

Internetworking With TCP/IP
Vol I:

Principles, Protocols, and Architecture
Sixth Edition

This page intentionally left blank

Internetworking With TCP/IP
Vol I:

Principles, Protocols, and
Architecture
Sixth Edition

DOUGLAS E. COMER
Department of Computer Sciences

Purdue University

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director, Engineering and Computer Science: Marcia J. Horton
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Jenah Blitz-Stoehr
Marketing Manager: Yez Alayan
Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno
Operations Specialist: Linda Sager
Art Director: Anthony Gemmellaro
Media Editor: Renata Butera
Printer/Binder: Edwards Brothers
Cover Printer: Lehigh-Phoenix

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this
textbook appear on the appropriate page within the text. Cisco is a registered trademark of Cisco Systems,
Inc. EUI-64 is a trademark of the Institute for Electrical and Electronic Engineers (IEEE). IEEE is a
registered trademark of the Institute of Electrical and Electronics Engineers, Inc. Linux is a registered
trademark of Linus Torvalds. UNIX is a registered trademark of The Open Group in the US and other
countries. ZigBee is a registered trademark of the ZigBee Alliance. OpenFlow is a trademark of Stanford
University. Windows, Windows NT, Windows CE, and/or other Microsoft products referenced herein are
either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other
countries. Skype is a registered trademark of Skype, Incorporated in the US and other countries.

Additional company and product names used in this text may be trademarks or registered trademarks of the
individual companies, and are respectfully acknowledged.

Copyright © 2014, 2006, 2000 Pearson Education, Inc., One Lake Street, Upper Saddle River, New Jersey
07458. All rights reserved. Manufactured in the United States of America. This publication is protected by
Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit
a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458.

Many of the designations by manufacturers and seller to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data on File

10 9 8 7 6 5 4 3 2 1

www.pearsonhighered.com

ISBN 10: 0-13-608530-X
ISBN 13: 978-0-13-608530-0

To Chris

This page intentionally left blank

Contents

xxiiiForeword

xxvPreface

1Chapter 1 Introduction And Overview

1.1 The Motivation For Internetworking 1
1.2 The TCP/IP Internet 2
1.3 Internet Services 2
1.4 History And Scope Of The Internet 6
1.5 The Internet Architecture Board 7
1.6 The IAB Reorganization 8
1.7 Internet Request For Comments (RFCs) 8
1.8 Internet Growth 9
1.9 Transition To IPv6 12
1.10 Committee Design And The New Version of IP 12
1.11 Relationship Between IPv4 And IPv6 13
1.12 IPv6 Migration 14
1.13 Dual Stack Systems 15
1.14 Organization Of The Text 15
1.15 Summary 16

19Chapter 2 Overview Of Underlying Network Technologies

2.1 Introduction 19
2.2 Two Approaches To Network Communication 20
2.3 WAN And LAN 21
2.4 Hardware Addressing Schemes 21
2.5 Ethernet (IEEE 802.3) 22
2.6 Wi-Fi (IEEE 802.11) 26
2.7 ZigBee (IEEE 802.15.4) 26
2.8 Optical Carrier And Packet Over SONET (OC, POS) 27
2.9 Point-To-Point Networks 28
2.10 VLAN Technology And Broadcast Domains 28

viii Contents

2.11 Bridging 29
2.12 Congestion And Packet Loss 30
2.13 Summary 31

35Chapter 3 Internetworking Concept And Architectural Model

3.1 Introduction 35
3.2 Application-Level Interconnection 35
3.3 Network-Level Interconnection 37
3.4 Properties Of The Internet 38
3.5 Internet Architecture 39
3.6 Interconnection Of Multiple Networks With IP Routers 39
3.7 The User’s View 41
3.8 All Networks Are Equal 42
3.9 The Unanswered Questions 43
3.10 Summary 43

47Chapter 4 Protocol Layering

4.1 Introduction 47
4.2 The Need For Multiple Protocols 47
4.3 The Conceptual Layers Of Protocol Software 49
4.4 Functionality Of The Layers 49
4.5 ISO 7-Layer Reference Model 50
4.6 X.25 And Its Relation To The ISO Model 51
4.7 The TCP/IP 5-Layer Reference Model 52
4.8 Locus Of Intelligence 56
4.9 The Protocol Layering Principle 57
4.10 The Layering Principle Applied To A Network 58
4.11 Layering In Mesh Networks 60
4.12 Two Important Boundaries In The TCP/IP Model 62
4.13 Cross-Layer Optimizations 63
4.14 The Basic Idea Behind Multiplexing And Demultiplexing 64
4.15 Summary 66

69Chapter 5 Internet Addressing

5.1 Introduction 69
5.2 Universal Host Identifiers 69
5.3 The Original IPv4 Classful Addressing Scheme 71
5.4 Dotted Decimal Notation Used With IPv4 72
5.5 IPv4 Subnet Addressing 72

Contents ix

5.6 Fixed Length IPv4 Subnets 75
5.7 Variable-Length IPv4 Subnets 77
5.8 Implementation Of IPv4 Subnets With Masks 77
5.9 IPv4 Subnet Mask Representation And Slash Notation 78
5.10 The Current Classless IPv4 Addressing Scheme 79
5.11 IPv4 Address Blocks And CIDR Slash Notation 82
5.12 A Classless IPv4 Addressing Example 82
5.13 IPv4 CIDR Blocks Reserved For Private Networks 83
5.14 The IPv6 Addressing Scheme 84
5.15 IPv6 Colon Hexadecimal Notation 84
5.16 IPv6 Address Space Assignment 85
5.17 Embedding IPv4 Addresses In IPv6 For Transition 86
5.18 IPv6 Unicast Addresses And /64 87
5.19 IPv6 Interface Identifiers And MAC Addresses 88
5.20 IP Addresses, Hosts, And Network Connections 89
5.21 Special Addresses 90
5.22 Weaknesses In Internet Addressing 94
5.23 Internet Address Assignment And Delegation Of Authority 96
5.24 An Example IPv4 Address Assignment 96
5.25 Summary 98

101Chapter 6 Mapping Internet Addresses To Physical Addresses (ARP)

6.1 Introduction 101
6.2 The Address Resolution Problem 101
6.3 Two Types Of Hardware Addresses 102
6.4 Resolution Through Direct Mapping 102
6.5 Resolution In A Direct-Mapped Network 103
6.6 IPv4 Address Resolution Through Dynamic Binding 104
6.7 The ARP Cache 105
6.8 ARP Cache Timeout 106
6.9 ARP Refinements 106
6.10 Relationship Of ARP To Other Protocols 108
6.11 ARP Implementation 108
6.12 ARP Encapsulation And Identification 110
6.13 ARP Message Format 110
6.14 Automatic ARP Cache Revalidation 112
6.15 Reverse Address Resolution (RARP) 112
6.16 ARP Caches In Layer 3 Switches 113
6.17 Proxy ARP 114
6.18 IPv6 Neighbor Discovery 115
6.19 Summary 116

x Contents

119Chapter 7 Internet Protocol: Connectionless Datagram Delivery (IPv4,
IPv6)

7.1 Introduction 119
7.2 A Virtual Network 119
7.3 Internet Architecture And Philosophy 120
7.4 Principles Behind The Structure 120
7.5 Connectionless Delivery System Characteristics 121
7.6 Purpose And Importance Of The Internet Protocol 122
7.7 The IP Datagram 122
7.8 Datagram Type Of Service And Differentiated Services 127
7.9 Datagram Encapsulation 129
7.10 Datagram Size, Network MTU, and Fragmentation 130
7.11 Datagram Reassembly 134
7.12 Header Fields Used For Datagram Reassembly 135
7.13 Time To Live (IPv4) And Hop Limit (IPv6) 136
7.14 Optional IP Items 137
7.15 Options Processing During Fragmentation 141
7.16 Network Byte Order 143
7.17 Summary 144

147Chapter 8 Internet Protocol: Forwarding IP Datagrams

8.1 Introduction 147
8.2 Forwarding In An Internet 147
8.3 Direct And Indirect Delivery 149
8.4 Transmission Across A Single Network 150
8.5 Indirect Delivery 151
8.6 Table-Driven IP Forwarding 152
8.7 Next-Hop Forwarding 153
8.8 Default Routes And A Host Example 155
8.9 Host-Specific Routes 156
8.10 The IP Forwarding Algorithm 157
8.11 Longest-Prefix Match Paradigm 158
8.12 Forwarding Tables And IP Addresses 160
8.13 Handling Incoming Datagrams 161
8.14 Forwarding In The Presence Of Broadcast And Multicast 162
8.15 Software Routers And Sequential Lookup 163
8.16 Establishing Forwarding Tables 163
8.17 Summary 163

Contents xi

167Chapter 9 Internet Protocol: Error And Control Messages (ICMP)

9.1 Introduction 167
9.2 The Internet Control Message Protocol 167
9.3 Error Reporting Vs. Error Correction 169
9.4 ICMP Message Delivery 170
9.5 Conceptual Layering 171
9.6 ICMP Message Format 171
9.7 Example ICMP Message Types Used With IPv4 And IPv6 172
9.8 Testing Destination Reachability And Status (Ping) 173
9.9 Echo Request And Reply Message Format 174
9.10 Checksum Computation And The IPv6 Pseudo-Header 175
9.11 Reports Of Unreachable Destinations 176
9.12 ICMP Error Reports Regarding Fragmentation 178
9.13 Route Change Requests From Routers 178
9.14 Detecting Circular Or Excessively Long Routes 180
9.15 Reporting Other Problems 181
9.16 Older ICMP Messages Used At Startup 182
9.17 Summary 182

185Chapter 10 User Datagram Protocol (UDP)

10.1 Introduction 185
10.2 Using A Protocol Port As An Ultimate Destination 185
10.3 The User Datagram Protocol 186
10.4 UDP Message Format 187
10.5 Interpretation Of the UDP Checksum 188
10.6 UDP Checksum Computation And The Pseudo-Header 189
10.7 IPv4 UDP Pseudo-Header Format 189
10.8 IPv6 UDP Pseudo-Header Format 190
10.9 UDP Encapsulation And Protocol Layering 190
10.10 Layering And The UDP Checksum Computation 192
10.11 UDP Multiplexing, Demultiplexing, And Protocol Ports 193
10.12 Reserved And Available UDP Port Numbers 194
10.13 Summary 196

199Chapter 11 Reliable Stream Transport Service (TCP)

11.1 Introduction 199
11.2 The Need For Reliable Service 199
11.3 Properties Of The Reliable Delivery Service 200
11.4 Reliability: Acknowledgements And Retransmission 201
11.5 The Sliding Window Paradigm 203

xii Contents

11.6 The Transmission Control Protocol 205
11.7 Layering, Ports, Connections, And Endpoints 206
11.8 Passive And Active Opens 208
11.9 Segments, Streams, And Sequence Numbers 208
11.10 Variable Window Size And Flow Control 209
11.11 TCP Segment Format 210
11.12 Out Of Band Data 212
11.13 TCP Options 212
11.14 TCP Checksum Computation 214
11.15 Acknowledgements, Retransmission, And Timeouts 216
11.16 Accurate Measurement Of Round Trip Samples 218
11.17 Karn’s Algorithm And Timer Backoff 219
11.18 Responding To High Variance In Delay 220
11.19 Response To Congestion 223
11.20 Fast Recovery And Other Response Modifications 225
11.21 Explicit Feedback Mechanisms (SACK and ECN) 227
11.22 Congestion, Tail Drop, And TCP 228
11.23 Random Early Detection (RED) 229
11.24 Establishing A TCP Connection 231
11.25 Initial Sequence Numbers 232
11.26 Closing a TCP Connection 233
11.27 TCP Connection Reset 234
11.28 TCP State Machine 235
11.29 Forcing Data Delivery 236
11.30 Reserved TCP Port Numbers 237
11.31 Silly Window Syndrome And Small Packets 238
11.32 Avoiding Silly Window Syndrome 239
11.33 Buffer Bloat And Its Effect On Latency 242
11.34 Summary 243

247Chapter 12 Routing Architecture: Cores, Peers, And Algorithms

12.1 Introduction 247
12.2 The Origin Of Forwarding Tables 248
12.3 Forwarding With Partial Information 249
12.4 Original Internet Architecture And Cores 251
12.5 Beyond The Core Architecture To Peer Backbones 253
12.6 Automatic Route Propagation And A FIB 254
12.7 Distance-Vector (Bellman-Ford) Routing 255
12.8 Reliability And Routing Protocols 257
12.9 Link-State (SPF) Routing 258
12.10 Summary 259

Contents xiii

263Chapter 13 Routing Among Autonomous Systems (BGP)

