class method 

computes the state again and rewrites a node with the new state. 

(a)  i, iii, iv and vi 
 

(b)  i to v 
 

(c)  ii to vi 
 

(d)  All except iv 
 

4.6 Hive (i) does not have commands to update or delete using the record level 

queries,  (ii) does not  support  transactions   on the  DB,  (iii) supports  to 

create,  drop and use functions,  (iv) latency for query operations  is much 

less than  a  second  for  Big Data of petabytes,  and  (v) provides  limited 

JDBC/ODBC connectivity functions. 

(a)  i, iii, iv and vi 
 

(b)  iii to v 
 

(c)  ii to vi 
 

(d)  All except iv 
 

4.7 Hive architecture  consists of (i) Hive Server, (ii) CLI, (iii) web interface, (iv) 

metastore,  and 

(v) Hive driver.  (vi) Usages of Hive metastore   are  to  provide  names  of 

tables, databases, columns in a table. 

(a)  ii to v 
 

(b)  all



(c)   ii to iv 
 

(d)   i, ii, iv, v 
 

4.8 HiveQL data  manipulation commands   are  (i) USE, (ii) DROP DATABASE,  (iii) 

DROP SCHEMA, (iv) ALTER TABLE, (v) DROP TABLE, (vi) DELETE  TABLE, 

(vii) DELETE  DATABASE,   (viii) INSERT  TABLE,  (ix) INSERT  DATABASE,  and 

(x) LOAD DATA. 
 

(a)   all except  ii, iii and v 
 

(b)   all except  i, iii 
 

(c)   all except  vi to ix 
 

(d)   i to iv 
 

4.9 HiveQL (i) Join  clause  combines   and  retrieves  the  records   from  multiple 

tables, (ii) Join  is  same  as  OUTER  JOIN in  SQL, (iii) JOIN condition   uses 

primary keys and  foreign  keys of the  tables,  (iv) JOIN clause  combines  the 

columns  of two  or more  tables,  based  on a related   column  between   them, 

(v) JOIN is same  as SQL JOIN, (vi) A LEFT JOIN returns   all the  values  from 

the  left table,  plus the  matched values  from the  right  table,  or NULL in case 

of no  matching   JOIN predicate,    (vii) A RIGHT JOIN returns    all the  values 

from  the  right  table,  plus  not  matched values  from  the  left table,  or NULL 

in case of no matchingjoin  predicate, (viii) FULL OUTER JOIN combines  the 

records   of both  the  left  and  the  right   outer   tables  those   fulfill  the  JOIN 

condition, and  (ix) the  joined   table  contains   either   all  the  records   from 

both  the  tables,  or fills in NULL values  for missing  matches  on either  side. 

(a)   all except  v and vii 
 

(b)   all 
 

(c)   all except  iii and x 
 

(d)  i to vii 
 

4.10  Pig  (i) reads  the  input   data  files  from  HDFS or  the  data  files  from  other 

sources  such  as the  local  file system,  (ii) stores  the  intermediate  data  and 

writes  back the  output  in HDFS, (iii) processes  any kind  of data:  structured,



semi-structured     or  unstructured     data  coming   from  various   sources,   (iv) 

allows   programmers     to   write   User-Defined    Functions    (UDFs) to  write 

custom  functions, 

(v) UDFs written   in several  other  programming    languages,   (vi) UDF easily 

embed  in Pig scripts  written   in Linux,  (vii) exploits  multi-query    approach, 

thereby   reducing  the  length  of codes; ten  lines  is equal  to MapReduce  code 

of two hundred   lines,  which  enables  spreads  processing,   and  (viii) Pig read 

data,   processing,     programming     the   UDFs  in   multiple    languages    and 

programming    multiple   queries  by fewer  code  enabling   fast  processing   are 

guided  by four  philosophies:   live  anywhere,   take  anything,   domestic   and 

run  like flying. 

(a)   i to vi 
 

(b)   all except  vi 
 

(c)   all except  iii to v 
 

(d)   all 
 

4.11  Pig  (i)  helps  programmers   write  complex  data  transformations    using 

scripts  (without  using Java) that  possess a rich  set of built-in  operators 

such as (ii} Bag, (iii} BLOB, (iv) Map, (v) Group, 

(vi) Join, (vii} Filter, (viii} Limit, (ix) Order by, (x) parallel, (xi) sort and (xii} 

split. 
 

(a)  all except i 
 

(b)  all except i, x and xii 

(c)  all except ii, iii and iv 

(d)  ii to ix and xi 

4.12  Pig (i) is a dataflow language,  (ii) low level language,  (iii) performs Join, 

filter,  sorting  or  ordering   operations,   (iv) uses  multi-query   approach, 

thereby increasing the length of the codes, (v) no need for compilation, (vi) 

on  execution,  operators   convert  internally   into  a  MapReduce job,  (vii} 

provides nested  data types like tuples, bags, and maps. MapReduce  on the 

other  hand, (viii) is a data processing paradigm,  (ix) relatively  difficult to



perform Join, filter,  sorting  or ordering  operations  between  datasets,  (x) 

ComplexJava implementations  require exposure to Java language, (xi) Jobs 

have  a  long  compilation  process,  and  (xii) nested  data  types,  such  as 

tuples, buckets and views. 

(a)  all except ii, iv and xii 
 

(b)  all except v, x, xi and xii 
 

(c)  ito x 
 

(d)   all except vi and xi 
 

II   Review Questions        llil 
4.1 List and explain the features of the MapReduce programming  model? How 

does MapReduce program enable parallel processing? (LO 4.1) 

4.2 How does a Map task  implement  using key-value pairs  in an input  file? 

What  are  the  uses  of Shuffle in  processing  the  aggregates  for  all the 

Mapper output by grouping key values of the Mapper output and the value 

which gets appended in a list of values? (LO 4.1) 

4.3 How does 'Group By' operate  for creating  Mapper output?  What are the 

roles of partitioning  and combining? (LO 4.1) 

4.4 How does  MapReduce program  find  the  distinct  values  and  count  the 

unique values? (LO 4.2) 
 

4.5 How does the  MapReduce implement  the  relational  algebraic  functions, 

union, projection, difference, intersection, natural join, grouping and 

aggregation? Explain each with an example. (LO 4.2) 
 

4.6 How do MapReduce tasks implement  a matrix  multiplication  by a vector? 

(LO 4.2) 
 

4. 7 Describe the  Hive architecture   components.  Why are  HiveQL, SQL-like 

scripts used in place of RDBMS, such as MySQL for Big Data? (LO 4.3) 

4.8 What are the  types  of built-in  functions  available in Hive? What are the 

uses of each of these? (LO 4.3)



4.9 Why should  partitions  be created  in databases  and  tables  in Hive data 

warehouse for very large datasets? (LO 4.4) 

4.10 What are aggregation commands provisioned in HiveQL? What are the 

partitioning  commands? (LO 4.4) 
 

4.11  An enterprise  needs to create  and use a Hive data warehouse  with very 

large  databases  and  tables.  Why are  the  usages  of RCFile and  ORCFile 

formats, creation   of  large  number   of  partitions,   buckets   and  views 

required  in the databases and tables? (LO 4.4) 

4.12  What   are   the   differences   between    Pig   programming    model   with 

MapReduce, relational  database and Hive programming  models? (LO 4.5) 
 

4.13  Describe Pig data types and operators:  Group, Join, Filter, Limit, Order by, 

parallel, sort and split. (LO 4.5) 
 

4.14  Describe usages of Pig operations:  parallel, split and defining a UDF. Give 

one example of each. (LO 4.5) 

 

II   Practice Exercises        1111 
4.1 MapReduce program imports the following at the beginning: 

 

import org.apache.hadoop.fs.Path 
 

import org.apache.hadoop.mapreduce.Mapper 

import org.apache.hadoop.mapreduce.Job 

import org.apache.hadoop.mapreduce.Reducer 

import org.apache.hadoop.io.Text 

import 

org.apache.hadoop.mapreduce.lib.input.FileinputFormat 

 

import 

org.apache.hadoop.mapreduce.lib.output.FileOutputFormat 

import org.apache.hadoop.fs.Path



What are the functions that each Class provides in the program? (LO 4.1) 
 

4.2 A   company  manufactures   and  sells  cars  through   a  large  number   of 

showrooms.  Each car  showroom  records  in main  table  and  transaction 

tables. Recapitulate Practice Exercise 3.3 Table data. Describe the steps for 

composing MapReduce program  parallel  tasks for calculating  aggregated 

annual sales of each model for all showrooms. (LO 4.2) 

4.3 Recapitulate   Section   4.3.4.    Consider   that   two   MapReduce  cascaded 

programs  multiply  3  x  4  matrix  A  with  another  matrix  4  x  6  matrix  B. 

Calculate the  number  of tuples  in each matrix,  tuples  after  natural join. 

List each step for using these  tuples, grouping  and aggregation  of tuples 

with attributes.  Now calculate these numbers again for 8192  x  4096  matrix 

multiplication  by 4096 x  32768  matrix. (LO 4.2) 

4.4  Install Hive and demonstrate  usages of each data type and collection types 

listed in Tables 4.6 and 4.7. (LO 4.3) 

4.5 Create  a  HiveQL table   for  grade-sheet   of  your   five-course   semester 

examination  with  SGPA  (Semester  Grade Point  average)  in  a  semester. 

Now, write commands to create  partitions  in the table in RCFile formats. 

How will the table serialize? (LO 4.4) 

4.6 Insert  the  Hive-table  above in  all University  students'   data  warehouse. 

Write commands  for joining  four tables  for four-semester  examinations. 

How will  that  be  used  for  calculating  CGPA  (Cumulative  Grade  Point 

average)? (LO 4.4) 
 

4.7 Recapitulate  Examples 4.10  to 4.13.  Create a HiveQL  data  warehouse  for 

toys_company manufacturing  1600 different toys and 2000  puzzle product 

categories,  up to 20  product  types  for each, and each puzzle product  of 

product types 100, 200, 400, 800,  1600, 2400 and 500 pieces. (LO 4.4) 

4.8 Recapitulate  Example  1.6.  Create  Pig user-defined   functions  (UDFs)  for 

selecting the sales of each flavour of chocolate from the multiple ACVMs. 

(LO 4.5) 
 

4.9  Select and  list  the  Pig data  types,  operations   and  their  usages  during



processing   the  data tables  created  in Practice  Exercise  4.7. (LO4.5) 
 
 

 
Note: 

 

o o • Level 1 & Level 2 category 

o • • Level 3 & Level 4 category 
 

• • • Level 5 & Level 6 category



Chapter 5 
 

 
 

Spark and Big Data Analytics 
 

 
 
 
 
 
 

LEARNING OBJECTIVES 
 
 

After studying  this chapter, you will be able to: 
 

LO   5.1    Get  understanding   of  the   Spark  architectural   features,   software   stack 

components and their functions 
 

LO 5.2  Get knowledge of analysis steps using Spark, Spark along with Python, advanced 

features, UDFs, vectorized UDFs, grouped vectorized UDFs and Python analytics 

libraries 
 

LO 5.3   Get understanding  of the  methods  of downloading Spark, getting  started  in 

programming  with Spark, Spark shell, Spark context, developing and testing 

codes, programming with RDDs and the applications of MLib 
 

LO 5.4  Get understanding  of the ETL processes using built-in functions, operators  and 

ETL pipelines 
 

LO 5.5  Get Introduced to analytics, data/information  reporting and visualizing methods 
 

 
 

RECALL FROM EARLIER CHAPTERS 
 

 

~     CHAPTER   1 
 

Spark, Spark SQL and Apache Drill are advanced processing methods for Big Data. They 

also enable 

real-time  processing.  Berkeley Data Analytics Stack  (BOAS)  is  an  open-source  data 

analytics stack. The stack consists of number of software components and frameworks 

for complex computations using



Big Data. 
 

 

-.     CHAPTER   2 
 

The four layers of the Hadoop ecosystem are: 

1.   Data store layer: Stores Big Data HDFS. 
 

2.   Data  processing  layer:  Processes  the   stored   data   using  programs,   such  as 

MapReduce,YARN, HBaseand Cassandra. 
 

3.  Applications support  layer: APis supporting  the processing of applications at the 

data processing layer, such as Pig, Hive, HiveQL, Sqoop, Ambari, Chukwa. 

4.  Applications layer: Tools such as Spark, Flink, Flume, Mahout, and Processes ETL, 

Analytics, BP, BI, Data Visualization, R-Descriptive Statistics, Machine learning, 

Data mining (Section 2.2.3 

and Figure 2.3). 
 

 

-.     CHAPTER   3 
 

When  the  Big Data  Store  is  at  clusters  HDFS, the   applications  access  the   data 

sequentially.  When  it  is  using  NoSQL databases,  the   data   read/write    access  by 

applications is random-access. The access to a resource is as per the specified resource 

pointer (address) for the access. 
 

 

-.     CHAPTER   4 
 

MapReduce tasks processes in parallel  and in a distributed  environment.  A  program 

composes the  MapReduce tasks for the  calculations and uses the  relational-algebraic 

operations, 'grouping by' and aggregation functions (Section 4.3). 
 

Hive creates databases which load into the enterprise  data warehouse. Hive composes 

the queries and does data aggregation and summarization (Section 4.4). HiveQL functions 

query the DBs, tables, partitions  and buckets, and executes the SQL like operations and 

UDFs (Section 4.5). 
 

Pig  functions  executes  query  on  large  datasets  which  are  stored  in  HDFS. Pig 

programming  model enables writing  complex data  transformations  without  knowing 

Java [due to a rich set of built-in functions and operators such as group,join,  filter, limit, 

order by, parallel, sort and split, and possessing of a rich set of built-in data types such as 

Bag (collection of tuples) and Map (set of key-value pairs)] (Section 4.6). 
 

This chapter  focuses on Apache Spark using the  data sources at HDFS,  any Hadoop 

compatible data source, such as HBase, Cassandra and Ceph, or Object Store S3. Spark



provides   in-memory,   distributed    and  faster  cluster-computing,     and  consists  of APls in 

Java, Scala, Python  and R. 
 

 
 

5.11  INTRODUCTION 
 

Pig or Hive are high-level scripting languages that  are used with the Apache Hadoop. 

They have SQL like commands for queries. The commands before executing, translate to 

Map and Reduce parallel-tasks. They process the queries, built-in functions, aggregation 

operations  and User Defined Functions (UDFs). They enable ease in programming  for 

these functions. They run ETL processes using Big Data Store. 
 

Pig and  Hive programs  use  complex  data  types  and  operations.  The  scripts  and 

programs use the datasets distributed in the HDFS Data Store. 
 

Applications such as data analytics, stream analytics and graph analytics, and machine 

learning require the following: 
 

In-memory  processing: In-memory processing is fast when compared to processing data 

most of the  times, from the  disk or remotely  distributed  nodes. This is because the 

processor takes much less time in accessing the memory compared to the disk or remote 

data  node. In-memory processing also facilitates  real-time  processing  and  streaming 

data analysis. DAG-basedacyclic data flow further boosts the processing speed. 
 

Application tasks processing   Framework:   Application  tasks  require   processing  in  a 

framework which uses HDFS as well Hadoop compatible data sources, such as HBase, 

Cassandra, Ceph, cloud-based Objects Store Service or Amazon 53. The tasks require 

support which facilitates running  the Hive, Pig, and other  Hadoop ecosystem tools in 

Java,  Python,  R  and  Scala. APls using  Python  shell  and  Scala shell  facilitate  the 

interactive   running   of  the   applications.   Many  applications   such   as   statistical, 

mathematical   and  graph  analytics,  and  machine  learning  algorithms  require  APls 

designed in these languages. 
 

These features  ease the  programming  for complex analytics, machine  learning  and 

other solutions. 
 

AdventofApache®Spark™ 
 

Berkeley's Algorithms, Machines and feoples Laboratory (AMP) developed Berkeley Data 

Analytics Stack (BOAS) which support efficient, large-scale in-memory data processing, 

and   includes   applications   fulfilling  three   fundamental   processing   requirements: 

accuracy, time  and cost. AMP first  developed Spark in 2009  and later  passed on the 

project to Apache. A new version is Spark 2.3.1. 
 

Apache® Spark™ uses in-memory data processing. Thus, processing is fast since there is



no  delay.  The  reason   is that   processor   in-memory   read  and  write  operations   are  fast 

compared  to read  from  disk and write  to disk. Apache®  Spark™  uses the  DAGs  and acyclic 

data-flows,  and  data  from  HDFS  compatible   data  sources  and  cloud-based  Data Stores.  It 

provides APIs for programming in R, Python, Java and Scala. 
 

Open Source Analytics Tools 
 

Following are the tools: 
 

1.   R and its library provide various statistical analysis functions. R now analyses large 

data sets also since R integrates with Big Data platforms, such as Spark. 

2.   Python is a widely used language due to its analysis and statistics libraries, such as 

numpy, scipy, scikit-learn, pandas, StatsModel. 

3.   Storm is for real-time continuous data streams. 
 

4.   Pig is a data flow language with SQL like operations and uses UDFs. Pig enables easy 

coding compared to MapReducefor the complex tasks. 

5.   Hive is for creation of data warehouse, integration  of databases and applications, 

and uses SQL like scripts and UDFs. Coding is easy compared to MapReduce. 
 

Pandas  is  an  open  source  Python  package,  and  consists  of  BSD-licensed library 

functions using the Panda (Panel Data). (5.3.2.1)   The Pandas give high performance, easy• 

to-use data structures  and data analysis tools. Pandas enrich the Python programming 

language. 
 

The most popular open source analytics tools are Apache Spark, Python, R, Apache Pig 

and Hive, according to a study. 
 

Spark is for high volume unstructured  data. Spark seamlessly integrates  with Spark 

SQL  which  uses  the  structured   data,  Spark  Streaming  is for  streaming  data,  Spark 

Graphx for graph databases, Spark MLib for machine-learning library, and Spark Arrow 

for columnar in-memory analytics. Spark provides easy programmability with inclusion 

of APis for programmers to develop applications in Python, R, Java or Scala. 
 

Reader needs to learn the following new select key term, and their meanings besides 

the ones given in the previous chapters: 
 

User Defined  Functions (UDFs)  refer  to  custom  functions  which  are  not  built-in  a 

programming language but user adds them and they can be written in a language, such 

as Java, Python, Ruby,Jython, ]Ruby  or Scala. They easily embed into scripts written  in 

that programming language. Examples of languages with provisions of UDFs are Hive, Pig 

and Spark. The UDFs provide extensibility to the programming language. 
 

Vectorized UDFs (VUDFs)  refer to custom functions using series data-structure  (meaning



one dimensional   array  or tuples). 
 

Grouped Vectorized UDFs (GVUDFs) refer to custom functions written using DataFrame as 

inputs. 
 

Dataframe   in Spark refers to a distributed  collection of data that  organizes into the 

named columns. The concept of the DataFrame in Spark is similar to database table in a 

relational database. The data frame concept in R is the basis of the data frame concept in 

Spark. Scala and Java APis for DataFrames are just dataset of rows. 
 

SchemaRDD is the name of Spark DataFrame in the earlier versions of Spark. 
 

SerDe  refers  to  Serializer/Deserializer  functions  (methods). Java  syntax  is  SERDE, 

'serde.class.name'. SerDe use in codes for obtaining records from unstructured  data. The 

serializer function saves the records and the deserializer function loads (extracts) the 

records. 
 

Data pipeline means data collected from various data sources passes through in-between 

phases (stages) of processing. The output  of each stage is the input to the next in the 

pipeline.  Processing in-between  uses  a chain  of function  calls in  an  application  or 

process, such as ETL. 
 

Graph refers to a non-linear data structure with properties attached to each vertex and 

edge. Computations perform  at each node in a graph  structure  using path  traversals 

between the vertices (Section 8.2). 
 

Directed Acyclic  Graph (DAG) refers to a directed graph with no cyclic traversal.  Here, 

one set of inputs simultaneously applies at a DAG node input, and after the operations 

(computations) at the node, only one set of outputs  is generated.  The node represents 

the statements and operators, which execute at the node in the graph. 
 

Nested tables in databases  refer  to one column tables. Oracle RDBMS  uses PL/SQL.  A 

database stores the rows of a nested table in no particular  order. While the SQL assigns 

the rows in consecutive subscripts starting at 1  so that each row accesses like an array 

element, PL/SQL accesses a nested table in no order. 
 

Parquet refers to nested hierarchical columnar storage in group of rows, wherein each 

row has a number of columns, each column has one chunk, and each chunk has a number 

of pages. 
 

In-memory  refers to data read from the memory during computations and data written 

to the memory at same data node, thus ensuring fasten memory accesses. Disk accesses 

and remote node accesses make computations slow. 
 

Columnar  in-memory  analytics refers  to  usages  of optimized  layout  columnar  tables 

(nested tables, Hive ORC tables). That provides the easier data locality using successive 

memory  addresses.  The  CPUs and  GPUs   provide  higher   performance   for  native



vectorized  optimization   during  analytics  and OLAP.  Apache Arrow™  enables  usages  of in• 

memory  columnar  analysis  and grouped  vectorized  UDFs. 
 

ETL (Extract, Transform  and Load) refers to operations on a database or Data Store using a 

tool or program (maximum) to code up to few thousand lines of code. ETL tools pull the 

data from various data sources and store (load) it in the appropriate  Data Store after 

applying the required transformation 

operation. 
 

Shell means an environment  to write and run programming  scripts; for example the 

scripts for query processing similar to SQL. 
 

Schema refers to a blueprint  for organization or structuring  of a database or table or 

dataset. The blueprint tells how the database constructs. A construction may use division 

of the  data  into  rows.  Relational-database  construction  may  use  the  division  into 

database tables. Schema for a database  is defined as set of formulae, called integrity 

constraints, imposed. (Formulae may be just sentences.) 
 

SQL  refers  to  a language  for  (i) writing  structured  queries  for  processing  using  a 

relational database; 

(ii) schema creation, schema modifications and data access control; (iii) creating client 

for sending query scripts, creating server databases and managing the databases; and (iv) 

viewing, querying and changing (update, insert or append or delete) the databases. 
 

Metastore  refers  to  the  system  objects, files, catalog,  schema  or  tables,  databases, 

columns in a table,  their  data  types,  and mapping  with  HDFS  or  any other  storage 

formats. Metastore provides access to them during computation. 
 

Cassandra  refers  to  a  distributed   DBMS  designed  for  handling  a  high  volume  of 

structured  data across multiple servers. Cassandra is HDFS compatible. Cassandra DBs 

distribution  model  is  peer-to-peer   distribution   in  a  system  across  its  nodes.  Data 

distributes among all the nodes in a cluster. 
 

Software stack refers to a group of programs. Stack programs work in tandem (together 

or in conjunction) and produce a result. Software stack also refers to any set of 

applications that works in a specific and defined order. For example, LAMP is a software 

stack that consists of a group of open source components, namely Linux, Apache, MySQL, 

Perl, PHP or Python. 
 

Ad hoc query refers to a "for this purpose"  query, "on the  fly" query or a "just so" 

query. It's the kind of SQL query that  is loosely used when required. For example, var 

newSqlQuery      =  "SELECT   *  FROMtable      WHEREid    =  "  +   toy_puzzleid.        It 

will be different each time this code executes, depending on the value of toy_puzzleld 

(Example 4.7). 
 

This chapter  focusses on Spark and data analysis with Spark. Section 5.2  introduces



Spark  architecture    features,   software  stack  components   and their  functions.   Section  5.3 

describes   steps   in  data   analysis   with   Spark  and  using   Spark  with   advanced   Python 

features.   Section  5.4 describes  methods  of downloading   Spark, programming   with  RDDs, 

Spark shell and developing  and testing  Spark codes, and applications   of MLib. Section  5.5 

describes   ETL  processes   using  the  built-in   functions   and  operators,   and  ETL  pipelines. 

Section 5.6 describes  data analytics,  data reporting   and data visualization. 
 

 
 

5.21 SPARK 

Apache®  Spark™  is a fast and general  compute engine. Apache® 

Spark™  powers  the  analytics  applications  up  to  100   times 

faster. It supports HDFS compatible data. Spark has a simple and 

expressive programming model. 
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Expressive program model implements a number  of mathematical and logic operations 

with  smaller and easier written  codes which a compiler as well as programmer  can 

understand  easily. The model, therefore,  gives programming  ease for a wide range of 

applications. Applications of expressive codes are in analytics, Extract Transform Load 

(ETL), Machine Learning (ML), stream processing and graph computations. 
 

Spark runs on both Windows and UNIX-likesystems, such as Linux and Mac OS.Java is 

essential for running  Spark applications. Executing a spark application on a computer 

system therefore requires setting a JDK path using JAVA_HOME environment variable or 

system variable, PATH. Spark 2.3.1 runs onJava 8+, Python 2.7+/3.4+ and R 3.1+, and Scala 

2.11.x.The multiple languages, Python and Scala shells provide great ease in programming 

for complex analytics, machine learning and other solutions. 
 

Following subsections describe Spark and introduce data analysis using Spark. 
 

 

5.2.1  Introductionto Big Data Tool-Spark 
 

Figure 5.1 shows the  main  components  in the  Apache Software Foundation's  Spark 

framework, which includes data storage, APis and resources management bonded with 

functions in Spark core.
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Figure 5.1 Main components of the Spark architecture 
 

Main components of the Spark architecture are: 

1.   Spark HDFS file system for data storage: Storage is at an HDFS or Hadoop compatible 

data source (such as HDFS, HBase,Cassandra, Ceph), or at the Objects Store 53 

2.   Spark standard API enables the creation of applications using Scala,Java, Python and 

R 
 

3.   Spark resource  management  can  be  at  a  stand-alone  server  or  it  can  be  on  a 

distributed computing framework, such as YARN or Mesos. 
 

Ceph refers to an open source, scalable object, block, file storing unified system. Ceph 

provides  for  dynamic  replication  and  redistribution.   Ceph provides  HDFS  compatible 

mechanisms for Big data in petabytes  or exabytes. An application uniquely accesses the 

object, block and file stores in a system using Ceph. Ceph is highly reliable. 
 

Apache Mesos is an open source project  developed at University of Berkeley, and now 

passed to Apache. It manages computing clusters. Its implementation  is in C++.  Apache 

released a stable version 1.3.0  of Mesos in June 2017.  Apache Mesos enables fine-grained 

sharing of CPU, RAM, IOs and other across frameworks. Mesos offers them resource.  Each 

resource contains a list of agents. Each agent has the Hadoop and MapReduceexecuters. 
 

53 (Simple Storage Service) refers to an Amazon web service on the cloud named 53 which 

provides Object Stores for data (Section 3.3.4). 
 

5.2.1.1 Features of Spark 
 

Figure 5.2 shows the main features of Spark.
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Figure 5.2  Main features of Spark 
 

The features of Spark: 

1. Spark provisions for creating  applications that  use the  complex data. In-memory 

Apache Spark computing engine enables up to 100 times performance with respect to 

Hadoop. 

2.   Execution engine uses both in-memory and on-disk computing. Intermediate  results 

save in-memory and spill over to disk. 

3.   Data uploading from an Object Store for immediate use as a Spark object instance. 

Spark service interface sets up the Object Store. 
 

4.   Provides high performance  when an application  accesses memory cache from the 

disk. 

5.   Contains API to define Resilient Distributed Datasets (RDDs).  ROD is a programming 

abstraction. ROD is the core concept in Spark framework. ROD represents  a collection 

of Object Stores distributed  across many  compute  nodes  for  parallel  processing. 

Spark stores data in ROD on different partitions. A table has partitions  into columns 

or rows. Similarly, an ROD can also be considered as a table in a database that  can 

hold any type of data. RDDs are also fault tolerant. 

6.   Processes any kind of data, namely structured,  semi-structured  or unstructured  data 

arriving from various sources. 

7.   Supports many new functions in addition to Map and Reduce functions.
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8.   Optimizes data processing performance by slowing the evaluation of Big Data queries. 
 

9.   Provides concise and consistent APis in Scala, Java and Python. Spark codes are in 

Scala and run on JVM environment. 
 

10. Supports Scala,Java, Python, Clojure and R languages. 
 

11. Provides powerful tool to analyze data interactively using shell which is available in 

either Scala (which runs on the Java VM and is thus a good way to use existing Java 

libraries) or Python. The tool also provides for learning the usages of APL 

5.2.1.2 Spark Software Stack 
 

Figure 5.3 shows a five-layer architecture  for running applications when using Spark stack. 
 

!~ 
 

Appllcat~s 
Support  Laver 

 

t    
Pr0(:e$$ing

~~~~~~-S-~~'_('~Co ~~~~~.  '--~En_g_in_e~~

~~-1H-D~             ~~         ti~~-s~-~-u-~~~ 

 

Parallel  Ta  k5l 
                               milt   OU

~~~~~~~~~~~~~~~~ Man  ~ment

 

Figure 5.3 Five-layer architecture  for running applications using Spark stack 
 

The main components of Spark stack are SQL, Streaming, R, Graphx, MLib and Arrow at 

the applications support layer. Spark core is the processing engine. Data Store provides the 

data to the processing engine. Hadoop, YARN or Mesos facilitates the parallel running  of 

the tasks and the management and scheduling of the resources. 
 

Spark Stack 

Spark stack imbibes generality to Spark. Grouping of the following forms Spark stack: 

Spark SQL for the  structured  data. The SQL  runs  the  queries  on Spark data  in the 

traditional  business  analytics  and  visualization  applications.  Spark SQL  enables  Spark 

datasets to use JDBC or ODBC APL HQL queries also run in Spark SQL. Runs UDFs for inline 

SQL, distributed DataFrames, Parquet, Hive and Cassandra Data Stores. 
 

Spark  Streaming   is for processing real-time  streaming  data.  Processing is based on



micro-batches    style  of computing   and  processing.   Streaming   uses  the  DStream  which  is 

basically  a series  of RDDs, to process  the real-time  data. 

SparkR is an R package  used  as light-weight   front  end  for Apache  Spark  from  R. Spark 

API uses  SparkR through   the  RDD  class. A  user  can  interactively   run  the jobs  from  the  R 

shell on a cluster.  An RDD API is in the distributed   lists in R. 

Spark MLibis Spark's  scalable  machine  learning  library.  It consists  of common  learning 

algorithms   and  utilities.   MLib includes  classification,   regression,   clustering,   collaborative 

filtering,     dimensionality      reduction     and    optimization     primitives.     MLib   applies    in 

recommendation    systems,  clustering  and classification  using  Spark. 
 

Spark Graphx  is an API for graphs.  Graphx  extends  the  Spark  RDD  by introducing   the 

Resilient   Distributed    Property.    GraphX  computations    use  fundamental    operators    (e.g., 

subgraph,    joinVertices     and   aggregateMessages).     GraphX   uses   a   collection    of  graph 

algorithms  for programming.   Graph analytics  tasks  are created  with ease using GraphX. 

Spark Arrow for columnar   in-memory   analytics  and enabling  usages  of vectorised   UDFs 

(VUDFs). The Arrow enables  high performance   Python  UDFs for SerDe and data pipelines. 
 
 

Self-Assessment    Exercise  linked  to LO 5.1 
 

1.   How  does   Spark   process   as  a  fast   and   general   compute   engine?   What   does 

expressive  programming   model mean? 

2.   List the main components of Spark stack and the functions of each. 
 

3.   List the advanced  provisions  in Spark SQL compared  to HiveQL. 
 

4.   List the main features  of Spark? 

 
 
 

 
5.31 INTRODUCTION   TO DATA ANALYSIS  WITH  SPARK 

"Analysis  of data  is a process  of inspecting,   cleaning, 

transforming    and  modeling  data  with  the  goal  of discovering 

useful information,  suggesting  conclusions  and supporting 

decision-making."   (Wikipedia) 
 

For examples,  consider  a car company.  Assume that  company  sells 

five models  of cars. Each model  is available  in 16 different  colours 
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country.   An analyses  of annual  sales  and  annual  profits  model-wise,   colour-wise,   region• 

wise and  showroom-wise   help  the  company  in discovering  useful  information   and  making
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suggestive   conclusions.   The  company   does  predictive   analytics   from  the  results   of the 

analyses   and  decides  the  future   strategies   for  manufacturing,    sales  and  out-reaches    to 

customers  on the basis of the results  of the analytics. 
 

Figure   5.4   shows  the   steps  between   acquisition  of  data   from  different   sources, 

applications of the analyzed data, and application support by Spark for the analyses. 
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Figure 5.4  Steps between acquisition of data from different sources and its 
applications 

 

Following are the steps for analyzing the data: 

1.   Data Storage: Store of data from the multiple sources after acquisition. The Big Data 

storage may be in HDFS compatible files, Cassandra, Hive, HDFS or S3. 

2.   Data pre-processing: This step requires: 
 

(a)  dropping out of range, inconsistent and outlier values, 
 

(b)  filtering unreliable, irrelevant and redundant  information, 

(c)  data cleaning, editing, reduction and/or wrangling, 

(d)  data-validation, transformation  or transcoding. 
 

3.  Extract, transform and Load (ETL))for the analysis 
 

4.   Mathematical and statistical  analysis of the  data obtained  after  querying relevant 

data needing the analysis, or OLAP,



5.   Applications of analyzed data, for example, descriptive, predictive and prescriptive 

analytics,  business  processes  (BPs), business  process  automation  (BPA),  business 

intelligence (BI), decision modelling and knowledge discovery. 
 

 

5.3.1  Spark  SQL 
 

Spark SQL is a component of Spark Big Data Stack. Spark SQL components are DataFrames 

(SchemaRDDs)S, QLContextandJDBCserver. Spark SQL at Spark does the following: 

1.   Runs SQL  like scripts  for  query  processing,  using  catalyst optimizer and  tungsten 

execution engine 

2.   Processes structured  data 
 

3.   Provides flexible APis for support for many types of data sources 
 

4.   ETL operations by creating ETL pipeline on the data from different file-formats, such 

asJSON,Parquet, Hive, Cassandra and then run ad-hoc querying. 
 

Spark SQL has the following features for analysis: 
 

1. SparkR, PySpark, Python, Java  and  other  language  support  for  coding  for  data 

analysis. 

2.   Provisioning of JDBC and ODBC APis: Applications in Java and Microsoft programs 

(such  as  Excel)  need   to   connect   to   databases   using  JDBC (Object  Database 

Connectivity) and  ODBC  (Object Database Connectivity). Spark APis enable  that 

connectivity, 

3.   Spark SQL enables users to extract their  data from different formats, such as Hive, 

]SON and  Parquet,  and  then  transform  that  into  required  formats  for  ad  hoc 

querying. [Ad hoc query is a query 'just for this purpose'  or query 'on the fly.' For 

example, var newToyQuery = "SELECT  * FROM  table WHERE id = " + toy_puzzleld. The 

result  will be different  each time  this  code executes, depending  on the  value of 

toy_puzzleld. 
 

4.   Spark SQL processing support inclusion of Hive. Hive support enables the use of Hive 

tables, database   and   data   warehouse,   UDFs  and   SerDe  (serialization   and 

deserialization). 

5.   Spark SQL supports HiveQL and Cassandra CQL for query processing. 
 

6.   Spark Streaming for support to OLTP and structured  streaming. 
 

Figure 5.5  shows the  connectivity  of applications  with  Spark SQL  which connects  to 

Object Stores in different formats.
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Figure 5.5 Connectivity between the applications and Spark SQL 
 

JDBC Server  An application reads the data tables in RDBMS using a JDBC client 0DBC API 

at the application). Many applications in Java connect to databases using JDBC driver and 

server. Spark SQL API provides JDBC connectivity. Command for using JDBC server is as 

follows: 
 

./sbin/start-thriftserver.sh  -- master sparkMaster 

Hive Server (Thrift) enables a remote Hive client or JDBC driver to send a request to Hive 

and the server sends response to that  (Section 4.4.1).  The requests  can be in Scala, Java, 

PythonorR. 
 

JSON, Hive,  Parquet Objects  Section 3.3.2  explained JSON object data formats and files. 

Section 4.4  explained  Hive, HiveQL  database  and  QL  commands  for  data  definition  of 

databases, tables, columns, partitions and views, and their querying. 
 

HDFS is highly reliable for very long running  queries. However, IO operations are slow. 

Columnar storage is a solution for faster IOs. Columnar storage stores the  data portion, 

presently  required  for  the  IOs. Load-only columns  access  during  processing.  Also, a 

columnar object Data Store can be compressed or encoded according to the data type. Also, 

executions of different columns or column partitions can be in parallel at the data nodes. 
 

Section 3.3.3.3  and Section 3.3.3.4  described record columnar (RC) file, and optimized row 

columnar (ORC) file formats respectively. Hive RC file records store in columns and can be 

partitioned  into row groups. An ORC  file consists of row-groups row data called stripes.



ORC  enables  concurrent    reads  of the  same  file using  separate   RecordReaders.1    Metadata 

stored using protocol buffers for addition and removal of fields. 
 

Parquet  is a nested  hierarchical  columnar  storage  concept. Apache Parquet  file is a 

columnar storage file (Section 3.3.3.5).The file uses an HDFS block. The block saves the file 

for running  big long queries  on Big Data. Each file compulsorily consists of metadata, 

though a file need not consist of data. An application retrieves the columnar data quickly 

from Parquet files. 
 

Apache Parquet  three  projects  specify the  usages  of files  for  query  processing  or 

applications.  The  projects   are   (i)  parquet-format for  specifying  formats   and  Thrift 

definitions  of metadata,  (ii) parquet-mr for implementing  the  sub-modules in the  core 

components  for  reading  and  writing  a nested,  column-oriented  data  stream,  and  (iii) 

parquet-compatibility  for compatibly for read-write in multiple languages. 
 

Spark DataFrame (SchemaRDD) A DataFrame is a distributed collection of data organized 

into  named  columns. DataFrame can be used  for  transformation   using  filter, join,  or 

groupby aggregation functions. 
 

Example 5.8 in Section 5.4.2 will explain schema creation for DataFrames and usage of 

RDDs. Earlier,  DataFrame  in  Spark  was  called  SchemaRDD. Section  5.4.2 describes 

SchemaRDDand  creation  of RDDs  from  row  objects. An RDD  method  converts  Spark 

DataFrames to RDDs. Each RDD consists of a number of row objects. 
 

Creating Spark DataFrame (SchemaRDD) from  Parquet andJSON  Objects DataFrames 

can be created from different  data sources. Examples of data sources are ]SON  datasets, 

Hive tables, Parquet  row groups,  structured  data files, external  databases  and existing 

RDDs. Section 10.4 will describe Hive and PySpark programs using functions, Merge and 

Join in Dataframes of large datasets. 
 

The following example explains the creation and usages of Dataframes from the Parquet 

and ]SON  objects: 

 
EXAMPLE 5.1 

 
Assume a table toyPuzzleTypeCostTblwith four columns. Figure 5.6 shows the sample 

table toyPuzzleTypeCostTbl. The columns are  puzzle type, puzzle code, number  of 

puzzle pieces and  puzzle cost. DataFramel  named  toyPuzzleTypeCodes consists of 

columns 1  and 2. DataFrame2 named toyPuzzleCodesCostconsists of Columns 2 and 4. 

The table consists of multiple rows in each row group. The dashed lines point to the 

columns in the two data frames.
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Figure  5.6 Sample table toyPuzzleTypeCostTblrows, row groups and 

DataFrames 
 
 
 

(i) Create a sqlContext from a given SparkContext 'sc'. 
 

(ii)    Create    a    four    columns    DataFrame    using    the    Parquet    file    named 

"toyPuzzleTypeCostTbl". 
 

(iii) How will a DataFrame create using a JSON file format file "toyPuzzleTypeCostTbl"? 

Create two DataFrames using Java and SqlContext, one with columns for puzzle 

type and puzzle code, and the other for puzzle code and cost. 
 

(iv) How will two DataFramesjoin using puzzle code as a join key to create a DataFrame 

of three columns, 1, 2 and 4?
 

SOLUTION 
 

(i)    The following statement creates sqlContext from Spark Context sc: 
 

SqlContext            sqlContext 

org.apache.spark.sql.SQLContext(sc) 

(ii)   The following statement creates a DataFrame named toyTypeCost: 
 

DataFrame                   toyTypeCost 

sqlContext.parquetFile("toyPuzzleTypeCostTbl") 

[DataFrame created will have four columns.] 

(iii)  DataFrame creates using Load()method at the sqlContext. 

 

 
 
 
 

new



#               To display     the contents     of     Table:

"toyPuzzleTypeCostTbl" 
 

spark.sql ("SELECT*  FROM toyPuzzleTypeCostTbl  ") 
 

# To create DataFrarne toyPuzzleTypeCostTbl
 

DataFrarne 

 

toyPuzzleTypeCostTbl          sqlContext.Load

("toyPuzzleTypeCostTbl", "json") 
 

The following    statements     create    two    DataFrames    using    DataFrame 

toyPuzzleTypeCostTbl.One frame of two columns, 1 and 2, puzzle type and puzzle 

code: 
DataFrarne toyTypeCodes           toyPuzzleTypeCostTbl.

select(toyPuzzleTypeCostTbl 

toyPuzzleTypeCostTbl  ['puzzleCode'J) 

[  'puzzleType' J,

 

Second frame of two columns, 2 and 4, puzzle code and puzzle cost 
 

DataFrarne                 toyCodesCost 

toyPuzzleTypeCostTbl.select(toyPuzzleTypeCostTbl 

['puzzleCode'], toyPuzzleTypeCostTbl  ['puzzleCost'J) 

(iv) DataFramel   (toyTypeCodes) has  two  columns,  1   and  2,   as  puzzleType and 

puzzleCode,  respectively. The frame joins dataFrame2 (toyCodesCost)column 4 as 

puzzleCost and resultant  is a joined new-dataFrame toyTypeCodesCost  consisting of 

columns 1, 2 and 4. Join key is puzzleCode.  Following statements use join() method 

and joining key. 

Format of the statement is
 

dataFrame.  join   (dataframel,    dataframe2.col   ("JoinKey") 

("]oinKey") 
 

and the statement is 
 

dataFrarne.join(toyTypeCodes, 

toyCodesCost.col("puzzleCode"). 

equalTo (toyTypeCodesCost ("puzzleCode"))) 

 

dataframeNew

 
 

Using  HiveQL for  Spark   SQLSpark SQL programming provides two contexts, SQLContext 

and HiveContext. While using HiveContext, then, commands access the Hive Server only 

and use HiveQL commands. SQLContextis a subset of Spark SQL. SQLContextdoes not need
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the  HiveServer   (Thrift).  Therefore,   when  needing   access  to  the  HiveServer,   specify  the 

HiveContext.  HiveQL is recommended   for Spark  SQL.  Many resources   are  available  in Hive 

readily  and can directly  be used. 
 

Use  of  Aggregation   and   Statistical   Functions  Aggregation   functions   can  be  used  for 

analysis.  Hive consists  of count  (*), count  (expr);  sum  (col), sum (DISTINCT  col), avg (col), 

avg (DISTINCT   col), min  (col) and  DOUBLE  max(col)  (Table 4.10).  The statistical functions 

stdev(), sampleStdev(), variance, sampleVariance() can be used for analysis with 

DataFrames in input. 
 

Consider the example below to find sum of the sales of the Jaguar Land Rover model and 

trace the showroom that recorded the best sales. 

 

EXAMPLE 5.2 
 

'
 

Recall Practice Exercise 3.11. Consider the annual car sales data in the following format: 
 