13.1 Introduction 263
13.2 The Scope Of A Routing Update Protocol 263
13.3 Determining A Practical Limit On Group Size 264
13.4 A Fundamental Idea: Extra Hops 266
13.5 Autonomous System Concept 267
13.6 Exterior Gateway Protocols And Reachability 268
13.7 BGP Characteristics 269
13.8 BGP Functionality And Message Types 270
13.9 BGP Message Header 271
13.10 BGP OPEN Message 272
13.11 BGP UPDATE Message 273
13.12 Compressed IPv4 Mask-Address Pairs 274
13.13 BGP Path Attributes 274
13.14 BGP KEEPALIVE Message 276
13.15 Information From The Receiver’s Perspective 277
13.16 The Key Restriction Of Exterior Gateway Protocols 278
13.17 The Internet Routing Architecture And Registries 280
13.18 BGP NOTIFICATION Message 280
13.19 BGP Multiprotocol Extensions For IPv6 281
13.20 Multiprotocol Reachable NLRI Attribute 283
13.21 Internet Routing And Economics 284
13.22 Summary 285

289Chapter 14 Routing Within An Autonomous System (RIP, RIPng,
OSPF, IS-IS)

14.1 Introduction 289
14.2 Static Vs. Dynamic Interior Routes 289
14.3 Routing Information Protocol (RIP) 293
14.4 Slow Convergence Problem 294
14.5 Solving The Slow Convergence Problem 296
14.6 RIP Message Format (IPv4) 297
14.7 Fields In A RIP Message 299
14.8 RIP For IPv6 (RIPng) 299
14.9 The Disadvantage Of Using Hop Counts 301
14.10 Delay Metric (HELLO) 301
14.11 Delay Metrics, Oscillation, And Route Flapping 302
14.12 The Open SPF Protocol (OSPF) 303
14.13 OSPFv2 Message Formats (IPv4) 305
14.14 Changes In OSPFv3 To Support IPv6 310
14.15 IS-IS Route Propagation Protocol 312
14.16 Trust And Route Hijacking 313

xiv Contents

14.17 Gated: A Routing Gateway Daemon 313
14.18 Artificial Metrics And Metric Transformation 314
14.19 Routing With Partial Information 315
14.20 Summary 315

319Chapter 15 Internet Multicasting

15.1 Introduction 319
15.2 Hardware Broadcast 319
15.3 Hardware Multicast 320
15.4 Ethernet Multicast 321
15.5 The Conceptual Building Blocks Of Internet Multicast 321
15.6 The IP Multicast Scheme 322
15.7 IPv4 And IPv6 Multicast Addresses 323
15.8 Multicast Address Semantics 326
15.9 Mapping IP Multicast To Ethernet Multicast 327
15.10 Hosts And Multicast Delivery 328
15.11 Multicast Scope 328
15.12 Host Participation In IP Multicasting 329
15.13 IPv4 Internet Group Management Protocol (IGMP) 330
15.14 IGMP Details 331
15.15 IGMP Group Membership State Transitions 332
15.16 IGMP Membership Query Message Format 333
15.17 IGMP Membership Report Message Format 334
15.18 IPv6 Multicast Group Membership With MLDv2 335
15.19 Multicast Forwarding And Routing Information 337
15.20 Basic Multicast Forwarding Paradigms 339
15.21 Consequences Of TRPF 341
15.22 Multicast Trees 342
15.23 The Essence Of Multicast Route Propagation 343
15.24 Reverse Path Multicasting 344
15.25 Example Multicast Routing Protocols 345
15.26 Reliable Multicast And ACK Implosions 347
15.27 Summary 349

353Chapter 16 Label Switching, Flows, And MPLS

16.1 Introduction 353
16.2 Switching Technology 353
16.3 Flows And Flow Setup 355
16.4 Large Networks, Label Swapping, And Paths 355
16.5 Using Switching With IP 357
16.6 IP Switching Technologies And MPLS 357

Contents xv

16.7 Labels And Label Assignment 359
16.8 Hierarchical Use Of MPLS And A Label Stack 359
16.9 MPLS Encapsulation 360
16.10 Label Semantics 361
16.11 Label Switching Router 362
16.12 Control Processing And Label Distribution 363
16.13 MPLS And Fragmentation 364
16.14 Mesh Topology And Traffic Engineering 364
16.15 Summary 365

369Chapter 17 Packet Classification

17.1 Introduction 369
17.2 Motivation For Classification 370
17.3 Classification Instead Of Demultiplexing 371
17.4 Layering When Classification Is Used 372
17.5 Classification Hardware And Network Switches 372
17.6 Switching Decisions And VLAN Tags 374
17.7 Classification Hardware 375
17.8 High-Speed Classification And TCAM 375
17.9 The Size Of A TCAM 377
17.10 Classification-Enabled Generalized Forwarding 378
17.11 Summary 379

381Chapter 18 Mobility And Mobile IP

18.1 Introduction 381
18.2 Mobility, Addressing, And Routing 381
18.3 Mobility Via Host Address Change 382
18.4 Mobility Via Changes In Datagram Forwarding 383
18.5 The Mobile IP Technology 383
18.6 Overview Of Mobile IP Operation 384
18.7 Overhead And Frequency Of Change 384
18.8 Mobile IPv4 Addressing 385
18.9 IPv4 Foreign Agent Discovery 386
18.10 IPv4 Registration 387
18.11 IPv4 Registration Message Format 388
18.12 Communication With An IPv4 Foreign Agent 388
18.13 IPv6 Mobility Support 389
18.14 Datagram Transmission, Reception, And Tunneling 390
18.15 Assessment Of IP Mobility And Unsolved Problems 391
18.16 Alternative Identifier-Locator Separation Technologies 395
18.17 Summary 396

xvi Contents

399Chapter 19 Network Virtualization: VPNs, NATs, And Overlays

19.1 Introduction 399
19.2 Virtualization 399
19.3 Virtual Private Networks (VPNs) 400
19.4 VPN Tunneling And IP-in-IP Encapsulation 401
19.5 VPN Addressing And Forwarding 402
19.6 Extending VPN Technology To Individual Hosts 404
19.7 Using A VPN With Private IP Addresses 404
19.8 Network Address Translation (NAT) 405
19.9 NAT Translation Table Creation 407
19.10 Variant Of NAT 409
19.11 An Example Of NAT Translation 409
19.12 Interaction Between NAT And ICMP 411
19.13 Interaction Between NAT And Applications 411
19.14 NAT In The Presence Of Fragmentation 412
19.15 Conceptual Address Domains 413
19.16 Linux, Windows, And Mac Versions Of NAT 413
19.17 Overlay Networks 413
19.18 Multiple Simultaneous Overlays 415
19.19 Summary 415

419Chapter 20 Client-Server Model Of Interaction

20.1 Introduction 419
20.2 The Client-Server Model 420
20.3 A Trivial Example: UDP Echo Server 420
20.4 Time And Date Service 422
20.5 Sequential And Concurrent Servers 423
20.6 Server Complexity 425
20.7 Broadcasting Requests 426
20.8 Client-Server Alternatives And Extensions 426
20.9 Summary 428

431Chapter 21 The Socket API

21.1 Introduction 431
21.2 Versions Of The Socket API 432
21.3 The UNIX I/O Paradigm And Network I/O 432
21.4 Adding Network I/O to UNIX 432
21.5 The Socket Abstraction And Socket Operations 433
21.6 Obtaining And Setting Socket Options 438
21.7 How A Server Accepts TCP Connections 439

Contents xvii

21.8 Servers That Handle Multiple Services 440
21.9 Obtaining And Setting The Host Name 441
21.10 Library Functions Related To Sockets 442
21.11 Network Byte Order And Conversion Routines 443
21.12 IP Address Manipulation Routines 444
21.13 Accessing The Domain Name System 444
21.14 Obtaining Information About Hosts 446
21.15 Obtaining Information About Networks 447
21.16 Obtaining Information About Protocols 447
21.17 Obtaining Information About Network Services 447
21.18 An Example Client 448
21.19 An Example Server 453
21.20 Summary 460

463Chapter 22 Bootstrap And Autoconfiguration (DHCP, NDP, IPv6-ND)

22.1 Introduction 463
22.2 History Of IPv4 Bootstrapping 464
22.3 Using IP To Determine An IP Address 464
22.4 DHCP Retransmission And Randomization 465
22.5 DHCP Message Format 465
22.6 The Need For Dynamic Configuration 468
22.7 DHCP Leases And Dynamic Address Assignment 469
22.8 Multiple Addresses And Relays 469
22.9 DHCP Address Acquisition States 470
22.10 Early Lease Termination 471
22.11 Lease Renewal States 472
22.12 DHCP Options And Message Type 473
22.13 DHCP Option Overload 474
22.14 DHCP And Domain Names 474
22.15 Managed And Unmanaged Configuration 474
22.16 Managed And Unmanaged Configuration For IPv6 475
22.17 IPv6 Configuration Options And Potential Conflicts 476
22.18 IPv6 Neighbor Discovery Protocol (NDP) 477
22.19 ICMPv6 Router Solicitation Message 478
22.20 ICMPv6 Router Advertisement Message 478
22.21 ICMPv6 Neighbor Solicitation Message 479
22.22 ICMPv6 Neighbor Advertisement Message 480
22.23 ICMPv6 Redirect Message 480
22.24 Summary 481

xviii Contents

485Chapter 23 The Domain Name System (DNS)

23.1 Introduction 485
23.2 Names For Computers 486
23.3 Flat Namespace 486
23.4 Hierarchical Names 487
23.5 Delegation Of Authority For Names 488
23.6 Subset Authority 488
23.7 Internet Domain Names 489
23.8 Top-Level Domains 490
23.9 Name Syntax And Type 492
23.10 Mapping Domain Names To Addresses 493
23.11 Domain Name Resolution 495
23.12 Efficient Translation 496
23.13 Caching: The Key To Efficiency 497
23.14 Domain Name System Message Format 498
23.15 Compressed Name Format 501
23.16 Abbreviation Of Domain Names 501
23.17 Inverse Mappings 502
23.18 Pointer Queries 503
23.19 Object Types And Resource Record Contents 504
23.20 Obtaining Authority For A Subdomain 505
23.21 Server Operation And Replication 505
23.22 Dynamic DNS Update And Notification 506
23.23 DNS Security Extensions (DNSSEC) 506
23.24 Multicast DNS And Service Discovery 507
23.25 Summary 508

511Chapter 24 Electronic Mail (SMTP, POP, IMAP, MIME)

24.1 Introduction 511
24.2 Electronic Mail 511
24.3 Mailbox Names And Aliases 512
24.4 Alias Expansion And Mail Forwarding 513
24.5 TCP/IP Standards For Electronic Mail Service 514
24.6 Simple Mail Transfer Protocol (SMTP) 515
24.7 Mail Retrieval And Mailbox Manipulation Protocols 517
24.8 The MIME Extensions For Non-ASCII Data 519
24.9 MIME Multipart Messages 521
24.10 Summary 522

Contents xix

525Chapter 25 World Wide Web (HTTP)

25.1 Introduction 525
25.2 Importance Of The Web 525
25.3 Architectural Components 526
25.4 Uniform Resource Locators 526
25.5 An Example HTML Document 527
25.6 Hypertext Transfer Protocol 528
25.7 HTTP GET Request 528
25.8 Error Messages 529
25.9 Persistent Connections 530
25.10 Data Length And Program Output 530
25.11 Length Encoding And Headers 531
25.12 Negotiation 532
25.13 Conditional Requests 533
25.14 Proxy Servers And Caching 533
25.15 Caching 534
25.16 Other HTTP Functionality 535
25.17 HTTP, Security, And E-Commerce 535
25.18 Summary 536

539Chapter 26 Voice And Video Over IP (RTP, RSVP, QoS)

26.1 Introduction 539
26.2 Digitizing And Encoding 539
26.3 Audio And Video Transmission And Reproduction 540
26.4 Jitter And Playback Delay 541
26.5 Real-time Transport Protocol (RTP) 542
26.6 Streams, Mixing, And Multicasting 544
26.7 RTP Encapsulation 544
26.8 RTP Control Protocol (RTCP) 545
26.9 RTCP Operation 545
26.10 IP Telephony And Signaling 546
26.11 Quality Of Service Controversy 549
26.12 QoS, Utilization, And Capacity 550
26.13 Emergency Services And Preemption 551
26.14 IntServ And Resource Reservation 551
26.15 DiffServ And Per-Hop Behavior 553
26.16 Traffic Scheduling 553
26.17 Traffic Policing And Shaping 555
26.18 Summary 556

xx Contents

559Chapter 27 Network Management (SNMP)

27.1 Introduction 559
27.2 The Level Of Management Protocols 559
27.3 Architectural Model 561
27.4 Protocol Framework 562
27.5 Examples of MIB Variables 564
27.6 The Structure Of Management Information 564
27.7 Formal Definitions Using ASN.1 565
27.8 Structure And Representation Of MIB Object Names 566
27.9 MIB Changes And Additions For IPv6 571
27.10 Simple Network Management Protocol 571
27.11 SNMP Message Format 574
27.12 An Example Encoded SNMP Message 577
27.13 Security In SNMPv3 579
27.14 Summary 580

583Chapter 28 Software Defined Networking (SDN, OpenFlow)

28.1 Introduction 583
28.2 Routes, Paths, And Connections 583
28.3 Traffic Engineering And Control Of Path Selection 584
28.4 Connection-Oriented Networks And Routing Overlays 584
28.5 SDN: A New Hybrid Approach 586
28.6 Separation Of Data And Control 586
28.7 The SDN Architecture And External Controllers 588
28.8 SDN Across Multiple Devices 589
28.9 Implementing SDN With Conventional Switches 590
28.10 OpenFlow Technology 592
28.11 OpenFlow Basics 592
28.12 Specific Fields In An OpenFlow Pattern 593
28.13 Actions That OpenFlow Can Take 594
28.14 OpenFlow Extensions And Additions 595
28.15 OpenFlow Messages 598
28.16 Uses Of OpenFlow 599
28.17 OpenFlow: Excitement, Hype, And Limitations 599
28.18 Software Defined Radio (SDR) 600
28.19 Summary 601

605Chapter 29 Internet Security And Firewall Design (IPsec, SSL)

29.1 Introduction 605
29.2 Protecting Resources 606

Contents xxi

29.3 Information Policy 607
29.4 Internet Security 607
29.5 IP Security (IPsec) 608
29.6 IPsec Authentication Header 608
29.7 Security Association 610
29.8 IPsec Encapsulating Security Payload 611
29.9 Authentication And Mutable Header Fields 612
29.10 IPsec Tunneling 613
29.11 Required Security Algorithms 613
29.12 Secure Socket Layer (SSL and TLS) 614
29.13 Firewalls And Internet Access 614
29.14 Multiple Connections And Weakest Links 614
29.15 Firewall Implementation And Packet Filters 615
29.16 Firewall Rules And The 5-Tuple 615
29.17 Security And Packet Filter Specification 617
29.18 The Consequence Of Restricted Access For Clients 618
29.19 Stateful Firewalls 618
29.20 Content Protection And Proxies 619
29.21 Monitoring And Logging 620
29.22 Summary 620

623Chapter 30 Connected Embedded Systems (The Internet of Things)

30.1 Introduction 623
30.2 Sensing, Monitoring, And Control 624
30.3 Power Conservation And Energy Harvesting 624
30.4 A World Of Intelligent Embedded Devices 625
30.5 The Importance of Communication 625
30.6 Example: Electronic Ads In Shopping Malls 626
30.7 Collecting Data From Embedded Systems 627
30.8 Wireless Networking And IEEE 802.15.4 627
30.9 A Mesh Network For Smart Grid Sensors 628
30.10 A Forwarding Tree For a Sensor Mesh 629
30.11 Using Layer 2 And Layer 3 Protocols In A Mesh 630
30.12 The ZigBee IPv6 Protocol Stack 631
30.13 Forwarding In A ZigBee Route-Over Mesh 633
30.14 Assessment Of Using IPv6 Route-Over For A Mesh 635
30.15 Summary 637

Appendix 1 Glossary Of Internetworking Terms And Abbreviations 639

681Index

This page intentionally left blank

Foreword

It is a rare treat to be asked to write a foreword to the sixth edition of Doug
Comer’s now classic book on TCP/IP and the Internet. In 2012, there are nearly 3 bil-
lion people on line. Something like 6.5 billion mobile phones are in use and many of
these are “smart phones” that have access to the Internet via the wireless telephone net-
work and through Wi-Fi. In fact, the wireless systems are diverting traffic to Wi-Fi
when this is possible in order to shed load. The most recent data from Telegeography is
that 77 Tbps (terabits per second) flow across the Internet. A substantial component of
the traffic is video, but increasingly, large data files are transferred that contain genetic
sequence information, data from telescopes, sensor systems, the Large Hadron Collider,
and other scientific instruments.

We have learned a lot about TCP/IP in many contexts, and this text collects much
of the wisdom. We have learned that buffer memory may not be our friend if large
amounts of it are located in a network device where there is a major drop in capacity.
This is the so-called “buffer bloat” problem described in Chapter 11. Where a high-
speed link meets a low-speed link, large buffers take a long time to empty going in the
low-speed direction, which has the effect of increasing delay and affecting TCP flow
control, generating serious congestion with all its negative side effects. We have also
learned that there are conditions under which TCP/IP works poorly. Here I am thinking
about highly disrupted and variably delayed environments. Examples include inter-
planetary communication and tactical communication (including mobile as well as mili-
tary). For these conditions, new kinds of protocols called “delay and disruption tolerant
networking” (DTN) are needed to supplement things like TCP. In fact, DTN can run
over TCP or UDP or virtually any other transmission subsystem. The protocols that im-
plement this type of networking are already in use on the International Space Station
and on the rovers now on Mars!

New ideas such as Software Defined Networking and the OpenFlow protocol from
Stanford University, described in Chapter 28, are also coloring the future of the Internet.
While these systems can operate to support conventional Internet architectures, they are
also able to go beyond the conventional notions of addressing to support content-based
routing, among other things. Management of end-to-end flows works well with such
systems. In addition to that, it seems timely to revisit wireless communication and to
ask how broadcast modes could influence further evolution of the Internet. One imag-
ines satellites “raining” IP or UDP packets down on hundreds of millions of receivers.
In terrestrial contexts, the ability to radiate 360 degrees allows multiple receivers to re-
ceive one transmission. Advances in sharing of spectrum and in the use of beam-
forming antennas make this an even more rich and intriguing area to explore.

xxiv Foreword

The Internet continues to expand and change in unexpected ways. In addition to
devices that humans use, a new wave of sensors, cameras, and actuators are being con-
nected that will give us remote access and control of everything from scientific data to
the lights in a building and manufacturing processes. We refer to the new devices as an
Internet of Things; they are described in Chapter 30.

As I think this book amply demonstrates, the Internet is still exciting. There is still
much research to be carried out in support of new and challenging applications. Oppor-
tunities for collaboration grow by the day.

Welcome to the 21st Century Internet where innovation is still the order of the day.
This book provides the background you need to understand and participate.

Vint Cerf
Internet Evangelist, Google
President, ACM

March, 2013

Preface

Internetworking and TCP/IP now dominate all of networking — even telephone
companies that were once the exclusive bastions of circuit switched networks have
adopted IP technology. Two more revolutionary changes are occurring that rely on in-
ternetworking: the cloud computing paradigm and the Internet of Things. In the cloud
model, computation and storage are performed in cloud data centers. Users rely on the
Internet to upload, download, and access their information and to share data with others.
The phrase Internet of Things is used to characterize an Internet of intelligent, embed-
ded devices that act autonomously rather than devices, such as smart phones and lap-
tops, that a human operates. Using Internet technology allows embedded devices to
communicate with remote servers as well as with one another; the resulting cyber in-
frastructure already includes devices in homes, offices, and stores, as well as sensors
that measure the environment and civil structures such as bridges and dams.

Many readers have requested that the text be updated to reflect recent changes;
many have suggested specific topics and emphasis. Twenty years after its invention,
IPv6 is finally gaining acceptance. Voice and video have replaced file transfer as major
uses of the Internet. The sixth edition responds to readers suggestions by reorganizing
and updating existing chapters and introducing new material. In particular, chapters on
the early applications of Telnet and FTP have been eliminated to make space for newer
material. A new chapter on the Internet of Things considers the use of TCP/IP in a
wireless sensor network. A new chapter on Software Defined Networking examines the
use of OpenFlow which, although is it not an IETF standard, has become an important
part of network and Internet management.

To satisfy an oft-repeated request, the chapter on protocol layering has been moved
earlier in the text. Instructors are warned, however, that layering is not a rigid architec-
ture that explains all protocols. Students should see it as a basic but somewhat simplis-
tic guideline that helps us understand protocols. In Chapter 30, for example, we learn
that the protocols for a route-over mesh blur the boundaries between layers by adding
shims and blending IP forwarding with Layer 2 reachability.

Each chapter has been updated to focus on ideas and technologies that are now be-
ing used in the Internet. The most significant change consists of integrating the IPv6
discussion with that of IPv4. Each chapter describes a principle, explains the general
design, and then proceeds to explain how the principle applies to IPv4 and IPv6.
Readers will see that the two versions of IP are closely interrelated and that it is impos-
sible to understand the changes introduced by IPv6 without understanding IPv4.

xxvi Preface

Like earlier editions, which have been extremely popular, the entire text focuses on
concepts and principles. Early chapters describe the motivation for internetworking and
give the fundamentals of the TCP/IP internet technology. We will see that internet-
working is a powerful abstraction that allows us to deal with the complexity of multiple
underlying communication technologies by hiding the details of network hardware. We
will understand the network level services that an internet provides and see how appli-
cations use the services. Later chapters fill in details. The text reviews both the archi-
tecture of network interconnections and the principles underlying protocols that make
such interconnected networks function as a single, unified communication system.

After reading the book, you will understand how it is possible to interconnect mul-
tiple physical networks into a coordinated system, how internet protocols operate in that
environment, and how application programs use the resulting system. As a specific ex-
ample, you will learn the details of the global TCP/IP Internet, including the architec-
ture of its router system and the application protocols it supports. In addition, you will
understand some of the limitations of the internet approach and the TCP/IP protocols.

Designed as both a college text and as a professional reference, the book is written
at an advanced undergraduate or graduate level. For professionals, the book provides a
comprehensive introduction to the TCP/IP technology and the architecture of the Inter-
net. Although it is not intended to replace protocol standards documents, the book is an
excellent starting point for learning about internetworking because it provides a uniform
overview that emphasizes principles. Moreover, it gives the reader perspective that can
be extremely difficult to obtain from individual protocol documents.

When used in the classroom, the text provides more than sufficient material for a
single semester network course at either the undergraduate or graduate level. In a gra-
duate course, I urge professors to include significant design and implementation projects
as well as readings from the literature that provide a basis for further exploration.
Many of the exercises suggest such subtleties; solving them often requires students to
read protocol standards and apply creative energy to comprehend consequences. For
undergraduate courses, many of the details are unnecessary. Students should be expect-
ed to grasp the basic concepts described in the text, and they should be able to describe
and use the fundamental protocols.

At all levels, hands-on experience sharpens the concepts and helps students gain
intuition. Thus, I encourage instructors to invent projects that give students opportuni-
ties to use Internet services and protocols. In an undergraduate course, most of the pro-
jects will consist of writing applications that use the network. In my undergraduate
course, I have students write a simplified network analyzer (i.e., given a packet in
binary, print the value of each field). The semester project in my graduate Internet-
working course at Purdue requires students to build significant IP protocol software; the
traditional project involves implementing an IP router. We supply hardware and the
source code for an operating system, including device drivers for network interfaces;
students build a working router that interconnects three networks with different MTUs.
The course is extremely rigorous, students work in teams, and the results have been im-
pressive (many industries recruit graduates from the course). Although such experimen-
tation is safest when the instructional laboratory network is isolated from production

Preface xxvii

computing facilities, we have found that students exhibit the most enthusiasm, and
benefit the most, when they have access to the global Internet and can test that their
protocols interoperate with commercial versions.

The book is organized into five main parts. Chapters 1 and 2 form an introduction
that provides an overview and discusses existing network technologies. In particular,
Chapter 2 reviews physical network hardware. The intention is to provide basic intui-
tion about the functionality the hardware supplies and what is possible, not to spend
inordinate time on hardware details. Chapters 3–11 describe the TCP/IP Internet from
the viewpoint of a single host, showing the protocols a host contains and how they
operate. They cover the internet abstraction, the notion of protocol layering, the basics
of Internet addressing and forwarding, and transport protocols. Chapters 12–14 consid-
er the architecture of an internet when viewed globally. They explore routing architec-
ture and the protocols routers use to exchange routing information. Chapters 15–19
consider variations and extensions of the basic technology, including multicasting, pack-
et classification, network virtualization, and mobility. In particular, the chapter on mo-
bility explains why mobility is difficult in an IP network. Finally, Chapters 20–30 dis-
cuss application level services available in the Internet (including network manage-
ment), network security, and the Internet of Things. The chapters present the client-
server model of interaction, give several examples of applications that use the client-
server model, and show how client-server interaction applies to computer bootstrap and
network management. Chapter 28 explains a new approach to network management
known as Software Defined Networking (SDN) and the chief protocol, OpenFlow.
Although not an official part of the TCP/IP standards, SDN technology has been includ-
ed because it has generated considerable excitement.

The chapters have been organized bottom up. Instead of starting by viewing the
Internet as a black box and learning how to use it, the text begins with an overview of
hardware and continues to add the concepts and protocols needed to create the Internet.
The bottom-up view will appeal to anyone who is interested in engineering because it
follows the pattern one uses when building a system. In some classes, professors prefer
to begin with Chapters 20 and 21 on client-server programming, which permits their
students to start writing network applications early. Although writing applications that
use the Internet is important, I urge professors to also include assignments that help stu-
dents understand the underlying technology (i.e., protocols and packets). In one lab as-
signment, for example, I have students devise a very basic protocol to contact another
endpoint and transfer two packets: one contains a file name and the other contains data
for the file. Between the sender and receiver, an application randomly drops, dupli-
cates, delays, and changes the contents of the packets. The experiment is carried out
with UDP, making the implementation trivial. However, the students become keenly
aware of how difficult it is to design protocols.