ca rShow room sc umul ative Year lySa les 
~~~~~~ 
Car ShowroomID 

(csID)   
 
 

")     0  

 
]212J7                49 

nnn        40

 
 
 
 

(i)    Find the Jagaur  Land Rover annual sale figure over all showrooms. 
 

(ii)   Find the  showroom ID  and Land Rover sales figure for the  showroom giving 

maximum Jaguar Land Rover sales. 
 

SOLUTION 
 

(i)  The following query returns  the sum of the Jagaur  Land Rover annual sale in 

column 3 of the table: 
 

SELECT sum (JLRDS)FROM CarShowroomsCumulativeYearlySales 
 

(ii)   The following nested query statement returns the csID and maximum annual sale 

value for Land Rover: 
 

SELECT csID, saleJL (max (map (csID, ID,  JLRDS, saleJL))) 

FROM CarShowroomsCumulativeYearlySales



5.3.2  Using Python Advanced  Features with  Spark SQL 
 

Python  is  a general  purpose,  interpreted,   interactive,  object  oriented  and  high  level 

programming language. Python defines the basic data types, containers, lists, dictionaries, 

sets, tuples, functions and classes. Python Standard Library is very extensive. The libraries 

for regular expressions, documentation generation, unit testing, web browsers, threading, 

databases, CGI, email, image manipulation and a lot of other functionalities are available in 

Python. 
 

Python programming is a strong combination of performance  and features in the same 

bundle of codes. Spark SQL binds with Python easily. Python has the expressive program 

statements.   Spark  SQL  features  together   with  Python  help  a  programmer   to  build 

challenging applications for Big Data. The following example explains the use of PySpark, 

Python along with the Spark SQL: 

 
EXAMPLE 5.3 

 
(i)   How is HiveContext and Spark SQL used? 

 

(ii)   How does PySpark use a row object? 
 

(iii) Assume a JSON file, toyTypeProductTbl  of row objects. Assume the use of a row object 

toyPuzzleProduct  for query (Table 4.13). How do a file load and query sent to the 

file? 
 

 
ProdndCate   ry                   Productld                   ProdndName

Row Objectl 

Row Object:'., 

Row   bje t3 

To  _A:irplruie 

Toy_Airplill.!lle 

Lost Temple

 

SOLUTION 
 

(i)    Import Spark SQL using the following statement: 
 

Import Spark SQL 
 

(ii)   Then use the following command for importing a row object, toyPuzzleTypeCost: 
 

#   Now use the variable named hiveCtx using Hive Context 

from 

# sc statement using statement 

hiveCtx =    HiveContext (sc) 

from pyspark.sql import HiveContext, toyPuzzleTypeCost 
 

(iii)  A file loads using hiveCtx and input loads at the file



input=  hiveCtx.jsonFile(toyTypeProductTbl) 
 

input.registerTempTable  ("toyPuzzleProduct") 
 

The queries raised for finding Product_ID_Name using SELECT command.
 

Product_ ID_Name      hiveCtx. sql  ( "SELECT  ID, 

toyPuzzleProduct ORDER BY ProductCategory") 

 

name  FROM

 
 

5.3.2.1 Python Libraries  for Analysis 
 

NumPy and SciPyare open source downloadable libraries for numerical (Num) analysis and 

scientific (Sci) computations  in Python  (Py). Python  has open source library  packages, 

NumPy, SciPy, Scikit-learn,  Pandas  and  StatsModel, which  are  widely  used  for  data 

analysis. Python library, matplotlib functions plot the mathematical functions. 
 

Spark added a Python API support for UDFs. The functions take one row at a time. That 

requires overhead (additional codes) for SerDe.Earlier data pipelines first defined the UDFs 

in Java or Scala, and then invoked them from Python. Spark 2.3 provisions for vectorized 

UDFs (VUDFs)  and  Apache Arrow facilitates  VUDFs,  which  enables  high  performance 

Python UDFs for SerDe and data pipelines. 
 

NumPy NumPy includes (i) N-dimensional array object, array and vector mathematics; 

(ii) linear algebraic functions, Fourier transform and random number functions; (iii) 

sophisticated  (broadcasting)  functions;  and  (iv) tools  for  integrating  with  C/C++  and 

Fortran codes. 
 

NumPy provides multi-dimensional efficient containers of generic data and definitions of 

arbitrary  data types. NumPy integrates  easily with a wide variety  of databases. NumPy 

provides  import,  export  (load/save)  files, creation  of arrays,  inspection  of properties, 

copying, sorting and reshaping, addition and removal of elements in the arrays, indexing, 

sub-setting  and slicing of the  arrays,  scalar and vector mathematics  (such as +, - ,  x,   +, 

power, sqr, sin, log, ceil - round up to nearest int, floor - round down up to the nearest int, 

round-  round to nearest integer). NumPy also provides statistical functions. 
 

Table 5.1 gives the examples of NumPy functions for data analysis problems. 
 

Table 5.1  Examples of NumPy functions for data analysis problems 
 

Function 
 

Description Function Description 

 
np.loadtxt('file.txt') 

 
Loads a text file 

np.mean(arr, 

axis= o) 
Returns mean along a 

specific axis 

 
np.genfromtxt('file  .csv', 

delimiter=',') 

 
Loads a csv file with comma as the 

delimiter  between  records 

 

np.sum(); 

np.minl), 

Returns the sum and 

minimum  of the 

array 



 
np.savetxt('file.txt,'   arr, 

delimiter='') 

 
Saves a text file which is an array of 

strings separated  by a space each. 

 
np.max(arr, 

axis= o) 

Returns the 

maximum along a 

specific axis 

np.genfromtxt('file  .csv', 

arr, delimiter=',') 

 

Saves a CSV file which is an array of 

strings separated  by a comma each. 

 
np.var(arr) 

Returns the variance 

of array 

 

 
arr.sort() 

 

 
Sorts an array 

 
np.std(arr, 

axis= o) 

Returns the standard 

deviation  of a specific 

axis 

 

 
np.add (arrl,  arr2) 

 
Performs a vector addition  of array  1 

and array 2 

 

 
np.corr() 

Returns the 

correlation 

coefficient 

 

SciPy SciPy adds on top of NumPy. It includes MATLAB files and special functions, such as 

routines for numerical integration  and optimization. SciPy defines some useful functions 

for computing distances between a set of points. 
 

SciPy includes (i) interactions  with NumPy, (ii) creation of dense and open mesh grids, 

(iii) shape manipulation  functions, (iv) polynomial and vectoring functions, (v) real and 

imaginary functions, and casting an object to a data type, and (vi) matrix  creation  and 

matrices routines and usages of spark matrices. 
 

Table 5.2 gives few examples of SciPyfunctions for scientific computational problems. 
 

Table 5.2 Examples of SciPyfunctions for data analysis problems 
 

Function                              Description                            Function                Description 

 

np.c jb,   c]             Create Stacked column-wise  array                    
np.cast  ['f]    Casts an object into a data 
(np.pi)            type 

 

from 

numpy 

import           Creates a polynomial object
b.flatten()           Flattens the array 

poly ID              p 

p = polyID 

([2, 3, 4])
 

np.vsplit  (c,       
Functions for vertically  splitting  and               A.I,                Inverses, transposes,  and 

2) and 

np.hsplit  (d,      
horizontally  splitting  the array at the end      A.T,              conjugate transposes  the 

2)                             
of the second index                                            A.H               matrix, A

 
 

np.select        Returns values from a list of 
linalg.det(A)      Returns the determinate   of A                                  ([c<4],             arrays depending  on the 

[c*2])             conditions
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np.img(c) 
Returns the imaginary  part of the array 

elements 

A np.matrix 

([3,  4],  [5, 

6]) 

 

 
Creates a matrix

 

Panda Panda derives its name from usages of a data structure  called Panel. The first three 

characters Pan in Panda stand for the term 'panel'. The next two characters  da in Panda 

stand for data. The Panda package considers three data structures:  Series, DataFrame and 

Panel. 
 

DataFrame is a container for Series. Panel is a container for DataFrame objects. The Panel 

objects can be inserted  or removed similar to as in a dictionary.  DataFrame may be a 

DataFrame of statistical  or observed datasets. The data need not be labeled. This means 

datasets, objects and DataFrames can be placed into a Panda data structure without labels. 
 

Panel is a container for three-dimensional  data. Panel is a widely used term in 

econometrics. Three axes describe operations  involving panel data. For example, panel 

data  in  econometric  analysis.  Items  can  be  considered  as  along  axis O    of  an  inside 

DataFrame (set of columns). Index (rows) of each of the DataFrames correspond to axis 1 

(major axis).  Columns of each of the DataFrames correspond to axis 2 (minor axis).  Panel 

4D consists of labels as O - axis, items - axis 1, major axis - axis 2 and minor axis - axis 3. 
 

Figure 5.7  shows the main features of Pandas package.
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Figure 5. 7 Main features of Panda for data analysis



Pandas  package  includes  the following provisions: 
 

1.    Database style Dataframes merge, join, and concatenation of objects 
 

2.   RPy interface for R functions plus additional functions 
 

3.   Panda   ecosystem   has   statistics,   machine   learning,   integrated    development 

environment (IDE), API and several out of core features 

4.    SQL like features: SELECT, WHERE, GROUPBY,JOIN, UNION, UPDATE and DELETE 
 

5.   GroupByfeature of split-apply-combine with the steps as: (i) an object such as table, 

file or document splits into groups, (ii) iterate through the groups and select a group 

for  aggregation,  transformation   and/or   filtration.  The  instance  method  can  be 

dispatched  and  applied  in  a  manner  similar  to  the  aggregation/transformation 

function 

6.   Size mutability,  which  means  that   columns  can  be  inserted   and  deleted  from 

DataFrame and higher dimensional objects 
 

7.   Slicing and  dicing a collection  of DataFrame objects. The names  of axes can be 

somewhat arbitrary  in a Panel. (Arbitrary means the axes need not be named al, a2, 

... ,   an,  and  can be year,  car  model, sales, ...).  If slicing function  slices the  first 

dimension, the lower dimension objects are obtained. 
 

5.3.2.2 User-Defined  Functions  (UDFs) 
 

The functions take one row at a time. This requires overhead for SerDe. Data exchanges 

take  place  between  Python  and  JVM. Earlier  the  data  pipeline  (between  data  and 

application) defined the UDFs in Java or Scala, and then invoked them from Python while 

using Python libraries for analysis or other application. SparkSQLUDFs enable registering 

of themselves in Python,Java and Scala. 
 

The SQL calls the UDFs. This is a very popular way to expose advanced functionality to 

SQL users. User codes call the registered UDFs into the SQL statements without writing the 

detailed codes. The following example demonstrates how a UDF is created in PySpark. 

 
EXAMPLE 5.4 

 
Recapitulate    Example   5.1     table,    toyPuzzleTypeCostTbl.              Create    a    UDF, 

udfCostPlus    ()  in pandas. The table column puzzleCost        creates using 

jigsaw_puzzle_info.txt from an RDD.  Write a UDF  which increases the  costs in the 

column, puzzle_cost_uso         by 10%.(The UDF takes one row at a time as input.) 
 

SOLUTION 
 

Following are the Python statements



from pyspark.sql.functions  import udf 

[Useudf to define a row at a time udf.] 
 

@udfCostPlus('float') 

[Input and output costs are two values both for a single float variable, v.] 
 

def plusTenPercent(v): 

return v +   0.1 xv; 
 

df.withColumn('v4', puzzle cost_USD (df.v)) 

[Data Frame df    has v4 as puzzleCost        in the fourth column.] 
 

 

Dataset at Example 5.2 consists of car sales data. Column 1  represents  car showroom ID. 

The ID key is present  in all date fields on which the sales were recorded during the year. 

Corresponding to an ID, column 3 has the Jaguar Land Rover sales figures in more than 300 

rows for more than 300 dates. Sales figures of four other models are in columns 4, 5, 6 and 

7. 
 

The product  sales analysis is widely performed  in many businesses. Writing a UDF for 

analysis of sales once and using it for different products whenever and wherever desired 

reduces coding efforts. This also integrates new functions (UDFs) in higher level language 

with their  lower level language implementations.  Also, writing  UDFs  are  helpful when 

built-in functionalities in a currently used tool needs additional functionalities. 
 

A UDF using aggregation function max() calculates the Land Rover sales and traces the 

showroom giving maximum  Jaguar  Land Rover sales.  The UDF is of great  help to perform 

similar analyses on different models of the car. 
 

Java  class  can  be  created  user  defined  method  (UDF) productSalesAnalysis             (). 

Python scripts can also create the UDF to find that sales point ID and total yearly sale for 

that sales point from which the total is highest for a product. The UDF will be reusable not 

only for car sales analysis but also for analysis of sales of many companies, such as ACVM 

or Toy Company. 
 

Python provides a register function: hiveContext          {sc)   . registerFunction            {).  The 

command  can  be  hiveContext           {sc).         registerFunction               {"csIDnl",          int: 

bestYearlySalesModell, LongType  (),                 ("csIDn2",                  int: 

bestYearlySalesModel2, LongType {), ...    )  .     cslDnl   is  car-showroom   IDl, 

bestYearlySalesModell is best yearly sale of model 1. 
 

5.3.2.3 Vectorized User Defined Functions (VUDFs) 
 

Python UDFs express data in detail. Therefore, Python UDFs, block-level UDFs with block• 

level arguments and return  types, conversions or transformations  are widely used in ETL

mailto:@udfCostPlus


or ML applications. Spark Arrow facilates columnar in-memory analytics, which results in 

high performance of Python UDFs, SerDe and data pipelines. 
 

VUDFs use series data structure  (meaning one-dimensional array or tuples). Spark 2.3 

(2018)   provisions for using vectorized  UDFs (VUDFs). Apache Arrow 0.8.0  (release date 

December 18, 2017)  facilitates usages of VUDFs. Pandas UDF, pandas_ UDF uses the function 

to create a VUDF with (i) pandas.Series as input to the UDF, (ii) pandas.Series as output 

from the  UDF,  (iii) no grouping  using GroupBy, (iv) output  size same as input,  and (v) 

returns the same data types as specified type in return pandas.Series. 
 

The following example explains the use of VUDF. 
 

 
EXAMPLE  5.5 

 
Recapitulate Example 5.1 toyPuz    z leTypeCos   t Tbl.   Create a vectorized UDF (VUDF). 

First  define  a pandas_UDFCostPlusfor  increasing  cost puzzle_cost_USD of toys in 

puzzle_Costs RDD created from jigsaw_puzzle_info.txt., 
 

SOLUTION 
 

Following are the Python statements from pyspark.sql.functions import pandas_udf: 
 

from pyspark.sql.functions  import pandas_udf 

[Usepandas_udf to define a vectorized udf.] 
 

@pandas_udfCostPlus  ('float') 

[Input/ output are both a pandas.Series of elements with data type float.] 
 

def vectorized_plusTenPercent  (v): 

return v4 +   0.1 
 

df.withColumn('v4', vectorized_ plusTenPercent  (df.v)) 

[Useudf to define a DataFrame vudf.] 
 
 

5.3.2.4 Grouped Vectorized  UDFs (GVUDFs) 
 

Grouped Vectorized UDFs (GVUDFs) use Panda library split-apply-combine  pattern in data 

analysis. The GVUDF group function operates on all the data for a group, such as operate 

on all the data, "for each car showroom, compute yearly sales". 
 

GVUDF steps are: 

1. Splits a  Spark DataFrame into  groups  based  on  the  conditions  specified in  the 

groupby operator 

2.   Applies a vectorized user-defined function (pandas.DataFrame ->  pandas.Dataframe)
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to each group 
 

3.    Combines into new group 
 

4.   Returns the results as a new Spark DataFrame 
 

Pandas  GVUDF,  pandas_GVUDF, (i)  uses  the  function  similar  to  pandas_VUDF, (ii) 

pandas.DataFrame  as input  to  the  GVUDF,  (ii) pandas.DataFrame  as  output  from  the 

GVUDF, (iii) grouping semantics defined using clause GroupBy, (iv) output size can be any 

and  can  be  grouped  and  can  be  distinct  from  input,  and  (v) returns   data  type  is a 

StructType.   The   type   defines   a   column   name   and   the   type   of   the   returned 

pandas.DataFrame. 
 

The following example explains GVUDF for adding 10% in a cost of group of rows for toy 

products. 
 

 
EXAMPLE  5.6 

 
Add 10% cost in each value of item cost in a group of rows. Use GVUDF to define a 

DataFrame costTenPercetPlusGVUDF. 
 

SOLUTION 
 

Following are the Python statements from pyspark.sql.functions import pandas_udf: 
 

from pyspark.sql.functions  import pandas_udf 

[Usepandas_udf to define a grouped vectorized udf.] 
 

@pandas_udf(df.schema) 

#   Input/output are both a pandas.DataFrame 

def costTenPercetPlus  (pdf): 

return pdf.assign(v=add(pdf.v  +   O.lxpdf.v)) 
 

df.groupby('id') .apply(costTenPercetPlus) 
 

 

5.3.3  Data Analysis Operations 
 

Examples of operations required in the above analysis are given below: 
 

1.   Filtering single and multiple columns 
 

2.   Creating a top-ten list with values or percentages 
 

3.   Setting up sub-totals 
 

4.   Creating multiple-field criteria filters 
 

5.   Creating unique lists from repeating field data
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6.   Finding duplicate  data  with  specialized arrays,  and  using the  remove  duplicates 

command and removing outliers 

7.   Multiple key sorting 
 

8.   Counting the number of unique items in a list 
 

9.   Using SUMIF and COUNTIF functions 
 

10. Working with database functions, such as DSUM and DMAX 
 

11. Converting lists to tables. 
 

5.3.3.1 Removing Outliers for Data Quality Improvement  for Analysis 
 

Outliers are data which appear  as they  do not belong to the  data set. The Outliers are 

generally results of human data-entry errors, programming bugs, some transition  effect or 

phase lag in stabilizing the data value to the true value. 
 

The actual outliers need to be removed from the data set. For example, missing decimal 

in the cost of a toy US$ 1.85 will make the cost 100 times more for a single toy. The result 

will thus be affected by a small or large amount. When valid data is identified as an outlier, 

then also the results are affected. 
 

The statistical  mean is computed from the product  of each observed value v of Values 

with  probability  (or weight)  P and  then  taking  the  average. The variance  equals the 

difference of a value with respect  to the mean, then  square that,  and then  average the 

results. Standard deviation isjust the square root of the variance. 
 

The following example explains the Python codes for removing outliers. 
 

 
EXAMPLE  5.7 

 
How will you remove outliers in values in a column? 

 

SOLUTION 
 

Transform ROD string or other to numeric data so that  statistical methods compute 

and remove those who have larger distanceNumerics.
 

distanceNumerics 

(string)) 

 

distances.map   (PySpark  string:  float

 

stats=  distanceNumerics.stats() 

[stats() means a statistical function, such as meanl), stdev()]' 
 

statdev = std.stdev() 
 

mean=  stats.mean() 
 

reasonableDistances        distanceNumerics.filter    (PySpark



values:  maths.fabs   (values-mean) <   3  xstdev) 

[Assume that  distances that  are reasonable are less than  three  times the standard 

deviation. Distance means difference with respect to mean or peak value.] 
 

print   reasonableDistances.collect() 

[Print the values within reasonable distances.] 
 

 
Self-Assessment Exercise linkedto LO 5.2 

 

1.    What  are   the   steps  between   acquisition   of  data   from   different   sources, 

applications of analyzed data, and applications support by Spark for analyses? 

2.   What are the different sources from which the Dataframes are created for query 

processing? 

3.   What are grouped vectorized UDFs? How do they differ from UDFs? 
 

4.   List the  actions  of the  count(*), count(expr);  sum(col), sum(DISTINCTcol), avglcol), 

avg(DISTINCTcol), min(col) and DOUBLE max(col) aggregation functions. 

5.   How is a four-column Dataframe created using a parquetFile? 
 

6.   List the actions of each statement in codes given in Example 5.7. 
 
 
 

 

5.41 DOWNLOADING   SPARK,  AND PROGRAMMING 

USING RODS AND MLIB 

The following subsections describe downloading of Spark, getting 

started   in  programming  with  RDDs   and  introduces   Machine 

learning with the MLib: 
 

 

5.4.1  Downloading,   Installing Spark and Getting 

Started 
 

Spark 2.3.1  uses Scala 2.11.x   API when using compatible  Scala 
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version 2.11.x.  Initially select the choices for the download: (i) Choose a Spark  Release: 2.3.1 

(Iune, 2018),   (ii) Choose a package  type: pre-built  for Hadoop 2.7  or later,  (iii)  Choose  a 

download type: Direct Download, and (iv) Verify this release using the 1.2.0  signatures  and 

checksums. 
 

Spark new versions run onJava 8+, Python 2.7+/3.4+  and R 3.1+. Programmers using Scala



2.11 download  the  Spark source  package  and build the  Scala 2.11 support  in that. 
 

Downloading Steps for downloading are: 
 

(i) Programmer     gets     Spark     from     the     Apache     Spark     project     website 

http://spark.apache.org/   downloads.html. 

Assume that  Spark version is 2.3.1. Spark uses HDFS  and YARN client libraries in 

Hadoop. Built-in libraries are available for Spark SQL,  Spark Streaming, MLib and 

GraphX (graph). Spark 2.3.1 is pre-packaged with Hadoop 2. 7. When a download is 

pre-packaged for   no   Hadoop  version,   then   install   Hadoop  from   the   site 

http://apache.claz.org/hadoop/common/hadoop-2.7 /.  The make shared  HADOOP, 

MAPRED, COMMON, HDFS and all related files, configure HADOOP and set property 

such as replication  parameter.  Name the  yarn.nodemanager.aux-services.  Assign 

value to mapreduce_shuffle. Set namenode and datanode paths. 
 

export HADOOP_HOME=/usr/local/hadoop 

Download that  from http:/ Ispark.apache.org/ downloads.html and unzip using the 

command: 
 

$ tar -xvzf -/spark-2.3.1-bin-hadoop2.7.tgz 
 

$  ls 
 

Set Path by the commands: 
 

$  cd $SPARK HOME/conf 
 

$  cp spark-env.sh.ternplate spark-env.sh 
 

Spark artifacts host at Maven Central. Maven dependency adds using the following 

coordinates: 
 

groupID: org.apache.spark 

artifactID: spark-core 2.2 

version 2.2.1 

Scala and Java users can include Spark in their projects using its Maven coordinates 

and later pointing to a Java installation or with Java installed in the system PATH. 
 

(ii)   When using Python and running the Python shell, use command: 
 

cd spark-2.3.1-bin-hadoop2.7 
 

.      /bin/pyspark 
 

Python users can also install Spark from PyPI. Python has provision of compound

http://spark.apache.org/
http://spark.apache.org/
http://apache.claz.org/hadoop/common/hadoop-2.7
http://apache.claz.org/hadoop/common/hadoop-2.7
http://apache.claz.org/hadoop/common/hadoop-2.7
http://apache.claz.org/hadoop/common/hadoop-2.7
http://apache.claz.org/hadoop/common/hadoop-2.7


data  types.  Python  provides  lists,  known  as arrays  in other  languages.  Lists can be 

indexed,  sliced and manipulated   with  built-in  Python  functions.   Spark Python  shell 

is bin/pyspark. 

(iii)  Programmers requiring Hive databases and HiveQL, do so by the command: 
 

apache-hive-0.14.0-bin  apache-hive-0.14.0-bin.tar.gz 
 

and extracts the Hive archive. 
 

(iv) Programmers can also use an external database server. This requires configuration 

of Metastore for that server. 

(v) When using Scala interactive  shell running  on JVM, install Javac and Java from 

Oracle  Java   download   site.   Download  Jdk   8     or   a   later    version    from 

http:/ /www.oracle.com/technetwork/java/javase/   downloads/jdk8-downloads• 

xxxxx.html and extract the compressed file. 

update-alternatives     --Install 

usr/local/java/bin/java  8~ 

/usr/bin/java     java

 

(vi) Make Java available to all the users to access Java. Move download to the location 

"/usr/local/" using the required commands. Set the path by the commands: 
 

export JAVA_HOME=/usr/local/jdk8u152 

export PATH=$PATH: $JAVA HOME/bin 

(vii) When using Scala, run the shell by the command: 
 

cd spark-2.2.1-bin-hadoop2.7 
 

./bin/spark-shell 
 

Spark Core Concept: Driver and  Context A  Spark  application  consists  of  a  driver 

program  that  executes various operations  in parallel on a cluster. The driver  program 

contains  the  main function  of an application  and defines distributed  databases  on the 

cluster, and then applies operations to them. 
 

A driver program can be the Spark shell itself. A driver program accesses Spark through 

an object, SparkContext which represents  a connection to a computing cluster. The Spark 

shell automatically creates the SparkContext, referred by sc. 
 

A driver program uses the sc. The driver program distributes to multiple worker nodes 

(machines) in  a  cluster.  Each worker  node  has  an  executor  (machine). The  executor 

executes multiple tasks in parallel. 
 

A driver program manages executors. For example, when method count() executes then

http://www.oracle.com/technetwork/java/javase/


different 

executors    count   the   elements   in  different    ranges   of  an  RDD.   For  example,   elements 

(columns)  in RDD  for  a table  in the  rows  1  to 100  count on one executor, 101  to 200  on 

another, and so on. An executor may run four tasks, by dividing the range into four parts. 
 

Testing  the  Installation Use "README.md".  It  is main  documentation  file. The total 

number of lines is 127 and the first line is'# Apache Spark' 
 

»>  mainDocLines  =     sc. textFile (README.md) [ROD   named   mainDocLines 
creates.] 

 

>>>  mainDocLines.count() 
 

127 

If 127 is displayed, it means the installation of Apache Spark and Python is successful. 

Alternatively, create a text filejigsaw_puzzle_info.txt in Example 4.10 given below. 

Write a line counting program: 

>>> toycostsDocLines = sc.textFile(jigsaw_puzzle   info.txt) 

[ROD named toycostsDocLines creates.] 

>>> toycostsDocLines.count() 

Test shows successful installation, if the number of lines matches. 
 

Spark  Supported File Formats  Table 5.3   describes the Spark supported file formats and 

their descriptions. 
 

Table 5.3 File formats and their descriptions 
 

File 

Format 

 
Description 

 
Text File 

 

Saves unstructured   data. Text file is the default file format.  A line represents  a record. The 

delimiting characters  separate  the lines.  Text file examples are CSV, TSV,JSONand XML. 

 

Sequence 

File 

 

Saves  structured    data.  Like a  flat  file  which  stores  binary   key-value  pairs,  supports 

compression.  Example of application  is HDFS file format used for key-value pairs. 

 
Object 

File 

 

Saves structured  data in Object Store.  An Object file transfers  by serialization;  for example, 

using  Java  Serialization.   Applications   save  data  from  a  Spark job  which  shared   code 

consumes or saves data onto cloud object store service 53. 

 

Protocol 

buffer 

 

Saves  structured   data  in  protocol   buffer.  An  application   in  a  programming   language 

requires  efficient and fast protocol buffer. 

 

 
]SON 

 

Saves semi-structured   data  in text-based  format.  Programming  language  libraries  mostly 

require  one per line. [(Section 3.3.2 and Section 1.6.1 Example 1.12 (ii)] 



  
 

CSV 
 

Saves structured  data in text-based  format, such as spreadsheet 

 

 

5.4.2 Programming with  RDDs 
 

Spark Resilient Distributed Dataset (RDD)  is a collection of objects distributed  on many 

computing nodes. Each RDD can split into multiple partitions, which may be computed in 

parallel on different nodes of a cluster. 
 

Characteristics of RDDs 
 

1.    fault-tolerant abstraction which enables In-Memory cluster computations, 
 

2.   immutable (thus read-only) and partitioned distributed collection of objects, 
 

3.   have interface  which enables transformations  that  apply the  same to many data 

objects, 

4.   create  only through  the  deterministic  operations  on either  (i) data in stable Data 

store such as file or (ii) operations on other RDDs, 

5.    are parallel data structures, 
 

6.    enable efficient execution of iterative algorithms, 
 

7.    enable efficient execution of interactive data-mining, 
 

8.    the commands to them enable the intermediate-results  explicitly persist in memory, 

and 

9.   the command to them controls the partitioning  so that placement of data optimizes 

and partitions can be manipulated using operators. 
 

Spark RDD is immutable (not capable of or not susceptible to change). A new RDD creates 

on transform and action commands. Commands create RDDs in two ways: (i) load an external 

dataset as a distributed collection of objects, or (ii) use a driver (program) for distributing a 

collection of objects. 
 

Two operations,  transform and  action can  be  performed  on  an  RDD.  Each  dataset 

represents  an object. The transform-command  invokes the methods using the objects to 

create new RDD(s). Action is an operation  that  (i) returns  a value into a program or (ii) 

exports data to a Data Store. Transform and action are different because of the way in 

which Spark computes RDDs.  Transform  operations  create  RDDs  from each other.  The 

action command does the computation when a first-time action takes place on an RDD and 

returns a value or sends data to a Data Store. 
 

The following example explains the command for creation of the RDD, and transform and



action  commands  for operations   on the RDD textFile. 
 

 
EXAMPLE  5.8 

 
Recapitulate Example 4.10 of a toy company selling Jigsaws. Consider a text file named 

jigsaw_puzzle_info.txt in/home/user directory. The three lines in the text file are: 
 

 
 

(i)   How will you create  RDD puzzle_Costs from jigsaw_puzzle_info.txt? Use Spark 

Context (sc). 
 

(ii)  A new RDD must have the lines having the string "puzzle_cost_USD".How will 

you use transform  command to get  new RDD  textf'ile, puzzle_cost_USD?How 

many lines will puzzle_cost_USDpossess? 

(iii)  How will an action command display first line from the filtered text? 
 

SOLUTION
 

(i) 
 

RDD creates from text file at Spark Core using the following command:45, 
 

>>> puzzle_Costs =    sc.textFile("jigsaw_puzzle  info.txt") 
 

[sc stands for SparkContext.] 
 

Alternatively, without using sc then create RDD using the following command: 
 

puzzle_Costs 

spark.read.textFile("jigsaw_puzzle  info.txt") .rdd
 

(ii)   A   transformation command   is  filter().   The   following  statement    does  the 

transformation  using filter(): 
 

>>>puzzle cost_USD =     puzzle_Costs. filter  (pyspark line: 

"puzzle cost_USD" in line) 

puzzle_cost_USDRDD will have first two lines only. (Third line has the cost in 

cents.) 

(iii)  An action command to get the first line is first(). The following statement does the 

action using first(): 
 

>>> puzzle_Costs_USD.first() 
 

The result puzzle_cost_USDfirst line will display as follows:



## puzzle code_Garden  10725 pieces  100 puzzle cost_USD 

1. 35 
 

 

Examples  of Transform Commands  Examples of the  transform  command are  filterl), 

mapl),   mapValues(),   flatMap(),   sortl),   pratitionBy(),   groupByKey(),  reduceByKey(), 

aggregateByKey(),   pipe(),    coalescel),    sample(),    unionl),    join(),    cogroupt),    and 

crossProduct(). 
 

Examples of Action Commands Examples of the action command are: reducef), collect() 

[Returns  the  elements  themselves],  count()  [Returns  the  number  of elements  in  the 

dataset], first(), takel), countByKey(),lookup() [used when RDDs hash/range partitioned], 

foreach() and save() [Returns the dataset to a Data store]. 
 

RDDsPersistence Command persist         enables the RDDs to reuse intermediate  results in 

later operations. The following example explains the command, persist         for an ROD, and 

action command count ( )  . 

 
EXAMPLE 5.9 

 
Recapitulate Example 5.8 (ii) of a toy company selling Jigsaws. The RDD has two lines 

after filter(). 
 

(i)   How will the intermediate results be used? 
 

(ii)   What will be the output of action commands count() and first()? 
 

SOLUTION 
 

(i) RDD persist command saves intermediate  results of actions using the following 

command: 
 

>>> puzzle_Costs_USD.persist 
 

(ii)   The action command count() will do the action as follows: 
 

>>> puzzle_Costs_USD.count() 
 

2 
 

[The result will display 2 as two lines remained after filter() in Example 5.8(ii).] 

Action for display first line will be use the command: 

>>> puzzle_Costs_USD.first() 
 

The result puzzle_cost_USDfirst line will display as follows: 
 

## puzzle code_Garden  10725 pieces  100 puzzle cost USD



Data Type 

Name 

 

Description 

TINYINT 
 

1 byte signed integer. Postfix letter  is Y 

SMALLINT 
 

2 bytes signed integer. Postfix letter  is S 

INT 
 

4 bytes signed integer 

BIGINT 
 

8 byte signed integer. Postfix letter  is L 

FLOAT 
 

4 byte single-precision  floating-point number 

 

DOUBLE 
 

8 byte double-precision  floating-point number 

BOOLEAN 
 

True or False 

 

 
TIMESTAMP 

 

UNIXtimestamp with optional nanosecond  precision. It supports java.sql.Timestamp 

format  "YYYY-MM-DD HH:MM:SS.fffffffff'Java has j ava.   SQL. TimeStamp and 

Python has datetime.  Datetime 

DATE 
 

YYYY-MM-DDformat 

 

STRING 
 

Use single quote('')  or double quote("").  Python,Java and Scala use string, String and 

 

1. 35 
 
 

Removing Data Spark auto-monitors the usages of caches. Spark removes the caches using 

'least   recently   used   partitions    removed   first'   strategy.   A   programmer    can   use 

RDD.unpersist()to remove caches. 
 

RDDsPartitioningand ParallelizingSpark RDD partitioning  enables execution of each 

partition in parallel. 
 

puzzle_cost_USD = sc.parallelize(["puzzle  cost_USD", 
""puzzle cost_USD"]) 

 

Dataframe (SchemaRDD) SchemaRDDis similar  to  a table  in  a traditional  

database. SchemaRDDin earlier Spark versions is now named as Dataframe. The schema is 

blueprint for  the  organization  of data  in an  ROD  (similar to  traditional  database  

schema). The blueprint tells how the RDD constructs. The SchemaRDDreturns  on the 

queries loading or execution. A SchemaRDDis composed of row objects. The 

SchemaRDDhas additionally the 

'Data Type' information for each column. A row object wraps the arrays of basic data types. 

Table 5.4 provides Spark data types and their descriptions. These are similar to HiveQL. 

Table 5.4 Spark data types and their descriptions



 String,  respectively    to define  a string   variable. 

 

VARCHAR 
 

1  to  65355 bytes  use  single  quotes   (' ') or double  quotes   (" ") 

 

CHAR 
 

255 bytes 

 
DECIMAL 

 

Used  for representing   immutable    arbitrary  precision.   DECIMAL   (precision,   scale)  format 

Java  has  j ava  .Math.   BigDecimal   and Python decimal.    Decimal. 

UNION 
 

Collection of heterogeneous   data types. 

NULL 
 

Missing values representation 

 

Table 5.5  provides three  Collection data types available in Spark SQL and HiveQLand 

their descriptions. 
 

Table 5.5 Three Collection data types: STRUCT, MAP and ARRAY and their descriptions 

(same as HiveQL) 
 

Name 
 

Description 

 

 
 
STRUCT 

 

Similar to 'C' struct.  Fields are accessed using dot notation. 

For example, struct    (  'a'   '    'b'    ) 

An example is row object STRUCT<Coll:Coll_Type, ... =. Python,Java  and Scala 

have structures named Row. 

 
MAP <KEY_ TYPE, 

VAL_TYPE> 

 

A collection of key-value pairs.  Fields are accessed using[] notation. 

For example,  map    (  'keyl',       'a'   '     'key2',         'b'    )  .   Scala and Java  use 

Map and Python diet 

 
 
ARRAY <DATA TYPE> 

 

Ordered sequence of same types.  Fields are accessed using array index. 

For example, array    (  'a'   '    'b').      Scala uses Seq,Java List    and Python 

list,     tuple    or array. 

 

Row objects represent  records inside SchemaRDDsand are simply fixed-length arrays of 

fields. 
 

A SchemaRDDexample is given below: 
 

 
EXAMPLE  5.1 

 
Recapitulate Example 4.10  of a toy company selling Jigsaws. Consider the following 

table object named toyPuzzleTypeCostTbland row objects named toyPuzzleTypeCost.



 

.. 
 
 

puzzlecode 

 
 

I     .. 

 

 
pu.zzle _oost_ USD 

puzzle , Ga1mm 10725 m U:S 

 

 31407 300 2.85 

 

 
81049 800 .E.37 

 

(i) What  will be the  SchemaRDD for  the  table  as array  of rows  with  four  columns 

each? 

(ii)   Which command  will be used to access a row for puzzle_School? 
 

(iii)  What   is   an   alternative     method    to   create    Schema   ROD    for   row   objects 

toyPuzzleTypeCost   from toyPuzzleTypeCostTbl? 
 

SOLUTION 
 

(i)    SchemaRDD will be as follows: 
 

1--   toyPuzzleTypeCostTbl: ARRAY (nullable =    true) 
 

[The table  is an array  of rows. An array  may not have any element.] 

1-- element:  STRUCT toyPuzzleTypeCost   (containsNull  = false) 
 

[The data  type  of element   (row)  of the  array  named  toyPuzzleTypeCostTbl   is a 

STRUCT named  toyPuzzleTypeCost.] 
 

I       --          toyPuzzleTypeCost:    STRUCT    (toy_type:   STRING, 

puzzle code: STRING, pieces:  SMALLINT, puzzle cost USD: 

FLOAT) 

[The  array   element   is a data  structure  of four  columns   of data  types  STRING, 

STRING,  SMALLINT  and FLOAT, respectively.] 

I-   -  toy_type: STRING (nullable =    false) 
 

I-   -  puzzle code: STRING (nullable =    false) 
 

I-   -  pieces: SMALLINT (nullable =    false) 
 

I-   -  puzzle cost_USD: FLOAT (nullable =    false) 
 

(ii) Command  to access the row having  key puzzle_School  in Python  is: 
 

toyPuzzleTypeCostTbl.map(toyPuzzleTypeCost: 

puzzle School). 
 

[The returned data type will be STRUCT.] 
 

(iii)  Python  commands  to create  toyPuzzleTypeCostTbl   ROD are:



toyPuzzleTypeCostRDD     sc.parallelize([Row    (toy_type 

"puzzle_Garden",  puzzle_code=  "10725",  pieces     100, 

puzzle cost_USD = 1.35)] 

[Created row  toyPuzzleTypeCost ROD with a tuple using parallelize method 

of Spark Context, sc] 

toyPuzzleTypeCostSchemaRDD= 

(toyPuzzleTypeCostRDD) 

HiveContext(sc) .inferSchema

 

[Created    row-schema,     toyPuzzleTypeCostSchemaRDD using    method, 

inferSchema of Hive Context inbuilt in Spark Context, sc] 
 

toyPuzzleTypeCostSchemaRDD.registerTempTable 

("toyPuzzleTypeCostTbl") 
 

[Created ROD using registerTempTable method for the row object schema. Table 

toyPuzzleTypeCostTblcreates toyPuzzleTypeCostSchemaRDD.] 
 
 

Numeric  Operations on RDD Spark provides several descriptive statistics operations  on 

RDDs 

containing  numeric  data.  Table  5.6    provides  description  of  numeric  ROD  operations 

available in Spark. 
 

Table 5.6 Numeric RDD Operations 
 

Method 
 

Description 

 

 
count() 

 

Returns the number  of elements  in an RDD.  Returns BIGINT of 8 bytes.  For 

example, Command toyPuzzleTypeCostTbl.count() returns  12 in the table in 

Example 5.10. 

sum() 
 

Returns the sum of the elements 

mean() 
 

Returns the sum of the elements  divided by the number  of elements 

min() 
 

Returns the minimum value of the elements 

max() 
 

Returns the maximum value of the elements 

stdev() 
 

Returns the statistical  parameter,  standard  deviation of the elements 

sampleStdevt) 
 

Returns the statistical  parameter,  standard  deviation of a sample of the elements 

variance() 
 

Returns the statistical  parameter,  variance  of the elements 



sample Variance()    Returns the statistical  parameter,  variance  of a sample of the elements 

 
Shared  Variables  The variables  in HDFS  have multiple  copies in the  data  nodes  of a 

cluster.  While mapping  or  reducing  functions  for  execution  on  a  cluster  node,  the 

operations take place on separate copies of all variables used in the function. These copies 

also updated, but the copies or changes do not pass on to the driver program. Usages of 

read and write instructions for the variables are inefficient. 

Broadcast variables and accumulators enable the implementation of shared variables. 

Broadcast  Variables  Spark also attempts to distribute broadcast variables using efficient 

broadcast algorithms to reduce communication cost. Broadcast variables are created from 

a value denoted by a variable v and running  method  sc .broadcast     (v). The broadcast 

variable is a wrapper around v. 

 
EXAMPLE 5 .11 

 
Recapitulate Example 5.8 (ii) of a toy company selling Jigsaws. The RDD has two lines 

after filter(). How will you use the intermediate  results and execute action commands 

count() and first()? 
 

SOLUTION 
 

Recapitulate Example 5.10. Python code accesses the value of the broadcast variable as 

follows: 
 

>>>  broadcastVar         =     Sc.broadcast       (   [   ("puzzle_Garden",           "10725", 

100,     1.35)]) 
 

The result will be: <pyspark.broadcast.Broadcast object at Ox102789flO>. The value 

can be accessed by calling the value method as follows: 
 

>>> broadcastVar.value 

Result will be [("puzzle_Garden", "10725", 100, 1.35)] 
 

 

Accumulators 
 

Spark supports  accumulators  of numeric  type.  A  programmer  can  provide  additional 

support to other data types. Accumulators are special variables. They add the values using 

associative and commutative operations. They also support parallel run: for example, in 

count()     or sum(). 
 

An accumulator variable creates from an initial value v. Later the value accumulates into 

that using+= operator. For example, in count()     initial value is 0. The command to create 

accumulating variable is sc.  accumulator    ( v).
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EXAMPLE  5.12 

 
Recapitulate Example 5.10. How does Python code access the value of the accumulator 

variable? 
 

SOLUTION 
 

Python code accumulates the value using variable v as follows: 
 

>>> accumColumns   = sc.broadcast(O) 

>>> accumColumns 

The result will be <Accumulator id = 0, value = O>. 
 

When following command executes: 
 

>>>               sc .parallelize (  [1. 35, 2. 85, 1. 37]). foreach (x: 
accumColumns.add(x)) 

The result will be 5.57. 
 
 

5.4.3 Machine  Learning with  MLib 
 

Apache MLib is a component of Spark that is open source downloadable from Apache Spark 

website. Figure 5.8 shows the main usages of MLib (machine learning library). 
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Figure 5.8  Main usages of MLib machine learning library 
 

Spark Support ML pipelines. An ML pipeline means data taken from data sources, passes



through   the  machine  learning   programs   in between  and  the  output  becomes  input  to the 

application.   Decision tree,  knowledge  discovery,  clustering   and mining  are examples  of ML 

pipeline  application. 

Spark  2.3  supports  Python UDFs, VUDFs, block-level UDFs with block-level arguments 

and return  types, complex object types  (array map and structure),  and conversions or 

transformations  of object types. These features are widely used for the ML applications. 
 

ML datasets are RDDs, thus use HDFS, HBase or local files. MLib APis are interoperable 

with Spark SQL. MLib  Python implementation  adds Python APis. MLib interoperates  with 

NumPy in Python. 
 

Chapter 6 will describe ML algorithms in detail. 
 
 

Self-Assessment Exercise linked to LO 5.3 
 

1.   what are the steps for downloading a Spark version? 
 

2.   List the Spark supported file formats and their usages. 
 

3.   Write  the  use  of transform  commands  in  RDD  programming,  filtert),  map(), 

mapValues(),  flatMap(),   sortl),   pratitionBy(),   groupByKey(),  reduceByKey(), 

aggregateByKey(), pipel),  coalescel),  sample(),  unionl),  joinl),  cogroup(),  and 

crossProduct(). 

4.   How do broadcast  variables  and  accumulators  enable  the  implementation  of 

shared variables? 

5.   Create, using inferSchema method ofHiveContext inbuilt in Spark Context sc, row• 

schema toyPuzzleTypeCostSchemaRDD. 
 

6.   What does machine learning mean? What are the main usages of MLib? 
 
 
 

 

5.51 DATA  ETL (EXTRACT,  TRANSFORM   AND LOAD) PROCESS 

 

The ETL process combines the following three functions into one:
 

1.   Extract which does the acquisition of data from Data Store 

querying or from another program, 

2.   Transform which does the change of data into a desired file, 

HI!.. processes 1D1si n g1 bl.!lil1t-'ilfil 
fu nctions a ndl qperairor,s, 
andl Ertpipeli'nes

columnar,  tabular  or  other.  Transformation  converts  the  previous  form  of the 

extracted  data  into  a new form. Transformation  occurs by using rules  or lookup



 
 
 
 

 
Ca         d    OB 

tables.   Transformation     uses   the   functions,    namely   joint],   groupBy(),   cogroupl), 

filter(},  mapl),  mapValues(),   flatMap(),  sortf),  pratitionBy(),   groupByKey(), 

reduceByKey(),       aggregateByKey(),        pipel),       coalescel),       samplel),       unionl), 

crossProduct().   Spark  2.3 includes  transformation    functions   on complex  objects  like 

arrays,   maps  and  set  of  columns.   Pandas   provide   powerful   transformation     UDFs, 

VUDFs  and GVUDFs. 

3. Load which  does the  process  of placing  transformed    data  into  another   Data Store  or 

data warehouse  for usage by an application   or for analysis. 
 

Python,   Spark  SQL   and  HiveQL support   ETL  programming    and  extracting    by  query• 

processing  and text  processing. 
 

 

5.5.1 Composing Spark Program Steps for ETL 
 

Spark 2.3  ETL Pipeline Apache Spark 2.3+ includes usage of UDFs, VUDFs and Data Source 

API v2. These facilitate  the  creation  of ETL  pipelines  easily. Figure 5.9 shows an ETL 

pipeline using Spark SQL for ETL Process and Data Source API v2 in Spark 2.3. 
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Figure 5.9 ETL pipeline using Spark SQL



Extract 
 

Skipping Corrupt or Bad Records or Files A record can sometimes be bad. For example, 

"toyPuzzle_Type", toyPuzzle_Airplane. Here the data type in schema is string, but quotes 

are missing in toyPuzzle_Airplane. Use the following command to ignore bad records or 
file:spark.sql.files.ignoreCorruptFile=s true. 

Spark  supports  parser   for  text  file  formats  in JSON and  CSV with  three   modes: 

PERMISSIVE, DROPMALFORMEDOR FAILFAST. Reading data requires a parser in a SELECT 

for querying or load for extraction process. 
 

Extract  and Load: Multi-line JSON/CSV Support Load and Save files: SerDe uses codes for 

obtaining records from unstructured data. Save process uses serializer codes and Loading 

(extracting) process uses deserializer. 
 

The following example explains the codes for sequence File, ]SON  and CSV file load and 

save functions for obtaining records/rows/files. 

 
EXAMPLE 5.13 

 
Using Python, 

 

(i)   How does a sequence file load? 
 

(ii)   How does a text file 'jigsaw_puzzle_info.txt' load? (Example 4.10) 

(iii)  How does a file productCodesCosts save as a TextFile in Python? 

(iv) How does aJSONstudentSemGrades file load? 

(v)  Assume record  field names  are  "StuName, "rolltsum",  "enrollrsum",  "Semllr", 

"coursellr", "subjectlli", "subject'lype",  "SemSubjGrade" in a CSV file line. How 

does StuSemRecord(line)load from aJSONfile 'studentSemGrades'? 

(vi) How does StuSemRecord(line)save as CSV format file? 
 

SOLUTION 
 

(i)   Load a sequence file using the following statement: 
 

val data=              sc.sequenceFile(inFile 

"org.apache.hadoop.io.Text", 

"org.apache.hadoop.io.IntWritable") 

(ii)  Load a text filejigsaw_puzzle_info.txt using the following statement: 
 

hiveCtx.textFile 

(file:///home/PySpark/hive/'jigsaw_puzzle  info.txt')



(iii)  Save the text file productCodesCosts using the following statement: 
 

productCodesCosts.saveAsTextFile(outputFile) 
 

(iv)  Load  an   unstructured ]SON   file   studentSemGrades using   the   following 

statement: 
 

import json

studentGradesData 

json.loads(studentSemGrades)) 

 

input.map        (hiveCtx:

 

(v)   Load  StuSemRecord(line) from a CSV file    'studentSemGrades' using 

the following statement: 
 

import stringIO 
 

import csv 
 

 
 
 
 

def  StuSemRecord(line):  """Parse a CSV line""" 
 

reader = csv. DictReader  (input, fieldNames    ["StuName, 

"rollNum", "enrollNum", "SemID", "courseID", "subjectID", 

"subjectType", "SemSubjGrade"J) 

return  reader. next () 
 

input=  hiveCtx.textFile(inputFile) .map(StuSemRecord) 
 

(vi)  Save   StuSemRecord(line) from a CSV file    'studentSemGrades' using 

following statement: 

def  writeStuSemRecords(records)  """Write a CSV line""" 

output =scv.DictWriter(output,   fieldNames     ["StuName, 

"rollNum", "enrollNum", "SemID", "courseID", "subjectID", 

"subjectType", "SemSubjGrade"]) 

for record in records 

writer.writerow(record) 

return   [ output . getva1ue ( )  J 
 

hiveCtx.mapPartitions(writeStuSemRecords)  .saveAsTextFile 

(outputFile)



Transformation The following example explains Spark SQL transformations  in Spark 2.3. 

The example shows complex objects, nested tables (one column rows) and array 

transformations  and uses the DataframeWriter APL 

 
EXAMPLE 5.14 

 
Use Spark 2.13  SQL APis and DataframeWriter APL 

 

(i)   How does a table-column schema create for a nested table (single Column table) 

tbl_puzzleCost? (Example 5.1) Text file is 'jigsaw_puzzle_info.txt'.  (Example 

4.10) 
 

(ii) How does the value filter using a row from table 'tbl_puzzleCost' for a puzzle 

costing above USO 1.00?(Example 5.1) 

(iii) How does yearlysales compute from table for Jaguar Land Rover Yearly sales, 

JLRDS (Example 5.2) from CarShowroomsCummulativeYearlySalestable? 

(iv) CREATE Hive-SerDe table. Create a table  similar to one in Example 5.1. Use 

DataframeWriter APL 
 

(v)  CREATE Hive-SerDetable. Create a table similar to one in Example 5.1. Use Hive. 
 

SOLUTION 
 

(i)   Table schema for a nested table (single Column table) tbl puzzleCost creates: 
 

FROM tbl_puzzleCost; 
 

tbl nested 
 

1--   key: string (nullable =    false) 
 

1--   values: array (nullable =    false) 
 

1--   element: float (containsNull =    false) 
 

(ii) The following Spark SQL statement  filters an array  or row or nested table, 

tbl_puzzleCost: 
 

SELECT FILTER(values, v4 -> v4 > 1.00) AS v4 
 

FROM tbl_puzzleCost; 
 

(iii)  The following Spark SQL aggregation function for the sum of an array or row or 

nested table elements, JLRDS in CarShowroomsCurnrnulativeYearlySales 

row tbl JLDR:



SELECT REDUCE  (values, (value, JLRDS) ->   value +    JLRDS) 

AS yearlyJLRSales FROM tbl JLRDS; 

(iv) The following statements create a Hive-SerDetable using the DataframeWriter: 
 

CREATE Hive-serde tables 

df.write.format("hive") 

.option("fileFormat", "avro") 
 

saveAsTable("tbl_puzzleTypeCodeCosts") 
 

CREATE TABLE tbl_puzzleTypeCodeCosts  (puzzleType STRING,

puzzleCode STRING, 

FLOAT) 

STORED AS ORC 

puzzlePieces   SMALLINT, puzzleCost

 

(v)  The following statements create a table using Hive: 
 

CREATE TABLE tbl_puzzleTypeCodeCosts  (puzzleType STRING,

puzzleCode STRING, 

FLOAT) 

USING hive 

puzzlePieces   SMALLINT, puzzleCost

 

OPTIONS (fileFormat 'ORC') 
 

 
 

Self-Assessment Exercise linked to LO 5.4 
 

1.   What are the three ETL functions in Data Store? 
 

2.   How do line records extract from a multiline JSON file? 
 

3.   How do values filter from a column 'puzzleCost' for puzzle costing below USD 1.00? 
 

4.   What are the program steps for creating a Hive-SerDetable using the DataframeWriter? 
 
 
 

 

5.61 INTRODUCTION   TO ANALYTICS,   REPORTING 

AND VISUALIZING 
 

"Analytics  is  the  discovery,  interpretation,   and  communication  of  meaningful 

patterns  in data."  Since Big Data analytics require  extensive  computations,  the
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algorithms   and  software  used  for  analytics   combine  the  most  current   mef  nu~ 

computer science, statistics and mathematics." (Wikipedia)
 

Analytics needs interpretation,  reporting  of meaningful patterns 

and gaining insight into new knowledge. Visualization is an 

effective method  for examining the  interpretations   of reports. 
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The subsections ahead introduce analytics, reporting and visualization methods. 

 

5.6.1  Introduction to Analytics 
 

Some examples of open source tools for analytics are Python, R, Apache Spark, Apache 

Storm, Pig and Hive. Examples of commercial tools are SAS, Tableau, Excel, QlikViewand 

Splunk. Figure 5.10 shows a framework for applications and analytics using Spark. 
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Figure  5.10 Processing framework for applications and Big Data analytics using 
Spark 

 

Spark Stack provides support  to applications  for analysis of huge data from multiple 

sources and Data Stores. Analytics also use machine learning and neural networks, which 

enable predictive  modeling  and  decisions. Analytics use  data  mining,  pattern  mining, 

cluster analysis and detect anomalies. 
 

Applications use the  results  derived from the  descriptive, predictive  and prescriptive 

analytics, business analytics and other  forms of analytics. The applications also use the



results   derived   from   reporting    and   visualizations.    Common   applications    are   decision 

making  about  further   actions  required,  knowledge  discovery  and knowledge  management. 
 

The example  below explains  the usages of analytics  in different  domains. 
 

 

EXAMPLE   5.15 

 
(i)   How does analytics help a manufacturing company for toys and puzzles? 

 

(ii)  How does analytics  helps  a company for  chocolates, which  sells its products 

through ACVMs? 

(iii) How does analytics help a manufacturing,  sales and service company for cars of 

different models? 
 

SOLUTION 
 

(i) An analysis of sales figures for toys and puzzles, lets the toy company understand 

the preferences of children in different age groups, regions and income groups. 

The knowledge of preferences enables appropriate  manufacturing,  supply, sales, 

quality enhancement  and promotion  activities. The predictive  analytics enable 

the company to take steps from the forecast about future growth, estimate the 

direction for future  innovations in children toys and puzzles, and plan for the 

desired products mix in future. 

The company organizes quizzes in schools of science, mathematics,  geography 

and  other  subjects  and  awards  brilliant  students,  as  a  part  of promotional 

activity. The company also analyses the impact on sales after this activity. 

(ii)  Analysis of sales figures and machine-users data by the company for chocolates 

being sold through ACVMs lets the company understand  the following: (a) users 

and their  needs, (b) chocolate preferences  for specific flavours among children 

and youth in different regions in the country, different areas of cities, age groups, 

and sales in specific periods in a year. Detailed analysis enables the appropriate 

manufacturing, supply-chain, sales, innovations and promotional activities. 

The predictive  analytics  enable  the  company to  know the  predictions  about 

growth  in  profits,  sales, identify  future  installation-areas  for  ACVMs,  design 

relocation strategy   and   understand   directions   of  future   innovations   and 

promotional  strategy,  needs,  and  desired  product-mix  of the  company.  The 

company also analyzes the impact of rewarding chocolate buyers on birthdays, 

marriage   anniversaries   and  festival  periods.  Company  plans  incentives  for 

frequent  buyers. The company also organizes quizzes in schools and colleges.



Company rewards  brilliant  school students  as a part  of promotional   strategy. 
 

(ii)   Analysis of sale figures, customer, and service center feedbacks by the company 

for cars in different models, lets the company understand the followings: (a) users 

preferences  for the different models and colour shades, (b) car model's sales in 

different  regions in the  country, age groups, and sales in specific periods in a 

year.  Detailed analysis  enables  the  appropriate   product  mix, manufacturing, 

supply-chain management,  competition, advertisement  strategy,  innovations in 

design and shades, and facilitates promotional activities. 

Predictive analytics enables company to know the predictions  about growth in 

profits,  sales  and  competition;  identify  car  showrooms  future  expansion  in 

different regions, and understand  the direction for future  innovations, such as 

use  of  IoT  for  studies  on  functioning   of  car  components   and  IoT  based 

maintenance   services.  The  company  can  plan  future   expansion   in  plant 

machinery and ideal future product-mix strategy of the company. The company 

can also analyze the impact of incentives to showrooms for higher sales growth, 

festive-period incentives to buyers, and organizing the cultural events in order to 

design appropriate promotional activities. 
 
 

5.6.2 Data/InformationReporting 
 

Reports are essential after any analysis.  Some important  reasons for generating  reports 

are: 

1.   Provide   cross-databases    and    the    data    sheets    [Cross-database    created    by 

application/ system software so as to enable access to different database formats.] 

2.   Enable accesses to multi-business system data 
 

3.   Provide multi-data source correlations 
 

4.   Present related businesses data integrated in a Data Store 
 

5.   Enable more data applications for business control and operations analysis. 
 

Data OrganizationGuidelines for ReportsSome guidelines for organizing data in reports 

are: 

1.   Must have abstract, context introduction and conclusion sections 
 

2.   Divide the contents in sections or split it into multiple sheets with one context in one 

sheet 

3.   Place similar  items  under  the  same heading  or  in the  same  column  in  case of



Pa     l!i report 

elements-labe s, 

spreadsheets 
 

4.   Insert figures, charts or graphical plots to enhance the readability of the report 
 

5.   Position critical data appropriately 
 

6.   Avoid blank text areas or rows and columns in case of sheets. 
 

Data FormatGuidelines Some guidelines for formatting data in reports are: 

1.   Use section and subsection headings or column labels to identify contents 
 

2.   Use appropriate font, alignment, format, pattern, border or capitalization style 
 

3.   Use text borders or cell borders to distinguish data 
 

4.   Maintain same formats  for paragraphs,  section headings, subsection headings and 

captions of table and figures. 
 

Report Designer A  report  designer  has  three  components:  (i) report,  (ii)  Data Tools 

Platform/Web Tools Platform (DTP/WTP),and (iii) chart designers. Users can add a custom 

designer at their end. The designer outputs to process at a design engine, which 

communicates the  outputs  in XML format  to the  Report Engine. Figure 5.11  shows the 

features of the components of a report designer. 
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Figure 5.11 Features of the components of report designer 
 

Open Source Eclipse Business Intelligence and Reporting Tool (BIRT) 
 

BIRT  is an open  source software project  created  by the  Eclipse Foundation.  It's  latest 

version is 4.8.0  was released in June 2018.  BIRT includes Eclipse Report Designer (ERO),
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Eclipse Report  Engine  (ERE)   and  Eclipse  Charting  Engine  (ECE).  BIRT creates   reports   and 

enables  data  visualization   of the  reports.   Reports  can be embedded  into  rich Java, Java  EE 

client  and web applications. 

Figure 5.12 shows the architecture  of BIRT. 
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Figure 5.12 BIRT architecture  design and report engine components 
 

Data explorer  creates  views of multi-dimensional  cubes from the  datasets  provided. 

Cubes enable building of dynamic cross-tables. A  dimension in the view can be used to 

design report parameters. 
 

ReportEngine  The figure shows that  report  document and data process occurs at four 

service plug-ins - data transformation,  charting, presentation  and generation services. 
 

Transformation  service plug-in presents  the  data after  sorting, summarizing, filtering 

and grouping. The transformations  are performed  as per the  needs of user. A  program 

function performs the transformation  in the ETL process, but BIRT does that  for simple 

data sources, such as Java objects or flat files. BIRT does provision for complex operations, 

such as grouping on sums, percentages of overall totals. 
 

Charting services at the  engine generate  the  charts.  The Charting Engine is used to 

design and generate the charts. A chart can be separate or embedded within the generated 

reports,  such as BIRT reports.  Charting engine API (CE API) in Java/Java EE adds charting 

capabilities to their  applications. The design and report  engines make use of CE API for 

generating the charts. 
 

BIRT 'viewer' enables preview reports at an Apache Tomcat server included in the BIRT. 

The server fulfills the client request for preview. The outputs are web output  as a single 

HTML document, paginated HTML,  PDF,  XLS, DOC, PPT, and Postscript. Additionally, the 

viewer has functionality for exporting the data to CSV, printing and Table of Contents. 

 
5.6.3 Data Visualization



Data    visualization      is    a    technique      that     entails     the     creation      and     study     of 

the  visual  representation    of data,  meaning  "information   that  has been  abstracted   in some 

schematic  form,  including  attributes   or variables  for the  units  of information".   A primary 

goal  of  data  visualization  is  to  communicate  information  clearly  and  efficiently  via 

statistical graphics, plots and information graphics. Data visualization tools have shifted 

the interpretation  of data from dashboard displays to quick digestion of real-time analysis 

and custom analysis. (Wikipedia) 
 

Data Display can be accessed via PC  dashboards  or mobile terminals  and interpreted 

thereafter.  Display improves the  reading  of reports.  Reports include the  functions  for 

display of the  analysis of a wide variety of charts, multi-dimensional  analysis, real-time 

analytics, and slicing and dicing views of reports. Data visualization tools have completely 

changed the concept dashboard displays for interpretations. 
 

Data visualization uses techniques which data or information  encodes in visual objects 

such as points, lines or bars. Communication of information using visual objects to viewers 

is more efficient and clear. Data visualization relates to a number of fields: information and 

statistical  graphics,  scientific information  visualization  and  exploratory  data  analytics. 

Visualization communicates clearly and stimulates the viewer's attention and engagement. 
 

Table 5.7 describes data visualization tools and their usages. 
 

Table 5. 7 Data visualization tools and their usages 
 

Data 

Visualization 

Tool 

 

 
Description 

 
matplotlib 

 

Python matplotlib  for plotting  mathematical  functions.  Several libraries  such as vispy, 

bokeh, seaborn, pygal, folium build up on matplotlib  for data visualization. 

 

 
Chart.js 

 

A  tiny  widely used open  source  library  that  supports  just  six chart  types:  line, bar, 

radar,  polar, pie and doughnut.  Employs HTMLS  canvas element  for rendering  charts. 

Not used when the application  is big and complex. 

 
Google Charts 

 

Shows charts  in HTMLS/SVG   and many charts  including  interactive   charts  and most 

commonly used chart types like bar, area, pie and gauges. 

 
 
 
Tableau 

 

Public version  is open  source.  Tableau  is an  easy-to-learn   popular  data  visualizing 

tool.  Tableau  communicates   insights  through   data  visualization.   The  charts  easily 

embed  in any web page. Supports  a wide variety  of charts,  graphs,  maps  and other 

graphics.  Tableau's  visuals  enable  quick  investigation   of a hypothesis.   Commercial 

version includes additional  facilities for handling  over a million rows. 

 
D3Js 

 

D3 (Data Driven Documents) is free and open source, deploys HTML,  CSS and SVG, and 

shows the amazing charts  and diagrams.  It has rich features  and is quite interactive. 



 

 
FusionCharts 

 

Includes  over  90+   chart  types,  965  maps,  collection  of business  dashboards  and  live 

demos. The charts  and maps are highly customizable  and have attractive  interactions. 

The tool supports  to (i) JSON  and XML data formats  and (ii) export  the charts  in 

PNG, JPEG,  SVG or PDF formats. FusionCharts is a commercial tool. 

 

 
QlikView 

 

Is a fast processing  tool with usages for the intuitive  GUis, interactive  plotting  of data, 

slicing   and   dicing   features    in   data   visualizing,    and   creating    highly   useful 

visualizations  and dashboards. 

 

 
Splunk 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
Is a machine  log analytic  tool. It includes  powerful visualization  features  and easy to 

use tool due to its web interface.  Features  are events  list, table  visualization,  charts, 

gauges,  maps,  Trellis  layout  for  visualizations,   dashboard   creation   with  XML  and 

Drilldown and dashboard  interactivity. 
 

 

Self-Assessment Exercise linked to LO 5.5 
 

1.      what do the terms analytics and analysis mean? 
 

2.    List the functions of Report Designer. 
 

3.    List the services of the Report Engine. 
 

4.    Explain events list, table visualization, charts, gauges, maps, and Trellis layout for 

visualization. 
 
 

 
 

accumulator 

ad hoc query 

aggregation 

analytics 

BIRT 

broadcast 

Ceph 

data visualization 
 

DataFrame 

data pipeline 

data source 

dicing



drill down analysis 
 

ETL 
 

ETL pipeline 

Graphx 

GroupBy 

grouped  VUDF 

HDFS 

HiveContext 

Hive Server 

immutability 

JDBC 

matplotlib 
 

Mesos 

metadata 

metastore 

Mlib 

ML pipeline 

nested  table 

NumPy 

ODBC 

Outliers 

Pandas 

Parquet 

PySpark 

Python 

query  processing 
 

RDD 
 

RDD programming 

Report  Designer 

Report  Engine



S3 
 

SchemaRDD 

SciPy 

SequenceFile 

Ser De 

slicing Spark 

SparkContext 

Spark SQL 

Spark Streaming 
 

Tableau 

transform 

UDF 

Vectorized  UDF 

Viewer 

 
 
 

 
 

 

LO 5.1 
 

1.   Apache® Spark™  is a fast and general compute engine. Apache® Spark™  powers  analytics 

applications   up to 100 times  faster. 

2.   It supports   HDFS compatible   data.  Spark  has  a simple  and  expressive   programming 

model. 

3. Spark standard   API enables  creation  of the  application   APis using  Scala, Java, Python 

and  R. Spark  consists   of  software   stack  with  Spark  SQL,   Spark  Streaming,   Spark 

Arrow, SparkR, MLib and GraphX components. 

L05.2 
 

1. Spark  SQL is a Spark module  for structured  data;  SQL runs  the  queries  on Spark data 

in  traditional    business   analytics   and  visualization    applications.    Spark  SQL  enables 

Spark datasets  to use JDBC API or ODBC APL



2.   Dataframes   can be created  from  different  data  sources.  Examples  of data  sources  are 

]SON datasets,   Hive tables,  Parquet   row groups,  structured  data  files, external   Data 

Stores and RDDs. 
 

3. Spark and Python  provide  powerful  Big Data analysis  tools. Python  provisions  Python 

NumPy,  SciPy, Pandas  consists  of advanced  functions   for analytics,  and  provides  an 

Integrated   Development  Environment   (IDE). 

4.   Python  Pandas  library  functions  provide  database  style Dataframes,   Merge.join,   and 

concatenation of objects,  RPy interface  for R functions  plus additional  functions,   SQL 

like  features:   SELECT,  WHERE, GROUPBY,  JOIN, UNION, UPDATE and  DELETE,  size 

mutability   which  means  columns  can  be  inserted   and  deleted  from  Dataframe   and 

higher  dimensional   objects.  Pandas  GroupBy feature   of split-apply-combine    enables 

group  vectorized  UDFs. 

LOS.3                                                                                                                             . 
 

1. Spark  2.3.1. Spark  runs  on Windows  and  UNIX-like systems,  Linux,  Mac OS. Spark 

runs  on Java  8+,  Python   2.7+/3.4+ and  R 3.1+. Spark  2.3.1 uses  Scala 2.11 API when 

using compatible  Scala version  2.11.x. 

2. Spark  Resilient   Distributed   Dataset   (RDD) is a  collection   of objects  distributed    on 

many  computing   nodes.  Each RDD can  split  into  multiple   partitions,   which  may  be 

computed  in parallel  on different  nodes  of the cluster. 

3.   Spark  RDD  is immutable   (not  capable  of or  not  susceptible   to  change).  A  new  RDD 

creates  on transform and action commands. 
 

4.   Spark  supports   Python   UDFs, VUDFs, block-level   UDFs with  block-level   arguments 

and  return   types,   complex   object  types,   array   map  and  structure  conversions   or 

transformations. 

5.   Spark MLib supports  ML pipelines.  MLib is widely used for the ML applications. 
 

LOS.4                                                                                                                             . 
 

1.    Data ETL has three  Data Store functions   - Extract,  Transform   and Load. Applications 

using  Spark 2.3 with  Spark Arrow use the ETL data pipeline  between  data  sources  and 

applications. 

2.   Extract does  the   acquiring    of  data   from   a  Data  Store   (by  querying   or  another 

program).   Transform   does the  change  of data  into  a desired  format.   Transform uses 

joint), groupBy(),     cogroupl),     filter(),     mapt),     mapValues(),     flatMap(),     sortf), 

pratitionBy(), groupByKey(),   reduceByKey(),   aggregateByKey(),    pipe(),   coalescel),



sample(),  unionl),  crossProduct(). 
 

3. Load saves the  transformed    data  into  another   Data Store for usage by an application 

or for analysis. 
 

LOS.5 
 

1.   Analytics is the discovery, interpretation  and communication of meaningful patterns 

in  data.  Spark Stack provides  support  to  applications  for  analysis  of data  from 

multiple  sources  and  Data  Stores.  Analytics  use  machine  learning  and  neural 

networks,  which  enable  predictive  modeling  and  decisions  based  on  the  data. 

Analytics use data mining, pattern mining, clusters analysis and detect anomalies. 

2.   Reporting of results of analysis using appropriate  tools is an essential step. Eclipse 

Foundation created BIRT. BIRT includes Eclipse Report Designer (ERD), Eclipse Report 

Engine (ERE) and Eclipse Charting Engine (ECE). 

3.  Data visualization is a technique  that  entails the  creation  and study of data using 

visual representations  such as charts, plots and graphics. Examples of data 

visualization tools   are   matplotlib,    Chartjs,    Google  charts,    Tableau,   D3Js, 

FusionCharts, QlikViewand Splunk. 
 

I   Objective Type Questions   1111 
Select one correct-answeroption for each questions below: 

 

5.1 Spark uses for data storage (i) HDFS file system, (ii) Hadoop compatible data source, 

such as HDFS, (iii) HBase, Cassandra and Ceph, and (iv) Amazon S3. Spark standard 

API enables creation of the application APis in (v) Scala, (vi) Java, (vii) Python, (viii) 

Pandas. Spark resources management can be at (ix) stand-alone server, and (x) at a 

distributed computing framework, such as YARN and Mesos. 

(a)  all except iv, v and ix 
 

(b)  all 
 

(c)  all except viii, ix and x 
 

(d)  all except iii, viii and ix 
 

5.2 Spark  Stack includes  (i) Spark SQL,  (ii) Spark  Streaming,  (iii) Spark Arrow, (iv) 

SparkR, 

(v) MLib, (vi) GraphX, (vii) SparkContext, (viii) HiveContext and Pig, (ix) Cassandra, 

and 

(x) PySpark.



(a)   all except  viii and ix 
 

(b)  all except  iii and v 
 

(c)   all except  viii and ix 
 

(d)  ii, iii, vii, viii 
 

5.3 Steps  between  acquisition  of  data  from  different  sources,  and  applications  of 

analyzed data, and applications support by Spark for the analyses are as follows: (i) 

Storage of data from the multiple sources after acquisition, (ii) Partitioning of tables, 

(iii) Data pre-processing, 

(iv) filtering unreliable, irrelevant and redundant  information, (v) Extract, transform 

and load (ETL) for analysis using Python or Scala, (v) Mathematical and statistical 

analysis of the data obtained after querying relevant  data needing in the analysis, 

and  (vi) applications  of analyzed  data;  for  example,  descriptive,  predictive  and 

prescriptive analytics. 

(a)  all except ii and iii 

(b)  all except v and vi 

(c)  all except i and iv 

(d)  all except ii 

5.4 A Parquet file consists of (i) row groups and (ii) column groups. (iii) Each row can 

have number of columns, but each column has only one column chunk. (iv) A page is 

a conceptualized unit in a column chunk. (v) Only one page can store in a chunk. (vi) 

ORC array has two columns, one for array size and other for array dimensions. (vii) 

Parquet format file consists of an extra column per nesting level. 

(a)  all 
 

(b)  i to v 
 

(c)  i, iii, iv 
 

(d)  all except vi and vii 
 

5.5 When using HiveQLand Spark SQL, the  aggregation  functions  can be used for (i) 

analysis and 

(ii) filtering. Hive aggregation functions consist of (iii) count(*) and count(expr); (iv) 

sumtcol), 

(v) sum (DISTINCT col), (vi) Avg (col), (vii) avg (DISTINCT col), (viii) GroupBy,with 

(vii) Dataframes as input.



(a)   i, ii, iii, iv and vi 
 

(b)  i to v 
 

(c)  all except ii and viii 
 

(d)  all except v and vii 
 

5.6 NumPy  provides  (i)  one-dimensional   efficient  containers   of  generic   data,   (ii) 

definitions of non-arbitrary  data-types, (iii) easy integration  with a wide variety of 

Data Stores, (iv) import, export (load/save) files, (iv) creation of arrays, (v) inspection 

of properties, copying, sorting, and reshaping, 

(vi) addition and removal of elements in the arrays, indexing, sub-setting and slicing 

of the arrays, (vii) scalar and vector mathematics  (such as +,  -,   x,  +, power, sqr, sin, 

log), (viii) recoil (round  up to nearest  int), and  (ix) base (round  down up to the 

nearest int), round (round to nearest integer). 

(a)  iii to vii 
 

(b)  ii to v 
 

(c)  ii to viii 
 

(d)  All except ix 
 

5.7 Spark supports following file formats: (i) text files (ii) CSV, (iii) TSV, (iv) JSON, (v) doc 

file, (vi) XML, (vi) sequenceFiles (vii) ObjectFiles,and (viii) protocol buffers. 

(a)  all except v 
 

(b)  all except iii and viii 

(c)  ii to iv and vi to vii 

(d)  i, ii, iv, vi 

5.8 An  ROD    (i)  is   a   fault-tolerant    abstraction,    (ii)  enables   in-memory   cluster 

computations, 

(iii) is mutable, (iv) partitioned  distributed collection of objects, (v) enables efficient 

execution  of  non-interactive   data  mining,  and  (vi) RDDs   create  only  through 

operations which are deterministic. 

(a)  all except ii to iv 
 

(b)  all except i, iii 
 

(c)  all except vi 
 

(d)  all except iii and v



5.9 Transform command examples are (i) filter(}, (ii) reduce(), (iii) collect(), (iv) map(), 

(v) mapValues(), (vi) flatMap(), (vii) sortl), (viii) pratitionBy(), (ix) groupByKey(), 

(x) reduceByKey(), (xi) sample(),  (xii) unionl),  (xiii) joint),  (xiv) cogroupl),  (xv) 

crossProduct(). Action command examples are (xvi) aggregateByKey(), (xvii) pipe(), 

(xviii) coalesce(), 

(xix) count(), and (xx) first(). 
 

(a)  all except ii, iii, xi, xviii 
 

(b)  all ii, iii, xvi, xvii and xviii 
 

(c)  all except iii and xiv 
 

(d)  all xvi to xviii 
 

5.10  Dataframes  represent  (i) ML datasets,  thus  uses HDFS,  (ii) ML datasets,  thus  uses 

HBaseor local files. (iii) MLib APis are interoperable with Spark SQL. (iv) MLib Python 

implementation  adds Python APis. (v) MLib does not interoperate  with NumPy in 

Python. 

(a)  i to iii 
 

(b)  all except v 

(c)  all except ii 

(d)  all 

5.11  SerDe uses codes for obtaining the records from (i) structured  data. (ii) A data saving 

process uses deserializer codes and (iii) Loading (extracting)  process uses serializer. 

Apache Spark 2.3+ provisions for (iv) UDFs, (v) VUDFs and (vi) Data Source API vl. 

(vii) ETL pipeline refers to data collected from (viii) in-between processing using a 

chain of function calls. 

(a)  all except v and vi 
 

(b)  all except i 
 

(c)  all except ii, iii and iv 
 

(d)  iv, v, vii and viii 
 

5.12  Spark Stack provides the  (i) support  to  applications  for the  analysis of data,  (ii) 

unstructured multiple  sources,  (iii) Data Stores. The  (iv) analytics  use  machine 

learning algorithms, 

(v) neural networks, (vi) descriptive modeling, and (vii) enables decisions. Analytics 

use the algorithms for (viii) data mining, (ix) pattern  mining (x) clustering, and (xi)



anomaly  detection. 
 

(a)   all except  ii, v and vi 
 

(b)  all except  v and ix 

(c)   all except  ii and vi 

(d)  all except  vi and xi 

5.13  Process for preparing a report document and data consists of service plug-ins for (i) 

data  transformation,   (ii) charting,  (iii) summarizing  (iii) presentation,   and  (iv) 

generation  services. Transform services plug-in presents  the data after (v) sorting, 

(vi) filtering, and (vii) grouping. 

(a)  all except ii, v and vi 
 

(b)  all except iii 
 

(c)  all except vii 
 

(d)  all except vi and vii 
 

5.14  Data visualizing tool Tableau is (i) open source completely, (ii) easy-to-learn  data 

visualizing tool, (iii) communicates predictions through  data visualization. (iv) The 

charts can be easily embed in any web page. (v) Supports a wide variety of charts and 

graphs, but not maps. 

(vi) Tableau's visuals enables quick investigation of a hypothesis. 

(a)  ii, iv and vi 

(b)  all except iii 
 

(c)  all except i 
 

(d)  all except iii and vi 
 

II   Review Questions 

5.1 What  are   the   features   present   in   the   Spark  architecture    that   enable   fast 

computations and usages of expressive programming model? (LO 5.1) 

5.2 Describe the functions of Spark SQL, Spark Streaming and Graphx? (LO 5.1) 
 

5.3 How do Spark and Python provide a powerful Big Data analysis tool? (LO 5.2) 
 

5.4 How does Parquet file usage differ from the usages ofRCFileand ORCFile? (LO 5.2) 
 

5.5 How does Dataframe create fromJSON datasets and Hive tables? (LO 5.2)



5.6 What are the aggregation   commands  provisioned   in Spark SQL?  (LO 5.2) 
 

5.7 How do NumPy, SciPy and Pandas Python libraries provision for advanced functions 

for analytics, and create an integrated development environment (IDE)? (LO 5.2) 

5.8 How does the Spark version download, install, and start the use of SparkContext? (LO 

5.3) 
 

5.9 How does the  Spark Resilient Distributed Dataset (RDD)  programming  collect the 

objects? 

(LO 5.3) 
 

5.10 Explain method of creation  of RDDs using the transform  and action commands. (LO 

5.3) 
 

5.11 Describe the machine learning algorithms available in Spark MLib. (LO 5.3) 
 

5.12 How does the Spark 2.3 with Spark Arrow enable the creation of the ETL data pipeline 

between data sources and applications? (LO 5.4) 

5.13 How does a tool help in reporting of results of analysis? (LO 5.5) 
 

5.14 What are the actions performed by the Eclipse Report Designer (ERD), Eclipse Report 

Engine (ERE) and Eclipse Charting Engine (ECE). (LO 5.5) 
 

5.15 Define data visualization,  statistical  graphics,  plots and information  graphics.  (LO 

5.5) 
 

5.16 How do the following visualization tools matplotlib, Chart.js, Google charts, Tableau, 

D3Js, FusionCharts, QlikViewand Splunk differ? (LO 5.5) 

 

I!  Practice  Exe re ises      1111 
5.1 List Spark stack components and give examples of their applications. (LO 5.1) 

 

5.2 A company manufactures and sells cars through a large number of showrooms. Each 

car   showroom  keeps  their   records   in  a  main  table   and  transaction   tables. 

Recapitulate table in Practice Exercise 3.3. Describe the steps for analyzing the sales 

from HDFS compatible files. (LO 5.2) 

5.3 How does the Parquet file structure  look like for a large number of student semester 

grade sheets? A semester grade sheet consists of University Name, Department Name, 

Student name, enrollment  number, class, roll number, program of study, batch (for 

example  2017-2010), semester,   subjects  type   (theory/practical/project/on-line), 

subject  names,  credit,  credits  awarded,  semester  grade  point  average  (SGPA),
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cumulative  grade  point  average  (CGPA),  and general  performance   analysis.  (LO  5.2) 
 

5.4 List the  steps  for  downloading  Spark and  Python  libraries  for  analytics  and  for 

creating Hive and PySpark contexts. (LO 5.3) 

5.5 Compose the SchemaRDDfor a table. The table, named toys_tbl is as follows: (Product 

categories, Productld and Product name are three columns) (LO 5.3) 

 
Table of Product  Categories.   Productld   and Product  Name 

 

 
I 

 

 
 
 
 
 
 
 

5.6 Composethe SchemaRDDfor grade sheets specified in Practice Exercise 5.3. (LO 5.3) 
 

5.7 Write the RDD program steps for calculating SGPA and CGPA of a student program of 

study from file created in Practice Exercise 5.3. (LO 5.3) 

5.8 Write the program steps for creating an ETL pipeline for monthly and yearly sales 

analysis from a table. The table consists of data of toys_company manufacturing 1600 

different toys and 2000 puzzle product  categories, up to 20 product types for each 

puzzle product of product types 100, 200, 400, 800, 1600,2400 and 500 pieces. (LO 5.4) 

5.9 List the  steps  for  reporting  using  the  BIRT  tool  on  analysis of sales of the  toy 

company in above Practice Exercise 5.7. (LO 5.5) 

5.10 List the  steps for viewing charts for analysis of sales of the toy company in above 

Practice Exercise 5.7. (LO 5.5) 
 

 
 
 

1 

https:// cwiki.apache.org/ confluence/ display/Hive/LanguageManual+ORC#LanguageManualOR 
ORCFileFormat 

 

2 https://www.tecmint.com/install-java-jdk-jre-in-linux/ 
 

3 https://www.vultr.com/  docs/how-to-manually-install-java-8-on-ubuntu-16-04 
 

4 https://data-flair.training/biogs/    create-rdds-in-apache-spark/ 
 

5 http:// data-flair.training/forums/topic/how-to-create-rdd
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LEARNING OBJECTIVES 
 

 

After studyingthis chapter,you will be able to: 
 

LO  6.1   Understand   metric,  feature   and  category  variables,  evaluate  and 

estimate the     relationships,      outliers,     variances,     probability 

distribution,  and the correlations  between the variables in variables, 

items or entities 
 

LO  6.2   Apply  regression   analysis  using  linear,  non-linear   and  multiple 

regression models, 

K-Nearest  Neighbours  (KNN) distance   measures,   and  predict   the 

expected results 
 

LO 6.3  Discover similar items and the similarities using distance measures 
 

LO 6.4  Apply methods  for Frequent-Itemsets   Mining (FIM), market-basket 

model, association-rules  mining,  Apriori algorithm,  and  method  of 

evaluation  of Candidate Rules. Get knowledge of FIM and association 

rule applications and find the associations and similarities 
 

LO 6.5   Apply methods  of unsupervised  machine-learning   for  clustering  a 

collection, K-means, determine  the number  of clusters,  and perform



cluster  diagnostics 
 

LO 6.6  Apply methods  of supervised  machine-learning   for classification; K• 

Nearest  Neighbour  (KNN) classifier,  decision  trees   and  Random• 

Forest, AdaBoost  and   other   ensemble,   Naive  Bayes  classifiers, 

Artificial Neural Networks and SVM-basedclassifiers 
 

LO  6.7   Design a  recommender   system  using  approaches   of Collaborative 

Filtering (CF),   Contents-based   Filtering   (CBF),   Knowledge-based 

Filtering (KBF) and hybrid approaches for making recommendations 
 

LO 6.8  Get knowledge of Apache Mahout Architecture,  the ML algorithms  for 

clustering, classification,    collaborative     filtering,     and    design 

recommender  in Big Data environment 
 

 
RECALL FROM EARLIER CHAPTERS 

 

The most  popular  open-source  analytics-tools  are Apache Spark, Python,  R, 

Apache Pig, and Hive, according to a study (Section 5.1). Spark with multiple 

languages,  Python  and  Scala  shells  provide  great ease  in programming for 

complex analytics, machine learning and other solutions (Section 5.2). 
 

Big Data analysis requires  scalable distributed  computations.  Spark scalable 

MLib (machine-learning   library)  consists  of the  widely used  ML  algorithms 

and  utility  functions  for  large  datasets.  MLib includes  the  algorithms  for 

optimization-primitives,  regression, collaborative filtering, dimensionality 

reduction, cluster analysis, classification and recommender. 
 

Uses of Machine Learning (ML) and Artificial Neural Networks (ANN) are in 

analytics,  predictive  modeling  and decisions. The analytics  methods  include 

data mining, pattern  mining, clusters analysis and detection of anomalies. 
 

Apache Mahout consists of ML algorithms for Big Data analysis (Section 2.2.3 

Figure 2.2). 
 

This Chapter focusses on the ML methods of regression analysis based 

predictions,  finding  similarities,  FIM, clustering,  classifiers,  recommenders, 

and introduces  Mahout Architecture  and features  for the  ML applications  in 

Big Data analytics.



6.1 ! INTRODUCTION 
 

Analytics uses the  mathematical  equations,  formulae  and  models. Analytics 

also uses the  statistics,  AI, ML and DL, and predict  the behaviour  of entities, 

objects  and  events.  Statistics  refers  to  studying  organization,  analysis  of a 

collection  of  data,  making  interpretations    and  presentation    of  analyzed 

results. 
 

Artificial Intelligence   (AI)  refers  to  the  science  and  engineering  of making 

computers perform tasks, which normally require human intelligence. For 

example,  tasks  such  as predicting  future  results,  visual  perception,   speech 

recognition, decision making and natural  language processing. 
 

Two concepts in AI, 'machine  learning'  and 'deep learning'  provide powerful 

tools for advanced analytics and predictions. 
 

Google-owned company Deep  Mind developed  an Artificial Intelligence  (AI) 

program  called AlphaZero, which  played  100  chess games in 24  hours,  and 

defeated Stockfish, the highest-rated  chess program  by 28 games to O  with 72 

games  drawn.  This was a historical  moment.  It  became  a milestone  in the 

history of AI, ML and DL. 
 

The former  world  champion,  Garry Kasparov, noted  that  achievement  of 

AlphaZero has history-shaping  potential. "The ability of a machine to replicate 

and surpass centuries  of human  knowledge, is a world-changing  tool". (Garry 

Kasparov, "Deep Thinking  -  Where Artificial Intelligence Ends and Human Creativity 

Begins", published by the author himself, 2017) 

Machine Learning - Definition and Usage Examples 
 

Machine Leaming (ML) is a field of computer  science based on AI which deals 

with learning from data in three  phases, i.e. collect, analyze  and predict. It  does 

not rely on explicitly programmed  instructions. 
 

An ML  program  learns  the  behavior  of a process. The program  uses data 

generated  from various sources for training. Learning from the outcomes from 

common   inputs   improves   future   performance   from   previous   outcomes. 

Learning applies in many fields of research  and industry. Learning from study 

of data enables efficient and logical decisions for future actions. 
 

Advanced ML  techniques  use unsupervised,  semi-supervised  or supervised



learning.  Supervised learning  uses a known  dataset  (called training dataset). 

Learning  enables  creation  of a model program for evaluating  outcomes.  The 

program   makes   future   predictions    and   leads   to   knowledge   discovery. 

Supervised learning  uses output  datasets,  which are used to train  a machine 

(program)  such that  the program  leads to the desired outputs.  Unsupervised 

learning does not use output datasets to train a machine. 
 

Deep   Leaming  (DL)   refers   to  structured    learning   (DSL)   or  hierarchical 

learning. DL methods are advanced methods, such as artificial neural networks 

(ANN)  such as artificial  neural  networks  (ANN)  or neural  nets,  deep neural 

networks,  deep belief networks  and recurrent  neural  networks.  Learning can 

be unsupervised,  semi-supervised  or supervised. Applications of DL and ANN 

include  computer  vision,  speech  recognition,  Natural  Language  Processing 

(NLP), audio   recognition,   social  network   filtering,   machine   translation, 

bioinformatics  and drug design. DL methods give results comparable to and in 

some cases superior to human experts. 
 

The present chapter describes the ML methods and introduces Mahout 

Architecture,  features  and its ML applications.  Section 6.2  describes methods 

of estimating  relationships,  outliers, variances, probability distribution,  errors 

and  correlations   in  variables,   items   and   entities.   Section  6.3   describes 

regression analysis using linear, non-linear  and multiple-regressor  models and 

KNN distance   measures   for   making   predictions.    [Regressor   means   an 

independent  (explanatory) variable in regression equation.] 
 

Section  6.4  describes  methods  of  finding  similar  items,  similarities  and 

filtering  of similar  items.  Section  6.5  describes  frequent-itemset   mining  by 

collaborative    filtering    of   similar   itemsets.    Section   6.5    also   describes 

associations  and  association  rules  mining.  Section 6.6  describes  methods  of 

finding the clusters. Section 6. 7 describes the classifiers for classifying data in 

datasets. Section 6.8 introduces recommendation  system and collaborative, 

content,   knowledge  and  hybrid  recommendation   approaches.   Section  6.9 

describes Apache Mahout and ML algorithms for Big Datasets. 
 

The following sections use a convention for fonts when denoting an absolute 

value,  mean  value,  function  value,  vector  element,  set  member,  entity  or 

variable using a character  or set of characters,  entities 

or elements.



1.    [u]   represents   absolute   value  of  u,  means  value  without   sign.  For 

example, consider 1-  31  and I+ 31, the value of both is 3. 

2.  x represents  mean, average or expected value of x. 
 

3.  F  (y, x) represents  a function with an expression, which finds value of F 

from the given values of y and x. F  (y, x) values depend on one or more 

dependent  variables as a function of one or more independent  variables. 

For example, F depends y as well as xis F (y, x) = 1/sqrt  {(y + x)2  + k2}.   The 

F also depends on constant  k. Another example is y = F (x), for example, y 

=   cos (x). F  (x) represents   a function  F,  which  gives value  of y, is a 

dependent  variable. The xis an independent  variable. 
 

4.   V denotes a vector V (vi,  V2 ... ). V is in bold font. Vl and V2 are in text 

font and are elements 1 and 2 of V. The V consists of number of elements 

Vl, V2 ... 

5.    [o] represents  length of vector U. 
 

6.  S denotes  a set S (A,  B,  C ... ). Font S is in French script MT or distinct 

font for English S. The A, Band  Care  in text font (no bold), and are the 

members  of S.  The  members  can  be  vectors  or  subsets.  They, when 

denoted in bold, represent  vector elements. 
 
 
 

 

6.21 ESTIMATING THE RELATIONSHIPS,  OUTLIERS, VARIANCES, 

PROBABILITY DISTRIBUTIONS  AND CORRELATIONS 

Methods  of  studying   relationships   use  variables. 

Types of variables used are as follows: 
 

Independent  variables  represent  directly measurable 

characteristics.  For example, year  of sales figure or 

semester   of  study.  Dependent  variables  represent 

the   characteristics.    For   example,   profit   during 

successive  years  or  grades  awarded  in  successive 

semesters.   Values  of  a  dependent   variable   depend 
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on  the  value  of  the



independent  variable. 
 

Predictor variable is an independent  variable,  which computes  a dependent 

variable  using some equation,  function  or graph,  and does a prediction.  For 

example, predicts sales growth of a car model after five years from given input 

datasets  for the sales, or predicts  sentiments  about higher  sales of particular 

category of toys next year. 
 

Outcome variable represents  the  effect of manipulation(s)  using a function, 

equation   or   experiment.   For  example,   CGPA   (Cumulative  Grade  Points 

Average) of the student  or share of profit to each shareholder  in a year using 

profit as the dependent  variable. CGP A of a student  computes from the grades 

awarded  in  the  semesters  for  which  student  completes  his/her   studies.  A 

company  declares  the  share  of profit  to  each  shareholder   in  a year  after 

subtracting  requirements  of money for future growth from the profit. 
 

Explanatory  variable  is an independent  variable, which explains the behavior 

of the dependent  variable, such as linearity coefficient, non-linear  parameters 

or probabilistic  distribution  of profit-growth  as a function of additional 

investment  in successive years. 
 

Response variable is a dependent  variable  on which a study, experiment  or 

computation   focuses. For example,  improvement   in  profits  over  the  years 

from the investments  made in successive years or improvement  in class 

performance   is  measured   from  the  extra   teaching   efforts  on  individual 

students  of a class. 
 

Feature variable is a variable representing  a characteristic.  For example, apple 

feature  red,  pink,  maroon,  yellowish,  yellowish  green  and  green.  Feature 

variables  are  generally  represented   by  text  characters.   Numbers  can  also 

represent   features.  For example,  red  with  1,  orange  with  2,  yellow with  3, 

yellowish green 4 and green 5. 
 

Categorical  variable is a variable  representing   a category.  For example, car, 

tractor  and truck belong to the same category, i.e., a four-wheeler  automobile. 

Categorical variables are generally represented  by text characters. 
 

Independent  and dependent  variables may exhibit a relation  or correlation. 

The relationships  may be linear, nonlinear,  positive, negative, direct, inverse, 

scattered  or spread. A data point for dependent  variable can be an outlier with 

no relationship.



Data analysis  requires  studying  relationships   graphically,  mathematically 

and  statistically,   studying  the  outliers,  anomalies,  variances,  correlations, 

features,  categories and probability  distributions  using a set of variables, and 

other     characteristics.     The    relationship     involves    some    quantifiable 

independent   variables  and  the  resulting  dependent  variable  or  entity.  The 

following  subsections   explain   methods   of  estimating   the   relationships, 

outliers, variances, correlations  and probability distributions  between a set of 

variables. 
 

 

6.2.1  Relationships-Using Graphs, Scatter Plots and 

Charts 
 

A  relationship  between  two or more  quantitative   dependent  variables  with 

respect  to an independent  variable can be well-depicted  using graph,  scatter 

plot or chart with data points, shown in distinct shapes. Conventionally, 

independent  variables are on the x-axis, whereas the dependent  variables on 

the  y-axis  in  a graph.  A  line  graph  uses  a  line  on  an  x-y  axis to  plot  a 

continuous function. 
 

A scatter  plot is a plot in which dots or distinct  shapes represent  values of 

the  dependent  variable  at the  multiple  values  of the  independent   variable 

[Section 10.5]. Whether two variables are related  to each other  or not, can be 

derived from statistical analysis using scatter plots. 
 

A data point is (xi, Yi) when dependent  variable value = Yi at the independent 

variable value= xi. The 

i =  1,  2 ... n for number  of data  points  =  n. The i varies with the  position  of 

projection  of the point on X-axis. Scatter plot represents  data points by dots. 

The dot can also be a bubble, triangle,  circle, cross or vertical  bar.  Size or 

colour of dot distinguishes the dependent  variables on the same plot. 
 

Another method is quantifying two or more dependent  variables by columns 

of different widths with filled colours, shades or patterns.  The width quantifies 

the  dependent   variable.  The  column-position   quantifies   the  independent 

variable. 
 

Examples of dependent   variables  are  sales  of five car  models  in  a year, 

grades in five courses taken in a semester.



6.2.1.1  Linear and Non-linear Relationships 
 

A linear relationship  exists between two variables, say x and y, when a straight 

line (y = a0  + a1 .x) can fit on a graph, with at least some reasonable  degree of 

accuracy. The a1   is the linearity  coefficient. For example, a scatter  chart  can 

suggest a linear relationship,  which means a straight  line. Figure 6.1  shows a 

scatter  plot, which fits a linear relationship  between  the number  of students 

opting for computer courses in years between 2000 and 2017. 
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Figure 6.1 Scatter plot for linear relationship  between students opting 

for computer courses in years between 2000 and 2017 
 
 

 
A  linear  relationship   can  be  positive  or  negative.  A  positive  relationship 

implies if one variable  increases  in value, the  other  also increases  in value. A 

negative relationship,  on the other  hand, implies when one increases  in value, 

the  other  decreases  in  value.  Perfect,  strong  or  weak  linearship   categories 

depend upon the bonding between the two variables. 
 

A non-linear  relationship  is said to exist between  two quantitative  variables 

when a curve (y = a0 + a1 .x + a2.x2  + •••  )  can be used to fit the data points. The fit 

should  be  with  at  least  some  reasonable  degree  of accuracy  for  the  fitted 

parameters,  a0,   a1,    a2  •••  Expression for y then  generally  predicts  the values of 

one quantitative  variable from the values of the other quantitative  variable with 

considerably more accuracy than a straight  line.



 
 
 
 
 
 
 
 
 

 
31) 

Consider an example of non-linear  relationship:  The side of a square  and its 

area  are not  linear.  In fact, they  have quadratic  relationship.  If the  side of a 

square doubles, then its area increases four times. The relationship  predicts the 

area from the side. 
 

Figure 6.2 shows a scatter  plot in case of a non-linear  relationship  between 

side of square and its area. 
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Figure 6.2 Scatter plot in case of a non-linear  relationship  between side 

of square and its area 
 

 

6.2.2   Estimatingthe Relationships 
 

Estimating  the  relationships  means  finding a mathematical  expression,  which 

gives the value of the variable according to its relationship  with other variables. 

For example,  assume Ym  =  sales of a car model m in xth year  of the  start  of 

manufacturing  that  model. Assume that  computations  show that  the ym relates 

by a mathematical  expression (ym= a0 + a1.xm  + a2.xm2)    up to an acceptable degree 

of accuracy, when a0 = 490, a1   = 10 and a2 = 5. 
 

Estimated first year sales, Ym(l)  = (490 + 10)  = 500, second year Ym(2)  = (490 + 10 x  

2  +  5  x  22)    =  530, third year Ym(3)   =  (490 +  10 x  3  +  5  x  32)   =  565, if fit with the 

desired  accuracy,  then  the  results   are  showing  that   the  expression   of ym 

estimates  the relationship  between model m sales in next and other years. The 

ym can also predict the sales in 6th or later years. Predictions  are up to a certain



degree of certainty. 
 

 

6.2.3 Outliers 
 

Outliers  are  data, which appear  as they  do not  belong to the  dataset  (Section 

5.3.3.1).  Outliers are data points that are numerically far distant from the rest of 

the  points   in  a  dataset,   are  termed   as  outliers.   Outliers  show  significant 

variations  from the rest of the points (Section 1.5.2.2).  Identification  of outliers 

is important  to improve  data quality or to detect  an anomaly. The estimating 

parameters   mathematically,  statistically,  describing  an outcome,  predicting  a 

dependent  variable value, or taking the decisions based on the datasets given for 

the analysis are sensitive to the outliers. 
 

There are several reasons for the presence of outliers in relationships.  Some of 

these are: 

•       Anomalous situation 
 

•        Presence of a previously unknown fact 
 

•        Human error (errors due to data entry or data collection) 
 

• Participants  intentionally  reporting  incorrect  data (This is common in self• 

reported measures   and   measures   that   involve  sensitive   data   which 

participant  doesn't want to disclose) 

•        Sampling error (when an unfitted  sample is collected from population). 
 

Population means any group of data, which includes all the data of interest.  For 

example, when analysing 1000 students who gave an examination  in a computer 

course,  then  the  population  is  1000.   100  games  of chess  will represent   the 

population in analysis of 100 games of chess of a grandmaster. 
 

Sample means a subset of the population.  Sample represents  the population  for 

uses, such as analysis and consists of randomly selected data. 
 

 

6.2.4 Variance 
 

A random variable is a variable whose possible values are outcomes of a random 

phenomenon. A  random  variable  is  a  function  that   maps  the  outcomes  of 

unpredictable  processes  to  numerical  quantities.   A  random  variable  is also 

called stochastic variable or random quantity.  Randomness can be around some



expected mean value or outcome, and with some normal deviation. 
 

Variance measures  by the  sum  of squares  of the  difference  in values  of a 

variable with respect to the expected value. Variance can alternatively  be a sum 

of squares of the difference with respect to value at an origin. Variance indicates 

how widely data points  in a dataset  vary. If data points  vary greatly  from the 

mean value in a dataset,  the variance  is large; otherwise,  the variance  is less. 

The variance is also a measure of dispersion with respect to the expected value. 
 

A high variance indicates that the data in the dataset  is very much spread out 

over a large area  (random  dataset),  whereas  a low variance  indicates  that  the 

data is very similar in nature. 
 

No variance is sometimes  hard  to understand   in real  datasets.  The following 

example illustrates  no variance: 
 

 

EXAMPLE 6.1 

 
Consider an examination  where everyone gets the same grades. What does it 

signify? 
 

SOLUTION 
 

Some measurement   problem  may have  taken  place in a situation  where 

either  the semester  examination  questions  were so easy that  everyone got 

full marks, or it was so hard that everyone got a zero. Now consider the two 

types  of examinations.  After  each  examination,  everyone  gets  the  same 

score on the test, i.e., everyone gets 'A' grade in one test and everyone gets 

'B' in the second test. This is again not telling much 
 

about  the  study  or  intelligent   quotient   of the  students.   Now, these  no 

variance results signify the extreme case and hard to understand  or explain. 

But in general, differences in scores are always found. 
 
 

6.2.4.1 Standard Deviation and Standard Error Estimates 
 

The variance  is not  a  standalone  statistical  parameter.   Estimations  of other 

statistical  parameters,  such as standard  deviation  and standard  error  are also 

used. 
 

Standard Deviation With the  help of variance,  one can find out the  standard



1 

1 

deviation.  Standard  deviation,  denoted bys,  is the square root of the variance. 

The s  says, "On an average how far do the  data  points  fall from the  mean or 

expected outcome?" Though the interpretation   is the same as variance but s is 

squared  rooted,  therefore,   less  susceptible  to  the  presence  of outliers.  The 

formulae for the population and the sample standard  deviations are as follows: 

Tbe Population  Standard  Deviation: a= ~JN_.---J·-~ ~:~·  ~                L'     -Li 
"'-it=  u 

 

(.6.la)

The Sample Standard  Deviation: <J = ~, .---I=i '2x.',s1= 
.       x1  -x-)2  ·{6.1 bi

 

where N is number of data points in population,  S is number in the sample, m is 

expected  in the  population  or average  value of x, and x is expected  x in the 

sample. 
 

StandardErrorThe standard  error  estimate  is a measure  of the  accuracy of 

predictions  from a relationship.  Assume the linear relationship  in a scatter  plot 

of y (Figure 6.1). The scatter  plot  line, which  fits, is defined  as the  line that 

minimizes the  sum of squared  deviations  of prediction  (also called the sum of 

squares error). The standard error of the estimate is closely related  to this 

quantity and is defined below: 
 

(1 
eat 
= ·                                                                                                                                                                                                                                           ... (6.2)

 

where sest is the standard  error  in the estimate, y is an observed value, y¢ is a 

predicted  value, and N is the  number  of values observed. The standard  error 

estimate  is a measure  of the dispersion  (or variability)  in the predicted  values 

from the expression  for relationship.  Following are three  interpretations   from 

the sest: 

1. When sest  is small, most of the observed values (y) dots are fairly close to 

the fitting line in the scatter  plot, and better  is the estimate based on the 

equation of the line. 

2. When the sest is large, many of the observed values are far away from the 

line. 

3.   When the standard  error is zero, then no variation exists corresponding  to 

the computed  line for predictions.  The correlation  between  the observed



 

 
 
 
 
 
 
 
 
 
 
 

-30"     -lo"       -10" 

and estimation  is perfect. 
 

 

6.2.5  Probabilistic Distribution of Variables, Items  or 

Entities 
 

Probability is the chance of observing a dependent  variable value with respect to 

some independent  variable. Suppose a Grandmaster  in chess has won 22 out of 

100 games, drawn 78 times, and lost none. Then, probability  P of winning Pw  is 

0.22,   P of drawn  game  P0   is 0.78   and  P of losing,  PL  =  0.  The  sum  of the 

probabilities is normalized to 1, as only one of the three possibilities exist. 

Probability distribution is the distribution  of P values as a function of all possible 

independent  values, variables, situations,  distances or variables. For example, if 

P is given by a function P(x), then P varies as x changes. Variations in P(x) with x 

can be discrete or continuous.  The values of P are normalized  such that  sum of 

all P values  is 1. Assuming distribution   is around  the  expected  value  r, the 

standard  normal distribution  formula is:
 

1 
P(x)=--

a
e 
,Jii 

 

-(i:-:1)2- 
--2.- 

1a 

 

 
(45.3)

Normal distribution  relates to Gaussian function. Figure 6.3 shows a PDF with 

normal distribution  around x = x standard  deviation = s and variance = s2• 

 

 
 

Figure 6.3 Probability distribution  function as a function of x assuming 

normal distribution  around x = x, and standard  deviation = s 
 

The figure also shows the percentages  of areas in five regions with respect to 

the total area under the curve for P(x). The variance for probability distribution 

represents  how individual data points relate to each other within a dataset. The



variance is the average of the squared differences between each data value and 

the mean. 
 

Moments (0, 1, 2  ...)  refer  to the  expected  values to the  power of (0, 1, 2,) of 

random  variable  variance  (Section 6.2.5.3).   The variance  is the  second central 

moment of a distribution,  which equals to the square of the standard  deviation, 

and the covariance of the random variable with itself, and it is often represented 

by s2 or var (x). The variance is computed as follows: 

<i1'      I.(.x, - x)2 
(6.4) 

N 

Assume  that   probability   distribution    (PDF) is  normal,   called   Gaussian 

distribution,   which  is like  a bell-shaped  curve  (Figure  6.3).   The  PDF of the 

normal distribution  is such that  68% of area under the PDF is within (x.+ s) and ( 

r, - s), 95% of area under  the PDF is within  (x" +  zs) and (x, - zs) and 99.7%  is 

within(x..  + ss) and (x..  - ss). 

Standard deviation and empirical rule help in computing the population 

distribution   over  68%,   95%   and  99. 7%  of  data  under   normally   distributed 

population.  This further  helps  in forecasting.  The following example  explains 

the meaning  of population,  expected values, normalized  probabilities,  PDF and 

interpretation   using mean value. 
 

 

EXAMPLE  6.2 
 

 

Assume that N students  gave the examination.  Let N1   is number  of students 

obtained  grade pointer  average =  1, N2  got 2,  ..., N10  got 10.  Highest-grade 

pointer  is 10.0.  Grade pointer  obtained  is not  a random  variable.  Grade 

pointer variation  is a random variable with an expected value and standard 