A modest background is required to understand the material. Readers do not need
sophisticated mathematics, nor do they need to know information theory or theorems
from data communications; the book describes the physical network as a black box
around which an internetwork can be built. Readers are expected to have a basic under-
standing of computer systems and to be familiar with data structures like stacks, queues,
and trees. In addition, a reader should have basic intuition about the services an operat-

xxviii Preface

ing system supplies and the notion that processes can execute concurrently. Prior
understanding of Internet technology is not assumed: the text states all design principles
clearly, and discusses motivations and consequences.

Many people deserve credit for contributing suggestions and ideas to various edi-
tions of the text over the years. For this edition, a set of reviewers commented on the
organization, items that needed to be updated, and helped check technical details. I
thank Anthony Barnard, Tom Calabrese, Ralph Droms, Tom Edmunds, Raymond Kelso,
Lee Kirk, John Lin, Dave Roberts, Gustavo Rodriguez-Rivera, and Bhaskar Sharma
who all reviewed a draft of the manuscript. John and Ralph were especially helpful.
Barry Shein contributed the example client-server code in Chapter 21.

As always, my wife Christine provided the most help. She spent hours with the
manuscript, identifying ambiguities, finding inconsistencies, and smoothing wording.

Douglas E. Comer

March, 2013

What Others Have Said About The Sixth
Edition Of Internetworking With TCP/IP

“This is the book I go to for clear explanations of the basic principles and latest
developments in TCP/IP technologies. It’s a ‘must have’ reference for net-
working professionals.”

Dr. Ralph Droms
Cisco Systems
Chair of the DHCP working group

“Excellent book! Thank you!”

Henrik Sundin
NTI Gymnasiet
Stockholm, Sweden

“The 6th Edition of Comer’s classic Internetworking documents the ongoing
and accelerating evolution of the Internet, while predicting the future with un-
matched understanding and clarity.”

Dr. Paul V. Mockapetris
Inventor of the Domain Name System

“. . . a true masterpiece.”

Mr. Javier Sandino
Systems Engineer

“The best-written TCP/IP book I have ever read. Dr. Comer explains complex
ideas clearly, with excellent diagrams and explanations. With this edition, Dr.
Comer makes this classic textbook contemporary.”

Dr. John Lin
Bell Laboratories

“This update to the definitive reference for the Internet’s key technologies con-
firms Doug Comer’s reputation for clear and accurate presentation of essential
information; it should be the cornerstone of any Internet professional’s li-
brary.”

Dr. Lyman Chapin
Interisle Consulting Group
Former IAB Chair

“One of the greatest books I have read. True genius is when you are not only
fluent in your field, but can get your point across simply. Thank you Dr.
Comer for writing a great book!”

Marvin E. Miller
CIO, The ACS Corporation

“In a world of complexity, the ability to convey knowledge as opposed to in-
formation from a search engine is quite hard. Few make it seem as easy as
Doug Comer, whose book Internetworking Volume 1 continues to play a key
role in teaching us about the role of protocols in the ever-changing Internet.”

Dr. Balachander Krishnamurthy
AT&T Labs

“Rapid evolution of the Internet is happening as the entire world uses the Inter-
net on a daily, hourly, or even continuous basis (as is the case with my
grandchildren). Comer accurately tracks the relevant technological underpin-
nings for those building the Internet today.”

Dan Lynch
Founder, INTEROP

About The Author

Dr. Douglas Comer, Distinguished Professor of Computer Science at Pur-
due University and former VP of Research at Cisco, is an internationally recog-
nized expert on computer networking, the TCP/IP protocols, and the Internet.
The author of numerous refereed articles and technical books, he is a pioneer in
the development of curriculum and laboratories for research and education.

A prolific author, Comer’s popular books have been translated into over 15
languages, and are used in industry as well as computer science, engineering,
and business departments around the world. His landmark three-volume series
Internetworking With TCP/IP revolutionized networking and network education.
His textbooks and innovative laboratory manuals have and continue to shape
graduate and undergraduate curricula.

The accuracy and insight of Dr. Comer’s books reflect his extensive back-
ground in computer systems. His research spans both hardware and software.
He has created a complete operating system, written device drivers, and imple-
mented network protocol software for conventional computers as well as net-
work processors. The resulting software has been used by industry in a variety
of products.

Comer has created and teaches courses on network protocols and computer
technologies for a variety of audiences, including courses for engineers as well
as academic audiences. His innovative educational laboratories allow him and
his students to design and implement working prototypes of large, complex sys-
tems, and measure the performance of the resulting prototypes. He continues to
teach at industries, universities, and conferences around the world. In addition,
Comer consults for industry on the design of computer networks and systems.

For over eighteen years, Professor Comer served as editor-in-chief of the
research journal Software — Practice and Experience. He is a Fellow of the
ACM, a Fellow of the Purdue Teaching Academy, and a recipient of numerous
awards, including a Usenix Lifetime Achievement award.

Additional information can be found at:

www.cs.purdue.edu/people/comer

and information about Comer’s books can be found at:

www.comerbooks.com

This page intentionally left blank

Other Books In the Internetworking Series
from Douglas Comer and Prentice Hall

Internetworking With TCP/IP Volume II: Design, Implementation, and
Internals (with David Stevens), 3rd edition: 1999, ISBN 0-13-973843-6

Volume II continues the discussion of Volume I by using code from a running im-
plementation of TCP/IP to illustrate all the details.

Internetworking With TCP/IP Volume III: Client-Server Programming
and Applications (with David Stevens)

LINUX/POSIX Version: 2000, ISBN 0-13-032071-4
AT&T TLI Version: 1994, ISBN 0-13-474230-3
Windows Sockets Version: 1997, ISBN 0-13-848714-6

Volume III describes the fundamental concept of client-server computing used in
all network applications. Three versions of Volume III are available for the socket API
(Unix), the TLI API (AT&T System V), and the Windows Sockets API (Microsoft).

Computer Networks And Internets, 5th edition: 2009, ISBN 0-13-606698-9

A broad introduction to data communication, networking, internetworking, and
client-server applications, the text examines the hardware and software components used
in networks, including wired and wireless data transmission, LANs, access technologies,
WANs, protocols (including TCP/IP), and network applications.

The Internet Book: Everything you need to know about computer network-
ing and how the Internet works, 4th edition: 2006, ISBN 0-13-233553-0, paperback

A gentle introduction that explains networking and the Internet, The Internet Book
does not assume the reader has a technical background. The book is ideal for someone
who wants to become Internet and computer networking literate; an extensive glossary
of terms and abbreviations is included.

Network Systems Design Using Network Processors, Intel 2xxx Version,
2006, ISBN 0-13-187286-9

A comprehensive overview of the design and engineering of packet processing sys-
tems with network processor technology. The text explains network processor architec-
tures, presents designs, and gives example code for a network processor.

For a complete list of Comer’s textbooks, see:

www.comerbooks.com

Chapter Contents
1.1 The Motivation For Internetworking, 1
1.2 The TCP/IP Internet, 2
1.3 Internet Services, 2
1.4 History And Scope Of The Internet, 6
1.5 The Internet Architecture Board, 7
1.6 The IAB Reorganization, 8
1.7 Internet Request For Comments (RFCs), 8
1.8 Internet Growth, 9
1.9 Transition To IPv6, 12
1.10 Committee Design And The New Version of IP, 12
1.11 Relationship Between IPv4 And IPv6, 13
1.12 IPv6 Migration, 14
1.13 Dual Stack Systems, 15
1.14 Organization Of The Text, 15
1.15 Summary, 16

1

Introduction And Overview

1.1 The Motivation For Internetworking

Internet communication has become a fundamental part of life. Social networks,
such as Facebook, provide connections among a group of friends and allow them to
share interests. The World Wide Web contains information about such diverse subjects
as politics, atmospheric conditions, stock prices, crop production, and airline fares.
Family and friends use the Internet to share photos and keep in touch with VoIP tele-
phone calls and live video chats. Consumers use the Internet to purchase goods and
services and for personal banking. Companies take orders and make payments electron-
ically. The move to cloud computing will put more information and services online.

Although it appears to operate as a unified network, the Internet is not engineered
from a single networking technology because no technology suffices for all uses. In-
stead, networking hardware is designed for specific situations and budgets. Some
groups need high-speed wired networks to connect computers in a single building. Oth-
ers need a low-cost wireless network for a private home. Because low-cost hardware
that works well inside a building cannot span large geographic distances, an alternative
must be used to connect sites that are thousands of miles apart.

In the 1970s, a technology was created that makes it possible to interconnect many
disparate individual networks and operate them as a coordinated unit. Known as inter-
networking, the technology forms the basis for the Internet by accommodating multiple,
diverse underlying hardware technologies, providing a way to interconnect the net-
works, and defining a set of communication conventions that the networks use to inter-
operate. The internet technology hides the details of network hardware, and permits
computers to communicate independent of their physical network connections.

1

2 Introduction And Overview Chap. 1

Internet technology is an example of open system interconnection. It is called open
because, unlike proprietary communication systems available from one specific vendor,
the specifications are publicly available. Thus, any individual or company can build the
hardware and software needed to communicate across the Internet. More important, the
entire technology has been designed to foster communication among machines with
diverse hardware architectures, to use almost any packet switched network hardware, to
accommodate a wide variety of applications, and to accommodate arbitrary computer
operating systems.

1.2 The TCP/IP Internet

In the 1970s and 1980s, U.S. government agencies realized the importance and po-
tential of internet technology, and funded research that made possible a global Internet†.
This book discusses principles and ideas that resulted from research funded by the De-
fense Advanced Research Projects Agency (DARPA‡). The DARPA technology in-
cludes a set of network standards that specify the details of how computers communi-
cate, as well as a set of conventions for interconnecting networks and forwarding traffic.
Officially named the TCP/IP Internet Protocol Suite and commonly referred to as
TCP/IP (after the names of its two main standards), it can be used to communicate
across any set of interconnected networks. For example, TCP/IP can be used to inter-
connect a set of networks within a single building, within a physical campus, or among
a set of campuses.

Although the TCP/IP technology is noteworthy by itself, it is especially interesting
because its viability has been demonstrated on a large scale. It forms the base technolo-
gy for the global Internet that connects approximately two billion individuals in homes,
schools, corporations, and governments in virtually all populated areas of the planet.
An outstanding success, the Internet demonstrates the viability of the TCP/IP technolo-
gy and shows how it can accommodate a wide variety of underlying hardware technol-
ogies.

1.3 Internet Services

One cannot appreciate the technical details underlying TCP/IP without understand-
ing the services it provides. This section reviews internet services briefly, highlighting
the services most users access, and leaves to later chapters the discussion of how com-
puters connect to a TCP/IP internet and how the functionality is implemented.

Much of our discussion of services will focus on standards called protocols. Proto-
col specifications, such as those for TCP and IP, define the syntactic and semantic rules
for communication. They give the details of message formats, describe how a computer
responds when a message arrives, and specify how a computer handles errors or other
abnormal conditions. Most important, protocols allow us to discuss computer commun-
ication independent of any particular vendor’s network hardware. In a sense, protocols

†We will follow the usual convention of capitalizing Internet when referring specifically to the global
Internet, and use lower case to refer to private internets that use TCP/IP technology.

‡At various times, DARPA has been called the Advanced Research Projects Agency (ARPA).

Sec. 1.3 Internet Services 3

are to communication what algorithms are to computation. An algorithm allows one to
specify or understand a computation without knowing the details of a particular pro-
gramming language or CPU instruction set. Similarly, a communication protocol al-
lows one to specify or understand data communication without depending on detailed
knowledge of a particular vendor’s network hardware.

Hiding the low-level details of communication helps improve productivity in
several ways. First, because they can use higher-level protocol abstractions, program-
mers do not need to learn or remember as many details about a given hardware configu-
ration. Thus, they can create new network applications quickly. Second, because
software built using higher-level abstractions are not restricted to a particular computer
architecture or a particular network hardware, the applications do not need to be
changed when computers or networks are replaced or reconfigured. Third, because ap-
plications built using higher-level protocols are independent of the underlying hardware,
they can be ported to arbitrary computers. That is, a programmer does not need to build
a special version of an application for each type of computer or each type of network.
Instead, applications that use high-level abstractions are more general-purpose — the
same code can be compiled and run on an arbitrary computer.

We will see that the details of each service available on the Internet are given by a
separate protocol. The next sections refer to protocols that specify some of the
application-level services as well as those used to define network-level services. Later
chapters explain each of the protocols in detail.

1.3.1 Application Level Internet Services

From a user’s point of view, the Internet appears to consist of a set of application
programs that use the underlying network to carry out useful tasks. We use the term in-
teroperability to refer to the ability of diverse computing systems to cooperate in solv-
ing computational problems. Because the Internet was designed to accommodate
heterogeneous networks and computers, interoperability was a key requirement. Conse-
quently, Internet application programs usually exhibit a high degree of interoperability.
In fact, most users access applications without understanding the types of computers or
networks being used, the communication protocols, or even the path data travels from
its source to its destination. Thus, a user might access a web page from a desktop sys-
tem connected to a cable modem or from an iPad connected to a 4G wireless network.

The most popular and widespread Internet application services include:

World Wide Web. The Web became the largest source of traffic on the global In-
ternet between 1994 and 1995, and remains so. Many popular services, including
Internet search (e.g., Google) and social networking (e.g., Facebook), use web
technology. One estimate attributes approximately one quarter of all Internet traf-
fic to Facebook. Although users distinguish among various web-based services,
we will see that they all use the same application-level protocol.

Sudha Madhuri Kanupuru

4 Introduction And Overview Chap. 1

Cloud Access And Remote Desktop. Cloud computing places computation and
storage facilities in cloud data centers, and arranges for users to access the ser-
vices over the Internet. One access technology, known as a remote desktop ser-
vice, allows a user to access a computer in a remote data center as if the computer
is local. The user only needs an interface device with a screen, keyboard, mouse
or touchpad, and a network connection. When the data center computer updates
the video display, the remote desktop service captures the information, sends it
across the Internet, and displays it on the user’s screen. When the user moves the
mouse or presses a key, the remote desktop service sends the information to the
data center. Thus, the user has full access to a powerful PC, but only needs to
carry a basic interface device such as a tablet.

File Transfer. The file transfer protocol allows users to send or receive a copy of
a data file. Many file downloads, including movie downloads, invoke a file
transfer mechanism. Because they often invoke file transfer from a web page,
users may not be aware that a file transfer application has run.

Electronic Mail (email). Electronic mail, which once accounted for large amounts
of Internet traffic, has largely been replaced by web applications. Many users
now access email through a web application that allows a user to read messages in
their mailbox, select a message for processing, and forward the message or send a
reply. Once a user specifies sending a message, the underlying system uses an
email transfer protocol to send the message to the recipient’s mailbox.

Voice And Video Services. Both streaming video and audio already account for a
nontrivial fraction of bits transported across the global Internet, and the trend will
continue. More important, a significant change is occurring; video upload is in-
creasing, especially because users are using mobile devices to send video of live
events.

We will return to a discussion of applications in later chapters and examine them in
more detail. We will see exactly how applications use the underlying TCP/IP protocols,
and why having standards for application protocols has helped ensure that they are
widespread.

1.3.2 Network-Level Internet Services

A programmer who creates network applications has an entirely different view of
the Internet than a user who merely runs applications such as web browsers. At the net-
work level, the Internet provides two broad services that all application programs use.
While it is unimportant at this time to understand the details of the services, they are
fundamental to an overview of TCP/IP:

Connectionless Packet Delivery Service. Packet delivery, explained in detail
throughout the text, forms the basis for all internet services. Connectionless
delivery is an abstraction of the service that most packet-switching networks offer.
It means simply that a TCP/IP internet forwards small messages from one com-
puter to another based on address information carried in the message. Because it

Sec. 1.3 Internet Services 5

forwards each packet independently, an internet does not guarantee reliable, in-
order delivery. However, because it maps directly onto most of the underlying
hardware technologies, a connectionless delivery service is extremely efficient.
More important, because the design makes connectionless packet delivery the
basis for all internet services, the TCP/IP protocols can accommodate a wide
range of network hardware.

Reliable Stream Transport Service. Most applications require the communication
software to recover automatically from transmission errors, lost packets, or
failures of intermediate switches along the path between sender and receiver.
Consequently, most applications need a reliable transport service to handle prob-
lems. The Internet’s reliable stream service allows an application on one comput-
er to establish a “connection” to an application on another computer, and allows
the applications to transfer arbitrarily large amounts of data across the connection
as if it were a permanent, direct hardware link. Underneath, the communication
protocols divide the stream of data into small packets and send them one at a
time, waiting for the receiver to acknowledge reception.

Many networks provide basic services similar to those outlined above, so one
might wonder what distinguishes TCP/IP services from others. The primary distin-
guishing features are:

Network Technology Independence. Although it is based on conventional packet
switching technology, TCP/IP is independent of any particular brand or type of
hardware; the global Internet includes a variety of network technologies. TCP/IP
protocols define the unit of data transmission, called a datagram, and specify how
to transmit datagrams on a particular network, but nothing in a datagram is tied to
specific hardware.

Universal Interconnection. The Internet allows any arbitrary pair of computers to
communicate. Each computer is assigned an address that is universally recog-
nized throughout the Internet. Every datagram carries the addresses of its source
and destination. Intermediate devices use the destination address to make for-
warding decisions; a sender only needs to know the address of a recipient and the
Internet takes care of forwarding datagrams.

End-to-End Acknowledgements. The TCP/IP Internet protocols provide acknowl-
edgements between the original source and ultimate destination instead of
between successive machines along the path, even if the source and destination do
not connect to a common physical network.

Application Protocol Standards. In addition to the basic transport-level services
(like reliable stream connections), the TCP/IP protocols include standards for
many common applications, including protocols that specify how to access a web
page, transfer a file, and send email. Thus, when designing applications that use
TCP/IP, programmers often find that existing application protocols provide the
communication services they need.

Later chapters discuss the details of the services provided to the programmer as well as
examples of application protocol standards.

6 Introduction And Overview Chap. 1

1.4 History And Scope Of The Internet

Part of what makes the TCP/IP technology so exciting is its universal adoption, as
well as the size and growth rate of the global Internet. DARPA began working toward
an internet technology in the mid 1970s, with the architecture and protocols taking their
current form around 1977–79. At that time, DARPA was known as the primary funding
agency for packet-switched network research, and pioneered many ideas in packet-
switching with its well-known ARPANET. The ARPANET used conventional point-to-
point leased line interconnections, but DARPA also funded exploration of packet-
switching over radio networks and satellite communication channels. Indeed, the grow-
ing diversity of network hardware technologies helped force DARPA to study network
interconnection, and pushed internetworking forward.

The availability of research funding from DARPA caught the attention and imagi-
nation of several research groups, especially those researchers who had previous experi-
ence using packet switching on the ARPANET. DARPA scheduled informal meetings
of researchers to share ideas and discuss results of experiments. Informally, the group
was known as the Internet Research Group. By 1979, so many researchers were in-
volved in the TCP/IP effort that DARPA created an informal committee to coordinate
and guide the design of the protocols and architecture of the emerging Internet. Called
the Internet Control and Configuration Board (ICCB), the group met regularly until
1983, when it was reorganized.

The global Internet began around 1980 when DARPA started converting computers
attached to its research networks to the new TCP/IP protocols. The ARPANET, already
in place, quickly became the backbone of the new Internet and was used for many of
the early experiments with TCP/IP. The transition to Internet technology became com-
plete in January 1983 when the Office of the Secretary of Defense mandated that all
computers connected to long-haul networks use TCP/IP. At the same time, the Defense
Communication Agency (DCA) split the ARPANET into two separate networks, one for
further research and one for military communication. The research part retained the
name ARPANET; the military part, which was somewhat larger, became known as the
military network (MILNET).

To encourage university researchers to adopt and use the new protocols, DARPA
made an implementation available at low cost. At that time, most university computer
science departments were running a version of the UNIX operating system available in
the University of California’s Berkeley Software Distribution, commonly called BSD
UNIX. By funding Bolt Beranek and Newman, Incorporated (BBN) to implement its
TCP/IP protocols for use with UNIX and funding Berkeley to integrate the protocols
with its software distribution, DARPA was able to reach over 90% of university com-
puter science departments. The new protocol software came at a particularly significant
time because many departments were just acquiring second or third computers and con-
necting them together with local area networks. The departments needed communica-
tion protocols that provided application services such as file transfer.

Besides a set of utility programs, Berkeley UNIX created a new operating system
abstraction known as a socket to allow applications to access the Internet protocols. A

Sec. 1.4 History And Scope Of The Internet 7

generalization of the UNIX mechanism for I/O, the socket interface has options for oth-
er network protocols besides TCP/IP. The introduction of the socket abstraction was
important because it allowed programmers to use TCP/IP protocols with little effort.
The socket interface has become a de facto standard, and is now used in most operating
systems.

Realizing that network communication would soon be a crucial part of scientific
research, the National Science Foundation (NSF) took an active role in expanding the
TCP/IP Internet to reach as many scientists as possible. In the late 1970s, NSF funded
a project known as the Computer Science NETwork (CSNET), which had as its goal
connecting all computer scientists. Starting in 1985, NSF began a program to establish
access networks centered around its six supercomputer centers, and in 1986 expanded
networking efforts by funding a new wide area backbone network, known as the
NSFNET backbone. NSF also provided seed money for regional networks, each of
which connected major scientific research institutions in a given area.

By 1984, the Internet reached over 1,000 computers. In 1987, the size grew to
over 10,000. By 1990, the size topped 100,000, and by 1993, exceeded 1,000,000. In
1997, more than 10,000,000 computers were permanently attached to the Internet, and
in 2001, the size exceeded 100,000,000. In 2011, the Internet reached over 800,000,000
permanently-attached computers.

The early growth of the Internet did not occur merely because universities and
government-funded groups adopted the protocols. Major computer corporations con-
nected to the Internet, as did many other large corporations including oil companies, the
auto industry, electronics firms, pharmaceutical companies, and telecommunications car-
riers. Medium and small companies began connecting in the 1990s. In addition, many
companies experimented by using TCP/IP protocols on their internal corporate intranets
before they chose to be part of the global Internet.

1.5 The Internet Architecture Board

Because the TCP/IP Internet protocol suite did not arise from a specific vendor or
from a recognized professional society, it is natural to ask, “who set the technical direc-
tion and decided when protocols became standard?” The answer is a group known as
the Internet Architecture Board (IAB†) that was formed in 1983 when DARPA reorgan-
ized the Internet Control and Configuration Board. The IAB provided the focus and
coordination for much of the research and development underlying the TCP/IP proto-
cols, and guided the evolution of the Internet. The IAB decided which protocols were a
required part of the TCP/IP suite and set official policies.

†IAB originally stood for Internet Activities Board.

8 Introduction And Overview Chap. 1

1.6 The IAB Reorganization

By the summer of 1989, both the TCP/IP technology and the Internet had grown
beyond the initial research project into production facilities upon which thousands of
people depended for daily business. It was no longer possible to introduce new ideas
by changing a few installations overnight. To a large extent, the hundreds of commer-
cial companies that offered TCP/IP products determined whether their products would
interoperate by deciding when to incorporate protocol changes in their software.
Researchers who drafted specifications and tested new ideas in laboratories could no
longer expect instant acceptance and use of the ideas. It was ironic that the researchers
who designed and watched TCP/IP develop found themselves overcome by the com-
mercial success of their brainchild. In short, the TCP/IP protocols and the Internet be-
came a successful production technology, and the marketplace began to dominate its
evolution.

To reflect the political and commercial realities of both TCP/IP and the Internet,
the IAB was reorganized in the summer of 1989. Researchers were moved from the
IAB itself to a subsidiary group known as the Internet Research Task Force (IRTF), and
a new IAB board was constituted to include representatives from the wider community.
Responsibility for protocol standards and other technical aspects passed to a group
known as the Internet Engineering Task Force (IETF).

The IETF existed in the original IAB structure, and its success provided part of the
motivation for reorganization. Unlike most IAB task forces, which were limited to a
few individuals who focused on one specific issue, the IETF was large — before the
reorganization, it had grown to include dozens of active members who worked on many
problems concurrently. Following the reorganization, the IETF was divided into over
20 working groups, each of which focused on a specific problem.

Because the IETF was too large for a single chairperson to manage, it has been di-
vided into a set of approximately one dozen areas, each with its own manager. The
IETF chairperson and the area managers constitute the Internet Engineering Steering
Group (IESG), the individuals responsible for coordinating the efforts of IETF working
groups. The name IETF now refers to the entire body, including the chairperson, area
managers, and all members of working groups.

1.7 Internet Request For Comments (RFCs)

We have said that no vendor owns the TCP/IP technology, nor does any profes-
sional society or standards body. Thus, the documentation of protocols, standards, and
policies cannot be obtained from a vendor. Instead, the IETF manages the standardiza-
tion process. The resulting protocol documents are kept in an on-line repository and
made available at no charge.

Documentation of work on the Internet, proposals for new or revised protocols, and
TCP/IP protocol standards all appear in a series of technical reports called Internet Re-
quests For Comments, or RFCs. RFCs can be short or long, can cover broad concepts

Sec. 1.7 Internet Request For Comments (RFCs) 9

or details, and can be standards or merely proposals for new protocols. There are refer-
ences to RFCs throughout the text. While RFCs are not refereed in the same way as
academic research papers, they are reviewed and edited. For many years, a single indi-
vidual, the late Jon Postel, served as the RFC editor. The task of editing RFCs now
falls to area managers of the IETF; the IESG as a whole approves new RFCs.