deviation. 

Expected value among the distributed  X; values, where i varies discretely 

from 0.0 to 10.0 will depend on the expected performance  of the student.  If 

teaching in the class is very good and students  prepare  for the examination 

very  well, then  expected  value  of GPA  is 8.0  for  very  good performing 

students  and standard  deviation found is 1.0. 
 

(i)    What do you mean by population? What do you mean by sample?



(ii)   What will be the normalized probabilities? 
 

(iii)  How will you define Probability Distribution Function (PDF)? 
 

(iv) How will you interpret the results in terms of normal distribution? 
 

(v)   When will you interpret the  results  as poor  and  poorer  in terms  of 

normal distribution? 
 

SOLUTION 
 

(i) Population  is GPA of all the  students  of the  university  who gave the 

examination.  Population  size is N. Sample means datasets  used in the 

analysis. It can be N or less than N students and GPA of each one. 
 

(ii) Probability that  students  obtained  grade pointer  1 is ( i;;) ,  2 is ( ~ ) ,  ... 

on normalization  of probability. (N = N1   + N2 + •••• ) 
 

(iii)  PDF represents  a curve for independent  variable x between GPA  = 0 and 

GPA  = 10, such that the sum of all P values is 1, where P; is the ratio of 

number of students getting GPA  = i with respect to the total population 

N or the sample. 
 

-(.\"-xt2 
1                -?-,•

P(x)=   --e             "i.tr 

a{2; 

between x = 0 and 10.0, wheres= 1.0 and x- = 8.0. 

(6.5)

 

(iv)  GPA value is 8.0 and standard  deviation is 1.0, which means 68% of the 

students  will get GPAs between  7.0 and 9.0,  95% between  6.0 and 10.0, 

and 99.7% between 5.0 and 10.0. 

 

(v) The expected value of 3.0  (less than  3.0)  and standard  deviation of 1.0 

means poor   performance   of  students   because   68%   students   get 

between  2.0 and 4.0.  The expected value of 3.0-  {less than  3.0,  say 2.5) 

and standard  deviation  of 1.5  means poorer  performance  of students 

because 68% students get between 1.0 and 4.0. 

 
 

6.2.5.1 Kernel Functions



({irn 

A probability or weight can be represented  by a kernel function1  like a Gaussian 

or  tri-cube  function.  (Kernel in  English means  some  thing  central  and  key 

(important)  part.  For example, the  kernel  inside a walnut's  shell is important 

because  it is the  edible part.  Kernel in an operating  system is key or central 

component.) 
 

Kernel  function  is  a  function  which  is  a  central   or  key  part  of  another 

function.   For  example,   Gaussian  kernel   function   is  the   key  part   of  the 

probability   distribution    function   [Equation   (6.5)].   Figure   6.3   shows   the 

probability  normal  distribution,   which  is a  Gaussian  function  based  on  the 

Gaussian kernel function. 
 

A kernel function 1, K* defines as 

K*(u)   = A.KOui). 
 

where  A  > 0. Gaussian kernel function is 

K*<. .x) = [-1JJ-~:l 

(6.6u) 
 
 
 

 
c.6.6b)

and   when   u   =     { T I                      the    distribution    function    is   proportional    to 

a 

1                _
-n
-;
-
,
l
_
")
.:_

:
 

P(x)  =     ~e        L.tT       • 

o'V'.2n: 
 

 

A = ( O' .[2") in Equation  ( 6 .3). 

Tricube kernel function is: 
 

K*(u)  = e,70/81)  (1- lul3)31t.K(l.u). 
 

where [u] s 1. 
 

6.2.5.2 Moments 

 

 
 
e,6.6c)

 

Moments (0,  1,  2,  ...)  refer  to  expected  values to the  powers  of (0, 1,  2  ...)  of 

random  variable  variance.  oth moment  is 1,  1st moment  =  E(x) =  r, (expected 

value), znd moment is squared V[(xi  - x,)2]  = sum of product  of (xi - xJ2, and P(x = 

xJ



Here, P is the probability  at x = xi when i is varying from 1 to n, for n values of 

random variable x. The ,th   moment is ,th   power of variance v((xi - xY]. Moments 

are   evaluated   from   the   results   obtained   for   the   randomly   distributed 

probabilistic  values  of the  variable,  such  as sales.  1st   moment  assigns  equal 

weight to variances of outliers and inliers, i.e., equal weight for variance of each. 

znd moment  assigns higher  weight to outliers  compared  to inliers. 3rd  moment 

assigns greater  weight to outliers  compared  to inliers. Moment can be defined 

with respected to the origin, and in that case, x- is considered 0. 
 

Let P is along y  axis and variable  x on x axis. Central  moment  means  that 

moments  compute  taking  x, equals  to  variable  x  at  x  axis  point  where  the 

probability curve partitions  equally by a vertical axis, parallel to they  axis. 
 

6.2.5.3 Unequal Variance Welch's t-test 
 

A test in statistics is unequal-variance  t test, also called Welch t test. 
 

(i) The test assumes that two groups of data are sampled data which consist 

of Gaussian distributed  populations  (Equation (6.3)). 

(ii) The test does not assume those two populations  have the same standard 

deviation. 

Unequal variances t-test  is a two-sample location test. It  tests the hypothesis 

that  two populations  have equal means. (Hypothesis  means making assumption 

statements   about  certain  characteristics   of the  population.  For example,  an 

assumption   that   most   students    of  a   specific  professor   will  excel  as  a 

programmer.  Hypothesis when tested  for a decade may pass or fail depending 

up on whether  the statistically  significant results show that the students  of that 

professor really excelled as programmers.) 
 

Welch's t-test  is an adaptation  of student's  t-test  in statistics.  The t-test  is 

more  reliable  when  the  two  samples  have  unequal  variances  and  unequal 

sample sizes. 
 

6.2.5.4 Analysis of Variance (ANOVA) 
 

An ANOVA test is a method which finds whether the fitted results are significant 

or not. This means that the test finds out (infer) whether  to reject or accept the 

null hypothesis. Null hypothesis is a statistical test that means the hypothesis  that 

"no significant  difference  exists between the specified populations".  Any observed



difference is just due to sampling or experimental  error. 
 

Consider two specified populations  (datasets) consisting of yearly sales data of 

Tata Zest and Jaguar Land Rover models. The statistical  test is for proving that 

yearly sales of both the models, means increments  and decrements  of sales are 

related  or not. Null hypothesis  starts  with the  assumption  that  no significant 

relation exists in the two sets of data (population). 
 

The analysis (ANOV A) is for disproving or accepting the null hypothesis.  The 

test  also finds whether  to accept  another  alternate  hypothesis.  The test  finds 

that whether testing groups have any difference between them or not. 
 

Analysis of variance  (ANOV A)  is a useful technique  for comparing  more than 

two populations,  samples,  observations  or results  of computations.  It  is used 

when multiple  sample cases are involved. Variation  between  samples and also 

within  sample  items  may  exist.  For  example,  compare  the  effect  of three 

different  types  of teaching  methodologies  on students.  This may be done by 

comparing   the  test  scores  of  the  three   groups  of  20   students   each.  This 

technique  provides  inferences  about  whether  the  samples  have  been  drawn 

from populations  having the same mean. It is done by examining the amount of 

variation  within  each  of these  samples,  relative  to  the  amount  of variation 

between the samples. 
 

F-test  F-test  requires  two  estimates  of population  variance-  one  based  on 

variance  between  the  samples  and  the  other  based  on variance  within  the 

samples. These two estimates are then compared for F-test:

F =   El(V) 

E2(V_) 

 
(6.7)

 

where El(V)  is an estimate  of population  variance between the two samples and 

E2(V)  is an  estimate  of population  variance  within  the  two  samples.  Several 

different F-tables exist. Each one has a different level of significance. Thus, look 

up the numerator  degrees of freedom and the denominator  degrees of freedom 

to find the critical value. 
 

The  value  of  F   calculated   using  the   above-mentioned   formula   is  to  be 

compared  to the  critical value of F  for the  given degrees  of freedom.  If the  F 

value   calculated   is  equal   or   exceeds  the   critical   value,  then   significant 

differences between  the means of samples exist. This reveals that  the  samples 

are not drawn from the same population and thus null hypothesis is rejected.



6.2.5.5  No Relationship Case 
 

Statistical  relationship   is a  dependence  or  association  between  two  random 

variables  or  bivariate  data.  Bivariate  means  'two  variables'.  In other  words, 

there  are two types of data. Relationships between variables need to be studied 

and analyzed before drawing conclusions based on it. One cannot determine  the 

right  conclusion  or  association  when  no  relationship   between  the  variables 

exists. 
 

 

6.2.6  Correlation 
 

Correlation means analysis which lets us find the association or the absence of 

the relationship  between  two variables, x and y. Correlation gives the strength 

of  the  relationship   between   the  model  and  the   dependent   variable   on  a 

convenient 0-100%  scale. 
 

R-Square Risa   measure  of correlation  between the predicted  values y and the 

observed  values  of x. R-squared (R2)     is  a  goodness-of-fit  measure  in  linear• 

regression  model. It  is also known as the coefficient of determination.  R2   is the 

square  of R,  the  coefficient  of multiple  correlations,  and  includes  additional 

independent  (explanatory) variables in regression equation. 
 

Interpretationof R-squaredThe larger the R2,   the better  the regression  model 

fits the  observations,  i.e., the  correlation   is better.  Theoretically,  if a model 

shows 100%  variance,  then  the  fitted  values are always equal to the  observed 

values, and therefore,  all the data points would fall on the fitted regression line. 
 

Correlation differs from a regression  analysis. Regression analysis predicts the 

value of the dependent  predictor  or response variable based on the known value 

of the independent  variable, assuming a more or less mathematical  relationship 

between two or more variables within the specified variances. 
 

6.2.6.1 Correlation Indicators of Linear Relationships 
 

Correlation is a statistical  technique  that  measures  and describes the 'strength' 

and  'direction'   of the  relationship  between  two variables.  Let us explore  the 

relations between only two variables. The significant questions are: 
 

Does y increase  or decrease with x? For example, expenditure  increases with 

income  or  does  the  number   of  patients   decrease  with  proper   medication. 

(Direction)



[~Jx 

-~·l2Li(r~.t- 

(i)    Suppose y does increase with x; then, how fast? 

(ii)  Is this relationship  strong? 

(iii) Can reliable predictions  be made? That is, if one tells the income, can the 

expenditure  be predicted? 
 

Relationships  and  correlations  enable  training  model on sample  data  using 

statistical   or   ML   algorithms.   Statistical   correlation    is  measured   by  the 

coefficient of correlation.  The most common correlation  coefficient, called the 

Pearson product-moment   correlation coefficient.  It  measures  the  strength   of the 

linear   association   between   variables.   The  correlation   r  between   the   two 

variables x and y is:

r =                L{[(.t'i-x)Jx[(}';-Y>J}~ 
t.n     1)                     a,                o_'tl 

 

 
(.6.8u)

 

where  n  is the  number  of observations  in the  sample,  xi is the  x value  for 

observation i, x- is the sample mean of x, Yi is they  value for observation  i, y- is 

the  sample mean  of y, sx is the  sample  standard  deviation  of x,  and  sy is the 

sample standard  deviation of y. 

Summation is over all n values of i, i = 1, 2, ..., n. 
 

[r2 is square of sample correlation  coefficient between the observed outcomes 

and the  observed predictor  values, and includes intercept  on y-axis in case of 

linear regression.] 
 

Use  of  Statistical  Correlation  Assume  one  sample  dataset   is  {u1,      •••,  u) 

containing n values of a parameter  r. The ru,i  is i-th data point in dataset u. (i = 1, 

2, ... ,  n). Another sample dataset is {v1,  •••, vn} 

containing  n values of r.  rv,i is i-th data point  in dataset  v. Let the  correlation 

among two samples is being  measured.  Sample Pearson  correlation  metric  c; 

measures how well two sample datasets fit on a 

straight line.

I..-(1:. .... - ~ )(.')·j -  ~) 

C,(U, 1,')  = ---;:::::======== 

.             .                                                ~Li(r6'.i                               ~)2 
 

where the summations are over the values of parameter  in the datasets. 

Three other similarities based on correlation  are: 

 
 
... (.6.8b)



(i) Constrained Pearson correlation  - It is a variation  of Pearson correlation 

that uses midpoint instead of mean rate. 

(ii)  Spearman rank  correlation  - It  is similar to Pearson  correlation,  except 

that the ratings are ranks. 

(iii) Kendall's G correlation  - It is similar to the Spearman rank correlation,  but 

instead  of using  ranks  themselves,  only the  relative  ranks  are  used  to 

calculate the correlation. 
 

Numerical value of correlation  coefficient ranges from + 1.0 to -1.0.  It gives an 

indication   of both  the  strength   and  direction   of the  relationship   between 

variables. 
 

In general, a correlation  coefficient r > O  indicates a positive relationship;  r < O 

indicates  a negative  relationship;  r  =  O   indicates  no relationship   (or that  the 

variables are independent  of each other and not related). Here r = + 1.0 describes 

a  perfect   positive   correlation   and  r   =   -1.0    describes   a  perfect   negative 

correlation. 
 

The closer the coefficients are to + 1.0 and -1.0,  the greater  is the strength of the 

relationship  between the variables. 
 

Table 6.1  gives rough  guidelines  on the  strength  of the relationship  (though 

many experts would somewhat disagree on the choice of boundaries). 
 

Table 6.1 The strength  of the relationship  as a function of r 
 

 

Value  ofr 
 

Strength of relationship 

 

-1.0 to -0.5 or 1.0 to 0.5 

 

Strong 

 

-0.5 to -0.3 or 0.3 to 0.5 Moderate 

 

-0.3 to -0.1 or 0.1 to 0.3 

 

Weak 

 

-0.1 to 0.1 
 

None or very weak 

 

 

Correlation is only appropriate  for exammmg the relationship  between 

meaningful  quantifiable  data  (such as, temperature,   marks, score) rather  than 

categorical   data,  such  as  gender,   color  etc.  Figure  6.4   shows  perfect   and



... 

 

imperfect, linear   positive and   negative    relationships, and the strength and 

direction of the  relationship between  variables     
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Figure  6.4 Perfect and imperfect, linear positive and negative 

relationships,  and the strength  and direction of the 

relationship  between variables 
 

 
Self-Assessment   Exercise  linked  to LO 6.1 

 

1.   Define non-linear  relation. Plot on the same graph, a company car sales,

mailto:R@latlonsMp


y for its two models every year between 2012 to 2017, using the formula 

(ym = a0  + a1 .xm + a2.xm 2).   How will you predict the sales in 2010? Assume 

for first model a0  = 490, a1    = 10 and a2   = 5. Assume for second model a0  = 

4900, a1    = 100 and a2    = 50. Assume, xm  = 0  for year 2011, xm  =  1  for 2012 

and xm = 6 for 2017. 

2. How does the P(x) vary in normal  distribution  when expected mean is 

at x = 6.0 and standard  deviation s is 1.0? Show a plot of P(x) and x and 

points at deviations of 1.0, 2.0 and 3.0 (means at  a, 2 a and 3 a). 
 

3.  Define mean, variance and standard  deviation. How do the oth moment, 

1st moment, 2nd moment and 3rd moment  compute from the values and 

their probabilities? 

4.  When will you perform t-test and F-test? 
 

5. What does variable R-squared mean? How is the correlation  parameter 

between predicted  valued and observed value evaluated? When do you 

use R, r, R2 and when r2? 

6.  Consider correlation  r between two variables. How do you interpret r > 

o, r < o and r = o? 
 

7.  How is the inference made that two variables do not correlate? 
 
 
 

 

6.3  l REGRESSION ANALYSIS 

Correlation  and regression  are two analyses based on 

multivariate  distribution.  A multivariate  distribution 

means a distribution  in multiple variables. 
 

Suppose  a  company  wishes  to  plan  the 

manufacturing   of Jaguar  cars for coming years.  The 

company looks at sales data regressively,  i.e., data of 
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previous   years'   sales.  Regressive  analysis   means   estimating   relationships 

between   variables.  Regression  analysis  is  a  set  of  statistical   steps,  which 

estimate  the  relationships   among  variables.  Regression  analysis  may require



many  techniques   for  modeling  and  performing   the  analysis  using  multiple 

variables.  The  aim  of  the  analysis  is  to  find  the  relationships   between   a 

dependent   variable   and  one  or  more  independent,   outcome,  predictor   or 

response variables. Regression analysis facilitates prediction  of future values of 

dependent  variables. 
 

It  helps to find how a dependent  variable  changes  when  variation  is in an 

independent  variable  among a set of them,  while the  remaining  independent 

variables in the set are kept fixed. 
 

Non-linear regression equation is as follows: 
.,                  . 

y = a0  + a1.x  + a2~:r"'"  + a3..i'.                                                                    (,6.9) 
 

where  number  of terms  on the  right-hand   side are  3  or 4.  Linear regression 

means  only  the  first  two  terms   are  considered.  The  following  subsections 

describe regression analysis in detail. 
 

 

6.3.1  Simple Linear Regression 
 

Linear regression  is a simple and widely used algorithm.  It  is a supervised  ML 

algorithm   for   predictive   analysis.   It   models   a  relationship    between   the 

independent  predictor  or explanatory,  and the dependent  outcome or variable, 

y using a linearity equation.
 

)"'  = ftao~ a1) = "o + a1.x~ 
 

where a0  is a constant and a1  is the linearity coefficient. 

 

('6.lO)

 

Simple linear regression  is performed  when the requirement   is prediction  of 

values  of one variable,  with  given values  of another  variable.  The following 

example explains the meaning of linear regression. 
 

 

EXAMPLE  6.3 
 

 

How can a university  student's  GPA be predicted  from his/her  high school 

percentage  (HSP) of marks? 
 

SOLUTION 
 

Consider a sample of ten  students  for whom their  GP As and high  school 

scores, HSPs, are known. Assume linear regression. Then,



• 

• 

GPA=  b1.HSP  +A                                                                                                                        ...({iJ  1) 
 

Figure  6.5  shows  a  simple  linear  regression   plot  for  the  relationship 

between the college GPA and the percentage  of high school marks. Plot the 

values on a graph, with high school scores in percentage  on the x axis and 

GPA on they  axis. 
 

 

10.0                                                                                   

• 
• 8.0 

~
! 

-t   6.CJ,
 

a                                    • • 
4.0                                •

 
 

2.0 
• •     

20               40    60      80                100 
 

High School :Ps:centages
 

Figure  6.5 Linear regression relationship  between college GPAand 

percentage  of high school marks 
 

Whenever  a perfect  linear  relationship   between  GPA  and  high  school 

score exists, all 10 points on the graph would fit on a straight line. However, 

this  is never  the  case. Whenever  an  imperfect  linear  relationship   exists 

between these two variables, a cluster  of points on the graph, which slope 

upward, may be obtained. In other words, students  who got more marks in 

high school should get more GPA in college as well. 
 

One variable, denoted  by x, is regarded  as the predictor,  explanatory  or 

independent  variable. The other  variable, denoted  by y, is regarded  as the 

response, outcome or dependent  variable. 
 

 
 

The purpose  of regression  analysis is to come up with an equation  of a line 

that  fits through  a cluster of points with minimal amount of deviation from the 

line. The best-fitting  line is called the regression line. The deviation of the points 

from the line is called an 'error'.  Once this regression  equation  is obtained, the 

GPA of a student in college examinations can be predicted provided his/her  high



school percentage  is given. Simple linear  regression  is actually the  same as a 

correlation  between independent  and dependent  variables. 
 

Figure 6.6  shows a simple linear  regression  with  two regression  lines with 

different regression  equations. Looking at the scatter  plot, two lines can fit best 

to summarize the relation between GPA and high school percentage. 
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Figure  6.6  Linear regression relationship  with two regression lines with 

different coefficient in regression equation 
 

Following notations  can be used for examining  which  of the  two lines is a 

better  fit: 
 

1.  Yi denotes the observed response for experimental  unit i 
 

2.   xi denotes the predictor  value for experimental  unit i 

3.   Yi is the predicted response (or fitted value) for experimental  unit i 
 

Then, the equation for the best fitting line using a sum of the error  estimating 

function is: 
 

                                                                                                         (<iJ 2) 
 

where  a'0     and  a'i are  the  coefficients  in  Equation  (6.10).   Use of the  above 

equation  to  predict  the  actual  response  Yi,   leads  to  a  prediction   error   (or 

residual error) of size:



 

({iJ   3) 
 

 

6.3.2 Least SquareEstimation 
 

Assume n data-points,  i = 1, 2, ..• ,  n. A line out of two lines (Figure 6.6) that  fits 

the data best will be one for which the  sum of the  squares  of the n prediction 

errors (one for each observed data point) is as small as possible. This is the 'least 

squares criterion',  which says that  the best fit is one, which 'minimizes the sum 

of the  squared  prediction  errors'.  This implies that  when the  equation  of the 

best fitting line is: 
 

 

 
 

where b0  and b1    are the coefficients which minimize the errors. The coefficients 

values make the sum of the squared prediction errors as small as possible. Thus, 

 

                                                                                               (,6.  l 5) 

Q is also called chi-square function. To minimize~= .L:t~·,-(b0   +_bLx/, 

compute the derivative with respect to b0  and b11   set to 0, respectively, and get 

the 'least squares estimates'  for b0  and b1   as follows: 
 
 
 

and 

(,6.16)
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The  derivative   of  a  dependent   variable  with  respect  to  the  independent 

variable  is also called a gradient.  Sections 6. 7 .1.3  and 6. 7 .3 describe the use of 

'gradient    descent',   i.e.,  a  gradient's    descent   towards   convergence   when 

optimizing for minimum values of gradient  descent. 
 

For obtaining the best-fit line here, the sum of the squared prediction  error  Q 

is minimized. Since the objective in the regression  analysis is to minimize Q, Q is 

called objective function.



6.3.3  Multiple  Regressions 
 

A  criterion  variable  can be  predicted  from  one  predictor  variable  in  simple 

linear  regression.  The criterion  can be predicted  by two or more variables  in 

multiple  regressions. The following example explains the  meaning  of multiple 

regression and coefficients. 
 

 

EXAMPLE 6.4 

 
Recall Example 6.3  where an assumption  that  university  examination  GPA 

depends on past examination  HSP was made. Now assume that GPA depends 

on HSP as well as internal  assessment (IA) at the university. 
 

(i)    How will you predict  a student  GPA  on the  basis of the  HSP and IA 

during university study? 
 

(ii)  What do the coefficients tell? 
 

SOLUTION 
 

(i)   Regression analysis requirement  is to find a linear combination  of HSP 

and IA that best predicts overall GPA. Regression relation gives GPA: 

GPA = bL.HSP+ b2.IA  + b0~ 
 

where b0,   b1  and b2  are regression coefficients. 

( 6 .18)

 

(ii) With multiple  independent  variables, the coefficients tell how much the 

dependent (response)   variable   is  expected   to   increase   when   the 

independent  (predictor) variable increases by unit value, holding all the 

other  independent  variables  constant.  Remember, the  units  by which 

the  variables  are  measured  differ  for different  models. For example, 

assume y = 1 + 2x1  + 3x2•  When x2  is constant, for each change of 1 unit in 

x1,y  changes 2 units. 
 
 
 

Multiple  regressions  are  used  when  two  or  more  independent   factors  are 

involved. These regressions  are also widely used to make short-  to mid-term 

predictions  to assess which factors  to include and which to exclude. Multiple 

regressions can be used to develop alternate  models with different factors.



More  than  one  variable   can  be used  as a predictor   with  multiple   regressions. 

However,  it is always  suggested   to use a few variables   as predictors   necessarily, 

to get a reasonably   accurate   forecast.  The prediction   takes  the  form: 
 

                                                                       (6.19) 
 

where  a  is the  intercept   of line  on  the  y  axis  (means  value  of y  when  all 

independent   variable   values  =   0).  The  c1,      c2,    ••• ,    and  en    are   coefficients, 

representing  the contributions  (weights) of the independent  variables x1,   x2,  ••• , 

xn in the calculation of y. 
 

Multiple regression  analysis, often referred  to simply as regression  analysis, 

examines  the  effects  of  multiple  independent   variables  on  the  value  of  a 

dependent  variable or outcome. 
 

Statistical significance means  that   the  observer   can  be  confident  that   the 

findings  are  real,  and  not just  a coincidence,  for the  given  data.  Regression 

calculates   a  coefficient   for  each   independent    variable   and   its  statistical 

significance,  to  estimate   the   effect  of  each  independent   variable   on  the 

dependent  variable. An example of a regression  study is to examine the effect of 

education, experience, gender and social background on income. 
 

 

6.3.4  Modelling Possibilities using Regression 
 

Regressions  range  from  simple  models  to  highly  complex  equations.   Two 

primary  uses  for  regression   are  forecasting  and  optimization.   Consider  the 

following examples: 

1. Using linear  analysis on sales data with monthly  sales, a company could 

forecast sales for future months. 

2.   For the  funds  that  a  company  has  invested  in  marketing   a  particular 

brand, an analysis of whether  the investment  has given substantial  returns 

or not can be made. 

3.  Suppose  two  promotion   campaigns  are  running   on  TV and  Radio  in 

parallel.  A  linear  regression  can  confine  the  individual  as well  as the 

combined impact of running these advertisements  together. 

4.  An insurance   company  exploits  a  linear  regression  model  to  obtain  a 

tentative  premium table using predicted  claims to Insured Declared Value



ratio. 
 

5.   A financial company may be interested  in minimizing its risk portfolio and 

hence want to understand  the top five factors or reasons for default by a 

customer. 
 

6.  To predict the characteristics  of child based on the characteristics  of their 

parents. 

7.   A company faces an employment  discrimination  matter  in which a claim 

that women are being discriminated  against in terms of salary is raised. 

8.  Predicting the prices of houses, considering the locality and builder 

characteristics  in a locality of a particular  city. 
 

9.  Finding relationships  between  the structure  and the biological activity of 

compounds through  their physical, chemical and physicochemical traits  is 

most commonly performed with regression techniques. 

10. To predict compounds with higher bioactivity within groups. 
 

 

6.3.5  Predictions using Regression  Analysis 
 

Regression analysis is a powerful technique  used for predicting  the  unknown 

value  of  a  variable  from  the  known  value  of  another   variable.  Regression 

analysis  is generally  a  statistical  method  to  deal  with  the  formulation   of a 

mathematical    model   depicting   the   relationship    amongst   dependent    and 

independent   variables.  The  dependent   variable  is  used  for  the  purpose   of 

prediction  of the values. One or more variables whose values are hypothesized 

are called independent  variables. The prediction  for the dependent  variable can 

be made by accurate selection of independent  variables to estimate a dependent 

variable. 
 

Two steps for predicting the dependent  variable: 
 

1. Estimation step: A  function  is hypothesized   and  the  parameters   of the 

function are estimated from the data collected on the dependent  variable. 

2.   Prediction  step: The  independent   variable  values  are  then  input  to  the 

parameterized function   to   generate    predictions    for   the   dependent 

variable.



Consider an example of data that  contain  two variables, viz., crop yield and 

rainfall.  Assume that  the yield depends  on rainfall  (in certain  critical  growth 

phases). Using past yield data  as a function  of rainfall,  the  crop yield can be 

predicted.  The application  of linear  regression  upon  these  two variables  will 

generate a linear equation, y = a + b.x, where y and x variables denotes crop yield 

and rainfall, respectively. Constants, a and bare  the model's parameters  known 

as the intercept  and slope of the equation. 
 

 

6.3.6  K-Nearest-Neighbour  Regression  Analysis 
 

Consider the  saying, 'a person  is known by the  company he/she  keeps.' Can a 

prediction   be  made  using  neighbouring   data  points?  K-Nearest  Neighbours 

(KNN) analysis is an ML based technique  using the concept, which uses a subset 

of K = 1, 2 or 3 neighbours in place of a complete dataset. The subset is a training 

dataset. 
 

Assume that  population  (all data points of interest)  consist of k-data points. A 

data  point  independent  variable  is xi,  where  i =  1  to k.  K-Nearest Neighbours 

(KNN) is an algorithm, which is usually used for classifiers. However, it is useful 

for regression  also. Predictions  can use all k examples (global examples) or just 

K examples (K-neighbours with K =  1, 2 or 3). It  predicts  the unknown  value Yp 

using predictor  variable  xP  using  the  available values  at the  neighbours.  The 

training  dataset  consists of available values of y ni at xni with n, = 1 to K, where n, 

is the K-the neighbour, means just the local examples. 

A subset of training  dataset  restricts  k to K-neighbours, where K =  1, 2 or 3. 

This means  using  local values  near  the  predictor  variable.  K  =  1   means  the 

nearest  neighbour  data  points.  K  =  2  means  the  next  nearest  neighbour  data 

points (xi,YJ K = 3 means the next to next nearest neighbour data points (xi,Yi). 
 

First find all available neighbouring  target  (xi, yi) cases and then  predict  the 

numerical  value  to  be  predicted   based  on  a  similarity  measure.  Prediction 

methods are as follows: 

(i) Simple interpolation,   when  predictor   variable  is  outside  the  training 

subset 

(ii)   Extrapolation, when predictor variable is outside the training  subset 
 

(iii)  Averaging, local linear regression or local-weighted regression.
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KNN analysis assumes that  weight is inversely proportional  to the  square  of 

distance (w a n-2),     inverse of the distance  (a n')   or inverse  of qth  power of the 

distance   (a  v-q)  called  Euclidean  DEu'   Manhattan   DMa   and   Minkowski  DMi 

distances, respectively. When predicting,  a weight assignment may require 

computations   using  a  kernel  function1    like  a  Gaussian  or  tri-cube  function 

(Section 6.2.5.1) in cases where the dependent  variable varies according to the 

kernel function. 
 

Assume continuously  varying values as a function  of independent  variables. 

Assume v denotes  the number  of variables, independent  as well as dependent. 

The following equations  give the  KNN distances  in v-dimensional  space for the 

purpose of using weights. 
 

Euclidean Distance  The following equation  computes  the  Euclidean distance 

DEu: 

Sum of the squared Euclidean distance, [ r»:  12  = [""'  ~·         (x·  -   x~i J. and 

Euclidean  distance DEu = [L;~1 (xi - .t; >2 J                                                                                                C   6.20~.") 
 

Sum is over v dimensions.  If one independent   and one dependent  variable, 

then v = 2. For example, ifv = 2  and two data points are (xyy)  and (x_;+i,Yj+1),     then 

Euclidean distance between the points is as follows: 
 

Euclidean distance DEu = [(xj  - xj+1)2   + (yj - Yj+1)2]1!2                                    (6.20b) 
 

Euclidean distance  for three  variables  v =  3  (two independent  variables  and 

one dependent  variable case) consists of three  terms  on the right-hand  side in 

Equation (6.20b). 
 

ManhattanDistance The following equation  computes the Manhattan  distance 

DMa:
 

Manhattan 

DMa  =  L;~J 0-\- x;j] 

 

distance                              DMa 
 

 
 
c_6.20c)

 

Manhattan  distance for three  variables v = 3 (two independent  variables and 

one dependent  variable case) consists of three  terms  on the right-hand  side in 

Equation (6.20c). 
 

Comparison between  Euclidean   and   Manhattan Distances    Basically,



Euclidean   distance   is the  direct   path   distance   between   two  data  points   in  v• 

dimensional    metric   spaces.  Manhattan    distance   is the  staircase   path   distance 

between   them.   Staircase   distance   means  to  move  to  the  next  point,  first  move 

along  one metric  dimension   (say, x axis) from the first point, and then move to 

the next along another  dimension (say, y axis). 

When v =  2, Euclidean distance is the diagonal distance between the points on 

an  x-y  graph.  Manhattan   distances  are  faster  to  calculate  as  compared  to 

Euclidean   distances.   Manhattan    distances   are   proportional    to   Euclidean 

distances in case of linear regression. 
 

Minkowski  Distance  The following equation  computes the Minkowski distance 

DMi:

Minkowski  distance  DM:i =  { L: L 

 

liq 

[c. xi - xf/l]} 

 

 
(6.20d)

 

Hamming  Distance  When predictions  are on the basis of categorical variables, 

then  use the Hamming distance.  It  is a measure  of the number  of instances  in 

which corresponding  values are found. 

Hamming  Distance~~=    L,;Jx.- - -11~                                                                                                                                                (.6.10e) 

when xi= xe, then DH= 0 and when xi not equal to xc, then DH= 1. For example, 

Hamming distance DH= 1  between  10100111100  and 11100111100  because just 

one substitution  is needed, change second bit from Oto 1  at 10th place from the 

right to left positioned bits. Hamming distance DH= 4 between 111001  00000  and 

011001  11100  because we need four substitutions,  change 3rd, 4th, 5th and from O 

to 1 and 11th bit from 1 to O 
 

An application  is in text  analytics.  Hamming distance  DH  =  3 between  'Bank 

notes' and 'Java notes'. The distance=  3 because the required  number of changes 

is 3 at B, n and k among two strings. Another application of Hamming distance is 

in counting  the  number  of data  points  off from  the  regression  curve  (Refer 

Section  6.4.4.6).    Another   application   is  in  counting   the  wrong  or  distinct 

characters  when comparing two document sentences. 
 

Normalization   Concept   Normalization   factor   in   p-norm   form   in   a   v• 

dimensional space is 
 

x, = Jr1·x,  where N =  (L;~l lxir rip                                                                  C. 6.:! l)
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Here, xi is fh component  of the vector X.  The total number  of components  are 

v. Two-dimensional space v = 2, three-dimensional  v = 3. 

The following example explains the meaning of distances, use of Euclidean and 

Manhattan   distances,  use  distances  for  predictions,  and  the  KNN  regression 

analysis. 
 

 

EXAMPLE  6.5 
 

 

Assume dataset  S with two subsets of sets Jspi and Zspi  for sales and sales 

percent increase (SPI) for Jaguar Land Rover and Zest models of Tata Motors 

Company. Assume S is training  dataset  and consists of data points  as per 

the following table. 

Table 6.2 An example of two car models,Jaguar,  and Zest (JLRS and ZS), sales 

and sales percent increase (SPI) in years between 2012 and 2018 
 

 

Year Number or 
 

Cilr model 
 

Car  model 
 

Car  model 
 

Car  model 

y- years f rorn Jaguar M~ SPI over· Z~l   sales, SPI over 

 the base sales,  J LRS: previous ZS previous  year 
1•rear2012   Yb

 year  (:ri.11,                                            (1\11,  ~;)

J~) 

l!I                             ii•                                                                                                ,1,1,1,1 

 
 

 
.                                                                                                                                                                                 · 

i 
 
 
 

 

M = 0 means Jaguar Land Rover, and M = 1  means Zest. 
 

(i) Draw two plots, one with  scatter  set of points  with Y and ZS,  which 

means  columns  1  and  5  data,  second  plot  between  Yb  and Jspi    with 

columns 2 and 4. 

(ii) Find the  Euclidean  2-NN  distance  between  third  and  first  row data 

points (2014,  11232)  and (2012,  10000). 

(iii)  What is the Manhattan  2-NN distance between the third  and first row 

data points (2014,  11232)  and (2012,  10000)?



(iv)  What  are  seven  Hamming   distance   terms   of Equation   (6.20e) between 

fourth and  six  column   vectors  Jspi   and  Zspi?  Interpret    the  summed 

DHa· 

(v) Assume data point for JLRS as missing for 2015. How do you predict car 

sales in 2015 assuming missing row for 2015? Use Euclidean distances 

using 1-NN. How do the results differ when using 2-NN and 3-NN? 

(vi) How do you predict car sales for 2011? Use Euclidean distances. 
 

(vii) How will you  use  1-NN, 2-NN and  3-NN for  estimation   regression 

coefficient? 

(viii)How will you calculate Euclidean distances  DEu  between  values Jspi in 

columns 4 for Yb = 3 and 5? 

(ix) How will you  calculate  DEu  between  value  for  column  2  Yb  =  0  and 

column 2 Zspi value in column 6 for Yb = 1, 3 and 4? 
 

SOLUTION 
 

(i) Figure 6. 7 shows scatter  set of points  one for Y and ZS, which means 

data points in columns 1 and 5, and second for Yb andJspi' which means 

data points in columns 2 and 4.
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Figure  6. 7 Scatter plots for two set of data points, one between Y and 

ZS, and second between Yb andJspi 
 

(ii) Using the equation, DEu =  [(x_; - x_; + 1)2  + (yj - yj +  1)2]\   find the Euclidean 2- 

NN distance between third  and first row data points (2014,  11232)  and 

{2012, 10000)  DEu = [{2014 -  2012)2    + {11232  -  10000)2]Yz =  [{2)2  +  {1232)2]Yz 
 

= 1232.001.



(iii)  Using  the  equation,   DMa  =  [(xj  - xj  +  1)    +  (yj  - Yj  +    1)].     Manhattan  2-NN 

distance  between  third  and  first  row  data  points  (2014, 11232) and 

(2012, 10000)= [(2014- 2012)+ (11232 - 10000)]= [2 + 1232]= 1234. 
 

(iv) Hamming distances  need to compute  between  fourth  and six column 

vectors Jspi and Zspi are {1, 0, 0, o, 0, 1, o} because only in these the Jspi 

and Zspi differ. That also means that in two years out of seven, increase 

in sales percentage  differs for Jaguar Land Rover and Zest models. 
 

(v)   Lets JLRS missing for 2015 (independent  or predictor  variable).  Since 

2014 and 2016 are its 1-NN. Let us choose 1-NN of year  2014, that  is 

2013.DEu (2014, 2013) = v{(2014 - 2013)2 +  (1123 -1040)2}  = 83. Predicted 

JLRS (2015) =  1123 +   83 =  1246 by extrapolation,  assuming DEu  (2014, 

2013) = DEu (2014, 2015). (weight factors 1) 
 

Years 2012 and 2016 are 2-NNsof 2014. Let us consider DE)2014, 2016) = 

175. Thus,  the  predicted  JLRS(2015) =   (1298 -  175/2)  =   1210 using 

interpolation  (weight factor=  1 per year change). 

Similar computations  can be made for DE)2014, 2017) as 3-NN of 2014 

is 2017.DEu 3-NN= 305. PredictedJLRS(2015) = (1123 + 305/3) = 1225. 

(vi) Predicting  the car sales for 2011 is an example of extrapolation,  when 

predictor  variable  is outside  the  training  subset. JLR(2012) is closet 

point. DEu (2012, 2013) = 40.  PredictedJLRS(2011) = 1000 - 40 = 960. 
 

(vii) K-NN algorithm   is  used  for  estimating   regression   coefficient.  For 

example, use a weighted average of the k-nearest neighbours, weighted 

by the inverse of their distance. Compute the Euclidean from the query 

example to the labeled examples. 

1.    Order the labeled examples by increasing distance. 
 

2.   Find a heuristically optimal number k of nearest neighbours. 
 

3. Calculate an inverse  distance  weighted  average  with  the  k-nearest 

multivariate  neighbours. 

(viii)Euclidean distances between values Jspin in columns 4 for Yb  = 3 and 5



.                                                          .    2                                           2]1n 
DE11 = [ (Y~ -Y~)    +c_J5P~  -JJPi5) 

=  ((3 -  5.,2 + (9 -  10/]1!2 =  ((-1/   + (-1/in 
 

DEu = [5]~ = :!.~36 
 

(ix) DEu between its value for column 2 Yb = O  and value of Zspi in column 6 

for Yb=  1, 3, and 4 
 

 

 
 

 
 

 
 
 

 

Self-Assessment Exercise linked to LO 6.2 
 

1.   How does regression  analysis predict  the value of the dependent  variable  in 

case of linear regression? 

2.  (i)  Define  objective   function   for  least   square   fitting   of  coefficients   in 

regression  equation. 

(ii) How are the best-fitting  regression  coefficients evaluated? 
 

3.  When are  multiple  regressions  used?  How do multiple  regressions  predict 

intermediate term?  How do  multiple  regressions   assess  which  factors  to 

include   and   which   to   exclude?   How  do  multiple   regressions   help   in 

developing alternate  models with different  factors? 
 

4.   How is KNN regression  used for predicting,  considering  two variables  and K 

= 3? Use training  dataset given in Example 6.5. 
 

5. How do KNN regression  computations  differ when using Euclidean and 

Manhattan  distances? Consider two variables and K = 3. Use the training 

dataset given in Example 6.5.



 

 
 

6.41 FINDING SIMILAR ITEMS,  SIMILARITY OF SETS AND 

COLLABORATIVE   FILTERING 

Similar item search refers  to  a  data  mmmg  method 

which  helps  in discovering  items  which  have 

similarities in datasets. (Data mining means discovering 

previously  unknown  interesting   patterns   and 

knowledge from apparently unstructured  data. The 

process  of data mining uses the  ML  algorithms.  Data 

mmmg enables analysis, categorization and 

summarization  of data and relationships  among data.) 
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The following subsections  describe  methods  of finding  similar  items  using 

similarities,  application  of near-neighbour   search, Jaccard  similarity  of sets, 

similarity  of documents,  Collaborative Filtering  (CF)  as a similar-set  problem, 

and the distance measures for finding similarities. 
 

 

6.4.1  Finding Similar Items 
 

An analysis  requires  many  times  to  find  similar  items.  For example,  finding 

similar excellent performance  of students  in Python programming,  similar 

showrooms of  a  specific  car  model  which   show  high   sales  per   month, 

recommending books on similar topic such as in Internet  of Things by Raj Kamal 

from McGraw-HillHigher Education, etc. 

6.4.1.1 Application of Near Neighbour Search 
 

Similar items can be found using Nearest Neighbour Search (NNS). The search 

finds that  a point  in a given set is most  similar  (closest) to a given point.  A 

dissimilarity  function  having larger value means less similar. The dissimilarity 

function is used to find similar items. 
 

NNS algorithm  is as  follows: Consider  set  S  having  points  in  a  space  M. 

Consider  a  queried  point  q  EM,    which  means  q  is  member  of  M. k-NNS 

algorithm finds the k-closet (1-NN) points to q in S.

mailto:S@t


Three problems with the Pearson similarities (6.2.6.1): 
 

1.   Do not  consider  the  number  of items  in which  two  users'  preferences 

overlap. (e.g., 2 overlap items==> 1, more items may not be better.) 

2.    If two users overlap on only one item, no correlation  can be computed. 

3.   The correlation  is undefined if series of preference values are identical. 

Greater distance  means greater  dissimilarity.  Dissimilarity coefficient relates 

to  a distance  metric  in  metrics  space  in v-dimensional  space. An algorithm 

computes   Euclidean,  Manhattan   and  Minkowski  distances   using  Equations 

(6.20a) to (6.20d). 
 

Distance metric  is symmetric  and  follows triangular   inequality.  Meaning of 

triangular  inequality  can be understood  by an example. Consider three  vectors 

of lengths x.y, and z. Then, triangular  inequality means 

z < x + y. It is similar to the theorem  of inequality that the third side of a triangle 

is less than the sum of two other sides, and never equal. The theorem  applies to 

v-dimensional  space also. Dissimilarity can be asymmetric,  i.e., triangular 

inequality is not true (Bergman divergence). 
 

Consider a linear search (also referred  as Naive search) algorithm,  Naive, one 

of meaning  is simple in English. Search requires  computations  of distances  to 

every other  point.  The algorithm  running  time  is large. The time function,  0 

(v.c) which measures  the efficiency of the  search algorithm  in terms  of means 

v.c. The v is dimensionality  of M and c is cardinality  of S. Cardinality refers to 

the  number  of relationships.  For example,  one independent  variable  and two 

dependent  variables  in a relationship,  then  cardinality  is 3.  Cardinality in the 

context  of databases  means  the  uniqueness  of values  contained  in a column 

fields. 
 

Note: Space partitioning   followed  by  the  search  algorithm   is  an  efficient 

method using a k-d tree or R-tree data structure.  Search is made after arranging 

the  tree-like  data  structure.   Space partitioning   problems  become  complex in 

case of high dimensionality. 
 

Naive   search  algorithm   outperforms   space  partitioning   approaches   when 

using high dimensional spaces Mand  high cardinality.2 

The following example explains the NNS approach to find similar items.



EXAMPLE 6.6 
 

 

Assume a set S consists of data of a large number  of students.  The dataset 

consists  of grade  points  (GPs) in each  of the  five subjects  of study  in a 

semester. The total dataset  is for six semesters. Each semester examination 

awards SGPAs  (Semester Grade Point averages). CGPAi (Cumulative GPA of 

ith semester)  calculates after end of ith semester  after  adding the  SGPAs of 

previous  semesters.  Assume that  each student  GP is on a 10-point scale. A 

student  performance  in a subject is high (H) if GP is 8.0 or close within ±1.0. 

A student  performance  in a subject is excellent  (E) if GP is 9.0 or close by 

within ±1.0. 

(i) How will you choose independent  and dependent  variables? What does 

metric space mean? 
 

(ii) How will you define a metric space for finding similar performances  in 

a specific subject? How will you define a metric  space M for finding 

similar performance  from SGPAs  of the  first semester?  How will you 

define a metric space for finding similar performances  from CGPAs of a 

semester? 
 

(iii) What will you consider S for finding similarities by NNS? 
 

(iv) What does nearest  neighbour  search mean when search is for students 

with similar excellent performance? 

(v)   How will you find students  of similar excellent performance  by the GPs 

of a subject, say Java Programming in the second semester? 

(vi) How will you find similar excellent performances  by the CGPA? 

(vii) How will you find similar high performances  by the SGPA? 

(viii)How will you compute Euclidian and Manhattan  distances with respect 

to query point GP = 8.0 ±1.0? How will you compute dissimilarity? 

(ix) What do you mean  by dimensionality  of M? What do you mean  by 

cardinality of S? 
 

SOLUTION



(i) Independent    variables   are  student   ID,  year  of study,  semester   period, 

name and   type   (theory     or   practical)    of  five   subjects.    Dependent 

variables   are  GP, GP A, SGP A  and  CGP A.  Metric  space  means  a space  in 

which   variables    are   quantifiable.    For  example,   GP, GPA, SGPA and 

CGPA. 
 

(ii) Metric   space  for  finding   similar   performances     in  a  specific   subject, 

Metric space   M  for   finding   similar   performance     in   SGP A   of  first 

semester, Metric  space  for finding  similar  performances    from  CGP A  of 

a semester: 

(iii)  Members  of set S are input vectors, each having elements  {studentID, 

CGPA [or SGPA, GPA, 

T_GPA  (GPA of theory  subject), P_GPA  (GPA of practical  subject)]} for 

each student  for finding the similarities by NNS using three  distances 

Dl, 02,  03  of first, second and third nearest neighbours. 

(iv) Nearest    neighbour    search    for   students    with    similar   excellent 

performance   means  search  of studentIDs  awarded  CGPA  within  the 

distance 1.0 from 9.0. 

(v)  Students  of similar excellent performance  by the GPs of a subject, say 

Java Programming, in the second semester means Student IDs with GPs 

inJava programming within the distance ±1.0  from 9.0. 

(vi)  Similar excellent performance  by the CGPA means similar performance 

of students_IDs with CGPA within the distance ±1.0  from 9.0. 

(vii) Similar high performance  by the  SGPA means similar performance  of 

students_IDs with SGPA within the distance ±1.0 from 8.0. 

(viiikomputation   of Euclidian distances with respect query point GP = 8.0 ± 

1.0 
 

Computation of Manhattan  distances with respect query point GP  = 8.0 
 

± 1.0 
 

(ix) Dimensionality of M equals the number of independent  and dependent 

variables in metric space for which distances are quantifiable.



Cardinality     of   S   means   number    of   relationships,    number    of 

independent   but  unrelated   and  dependent   unrelated   variables.  For 

example, subject_name and subject_type is related to each other. 

Therefore, subject_name and subject_type are counted as one variable 

when computing cardinality. 
 

 

6.4.2Jaccard Similarity of Sets 
 

Let A and B be two sets. Jaccard similarity coefficient of two sets measures using 

notations  in set theory as shown below: 

IAnBI 
Jc.A. B) = IA uBI 

 

A n B means the number of elements or items that are same in sets A and B. A 

U  B means the number  of elements  or items present  in union of both the sets. 

Assume two set of students  in two computer courses, Computer Applications CA, 

and Computer Science CS in a semester. Set CA 40 students  opted for Java out of 

60  students.   Set CS  30  students   opted  for Java  out  of 50  students.  Jaccard 

similarity  coefficient Jjava  (CA,  CS)  =  30/(60    +  50)  x   100%  =  27%.  Two sets are 

sharing 27% of the members for Java course. 

( n is symbol for intersection  in set theory.  U is symbol for union in set theory.) 
 

6.4.2.1 Similarity of Documents 
 

An application of Jaccard similarity coefficient is in Natural Language Processing 

(NLP) and   text    processing.   It    quantifies   the    similarity    in   documents. 

Computational steps are as follows: 
 

1. Find Bag of Words (Section 9.2.1.4)  and remove words such as is, are, does, 

at, in, .... 

2.   Assign weighting  factor  is the  Term  frequency  and  Inverse  Document 

Frequency (TF-IDF). Consider the frequency of words in the document. 
 

3.  Find k-shingles. A shingle is a word of fixed length. The k-shingles are the 

number  of times the similar shingles extracted  from a document  or text. 

Examples of a shingle are Java, GP, 8.0, Python, 80%, Programming. 
 

4.   Find n-grams. A gram is a contiguous sequence of fixed length item (word



or set of characters,  letters,  words in pairs, triplets,  quadruplets,  ... )  in a 

document  or text. The n-grams are the number  of times the similar items 

(1-grams, 2-grams, ..) extracted  from a document or text. The 3-gram 

examples are lava GP 8.0, Python Programming 7 .8, Big Data Analytics, 23A 

240C 8LP, the numbers of which are extracted  from the text. 
 

5.  Compute Jaccard  similarity  coefficient using Equation (6.22) between  the 

documents. 

A number  of other  methods exist for computing  similarity of documents.  One 

method  is Latent Semantic Indexing method  (LSI). The computational  steps are 

as follows: 

•        Steps 1 and 2 are the same as above. 
 

• Consider  documents   into  word   space.  Reduce  dimensionality   of  the 

projection space.   An  algebraic   model   is   one   that   represents    text 

documents  as vectors  or identifiers,  such as how many times  a word  is 

present in  a  document,   the   index   terms   or   deploy   singular   value 

decomposition method. 

•  Use Cosine Similarity measure between the documents. 

Refer Section 9.2 for details on text analysis. 

 

6.4.3  Collaborative Filtering as a Similar-Sets  Finding 

Problem 
 

An analysis   requires    finding   similar   sets   using   collaborative    filtering. 

Collaborative filtering refers to a filtering algorithm, which filters the items sets 

that have similarities with different items in a dataset. 
 

CF  finds the  sets with items having the  same or close similarity  coefficients. 

Following are some examples of applications of CF: 

• Find those sets of students  in computer  application, and computer  science 

who opt for the Java Programming subject in a semester. 

• Find sets of students  in Java Programming  subjects to whom same teacher 

taught  and they showed excellent performance. 

An algorithm finds the similarities between the sets for the CF. Applications of



CF  are in many ML  methods,  such as association  rule  mining,  classifiers, and 

recommenders. 
 

 

6.4.4 Distance Measuresfor Finding Similar Items or Users 
 

Distance  measures  compute  the  dissimilarities.  Complement  of dissimilarity 

gives similarity. The following subsections describe the distance measures. 
 

6.4.4.1 Definition of a Distance 
 

Distance can be defined in a number  of ways. Distance is the measure of length 

of  a  line  between  two  values  in  a  two-dimensional   map  or  graph.   Set  of 

Equations (6.20) measures distances. 
 

For example,  distance  between  (2014, 6%)  and  (2018, 8%)  on a scatter  plot 
when year  is on the x axis and profit%  on they   axis is Distance = v [(2014 - 

2018)2 + (6  - 8) 2]   
= v (16 +  4) = 4.47, using Equation (6.20b). Distance can also be 

similarly defined in v-dimensional space using Equation (6.20a). 
 

Distances between  all members  in a set of points can be computed  in metrics 

space using a mathematical  equation. Metrics space means measurable or 

quantifiable  space. For example, profit and year on a scatter  plot are in metric 

space of two dimensions. Probability  distribution  function values are in metric 

space. 
 

Consider student-performance   measures 'very good' and 'excellent'. These 

parameters   are  in  non-metric   space.  How are  they  made  measurable?  They 

become  measurable  when  very  good is specified  as grade  point  average  8.5 

which implies that  a score between 8.0 to 9.0 is very good, and define 9.5 which 

implies that a score between 9.0 to 10.0 is excellent on a 10-point scale. 
 

Consider a chart  between  number  of students  passing  in examination  with 

best grades vs languages C++, Java, Node.js and Python. Languages are in non• 

metric  space. They become  measurable  when  numbers,  say 0, 1,  2  and  3  are 

assigned for a language for the purpose of using distance measure for similarity 

analysis. 
 

Distance can be defined as the reciprocal of weight in v-dimensional space. For 

example, a point at unit distance  can be taken  as weight w =  1,  and a point at 

distance = 2, w = Yz  and so on. 
 

Distance  can  also  be  defined  as  dissimilarity  coefficient  in  v-dimensional
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space. Greater  distance  means  greater  dissimilarity.  Subtracting  dissimilarity 

coefficient from 1 gives similarity coefficient. Many different algorithms exist to 

compute  distance  and  thus  similarity  between  entities,  number  of users  or 

items. An algorithm  computes the distances DEu, DMa, DMi' DHa [Equations ( 6.20a 

to e)] or any other  distance  metric,  for example, Jaccard  distance  D1a,  cosine 

distance Dew edit distance DEd· 
 

Jaccard similarity, Cosine similarity, edit distance  or correlation  methods  are 

used to find out similarities between users. 

6.4.4.2 Euclidean Distance 

Euclidean distance  ~u=      [r:1l~.--x/Jt2 ~     refer Equation (6.20a) in Section 6.3.6 

for details.) 
 

6.4.4.3 Jaccard Distance 
 

Equation  (6.22) gives J  (A,  B). Jaccard   distance,   DJa  (A,  B)  measures   the 

dissimilarity  between  two sets. It  is equal to result  of subtraction  of J accard 

similarity coefficient]  (A, B) from 1. 

Dla (a', ffi)   =  l - J (8, -3) 
 

(Refer Section 6.4.2 for details.) 
 

6.4.4.4 Cosine Distance 

(0.23")

 

Cosine similarity is a measure  of similarity in the inner-product  space between 

two vectors of finite magnitudes. Cosine distance Dcos is measure of dissimilarity 

between vectors. A measure of cosine distance is in terms of the angle between 

the   vectors.   Cosine  similarity   has   low  complexity.   Cosine  distance   has 

applications  in text mining, finding similarity of documents,  and similarities  in 

sparse vectors, column-vectors (fields) and matrices (Section 3.3.3.1). 
 

Let U and V be two non-zero vectors, two documents in the vector space. 

L u.r-
Dcai<.ll~V)= ~.  ~·              ' 

.·k·v          £.i,·    • 

C.6.23£l)

 

where  U,  and  Vi are components  of U  and V,  respectively,  and  summation  in 

numerator  is over i = 1 to N, where N is the number of elements of the vectors. 

No Triangular   Inequality   Property   Cosine distances  do not exhibit triangular



v, 

inequality   property,   while  the  Euclidean  distances   exhibit  triangular    inequality 

(Section  6.4.1.1). 
 

Vector  Cosine-Based Similarity  Vector  cosine  similarity in terms  of angle 

between two vectors U and V is given by equation: 

l].lf 

~  .....    = cos-l  (U,      =   rnu11-11v11J                                                                                                (6.23h) 
 

Consider Example 6.5.  Let each model have  Sales Percentage  Increase  (SPI) 

values in successive years. The similarity  between  SPis of two models, M1    and 

M2,   is measured  by treating  each model as a vector of SPis and computing  the 

cosine of the angle formed by the SPI vectors. 

Formally, if P is m x  n SPI matrix  for a model M, then  the similarity between 

two models, Mi and Mj is defined  as the  cosine in the  n-dimensional  vectors 

space corresponding  to the ith and /h columns of P. 

The   following   example   illustrates    computing   of  cosine   and   Euclidean 

similarities to find similar items. 
 

 

EXAMPLE 6.7 
 

 

Consider members of a dataset  S in five-dimensional metric space. Assume 

S subsets  are  JLR  and Z. Data subset  members  consist  of values  in two 

column vectorsJspi and Zspi of the elements SPis. Data subset JLR consists of 

percentage  increase  in sales number  in a year  of Tata Jaguar  Land Rovers 

cars,  and  Z  consists  of Zest cars  SPis. (Example 6.5)  Assume dataset  S 

consists of data points as per Table 6.2. 
 

(i) Represent   members   of  dataset   S   of  table   data   points   in  five• 

dimensional metric space consisting of three  independent  variables Y, 

Yb, Mand two dependent  variables Jspi and Zspi· 
 

(ii)  Represent the members of six subsets for values in columns 1, 2, 3 and 

5  as elements  of vectors  Y,  Yb,  and  matrices  (M, Jspi) and  (M,  Zspi), 

respectively. 

(iii)  Represent  the table data points in two-dimensional  metric  spaces (Yb, 

Jspi) and (Yb, Zspi).



(iv)  Represent the  table  data  points  in three-dimensional  metric  space  (Yb, 

Jspi, Zspi). 
 

(v) How will you  calculate  the  cosine  distance,   cosine  similarity and  angle 

between the vectors  Jspi and Zspi? 
 

(vi)  How   will   you   calculate    Euclidean    similarity  using   six   neighbour 

distances  DEu starting   from  Zspi for Yb= 0 and Zspi values  in columns  6 for 

Yb= 1 to 5? 
 

SOLUTION 
 

(i)    8{2012, 0, (0,5), (1,3)}, {2013, 1, (0,4), (1,4)}, {2014, 2, (0,8), (1,8)}, {2015, 

3, (0,9), (1,9)} ,   {2016, 4, (0,6),  (1,6)}, {2017, 5, (0,10),  (1,10)}, {2018, 6, 

(0,8), (1,8)} 

(ii)  Y = {2012, 2013, 2014, 2015, 2016, 2017, 2018}, Yb= {O,  1, 2, 3, 4, 5, 6}, (M, 

Jspi = {{0,5),  (0, 4), (0, 8), (0, 9), (0. 6), (0, 10), (0, 8)}, and  (M, Zspi)  = {(1, 3), 

(1, 4), (1, 8), (1, 9), (1, 6), (1, 4), 

(1, 7)} 
 

(iii)  (Yb, Jspi) =   {(0,5), (0,4),  (0,8),  (0,9),  (0,6),  (0,10),  (0,8)} and  (Yb, Zspi) = 
 

{{0,3), (0,4), (0,8), (0,9), (0,6), (0,4), (0,8)} 
 

(iv)  (Yb,Jspi' Zspi)  = {{(0,5,   3), (1,4, 4), (2,8, 8), (3,9, 9), (4,6, 6), (5,10, 4), (6,8, 

8)}. 
 

(v)   Dcos Ospi, Zspi) = {(5  x 3) + (4 x 4) + (8 x 8) + (9 x 9) + (6 x 6) + (10 x 4) + (Bx 

s)}/v {52   + 42+ s2+  92 + 62+ 102 + s2}   x v{32  + 42+ s2+  92+ 62+ 42  + s2}    = o.951 
 

Cosine similarity= 1 - Dcos Ospi, Zspi) =  1- 0.951 = 0.049 
 

Angle betweenjspi,  Zspi = cos-1(Dcos)    = 87.191 

(vi)  Use Equation  (6.20b) for the  computations. 

1. DEu (Yb=  0, Yb= 1) = v{(0-1)2  + (3 - 4)2}; 
 

2. DEu (Yb= 1, Yb= 2) = v{(l  - 2)2 + (4 - 8)2}; 
 

3. DEu (Yb=  2, Yb= 3) = v{(2 - 3)2  + (8-  9)2}



4. DEu (Yb=  3, Yb= 4) = v{(3 - 4)2 + (9 - 6)2} 
 

5. DEu (Yb=  4, Yb= 5) = v{(4 - 5)2  + (6 - 4)2} 

 

6. DEu (Yb=  5, Yb= 6) = v{(5 - 6)2 + (4 - 8)2} 
 

Euclidean similarity  coefficient=  1  - v'[Sum  of all square of all six DEu 

values  using  1-NN}  divided  by  {v(62   +   Sum of square  of all six Jspi 

values)} 

(vii) Euclidean similarity=  1 - v{22  +  172  +  22  +  102  +  52   +  172}/     {v(62  +  386} = 

-0.305 
 

 
Differing Similarity Coefficients for  SPis Calculated from  Cosine distances 

and  Euclidean Distances The  following  section  explains  the  use  of cosine 

distance and the situations in which Dcos does not find similarity correctly. 
 

Consider a comparison  between  the  cosine and  Euclidean similarities  when 

finding  similar  items.  Several situations  exist  in which  predictions  from two 

computational  approaches  differ. The reason is that  triangular  inequality holds 

true for Euclidean distances, while does not hold true for cosine distances. 
 

Certain dimensions have widely different values. For example, let us compare 

sales JLRS and ZS in column 3 and 5 of Table 6.2. ZS values are nearly ten times 

the value of JLRS values. A solution is normalizing  the values in all dimensions 

by dividing with the mean values using Equation (6.21). However, that  also may 

give differing and incorrect results using Dcos· 
 

Cosine singularity  is found to exhibit  correct  results  for similarities  in text 

documents.  Cosine similarity  is very  efficient to evaluate  situations  of sparse 

vectors   and  those   where   one  needs  to  consider   non-zero   values  in  the 

dimensions. 
 

Concept  of  Sparse   and  Dense  Vectors  Sparse vector  uses  a hash-map  and 

consists of non-zero values. Hash-map is a collection, which stores data in (key• 

value)  format  (Section  3.3.1).  Format  is also  called  random  access.  Hashing 

means  to convert  a large value or string  into  shorter  value or string  so that 

indexing for searching is fast. 
 

For example,  assume  a vector,  which  consists  of array  elements,  (subject,



number of students  opting, average GPA). 
 

1.   Dense vectors have elements (Hive, 40, 8.0),  (lava, 30, 8.5),  (FORTRAN, 0, 0), 

(Pascal, 0, 0). Dense vector  consists of all elements,  whether  the  element 

value is O  or not 0. 

2.   Sparse vectors will be two only with elements  (4,  40,  8.0)  and (3,  30,  8.5). 

Random access Sparse vector means access to elements  (key, value pairs) 

using key. Sparse vector  consists of elements  for which key is such that 

value is not O  (Section 3.3.1). 

3.  Sparse vector  has an associated  hash-map  in form of a hash-table.  First 

row-   Pascal, 1, second row-   FORTRAN, 2, third  row-  Java, 3 and fourth 

row-Hive. 
 

4.  Hashing  is a process  of assigning  a small number  or  small-sized  string 

indexing,  searching  and  memory  saving  purposes.  Hash process  uses  a 

hash  function,  which  results  into  not-colliding  values.  In  case  of two 

colliding numbers,  the  process  assigns a new number.  Sequential  access 

sparse vectors mean two parallel accessing vectors, i.e., one to access keys 

and the other for values. 
 

6.4.4.5 Edit Distance 
 

Edit distance  DEd  is a distance  measure  for  dissimilarity  between  two  set  of 

strings  or words.  DEd  equals  the  minimum  number  of inserts  and  deletes  of 

characters   needed  to  transform   one  set  into  another.   Applications  of  edit 

distances  are in text  analytics  and natural  language processing,  similarities  in 

DNA sequences etc. DNA sequences are strings of characters. 

Levenshtein  suggested a method  for finding edit distance,  minimum  number 

of operations  of deletion,  insertion  or substitution   of a character  in a set  of 

strings  to transform  one into  another.  The cost of substitution  is taken  as 2. 

Thus,  edit  distance  from  computation   using  that  method  is also  called  the 

Levenshtein 

method.3 
 

6.4.4.6 Hamming Distance 
 

If both U and V  are vectors,  Hamming distance  DHa  is equal to the  number  of



different    elements    between    these   two   vectors.    Recall   Example   6.5   (iv) for 

Hamming  distance   between  Jspi   and  Zspi.  Hamming  similarity-coefficient 

between car models Jaguar Land Rover and Zest is (1- 2/7) = 0.7. [70%] 
 

If M is a matrix, then DHa is equal to the number of different elements between 

the rows of M ignoring the columns. 

DHa  between  two strings  of equal length  is the number  of positions  at which 

the corresponding  characters  differ. DHa is also equal to the minimum number of 

substitutions  required to transform  one string into the other. DHa is also equal to 

the minimum number of errors that need correction  using transformation  or 

substitution. 

Hamming distance  is therefore  another  distance  measure  for measuring  the 

edit distance between two sets of strings, words or sequences. 
 
 

Self-Assessment  Exercise linked  to LO 6.3 
 

1.   Why is triangular  inequality  in a distance measure important? 
 

2.   How will you compute Jaccard  similarity  coefficients  between  datasets  for 

Jspi and Zspi. Use data Table 6.2 as the training  dataset. 
 

3.   Why does similarity in documents  computed? 
 

4. Write applications  of Euclidean, Jaccard,  Cosine, Edit and Hamming distance 

measures. 

5.   Explain   how   Euclidean,  Jaccard,   Cosine   and   Hamming   distance 

measures can be applied for analyzing the dataset given in Table 6.2? 

 
 
 

 

6.5  l FREQUENT   ITEMSETS   AND ASSOCIATION   RULE  MINING 

 

The  following subsections  describes  frequent  itemset  mining,  market  basket 

model, association rules mining, and their applications. 
 

 

6.5.1 Frequent Itemset  Mining 
 

Extracting knowledge from a dataset  is the main goal of data analytics and data



mining.   Data  mining   mainly   deals  with   the  type   of 

patterns  that   can  be  mined.   A method   of  mining   is 

Frequent    Patterns     (FPs)  mining    method.    Frequent 

patterns  occur  frequently   in transactional    data. 

Frequent itemset  refers   to   a   set   of  items   that 

frequently  appear  together,  for example, Python  and 

Big Data Analytics. Students  of computer  science 

frequently  choose these subjects for in-depth  studies. 

Frequent itemset  refers to a frequent  iternset, which is a 

subset of items that appears frequently  in a dataset. 
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Frequent  Itemset Mining (FIM) refers  to a data mining method  which helps in 

discovering  the  itemsets  that   appear  frequently   in  a  dataset.  For  example, 

finding a set of students  who frequently  show poor performance  in semester 

examinations.   Frequent subsequence is  a  sequence   of  patterns  that   occurs 

frequently.  For example, purchasing  a football follows purchasing  of sports kit. 

Frequent substructure refers to different structural forms, such as graphs, trees or 

lattices, which may be combined with itemsets or subsequences. 
 

FIM is one of the  popular  techniques  to  extract  knowledge  from  data.  The 

technique  has  been  an  essential  part  of data  analysis  and  data  mining.  The 

extraction   is based  on frequently  occurring  events.  An algorithm  specifies a 

given minimum frequency threshold for considering an itemset as frequent. The 

extraction  generally depends on the specified threshold. 
 

FIM finds the  regularities  in data. Frequent  itemset  mining  is the preceding 

step to the association rule learning algorithm. Most often the algorithm is used 

for analyzing a business. For example, customers  of supermarkets,  mail order 

companies and online shops use FIM to find a set of products that are frequently 

bought  together.  This provides the knowledge of important pairs of items that 

occur  much  more  frequently  than  the  items  bought  independently.   A sales 

person can learn the pattern  of what should be bought together for sales. 
 

The analysis results in: 
 

•       Improvement  of arrangement  of products in shelves and on catalog pages 
 

•       Marketing and sales promotion 
 

•       Planning of products that a store should stock up

mailto:DaSk@t


•        Support cross-selling (suggestion of other products) and product bundling. 
 

 

6.5.2  Association  Rule-   Overview 
 

An important  method  of data mining is association  rule mining or association 

analysis. The method has been widely used in many application areas for 

discovering  interesting  relationships  which are present  in large datasets.  The 

objective is to find uncovered  relationships  using some strong rules. The rules 

are  termed   as  association  rules  for  frequent   itemsets.   Mahout  includes  a 

'parallel frequent  pattern  growth'  algorithm. The method analyzes the items in 

a group and then  identifies which items typically appear together  (association) 

(Section 6.8). A formal statement  of the association rule problem is: 
 

Let I   = {I1,   I2,  ••• ,  Id}  be a set of d distinct  attributes,  also called literals. Let T = 

{t1,   t2,  ••• ,  t)  be set of n transactions  and contain  a set of items such that  T c  I. 

An association rule is an implication  of the form, X   ..   Y, where X, Y belong to 

sets of items called itemsets (X, Y c  I), and X and Y are disjoint itemsets 

(X n Y = 0). Here, X is called antecedent,  and Y consequent. 
 

Explanation: 

1.  c   means  'subset  of,   c   means  'proper   (strict)  subset  of,   n  means 

intersection  and 0  means disjoint, no commonality in members. 

2. Consider an If() then  () form of a rule. The If part of the rule (A) is known 

as antecedent and the THEN  part of the rule (B) is known as consequent. The 

condition is antecedent. Result is consequent. 
 

 

6.5.3  AprioriAlgorithm 
 

Apriori  algorithm  is used  for  frequent   itemset  mining  and  association  rule 

mining.  Apriori  algorithm   is  considered   as  one  of  the   most  well-known 

association rule algorithms. The algorithm simply follows a basis that any subset 

of a large itemset must be a large itemset. This basis can be formally given as the 

Apriori  principle.  The Apriori  principle  can  reduce  the  number  of itemsets 

needed to be examined. Apriori principle suggests if an itemset is frequent, then 

all of its subsets  must  also be frequent.  For example, if itemset  {A,  B, C}  is a 

frequent  itemset, then all of its subsets {A}, {B}, {C}, {A, B},  {B, C} and {A,  C} must 

be frequent.  On the  contrary,  if an itemset  is not  frequent,  then  none  of its



supersets  can be frequent.  This results  into a smaller list of potential  frequent 

itemsets as the mining progresses. 
 

Support is an indication of how popular an itemset is. That is the frequency of 

the itemset for appearing in a database. 
 

Assume X and Y are two itemsets. Apriori principle holds due to the following 

property  of support measure: 

V  X, Y: (X CY) ~  s (X) z s(Y)                                              (6.24) 

Explanation: V  means for all, and  c  means 'subset of and can be 'equal to or 

included in'. Support of an itemset never exceeds the support of its subsets. This 

is known as the anti-monotone   property  of support. 
 

The algorithm uses k-itemsets  (An itemset which contains k items is known as 

a k-itemset)  to explore  (k- 1)-itemsets in order  to mine frequent  itemsets  from 

transactional   database  for  the  Boolean  association  rules  (If Then  rule  is  a 

Boolean association rule, as it checks if true or false). 
 

The frequent  itemset algorithm uses candidate generation  process. The groups 

of candidates  are  then  tested  against  the  dataset.  Apriori  uses breadth-first 

search method and a hash tree structure  to count candidate  itemsets. Also, it is 

assumed  that  items  within  an  itemset  are  kept  in  lexicographic  order.  The 

algorithm  identifies the frequent  individual items in the database  and extends 

them  to larger  and larger  itemsets  as long as those  itemsets  are found in the 

database.  The frequent  itemsets  provide the general  trends  in the  database  as 

well. 
 

 

6.5.4  Evaluationof CandidateRules 
 

Apriori algorithm evaluates candidates for association as follows: 
 

Ck: Set of candidate-itemsets  of size k 
 

F1:  Set of frequent  itemsets of size k 
 

f 1  = {large items} 
 

for (k=l; Fk != O; k-«) do  { 
 

Ck+i = New candidates generated  from Fk 
 

for each transaction  t in the database do



 
 
 
 
 

 
Database                         Iteration  1:Ceindid.ate l ltemset 

 
 
 

 
fre-  uant 

Increment   the  count  of all candidates   in Ck+ 1  that are contained in t 
 

Fk+i = Candidates in Ck+i with minimum support 
 

} 
 

Steps of the algorithm can be stated in the following manner: 
 

1.   Candidate itemsets are generated  using only large itemsets of the previous 

iteration. The  transactions   in  the  database   are  not  considered   while 

generating  candidate itemsets. 

2.   The large itemset of the previous iteration is joined with itself to generate 

all itemsets having size higher by 1. 

3.   Each generated  itemset that does not have a large subset is discarded. The 

remaining itemsets are candidate itemsets. 

Figure 6.8 shows Apriori algorithm process for adopting the subset of frequent 

itemsets as a frequent  itemset. 
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Figure  6.8 Apriori algorithm process for adopting the subset of frequent 

itemsets as a frequent  itemset 
 

It is observed in the Apriori example that every subset of a frequent  itemset is 

also frequent.  Thus, a candidate  itemset  in Ck+1   can be pruned  even if one of its 

subsets is not contained in Fk· 
 

The Apriori algorithm  adopts the fact that  the subset of a frequent  itemset  is



also a frequent  itemset. The algorithm  thus  reduces the number  of candidates 

being  considered  by  only  considering  the  itemsets  whose  support   count  is 

greater  than the minimum support  count. All infrequent  itemsets are pruned  if 

they have an infrequent  subset. 
 

Apriori   algorithm   also   possesses   certain   disadvantages.   The   algorithm 

requires  multiple  scans of a database. The process for generation  of a complex 

candidate  exploits more time, space and memory. Therefore, Big Data analytics 

need  alternatives   to Apriori  algorithm  to  cut  down on the  size of candidate 

pairs.  Section  7.4   will  describe  Park,  Chen  and  Yu  (PCY), multistage   and 

multihash  algorithms. 
 

 

6.5.5  Applications of Association Rules 
 

FIM is a popular technique for market basket analysis. 
 

6.5.5.1 Market Basket Model 
 

Market basket analysis is a tool for knowledge discovery about co-occurrence  of 

items. A co-occurrence  means two or more things occur together.  It can also be 

defined  as  a  data  mining  technique   to  derive  the  strength   of  association 

between pairs of product items. If people tend to buy two products  (say A and B) 

together,   then   the   buyer   of  product   A   is  a  potential   customer   for  an 

advertisement  of product B. 
 

The concept  is similar  to  the  real  market  basket  where  we select  an  item 

(product)   and   put   it   in   a  basket   (itemset).   The  basket   symbolizes  the 

transactions.  The number  of baskets is very high as compared to the items in a 

basket. A set of items that  is present  in many baskets  is termed  as a frequent 

itemset.  Frequency  is  the  proportion   of baskets  that   contain  the  items  of 

interest. 
 

Market basket analysis can be applied to many areas. The following example 

explains the market basket model using application examples. 
 

 

EXAMPLE 6.8 

 
Suggest application examples of the market basket model. 

 

SOLUTION



Application 1: 
 

1.   Iterns = Products 
 

Baskets =   Sets of products  a customer  purchases  at  one time  from  a 

store. 

Example of an application: Given that,  many people buy chocolates and 

flowers together: 
 

·    Run sales on flowers; raise price of chocolates. 
 

The  knowledge   is  useful  when   many  buy  chocolates   and  flowers 

together. 

Application 2: 
 

2.   Items= Words 
 

Baskets = Web pages 
 

Unusual words appearing  together  in a large number  of documents,  for 

example, 'research'  and 'plastic' may provide interesting  information. 
 

 

Market  basket  analysis  generates  If-Then scenario  rules.  For example,  if X 

occurs then Y is likely to occur too. If item A is purchased,  then  item B  is likely 

to be purchased too. The rules are derived from the experience. This may be the 

result of frequencies of co-occurrence of items in past transactions. 
 

The rules can be used in several analytical strategies. The rules can be written 

in format If {A} Then {B}.  The If part  of the rule (A)  is known as antecedent  and 

the THEN part of the rule (B) is known as consequent.  The condition is antecedent 

and the result is consequent. 
 

If-then  rules  about  the  contents  of baskets:  {p1,    P: ... ,  Pk}   ~   q means,  "If a 

basket contains all of P» Pz •.• , Pk then it is likely to contain q," 
 

Scale of analysis: 
 

• Amazon sells more  than  12  million products  and  can store  hundreds  of 

millions of baskets. 
 

•       www has 1000 million words and several billion pages.



•       75  million credit  card transactions   in a month  in India (RBI  statistics  of 

June, July 2016)  at Point of Sales (POS) terminals.
 

Market  basket  analysis  signifies shopping  carts  and 

supermarket   shoppers   at  once.  The  analysis  is  the 

mining of transaction  data to identify relations between 

different   products.   This  is  normally   performed   to 
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identify products  that  a customer  is likely to buy, given the products  that  they 

have already bought (or added to basket). The approach behind Amazon's users 

who bought a particular  product  also reviewed or bought other list of items is a 

well-known example of market basket analysis. 
 

The  applications  of market  basket  analysis  in various  domains  other  than 

retail are: 

• Medical analytics: Market basket  analysis can be used for conditions  and 

symptom analysis. This helps in identifying  a profile of illness in a better 

way. The analysis is also useful in genome  analysis, molecular  fragment 

mining, drug design and studying the role of biomarkers  in medicine. The 

analysis can also help to reveal biologically relevant  associations between 

different  genes. Further,  it can also help to find the effect of environment 

on gene expressions. 

• Web usage analytics: FIM approaches  can be used with viewing data  on 

websites. The information  contained  in association rules can be exploited 

to learn  about website browsing of visitor's  behavior,  developing website 

structure by  making  it  more  effective  for  visitors,  or  improving  web 

marketing  promotions.  The results  of this type of analysis can be used to 

inform  website  design  (how items  are  grouped  together)  and  to  power 

recommendation engines  (Section  6.8).   Results  are  helpful  in  targeted 

marketing.   For  example,  advertising  content  that  people  are  probably 

interested  in, based on past behavior of users. 

• Fraud detection  and technical  dependence  analysis: Extract knowledge so 

that normal behavior patterns  may be obtained in illegal transactions  from 

a  credit  card  database  in  order  to  detect  and  prevent  fraud.  Another 

example  can be to find frequently  occurring  relationships   or FIM rules



between the various parties involved in the handling of the financial claim. 

Some examples are: 
 

•  Financial institutions  to analyze credit card purchases  of customers  to 

build profiles    for   fraud    detection    purposes    and    cross-selling 

opportunities. 
 

•  Insurance   institution   builds  the  profiles  to  detect   insurance   claim 

fraud. The profiles of claims help to determine  if more than  one claim 

belongs to a particular  victim within a specified period of time. 

• Click stream   analysis  or  web  link  analysis:  Click stream   refers  to  a 

sequence of web pages viewed by a user. Analysis of clicks is the process of 

extracting  knowledge from web logs. This helps to discover the unknown 

and potentially  interesting  patterns  useful in the  future.  It  facilitates  an 

understanding   of the behavior  of website visitors. This knowledge can be 

used  to  enhance   the  way  that   web  pages  are  interconnected    or  for 

increasing the sales of the commercial websites. 

• Telecommunication  services analysis: Market basket analysis can be used 

to  determine   the   type   of  services  being   utilized   and  the   packages 

customers  are purchasing.  This knowledge can be used to plan marketing 

strategies for  customers   who  are  interested   in  similar  services.  For 

example, telecommunication   companies  can offer TV Internet,  and web• 

services by creating  combined offers. The analysis might also be useful to 

determine  capacity requirements. 

• Plagiarism  detection:  It  is the  process  of locating  instances  of similar 

content or idea within a work or a document. Plagiarism detection can find 

similarities  among statements  that  may lead to similar paragraphs  if all 

statements are  similar  and  that   possibly  lead  to  similar  documents. 

Formation of relevant  word and sentence  sequences for detection  of 

plagiarism  using association  rule  mining  technique  is also very popular 

technique. 

6.5.5.2 Finding Association 
 

Association rules intend  to tell how items of a dataset  are associated with each



other.  The concept  of association  rules was introduced  in 1993  for discovering 

relations between items in sales data of a large retailing company. 
 

The following examples give rules between items found associated in the sales 

data of a retailer. 
 

 

EXAMPLE  6.9 
 

 

Suggest association rules between items found in the sales data of a retailer, 

and rules for course choice for a computer science student in college. 
 

SOLUTION 
 

1.   {Bread} ~{Butter} 
 

The rule suggests a relationship  between the sales of bread and butter. A 

customer who buys bread also buys butter. 
 

2.    {Chocolates}~  {a Gift Box} 
 

The rule suggests a that relationship  between the sales of chocolates and 

empty gift boxes exists. A customer who buys chocolates also buys a gift 

box. 

3.   {Java programmingl  r+    {advanced web technology} and 

{Python programming} ~  {Big Data Analytics} 
 

The rules suggest relationships  between Java and advanced web 

technology, and Python programming  and data analytics. Students who 

opt for Java programming  also want to learn advanced web technology, 

and  those  who  opt  for  Python  programming   also  opt  for  Big Data 

Analytics. 

4.   {DataMiningj  r+    {DataVisualization} 
 

The rule may be that  90% of students  who select data mining as a major 

subject will opt for the data visualization course as well. 

5.    {Computer Graphics, Modeling Techniques} ~  {Animation} 
 

The  rule  may  be  that   students   who  study  computer   graphics   and 

modeling   techniques   courses   are   likely  to  choose  the   course   on 

animation in higher semesters.



J accard 

Association analysis is applicable to several domains. Some of them are 

marketing,  bioinforrnatics,  web mining,  scientific data  analysis, and intrusion 

detection systems. 
 

The applications might be to find: products that are often purchased  together, 

types  of  DNA   sensitive  to  a  new  drug,  the  possibility  of  classifying  web 

documents automatically, geophysical trends or patterns  in seismicity to predict 

earthquakes  and automate the malicious detecting characteristics. 
 

In medical diagnosis, for example, considering the co-morbid (co-occur) 

conditions   can  help  in  treating   the  patient   in  better   way.  This  helps  in 

improving patient care and medicine prescription. 
 

6.5.5.3 Finding Similarity 
 

Section  6.4  describes  finding  similarity  of  an  item  attribute,   such  as  sales 

percentage  increase  using Euclidean or cosine similarity  coefficients.  Section 

6.4.2   describes  Jaccard  similarity  of  sets.  The  similarity  of  sets  applies  to 

recommenders  and collaborative filtering. 
 

Let A  and  B  be  two  itemsets.  Jaccard  similarity  index  of two  itemsets  is 

measured in terms of set theory using the following equation:
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Explanation:  n means intersection,  number of those elements or items which 

are the  same in set A and B. U  means  union,  number  of elements  or items 

present  in union of A and B. 
 

 

EXAMPLE 6.10 
 

 

(i)   How will you define similarity in purchase of a car model? 
 

(ii) How will you specify frequent  threshold  for FIM? How will you use 

association rule to find and count the cities where more than threshold 

numbers buy a specific car model? 
 

SOLUTION 
 

(i)   Assume two sets of car customers, youth Y and family F. Assume in set



Y, 40 out of 100 youths and F 50 out of 200 families opted for the Tata 

Zest  car  model.  Jaccard  similarity  index  Jzest   (Y,   F)   =   40/    (100   + 

200 ).100%   =   13%.  Two sets  are  sharing   13%  of the  members  who 

purchased  a Zest. 

(ii) FIM involves  finding  similarity  index  in  large  number  of sets  after 

specifying the  similarity  index threshold  which defines an itemset  as 

frequent. Assume N sets of car customers, youth Y 1,    Y 2,     •..  ,   YN'   and N¢ 

sets of families F1,      F2,     ...   ,    FN¢   in N¢¢  cities. Assume that  meaning  of 

frequent  is that  10% or more of Yi+  Fi buying Zest among the various 

car models. Assume all other  models sell less than  that  in the  cities. 

Here i = 1, 2, ... ,  N¢¢. 
 

Let set X is a set, which has Xi as member if youth buy or if family buy the 

Zest car model frequently  in the ith City. Initialize value, j = O  for frequent 

item sets. Then association rule for the FIM in the present  case is: 
 

If (Jzest (Y, i, F)>10%) Then (City Xi is a member ofX andj  = j + 1)}(6.26) 
 

The rule is used for all cities for i =  1, 2,  ... ,  N¢;  Here j is the  number  of 

cities where frequent  item set {Youth, Zest). FIM gives a set of j cities and 

youth, where youth buy Zest more than 10% of all car buyers. 
 

 
 
 

Self-Assessment Exercise linked  to LO 6.4 
 

1.   How does frequent itemset mining function mine the association rule? 
 

2. Why does Apriori principle that  'if an itemset is frequent,  then all of its 

subsets must also be frequent'  hold true? 

3.   What are the features of Apriori principle that enable frequent  itemsets 

mining? 

4.   How do you evaluate candidates for the associations? 
 

5.  How does concept  of market  basket  model apply for frequent  itemset 

mining?



6.  List five examples where the assocation rule and count of frequent  item 

sets apply. 
 

 
 
 
 

6.6 l CLUSTERING   ANALYSIS 

The  following  subsections   describe   clustering   and 

cluster analysis methods. 
 

 

6.6.1   Overview of Clustering 
 

Clustering  of a collection  means  'a process  (method)  of 

grouping   a   collection   of  objects   into   subsets   or 

 

 
Clh!!lst@r1i1IT1Q1  :a  col lec:tio n, 

cl u ster a na lys;is,  K-m sans 
a ndl othil~r metllmds~ 
det:eooini1111g  ~he liH.Jmber 

or clusters  and! duister 
di;g1IT1ostks

clusters'  according  to  their  distinct  characteristics   in  the  group.  Clustering 

forms one or more clusters,  such that  objects within one cluster  are similar to 

each other  while the objects belonging to different  clusters  are dissimilar. The 

process  can assign  restriction   on further  additions  of similar  objects  or  add 

further   new  dissimilarity  conditions.  This limits  the  number  of objects  in  a 

cluster in a collection. 
 

Clustering  and  cluster  analysis  need  segmentation   of a  population   into  a 

number of subgroups using unsupervised techniques  of data mining. 
 

For example, consider a university  course. Assume a cluster  of students  that 

has distinct  characteristic,  i.e., students  mostly get high grade  points  (GPs)  in 

semester  examinations.  Input  datasets  consist  of university  course  students 

(GPs) in semester examinations. Clustering algorithm computes the cluster from 

the  input  datasets  only. The  following  example  gives the  results  of cluster 

analysis for students with high GPs in both theory and practical courses. 
 

 

EXAMPLE 6.11 
 

 

Consider a superset  D of all data of students  enrolled  S in a university.  D 

consists of computer  courses as members  of set C. C consists  of GPs in a 

semester   examination   as  members   of  subset  S.  S  consists  of  GPs as 

members of GPs in theory T subjects as well as practical  P subjects.

mailto:Clh!!lst@r1i1IT1Q1
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Assume  the  following:   Only  one  cluster   with  centroid    exists   at  Theory 

GPA_ T =  8.25  and Practical GPA_P  = 8.25.  The similarity criterion  function is 

that  GPAs in theory  and practical  both  are high, i.e., (GPA_T, GPA_P) are 

within= (8.25  ±  1.75,  8.25±  1.75).  The number  criterion  function is when 8% 

and above students  in the  set C, then  a cluster  of high GPA_T with  high 

GPA_P  exists. This means the  circle that  surrounds  the  points  within  the 

cluster has periphery  diameter=  3.5, twice of 1. 75. 
 

How does a plot show a cluster of members in S high GPAs in theory  T as 

well as practical P subjects in number of university courses C? 
 

SOLUTION 
 

Consider  plot  of the  P_GPAs  and  T_GPAs, GPAs in  practical  subjects  as 

independent  variable  along the  x axis and the  GPAs in theory  subjects as 

dependent  variable  along the  y axis. Figure 6.9  shows cluster  1   and  the 

results  of cluster  analysis of students  with criterion  1. The cluster  consists 

of students  with high GPAs in theory  T as well as practical  P subjects in a 

number of university courses C in a semester  S. 

Each dot  in  Figure  6. 9  corresponds   to  a  distinct  enrolled   student   in 

university computer courses (set C) for semester examination  (set S). 
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Figure   6.9 Result of cluster analysis of students'  cluster 1 with high 

GPAs in theory subjects T as well as practical subjects Pin



a number  of university   courses  C and semesters 
 

 
 

Partitions Example 6.11 considers  one  cluster.  It  considers  one  of the  four 

possible partitions  and  assumes  a starting  centroid  point= (8.25, 8.25). Opted 

criterion  is considering distances up to 1.75 from a centroid  for inclusion in the 

cluster  of similar students.  The figure also shows the centroid  of the cluster at 

(8.25, 8.25) and a circle for criteria  for the distances. Students in the cluster are 

those whose practical subject GPAs are between  6.5 and 10.0 and theory  subject 

GPAs between 6.5 and 10.0. 
 

Other three options can be as follows: 
 

2-  GPA in practical  subjects between 4.5 and 6.0 and theory  GPA between  6.5 

and 10.0 
 

3-    GPA practical  subjects between  6.5 and 10.0 and theory  GPA between  4.5 

and 6.0 
 

4-  GPA practical subjects below 4.5 and theory GPA below 4.5. 
 

CentroidFigure 6.9 in Example 6.11 shows centroid (a central point of a cluster) 

GPAs  of practical  subjects  (P_GPAs)  and  GPAs  (T_GPAs)  for data  points  of in 

subset S of set of students  C. Example 6.11 considers centroid  as point for the 

student  sub-groups where means of both the GPAs (P_GPAs) and GPAs (T_GPAs) 

are high (near 8.0). 
 

Distance MetricsA distance  metric  is Euclidean distance,  DEu  (Equations 6.20a 

and b). A  circle  of radius  corresponds  to  maximum  DEu  around  the  centroid 

when using the  criterion  of inclusion  in the  cluster  (Figure 6.9). When DEu  is 

used, then the boundary data points lie on the circle. 

A  distance  metric  is Manhattan  distance,  DMa   (Equation 6.20c). When DMA   is 

used then the boundary points lie on a rectangle around the cluster. 

CriterionFunctionCluster 1 in the figure shows a circle, which specifies that all 

data  points  within  the  circle  are  at  a distance  1. 75 from  the  centroid  8.25. 

Criterion  function  for cluster  1  can also put addition  criterion  that  more than 

8% data points of all students  in set C fall inside the cluster and have practical P 

and theory T GPAs values (data points) (8.25± 1.75, 8.25± 1.75). 
 

Input  Vector  Input  column  vectors  of each  data  point  in  the  figure  have



elements   in  the  metric   space.  The  column   vectors   are  Y  (Year),  CC   (Course• 

code),   ID  (Student-ID),    SC   (Semester-code),     P _T  (subject   type   (practical    or 

theory)),   SubjID (Subject  code) and  GP (grade  point). 
 

Output   Vector   T_GPA (Grade  point  average   of theory   subjects),  P _GPA (Grade 

point  average  of practical   subjects)  are  output   column  vectors  for input  column 

vector  ID. 
 

Unsupervised       Learning      Clustering     methods     use    unsupervised      learning 

methods.   Unsupervised    learning   refers  to  a process   in which  an  ML  algorithm 

does  not  use  known   outputs    for  the   selected   inputs   for  taking   decisions   or 

making   predictions.    A  training   dataset   consists   of outputs   for  selected   inputs. 

This means  that  cluster  computations    use input vectors only. 
 

Clustering  Applications    Clustering   of   a   collection   has   applications    in 

education, business analysis, sales analysis, customer groups analysis, resources 

planning,  sports,  astrology,  fraud  detection,  production  control  and scientific 

investigation.  Section 6.6.2.1  describes use cases. 
 

Clustering a large dataset  of performances  of students  has many applications. 

For example,  student  performance  analysis which  enables  finding a subset  of 

students  with  high  performances  practical  and theory  subjects  and finding  a 

subset of students  as potential  programmers  from high performance  in 

programming  subjects. 
 

Clustering Algorithms  Following are the categories of clustering algorithms: 
 

1.   Partitions/centroid    based  K-means (Section  6.6.1),   K-medoids, Fuzzy k• 

means, Mean-shift clustering and other related methods 
 

2.   Connectivity  and  spectrum  based  hierarchical  clustering  (Section 6.6.2). 

When closeness relates to connectivity then spectral clustering 
 

3.   Probabilistic  distribution  based Latent-Dirichlet-Allocation  (LOA)  (Section 

6.9),   Gaussian  Mixture  Model  (GMM), Expectation  Maximization  (EM) 

clustering  and others,  [Expectation  Maximization  (EM)  algorithm  uses a 

set of parameters  that maximize the probability of the chosen PDF for data 

as a metric.] 

4. Dimensionality   reduction   based   Principal   Component   Analysis  (PCA) 

(Section 6.9)



5.   Density based Density-Based Spatial Clustering of Applications with Noise 

(DB SCAN) 
 

6.   Neural Networks/Deep Learning-Auto-encoders,    self-organizing maps 
 

The following Examples 6.12  and 6.13  explain the usages of clustering  concept 

in two different cases. 
 

 

EXAMPLE 6.12 

 
How does clustering  express the gene for a living cell that  is undergoing  a 

biological process? 
 

SOLUTION 
 

Genes  are   expressed   differently   whenever   a  living  cell  undergoes   a 

biological process. Clustering of cells in the biological process enables the 

study of gene expression. This is required  for understanding  the underlying 

biological processes. This study is required  to be carried  out for different 

developmental  phases, different  body tissues,  different  clinical conditions 

and different organisms. 
 

 
 

Recall Example 1.5. The following example explains  how clustering  analysis 

helps a ACVMs company. 
 

 

EXAMPLE 6.13 
 

 

(i) Recapitulate  Example 1.6(i) of an ACVM Company. The company sells 

chocolates of say, five flavours. How does the clustering  concept help 

the company to plan future strategies? 

(ii) The ACVM company has to select new ACVMs in a city irrespective  of 

whether  these  machines  were  installed  or not  previously.  How does 

clustering guide the company? 
 

SOLUTION 
 

(i) The company  wants  to  analyze  sales performance  of all flavours  of 

chocolates in order to check which flavour sells widely or which ACVM



needs filling frequently. The cluster analysis could further  be extended 

for the sale of a particular  flavour at many ACVMs in various cities. The 

clustering  algorithm  helps to find customer  preferences  in a specific 

set of regions. 

The company needs to establish its sale points by putting  its ACVMs in 

different regions. The location for installing ACVMs can be found using 

the clustering algorithm  so that more of its customers receive a supply 

of their favourite flavours. 
 

(ii) The demand  for new sales point  is to be analyzed. Firstly, regions  of 

city where youth  population  is high, such as regions with hostels and 

the  regions  of minimum  concentration   of other  vendors  need  to be 

identified.  Clusters  of  sparse  or  subserviced  areas  and  clusters  of 

higher  sales potential  need  to  be  first  identified  for  installing  new 

ACVMs. Finding these  options of course may require  mathematical  or 

statistical analysis. 
 

 

The above examples require  a study of problems based on grouping objects of 

similar types or characteristics.  This requires  applying exploratory  data mining 

techniques   for  statistical  data  analysis.  These  techniques   are  used  in  many 

fields, including ML, pattern  recognition,  image analysis, information  retrieval 

and bioinformatics. 
 

Difference  With Respect  to  Classification Clustering  finds  only the  similar 

objects.  Classification differs  from  clustering  in the  sense  that  classification 

assigns  a  class to  each  distinct  set  of characteristics   in  the  collection.  For 

example, classification will assign four classes of students,  as per four criterion 

functions.  For example, a collection of students  in Figure 6.9  can be classified 

into  one  of the  four  classes:  (i) good overall  performing   students,   (ii)  poor 

performance  in practical subjects, (iii) poor performance  in theory, and (iv) poor 

performance  in both  type  of subjects.  Section 6. 7 describes  classification  and 

classifying methods in detail. 
 

Clustering  on the  other  hand  discovers  a large  number  of close-by points 

which form a distinct  set in a collection. How much large and how much close 

depends on the chosen criterion function.



The following subsections describe selected clustering algorithms. 
 

 

6.6.2  K-Means 
 

MacQueen (1967)   developed  K-means algorithm.  This is one  of the  simplest 

unsupervised   learning  algorithms   for  clustering.  The  algorithm   groups  the 

objects based on the attributes  (features) into k number  of groups where k is a 

positive integer number. 
 

The grouping  of data results  into k clusters  (C1,   C2,   ••• ,  CK) represented  by K 

centroids. A centroid  is fundamentally  a central representative  of a cluster. The 

centroid  of each  cluster  is the  mean  of all the  instances  belonging  to  that 

cluster. All objects of the cluster have similar characteristics,  and fall within  a 

criterion function specified for the cluster. 
 

Criterion Function A  criterion  function  assumes  that  at  least  p  number  of 

objects have similar characteristics,  and are within the specified distances from 

a cluster centroid. A centroid may be assumed in the criterion,  i.e., it is the one 

for which the sum of square of distances is least for all points of each cluster of a 

collection. The following example explains the use ofK-means method. 
 

 

EXAMPLE  6.14 
 

 

How will you consider the criterion  function  in K-means method?  Assume 

partitioning  into k clusters. Assume the cluster problem  similar to the one 

in Example 6.11. 
 

SOLUTION 
 

When partitioning  N objects into k-clusters, the optimization  of number  of 

clusters  and  their  centroid  positions  uses  a criterion   function.  K-means 

method takes assumptions about similarity criterion. Assume that similarity 

is when T_GPAs are within 1.25 and P _GPAs also within 1.25. Assume that K• 

means method centroids, Cl, CZ, ... , Ck  are ones for which the sum of square 

of distances  is least  for all points  taken  into  the  clusters,  C1,    C2  ••• ,  Ck, 

respectively.  This  means  that  the  sum  is  1.25   xl.25   +  1.25  xl.25   at  the 

farthest  point in an ith cluster. 
 

Assume criterion that p = 0.08 x N, 8% of all students within a cluster.



K-means methods  evaluates Cl, C2, ...  using the data points and criterion 

function  assumptions.  Considering Example 6.11,  C1    =  (8.25, 8.25).  Another 

cluster C2   may evaluate to (8.25, 3.25).  Number of objects in C1,    C2  ...   may 

evaluate and come out to be 18%, 10%, ....  but at least 8%. 
 

 

6.6.2.1 K-means Use Cases 
 

Clustering  can  also provide  a significant  way to  solve a number  of real-life 

situations. The following are the use cases where K-means is fast and efficient: 

• Identifying  abnormal  data  items  in  a very  large  dataset.  For example, 

identifying potentially fraudulent  credit card transactions,  risky loan 

applications and medical claim fraud detection. 

• The feature  similarities  information  helps  the  K-means algorithm  to be 

used in an image retrieval  system 

• Applied to many use cases in healthcare  and helps to better  characterize 

sub-populations and  diseases  by  medical   conditions.   Some  examples 

include: 

•  Finding    diabetic/non-diabetic      or    hypertension/non-hypertension 

group structure  from the input value. 
 

•  Identifying  similar patients  based on their  attributes  to explore costs, 

treatments  or results. 

•  To   forecast   the   possible   type   (cause)   of   future    treatment     or 

hospitalization  of affected patients. 

•  Help researchers   discover  new  insights  by  segmenting  patients   and 

providing them with effective treatments. 

• To  find  the  segment  of  customers   and  customer   category  using  the 

spending behavior 

characteristic. 
 

6.6.2.2 Overview of the K-means Method 
 

Computations  are needed  for finding the  distances  between  the  data  and the 

corresponding   cluster   centroid.   A   distance   is  taken   as  Euclidean,  squared



lilg 

Euclidean,  Manhattan   or  Cosine  distance   (Equations  ( 6.20a) to  (6.20d)  and 

Section 6.4.4). 
 

Figure 6.10 shows the steps in K-means clustering. 
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Figure6.10  Steps in K-means clustering 
 

K-means can be executed in the following steps: 
 

1. Randomly  initialize  the  k  cluster  centroid  points  (=  Cl,  CZ,   ... ,  Ck)    as 

partition  centers which mean partitions  with these cluster centroids. 

2. Go through  each of the data points and assign points to a cluster where the 

distance from a centroid is minimum. 

3.  Identify the centroid  of the new cluster formed. It is the average of all the 

data  points  in  a  cluster.  In  other  words,  the  algorithm   calculates  the 

average  of all the  points  in  a  cluster,  and  moves the  centroid  to  that 

average location. 

4.   The process  is repeated  until  no change  in the  clusters  takes  place  (or 

possibly until some other stopping condition is met). 

5.    Steps of iterative relocation algorithm: 
 

(1)  Input: N (objects) and k (the number of clusters) 
 

(2) Output:  A  set  of k clusters,  which  uses  criterion-functions   f{k)   (For 

example, minimizing   the   sum   of   squared    distances    (Euclidean 

distances) for each cluster



 
i 

(3)  Algorithm  steps: 
 

(i)   Initialize  k centroids   as the  initial  solution. 
 

(ii) (Re) compute   memberships    for the  objects  using  the  current   cluster 

centroids 
 

(iii)Update  centroid   of the  cluster  according   to new memberships    of the 

objects. 

(iv)Repeat from   Step  (ii)  until   there   is  no  object   change   the   cluster 

centroid. 

Iterative   methods   compute  the  centroid   values  for each  cluster.  Centroids  are 

the  concentration     points   for  clusters.   The  mean  or  median   are  typical  choices 

for a centroid   metrics. 

Figure    6.11   shows  the   iterative   method   actions   in  K-means  clustering 

(Consider students  GPA example similar to Example 6.11). 
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Figure6.11 Iterative method actions in K-means clustering 
 

Properties of  K-means Clustering Algorithm The  properties   of  K-means 

clustering algorithm are: 
 

1. Number  of clusters  which  form  are  always k  clusters,  where  k  is the 

number of partition  centers.



2.   Each cluster consists of at least one object in each cluster. 
 

3.   The clusters are flat (non-hierarchical)  and they do not overlap. 
 

4.  Every member  object of a cluster  is closer to its cluster  than  any other 

cluster. 

The  algorithm  has  a number  of variations,  depending  on  the  method  for 

selecting the initial centroids,  the choice for the measure of similarity, and the 

way that the centroid  is computed. Most commonly, the Euclidean data exploits 

the  mean as the  centroid  and selects the  initial centroids  randomly.  The four 

other features ofK-means clustering algorithm are as follows: 
 

1. The K-means method  is numerical,  unsupervised,  non-deterministic   and 

iterative 

2.   The method is well suited if the clusters are globular 
 

3.  The  centroid   depends  on  the  distance   function  that   is  measured   by 

Euclidean distance  (Sum of Squared distance  (SSD)),  cosine similarity  or 

correlation 

4.  Centroid  is the  mean  of the  points  in  the  cluster  for  SSD  and  cosine 

similarity; the median for Manhattan  distance. 

The K-means algorithm  converges  to  a  solution,  which  is typically  a local 

minimum. The space requirements of the algorithm  are O (n x  d), where n is the 

number  of points and d is the number  of attributes.  Here, only the data points 

are stored. The time requirements are O (n x  k x  Ix d), where k is the number  of 

clusters, and I is the number  of iterations  required  for convergence. I is usually 

small as most of the convergence happens in the first few iterations. 
 