The RFC series is numbered sequentially in the chronological order RFCs are writ-
ten. Each new or revised RFC is assigned a new number, so readers must be careful to
obtain the highest numbered version of a document; an RFC index is available to help
identify the correct version. In addition, preliminary versions of RFC documents, which
are known as Internet drafts, are available.

RFCs and Internet Drafts can be obtained from:

www.ietf.org

1.8 Internet Growth

The Internet has grown rapidly and continues to evolve. New protocols are being
proposed; old ones are being revised. The most significant demand on the underlying
technology does not arise from added network connections, but from additional traffic.
As new users connect to the Internet and new applications appear, traffic patterns
change. For example, when the World Wide Web was introduced, it became incredibly
popular, and Internet traffic increased dramatically. Later, when music sharing became
popular, traffic patterns changed again. More changes are occurring as the Internet is
used for telephone, video, and social networking.

Figure 1.1 summarizes expansion of the Internet, and illustrates an important com-
ponent of growth: much of the change in complexity has arisen because multiple groups
now manage various parts of the whole.

Number of
networks

Number of
computers

Number of
users

Number of
managers

1980 10 102 102 100

1990 103 105 106 101

2000 105 107 108 102

2010 106 108 109 103

Figure 1.1 Growth of the Internet. In addition to increases in traffic, com-
plexity has resulted from decentralized management.

10 Introduction And Overview Chap. 1

The number of computers attached to the Internet helps illustrate the growth. Figure 1.2
contains a plot.

1981 1985 1990 1995 2000 2005 2010

0M

100M

200M

300M

400M

500M

600M

700M

800M

900M

.
. .

..
.
.
.
.
..
.
.
.
.
..

.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.

Figure 1.2 Computers on the Internet as a function of the year (linear scale).

The plot makes it appear that the Internet did not start to grow until the late 1990s.
However, the linear scale hides an important point: even in the early Internet, the
growth rate was high. Figure 1.3 shows the same data plotted on a log scale. The fig-
ure reveals that although the count of computers was much smaller, some of the most

Sec. 1.8 Internet Growth 11

rapid growth occurred in the late 1980s when the Internet grew from 1,000 computers to
over 10,000 computers.

1981 1985 1990 1995 2000 2005 2010

102

103

104

105

106

107

108

109

.
.
.
. .

. ..
.

.
.

..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..

.
.
.
.
..

Figure 1.3 Computers on the Internet as a function of the year (log scale).

The count of computers is not the only significant change. Because the technology
was developed when a single person at DARPA had control of all aspects of the Inter-
net, the designs of many subsystems depended on centralized management and control.

12 Introduction And Overview Chap. 1

As the Internet grew, responsibility and control were divided among multiple organiza-
tions. In particular, as the Internet became global, the operation and management need-
ed to span multiple countries. Much of the effort since the early 1990s has been direct-
ed toward finding ways to extend the design to accommodate decentralized manage-
ment.

1.9 Transition To IPv6

Evolution of TCP/IP technology has always been intertwined with evolution of the
global Internet. With billions of users at sites around the world depending on the global
Internet as part of their daily routine, it might appear that we have passed the early
stages of development and now have reached a stable production facility. Despite ap-
pearances, however, neither the Internet nor the TCP/IP protocol suite is static. Innova-
tion continues as new applications are developed and new technologies are used to im-
prove underlying mechanisms.

One of the most significant efforts involves a revision of the Internet Protocol, the
foundation of all Internet communication. The change may seem surprising, given the
success of the existing version of IP.

Why change? The current version of the Internet Protocol, IPv4, has been remark-
able. It was the first working version, and has remained almost unchanged since its in-
ception in the late 1970s. Its longevity shows that IPv4 is flexible and powerful. Since
the time IPv4 was designed, processor performance has increased over four orders of
magnitude, typical memory sizes have increased by a factor of 2000, bandwidth of the
highest-speed links in the Internet has risen by a factor of 1,000,000. Wireless technol-
ogies have emerged, and the number of hosts on the Internet has risen from a handful to
hundreds of millions.

Despite the success of IPv4, critics started arguing in the early 1990s that IPv4 was
insufficient for new applications, such as voice and video, and that growth of the Inter-
net would quickly exhaust the set of available addresses. Since then, two things have
become apparent: applications such as digital telephony do work well over IPv4, and re-
visions to the Internet addressing mechanism produce sufficient addresses to last anoth-
er decade. However, if we assign an IP address to each device (e.g., each smart appli-
ance, each car, each mobile phone), the address space will indeed run out.

1.10 Committee Design And The New Version of IP

It took several years for the IETF to formulate a new version of IP. Because the
IETF produces open standards, representatives from the many communities were invited
to participate in the process. Computer manufacturers, hardware and software vendors,
users, managers, programmers, telephone companies, and the cable television industry
all specified their requirements for the next version of IP, and all commented on specif-
ic proposals.

Sec. 1.10 Committee Design And The New Version of IP 13

Many designs were proposed to serve a particular purpose or a particular commu-
nity. In the end, the group produced an extended design that included ideas from
several earlier proposals. The IETF assigned the revision of IP version number 6, and
named it IPv6†.

1.11 Relationship Between IPv4 And IPv6

Although proponents wanted to create a complete new Internet, IPv6 inherited
many of the design principles and features of IPv4. Consequently, IPv6 cannot be un-
derstood in isolation — we need to review general principles, understand how they are
implemented in IPv4, and then see how they are modified or extended in IPv6. For ex-
ample, IPv6 uses a hierarchical design for addresses that is inherited directly from IPv4
classless addressing; the use of address masks and even some of the terminology has
been derived from IPv4. In fact, IPv6 includes all the existing IPv4 addresses as one
subset of the new set of addresses. Therefore, throughout the text, we will discuss prin-
ciples and concepts, study their implementation in IPv4, and then look at IPv6 exten-
sions and modifications.

How does IPv6 differ? The standards state that IPv6 retains many features that
contributed to the success of IPv4. In fact, the designers characterize IPv6 as being ba-
sically the same as IPv4 with only minor modifications. For example, both IPv4 and
IPv6 use a connectionless delivery paradigm, allow the sender to choose the size of data
being sent, and require the sender to specify the maximum number of hops a datagram
can make before being terminated. IPv6 retains many of the other IPv4 facilities, such
as fragmentation. The important point is:

Because IPv6 inherits many of the concepts, principles, and mecha-
nisms found in IPv4, we cannot understand IPv6 without understand-
ing IPv4; both are presented throughout the text.

Despite conceptual similarities, IPv6 changes most of the protocol details. IPv6
uses larger addresses and completely revises the format of packets. The changes intro-
duced by IPv6 can be grouped into seven categories:

Larger Addresses. The new address size is the most noticeable change.
IPv6 quadruples the size of an IPv4 address from 32 bits to 128 bits.

Extended Address Hierarchy. IPv6 uses the larger address space to create
additional levels of addressing hierarchy (e.g., to allow an ISP to allocate
blocks of addresses to each customer).

New Header Format. IPv6 uses an entirely new and incompatible packet
format that includes a set of optional headers.

†To avoid confusion and ambiguity, version number 5 was skipped; problems had arisen from a series of
mistakes and misunderstandings.

14 Introduction And Overview Chap. 1

Improved Options. IPv6 allows a packet to include optional control infor-
mation not available in IPv4.

Provision For Protocol Extension. Instead of specifying all details, the
IPv6 extension capability allows the IETF to adapt the protocol to new net-
work hardware and new applications.

Support For Autoconfiguration And Renumbering. IPv6 allows a site to
change from one ISP to another by automating the requisite address
changes.

Support For Resource Allocation. IPv6 includes a flow abstraction and al-
lows differentiated services

1.12 IPv6 Migration

How can the Internet change from IPv4 to IPv6? The designers considered the
question carefully. By the 1990s, the Internet had already grown too large to simply
take it offline, change every host and router, and then reboot. So, the designers planned
to phase in the change gradually over time. We use the term IPv6 migration to capture
the concept.

Many groups have proposed plans for IPv6 migration. The plans can be grouped
into three major approaches as follows:

A separate IPv6 Internet running in parallel

IPv6 islands connected by IPv4 until ISPs install IPv6

Gateways that translate between IPv4 and IPv6

Parallel Internets. Conceptually, the plan calls for ISPs to create a parallel Inter-
net running IPv6. In practice, IPv6 and IPv4 can share many of the underlying wires
and network devices (provided the devices are upgraded to handle IPv6). However, ad-
dressing and routing used by the two protocol versions will be completely independent.
Proponents argue that because IPv6 offers so many advantages, everyone will switch to
IPv6, meaning the IPv4 Internet will be decommissioned quickly.

IPv6 Islands. The plan allows individual organizations to start using IPv6 before
all ISPs run IPv6. Each organization is an IPv6 island in the midst of an IPv4 ocean.
To send a datagram between islands, the IPv6 datagram is wrapped inside an IPv4 da-
tagram, sent across the Internet, and then unwrapped when it reaches the destination is-
land. As ISPs adopt IPv6, sites can start sending IPv6 to more and more destinations
until the entire Internet is using IPv6. Some IPv6 enthusiasts do not like the approach
because it does not provide enough economic incentive for ISPs to adopt IPv6.

Gateways And Translation. The third approach uses network devices that translate
between IPv4 and IPv6. For example, if a site chooses to use IPv6 but their ISP still
uses IPv4, a gateway device can be placed between the site and the ISP to perform

Sec. 1.12 IPv6 Migration 15

translation. The gateway will accept outgoing IPv6 packets, create equivalent IPv4
packets, and send the IPv4 packets to the ISP for delivery. Similarly, when an IPv4
packet arrives from the ISP, the gateway will create an equivalent IPv6 packet and send
the IPv6 packet into the organization. Thus, computers in the organization can run IPv6
even if the ISP still uses IPv4. Alternatively, a site can use IPv4 even if the rest of the
Internet has adopted IPv6.

Each strategy for migration has advantages and disadvantages. In the end, a cen-
tral question arises: what economic incentive does a consumer, enterprise, or an ISP
have to change? Surprisingly, there is little evidence that IPv6 offers much to the aver-
age consumer, organization, or provider. Of course there are exceptions. For example,
a company whose business model involves the sale of information to advertisers will
benefit greatly if each individual uses a separate IP address, because the company will
be able to track individual habits much more accurately than when a family shares one
computer or one address. In the end, each of the migration strategies has been used in
some places, but none has emerged as a widely accepted consensus.

1.13 Dual Stack Systems

Many chapters in this text discuss protocol software, commonly known as a proto-
col stack. The impending change to IPv6 has affected the way protocol software is
designed, especially for individual computers. Most operating systems (e.g., Linux,
Windows, and OS-X) are already classified as dual stack. That is, in addition to all the
software needed for IPv4, the system contains all the software needed for IPv6. In most
systems, the two versions do not interact. That is, each side has an IP address and each
side can send and receive packets. However, the addresses differ and neither side uses
the other (or is even aware that the other side exists). The dual-stack idea is closely re-
lated to the parallel Internet approach discussed above.

Dual-stack systems allow applications to choose whether they will use IPv4, IPv6,
or both. Older applications continue to use IPv4. However, a dual-stack mechanism al-
lows an application to choose dynamically, making migration automatic. For example,
consider a browser. If a given URL maps to both an IPv4 address and an IPv6 address,
the browser might try to communicate using IPv6 first. If the attempt fails, the browser
can try IPv4. If the computer is connected to an IPv6 network that reaches the destina-
tion, IPv6 communication will succeed. If not, the browser automatically falls back to
using IPv4.

1.14 Organization Of The Text

The material on TCP/IP has been written in three volumes. This volume intro-
duces the TCP/IP technology. It discusses the fundamentals of protocols like TCP and
IP, presents packet formats, and shows how the protocols fit together in the Internet. In
addition to examining individual protocols, the text highlights the general principles

16 Introduction And Overview Chap. 1

underlying network protocols, and explains why the TCP/IP protocols adapt easily to so
many underlying physical network technologies. The text covers the architecture of the
global Internet, and considers protocols that propagate routing information. Finally the
text presents example network applications and explains how applications use the
TCP/IP protocols.

The second and third volumes focus on implementation. Volume II examines the
implementation of TCP/IP protocols themselves. The volume explains how protocol
software is organized. It discusses data structures as well as facilities such as timer
management. The volume presents algorithms and uses examples of code from a work-
ing system to illustrate the ideas. Volume III considers network applications and ex-
plains how they use TCP/IP for communication. It focuses on the client-server para-
digm, the basis for all distributed programming. It discusses the interface between pro-
grams and protocols†, and shows how client and server programs are organized.

So far, we have talked about the TCP/IP technology and the Internet in general
terms, summarizing the services provided and the history of their development. The
next chapter provides a brief summary of the type of network hardware used throughout
the Internet. Its purpose is not to illuminate nuances of a particular vendor’s hardware,
but to focus on the features of each technology that are of primary importance to an In-
ternet architect. Later chapters delve into the protocols and the Internet, fulfilling three
purposes: they explore general concepts and review the Internet architectural model,
they examine the details of TCP/IP protocols, and they look at standards for application
services. Later chapters describe services that span multiple machines, including the
propagation of routing information, name resolution, and applications such as the Web.

An appendix that follows the main text contains an alphabetical list of terms and
abbreviations used throughout the literature and the text. Because beginners often find
the new terminology overwhelming and difficult to remember, they are encouraged to
use the alphabetical list instead of scanning back through the text.

1.15 Summary

An internet consists of a set of connected networks that act as a coordinated whole.
The chief advantage of an internet is that it provides universal interconnection while al-
lowing individual groups to use whatever network hardware is best suited to their needs.
We will examine principles underlying internet communication in general and the de-
tails of one internet protocol suite in particular. We will also discuss how internet pro-
tocols are used in an internet. Our example technology, called TCP/IP after its two
main protocols, was developed by the Defense Advanced Research Projects Agency. It
provides the basis for the global Internet, which now reaches over two billion people in
countries around the world. The next version of the Internet Protocol (IPv6) draws
heavily on concepts, terminology, and details in the current version (IPv4). Therefore,
chapters throughout the text will examine both versions.

†Volume III is available in two versions: one that uses the Linux socket interface, and a second that uses
the Windows Sockets Interface defined by Microsoft.

Exercises 17

EXERCISES

1.1 Make a list of all the Internet applications that you use. How many are web-based?
1.2 Plot the growth of TCP/IP technology and Internet access at your organization. How many

computers, users, and networks were connected each year?
1.3 Starting in 2000, major telephone companies began moving their networks from conven-

tional telephone switching to IP-based networking. The major telephone networks will run
only IP protocols. Why?

1.4 Find out when your site switched to IPv6 or when it plans to switch.

Chapter Contents
2.1 Introduction, 19
2.2 Two Approaches To Network Communication, 20
2.3 WAN And LAN, 21
2.4 Hardware Addressing Schemes, 21
2.5 Ethernet (IEEE 802.3), 22
2.6 Wi-Fi (IEEE 802.11), 26
2.7 ZigBee (IEEE 802.15.4), 26
2.8 Optical Carrier And Packet Over SONET (OC, POS), 27
2.9 Point-To-Point Networks, 28
2.10 VLAN Technology And Broadcast Domains, 28
2.11 Bridging, 29
2.12 Congestion And Packet Loss, 30
2.13 Summary, 31

2

Overview Of Underlying
Network Technologies

2.1 Introduction

The Internet introduced a key change in our thinking about computer networking.
Earlier efforts all aimed at producing a new kind of networking. The Internet intro-
duced a new method of interconnecting individual networks and a set of protocols that
allowed computers to interact across many networks. While network hardware plays
only a minor role in the overall design, understanding Internet technology requires one
to distinguish between the low-level mechanisms provided by the hardware itself and
the higher-level facilities that the TCP/IP protocols provide. It is also important to
understand how the interfaces supplied by underlying packet-switched technology affect
our choice of high-level abstractions.

This chapter introduces basic packet-switching concepts and terminology, and then
reviews some of the underlying hardware technologies that have been used in TCP/IP
internets. Later chapters describe how physical networks are interconnected and how
the TCP/IP protocols accommodate vast differences in the hardware. While the list
presented here is certainly not comprehensive, it clearly demonstrates the variety among
physical networks over which TCP/IP operates. The reader can safely skip many of the
technical details, but should try to grasp the idea of packet switching and try to imagine
building a homogeneous communication system using such heterogeneous hardware.
Most important, the reader should look closely at the details of the addressing schemes
that various technologies use; later chapters will discuss in detail how high-level proto-
cols use the hardware addresses.

19

20 Overview Of Underlying Network Technologies Chap. 2

2.2 Two Approaches To Network Communication

From a hardware perspective, networks are often classified by the forms of energy
they use and the media over which the energy travels (e.g., electrical signals over
copper wire, light pulses over optical fiber, and radio frequency waves transmitted
through space). From a communication perspective, network technologies can be divid-
ed into two broad categories that depend on the interface they provide: connection-
oriented (sometimes called circuit-switched) and connectionless (sometimes called
packet-switched†). Connection-oriented networks operate by forming a dedicated con-
nection or circuit between two points. Older telephone systems used a connection-
oriented technology — a telephone call established a connection from the originating
phone through the local switching office, across trunk lines, to a remote switching of-
fice, and finally to the destination telephone. While a connection was in place, the
phone equipment sent voice signals from the microphone to the receiver. Because it
dedicates one path in the network to each pair of communicating endpoints, a
connection-oriented system can guarantee that communication is continuous and unbro-
ken. That is, once a circuit is established, no other network activity will decrease the
capacity of the circuit. One disadvantage of connection-oriented technology arises from
cost: circuit costs are fixed, independent of use. For example, the rate charged for a
phone call remained fixed, even during times when neither party was talking.

Connectionless networks, the type often used to connect computers, take an entire-
ly different approach. In a connectionless system, data to be transferred across a net-
work is divided into small pieces called packets that are multiplexed onto high capacity
intermachine connections. A packet, which usually contains only a few hundred bytes
of data, carries identification that enables the network hardware to know how to send it
to the specified destination. For example, a large file to be transmitted between two
machines must be broken into many packets that are sent across the network one at a
time. The network hardware delivers the packets to the specified destination, where
software reassembles them into a single file. The chief advantage of packet-switching
is that multiple communications among computers can proceed concurrently, with inter-
machine connections shared by all pairs of computers that are communicating. The
disadvantage, of course, is that as activity increases, a given pair of communicating
computers receives less of the network capacity. That is, whenever a packet switched
network becomes overloaded, computers using the network must wait before they can
send additional packets.

Despite the potential drawback of not being able to guarantee network capacity,
connectionless networks have become extremely popular. The chief motivations for
adopting packet switching are cost and performance. Because multiple computers can
share the underlying network channels, fewer connections are required and cost is kept
low. Because engineers have been able to build high-speed packet switching hardware,
capacity is not usually a problem. So many computer interconnections use connection-
less networks that, throughout the remainder of this text, we will assume the term net-
work refers to a connectionless network technology unless otherwise stated.

†Hybrid technologies are also possible, but such details are unimportant to our discussion.

Sec. 2.3 WAN And LAN 21

2.3 WAN And LAN

Data networks that span large geographical distances (e.g., the continental U.S.) are
fundamentally different from those that span short distances (e.g., a single room). To
help characterize the differences in capacity and intended use, packet switched technol-
ogies are often divided into two broad categories: Wide Area Networks (WANs) and Lo-
cal Area Networks (LANs). The two categories do not have formal definitions. Instead,
vendors apply the terms loosely to help customers distinguish among technologies.

WAN technologies, sometimes called long haul networks, provide communication
over long distances. Most WAN technologies do not limit the distance spanned; a
WAN can allow the endpoints of a communication to be arbitrarily far apart. For ex-
ample, a WAN can use optical fibers to span a continent or an ocean. Usually, WANs
operate at slower speeds than LANs, and have much greater delay between connections.
Typical speeds for a WAN range from 100 Mbps (million bits per second) to 10 Gbps
(billion bits per second). Delays across a WAN can vary from a few milliseconds to
several tenths of a second†.

LAN technologies provide the highest speed connections among computers, but
sacrifice the ability to span long distances. For example, a typical LAN spans a small
area like a single building or a small campus, and typically operates between 1 Gbps
and 10 Gbps. Because LAN technologies cover short distances, they offer lower delays
than WANs. The delay across a LAN can be as short as a few tenths of a millisecond
or as long as 10 milliseconds.

2.4 Hardware Addressing Schemes

We will see that Internet protocols must handle one particular aspect of network
hardware: heterogeneous addressing schemes. Each network hardware technology de-
fines an addressing mechanism that computers use to specify the destination for a pack-
et. Every computer attached to a network is assigned a unique address, which we can
think of as an integer. A packet sent across a network includes two addresses: a desti-
nation address that specifies the intended recipient, and a source address that specifies
the sender. The destination address is placed in the same position in each packet, mak-
ing it possible for the network hardware to examine the destination address easily. A
sender must know the address of the intended recipient, and must place the recipient’s
address in the destination address field of a packet before transmitting the packet.

The next sections examine four examples of network technologies that have been
used in the Internet:

Ethernet (IEEE 802.3)

Wi-Fi (IEEE 802.11)

ZigBee (IEEE 802.15.4)

Wide Area Point-to-Point Networks (SONET)

†Exceptionally long delays can result from WANs that communicate by sending signals to a satellite or-
biting the earth and back to another location on earth.

22 Overview Of Underlying Network Technologies Chap. 2

Our discussion of technologies will gloss over many of the hardware details be-
cause the purpose is to highlight ways in which the underlying hardware has influenced
design choices in the protocols.

2.5 Ethernet (IEEE 802.3)

Ethernet is the name given to a popular packet-switched LAN technology invented
at Xerox PARC in the early 1970s. Xerox Corporation, Intel Corporation, and Digital
Equipment Corporation standardized Ethernet in 1978; the Institute for Electrical and
Electronic Engineers (IEEE) released a compatible version of the standard using the
standard number 802.3. Ethernet has become the most popular LAN technology; it now
appears in virtually all corporate and personal networks, and the Ethernet packet format
is sometimes used across wide area networks. The current versions of Ethernet are
known as Gigabit Ethernet (GigE) and 10 Gigabit Ethernet (10GigE) because they
transfer data at 1 Gbps and 10 Gbps, respectively. Next generation technologies operate
at 40 and 100 gigabits per second. An Ethernet network consists of an Ethernet switch
to which multiple computers attach†. A small switch can connect four computers; a
large switch, such as the switches used in data centers, can connect hundreds of com-
puters. Connections between a computer and a switch consist of copper wires for lower
speeds or optical fibers for higher speeds. Figure 2.1 illustrates the topology of an
Ethernet.

Switch

Computer A Computer B Computer C

copper or optical

cables

Figure 2.1 Illustration of the connections used with an Ethernet. Each com-
puter connects to a central switch.

†We will describe networks as connecting computers, but they can also connect devices, such as printers,
that have network connections.

Sec. 2.5 Ethernet (IEEE 802.3) 23

An Ethernet switch is an electronic device that usually resides in a wiring closet.
When using copper wire, the connection between a switch and a computer must be less
than 100 meters long; optical connections can extend farther. Each computer must have
a Network Interface Card (NIC) that operates as an I/O device that can send and receive
packets.

2.5.1 Ethernet Capacity

We said that a Gigabit Ethernet transfers data at a gigabit per second (1000 mega-
bits per second). Consequently, the formal name 1000Base-T is applied to the version
that uses twisted pair copper wiring. A related IEEE standard known as 1000Base-X
specifies Ethernet transmission over optical fiber. In essence, the optical version con-
verts an Ethernet packet into pulses of light, which are then transferred across an optical
fiber. The chief advantages of optical fiber are: higher capacity and immunity to elec-
trical interference. The capacity of a fiber is sufficient to support bit rates much higher
than 10 Gbps. Therefore, engineers are developing 40 and 100 Gbps Ethernet technol-
ogies that operate over optical fiber.

2.5.2 Automatic Negotiation

A modern Ethernet switch is not restricted to one speed. Instead, the switch can
operate at 10, 100, 1000 or even 10000 Mbps. A set of speeds is available in most
NICs as well as switches. The important aspect of multi-speed Ethernet lies in automat-
ed configuration. When a cable is plugged in, both ends enter a negotiation phase. The
negotiation determines the type of cable (straight through or cross-over) and the max-
imum speed that the other side of the connection can support. The two sides agree to
operate at the maximum speed that both sides can handle. Automatic negotiation pro-
vides backward compatibility — a computer with an old, slow NIC can attach to a
Gigabit switch without any changes. Ethernet packet format does not depend on the
link speed, which means that TCP/IP protocols can remain unaware of the negotiated
link speed.

2.5.3 Important Properties Of An Ethernet

Broadcast Capability. Ethernet supports broadcast, which means a sender can
specify that a given packet should be delivered to all computers that are attached to the
network. In practice, switches usually implement broadcast by making one copy of the
packet for each computer. We will see that TCP/IP depends on Ethernet broadcast.

Best-Effort Delivery Semantics. Ethernet uses best-effort delivery semantics, which
means that the network tries to deliver packets, the hardware does not guarantee
delivery and does not inform a sender if the packet cannot be delivered. If the destina-
tion machine happens to be powered down or its cable is unplugged, packets sent to the
machine will be lost and the sender will not be notified. More important, if multiple
computers attempt to send packets to a given computer at the same time, a switch can

24 Overview Of Underlying Network Technologies Chap. 2

become overrun and start discarding packets. We will see later that best-effort seman-
tics form a key concept in the design of TCP/IP protocols.