Thus, the time required  by K-means is efficient, as well as simple, as long as 

the number of clusters is significantly less than n. 
 

0  (f (n)) measures the efficiency of an algorithm  in terms of function f (n). If f 

(n) =  n2,    then  the  requirement   of the  algorithm  is proportional   to  n2•    The 

requirement   may  be  measured  for  memory  or  may be  for  run  time.  Space 

requirement    O  (n  x    d)  means   that   memory   taken   by  the   algorithm   is 

proportional  to n x d. 0 is called as the big O notation. 

Advantage  of K-means is that  computing  the  distances  between  points  and



group centres  has linear complexity O  (n). Disadvantages are (i) need to choose 

k, the number  of groups/classes  required  to form the clusters, (ii) need to start 

and randomly choose the cluster centres,  the results may be choice dependent. 

Thus, there is less consistency of the results compared to other methods. 
 

6.6.2.3 K-medoids Algorithm 
 

A  medoid  is similar  to  a mean  or  centroid,  but  restricts  to  members  of the 

dataset.  A dataset  may have more than  one medoid. The K-medoids algorithm 

initializes k data points as exemplars (centers), which shift iteratively for 

minimizing  dissimilarities.  The algorithm  K-medoids does clustering  using an 

algorithm, which   has   flavours   of   k-means   algorithm    and   medoid-shift 

algorithm. 
 

1.   Step 1: Choose a set of medoids. 
 

2.    Step 2: Compute distances from each medoid to other points. 
 

3.  Step 3:  Cluster  the  data  points  according  to  their  similarities  with  the 

medoid. 
 

4.    Step 4: Optimize the set of medoids using iterative process. 
 

The sum of pair of dissimilarities  minimizes in K-medoids compared to 

minimizing the sum of squared Euclidean distances. The algorithm  is based on 

partitioning  technique  of clustering, which clusters the data set of n objects into 

k clusters. 
 

Use of medoid is in graphs  and other  non-metric  spaces. Non-metric  means 

non-quantifiable.  Medoids mean  the  objects in a cluster  or dataset  such that 

average of dissimilarities  minimizes taking all cluster members (objects). Recall 

that    distance   is   a   measure   of   dissimilarity.   Computation   of   minimum 

dissimilarity considers minimum distances of all pairs of points within a cluster. 

Median is v-dimensional data point. 

6.6.2.4 Determining the Number of Clusters 

K-means algorithm  finds k clusters  in a given dataset.  The K-means algorithm 

partitions  the  objects into  k non-empty  subsets. Thus, k signifies assumption 

about formation  of a number  of clusters. The data points represent  the objects. 

Choice of k is either  random  or as per specific initial starting  data points that 

the user specified.



A partition  technique generates  specific number of flat disjoint clusters (say, k 

clusters).  Each object belongs to a specific cluster.  Each object in a cluster  is 

closer to the centroid than to the centroid of any other cluster. The centroid can 

be an arithmetic  mean of the attribute  values of all the objects in case of real• 

valued  data.  The  centroid  can  be  the  rank  value  of the  objects  in  case  of 

categorical  data. The iterative  relocation  algorithm  is an excellent  method  for 

finding k partitions/  clusters/ centroids. 
 

When  partitioning   n  objects  into  k clusters,  optimization  uses  a  criterion 

function. For example, criterion that more than 10% of all students within (8.25± 

1.25,   8.25±   1.25)   GPAs in  practical  and  theory  belong  to  the  same  cluster 

(Example 6.11). 
 

A useful tool for determining  k is the  silhouette  value, s. A  silhouette  value 

computes  from  the  similarity  of an  object  with  own  cluster  objects  (means 

cohesion  in  the  objects)  instead  of other  clusters  (means  separation   in  the 

objects of all other clusters). 
 

The s  ranges  from -1  to + 1. Value -1  represents  complete  separation  and + 1 

means complete cohesion. + 1  means an object matches perfectly with an object 

in its own cluster and completely mismatches  outside the cluster objects. When 

most objects of a cluster have high silhouette  value, it means the cluster is well 

configured. 

6.6.2.5 Diagnostics Method 
 

Clustering  validation  tool  does cross validation  and  validates  initial  centroid 

choices. A  diagnostic  tool uses the  output  of clustering  for the  decisions. For 

example, Microsoft Windows Server 2003  resource  kit includes ClusDiag.exe, a 

tool for cluster diagnostics and verification tool for web files and events. It does 

basic verification and analyses configuration. It collects logs of files and events. 

6.6.2.6 Reasons to Choose and Cautions 
 

K-means algorithm  finds k clusters in a given dataset, but one of the important 

questions  is about the value of k to be selected.  It  is suggested  to choose the 

value of k randomly or define it based on a domain requirement.  However, if k + 

1 clusters do not make significant change in the data points of clusters, from the 

case with k clusters  do not increase  one more cluster. Thus, select an optimal 

value of k such that introducing  a new cluster may just be of little benefit.



. 

Clustering   explores   similarities    or  cohesiveness    in  a  significant    number   of 

objects   or  elements    of  the   vectors.   A  point   to  remember    is  that   improper 

criterion    function   can  lead  to  erroneous    results   for  clusters.   One  should   be 

cautious   while   making   predictions    using   current    data   points.   For  example, 

consider   prediction    from  clustering   analysis  in Example  6.11.  Clustering is not 

including  teachers  and  resources  availability  for  studying  computer  courses. 

Non-inclusion can lead to erroneous predictions. 
 

 

6.6.3  Hierarchical Clustering 
 

'Hierarchical   clustering   algorithms   create   a  hierarchical   decomposition   of 

objects of a given data set using some criterion'.  Figure 6.12  shows the original 

object points and one hierarchical  cluster representation  of those object points . 
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Figure  6.12 Original object points and one hierarchical  cluster 

representation  of those object points 
 

 

EXAMPLE  6.15 
 

 

How will you consider hierarchical  clustering to solve the problem of ACVM 

owner for identifying distinct groups in their customer bases? 
 

SOLUTION 
 

Suppose the ACVM owner want to identify distinct groups in their customer 

bases, and then use this knowledge to develop targeted  sales and marketing 

programs  for a particular  flavour of chocolate. They definitely require  the 

formation  of a hierarchy  of nearest  ACVMs targeting  high sale campaigns 

for that  flavour  of chocolate.  The hierarchical  clustering  may solve their 

problem  efficiently.  Recall Example  1.6.   Figure  6.13   shows  hierarchical 

clustering. The hierarchy  is (i) clusters of C city-regions showing high sales 

per day and (ii) clusters  of j set of regions  R 1    and R2 showing high total
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Figure   6.13 Hierarchical clustering of (i) original object points in city 

C showing high total sales per day, (ii) clusters ofj set of 

regions R 1   and R2 showing high total sales per day. 
 

 
Hierarchical  clusters  may correspond  to meaningful  taxonomies  as well. For 

example, evolutionary  relationships  among animals in biological sciences, and 

product  catalogs in the web (online) world. It  can also be used to represent  file 

systems of any operating  system. 
 

Hierarchical  clustering  generally  produces  consistent  results.  The results  of 

hierarchical  algorithms  are represented  by a tree-structured   graph  known as a 

dendrogram.  The  dendrogram   basically  records  the  sequences  of merges  or 

splits. 
 

The individual objects are arranged along the bottom of the dendrogram. They 

are referred  to as leaf nodes. Object clusters  are formed by joining  individual 

objects  or existing  object clusters  with  the join  point  referred  to  as a node. 

Figure 6.14  shows dendrogram  structure  nodes. Each dendrogram  node has a 

right  and  left sub-branch  of clustered  objects. The vertical  axis is labeled  as 

distance,  and is used for distance measures  between  objects or object clusters. 

The height of the node represents  the distance value between the right and left 

sub-branch clusters. 

•        Each node represents  a group. 
 

•        Root node represents  the group containing complete data set. 
 

•        Leaf node represents  single object of the data set. 
 

• Internal  node has two children  (sub-branches)  representing   the  internal 

groups or leaf nodes (objects).



As the name implies, hierarchical  clustering builds a hierarchy  of clusters. Any 

number  of clusters  can be obtained  by 'cutting'  the dendrogram  at the proper 

level. 
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Figure 6.14  Dendrogram structure 
 

There are two ways to do this: one is to start  from the bottom,  with all the 

objects as clusters and then, at each step, merge the two of them. This is known 

as agglomerative  (bottom-up)  hierarchical  clustering.  The other  one is called 

divisive (top-down) hierarchical  clustering  and starts  from the top, with all the 

objects in a big cluster,  and at each step  performs  a split. Both the  methods 

produce dendrograms. 
 

Agglomerative Clustering Algorithm is  the   more   popular   hierarchical 

clustering  technique.  The computation  of similarity  is the  key operation.  The 

basic algorithm is straightforward. 
 

1.   Consider each data object as a cluster. 
 

2.  Compute the similarity between each pair of objects (cluster). 
 

3.   Repeat until only a single cluster remains: 
 

(i)   Merge the two clusters having the smallest dissimilarity 
 

(ii)  Update the similarities between a pair of clusters. 
 

Online Contents  (OLC)  for BDACh060LC6_1  for hierarchical  clustering,  which 

accompany this book describe in detail different approaches including 

agglomerative-divisive-distance   measures  for  defining  the  distance  between 

clusters in the different algorithms (Solution of Practice Exercise 6.12). 
 

A dataset consisting of n object points the space and the time requirement  for



agglomerative hierarchical  clustering is: 
 

1. 0 (N2)  space to store the distance matrix, most of them are O (N2)   or more 

but one can stop at any arbitrary  number of clusters. 
 

2.  0 (n3)  time in most of the cases. There are n steps and at each step the size 

n2   distance matrix must be updated  and searched. The complexity can be 

reduced  to  O  (n2    log(n))  time  for  some  of  the  approaches   by  using 

appropriate  data structures. 

Advantage  of  hierarchical   clustering   is  in  finding  the   underlying   finer 

structure.  For example, resource planning for filling the ACVMs or for installing 

ACVMs in appropriate  regions of the city (Figure 6.13 ). 
 

Hierarchical   clustering   is  not  used  in  Big Data  environment   because  of 

scalability  and  partition   ability  issues.  Another  disadvantage  of hierarchical 

clustering  in Big Data analytics  is a large n and the time complexity of O (n3) 

compared to O (n) linear complexity in K-means and GMM. 
 
 

Self-Assessment  Exercise linked  to LO 6.5 
 

1. Write meanings  of partition,  input vector,  output  vector,  centroid  and minimizing 

distance  method. 
 

2.   Why is clustering  an unsupervised  machine  learning  method? 
 

3.   What does a machine  learn during  running  of a clustering  algorithm? 
 

4.   How do the cluster  size and criterion  function  relate? 
 

5. How is minimization   performed  using Euclidean  squared  distance  for finding  the 

cluster  centroids? 

6. Write  effects  of using  in Euclidean  squared,  Euclidean  distance  and  Manhattan 

distance  used  in  K-means  clustering   on  cluster  size  and  centroid.   How does  it 

effect the cluster  size? 

7.   Why does time complexity  of K-means equal O (n)? 
 

8.   When is hierarchial  clustering useful?



6.7 ! CLASSIFICATION 

Classification refers     to     learning     from     existing 

categorizations  and forming groups of objects showing 

similar characteristics.     For    example,    categorize 

students  good in theory  and practical  subjects both as 

'very good'. 
 

Classification   is   a   supervised    learning    method. 
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Classifier is  an  ML  algorithm  for  classification,  which  decides  usage  of the 

experience, and emulates certain human decisions. 
 

The  classification  techniques   are  used  in  many  fields,  including  machine 

learning, pattern  recognition, image analysis, information retrieval and 

bioinformatics.   Classification  is  an  exploratory   data-mining   method,  which 

creates groups of objects of similar types or characteristics. 
 

Consider  an  automatic   chocolate   vending   machine   (ACVM)   for  vending 

chocolates of say, five flavours. 
 

The chocolate company needs to establish its sale points by putting  its ACVMs 

in a particular  region. The location of putting  these ACVMs  can be found by a 

clustering  algorithm  so that  all its ACVMs receive supply based on the analysis 

of customers favourite flavours. 
 

The company surveys the sales performance  of each flavour in order to check 

which flavour is giving wider  sales, and needs  enhanced  supply frequency  to 

ACVMs.  The survey  could be further   extended  for the  sales promotion  of a 

particular  flavour in its various cities. 
 

 

6. 7 .1 Concept of Classification 
 

A classifier needs training,  which means learning  from existing categorizations 

and  forming  groups  of objects  showing  similar  characteristics.   Training  is a 

learning process which uses training  dataset T and generates  a model program, 

M. Training  dataset means  a subset  E of an exemplary  dataset  which includes 

training  variables. T includes value of the target  variables and predictors  also. 

The training  algorithm generates  a 'Model', which is a program which gives the 

output  vectors  for taking  the  decision of the  class to which the  input  vector 

belongs. (Remember, a set of data points  can be represented  by a vector  in v-



 

- 

dimensional space.) 
 

Figure 6.15  shows the  steps  during  the  learning  phase  of a classifier.  The 

learning  needs (i) training  dataset  T, which includes P, both as the inputs. The 

classifier consists  of a training  algorithm  and  creates  a model program  from 

inputs  and  outputs  ET  (estimated  target  variables).  The algorithm  creates  a 

model  program  M for  internal  uses  of a classifier  and  its  copy M¢. The M¢ 

estimates  target  variable(s) are inputs to a decider D program  to decide which 

data  points  to  put  in  which  class. It  emulates  certain  human  decisions  for 

classification. 
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Figure  6.15 Steps during the learning phase of a classifier 
 

A  dataset  for  testing  or  evaluating  tests  the  decisions  of the  Model and 

Decider. The test  dataset  is a subset,  whose members  are  the  input  vectors, 

Predictors P and target  output vectors (variables) ET for taking the decision for 

the class to which input vectors belong. If decision from model passes the test, 

then the model will predict correct decisions and the class from future inputs. 
 

Predictor  can be: (i) a continuous  value, such as grade point; (ii) text, such as 

Java; {iii)  string,  such as 'GPA 2:   8.0';  and  (iv) a category,  such as 'very good', 

'potential  researcher',  'high performance',  'Zest model', 'red apple'. 
 

The following example  gives the  understanding   of steps  in classification  of 

students   with  high  GPs in  both  theory   and  practical   courses.  Consider  a 

classifier  for  classifying  'very  good performing   students'   and  thus,  who  are 

potential innovators.



EXAMPLE  6.16 
 

 

Recall Example 6.11.  Consider the  student  ID,  his/her   T_GPAs  in theory 

subjects and P_GPAs in practical subjects. GPAs means grade points average 

computed from grade points in the semester  examination.  Assume the data 

points similar to ones in Figure 6. 9. 
 

How  will  you  specify:  (i)  training   dataset,   (ii)  target   variables,   (iii) 

predictors   (predictor  variables),  (iv) features,  (v) training  algorithm,  (vi) 

model  program,   (vii)  exemplary   (Test)  dataset,   (viii)  estimated   target 

variables, and (ix) decider which categorizes and forms the classes (groups 

of objects) in a classifier? (x) What do you mean by field in a record of data 

points? 
 

SOLUTION 
 

(i)   Training  dataset:  75%  of the  student  data  consisting  of student  ID, 

his/her  T_GPAs in theory subjects and P_GPAs in practical subjects. 
 

(ii) Target  means,  a  feature  as  a target  variable  which  is found  using 

learning  examples. Target is to find whether  a student  group belongs 

to one with high GPA in theory and practical subjects, and both. Target 

variables are T_ GPAs and P _ GPAs. 
 

(iii) Predictors    (Predictor    variables):    Subject   of   study,   subject-wise 

attendance  in class, number of hours a student studies a subject etc. 

(iv) Features:  Gender, Age, Coaching (Yes/No), Residence  (Rural/Urban), 

High T_ GPAs and P _ GPAs 
 

(v)   Training algorithm steps are as follows: 
 

•      Define a training  set. 
 

• Choose a learning algorithm. For example, Support Vector Machines, 

Naive Bayes or Decision Trees. 

•      Complete the design. Run the algorithm. 
 

•      Evaluate the accuracy of the learned model from test dataset. 
 

(vi) Model  Program:   Classification  technique   (or  classifier)  which 

systematically builds the classification model from an input dataset.



(vii) Test dataset: Remaining 25% of the student  data consisting of student 

ID, his/her  T_GPAs in theory subjects and P _GPAs in practical subjects. 

(viii)Estimated target variables: GPA in semester examinations. 

(ix) Record of data  points:  Record is a container  for T which consists  of 

fields. For example, training grade sheets of the students  is a record. 

(x) Fields in the record: Fields are a part  of a record. A field consists of a 

value, feature,  characteristic,  outcome  or category.  Example of input 

fields are T_GPA, P _GPA, Semester, High T_ GPAs and P _GPAs  in input 

vectors  at  a  student   record.   Example of feature  variable  fields  are 

'Excellent', 'Potential Programmer'. 
 

 
6.7.1.1 Concept of Supervised Learning 

 

Methods  of  ML   are  fundamentally   driven   by  data.  On  the   basis  of  data 

availability these  methods  are broadly  classified into  supervised  learning  and 

unsupervised  learning.  Supervised learning refers  to a case when  an algorithm 

uses training  data to take decisions or make predictions. 
 

Supervised learning uses a known output  dataset for the input dataset  (called 

the training  dataset). The Model (program) then learns to make predictions. The 

output  datasets  are used to train the machine and get the desired outputs. Test 

dataset tests the Model and Decider to verify themselves. The developed Model 

makes  predictions   for  an  unknown   output   for  the  further   input   datasets. 

However, in unsupervised  learning,  no output  and input  datasets  are provided 

to train the machine. 
 

Table  6.3  illustrates   the  difference  between  supervised  and  unsupervised 

learning. 
 

Table 6.3  Supervised vs unsupervised  learning 
 

  

Supervised Learning 
 

Unsupervised Learning 

Training 

set 

 
Used 

 
Not  used 

 

Input 
 

Observations 
 

Latent variables 



 

variables   

Output 

variables 

 
Observations 

 
Observations 

 

Labels 
 

All data are labeled 
 

All data are unlabeled 

 

 
 

Goal 

 

To approximate  the mapping  function 

exactly in a way that  on new data input, 

it can predict  the output  variables  for 

that  data. 

 

To model the underlying 

structure  or distribution  in the 

data in order to learn more 

about the data 

Application 

examples 

 
Classification and regression  problems 

 

Clustering and association 

problems 

The following example shows how classification  forms the groups  of objects 

with similar characteristics  from analysis of student  performances  in different 

courses. 
 

 

EXAMPLE  6.17 
 

 

Show the  results   of  a  classifier  for  classification  of  students   showing 

potential  as scientists  and  researchers,   data  architects  and programmers 

after analysis of the GPAs in different courses, i.e., theory and 

practical. 
 

SOLUTION 
 

Figure 6.16  shows results of classification of student  groups into courses as 

potential  classification into classes (groups) of students  in different  courses 

as  potential   (1) scientists   and  researchers,   (2) data  architects   and  (3) 

programmers.
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Figure6.16 Classification on the basis of performances  of the student 

groups 
 

 
 

6.7.1.2  Clustering and Classification Differences 
 

Clusteringand classification differ as shown below, though both the methods 

characterize  the objects into groups by one or more features.  Classification is a 

supervised  learning  method,  whereas  clustering  is an  unsupervised   learning 

method used to form groups of objects with similar characteristics. 
 

Table 6.4  compares  and  highlights  the  characteristics   of classification  and 

clustering. 
 

Table 6.4  Classification vs clustering 
 

 

Property 
 

Classification 
 

Clustering 

 

Supervision 
 

Supervised  learning 
 

Unsupervised  learning 

Training 

set 

 
Used 

 
Not used 

 

Labels 
 

All data are labeled 
 

All data are unlabeled 

 

Datasets 
 

Consist of attributes  and class labels 
 

Consists of attributes 

 

 

Process 

 

Employs algorithms  to categorize  new 

data according  to the observations  of 

 

Statistical  concepts  are used. 

Datasets are split into sub-sets 



 the training  set with similar features 

 

 

Goal 

 

To find which class a new object 

belongs to from a set of predefined 

classes 

 

To group a set of objects in order 

to find the relationship  between 

them 

 

The category structure  is known in classification task, whereas the clustering 

deals with object collections, whose class labels are unknown. 
 

Examples of classification  techniques  include  decision  tree  classifiers,  rule• 

based  classifiers,  Support  Vector  Machines  (SVM) and  Naive  Bayes Classifier 

(Section 6.7.4).   Each classifier employs a learning  algorithm  to build a model 

that best fits the relationship  between the objects of a class. 
 

6.7.1.3 Classifiers 
 

Classifiers for Big Data analytics require parallel and scalable computations  with 

shared-nothing   architecture  for efficiency. Parallel means computations  of the 

same set of codes simultaneously on multiple data nodes (Section 1.2.1).  Scalable 

means linear  relation  between  data volume and the  required  total  number  of 

computation   steps  and  thus,  computational   time.  This means  if 10  MB  data 

require  time  =  T for processing,  then  100  MB  will take  lOT. Shared  nothing 

means    during    computations,    no   inter-processor     communications,    thus 

processors spend no time on them (Example 2.1). 
 

Naive Bayes and complementary  Naive Bayes are efficient between medium to 

large datasets  (> 1 M up to 100 M), but mostly suitable for text data variables and 

medium to high overhead  for training.  Random  Forest  uses all four types  of 

predictor  variables:  continuous,  text,  words  or categorical.  Random Forest  is 

able to handle  conditional  and non-linear  relationships  and thus, the  complex 

classification problems.  It  exhibits high performance  computations  above 10 M 

dataset. 
 

Certain classifiers do sequential  computations  with  shared  architecture.   For 

example, Support Vector  Machines  (SVMs). The SVM  classifier is efficient for 

computational  needs of small (0.1 Mor less) to medium I- 1 M) datasets. 
 

Stochastic  Gradient  Descent  (SGD) algorithms, such as logistic regression  are 

sequential,  incremental  efficient (fast) and used when computational  needs are 

of small I- 0.1 M) to medium I« 10 M) dataset. Predictor  variables can be of any 

of the four types. Section 6.7.3 describes SGD.



Hidden   Markov   and  multi-level   perceptron   are  also  sequential   algorithms. 

OLCs    accompanying     the   book   describe    the   Hidden Markov and  multi-level 

perceptron (Solution of Practice Exercises 6.15 and 6.16). 
 

 

6. 7 .2 K-Nearest  Neighbour  Classifier 
 

Recall Sections 6.3.6 and 6.4.1.1 for applications  of K-NN in regression  and in 

similar items search (k is 1 for nearest  neighbour,  2 for next to nearest  and 3 for 

next to next nearest.  Training dataset  consists of k-closest examples in feature 

space. Feature  space  means,  space with  categorization  variables  (non-metric 

variable). For example, Grade A, B, C, D awarded in an examination  are feature 

space variables. The k-NN learning is learning based on instances, and thus also 

works lazily because instance close to the input vector for test or prediction may 

take  time  to occur  in the  training  dataset.  An object classification  criteria  is 

majority  vote. k-NN is also called the  lazy algorithm.  The following example 

explains this method. 
 

 

EXAMPLE 6.18 

 
Assume that  when  CGPA  (cummulative  grade  point  average)  is  8.0 and 

above up to the  maximum  10.0), a student  performance  is classified as A. 

When CGPA is 6.5 and above below 8.0, performance  is B. When CGPA is 5.0 

and above below 6.5, performance  is C. When CGPA is 4.0 and above below 

5.0, performance  is D. When CGPA is less than 4.0, performance  is F (poor). 
 

A  training   dataset   consists  of  data  of  40  students.   Training  dataset 

consisting of vectors  1, 2, ... to 40 are (StudentIDl, 8.1, A), (StudentID2, 7.6, 

A),  (StudentID3,   6.6,  B),  (StudentID3,   4.6,  D),  (StudentID4,   8.8,  A), 

(StudentID2, 5.6, C),  (StudentID5, 6.7, B), (StudentlD6, 5.2, C), (StudentlD7, 

4.5, D), (StudentID8,  7.9, B), (StudentID9,  6.8, B), (StudentIDlO, 9.1, A), 

(StudentIDll, 7.1,   B),   (StudentID12,   7.9,   B),   (StudentID13,   6.0,   B), 

(StudentID14, 8.0, A), ... 
 

How will a 1-NN classifier classify a student of ID 250 with CGPA 7.2? 
 

SOLUTION 
 

The training  algorithm will follow the following steps (Fig. 6.15): 
 

(i)    Find the distance  for each value of CGPA,  distances  of CGPAs and the



output  variable  class, A, B,  C, D,  or F from the  training  dataset  of 40 

students. 

(ii) Assign frequencies  for class =  A, B,  C,  D,  or F for each range  of grade 

points. 

(iii)  Build  and  update  the  table  with  the  additional   datasets   given  of 

training,  if required. 

Table 6.5 gives guidelines  of the  table  between  the  range  of CGPA  and 

frequency of output variables = A, B, C, D and F. 
 

Table 6.5 Range of CGPAs and frequency of output variables = A, B, C, D and F. 
 

 
CGPA Minimum 

 

CGPA 

Maximum 

 
Freq  (A) 

 
Freq  (B) 

 
Freq  (C) 

 
Freq  (D) 

 
Freq  (F) 

 

8.a 9.b or 10.0 
 

>O 
 

0 
 

0 
 

0 
 

0 

 

6.c 7.d 
 

0 
 

>O 
 

0 
 

0 
 

0 

 

5.e 6.f 
 

0 
 

0 
 

>O 
 

0 
 

0 

 

4.g 4.h 
 

0 
 

0 
 

0 >O 
 

0 

 

O.i 3J 
 

0 
 

0 
 

0 
 

0 >O 

 

The values of a, b, c, d, e, f, g, h, i and j build up gradually as the number of 

training  input  vectors  and output  vectors  keep increasing,  eventually  8.a 

reaching  8.0, 9.b reaching>   9.9 and so on. Time taken  and the number  of 

inputs and output  vectors may be such that  final output  values may take a 

long time. 
 

Model develops a program to read the table and compute output  variable 

estimate for test dataset and unclassified input vector. 
 

Decider Program: When input vector is for ID250, find the distance  of 7 .2 

with the input vectors.ID! distance is 0.9.  Successive input vector distances 

from vector 11  to 140 are 0.9, 0.4, 0.6, 2.6,0.8,  1.6, 0.5, 2.0, 2.7, 0.5, 0.4, 1.9,0.1, 

... ,  Nearest neighbours  have distances=  0.4 from studentID 250.Using CGPA 

range and student CGPA, the decider will output the predictor variable as B. 

Classifier places that student  in class B.



 

6. 7 .3  Stochastic  GradientDescent Method - Logistic 

Regression 
 

Stochastic in  English  means   a  process   or  system  connected   with  random 

probability, chance or randomness.  Gradient equals to change in a function value 

with  respect  to a very small change  in a parameter  value. For example,  in a 

function y(x1,   x2,  ••• ,  xv>  in v-dimensional  space, gradient  of y with respect  to xi 

equals differentiation  of y with respect to xi = dy/ dx, where i = 1, 2, ..., v. 
 

Gradient  descent means  decremental  change  in gradient.  Gradient  descent  is 

used  for  reaching  convergence  for  each  value  of xi  iteratively.  It  reaches  a 

minimum  value for each x during  optimizing  the  set of parameters  or values 

which  are  input  to  an  objective  or  other  function.  The  gradient   descends 

iteratively to a minimum value. Incremental  or decremental  change means 

successive  increment  or  decrement  in x that  leads to  approach  towards  the 

optimum value of y. 
 

Recall Section 6.3.3.  It explained how the best fit could be reached by using the 

'least  squares  criterion',  which says that  best fit is one, which 'minimizes  the 

sum of the  squared  prediction  errors.'  Here, Object function  Q  = L:tt)'j-)'1>2· 
Equation  (6.15) is minimized  to obtain  coefficients  of the  regression  equation 

(6.14), y¢i =  b0    +  b1xi  which gives best  fit, i.e., minimizes  Q.  To minimize  Q  = 

r:t•'j -(bo  + bix/    take the gradient  (derivative) with respect to ho and b1,  set to 

0, respectively, and get the 'least squares estimates'  for b0  and b.from Equations 

(6.16) and (6.17). 
 

The  method  is  called  logistic  regression  when  we  consider  a  generalized 

objective function as follows: 

Qi;_:,.·)= 1v1 [r:1 Ql~··)J.                                                                                        {-6.:2T) 

where N is the number  of data points summed using the input vector, Qi  is i-th 

observation  of y for input  variables y, being  estimated  such that  the  sum is 

minimized and parameters  r coefficients are optimized. 
 

Steps in an  SGD  algorithm  are:  (i)  choose  a starting  input  vector  Y and  a 

learning rate e, i.e., the rate by which y decrements  in next computations  to get 

the  minimum  sum  (Equation  6.27)  and  minimized  regression  coefficients  for



computing  Y, and  (ii) randomly  change  (scuffle) the  exemplary  input  vectors 

and corresponding  output  vectors which are used as examples for learning. For 

i-th observation  1 tom, find 
 

 
 

Here, -  is the mathematical  symbol for gradient,  which computes gradient  of 

Qi(y).  b1  is the linear regression coefficient in Equation (6.28). 
 

SGD  classifier trains  and learns the computation  of objective function  values 

and classifies based on predictor  values for each class. 
 

Logistic regression  uses hash  values for the  features,  which means  training 

algorithm  assigns each feature  a hash value, which is used for indexing, search 

and predictor  variable. 
 

OLCs   accompanying  the  book  gives  examples  of  the   Stochastic  gradient 

descent  method  for logistic regression  and classification  (Solution of Practice 

Exercise 6.13). 
 

 

6. 7 .4 Decision Tree Algorithm 
 

Tree-based learning algorithms are simpler and efficient supervised learning 

methods.  They provide  accurate,  persistent  and ease of analysis to predictive 

models. Tree-based algorithms  are used for solving classification and regression 

problems.  They are suitable  for representing   non-linear  relationships  as well. 

Some of examples of tree-based  learning algorithms  are decision trees, Random 

Forest and gradient boosting. 
 

Following are the important  terms related to Decision Trees: 
 

1.   Root Node: Represents the entire dataset. 
 

2.   Splitting:  A process of dividing a node into two or more sub-nodes 
 

3.   Decision Node: When a sub-node splits into further  sub-nodes 
 

4.   Leaf/Terminal   Node: Nodes that do not split further 
 

5.   Pruning:  Process  of removing  sub-nodes  of a decision  node  (opposite  of 

splitting) 

6.   Branch/Sub-Tree:   A sub-section of the entire tree



7.   Parent  Node: A node divided into sub-nodes 
 

8.   Child Node: A node derived from a parent node. 
 

Decision  Tree  is a supervised  learning  algorithm,  having a desired response 

value that is mostly used in classification problems. Decision tree works for both 

categorical and continuous input and output variables. 
 

The decision steps are as follows: 
 

First, split the dataset  when classifying a response  variable. That is based on 

most  significant  splitter/ differentiator   in  input  variables  into  two  or  more 

subsets. 
 

The decision trees segregate the datasets based on all values of three variables 

and identify the variable, which creates  the best homogeneous  sets of datasets 

(which are heterogeneous  to each other). The following example explains how 

decision trees segregate student  datasets based on all values of three variables. 
 

 
EXAMPLE  6.19 

 

 

Consider a dataset  of 100  students  with three  variables  Gender (Boy/Girl), 

Branch (CS/EC) and GPA score of previous year (8.0 to 10.0).  40 out of these 

100 enrolled in coaching class for learning the programming.  It  is required 

to create a model to predict who will enroll in coaching class. (CS: Computer 

Science, EC means Electronics and Communication). 
 

SOLUTION 
 

First segregate  the students  who took admission in coaching classes based 

on  each   significant   input   variable   and   find  which   variable   is  most 

significant among the three  (Gender, branch, GPA). 

Figure 6.17  suggests that variable GPA identifies the best homogeneous sets 

compared to the other two variables.
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Figure  6.17  Example of decision trees for creating the best 

homogeneous sets of students 
 

 
 

Types of decision  tree  are based on the type of response variables: 
 

1. Categorical-variable   Decision Tree: Decision  tree,   which  has  categorical 

response  variable.  For example,  consider  the  above  illustrated   student 

problem, where the  response  variable  is "Student  will enroll in coaching 

class or not" and the answer is YES or NO. 
 

2. Continuous-variable   Decision Tree:   Decision  tree,   which  has  continuous 

response variable. 

Table 6.6 gives features of decision trees. 
 

Table 6.6  Features of decision trees 
 

 

Feature 
 

Description 

 
 

 
Application 

Examples 

 

1. Identify the best combination  of products  and marketing  strategies 

that  target  specific sets of consumers  in a marketing  area. 

2. Customer behavior  analysis, customer  retention   strategy  planning 
 

3. Fraud detection  in industries 
 

4. Diagnosis of diseases 

 

 
 
 
 
 
 

Advantages 

 

1. Decision tree  output  in the form of graphical  representation   is very 

easy to understand. 

2. Useful in predicting  significant  response  variable. 
 

3. Not influenced  by outliers  and missing values to a fair degree as 

compared  to other  techniques  of modeling. 



 4. Handles both numerical  and categorical  variables. 
 

5. Decision tree  is a non-parametric   method.  Thus, decision trees  have no 

assumptions  about space distribution  and classifier structure. 

 
 
 

Disadvantages 

 

1. Over fitting  is a problem  associated with decision tree models. Setting 

constraints  on model parameters   and pruning  solve this problem. 
 

2. When the numerical  variables  are continuous,  the decision tree loses 

information  while categorizing  the variables  in different  categories. 

 

6. 7.4.1 Evaluating a Decision Tree 
 

Different  decision-tree  building  algorithms  are  used. Each algorithm  aims to 

search  a variable,  which gives the  maximum  information  gain or divides the 

data in the most homogenous way. 
 

For example, split on GPA in the above example suggests the student  enrolls in 

coaching class more than the Gender of the student. 
 

A decision tree  exploits various metrics.  For example, Gini index, chi-square 

and Entropy and Information  Gain. Metrics find out the best split variables. A 

decision  tree  algorithm  CART  (Classification and  Regression  Tree)  uses  Gini 

index to split the node. The decision tree resulted by CART algorithm is a binary 

decision tree (each node will have only two child nodes). 
 

The selection of two items from a population  at random  must be of the same 

class and the probability for this is 1 if the population is pure. 

1.   Gini index  is  used  for  categorical  response   variable  "Success"  (p)  or 

"Failure" (q). 
 

2.   Generates binary splits only. 
 

3.   Higher the value of Gini, higher the homogeneity. 

Steps to calculate Gini for a split. 

1.   Calculate Gini for sub-nodes, using formula  sum of square  of probability 

for success and failure 

(p2 + q2). 

2. Calculate Gini for split using weighted Gini score of each node of that split. 

The following example explains the computation  of Gini score and when the 

node split will take place on GPA.



EXAMPLE    6.20 
 

 

(i)    How will the split on Gender compute? 

(ii)   How will the split on GPA compute? 

SOLUTION 

(i)    To find Split on Gender: Calculate, 
 

Gini for sub-node Female= (0.5) x  (0.5) + (0.5) x  (0.5) =0.50 
 

Gini for sub-node Male= (0.33) x (0.33) + (0.67) x (0.67) =0.5578 
 

Weighted Gini for Split Gender =  (40/100) x  0.50 +  (60/100) x  0.5578 = 

0.53468 
 

(ii)   Similarly, for Split on GPA: Calculate, 
 

Gini for sub-node ~9.0  = (0.80) x (0.80) + (0.20) x (0.20) = 0.68 
 

Gini for sub-node <9.0  = (0.27) x  (0.27) + (0.73) x  (0.73) = 0.6058 
 

Weighted  Gini for  Split Class =  (25/100) x  0.68 +  (75/100) x  0.6058 = 

0.62435 
 

Gini score for Split  on GPA is higher than Split on Gender. Hence, the node 

split will take place on GPA. 
 

 

The next  category  of algorithm  is based  on the  chi-square.  This finds  the 

statistical  significance between  the  differences  between  sub-nodes  and parent 

node. The calculation is based on the sum of squares of standardized  differences 

between observed and expected frequencies of the response variable. 
 

The algorithm is used for categorical response variable "Success" or "Failure". 

The algorithm generates  two or more splits. 
 

The  generated   tree  is known  as CHAID  (Chi-square  Automatic  Interaction 

Detector)  which  detects  using the  rule  that  "higher  the  value  of chi-Square, 

higher is the statistical significance of differences between the sub-node and the 

Parent node". Calculation of chi-square of each node uses the term:
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Steps to calculate chi-square for a split: 
 

(i)    Calculate the chi-square for an individual node. 
 

(ii) Calculated  the  chi-square  of Split using  the  sum  of all chi-square  of 

success and failure of each node of the split. 

The following example explains chi-square calculation. 
 

 

EXAMPLE 6.1 
 

 

How will split compute for Gender and GPA using chi-square calculation? 
 

SOLUTION 
 

To find Split on Gender: Calculate, 
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Chi-square  also  suggests  the  GPA  split is more  significant  compare  to 

Gender  since Chi-square for GPA  split is much higher  than  Chi-square for 

Gender split.



A  category  of algorithm  is based on entropy  computations  and information 

gain. Entropy in thermodynamics  is a measure  of disorder  or randomness  of a 

system.  Statistical  studies  suggest  similar  concept  to  characterize   the  (im) 

purity of an arbitrary  dataset (randomness in dataset). A pure node requires less 

information  to describe  it, and an impure  node requires  more information.  If 

the subset or the dataset  is completely homogeneous, then  the entropy  is zero 

and if the sample is an equally divided (50%-  50%),it has entropy of one. 
 

The formula for statistical entropy is: 
 

                                                                                                ("6.30) 
 

Here p is probability  of success in that  node. Entropy is used with categorical 

response  variable.  The  split  is decided  when  the  entropy  is lower  than  the 

parent  node  and  other  splits.  The lesser  the  entropy  value,  the  better   split 

variable it is. 
 

Steps to calculate entropy for a split: 
 

1.   Calculate entropy of parent node. 
 

2. Calculate  entropy   of  each  individual  node  of  split  and  calculate  the 

weighted average of all sub-nodes available in split. 

The  following  example  explains  the  use  of entropy   computations   for  the 

dataset used to calculate Gini in Example 6.20. 
 

 

EXAMPLE  6.22 
 

 

How will you split and compute entropies for Gender and GPA using entropy 

calculation? How much is the information gain? 
 

SOLUTION 
 

1.   Entropy for the  parent  node =  -  (40/100) log, (40/100) -  (60/100) log, 

(60/100) = 0.971.  The node is impure. 
 

2.   Entropy  for  the  female  node  =   -  (20/40)   log2    (20/40)   -  (20/40)   log2 

(20/40)   =  1   and  for  male  node,  -  (20/60)   log2  (20/60)   -  (40/60)   log2 

(40/60)  = 0.92 

3.   Entropy for split Gender =Weighted entropy  of sub-nodes  =  (40/100) x



1.0 + (60/100)  x 0.92 

= 0.95 
 

4.   Entropy for GPA~ 9.0 node=  - (20/25)   log, (20/25)   -  (5/25)   log2  (5/25)   = 

0. 72, and for 

GPA< 9.0, -  (20/75)   log2  (20/75)   -  (55/75)   log2  (55/75)   = 0.84. 
 

5.   Entropy for split GPA= (25/100)  x 0.72 + (75/100)  x 0.84 = 0.81 
 

Entropy for Split on GPA is the lower than entropy  for Split on Gender, so 

the tree will split on GPA. Information gain from entropy as (1- Entropy). 
 
 
 

The basics of decision trees and the decision-making process involved to select 

the  best  splits  in modeling  such  tree  structure   is presented   in this  section. 

Decision tree  can be applied  on regression  problems  as well as classification 

problems. 
 

6.7.4.2 Decision Trees in R 
 

Multiple packages are available to implement  decision tree  in R programming, 

such as ctree  and rpart.  The rpart  programs  build classification  or regression 

models using a two-phase  procedure.  The resultant  models can be represented 

as binary trees. 
 

First phase is the splitting process using a selected data variable. The process 

continues  recursively either  until the sub-groups reach a default minimum size 

or until no improvement  can be made. The second phase consists of using cross• 

validation to trim back the full tree. 
 

Regression  analysis,  time  series  analysis  and  Markov model  use  statistical 

techniques   in  ML   algorithms   for  predictions.   A   regression   algorithm   is  a 

supervised  ML algorithm.  This means that  they predict  the value for new data 

(output value) on learning from model dependencies  and relationships  between 

the target output and input features. 
 

Six widely used ML Regression analysis algorithms are as follows: 
 

1.  Simple Linear Regression Model-  Single input variable and multiple input 

linear regression 

2.   Multivariate Regression Algorithm



3.   Multiple Regression Algorithm 
 

4.  Support Vector Machines Algorithm -  Use epsilon-insensitivity  (margin of 

tolerance) loss function to solve regression problems 

5.   Logistic Regression Classifier Algorithm -   It  uses SGD  method  (Table 6.8) 

and is used for classification (Section 6.7.3) 
 

6.   LASSO (Least Absolute Selection Shrinkage Operator) Algorithm 
 
 

6.7.5  Naive-Bayes Theorem - Naive Bayes Classifier 
 

Naive Bayes is a simple classifier. It is the probabilistic  and statistical  classifier. 

It  is based  on Bayes theorem   (from  Bayesian statistics)  with  strong  (Naive) 

independence   assumptions  and  maximum  posteriori   hypothesis.  It  is also  a 

supervised learning technique,  which uses non-parametric  approach  (Posteriori 

means at the back of something. For example, hypothesis). The classifier 

assumption is that features have strong independences. 
 

The classifier exploits one of the most basic text classification techniques  with 

a variety  of applications  in email spam detection,  personal  email sorting  and 

document categorization. 
 

The technique uses the probabilities of every feature belonging to each class to 

make a prediction.  Makes simpler calculation  of probabilities  by assuming that 

the  probability   of  a  particular   feature  belonging  to  a  given  class  value  is 

independent   of all other  features.  This type  of assumption  is termed  as class 

conditional independence.  The probabilities  can be looked up in a single scan of 

the database and stored in a small table. This makes it a fast and space efficient 

method. 
 

The use of this method  is in decider program  for the classifier. The training 

program  trains  on maximum likelihood which means maximum probability  of 

occurrences. 
 

Naive Bayes is widely used for text classification. Vectorization  of data points 

need one pass for vectorization  and other  for the algorithm.  Since the method 

uses vector implicitly (for example, a bag of word as input), a single pass suffices 

(Pass means  the  number  of times  the  input  vectors  are  re-examined  during 

training).



In addition, Naive Bayes classifier requires  a small amount of training  data to 

estimate  the parameters,  viz., means and variances  of the variables, which are 

necessary  for classification. However, training  needs high overheads  and more 

time. 
 

Section  9.2.1.3 will  give  details.  A  word  contained   (and  its  occurrences) 

represents   text  in  a  document.  The  bag-of-words  model  is commonly  used 

methods of document classification where the (frequency of) occurrence of each 

word is used as a feature  for training  a classifier (Wikipedia). Section 9.2.2 will 

describe Naive Bayes Analysis in detail. 
 

Bayes theorem  describes the conditional probability of an event. The theorem 

basis is that  conditions  that  might be related  to the  event. The probability  P 

(AIB)  of Event A  occurring  and Event B  has already  occurred  is given by the 

formula: 
 

Pc..41B)  = PtA and B)/Pr..B) = P(A n BVP(B)                                                        (6.31) 
 

Probability  of conditions  A or B  is equal to the  probability  of both A and B 

happening  divided by Probability of B alone. ( n  is symbol for intersection  in set 

theory.  U  is symbol for union in set theory). 
 

Naive Bayes classifiers are efficient in terms of CPU and memory consumption. 

The classifiers are not sensitive to irrelevant  features.  They have the ability to 

handle real and discrete data as well as streaming  data well. The classifiers can 

also be trained  very quickly. The only disadvantage is that they assume 

independence  of features.  Overall, Naive Bayes outperforms  by other  classifiers 

most of the times and is used as a baseline in many researches. 
 

 

6. 7 .6 SupportVector Machine Classifier 
 

Support Vector  Machine  (SVM) is a  method  in  a  set  of related  supervised 

learning method that  uses  a  vector,  which  has  in  general,  v elements  in  v• 

dimensional  space. The vector  classifies the  data  points.  Following is a brief 

introduction. 
 

A data point in the space is represented  by a vector. A data point represents  by 

(xl,  x2, ... ,   xn) in n-dimensional  space. Consider two-dimensional  space, with 

data points (xl, x2) and axes Xl and X2. Each data-point  if considered as a vector 

element has two components, xl, and x2. (Two sets of words in text analysis). A



hyperplane is  a  subspace  of  one  dimension  less  than   its  ambient   space  in 

geometry.   If  a  space  is  3-dimensional,   then   its  hyperplanes   are   the   2- 

dimensional planes. However, if the space is 2-dimensional, its hyperplanes  are 

1-dimensional which means lines. 
 

The algorithm  finds  Support  Vector  (SV) to  maximize  boundary  distances. 

Figure 6.18 shows car sales in different showrooms. A star corresponds  to Jaguar 

sales in a year at different  showrooms and dot corresponds  to Zest sales of Tata 

Zest model. Xl axes in feature space and X2 is in metric spaces (sales number). 
 

Figure 6.18 shows the  separating  hyperplanes  using three  hyperplanes  A, B, 

and C  for classification  of data points. A hyperplane  is equivalent  to a line in 

case of 2-dimensional space. 

 

 
 

Figure  6.18 Three hyperplanes  A, B, and C for classification of data 

points 
 

The planes  are  iteratively  chosen  to  maximize  distances.  SV  curve  can be 

specified by not only a plane, but also by a kernel function (such as Gaussian or 

tri-cube). 
 

Both positive  and  negative  support  vectors  can be used  in features  space. 

Negative SV means the features, which exclude in classification, are used by the 

classifier. 
 

 

6.7.7  Random Forest Classifier 
 

Random  Forest  (RF) uses  all four  categories  of predictor   variables.  It  is an 

ensemble learning method. Its applications are in classification as well as 

regression.  RF has high overheads.  Its architecture   is based on a decision tree. 

The  training  program  trains  a  regression  tree  or  decision  tree  (Section  6.7 

Figure 6.15).



RF  uses  a  tree   learning   algorithm   modified  that   selects,  such  that   each 

candidate splits in the learning process and uses a random subset of features for 

learning (to take decisions). 
 

For example, Let I (T)  = Training input features or values and O [I (T)]  = Output 

exemplary features or values of I. RF selects a bootstrap  sample, randomly from 

input  and  output  examples  (T). Decision or  regression  tree  D  trains  on the 

samples=  1 to S of d, (Is, Os). 
 

Training algorithm uses bootstrap  aggregating method. It puts tree learners  in 

bags  (containers).  Training  dataset   input  vectors  and  corresponding   output 

variables bootstrap  the  sample repeatedly,  and fits with the decision tree. The 

prediction   variable  can  either   be  estimated   by  vote  (frequency  of  correct 

decisions or regression) or by using the averaging formula, in Equation (6.27). 
 

D(S)  = Maximum vote frequency (s)/Total sample features or 

D(S) = s-1[L:=1d.,(y)J                                                                                     (_6.32) 

The   advantage   of  RF    is  that   it   effectively   programs   the   conditional 

relationships  and non-linear  functions,  kernel  or other  complex functions.  Its 

applications   are  when  the  data  points  are  less  than   10  M. It  has  parallel 

execution with shared nothing architecture. 
 

 

6. 7 .8 AdaBoost and OtherEnsemble  Classifiers 
 

AdaBoost means  adaptive  boosting.  It builds  a  strong  learner  from  a linear 

combination of weak learners. 
 

It initially assumes uniform weight of training  examples. Weight means 

importance  of an example  with  respect  to other  examples. Assume a trainer 

algorithm using a sample (example) sin trained vector T. 

The Ts: e ~   {-  1,  1}. It means training  example Ts weight is - 1  or +  1  to start 

with. Ts  is a week  classifier,  as it  cannot  generate   a predictor  variable  and 

classify. Each classifier is considered  sequentially. When its algorithm  increases 

its weight, then other weights correspondingly  reduce. 

Now increase  the  weights  of variables  those  Te,  which are misclassified and 

need  greater   importance.  Assume weight  of Ts  is e(s). Finally, the  classifier 

adapts and forms linear combinations of those Te whose weights were increased.



The equation  for Decider D(S) using the linear combination  of features  is given 

by: 

D("S) = K[L:1{£(.S )X  dj()')} J.                                                                      {6.33) 

where K  =  ~ s  E(s)   is the  sum of the  weights  of each sample, and ds(y) is the 
.L.rs::L 

feature of sample s. 
 

OLCs   accompanying  the  book  will  describe  an  example  of  application   of 

AdaBoost. 
 

 

Self-Assessment Exercise linked  to LO 6.6 
 

1. List the meaning  of the terms,  training  example,  input  vector,  predictor  variable, 

continuous  variable,  categorical  variable  and feature  hashing. 

2.   What is vectorization?  How does a vector  differ from a bag of words? 
 

3. How does decision  tree  algorithm  CART  (Classification  and Regression  Tree) use 

the Gini index to split a node. How is the entropy  calculated? 
 

4.   When will you use Naive Bayes, Random Forest and Support vector Classifiers? 
 

5.   List features  of the N aive Bayes classifier. 
 

6.   How do parallel  computations   with shared  nothing  architectures   help in efficient 

Big Data analysis? Which are the classifiers supporting  these  features? 
 

7.   How does AdaBoost generate  a strong  classifier? 
 

8.   What are the limitations of AdaBoost and Random Forest classifiers? 
 
 
 

 

6.8 l RECOMMENDATION SYSTEM 
 

Recommender refers    to    a   machine    learning    (ML)  tool    that    enables 

recommendations after  extractions  of features  in the  itemsets  from multiple 

datasets. Example is a product  recommender,  such as book recommender. 

Recommendation  of a recommender  enables the selection of the right product 

among  the   high  recommendation   products.   A   recommender's    need  arises 

because  a  customer   finds  it  difficult  to  search  the   right   product   due  to



information  overload.  Figure 6.19  shows the  steps  in user-based  collaborative 

filtering (CF) and content-based  filtering (CBF) recommenders. 
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Figure 6.19 Steps in user-based CF and CBF recommenders 
 

 

6.8.1  Collaborative Recommendation 
 

A  recommender   generates   by  collaborative   filtering   (CF)   and  gives  either 

prediction  or  recommendation   (Figure 6.19).   Prediction  is a numerical  value 

(Rij), suggesting the  predicted  score of item j for the  user i. Recommendation 

can be a list of top-N items that the user will like the most. 
 

Group forms for similar users which means in neighbourhoods.  Similar means 

not  distant.   The  recommender   is  an  application   of  near-neighbour   search 

method.  The already  rated  items are significant  in searching  for a neighbour. 

Once a neighbour of a user is found, different algorithms can be used to combine 

the preference  of neighbours to generate recommendations. 
 

6.8.1.1 Collaborative Filtering 
 

CF algorithm makes recommendations  by calculating the similarities in itemsets 

in-between different items in the datasets. The algorithm predicts the likeliness 

of an item that it has not rated based on a set of historical preference judgments 

from a community of users. 
 

CF  is different  from content-based  filtering  (CBF)  which is built  around  the 

attributes  of a given item (Figure 6.19).  Item features do not capture everything. 

User's interests  may change. CF on the other hand relies on the behavior of the



users. 
 

Top-N  Recommendations A    step   in   a   CF    system   is   to   find   Top-N 

Recommendations  (Figure 6.19). Top-N recommendation  is used to recommend 

a  set  of N top-ranked   items  that  will be  of interest   to  a  certain  user.  For 

example, a user of a website recommends a list of books (or other products) that 

may be of his/her  interest  before leaving the website. Top-N  recommendation 

techniques  analyze the user-item  matrix to discover relations between different 

users or items. 
 

The two approaches to collaborative filtering are: 
 

•        Model-based  collaborative  filtering  -  Based on  ML  techniques   (Section 

6.8.2) 
 

• Memory-based collaborative  filtering  - Based on similarity between  users 

and items 

Memory-based  Collaborative  Filtering Memory-based  techniques   are  best 

suited to   real-life   applications   due  to   their   effectiveness.   Memory-based 

collaborative  filtering  can be achieved through  two approaches,  i.e., one based 

on items,  and  the  other  on users,  and  termed  as user-based  and  item-based 

approaches. 
 

6.8.1.2 User-Based Top-N Recommendation Algorithm 
 

An algorithm does the following: 
 

Identify the k most similar users (nearest neighbours)  to the active user using 

the Pearson correlation or vector space model. Every user is treated  as a vector in 

the v-dimensional item space. The similarities between the active user and other 

users are computed between the vectors (Sections 6.3.6 and 6.4.4). 

• The  corresponding   rows  are  aggregated  in  the  user-item  matrix,  R to 

identify  a set  of items,  C, purchased  by the  group  together  with  their 

frequencies. 
 

• Recommend the top-N  most frequent  items in set C that  the  active user 

has not purchased. 
 

Pearson  correlation  model: (i) Does not consider  overlapping  preferences  of 

two users,  (ii) Computation  of only one item in case of two user  overlapping



preferences,   (iii)  Correlation  does  not  give added  weights  when  a  series  of 

preference  values are equal. Pearson  correlation  using weights is an option to 

consider these issues. 
 

User-based CF recommends items by finding similar users. 
 

•        Users who were interested  in the past, are likely to agree again. 
 

•        Exploit the opinion of similar users to predict a user's opinion for an item 
 

• Similarity  between  users  is  calculated  by  looking  at  their   overlap  in 

opinions for other items. 

User-based nearest-neighbour  CF Algorithm, performs the following steps: 
 

• Calculate the similarity or weight, wi,j, which reflects distance, correlation 

or weight, between two users or two items, i and j 

• Identify a prediction  for the new user by taking the weighted average of all 

the ratings  of the user, item on a certain  item or user, or using a simple 

weighted average 
 

•        Suggestions for Top-N  recommendation 
 

• The task  to  generate  a top-N   recommendation   requires  finding  k most 

similar users   or   items   (nearest    neighbours)    after   computing    the 

similarities 

• Aggregate  the  neighbours  to get  the  top-N   most  frequent  items  as the 

recommendation. 

6.8.1.3 Item-based Collaborative Filtering 
 

An item-based CF recommends  items by finding similar items. Amazon initially 

developed  the  item-based  method.  The method  calculates  similarity  between 

items and makes recommendations.  Different items that are purchased  together 

are involved to draw inferences about the relationship  between items. The more 

often two items (say, chocolate, gift box and greeting  card) appear  in the same 

shopping  cart  or  user  history,  they  are  considered  as  associated  with  one 

another.  Association between  two items specifies by the  observations,  such as 

when a customer  adds a greeting  card to the purchase  cart, the algorithm  will 

suggest things that  are associated with items in the cart like chocolate and gift 

box, over things that are not associated, such as electronic items.



• Items  that  are  purchased  together  in the  past  are  likely to be selected 

again. 

• Similarity  between  items  is decided  by looking  at  their  overlap  in the 

purchase pattern  for items. 

Exploit the full or a sample of the user-item  database to generate  a prediction. 

Users part of a group show similar interest.  A prediction  of preferences  on new 

items  for  a  new  user  (or  active  user)  can  be  evaluated  by  identifying  the 

neighbours. 
 

Problems  with   User-based  Collaborative  Filtering  Following  are   some 

problems associated with using user-based collaborative filtering: 
 

• User  Cold-Start  Problem:  The  technique   of  filtering   is  based  on  user 

history, but what if the user history is not available? This is referred  as the 

"cold start"  problem, and it can apply both to new items and to new users. 

Not enough information  exists about a new user to decide the similarity. 
 

• Sparsity: Users have rated  only a few items when recommending  from a 

large dataset of itemsets. This makes it hard to find similar users. 
 

•        Scalability: For millions of ratings, computations  become slow. 
 

User-based  vs   Item-based  Collaborative  Filtering  User-based   similarity 

between  users is dynamic. Pre-computing  the user neighbourhood  can lead to 

poor  predictions.   User  similarities   have  a  much  vast  domain.  Item-based 

similarity between  items is more static, and hence it enables pre-computation 

which   improves   online   performance.    An  item-based   similarity   is   more 

meaningful. 
 

Let a user assign a rating to an item, such as a book on a topic. The similarity 

between  two users  of the  items  can be measured  by treating  each user  as a 

vector  of rating  frequencies  and computing  the cosine of the angle formed by 

the frequency vectors. The basis of recommendation  is similarity. (Vector cosine 

similarity between two sets of data points (vectors  A and B) is given by Equation 

(6.23b)). 
 

Formally, if P is an m x  n user-item  matrix,  then  the  similarity  between  two 

items j  and  i  is defined  as the  cosine  of the  angles  between  v-dimensional 

vectors corresponding  to the i-th and j-th columns of matrix P.
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Figure 6.20  shows prediction  on an item and top 10 recommendation  list for a 

user. 
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Figure 6.20  Prediction on an item and top 10 recommendation  list for a 

user 
 

6.8.1.4 Computations of Prediction and Recommendation 
 

Next step in a collaborative filtering system is to obtain predictions  or 

recommendations.  A subset of nearest  neighbours  of the active user is chosen 

based   on  their   similarities   in  the   neighbourhood-based    CF   algorithm.   A 

weighted aggregate of their ratings is used to generate  predictions  for the active 

user. 
 

Weighted   Sum  of  Others'   Ratings   Calculate  a weighted  average  of all the 

ratings on a certain item i to make a prediction  for the active user according to 

the following formula: 

                                                                             {6.34) 

where  ~ and ~  are the  average  ratings  for the user a, and user u on all other 

rated items, and wa,u 

is the weight between  the  user  a and user u. The summations  are overall the 

users u E U who have rated the item i. 
 

Simple  Weighted  Average  Use the  simple  weighted  average  to  predict  the 

rating Pu,i for user u on item iin case of item-based prediction. 
 

Item-based   Top-N   Recommendation  Algorithms   These  algorithms  consider 

the scalability problem of user-based top-N  recommendation  algorithms.



•        Compute k most similar items for each item according to the similarities. 
 

• Identify the set C as candidates of recommended  items by taking the union 

of the k most similar items and removing  each of the  items in the  set U 

that the user has already purchased. 
 

•      Calculate the similarities between each item of the set C and the set U . 
 

• The resulting  set  of the  items  in  C, sorted  in decreasing  order  of the 

similarity, will be the recommended  item-based Top-N  list. 
 

The combined distribution  of a set of items may result into different from the 

distributions  of the  individual  items  in the  set. The method  can suggest sub• 

optimal recommendations  in such cases. Higher-order  item-based top-N 

recommendation  algorithms can be used in such situations to consider all 

combinations 

of items. 
 

 

6.8.2  Model for Recommendation  Systems 
 

Figure  6.15   showed  model  building  approach   for  building   classifier  using 

machine   learning.   Similarly,  a  model  building  for  recommender   approach 

utilizes machine learning. They can quickly recommend a set of items since they 

use pre-computed  models. They use the association rules, regression, clustering, 

neural network, Bayesian classifiers, decision trees and matrix completion 

techniques. 
 

Matrix completion  means filling the  missing entries  in sparse matrices.  The 

recommender  uses user-item  matrices.  The matrix  completion  algorithm  uses 

an algorithm  similar  to principal  component  analysis  (Section 6.9).  A  model• 

based  technique  analyzes  the  user-item  matrix  to  identify  relations  between 

items. These relations  are used to compare the list of top-N  recommendations. 

Model-based techniques  resolve the  sparsity  of data problems  associated with 

recommendation  systems. 
 

A model-based recommender  is an association-rule-based  technique. The 

following example explains how the  association  rule  (Section 6.5.2)  applies in 

designing a recommender  system for books. 
 

 

EXAMPLE  6.23



How does  association  rule  help  in designing  a recommender   system  for 

books? 
 

SOLUTION 
 

An online bookstore  posts recommendations  for buying books and suggests 

the  offers after  a buyer makes a purchase.  For example, if a buyer  selects 

the  book  'Data Analytics',  a  list  of related  books,  such  as Data Mining, 

Statistical Concepts, Machine Learning, Big Data Analytics will be offered as 

recommendations  for future  purchase.  The association  rules suggests that 

when a book on data analytics is purchased,  25% of the times a book on Big 

Data analytics, 20% of the times a book on data mining, 20% of the times a 

book  on  statistical   concepts,  and  20%  of the  time  a  book  on  machine 

learning is bought along with it. 
 

Association rules can also be used to plan market  strategies  for the store. 

For example, the book on Big Data analytics can be promoted for the sales of 

the other three books with or without a discount. 
 
 

Websites and  services  such as Amazon, Facebook, YouTube and  Google use 

association  rules  mining.  The  recommender   looks  at  patterns   of  activities 

between  different  users  and  different  products  to  produce  the 

recommendations. 

1.   Online bookstore: 'Customer who bought this, also bought'. 
 

2.   Online shopping site: 'You may like this'. 
 

3.  Social  web:  Recommended   applications,   such   as  'Jobs  you   may  be 

interested'  in .... 

4.    Search engine: Similar advertising 
 

 

6.8.3  Content Based Recommendation 
 

Content-based filtering is built around the attributes  and preferences  of a given 

item. The recommender  evaluates the contents  or items on the preferences  of 

others  with a similar point of view. When anyone buys a product  online, most 

websites   automatically   recommend   other   products   that   she/he    may  be 

interested  to buy. Figure 6.19 illustrated  these steps.



6.8.4  Knowledge-based Recommendation 
 

A Knowledge-based Filtering (KBF) recommender  builds on explicit knowledge 

about  user  preferences,   the  number   of  items  of  specific  attributes   and  a 

criterion   function  for  the  recommendation   means  positive  recommendation 

criterion for the given context. 
 

Advantage of KBF recommender  is that  it applies in scenarios where  CF and 

CBF   have  difficulties  in  uses.  For  example,  cold  start   difficulty.  Another 

advantage is applicability in complex domains, such as purchase of house, where 

ratings  are mostly unavailable.  Another  advantage  is applicability  when using 

the conversations with experts. 
 

A    disadvantage    is   problem   associated   with   acquiring    difficulties   for 

knowledge. A definitive recommendation  in explicit form is difficult without full 

knowledge. 
 

 

6.8.5  Hybrid Recommendation  Approaches 
 

Hybrid filtering is a combination  of collaborative  and content  base filtering for 

recommendations.   CF   and  CBF  have  following  issues  in  making 

recommendations  to new users. 
 

CF Issues Three CF issues are (i) sparsity  issue (Section 6.8.1.3), (ii) early rater 

issues, such as that  several times a proper  rating  can be true  if rendered  after 

longer usages, and (iii) preference  of a group of users does not account for low 

ratings by certain users. 
 

CBF Issues Three CBF issues are (i) description  of contents  difficulties in format 

accessible to a new user, (ii) over-special need of new user, making 

recommendation    outside   the   specialized   information    available,   and   (iii) 

difficulty in comparing subjective domains information. 
 

Hybrid approach  combines CF and CBF. The approach  combines both types of 

information,  applying both filters, CF and CBF. 
 
 

Self-Assessment  Exercise linked  to LO 6.7 
 

1.    Howdoes a recommender provide top 10 recommendations? 
 

2.   List  the   difference  in   approaches   of  recommender-based   on   user-based



collaborative  filtering  (CF) and content-based filtering (CBF). 
 

3.   When is collaborative filtering used? 
 

4.   Howdoes a model-based recommender use the association rule? 
 

5.   Compare knowledge-based filtering and content-based  filtering. 
 
 
 

 

6.9  l APACHE  MAHOUT  MACHINE-LEARNING  APPLICATIONS 

Big Data requires  fast and efficient processing  of very 

large  datasets   at  the  cluster  of  machines.  Big Data 

analysis uses datasets  with over 1  million data points. 

Mahout has high efficiency for above 10 M data points 

in shared-nothing   environment.  Mahout in sequential 

shared environment  has higher time efficiency for less 

than 1 M data points. 
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Mahout  computational  tasks  execute  fast when  using multiple  machines  as 

well  as  multi-core   processing  units,  distributed   over  the  cloud,  tasks  runs 

parallel, and run in shared nothing-computational   environment. 
 

Mahout  requires   installing  JVM and  integrated   development   environment 

(IDE).  For example,  Eclipse, installing  Apache  Maven and  then  the  Mahout. 

(Maven in English means a person with good knowledge or understanding   of a 

subject. Apache Maven is a build automation  tool used primarily for 

Java projects). 
 

Mahout  is a scalable generalized  tensor  and  linear  algebra  solving engine. 

Mahout  vectors  specify  in  three  Java  Classes: SequentialAccessSparseVector, 

RandomAccessSparseVector, and DenseVector 

(Section 6.4.4.4).   Sequential access sparse means accessing two parallel vectors, 

one of keys and other  of values. Random access means accessing vectors using 

key, index or hash followed by values, in 

any order. 
 

Mahout is a tool from Apache Foundation that  runs the ML algorithms  on Big 

Data  in  a  parallel   computing   environment.   Mahout  primarily   focuses  on 

clustering   and  classification,  collaborative  filtering  and  regression   analysis.
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Mahout  consists  of tools  to  automate  finding  of meaningful  patterns   at  big 

datasets stored in data store at HDFS. 
 

Features of Mahout are as follows: 
 

1. Mahout  is  designed  on  top  of  Apache  Hadoop,  using  the   supported 

algebraic platforms like fast computing Apache Spark paradigm and 

MapReduce (Spark is fast compared to MapReduce). 
 

2.   Offers effective and faster algorithms to analyze large datasets. 
 

3.  Contains     several      Spark     and     MapReduce     enabled      clustering 

implementations,  such as k-means, fuzzy k-means, Canopy, Dirichlet and 

mean shift. 

4. Supports   distributed    Naive   Bayes  and   complementary    Naive   Bayes 

classification implementations, 
 

5. Designed for a distributed  computing  environment,  but  includes 

contributions  that  run on a single node or on a non-Hadoop cluster  also, 

such as 'Taste' collaborative-filtering  recommender, 

6.  Mahout, besides collaborative filtering baser recommender,  includes other 

recommenders also,   say   (i)  SVD    recommender    (ii)  KNN-item-based 

recommender  (linear interpolation  item based recommender),  (iii} cluster• 

based recommender. 

7.   Exploits Apache Hadoop library to scale effectively in the cloud. 
 

8.   Includes  APis  for  distributed   and   in-core   first   and  second  moment 

routines,  distributed  row matrix  (DRM), distributed  and scalable libraries 

for matrix  and vector, distributed  and local principal  component  analysis 

(DSPCA and SPCA)andstochastic singular value decomposition (DSSVD and 

SSVD ),  singular   value  decomposition   (SVD), Distributed   Cholesky  QR 

(thinQR), Distributed  regularized  Alternating  Least Squares  (DALS), Java 

libraries  for common mathematics  and statistical  operations  (focused on 

linear algebra) and primitive Java Collection Interfaces. 

9.  Provides an easy to use framework  for processing  large volume of data, 

hence is suitable in big data environment.



(Principal Component Analysis (PCA) means a linear transformation   method  for 

finding  the  directions   of  maximum  variance  in  high-dimensional   data  and 

project  those  for  transformation   onto  a smaller  dimensional  subspace  while 

retaining   most  of the  information.  PCA identifies  patterns in  data  sets  and 

detect the correlation  among the variables. When there  is a strong correlation, 

then try for reducing the dimensionality.  PCA applies in a number  of use cases, 

such as stock market predictions, and the analysis of gene expression data.) 
 

Mahout  0.13.0   released  on 17  April 2017  enables  easier  implementations   of 

most  modern  machine  learning  and  deep  learning  algorithms.  The versions 

include  the  open-source  distributed   scalable linear  algebra  library  ViennaCL, 

the  Java   wrapper   library   interface   JavaCPP  and   the   graphics   processor 

manufacturer,  NVIDIA CUDA bindings directly into Mahout. The new version of 

Mahout makes it easier to run matrix  mathematics  on graphics  cards (used in 

computers   for  fast  graphic   computations).   Future  versions  of  Mahout  will 

include support for inclusion of native iterative solvers, according to Apache. 
 

Mahout  is  used  by  big  companies,   such  as  Adobe,  Facebook,  Linkedln, 

Foursquare, Twitter and Yahoo. The companies use Mahout for the following: 
 

(i) Recommendation engine on Foursquare- Foursquare helps in finding out 

places, food, and entertainment available in a particular  area 

(ii)   Pattern  mining on Yahoo! as anti-spam 
 

(iii)  Research Gate, the  professional  network  for scientists  and researchers, 

uses Mahout's recommendation  algorithms 

(iv) Twitter  uses Mahout's Latent-Dirichlet-Allocation  (LOA) implementation 

for user interest  modeling 

(v) ADOBE  AMP uses  Mahout's   clustering   algorithms   to  increase   video 

consumption by better  user targeting. 

Figure 6.21 shows Mahout architecture.
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Figure 6.21  Mahout architecture 
 

Mahout implements ML methods as: 
 

1. Collaborative  Filtering -  Enables making  automatic  predictions   about 

interests  of a user. The methods consider the preferences  from many users 

to  make  predictions  (collaborating).  Collaborative filtering  methods  are 

used by recommender  systems and similar itemsets  mining. For example, 

user-based, weighted matrix factorization SVD++, and parallel SGD (in 

sequentially    in     shared-data      environment),      item-based,      matrix 

factorization  with  alternating   least  squares,  matrix  factorization   with 

alternating least  squares  with  implicit  feedback,  using  parallel  scalable 

shared nothing   (MapReduce)  as  well  as  sequential   algorithms.   Some 

popular  websites  that   make  use  of  the  collaborative   filtering  include 

Amazon, Netflix and iTunes. 

2. Clustering -  Take  items  in  a  particular   class and  organize  them  into 

groups,  such that  items belonging to the  same group  are similar to each 

other.  Mahout  includes  the  ML  algorithms  for k-means,  fuzzy k-means, 

Canopy, Dirichlet, and mean-shift for the clusters analysis (Section 6.9). 
 

3.  Classification  -  Learns  from  existing  categorizations   and  then  assigns 

unclassified  items  to  the  best  category.  For example,  Naive  Bayes and 

Random Forest using parallel scalable algorithm  (parallel shared-nothing) 

and logistic regression,  support  vector, Hidden Markov model and multi• 

layer perceptron  (sequentially shared data environment).
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4.  Frequent Itemset  Mining-Analyses   items in a group and identifies which 

items typically appear together. 

Clustering algorithms are canopy, k-means, fuzzy k-means, streaming k-means 

and spectral clustering, using parallel scalable (MapReduce) as well as sequential 

algorithms. Table 6. 7 gives brief descriptions of them. 
 

Table 6. 7 Clustering methods 
 

 

Canopy 

clustering 

 

Pre-processes  the data before using a k-means or hierarchical  clustering 

algorithm 

 

K-means 

clustering 

 

Deduces partition  of n observations  into k clusters  in which each 

observation  belongs to the cluster with the nearest  mean 

 

Mean shift 

clustering 

 

Retrieves modes or clusters  in 2-dimensional  space, where the number 

of clusters  is unknown 

 
Fuzzy k-means 

 

Discovers soft clusters  where a particular  point can fall into more than 

one cluster 

 

Hierarchical 

clustering 

 

Builds a hierarchy  of clusters  using either  an agglomerative  (bottom-up) 

or divisive (top-down)  approach 

 

Spectral 

clustering 

 

Finds cluster  points using Eigenvectors  of matrices  derived from the 

data 

MinHash 

clustering 

 
Estimates similarity  between  two datasets  quickly 

Dirichlet 

process 

clustering 

 

 

Performs  Bayesian mixture  modeling 

 

Latent Dirichlet 

Allocation 

 

Automatically  and jointly  cluster words into topics and documents into 

mixtures  of topics 

Three  other   categories   of  Mahout  algorithm   belong  to  the  collaborative 

filtering, classification or frequent itemset mining. Mahout provides two 

collaborative-filtering  algorithms: 
 

1. One is distributed  item-based collaborative filtering. The method estimates 

a user's preference  for an item based on the preferences  for similar items



and row matrices. 
 

2. Other is collaborative  filtering  using a parallel  matrix  factorization.  The 

method the items the user might prefer  among a matrix  of items which a 

user has not seen so far. 

Table 6.8  Brief descriptions  of collaboration filtering, Classification and 

frequent  itemset Hadoop-compatible algorithms 
 

 

Algorithm 
 

Description 

 

Collaborative Filtering 

Distributed  item- 

based collaborative 

filtering 

 
Estimates a user's preference  for an item on the basis of the 

preferences  for similar items and row matrices 

Collaborative 

filtering  using a 

parallel matrix 

factorization 

 
 

Finding the items, the user might prefer  among a matrix  of items, 

which a user has not seen so far. 

 

Classification 

 

Bayesian 
 

Classifies objects into binary  categories;  Naive Bayes classification. 

 
 

Random Fores ts 

 

Provides a collective learning  method  for classification  (and 

regression)  that  operate  by constructing   a multitude  of decision 

trees 

 
Stochastic Gradient 

Descent (SGD) 

 

Iterative  learning  algorithm  in which each training  example is used 

to pull the model slightly to give more closer to correct  answer for 

that  one example (Logistic regression  algorithm  uses the SGD) 

  

 

Frequent Itemset  Mining 

Parallel frequent 

pattern  growth 

algorithm 

 
Analyzes items in a group and then  identifies  which items typically 

appear  together 

 

Mahout Recommender Engine  Mahout  provides  recommender   engines  of



several  types,  such  as  (i) user-based  recommenders,   (ii) item-based 

recommenders,  and (iii} several other algorithms. Mahout has a non-distributed, 

non-Hadoop-based  recommender  engine. A text document  is the input and has 

user preferences  for items. The output  of this  engine would be the  estimated 

preferences  of a particular  user for other  items. Five components  in Mahout to 

build a recommender  engine are as follows: 
 

1. Data Model- The object of this class holds a file that  contains  the users, 

items and preferences  details of a product. 

2. User  Similarity-  A  measure  that   returns   a  number   representing   how 

similar the given two users are. 

3.   Item Similarity- Defines a notion of similarity between two items. 
 

4.   User Neighbourhood-  For finding the neighbourhood  of a given user. 
 

5.  Recommender-   Takes  data  model,  neighbourhood   and  user  similarity 

together  to produce recommendations. 

A data model is prepared  from large datasets  and is passed as an input to the 

recommender    engine.   The   recommender    engine   generates   the 

recommendations  for a particular  user. 
 
 

Self-Assessment  Exercise linked  to LO 6.8 
 

1. Why does Mahout  compute  faster  in case of data  points  above  lM  compared  to 

sequential  non-scalable  programming? 

2.   List the features  of Mahout 0.13 version  and expected  new version features. 
 

3. List  and  differentiate    between   two  Mahout   collaborative-filtering     algorithms, 

collaborative   filtering  using  a parallel  matrix  factorization   and  and  distributed 

item-based  collaborative  filtering. 

4.  Write  meanings   of  distributed   row  matrix   (DRM), distributed   and 

scalable libraries for matrix  and vector, distributed  and local principal 

component analysis (DSPCA and SPCA) and stochastic singular value 

decomposition (DSSVD and SSVD), singular value decomposition (SVD).



 

 
 

AdaBoost 
 

ANOVA 
 

Apache Mahout 

Apriori algorithm 

Artificial intelligence 

association rules 

Bayesian classification 

category variable 

candidate rules 

chi-square 

classification 

clustering 

collaborative filtering 

confidence level 

correlation 

cosine similarity 

data mining 

decision tree 

dimension 

distance measure 

distribution  function 

edit distance 

entropy 
 

Euclidean distance 

explanatory variable 

F-test



feature variable 

frequent  itemset 

Gini index 

hypothesis 

interaction  variable 

Jaccard similarity 

K-mean 
 

K-NN 
 

kernel function 

Manhattan  distance 

market basket model 

moment 

multiple regression 

multivariate  regression 

Naive Bayes classifier 

non-linear  transformation 

null hypothesis 

objective function 

outcome variable 

outlier 

Pearson correlation 

population 

predictor  variable 
 

probability distribution  function 
 

Random Forest 

recommender 

regression model 

relationship



response variable 

sample 

scatter plot 

similar itemsets 

similarity 

similarity coefficient 
 

singular value decomposition 

standard  deviation 

standard  error of estimate 

statistical inference 

statistical significance 

stochastic gradient  descent 

supervised learning 

support vector 

test dataset 

training  data 

unequal variance 

unsupervised  learning 

user neighbourhood 

variable 

variance 
 

Welch's t-test 
 
 
 
 

 
 

 

LO 6.1



1.   Mathematical  and statistical  methods  estimate  the relationships,  outliers, 

variances,  probability  distribution  and correlations  in variables, items or 

entities.  Scatter plot depicts the  relationship  between  two variables,  and 

suggests whether  they have linear or non-linear relationship. 

2.   Variance means dispersion with respect to the expected. Moments (0,  1, 2, 

...) refer to expected values to the powers of (0, 1, 2, ...) of random-variable 

variance. 

3. Correlation  is a statistical  technique  that  is used to measure  and describe 

the strength  and direction of the relationship  between two variables. 
 

LO 6.2 
 

 

1.   Linear and non-linear  regression  model-based analysis predicts the values 

of one  variable,  given  the  values  of another   variable.  More than  one 

variable can be used as predictor  with multiple regressions. 

3.   Regression  analysis  is  a  powerful  technique   used  for  predicting   the 

unknown value of a variable from the known value of another variable. 

4.   K-NN method  uses Euclidean, Manhattan,  Hamming and  other  distance 

measures for  regression   analysis.  K-NN predicts   using  interpolation, 

extrapolation  and averaging methods using weights. 
 

LO 6.3 
 

 

1.   Methods  of finding  similar  items  and  similarities  are  nearest  neighbour 

search, J accard similarity and collaborative filtering. 

2.  The similar items and similarities use the distance measures. The distance 

measures are Euclidean,Jaccard,  cosine, edit and Hamming distances. 
 

LO 6.4 
 

 

1.   Frequent  Itemset Mining (FIM) is one of the popular techniques  to extract 

knowledge from the data. The technique  has been an essential part of data 

analysis  and  mining.  The  extraction   is  based  on  frequently   occurring



events. 
 

2. Market  basket   analysis  is  a  tool  of  knowledge   discovery  about   co• 

occurrence  of items. A  co-occurrence  means two or more things  happen 

together. It  can  also be  defined  as a  data  mining  technique  to  derive 

strength  of association between a pair of product items. 

3. Objective  of  generation    of  association   rules   is  to   find   uncovered 

relationships  using some strong rules. 

4. Apriori algorithm  is used for frequent  itemset mining and association rule 

mining. Apriori algorithm  simply follows a basis that  any subset of a large 

itemset  must be a large itemset.  This is called the Apriori principle,  and 

can reduce the number  of itemsets which an algorithm  needs to examine. 

Apriori principle  suggests, if an itemset  is frequent,  then  all of its subsets 

must also be frequent. 
 

LO 6.5 
 

 

1. Cluster analysis means  finding the  grouping  of the  objects  (datasets)  of 

similar types or characteristics.  ML algorithms  methods  are K-means, K• 

medoids, Fuzzy K-means, Canopy, and Dirichlet for clusters analysis. 

2.   A clustering algorithm finds k clusters in a given dataset using k centroids. 
 

LO 6.6 
 

 

1.   Methods of machine  learning  are supervised  and unsupervised  learning. 

Clustering and classification differ. Clustering is identification  of groups of 

similar  objects.  Classification means  splitting  the  datasets  into  subsets 

with similar features using statistical concepts. 

2. Classifiers  use  training   datasets,   input   vectors,   output   vectors   and 

predictor  variables.  Classifier algorithm  components  are training,  model 

and decider programs. 

3.  Classfiers, for example Random Forest, use decision tree algorithms which 

evaluate decision tree.



4. Naive Bayes is a simple, probabilistic  and statistical  classifier. Naive Bayes 

classifier basis is Bayes' Theorem  (from Bayesian statistics)  with  strong 

(Naive)  independence   assumptions  and  maximum  posteriori  hypothesis. 

The classifier uses are in text and documents. 

5.  Classification  methods   are   k-nearest    neighbour,   Stochastic   Gradient 

Descent -  Logistic Regression,  Support  Vector  Machine, Random Forest 

and AdaBoost classifiers. 
 

LO 6.7 
 

 

1. Recommender system is a system that  evaluates contents  or items on the 

preferences  of others with a similar point of view. The two approaches  to 

collaborative filtering are (i) memory-based  collaborative filtering - based 

on similarity between users and items, and (ii) model-based collaborative 

filtering - based on ML techniques. 

2. Collaborative filtering  predicts  the  likeliness of an item that  she/he  has 

not  rated  based  on  a  set  of  historical   preference  judgments   from  a 

community of users. 
 

3.   Collaborative  filtering   builds  around   the   attributes   of  a  given  item. 

Collaborative filtering relies on the behavior of the users. 
 

LO 6.8 
 

 

1. Apache Mahout is scalable generalized  tensor  and linear  algebra  solving 

engine, which runs the ML algorithms  on Big Data in parallel  computing 

environment. Mahout   enables   clustering,   classification,   collaborative 

filtering, regression   and   recommender.   Mahout   consists   of  tools  to 

automate  finding  of meaningful  patterns   at  big datasets  stored  in data 

store at HDFS. 

2. Contains     several      Spark     and     MapReduce     enabled      clustering 

implementations, such  as  K-means,  Fuzzy K-means,  Canopy, Dirichlet, 

supports distributed    Naive   Bayes  and   complementary    Naive   Bayes 

classification implementations.



I   Objective Type Questions 1111 
Select one correct answer option for each of the following questions: 

 

6.1 Mahout  includes  APis for  (i) distributed   and  in-core  first  and  second 

moment routines, 

(ii) distributed  row matrix (ORM), (iii) distributed  and scalable libraries for 

tensor,  matrix  and vector,  (iv) distributed  and local principal  component 

analysis  and  stochastic   singular   value  decomposition,   (v)  distributed 

Cholesky  QR   (thinQR),  (vi)  distributed    regularized    alternating    least 

squares,   (vii) Java  libraries   for  common  mathematics   and  statistical 

operations,  (viii) focuses on linear  algebra for matrices  and vectors,  and 

(ix) primitive C++ and well as Java collections 

(a)  i to viii 
 

(b)  all 
 

(c)  all except i and v 
 

(d)  i to v, viii and ix 
 

6.2 (i) Regression analysis is a technique  used for predicting,  (ii) predicts  the 

unknown value of a variable from the known value of another variable. (iii) 

Regression analysis is a statistical  method.  (iv) Regression deals with the 

formulation  of  conceptual   model   depicting   a  relationship    amongst 

dependent and  independent   variables.  (v) The  independent   variable  is 

used  for  the  purpose  of prediction   of the  values.  (vi) More  than  one 

variable whose values are hypothesized  are called independent  variables. 

(vii) The prediction  for the  dependent  variable  can be made by accurate 

selection of the independent  variables to estimate a dependent  variable. 

(a)  none 
 

(b)  all 
 

(c)  all except v and vi 
 

(d)  iii to vii 
 

6.3 (i) The standard  error  of the  estimate  is a measure  of the  dispersion  (or



variability)   in the 

(ii)   predicted     values    in   a   regression,     (iii)   probabilistic   values   in  a 

regression.  (iv) When the sest is small, most of the observed values (y) dots 

are close to the regression  line in a scatter  plot and better  is the estimate 

based on the equation  of the line. (v) When the sest is small, many of the 

observed  values  are  far  away from  the  regression  line.  (vi) When  the 

standard   error  is  zero,  then  no  variation   exists  corresponding   to  the 

computed line. The correlation  is perfect. 

(a)  iv 
 

(b)  all 
 

(c)  all except ii to v 
 

(d)   all except iii and v 
 

6.4 (i)  Coefficient  values   suggest  which   relationships   in  the   model  are 

statistically  significant and (ii) the p-values in regression  analysis suggest 

the nature   of  those   relationships.   (iii)  The  coefficients  describe  the 

mathematical relationship   between  each  independent   variable  and  the 

dependent  variable. (iv) The p-values for the coefficients indicate whether 

these relationships  are statistically significant. 

(a)  all except ii 
 

(b)  iii and iv 
 

(c)  all 
 

(d)  ii to iv 
 

6.5 A hypothesis  test  requires  (i) stating  the hypotheses,  (ii) null hypothesis, 

(iii) alternative  hypothesis, (iv) F-test hypothesis, and (v) t-test hypothesis. 

Also required  is (vi) preparing  plan for the analysis. (vii) The analysis plan 

means   how  to  use  sample  data   to  accept   or  reject   the   alternative 

hypothesis. 

(a)  i, iii, iv and vi 
 

(b)  i to v



(c)  ii to vi 
 

(d)   i, ii, iii, vi 
 

6.6 K-mean based algorithm  (i) classifies or groups the  objects based on the 

attributes (features)  into  k number   of groups.  k is  a  positive  integer 

number.  (ii) The grouping  of data results  into k clusters  (Cl, C2,  ...  ,  CK), 

each has A centroid. (iii) Centroid is fundamentally  a center representative 

of a cluster. (iv) The centroid of each cluster is calculated as the mean of all 

the  instances  belonging  to  that  cluster.  (v)  The clusters  are  formed  by 

maximizing  the  sum of squares  of distances  between  the  data  and  the 

corresponding  cluster centroid. 

(a)  all except v 
 

(b)  i, ii, iii, v 
 

(c)  ii to v 
 

(d)   all except iii 
 

6. 7 (i) Clustering finds to which class a new object belongs to from the set of 

predefined classes. 

(ii) Classification groups a set of objects in order  to find the  relationship 

between   them.   Clustering   and   classification   differ  in  terms   of  (iii) 

supervised and unsupervised  learning, 

(iv) use of training  datasets,  no training  datasets  usage (v) labels (all the 

data  labeled,  unlabeled),  (vi) datasets  consisting  of attributes   and  class 

labels, (vii) process  algorithms  (categorization  of new data  according  to 

the  observations  of the  training  set,  usages  of statistical  concepts  and 

splitting of datasets sub-sets with similar features), respectively. 

(a)  all except i 
 

(b)  all except iii and iv 
 

(c)   all except i, iii 
 

(d)  all 
 

6.8 Formal statement  of the association rule problem is stated as: Let I  = {11     12, 

'



... , Id} be a set of d distinct attributes,  also called literals. Let T = {t1,   t2,  .•• ,  tn} 
 

be set of transactions  and (i) contains a set of items such that T c I.  (ii) An 

association rule is an implication of the form X ---. Y, 

(iii) where X, Y belongs to sets of items called itemsets  (X, Y c  I), and (iv) 

X and Y are union of itemsets (X U  Y=0 ). Here, (v) Xis called consequent, 

and (vi) Y antecedent. 

(a)  i, ii and v 
 

(b)  all except i, v 
 

(c)  i to iii 
 

(d)  i to iv 
 

6.9 Apriori algorithm is simple as (i) it follows a basis that any subset of a large 

itemset  must be a large itemset,  called Apriori principle.  (ii) The Apriori 

principle can reduce the number  of itemsets need to examine. (iii) Apriori 

principle  suggests  if itemset  {A,  B, C}  is a frequent  itemset,  then  all its 

subsets {A},  {B},  {C}, {A,  B},  {B,  C} and {A,  C} need not be frequent.  (iv) On 

contrary,  if an itemset  is not frequent,  then  none of its supersets  can be 

frequent.  (v) Apriori advantage is that the principle results in to a smaller 

list of potential  frequent  itemsets as mining progresses. (vi) The algorithm 

requires  multiple  scans  of the  database.  (vii) The  complex  generation 

process for candidate exploits more time, space and memory. 

(a)  i to v 
 

(b)  all but vi and vii 
 

(c)  all except iii 
 

(d)  i to iv 
 

6.10  (i) A recommender  system is a system that  evaluates contents  or items on 

the  preferences  of others  with a similar point  of view. (ii) Collaborative 

filtering predicts the likeliness of an item that  he/she  has not rated based 

on a set of historical preference judgments  from a community of users. (iii) 

Collaborative filtering is similar from content-based  filtering, (iv) which is 

built  around  the  attributes   of a given  item.  (v) Item  features  capture



everything.    When   user's    interest    changes    then   also   the   collaborative 

filtering  does not  on the  other  hand  rely on the  behavior  of the  users. 

(a)   i, ii, iv 
 

(b)  all except v 

(c)   all except iii 

(d)   all except i 

6.11  Item-based collaborative  filtering uses (i) full or (ii) a sample of the user• 

item  database  to  (iii) generate  a prediction.  (iv) Users of a group  shows 

dissimilar interest.  (v) A prediction  of preferences  on new items for a new 

user  (or active user) can be evaluated  by identifying  the neighbours.  (vi) 

Jaccard Similarity,   (vii)  cosine   similarity,   (viii)  edit-distance   or   (ix) 

correlation  methods are used to find similarities between users. 

(a)  all except viii 

(b)  all except iv 

(c)  i to vii 

(d)  all except i 
 

6.12  User-based nearest  neighbour  collaborative  filtering  algorithm,  performs 

the  following  steps:  (i) Calculate  the  similarity  or  weight  wi,  j'   which 

reflects distance, correlation  or weight between  two users or two items, i 

and j.  (ii) Identify a prediction  for the  new user by taking  the  weighted 

average of all the ratings  of the user or item on a certain  item or user, or 

(iii) using variance.  (iv) Suggest top-N  recommendations.   (v) The task to 

generate  a top-N  recommendation  requires finding k most similar users or 

items  (nearest   neighbours)   after   computing   the   similarities,   and  (vi) 

aggregate  the  neighbours  to get  the  top  N  most  frequent  items  as the 

recommendation. 

(a)  all 
 

(b)  i, iii and iv 
 

(c)  all except iv



( d)   all except  iii 
 

6.13  The decision trees  (i) aggregate  the  datasets  based on all values of three 

variables and   identify    the    variable,    which   creates    the    (ii)   best 

heterogeneous sets  of  datasets   (which  are  (iii) homogeneous  to  each 

other). (iv) Decision tree output in the form of (v) graphical representation 

is very easy to understand.   (vi) Useful in predicting  significant  response 

variable. (vii) Influenced by outliers and missing values to a fair degree as 

compared to other  techniques  of modeling. (viii) Handles both numerical 

and statistical  variables. (ix) Decision tree is considered  a non-parametric 

method.  Thus,  (x) decision  trees  have  no  assumptions  about  the  space 

distribution  and the classifier structure. 

(a)  all 
 

(b)  iv, v, vi, viii, ix, and x 
 

(c)   all except i 
 

(d)   all except i and x 
 

6.14 Naive Bayes is (i) simple, (ii) probabilistic  and (iii) statistical  classifier. (iv) 

The classifier base is Bayes theorem  (from Bayesian statistics) with strong 

(Naive)  independence   assumptions  and  maximum  posteriori  hypothesis. 

(v) It  is an unsupervised  learning  technique,  which uses non-parametric 

approach.  (vi)  The   classifier   exploits   one   of  the   most   basic   text 

classification  techniques   with  a  variety  of  applications  in  email  spam 

detection, personal   email  sorting   and  document   categorization.   (vii) 

Classifier assumes class conditional dependence. 

(a)  all except vi and vii 
 

(b)  all except ii 
 

(c)   All except v and vii 
 

(d)  All except iii and vi 
 

II   Review Questions      11:1



6.1 Describe  the   approaches   used   in   linear,   multivariate    and   multiple 

regression algorithms. (LO 6.1) 

6.2 How are correlations  indicators  used for evaluating  linear  relationships? 

What do the strength  and direction of the relationship  describe? (LO 6.1) 
 

6.3 How do Euclidean and Manhattan  distances  perform  regression  analysis 

and predictions? How do the weights apply? (LO 6.2) 

6.4 How are  Jaccard  distance,  cosine  distance  and  edit  distance  used  for 

finding similar items? (LO 6.3) 

6.5 How does frequent  pattern   mining  enable  knowledge  discovery  from  a 

large number of itemsets? (LO 6.4) 
 

6.6 Describe the Apriori algorithm.  (LO 6.4) 
 

6. 7 How are methods of collaborative filtering used? (LO 6.4) 
 

6.8 How does clustering a large dataset help in knowledge discovery about the 

datasets? (LO 6.5) 
 

6.9 Compare the characteristics  features  of K-means, K-medoids, Canopy and 

hierarchical  clustering techniques.  (LO 6.5) 

6.10  What are the differences between clustering  and classification algorithms, 

and between  supervised  and unsupervised  learning?  Explain functions  of 

training,  model and decider programs.  (LO 6.6) 

6.11  How is a decision tree used? (LO 6.6) 
 

6.12  Compare the  characteristic   features  of K-NN,  SGD, Naive   Bayes, Random 

Forest, Support Vector and AdaBoost classifiers. (LO 6.6) 
 

6.13 What are the  steps in item-based  collaborative  filter when used for 

recommender?  (LO 6. 7) 
 

6.14  List and  explain  the  features  of Mahout  0.13.  List the  machine  learning 

algorithms, which Mahout implements.  (LO 6.8) 

6.15  How is principal component analysis used in machine learning algorithms? 

(LO 6.8) 
 

6.16  How   do   algorithms    provided    in   Mahout   perform    clustering    and
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classification? (LO 6.8) 
 

 

II   Practice Exercises       1111 
6.1 Consider student  expected grades in an examination.  Assume that  grades 

have  probabilistic   distributions.   Consider  grade   point   as  a  variable. 

Assume that probability of student  awarded grade point 1.0 is 1 %, 2.0 is 4%, 

3.0 is 8%, 4.0 is 16%, 5.0 is 24%, 6.0 is 26%, 7.0 is 11% and 

8.0  is 10%.  (i)  What are the  mean, variance  and  standard  deviation?  (ii) 

Compute the  oth   moment,  1st  moment,  z=' moment  and 3rd  moment.  (iii) 

How  do  moment   and  variance   relate?   (iv)  Interpret   the   parameters 

computed. (LO 6.1) 
 

6.2 Recapitulate  Practice Exercise 3.1.  Consider a car company selling Jaguar 

Land Rover, Hexa, Zest, Nexon and Safari Storme models of cars. Table 6.9 

gives a dataset  for sales of these cars at 2000  showrooms for each date in 

2017.  Total 2000  x  365 rows per year. Total columns are 2000  x  365  x  7 per 

year. Variables for sales are denoted as x followed by day of the year (1 or 

2, ... , 365) followed by the model_ID, (1, 2, 3, 4 or 5) in columns 3 to 7. Using 

interaction    variables   concept,   list   the   steps   to   find   whether    any 

relationship  between the monthly sales figures of car models exists or not. 

Table 6.9  Sales data for cars of 5 models at 2000  showrooms for each date in 

2017
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6.3 Show a simple linear regression  chart for varying weekly sales of cars of a 

specific model, say Tata Zest all over the  country.  Plot the  values  on a 

graph, with week of the year on the x axis and weekly sales on the y axis. 

How are variance  and moments  0, 1,  2  and 3  estimated?  Assume the plot 

fits a line Sales at 52nd week=  Sales at 1st week of the year+  0.001 x  52 x 

Sales at  1st week. How can the  sales at  lOOth week be predicted  from 

regression analysis? (LO 6.2) 

6.4 List the steps to use the linear regression model to find the rate of monthly 

sales growth of each car model combined at all showrooms. (LO 6.2) 

6.5 List the steps to prepare  a new table. Table 6.10 gives yearly accumulated 

sales of each model from  2010 to  2017, i.e., total  8  rows for 8 years  of 

accumulated yearly sales and total columns are 8 x 7 per year. Variables for 

sales are denoted ass  followed by day of the year (1 or 2, ... ,  8). Use values 

in each cell in terms of variable s. Table 6.9 format can be as shown below. 

Table 6.10  Yearly sales data for cars of 5 models accumulated over all 

showrooms and all dates in a year during 2010 to 2017
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6.6 List the steps to find regression coefficients in linear model and non-linear 

model, moments, variance and standard  deviation of actual yearly sales vs 

estimates from the coefficient values for each car model. (LO 6.2) 

6. 7 List the  steps  to  find  regression   coefficients  using  linear  model  and 

Euclidean distances. 

(LO 6.2) 
 

6.8 List the steps in coding for determining  the jaccard,  cosine and Euclidean 

similarity coefficients. (LO 6.3) 
 

6.9 List the  steps  for finding  the  association,  association  rules,  filtering  the 

frequent itemsets   for  computer   science  books  on  two  programming 

languages, Java and Python. (LO 6.4) 

6.10  Assume a graph with price discount given between 0% to 40 % with respect 

to total sales realised to that  customer.  Show the dots for each customer. 

How will the company optimize the profit using that data and take pricing 

discount decisions using clustering algorithm. (LO 6.5) 
 

6.11  Describe hierarchial  approaches  including agglomerative-divisive-distance 

measures to defining the distance between clusters in different algorithms. 

(LO 6.5) 
 

6.12  List the steps in Schoastic Gradient Descent and logistic regression. Give an 

example of using SGD logistic regression. (LO 6.6)



6.13  List the  steps  in  a  AdaBoost classifier.  Give an  example  of using  SGD 

logistic AdaBoost. 

(LO 6.6) 
 

6.14  List the steps for using the hidden  Markov deep learning  algorithm.  Give 

an example of using the hidden Markov. (LO 6.6) 

6.15  List the steps for using the multi-level perceptron  deep learning algorithm. 

Give an example of using multi-level perceptron.  (LO 6.6) 
 

6.16  List the steps for cluster analysis and find whether  clustering shows higher 

sales in certain  group of showrooms in festive months,  i.e., Octobers and 

Decembers in most of years compared to other months. (LO 6.6) 

6.17  List the steps for the decision trees from the data in Table 6.9.  (LO 6.6) 
 

6.18  List the  steps for collaborative  recommendation,   and mining the  similar 

itemsets in the problem in Practice Exercise 6.6. (LO 6. 7) 

6.19  List the  coding  steps  using  Mahout  0.13   and  Python  libraries  for  the 

algorithms listed in Table 6.6. (LO 6.8) 
 

 
 
 

1 https://  en.wikipedia.org/wiki/Kernel   (statistics) 
 

2 Weber, Roger; Schek, Hans-J.; Blott, Stephen, 'A quantitative  analysis and 

performance   study  for  similarity   search   methods   in  high  dimensional 

spaces' 
 

3 https://  en.wikipedia.org/wiki/Levenshtein_distance 
 

 
 
 

Note: 
 

o o • Level 1 & Level 2 category 
 

o • • Level 3 & Level 4 category 
 

• • • Level 5 & Level 6 category
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Data StreamMining and Real• 
Time Analytics Platform• 
SparkStreaming 

 
 
 
 
 
 

 

LEARNING OBJECTIVES 
 

 

After studying this chapter,you will be able to: 
 

LO 7 .1  Get conceptual  understanding   of data  stream,  model,  architecture, 

management,  sources, querying and stream processing issues 
 

LO 7.2    Get knowledge of methods of sampling, filtering and counting distinct 

elements in stream computing 
 

LO 7 .3 Get knowledge of methods of finding the frequent itemsets in a stream, 

handling the large datasets and mining the association-rules 
 

LO 7.4     Get   introduced    to    a   real-time    analytics    platform-Apache 

SparkStreaming, and applications of real-time analytics to sentiments 

analysis, and the stock prices analysis 
 
 

RECALL FROM EARLIER CHAPTERS 
 

Apache® Spark™ is a fast and dynamic compute engine with in-memory 

processing.  Processing requires  read of instructions  and data,  and write of 

results.  The  in-memory  data  processing  results  in  fast  computations.  In-



memory read and write operations  take place without  any delay as compared 

to read from disk and write to disk operations.  Fast computations  also result 

due to the use of DAGs and acyclic dataflows. Spark processes the data stored 

at HDFS and compatible cloud stores, such as Ceph or 53. Spark has the APis 

which facilitate programming in R, Python,Java  and Scala (Section 5.1). 
 

SparkStreaming  is a  software  component  in  Spark  stack.  The  software 

processes real-time streaming data using micro-batches. SparkStreaming 

processes DStream (or discretized stream) which consists of a series of RDDs 

as the real-time data. 
 

This chapter focuses on streaming data concepts, stream analytics and real• 

time analytics. 
 

 
 

7 .1 ! INTRODUCTION 

 

Data stream  in general  means  continuously  flowing data  in  sequences.  A 

theoretical  definition of stream is an unbounded  sequence of data items and 

records,  which may or may not be related,  or correlated  with  each other. 

Examples  of  the   stream   are   computer   network   traffic,   data   of  stock 

quotations,  online videos, telephone  conversations,  transactions  in database 

and transmission  of sensors data. 
 

Streaming data originates from several sources. Examples include data and 

images from satellites, IoT devices, Internet  websites and social media posts. 

Many applications require  streaming  data for various services. Processing of 

data stream  helps extraction  of knowledge-structures   from the continuous, 

rapid flowing data stream. 
 

Some important  key terms and their meanings are given below: 
 

Apache® Spark™ refers to a fast and general compute engine. Apache® Spark™ 

powers  analytics  applications   up  to  100   times  faster.  It   supports   HDFS 

compatible data. Spark has a simple and expressive programming model. The 

multiple languages, Python, and Scala shells provide great ease in programming 

for complex analytics, machine  learning, and other solutions. 
 

Spark software stack  refers   to  SparkSQL, SparkStreaming,   Spark  Arrow, 

Sparkle, MLib, and GraphX.



Scalability  can refer to many different system parameters,  such as how much 

added traffic can it handle,  how easy is it to add more storage  capacity, or 

even how many more transactions  process. 
 

This  chapter   describes  methods   of  processing,  analyzing,  mining  the 

streaming  datasets  and SparkStreaming-a    real-time  analytics platform  for 

Big Data. Section 7 .2 describes the concept, model, architecture,  management 

of data stream  and gives examples of sources. Section 7 .3 describes stream 

computing  aspects-sampling,    filtering  and counting  distinct  elements  in a 

stream.   Section  7.4   describes  the   methods   of  frequent   itemset   stream 

analytics,  handling  large  datasets  and  association  rule  mining.  Section 7.5 

describes  real-time  analytics  platform-Apache    SparkStreaming,  and  case 

studies on real-time sentiment  analytics and stock prices analytics. 
 
 
 

7.21 DATA STREAM CONCEPTS AND DATA STREAM 

MANAGEMENT 

The following subsections describe the concept, 

model, architecture     and   management    of   data 

streams. 
 

 

7 .2.1  Data StreamConcepts 
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A stream is a sequence of data elements or symbols made available over time. 

Data stream transmits  from a source and receives at the processing end in a 

network. 
 

An application  processes a data stream differently. Processing is in micro• 

batches instead of processing batches. Processing of stream can be 

comprehended  as filling milk in bottles on a conveyor belt and capping them, 

one at a time successfully rather  than in a large batch at the same time. 
 

Standard operations  do not apply on stream as they may have unlimited or 

infinite data, and at an instance may not be available completely. Formally, 

streams   are   partial   data   (potentially   unlimited),   and   not   finite   data. 

Programmers  use the  term  "stream"  in computer  science in several ways. 

Some of these are:
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(i) Stream   is  communication     of  bytes   or  characters    over   sockets   in  a 

computer   network. 

(ii) A  program   uses  stream   as  an  underlying    data  type  in  inter-process 

communication channels. 

(iii)  Stream   Java   class  objects   perform    I/Os.  Java   encapsulates     Stream 

Classes  in java.io   package.  Java  defines   two  types   of  streams:   Byte 

Stream   and  Character   Stream.  Java  has  several   IO  classes  for  inputs 

and outputs,  such as ObjectOutputStream,    ObjectinputStream,    and 

FilterOutputStream. A stream  object  is a logical interface   to a file. That 

file  can  refer   to  a  disk  file,  screen,   keyboard,   port,   or  a  file  on  a 

secondary  storage  device. 

(iv)  A  stream   is  a  source   or  sink  of  data   in  UNIX. It  usually  comprises 

individual bytes or characters.  Stream behaves as an abstraction  when 

reading or writing files, or communicating over network sockets. UNIX 

recognizes  three  standard  input  and output  streams  called standard 

input (stdin), standard output (stdout) and standard error (stderr). 

(v) A UNIX utility sed (stream editor) parses and transforms  text using a 

simple compact programming language. 

(vi) A Linux stream is a data transfer  entity in a Linux shell that transfers 

data from one process to another  through  a pipe, or from one file to 

another as a redirect. 

(vii) Perl and Python implement  the stream as an iterator.  An iterator  is a 

useful abstraction  of an input stream. 

(viii)A stream  is an abstraction  of a construct  that  sends or receives  an 

unknown number  of bytes in some programming  languages. C ++ uses 

this  abstraction  to  perform  input  and  output.  Here, a stream  is an 

entity where a program can either insert or extract characters. 

(ix) Oracle streams  enable  information  sharing.  A  message  is a unit  of 

shared piece of information.  Oracle streams can share the messages in 

the stream. The stream  propagates  information  within a database  or 

from one database to another.



(x) HTTP Live  Streaming   (also  known   as  HLS) is  an  HTTP-based  media 

streaming communication    protocol   implemented    by Apple  Inc. It  is a 

part of Apple's QuickTime, Safari, OS X and iOS software. 

Streaming is a term  which is popular  in the  field of media as well. Here, 

streaming  means listening to music or watching video in 'real time' instead 

of first downloading and then listening or viewing 

the content. The contents transmit  in a compressed format over the Internet 

and the  receiver  plays the  contents  instantly.  A continuous  stream  of data 

flows between the source and receiver ends, and is processed in 

real time. 
 

 

7 .2.2  Data StreamModel 
 

Stream  is data  in  motion.  Three  approaches  for updating  the  end-points 

(sinks) are (i) non-overlapping, 

(ii) slow (batch processing) and (iii) fast (near real-time).  Following are the 

different  ways of modeling data stream,  querying, processing  and 

management. 
 

(a) Graph model Stream can be modeled as a graph of nodes connected  by 

the   edges.  The  edges  model  the   stream   of  data  moving  between   the 

operators.  The data  processes  at  the  node.  Each node  in the  graph  is an 

operator  or adapter.  The node can have inputs,  zero inputs  and outputs  or 

zero outputs. One node output connects to the input of the next node. Figure 

7.1 shows graph-based  stream as data model for processing at an operator  or 

adapter. 

 

 
 

Figure 7 .1 Graph-based stream data model for processing at an 

operator  or adapter 
 

(b) Relation-orientedstream-tuplesmodel Stream dataflow can be modeled 

as tuples flow. Individual data items may be relational  tuples in a data stream 

model.



Data  sink  may  be  Parquet   nested   column-oriented     data  stream   or  RDBMS 

row-oriented    storage  in tables.  Parquet  is nested hierarchical  columnar-storage 

concept. Nesting sequence is table, row groups within  a table, column chunk 

within the row groups, page chunks with the column chunk. Chunk pages are 

inside a column  chunk,  column chunks  inside a row group  and row groups 

inside a table (Section 3.3.3.5). 
 

Examples of tuple model stream of data are Borealis, STREAM and 

TelegraphCQ. Figure  7 .2  shows  relational   tuple-based   data  stream   model. 

Arrow shows the stream S flowing from the source to sink. S consists of infinite 

(means unbounded) time-ordered  multiple sets of tuples. Each tuple consists of 

(Timestamp t, Key, Values). Sink is Parquet nested column-oriented  or RDBMS 

tabular store. 
 

Relatlon....a,lentedstre.am mo~I
 
 

 
{Timestamp t, 

Key, 'Values) 

 
 

 
[Timestamp 't, 

Kev, Villues~ 

 
 
 

(Timestamp t.. 
Key, values) 

 

Pa  ,          i.ret,nested 

c:l!lllmn.n-mientedi 
or RD         S 

Tabularstme

A data stre.am Sas an Infinite, time-ordered multiple set of Wples  
Sink

 

Figure  7 .2 Relation-oriented  stream-tuples  model (Time stamp for 

real-time streaming data) 
 

Stream  dataflow  can  be  modeled  as  Parquet   nested   sequences  (Section 

3.3.3.5).  The  sequences  in  data  stream  are  page  chunks  nested  in  column 

chunks  in  each  column.  First the  (i) page  chunks,  which  nest  in a column 

chunk, then (ii) page chunks of the next column chunk, then (iii) the remaining 

column chunks which nest at a row group in the table, then  (iv) the next row 

group, and so on. Thus, all Parquet tabular  data transfer  as the stream  in the 

column-oriented  data stream. 
 

Processing   in   data   stream   model   can   also   include   some   data   from 

conventional  stored relations,  if required.  That means queries on data stream 

may perform join operations between data stream and stored relational data. 
 

A data stream is a potentially unbounded  and time-ordered  sequence of data 

items  (relational  tuples)  in  the  data  stream  model.  The receiving  software 

receives the sequences in order and sees the data items only once. Each tuple



consists  of a set of attributes,   like a row in a database   table.  The tuples  have  a 

schema-like   traditional   database.   One of the  attributes   in the  tuple  schema  is a 

timestamp,   usually  represented    by t. The timestamp  denotes the logical arrival 

time of the tuple into the system. 
 

(c) Object-based data   stream   model  Stream  dataflows  can be modeled  as 

objects.  Cougar and  Tribeca  are  two  examples  of object-based  data  stream 

models. Cougar models sensors' data as a stream of objects. Tribeca models the 

network monitoring data as a stream of objects. 
 

(d) XML-baseddata stream   model  NiagaraCQ is anXML-based data  stream 

model. It provides scalable continuous query processing over XML documents. 

It  performs  operations  over millions of simultaneous  queries by dynamically 

grouping them according to their structural  similarities. 
 

(e) Window-baseddata stream  model  Stream data direction  can be towards 

fixed   window,   sliding   window   or   landmark   window-sinks   (end-points) 

[Window means a time window during which the data stream  is looked at an 

instance. Suppose an application software queries streaming data at each 

successive 220 time-units  in time = Twindow· Then, 230 bits queried for 1  or O  takes 

(210   =  1024)  x   Twindow  time units  (minimum). One time  unit  corresponds  to a 

time interval  in which a bit 1  or O  can arrive in the stream. Application query 

caches the arriving bit in one time unit. Stream data unpredictably  changes in 

both size and frequency, and thus it can happen  in certain time units that no 

bits may be arriving. [210 Twindow time-units  may receive less or much less than 

230 bits.] 
 

Examples of  stream   processing modeling systems Examples of modeling 

systems for stream processing are: 

1. COUGAR is a sensor  DBMS.  It  models the  sensors'  data  as abstract  data 

type (ADT) and sensors data as time series. 

2.  Tribeca is an  older  stream  processing  system  for  network  monitoring 

applications.  An application  program  expresses  queries  using a specific 

dataflow-oriented query  language.  It  cannot   support  join  operations. 

Tribeca provides windowed aggregates.  It  also supports  other  operators 

that split and merge streams. Group-by splits the  streams whereby union 

merges the streams.



3.   Borealis is   a   distributed    stream   processing   engine   from   Brandeis 

University, Brown University and MIT. Borealis builds on their  previous 

engines, Aurora and Medusa for stream processing. 

Borealis, current   version  includes  various  modules,  such  as  a  stream 

processing  engine.  The version  provides  the  core  functionality  of low 

latency in stream processing using a rich set of 

stream-oriented   operators.  Borealis includes coordinator,  load manager, 

load shedder and fault tolerance  modules. Also includes graphical query 

editor, system visualizer, and stream connection generator. 

4.   STREAM  is a  data  stream  management   system  developed  at  Stanford 

University.  The  project   reinvestigated   data  management    and  query 

processing  in the  presence  of multiple,  continuous,  rapid,  time-varying 

data  stream.  The STREAM  prototype  supports  continuous  queries  over 

stream  as well as stored  relations.  To achieve  this,  STREAM  supports 

three types   of  operators:   stream-to-relation,    relation-to-stream    and 

relation-to-relation. 

5.   TelegraphCQ project developed at University of California, Berkeley, is a 

suite of  technologies   for   continuously   adaptive   query   processing. 

TelegraphCQ handles a large number of queries over high volume, highly 

variable data   stream.   It   continuously   processes   the   incoming   data 

without any storage. 
 

 

7 .2.3  Architecture 
 

Big Data stores at the: 
 

(i)   HDFS (Distributed at data nodes in clusters), or 
 

(ii)  DFS   compatible  data  store,  such  as  HBase, Cassandra,  Ceph  or  53 

(Section 5.2). 
 

Figure 7 .3 shows a query processing architecture.



 

 
 
 
 
 

emory 

 
 
 
 
 
 
 
 
 
 

 
 

Figure  7 .3 Data stream architecture  for processing 
 

Figure  7 .3  shows that  large  data  blocks  in  received  stream  store  at  HDFS 

compatible data store  or static data at disk. Data shards  load at memory from 

data  store  or  disk  for  future  uses  (Section  3.2).  The  figure  also  shows that 

streaming   data   shards   load  at  memory   in  real-time   applications.   A  user 

application uses a query repository, which continuously sends queries for 

processing of the shards in-memory. The responses of queries save at an output 

buffer before they are finally retrieved by the application. 

The processing  model  can also use hybrid  architecture,   referred  as lambda 

architecture for processing  streaming  data and back-end jobs at the  same time. 

The system manages  stream  flow over real-time  data  until  data  elements  are 

pushed to a batch system. The data then become available to access and process 

as batch data from disk static data store or HDFS. 
 

 

7.2.4 Data StreamManagementSystem (DSMS) 
 

Fundamentally  basis of traditional  data management  systems are on the notion 

of determined  and static  data  storage.  The streaming  data  basis is altogether 

different.  The data  requires  collection  and  parsing  before  using  and  deletion 

from the system. 
 

Responses against the queries are precise in static DBMS.  Streaming data can 

unpredictably   change   in  both   size  and   frequency,   and  thus   results   into 

approximate responses. 
 

Management  and processing  of streaming  data are different  from traditional 

DBMSs.  These systems build primarily  on the concept of persistence  and static



data  collections  while the  streaming   data  require   parsing  and processing   at once 

when  they  arrive  in the  system. 

Data Stream  Management  System (DSMS) is a data-intensive  application in which 

the data models as a transient  data stream. DSMS is an application program that 

manages  streaming  data. The usage of the  program  is different  than  using of 

persistent  relations in DBMS. 
 

Some  popular   applications   of  DSMS are  network   monitoring, 

telecommunications  data  management,  web applications  and sensor  networks. 

Individual data items model as relational  tuples in the data stream  model. For 

example,  data  of network  measurements,   call  records,  web  page  visits,  and 

sensor readings. Table 7.1 highlights the differences between DBMS and DSMS. 
 

Table 7 .1 Comparison between DBMS and DSMS 
 

 

DBMS 
 

DSMS 

Stores  sets  of records  with 

no pre-defined  time concept 

 

Provides on-line analysis of rapidly changing stream  of data 

Suitable for applications 

that require  persistent  data 

storage and complex 

querying 

 

Suitable for real-time,  continuous,  ordered  (arrival time or 

timestamp)  sequence of data elements.  Also, for data that  is 

large to store entirely  and continuous  querying  environment 

Persistent  relations 

(relatively  static, stored) 

 

Transient  stream  (on-line analysis) 

One-time queries Continuous queries 

Requires random  access Implements  sequential  access 

Unbounded  disk storage Bounded main memory 

Only current  state is 

important 

 

Past or historical  data is important 

No real-time  services 

requirements 

 

Real-time requirements 

Relatively low update  rate Very high arrival rate (usually in multi-GBs) 

Assume precise data Data get stale or imprecise  later 

Access plan determined  by 

query processor 1    physical 

database  design 

 

Unpredictable  data arrival  and varying characteristics   of the 

data 



Traditional   DBMSs do not  directly   support   real-time   continuous   queries.   The 

data  is available  on disk or memory  for random  access to them.  Some or all input 

data  that   are  to  be  operated    on  and  arrive   as  one  or  more   continuous    data 

stream  in the  data  stream  model. 
 

Data  stream   differs   from   the   conventional    stored   relational    model   in  the 

following  ways: 

•      The data elements in the stream arrive in real time . 
 

•       Size of the data stream is unbounded . 
 

•      The data processes in the order in which the data elements arrive . 
 

•      The processed elements delete or archive . 
 

• The buffer  is relatively  small than  the  size of the  data  stream  and  not 

accessible easily. 
 

These are two types of data streams: 
 

1. Transactionaldata stream: They carry  data  related  to the  interactions 

between different entities. For example: 
 

(i)   ATM transactions  - Withdrawals/ deposits by users from bank accounts 
 

(ii)  Telecommunication - Phone calls by callers to dialed numbers 
 

(iii) Web access by clients of resources at servers. 
 

2. Measurementdata stream:They carry data related to measured values or 

metric of entity states. For example: 
 

(i) Sensor  networks   -   Traffic  density  values,  presence,   or  absence  of 

obstacles in the path 
 

(ii)  IP network - IP packet in and out at router interfaces 
 

(iii) Climate data -Temperature and moisture records. 
 

Many systems support  handling  of streams.  Several major research  projects 

relate to relation-oriented  stream databases. 
 

Following are examples of commercial databases for streams: 
 

(i)   StreamBase (commercial version of Aurora/Borealis)



(ii)   Truviso (commercial version of TelegraphCQ); Cisco acquired it in May 

2012  extending  existing relational  databases to build TelegraphCQ and 

Truviso syntaxes. They are extensions  of PostgreSQL that  incorporate 

data stream 

(iii) TIBCO Business Events, Oracle Business Activity Monitoring 
 

 

7 .2.5  Example of Sources of Streams 
 

The sources of streaming data range from simple computer programs to Internet 

of Things (IoT) applications.  The sources of stream  include sensory machines, 

satellites,  instruments,   IoT application  areas,  websites,  published  information 

from service providers and social media posts. 
 

Some useful applications of data stream are: 
 

1. Making data-driven  marketing  decisions in real time. It requires the use of 

data from trends  analyses of real-time  sales, and analysis of social media, 

and the sales distribution. 

2.   Monitoring  and  detection  of potential  failures  of system  using  network 

management tool 

3.   Monitoring of industrial or manufacturing  machinery in real time 
 

4.   A sensor network or IoT controlled by another entity, or a set of entities 
 

5.   Watching online video lectures, and rewinding or forwarding them 
 

6. Subscribing to the daily news alerts, weather  forecasting services or other 

similar subscription based services 

7.   Using location  based  services,  such  as finding  nearest  point-of-interest 

(POI) 
 

8.   Getting location-based advertisements  or notifications 
 

9.   Watching on-demand movie, listening to online music, watching television 
 

10. Navigation using GPS 
 

11. Playing online games 
 

12. Response stream from a web server



13. Using social networks, such as Facebook and Twitter 
 

14. Traffic  management,   pollution  control,  flight  traffic  control,  war  field 

surveillance using sensor networks. 

DSMS deals with streams and processes them differently from traditional  data 

management  systems. A traditional  system builds primarily  on the  concept  of 

persistence  and static data collections. Streaming data requires  traversing  and 

processing at once before collection or deletion in the system. 
 

 

7 .2.6 StreamQueries 
 

Data is static  in a relational  database.  Thus, applications  send queries  to the 

database and obtain the results. They are one-time queries or transient  queries. 

Data in stream changes frequently. The results of the queries against the stream 

also change. The queries are defined as continuous queries or persistent  queries. 

They process continuously as data continue to arrive. 
 

Their query processing results can be obtained in two forms. The results store 

and  update   when  data  arrives   or  they  make  data  stream   for  the  results 

themselves.  For example, aggregation  queries  mostly use the  first form, while 

join queries may use the stream form. 
 

The  queries   may  also  be  classified  as  predefined   and   ad  hoc  queries. 

Continuous  queries  are  generally  predefined  and  therefore   register  with  the 

database server. 
 

Ad hoc queries can be issued online along with the flowing data stream. They 

can be either  one-time queries or continuous  queries. Ad hoc queries make the 

design of a DSMS difficult. Firstly, they do not optimize since they're  not known 

in advance.  Secondly, they  may require  reference  to an already  streamed  (or 

discarded) data for correct results. 
 

Another issue related to queries in DBMS and DSMS is that the former mostly 

leads to exact query results while the later mostly approximate-query  results. 
 

Query Languages 
 

1.   Relation-based query   language   is  based   on   SQL-like syntax.   These 

languages provide better  support  for windows and ordering. Examples are 

Esper, CQL (STREAM),  StreaQuel (TelegraphCQ),AQuery and GigaScope.



2.  Object-based  query   languages   are   based   on   object-oriented    stream 

modeling. These languages classify stream-elements  according to type 

hierarchy. Examples are Tribeca and COUGAR. 

3.  Procedure-based languages  are those where user functions  (procedures) 

specify the dataflow. For example, Aurora provides graphical  interface  to 

users for constructing  query plans. 

Examples of query languages are given below: 
 

STREAMContinuous  Query  Language  (CQL)  CQL developed at Stanford is an 

extension of SQL. The following example gives usages of CQL syntaxes. 
 

 

EXAMPLE 7.1 

 
Consider a network  security monitoring  system. (i) How does STREAM CQL 

create a stream? (ii) How does STREAM CQL remove a stream? (iii) How does 

STREAM CQL use time within the query? 
 

SOLUTION 
 

(i)   Creating stream: CQL syntax is: 
 

CREATE STREAM network admin( 

communication_time TIMESTAMP, 

ticker_symbol VARCHAR (10), 

num_packets INTEGER, 

bytes_per_packet NUMERIC (9,  0) 

)  ; 
 

(ii)  Removing stream: CQL Syntax is: 
 

DROP STREAM network admin; 
 

(iii)  Actual data  stream  generally  arrives  over network  and must be in a 

specific format for the database to use it. 

STREAM CQL stream uses time within the query: 
 

SELECT ticker symbol,



SUM(num_packets 

SUM(num_packets) 

*          bytes_per_packet)      I

 

FROM network admin [RANGE 5 MINUTES] 

GROUPBY ticker symbol; 

 
The following example gives usages of Truviso syntaxes. 

 

 

EXAMPLE 7.2 
 

 

How   does    Truviso    syntax    create    stream    and   use    system-generated 

timestamps? 
 

SOLUTION 
 

(i)    Create a stream with time stamp: 
 

CREATE STREAM network_admin( 
 

communication time   TIME STAMP   CQTIME   USER 

GENERATED, 

ticker_symbol VARCHAR (10), 

num_packets INTEGER, 

bytes_per_packet  NUMERIC (7,  2) 
 

)  ; 
 

(ii) Queries can be issued  against both relations  and stream. If a stream is 

involved, then it specifies the window as follows: 
 

SELECT ticker symbol, 

SUM(num_packets 

SUM(num_packets) 

*          bytes_per_packet)      I

 

FROM network admin< VISIBLE '5 MINUTES' > 
 

GROUPBY ticker symbol;



Example  7.3 explains usages ofTelegraphCQ TIMESTAMP COLUMN modifier. 
 

 

EXAMPLE  7.3 
 

 

How is query in TelegraphCQ used by giving a separate window specification? 
 

SOLUTION 
 

TelegraphCQ has a separate window specification: 
 

SELECT ticker_syrnbol,
 

SUM(nurn_packets 

SUM(nurn_packets) 
 

FROM network adrnin 

 

*               bytes_per_packet)        I

 

GROUPBY   ticker symbol 

MINUTES']; 

 

WINDOW 

 

network adrnin  [   '5

 

 

7.2.7 Stream  Processing   Issues 
 

Stream  processing  refers  to  a method  of continuous  computation  that  takes 

place as data is flowing through  the  system. The processing  can be helpful to 

gather statistics and/ or monitor the streaming data. It can also, help in studying 

the source of streaming data and forecast the future behavior. 
 

The unbounded  size, frequency,  velocity  and variety  of data  in stream  add 

challenges to the system. Following issues surface during stream processing: 
 

Size of the  streaming data  not  fixed Batch or static processing is a method of 

stored data processing. The calculations of execution time and usage of memory 

for algorithm are easy because processing of static data depends on the size. The 

size of streaming  data  size is variable  and  is rather   unbounded.  Therefore, 

algorithm  works differently. Algorithms cannot  iterate  over the complete data. 

The  processing  can  be  possible  on  a  piece  of data  comprising  specific  data 

elements or recent data elements. 
 

Need of   scalable    processing    Very   high   data   volume   requires   scalable 

processing.   As  applications   grow,  their   data   processing   needs   also  grow. 

Fulfilling demands of growing users can accelerate data processing requirements 

as the application demand grows.



Size is a vital  aspect   of scale  that   needs  consideration    in  case  of processing 

large  datasets   and  distribution    systems.   System  capacity   need  to  increase   for 

handling  greater   amounts  of data,  commonly  referred   as system  scalability  issue. 

Variationin the frequencyof data streamThe  frequency of data stream varies 

significantly over time. These variations  are unpredictable  or depend on social 

and  public  trends.  For example,  streaming  data  on  social networks  such  as 

Facebook and Twitter  can increase  in volume during  holidays or festivals. The 

variations can be periodic also, for example, in the evenings or weekends. 
 

Need of near real-time processing The streaming  data management  systems 

require  near real-time  processing. Managing and processing data in motion is a 

typical capability of streaming  data systems. The data requires  processing when 

the data is in motion on place after the collection. The analogy can be found in 

sensor  data  processing.  The computations  need  completion  in real  time.  The 

processing needs to be fast for streaming sensor data. 
 

Need of processing large data streams from different domainsData streams 

can vary with domain. The streams  can source from several applications.  Data 

arrives as large data streams from different domains. For example, satellite data, 

scientific instruments,  sensors,  social networks,  stock data, process industries, 

traffic controls and network logs. Processing of variety (formats, types, 

compression) of data is another challenge. 
 

Need of events-processingThe processing may be required  for different events 

representing    measurements,   such  as  position,   particle   mass,  temperature, 

number  of tweets  per  minute,  stock  update,  number  of items  manufactured 

during last one hour, number of vehicles passed in an hour, number of login on 

Amazon on a festival day, etc. 
 

Need of filtering to eliminate undesirabledata elements Another  important 

processing  need  is for  searching  the  required  data  from  a  data  stream  and 

filtering the stream to eliminate undesirable data elements. 
 

A   restriction   in  data  streaming   systems  is  must.  They  should  carry  out 

relatively  simple computations,  say one record  processing  at an instance.  The 

other  requirements   may be near  real-time  computations,  at times  in-memory 

and independent  computations. 
 

The processing  function  often  provides  the  service to a system or a stream 

source.  The  function   does  not   interact   with   system   or  source   (one-way



communication).    They  do  not  even  provide   any  feedback   of the  system.   Most 

stream-based   systems  are also subscriber-based    systems. 
 

 

7 .2.8   Real-time  Processing, Stream  Processing and  Batch 

Processing 
 

A system is a real-time  system if it provides the output  guaranteed  within hard 

"real-world" time deadlines. Software, which continuously processes a stream or 

stored  stream,  achieves nearly real-time  performance.  Time limitation  is not a 

concern in stream processing. No fixed time deadline exists on the output of the 

system   after   receiving   an  input.   These  requirements    for  streaming   data 

processing  are  reasonably  different  from batch  processing.  Data management 

and analysis are inclusive in batch processing. 
 

 

7.2.9  Summarizing Streaming Processing Needs 
 

Stream processing needs are: 
 

(i) Computations are a function of a single data element or a smaller piece of 

recent data. They have no access to the complete data. 

(ii)  Processing algorithms must be relatively fast and simple 
 

(iii) Need  to  complete   each  computation   in  near   real-time   while  static 

processing has more latency 

(iv) Computations are generally independent 
 

(v) Asynchronous processing,  i.e., the  source of data does not interact  with 

the stream processing system directly 

(vi) Requirements  of high-volume  processing  with  low latency  because  no 

information exists about when the next data will arrives. 
 
 

Self-Assessment  Exercise linked  to LO 7.1 
 

1.   List ten examples from two different domains for data streams. 
 

2. How does a data-stream   model as a relation-oriented   stream  tuples?  What 

are the benefits of the relational  tuples model? 

3.   Draw the data-stream  processing architecture.



4.   List the  characteristics     of Data Stream  Management    System  (DSMS). 
 

5.   List the  features   of different   types  of data  stream   query  languages. 
 

6.   What are the issues in data stream processing in case of data with high 

velocity and volume? 
 
 
 
 

7 .3 lSTREAM  COMPUTING  ASPECTS 

Many applications require Big Data stream computing. 

Stream computing is a way to analyze and process Big 

Data in real  time  to gain current  insights.  Following 

subsections  describe  the  methods  of  stream 

computing, sampling data in a stream, filtering of data 

in a stream and counting of distinct elements: 
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7.3.1 StreamComputing 
 

Stream computing has many uses, such as financial sectors for business 

intelligence,  risk management,  marketing  management,  etc. Stream computing 

is also used in search engines and social network analysis. 
 

The computing pulls the data from the stream, process the data, and streams it 

back out as a single flow. Such computing is required  to process a huge amount 

of data at a high speed. 
 

Usually, a Big Data stream  computing  implements  in a distributed  clustered 

environment,   as the  amount  of data  is enormous.  Rate of receiving  data  in 

stream  is high,  and the  results  are  required  in real time  to take  appropriate 

decisions or to predict new trends in the immediate future. 
 

Stream computing uses algorithms that analyze data in real time at high speed 

and with accuracy. Stream computing is one effective way to support Big Data by 

providing  extremely  low-latency  velocities with  massively parallel  processing 

architectures. 
 

Stream  computing  is becoming the  fastest  and most  efficient way to obtain 

useful knowledge from Big Data. Organizations can react quickly when problems 

appear, or to predict new trends for the future.



The efficiency  of data  stream  algorithms   is measured   using  some  fundamental 

characteristics: 

1.    Number of passes (scans) the algorithm must make over the stream 
 

2.   Available memory 
 

3.   Running time of the algorithm. 
 

Data stream  algorithms  usually have limited  memory  availability. They may 

take   certain   action   until   the   dataset   arrives   completely   (for  which   the 

application  is waiting). On the other  hand, the usual online algorithms  require 

action as soon as every piece of data arrives. 
 

 

7 .3.2 Sampling Data in a Stream 
 

Sampling in data stream  means the process of selecting a few data items from 

the   incoming   stream   of  data   items   for   analysis.   Methods   of  obtaining 

representative    sample  data  items  from  a  stream   can  be  classified  in  two 

categories: 
 

Obtaining a Representative Sample 
 

Two categories of sampling methods are probabilistic and non-probabilistic. First 

category,  probabilistic  sampling  is a  statistical  technique  used  for  making  a 

choice of data items for processing. The basis of the choice is the probability  of 

sampling the  data  items. For example, if probability  value chosen  is 0.01,  the 

method takes up 1 out of 100 data items for analysis. 
 

Probabilistic   sampling  technique   obtains   the   representative    sample.  The 

sample chosen is an actual representative  of the population. 
 

Five probabilistic  sampling methods  are simple random  sampling, systematic 

sampling, cluster sampling, stratified sampling and multistage sampling. 
 

Second category is non-probabilistic.  Non-probability sampling uses arbitrary 

or  purposive  sample  selection  instead  of  sampling  based  on  a  randomized 

selection. This introduces bias and increases variance to the measurement  data. 
 

Reservoir sampling is a random  sampling  method.  The method  chooses  a 

sample of limited data items from a list containing a very large number of items 

randomly.  The list is larger  than  one that  upholds  in the  main  memory.  An 

example of reservoir sampling method is given below:



EXAMPLE  7.4 
 

 

Using the  reservoir  sampling  method,  illustrate  the  probability  that  the 

incoming item is stored  in the  main memory, while choosing a sample of 

limited data items from a very large number of items? 
 

SOLUTION 
 

Let k be the number of items selected from an infinite stream of data items. 

Suppose when processing a sequence of items, the program processes one at 

a time. Hence, for n items, the probability  that  a new item is in the  main 

memory will be k/n. The algorithm works as: 
 

Select the first k items in memory. 

for ( i >  k)  { 

On the arrival of i th      i tern,   select a  new i tern  with 

probability  (k/i) 
 

Remove an old item at random, each with chance 1/k
 

with probability  (1 

instead of new item} 
 

Thus, 

 

k/i),  retain  the old  items

Items s  k,  the probability of item in memory is 1 
 

Item   k+l the probability will be k/ (k+l) 

Item   k+2 the probability will be k/ (k+2) 

 

 

Concise sampling  and counting sampling are other uniform random sampling 

methods.   Concise  method   is  like  the   reservoir   sampling  method,   with   a 

difference that a value that appears once is stored as a singleton, whereas a value 

that  appears  more than  once is stored as a (value, count) pair. This overcomes 

the restriction  of sample size due to the size of the main memory. The method 

inserts a new data item in the sample with a probability of 1/n. If the new item is 

already present in sample, the count is incremented. 
 

Counting  sampling  method is the refinement  of concise sampling in terms of 

accuracy. The method maintains the sample in the case of deletion of data items 

as well. The method  reverses  the  increment  procedure  by decrementing  the 

count value upon deleting a value. The process may lead to converting  back to



singleton    when   a  single   value   remains    in  the   sample   or  even   removing    a 

singleton  if that  single value is removed. 

General Sampling Problem 
 

Some problems encountered  while trying to find a sample of a data item from an 

infinite length data stream are: 
 

(i)   Unknown size of data set 
 

(ii)  Applications that need continuous analysis, such as surveillance analysis 
 

(iii) Irregular data rates as in the case of data network analysis. 
 

Varying the Sample Size 
 

Sample size means  the  number  of data  items,  with  respect  to  the  reference 

number  of data items, chosen to make an inference or decision. A large sample 

size can generally give inference with greater  accuracy. However, it may not be 

feasible to choose a large size. 
 

Procedures  for calculating  sample sizes are  (i) estimation,  called confidence 

interval  approach,  and (ii) hypothesis  testing.  Statistics prescribes  Chi-squared, 

T-test, Z-test, I-test,  P value for testing the significance of a statistical inference. 
 

The  number  of tables  is  available  for  sample  size  estimation   for  making 

inferences.   Estimation  is  done  for  the  minimum   sample  size  required   for 

accuracy in estimating the key proportions  P of data items D for selection. 
 

Some steps taken  into consideration  are: (i) a reasonable  estimate  of P to be 

measured in the study, (ii) the degree of accuracy D that  is desired in the study, 

-1%  -5%  or 0.01-0.05,   and {iii) the confidence level Z needed from the inference, 

95%. 
 

 

7 .3.3 Filtering of Stream 
 

Filtering  application   identifies  the   sequence  patterns   in  a  stream.   Stream 

filtering is the process of selection or matching instances of a desired pattern  in 

a continuous stream of data. 
 

For example, assume that  a data stream  consists of tuples. Following are the 

filtering steps: (i) Accept the tuples that  meet a criterion  in the stream, (ii) Pass 

the accepted tuples to another  process as a stream  and (iii) discard remaining 

tuples.



Several   filtering   techniques    exist:  Bloom  Filter   and  its  variants,    Streaming 

Quotient   Filter  (SQF), Particle   filter,  Kalman  filter,  XML filters  (such  as XFilter, 

YFilter). 
 

Conditional   matching   is simple  to  implement,   even  in case  of streaming   data 

when  a tuple  is matched   with  some  desired  value.  For example,  if the  'stock price 

field value is greater than the maximum price in 52 weeks' in the stream of data, 

then  that  price  filters  out  using  a  single  'if  '  condition.  The  complexity  of 

computation  increases when one has to check duplication  of records  or match 

more than one tuple with a loose condition (can be or cannot be accepted). Then, 

the  requirement   is revisiting  the  record  that  becomes  a memory-demanding 

computation. 
 

The following subsections  provide  an  overview  of Bloom filter,  one  of the 

popular variants of Bloom filter (Counting Bloom Filter): 

7.3.3.1 Filtering of Stream: The Bloom Filter Analysis 
 

Bloom filter  is a  simple  space-efficient  data  structure   introduced  by Burton 
 

Howard Bloom in 1970.1  The filter matches the membership  of an element in a 

dataset.  The data  structure   is a probabilistic  representation   of a vector  that 

supports membership queries. [Anand Rajaraman et al. 2]
 

The filter, since then  has been widely used in applications,  such as database 

applications, intrusion detection systems, and query filtering and routing 

applications. 
 

The filter is basically a bit vector of length m that represent  a set S = [x., x2,   •••      , 

x.} of n elements. Initially all bits are set to 0. Then, define k independent  hash 

functions, h., h2,   •••      ,  and hk. Each of which maps (hashes) some element x in set 

S to one of the m array positions with a uniform random distribution.  Number k 

is constant, and much smaller than m. That is, for each element x E   S, the bits hi 

(x) are set to 1 for 1 sis   k. [ E   is symbol in set theory for 'contained in'.] 

Figure 7.4  shows an example of a Bloom filter with k =  3.  The filter  is a bit 

vector of length  10. When a value xis  inserted  into the Bloom filter, the bits at 

position ht  (x), hz (x) and h3 (x) are set to 1. To detect whether  a value y is in the 

filter or not, the bits of position h, (y), h, (y) and h, (y) are thus checked.
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Figure  7 .4 (a) Inserting an element x in bit vector (filter) of length m = 

10, 

(b) finding an element y in an example of Bloom Filter 
 

The operation results in setting a particular  bit to 1 many of times, but only the 

first operation has an effect. 

To check if an item y is in S, the bits at positions h, (y), h, (y), ...  , and h, (y) are 

checked (Figure 7.4 (b)). If any of the bits is 0, undoubtedly y is not a member of 

S. If all hi (y) are found to be 1, y may be in S. The bits may have by chance been 

set  to  1  during  the  insertion   of  other  elements.  Thus,  chance  of incorrect 

assumption  is present  with some probability. This is a false positive, where the 

Bloom filter suggests that an element y is in S even though it is not. 
 

It  has been given in the  literature  that  the  probability  of a false positive is 

equal to (1 - e-kn/m)k. 
 

7.3.3.2 Counting Bloom Filter: A Variant of Bloom Filter 
 

Process of deleting  a particular  element  in the  Bloom filter  requires  that  the 

corresponding  positions computed by k hash functions in the bit vector, be set to 

zero. This may possibly concern other  elements stored in the filter, which hash 

to any of these positions. For example, the bit position 6 is set to one by two hash 

functions h. (x) and h, (x) in Figure 7.4(a). Thus, it is not possible to delete an 

element stored in the filter.



Positions.             
1    2         l         4         5      6         1      8         g        10 

0   I        1   I      0    I      0    I       1     I       1     I      0    I       1     I        0         1     I 
Counter               0         1        0         ~         l        2        0        l        0        1 

\~~/ 
h3[11;)                                            M:t!l               hj[-11:l 

Ccunler 111t poSIUOtl   6 becomes    2 due to two "8sh func:~oris  h11ncl 

h;3. when an elew.ent  :ic   Is   Inserted In bit trector (fllter~ of lenlJtf'I m=10 
 

Figure  7 .5 An example of Counting Bloom Filter 
 

In order to perform deletion of the element, a method counting Bloom filter, a 

variant  of Bloom filter be used. The counting filter maintains  a counter for each 

bit  in the  Bloom filter. The counters  corresponding  to the  k hash  values are 

incremented   or  decremented,  whenever  an  element  in the  filter  is added  or 

deleted,   respectively.   As  soon   as  a  counter   changes   from   O     to   1,   the 

corresponding  bit in the bit vector is set to 1. When a counter changes from 1 to 

o,  the  corresponding  bit  in the  bit  vector  is set  to  o.  The  counter  basically 

maintains  the number  of elements that  hashed to the corresponding  bit by any 

of the k hash functions. 
 

 

7 .3.4 Counting  Distinct  Elements  in a Stream 
 

The count-distinct  problem relates to finding the number of dissimilar elements 

in a data stream. The stream of data contains repeated  elements. This is a well• 

known  problem  in  networking   and  databases.   Several  applications   require 

finding the dissimilar or distinct elements. For example, packets passing through 

a router,  unique  visitors  to a web site, recurring  patterns  in a DNA sequence, 

records in a large database, or elements of sensor networks. 
 

7.3.4.1   Counting  Distinct  Elements  in  a  Stream  and  Count  Distinct 
Problem 

 

If n possible elements  a1,   a2,   •••,   and an are present  then  for an exact result  n 

spaces are required. In the worst case, all n elements can be present. Let m be the 

number of distinct elements. The objective is to find an estimate of musing  only 

s storage units, where s « m. 
 

The example below gives an algorithm to compute distinct elements. 
 

 

EXAMPLE 7.5



Assume  data  items  set  (A,  B, B, C, C, D, B, A, A, D, C, B, C). Assume mis  the 

number of distinct elements. (i) What are the distinct elements? (ii) Write an 

algorithm to compute mt. 
 

SOLUTION 
 

(i)   Number of distinct elements, m = l{A, B, C, D}I = 4 
 

(ii)  Assume D will contain the list of distinct  elements, a, where i = 0,  1, 2, 

.... , m. Algorithm is as follows: 
 

Initialize a Counter c =    0; 
 

Initialize  a  data  structure  say,  D  in  which 

insertion  of an element can be done easily  ( for 

example, hash table or search tree); 

Repeat for each element ai of stream 
 

{If ai is not in D 

add ai to D; 

increment c; 

end if;} 
 

un~stream is over; 
 

output m =  c; 
 

 
If m is not very large, D fits in the main memory and an exact answer can be 

retrieved  as shown in Example 7.5.  However, the  approach  does not  scale for 

bounded storage, or if the computation  performed  for each element ai is forced 

to  be  minimized.  Another   constraint   that   takes   place  in  streaming   data 

processing is that the algorithm only observes each input element once. 
 

Several proposed streaming  algorithms  use a fixed number  of storage units in 

such case; for example, bitmap algorithm. The algorithm  uses a limited amount 

of memory for solving the counting distinct element problem. 
 

The  following  example  gives  the   bitmap   algorithm   to  compute   distinct 

elements.
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EXAMPLE  7.6 
 

 

(a) Write the bitmap  algorithm  for computing  m, the  number  of distinct 

elements. 

(b)   Find min  the following data stream: A, B, B, D, A, A, E, B, H, B, A, F, D, E. 
 

SOLUTION 
 

(a) Assume  a  large  binary  array  (bitmap)  of  size  S   with  all  members 

initializing to 0. 

Choose  a  hash  function   h  such  that   the   value  h(i)  is  uniformly 

distributed  on [S]: 

{1,... , n} ~  {1, ... ,S}. 
 

Apply the hash function on every element (i) of data stream to compute 

h(i) and mark that position in the bitmap with a 1. 

Count the number of positions in the bitmap with a 1 and call it p. 
 

 
 

Thus, m = s · In (-5-)  ., •.. 
S-p 

Let S = 4 and h(i) = i mod 4, such that: 
 

h(A)  = 1, h(B) = 2, h(C)  = 3, h(D)  = 0, h(E) = 1, and so on. 

(7.1)

 

Thus the bitmap (drawn for h(i) = 1 in the following figure) will be: 

A,   B."    B,   o, A,  A.,  e,  B.   N    a A,     ,  D,   s i 
 

----..._        ~~ 
 

1     1 0     1 

 
 
p =  s, S=4

 

(b)   Using equation  (7.1), the  estimated  number  of distinct  elements  =  4 x 

ln(4/(4 - 3)) = 5.55 ~ 6 
 

 
Streaming  algorithms  have  several  applications,  such  as monitoring  packet 

flow  in  networks,   counting  the  number   of  distinct   elements   in  a  stream,



estimating    the  distribution    of  flow  sizes  and  estimating    the  size  of  a join   in 

databases. 

7.3.4.2 The Flajolet-Martin Algorithm 
 

Flajolet-Martin  (FM) algorithm approximates the m, number of distinct (unique) 

elements,  in a stream  or a database  in one pass. The stream  consisting  of n 

elements  with  m unique  elements  runs  in O (n) time  and  needs  O  {log (m)) 

memory. Thus, the space consumption  calculates with the maximum number  of 

possible distinct elements in the stream, which makes it innovative. 
 

Following are the features of the FM algorithm:3•4 
 

(i)    Hash-based algorithm. 
 

(ii)   Needs several repetitions  to get a good estimate. 
 

(iii)  The more different  elements  in the data, the more different  hash values 

are obtained 

(iv) Different hash values suggest the  chances of one of these  values will be 

unusual  [the unusual  property  can be that  the  value ends  in many  Os 

(alternates  also exist)]. 
 

The  following  example  demonstrates   an  estimation   of number  of  distinct 

elements in a stream using the FM algorithm: 
 

 

EXAMPLE  7.7 

 
Find  an  estimation   of the  number  of distinct  elements  in  the  following 

stream: 
 

s = 2, 3, 1, 2, 3, 4, 3, 1, 2, 3, 1, 4 
 

SOLUTION 
 

Consider a hash function, say f (a)= 7s + 2 mod 5 
 

Now apply hash function  on the  input  stream,  perform  the bit calculation 

and trailing zeroes, to get:



fL... 1    +-- 
 

:5 J6  mod 5     

L'i) 7*3+2   a .5 23 mod :S     

j.  1) 7""H2           5 CJmod.5 4  roe  

f 7·  +2 mo.15 16  mod .5   001 0 

f(J 1  j+2  moos mod 5 1  OH 0 

f4 7*4+2-n 5 _o:mod   5 0    

:f1) 7*1+_  moo .s modl"'i 3    

f  1 1~1+2moo.s  
 

9 mod S 4  II  

 :D) 1    +2moo.s 23 mod"'i  3 OU 

f  1 7*1+ ...  moo.s 9 mo   ;5  4 100 

f4 1 *4+ ,;_. moo .s so mod  .5  0 000 

 

o.1 ... 

0 

Apply  hash f'unctlon  on Input  stream              -- 
 
 
 
 
 
 
 

 
           16  mod  "i 

 
 
 

 
00] 

= 

 

 
ff output is zero. then 

trailing  bits are also 

ro

0 
 
 

0 

 

(i) The maximum  number  of trailing  zeros  from  the  binary  equivalent 

trailing zero values, r = 2. 
 

(ii)  The distinct value R = 2r = 22   = 4 
 

(iii) Therefore, R = 4 means there are four( 4) distinct values as 2,3,1,4. 
 

 

7.3.4.3 Combining Estimates- Space Requirements 
 

Different  hash  functions  result  in  different  estimates  of m  (the  number  of 

distinct elements). Thus, one needs to combine all these estimates. Two ways for 

combining estimates are described below: 
 

One way is to take the average of the values of R, computed from different hash 

functions. (Example 7. 7) Taking the average can be over estimation, thus cannot 

be a good solution. Another way is to take the median of all the estimates (taking 

the median is almost correct, but is always a power of 2). 
 

Therefore, combination of the two ways mentioned  above can be a good way to 

combine the  estimates.  Thus, build the groups of hash function  and take their 

average, then take the median of the averages. 
 

Processing multiple data stream and combining limits using in-memory 

processing is feasible.



7 .3.5 Estimating Moments 
 

Recall Sections 6.2.4  and 6.2.5.  Assume a random variable X where X refers to a 

variable,  such as number  of distinct  elements  x in data  stream.  Assume that 

variable  x has  probabilistic  distribution   in values  around  the  mean  value x. 
Probabilistic  distribution  means probability  of variable  having value found =  x 

varying with variable X. Expected value among the distributed  Xi values where i 

varies  from  O    to  n  will  depend  upon  the  expected  distinct  element  count. 

Expected value will be m for expected number  of distinct  elements  in the data 

stream, and much less than m for wide variance. 
 

The variance  is the  square of the standard  deviation  in m from the expected 

value,  the  second  central  moment  of a  distribution,   and  the  cr2    or  var  (x) 

represents  covariance of the random variable with itself. The method computes 

variance for formula: 
 

                                                                                                   ... (7.2) 
 

Moments (0,  1,  2  ...)  refer  to expected  values to the  powers  of (0,  1,  2  ...)  of 

random-variable  variance (Section 6.2.5). 
 

Let P(xi) is probability that m = mi. Sum of probabilities P (m.) over all possible 

n values of x is 1. oth moment is always 1. 

 

7.3.6 Countingof l's  in a Window 
 

Streaming data are fundamentally  continuously generated  data. Continuous data 

stream may be infinite. A good example is network traffic analysis. Here, millions 

of packets arrive per second, and hundreds  of concurrent  queries are raised per 

second. 
 

Infinite Stream  Processing 
 

Figure 7 .3  showed data  stream  architecture   for processing  queries. Volume of 

data is too large that  it cannot be stored. Hardly a chance exists to look at all of 

it. Stream processing is important  for applications where new data arrives 

frequently. Important  queries may be likely to ask about the most recent data or 

summaries of data. 
 

Sliding  Time Window Method for Data Stream  Processing 
 

The sliding window model for data  stream  algorithms  is a popular  model for



infinite   data  stream   processing.   (Window  refers   to  time  interval   during   which 

stream   raised   and  processed   the   queries).   The  receiving   of  data   elements    is 

taking  place one by one. Statistical  computations    are over  a sliding  time-window 

of size  N  (not over the  whole stream)  in time-units.  Window covers the  most 

recent  data  items  arrived.  Assume that  t  is the  time  interval,  which  a query 

processing  algorithm  needs to cache a bit,  1  or 0.  Then window time  interval 

Twindow for raising the queries and processing equals to N x t. 
 

Sliding window focuses on recent  data  and hence  provides  more  significant 

and  relevant   data  in  real-world   applications.  The  network   traffic  analysis, 

requires  analysis based on the recent  past. This is more informative  and useful 

than analysis based on stale data. 
 

A useful model of stream processing is the one in which queries are processed 

for a window of length  N, where  N corresponds  to the  most-recent  elements 

received. Usually it is so that  N is very large and cannot  be stored  on storage 

device, or there  are so many streams that elements from windows for all cannot 

be stored. 
 

Counting of l's  Problem 
 

Recall Section 7 .2.2 (e). Consider a counting  problem. For a given stream  of O's 

and l's, "How many ls are present  in the last k bits?" where ks  N. The obvious 

solution is to store the most recent N bits. When new a bit comes in, discard the 

first bit. This will result into the exact answer. What happens if one cannot have 

enough  memory  to  store  N bits?  For example,  when  the  stream  processor  is 

processing,  assume  N is 1   Billion. Here, the  solution  can be an  approximate 

answer. An algorithm  called Datar-Gionis-Indyk-Motwani (DGIM) algorithm  is a 

solution for such problem in counting. 
 

7.3.6.1 DGIM algorithm 
 

DGIM algorithm suggests that store just the O [log2 (log2 N)] bits per stream. The 

algorithm uses the concept of time buckets. A time window divides in a number 

of buckets. It is different from hash buckets. 
 

Assume that  Nb =  time units  of specific duration  in which stream  ls  and Os 

arrive. When N time units  elapse, the bucket ends. A bucket stores O  (log2 Nb) 

bits, and the count of number of ls between its beginning and end of the bucket 

(which is the  size of the  bucket)  [O   (log,  (log, Nb))]. A  bucket  in the  DGIM



algorithm   is a record,   which  consists  of (i) a timestamp   placed  at  a position   at 

which   the   rightmost    bit   (which   is  the   most   recent   bit)   arrives.   Timestamp 

consists  of O (log2 Nb) bits, [Suppose the number of bits ls as well as Os arrived in a 

given bucket time = 1024  x  1024x  1024  = 230,   then the timestamp will be 11110 (= 

30 decimal),  and  (ii)  count  cnt  of  ls  between  beginning  and  rightmost  bit, 

[Suppose cnt during that  time=  224,   then  cnt =  11000  (= 24 decimal). Maximum 

value cnt  =  29 when  all bits  arrived  happens  to be ls  and none  Os  when  the 

bucket time 230  time units.] The algorithm prefixes cnt. The succeeding bucket of 

2<2   x   cnt)  time  units  can be less than  the  earlier.  Earlier  arriving  buckets  are, 

therefore,  not smaller than the later [Anand Rajaraman et al.2]. 

The size of the bucket restricts  to the power of two. Buckets do not overlap in 

timestamps. Buckets are sorted by size (number of l's). The algorithm uses either 

one or two buckets with the  same power of 2  number  of l's.  The error  is just 

equal to the time taken in storing the bucket timestamps and cnt. 
 

Suppose the last bucket has size 2<2  x  cnt), then (2cnt - 1) of its l's  are still within 

the window, an error of at most that much can be there. Minimum one bucket is 

of size not less than 2<2 x  cnt). Thus, the error can be at most 50%. 
 

Further extensions to the algorithm are also found in literature  suggesting the 

use  of the  algorithm  discussed  in  this  section  to  handle  aggregations  more 

general  than  counting  l's  in  a binary  stream.  The next  subsection  discusses 

another important  data stream algorithm using the sliding window model. 
 

 

7 .3. 7 Decaying Windows 
 

Anand Rajaraman et al.2 describe the  details of the  decaying windows method. 

Decaying windows are useful in applications  which need identification  of most 

common  elements.  The  use  of the  decaying  window  concept  is when  more 

weight assigns to recent elements. 
 

The technique  computes  a smooth aggregation  of all the  l's  ever seen in the 

stream,  with  decaying  weights.  When  it  further   appears  in  the  stream,  less 

weight is given. 
 

The effect of exponentially decaying weights is to spread out the weights of the 

stream elements as far back in time as the stream flows.



Self-Assessment    Exercise   linked   to LO 7 .2 
 

1.   Why does processing  of data stream  require  sampled datasets  in place of all 

datasets? How is a representative   sample taken from a stream? 

2. What are the uses of mean, variance,  moments,  probability  distribution  and 

standard  deviation in stream computing? 

3.   What is the information  obtained after filtering of data stream? 
 

4.   How is the sliding window used for data stream processing? 
 

5. Why is decaying window with decaying weights used for aggregation of 

all the l's ever seen in a stream? 
 
 
 
 

7 .4 lFREQUENT ITEMSETS 

Frequent  itemsets  and frequent  patterns  have several 

uses. The following subsections  describe the  methods 

of finding  frequent   itemsets  and  handling  of larger 

datasets in the main memory, and algorithms to count 

the    instances    of   frequent    itemsets    in   streams 

containing those sets: 
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7 .4.1  Finding  Frequent Itemsets 
 

The  computational   model  of  finding  frequent   itemsets  typically  consists  of 

mining the number of itemsets in a flat file system. Assume that a Department  of 

Computer Science is offering five courses and students  have different  computer 

subjects. Figure 7 .6 shows the organization of the courses.
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Figure  7 .6 Courses organization 
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Let us define that  if an itemset  (subjects-set) is present  in at least 3 out of 5 

course baskets, then that subjects set is a frequent  itemset [Use that criterion for 

finding whether  Java and Python  subjects  set is the  frequent  itemset].  If the 

support threshold,  Sth is raised to 0.8 (80%), then that subject set does not qualify 

as a frequent  itemset.  It  is not necessary that  an itemset  is present  in a basket 

once only, but its presence  is counted  as once only though  the itemset  may be 

present 2, 3 or more times. 
 

Let us consider  an association  rule.  Let us assume SS is a subject  set. Let a 

subject is subj. Consider the association rule that  SS    ..   subj. It implies that if SS 

is present in a basket, then subj is likely to appear in that basket. 
 

Frequent sets basket counting problem has many applications: If a sports shop 

is selling badminton  racquets, then  it is likely to sell shuttlecocks  as well. A car 

company  sells five models through  thousands  of car  showrooms.  It  wants  to 

analyze in what  areas,  the Jaguar  as well as Zest cars are  selling frequently, 

considering Sth = 80%. 
 

Assume (lava, Python) is a subject set SS. The students  in a computer  course if 

taught Java subject for study, they may be taught  Python  as well. Association 

rules are Oava, Python)   ..  Java and Oava, Python)    ..   Python. Association rule 

mining  means  finding the  course baskets  in which both  the  association  rules 

apply. Figure 7.6 shows 3 course baskets where both the pairs of rules apply. How 

does number 3 find? Assume mis  number of course baskets and nB is number of 

baskets  where  that  subject  set  taught.  Following can be the  association-rule 

mining method: 
 

Initialize        nB =    0; 
 

For     each      i    from     1     to     m,   [if       (Java      is     a    subject         in     a



course-basket CB (i))  then if (Python is also a subject 

in CB (i))  then nB = nB +  1;] 
 

if (nB>= Sth)     then subject-set SS   is frequent itemset. 
 

The present  example considers the number  of associations, p just  two. What 

about a frequent  pattern  in which p is ten or more. Remember that the number 

of items  can  be  12000K  (Products  at  Amazon)  or  web  pages  at  www  with 

thousands of words on each page. 
 

The goal of association  rule mining is to discover items that are found together 

in sufficient  number  of baskets  and to find dependencies  among these  items. 

This simply implies finding frequent itemsets. 
 

 

7 .4.2  HandlingLarge Datasets for Finding Frequent 

Itemsets 

Actual number of datasets may be very large. Finding number of disk I/Os gives 

the actual cost of mining the large datasets  stored  on the disk. The association 

rule algorithms  read the data in iterations  where all baskets read in turn.  The 

mining cost measures using number of iterations  in the algorithm over the data. 
 

Thus, the  main  memory  is a critical  resource  for  several  frequent  itemset 

algorithms. The computation  involves counting of occurrences of pairs when the 

algorithm  processes  the baskets. The counting  of various  parameters  requires 

the usage of the main memory. Swapping the count values in/ out between the 

main memory and the disk is not advisable. 
 

The counting process does not eliminate useless items in later iterations,  and 

hence wastes time without producing any useful result. 
 

Consider the simple approach to finding frequent  pairs (Similar approach  can 

be  extended  for  larger  sets  as well). It  requires  generating  all the  itemsets. 

Though the probability  of being frequent  decreases with size. It  is important  to 

count/keep  track of itemsets that turn out to be frequent till the last. 
 

The following example illustrates  the method of estimating  memory 

requirements. 
 

EXAMPLE  7.8                                                                                     

l



Compute  the  memory  required   for finding  frequent   pairs  in case of 1  million 

items. 
 

SOLUTION 
 

Assume an approach  in which the algorithm  reads the file once and counts 

the occurrences of each pair in the main memory. Considering n items in the 

basket,  count  process  generates  almost  n. (n-1)/2  pairs  using two nested 

loops. The number  of calculations  involve -  (number  of items)", This may 

result into failure if square of number of items exceed the main memory. 
 

Memory needs for number of pairs for 1 million items compute as: 

=> Number of pairs of items= 106 x  (106 -   1)/2 = s x  1011 
 

Each count value is an integer that requires 4-byte memory. 

Therefore, memory needed= 4 x  5 x  1011 bytes= 2 x  1012 = 2 TB. 

 
 

Two popular  approaches  for counting  pairs in memory:  First is to count all pairs, 

using  a  triangular   matrix.  This  approach  requires  only  four  bytes  per  pair 

(assume  integers  to  use  4  bytes).  The second  approach  maintains  a table  of 

triples  [i, j,  c] where  c is the  count  of the  pair  of items  {i, j}. This approach 

requires 

12 bytes, but only for those pairs with count > o. The second approach performs 

better  than triangular  matrix if less than one-third  of possible pairs occur. This 

approach may also require  extra space for retrieval  of structure,  such as a hash 

table. 
 

Apriori  Algorithm  Section 6.5.3  discussed the algorithm. Apriori uses iterations 

(successive passes). Algorithm Apriori limits the need for the main memory. The 

first pass needs memory proportional  to the number  of items. The second pass 

needs memory proportional  to the square of frequent items only (for counts). 
 

Several proposed  algorithms  cut  down  on the  size of candidate  pairs.  The 

following  subsection   describes   Park,  Chen  and  Yu  (PCY), multistage   and 

multihash algorithms [Anand Rajaraman et al.2]: 

7.4.2.1 Algorithm of Park, Chen and Yu 
 

Apriori Algorithm works efficiently when the counting of the candidate process 

is executing. During the first iteration, most of the memory is unused. Memory is



required   to store  individual  item  counts  only. Can one use the  unused  memory  to 

reduce  the  memory  required   in the  second  iteration? 
 

The  PCY  algorithm   takes  benefit   of the  fact  that  the  first  iteration   of Apriori 

does not use lots of main  memory  for counting   of single  items.  Iteration   1 of PCY 

algorithm  saves item  counts  as well as maintains  a hash  table with  sufficient 

buckets that  fits in memory. It also maintains  the  counts for each bucket  into 

which pairs of items are hashed. 
 

An improved  version  of PCY  exists. Between the  iterations  the  buckets  are 

replaced  by  a  bit  vector.  Instead  of  four-byte  integers,  one  bit  is  used  to 

represent  the presence and absence of a frequent bucket. Bit 1 means the bucket 

is frequent  and  bit  O   means  it  is not  a frequent  bucket.  Thus, the  memory 

requirement   is reduced  32 times. Also, frequent  items need to be selected and 

listed for the second iteration. 
 

7.4.2.2 Multistage Algorithm 
 

A refinement  of the PCY algorithm is the multistage algorithm. This algorithm uses 

several   successive  hash   tables   to  reduce   the   number   of  candidate   pairs 

subsequently.  The  algorithm   applies  more  than   two  iterations   to  find  the 

frequent  pairs. The idea is to rehash  only those pairs that  qualify for iteration  2 

of PCY after iteration  1 of PCY. Since only a few pairs contribute  to buckets in the 

middle iteration,  fewer false positives may occur. Thus, it requires  3 iterations 

over the data. The two hash functions have to be independent. 
 

7.4.2.3 Multihash Algorithm 
 

A possibility exists for getting much of the benefit of the extra iterations  of the 

multistage algorithm    in   a   single   iteration.    Multihash   algorithm    is   an 

improvement  of PCY.  The main idea is to use several independent  hash tables 

during  the  first  iteration.  This can lead to benefits  like multistage  in only 2 

iterations. 
 

 

7 .4.3  Limited Passes Algorithms 
 

Multistage and multihash  algorithms use more than two hash functions. There is 

a point  of reducing  returns  in multistage  algorithm  since the  bitmaps  mostly 

consume  all of the  main memory.  The bitmaps  occupy exactly what  one PCY 

bitmap  does  in multihash  algorithm.  But too  many  hash  functions  make  all



counts ;;?   Sth· 
 

The algorithms for finding frequent  itemsets discussed in the previous section 

process one iteration  or pass for each size of itemset  [One iteration  means one 

pass through the sequence of instructions]. 
 

Therefore, finding itemsets of size k needs k passes. Many applications do not 

require  finding every frequent  itemset. For example, the online bookstore  does 

not want to offer discount on all the books purchased  together.  Thus, they need 

to run  an algorithm  for limited  number  of iterations  in order  to find a good 

number of the frequent itemsets instead of all the frequent itemsets. 
 

Simple random  sampling  algorithm  There are certain algorithms that use two 

or fewer passes for all sizes. One of them is simple random sampling algorithm. The 

algorithm suggests selecting a random sample of the market baskets. Run Apriori 

algorithm  or its improvements  for sets of all sizes, not just  pairs  in the  main 

memory.  This  does  not  put  burden  for  disk I/ 0  increase  in the  size of the 

itemsets.  There  should  be enough  space for counts  while executing  a simple 

algorithm. The algorithm reduces the support threshold  proportionally  to match 

the  sample size. Thus, if the  sample is 1/100   of the total  number  of baskets,  s 

/100   will be the support threshold  instead of s. The smaller threshold  facilitates 

more truly frequent itemsets but requires more space. 
 

An option  to  implement  second  pass  as well can  validate  that  the  sample 

contains truly the frequent itemsets. This avoids false positives. 
 

7.4.3.1 SON Algorithm 
 

An algorithm  called SON  (Savasere, Omiecinski and Navathe) algorithm  keeps 

away from both false negatives and false positives using two passes. 
 

SON  algorithm  repetitively  read  small subsets  of the  baskets  into  the  main 

memory,  and  run  an in-memory  algorithm  to  find all the  frequent  itemsets. 

Subsets are not samples. It  is the processing of the entire  file in memory-sized 

chunks. An itemset becomes a candidate  if it is found to be frequent  in any one 

or more subsets of the baskets. 

Second pass counts all the candidate  itemsets  and determine  those which are 

frequent  in the entire  set. The idea of monotonicity  used here is that  an itemset 

cannot be frequent in the entire set of baskets unless it is frequent in at least one 

subset.



Distributed   Version   of  SON   also   implements   in   a   parallel   computing 

environment.  The implementation  distributes  the baskets  among many nodes. 

Frequent itemsets compute at multiple nodes. The candidates then distribute  to 

all the nodes and finally, accumulate the counts of all the candidates. 
 

7.4.3.2 Toivonen's Algorithm 
 

Toivonen Algorithm is similar  to  the  simple  random  sample  algorithm  but 

lowers the threshold  slightly for sampling. For example, if the sample s is 1 % of 

the baskets, use 0.008  s as the support threshold  rather  than O.Ols. The basic aim 

is not to miss any itemset  that  is frequent  in the full set of baskets. As already 

stated, the smaller threshold  results  into more deserving frequent  itemsets but 

requires more space. 
 

After preparing  the  frequent  itemsets  for the  sample,  a negative  border  is 

prepared.  An itemset is in the negative border when it is not considering that as 

frequent  in the sample, but all its immediate subsets are frequent.  For example, 

ABCD,  which is not a frequent  itemset,  is in the negative border,  if all of ABC, 

BCD, ACD and ABD are frequent itemsets. 
 

Then count all the candidate  frequent  itemsets  from the first pass and count 

their negative border in the second pass. If no itemset from the negative border 

turns  out to be frequent  in the second pass, then finally the candidates found to 

be frequent  in the whole data, considered  them  as the  frequent  itemsets.  The 

algorithm  requires  a restart  if an itemset  in the negative border  is found to be 

actually frequent. 
 

It  suggests to choose the support threshold,  which results into less probability 

of failure. Also, consider the number  of itemsets  computed  on the second pass 

that fit in the main memory. 
 

 

7 .4.4 Counting  Frequent Items  in a Stream 
 

The  algorithms  discussed  in  the  previous  subsections  find  frequent   itemsets 

from a file of baskets.  Now let us explore finding of frequent  itemsets  from a 

stream of baskets instead of a file of baskets. 
 

Several large sources of data are modeled as data streams. For example, stream 

of network packets, sensor data, etc. It is impractical and undesirable to save and 

process  all data  exactly in such scenario.  Instead,  look for algorithms  to find 

approximate  answers with say one pass over data. When processing  a stream,



remember that only a small part of it can be kept in the memory. 
 

Apriori algorithm  cannot  be used for mining  frequent  patterns  over a data 

stream.  Mining using Apriori  is fundamentally  a set  of join  operations.  This 

cannot be performed over a data stream since at any instant, a program can only 

examine  a very  limited  size window  of a data  stream.  Computation  for  any 

itemset cannot complete without considering the past and future datasets. Here, 

consideration  is only a limited size window. That is due to the massive amount of 

streaming  data. It  is difficult to mine and update  the  frequent  patterns  in the 

presence of a dynamic streaming data environment. 

Finding Frequent Items in Place of Itemsets 

A  simple  frequent  item  finding  algorithm  finds  all items  in a stream  whose 

frequency exceeds a 1/k fraction of the total count. Given a stream S = (A,  B, C, A, 

C, B, D, A), the frequency of an item ai is fi and total count n = 8. Thus fA = 3, fB =  2, 

fc = 2, f0  = 1. Fork-frequent  items (if k = 0.2), the frequent items are the set 

{ai I   fi > kn}. 
 

Here, k x n=0.2 x 8 =  1.6, therefore,  frequent  items are A, B, C. Similarly, for k = 

0.25, (k x n = 2.0),  frequent item(s) is only A. 
 

The frequent  algorithm stores a designated number of pairs of items (say 20%) 

and counter  for every pair of item (say ai, c). The algorithm  compares each new 

item against the stored items. A grouping argument  is used to support the item, 

which occurs more than n/k  times. The details are given in a research  paper by 

Karp et al5. 
 

Literature  suggests that  the frequent  item mining algorithm  sometimes does 

not solve the frequency estimation  problem accurately. Although the algorithm 

preserves  the bound on the true frequency of the items, it may results  in some 

errors.  Observation suggests that  executing the algorithm  with k =  1/ E  implies 

that the count associated with each item on termination  is at most s.n below the 

true value. 

The other  simplest  approach  is randomized sampling based  algorithm. It 

suggests collecting some number of baskets and store them as a file. Run any one 

of the frequent  itemset  algorithms  discussed in this chapter.  The approach  can 

have any two possibilities  for future.  Either the  approach  ignores  the  stream 

elements that  arrive or stores them  as another  file, which it analyzes later. An



estimate   of  the  frequent    item  sets  in  the   stream   is  obtained   on  the  process 

completion   of frequent   itemsets  algorithm. 
 

Manku   and   Motwani'"    proposed  Lossy  Counting algorithm  in  2002.   The 

algorithm saves the tuples consisting of an item, a lower bound on its count and 

a "delta"  (M value, which records the difference between the upper bound and 

the lower bound. When ith item in the stream processes, if information  about the 

item is found then  its lower bound is increased by one; else, create a new tuple 

for the item with the lower bound set to one, and fl set to = l.l/k.].  Also, delete at 

times all tuples whose upper bound is less than l.t/k,l. 
 

Accurate values of upper  and lower bounds  save on the  count  of each item. 

Thus, all items whose count exceeds n/k  must save at the end of the stream. As 

like frequent  items  algorithm,  setting  k =  1/ £  ensures  that  the  error  in any 

approximate  count  is at  most  En. A  careful  argument  demonstrates   that  the 

worst-case  memory  space use by the  algorithm  is O (;1og£u}  and for certain 

time-invariant   input  distributions,   it  is  O ( i} The  algorithm   details  are  in 
 

research paper of Manku and Motwani6•
 

 

7.4.4.1 Sampling Methods for Stream 
 

Sampling  is a  statistical  technique   used  for  processing  using  a  probabilistic 

choice  of data  item.  The  technique   considers  sampling  in  data  stream  and 

process  selects a few data  items  from the  incoming  stream  of data  items  for 

analysis. Section 7.3.2 explained these details. 
 

7.4.4.2 Frequent Itemsets  in Decaying Windows 
 

Section 7 .3. 7  described  the  decaying window method  for identifying  the  most 

common elements in a stream. The weight of ith previous item assigns as (1 - c)' :::: 
e-ci where O  < (1-   C)i:::: 1  where i z 1. Counting frequent items in a stream requires 

two modifications to the algorithm for decaying windows: 
 

1.  Stream  elements  are  baskets,  and  not  the  individual  items.  Maintain  a 

weighted count for itemsets. When a new itemset arrives, 

(i)   Multiply all previous counts by 1 - C. 
 

(ii)  Add a new itemset with an initial count of 1.



(iii)  Add 1 to an existing itemsets count. 
 

2.   Start counting an itemset only if all of its proper  subsets are already being 

counted   (Remember  from  the  Apriori  algorithm   that   if  an  itemset  is 

frequent, then all of its subsets must also be frequent). 
 
 

Self-Assessment Exercise  linked  to LO 7 .3 
 

1.   How is frequent  itemset analytics performed  in market basket model? 
 

2.   How does the Apriori algorithm for frequent  itemsets analyze? 
 

3. How does  the  Park,  Chen  and  Yu (PCY) algorithm  for  frequent   itemsets 

analyze?  How does PCY  improve  memory  usages  compared  to the  Apriori 

algorithm?  . 

4.   Make a table comparing the PCY, multisate  and multihash  algorithms. 
 

5.  List the methods for finding frequent  items in data stream and compare 

them. 

Real-time analytics platform, SparkStreaming, and real-time analytics 

applications to real-time sentiments  analytics and stock prices analytics 
 
 
 
 

7.51 REAL-TIME ANALYTICS PLATFORM (RTAP) 

-SPARKSTREAMING 

Real-time application relates to responsiveness. Data, 

when generated  fast needs fast processing  as well. An 

application   sometimes   requires   updating   the 

information  at the same rate at which it receives data. 

Late  decisions  sometime  cause  loss  of  great 

opportunities.     The    term    'analytics'     implies    the 
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identification   of  meaningful   patterns   from  data.  Thus,  real-time   analytics 

signifies finding meaningful patterns  in data at the actual time of receiving it. 
 

Real-Time Analytics Platform (RTAP) analyses the data, correlates, and predicts 

the  outcomes  in the  real time. The platform  manages  and processes  data  and



helps  timely  decision-making.    The  platform   helps  to  develop  dynamic   analysis 

applications.   The platform   leads to evolution  of business  intelligence. 
 

Following  are the widely used RTAPs: 
 

1. Apache SparkStreaming-a   Big Data platform  for data stream  analytics in 

real time. 

2.  Cisco Connected   Streaming   Analytics  (CSA)-a  platform   that   delivers 

insights from high-velocity streams of live data from multiple sources and 

enables immediate action. 

3.  Oracle  Stream  Analytics  (OSA)-a  platform   that   provides   a  graphical 

interface  to  "Fast Data". Users can analyze  streaming  data  as it arrives 

based on conditions and rules. 

4.   SAP HANA- a streaming analytics tool which also does real-time  analytics. 

The SAP platform makes it easy for developers to incorporate  smart stream 

capture and active event monitoring, alerting and event-driven  response to 

applications. 

5.  SQL  streamBlaze-an   analytics  platform,  offering a real-time,  easy-to-use 

and powerful visual development environment  for developers and analysts. 

6.   TIBCO StreamBase-streaming    analytics, which accelerates  action in order 

to quickly build applications  that  analyze and act on real-time  streaming 

data. 

7.  Informatica -  a real-time  data streaming  tool which transforms  a torrent 

of small messages and events into unprecedented  business agility. 

8.   IBM Stream Computing-a   data streaming tool that analyzes a broad range 

of streaming  data-unstructured  text,  video,  audio,  geospatial,  sensor• 

helping organizations  spot the opportunities  and risks and make decisions 

in real time. 
 

 

7 .5.1  Apache® Spark™ Streaming 
 

Continuous arrival in multiple, rapid, time-varying,  possibly unpredictable  and 

unbounded  streams  have difficulties in processing,  especially in Big Data with 

3Vs characteristics.  Streaming data processing needs computing in real time as



the  data  arrives. 
 

SparkStreaming    is an  extension   of core  Apache  Spark  APL Spark  Streaming 

applications   are  in a variety  of use cases  and  business  applications.   Some of the 

most  interesting    use  cases  of  SparkStreaming    include   Uber  (the  ride  sharing 

service),  Pinterest,   (the  content   sharing   service),  Netflix  (a subscription    service 

that  provides  access to movies  and TV shows). 
 

SparkStreaming     brings   Apache   Spark's   language   integrated    API  to  stream 

processing.   It  facilitates building of fault-tolerant  processing of streaming  data 

in real time. SparkStreaming is one of the most popular platforms to implement 

data processing and analytics software for real-time  data received from IoT and 

sensors. 
 

Figure 5.3 showed Spark stack main components, namely Core, SQL, Streaming, R, 

GraphX, MLib and Arrow in a five-layered architecture.  The architecture  presented 

the overall Apache Spark ecosystem. All software components  are also available 

when using SparkStreaming. 
 

Following are the features of data processing using SparkStreaming: 
 

1.   Combines batch processing and streaming processing in the same system 
 

2. Applies Spark's machine learning and graph processing algorithms on data 

stream 

3. Divides the stream  of data into micro-batches  of a pre-defined  interval  (N 

seconds) [The N is as per need of data stream processing]. A micro-batch  is 

used in operations  similar to Resilient Distributed Datasets (RDDs). A very 

low value of N means that  the micro-batches  may not have sufficient data 

for useful analysis. 

4.    Support Scala,Java, Rand Python language in the form of suitable APis 
 

5.   Results save at a data store for performing analytics later 
 

6. Results  also  generate   reports,   display  visuals  on  live  dashboard   and 

generate alerts on the events. 

SparkStreaming library is used for processing a real-time data stream: 
 

1. DStream (Discretized Stream)-an abstraction  of a continuous data stream 

in SparkStreaming DStream creates either from basic sources or input data
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stream   from  sources,  such  as Kafka, Flume  and  Kinesis.  Stream  operators 

apply  functions   on  DStreams.  DStream  represents    streaming   data  from  a 

TCP source. 

2. Type  of  Input   Sources-(i)  Basic sources:  Sources  which  are  directly 

available  in the  StreamingContext   API, such  as a file system  or  a socket 

connection,  and  (ii) Advanced sources  which  are  available from  sources 

such as Kafka, Flume, Kinesis. 

3.   Apache Kafka-   is a real-time, fault tolerant,  scalable messaging system for 

moving data  in real time. Kafka captures  user  activity  on websites, logs, 

stock ticker data and instrumentation   data. Kafka works like a distributed 

database and is based on a partitioned  and replicated  low latency commit 

log. Apache Kafka includes client API as well as a data transfer  framework 

called Kafka Connect. 
 

4. ZooKeeper-a    centralized     service     providing     reliable     distributed 

coordination  for distributed  applications. Kafka, the messaging system for 

configuration details across the cluster. 

Figure 7. 7 shows various architecture  components  of SparkStreaming  for Big 

Data applications, analytics, live data visualization, real-time online 

recommendations  and instant fraud detection. 
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Figure 7.7  Various architecture  components of SparkStreaming 

application



Table 7 .2 gives the functionalities and operators  of SparkStreaming 
 

Table 7 .2 Brief description of SparkStreaming functionalities and operators 
 

Operator 
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The following example shows use of SparkStreaming for count functions. 
 
 

EXAMPLE  7.9 
 

 

Create a program in Scala for counting the number of words from a socket in 

every 1  second, using window of length 60 seconds and sliding interval of 10 

seconds, and save the result in windowed WordCounts. Use SparkStreaming 

context and APL 
 

SOLUTION 
 

(i) Refer Table 7 .2.  Import  SparkStreaming using  program  statements   as 

follows: 
 

import org.apache.spark. 
 

import org.apache.spark.streaming. 

(ii) Configure appName and StreamingContext using program  statements  as 

follows: 
 
 
 
 
 

val ssc = new StreamingContext(conf,  seconds (1))



Here, ssc stands  for SparkStreamingContext. 
 

(iii)  Create  a socketTextStream  at ip:port for count the words as follows: 
 

I I    Replication necessary in distributed scenario 

for fault tolerance. 

val lines      ssc.socketTextStream(args  (0), 

args(l).toint, StorageLevel.MEMORY_AND_DISK_SER) 

(iv) Compute streamWordCount using map() and reduce()  as follows: 
 

val streamWords = lines.flatMap( .split("")) 
 

val windowedWordCounts =   streamWords.map(x =>    (x, 

1)).  reduceByKeyAndWindow(  +         Seconds(60), 

Seconds ( 10) ) 

(v) Start   the   processing,   and   await   termination    using   the   program 

statement  as follows: 
 

ssc.start() 
 

ssc.awaitTermination() 
 

(vi) Print the results using the program statement  as follows: 
 

windowedWordCounts.print() 
 

 
 

7.5.2  Real-Time Analytics Platform Applications 
 

Some such applications are: 
 

1.   Fraud detection systems for online transactions 
 

2.   Log analysis for understanding  usage pattern 
 

3.   Click analysis for online recommendations 
 

4. Push notifications  to the customers  for location-based  advertisements  for 

retail 

5.   Action for emergency services such as fires and accidents in an industry 
 

6.   Any abnormal  measurements   require  immediate  reaction  in  healthcare



monitoring 
 

7.   Social media. 
 

 

7.5.3  Case Studies-Real-Time Sentiment Analysis, Positive 

Negative  Sentiments Prediction and Stock Market 

Predictions 
 

Real-time data feeds from social media (such as twitter)  are easy to get. A use of 

this  data  is for sentiment  analysis. The real-time  data feeds of stock prices at 

stock trading exchange are available. A use of these feeds is in sentiment  analysis 

and future price predictions. 
 

The following subsections considers these examples for real-time  analysis and 

predictions. 
 

7.5.3.1 Real-Time SentimentAnalysis using Tweets 
 

The  case  study  provides  the   method   of  access  of  real-time   social  media 

information  using Twitter.  Tweets are received  from the  Twitter  stream,  pre• 

processed  and then  analyzed to extract  the  features.  The method  follows the 

steps as: 
 

1. Collect  a  comprehensive   training   dataset   that   consists  of  data  about 

potential users of a system. 

2. Pull the  specific tweets  in real-time  using Twitter  API, then  process and 

load this data into a persistent  storage. 

3. The cleaning  of the  data  proceeds  with  punctuations,  stop words, URLs, 

common emoticons    and   hash    tags,   references    deletion.    Multiple 

consecutive  letters  in a word are reduced  to two (words like tooooooooo 

much ...  is replaced  with too  much). Spell checking  is also performed  to 

words that have been identified as misspelled in order to infer the correct 

word. 

4.  Classify various  types  of tweets  and  segment  them  after  estimating  the 

influence of each tweet using the predictive analysis library. Perform 

sentiment  analysis by identifying whether  people are tweeting  positive or 

negative statements  about some actions.



5. Use linguistic  concepts,  perform  opinion  mining, analyze data and bring 

out  powerful  insights.  Use important   feature  of the  analysis  based  on 

machine  learning.  Thus, applications  learn  by analyzing  ever-increasing 

amounts of data. 

6.   The goal is to build the model for predicting  the sentiments  from tweets. 

Table 7.3 presents sentimental  analysis features. 
 

Table 7 .3 Sentiment analysis features 
 

 

Feature 
 

Meaning 

NEGATION 
 

Presence  of negating  words 

POSITIVE SMILEY Presence  of common   positive   emoticons 

NEGATIVE SMILEY Presence  of common   negative  emoticons 

DONT-YOU,   OH, SO, AS FAR AS, May indicate  ironic  or sarcastic text 

LAUGH Presence  of popular  laughter  indications,  such  as haha, lol 

Tweets  sentiments   prediction   can  face  the  following  problem:  The  use  of 

negatives and positives in the same sentence. For example, "I like red color but I 

hate blue color". A classification of such sentence is that it is a neutral  sentence. 

The  application   handles  that   sentence   by  breaking  the  sentence   into  two 

subparts such that one is positive and the other is negative. The count value thus 

does not alter. 
 

This classification model adapts  to the  evolution  of tweets  and employs the 

user (or domain expert) feedbacks. 
 

The outcomes affect by: 
 

1.   Varying size of dataset 
 

2.   Different features 
 

3.   Rate with which tweets arrive 
 

4.  Changes in the  textual  content  (for example, the  changes  in vocabulary, 

meaning of words, etc.) 

Social media sentiment  analysis also needs to identify various human emotions 

like sadness, anxiety, fear, confusion, depression and anger.



7.5.3.2  Stock Market Predictions 
 

Stock  market   data  is  an  example  of  a  real-time   data  stream.  Data  stream 

algorithms compute the values over a time-window of stock trades. This window 

has fixed size and contains  n stock trades.  A  sale-purchase   is counted  as one 

trade. The parameter  studied is Volume-Weighted Average Price (VWAP). 
 

The data stream model can be relational tuples-based model with tuples 

(sale_time, ticker_symbol, num_shares,  price_per_share)  for each stock sales in 

real time. Assume stock trade i has price Pi, with Si shares changing hands, then 

compute the volume-weighted average (VWAP) stock prices from stream of stock 

sales. PvwAP (Price for VWAP) =  L PiSi +  L Si. 
 

The algorithm  first transforms  stock-sale data stream  into a relation  using a 

time-based  sliding-window operator  with sliding interval  ~T =  5 m (over last 5 

minutes)  of data.  The window length  is time  from  start  of the  day and thus 

increases as the day progresses. 
 

The  algorithm   estimates   value  of  PvwAP   continuously,   and  evaluates   the 

relation factor r periodically during trading day. 

Recapitulate   equation   (6.8a).  The  correlation   coefficient   r  between   two 

variables x and y is: 
 

r = [ l / (n -1}]    x l:{ [ {~ -  x} I~]   x [ (y1  -  y) I sy]  } ,                                                           ... (7.3) 
 

where n is the number of observations in the sample. xi is the x value(=  time since 

start of trade in a day) for ith observation.x  ts the sample mean of x values. Yi is the 

y value(=   PvwAP) for ith observation. y_  is the sample mean of y values. sx is the sample 

standard  deviation of x. sy is the sample  standard  deviation  of y. 

Compute a correlation  factor (relation)  containing  aggregates  using standard 

grouping/ aggregation  operations.  The r is also sent as another  stream  (results 

stream). 
 

Refer Sections 6.2.2 to 6.2.4. A prediction model can be building a relationship  r 

with respect to time and then predict using machine learning tools. Value of r > O 

continuously  over a window of time length,  (for example, 4 hours)  indicates  a 

continued positive relationship  (sentiment  towards the stock price). Conversely, 

r  <   0  indicates  a  negative  relationship   (sentiment)   and  r  =  0  indicates  no 

relationship   (or  that  the  variables  are  independent   of  each  other   and  not



related).   A prediction   for price  increase  or decrease   can be based  on positive  or 

negative  sentiments   during  the  period  of study  from the  start  of the trade. 
 
 

Self-Assessment Exercise linked to LO 7 .4 
 

1.   List the applicaions of real-time analytics. 
 

2.   List the platforms available for real-time  analytics. 
 

3.   How are the features in SparkStreaming  used for data stream analysis? 
 

4.   Explain transformation   functions in SparkStreaming. 
 

5.   How is real-time data stream used in making predictions? 
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LO 7.1 
 

 

1.   A stream  is a sequence  of data elements  or symbols made available over 

time.  Transmitting   or  receiving  (data)  between   computer   systems  or 

networks  is  streaming  of data.  Mostly, data  stores  process  data  using 

batched processing. Processing streaming data is different from processing 

the data saved at a store. 

2. Stream processing uses graph-based  data stream  model, relation-oriented 

stream tuples model, object-based or windows-based model. 

3. Data stream  processing architecture  is as follows: Queries are required  to 

be processed on streaming  data. Applications continuously  handle queries 

from a query repository.  Streaming data is processed after load sharding at 

the memory. The queries response saves at the output buffer before finally 

being retrieve in the application. 

4.   Data Stream Management System (DSMS) manages streaming data. 
 

5.   Issues in stream processing are large data stream from different  domains, 

variation  in frequency  of data  stream,  zeros,  unbounded  sizes, need  of 

scalable, near-real  time  or  event-based  processing  and  need  of filtering 

undesirable data. 
 

LO 7.2 
 

 

1.   Stream computing uses algorithms  which analyze the data in real time at 

high  speed  and  accuracy.  Stream  computing   is  the  fastest   and  most 

efficient way  to   obtain   useful   knowledge   from   Big  Data   anaytics. 

Organizations react  quickly on appearance  of a problem  and can predict 

new trends for the future. 

2.  Sampling in data  stream  means  the  selection  of a few data  items  from 

incoming  stream  of  data  items  for  analysis.  Choice of  data  items  for 

processing is as per probabilistic sampling. 

3.   Several filtering  techniques  exist: Bloom Filter and its variant,  Streaming 

Quotient  Filter  (SQF),  Particle  filter,  Kalman filter,  XML filters  (XFilter,



YFilter)  are  some  of the  popularly   known  stream   filters.  Bloom filter  does 

conditional matching   where  a tuple  matches  with  some  desired  value.  The 

Bloom filter  is simple  to implement   and space efficient. 

4. The stream of data contains repeated  elements. Counting distinct elements 

find  the   number   of  dissimilar   elements   in  a  data   stream.   This  has 

applications in the area of networking and databases. 

5.   The sliding window model for data stream  algorithms  is the one in which 

data elements  receive one by one and statistically  compute over a sliding 

window of size N (not over the whole stream). The window covers the most 

recent data items arrived. 

6. Decaying windows technique  computes a smooth aggregation  of all the ls 

ever seen in the stream, with decaying weights. When it further  appears in 

the stream, less weight is assigned. 
 

LO 7.3 
 

 

1. Finding frequent  itemsets means finding associated items in sets which are 

found together  sufficiently in number  of baskets and to find dependencies 

among the items. 

2. Apriori   algorithm   for  frequent   itemsets   works  efficiently   when   the 

counting of the candidate process is executing. 

3. PCY algorithm takes benefit of the fact that in the first iteration  of Apriori, 

the  counting  of  single  items  does  not  require   lots  of  main  memory. 

Multistage  algorithm  uses  several  successive  hash  tables  to  reduce  the 

number  of candidate pairs subsequently. Multihash algorithm uses several 

independent  hash tables on the first iteration.  This can lead to benefit like 

multistage in only 2 iterations. 

4.  SON algorithm repetitively  reads small subsets of the baskets into the main 

memory  and  runs   an  in-memory   algorithm   to  find  all  the   frequent 

itemsets. 

5. Frequent  algorithm  helps in finding all the items in a stream. It  finds the 

associated sets whose frequency exceeds a 1/k fraction of the total count.



Lossy counting  algorithm   stores  tuples  consisting  of an item,  a lower bound 

on its  count  and  fl value which records the difference between the upper 

and lower bounds 

6. Counting  frequent  items  in a stream  requires  two  modifications  in the 

decaying window algorithm. 
 

LO 7.4 
 

 

1. Real-time application  relates  to responsiveness.  When data  is generated 

fast, it needs fast processing as well. 

2.   Apache  SparkStreaming   and  several  tools  enable  real-time   analytics. 

SparkStreaming is an extension of core Apache Spark APL SparkStreaming 

brings Apache Spark's language-integrated  API to stream processing. 

3.   SparkStreaming provides a number of transformation  functions. 
 

4. Real-time  analytics  with  regression   analysis,  statistical   functions   and 

machine-learning  tools can predict positive, negative or no correlations  in 

real time from the stream of data for applications such as stock prices. 
 

 

Objective Type Questions   1111 
Select one correct  answer  option  for each of the following questions: 

 

7.1 A  stream  processing  engine  may include  (i) the  core low-latency  stream 

processing  functionality  with (ii) a rich set of stream-oriented   operators, 

(iii) coordinator,  (iv) loader, (v) manager, 

(vi) load shedder, (vii) fault tolerance  module, (viii) graphical query editor, 

(ix) system visualizer, and 

(x) stream connection generator. 

(a)  all except viii to x 

(b)  all 
 

(c)   all except iii, vi and viii 
 

(d)  I, ii, ix and x



7 .2  DBMS (i) stored  sets of records  with  no pre-defined  time  concept,  (ii) is 

suitable for applications  that  require  persistent  data storage and complex 

querying,  (iii) sequence  of data  elements,  (iv) one-time  queries,  and  (v) 

bounded main memory. 

Data  Stream Management System (vi) provides  online  analysis  of rapidly 

changing stream of data, (vii) is suitable for real-time, continuous, ordered 

(arrival  time  or  timestamp)   (viii) persistent   relations   (relatively  static, 

stored), (ix) transient  stream  (on-line analysis), (x) implements  sequential 

access, and (xi) unbounded disk storage. 

(a)  none 
 

(b)  all except iii, v, viii and xi 
 

(c)  only ii 
 

(d)  all 
 

7 .3  Data stream model for processing can be based on (i)windows, (ii) relation• 

oriented tuples, (iii) correlation,  (iv) graph, and (v) queries. 

(a)  i, ii and iv 

(b)  all 
 

(c)  i to iii 
 

(d)  all except iv 
 

7.4 Stream processing issues are (i) unfixed size stream,  (ii) unbounded  data, 

(iii) need of scalable processing, (iv) variation  in frequency of data stream, 

(v) may need real-time processing, and 

(vi) large data streams from different domains. 

(a)  all except ii, iii, iv, xii and xiii 

(b)  all 
 

(c)   all except ii to vi 
 

(d)  all 
 

7.5 Minimum sample size required  for accuracy in estimating  proportions,  the 

following are taken  into the  consideration:  (i) A precise  estimate  of key



proportions   P to be measured in the study. 

(ii) The degree of error  D that  is desired in the study, -1%-5%   or 0.01  and 

0.05,  (iii) the confidence level Z = 95% needed from the inference, and (iv) 

null hypothesis true. 

(a)  i, iii, iv 

(b)  i to iv 
 

(c)  iii 
 

(d)  All except iv 
 

7 .6 Process of deleting a particular  element in the Bloom filter requires that (i) 

the corresponding  positions computed by k hash functions in the bit vector 

be set to 1.In order to perform deletion of the element, the concept of the 

counting Bloom filters as a variant  of Bloom filter functions as follows: (ii) 

The counting filter maintains a counter for each bit in the Bloom filter. (iii) 

The counters  corresponding  to the k hash values are incremented  or (iv) 

decremented,  whenever an element in the filter is deleted. (v) As soon as a 

counter changes from O  to 1, the corresponding bit in the bit vector reset to 

0. 
 

(a)  i, ii, iv 
 

(b)  ii to v 
 

(c)  ii and iv 
 

(d)  All except iv 
 

7. 7 The sliding window model for data stream algorithms  is for (i) infinite, (ii) 

bounded  data stream  processing. The window refers  to (iii) time interval 

(iv) number  of data  items  during  which  stream  raised  the  queries  and 

processed. (v) The data elements are received one by one and the statistics 

are computed over a sliding window of size N (not over the whole stream). 

(vi) The window covers the last arrived data items. 

(a)  i, iii and v 
 

(b)  all



(c)   ii to iv 
 

(d)  i, ii, iv, v 
 

7 .8 The goal of association rule mining is (i) to discover items that  are found 

together  in (ii) sufficient number  of baskets and (iii) to find dependencies 

among these items. (iv) This simply implies finding the frequent  itemsets. 

(v) Rule should define an itemset present in a certain percentage of baskets, 

then that set is a frequent  itemset. (vi) It is not necessary that an itemset is 

present in a basket only once. (vii) Itemset presence is counted once though 

the itemset but it may be present 2, 3 or more times in a basket. 

(a)  all except ii, iii and v 
 

(b)  all 
 

(c)   all except vi 
 

(d)  i to iv 
 

7.9 Multistage algorithm  uses (i) several successive hash tables to reduce the 

number  of candidate  pairs  subsequently.  (ii) The algorithm  applies more 

than  two iterations  to find the  frequent  pairs.  (iii) The idea is to rehash 

only those  pairs  that  qualify for iteration  3  of Park, Chen and Yu (PCY) 

algorithm  after  iteration  2  of PCY.  (iv) Only a fewer pairs  contribute  to 

buckets in the middle iteration,  (v) so fewer false positives may occur. (vi) 

It requires 3 iterations  over the data. Iteration  3 does (vii) count only those 

pairs {i, j} that satisfy the certain candidate pair conditions and (viii) both i 

and j  are frequent  items. Conditions are (ix) the  pair  uses the  first  hash 

function to a bucket whose bit in the first bitmap is 1. (x) The pair uses the 

second hash function to a bucket whose bit in the second bitmap is 0. 

(a)  all except v and vii 
 

(b)  all 
 

(c)  all except iii and x 
 

(d)  i to vii 
 

7 .10 Consider  frequent   itemsets   finding  problem  use  (i)  decaying  window 

method  for identifying  the  most common elements  in a stream.  (ii) The



weight  of ith previous  item  assigns  as (1 -  C)i:::: e-ci,  (iii) relation O  < (1 + C)i :::: 

1  exists, (iv) value of i  ~  1, and (v) start  counting an itemset  only if all its 

proper subsets already being counted. 

(a)  all 
 

(b)  all except v 
 

(c)  all except ii to iv 
 

(d)  all except iii and iv 
 

7 .11 A real-time application relates to responsiveness as soon as (i) a data source 

sends the data, 

(ii) the data stores in memory, (iii) the data generates  and (iv) the data that 

is being generated  fast must first be saved and then processed fast at any 

time.  (v) An application  sometimes  requires  updating  information  at the 

same rate  as it receives data. (vi) Late decisions sometime lead to loss of 

great opportunities. 

(a)  all except ii and iv 
 

(b)  all 
 

(c)  all except ii, iii and iv 
 

(d)  ii to v 
 

7 .12 When making the real-time sentiments  analysis for making predictions  (i) a 

correlation  coefficient (relation) r computes in real time, (ii) the coefficient 

r   accounts   for   the   aggregates   using   standard   grouping/ aggregation 

operations, (iii) The r is also sent as another  stream (results stream). 

(iv) A prediction  model can be first built using machine learning tools after 

building a relationship  r with respect to number of frequent  sets. (v) Value 

of r <  O  continuously  over a window length indicates a continued  positive 

relationship   (sentiment  towards  the  stock  price).  (vi) Conversely, r  >   O 

indicates  a negative  relationship  (sentiment)  and  (vii) r =  O   indicates  no 

relationship  (or that  the variables are independent  of each other  and not 

related). 

(a)  all except ii, iv and xii



(b)  all except  iv, v and vi 
 

( c)   all except  vii 
 

( d)   all except  ii and iv 
 

II   Review Questions        llil 
7.1 Describe various data stream  models for extracting  knowledge structures 

from a continuous stream. Give reasons for using each of these models. (LO 

7.1) 
 

7 .2  Describe Data  Stream  Management  System. How does  it  differ  from  a 

DBMS? (LO 7 .1) 
 

7 .3  Describe the  difficulties in real-time  data stream  analytics. How are they 

solved? (LO 7 .1) 

7.4 List  the   approaches   for  calculating   the   sample   size.  What  are   the 

parameters  considered  for calculating the minimum  sample size required 

for accuracy in estimating proportions?  (LO 7 .2) 

7.5 How does a stream filter function? Describe Bloom filter. (LO 7.2) 
 

7 .6  Describe an algorithm to count the distinct number  of dissimilar elements 

from data stream.(LO 7 .2) 

7. 7 How do different  algorithms  find the  associated  items in sets, which are 

together  in sufficient number  of baskets? How do you find dependencies 

among these items? (LO 7.3) 

7.8 How is  the  frequent   items  counting  done  in  a  stream?  Describe  the 

different methods used. 

(LO 7.3) 
 

7.9 What are  the  types  of applications  in which  Real-Time Analytics  (RTA) 

enables timely decisions? What are the tools used by the RTA platform? (LO 

7.4) 
 

7.10  Make a diagram for SparkStreaming  computing  architecture  components. 

(LO 7.4)



7 .11  What   are   the   features    in   Spark   and   SparkStreaming    for   stream 

computation  on Big Data? (LO 7 .4) 

7 .12 What are DStreams? What are the  functions  used for transformation   and 

processing of a DStream? (LO 7.4) 
 

 

I    Practice Exercises       1111 
7 .1   A file has data of 1000 rows similar to table given below: 

 
Table of Product categories, Productld, and Product name 

 
rrod  uc I Name 

 

To  _AH"p]M.e 0725 Lost Temple 

Toy_AH'-ptru1e JUJ47 Prr,opeller   ~11im.e 

Toy_Airplaoe 3104-9 Tw-llli  Spillli Hel!cople:r. 

Toy_Tr.aiiia 3   054 Bhle Bxpre.ss 

Toy_'.]'rntirmi 10254 Wmter Ho:lilmy Toy_Tiraio 
 

How will you use the relation-based  data stream  model? Assume no time• 

stamping of the data. (LO 7 .1) 
 

7.2 Summarize  the   commonalities   and  differences   in  data   stream   query 

languages, (i) Relation based-CQL (STREAM), StreaQuel (TelegraphCQ), (ii) 

Object-based:  Tribeca  or  ADT model-based   sources  COUGAR   and  (iii) 

Procedural-based Aurora in which a user specifies the data flow. (LO 7.1) 

7 .3 Describe  steps  for  developing  the   algorithm   for  various  data  stream 

filtering algorithms. 

(LO 7.2) 
 

7.4 List  the   steps  for  developing  the   algorithm   for  various  data   stream 

counting of the distinct elements. (LO 7 .2) 

7 .5 List the steps in algorithms Apriori,  PCY, multistate  and multihash methods 

of frequent itemsets analytics of data stream. (LO 7.3) 

7.6 Write steps in computing  the  frequent  itemsets  in data stream  using the 

decaying window method. (LO 7 .3)



7. 7  Create    80   exemplary     tuples     (sale_time,     ticker _symbol,    num_shares, 

price_per_share) on every  five minutes   from  the  start  of stock  trading   at 9 

am to 1  pm on the  relation-oriented     stream  tuples  model.  Choose your  own 

stock. ( Can  use  http://www.moneycontrol.com         charts   for  stock   quotes 

during  a  day.   Write   the   code   in  Python    or  Java,   compute    and   plot 

correlation coefficient   and stock  prices  as a function   of time  from  the  start 

of the  stock trade.  (LO 7 .4) 
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Chapter 8 
 

 
 

GraphAnalytics   for Big Data and Spark 
GraphxPlatform 

 

 
 
 
 
 

LEARNING OBJECTIVES 
 

 
After studying this chapter,you will be able to: 

 

LO  8.1   Model the database as graphs, and represent  the graphs using triples 
 

LO   8.2     Get knowledge  of graphs,  graph  network-organization,    choose  the  graphs  for analytics,  and 

know graph-analytics  use cases 
 

LO    8.3     Get  conceptual   understanding    of  graph   parameters,    methods,   diagnostics   and  decisions, 

statistical model,   StatsModel,   probabilities-based    graph-analytics,    and   understanding    of 

technical complexities in analyzing the graphs 
 

LO    8.4   Use  the  Apache  Spark  Graphx,  a  Big Data  graph-analytics   platform.   Know the  features, 

architecture  and components.  Apply them for graph-analytics 

 
 

RECALL FROM EARLIER CHAPTERS 
 

A Big Data store system is HDFS  (Section 2.3). Big Data store uses NoSQL format  datasets.  NoSQL  data do 

not model like relational  tables. BigDdata analytics algorithms  process the NoSQL format datasets. 
 

Graph databases  can model  the  NoSQL  databases  also. (Section  3.3.5).  A  graph  database  consists  of 

edges which  interconnect   the  data  nodes  (vertices). The interconnections   represent   the  relationships, 

associations and properties. 
 

Apache Spark includes Graphx.  Graph analytics  tasks execute  with ease using Spark Graphx.  GraphX 

extends the Spark and thus has RDD (Resilient Distributed Data) property.  The API consists of a collection 

of graph  algorithms  for analytics. Computations  in GraphX use fundamental  operators  (such as 

subgraphs,joinVertices   and aggregateMessages).  (Section 5.2) 
 

This chapter   focuses  on graph  databases,  organization   of graph  networks  and  the  graph  analytics 

platform, Graphx. 

 
 

8.1 ! INTRODUCTION



'Graph' is a set of vertices and edges. Graph theory  is the theory  of graphs and their  properties.  Examples 

of graphs  are hierarchy  graph, monotone graph,  connected  graph,  bipartite  graph, planer graph  and triangle 

free graph. 
 

Graphs have a number  of characteristics.  A graph: 

1.  Represents  a database  using graph  parameters  or properties  assigned to each vertex,  v and edge, e. 

An edge is a line joining two vertices.  Graph nodes and edges connect each other through  relations, 

associations and properties. 

2.   Represents an abstract data type for  the  relationships.   A  graph  depicts  relationships,   such  as,  a 

relationship  between two or more quantitative  dependent  variables with respect to an independent 

variable. 

3.   Represents  knowledge and reasoning  in a conceptual graph model 
 

4.   Represents  a network, such as a social network 
 

5.   Models the dataflows and program/lows  using directed  graphs: A Dataflow Graph (DFG)  represents  the 

flows of data and program.  The DFG  consists of sets of circles. A circle represents  a node (vertex). 

Each node represents  a set of computations  or a set of operations  which change the initial state to a 

new state (of entities  or  properties).   State  change  occurs  on  receiving  new  inputs  followed by 

computations  at a node. The incoming directed  edges represent  the inputs received from the other 

nodes. The outgoing directed  edges represent  the output  to the other nodes. 

6.   Computes  using path traversal,  which means going through  a finite or infinite sequence of edges in a 

graph that  connect a sequence of vertices between  initial vertex vO  and end vertex ve· Traversing  is 

along a path from vO  to ve along the connected  edges. 

7.   Analyzes data using graphic parameters, relationships,   associations  and  distribution   of properties 

along the  vertices  in the  path,  and  property  variations  on path  traversal  from  a node  to  other 

nodes along the edges 

8.   Analyzes data through the queries on data  using path  traversal,  which means  from vO   following the 

sequence of steps to ve· 

This  chapter   describes  graph  models,  graph  parameters,   graph  network   organizations   and  graph 

analytics. It also describes statistical  models for changes and distribution  of properties  on path traversal 

between the nodes. Section 8.2 describes modeling of databases  as graphs  and representations   of graphs 

using triples.  Section 8.3 describes graphs  and graph  networks.  The section also describes  choosing of a 

graph for analytics, and use cases of graph analytics. Section 8.4 describes graph parameters,  methods  of 

diagnostics   and  decisions,  StatsModel,  probabilities-based    analytics,   and  technical   complexities   in 

analyzing  the  graphs.  Section  8.5  describes  the  features   of Apache  Spark  GraphX, its  architecture, 

components,  applications,  and the considerations  of using the dedicated appliances for the graphs. 

 
 

8.2 ! GRAPH MODEL 
 

A  graph  represents   an abstract data type. The  edges  of a graph  represent   relations,   connections   or 

associations. The vertices  represent  the entities.  Each entity  can have parameters  assigned to that.  Each



node can have parameters  and property  assigned to that. 
 

A set of vertices  (nodes) V and edges (links) E define a graph  G. Relation in 

terms  of set theory  is G =  (V, E), which means  that  graph  G is a set, which 

contains two sub-sets, vertices V and edges E. 

 

 
 
,1odeing  of databases   as 

graphs  and representations 
of graphs  using  triples

1.  Elements of V represent   the  entities.  A  node or a vertex  v in set V represents   an entity,  such as 

studentID [Example two nodes: 'studentID'  and 'studentSemlSGPA'. 

2.    Elements of E represent  the relations  or associations. An edge connects  the two nodes. An edge, e 

represents  a relation  or association between  the two entities.  An example of association  is 'studies 

at'. Student  of an ID studies at a UG  course where  the studentID and UG  course are two entities  at 

two interconnected   nodes. 

Order of a graph specifies by number  of vertices N, and number of edges Ne, where N, =  IVI, and Ne= IEI. 
 

The degree  of a node  (node degree)  specifies the  number  of edges linked to a node. The degree  may 

vary from traversing  from one node to the other.  For example, three  linkages vl to v2, vl to v3, vl to v4 

mean that vl  (node-degree)  is 3. A distribution  function  represents  the variation  in degrees of the nodes 

on traversing  (Section 6.2.5). 
 

A graph model has the following features: 
 

(i) A label near an edge can specify the context  of relation  or association. A label at an edge can also 

specify a value. For example, the grade point average in Semester 1, studentSemlSGPA. 

(ii)  A label near a vertex can specify identification  for the entity. For example, studentID. 
 

(iii) A weight near the edge can specify the weight of a relationship  with respect  to other  edges of the 

same kind. 

(iv)  A property  can associate with the vertex or edge. For example, adding property. 
 

(v)   Multiple relationships  can associate a pair of vertices interconnected  by multiple edges. 

(vi) A direction  can associate with the direction of flow of relationship  or association. 

A graph, called property-graph,   consists of each vertex and edge assigned properties  (Section 8.2.5). 
 

A graph,  called directed graph, consists of directed  edges. A directed  graph  shows a sequence  of edges 

(or arcs) which  connect  a sequence  of vertices  with  a condition.  All directed  edges  are  in the  same 

direction  when a graph  has edges directed  inwards toward  a node and outwards  towards  another  node, 

such that  inward  edge(s) represent   an input  for computation  or state change  at the  node and outward 

edge(s) represent  the output(s) which is input to the next node in the graph. 
 

The number  of inward  edges in a directed  graph  is a node parameter  called in-degree.  Directed graph 

node out-degree  means the number of outgoing edges from the node. A directed graph represents  the flow 

of the relationship  using the directed  edge. For example, assume Semester  1  and SGPA are vertices  in a 

directed  graph. The edge represents  a relation  between them, i.e., it represents  that  SGPA is the result of 

the examination  of Semester 1. 
 

A graph  defines the entities  and properties  to each vertex  and edge. A graph called directed  multigraph, 

provisions  for the  multiple  parallel  edges and that  enables multiple  relationships  between  the  entities. 

Multiple parallel  edges share  the  common  source  and destination  vertices.  Directed  Acyclic Graphic  is a
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special kind of directed graph that contains no cycles. 
 

Consider columnar  data  store  in a tabular  representation.   Each row-group  consists  of a sequence  of 

columns. Relationships  between  columns of the  row groups  are implicit (for search  and queries  for the 

values in columns) but not explicitly specified (Section 3.3.3). 
 

Graph database  explicitly  stores  the  relationships   at each edge. A  hierarchy  graph  stores  hierarchal 

relationships.  Hierarchy  relations  between  the tables do not store but implicit in the codes for a search 

or query. 
 

The following  example  explains  the  usages  of nodes,  edges  and  properties   in  a graph  model.  The 

example gives a corresponding  tabular  Data Store. 

 
EXAMPLE  8.1 

 
Consider the students,  that  are studying Bachelor of Computer Science course and have appeared  in 

Semester 1 examination  in the department. 
 

(i)   How does a graph model show the relationships  and semester grade point averages? 
 

(ii)   How does  a table  of grade  point  averages  (GPAs)  of a student   in  a departmental   semester 

examination  correspond  to the graph model? 
 

SOLUTION 
 

(i) Figure 8.1 shows a graph model for a student  grade-sheet  database. The graph consists of nodes 

and  edges  for  a first-semester   UG  computer-science   student  of ID =   UGCS4268   .    The figure 

shows the relationships  using label and property  at vertices and edges for a student. 
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Figure8.1  Graph model of a grade sheet 
 

(ii)  Tabular  representation   in an RDBMS  mapped  with  the  above graph  model for the  Semester 

Grade Point Averages (SGPAs) is as follows:



Department ]  D 
 

Computer  Science        UG 2014_2017 

 

 
Ba     lor ln 

Computer 

S  len 
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8.2.1   Representinga Graph as 

Triples 
 

Triple means a data entity  consisting  of three-components:   subject, predicate  and object. For example, 

consider  a sentence,  'Spark  includes  GraphX'. Here, Spark is the  subject,  includes  is the  predicate  and 

GraphX is the object. 
 

Triples  represent   the  Graph entities.  Assume a directed  graph.  A  triple  is a sentence-like  format.  A 

sentence  consists of three  elements,  'subject'  'predicate'  and 'object'.  Similarly, a triple  consists of three 

elements: source node (subject) connects to destination node (object) through  an edge (predicate). 
 

Triple has a subject-predicate-object   format  for representing   three  elements:  source  node, edge and 

destination  node. Format is instance identifier-property name-property value. For example, StudentID: 42629 

obtained:"GradePoint_Java "8.2". StudentID: 42629 is the  instance  identifier.  Obtained  is the  property 

name. Value of Property  GradePoint_Java is 8.2.Graph model represents  instance  identifier  and property 

value at two nodes and property  name as the edge connecting them. 
 

A  graph  node  defines  by a vertex  such  that  the  two  of them  connect  through   a  relationship   or 

association.  For example,  consider  a sentence,  'Raj Kamal wrote  textbook  on Internet   of Things'.  'Raj 

Kamal' is a node and 'textbook  on Internet  of Things' is next node. 
 

A graph  edge is an interconnecting   line or arrow, which represents   a relationship  or association  in a 

sentence.  Consider another  example of triple  consisting  of a subject, verb, and object in a sentence,  'Raj 

Kamal wrote a classic book on Embedded Systems'. Verb 'wrote'  relates  the subject 'Raj Kamal' and object 
'classic book on embedded  system'. Two vertices  are subject and object in the graphical  representation. 

The edge joining them represents  the verb. 
 

Following explains the representation   of a graph model Data Store as triples: 

EXAMPLE  8.2 

Recapitulate  Example 1.6(i). Consider the  sales figures of Kit Kat, Milk, Fruit and Nuts, Nougat and 

Oreo. (i) Show a graph  model for database  of yearly sales and (ii) write the triples,  which represent 

the graph. 
 

SOLUTION 
 

(i)   Figure 8.2 shows a graph model for nodes and edges showing the relationships  of yearly sales 

of chocolates.



 

 
 

Figure  8.2 Example of a graph model of yearly total sales of an ACVM company 
 

(ii)  Graph source node (subject) connects  to destination  node (object) through  an edge (predicate). 

The following set of triples represent  a graph: 

 
Yearly_Chocolate_Sales    as triples

 
Subject 

A       1 C  mpan,         Data 

ACVM C  mpnn, Sllle    Data 

Yearl,_KitKat_    3.1    s 
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quals

Yearly_Frui     ndNu         ale                          equa 
 

 
 
 
 
 
 

8.2.1.1 Graph Database as Collection of Triples 
 

A collection of triples creates a semantic database, the two features of this database are as follows: 

1.   Can add additional  properties,  relationship,  association or attribute  with each triple. 
 

2.   Can include  new entities  and relationships,  just  as a tabular  database  adds additional  rows, or a 

columnar-family  database adds additional  columns. 

 
8.2.2 Resource DescriptionFramework(RDF)for GraphDatabases 

 

A  triple  instance identifier-property name-property value uses  a  Universal  Resource  Indicator   (URI) for 

instance  identifier.  Triples form a specialized graph  database.  A triple-store   is also represented   in RDF 

(Resource Definition Framework). 
 

RDF  is a simple, yet very effective language  for representing   information  using triples.  RDF  is a W3C 

(World Wide Consortium)  standard  for storing  a graph  database.  A graph  database  is thus  a triplestore, 

which uses RDF. The features  in RDF are as follows: 

1.   An RDF data file is similar to three  columns of triples: subject-predicate-objects   and are also similar 

to triplets  of document-key-values  in the MongoDB. 

2.   A  standard  RDF  schema  provides  definitions  of classes and relationships   between  the  properties 

and classes; an RDF does not depend on a schema and is thus flexible. 

3.  Triples represent  the nodes and edges; format of triple  is 'instance-identifier',   'property-name'   and



'property-value';   and format  of identifier  is URI. An instance  identifier  is like an entity  in a SQL 

database, property  name is like a key, and property  value is like a value in a field. 
 

4.   RDF provides for inclusion of new entities  and relationships,  just  as a tabular  database  provides for 

inclusion of additional  rows, or a columnar-family  database for additional  columns. 

5.   RDF provides for inclusion of additional  properties  to the relationship,  association  and attribute  in 

a triple. 

6.   Simple concatenation  combines multiple datasets. The combined datasets  are then used as a whole. 
 

7.   Splitting the triples  into multiple lines does not change the collective meaning; therefore,  sharding 

in data collections is easy. 

The RDF  software  parses  the  lines  in data  file when  processing  the  queries,  analyzing,  visualizing, 

reporting  or any other  operation.  RDFLib  is a Python library, which enables working with RDF.  Number 

of  contributors    enriches   the   Python   RDFLib continuously.   The  library   contains   (i)  an  RDF /XML 

parser/serialize   and (ii) in-memory and persistent  graph backend. 
 

The following example explains the entries  at a graph database: 

 
EXAMPLE 8.3 

 
Recapitulate  Figure 8.2.   It showed a snippet  of graph  database  of ACVM  Company daily and yearly 

sales. Write  the triples in RDF. 
 

SOLUTION 
 

The following are steps in the RDF lines in a data file: 

Step 1: Write two lines to specify the URis for resource  location. 

i,pprefix   acvmCom  anyData:    <http://acvmcompany.org/data/> 

i,ppr fix   oalesFigure:    <http://acvmcompany.org/o    leoRecord/ 
 

te   2:  \\ rit  triple   f  r A   Vl'v1        ID.  cvm  2    .  The t           as f  ll  w  : 
 

acvmCompanyDa a:acvm8268  oalesFigure:     Yearly_  KitKat  _  Sales    '160000" 

Acv'1IICompanyDa    :     acvm8268 oalesFigure:    Ye  rly _ Prui   AndNuts _ Sales 

200000" 
 

 

8.2.3  SPARQLQuerying Language for RDF Graph-Database 
 

Spark Query Language (SPARQL)  is a query language  for RDF graph  database.  SPARQL  is W3C  accepted 

query language.  Features of SPARQL are as follows: 

1.  Allows taking  the  data without  definition  for separate  schema and considers  a schema as part  of 

the data itself (Schema information  may be provided  separately,  which enable joining  of datasets 

without  any problem) 

2.   Provides query operators  needed during graph analytics 
 

3.  Provides JOIN,  SORT, AGGREGATE operators 
 

4.   Provides syntax for specific graph path traversals 
 

5.   Includes queries for conjunctions,  disjunctions,  triple patterns  and optional patterns  in triples

http://acvmcompany.org/data/
http://acvmcompany.org/o


6.    Provides for querying  data using graph  traversal  along a path. Traversal  may be single step, path 

expression,   or  full  recursion.   RDF   (Resource  Description   Framework)   is  a  specialized  query 

language. 

[Path means a finite or infinite sequence of edges in a graph that connect a sequence of vertices. Graph 

traversal  uses a path along the connected  edges. Path expression  means an expression  consisting of path 

names using ORs. The expression  denotes  a set of paths  between  two start  and end nodes. (Sign Plus or 

OR is used between the terms in an expression to express a set of path traversals.) 
 

For example, consider  a path  expression,  V1V3 +V1V2V3   +V1V2V2V3+   ... First term  V1V3 means path 

starting  from Vl, directs to V3. The term V1V2V2V3  means Vl to V2, then V2 output back to input ofV2, 

and then V2 to V3. 
 

Path  recursion   means  repeated   traversal   of  path  till  a  certain   condition   satisfies.  The  following 

example explains how to write a SPARQL query and the output  after query processing. 

 
EXAMPLE  8.4 

 
Recapitulate  Example 8.3. (i) Write a SPARQL  query for output  of RDF  triples.  (ii) What will be the 

result from the query processor? 
 

SOLUTION 
 

(i)  The following are the steps for query in SAPRQL: 

Step 1: Specify the URis for resource  location. 

PRBFIX    acvmComanyData:<http:/  /acvmcomapny.org/data/> 

PRBFIX    SalesPigure      :<  http://acvmcomapny.org/salesRecord/> 

Step 2: Write query. 

SELBCT? property?       value 

WHERE   {acvmComanyData: acvm8268salesFigure?        property?       value} 

The  ?  mark  is a wildcard  as the  query  is for  selecting  all properties   and  their  values  for 

acvm8268 salesfigure.  If instead  of?  Yearly_KitKat_Sales is mentioned,  then  only sales figures 

for Kit Kat retrieve  from the RDF data-file. 

(ii) Following will be the output  from the query: 

Yearly_   KitKat   _ Saleo    "160000• 

Yearly_   FruitAndNuts   _ Sales     "2000oo• 
 
 

8.2.4   NativeDB GraphDatabase 
 

Relational DB  distributes  the relationships  and stores as tables. Path traversal  from a vertex  to vertices 

retrieves  the  multi-step  relationships.   An efficient  storage  mechanism  with  ease in path  traversals  is 

thus  needed,  especially  in  a Big Data  environment,   which  consists  of distributed   data-clusters   and 

parallels computing  data-nodes. 
 

Neo4j developed Native Data Store for graph  databases.1   NativeDB focuses on efficient use of available 

computing   resources.   The  design  is  architecture    aware  design.  NativeDB graph   stores  nodes  and 

relationships  directly. Direct storage makes retrievals  efficient. Figure 8.3 shows the relationships  in use 

during path traversal  and in use during operations  in NativeDB.

http://acvmcomapny.org/salesRecord/
http://acvmcomapny.org/salesRecord/
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Features of native data store are as follows: 
 

1.  Design provides  for  workload  of  memory  management,   query  engine,  and  query  language  at 

storage 

2.   Design provides  the  safe storage,  efficient  querying  consistently   and  without  the  aid  of other 

components 

3.   Organizes the graph data and models both graph structure,  vertex properties  and edge properties 
 

4.    Represents the graphs in-memory and on-disk 
 

5.   Caches the graph data in-memory either in batch mode or on-demand  from the on-disk 
 

6.   Enables timestamps 
 

7.   Persisting updates of graph along with the timestamps  from in-memory graph to on-disk 
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In-use  Relationships   during  path  traversal 

 
Figure   8.3 Native data graph relationships 

 

8.   Provides  graph  data  streaming,  graph  data  updates  for  modifying  the  graph  structure   and/ or 

property  data accordingly 

9.   Provides addition of the edges, removal of vertices and updates of properties 
 

10. Performs querying of graph data by loading the graph structure  and/ or property  data 
 

11. Finds neighbours  of a vertex, retrieves  property  of an edge bypath traversals. 
 

Neo4j developed  a query  language  called Cypher for the  NativeDBs. Tests for execution  times  in the 

searches for znd, 3rd, 4th and remote  neighbours  show that the Neo4j Native Data Store is faster compared 

to  other  formats.  IBM  G  system2   for graph  analytics,  visualization  and  other  graph  applications  also 

support NativeDBs. 

 
8.2.5   Property Graph Model 

 

A property  graph  assigns property  to the  nodes and edges. The following example  explains  a property 

graph: 

 
EXAMPLE 8.5 

 
(i)  How do you  draw  a property   graph  for  a student  data?  Student  data  contains  student   Id, 

semester,  subject options, grades and teacher  field. 

(ii)   How do property  graphs model the RDBMS  tables?



Student ID Semester Subject eac:her Grade  Point 

0628 4 Java ~-  Preeti  Sa>ena 8.. 2 

40628 4 Python Mrs.  Pritilca Bahad 8.0 

40629 4 Pyth011 Mrs.  Pritilca Bahad 7.6 

40629 4 s·  Data Prof. Raj Kamal 7.4 

  An   ytics   
·-· ... ... ... ·-· 

... ... ... ·-· . .. 

 

SubjecttD Subject eacher 

CS-401 a Dr.  Pree  ·  Saxena 

CS-402 Python Mrs. Pritilca Bahad 

CS-403 8€ Data Analytics Prof.  Raj 'Kam 

CS-301 DBMS ·- 
CS-502 C1o1Jd Computing ... 

 

CDurse 10 Semester 

PGCS 2014-16 1 

PGCS 2014-16 1 

PGCS2014-16 3 

PGCS 2014-16 
 

 

L 

SOLUTION 
 

(i)  Figure 8.4 shows the property  graph of student  data with Studentld,  semester,  subject options, 

grades and teachers: 

(ii)   Figure 8.5 shows RDBMS tables to which the above property  graph model corresponds. 
 

SrudentJD:    26.28 

Q>1.rselD:   PGCS-2014- 6 

StudentJD:  42629 

C-0u,rselO:   PGCS2014-16

Obtained       Subject_ Option   Subject_Option 

Semester: 4         Semester: 4 

Subject_Option       Subject_Optjon      Obt  ·      ed 
Semester:  4           Semester:  4

 

 
 

 
Taught by 

Subject_ T itJe:  Big 

Data Analytics

 
Teacher Name:            Te.acherName: 

De  Preeti  Saxena        Mrs.   Pritb  Bahad 

 
GradePoint_Java:  82 

GradePoint_Python:    8.0 

 
Figure  8.4 Property  graph of students,  semester,  subject options, grades, and teachers 

 

Figure  8.5 RDBMS 

tables 

for 
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1Point

Student ID      Course ID                                40628                    4                 CS.-401              8.2 

40628         PGCS 2014-16                        40629                    4                   CS.-402              7 E, 

40629         PGCS 2014-16                             ...                     ...                        ...             -· 
...             . ..                                                          4111                    2                   CS.-301               -· 

4111         PGCS 2015-17                             ...                                    ...                      ...                                    ... 
...              ...                                   4212                    s               CS.-502               ... 

4212         PGCS 2016-18                                                                           + 
t 
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students,  semester,  subject options, grades and teachers 
 

Three tables in the figure store the values separately.  Queries in the program  search and select the 

related  column  value. An arrow  in the  figure  shows the  link of a column  in table  with  the  next 

related  table. Property  graph model (Figure 8.4) clearly shows the relationships  and associations  as 

compared  to  RDBMS  tables  (Figure  8.5).  Property   graph  model  represents   the  relationships   or 

associations pictorially  and are thus easy to interpret.



Self-Assessment   Exercise  linked to LO 8.1 
 

1.  Howdoes Data Store model as a graph? Howis a node represented? Howis an edge represented? 
 

2.  Howdo the nodes and edges represents the properties? 
 

3.  Howdoes a graph depict relationships? Givetwo examples. 
 

4.  Howdoes a graph represent knowledge and reasoning? Give two examples of each. 
 

5.  Howdoes a graph represent parameters? Givetwo examples. 
 

6.  Howdoes a DFG represent the flows of data and program. 
 

7.  List the meaning of the terms: (i) triple 'subject-predicate-object' format, (ii) triplestore, (iii) instance 

identifier-property name-property value RDFformat,and (iv) NativeDB. 

8.  List characteristic features of the ResourceDescription Framework. 
 

9.   How does a property  graph represent  RDBMS tables? 
 
 

 

 8.3  l GRAPHS,  NETWORK  ORGANIZATION  AND  GRAPH  ANALYTICS   

 

A network  organization  means where the persons or entities interconnect  with

others and have areas of common interest,  business or study.  A model of graph 

data  store  is a network  organization.  Graph network  examples  are weblinks 

network,  social network,  business  network  and students  network.  A network 

graph  consists  of vertices  V,  interconnected   by directed   or undirected   edges 

E. 

Graphs, graph network 
organization. choosing 
graph for analytics and 
graph analytics use cases

 

A network  consists of items (entities,  persons  or web page links) and relationships  or the associations 

between  items. The graphs,  such as trees,  can store  a relational  DB.  However, relational  DBs have the 

following problems: 

1.  Mostly cumbersome to navigate 
 

2.   Difficult to scale up 
 

3.   Difficulties in adding new relationships  or associations. 
 

Graph  Data  Store  nodes  are  easy to  navigate  through   a traversal   of paths.  Path  traversals   can  be 

optimized  for faster traversing.  Scaling up and adding new relationships  or associations  are easy in the 

Graph Data Stores. 

 
8.3.1   NetworkOrganization 

 

Graph model of a network organization  helps in followings tasks: 

1.  Detecting patterns 
 

2.   Finding organization  inherent  in the network



3.    Finding communities  and micro-communities.   For example, finding the groups where  new trends 

are emerging, and the groups of similar interests 

4.   Finding   connections.   For  example,   finding   the   student-specific    connected   groups   showing 

preference  for programming  language subjects 

5.    Modeling communication.  For example, finding the  specific events which create  active interest  in 

the  specific community-groups,   such on launching  a new luxury car model which creates  interest 

in managers  and chief executive  officers, or starting  a new course on Python  which creates  deep 

interest  in postgraduate  Computer-Science students 

6.    Modeling collaborations.  For example,  finding the  collaborating  and  sharing  communities  which 

have similar interests,  finding community  sharing new techniques  and algorithms  that  has interest 

in Big Data Analytics 

7.    Modeling   influences.    For   example,    finding   the    persons    (nodes)   with   high   degrees    of 

interconnections   to large number of entities  compared to the others 

8.    Modeling  distances  between  set  of entities.  For  example,  finding  how  much  distance  a  path• 

traversal  takes place on an average when searching a common-interest   entity 
 

9.   Making  discoveries  and  providing  the  previously  unknown   information   after  the  search  and 

analysis 
 

Distance  in a graph  consisting  (V and E) refers to the number  of edges connecting  the two vertices  vl 

and v2 on the path traversal  between them. 

 
8.3.2  ProbabilisticGraphical Network Organizations-Bayesianand Markov 

Networks 
 

Probability  means the chance of observing a dependent  variable value with respect  to some independent 

variable.  Suppose a Grandmaster  in chess won 22 out of 100 matches,  78 matches  were a draw, and lost 

none of the matches.  Then, the probability  P of winning Pw is 0.22, P of drawn game P0  is 0.78 and PL of 

losing, 

PL= 0. The sum of the probabilities  normalizes to 1, as only one of the three  possibilities exist. 
 

Probability states mean that  states of P values as a function  of all possible independent  values, situations 

or   variables.   For   example,   if  probabilities    of  winning,   drawing   and   loosing   for   Chess-player 

supercomputer  AlphaZero against a Grandmaster  are P = (0.22, 0.78, 0), then the probability  function  has 

three  states. Here, the probability  state is a discrete function. Sum of P values is one. 
 

Probability  distribution means  that  distribution   of P values  as a function  of all possible  independent 

values, variables, situations,  distances or variables. For example, P is given by a function P(x) and P varies 

as x changes. Variations  in P(x) with x can be discrete  or continuous.  Here, again values are normalized 

such that sum of the P values is 1 (Section 6.2.5). 
 

The  probabilities   distribute   in  the  entities.   The  vertices   represent   the  entities.   The  probability 

distribution  function P(x) distributes  at the neighbouring  vertices of a parent.  That means vertex x has a 

property  with  probability  P(x), where  x is the  distance  from  the  parent  vertex.  Neighbouring  means 

associated, influence or effected vertices of the parent. 
 

A Bayesian  Network  Graph  (BNG) is a graph where each node represents  a random variable in a DAG. The



variable has s probabilistic  distribution  over the connected  nodes. No cyclic path traversals  occur in BNG 

during querying or computations. 
 

Markov  Network  Graph (MNG) is a Graph where each node represents  a random variable in an undirected 

graph. The variable has a probabilistic  distribution  over the connected  nodes during path traversal.  The 

cyclic path traversals  may also take place in an MNG. 
 

Propagation   of  a  property   in  a  network   implements   by  a  function,   func  (x) where  x  refers  to 

neighbourhoods   of the  associated  vertices  (vertext",   2nd, 3rd, 4th and  so on) with  respect  to  a parent 

vertex. The func () is a propagation  function which represents  an inference,  evidence, belief, expectation 

or influence as a function of distances. The distribution  (propagation)  over distance can be continuous  or 

discrete (Section 3.2.1 for definition  of distance between the vertices). 
 

Fune()  can be a user defined function  (UDF), vectorized  UDF (VDUF)  or group vectorized  UDF (GVUDF) 

[Sections 5.3.2.2 to 5.3.2.4].  Fune () can be a probability  distribution  (propagation)  function  P(x) or joint 

conditions probability  function or potential  function. 
 

Probabilistic  graphical   models,  such  as  Bayesian  networks   or  Markov  networks   have  number   of 

applications.  Probabilistic graphical  models are used in machine learning. The models provide a compact 

representation.     The   model,   for   example   Bayesian   network,   provides   solutions   for   probabilistic 

inferences.  Examples of applications  are business strategies,  risk assessments,  medical diagnosis, speech 

recognition,  assessment  of loan risk default, etc. 
 

Bayesian Network Graph (BNG) 
 

A BNG network organization  has the following features: 
 

1.  It  is a directed  graph  model  in which  non-cyclic  and  no reverse  path  traversals  take  place  for 

computations 

2.   Enables a compact representation   which gives probabilistic  relationships  among a set of variables 
 

3.   Enables the computations  of joint  probability  distributions  over the probability  state variables 
 

4.   Each node  has  a  set  of  conditional   probabilities   which  specifies  quantitatively   the  influences 

(effects)of the parent 
 

5.   The property   values  at  vertices  have  Conditional  Probability-Distribution   (CPD),  table  of graph 

nodes, node properties  and probabilities,  called Condition Probabilities Table (CPT) 

6.   An  edge  between   two   nodes   means   that   these   two   nodes   have   conditional   probabilistic 

dependency.  A missing edge between two nodes means conditional  independence  of the node from 

the parent  node. 

The following example explains the concept of CPD and CPT. 

 
EXAMPLE 8.6 

 
Assume  that  a  student   chooses  subjects  in  a  semester   examination   and  obtains  GPAs and  the 

probabilities  of obtaining GPAs in the subjects are as follows:



 

. 
 

VI .85 .15  
V:! 0. .2  
VJ 0.75 0-5  
V.4 .8 0.2  

 

 
 

I 

 
 
 
 
 
 
 
 

Number of rows in the table above depends  on the  subjects and their  nature  (theory,  practical  or 

general). 
 

Vl connects V2 by a directed  edge el towards V2. V2 connects V3 by a directed  edge e2 towards V3 

and also connects to V 4 by a directed  edge e3 towards V 4. Using this graph: 
 

(i)  Show  diagrammatically   Bayesian-Network   Graph  for  obtained   probabilities   of  GPAs with 

probability  using distribution  of probabilities  P in different  subjects, and 

(ii)   Explain the  concept  of conditional  probability  distribution   (CPD)  and  conditional  probability 

table (CPT). 
 

SOLUTION 
 

(i)  Figure  8.6  shows  Bayesian  network  graph  for  a  student   obtaining  GPAs with  probabilities 

distributions  in the GPAs: 
 

 
 

Figure  8.6 Bayesian network graph for a student  obtaining GPAs with 

probabilistic  distributions  in the GPAs 
 

(ii)   Following are the probabilities  distributions  at the nodes: 

 
VI       P      I  V2      P      2  VJ P    3  V4      P    4 

8-        P1o=0.8 

8+       P11  = 0.1.5 

 8-        P-20 = 0.8 

8+       ?21  = 0.2 

 8- 
 

8+ 

Pso =0.85 

p,1   =0.15 

 8-        p    =0.8 

8+       P41   = 0.2 

The first column shows the property  at Vl, 8- means the student  obtains below 8.0 and 8+ means 

above 8.0. The probability  distribution  values enable the computation  of conditional  probability,  cp 

values and give the CPTs. The formats of CPTs are as follows:



V1   V2  P   V21V1                    2    3P       31V2             V2 V4P      41V2             V  VlP         IVl 

-   8- 
 

21  -   8-    8- 8- 
 

31 

8- 8+ cp2101  8-  +  8-  +  8- 8+ cp3101 

8+ 8- Pwo  8+  8-  8+  8-  8+ 8- cp3110 

8+  + 2111  +  +  8+  +  8+ 8+ cp3u1 

cp2100  is probability  when the conditions  at nodes Vl  and V2 correspond  to GPs below 8.0 in both 

subjects. Similarly, other  cp values are probabilities  when conditions given at rows 1 and 2 are true. 

The CPTs enable computations  of the probability  of the conditions  such as Vl=  8+, V2 = 8+, V3 = 8+, 

V4 =  8+ being true.  Four nodes  have 24=  16 conditional  probabilities  in the  Bayesian network.  16 

conditions are possible for four nodes of the graph. 
 

 
MarkovNetworkGraph (MNG) 

 

A Markov Network Graph (MNG)  is a network  organization  which is undirected  and can have cycles in 

path traversals. 
 

Assume that  all vertices  are reachable  from a starting  vertex.  Breadth  first traversal  (search) [BFS]  is 

used when the  graph  has cycles. Therefore,  the visited vertices  are marked.  The marks  at each visited 

vertex can be stored in an array of bits (Booleans). 

 
8.3.3   GraphAnalytics 

 

Three  types  of processes  for  graph  analytics  are  (i) performing   searches  and  finding  matches,   (ii) 

performing topological analysis (for example, analyzing degree and degree distribution,  closeness, 

betweenness,  centrality  parameters),   and (iii) traversing  the  path  and studying  the  flow, [for example, 

probability  flow (variation with respect to distance)]. 
 

APis and tools of graph analytics do the following: 
 

(i) Find association  of nodes, which implies finding a node relation  or connection  with the  next  or 

previous node 

(ii)  Detect patterns,  communities  and micro-communities 
 

(iii) Do a graph  search  and  find graph  matches  for  specific connected  groups  which  show similar 

preferences 

(iv)  Find  collaborations   among  entities   having  similar  interests   (for  example,  collaborations   by 

sharing similar techniques  and algorithms) 

(v)   Do shortest  path analysis for communications 
 

(vi)  Analyze the distances between a set of common interest  entities 
 

(vii) Compute the  centralities   (degree  centrality,  closeness  centrality,  betweenness  centrality,  Eigen 

vector for centralities  of the neighbours  to a node of higher centrality  than the neighbours) 

(viii)Detect the anomaly and discover previously unknown information 
 

(ix)  Evaluate the  influence  distribution  by comparing  the  nodes of high degrees  of interconnections 

with large number of entities with respect to others,



(x)   Find the ranking from PageRank, a term used in analogy with web PageRank. 
 

Graph analytics  use the  methods  of collaborative  filtering  (Section 6.4.3), stochastic  gradient  method 

(Section  6.7.3), triangle   counting   (Section  9.5.6),   K-core  analysis  (Section  9.5.3), Web  communities 

(Section 9.4.6), social communities  (Section 9.5.8), and PageRank (Sections 9.4.1 and 9.4.3). 
 

Node distance refers  to  the  number  of edges connecting  a node  from  a node  taken  as origin.  If two 

vertices  vl  and v2 on path  traversal  are the  nearest  neighbour,  then  distance  of v2 from vl  is 1;  if the 

next nearest  neighbour  then 2; if next to next then 3, and so on. 
 

A  node  distance   is  a  measure   of  number   of  1st,  2nd,  3rd,  4th   and  so  on  and  corresponds   to  the 

neighbourhood  associated with a vertex. 

The parameters   nni,  nn2,    ....    measure  the  node  neighbourhoods,   where  nn1,   nn2,    ...    =  number  of 1st 

neighbour  node, 2nd neighbour  node, ... , respectively,  and so on to a querying node. 

The node centrality of a node  is defined  in reference  to  other  nodes  using  the  metrics.  Metrics  for 

centrality  are degree,  closeness, betweenness  or other  characteristic   of the  node, such as rank, belief, 

expectation,  evidence, reputation  or status. 
 

Nodes closeness to a vertex  u is defined, as reference  to other  connected  vertices  in Vu with u. Vu is a 

subset of vertices in V that  connect with u. The centrality  (closeness index), Cc  is function  of distances  of 

vertices.

Cc (v) = L [d (u,  v)r1• 
DEV 

 
. ..  (8.1)

 

where d (u, v) is the distance between u and v when traversing  the path, and u and v are elements  of Vu. 

Summation  is overall  connected  vertices  to  u [Closeness is inverse  of the  node  distance  in terms  of 

neighbourhood  1, 2, ... or N (Recall K-NN in Section 6.3.6). 
 

Node betweenness defines  the  extent  to  which  a vertex  is located  'between'  other  pairs  of vertices, 

measured by the number  of times a node is present  between the shortest  paths. Betweenness  Cs (v) relates 

to the number  of pairing nodes. 
 

Betweenness  centrality  of a vertex v requires  calculating the lengths of shortest  paths among all pairs (p, 

q)  of vertices  connected   to  u,  and  computations   of  summation   for  each  pairing  vertex  in  Vu·  The 

centrality  (betweenness  index), Cs (u) is function of shortest  distances with the pair of vertices. 

CB (u) = {   ra   (p, q I     u)]x[a (p,  q)f1  }.                                                               • .. (8.2) 
p •q •u EV 

a (p, q Iv) is the shortest  distance between u and pair (p, q). Divisor of the sum,  a (p, q) is the shortest 

distance between p and q. a (p, q) is the normalization  factor. Summation is overall the connected  pairs 

of vertices to vertex u. Vertex u and vertex pairs (p, q) are elements associated with Vu subset of vertices. 
 

 
EXAMPLE 8.7 

 
Figure 8.7 shows a multi-directed  graph with 12 vertices (p,  q,  r,  s,  t, u, p ', q', r ', s, t  and u),



 
q 

 
 
 
 
 
 
 
 
 

 

Figure  8.7 Graph with 12 vertices and 13 edges 
 

(i)  Compute  order   of  the  graph,   in-degrees   and  out-degrees   of  u  and  u',   and  15\        2nd,   3rd 

neighbourhoods  of u. 

(ii)   Compute the centralities,  closeness and betweenness  using Eqs (8.1) and (8.2). 
 

SOLUTION 
 

(i)   Order of the graph is given by number of vertices N, = 12  and edges Ne = 13. 

In-degrees of u = 4. Out-degrees of u = 1. In-degrees of u ' = o. Out-degrees of u ' = 7 
 

l5tneighbourhood   of u = 5 (p, q', r, s, u'). 
 

2ndneighbourhood  of u =  7  (p', q, r ', s,  t, t,  u').  [u connects  by path  traversal  through  two 

edges.] 

3rdneighbourhoods  of u =8 (p, p', r, r,  s ', t, t,  u').  [u connects  by path traversal  through  three 

edges.] 

(ii)   Centrality closeness of u, CC (u) computes as follows: 
 

Distances with the five nearest  neighbours,  p, q', r, sand  u' =  1  each. Distances with the seven 

next to nearest  neighbours  p', q, r ', s ', t, t ' and u ' = 2 each. Therefore,  Cc (u) = (1/5 + 2/7) = 0.48 

using equation  (8.1). 

Centrality betweenness  index CB of u computes as follows: 
 

Connected Number of vertices  pairs=  8 [(u', t),  (u', s), (u ', r '), (q, r), (p, q), (s, t), (q', u'),  (u', 

p')] 
 

Shortest  distances with eight nearest  pairs=  1  each. No other pairs connect u with distance=  2. 

Therefore, CB = 8. 

 
 

8.3.4   Choosing GraphAnalytics 
 

When does graph analytics help? Loshin3  in a study suggests that graph analytics can help in business or 

other problems where the following characteristics  require  analysis: 

1.  Connectivity from the number  of relationships  and association types 
 

2.  Undirected  unidentified  patterns,   undirected  graph  path  traversal,  discovering  new unidentified 

pattern   (for example,  finding  students   of new batches  opting  for  Natural  Language Processing



subject, or finding emerging pattern  for cycling near the sea beach) 
 

3.   Missing pattern   (for example,  finding  none  of computer  science  student  interested   in financial 

analysis in an organization) 

4.   Discovering new knowledge [for example, evolving interest  in Big Data Analytics course in students 

ofUG Computer Science (Example 8.5)] 

5.   Analysis using the ad hoc queries for finding reasons 
 

6.   Predicting  interactive  performance,  which means predicting  interactions  among entities  on events. 

 
8.3.5 Use Cases of Graph Analytics 

 

Following are use cases of graph analytics from different  domains including the business domain: 
 

1.   Monitoring and analysis of social media 
 

2.   Analysis of an enterprise   social network:  The analytics  enables  search  of expertise,  knowledge, 

recommending  expertise,  experts location, and detecting  of spam and anomaly 

3.   Financial  analysis  for  undertaking   the  financial  decisions,  new  knowledge  discovery,  security 

analysis, anomaly and fraud detection,  such as credit  card frauds and fake bill payments,  account 

manipulations 

4.   Commerce and trade  analysis for customer  behaviour  prediction,  planning  and strategies  for sales 

promotion,  price discovery, detecting  weak supply chain links and commerce frauds 

5.   Cellular network  analytics  in telecom  companies  for increasing  their  operations  or helping  police 

to track criminals 

6.   Disease diagnostics, patient  and disease analytics in healthcare  studies, health care quality analysis, 

medicine research  and development  in genomics 

7.   Analyzes breaches  in cyber security,  location  of breaches,  detects  denial  of service  (Dos) attack, 

and finds the attack sources. 
 

 
Self-Assessment   Exercise  linked  to LO 8.2 

 

1.   How does  a network   organization   model  the  communications,    collaborations   and  correlations   using 

the graph? 

2.   How do the  centrality   parameters   specify the  degree,  closeness  and betweenness?   Demonstrate   using 

examples. 

3.   How does propagation   of probability   distribution   function   over  the  vertices  enable  decisions?  When 

does the Bayesian network  graph  model the distribution   of influence? 

4.   When is graph analytics used? 
 

 
 
 

8.41 GRAPH  ANALYTICS  ALGORITHMS  AND  APPROACHES  



A   graph    model   for   data   store   provides   additional    information    about 

associations.  Graph  analytics  thus  enables  analysis  of additional  properties, 

besides the ones using standard  RDBMS  or data warehouse  framework. 
 

Following  are  examples   of  algorithms   for  graph   analytics   which  relate 

associations of entities: 

 
8.4.1  StatsModel and ProbabilityBased Analytics 

 

Centralities Parameters in Graphs 

 

 
 
Graph parameters, 
methods, diagnostics, 
dedsons,  statistical 
mod  I, Stats   odel, and 
probabilities-based 
analytics, and technical 
complexities in analyzing 
the graphs

 

Computations  of the centralities  of entities  in terms  of (i) in-degree  in nodes of directed  graphs  and (ii) 

out-degrees,   (iii) distribution   of degrees  among  the  nodes,  (iv) closeness,  (v) betweenness,   (vi) other 

parameters  such as effective closeness, reputation,  status  and link rank. Degree of a node is the number 

of edges linked to a node. Node closeness to other  vertices  depends  on the sum of distances  with other 

vertices.  Node betweenness  relates  to the  number  of pairing  nodes. Node relations  or connections  are 

associated with the next node and with the previous node. 
 

Computation   of  financial   worth   of  a  company   uses  three   parameters    of  centralities.   Another 

application  is monitoring  the attacks on the network. 
 

Path and Flow Analysis of Graphs 
 

Path  and  flow analysis  algorithms  analyze  the  shapes  (triangles,  hexagons,  trees  and junction   trees), 

shortest  paths and top-K shortest  paths. Algorithm for triangles  counting  finds the number  of triangular 

relationships   among  the  nodes.  Top-K  shortest   paths  means  finding  distances  of the  multiple  paths 

which connect the vertices and which have the shortest  paths among top K. Value of K is 2, 3, 4 and so on 

for top-2, top-s, top-4 and so on. 
 

Matching and Search Analytics in Graphs 
 

An algorithm   matches  the  graphs  and  subgraphs   after  a graph  search  on  path  traversals.   A  filter 

algorithm  uses the label, vertex-property,   edge-property  or geographical  location for filtering the graph 

vertices.  Collaborative filtering  algorithm  also does the  searches.  Collaborative  filtering  means  finding 

matches in a bipartite  weighted graph. 
 

A  subgraph  is graph  whose vertices  and edges are subset of another  graph. A graph  G 1 =  (V', E ') is a 

subgraph  of graph  G= (V, E) if V¢  ~   V, and  E'  ~  EA  ((vl,  v2)  EE'   ~   v l,  v2EV')   in set theory 

notations. 
 

[Set theory  uses symbols as follows: Symbol (i) ~  is for 'subset of, for example V' is subset ofV.  (ii) A 

is logic symbol for 'and'. (iii) E  is for 'element  of (for example vl, v2 EV'  means vl and v2 are elements 

of v'). 
 

Collaborative Filtering (CF) 
 

Collaborative Filtering  (CF)  is a technique   used  by  recommender   systems  (Section  6.4.3).  The  system 

collects  references  or test  information   from  many collaborating  users.  The system  makes  predictions 

about the interests  of a user and then recommends  to new users. 
 

Detection of Clusters 
 

Clustering  analysis  identifies  the  groups  of special cases. For example,  in a study of effect of discount



offered  in versus  sales, the  identification   of clusters  enables  the  price  discovery.  Another  example,  a 

system identifies a cluster of students  with deep interest  in Big Data analytics. This enables a department 

to start additional  new course in that area. 
 

Detection and Analysis of Patterns 
 

Pattern   detection   and  pattern   analysis  are  required   in  many  applications.  For  example,  identifying 

patterns  of sales increase  after an advertisement   of a car model. That helps a car company for planning 

future  advertisement   strategies.  Graphical detection  of patterns  identifies new patterns,  which may lead 

to new opportunities  (for example in education, business or health care) 
 

Anomaly Detection 
 

Anomaly detection  and  analysis  find the  abnormal  behaviour,  structure,   feature,  content  or semantic 

features.  Anomaly  detection   may  also  help  in  its  usability  and  summarising   anomaly  attributes.   It 

enables identification  of spam source and can lead to detect  frauds related  to credit card, medical claim 

or detecting  fictitious transactions. 
 

Community and Network Analysis 
 

The community  and network  analysis analyses the close-by entities,  and fully mesh-like connected  sets. 

The network graph analysis besides the centralities  analysis, also find page rank of the links. 
 

Community   and   network   analyses   use  triangle   count,   clustering   coefficient,   K-neighbourhood, 

connected  component  and K-core analysis parameters. 
 

K-neighbourhood  analysis means finding the number  of 1st  neighbour  nodes, 2nd  neighbour  nodes and 

so on. (K  = 1, 2, 3, 4 and so on). 
 

K-core analysis  means  number  of cores  within  a marked  area.  A  core  may consist  of a triangle  of 

connected  vertices.  A core may consist  of a rectangle  with interconnected   edges and diagonals. A core 

may also be a group of cores. 
 

PageRank Based Analytics 
 

PageRank is a metric for importance  of each vertex  in a graph. Assume an edge from vl  to v2 represents 

endorsement   of  importance   of  v2  by vl   by  a  connection.   The  importance   of  vl   results   from  the 

interactions  between them by creating  a relationship  between them, sharing a belief or some other  mean 

(Term PageRank borrows from web PageRank). 
 

StatsModel and Probability Based Analytics 
 

Statistical  model is a class of mathematical  models. It  considers  a set of assumptions  for the  sample data 

representing  a larger population.  A statistical  model represents,  often in considerably  idealized form, the 

data generating  process. 
 

StatsModel refers  to  a Python  module  that  provides  classes  and  functions  for  estimation   of many 

different  statistical  models, as well as for conducting  statistical-tests,  and exploring the statistical  data. 
 

Analysis of Big Data need reasoning  and prediction  under uncertainties.  Uncertainty  requires  usages of 

probabilities  and StatsModel. Many critical Big-Data graph analytics uses the inter-relationships   between 

the entities.  Graph based representations   need learning  of graph  structure,  computations  of conditional 

independence,  and probabilistic  inference. 
 

Diagnosis and Decisions based on Probabilistic Graphical Models



Bayesian networks  or  Markov networks  are  used  in various  applications,  such  as assessment  of loan 

default risk. Graph analytics algorithm  first convert  the network  into junction  trees  and then,  performs 

the graph  traversal.  This is due to use of distributed  file system in Big Data graph  database.  A network 

probabilistic graph-model  needs intensive numeric operations. 
 

Advanced Concepts in Probabilistic Graphical Models 
 

Use ofJunction Trees  Graph  (JTG) formed  for the  Bayesian  Consider four nodes BNG with 2  states per 

node (Example 8.6). That needs 24 = 16  CPT  entries  for four probable  conditions  at all four vertices when 

jointly  considered. 
 

Assume a fifteen node BNG with five states per node. Consider five states at each node in Example 8.6. 

Assume that  five states  of GPA awarded  probabilities  are PB+,  PB-, P6+, P6- and P4-. That needs 515   CPT 

table  entries.  Therefore,  515   CPT  entries  for  five probable  conditions  at  all  15  vertices  when jointly 

considered.  Therefore,  an algorithm  first reduces the Bayesian network  graph  to a JTG using a junction 

tree algorithm  0TA1).4 
 

The number  of incoming  directed  edges connect  at each junction.  A junction  tree  is a one that  has a 

root node at a junction,  which has number  of directed  edges to a set of junctions  (daughter  nodes). Each 

daughter  is again a junction,  which has number  of directed  edges to a next set of junctions.  Thus, a tree• 

like structure  exists starting  from the root. 
 

JTAl is a machine  learning  algorithm.  JTAl  is also called  clique  tree  method.  The method  extracts 

marginalization in general  graphs.  It propagates  belief (evidence collected  at the junction  from number  of 

connected   nodes  in  the  junction   tree,   also  called  inference from  that   tree).  JTAl does  the  belief 

computations  for each junction  tree. Usage ofJTG eliminates the cycles in traversals  also. 
 

Probabilistic   inferences   at junction  trees  Probabilistic  representation   of the distributions  in terms  of 

the CPTs is replaced by inference computed for each junction  tree of JTG.An algorithm  computes Potential 

Tables (POTs) which replace the use of CPTs for analyses. 
 

Knowledge Discovery 
 

Algorithms for graph  analytics along with machine  learning  algorithms  lead to new facts. They discover 

new associations during the analyses. They lead to discovery of new knowledge. 

 
8.4.2   Technical  Complexity  in Analyzing  Graphs 

 

Big Data  analytics   has  challenges   due  to  need  of  compact   representation    and  parallelism   of  the 

computations  when large datasets  execute  on the  clusters.  Following are the  technical  complexities  in 

the Graph analytics: 
 

Graph-Partitioning Complexity 
 

Triangularly  connected  nodes or similar structures  of high connectivity  may be of specific interests.  Big 

Data analytics depend on the distribution  of data in HDFS-like  files or distributed  DBs. High connectivity 

structures   pose the  problem  of partitioning   and  data  sharding.  When the  data  structures   have  such 

problems, the network  access intervals  increase significantly performance  of the algorithm  also reduces. 
 

Graph-memory Accesses Unpredictability 
 

Big Data analytics need parallelization  of computations.  Several path traversals  thus initiate  at the same 

instance.   However,  due  to  sequential   node  links  through   the  edges,  each  path  traversal   follows  a



sequence of nodes. 
 

Many traversals  are necessary when finding new patterns.  Poor locality and irregular  memory accesses 

are the problems. The memory access times are unpredictable  for each paralleled traversal.  Much time is 

thus lost in accessing memory. 
 

Analytics Problems and Topologies 
 

Graph characteristics  may inhibit the need of scalability due to performance  issues. The large graphs  and 

number of topological structures  result in complexities. 
 

Dynamic Interactions  for Graphs 
 

The dynamic computations  enable update  of cluster and subgraph.  Graphs in a Big Data application  need 

dynamic analysis of data with 3Vs characteristic.  Therefore,  rapid response  issues are complex in case of 

dynamic  interactions.   Computations  in  dynamic  graphs  have  poor  locality  and  unpredictable   access 

times from memory. The workload is also hybrid (sequential and parallel). 
 

 
Self-Assessment   Exercise  linked  to LO 8.3 

 

1.  How do the  additional  information  about  associations  enable  new parameters   from analytics 

besides the one using standard  RDBMS? 

2.  What are the graph parameters derived from graph analytics? Write equations for each of them. 
 

3.  Recapitulate Figure 6.9.  How do the  cluster results from the  graph  databases provide additional 

information compared to results shown in the figure? 

4.   How does graph-partitioning   problem result in technical  complexity during graph analytics? 
 
 
 
 

8.51  SPARK GRAPHX PLATFORM 

IBM  System G  offers a set of Big Data tools for graph  computations.  G (stands 

for  graph,   which  may  be  a  property   graph,   Bayesian   network   graph,   or 

cognitive  network  graph.  A  graph  may be static  or dynamic,  small or large, 

topological   or   semantic.   G    has  library   functions   for  graph   analytics.   G 

applications include creating and analyzing the database, visualization and 

middleware  for graph. 

 
Apache Spark Graph  Its 
features, architecture  and 
components,and   their 
applications   for graph~ 

analytics

 

Apache Spark GraphX is open source software that  provisions a number  of functions  and operators  for 

graph  stored  in HDFS  environment.   Apache Spark refers  to  a multi-component   platform  for Big Data 

computing  that  uses data  store  at a HDFS  file system,  HDFS  compatible  data  sources,  such  as HBase, 

Cassandra, Ceph or S3. Spark enables the use of data frames in Resilient  Distributed   Datasets  (RDD) (Section 

5.4.2),  and the  creation  of ETL  pipelines  (Section 5.5). An RDD  is a collection  of objects distributed   on 

many  computing  nodes.  Spark standard  APis enable  creation  of application  APis in Scala, Java, R and 

Python 

(Chapter 5). 
 

Graph analytics  need functions  which compute  degree  centralities,  degree  distribution,  separation  of 

degrees,    betweenness     centralities,     closeness    centralities,     neighbourhoods,     strongly    connected



components,   PageRank,  shortest   path,  Breadth  First  Search  (BFS), minimum  spanning  tree  (forest), 

spectral clustering  and cluster coefficient. 
 

The following subsections  describe Spark GraphX Architecture,  fundamental  operators,  algorithms  and 

their applications  for graph analytics. 

 
8.5.1  Featuresof a Graph Analytics Platform-Apache SparkGraphx 

 

Apache Spark provides  a software  component  known as GraphX. GraphX 2.2.1 released  on December 01 

2017 is a new version.  GraphX is an open source tool for graphs  and parallel  computations  for graphs. 

GraphX tool processes a Resilient Distributed Graph (RDG). GraphX tool is a stack component  ofBDAS 

(Section 1.6.4.3). 
 

GraphX   provides    a   set   of   fundamental    operators    such   as   subgraph,      j oinVertices         and 

a99re9ateMessa9es.  Apache GraphX provides  for computations   using the  property  graphs.  Identifier  in 

GraphX is 16-bit long unique-key. Edges have vertexIDs for corresponding  source-destination   paths. 
 

GraphX programming  features  are: 
 

1.    Includes a growing collection of graph algorithms  and graph creator  operators  (builders)5 

 

2.  Extends the  Spark for computing  with  Resilient Distributed  Dataset  (RDD)  (Section 5.4.2). Graph 

builders  do not repartition   the  edges by default,  they  are left in their  default  partitions   (such as 

their  original blocks in HDFS). 

3.  Introduces  a new abstraction  of graph  called directed  multigraph  which has properties  associated 

with each of the vertex and edge. 

4.   Provides several ways of building a graph; a graph builds from a collection of (V, E) [set of vertices 

and edges] in an RDD or on disk 

5.    Gives high performance  and competes with the fastest graph systems 
 

6.    Retains features  of Spark, ease in uses, flexibility, and fault tolerance 
 

7.    Unifies computations  using iterative  Graph, ETL, exploratory  analysis within the GraphX because of 

association with Spark, PySpark, as well as StatsModel 

8.  View data, in the same manner  as a graph and as a collection 
 

9.   Provides an optimized variant  of the Pregel APis 
 

10. Enables writing of user defined iterative  graph algorithms  using the Pregel 
 

Figure 8.8 shows GraphX architecture.
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Figure  8.8 GraphX Architecture 
 

GraphX operators 
 

GraphX aggregation  operator,  page rank,  connected  components  and triangle-counting   algorithms  do 

the following: 

1.  Aggregation   operator-Several    graph  analysis tasks require  aggregation  of information  about the 

neighbourhood  of each vertex. Many iterative  graph algorithms  repeatedly  aggregate  properties  of 

neighbouring  vertices.  Examples are computing  the  shortest  path  to a source, smallest  reachable 

vertex  id, connected  components   and  PageRank. The operator   applies  a user  defined  sendMsg 

function  to each edge triplet  in the  graph.  Then,  application  uses the  mergeMsg function,  which 

aggregates those messages at their  destination  vertex. 

2.    Pregel   operator-executes     in a series  of supersteps   in which  vertices  receive  the  sum  of their 

inbound  messages from the previous  superstep.  (Superstep  is a term  used in Pregel vertex-centric 

processing  in large  distributed   graphs.  Supersteps  do computations   consisting  of a sequence  of 

iterations.)  The operator  computes fresh value for property  at vertex. Then, that  sends messages to 

the  neighbouring   vertices  in  the  next  superstep.   GraphX Pregel-API provides  computation   of 

messages in parallel as a function  of the edge triplet.  A message for computation  provide accesses 

to both  attributes   of source  and destination  vertices.  When a vertex  does not  receive  a message 

that  is skipped  within  a superstep,  the  Pregel operator  terminates   the  iteration  and returns  the 

final graph  when no messages remain.  Pregel operator  in GraphX is a bulk-synchronous   parallel• 

messaging abstraction  that  constrains  to graph topology. 

3.    PageRank    algorithm-Assume     that   an  edge  from  vl   to  v2  represents    an   endorsement    of 

importance   of v2 by vl.  The function  measures  the  importance   of each  vertex  in a graph.  For 

example, if many students  opt for a teacher's  course, then, teacher's  rank is high. If many followers 

follow a twitter  account then that  account rank is high. Similarly, a web page is searched  by many 

then  that  page rank  is high. GraphX computes  PageRank statically  as well as dynamically.  Term 

PageRank is from Google web PageRanking system for searches (Refer Section 9.4.3 also). 

4.    ConnectedComponents     algorithm-labels    each  connected  component  of the  graph  with  the  ID. 

Each connected  component  ID  is an identifier  of the  lowest-numbered   vertex.  For example,  in a 

social network,  connected  component  objects can approximate  clusters. GraphX contains  an 

implementation  of the algorithm  for the ConnectedComponentsObject.

mailto:Agrept@Meuaps


The function  graph.    connectedComponents       ()  . vertices        computes  the connected  components  of 

the datasets  (for example, student-teacher   datasets,  and social network  datasets). 

1.  Degree          Computation            Objects:          Functions          graph.     inDegrees.     reduce     (max); 

graph.    out  Degrees.    reduce     (max);   graph.    degrees.     reduce     (max); computes  in-degree,  out• 

degree and degrees in a graph. These functions  analyze the degree distribution  also at the vertices. 

2.   Collection         neighbour          Ids        and         neighbours          Operators:         The        functions

collectNeighborids(edgeDirection: 

collectNeighbors(edgeDirection:                    EdgeDirection) 

EdgeDirection);

 

3.   Triangle  Count Algorithm-Determines    the number  of triangles  passing through  each vertex. The 

count  is a measure  of clustering.  A vertex  is part  of a triangle  when  it has two adjacent  vertices 

with  an edge between  them.  TriangleCount  requires  the  edges  to  be in  canonical   orientation 

(srcld  <   dstld)   [Source  vertex   ID is  srcID       and  Destination   vertex   ID is  dstID.].    Graph  is 

partitioned using             Graph.   parti     tionBy                  operator.              The             function 

graph.    triangleCount        () . vertices      counts the triangles  formed by vertices. 
 

Super step (ss) is a set of steps performed.  The following steps may take place in the framework  during 

a superstep: 

(i)   Receives and reads the messages that previous superstep  ss - 1 had sent to v 
 

(ii)  Applies  a  user-defined   function   fudt)  to  each  vertex   in  parallel,  therefore,   fudt)  essentially 

specifies the behaviour  of single vertex v at a single superstep  ss 

(iii) Can mutate  the state of v 
 

(iv)  Can send the messages to other vertices  (for example, along outgoing edges) that  the vertices will 

receive in the next superstep  ss + 1. 
 

Pregel approach  is that  all communications  [such a variable increment,  aggregation,  or applying fu~)] 

takes place between ss and ss + 1. The same fudt) applies within each ss to all the vertices in parallel. 
 

Property  Operators    in  Class Graph  [VD,   ED]   are  mapVertices         [VD2J  (),   mapEdges      [ED2J  (), 

mapTriplets         [ED2J  () } .  These functions yield a new Graph. 
 

Structural  operators  in Class Graph [VD,  ED] use subgraph    (),  mask  ()  and groupEdges    ().  Function 

reverse      (      )   returns  a new graph with all directions  reversed. 
 

The  function  graph.apply()   creates  a graph  from  RDDs  of vertices.  Apply function  arguments   are 

edges.vertices:                 RDD       [(Vertexid,             VD)];          edges:            RDD       [Edge[ED]J;          and 

defaultVertexAttr:             VD=    null) 
 

Join Operator 
 

Graph  databases  supports  JOIN  (Section  3.2). Join  Operator   joins  the  data  from  external   collections 

(RDDs)  with  the  graphs.  Also, a function  merges  extra  properties   with  an  existing  graph.  Main join 

functions  are  j oinVertices         and  outerJoinVertices           ().   The  j oinVertices        joins  the  vertices 

with the input ROD and returns  a new graph with the vertex properties  obtained by applying the user. 
 

Many examples  are  available  at  Github  site",  which  demonstrate   uses  of GraphX functions.  These 

examples guide the development  of codes for Big Data graph analytics.



Page Rank Analytics 
 

GraphX provides  static  and dynamic implementations   of PageRank as methods  of the  PageRank object: 

ranksByUsername =users.join(ranks.)map  {case  (id,    (username, rank)) => 

(username, rank) } . A Graphx operation  runs static PageRank for a fixed number  of iterations. 

The dynamic PageRank runs until the ranks converge. The run stops when the rank does not change by 

more  than  a specified  tolerance.   GraphOps enables  calling  these  algorithms  directly  as methods  on 

graph.  The function  graph.pageRank(0.0001.)vertices does the  following: When page ranking 

does not  change  during  the  run  beyond  the  specified tolerance  0.0001  (1 in 10000)  then  the  iterative 

process stops and the rank value converge. 
 

The following  explains  the  use  of PageRank  method  on graph  model  for  network  organization   of 

students  modeled as a graph. 

 
EXAMPLE  8.8 

 
Consider a graph model for a network  organization  of students  modeled as a graph.  Some student's 

text-notes  are widely exchanged with strongly connected  ones compared to the others. Assume that 

set of students  are in a file data/graphx/students.txt      and a set of relationships  between  students  is 

given  in data/graphx/stronglyConnected.txt.      What  are  the  steps  for  PageRank computations   for 

each student? 
 

SOLUTION 
 

(i)    Import GraphLoader using the program  statement  given below: 
 

irnportorg.apache.spark.graphx.GraphLoader 
 

(ii)   Load the graph edges using program  statement  as follows: 
 

val                             graph 

GraphLoader.edgeListFile(sc,"data/graphx/stronglyConnected.txt") 

Here, sc stands for Spark Context. 

(iii) Compute PageRank and get each student  page rank from the text file using program  statement 

as follows: 
 

val ranks= graph.pageRank(0.0001) .vertices 
 

PageRank method runs using Pregel operator  graph.pageRank(  ).vertices and does bulk• 

synchronous   parallel  messaging  over  the  vertices   to  compute   the  ranks   of  the  vertices. 

(Message in present  case is for computing the rank.) 

The Pregel operator  executes in a series of supersteps  in which vertices receive the sum of their 

inbound  messages from the  previous  superstep.  Pregel computes  using sequence  of iterations 

till rank converges within specified tolerance. 

(iv)  Find students  from the text file using program  statement  as follows: 
 

val Students=  sc.textFile("data/graphx/students.txt") .map {line=> 
 

val fields= line.split(",") (fields(O).toLong, fields(l))} 
 

(v)  Join  the  ranks  of the  students   and  map  them  with  the  username   and  rank.  Use program



statement  as follows: 
 

val    ranksByUsername           students.join(ranks)  .map 

(username, rank)) => (username, rank)} 

 

 
{case(id,

(vi)  Print the results  after making the strings  separated  by new lines using the program  statement 

as follows: 
 
 

8.5.2   Dedicated  Appliances  for Graph 
 

Graph  analytics  can  use  the  Berkeley  Data Analytics  Stack  (BOAS)   (Section  1.6.4.3),  can  use  GraphX 

(Section 8.5.1), IBM System G2,   NativeDB1, or the appliances dedicated for the graph-analytics. 

A  dedicated  appliance  is a computing  platform  for  in-memory  graph  computing  and  native  multi• 

threaded   (MT) processing.  In-memory  graph  computing  means  computing  using  data  first  taken  into 

RAM  memory  from  the  data  blocks which  store  the  Big Data. Native  MT processing  means  multiple 

program-threads    processing  at  the  platform   in  place  processing  at  the  cluster  of  data  nodes.  The 

appliance thus provides the faster IOs and results in very high performance  in Big Data environment. 
 

Dedicated appliances  for graph  are fully software  based. They run  graph  analytics  application  on the 

existing server/ cloud. They use triples based RDF format. They process using SPARQL query language. 
 

 
Self-Assessment   Exercise  linked  to LO 8.4 

 
1.   How  do  the   Spark  GraphX  component    enable   Big Data  analytics   and  high  performance    parallel 

computations? 

2.   How do property  graph  and directed  multigraph   provisioned  in GraphX? 
 

3.   What      are      the      uses      of     subgraph,      joinVertices       and      aggregateMessages,       PageRank, 

ConnectedComponents    and Triangle  Count algrorithms? 

4.   Describe usages of Pregel API and operator  for iterative  computing  on the ROG datasets. 
 

5.    How does Graphx unify iterative  Graph computation,  ETL, exploratory  analysis within GraphX? 
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LO 8.1                                                                                                                      .. 
 

1.  Graph models  the  data  stores  and  databases.  A semantic  database  creates  from  a collection  of 

triples. Triples format is similar to subject-predicate-object   format in English sentences. 

2.   RDF  is W3C standard  triple  format,  instance identifier-property   name-property   value. A URI represents 

the identifier. 

3.   Two features  of graph databases  are as follows: A graph (i) can add additional  properties  with each 

triple  relationship,   association  and attribute,   and  (ii) can include  new entities  and relationships, 

just as a tabular  database adds additional  rows, or columnar-family  database adds more columns. 

4.   Nodes in graph  are easy to navigate  through  traversing  the  paths  using nodes  (entities)  or edges 

(relationships). 
 

5.   NativeDB provides fast execution as compared to other graphDBs. 
 

6.   Property  graph model is used when relationships  and properties  also store in the database. 
 

LOS.2                                                                                                                       .. 
 

1.  A graph  also models a network  organization,  such as social media and web links. A Graph models



the  connections,  communications,  collaborations,  influences,  correlations   and  distances  between 

the entities. 

2.   Probabilistic   graphical   models,  such  as  Bayesian  networks   or  Markov  networks   have  several 

applications.  Graph  models  a Bayesian network  organization,   which  uses  directed  graph,  non• 

reversal  paths  and  cycles. Graph models  a Markov network  organization   that  have  undirected 

graph, can have reversal paths and cycles. 

3.   Three  types  of graph  analytics  are  (i) finding  matches  and  performing  searches,  (ii) topological 

analysis, for example analyzing the centralities,  degree, closeness and betweenness,  and (iii) paths 

between vertices and flow of properties,  such as probabilities. 
 

L08.3 
 

1.  Graph analytics  algorithms  enable the  determination   of centralities  of entities  in terms  of the  (i) 

directed  graphs  in-degree,  (ii) out-degree  at the nodes, (iii) degrees distribution  of the nodes, (iv) 

closeness, (v) betweenness,  (vi) parameters  such as effective closeness, reputation,   status  and link 

rank. 

2.   Graph analytics  algorithms  enable path  analysis, detection  of clusters,  find anomaly,  detection  of 

patterns, communities    and   perform   network    analysis.   Graph   analytics   algorithms    enable 

diagnostics  and  decisions  making  from  computations   of conditional  probability  tables, junction 

trees graph, inferences,  evidences or beliefs and potential  tables. 

3.   Big data store in distributed  database  environment  presents  technical  difficulties due to sequential 

path  traversals  resulting  in graph  partitioning   problems,  and the  slower responses  from memory 

during parallel execution of the queries. 

LOS.4                                                                                                                       .. 
 

1.  Apache GraphX is (i) software  of Spark for graphs,  (ii) creates  and computes  Resilient Distributed 

Graphs  (ROG),   and  (iii)  does  parallel   computations,   which  give  the  high  performance,   thus 

competes  with the  fastest  graph  analytics  system. GraphX has features  of Spark, such as ease of 

use, flexibility and fault tolerance. 

2.   Apache GraphX provides  for creations  and operations  on property  graphs.  Identifier  in GraphX is 

16-bit long unique key. Edges have corresponding  source and destination  vertexIDs. 
 

3.   GraphX  introduces   new  graph   abstraction,   directed   multigraph,   GraphX  library   of  a  set  of 

fundamental   operators,   such  as subgraph,  joinVertices   and  aggregateMessages  and  inclusion  of 

PageRank, ConnectedComponents,  and TriangleCount algorithms. 

4.   GraphX unifies  iterative  graph  computation,  ETL  and  exploratory  analysis  using Pregel API and 

operator. 
 

I   Objective Type Questions  1111 
Select one correct-answeroption for each questions below: 

8.1 A way of defining the centrality  of a node in reference  to other  nodes, use (i) metrics.  Metrics for 

centrality  of a node are (ii) degree, (iii) closeness,  (iv) betweenness,  or other  characteristics   of the



node such as (v) rank, (vi) belief, (vii) influence, (viii) expectation,  (ix) evidence, 

(x) reputation,  and (xi) status of a node. 

(a)  all except ii and vi 
 

(b)  all vi and xi 
 

(c)  all except ii, iii, iv and vi to x 
 

(d)  all 
 

8.2 (i) Each DAG  node represents   a variable,  traverses  in one direction  only along the  edges with no 

cyclic traversals.  (ii) When each node in a directed  graph has no cyclic traversals  then the directed 

graph  is also called acyclic graph,  (iii) directed  multigraph  provisions  multiple  parallel  edges and 

that  enables multiple relationships  between two entities,  (iv) Bayesian network graph in each node 

represents   a random  variable  in an undirected  graph.  The variable  has probabilistic  distribution 

over the connected  nodes. Cyclic path traversals  takes place in a BNG, and 

(v) each Markov network  graph node represents  a random  variable in a DAG  and that  variable has 

probabilistic  distribution  over the connected  nodes, and no cyclic path traversal  takes place. 

(a)  all except ii 
 

(b)  itoiv 

(c)  i to iii 

(d)  all 

8.3 (i) Graph model can represent  a hierarchy,  which the sequence of columns does not specify. Graph 

(ii) triple  format  is subject-predicate-object,    (iii) triple  format  can be instance  identifier-property 

name-property  value, (iv) identifier  uses a Universal Resource Indicator  (URI)  in RDF,  (v) SPARQL  is 

query language  for (vi) RDF,  and (vii) RDD.  (viii) Graph database  can add additional  properties  of 

each triple relationship,  association and attribute. 

(a)  all except vii 
 

(b)  all except i and vii 
 

(c)  ito  vi 
 

(d)  all except iv 
 

8.4 (i) Property   graph  model  does  not  show  relationships   and  associations.   (ii) Tables  in  RDBMS 

represent   the  relationships   or associations,  (iii) An RDF  data  file is similar  to three  columns  in 

triples:   subject,   predicate   and  object,  and   (iv)  also  similar  to  document-key-value    pairs   in 

MongoDB. (v) RDF  schema standard  declares the classes and relationships  between  properties  and 

classes, and (vi) RDF does not depend on a schema and is thus flexible. 

(a)  all except i and ii 
 

(b)  all except iii 
 

(c)  all except iii to v 
 

( d)  all except iv and vi 
 

8.5 Graph model  of a network  organization  can help in the  followings tasks:  (i) detect  patterns,   (ii)



finding inherent  organization  in the network,  (iii) communities  and micro-communities  modeling, 

(iv) connectivity  modeling, (v) collaboration  modeling, (vi) influence modeling, 

(vii) belief propagation,  (viii) distance modeling, (ix) closeness computations,  and 

(x) betweenness  computations. 

(a)  all except vii and viii 

(b)  all 
 

(c)  all except vii 
 

( d)  All except vi to viii 
 

8.6 Use cases of graph  analytics  are  (i) enterprise-network    analysis  (ii) social network  analytics  (iii) 

expertise  search,  (iv) knowledge  recommendation,   (v) expertise  location,  (vi) anomaly  detection, 

(vii) Spam detection,  (viii) financial analysis for financial decisions, (ix) health care quality analysis, 

and (x) detection  of cyber security breaches. 

(a)  all except vii 
 

(b)  all except i 
 

(c)  all 
 

(d)  i to viii 
 

8.7 (i) K-neighbourhood  analysis means the number  of 1st neighbour  nodes, 2nd neighbour  nodes, and 

so on. (K = 1, 2, 3, 4 and so on), (ii) The community  and network  analysis analyzes the (iii) close-by 

entities,  (iv) fully mesh-like  unconnected  sets, (v) network  graph  analysis beside centralities,  (vi) 

also does computations   of the  property of the  links,  (vii) rectangle  counts,  and  (viii) clustering 

coefficient. 

(a)  i to vi 
 

(b)  all 
 

(c)  ii to iv 
 

(d)  i to iii, v, viii 
 

8.8 (i) Apache Spark new stack component  is GraphX 2.2.1.   GraphX (ii) is a Linux based open source 

tool for graphs,  (iii) does the  graph  parallel  computations,   (iv) creates  and computes  Redundant 

Distributed   Graph  (RDG),   and  (v) provides  a  set  of  fundamental   operators   such  as  subgraph, 

joinVertices, and aggregateMessages.   GraphX (vi) does not  have functions  for property  graphs,  (vii) 

uses 64-bit long unique  key as identifier,  (viii) is a part  of BOAS  architecture,   and (ix) have Edges 

and corresponding  source and destination  vertexIDs. 

(a)  i, v to ix 
 

(b)  all except ii, iv, vi, vii 
 

(c)  all except ii and ix 
 

(d)  all 
 

8.9 (i) The Pregel operator  in GraphX is a bulk synchronous  parallel messaging abstraction,  (ii) with no 

constrains  to the topology of the graph,  (iii) the Pregel operator  executes  in a series of supersteps



in which  (iv) vertices  receive  the  sum  of their  inbound  messages  from the  (v) previous  step.  (vi) 

Superstep  is a term  used in Pregel edge-centric  processing  in large  distributed  graphs,  and  (vii) 

Pregel does computations  consisting of a sequence of iterations. 

(a)  iii, vi and vii 
 

(b)  all except ii 
 

(c)  all except ii and vi 
 

(d)  all 
 

8.10 ConnectedComponents  algorithm  in Graphx (i) labels each connected  component  of the graph with 

the  ID,  (ii)  each  connected   component   ID  is  ID  of  lowest  numbered   vertex.   (iii)  Connected 

component  objects can approximate  as clustersing  a social network,  and (iv) Graphx  contains  an 

implementation  of (v) ConnectedComponentsObject  in the algorithm. 

(a)  all 
 

(b)  all except i 

(c)  all except ii 

(d)  i to iv 

II   Review Questions      Ill 
8.1 How are the characteristics  of a graph parameterized  using the centrality  parameters?  (LO 8.1) 

 

8.2 What are the benefits  of modeling Data Store as a graph? What are the benefits of graph databases 

compared to RDBMS? (LO 8.1) 

8.3 List the differences between the RDF and NativeDB for graph Data Stores. (LO 8.1) 
 

8.4 How does a graph model a network  organization?  (LO 8.2) 
 

8.5 When does a graph model a Bayesian network organization?  (LO 8.2) 
 

8.6 Explain the uses of graph analytics for (i) finding matches and performing  searches and 

(ii) topological analysis, for example analyzing centralities,  degree, closeness and betweenness  and 

(iii) path and flow analysis. (LO 8.2) 
 

8. 7 How are  path  analysis,  clustering  detection,  anomaly  and  patterns   detection,  communities  and 

network  analysis used in applications?  (LO 8.3) 

8.8 What are the technical  complexities in Big Data graph analytics?  (LO 8.3) 
 

8.9 How are conditional  probability  tables  in Bayesian network  organization  graph  computed?  What 

are the limitations  of using CPTs? How do Potential tables differ from CPTs?  (LO 8.3) 

8.10 How do the probability  and StatsModel based analytics of graphs  enable diagnostics  and decisions 

making  from  computations   of  conditional   probability  tables,  junction   trees  graph,  inferences, 

evidences or beliefs, and the potential  tables? (LO 8.3) 

8.11 What are the operators  provided at Apache Spark Graphx architecture?  What are their uses? 

(LO 8.4)



8.12 How does a property  graph build using Graphx operators?  (LO 8.4) 
 

8.13 Describe functions of subgraph,joinVertices   and aggregateMessages  operators  in GraphX. 

(LO 8.4) 

8.14 What  are  the   applications   of  Graphx   PageRank,  ConnectedComponents   and  Triangle   Count 

Algorithms? (LO 8.4) 
 

 

I     Practice Exercises       1111 
8.1 Recapitulate  Practice  Exercise 5.5. (i) Draw the  property  graph  model for the  product  categories, 

names  and IDs and (ii) Create GraphDB using the triples  representing   the graph  in triple  'subject• 

predicate-object' format,  and  (iii)  Create  GraphDB in  RDF; instance   identifier-property    name• 

property  value format; 

Table of Product categories, Productld  and Product name 
 

 
Toy_Airplane 10725 Lost Temple 

Toy_Airplane 31047 Propeller Plaoe 

Toy_Airplan 

Toy_Traio 

31(»9 

310S4 

Twin Spin Heli opter 

Blue Express 

To _Train 10254 Wloter Holiday Toy_Train 

CL08.1) 
 

8.2 Make an RDF format database for nodes, edges and properties  given in Example 8.3. (LO 8.1) 
 

8.3 Recapitulate  Example 8.5 for property  graph  of database  of Students,  semester,  subject  options, 

grades and teachers.  Create an RDF data file using the graph shown in Figure 8.4. (LO 8.1) 

8.4 Create RDF and Native Data Store for Yearly_Car_Sales  given by following triples: 

 
Jaguar Land R     r  ale  JLRD               is 

H    a Sale (HDS 

Predicate

Z    l    ale  (ZDS equals 

equal 

qual 

 
 
 
 
!L     8.1)

 

8.5 Draw a property  graph  model for the RDF created  in Practice Exercise 8.4 for Yearly_Car_Sales.   (LO 

8.1) 
 

8.6 Draw network  organization  for property  graph shown in Figure 8.4. (LO 8.2) 
 

8.7 Consider 12 participants  in a network,  represented  by vertices Vl, V2, ... ,  up to V11 and V12. Draw 

a figure  for a network  organization  using graph  model  (i) where  V2, VS, V8, V9 follows Vl,  (ii) 

where V8 to V12 follows V2, (iv) Vl to V3, V6 to V9 follows V4, (v) V3, VS follows V8, and (vi) VlO, 

V11, V12 follows only first neighbours.  (LO 8.2) 

8.8 Find the in-degrees  and out-degrees  of each vertex.  Describe the steps to find centralities  metrics



of betweenness  and closeness. Use figure drawn in Practice Exercise 8.7. (LO 8.3) 
 

8.9 Describe steps to compute the triangles, junction  trees,  shortest  paths, and top K-shortest paths  in 

graph drawn in Practice Exercise 8.7 for Vl, V2, ... , VU and V12. (LO 8.3) 

8.10 List the  steps  for creating  text  file data/graphx/students.txt  and  a set of relationships   between 

students  is given in data/graphx/stronglyConnected.txt.      Use Figure 8.4. (LO 8.4) 

8.11 Write the program  statements  in GraphX for calculating in-degrees  and out-degrees  of each vertex. 

Describe the  steps in GraphX to find centralities  metrics  of betweenness  and closeness using text 

files created  in Practice Exercise 8.10. (LO 8.4) 

8.12 List the differences between SparkGraphx  and IBM System G. (LO 8.4) 

 
 

 
1 https://neo4j.com/product/ 

 
2 http://www.systemg.research.ibm.com/ 

 
3  David Loshin, Big Data Analytics from  Strategic  Planning  to  Enterprise  Integration   with  Tools, 

Techniques, NOSQL and Graph, Morgan Kaufmann, 2013 
 

4   https:/ Iocw.mit.edu/ courses/ electrical-engineering-and-computer-science/     6-438-algorithms-for• 

inference-fall-2014/lecture-notes/MIT6_   438Fl 4_Lecl 4.pdf 
 

5 http://spark.apache.org/ docs/latest/ graphx-programming-guide.html#graph-builders 

 
6 

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/grapm 
 
 
 
 

Note: 

o o • Level 1 & Level 2 category 
 

o • • Level 3 & Level 4 category 
 

• • • Level 5 & Level 6 category

http://www.systemg.research.ibm.com/
http://spark.apache.org/


Chapter 9 
 

 

Text, Web Content,Link, and Social Network Analytics 
 

 
 
 
 

LEARNING  OBJECTIVES 
 

 
After studying  this chapter, you will be able to: 

 

LO 9.1 Use the  methods  of text  mining  and machine  learning  (ML)-  Naive-Bayes classifier,  and support  vector  machines  for text 

analytics 
 

LO 9. 2  Get knowledge and use the methods  of mining the web-links, web-structure   and web-contents,  and analyzing the web graphs 
 

LO   9.3   Get  knowledge   and  use  methods   of  PageRanking,  analysis  of  web-structure,    and  discovering   hubs,  authorities    and 

communities  in web-structure 
 

LO   9 .4  Get concepts  representing    social networks   as graphs,  social  network  analysis  methods,  finding  the  clustering   in  social 

network  graphs,  evaluating  the SimRank, counting  triangles  (cliques) and discovering  the communities 

 
RECALL FROM EARLIER CHAPTERS 

 

Graph Data Stores  consist  of various  interconnected   data  nodes  (Section  3.3.5).  Models of graph  and graph  network  organization 

describe  the  entities  and objects, along with their  relationships,   associations  and properties   (Sections 8.2 and 8.3).  Web and social• 

network  graphs  are examples of Graph network  organization. 

Graph structure  analytics  discovers the degree of interactions,  closeness, betweenness,  ranks, influences,  probabilities  distribution, 

beliefs  and  potentials.  Analysis of the  community  and  network  discovers  the  close-by entities  and  fully mesh  like connected  sets. 

Network graph  analyzes centralities,  and computes the PageRank of the links (Section 8.4 and 8.5). 

 

 

 9.1  ! INTRODUCTION   
 

Text Analytics often  termed  as 'text  mining'  refers  to analyzing  and extracting   the  meanings,  patterns,   correlations   and structure 

hidden  in unstructured   and semi-structured   textual  data. Text data  stores  consist  of strong  temporal  dimensions,  have modularity 

over time and sources, such as topics and sentiments. 
 

Methods of machine-learning   are prevalent  in text  analytics also. For example, when a user books an air-flight  ticket  using a tablet 

or desktop, the user receives an SMS on the mobile about details of the booking and flight timings. An ML algorithm,  such as Windows 

Crotona  at the mobile reads  and learns  by itself from the SMSs  received  at the phone.  Crotona  uses the ML for the SMS  text  analysis .. 

Learning results  in SMS  alerts  to the user. An alert  is reminder  a day before  the flight. Another  alert  is two hours  before the flight, 

about the need to reach the airport.  Those alerts are system-generated   without  prior request  from the user. 
 

The reader  is required  to know the meaning  of the following select key terms: 
 

Vector refers  to  an  entity  with  number   of interrelated    elements.   For  example,  a  data  point  consists  of n-elements   in an  n• 

dimensional   space,  and  represents   a vector  to  that  point  from  the  origin  in the  space.  A  word  is a vector  of characters   as the 

elements.  Consider a vector  representation   of word 'McGraw-Hill', then  vector  VMH   = [M, c, G, r, a, w, -, H, i, 1, 1].   VMH   is vector  of 11 

elements  (characters)  that  refers to word McGraw-Hill. 

Feature refers  to  a set  of properties   associated  with  an  entity,  object  or  category.  For example,  feature  of properties,   such  as 

description  of data analysis, data cleaning, data visualization  and other  topics in a book on data analytics. 

Category  refers  to  a classification  on the  basis of set  of distinct  features  (for example,  a category  of text,  document,  cars,  toys,



students,  news or fruits). 
 

Label refers to a name assigned to a category, for example to sports-news,  latest data analytics books. 
 

Dimension refers  to  a number   of associated  values,  features   or  states,  along  the  distinct   spaces  (dimensions).  For  example,  a 

sentence  has a number  of words, each word has a number  of characters,  each word may have a feature,  and so the sentences  are in a 

three-dimensional    space. Two dimensions  are  in metric  spaces, which  mean  values  in quantifiable   spaces,  such as the  number  of 

words, probability  of occurrences  in sentences,  etc. Third  dimension  is in feature  space, measured  by a feature  such as noun, verb, 

adverb, preposition,  punctuation  marks and stop word. 

Another  example  is apples. Metric space variables  are values, such as variables  n, number of apples  of specific properties,   and P the 

probability of preferring apples  of specific  properties.   Assume,  feature  space  variables  are  four  properties,   colour, shape, type and 

freshness. Metric parameters  and properties  of apples are said to be in six-dimensional  space, two are metric  space (n and P) and four 

are feature  space. 
 

Graph data model refers to the data modelled by a set of entities.  The entities  identify by vertices V. A set of relations  or associations 

identifies  by edges E. An edge e represents   a relation  or association  between  two entities.  Nodes represent  the entities  in the graph. 

The model also represents  a hierarchy  between the parent  and children  nodes. 

Graph data network organization  refers  to a structure   created  by organizing  entities  or objects in a network,  such as social network, 

business  network  and student  network.  A network  organization  means where  persons  or entities  interconnect   with each other,  and 

have areas  of common  interest,  business  or study. A graph  enables  ease in traversing   from one entity,  person  or web page link to 

another  in the network  by following a path. Web graph  and social network  graph enable such analysis. A graph network  organization 

models the web and social networks.  Examples of social networks  are SlideShare, Linkedln, Facebook and Twitter.  The analytics  of 

social networks  finds the link ranks, clusters  and correlations.  The analytics discovers hubs and communities. 
 

Web content mining refers  to the discovery  of useful information  from web documents  and services. Search engines use web content 

mining. A search provides the links of the required  information  to the user. 
 

Hyperlinks  refer to links mentioned  in the contents  that  enable the retrieval  of contents  at web, file, object or resources  repository. 
 

Link analytics means  web structure   mining  of hyperlinks  between  web documents.  The analytics  of links and analyzing  them  for 

metrics  such as page ranks, clusters,  correlations,  hubs and communities. 

Count triangles Algorithm is an algorithm  that  finds a number  of triangular   relationships   among the  nodes. Triangular  relationships 

mean interrelations   between  each other. 
 

Graph  node centrality metric  means  the  centrality   of a node  in reference  to  other  nodes  using  certain  metrics.  Metrics  used  for 

centrality   of  a  node  are  degree,   closeness,  betweenness   or  other   characteristics    of the  node,  such  as  rank,  belief,  potential, 

expectation,  evidence, reputation  or status. 
 

Degree  centrality of a node refers  to the  number  of direct  connections.  Having more  number  of direct  connections  is not always a 

better  metric.  Better  measure  is the  fact that  the  connection  directs  to  significant  results  and tell  how the  nodes  connect  to the 

isolated node. 
 

Betweenness  centrality is a measure  that  provides  the  extent  to which a node lies on paths  between  other  nodes. A  node with high 

betweenness  signifies high influence  over what flows in the network  indicating  importance  of link and single point of failure. 
 

Closeness  centrality is the degree to which a node is near all other  nodes in a network  (directly  or indirectly).  It reflects  the ability to 

access information  through  the network. 

The present  Chapter focuses on text, web, contents,  structure  and social network  graph  analytics.  Section 9.2 describes text mining 

and usage of ML techniques=Naive-Bayes   analysis and support  vector  machines  (SVMs)  for analyzing text.  Section 9.3 describes  web 

mining, methods  to implement  the system, and analyzing the web graphs. 

Section  9.4  describes  PageRank  methods,  web structure   analytics  and  finding  the  hubs  and  communities.   Section  9.5  describes 

social network  analysis,  representation    of social networks  as graphs  and computational   methods  of finding the  clustering  in social 

network  graphs,  evaluating  the SimRank, counting  triangles  (cliques) and discovering  the communities. 

This chapter  follows a method  of notations  as mentioned  earlier  in Section 6.1 for fonts when absolute  value, mean value, function 

value, vector  element  or set member,  entity  or variable  when these  denote  by a character  or character-set.   This chapter  follows the 

notations  for the probabilities,  earlier  specified in 

Section 8.3.2.  Condition probability  P specifies as P (xilck) which means probability  of variable x = xi at condition  c = ck.



 9.2  ! TEXT MINING  
 

Today,  large  amounts   of  textual   data  is  generated   in  computing   applications.   Text  stream   arriving 

continuously  over time generates  text data. For example, news articles,  news reports,  online comments  on 

news,  online  traffic  reports,   corporate   reports,   web  searches,  and  contents   at  social  media  discussion• 

forums  (such  as Linkedin, Twitter  and Facebook), short  messages  on phones,  chat  messages, transcripts   of 

phone conversations,   biogs and e-mails. 

 

 
i.thods of text mining and 

machinele;uning(    L)• 
Naive-Bayesdassifier,and 
support vectormachines 
for text analytics

 

The abundance  of textual  data leads to problems  which relate  to their  collection,  exploration  and ways of leveraging  data. Textual 

data presents  challenges  for computing  and storage requirements,   consists of a strong temporal  dimension,  has modularity  over time 

and  have  sources  such  as topics  and  sentiments.   Examples  of text  processing  techniques   are  clustering   analysis,  classifications, 

evolution  analysis and event detection.  Following subsections  describe text mining in details: 

 

9.2.1   Text   Mining 
 

Four definitions  are: 

1.   "Text mining refers to the process of deriving high-quality  information  from text."  (Wikipedia) 
 

2.   "Text mining is the process of discovering  and extracting  knowledge from unstructured   data."  (National Center of Text Mining 
 

-The  University of Manchester+) 
 

3.   "Text  mining  is the  process  of analyzing  collections  of textual  contents   in order  to capture  key concepts  themes,  uncover 

hidden  relationships,   and discover the trends  without  requiring  that  you know the  precise  words  or terms  that  authors  have 

used to express those concepts."  (IBM2) 
 

4.    "Text mining is a technique  which helps in revealing  the patterns  and relationships   in large volumes of textual  content  that  are 

not visible to the naked eye, leading to new business  opportunities   and improvements   in processes."  (Amazon BigData Official 

Blog3) 
 

Applications  of text  mining  in  business  domains  are  predicting   stock  movements   from  analysis  of company  results,  decision 

making  for product  and  innovations   developed  at the  company  and  contextual   advertising.   Some other  applications   are  (i) mail 

filtering  (spam), (ii) drug action reports  (iii) fraud detection  (iv) knowledge management,  and (iv) social media data analysis. 

The applications  provide innovative  and insightful  results.  The results  when combined  with other  data sources, find the answers to 

the following: 

(i)   Two terms  which occur together 
 

(ii)   Information  linkage with another  information 
 

(iii)  Different categories  that can be created  from extracted  information 

(iv)  Prediction  of information  or categories. 
 

9.2.1.1 Text Mining Overview 
 

Text  mining  includes  extraction   of high-quality   information,   discovering  and  extracting   knowledge,  and  revealing  patterns   and 

relationships  from unstructured   data available in the form of text. 

The term  text analytics evolves from  provisioning   of strong  integration   with  the  already  existing  database  technology,  artificial 

intelligence,  machine  learning,  data mining and text Data Store techniques.  Information  retrieval,  natural  language processing  (NLP), 

classification,  clustering  and knowledge management   are some of such useful techniques.  Figure 9.1 shows process-pipeline   in text• 

analytics. 

9.2.1.2 Areas and Applications of Text Mining 
 

Natural   Language  Processing   (NLP) is a technique  for analyzing,  understanding   and deriving  meaning  from human  language.  NLP 

involves the computer's  understanding   and manipulation   of human  language.  NLP  algorithms  are typically based on ML algorithms. 

They automatically  learn the rules. First, they analyze set of examples from a large collection  of sentences  in a book. Then, they make 

the statistical  inferences.
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Figure  9.1 Text analytics process pipeline 

 

NLP  contributes   to the  field of human  computer  interaction   by enabling  several  real-world  applications   such as automatic  text 

summarization,   sentiment  analysis, topic extraction,  named  entity  recognition,  parts-of-speech   tagging, relationship   extraction  and 

stemming. The common uses of NLP include text mining, machine translation   and automated  question  answering. 

Information  Retrieval    (IR)  is a process  of searching   and  retrieving   a  subset  of documents   from  the  abundant   collection  of 

documents.  IR can also be defined as extraction  of information  required  by a user. IR is an area derived fundamentally  from database 

technology.  One of the  most popular  applications  of IR is searching  the  information   on the  web. Search engines  provide  IR using 

various  advance  techniques.   For example,  the  crawler  program  is capable  of retrieving   information   from  a wide variety  of data 

sources. Search methods  use metadata  or full-text  indexing. 
 

Information    Extraction   (IE)  is a process  in which the  software  extracts  structured   information  from unstructured    and/or   semi• 

structured   documents.  IE finds the relationship  within  text  or desired  contents  from text.  IE ideally derives  from machine  learning, 

more specifically from the NLP domain. Content extraction  from the images, audio or video is an example of information  extraction. 
 

IE requires  a dictionary  of extraction  patterns  (For example, "Citizen of <x>, or "Located in -oc-") and a semantic  lexicon (dictionary 

of words with semantic category labels). 
 

Document   Clustering   is an  application   which  groups  text  documents   into  clusters.  Automating  document   organization,   topic 

extraction   and fast information   retrieval  or filtering  use the  document  clustering  method.  For example,  web document  clustering 

facilitates  easy search by users. 
 

Document   Classification    is an  application   to  classify  text  documents   into  classes  or  categories.  The  application   is useful  for 

publishers,  news sites, biogs or areas where lot of contents  are present. 
 

Web Mining  is an application  of data mining techniques.  They discover  patterns  from the web Data Store. The patterns  facilitate 

understanding.   They improve  the services of web-based  applications.  Data mining of web usage provides  the browsing  behavior  of a 

website. 

Concept  Extraction   is an application  that  deals with the extraction  of concept  from textual  data. Concept extraction  is an area of 

text classification  in which words and phrases  are classified into a semantically  similar group. 

9.2.1.3 Text Mining Process 
 

Text is most commonly used for information  exchange.  Unlike data stored  in databases,  text is unstructured,   ambiguous and difficult 

to process. Text mining is the process that  analyzes a text to extract  information  useful for a specific purpose. 
 

Syntactically, a text document  comprises characters  that  form words, which can be further  combined 

to generate  phrases  or sentences.  Text mining steps are (i) recognizing,  extracting  and using the information  present  in words. Along 

with searching  of words, mining involves search for semantic  patterns  as well. 
 

Text mining process consists  of a process-pipeline.  The pipeline  processes  execute  in several phases. Mining uses the iterative  and 

interactive   processes.  The processing  in pipeline  does text  mining  efficiently  and mines the new information.  Figure 9.2 shows five 

phases of the process pipeline. 
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Figure  9.2 Five phases in a process pipeline 

 

The following subsection  describes these phases: 
 

9.2.1.4 Text Mining Process Phases



The five phases for processing  text are as follows: 
 

Phase  1: Text pre-processing    enables Syntactic/Semantic   text-analysis  and does the followings: 

1.  Text cleanup is a process  of removing  unnecessary  or unwanted  information.  Text cleanup  converts  the  raw data by filling up 

the  missing  values,  identifies   and  removes   outliers,  and  resolves  the  inconsistencies.   For  example,  removing   comments, 

removing  or escaping  "%20"  from URL  for the web pages or cleanup  the  typing  error,  such as teh  (the), don't   (do not)  [%20 

specifies space in a URL]. 

2.   Tokenization is a process  of splitting   the  cleanup  text  into  tokens  (words)  using  white  spaces  and  punctuation   marks  as 

delimiters. 

3.   Part of Speech  (POS) tagging is a method  that  attempts  labeling of each token  (word) with an appropriate   POS.  Tagging helps in 

recognizing  names  of people, places, organizations   and titles.  English language  set includes  the noun, verb, adverb,  adjective, 

prepositions  and conjunctions.  Part of Speech encoded in the annotation  system of the Penn Treebank  Project has 36 POS tags. 4 

4.    Word sense disambiguation is a method,  which identifies  the sense of a word used in a sentence;  that  gives meaning  in case the 

word  has multiple  meanings.  The methods,  which  resolve  the  ambiguity  of words  can be context  or proximity  based.  Some 

examples of such words are bear, bank, cell and bass. 

5.   Parsing is a method,  which  generates   a parse-tree   for each  sentence.  Parsing  attempts   and  infers  the  precise  grammatical 

relationships  between  different  words in a given sentence. 

Phase   2:  Features    Generation    is  a  process  which  first  defines  features   (variables,  predictors).   Some  of the  ways  of  feature 

generations  are: 

1.  Bag of words-Order  of words is not that  important  for certain  applications. 
 

Text document  is represented   by the  words  it contains  (and their  occurrences).  Document  classification  methods  commonly 

use the  bag-of-words  model.  The pre-processing   of a document   first  provides  a document  with  a bag of words.  Document 

classification  methods  then  use the occurrence  (frequency)  of each word as a feature  for training  a classifier. Algorithms do not 

directly apply on the bag of words, but use the frequencies. 

2.   Stemming-identifies   a word by its root. 
 

(i)   Normalizes  or unifies  variations   of the  same  concept,  such  as speak for  three  variations,   i.e., speaking,  speaks,  speakers 

denoted  by [speaking, speaks, speaker  ---+ speak] 

(ii)  Removes plurals, normalizes  verb tenses and remove affixes. 
 

Stemming reduces  the word to its most basic element.  For example, impuriflcation   r+      pure. 
 

3.   Removing  stop words from the  feature  space-they  are  the  common  words, unlikely  to help  text  mining.  The search  program 

tries to ignore stop words. For example, ignores a, at, for, it, in 

and are. 
 

4.    Vector Space Model (VSM)-is  an algebraic  model for representing   text  documents  as vector  of identifiers,  word frequencies  or 

terms  in the  document  index.  VSM uses the  method  of term  frequency-inverse   document  frequency  (TF-IDF)  and  evaluates 

how important  is a word in a document. 

When  used  in  document   classification,   VSM also  refers  to  the  bag-of-words   model.  This  bag  of words  is required   to  be 

converted  into a term-vector   in VSM.  The term vector  provides  the numeric  values corresponding   to each term  appearing  in a 

document.  The term vector is very helpful in feature  generation  and selection. 

Term frequency and inverse document frequency (IDF)  are  important   metrics  in text  analysis.  TF-IDF weighting  is most  common• 

Instead of the simple TF, IDF is used to weight the importance  of word in the document. 
 

TF-IDF  stands  for the  'term  frequency-inverse   document  frequency'.  It  is a numeric  measure  used to score  the  importance   of a 

word in a document  based on how often the word appears  in that  document  and in a given collection  of documents.  It suggests that  if 

a word appears  frequently  in a document,  then  it is an important  word, and should therefore  be high in score. But if a word appears 

in many more other  documents,  it is probably  not a unique  identifier,  and therefore  should be assigned a lower score. The TF-IDF  is 

measured  as:

 

 
where t denotes  the term vector. 

TF-IDF<t>    
No. of times t appears in a document X log No. of documents in the collection 
Total No. of terms in the document             No. of documents that contain t 

 
(9.1)



Following example suggests method  of calculating TF-IDF (t): 

 
EXAMPLE 9.1 

 
Consider a document  containing  1000 words wherein  the word toys appears  16 times.  How will the TF-IDF  weight be calculated? 

 
SOLUTION 

 

The term  frequency  (TF) for toys is then  (16/1000)   = 0.016.  Let,  there  are 10 million documents  and the word toys appear  in 1000 

of them.  Then,  the inverse document  frequency  (IDF) is calculated  as log10  (10,000,000/1,000)  = 4. 

 

TF-IDF   weight=  0.016   x  4 = 0.064 

 
Additional weight is assigned to terms  appearing  as keywords  or in titles. Documents  are usually represented   as a sparse vector  of 

terms weights and extra weights are added to the terms  appearing  in title or keywords. 

Pre-processing  of web data succeeds the conversion  of bag of words into vector space model (VSM) or simply by vector creation. 

Common Information  Retrieval Technique  - Vector space model (VSM) is an algebraic  model for representing   textual  information 

as vectors of identifiers,  such as, index terms.  Information  retrieval  methods  use VSM. 
 

Each document  or HTML page represents   by a sparse  vector  of term  weights. The sparse  matrices  represent   the term  frequencies 

(TFs). 
 

(Sparse vector  and sparse-matrix   have many  elements  as zero or null. An associated  metadata  enables  data  storing  of them  in a 

form which does not include  zeros in case of large datasets.  The metadata  then  includes indices map with the positions  in the list of 

elements  of the vector or matrix.) 
 

The following example gives the conversion  method  for evaluating  TFs and matrix in pre-processing  phase. 

 
EXAMPLE  9.2 

 
Assume that the documents  below define the document  space with five documents  di, dz, d3, d4 and ds: 

Train Document Set: 

dt: Children like the toys. 

dz: The toys are precious. 

Test Document Set: 
 

d3: There are many toys in the shop. 
 

d4: Some toys are precious  and some toys are costly as well. 

ds: The toys shop is one of the famous shops. 

How will be the documents  term vector and matrix be calculated  for features  generation/selection? 
 

SOLUTION 
 

First, create  an index vocabulary  of the words of the train  document  set using the documents  dt  and dz from the document  set. 

The index vocabulary  E(t) where tis  the term will be: 

 
I. when I=   

"children" 

2. when l = "toys" 

Eu) =    3. when I=   "precious" 

4.  when t =  "shop" 

5.  when t = "costly" 

6.  when t = "famous" 

Note that  the  stop words are already  not considered  during  the pre-processing   step. The term  frequency  (TF) is a measure  of 

how many times the terms  present  in vocabulary  E(t) are present  in the documents  ds, d4 and ds.
 

TF(l.d)=      I,count  (x.t) 

1·EJ 

 
(9.2)
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where the count (x, t), is a simple function  defined as:

 
 
 

For example, TF ("toys", ds) = 2. 
 

Create the document  vector as: 

 

I.  if X=     t 
coumt.r.rl = 

{ 0. otherwise                                                                                     
(9.3)

 

 
Thus, the documents  d3, d4 and ds are represented   as vector as: 

v,1,r  =<TFul.dn).TFU2.dn)         TF(tn.dnJ)                                               (9.4)

 
v43 =  <TFUl.d3J.TF(r2.d3)           TFUn.d3)) 

 
v,14  = (TF<tl.d4).TF(t2.d4J        TF(tn.d4))

 
 

This gives: 

 
v45 = ( TFU I. d5 ). TF<t 2. d5 )•......  TFUn. d5 > I                                                                           (9.5)

 
l'43  = (I.I.0.1.0.0) 

 

v44 = (0,2.L0.1.01 
 

l'45  =(0.1.0.2.0.1)                                                                                    (9.6) 

The resulting  vector  i·,3   shows 1 occurrence  of the term  "children",  1 occurrence  of the term  "toys" and so on. In the i·14,  there 

is o occurrence  of the term  "children",  2 occurrences  of the term  "toys" and so on. 
 

A collection of web documents  requires  representation   as vectors. Another  representation   is a matrix with IDI  x F shape, where 

IDI  is the  cardinality  of the  document  space (total number  of documents)  and the Fis  the number  of features.  F represents   the 

vocabulary  size in the example. Matrix representation   of the vectors described  above is by 3  x 6 matrix  as follows: 

MIDIXF = 

O 

(9.7)

 
Example  9.2 shows that  the  matrices  representing   term  frequencies  tend  to be very  sparse  (with majority  of terms  zeroed).  A 

common representation   of such matrix  is thus the sparse matrices. 
 

Phase  3: Features Selection  is the  process  that  selects  a subset  of features   by rejecting   irrelevant   and/or   redundant   features 

(variables, predictors  or dimension)  according  to defined criteria.  Feature selection process does the following: 

1.  Dimensionality  reduction-Feature    selection  is one  of the  methods  of division  and  therefore,   dimension  reduction.  The basic 

objective  is to eliminate  irrelevant   and redundant   data.  Redundant  features  are  those,  which  provide  no extra  information. 

Irrelevant  features  provide no useful or relevant  information  in any context. 

Principal  Component  Analysis (PCA)  and Linear Discriminate  Analysis (LDA)  are dimension  reduction  methods.  Discrimination 

ability of a feature  measures  relevancy  of features.  Correlation  helps in finding the redundancy  of the feature.  Two features  are 

redundant   to each other  if their values correlate  with each other. 

2.   N-gram  evaluation-finding   the number  of consecutive  words of interest  and extract  them.  For example,  2-gram is a two words 

sequence,  ["tasty food", "Good one"]. 3-gram is a three  words sequence,  ["Crime Investigation  Department"]. 

3.  Noise  detection and evaluation of outliers methods  do the  identification   of unusual  or suspicious  items,  events  or observations 

from the data set. This step helps in cleaning the data. 

The feature  selection  algorithm  reduces  dimensionality   that  not  only improves  the  performance   of learning  algorithm  but  also 

reduces the storage requirement   for a dataset.  The process enhances  data understanding   and its visualization. 
 

Phase 4: Data mining techniques enable insights  about the structured   database  that  resulted  from the previous  phases. Examples of 

techniques  are: 

1.   Unsupervised  learning  (for example, clustering) 

(i)   The class labels (categories)  of training  data are unknown 

(ii)  Establish the existence  of groups or clusters  in the data 
 

Good clustering  methods  use high intra-cluster   similarity  and low inter-cluster   similarity.  Examples of uses - biogs, patterns



and trends. 

2.   Supervised  learning  (for example,  classification) 
 

(i)   The training  data is labeled indicating  the class 
 

(ii)  New data is classified based on the training  set 
 

Classification  is  correct   when  the  known  label  of  test   sample  is  identical   with  the  resulting   class  computed   from  the 

classification  model. 

Examples of uses are news filtering application,  where  it is required  to automatically  assign incoming  documents  to pre-defined 

categories; email spam filtering, where  it is identified  whether  incoming email messages are spam or not. 

Example of text classification  methods  are Naive Bayes Classifier and SVMs. 
 

3.   Identifying evolutionary patterns  in  temporal   text  streams-the   method   is useful  in  a  wide  range  of applications,   such  as 

summarizing  of events in news articles and extracting  the research  trends  in the scientific literature. 

Phase 5: Analysing results 

 
(i)    Evaluate the outcome of the complete  process. 

 

(ii)   Interpretation   of Result-  If acceptable  then  results  obtained  can be used as an input for next set of sequences.  Else, the result 

can be discarded,  and try to understand  what and why the process failed. 

(iii)  Visualization  - Prepare  visuals from data, and build a prototype. 
 

(iv)  Use the results for further  improvement  in activities at the enterprise,  industry  or institution. 
 

Open source  tools,  such as nltk are  available  for text  analytics.  Online contents  accompanying  book describe  how text  analytics 

tasks can be performed  using Python library  nltk in the solution of Practice Exercise 9.2. 

9.2.1.5 Text Mining Challenges 
 

The challenges  in the area of text mining can be classified on the basis of documents  area-characteristics.    Some of the classifications 

are as follows: 

1.   NLP  issues: 

(i)   POS Tagging 

(ii)  Ambiguity 

(iii) Tokenization 

(iv) Parsing 

(v)  Stemming 
 

(vi) Synonymy and polysemy 
 

2.   Mining techniques: 
 

(i)   Identification  of the suitable algorithm(s) 

(ii)  Massive amount  of data and annotated  corpora 
 

(iii) Concepts and semantic  relations  extraction 
 

(iv) When no training  data is available 
 

3.   Variety of data: 

(i)   Different data sources require  different  approaches  and different  areas of expertise 
 

(ii)  Unstructured   and language independency 
 

4.   Information  visualization 
 

5.   Efficiency when processing  real-time  text stream 
 

6.   Scalability 
 

9.2.1.6 Supervised Text Classification 
 

The  categorization   of text  documents   requires   information   retrieval,   ML  and  NLP  techniques.   Some important   approaches   to
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automatic  text categorization  are based on ML techniques. 
 

The supervised text classification requires  labeled  documents  and  additional  knowledge  from  experts.  The algorithms   exploit  the 

training  data (where zero or more categories)  to learn  a classifier, which classifies new text documents  and labels each document.  A 

document  is considered  as a positive  example  for all categories  with which it is labeled, and as a negative  example to all others.  The 

task of a training  algorithm  for a text classifier is to find a weight vector which best classifies new text documents. 
 

The different  approaches  for supervised  text classification  are: 

 
(i)    K-Nearest Neighbour Method 

(ii)   Support Vector Machine 
 

(iii)  Naive Bayes Method 
 

(iv)  Decision Tree 
 

(v)   Decision Rule 
 

K-Nearest Neighbours  (KNN)  method  makes use of training  text document.  The training  documents  are the previously  categorized 

set  of documents.   They  train  the  system  to  understand   each  category.  The  classifier  uses  the  training   'model'  to  classify  new 

incoming  documents.  KNN  assumes that  close-by objects  are more  probable  in the  same category.  KNN  finds k objects  in the  large 

number  of text documents,  which have most similar query responses.  Thus, in KNN, predictions  are based on a method  that  is used to 

predict   new  (not  observed  earlier)  text  data.  The  predictions   are  by (i) majority  vote  method   (for  classification  tasks)  and  (ii) 

averaging  (for regression)  method  over a set of K-nearest examples. 
 

The decision trees  or decision rules are built to predict  the category  for an input  document.  A decision tree  or rule represents   a set 

of nested  logical if-then  conditions  on the observed  values of the text features  that  enable the prediction  of the target  variable.  The 

decision tree and decision rules are also used to classify (categorize)  the document.  Classification is done by recursively  splitting  the 

text features  into a set of non-overlapping   regions  (Refer Section 6.8).  (Section 6.7.4) 
 

The following subsections  describe Naive  Bayes Method and Support Vector Machines in detail. 

 
9.2.2 Naive Bayes Analysis 

 

Naive Bayes classifier is a simple, probabilistic  and statistical  classifier. It is one of the most basic text classification  techniques,  also 

known as multivariate  Bernoulli method.  Naive Bayes classifies using Bayes theorem  along with the Naive independence  assumptions 

(conditional  independence).  The classifier computes  condition  probabilities  for the conditional  independence  (Refer Section 8.3.2). 
 

Probability  that  a bag-of-words  ~ belong  to kth class equals  the  product  of individual  probabilities   of those  words.  P (~lck)    = II P 

(xilck), where xi is a discrete  random  variable  (word), i = 1, 2, ..., n, where n is number  of words in the bag. II is sign for the product  of 

n terms.  [P~lck) means probability  of condition  that  state the value= xi and of c = ck (Example 8.6)]. 

 

The P <xlck)  is normalized  as all distributed  probabilities  equals  1. P <xlck)  is normalized  by dividing the product  on right  hand  side 

by  Li  P (~lck) P (ck). 
 

The following example gives the method  of deciding the most likely class. 

 
EXAMPLE  9.3 

 

How is "maximum  a posteriori  (MAP)" used to obtain the most likely class and take a decision? 
 

SOLUTION 
 

Text classification  problem  uses the words  (or tokens)  of the  document  in order  to classify it on the  appropriate   class. Bayes' 

rule is applied to documents  and classes. For a document  (d) and class (c), we get:

P(d lc,P(c) 
. 

P<d) 

The "maximum  a posteriori  (MAP)" (to obtain most likely class) decision rule is applied to documents  and classes: 

(MAP is "maximum  posteriori"  = most likely class) 

 
(9.8; 

 
 
 
(9.9)



( Drop 

 
cMAP = argma.,i;,""EC( 

P(J!c)P(c)) 
P(d)               (Bayes  Rule)                                     (9.10) 

ping   the denominator)            (9.11) 

(9.12)

 

where t1,   t2,   •••,  tn are tokens of document. 
 

Multinomial Naive Bayes independence  assumptions 

 
 
 
 
(9.13)

 
Bag-of-words assumption:  Assume the position  of the word does not matter. 

Conditional independence:  Assume the feature  probabilities  Puih ), are independent  given the class(c): 

P<t1.,2   •••••   ,,.le>= P(t1  ld•Ptt2 lc) •P(t3 le) • ... •Pt,. Ir)                      (9.14) 
 

and thus, conditional  independences  are given by 
 

cMAP   = argmax""c     (Pit1.t2   .....   t. lc)P(c))                                                 (9.15n) 
 

                                     (9.15b) 

Applying multinomial  Naive Bayes classifier to text classification  where positions  ··  all word positions  in the text document,

cN8=argnuuc1ec(P(ci)_      n P(tih)) 
•EPl>.tallOM 

 
(9.16)

 

The equation  estimates  the  product  of the  probability  of each  word  of the  document  given  a particular   class (likelihood), 

multiplied  by the probability  of the particular  class (prior) to find in which class one should classify a new document. 
 

Select the one with the  highest  probability  among all the classes of set C.  Calculation  of product  of the probabilities  leads to 

float point underflow  when handling  numbers  with specific decimal point  accuracy  by computing  devices. Such small numbers 

will be rounded  to zero, implying the analysis is of no use at all. In order  to avoid this, instead  of maximizing  the product  of the 

probabilities,  the maximization  of the sum of their  logarithms  is done: 

                      (9.17) 
 

Here, choose  the  one with  the  highest  log score  rather  than  choosing  the  class with the  highest  probability.  Given that  the 

logarithm  function  is monotonic,  the decision of MAP remains  the same. 

 

 
When  compared  with  other  techniques,   such  as Random  Forest,  Max Entropy  and  SVM, the  Naive Bayes classifier  performs 

efficiently  in terms  of less CPU and memory  consumption.  Naive Bayes classifier requires  a small amount  of training  data to estimate 

the  parameters.   The classifier  is not  sensitive  to irrelevant  features  as well. Furthermore,   the  training  time is significantly  smaller 

with Naive Bayes as opposed to other  techniques. 
 

The  classifier  is popularly  used  in  a variety  of applications,   such  as email  spam  detection,   personal  email  sorting,  document 

categorization,  language detection,  authorship  identification,  age/gender   identification  and sentiment  detection. 

 

9.2.3 Support  Vector Machines 
 

Support   vector   machines   (SVM) is a set of related  supervised learning methods (the  presence  of training   data)  that  analyze  data, 

recognize  patterns,   classify text,  recognize  hand-written   characters,   classify  images,  as well as bioinformatics   and  bio  sequence 

analysis. 
 

A vector  has in general  n components,  x2, x3, ... ,  xn. A datapoint  represents   by (Xl, X2, ... ,  Xn) in n-dimensional  space. Assume for 

the sake of simplicity, that  a vector has two components,  Xl and X2 (Two sets of words in text analysis). 
 

Section  6. 7 .6  described  the  use of the  concept  of hyperplanes   for classification.  A  hyperplane is a subspace  of one dimension  less 

than  its ambient  space in geometry  (Figure 6.18). If a space is 3-dimensional  then  its hyperplanes   are 2-dimensional  planes,  while if 

the space is 2-dimensional,  its hyperplanes  are I-dimensional,  which means lines.



 

M 

The hyperplane  which separates  the two classes most appropriately   has maximum  distance  from closest data points  of the distinct 

classes. This distance  is termed  as margin. Figure 9.3 shows the concept  of support  vectors,  separating  hyperplane  and margins  when 

using Bas  a classifier. The margin  for hyperplane  Bin  Figure 9.3 is more as compared  to two hyperplanes,  A and C  shown by dotted 

lines. The margin  of the data points  from B is maximum.  Therefore,  the hyperplane  B is the maximum   margin  classifier. 
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Figure  9. 3 Support vectors,  separating  hyperplane  (B) and margins 
 

A and Care  closest (least margins)  to the  data points.  These are called the support  vectors. They support  the classifications  of the 

star and dotted  data points. [Remember that with n-dimensional  datapoints  space, a hyperplane  has the vectors  along (n - 1) axes.] 
 

The support  vectors  are  such that  a set of data  points  lies closest  to the  decision  (classification)  surface  (or hyperplane).   Those 

points  are most difficult to classify. They have direct  bearing  on the optimum  location  of the classification  surface.  Support  vectors 

along maximum margin  classification  surface are thus gives the best results. 

Thus, a SVM classifier is a discriminative  classifier formally defined by a separating  hyperplane.  The concept  applies extensively  in 

number  of application  areas of ML. Applications of SVMs are as follows: 

1.   classification  based on the outputs  taking discrete  values in a set of possible categories,  SVM can be used to separate  or predict 

if something  belongs to a particular  class or category. SVM helps in finding a decision boundary  between  two categories. 

2.   Regression  analysis, if learning  problem  has continuous  real-valued  output  (continuous  values of x, in place discrete  n values, 

(X1, X2, X3, ... , x.) 
 

3.   Pattern  recognition 

4.    Outliers detection. 
 

The following example illustrates  the discriminative  classifier method,  formally defined by a separating  a hyperplane  for taking the 

decision for effective elements  (entities,  set of words, itemsets)  in a 

training  set. 

 
EXAMPLE  9.4 

 
How is the discriminative  classifier used? 

 
SOLUTION 

 

Consider a mapping  function  (f) used for linear  separation   in the feature  space (H).  An optimal  separating  hyperplane  depends 

on the data through  dot products   in H (f(xJf(J(_j)), 
 

A kernel function  k is required  that  acts as a measure  of similarity.  Let us use k where 
 

                                                                  (9.1     ) 
 

The objective  is to select  the  hyperplane   which  separates  the  two classes most  appropriately.   This helps  in identifying   the 

right  or appropriate   hyperplane.  Figure 9.3  showed  three  hyperplanes.   A,  B  and  C.  A  and  C  are least  margin  planes  and B  is 

maximum  margin plane. 

A hyperplane,maximum    margin  classifier is the right  hyperplane.   It has maximum  distances  from the  nearest  data points  (of 

either  classes).  An important  reason for selecting the maximum  margin  classification  surface is robustness.  A hyperplane  having 

low margin has considerably  high chance of misclassifying. 

 
Binary Classification 

 

For a given training  data [xi, y(xi)] for i = 1 ...N, with xi E !Rd and Yi E {-1,1},learn a classifier f(x) such that:



 
 
 

 
A hype 

 

 
 

The above equation implies that yJ{.x)  > O  for correct  classification. 

>O    ')';=   +I 
/(X;)   { -<0   

Y;=-1                                                                                   
(9.19)

 

Figure 9.4  shows a two-class  classification.  The method  is using  one hyperplane B  for separating two-class  classification  of data 

points. 
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Figure  9. 4 Concept of training set data using support  vectors 
 

Let us take  the  simplest  case of two-class  classification.  Suppose there  are two features  Xl  and X2 and  it is required to classify 

objects as shown in the Figure 9.4. Stars and dots represent the objects (itemsets,  sets of words, entities)  of two classes. The goal is to 

design a hyperplane  (B) that  classify all training vectors in two classes for linearly  separable  binary  set. 
 

The following example gives the method  to design a hyperplane (B) that classify all training vectors: 

 
EXAMPLE  9.5 

 
How will you select an appropriate hyperplane that classifies all training vectors? 

 
SOLUTION 

 

Plane Bis f(x) = wx + b where w is weight vector. Figure 9.5 shows the method  of selecting the right hyperplane. 
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Figure  9.5 Method of selecting the right hyperplane 
 

The best choice is the hyperplane that  leaves the maximum  margin  from both the classes. Thus, Bis the right choice, since Gl 

> G2. 
 

Thus, for line segment B, 
 

ft.x) ~ I  "!/ e  x -+ class  I 

ft.x) ~ -1 "!/ e   JI.  -+ class  2                                                                      (9.20) 

 
 

Self-Assessment Exercise  linked  to LO 9.1 
 

1.   Define text analytics. 
 

2.   List the steps in text pre-processing phase. Why are tokenization and POS tagging needed? Give an example of each step. 
 

3.  How is bag-of-word used in text analysis? Give 5 examples of stemming the affix wordforms to its root word. 

4.   How do the TF-IDF weighting and sparse matrices represent the term frequencies (TFs) for use in text analysis? 
 

5.   How does maximum a posteriori (MAP) in Naive Bayes classifier enable the decision about classification? 
 

6.  How does support  vectors in SVMsclassify the data points in n-dimensional  space.



9.31 WEB MINING,  WEB CONTENT AND WEB USAGE ANALYTICS   

Web is a collection of interrelated files at web servers. Web data refers to

(i) web content-text, image and records, (ii) web structure-hyperlinks and tags, and (iii) web usage-http 

logs and application server logs. 

Features of web data are: 

1.   Volume of information and its ready availability 
 

2.   Heterogeneity 

1i n lng the  veb<II n ks, veb-
structure  and web• 
contents. and analyzing the 
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3.   Variety and diversity (Information on almost every topic is available using different forms, such as text, structured tables  and 

lists, images, audio and video.) 

4.   Mostly semi-structured due to the nested  structure of HTMLcode 
 

5.   Hyperlinks among pages within a website, and across different websites 
 

6.   Redundant or similar information may be present  in several pages 

7.   Mostly, the web page has multiple sections (divisions), such as main contents of the page, advertisements, navigation panels, 

common menu for all the pages of a website and copyright notices 

8.   A web form or HTMLform on a web page enables a user to enter  data that  is sent to a server for processing 
 

9.   Website contents are dynamic in nature  where  information on the web pages constantly changes,  and fast information growth 

takes place such as conversations between users, social media, etc. 

The following subsections describe web data mining and analysis methods: 

 
9.3.1  Web Mining 

 

Data Mining is a process  of discovering  patterns in large  datasets to gain knowledge. The process  can be shown  as [Raw Data - 

Patterns -   Knowledge]. Web data mining is the mining of web data. Web mining methods are in multidisciplinary domains: (i) data 

mining, ML, natural  language, (ii) processing,  statistics, databases, information retrieval, and (iii) multimedia and visualization. 
 

Web consists  of rich  features and patterns. A challenging task  is retrieving interesting content  and discovering knowledge  from 

web data. Web offers several opportunities and challenges  to data mining. 

Definition of Web Mining 
 

Web mining refers  to the use of techniques and algorithms that  extract  knowledge  from the web data  available in the  form of web 

documents and services. Weh mining applications are as follows: 

 
(i)    Extracting the fragment from a web document that represents the full web document 

 

(ii)   Identifying interesting graph patterns or pre-processing the whole web graph to come up with metrics, such as PageRank 

(iii)  User identification, session creation, malicious activity detection and filtering, and extracting usage path patterns 
 

Web Mining Taxonomy 
 

Web mining can broadly be classified into three  categories, based on the types of web data to be mined. Three ways are web content 

mining, web structure mining and web usage mining. Figure 9.6 shows the taxonomy of web mining.
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Figure 9.6 Web mining taxonomy 
 

Web content mining is the process of extracting  useful information  from the contents  of web documents.  The content  may consist of 

text, images, audio, video or structured  records,  such as lists and tables. 

Web structure mining is the process  of discovering  structure   information  from the web. Based on the kind of structure-information 

present  in the web resources,  web structure  mining can be divided into: 

1.   Hyperlinks: the structure  that  connects  a location at a web page to a different  location, either  within the same web page (intra• 

document  hyperlink)  or on a different  web page (inter-document   hyperlink) 
 

2.   Document  Structure:  The structure   of a typical web graph  consists  of web pages as nodes, and hyper links as edges connecting 

the related  pages. 

Web usage mining is the application  of data mining techniques  which discover  interesting  usage patterns  from web usage data. The 

data contains  the identity  or origin of web users along with their  browsing behavior  at a web site. Web usage mining can be classified 

as: 

 
(i)    Web Server logs: Collected by the web server and typically include IP address, page reference  and access time. 

 

(ii)   Application   Server  Logs: Application   servers   typically   maintain   their   own  logging  and  these   logs  can  be  helpful   in 

troubleshooting   problems  with services. 

(iii) Application  Level Logs: Recording events  usually by application  software  in a certain  scope in order  to provide  an audit  trail 

that can be used to understand   the activity of the system and to diagnose problems. 

 

9.3.2 Web ContentMining 
 

Web ContentMining is the process of information  or resource  discovery from the content  of web documents  across the World Wide 

Web. Web content  mining  can be (i) direct  mining of the contents  of documents  or (ii) mining through  search  engines.  They search 

fast compared  to direct method. 

Web content  mining relates  to both, data mining as well as text mining. Following are the reasons: 

(i)   The  content   from  web  is similar  to  the  contents   obtained  from  database,  file system  or  through   any  other  mean.  Thus, 

available data mining techniques  can be applied to the web. 

(ii)   Content mining relates  to text mining because much of the web content  comprises texts. 

(iii)  Web data are mainly semi-structured   and/or  unstructured,   while data mining is structured   and the text is unstructured. 
 

Applications 
 

Following are the applications  of content  mining from web documents: 

1.   Classifying the web documents  into categories 
 

2.   Identifying  topics of web documents 

3.   Finding similar web pages across the different  web servers 
 

4.   Applications related  to relevance: 

 
(a)  Recommendations  - List of top "n" relevant  documents  in a collection or portion  of a collection



•• \,11, ··--1) 

(b)  Filters - Show/Hide documents  based on some criterion 

 
(c)  Queries - Enhance standard  query relevance  with user, role, and/or  task-based  relevance. 

 

9.3.2.1 Common Web Content Mining Techniques 
 

Pre-processing of  contents  The  pre-processing    steps  are  quite   similar  to  the  pre-processing    for  text   mining.  The  content 

preparation   involves: 

1.   Extraction  of text from HTML 

2.   Data cleaning by filling up the missing values and smoothing  the noisy data 
 

3.   Tokenizing: Generates the tokens of words from the cleaned up text 

4.   Stemming:  Reduce the words to their  roots. The different  grammatical  forms or declinations  of verbs identify and index (count) 

as the same word. For example, stemming  will ensure  that both "closed" and "closing" are derived from the same word "close". 

Stemming   algorithm,   Porter, can  be  used  here.   The  java   code  for  Porter stemming   algorithm   can  be  obtained   from 

https://tartarus.org/martin/PorterStemmer    /.java.bct, 

5.   Removing  the stop words: The common words unlikely to help in the mining process  such as articles  (a, an, the), or prepositions 

(such as, to, in, for) are removed. 
 

6.   Calculate collection wide-word frequencies:  The distinct-word  stem obtained  after  stemming  process  and removing  the stop words 

results  into a list of significant  words  (or terms).  Calculating  the  occurrence  of a significant  term  (t) in a collection  is called 

collection frequency  (CFt).  CF counts the multiple  occurrences.) 

Now, find the number  of documents  in the collection that  contains  the specific term  (t). This numeric  measure  is the document 

frequency  (DF t). 

7.   Calculate  per Document Term Frequencies  (TF). TF is a numeric  measure  that  is used  to  score  the  importance   of a word  in a 

document  based on how often it appeared  in that  document  (Refer Example 9.1). 

8.   Bag of words: Web document  is represented   by the words it contains  (and their  occurrences. 
 

The following example explains the concept of CF and DF using the data of toy sales collection. 

 
EXAMPLE  9.6 

 
Using the  table  below on collection  and document  frequencies,   which  is prepared   from the  toys sales collection,  analyze  the 
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numeric  values of CFs and DFs. 

Collection frequency  (CF) and document  frequency  (DF)

Ille                          1,'67            1230 
 

SOLUTION 
 

The table  suggests  that  the  collection  frequency  (CF)  and document  frequency  (DF)  can behave  differently.  The CF  values  for 

both discount and sale are nearly  equal, but their  DF  values differ significantly.  The reason  is that  the word sale is present  in a 

large  number  of documents  and the  word  discount  in a less number  of documents.  Thus, when  a query  related  to discount is 

generated,  it must be searched  in the concerned  documents  only. 

 
Mining Tasks for Web Content Analytics 

 

Following are the tasks for web content  analytics: 

1.   classification  - A supervised  technique  which: 

 



(i)   Identifies the class or category a new web documents  belongs to from the set of predefined  classes or categories 

(ii)  Categories in the form of a term vector that are produced  during a "training"  phase 
 

(iii) Employs algorithms  using term vector to categorize  the new data according  to the observations  at the training  set. 
 

2.   Clustering - An unsupervised  technique:



(i)    Groups the web documents  (clustered)  with similar features  using some similarity  measure 
 

(ii)  Uses no pre-defined  perception  of what the groups should be 
 

(iii) Measures most common similarity  using the dot product  between two web document  vectors. 
 

3.   Identifying the association between  web documents  - Association rules help to identify correlation  between  web pages that  occur 

mostly together. 

The other  significant  mining tasks are: 

1.   Topic identification,   tracking and drift analysis - A way of organizing  the  large  amount  of information  retrieved  from the web is 

categorizing  the web pages into distinct  topics. The categorization   can be based on a similarity  metric,  which includes textual 

information   and  co-citation   relations.   Clustering   or  classification   techniques   can  automatically   and  effectively  identify 

relevant  topics and add them  in a topic-wise collection library. 

Adding a new document to a collection library includes: 

(i)   Assigning each document  to an existing topic (category) 

(ii)  Re-checking of collection for the emergence  of new topics 

(iii) Tracking the number  of views to a collection 

(iv) Identifying  the drift in a topic(s) 
 

2.   Concept hierarchy creation -  Concept  hierarchy   is  an  important   tool  for  capturing   the  general   relationship    among  web 

documents.  Creation  of concept  hierarchies   is important   to understand   a category  and  sub-categories   to which  a document 

belongs.  The clustering   algorithms   leverage  more  than  two  clusters,  which  merge  into  a cluster.  That  is merging  the  sub• 

clusters  into a cluster. 

Important  factors for creation  of concept hierarchy  include: 

(i)   Identifying  the organization  of categories,  such as flat, tree or network 
 

(ii)  Planning the maximum number  of categories  per document 
 

(iii) Building category dimensions,  such as domain, location, time, application  and privileges. 

3.   Relevance of content - Relevance or the applicability  of web content  can be measured  with respect  to any of the following basis: 
 

(i)   Document relevance  describes the usefulness  of a given document  in a specified situation. 
 

(ii)  Query-based  relevance  is the  most useful  method  to assess the  relevance  of web pages. Query-based  relevance  is used  in 

information  retrieval  tools such as search  engines.  The method  calculates  the similarity  between  query  (search) keywords 

and document.  Similarity, results  can be refined  through  additional  information  such as popularity  metric  as seen in Google 

or the term positions  in AltaVista. 

(iii) User-based relevance  is useful in personal  aspects. User profiles are maintained,  and similarity  between  the user profile and 

document  is calculated.  The relevance  is often used in push notification  services. 

(iv) Role/task-based  relevance  is quite similar to user-based  relevance.  Instead of a user, here the profile is based on a particular 

role or task. Multiple users can provide input to profile. 

 

9.3.3 Web Usage Mining 
 

Web usage mining  discovers  and analyses  the  patterns   in click streams.  Web usage mining  also includes  associated  data generated 

and collected as a consequence  of user interactions  with web resources. 

Figure 9.7 shows three  phases for web usage mining. 
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Figure 9.7  Process of web usage mining 
 

The phases are: 
 

1.   Pre-processing  -  Converts the usage information  collected  from the various  data sources  into the data abstractions   necessary 

for pattern  discovery. 

2.   Pattern  discovery  -  Exploits methods  and algorithms  developed  from fields, such as statistics,  data  mining,  ML  and pattern 

recognition. 

3.   Pattern  analysis - Filter outs uninteresting   rules or patterns  from the set found during the pattern  discovery phase. 
 

Usage  data  are  collected  at  server,  client  and  proxy  levels.  The  usage  data  collected  at  the  different   sources  represent   the 

navigation  patterns  of the overall web traffic. This includes single-user,  multi-user,  single-site  access and multi-site  access patterns. 

9.3.3.1 Pre-processing 
 

The common data mining techniques  apply on the results  of pre-processing  using vector space model (Refer Example 9.2). 

Pre-processing  is the data preparation   task, which is required  to identify: 

(i)    User through  cookies, logins or URL information 
 

(ii)   Session of a single user using all the web pages of an application 
 

(iii)  Content from server logs to obtain state variables for each active session 
 

(iv)  Page references. 
 

The subsequent  phases of web usage mining are closely related  to the smooth  execution  of data preparation   task in pre-processing 

phase. The process deals with (i) extracting  of the data, (ii) finding the accuracy of data, (iii) putting  the data together  from different 

sources,  (iv) transforming   the  data  into  the  required  format  and  (iv) structure   the  data  as per  the  input  requirements   of pattern 

discovery algorithm. 
 

Pre-processing   involves  several  steps,  such  as data  cleaning,  feature  extraction,   feature  reduction,   user  identification,   session 

identification,  page identification,  formatting  and finally data summarization. 

9.3.3.2 Pattern Discovery 
 

The  pre-processed   data  enable  the  application   of  knowledge   extraction   algorithms   based  on  statistics,   ML   and  data  mining 

algorithms.   Mining  algorithms,   such  as path  analysis,  association  rules,  sequential   patterns,   clustering   and  classification  enable 

effective processing  of web usages. The choice of mining techniques  depends  on the requirement   of the analyst.  Pre-processed  data 

of the  web access logs transform   into  knowledge  to uncover  the  potential   patterns   and  are  further  provided  to pattern   analysis 

phase. 

Some of the techniques  used for pattern  discovery of web usage mining are: 
 

Statistical techniques They are the most common methods  which extract  the knowledge about users. They perform  different  kinds 

of descriptive  statistical  analysis  (frequency,  mean,  median)  on variables  such as page views, viewing time  and length  of path  for 

navigational. 

Statistical techniques  enable discovering: 

 
(i)   The most frequently  accessed pages 

 

(ii)   Average view time of a page or average length of a path through  a site 
 

(iii)  Providing support  for marketing  decisions 
 

Association  rule  The rules  enable  relating  the  pages, which  are  most  often  referenced   together   in a single  server  session. These 

pages may not be directly  connected  to one another  using the hyperlinks. 

Other uses of association  rule mining are: 

 
(i)    Reveal a correlation  between  users who visited a page containing  similar information.  For example,  a user visited a web page 

related  to admission in an undergraduate   course to those who search an eBook related  to any subject. 

(ii)   Provide recommendations   to purchase  other  products.  For example,  recommend  to user who visited  a web page related  to a 

book on data analytics, the books on ML and Big Data analytics also.



(iii)   Provide   help  to web  designers    to  restructure      their   websites. 
 

(iv)   Retrieve   the  documents     in prior   in order   to  reduce   the  access  time  when   loading   a page  from  a remote    site. 

 
Clustering      is the  technique     that   groups   together    a set  of items   having   similar   features.    Clustering    can  be used  to: 

(i)    Establish groups of users showing similar browsing behaviors 
 

(ii)   Acquire customer  sub-groups  in e-commerce  applications 
 

(iii)  Provide personalized  web content  to users 

(iv)  Discover  groups  of  pages  having  related   content.   This  information   is  valuable  for  search  engines   and  web  assistance 

providers. 

Thus, user  clusters  and web-page  clusters  are two cases in the  context  of web usage mining.  Web page clustering  is obtained  by 

grouping  pages having similar content.  User clustering  is obtained  by grouping  users by their  similarity  in browsing behavior. 

Model-based  or distance-based   clustering  can be applied  on web usage logs. The model type  is often  specified theoretically   with 

model-based  clustering.  The model  selection  techniques   and  parameters   estimate  using  maximum  likelihood  algorithms,   such  as 

Expectation  Maximization  (EM) determines  the structure  of model. Distance-based  clustering  measures  the distance  between  pairs of 

web pages or users, and then  groups the similar  ones together  into clusters.  The most popular  distance-based  clustering  techniques 

include partitional  clustering  and hierarchical  clustering  (Section 6.6.3). 
 

Classification   The method  classifies data items into predefined  classes. Classification is useful for: 

 
(i)   Developing a profile of users belonging to a particular  class or category 

 

(ii)   Discovery  of interesting   rules  from  server  logs. For example,  3750  users  watched  a certain  movie, out  of which  2000  are 

between  age 18 to 23 and 1500 out of these lives in metro  cities. 

Classification  can  be done  by using  supervised  inductive  learning  algorithms,   such  as decision  tree  classifiers,  Naive Bayesian 

classifiers, k-nearest  neighbour  classifiers, support  vector machines. 
 

Sequential   pattern   discovery   User navigation  patterns   in web usage data gather  web page trails  that  are often visited  by users in 

the order  in which pages are visited.  Markov Model can be used to model navigational  activities  in the website. Every page view in 

this  model can be represented   as a state.  Transition  probability  between  two states  can represent   the  probability  that  a user will 

navigate  from one state  to the other.  This representation   allows for the computation  of a number  of significant  user or site metrics 

that  can lead to useful rules, pattern,  or statistics. 

9.3.3.3 Pattern Analysis 
 

The objective of pattern  analysis is to filter out uninteresting   rules or patterns  from the rules, patterns   or statistics  obtained  in the 

pattern  discovery phase. 

The most common form of pattern  analysis consists of: 

(i)   A knowledge query mechanism  such as SQL 
 

(ii)   Another  method  is to load usage data into a data cube in order to perform  Online Analytical Processing  (OLAP)  operations 
 

(iii) Visualization  techniques,   such as graphing  patterns   or assigning  the  colors  to different  values,  can often  highlight  overall 

patterns  or trends  in the data 

(iv)  Content  and structure   information  can filter out patterns  containing  pages of a certain  usage type, content  type or pages that 

match a certain  hyperlink  structure. 

Data cube enables  visualizing  data from different  angles. For example,  toys data visualization  using category,  colour and children 

preferences.   Another  example,  news  from  category,  such  as sports,  success  stories,  films  or  targeted   readers   (children,  college 

students,  etc). 

 
Self-Assessment   Exercise  linked  to LO 9.Z 

 

1.   Defineweb mining. Discussthe broad classifications of web mining and their applications. 
 

2.  List the tasks in pre-processing of web contents. 

3.  How are web-content mining tasks performed using machine learning algorithms? 
 

4.   How are topic identification, tracking and drift analysis done?



5.   List and explain three phases of web-usage mining. 
 

6.   Highlight the techniques  used for pattern  discovery in web-usage mining giving an example of each. 

 
 

 

9.41 PAGE  RANK,  STRUCTURE   Of  WEB  AND  ANALYZING   A  WEB  GRAPH  

 

Sections 9.2  and 9.3  described  text data and web contents  analysis. Hyperlinks  links exist between  the web 

contents.  Link analysis finds the answers to the following: 

1.   Can a linked (web) page rank them higher or lower? 

2.     Can the links be modeled   as edges of graphs,  structure   of web as graph  network,  and applied the tools 

same as for graph analytics? 

3.   Can web graph mining method  analyze and find a link sending spams? 

4.   Does a set of links correspond  to a hub? Do the links correspond  to an authority? 
 

5.   Does a linked page has higher  authority  compared  to others? 
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Links analysis  applies  to  domains  of social  networks   and  e-mail.  The  following  sub-sections   describe  the  applications   of link 

analysis: 

 

9.4.1 Page Rank Definition 
 

The in-degree  (visibility)  of a link is the  measure  of number  of in-links  from  other  links. The out-degree   (luminosity)  of a link is 

number  of other  links to which that link points. 

PageRank definition according to earlier approaches 
 

Assume a web structure  of hyperlinks.  Each hyperlink  in-links to a number  of hyperlinks  and out-links  to a number  of pages. A page 

commanding  higher  authority  (rank) has greater  number  of in-degrees  than  out-degrees.  Therefore,  one measure  of a page authority 

can be in-degrees  with respect  to out-degrees. 
 

PageRank refers to the authority  of the page measured  in terms  of number  of times a link is sought after. 
 

PageRank definition according to the new approach 

Earlier approach  of page ranking  based on in-links and out-links  does not capture  the relative  authority  (importance)  of the parents. 

Page and co-authors  (1998)  defined  a page ranking  method,5  which considers  the entire  web in place of local neighbourhood   of the 

pages and considers  the relative  authority  of the parent  links (over children). 

 
9.4.2 Web Structure 

 

Web structure   models as directed-graphs   network-organization.   Vertex  of the  directed  graph  models an anchor.  Let n = number  of 

hyperlinks  at the page U. Assume u is a vector with elements  u1,   u2,   •••  un. Each page Pg (u) has anchors,  called hyperlinks.  Page Pg (v) 

consists of text document  with m number  of hyper links. v is a vector with elements  vi, vz, ••• vm· The m is number  of hyper links at Pg 

(v). A vertex  u directs  to another  Page V. A page Pg (v) may have number  of hyperlinks  directed  by out-edges  to other  page Pg (w). 

Consider the following hypotheses: 

1.   Text at the hyperlink  represents  the property  of a vertex u that describes the destination  V of the out-going  edge. 

2.   A hyperlink  in-between  the pages represents  the conferring  of the authority. 
 

Pages U and U¢ hyperlinks  u and ue out-linking  to Page V. Let Page U has three  hyperlinks  parenting  three  Pages, V one, W two, X 

two, U' one, and Y two, respectively.  Figure 9.8 shows a web structure  consisting  of pages and hyperlinks.



 

 
 

Figure  9.8 Web structure  with hyperlinks  from a parent  to one or more pages 
 

9.4.2.1 Dead Ends 
 

Dead-end web pages refer to pages with no out-links.  When a web page links to such pages, its page rank gets reduced.  Dead ends are 

on a website having poor linking structure. 

The web structure   of service  pages may have  pages with  a dead  end. The end causes no further  flows for further  action  and no 

internal  links. Good website  structures   have the pages designed  such that  they  specifically gently  guide the visitors  toward  actions 

and towards  next step. For example, if one searches  for a book title on Amazon, then  visitor gets links of other  books also on a similar 

topic. 

9.4.2.2 Analyzing and Implementing  a System with Web Graph Mining 
 

Number of metrics  analyze a system using web graph mining. Following are the examples: 
 

1.   In-degrees  and out-degrees 

2.   Closeness is centrality  metric.  Closeness, Cc(v) = I/  I',gdist(v,u), where gdist is the geodesic distance  between  vertex  v with u and 
.v 

sum is over  all u linked  with  V.  Geodesic distance  means  the  number  of edges  in a shortest   path  connecting   two vertices. 

Assume v has an edge with w, and w has an edge with u. Assume u does not have direct edge from v. Then, geodesic distance=  2 

(two edges between v and u in shortest  path). 
 

3.   Betweenness 
 

4.   PageRank and LineRank 
 

5.    Hubs and authorities 

6.   Communities parameters,  triangle  count, clustering  coefficient, K-neighbourhood 
 

7.   Top K-shortest  paths 

 
9.4.3 Computation  of PageRank and PageRank Iteration 

 

Assume that  a web graph  models the web pages. Page hyperlinks  are the property  of the graph  node (vertex). Assume a Page, Pg (v) 

in-links  from Pg (u), and Pg (u) out-linking  similar to Pg (v), to total  Nout [(Pg (u)] pages. Figure 9.9 shows Pg (v) in-links  from Pg (u) 

and other  pages. 

 

 
 

Figure  9.9 Page Pg (v) in-links from Pg (u) and other  pages 
 

Nout for page U is 7 and for V is 1 in the figure. Number of in-linking  Nin for page V is 4. Two algorithms  to compute  page rank are as 

follows: 

1.PageRank algorithm using the in-degrees as conferring authority 
 

Assume that the page U, when out-linking  to Page V "considers"  an equal fraction  of its authority  to all the pages it points to, such as 

Pgv. The following equation  gives the initially suggested page rank, PR (based on in-degrees)  of a page Pgv:



PR(Pgv) = DC·          I,    [PR(Pga)/N(Pgu)) 
Pp:Pto-+P,. 

 
(9.21)

where  N(Pgu) is the total  number  of out-links  from U. Sum is over all Pgv in-links. Normalization  constant  denotes  by nc, such that 

PR of all pages sums equal to 1. 
 

However, just  measuring  the  in-degree  does  not  account  for the  authority   of the  source  of a link. Rank is flowing among  the 

multiple  sets of the  links. When Pgv in-links  to a page Pgu, its rank  increases  and when  page Pgu out-links  to other  new links, it 

means that  N (Pgu) increases, then  rank PR(Pgv) sinks (decreases). Eventually, the PR (Pgv) converges  to a value. 

Therefore,  rank computation  algorithm  iterates  the rank flowing computations  as shown below: 

 
EXAMPLE  9.7 

 
Assume S corresponds  to a set of pages. Initialize  'V Pg E   S. Symbols mean that  initialize  all pages Pg contained  in the  S  and 

initialize Page Rank (Pgv) for each page as follows: 
 

PRinit (Pgv) = 1/ISI                                                                                                                     (9.22) 

 

How are  the  page  ranks  of the  pages  in a given  set  of pages  iterated   and  computed  till the  ranks  do not  change  (within 

specified margin, that means untill converge)? 
 

SOLUTION 
 

Iterate  and compute PR (Pgv) for each page as follows: 
 

Until ranks do not change (within specified margin)  (that means converge) 

 
for each Pgv E   S compute, 

and normalization  constant, 

 
PR(Pgv> =        I,    [PR(PguJ/N(PguJ] 

P,u:Pgu-+~ 

 

 
nc =  I, [ PRnew( Pgv)] 

Jl,YES 

for each Pgv e  S:  PR(Pgv) = nc PR(Pgv) 

 

 
(9.22) 

 
 
 
(9.23a) 

 
(9.23b)

 

 
2. PageRank algorithm using the relative authority of the parents over linked children 

 

A method  of PageRank considers  the entire  web in place of local neighbourhood   of the pages and considers  the relative  authority  of 

the parents  (children).  The algorithm  uses the relative  authority  of the parents  (children)  and adds a rank for each page from a rank 

source. 

The PageRank method  considers  assigning  weight according  to the rank of the parents.  Page rank is proportional   to the weight of 

the parent  and inversely  proportional  to the out-links  of the parent. 

Assume that  (i) Page v (Pgv) has in-links with parent  Page u (Pgu) and other  pages in set PA (v) of parent  pages to v that  means  E 

PA(v), (ii) R(v) is PageRank of Pgv, (iii) R (u) is weight  (importance/rank)    of Pgu, and (iv) ch (u) is weight of child (out-links)  of Pgu. 

Then the following equation  gives PageRank R (v) of link v:

R(v) =   L  [R(11)~ch(u)I] 
•e  PA(v) 

 
(9.25)

 

where PA(v) is a set of links who are parents  (in-links) of link v. Sum is over all parents  of v. nc is normalization  constant  whose sum 

of weights is 1. 
 

Assume that  a rank source E exists that is addition  to the rank of each page R (v) by a fixed rank value E(v) for Pgv. E(v) is fraction  a 

of[l/lPA(v)I]. 
 

An alternative  equation  is as follows:

R(v) = nc-{(1-a)      L  [1~(u)1]+ a-E(v)}. 
•ePA(v)   ~h(II) 

 
(9.26)



J+a·E 

where  nc = [1/R(v)]. R(v) is iterated  and computed  for each parent  in the set PA(v) till new value of R(v) does not change within  the 

defined margin, say 0.001 in the succeeding iterations. 
 

Significance   of a PageRank can be seen as modeling  a "random  surfer"  that  starts  on a random  page and then  at each point:  E(v) 

models  the  probability  that  a random  link jumps  (surfs)  and  connect  with  out-link  to  Pgv. R(v) models  the  probability  that  the 

random  link connects  (surf) to Pgv at any given time.  The addition  of E(v) solves the problem  of Pgv by chance  out-linking  to a link 

with dead end (no outgoing links). 
 

Therefore,  rank computation  algorithm  iterates  the rank flowing computations  as shown in Example 9.8. 

 
EXAMPLE  9.8 

 
Assume PA corresponds  to a set of parent  pages to a page v.  Initialize  V Pg E   PA (v).  Symbols mean  that  initialize  all pages u 

contained  in the set of parent  pages of PA (v) and initialize Page Rank R(v) for each page as follows: 
 

R(v) = [1/IPA(v)I] 
 

How are the page ranks  of the pages in a given set of pages iterated  and computed  till the ranks  do not change  (within specified 

margin, that means untill converges)? 
 

SOLUTION 
 

Iterate  and compute R (v) for each page as follows: 
 

Until ranks do not change that  means converges  (within specified margin, say 0.001)
 

for each v E   PA (v) compute, 
 

 
 
 

and normalization  constant, 

 

 

R v) =  n   ·   {(I-ex    L [-,Ru     v) 
OE PA(v           b ll   1 

 

 

n  =     L  [R v) 

UE  P.   v 

f  r       h v E   PA  v:   R     = n  .R  v

 

 
PageRank Iteration using MapReduce functions  in Spark Graph 

 

The computation  of PageRank using SparkGraph method  (Section 8.5), 
 

graph.pageRank(0.0001) .vertices 

ranksByUsername =  users.join(ranks) .map{case id, (username, rank)) =>  (username, rank). 

The   method    includes   conversions    to   MapReduce   functions    and   using   HDFS    compatible    files.   Functions    PageRank   (), 

ranksByUsername   ()   do  the  computations   using  the  PageRankObject.   GraphX  consists  of  these   functions   (GraphOps).  Graphx 

Operators  includes the functions  (Section 8.5). 
 

Static PageRank algorithm  runs for a fixed number  of iterations,  while dynamic PageRank runs until the computed  rank converges. 

Convergence  means  that  after  certain  iterations,   the  rank  does  not  change  significantly  and  any  change  remains  within  a pre• 

specified tolerance.  Thereafter  the iterations  stop. 
 

Assume specified tolerance  at the start  of iterations  is 0.0001 (1 in 10000). When the rank does not change beyond that  tolerance,  it 

means rank value will converge and then the iterative  process will stop. 

 
9.4.4 Topic Sensitive PageRank and Link Spam 

 

Number  of methods  have been  suggested  for computations   of topic-sensitive   page ranking,  RTs·  The RTs  (v) of a page P (v) may be 

higher  for a specific topic  compared  to other  topics. A topic  associates  with a distinct  bag of words  for which the page has higher 

probability  of surfing than  other bags for that  topic. 

Topic-sensitive   PageRank  method   uses  surfing   weights   (probabilities)   for  the  pages  containing   the   topic  or  bag  of  words 

corresponding   to a topic. Method  for creating  topic-sensitive   PageRank is to compute  the  bias to rank  R(v) and thus  increase  the 

effect of certain  pages containing  that  topic or bag of words.



Refer equation  (9.25) for computations   of R (v), and equation  (9.26) for computations   after  introducing  additional  influence  to the 

page. A method  of introducing  biasing is simple. It assumes that  a rank  source E exists that  is additional  having in-links  from other 

pages,  and  thus  adds  to  the  rank  of each  page  R  (v) by a  fixed  (uniform)  or  non-uniform   weight  factor  a. The  factor  a is a 

multiplication  factor to actual in-links without  the bias. 
 

Recapitulate  equation  (9.26). Probability  of random  jump  to page v is E(v). An alternative   equation  for topic  sensitive  PageRank, 

R(v) computation  for page P (v) is as follows: 

 

R(v) = n.:-{o-a,)-P(v)  I   [1~(U)j]+a, .E(v)}. 
IIE P.-'(,·)   cht U ~ 

 

Probability  of random jump  to page v is E (v). at = O  for page unrelated  to a topic a is not O  for page related  to a topic. at = surfing 

probability   for  in-links  for a topic  t. Further,  coefficient  (1- a)  is considered  as biasing  factor  depending  on the  web page  P (v) 

selected for a queried topic t. 

The page is having  in-links  from other  pages. Assume N, is number  of topics to which  a page is sensitive  to surfing  those  topics. 

Effect of topics  on PageRanks  increases  by using  a non-uniform   N, x  1  personalization   vector  for  surfing  probability  p. Higher  a 

means higher  p. 

Assume that  the  topics are tl,   t2, ... ,  tn. Fix the  number  Nt. RTs  is to be computed  for each of them.  Therefore,  compute  for each 

topic tj' the PageRank scores of page v as a function  of tj, which means compute  R (v, j), where j = 1, 2, ... , n. That also means compute 

the n elements  of a non-uniform  N, x  1 personalization   vector Rrs (v) for tl,  t2, ... ,  tn. 
 

Link Spam 

Effects of a  link spam can  be  nullified  using  the  topic-sensitive   PageRank  algorithm.   Link Spam tries  to  mislead  the  PageRank 

algorithm.  A link spam attempts  to make PageRank algorithm  ineffective. The spam assisting  pages connects  to the page repeatedly 

and increases  the in-degree  of a page, thereby  enhancing  the rank to a large value. 

A link spam creator  website  ws also has a page ls for whom ws attempts   to enhance  the  PageRank. The w5  has a large  number  of 

assisting pages al5  which out-links  to ls only. The als pages also prevent  the PageRank of l5 from being lost. A spam mass consists  of w5, 

ls and its als pages. 
 

Methods nullify the effect by introducing  a trust  rank for a page u used in equation  (9.29) and tracing  spam mass of in-link pages to 

the page v. 
 

Following are the steps for finding spam mass: 

1.   A distant  topic  sensitive  page has unusually  high in-degrees  compared  to the other  pages of the  same topic. A plot known as 

power-law  plot is drawn  between  the log of number  of web pages on the y-axis out-linking  to the page v and logs of them  in• 

degrees of v on the x-axis. 

2.    Plot  is nearly  linear  as the  number  exponential   decays  is within  degrees.  N  is proportional   to  exp  (-d), where  d is decay 

constant. 

3.   An unusual pattern  with marked  deviation  from near linearity  identifies  the distant  link spam mass. 

 
9.4.5  Hubs andAuthorities 

 

A hub is an index page that  out-links  to a number  of content  pages. A content  page is topic authority.  An authority  is a page that  has 

recognition  due to its useful, reliable and significant  information. 

Figure 9.lO(a) shows hubs (shaded circles) with the number  of out-links  associated  with each hub. Figure 9.IO(b) shows authorities 

(dotted  circles) with the number  of in-links and out-links associated  with each link.
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Figure  9.10 (a) Hubs (shaded circles) and (b) Authorities  (dotted  circles) 
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In-degrees  (number  of in-edges  from  other  vertices)  can be one of the  measures  for the  authority.   However, in-degrees  do not 

distinguish  between  an in-link from a greater  authority  or lesser authority. 

Authority,  auth1  in Figure  9.lO(b) has  in-links  from  6  vertices  (in-degrees  =  6)   and  auth2   has  in-links  to just  2  (in-degree  =   2). 

However, auth1   has link with  six vertices  with  in-degrees  =  1,  1,  1,  1,  1  and  120 (total  =  125). Authority,  auth2  has  links with  two 

vertices  with in-degrees=   120 and 200 (total=  220). Auth2has association  with greater  authorities.  Therefore,  in-degrees  may not be a 

good measure  as compared  to authority. 

 

Kleinberg  (1998) developed  the  Hypertext-Induced    Topic  Selection  (HITS) algorithm.6   The  algorithm   computes   the  hubs  and 

authorities   on a specific topic t. The HITS analyses a sub-graph  of web, which is relevant  to t. Basis of computation  is (i) hubs are the 

ones, which out-link to number  of authorities,  and 

(ii) authorities  are the ones, which in-link to number  of hubs. A bipartite  graph exists for the hubs and authorities. 

Consider a specifically queried  topic t. Following are the steps: 

1.   Let a set of pages discover a root set R using standard  search engine. Root pages may limit to top 200 for t. 
 

2.    Find a sub-graph  of pages S, using a query that provides  relevant  pages for t and pointed  by pages at R. Sub-graph  S pages form 

Set for computations   as it includes  the  children  of parent  R  and limit to a random  set of maximum  50 pages returned   by a 

"reverse  link" query. 

3.  Eliminate purely navigational  links and links between  two pages on the same host. 

4.   Consider only u (llull  = 4-8) pages from a given hyperlink  as pointer  to any individual page. (Section 9.4.2) 
 

Sub-graph  for HITS  consisting  of root  set R of pages and children  of parents  in the sub-graph  S. Figure 9.11 shows subgraph  S for 

HITS consisting  of root set R of pages and all the pages pointed  to by any page of R . 
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Figure  9.11  Sub-graph for HITS consisting  of root set R of pages and base sub-graph  S including  all the pages pointed  to by 

any page of R. 
 

The left directed  leftmost  arrows from s3, s4 , s5 and s6 are pointing  to nodes in sub-graph(s)  associated  to S. The following example 

explains the algorithm  steps to compute  hub score and authority  score. 

 
EXAMPLE  9.9 

 
Assume that  v has  number   of in-links  and  v has  number   of out-links.   Assume  S corresponds   to  base  set  of pages  and  R 

corresponds  to root set. (i) Initialize  S to R.  (ii)  Initialize   '<:/    u E   S. Symbols   mean that  initialize  all pages u,  contained  in the S.



(iii) Normalization  constant  is nc. The (i) hub (v) hub score and (ii) auth authority  score of page v for each page is as follows: 

For each v E S, auth (v) = 1; hub(v) = 1; nc =  1; (9.30) 

How are the  hub and authority   of pages in a given set of pages iterated  and computed  till the  ranks  do not  change  (within 

specified margin, that  means untill converges)? Usually 20 iterations  converge the result  within margin, usually set to 0.001. 

 
SOLUTION 

 

Iterate  and compute  auth (v) and hub (v) for each page as follows: 
 

Until ranks do not change (within specified margin)  (that means converges) 
 

for each v E   S compute,  
authrvj   e   nc-    L [hub(ul].                                                                                  (9.Jla)

 
 
 

and normalization  constant, 

 

hub(v)=nc2·      L [auth(u)]. 
u:v~a 

 
nd  =  L ll[auth(v)f. 

P,VES 

nc2 =  L ll[authMf. 
P,VES 

for each  v e ~: authtv)  = nc Lauthtv]:   authtv)  = nc l .autht v): authtv): 

 
(9.Jlb) 

 

(9.32.1) 

(9.J2b) 

 
(9.J2c)

 

 
 

Difference between HITS and PageRank 
 

HITS considers  mutual  reinforcement   between  authority   and hub pages.  PageRank ranks  the  pages just  by authority   and does not 

take  into  account   distinctions   between   hubs  and  authorities.   HITS considers   the  local  neighbourhood    between   4  to  8  pages 

surrounding  the results  of a query, whereas  PageRank is applied to the entire  web. HITS  depends  on topic t, while PageRank is topic• 

independent.  PageRank effects by 

dead-ends. 

 
9.4.6   Web Communities 

 

Web communities  are web sites or collections  of websites,  which  limit the  contents  view and links to members.  Examples of web 

communities  are social networks,  such as Linkedln, SlideShare, Twitter  and Facebook. 

The communities   consist  of sites  for  do-it-yourself   sites,  social networks,  blogs or  bulletin  boards.  The issues  are  privacy  and 

reliability  of information. 
 

Metric  for  analysis  of web-community   sites  are  web graph  parameters,   such  as triangle   count,  clustering   coefficient  and  K• 

neighbourhood. 
 

K-neighbourhood  analysis means the number  of 1st neighbour  nodes, 2nd neighbour  nodes, and so on 

(K = 1, 2, 3, 4 and so on). 
 

K-core analysis means the number  of cores within a marked  area. A core may consist of a triangle  of connected  vertices. A core may 

consist of a rectangle  with interconnected   edges and diagonals. A core may also be a group of cores. 
 

Spark  Graphx  (Section  8.5)  described  functions  for  degree  centralities,   degree  distribution,   separation   of degree,  betweenness 

centralities,   closeness  centralities,   neighbourhoods,    strongly   connected   components,   triangle   counts,  PageRank,  shortest   path, 

Breadth First Search (BFS), minimum  spanning  tree  (forest), spectral  clustering  and cluster coefficient. 

 

9.4.7   Limitations  of Link, Rank and Web Graph Analysis 
 

Following are the limitations  oflink  and web graph analysis: 

1.   Search engines rely on metatags  or metadata  of the documents.  That enhances  the rank if metadata  has biased information. 
 

2.     Search engines themselves  may introduce  bias while ranking  the pages of clients higher  as the pages of advertising  companies



may provide higher  searches and hence lead to biased ranks. 
 

3.   A top authority  may be a hub of pages on a different  topic resulting  in increased  rank of the authority  page. 

4.   Topic drift and content  evolution  can affect the rank. Off-topic pages may return  the authorities. 
 

5.     Mutually reinforcing  affiliates or affiliated pages/sites  can enhance  each other's  rank and authorities. 
 

6.     The ranks may be unstable  as adding additional  nodes may have greater  influence in rank changes. 

 
Self-Assessment   Exercise  linked  to LO 9.3 

 

1.   Write and explain the equations for computing PageRank using relative authority of parent nodes. 
 

2.   Show diagramatically network organization model of directed graphs for the structure of the web. How are the page hub and page 

authority computed? 

3.   What are the metrics which Spark GraphX compute? 
 

4.    How does the equation for computing the hub of a page differ from the computing authority of a page? 

5.   How does link spam function?  How is the  link spam discovered  from the  plot between  the  number  of web pages and in• 

degrees? 

 
 
 

9.51 SOCIAL NETWORKS AS GRAPHS AND 

SOCIAL NETWORK ANALYTICS
 

A social  network is a social structure  made of individuals  (or organizations)  called "nodes," which are tied 

(connected)   by  one  or  more  specific  types  of inter-dependency,    such  as friendship,   kinship,  financial 

exchange,  dislike or relationships  of beliefs, knowledge or prestige.  (Wikipedia) 

Social networking   is the  grouping  of individuals  into  specific groups,  like small  rural  communities   or 

some other  neighbourhoods  based on a requirement.  The following subsections  describe social networks  as 

graph, uses, characteristics   and metrics. 

 

9.5.1  Social Network as Graphs 

 
 
Representation of social 
networksas graphs, 
methods of social network 
analysis, finding the 
clustering   in social netviork 
graphs, evaluating the 
Sim Ran  counting  triangles 
(cliques) and discovering 
the communities

 

Social network  as graphs  provide  a number  of metrics  for analysis.  The metrics  enable the application  of the graphs  in a number  of 

fields. Network  topological  analysis  tools  compute  the  degree,  closeness,  betweenness,   egonet,  K-neighbourhood,   top-K shortest 

paths,  PageRank,  clustering,   SimRank, connected   components,   K-cores, triangle  count,  graph  matches  and  clustering   coefficient. 

Bipartite  weighted  graph matching  does collaborative  filtering. 
 

Apache Spark Graphx and IBM System G Graph Analytics tools are the tools for social network 

analysis. 
 

Centralities, Ranking and Anomaly Detection 
 

Important  metrics  are degree  (centrality),  closeness (centrality),  betweenness  (centrality)  and eigenvector   (centrality).  Eigenvector 

consists  of elements  such as status,  rank  and other  properties.   Social graph-network   analytics  discovers  the  degree  of interactions, 

closeness, betweenness,  ranks, probabilities,  beliefs and potentials. 
 

Social network   analysis  of closeness  and  sparseness   enables  detection   of abnormality   in  persons.  Abnormality  is found  from 

properties  of vertices  and edges in network  graph. Analysis enables summarization   and find attributes  for anomaly. 
 

Social network  characteristics   from observations  in the organizations  are as follows: 

1.   Three-step  neighbourhoods   show positive  correlation  between  a person  and high performance.  Betweenness  between  vertices 

and bridges between  numbers  of structures   are not helpful  to the organization.  Too many strong  links of a person  may have a 

negative  correlation  with the performance. 

2.     Social network  of a person  shows high performance   outcome  when  the  network  exhibits  structural   diversity.  Person  with  a 

social network  with  an  abundant   number   of structural   holes  exhibits  higher  performance.   This is because  having  diverse 

relations  help an organization.



Social network  analysis enables detection  of an anomaly. An example is detection  of one dominant  edge which other  sub-graphs  are 

follow (succeed). Ego network is another  example. The network  structure  is such that a given vertex corresponds  to a sub-graph  where 

only its adjacent  neighbours  and their  mutual links are included. 
 

The analysis enables spam detection.  Spam is discovered by observation  of a near star structure. 

Figure 9.12 shows discovering  anomaly, ego-net and spam from the analysis. 

 

 
 

Figure  9.12 Discovering anomaly, ego-net and spam (using near star) from the analysis 
 

Social network  has concerns  of privacy, security  and falsehood dissimentation.   Security issues are phsishing  attacks  and malwares. 

 
9.5.2  Social Graph Network Topological Analysis using Centralities  and PageRank 

 

Social graph  network  can be topologically  analyzed.  The centralities   (degree,  closeness,  effective  closeness  and betweenness)   and 

PageRank (vertexRank  similar to PageRank in web graph  network)  are the parameters  analyzed. 
 

Degree 
 

Degree  of a graph  vertex means the total  number  of edges linked to that.  In-degree  of a vertex means the number  of in-edges  from the 

other  vertices.  Out-degree  of a vertex means the number  of out-edges  to other  vertices  to which that  vertex  directs.  Degree distribution 

function means the distribution  function  for the degrees of vertices  (Section 6.2.5 described  the common distribution  functions). 
 

Closeness 
 

Graph  vertex closeness  Cc (v) is a way of defining  the  centrality  of a vertex  in reference  to other  vertices.  Sum is the  overall vertices 

connected  to other vertices  u. The u is a subset of vertices  in set V. 

The centrality  (closeness index), c is function  of distances  of vertices. 
 

Cc(\')=      [L d (U. v)rl. 

u e V 

where d (u, v) is distance between u and v for path traversal. 
 

Effective Closeness 
 

Effective closeness  Cec(v)can  also be analyzed.  Use approximate  average  distance  from v to all other  vertices  in place of the shortest 

paths. Cec reduces  run time for cases with a large number  of edges and near linear scalability in computations. 

Betweenness 
 

Graph  vertices betweenness   means the  number  of times a vertex  exists between  the  shortest  path  and the extent  to which a vertex  is 

located 'between'  other  pairs of vertices.  Betweenness  c8  (v) of a vertex v requires  calculating  the lengths  of shortest  paths  among all 

pairs of vertices  and computations  of the summation  for each pairing vertex  in V. 

PageRank 

PageRank  is a metric  for  the  importance   of each  vertex  in a graph,  assuming  an  edge  from  vl  to  v2 represents   endorsement   of 

importance  of v2 by vl by connecting,  following, interacting,  opting for relationship,  sharing  belief or some other  means. 

Contacts Size 
 

Contacts size means a vertex  connection  to many vertices. The size of each vertex  does not convey any meaningful  information.  A big 

social graph network  will also require  high maintenance  cost. 

Indirect Contacts



Indirect  contacts  metric  means betweenness,  which is the sum of the shortest  paths  within geodesic distances  from all other  pairing 

vertices.  Three-step  contact  metric  means  a number  of edges to other  vertices  plus the number  of edges from other  vertices  within 

geodesic distances  = < 3. 
 

Both metrics  convey  meaningful  information.   The indirect  contacts  metric  has meaning  in terms  of magnitude  of betweenness 

centrality. 
 

Structure Diversity 
 

Structure  diversity metric  means that  social graph has access to diverse sub-graphs  (knowledge). 

 
9.5.3  Social GraphNetwork Analysis using K-core and NeighbourhoodMetrics 

 

K-core is a sub-graph  in a graph  network  structure.  Graph Vertex Kth neighbourhood   is number  of 1st neighbour  vertices,  2nd neighbour 

vertices  and so on to a querying  vertex that are correlated,  linked, and have weighted  correlations  or the associations. 
 

K-nearest neighbourhood (KNN)   finds  K-similar  objects,  items,  or  entities,   which  are  nearest   neighbours   after  computing   the 

similarities.  For example, KNN is K-documents  (or books) in the large number  of text  documents  (books) that  are most similar to the 

queried  document. 
 

Collaborative filtering for frequent  itemsets  uses weighted bipartite  graph  matching. 
 

Figure 9.13 shows the  K-cores and K-neighbourhood  metrics  for a social network  graph.  The figure also shows frequent  itemsets 

obtained  from collaborative  filtering  algorithm  (Sections 6.4 and 6.8.1). 
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Figure 9.13 (a) K-cores and K-neighbourhoods  with K = 1, 2, 3 and 4 and (b) Frequent  itemsets  from collaborative  filtering 

algorithm  (weighted bipartite  graph matching) 
 

Figure  9.13(a)  shows  three   cores  of  two  triangles,   one  quadrilateral,    two  cores  of  one  pentagon   and  one  traingle)   in  K• 

neighbourhoods.   K = 1, 2, 3  and 4. Figure 9.13(b) shows frequent  itemsets  from collaborative  filtering  algorithm  (weighted  bipartite 

graph matching). 

 
9.5.4  Clusteringin Social Network Graphs 

 

One of the  methods  of detecting  communities  from social graph  analysis  is finding  clustering  and cluster  coefficients.  A clustering 

coefficient  is a metric  for the  likelihood  that  two associated  vertices  of a vertex  are  also associated  with  other  vertices.  A higher 

clustering  coefficient indicates  a greater  association  and cohesiveness. 
 

Connected  components  mean components  of the datasets  (represented   by properties  of vertices)  connected  together.  For example, 

finding student-teacher    datasets,  social network  datasets,  etc. 

 
9.5.5  SimRank 

 

Similarity  can be defined  by properties   of graph  vertices.  For example  course,  subject,  student,  scientist, Java programmer,   status, 

values, or any other  salient characteristic.   Social network  analysis of graphs  computes  SimRank. 

SimRank is the metric  for measuring  similarity  between  vertices  of the same type. The computation  starts  from a vertex possessing 

specific property  and path traversals  through  the edges search the similarities.  The vertices  having similar properties  are counted  to 

the  SimRank. The counting  continues  till counts  per unit traversals  converge  within  a prefixed  margin,  say .001.  SimRank converges 

to a value which is applicable for path traversals  within, say geodesic distance,  say up to 200. The computations  are analogous to ones 

for PageRank as in Example 9.7



9.5.6  Counting  Triangles and Graph Matches 
 

One of the methods  of detecting  communities  is counting  of triangles.  A triangle  means three  vertices  forming  a triangle  with edges 

interconnecting   them. 
 

Triangle count refers to the number  of triangles  passing through  each vertex. The count is a measure  of clustering.  A vertex  is part 

of a triangle  when it has two adjacent  vertices with an edge between  them. 

Graph  matches  are  computed   using  filtering   or  search  algorithm,   which  uses  the  properties,   labels  of vertices,  edges  or  the 

geographic  locations. 
 

Figure 9.14  shows triangles  and triangles  between  similar graph  properties  found from graph  matches.  Edge labels show the GPAs 

of students  socially connected. 

 

 
 

Figure 9.14 Clustering of five triangles  and three  matches  of graphs 

 
9.5.7 Using SparkGraph(Map-Reduce)for Network Graphs 

 

Section     8.5    describes      Spark     GraphX     algorithms      for     analyzing     graphs.      Connected     components      compute      by 

graph. connectedComponents   () . vertices     method  in  SparkGraph.  Connected  Components  Algorithm  labels  each  connected 

component   of the  graph  with  an ID.  Each connected  component   ID  is ID  of the  lowest-numbered   vertex.  For example,  in a social 

network,   connected   component   objects  can  approximate   clusters.  GraphX contains   an  implementation    of the  algorithm   in  the 

ConnectedComponentsObject.    The  clusters   are  found  by discovering   close-by  connected   components   using  closeness  centrality 

metric. 
 

SparkGraphX triangle-count   algorithm  computes  the number  of triangles  passing through  each vertex.  The count  is a measure  of 

clustering.  TriangleCount  requires  the edges to be in canonical  orientation   (srcld <  dstld).  Source vertex  ID is srcld and Destination 

vertex  ID is dstID. Graph is partitioned  using Graph.partitionBy   operator. 

 

9.5.8 DirectDiscovery  of Communities 
 

Three metrics  identify groups and communities  from a social graph: 

1.   Cliques -  A  clique  forms  by a set  of vertices  when  each  of the  vertices  directly  connects  to  every  other  individual  vertex 

through  the edges. Detecting the cliques leads to direct discovery of communities. 

2.   Structurally  cohesive blocks. 
 

3.   Social circles from connections  and neighbourhoods 
 

A bridge  enables  the  link between  two groups.  Application  of analyzing  communities,   SimRanks and bridges  are  finding  a set of 

experts,  specific areas of expertise,  and ranking  the expertise  in an organization. 
 

Experience  in social science fields shows that  the  social network  of a person  is the key indicator  of the  stature  of the person  and 

his/her  success potential.  Social graph analysis enables finding key bridges and persons  with most connections. 
 

Figure 9.15 shows a social graph with two cliques and a bridge.



 

 
 

Figure    9.15  Two cliques in a social graph network  and a bridge between  the cliques 
 

Clique 1  has set of four vertices,  each connected  with three  edges to three  others.  Clique 2  has five vertices,  each  connected  by 

edges to other  four. Two edges in the figure provide the bridge between two sub graphs,  on left and right  sides. 

 
Self-Assessment   Exercise  linked  to LO 9.4 

 

1.   How do the  metrics analyze a social network graph  of persons in an organization? How do they relate  to inter-dependency, 

performance, groups, expertises, beliefs, knowledge or prestige? 

2.   Define the terms degree, closeness, betweenness, egonet, K-neighbourhood, top-K shortest paths, PageRank, clustering, SimRank, 

connected components, K-cores,triangle count, graph matches and clustering coefficient. 

3.   How the cliques discover communities from social network analysis? 
 

4.   What are the uses of Apache Graphx Connectedcomponents   and triangles  count methods  in social graph anaysis? 
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L09.1 

1.   Text mining techniques  help revealing  the patterns  and relationships   in large volumes of textual  content  that  are not directly



visible. The mining leads to new business opportunities   and improvements  in processes. 

2.   Five phases in text mining are (i) text pre-processing,  (ii) feature  generation,  (iii) feature  selection, 

(iv) text  data  mining,  and (v) analysing  the results.  Text analytics  involves  provisions  of strong  integration with the  already 

existing  database,  artificial  intelligence,  machine  learning,  and text mining techniques  such as, information  retrieval,  natural 

language processing,  classification,  clustering  and knowledge management,  respectively. 

3.   Machine learning  based text classification  methods  are (i) K nearest  neighbour  classifier, (ii) Naive Bayes method,  (iii) decision 

trees, (iv) decision rules classification,  and (v) support  vector machines. 

4.   Naive Bayes classifier  is a simple,  probabilistic  and  statistical  classifier.  The classifier  computes  the  conditional   probability 

tables. 

5.   SVMs based classifier is a discriminative  classifier formally defined by a separating  hyperplane.  SVM seeks a decision surface to 

separate   the  training data  points  into  two  classes  and  makes  decisions  based  on the  support   vectors  that  select  the  only 

effective elements  in the training  set. 
 

L09.2 

1.   Web data  mining  is a process  of discovering  patterns in large datasets  to gain knowledge.  The process  can be shown as Raw 

Data r+      Patterns  r+      Knowledge. Web data refers  to (i) web content  - text,  image, records,  (ii) web structure - hyperlinks  and 

tags, and (iii) web usage - http  logs and application  server  logs. 

2.   Steps for pre-processing   of web-data  are quite  similar to pre-processing   for text mining. The steps include  collection  of wide• 

word   frequencies   and   document   frequencies.   Machine   learning   techniques    for  web  content   analytics   are   clustering, 

classification  and association  rule mining. 

3.   Web usage  mining  discovers  and  analyses  the  patterns in click stream  and  associated  data  generation   and  collection  as a 

consequence  of user interactions  with web resources  on the World Wide Web. 

4.   A link spam creator  website ws also has a page ls. ws attempts to enhance  the PageRank of ls. 

5.   A hub is an index page that out-links  to number  of content  pages.  A content  page is topic authority.  Authority  is a page that has 

recognition  due to provisioning  useful, reliable  and significant  information.  HITS algorithm  computes  the hubs and authorities 

on a specific topic t. 

6.   Web community  is website  or collection  of the  websites  that  limits  the  view of contents,  and  that  links  the  members  (for 

example,  Linkedln). Metric for analysis  of web community  sites are web graph  parameters,   such as triangle  count,  clustering 

coefficient and K-neighbourhood. 

L09.3                                                                                                                          .. 
 

1.   Link analysis enables finding the PageRank, centralities,  hubs, and authorities.   Page ranking  method  considers  the entire  web 

in place of local neighbourhoods   of the pages. PageRank of a page refers  to relative  authority  of the parents  out-linking  to the 

page. 

2.   Web structure models  as directed-graphs   network-organization.  A page  may have  a number  of hyperlinks  directed  by out• 

edges to other  pages. Text at the hyperlink  represents the property  of vertex  that  describes  the destination   of the out-going 

edge. A hyperlink  in-between  the pages represents  the conferring  of the authority. 

3.   SparkGraph  includes  conversions  to MapReduce functions  and use HDFS compatible  files. Page rank()  and ranksByUsername() 

are static and dynamic methods  compute  on the PageRankObject 
 

L09.4,                                                                                                                         .. 
 

1.   A social network  is a social structure made of individuals  (or organizations)  called "nodes",  which are tied (connected)  by one 

or more  specific types  of interdependency,   such as friendship,  kinship,  financial  exchange,  dislike or relationships   of beliefs, 

knowledge or prestige 

2.   Social  network   topological   analysis  tools  compute   the  degree,   closeness,  betweenness,   egonet,   K-neighbourhood,   Top-K 

shortest paths,  PageRank, clustering,  SimRank, connected  components,  K-cores, triangle  count,  graph  matches  and clustering 

coefficient. Bipartite  weighted  graph matching  does collaborative  filtering. 

3.   Analysis enables summarization  and find attributes for anomaly. 
 

4.   Apache Spark Graphx  includes PageRank, ConnectedComponents   and TrianglesCount  algorithms,  and fundamental  operations



for social graph analytics. 
 

5.  Analysis of cliques discovers groups and communities.  Analysis also finds the bridge between  the cliques. 
 

I   Objective Type Questions    1 111 
Select one correct-answer option for each questions  below: 

9.1 The term  text analytics evolves from (i) provisioning  of strong  integration   with the already  existing  (ii) database,  (iii) artificial 

intelligence,  (iv) machine  learning,  and (v) text Data Store techniques  such as (vi) information  retrieval,  (vii) natural  language 

processing, 

(viii) classification,  (ix) clustering,  and (x) knowledge management,  respectively. 

(a)  all except ii and iv 

(b)  ii to ix 
 

(c)  all except ii, iii, iv and vii 

(d)  all 
 

9.2 SVMs  main uses are (i) classification  based on the outputs  taking  discrete  values in a set of possible categories,  (ii) separation 

or prediction,  if something  belongs to a particular   class or category.  Other uses are (iii) finding  a decision boundary  between 

two categories,  (iv) clustering,  (v) regression  analysis, and regression,  if continuous  real-valued  output  (continuous  values of x, 

in place discrete  n values, x2, x3, ... , xn), and (vi) discriminative  classifier. 

(a)  all except iii 
 

(b)  i, ii and iv 
 

(c)  all except iv 

(d)   i to v 
 

9.3 Applications  of (i) web content  mining, and (ii) web-structure   mining of web documents  are: (iii) Classifying the web documents 

into categories,  (iv) identifying  the topics of the web documents,  (v) creation  of tables  and databases,  (vi) finding  similar web 

pages across  different  web servers,  and  (vii) relevance  or the  applicability  of web content  measured  with  respect  to a basis, 

such as making recommendations,   filtering  or querying 

(a)  all except vii 

(b)  all except ii 

(c)  all except iv 

(d)  i tov 

9.4 The HITS  analyses a (i) subgraph  of web, which is relevant  to (ii) topic t, (iii) query  q. The assumptions  are (iv) authorities   are 

the ones, which out-link  to number  of hubs, and (v) hubs are the ones, which in-link to number  of authorities.   (vi) A bipartite 

graph  exists for the hubs and authorities.   (vii) First set of pages discovers  a root  set R using standard  search  engine, then  (viii) 

finds a sub-graph  of pages S, using a query that provides relevant  pages for t and pointed  by pages at R. 

(a)  all except iii to v 

(b)  all except iii and vi 

(c)  all except vi 

(d)  all except iv and vi 
 

9.5  Web contents  mining tasks are: (i) finding clustering,  (ii) classifying, (iii) mining association  rules, and (iii) topic identification, 

tracking  and drift  analysis for adding new documents  to a collection  library.  Other tasks are: (iv) assigning  by rechecking  for 

the  emergence  of new topics,  (v) creation  of concept  hierarchy,  building  of category  dimensions,  such  as domain,  location, 

time,  application,   privileges,  and  (vi) measuring   the  relevance  or  the  applicability  of web content   on basis  of documents, 

queries, roles or tasks or user profiling. 

(a)  all except vii and viii 

(b)  all



(c)  all except vii 

(d)  All except vi to viii 
 

9.6 The most  common  form of pattern   analysis  consists  of (i) a knowledge  query  mechanism  such as SQL,  (ii) loading  usage data 

into a data cube in order to perform  OLAP operations, 

(iii) visualization  techniques,   such  as graphing   patterns   or assigning  colors  to  different  values.  The analysis  also  finds  (iv) 

content  and  structure   information   which  can filter  out  patterns   containing  pages  of a certain  usage  type,  content  type,  or 

pages that match  a certain  hyperlink  structure. 

(a)  all except iii 

(b)  all 

(c)  all except i and ii 

(d)  i to ii 
 

9.7 PageRank method  considers  (i) the entire  web in place of a local neighbourhood   of the pages, (ii) queries top 10 pages, and (iii) 

considers  the relative  authority  of the children  pages with respect  to parent  page. PageRank method considers  assigning  weight 

(iv) as 1, and (v) according  to the rank  of the parents.  (vi) PageRank is inversely  proportional   to the weight of the parent  and 

proportional   to out-links  of the parent. 

(a)  i, iii, and v 

(b)  iandv 

(c)  all except ii and vi 

(d)  all 
 

9.8 Social network   graph   analysis  tools  do  the  (i) clustering   analysis  which  means  the  number   of  1st neighbour   nodes,  2nd 

neighbour  nodes, and so on. (K = 1, 2, 3, 4 and so on), (ii) social network  community  and network  analysis. The graph  analysis 

finds the  (iii) close-by entities,  (iv) fully mesh-like  connected  sets, (v) network  graph  analysis beside centralities,   (vi) also does 

computations  of the property of the links, (vii) rectangle  counts, and (viii) clustering  coefficient. 

(a)  i to vi 
 

(b)  all except i, vi and vii 
 

(c)  ii to iv 
 

(d)  i to iii, v, viii 

I     Review Questions      Ill 
9.1 How are the features  evaluated  in the text documents?  (LO 9.1) 

 

9.2 Explain five phases and steps in the phases during text analytics.  (LO 9.1) 

9.3 When is the  Naive Bayes conditional  probabilities   based  classifier  used? When is the  support  vectors  based  discriminative• 

classifier used? Write details of each. (LO 9.1) 
 

9.4 What are the  tasks  in web data  analytics?  Describe the  pre-processing   steps and mining  tasks  in web contents  analytics.  (LO 

9.2) 
 

9.5 How is the emergence  of new topics discovered?  How do concept hierarchy  create  and build from category  dimensions,  such as 

domain, location, time, application  and privileges?  (LO 9.2) 

9.6 How does the web usage mining  discover  and analyze  patterns   in click stream,  and generate  and and collect associated  data? 

(LO 9.2) 

9.7 Describe various link analysis metrics  used for analytics. How is PageRank iterated  and computed  using relative  authority  of in• 

linking pages? How does ranking  algorithm  compute topic-sensitive  PageRank? (LO 9.3) 
 

9.8 How does structure   of web model as graph  network?  Draw a diagram  for web graph  nodes  and edges. What are the  metrics 

computed  for a web graph?  (LO 9.3) 

9.9 Describe HITS algorithm  to iterate  and compute the hubs and authorities?   (LO 9.3)



9.10 How does social graph  analysis relate  to positivity  and negativity  analysis about  the persons?  How does social graph  network 

anomaly detection  help an organization?  (LO 9.4) 

9.11 How are  social graph  analytics  metrics,  degree,  closeness,  betweenness,   egonet,  K-neighbourhood,  Top-K shortest  paths  and 

SimRank computed  by path traversals?  (LO 9.4) 
 

9.12 What are the operators  provisioned  in Apache Spark Graphx for social network  graphs  analysis? (LO 9.4) 

 

I    Practice Exercises 

9.1 List the steps in the methods  used for grouping  the text documents  into clusters,  automating  the document  organization,  topic 

extraction.  Take the example of HTML pages or your University or Company website.  (LO 9.1) 

9.2 Explain how text analytics tasks performs  using Python library  nltk. (LO 9.1) 
 

9.3 List the steps in document  clustering  method.  How do you use the clusters  for the fast information  retrieval  or filtering?  Take 

the example of student  grade cards or Company annual  reports. 

(LO 9.1) 
 

9.4 List the steps in classifying web documents  into categories,  identifying  similar pages across different  web documents  to classify 

them  as web pages of a university  or company.  (LO 9.2) 

9.5 List the  steps  in recommendations   for top  N  relevant  documents  in a collection  or portion  of a collection.  List the  steps  in 

filtering-  show/hide  documents  based on most/least   relevancy.(LO 9.2) 

9.6 Using Example 9.7, write algorithms  for PopularityRank,  SimRank and best student  search.  (LO 9.3) 
 

9.7 Rewrite PageRank and HITS algorithms  using vectors and matrices.  (LO 9.3) 

9.8 Write the steps in performing  bipartite  weighted  graph matching  in social network  graph analysis. (LO 9.4) 
 

9.9 Describe steps to compute  the triangles, junction  trees,  shortest  paths  and top K-shortest  paths  and discover the communities 

in social network  graphs  of students.  (LO 9.4) 
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2 

https:/ /www .ibm.com/ support/knowledgecenter    / en/ SS3RA 7 _18.1.1/ta_guide  _ddita/textmining/    shared_entities/tm_intro    _tm_ defined.htn 
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S3-and-RapidMiner 
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Engine" Sergey Brin Lawrence Page, 1998 
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o o • Level 1 & Level 2 category 
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• • • Level 5 & Level 6 category
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Chapter  10 
 
 
 

Programming Examples  in Analytics 
and Machine  Learning  using  Hadoop, 
Spark  and Python 

 

 
 
 
 
 
 

LEARNING  OBJECTIVES 
 
 

After studying  this  chapter, you will be able to: 
 

LO 10.1 Learn steps for installation  of Hadoop and Spark, and storage and processing of 

Big Data and large datasets 
 

LO 10.2  Get acquainted  with  steps  of programming  for deploying  and exploring  the 

open source Lego datasets  and its schema, processing and storage of datasets, 

counting of dataset items using MapReduce, creating HBase tables from the CSV 

format datasets and creating Dataframes from the RDDs 
 

LO 10.3  Get knowledge of programming  steps in Hive and PySpark for operations  of 

Merge and Join on Dataframes,  usages of SQL-equivalent functions for join and 

processing queries, and using the UDFs 
 

LO 10.4 Get introduced  to data visualization  using Python Plotting  (graphing) library, 

Programming for pi graph, bar charts and scatter plots 
 

LO  10.5  Learn  steps  in  the  programs   and  machine   learning   algorithms   for  the 

clustering, classification, regression analysis and predictive analytics 
 

 
Readers shall also be able to learn the following from the Practice  Exercises  given at 

the end of the chapter:



1.   Big Data analytics applications in business 
 

2.   Uses of datasets for analyzing and predicting future 
 

3.   Develop codes  to  solve  problems  in  analytics,  predict   and  visualize  using 

Sklearn, PySpark and Mahout 
 

 
 
 

RECALL FROM EARLIER CHAPTERS 
 

Previous chapters  1 to 9 described the followings: 
 

Hadoop, MapReduce, map tasks using key-value pairs, Hadoop ecosystem tools, 

Hbase, Hive, HiveQL   (DDL, DML,  Querying data, Aggregation and Join), Pig (Pig 

Latin  data  model,  commands,  relational   operations,  Eval functions  and  user 

defined functions), Apache Spark 

Spark for distributed  and faster in-memory analytics, cluster computing and APis 

in Java, Scala, Python and R 

Spark architectural  features, software stack components, their functions, steps in 

data analysis with Spark, ETL  processes using built-in  functions  and operators, 

ETL pipelines, analytics, data/information   reporting,  visualizing methods, using 

Spark  with  Python  advanced  features,  and  UDFs, vectorized  UDFs, grouped 

vectorized UDFs 

Developing and testing  Spark codes, programming  with  RDDs,  applications  of 

MLib, and Machine Learning (ML) methods for analysis of datasets 
 

Apache  Mahout  architecture,   components,   their   applications   for  clustering 

analysis, classification,  Naive  Bayes analysis,  SVMs  for analytics,  collaborative 

filtering, recommender  system, and regression analysis for predictions 

Stream computing and SparkStreaming 
 

Graph databases, graph  analytics, Apache SparkGraphX, its Architecture, 

components, and their applications for graph analytics 

Text  mining,  web  content   and  web  usage  analytics,  link  analysis  and  web 

structure  analytics 

This chapter  focuses on Hadoop/Spark/PySpark   programming  examples. Programs 

explore datasets, perform analytics and demonstrate  machine learning algorithms and 

data visualization.



10.1  ! INTRODUCTION 

 

Hadoop provides Big Data storage and computing using clusters. Hadoop manages both 

large-sized structured  and unstructured  data in different formats efficiently and 

effectively.  The  formats,  such  as  XML,   CSV,  JSON, text  files.  Hadoop  ecosystem 

provides  running  of applications  on Big Data. Hadoop deploys  MapReduce, HBase 

distributed  databases and other  application  programming  models. Hadoop ecosystem 

includes Hive and Pig. Hadoop applications  support  layer and application layer 

components include Hive, Pig Spark, Spark and Mahout. 
 

Apache®  Spark™  is an advanced  Big Data analytics  tool.  Spark is fast and general 

compute engine. Spark provides in-memory, distributed  and faster cluster computing. 

Spark supports  data stored  at HDFS,  Hadoop compatible data source, such as HBase, 

Cassandra, Ceph and Amazon 53. 
 

Spark SQL includes SQLContextand JDBC  datasource  that  can read from (and write 

to) SQL databases. Spark SQL provides DataFrames(SchemaRDDs)to allow processing of 

a large amount of structured  data. Spark SQL does the following: runs SQL-like scripts 

for query processing, using catalyst optimizer and tungsten  execution  engine, processes 

structured  data, and provides flexible APis for support for many types of data sources. 
 

SparkSQL has  built-in   functions   and  operators   for  creating   ETL   pipelines  and 

analytics.  Spark SQL  does ETL  operations  by creating  ETL  pipeline  on the  data from 

different file-formats, such as ]SON, Parquet, Hive, Cassandra and then running  ad hoc 

queries. 
 

Spark enables programming  with the RDDs, and machine learning applications with 

MLib. Apache  Mahout  and  components  have  applications  for  the  development  of 

clustering, classification, collaborative filtering and recommender  system algorithms. 
 

Spark provides  APis in Java,  Scala, Python  and  R.  Spark  architecture   has  many 

features,  and  software  stack  components  for  data  analysis. Apache Spark contains 

interactive  shell for Python  programming  known  as PySpark. PySpark embibes the 

advanced features  of Python, such as UDFs, vectorized  UDFs  and grouped  vectorized 

UDFs. Python has strong libraries for analytics, machine learning and natural language 

processing. 
 

Spark  Streaming  is a  stream-processing   platform  for  data  mining  and  real-time 

analytics.   Stream  processing   requires   samples  of  streaming   data,  and  does  the 

filtering,  counting  of distinct  elements,  analysis of frequent  itemsets,  and mining of 

association  rules. The analysis gives the  count  of the  instances  of frequent  itemsets 

present  in the  stream.  Spark streaming  facilitates  real-time  sentiment  analytics  and 

stock prices analytics.



 

 
 

INLJP 

Spark is thus  one of the most important  components  for Big Data Analytics Stack. 

This chapter  focuses  on Hadoop/Spark/PySpark   program  examples.  The programs 

explore   datasets,   perform   analytics,  visulaizes  data,   and  run   machine   learning 

algorithms using famous toy company, Lego Inc. open source datasets. 
 

Section  10.2  describes  installation  methods  for  Hadoop, Hive, Pig and  Spark  on 

Ubuntu platform. 
 

Section 10.3 describes datasets  used in the  examples in subsequent  sections of this 

chapter.   The  section  describes  deploying  and  exploring   Lego datasets,   schema, 

processing and storage, MapReduce implementation  for counting items in the dataset, 

creating  Hive data tables from CSV format  dataset  and creating  Dataframe  from the 

RDDs. 
 

Section 10.4 describes Hive and PySpark programs using functions, Merge and Join of 

Dataframes,  SQL equivalent join functions and UDFs for customized query processing. 

Section 10.5 describes programs for data visualization using pi, bar and scatter plots. 

Section  10.6  describes  machine  learning  programs  using  sklearn  for  SVM, Naive 

Bayes classifiers, linear and polynomial regression analysis and predictive analytics. 
 

Practice  exercises  at the  end of the  chapter  describe the  csv files of open  source 

datasets  of  an  automobile  company.  Datasets  for  new  car  sales  can  be  used  for 

analyzing and predicting future sales. The datasets contain monthly car sales for 2007- 

2017 by the make and the data for the most popular car models. The exercises for the 

analytics shall make a reader through  in understanding  of algorithms described in the 

Chapters  5  and  6,  and  the  usage  of  PySpark  and  Mahout.  Online  solution-guide 

associated with the book explains the methods and codes for them. 
 

 

10.2  ! INSTALLATION  STEPS  FOR HADOOP  AND  SPARK 

 

The following 

subsections 

describe the  steps 

for  installation   of 

Hadoop and Spark 

processes, and configuration of platform used for computing. 
 

 

10.2.1   Installation Steps for Hadoop,  Hive and Pig 
 

Following are the steps for Hadoop Installation  for setting up of a single-node cluster 

of Hadoop 2.9.0 on Ubuntu  16.04 Operating  System.1  Latest version  is Hadoop 3.02



which is in alpha phase. Apache community has incorporated  many changes and is still 

working on some of them. 

1.    Updates all repositories 
 

sudo apt-get update 
 

2.    InstallJava  and ssh 
 

Hadoop Java Versions 
 

Version 2.7 and later of Apache  Hadoop requires Java 7. Earlier versions  (2.6 and earlier) 

support Java 6. 
 

sudo apt-get install openjdk-7-jdk 

sudo apt-get install ssh 

3.   Download Hadoop-2.9.0.tar.gz, hive-1.2.2.tar.gz, pig-0.17.0 files. 
 

The Apache™ Hadoop® project and other Hadoop-related projects at Apache are available 

at: http://hadoop.apache.org 

4.   Create  a dedicated  user  hduser.  This creates  a directory  in  "home"  name  as 

"hduser", 
 

5.  Copy the  given hadoop-2. 9. 0. tar. gz, hive-1. 2. 2. tar. gz, pig-0 .1 7. 0 

files into the "hduser" directory 
 

6.   Extract all files in the "hduser" directory: 
 

tar -xvzf hadoop-2.9.0.tar.gz 
 

7.    Go to hadoop-2.9.0/conf/ 

Following XML files are present: 

1)  core-site.xml 
 

2)  hdfs-site.xml 
 

3)  mapred-site.xml 
 

4)  yarn-site.xml 
 

7.1 Open core-site.xml  with  text  editor.  Copy the  following lines  in  to  core• 

site.xml:

http://hadoop.apache.org/


<configuration> 

<property> o:.::name::,,fs.default.name</name:> 

o:.::value:>hdfs://localhost:8020</value> 

<:/property::,, 

...::/configuration> 

7.2   Open hdf  s- site    . xml   with text  editor. Copy the following lines in to hdfs• 

site.xml: 

o:.::configuration:::- 

<Property> 

o:.::name:::-dfs.replicationc.:/name> 

o:.::value:>l...:;/value> 

<:/property> 

...::property;::, 

.c:name:::-dfs.namenode.name.dir</name> 

<Value;::.fhome/hduaer/hadoopdata/hdfs/namenodeo:.::/value> 

</property> 

...::property;::, 

.c:name:::-dfs.datanode.data.dir</name> 

<Value:::-/home/hduger/hadoopdata/hdfg/datanode</value~ 

.c:/property::,, 

< /configuration> 

7.3   Open yarn-site.xml  with  text  editor.  Copy the  following lines  in to yarn• 

site.xml: 

o:.::configuration:::• 

<Property>
 

 
 

-c /propertY'> 

<property> 

.c:name:::-yarn.nodemanager.aux-serviceso:.::/name:::• 

<Value::>MapReduce shuffle</value:>

<name :>yarn.nodemanager  .aux-eervdce s .mapre::luce.shuffle.clas fJ< I 
name>

 
...:; /propertY> 

<Value:>org.apache.hadoop.mapred.ShuffleHandlero:.::/value::,,

</configuration:> 

7.4   Open mapred-site.xml  with text editor. Copy the following lines in to mapred• 

site.xml: 

e propert.y» 

<name:;.,,mapreduce.framework.nameo:.::/name> 

o:.::value>yarn</value::,, 

< /property> 

7.5   Open hadoop-env.sh with text editor



Copy the  following  line  where  the JAVA_HOMEpath  is given  in to  hadoop• 

env.sh 
 

or below this line "# exportJAVA_HOME=/usr/lib/*********"   : 
 

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk 
 

8.   Update $HOME/.bashrc 
 

open bashrc file with command: 
 

sudo gedit -/.bashrc 
 

copy following  lines to the End of File: 

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk 

export HADOOP_HOME=/home/hduser/hadoop-2.9.0 

export HIVE HOME=/home/hduser/hive-1.2.2 

export PIG_HOME=/home/hduser/pig-0.17.1
 

export   PATH=$PATH:   $JAVA HOME/bin: 

$HIVE HOME/bin: $PIG HOME/bin 
 

export HADOOP_MAPRED_HOME=$HADOOP_HOME 

export HADOOP_COMMON_HOME=$HADOOP_HOME 

export HADOOP HDFS HOME=$HADOOP HOME 

export YARN_HOME=$HADOOP_HOME 

export 

 

$HADOOP HOME/bin:

HADOOP COMMON LIB NATIVE DIR=$HADOOP HOME/lib/native 

export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib" 

9.   Refresh the bashrc file 
 

source -/.bashrc 
 

10. Disable the SSH 
 

ssh localhost(enter  the password) 
 

ssh-keygen -t dsa -P ''  -f     -/.ssh/id dsa 
 

cat -/.ssh/id_dsa.pub  >> -/.ssh/authorized  keys 
 

11. Formatthe namenode



hadoop namenode -format 

or 

hadoop namenode -format -force 
 

12. Start hadoop 
 

start-all.sh 
 

13. Check all services of Hadoop are running  or not using JPS (Iava Virtual Machine 

Process Status Tool) command. 
 

jps 
 

Check whether the following processes are running: 
 

7770 RunJar 
 

8704 JobTracker 
 

892 9 Jps 
 

6495 RunJar 
 

8316 NameNode 
 

8610 SecondaryNameNode 
 

8460 DataNode 
 

8866 TaskTracker 
 

The installation is successful if all the above processes are displayed on console. 
 

 

10.2.2   Installation Steps for the  Spark  on Ubuntu 
 

Section 5.4 introduced  steps  for downloading  Apache Spark, getting  started,  Spark 

shell,   developing   and   testing   Spark  codes,  programming   with   the   RDDs and 

applications to MLib. The steps for installation of Spark on Ubuntu are as follows: 
 

Step 1: InstallingJava 
 

Check whether Java is already installed. 
 

java -version 
 

Step 2: Install Scala 
 

sudo apt-get install scala 
 

Check whether  Scala installed.



scala 
 

Test scala. 
 

println("Hello  World") 
 

Quit Scala 
 

:     q 
 

Step 3: Install Spark 
 

Download a pre-built for Hadoop 2.7 version of Spark (preferably, Spark 2.0 or 

later) from 
 

https://spark.apache.org/downloads.html 
 

Save . tgz file on computer. 
 

Go to terminal and change directory to where  . tgz file saved (or just move 

the file tor  home folder}, then use 
 

tar xvf spark-2.2.l-bin-hadoop2.7.tgz 
 

Extract the Spark folder and use. 
 

cd spark-2.0.2-bin-hadoop2.7.tgz 
 

mv spark-2.0.2-bin-hadoop2.7  spark 
 

Make an entry for spark in .bashrc file 
 

Edit the  Hadoop user  profile /home/hadoop/.profile     and add the  following 

lines: 
 

export SPARK_HOME=/home/hadoop/spark 

export PATH=$SPARK HOME/bin: $PATH 

Source the changed .bashrc file by the command 

source -/.bashrc 
 

Then use 

cd bin 

and then 

./spark-shell 
 

Spark shell will pop up. Here, one can load



.scala          scripts 
 

Test the environment. 
 

print(sc.version) 
 

The output should read: 
 

2.  2.  1 
 

The sc  is SparkContext that is automatically  created for you when PySpark    starts. 

Initializing  a  PySpark   session  creates  sqlContext       as well. To exit  the  PySpark 

session: 
 

quit() 

 
10.2.3   Computing PlatformConfiguration 

 

The examples presented  in this chapter  are executed on a system with the following 

configuration: 
 

Operating System Ubuntu 16.04 LTS 64-bit 
 

Processor: Intel® Core™ i7-4790 CPU@ 3.60GHzx 8 
 

RAM: 16GB 
 

Hard Disk: 116.5GB 
 

Graphics: Geforce GT 710/PCie/SSE2 
 

 
 

10.31 DATASETS USED IN THE EXAMPLES, DATA DEPLOYMENT AND 

EXPLORATION 

Analytics  requires   data.  A  collection  of  data  is  called  a 

Dataset.   A   dataset   must   be   strongly-typed,   immutable 

collection of objects that  map to a relational  schema. A rich 

dataset is needed to provide high-quality  analytics results. A 

dataset needs to be rich, which means must offer vast 

opportunity  for exploration  and offer an immense range  of 

data patterns. 
 

Here, we have chosen datasets  from Lego database. Lego is 

a   renowned   brand   of   construction-toys.   The   different 

varieties of toys are sold in sets which build a specific object. 
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A set contains colourful interlocking  plastic bricks and other parts. The number, sizes 

and shapes of the parts vary with sets. The parts  can be assembled and connected  in 

many ways, to construct  objects, vehicles, buildings and working robots. The parts can 

be taken apart to make other objects as well. 

The Lego database contains information  about the parts  in different  Lego sets. This 

dataset  was compiled by Rebrickable3  for kaggle.com as a public dataset  [LDB4],   with 

the objective of using these files for any purpose. 
 

This dataset contains Lego sets from year 1950to July, 2017.The dataset is arranged 

in 8 CSV files. 
 

The dataset  comprises various toy themes.  There are in all 614 themes  defined in 

themes.   csv  for various Lego toys, such as Robot, Airport, Building and Train. Almost 

11,673sets are manufactured  in year starting from 1950to July, 2017(sets.   csv).  Sets 

have different number of parts (field: num_parts     in    sets.    csv). 
 

Table 10.1shows a sample row of sets.    csv   that  represents  a Tractor  set with set 

number 378-1developed in 1972.It belongs to Theme Id 397and  has 36parts  in total: 

Table 10.1 A sample row of sets.     csv   file 

 

                 Name                                                

378-]                                                                             ]972                      397 

 

 

1:\11::F+HM 
36

 

 

The inventories  of parts  and sets are also provided in the  dataset.  Inventory  Ids of 

11,681parts and their set numbers are available in inventories.       csv.    Overall there 

are    25,993 parts    (parts.     csv)     belonging    to    57    different    part    categories 

(Part_   categories.      csv),    whereas   inventory   of  parts   contains   5,80,251 parts 

(inventory_parts.        csv).   Inventory  of parts  also stores  the  colour information  of 

the part (field: color_    id  in inventory    _parts.      csv).  Similarly, the inventory of sets 

contains 2,846sets (inventory_    sets.     csv). 
 

The colours are defined in colors.      csv    where the RGB values of 133colors  and two 

values for unknown  color    and No  color    are specified. The colors are also featured 

as  transparent    and  non-transparent    using  Boolean  value  is_trans.       Sample  of 

colors.      csv    is presented  in Table 10.2. 
 

Table 10.2 Sample of colors.       csv   file



 
 
 
__             J 

~~~~ 

 

 i:s-_t..rans 

-l Ulfllmown 00 3B2 :f 

4 Red C91A09' :f 

36 Ttrn.11S-:Red C9M09  

f stands foe false and t for true. 

Figure 10.1 shows the dataset schema of the Lego database that helps in figuring out 

how the files are related. 
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Figure10.1 Schema of Lego Database [LOB] 
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10.3.1   Countingand Sorting of Items in Datasets using 

MapReduce 
 

Objective of ProgramMapReduce program  presented  in the  section  counts  sets of 

toys in the given dataset on the basis of year of introduction  and sorts them from the 

highest count to the lowest. 
 

Mapper  loads the input  csv file (sets.     csv),    prepares  dataframe  with two columns 

(year and number of parts) and passes the prepared  dataframe to the reducer. 
 

Reducer loads  the  dataframe   obtained  from  the  Mapper,  performs  an  aggregate 

function, count,    to count the year wise sets, and sorts the sets in descending order of 

count. 
 

Mapper and Reducer programs  use the dataframe  to store the data extracted  from 

files. Section 5.3.1 describes the concept of Dataframe and Section 10.3.3 describes the 

method of creating DataFrame From CSV file and the ROD. 
 

Inputfile(s):  sets.    csv



Code of Mapper 
 

 
 

#file: mapper.py 
 

 
import pandas as pd #import pandas python package 

 

#Define mapper Function 

def mapper() : 

#Extract records of CSV file into Dataframe dfl 

dfl = pd.read_csv('/home/ ... /sets.csv') 

 

#Prepare dataframe with two columns(year  and number of 

parts)only 
 

df2 = dfl [  ["year", "num_parts"] ]  . copy () 

 

 
#  Now print out the data that will be passed to the 

reducer 
 

print(df2.to  string(index=False)) 

 

 
#Execute mapper function 

mapper () 

 
 
 

Run the  Mapper Code using command on the prompt 
 

$: python mapper.py 

Output of Mapper  (Note: Shown only 10 records,Total there are 11,673 records): 
 

year num_parts 

1970 471 

1978 12 

1987 2 

1979 12 

1979 12 

1979 12 

1979 18 



 

1978 15 

1976 147 

1976 149 

Note: The output of mapper.py transfers to reducer.pyin MapReduce. 

Code of Reducer 

 

 
#file: reducer.py 

 

import pandas as pd#import pandas python package 

import sys         #import System-specific parameters 

#and function module
 

import re 

 

 
def reducer(): 

 

#import regular expressions module 
 

#for splitting the console input data

 

#obtain the list of lines from stdin 

data=  sys.stdin.read() .splitlines() 

#split each line into 2  items: 'year' and 'num_parts' 

data=  [re.split(r'\s+(?=\d+$)',  1)  for 1 in data] 

 
 

#construct the dataframe 
 

df = pd.DataFrame(data,  columns=['year' ,'num_parts'J) 
 

#Count  the  rows  Group  by  year  and  arrange  them  in 

ascending order 
 

sd=df.groupby('year') 

['year'] .count() .sort values(ascending=False) 
 

print(sd) #Display desired output 

 

 
#Execute reducer function 

reducer () 

 

Note:  Regular expressions  \s  matches  Unicode whitespace  characters and \ d matches 

any  Unicode   decimal   digit.     ?    = ••• is  lookahead  assertion.   The  pattern character 

'$'  matches  at the end of the string. 
 

Run the  Reducer Code using command on the prompt



$:  python mapper.py  I                  python reducer.py 

The above command executes the mapper.py file and the  output  of mapper.py is 

provided to reducer.py 

(Note: The symbol "I" denotes a pipe. The Pipe is a command in Linux that allows to 

use two or more commands such that  output  of one command serves as input to the 

next.) 
 

Output  of Reducer  (Counts  sets on the basis of year of introduction  and sorts them 

from the highest count to the lowest): 
 

year 
 

2014 713 

2015 665 

2012 615 

2016 596 

2013 593 

2011 503 

2002 447 

2010 444 

2003 415 

2009 402 

2004 371 

2008 349 

2001 339 

2005 330 

 

10.3.2 Storing  CSV Dataset  into Hive Database 
 

Create a Table in Hive 
 

 

hive>  create  table  sets(set_num string,  name string, 

year int, theme id int, num_parts int, category string) 

row format delimited fields terminated by','; 
 

 

Output  of Create Table Query 
 

OK



Time taken: 0.107  seconds 
 

Load the  Data 
 

hive> Load  data  local  inpath 

overwrite into table sets; 

'/home/...   /sets.csv'

 

 

Output of Load Data Query 
 

Loading data to table default.sets 
 

Table default.sets stats: [numf'iles =1, numRows =O,  totalSize =  507514,  rawDataSize = 

o] 
 

OK 

Time taken: 1.124  seconds 
 

Initial  step  in this  exploration  process  is to  read  in the  data  and  print  a quick 

summary statistics. 
 

 

10.3.3   Storing CSV Dataset into the SparkDataframe 
 

A Spark Dataframe  is a two-dimensional  data structure  with rows and columns. It  is 

similar to a matrix of data rows or a table in relational  database or an Excel sheet with 

column headers. Columns may contain data of different types. 
 

A sample of one of the data file is as follows: 
 
 

aet;  _ nmn.,.    name     ye~:r.,.    theme  _  id,,,    n-um _ pa1:ts 

O 0·-1    We etabi.x   Ca£Jt ie,    1970,.    414,    411 

0011-2    Town   Mini-Figure~,.       19'10..    B4,r    12 

0011-3,    Ca  tle   2  .fOJ!'.'   1  Bonus    Offer,    1997,    199,   2 
 

 

The file format is csv (comma separated  values). Each row of the data is a different 

record  of set  (toy  set), and  different  data  fields within  each row are  separated  by 

commas. The first row is the  header  row and illustrates  each data  field. Remaining 

rows contains  the  data values for data fields correspondingly.  The entire  set of one 

data field (say set_num) of all the rows, is a column. The dataset  can be visualized in 

matrix format as:



set 
 

-  num name                          year    theme 
- id  num_   pa:rts

00-1                 WeetabLx   CaEitle                                         19'70           414                      471 

0011.-2            ''!'own  Mini-Figu.re~.                                    19'7a               9.4                            12 

0011-3           Castle 2  for 1 Bonus.    Offer             1987    19-9                      2 
 

 

Reading  the  data Reading the data requires  creation  of a dataframe  first. This can be 

done in multiple ways: 
 

Using different data formats. For example, loading the data fromJSON, CSV. 

Loading data from Existing RDD (Resilient Distributed Dataset). 

Programmatically  specifying schema 

Create  a DataFrame  from CSV file Pandas is a high level data processing and analysis 

library  of Python,  which  provides  easy-to-use  data  structures.   Pandas  is built  on 

functionality   provided  by  the  Numpy  package  and  its  key  data  structure   is  the 

DataFrame. 
 

Import pandas for data processing functions with import pandas as pd. The data 

from a CSV file is used to create DataFrame, using the read_csv method. 
 

Following code creates  a dataframe,  toy sets, from csv file, sets. csv and print 

the column name of dataframe: 
 

 
#   Import the pandas library. 

import pandas as pd 

#  Read in the data. 
 

toy_sets = pd.read_csv("sets.csv") 

#  Print the names of the columns in toy_sets. 

print(toy_sets.columns) 

 
Output The code above reads the data in, and shows all the column names: 

 

Index(['set_num',      'name', 

'num_parts'], dtype ='object') 

'year',      'theme id',

 

 

The shape of the data displays the number of rows and columns in the data file. 
 

print(toy_sets.shape)



Output The toy_sets has 11673 rows, or sets, and 5 columns or data points describing 

each set: 
 

(11673,     5) 
 

 

10.3.4 CreatingDataFramefrom the ROD 
 

First create  a SparkContext      to connect  with Apache Cluster. when operations  are 

required  to  be  executed  in  a cluster    SparkContext       is  needed.  SparkContext 

specifies to Spark how and where  to access a cluster.  The SparkContext       already 

exists when Spark shell is used. otherwise,  it can be created by importing,  initializing 

and providing the configuration settings: 
 

from    pyspark      import       SparkContext 

sc    =   SparkContext() 

Two ways to prepare a DataFrame from ROD are as follows: 
 

1.   Wrap the elements that belong to the same row in Dataframe by a parenthesis  at 

the   time   of  creation   of  ROD   by  parallelize   function.   Name  the   columns 

by  toDF    function  where  all  the  columns'  names  are  wrapped  by  a  square 

bracket. 
 

rdd    =   sc.parallelize            (  [  (10,     20,     30),    (11,     21,     31),       (12,     22, 
 

3 2)  J   ) 
 

dataFrame      =   rdd.toDF(["p","q","r"J) 
 

2.   Use pyspark.    sql   and assign a name to each element in every row. Now convert 

the ROD into a dataframe by toDF  function in which there are no other names. 
 

from    pyspark.sql         import       Row 
 

rdd      =    sc.parallelize([Row(p=lO,                    q=20,       r=30),         Row(p=ll, 

q=21,      r=31), 

Row(p=12,     q=22,      r=32)]) 
 

df    =   rdd.   toDF   () 
 

 
 

10.4  ! PROGRAMMING  STEPS  USING  HIVE AND  PYSPARK 

 

The following subsections  describe Merge and Join functions  for DataFrame objects, 

analysis using UDFs for query-processing  in Hive and Pyspark.



10.4.1   Merge andJoin Functionsfor Dataframe 

Objects 
 

Pandas provides a merge function as the entry point for all 

standard database   join   operations    between   DataFrame 

objects. 
 

Syntax of merge function: 
 

pd.merge(left, right,     how='inner', 

on=None, left on  =None,  right on     None, 

False, right index=  False, sort=  True) 

Following are the meanings of the terms used: 
 

1.   left-  First Dataframe object. 
 

2.   right - Second Dataframe object. 
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left index

 

3.   how - Similar to SQL join types ('left', 'right',  'outer'  and 'inner').  inner is default 

value. (Table 10.3). 

4.   on - Columns (names) to join on. The column name should be present  in both the 

left and right  DataFrame objects. If value of on is None, the  intersection  of the 

columns in both DataFrames are selected to join by default. 

5.   left_on - Columns from the left Dataframe to use as keys. 
 

6.   right_on - Columns from the right Dataframe to use as keys. 
 

7.    left_ index - Join keys from left Dataframe is set as the index, when set as true. In 

case of a Dataframe with a multilndex  (hierarchical), the number  of levels must 

match the number of join keys from the right DataFrame. 

8.   right_index  - Similar to left_index for the right Dataframe. 
 

9.   sort - Sort the result DataFrame by the join keys in lexicographical order. True is 

default value. 

Table 10.3  Merge types and their SQL equivalent names 
 

:t..·ler   e     tloos • t  . 

[left 
 

ight 

lEfT    OUTER  JO]N 

JtlOH'J  OUt'ER  mm 

Use keys from left object 

Use .keys  fro.m 1r~1t   ob_iect 

outer FULL  OUTER  JOIN Use union  of :keys 

dil:lleli JNNERJOilf Use !in.1te_rsecti:on of .keys 
 

The Join operations  on DataFrames are also available in Pandas. The operations  are



like SQLJOIN in RDBMS. They are high performance  in-memory join with full features. 

This implies Join columns with other DataFrame either on index or on a key column. 
 

Syntax of join  function 
 

Dataframe.join(other, on=  None, how='left', lsuffix   ' ' 
rsuffix = '',  sort= False) 

Following are the meanings of the terms used: 
 

1.   Dataframe: First Dataframe object. 
 

2.   other-   Second Dataframe object 
 

3.   on - Columns (column name, tuple/list   of column names, or array-like) to join 

on. The column name  should be present  in both  the  left and right  DataFrame 

objects. 

4.   how - Similar to SQLjoin types. Values are 'left', 'right',  'outer',  'inner'.  left is the 

default value (Table 10.3). 

5.   lsuffix -  Suffix to use from  left frame's  overlapping  columns.  Its data  type  is 

string. 

6.   rsuffix -  Suffix to use from right  frame's  overlapping  columns. Its data type is 

string. 

7.    sort - Order result DataFrame lexicographically by the join key. If false, preserves 

the index order of the calling (left) DataFrame. False is the default value. 

 
10.4.2   Analysis  and Query-Processing   Using UDFs in Hive and 

Pyspark 
 

UDF  is a customized  function  for which user  specifies the  code, input  datasets  and 

output datasets. A UDF helps in query processing for total inventories  for user defined 

input  itemsets  and user defined outputs.  Examples of inputs  and outputs  in the UDF 

are as follows: 

1.   Input  Datasets  (Color), (Year), (Color and  Year), (Theme and  Color), (Theme, 

Color and Year) 

2.   Output Datasets (Inventory), (Color), (Theme) 
 

Python  scripts  for Customized  UDF in Hive Hive provides for writing codes for the 

UDFs, similar to other  programming  languages. A UDF  enables the code to introduce 

any new functions to the cluster for computations,  as needed. Hive has limited built-in 

Hive functions (Section 4.4.7). Each dataset specifies a schema and has several features.



The analytics require  additional  'user defined functions'  (UDFs) over and above built• 

in functions. 
 

UDF    are   implemented    for   actions,   such   as   transformations     and   even   for 

aggregations. User-Defined Aggregation Functions (UDAFs) transform  a group of rows 

into one or more rows, meaning that  one can reduce the number  of input  rows to a 

single output  row by some customized aggregation function. An example of coding in 

HiveQL, that feeds the data to the Python script is given below. The code uses standard 

input and reads the result from its standard out. 
 

Custom   UDF  in Python  Objective: Return the toys category in text  format, whether 

new or intermediate  or old on the basis of year. 
 

NumPy is the fundamental  package for scientific computing with Python. Following 

code uses Python library numpy: 
 

 
#myUdf.py 

import sys 

import numpy as np 

import datetime 

#Define udf (User defined function) 

#Function returns category in text format on the basis of year 
 

def year_to rank(year): 
 

if year>=  2015: return 'New' 
 

elif year>=  2010: return 'Intermediate' 

elif year>=  1970: return 'Old' 

else: return 'Not known' 

#input 
 

for line in sys.stdin: 
 

line =line.strip() 
 

set_num,name,year,theme  id,num_parts,category=line.split('\t') 
 

name=name.lower() 
 

category=year_to_rank("year") 
 

print('\t' .join([str(set_num),str(name), 

year,theme_id,num_parts,str(category)])) 

 
The above code is saved in a file named myUdf.py



set_num name NULL NULL NULL New 

00-1 weetabix  castle 1970 414 471 Old 

0011-2 town mini-figures 1978 84 12 Old 

castle 2 for 1 
0011-3                                                      1987                     199                       2                           Old 

 bonus offer     

0012-1 space mini-figures 1979 143 12 Old 

0013-1 space mini-figures 1979 143 12 Old 

0014-1 space mini-figures 1979 143 12 Old 

0015-1 space mini-figures 1979 143 18 Old 

 

Add Python script  into  Hive 
 

It  is essential   to  add  the  Python   file  as  resource   to  the  Hive  cluster.   The  following 

command   add file myUdf.py  to the  Hive cluster: 
 

hive>      add    file       /home/      ...    /Lego/myUdf.    py; 
 

Outputof add file command 
 

Added     resources:          [ /home/    .. ./Lego/myUdf    .py] 
 

Run a PythonUDF in Hive 
 
 

hive;i.      select       transformtBet:   _ num.,name  yea:r,,them.e  _ id  m.J1m. _ parts   category] 
using   python myUdf .py"  as   set      num,narme,year,theme    id,nmn    parts    category 
from.    sets    limit    10· 

 
Outputof transformQuery 

 

 
Query ID= hduser1_20180301115757  _fa8bd58a-6e70-43ff-b8c3-f24fld7e444c 

 

Total jobs=  1 
 

Launching  Job 1 out of 1 
 

Number  of reduce  tasks  is set to O  since there's   no reduce  operator 
 

Job running in-process   (local Hadoop) 
 

2018-03-0111:57:59,164   Stage-1 map=  100%, reduce= 0% 

Ended job = job_local1723749830_0002 

MapReduce  Jobs Launched: 
 

Stage-Stage-1:  HDFS Read: 642682 HDFS Write:  507514 SUCCESS 

Total MapReduce  CPU Time Spent:  O msec 

OK



0016-1                  castle mini figures 1978 

weetabix 

186                       15             Old

00-2 promotional 

house 1 

1976                     413                        147                       Old

 

Time taken: 1.256 seconds, Fetched: 10 row(s) 
 

 
 
 

10.51 DATA VISUALIZATION USING PYTHON PLOTTING LIBRARY 
 

Matplotlib is Python plotting library. Matplotlib is used

to  generate   the  output  for  the  visualization.  It   could  be 

interesting  to plot a chart. The library imports using: 
 

import pandas for data processing functions, and 
 

import Matplotlib for visualizing the output. 

Da1t.31 v~su:a'li~~,o~  1.11s'in[II 

Pytnon Pt:ottting (graJJhingQ 
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Plotting      functions       in      Matplotlib 

matplotlib.pyplot as plt statement. 

facilitates drawing and showing the plots. 

Pie Chart Plot Example 

 

are      included      using      import 

The  functions   in  pyplot   package

 

Objective Let's  plot  a  pie  chart   of  color  transparency   that   can  visualize  the 

distribution  of non-transparent   and transparent  colors. 
 

Input file(s): colors.csv 

Following is the code of plotting a pie chart: 
 

 
 

import pandas as pd #Import pandas for processing the CSV 

file I/0 
 

import matplotlib.pyplot  as plt #Import matplotlib 

plotting library 

 

 

#Read CSV file and Extract data into dataframe df 

df =  pd.read_csv('/home/ ... /colors.csv') 
 

 
 

# Apply aggregation function count and store the result 

in a new



#   dataframe sd 

sd = df. groupby ('is trans' )   [  'is trans' J    •  count 
 
 

y   sd.values  # Extract count values in array a 
 

 
 

#   Define an array, expl, which specifies the fraction of 

the 

#   radius with which to offset each wedge. 

expl =(0.1, 0) 
 

labels=  'Non-Transparent', 

'Transparent' 

colors = ['while', 'grey'] 

 

# Define Data Labels 

 
# Define wedge colors

 

 

#   Plot the pie chart 
 

plt.pie(y, labels=labels, explode=expl,  colors=colors, 

autopct='%1.lf%%', shadow=True, startangle=90) 
 

plt.axis('equal') 
 

plt. show () 
 

 
 
 

The parameters  of pie function are as follows: 
 

1.   x: Array of the wedge sizes. 
 

2.   explode: Array that  specifies the fraction of the radius with which to offset each 

wedge. 

3.   labels: An optional  list parameter  with  default  value None. It  is a sequence  of 

strings providing the labels for each wedge. 

4.   colors: An optional array parameter  with default value None. It  is a sequence of 

matplotlib  color arguments  through  which the pie chart will cycle. If None, will 

use the colors in the currently  active cycle. 

5.   autopct: An optional parameter  with default value None. It is a string or function 

that is a label of wedges with their numeric value. The label will be placed inside 

the wedge.



 
 

 
/ 

6.   shadow: An optional  Boolean parameter   with  default  value  False. It  draws  a 

shadow beneath the pie. 

7.   startanqle:  An optional  float parameter  with default value =  None. If startangle 

not  None, then  rotates  the  start  of the  pie  chart  by an  angle  mentioned  in 

degrees. The rotation  is counterclockwise from the x-axis. 

8.   radius: An optional float parameter  with default value None. It defines the radius 

of the pie. If radius is None it will be set to 1. 

Figure 10.2 shows a pie chart output. 
 

Tnl sp   r  nt 

 
 

Figure 10.2  Pie chart depicting the color transparency 
 

Example ofBar Chart Plot 
 

Bar chart is another  visualization tool. The chart presents  the data of different groups 

that are being compared with each other. The plotting of bar chart requires  data at x• 

and y-axes. 
 

Objective Let's plot bar chart for number of parts in each category of toys. 
 

Aggregationfunction count     is used on part_    cat_  id   field. The part_    cat_   id   field 

is arranged in descending order before performing the aggregation. 
 

Code for the bar chart is as follows: 
 
 

import pandas as pd 
 

 
 
 

import matplotlib.pyplot as plt 

#Import pandas data 

processing, 

#CSV file I/0 functions 

#Import matplotlib plotting 

library



#Read CSV file and Extract data into dataframe df 

df = pd.read_csv('/home/ ... /parts.csv') 

 

 
# Apply aggregation function count then sort function on 

df 
 

# and store the result in a new dataframe sd 

 
 
 
 

 
sd = df.groupby('part_cat_id') 

['part_cat_id'J .count() .sort_values(ascending=False) 
 

y= sd.values # Extract count values 

x =sd.index # Extract index 

# Display the bar chart 
 

plt.title('Bar  Chart') #Define Title of the chart 

plt.xlabel('Part  Category Id') #Define Label of X-axis 

plt.ylabel('Category  Count')#Define  Label of Y-axis 

plt.bar(x, y,color = 'gray')# Plot the bar chart for x 

and y 
 

plt.show()# Display the bar chart 

 
 

 
Inputfile(s)  parts.csv 

 

Figure 10.3 shows the bar chart depicting category-wise  counts for parts.
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Figure  10.3 Bar chart depicting category-wise parts counts 
 

The result in Figure 10.3 suggests that  Category 13 has the highest number  of parts 

(8,556), while Category 56 has the lowest number of parts (8). 
 

Scatter FunctionSyntax 
 

Scatter  charts  or  scatter  plots  are  used to  plot  data  points  on the  horizontal  and 

vertical  axes. Scatter  functions  are used to draw scatter  plot. Before an example of 

scatter plot, let us understand  the various parameters  of scatter function. 
 

Syntax of scatter function is (x,     y,    marker       =  "x",       s   =  150,      linewidths         = 

5,     zorder        =  10) 
 

Following are the meanings of the terms used above: 
 

1.   x, y: Label or position, optional - Coordinates for each point. 
 

2.   s: Scalar or array _like, optional - Size of each point. 
 

3.   color: Label or position, optional, default: 'b' - Color of each point. 
 

4.   marker: MarkerStyle, optional, default: 'o' - Marker Symbol 
 

5.    alpha: Scalar, optional,  default: None -  The  alpha  blending  value,  between  O 

(transparent)  and 1 (opaque). 
 

6.   linewidths:  Scalar or array _like, optional,  default:  None -  The linewidth  of the 

marker edges. 

7.   Zorder: Top-to-bottom  order of the layers; Used when objects are overlapping in 

two-dimensional view 

Table 10.4 shows eight common markers in plots.



Table  10.4 Eight common Markers 
 

Marker Symbol Marker Symbol 

".,, point "v" triangle_ down 

"" 
' 

pixel """ triangle_up 

"+" plus ".
<
,, triangle _left 

"x" cross "> .,, triangle _right 

Now, let us consider two examples of scatter plots. 
 

Example 1 of Scatter Plot 
 

Objective Display a scatter plot on sets data of Lego database. This scatter plot displays 

the theme Id and number of parts defining the number  of parts as datapoints  in 

each theme. 
 

Inputfile(s)  sets. csv 
 
 

#Import matplotlib plotting library 

import matplotlib.pyplot  as plt 

# Import pandas for processing the CSV file I/0 
 

import pandas as pd 

#Read CSV file and Extract data into dataframe df 

df = pd. read_ csv ('/home/ ...    I sets. csv') 
# Extract features from df and store them in arrays x and 

y 
 

# respectively. 
 

x = df['theme id'] .values #Extract theme id values in 

array x 

y = df['num_parts'J .values #Extract num_parts values in 

array y 

# Create Scatter plot of data points(x,y) 

plt.scatter(x, y,  color='gray', s=lO) #sis  size of 

scatter plot point 

plt.xlabel('Theme  Id')#Define Label of X-axis 

plt.ylabel('Number  of Parts') #Define Label of Y-axis 
 

#plot the x &  y axis# Define the min & max value of x 

axis and y axis 
 

# as(x_min, x_max, y_min, y_max) 

x min=  0



I 

i                                      
.. 

z                                                                .. 

I                                                                                        • 

 

x max 40 

y_min -1 

y_max 50 

plt.axis([x_min,  x max, y_min, y_max]) 

plt.title('Scatter  Plot')  #Define title of the scatter 

plot 

plt.show()              #Display the scatter plot 
 
 

 
Figure 10.4   shows a scatter  plot  which  represents   relationships   between  themes 

(represented  by themeld) and number of parts. 
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Figure  10.4 Scatter Plot which represents  relationships  between themes and 

number of parts 
 

Example 2 ofScatter Plot 
 

This example  is for  displaying  a scatter  plot  for  some random  datapoints.  numpy 

library is required  for creating random number.  randint (   )   function present  in this 

library returns  random integers from the "discrete uniform" distribution  in the "half• 

open" interval  (low, high). If high is None (the default), then results are from (0, low). 

Size parameter  of ran dint function defines the number of integers to be generated. 
 

Objective Display a scatter  plot on say, 50  random  datapoints  generated  between 

(1,1) and (10,10). 
 

Following is the code:



•                            • 

I. 

#Import matplotlib plotting library 

import matplotlib.pyplot  as plt 
 

#Import NumPy for random number generation function 
 

 
 
 

import numpy as np 
 

#Generate 50 Random numbers(x, y)  between  (1,1) to 

(10,10) 
 

x = np.random.randint(low=l,  high=lO, size=50) 

y = np.random.randint(low=l,  high=lO, size=50) 

#Create Scatter plot of data points (x,y) 

plt.scatter(x, y,color='black' ,s=lO) #sis size of point 

plt.xlabel('X 

plt.ylabel('Y 

axis') 

axis') 

 

plt.axis([-1,11,-1,11]) 

plt.title('Scatter   Plot') 

plt. show () 
 

 

Figure 10.5 shows a scatter  Plot which depict randomly generated  (x, y) data points. 

Output may vary if you execute the program again and again. 
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Figure  10.5 Scatter plot depicting randomly generated  (x, y) data points 
 

 
 
 
 

10.6  ! MACHINE-LEARNING   ALGORITHMS  IMPLEMENTATION
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Machine learning  (ML)  is a domain  which  focuses on the 

development  of algorithms  to  exploit  the  data  and  learn                 l 

from  the  data  to  make  predictions.  This has  an  immense          i

range  of applications,  from  effective  web search  to  stock 

price prediction. 

l     r                  1i              ii 
 

I 

i'

Python libraries  Seiki   t-learn       and  Pandas    are used to           
l
 

implement    the    ML    algorithms.    The   library    contains 

implementations   of most  common  algorithms,  including  k-means,  random  forests, 

SVMs,  and  logistic regression.  Scikit-learn  has a consistent  API for accessing these 

algorithms. 

The  following subsections  provide  insight  into  machine  learning  algorithms  for 

clustering, classification and regression in Python. 

 
10.6.1   ClusteringAlgorithm 

 

Let us discuss a way to figure out more features  about the datasets  of Lego database. 

Clustering finds patterns  within the data easily by grouping similar rows together. 
 

Brief description of the K-means algorithm code is as follows: 
 

1.   Perform  basic  imports  first.  Import  NumPy which  is  a  scientific  computing 

module  (used here  for returning  a matrix  from an array  of year  and color_id 

values, then matplotlib for graphing, and then K-means from sklearn). 

2.   Next, read the input csv files into individual dataframes  and merge or join  (use 

inner join) those to get a final dataframe with multiple attributes. 

3.   Initialize k-means with the  required  parameters  to the  K-means algorithm-(i) 

number  of clusters  (n_clusters) as 2. Change the n_clusters  value to get output 

for n (say, 3 or 4)  numbers  of clusters.  (ii) Another parameter  is random_state 

which is an integer  or None, used for initializing  the  internal  random  number 

generator,   which  decides  initialization   (of centroids).  Remember,  K-means is 

stochastic method  (the results may vary even for the same input values). Hence, 

in  order   to  make  the   results   reproducible,   one  can  specify  a  value  for 

the random_state  parameter. 

4.    Next, use fit () function to fit the data (learning) 
 

5.   Next, take the values found for the centroids, based on the fitment, as well as the 

labels for each centroid. 

6.   The "labels" here  are labels that  the machine assigns on its own. Similarly, the



centroids   also. 
 

7. Finally,  plot  and  visualize   the   machine's    findings   based   on  the   data,   and  the 

fitment  according  to the  number   of clusters  defined  in the  code. 

8.   x and y axes take the min_x, max_x, min_y and, max_y values. Here, theme Id is 

plotted  on x-axis that  has values O  (minimum) to 614 (maximum). Color Id has 

values between 1 to 9999. 

Restrict unknown (Color Id=-1), No Color (Color Id=9999)and New colors (Color Id 

from 1000 to 1007) for clearer visualization. User can implement the program for 

all colours to see the difference. 

9.  colors=  ["g.","r.","c.","y."]  statement  defines green, red, cyan and yellow colors 

for cluster no. 1, 2, 3 and 4, respectively. 

Objective of the Program The cluster example prepares  2, 3 and 4 clusters of features 

theme_id and color_id. The program plots the resultant  clusters using scatter plot. The 

clusters are represented  in various colors with centroid  drawn with X marker  within 

each cluster. The values of centroids are also displayed. 
 

Input  file(s): sets.csv, inventories.csv, inventory _parts.csv and colors.csv 
 

Following example implements K-means clustering algorithm and give full code: 
 

#import the numpy, pandas, matplotlib and sklearn libraries 

import numpy as np 

import pandas as pd 
 

from matplotlib import pyplot as plt 
 

from sklearn.cluster  import KMeans #KMeans Clustering 

Algorithm 
 

 
#Read csv files and extract data in dataframes dfl, df2, 

df3 and df4 

dfl   pd. read_ csv ('/home/.. ./ sets. csv' ) 
 

df2   pd. read_csv (  '/home/ ... /inventories. csv') 
 

df3   pd. read_ csv ('/home/. ../ inventory _parts. csv') 
 

df4   pd. read_csv (  '/home/ ... /colors. csv') 
 

#Restrict(unknown,  No Color and New colors here for better 

visualization. 

df4 =  df4[((df4['id']  <1000) &        (df4['id'] >=  0))]



#Join/Merge all the dataframes into a new dataframe say, 

dfl ## 
 

dfl = pd.merge(dfl,  df2, left on="set_num",  right_on 

"set_num") 
 

dfl = pd.merge(dfl,  df3, left on="id", right on 

"inventory_id") 
 

dfl = pd.merge(dfl,  df4, left on="color id", right on 

"id") 

 

 
#Extract the theme id and color id features from merged 

dataframe dfl 
 

#and Store in dataframe df 
 

df = pd.DataFrame(dfl,  columns= ['theme id', 'color_id'J) 

 

 
#Store feature data from df in the 'fl' and 'f2' arrays. 

 

fl df['theme id'] .values #Extract theme id column values 

f2 df['color_id'J .values #Extract color id column values 

 

 

X=np.column_stack((fl,  f2)) 

 

 
#Obtain minimum & maximum of X and y values for drawing 

axes 
 

min x= fl.min() 

max x= fl .max () 

min_y= f2. min() 

max_y= f2 .max () 

#combine them into a feature matrix  'X'  before entering it 

into the algorithm 
 

#Execute KMeans algorithm 
 

K=2 #Define number of clusters 2,3,4 here 

kmeans = KMeans(n clusters=K,random_state=l) 

#fit the data 

kmeans.fit(X)



#Obtain the values found for the Centroids &  labels for 

each centroid 
 

labels=  kmeans.labels 
 

centroids=  kmeans.cluster  centers 
 

#Display the centroids and labels values before plotting 

them 
 

print("Centroids  for",  K,  "clusters are :     ") 

print(centroids) 
 

print("Labels  are :     ") 

print(labels) 
 

#Define colours of the clusters. plot each cluster with a 
 

#different colour. For example, 1  with green, 2 with red, 3 

with Cyan,
 

#4 with yellow 

clusters 

 

Add more colours for drawing more than 4

colors   ["g.","r.","c.","y."] 
 

# plot the scatter graph for clusters 

for i in range(len(X)): 

plt. plot (X [ i J   [ 0 J  ,    X [ i J  [ 1 J  ,    colors [labels [ i J J , 

markersize=lO) 
 

plt.scatter(fl,  f2, colors="k") 
 

plt.scatter(centroids[:, OJ, centroids[:, 1], marker="x", 

s=150, linewidths=5,  zorder=lO) 

plt.axis([min_x,  max_x, min_y, max_y]) 
 

plt.xlabel('Theme Id') 

plt.ylabel('Color Id') 

plt. show() 

Output  of the  K-means  algorithm   Figure 10.6 shows K-means Output for 2, 3 and 4 

clusters. 
 

 

10.6.2  Classification   Algorithm  Example  1: SVMClassifier 
 

SVM  can be implemented  with the help of scikit-learn  library. Following is a simple 

demonstration  which helps in building understanding  of working with Linear Support 

Vector Classifier (SVC). The objective of a Linear SVC is to fit to the data provided and 

returning  a "best fit" hyperplane that divides or categorizes the data.



Brief description of the SVM classifier algorithm code: 
 

1.   Perform  basic imports  first.  Import  NumPy is a scientific  computing  module 

(used here for returning  a matrix from an array of year and theme_id features, 

then matplotlib for graphing, and then SVC from sklearn. 

2.   Next, Load the data from csv files into individual dataframes  and join (use inner 

join) them to get a final dataframe of multiple attributes. 

3.   A   function   specifies   Build_   Data_  Set     using   two   parameters    year      and 

theme    id. 
 

4.   Next, fill the X parameter  with the NumPy array  containing  rows of the  above 

mentioned two features using np.  array      function. Then populate they  variable 

with the  "targets"  (or labels) converted  to numerical  data.  Here, Boolean f is 

converted  to  O    and  t  is converted  to  1.  The  targets   are  basically  binary  or 

multivalued in a classification model. 

5.   The SVM calls the Build_   Data_  Set    function, builds the linear SVC. Specify the 

kernel  type  to be used in the  algorithm.  Kernel type  must  be one of 'linear', 

'poly', 'rbf (Default), 'sigmoid', 'precomputed'  or a callable. 
 

6.   Next, use fit I) function to fit the predictor  and target variables. 
 

7.   Calculate the feature weights and plot the scatter graph as well as classifier. 
 

8.   After  being  fitted,  the  model  can  also be  used  to  predict  new  values  using 

clfr.  predict      (X) . For example, clfr.     predict      (  [ 2 020] )   to predict values in 

year 2020. 

Objective of the  Program The  SVM classifier  example  which  classifies the  input 

dataset  on the  basis of transparency   of the  colors. Features  selected  are year  and 

theme_id. The program  plots the resultant  classes using the scatter  plot. The classes 

are represented  using different colors.  The dataset  size is restricted  for demonstration 

purpose  only. User can  execute  the  entire  code on complete  dataset.  Here  in the 

following example, we also restricted  unknown (Color Id=-1), No Color (Color Id=9999) 

and  New colors  (Color Id from  1000   to  1007)   for  clearer  visualization.  User  can 

implement the program for all colors to see the difference. 

Inputfile(s)  sets.csv, inventories.csv, inventory _parts.csv and colors.csv 
 

Following is the complete code of SVM Classifier : 
 

#import  the     numpy,    pandas,      matplotlib         and    sklearn         libraries 

import  numpy    as    np



import pandas as pd 
 

from matplotlib import pyplot as plt 
 

from sklearn.svm import SVC #Support Vector Classifier 

 
#Read csv file and extract data in dataframes dfl, df2, df3 

and df4 
 

dfl   pd. read_csv ("/home/.. ./sets. csv") 
 

df2   pd. read_csv ("/home/... /inventories. csv") 
 

df3   pd. read_ csv ("/home/.. ./ inventory _parts. csv") 
 

df4   pd. read_csv ("/home/.. ./colors.csv") 

 

 
#Join/Merge  all the dataframes  into a new dataframe  say, 

df## 

dfl     pd.merge(dfl,   df2,  left on="set_num",   right on 

"set num") 
 

dfl       pd.merge(dfl,   df3,   left_on="id",   right on 

"inventory_id") 
 

dfl     pd.merge(dfl,  df4,  left on="color id",  right on 

"id")
 

dfl       pd.DataFrame(dfl, 

'color_id' ,'is_trans']) 

 

columns=    ['year' ,'theme id',

 

 

#Define a function to build data set with two features 
 

#The function returns the X(predictor) and Y(target)
 

def Build 
- 

 

Data
- 

 

Set(features 
 

["year","theme id"]):

df = dfl 
 

 
#Color Id=O, 9999 and 1000 to 1007 are ignored 

 

#for better visualization 
 

df = df[((df['id'J  <1000) &        (df['id'J >= O))J 

 

 
X = np.array(df[features] .values) 

 

y 

(df["is trans"] .replace("f",O) .replace("t",1) .values.tolist())



return X,y 

 

 
#SVM Analysis Code begins from here

x,   y 
 

clfr 

 

Build 
-  
Data

-  
Set() 

SVC(kernel="linear", C= 1.0)
 

clfr.fit(X,y) 

 

 
#Calculate the feature weights 

w = clfr.coef   [OJ 

m   -w [OJ  I  w[lJ 
 

xx   np. linspace (min (X [:,  0 J  )  ,    max (X [:,  0 J  )  ) 

yy   m *  xx - clfr.intercept  [OJ  I  w[lJ 
 

 
#Plot the classifier 

 

hO = plt.plot(xx,yy,  "k-", label="SVM Classifier") 

 

 
#plot the scatter graph for classification 

plt.scatter(X[:,  OJ, X[:, lJ,c=y) 

plt.axis([1950,2017,0,614J) 

plt.xlabel("Year") 

plt.ylabel("Themes") 
 

plt. legend () 
 

plt. show() 

 

 
Output   of  SVM classifier Figure  10.7 shows  SVM outputs  for  two  different  data 

subsets 

Salient  Observations   from  SVM Outputs SVM does not directly provide probability 

estimates. The outputs  illustrated  in Figures 10.7(a) and (b) are not significant. When 

tried with the complete dataset  (which has more than  5 lakh 70 thousand  rows), the 

output  is not revealing any significant interpretation.   Taking the time in order of 1-2 

hours for classifying complete dataset  since single cluster  machine is used here. The 

datasets  have limited number  of dimensions  and the  sample size is very large. It  is 

identified that SVM does not perform well due to two reasons.



Reason 1: When the  dataset  is large, it requires  high training-time   thus,  training 

becomes extremely slow. 

Reason 2: When dataset has more noise, the target classes are overlapping. 
 

Thus, from  the  practical  experience,  SVMs are  proven  to  be better  for  small to 

medium datasets and datasets with low noise. SVMs are better  for datasets with larger 

feature dimensions. 5•6
 

This   also  indicates   that   the   suitability   of  the   classifier   depends   upon   the 

characteristics  of datasets. 

 
10.6.3   ClassificationAlgorithmExample 2: Naive Bayes Classifier 

 

Naive Bayes classification uses Bayes theorem  to determine  class of new data points. 

Consider an example where we want to know whether  various themes  and the colors 

used are more than 800 or not. The Naive Bayes classification algorithm is presented  in 

this section to classify the similar problem as in Section 10.6.2. 
 

Brief Description of the Naive Bayes Classifier: 
 

1.   Load the data from CSV files, merge them and store them in a dataset. 
 

2.   Optional Step: Re-index the dataframe  if you are interested  in partial  dataset  so 

that  the  data  obtained  becomes  randomized   using  following  syntax:  df 

dfl.reindex(np.random.permutation (dfl.index)) 

3.   Extract Theme id  and Color     id  features from dataset and store them in X. 
 

4.    Convert year field to binary feature. The year having 'num_parts'  more than 800 

as '1'  and year having 'num_parts'  less than or equal to 800 as 'o', 
 

5.    Split dataset  in training  set and test  set so that  machine  can be trained  using 

X_ train and Y_train. 
 

6.   test_size in float represents  the proportion  of the dataset  to include in the test 

split, here  taken  as 0.33(33%).  random_ state,      is an integer  or None, used for 

initializing the internal  random number generator,  which decides the splitting of 

data  into train  and test  sets. Default is None. If random_state  is None, then  a 

randomly-initialized RandomState    object  is returned.   If random_state   is an 

integer, then it is used to seed a new RandomState   object. 

7.   Use feature scaling for x train. 
 

8.   Import GaussianNBfrom sklearn.    naive_   bayes 
 

9.    Create a classifier and fit training set to it.



10. Make a Prediction-Estimate   the accuracy of the model by making predictions for 

each data instance in the test dataset. 

11. Estimate  Accuracy-Evaluate   the  accuracy  of the  model's  predicted  values by 

comparing the two arrays (test      labels     vs. preds). 

12. Use the sklearn function accuracy_   score    () to determine  the accuracy of your 

machine learning classifier. ( optional) 

13. Visualize the  training  and  test  result  sets.  Here we have  drawn  a curve  and 

created  two sections: One section  for those  themes  and  colors that  are  using 

more than 800and other section for those themes and colors that are not having 

more than 800number of parts. 

Objective of the Program  The Naive Bayes classifier example presented  in the section 

classifies input dataset  on the basis of number  of parts  (more than  800and less than• 

equal to 800)in a set. Features selected are theme_  id  and color_    id.  The program 

plots the resultant  classes using scatter plot and contours. The classes are represented 

using  different  colors.  The  entire  dataset  is  considered.  User  can  experience  the 

followings: handling  data,  summarizing  data  to  present  training  and  test  datasets, 

making  a prediction,  evaluating  accuracy  and  visualization  of classes in the  given 

example.   Use  the   complete   code  for  standalone   implementation    of  the   Naive 

Bayes algorithm. 
 

Input  file(s) sets.csv, inventories.csv, inventory _parts.csv and colors.csv 
 

Following is the complete code of complete code of Naive Bayes classifier 
 

#import  the     numpy,    pandas,      matplotlib         and    sklearn         library 

import  numpy    as    np 

import      pandas       as    pd 
 

from    matplotlib         import       pyplot       as    plt 
 

from     sklearn.naive_bayes              import       GaussianNB 
 

 
#Read     csv     files        and    extract         data      in    dataframes        dfl,       df2, 

df3    and    df4 
 

dfl pd. read_ csv ('/home/ . ../ sets.     csv' ) 

df2 pd. read_ csv ('/home/ .. .! inventories. csv'    ) 

df3 pd. read_ csv ('/home/ . ../ inventory _parts.       csv') 

df4         pd.read_csv(        '/home/     .. ./colors.csv')



#Join/Merge all the dataframes into a new dataframe say, df 
 

dfl = pd.merge(dfl, df2, left on="set_num", 

right 
 

dfl = 

on="set_num") 
 

pd.merge(dfl, 

 

 
df3, 

 

 
left 

 

 
on="id", 

right on="inventory_id") 
 

dfl = pd.merge(dfl,  df4, left on="color id", right on="id") 
 

dfl = pd.DataFrame(dfl,  columns=['year',  'theme id', 

'color_id', 'is trans' ,     'num_parts']) 

 

 
def Build_Data_Set(features=   ["theme id", "color id"]): 

 

df = dfl 
 

X = df.iloc[:,  [1,  2] J  .values 
 

df['year'] = np.where(df['num_parts'J>800,   '1',  '0') 
 

y = df['year'J .values 

return X,  y 

 

 

# Naive Bayes Classification  Code begins from here 
 

X,  y = Build_Data_Set() 
 

 

# Splitting the dataset into the Training set and Test set 

from sklearn.model selection import train_test split
 

X_train, X_test, y_train, y_test 

test size=0.33, random_state=O) 

 

train_test split(X, y,

 
 

# Feature Scaling 
 

from sklearn.preprocessing  import StandardScaler 

sc = StandardScaler() 

X_train = sc.fit_transform(X_train) 

X test   sc.transform(X_test) 

 
 
#Define Gaussian Naive Bayes Classifier 

classifier=  GaussianNB()



classifier.fit(X_train,  y_train) 

 

 
# Predicting the Test set results 

y_pred = classifier.predict(X_test) 

# Making the Confusion Matrix 
 

from sklearn.metrics  import confusion_matrix 

cm=  confusion_matrix(y_test,  y_pred) 

 

 
# Plot the Training set results 

 

from matplotlib.colors  import ListedColormap 
 

X_set, y_set = X_train, y_train 
 

Xl, X2 = np.meshgrid(np.arange(start  = X_set[:, OJ .min() - 

1,  stop=  X_set[:, OJ .max() + 1,  step   0.01),
 

np.arange(start  = X_set[:,  lJ .min() 

1 J  . max ()  +    1,  step = 0.01) ) 
 

plt.contourf(Xl, X2, 

classifier.predict(np.array([Xl.ravel(), 

X2.ravel()J) .T) .reshape(Xl.shape), 

 

1,   stop = X_set [:,

alpha = 0. 5,  cmap = ListedColormap (  ('grey', 'blue'))) 
 

plt.xlim(Xl.min(),  Xl.max()) 
 

plt.ylim(X2.min(),  X2.max()) 
 

for i,  j    in enumerate(np.unique(y_set)): 
 

plt.scatter(X_set[y_set  == j,  OJ,  X_set[y_set == j, lJ, 

c = ListedColormap (  ('red', 

7) 

'green')) ( i), label = j, s = 

plt.title('Classifier(Training set)')  

plt.xlabel('Theme Id') 

plt.ylabel('Color Id') 

plt. legend () 

plt. show() 
 

 
#Estimate Accuracy 

 

from sklearn.metrics  import accuracy_score



 

print("Prediction -     
" ' y_pred)

print("Accuracy  = ",  accuracy_score(y_test,  y_pred)) 

 

 

#   Visualizing the Test set results 
 

from matplotlib.colors  import ListedColormap 
 

X_set, y_set = X_test, y_test
 

Xl, X2 = np.meshgrid(np.arange(start 

1,  stop=  X_set[:, OJ. 

max() +   1,  step=  0.01), 

 

X_set[:, OJ .min() -

 

np.arange(start  = X_set[:,  lJ .min() -  1,  stop 

1 J  . max ()  +    1,  step = 0.01) ) 
 

plt.contourf(Xl, X2, 

classifier.predict(np.array([Xl.ravel(), 

X2.ravel()J) .T) .reshape(Xl.shape), 

 

X_set[:,

 

alpha=  0.5, cmap 
 

plt.xlim(Xl.min(), 

= ListedColormap(('cyan', 
 

Xl.max()) 

'yellow'))) 

plt.ylim(X2.min(), X2.max())  
 

for i,  j    in enumerate(np.unique(y_set)): 

plt.scatter(X_set 

= ListedColormap ( 

[y_set == j,  OJ, X_set [y_set 

('red' ,     'green') )      ( i) ,    label = j, 

j, lJ, 

s = 7) 

c 

plt.title('Naive Bayes(Test set)') 

plt.xlabel('Theme Id')  

plt.ylabel('Color Id')  

plt. legend ()   

plt. show()   

Output of Naive Bayes classifier 
 

Figure  10.8 shows  output  of Naive  Bayes classifier.  The rows  of df dataframe  are 

shuffled and selected first 50,000 rows only (df =  df[l:50000]). The Green data points 

are themes and colors with more than 800 number of parts and Red for less than equal 

to 800 parts. 
 

 

10.6.4   Regression  Analysis Algorithms 
 

The   following   subsections   consider   data   fitting   using   Linear   Regression   and 

Polynomial Regression Functions:7•8•9



Figure 10.9  Example oflinear regression  

Selection   of   Predictor Variable The   Lego toys   dataset contains the   Lego 

 

. 

10.6.4.1 Fitting  a Linear Regression Function 
 

Linear regression  model predicts  a direct  proportional  (linear) relationship  between 

the dependent  variable (plotted on the vertical or y-axis) and the predictor  variables 

(plotted on the x-axis). Figure 10.9 shows linear regression  example. The figure shows 

that the model produces a straight line. 
 

y-axis 
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.. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

• 
 

 
 
 
 
 
 

Parts/Sets/Colors  and Inventories of each official Lego set. The dependent  variable we 

are   using  is  the   count   of  colors  (color      id     aggregate),      that   provides   the 

augmentation  of colors with respect to time or not. 
 

BriefDescription  of the Linear Regression Algorithm Code 
 

1.   Perform basic imports first. Import Pandas for reading the data from csv files and 

creating pandas dataframes for doing data analysis, then matplotlib for graphing, 

and linear       model   from sklearn. 

2.   Next, read the input csv files into individual dataframes  and merge them to get a 

final dataframe  df   of year and color      id  attributes. 

3.   Filter the undesired  data, if required.  Here year 2017 is not being included since 

it has data up to July only. The incomplete data (not the full year data) may result 

into wrong prediction. 

4.   Calculate the color usage in each year from 1950 to 2016 and store the year and



count value in a new dataframe called yearwise_colour_count. 
 

5.  Next, extract  the independent  variable or predictor  (X) and dependent  variable 

or target  (Y) values from data. For example, here the color usage depends upon 

the   year   value.  Thus,  year   is  independent   variable   while  color  count   is 

dependent. 

6.   Apply  the   linear   regression   function   from  linear _model  library   to  obtain 

regression line with slope, intercept  values and Next, use fit () function to fit the 

predictor  and target variables and to obtain a model. 

7.   The model can be used to predict new values. Predict the color count expected in 

future year value (say, 2020 as shown in the example). 

8.   Visualize the scatter graph and regression line using plot function as given in the 

example. 

There are multiple ways to perform linear regression in Python , use the: 
 

1.   Scipy 
 

2.    Statsmodels 
 

3.    Scikit-learn library. 
 

The following example uses Scikit-learn library for linear regression. 
 

Objective   of  the  Program The linear  regression  example  presented  in the  section 

demonstrates  year wise growth of color usage. Features selected are year and color_id. 

The program  plots the aggregated  counts of year field using scatter  plot. The line of 

regression  will be  shown  to  be  exploited  for  predicting   future  count  value.  The 

predictor  variable will be the year value. Since the database  contains Lego sets from 

1950 to July 2017,  we aim to predict the increase/decrease   of the colors in future  (say, 

Year 2020) 
 

Input  file(s) sets.csv, inventories.csv, inventory _parts.csv and colors.csv 
 

Following is the code for linear regression: 
 

 
 

#import pandas, matplotlib and sklearn libraries 

import pandas as pd 

from matplotlib import pyplot as plt 

from sklearn import linear model



#Read csv file and extract data in dataframes dfl, df2, df3 

and df4 
 

dfl   pd. read_csv ("/home/.. ./sets. csv") 
 

df2   pd. read_csv ("/home/.../inventories. csv") 
 

df3   pd. read_ csv ("/home/.. ./ inventory _parts. csv") 
 

df4   pd. read_csv ("/home/.../colors.csv") 
 

 
#Join/Merge all the dataframes into a new dataframe say, 

dfl## 
 

dfl = pd.merge(dfl,  df2, left on="set_num",  right_on 

"set num") 
 

dfl = pd.merge(dfl,  df3, left_on="id", right_on 

"inventory_id") 
 

dfl = pd.merge(dfl,  df4, left on="color id", right_on 

"id") 
 

#Extract the year and color_id features from merged 

dataframe dfl 
 

#and Store in dataframe df 
 

df = pd.DataFrame(dfl,  columns=['year' ,'color id']) 
 

#Year 2017 may be ignored since it has data up to July 
 

#(which is not the full year data) 
 

df = df[(df['year'J  <2017)] 
 

# Count the colour usage in each year from &  store as 

# in yearwise colour_count 

yearwise_colour_count  = pd.DataFrame({'count' 

df. groupby ('year') [    "year"] . count ()}) . reset index () 
 

#Extract X(predictor) and Y(target)values  from 

yearwise colour_count 
 

X yearwise_colour_count.iloc[:,   :-1] .values 

y  yearwise colour_count.iloc[:,1] .values 

 

 

#Obtain Line of regression with slope, intercept and other 

values 
 

regression =linear_model.LinearRegression()



' 

' 

# feed the linear regression with the train data to obtain 

a model. 
 

regression.fit(X,y) 
 

#Calculate slope and intercept 

slope= regression.coef_[OJ 

intercept= regression.intercept 

#Display slope and intercept 
 

print("Slope = ",  round(slope,2),  ",  Intercept   " 
round(intercept,2)) 

 

 

# Obtain prediction for the year 2020 

newX   2020 

newy   newX*slope + intercept #Using Line Equation 
 

#Y=X*SLOPE+INTERCEPT 
 

 

#output of Colour Count Predicted in year 2020 

print("Colour  Count predicted in",  newX, "     " 
round(newy,0)) 

# plot the scatter graph and regression line 

plt.plot(X, y,  ' .  ' '  color=' gray' ) 
 

plt.xlabel("YEAR") 
 

plt.ylabel("COLOUR  COUNT") 
 

#Display Year on X axis that varies from Year 1950 to 2016 
 

#Display Colour Count on Y axis that varies from Oto 

50,000 

plt.axis([1950,2020,0,50000]) 

#Display line of Regression 
 

plt .plot (X,  X*slope+intercept,  'k') 
 

plt. show() 

Output of the  Linear Regression Figure 10.10  shows linear regression output
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Figure  10.10   Linear regression output 
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Function  for  regression  line  in  Scikit-learn  library  used  in  above  example  is as 

follows: 
 

from sklearn import linear_model 
 

regression =linear_model.LinearRegression() 
 

regression.fit(X,  y) 
 

slope= regression.coef_[OJ 
 

intercept= regression.intercept 

Scipy Library also provides  a function  for linear  regression  analysis. This library 

provides the  linregress function.  Replace the above written  statements  with the 

following statements  in the  complete  code of linear  regression  while you are using 

scipy library: 
 

from scipy import stats
 

slope,    intercept,    r_values, 

stats.linregress(X,  y) 

The output will be the same as Figure 10.10. 

 

p_values,    std err

 

Salient  Observation  The output illustrated  in Figure 10.10 is inappropriate.  When the 

color count value is 49,904  in 2016, the  predicted  value of 2020 being  26,834.690  is 

misleading.  We can  observe  that  the  data  points  are  following  a  curve  and  the 

regression line in the figure is not fitting the curve.



The solution to this is a polynomial regression  (also termed  as quadratic  regression) 

that  has quality to fit a non-linear  model to the  data. Curve fitting is the process of 

constructing  a curve, or mathematical  function that has the best fit to a series of data 

points. 
 

Linear regression equation is: 
 

Dependent variable=  Constant+ Parameter*  Independent  variablel  + ...  +Parameter 

* Independent  variable n 
 

Y = 0) + b J·; L    + ·  · ·    + b,tX.rt                                                                                                                                    (    10.1) 

The regression  equation (10.1) is linear in the parameters.  However, it is possible to 

model curvature  using this equation. The function parameters  are linear but one can 

raise independent  variable by an exponent 

to fit a curve. For example, by squaring the independent  variable (Equation 10.2), the 

model can follow a U'-shaped curve.
 

:v  = b0 + b1.;  L    + ·  · ·    + 

 

·2 
b,r,1 

 
(.10.2)

While  the   independent   variable   is  squared,   the   model  is  still  linear   in  the 

parameters.  Linear models can also contain  log terms  and  inverse  terms  to follow 

different kinds of curves and yet continue to be linear in the parameters. 
 

10.6.4.2 Fitting a Polynomial Regression Function 
 

Brief description of the polynomial regression algorithm code is as follows: 
 

1.   Perform basic imports first. Import Pandas for reading the data from csv files and 

creating pandas   dataframes   for   doing   data   analysis,   then   matplotlib   for 

visualization through graphs. 

2.   Next, read the input csv files into individual dataframes  and merge them to get a 

final dataframe df of year and color_id attributes. 

3.   Filter the undesired  data, if required.  Here, year 2017 is not being included since 

it has data up to July only. The incomplete data (not the full year data) may result 

into wrong prediction. 

4.   Calculate year wise number of colors usage and store it in a new dataframe called 

data here. 

5.  Next, extract  the independent  variable or predictor  (X) and dependent  variable 

or target  (Y) values from data. For example, here the color usage depends upon 

the   year   value.  Thus,  year   is  independent   variable   while  color  count   is 

dependent.



6.   Define the degree of polynomial, say 2, 3, 4 and 5 
 

7.   Apply  the   polyfit   function   from   numpy   library   with   defined   degree   of 

polynomial. The function outputs the regression coefficients. 10•11
 

8.   Use  the   coefficients  to  obtain   a  polynomial.  The  polynomial   models  the 

regression curve that fits the independent  variables. 

9.   The model can be used to predict new values. Predict the color count expected in 

future year value (say, 2020 as shown in the example) 

10. Visualize the  scatter  graph  and regression  line using plot function  as given in 

this example. 

Objective of  the  Program The  polynomial  regression   example  presented   in  the 

section demonstrates  year-wise growth of color usage. Features selected are year and 

color_id. The program plots the aggregated counts of year field using scatter plot. The 

growth  actually forms a curve when drawn  against year. The regression  polynomial 

fits the curve and predicts  the future  count value (Proven to be more accurate  then 

linear regression for this particular  example). 
 

Inputfile(s)  sets.csv, inventories.csv, inventory _parts.csv and colors.csv 
 

The  complete  source  code  for  polynomial  Regression  using  Scipy Library  is  as 

follows: 
 

#import numpy, pandas, matplotlib and sklearn libraries 

import numpy as np 

import pandas as pd 
 

from matplotlib import pyplot as plt 
 

import math#  For trunc() to truncate the decimal values 

 

 
#Read csv file and extract data in dataframes dfl, df2, df3 

and df4 
 

dfl   pd. read_csv ("/home/.. ./sets. csv") 
 

df2   pd. read_csv ("/home/... /inventories. csv") 
 

df3   pd. read_ csv ("/home/. ../ inventory _parts. csv") 
 

df4   pd. read_csv ("/home/... /colors. csv") 

 

 
#Join/Merge  all the dataframes  into a new data frame say, 

dfl##



 

dfl pd.merge(dfl,   df2, left_on="set_num", right_on 

"set num")   

dfl       pd.merge(dfl,   df3,   left_on="id",   right_on 

"inventory_id") 
 

dfl     pd.merge(dfl,  df4,  left on="color id",  right_on 

"id") 
 

df = pd.DataFrame(dfl,  columns=['year' ,'color_id'J) 
 

#Year 2017 may be ignored since it has data up to July 
 

#:  Not the full year data 
 

df = df[(df['year'J  <2017)] 

 

 
#   Count  the  colour  usage  in  each  year  and  store  as 

yearwise colour count 
 

yearwise_colour_count             pd.DataFrame({'count' 

df. groupby ('year') [    "year"] . count ()}) . reset index () 

 

 
#Extract     X(predictor)     and    Y(target)values     from 

yearwise_colour  count 

X   yearwise colour_count  ['year'] .values 
 

y   yearwise_colour_count  ['count'] .values 

#Obtain minimum  &        maximum of X and y values for drawing 

axes 
 

min x= X. min () 

max x= X . max ( ) 

min y= y .min() 

max_y= y . max ( ) 

 

 

#Initialize degree of polynomial, say 2,3,4,5 

degree_of_polynomial = 2 

#Fit the polynomial regression and Obtain the coefficients 

values 
 

coefs = np.polyfit(X, y, degree_of_polynomial) 

#Create a polynomial from the obtained coefficients 

p = np.polyld(coefs)



#prediction#    Obtain prediction for the year 2020 
 

newx   2020
 

newy 
 

p(newx)
 

 
#output of Colour Count Predicted in year 2020

print("Colour    Count   predicted 

math.trunc(round(newy,0))) 

 

in   ",newX,    "=           " 
'

 

 

# plot the scatter graph and regression curve 
 

plt.plot(X, y,  "bo", markersize= 2) 
 

plt.plot(X, p(X), "r-", color='k') #p(X)  evaluates  the 

polynomial at X    

plt. plot (X,  y,  '.' ,    color=' gray' ) 

plt.xlabel("YEAR") 

plt.ylabel("COLOUR  COUNT") 

#Display  Year on X axis that varies  from min_x(1950)  to 

max x (2016) 
 

#Display Colour Count on Y axis that varies from min_y(O) 

to max_y 

plt.axis([min_x,max_x,min_y,max   y]) 

plt. show() 

Output of the Polynomial Regression with Different Degrees of Polynomial 
 

Figure 10.11 shows polynomial  regression  outputs  for  2 and  3 degree  polynomials. 

Figure 10.12 shows polynomial regression  outputs  for 4 and 5 degrees. Figure 10.13 

shows polynomial regression output for 6 degree.
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Figure   10.11 Polynomial regression outputs for 2 and 3 degrees
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Figure  10.12 Polynomial regression outputs for 4 and 5 degrees
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II    Practice Exercises       1111 
10.1  Explore the dataset of the New Car Sales in Norway. The dataset is open source and 

 

downloadable from at www.kaggle.com12 The dataset  contains  monthly  car sales 

for 2007-2017  by make and most popular models. 
 

Dataset includes three csv files: 
 

1.   Norway _new _car _sales_by _make.csv: 
 

Monthly sales of new passenger cars by make (manufacturer  brand) 
 

1.  Year - year of sales 
 

2.  Month-  month of sales 
 

3.   Make - car make (e.g. Volkswagen, Toyota, Tesla) 
 

4.  Quantity - number of units sold 
 

5.   Pct - percent share in monthly total

http://www.kaggle.com12/


2.   Norway_new _car_sales_by_model.csv: 
 

Monthly summary of top-20 most popular models (by make and model) 
 

1.  Year - year of sales 
 

2.  Month-  month of sales 
 

3.  Make - car make (e.g. Volkswagen, Toyota, Tesla) 
 

4.  Model - car model (e.g. BMW-i3,Volkswagen Golf, Tesla 575) 
 

5.  Quantity - number of units sold 
 

6.  Pct - percent share in monthly total 
 

3.   Norway_new _car_sales_by_month.csv: 
 

Summary statistics for car sales in Norway by month 
 

1.  Year - year of sales 
 

2.  Month-  month of sales 
 

3.  Quantity - total number of units sold 
 

4.  Quantity_YoY- change YoY in units 
 

5.  Import - total number of units imported (used cars) 
 

6.  Import_YoY - change YoY in units 
 

7.  Used - total number  of units owner changes inside the country  (data available 

from 2012) 

8.  Used_YoY - change YoY in units 
 

9.  Avg_C02- average C02 emission of all cars sold in a given month (in g/km) 
 

10.Bensin_C02 - average C02 emission of bensin-fueled cars sold in a given month 

(in g/km) 
 

11.Diesel_C02 - average C02 emission of diesel-fueled cars sold in a given month 

(in g/km) 
 

12. Quantity _Diesel - number  of diesel-fueled cars sold in the  country  in a given 

month 

13.Diesel_Share - share of diesel cars in total sales (Quantity_Diesel / Quantity) 
 

14.Diesel_Share_LY- share of diesel cars in total sales a year ago 
 

15. Quantity _Hybrid - number  of new hybrid cars sold in the country  (both PHEV



andBV) 
 

16. Quantity _Electric  -  number  of new  electric  cars  sold  in  the  country  (zero 

emission vehicles) 

17.Import_Electric  - number  of used electric  cars imported  to the  country  (zero 

emission vehicles) 
 

Norway new car sales dataset can be used for analyzing and predicting future car sales. 

Explore  the   dataset   to  solve  the  following  problems   for  analysis,  prediction   and 

visualization using Sklearn and PySpark: 
 

1. Print year-wise total car sales and visualize the output (Hint: use bar chart for Year 

vs. total car sales). 

2.    Print monthly total car sales and visualize for a specified year. 
 

3.    Print monthly total car sales from 2007 to 2017 and visualize them to represent  the 

month numbers (1 for Jan 2 for Feb) and total car sales value. (Hint: Use bar chart). 

Also find the month for number of highest and lowest car sales. 

4.    Calculate the total  amount  of the sales for each manufacturer  from 2007 to 2017. 

Find the  top  10 manufacturers  based on the  total  sale and visualize the  output. 

(Hint: Sort make-wise total car sales and visualize them using bar chart). 

5.    Draw pie chart for the sales of all the models of "Toyota" in year 2012. 
 

6.    Find which model of each manufacturer  has the highest sales in year 2015. 
 

7.    Find which model of each manufacturer  has the highest sales during 2007 to 2017. 
 

8.   Find which model of each manufacturer  has the lowest sales during 2007 to 2017. 
 

9.    Compare car models with percentage  shares. 
 

10. Predict (forecast) the car sales for all the months of 2020 using the month-wise car 

sales quantity from the Jan 2007 to Jan 2017. 

11. Plot  the  sales of new  cars  and  sales of the  diesel  cars  to  see the  comparison. 

Similarly, plot the sales of new car and electric cars. (Hint: Use line chart). 
 

12. Calculate year-wise share of diesel car sales in total sales. 
 

13. Compare year-wise average consumption of C02  emission of all cars sold with year• 

wise average consumption  of C02   emission in benzene-fueled  cars sold and diesel• 

fueled cars sold. 

14. Calculate and visualize year-wise new and used (import) car sales to compare the



statistics. 
 

15. Calculate and visualize year-wise sales of all used (import) car and sales of electric• 

used cars (import_electric) to make a comparison. 
 

16. Predict the rise of green vehicles in 2018. (Hint: Green Vehicle= Import_Electric + 

Quantity _Hybrid+ Quantity _Electric). 
 

17. Forecast and visualize the diesel market share. State whether  it represents  growth 

or reduction in the sales. 

18. Rank top 10 car brands. Visualize the year-wise result using line graph. 
 

 
 
 

1 https:/ /hadoop.apache.org/   Hadoop 
 

2 https://www.edureka.co/blog/hadoop-3/ 
 

3 https://rebrickable.com/about/ 
 

4  LOB-  The  LEGO  Parts/Sets/Colors   and  inventories  of every  official LEGO   set, 

available at: https://www.kaggle.com/rtatman/lego-database 
 

5            https://www.analyticsvidhya.com/blog/2017   /09/understaing-support-vector- 

machine-example-code/ 
 

6 https:/ / sadanand-singh.github .io / posts/ svmpython/ 
 

7    http://www.learndatasci.com/predicting-housing-prices-linear-regression-using• 

python-pandas-statsmodels/ 
 

8          https://  codefying.com/2016/08/18/two-ways-to-perform-linear-regression-in- 

python-with-numpy-ans-sk-learn/ 
 

9               http://statisticsbyjim.com/   regression/ difference-between-linear-nonlinear- 

regression-models/ 
 

10       https://autarkaw.org/2008/07    /os/finding-the-optimum-polynomial-order-to- 

use-for-regression/ 
 

11 https:/ / in.mathworks.com/help  / matlab /ref/ polyfit.html ?requestedDomain=true 
 

12 https:/ /www .kaggle.com/ dmi3kno/newcarsalesNorway
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