2.5.4 48-Bit Ethernet MAC (Hardware) Addresses

IEEE defines a 48-bit MAC addressing scheme that is used with Ethernet and other
network technologies. The abbreviation MAC stands for Media Access Control, and is
used to clarify the purpose of the address. A MAC address is assigned to each network
interface card. To insure uniqueness, an Ethernet hardware manufacturer must purchase
a block of MAC addresses from IEEE and must assign one address to each NIC that is
manufactured. The assignment means that no two hardware interfaces have the same
Ethernet address.

Because each address is assigned to a hardware device, we sometimes use the term
hardware address or physical address. For our purposes, we will use the terms inter-
changeably.

Note the following important property of a MAC address:

An Ethernet address is assigned to a network interface card, not to a
computer; moving the interface card to a new computer or replacing
an interface card that has failed changes a computer’s Ethernet ad-
dress.

Knowing that a change in hardware can change an Ethernet address explains why higher
level protocols are designed to accommodate address changes.

The IEEE 48-bit MAC addressing scheme provides three types of addresses:

Unicast

Broadcast

Multicast

A unicast address is a unique value assigned to a network interface card, as
described above. If the destination address in a packet is a unicast address, the packet
will be delivered to exactly one computer (or not delivered at all, if none of the comput-
ers on the network have the specified address).

A broadcast consists of all 1s, and is reserved for transmitting to all stations simul-
taneously. When a switch receives a packet with all 1s in the destination address field,
the switch delivers a copy of the packet to each computer on the network except the
sender.

A multicast address provides a limited form of broadcast in which a subset of the
computers on a network agree to listen to a given multicast address. The set of partici-
pating computers is called a multicast group. The interface card on a computer must be
configured to join a multicast group or the interface will ignore packets sent to the
group. We will see that TCP/IP protocols use multicast and that IPv6 depends on mul-
ticast.

Sec. 2.5 Ethernet (IEEE 802.3) 25

2.5.5 Ethernet Frame Format And Packet Size

Because the term packet is generic and can refer to any type of packet, we use the
term frame to refer to a packet that is defined by hardware technologies†. Ethernet
frames are variable length, with no frame smaller than 64 octets‡ or larger than 1514
octets (header and data). As expected, each Ethernet frame contains a field that holds
the 48-bit address of a destination and another field that holds the 48-bit address of the
sender. When transmitted, the frame also includes a 4-octet Cyclic Redundancy Check
(CRC) that is used to check for transmission errors. Because the CRC field is added by
the sending hardware and checked by the receiving hardware, the CRC is not visible to
higher layers of protocol software. Figure 2.2 illustrates the pertinent parts of an Ether-
net frame.

. . .6 octets 6 octets 2 octets 46–1500 octets

Destination
Address

Source
Address

Frame
Type Frame Payload (Data)

Figure 2.2 Ethernet frame format. Fields are not drawn to scale.

In the figure, the first three fields constitute a header for the frame, and the
remaining field is the payload. The packets used in most network technologies follow
the same pattern: the packet consists of a small header with fixed fields followed by a
variable-size payload. The maximum size of the payload in an Ethernet frame is 1500
octets. Because Ethernet has been universally adopted, most ISPs have tuned their net-
works to accommodate the Ethernet payload. We can summarize:

The Ethernet payload size of 1500 octets has become a de facto stan-
dard; even if they use other networking technologies, ISPs try to
design their networks so a packet can hold 1500 octets of data.

In addition to fields that identify the source and destination of the frame, an Ether-
net frame contains a 16-bit integer that identifies the type of data being carried in the
frame. Most packet technologies include a type field. From the Internet’s point of
view, the frame type field is essential because it means Ethernet frames are self-
identifying. When a frame arrives at a given machine, protocol software uses the frame
type to determine which protocol module should process the frame. The chief advan-
tages of self-identifying frames are that they allow multiple protocols to be used togeth-
er on a single computer and they allow multiple protocols to be intermixed on the same
physical network without interference. For example, one can have an application pro-

†The term frame derives from communication over serial lines in which the sender “frames” the data by
adding special characters before and after the transmitted data.

‡Technically, the term byte refers to a hardware-dependent character size; networking professionals use
the term octet because it refers to an 8-bit quantity on all computers.

26 Overview Of Underlying Network Technologies Chap. 2

gram on a computer using Internet protocols while another application on the same
computer uses a local experimental protocol. The operating system examines the type
field of each arriving frame to decide which module should process the contents. We
will see that the type field can be used to define multiple protocols in the same family.
For example, because the TCP/IP protocols include several protocols that can be sent
over an Ethernet, TCP/IP defines several Ethernet types.

2.6 Wi-Fi (IEEE 802.11)

IEEE has developed a series of standards for wireless networks that are closely re-
lated to Ethernet. The most well-known have IEEE standard number 802.11 followed
by a suffix (e.g., 802.11g or 802.11n). The set of standards can interoperate, which
means a wireless device can include hardware for multiple standards, and can choose
the standard that gives the maximum speed. A consortium of network equipment ven-
dors has adopted the marketing term Wi-Fi to cover equipment that uses the IEEE wire-
less standards, and many Wi-Fi devices exist.

Each of the Wi-Fi standards can be used in two forms: as an access technology in
which a single base station (called an access point) connects to multiple clients (e.g.,
users with laptops), or in a point-to-point configuration used to connect exactly two
wireless radios. IEEE has also defined a higher-speed technology intended primarily for
point-to-point interconnections. Marketed as Wi-MAX and assigned the standard
number 802.16, the technology is of most interest to network providers or corporations
that need to connect two sites.

2.7 ZigBee (IEEE 802.15.4)

In addition to connecting conventional computers, an internet can be used by em-
bedded devices. The concept of connecting devices is sometimes referred to as an In-
ternet of Things. Of course, each device that connects to the Internet must have an em-
bedded processor and must include a network interface. IEEE has created standard
802.15.4 for a low-power wireless network technology intended to support connections
of small embedded devices. The low-power aspect makes 802.15.4 radios attractive for
devices that run on battery power.

A consortium of vendors has chosen the term ZigBee to refer to products that use
IEEE’s 802.15.4 standard for radios and run a specific protocol stack that includes IPv6
plus protocols that allow a set of wireless nodes to organize themselves into a mesh that
can forward packets to and from the Internet.

The IEEE 802.15.4 technology provides an interesting example of extremes for
TCP/IP. The packet size is 127 octets, but only 102 octets are available for a payload.
In addition, the standard defines two address formats, one uses 64-bit MAC addresses
and the other uses 16-bit MAC addresses. The choice of addressing mode is handled at
startup.

Sec. 2.8 Optical Carrier And Packet Over SONET (OC, POS) 27

2.8 Optical Carrier And Packet Over SONET (OC, POS)

Phone companies originally designed digital circuits to carry digitized voice calls;
only later did the phone company digital circuits become important for data networks.
Consequently, the data rates of available circuits are not powers of ten. Instead, they
have been chosen to carry multiples of 64 Kbps because a digitized voice call uses an
encoding known as Pulse Code Modulation (PCM) which produces 8000 samples per
second, where each sample is 8 bits.

The table in Figure 2.3 lists a few common data rates used in North America and
Europe.

Name Bit Rate Voice Circuits Location
– 0.064 Mbps 1

T1 1.544 Mbps 24 North America
T2 6.312 Mbps 96 North America
T3 44.736 Mbps 672 North America
T4 274.760 Mbps 4032 North America
E1 2.048 Mbps 30 Europe
E2 8.448 Mbps 120 Europe
E3 34.368 Mbps 480 Europe
E4 139.264 Mbps 1920 Europe

Figure 2.3 Example data rates available on digital circuits leased from a tele-
phone company.

Higher-rate digital circuits require the use of fiber. In addition to standards that
specify the transmission of high data rates over copper, the phone companies have
developed standards for transmission of the same rates over optical fiber. Figure 2.4
lists examples of Optical Carrier (OC) standards and the data rate of each. A suffix on
“OC” denotes a capacity.

Optical Standard Bit Rate Voice Circuits
OC-1 51.840 Mbps 810
OC-3 155.520 Mbps 2430
OC-12 622.080 Mbps 9720
OC-24 1,244.160 Mbps 19440
OC-48 2.488 Gbps 38880
OC-96 4.976 Gbps 64512
OC-192 9.952 Gbps 129024
OC-256 13.271 Gbps 172032

Figure 2.4 Example data rates available on high-capacity digital circuits that
use optical fiber.

28 Overview Of Underlying Network Technologies Chap. 2

The term SONET refers to a framing protocol that allows a carrier to multiplex
multiple digital voice telephone calls onto a single connection. SONET is typically
used across OC connections. Thus, if an ISP leases an OC-3 connection, the ISP may
need to use SONET framing. The term Packet Over SONET (POS) refers to a technolo-
gy used to send packets using SONET framing.

2.9 Point-To-Point Networks

From TCP/IP’s point of view, any communication system used to pass packets is
classified as a network. If the communication system connects exactly two endpoints, it
is known as a point-to-point network. Thus, a leased data circuit is an example of a
point-to-point network.

Purists object to using the term “network” to describe a point-to-point connection
because they reserve the term for technologies that allow a set of computers to com-
municate. We will see, however, that classifying a connection as a network helps main-
tain consistency. For now, we only need to note that a point-to-point network differs
from a conventional network in one significant way: because only two computers at-
tach, no hardware addresses are needed. When we discuss internet address binding, the
lack of hardware addresses will make point-to-point networks an exception.

Dialup provides an example of a point-to-point network. Early Internet access
used dialup connections in which a dialup modem is used to place a phone call to
another modem. Once the phone connection was in place, the two modems could use
audio tones to send data. From the point of view of TCP/IP, dialing a telephone call is
equivalent to running a wire. Once the call has been answered by a modem on the oth-
er end, there is a connection from one endpoint to another, and the connection stays in
place as long as needed. Modern switched optical technology provides another form of
point-to-point network. A network manager can request that an optical path be set up
through a series of optical switches. From TCP/IP’s point of view, the path is a high-
capacity point-to-point network analogous to a leased circuit or a dialup connection.
Later chapters discuss the concept of tunneling and overlay networks, which provide
another form of point-to-point connections.

2.10 VLAN Technology And Broadcast Domains

We said that an Ethernet switch forms a single Local Area Network by connecting
a set of computers. A more advanced form of switch, known as a Virtual Local Area
Network (VLAN) switch, allows a manager to configure the switch to operate like
several smaller switches. We say that the manager can create one or more virtual net-
works by specifying which computers attach to which VLAN.

A manager can use VLANs to separate computers according to policies. For ex-
ample, a company can have a VLAN for employees and a separate VLAN for visitors.

Sec. 2.10 VLAN Technology And Broadcast Domains 29

Computers on the employee VLAN can be given more access privilege than computers
on the visitor VLAN.

A key to understanding VLANs and their interaction with Internet protocols in-
volves the way a VLAN switch handles broadcast and multicast. We say that each
VLAN defines a broadcast domain, which means that when a computer sends a broad-
cast packet, the packet is only delivered to the set of computers in the same VLAN.
The same definition holds for multicast. That is, VLAN technology emulates a set of
independent physical networks. The computers in a given VLAN share broadcast and
multicast access but, just as in separate physical networks, broadcast or multicast sent
on a given VLAN does not spread to other VLANs.

How should Internet protocols handle VLANs? The answer is that Internet proto-
cols do not distinguish between a VLAN and an independent physical network. We can
summarize:

From the point of view of Internet protocols, a VLAN is treated exact-
ly like a separate physical network.

2.11 Bridging

We use the term bridging to refer to technologies that transport a copy of a frame
from one network to another, and the term bridge to refer to a mechanism that imple-
ments bridging. The motivation for bridging is to form a single large network by using
bridges to connect smaller networks.

A key idea is that when it transfers a copy of a frame, a bridge does not make any
changes. Instead, the frame is merely replicated and transmitted over the other network.
In particular, a bridge does not alter the source or destination addresses in the frame.
Thus, computers on the two networks can communicate directly. Furthermore, comput-
ers use exactly the same hardware interface, frame format, and MAC addresses when
communicating over a bridge as when communicating locally — the computers are
completely unaware that bridging has occurred. To capture the concept, we say that the
bridge is transparent (i.e., invisible) to computers using the network.

Originally, network equipment vendors sold bridges as separate physical devices.
With the advent of modern switched networks, bridges were no longer feasible. Despite
the change in technology, bridging is still used in many network systems. The differ-
ence is that bridging is now embedded in other devices. For example, ISPs that provide
service to residences and businesses use bridging in equipment such as cable modems
and Digital Subscriber Line (DSL) hardware. Ethernet frames transmitted over the
Ethernet at a residence are bridged to the ISP, and vice versa. Computers at the house
use the local Ethernet as if the ISP’s router is connected directly; a router at the ISP
communicates over the local Ethernet as if the customer’s computers are local.

From our point of view, the most important point to understand about bridging
arises from the resulting communication system:

30 Overview Of Underlying Network Technologies Chap. 2

Because bridging hides the details of interconnection, a set of bridged
Ethernets acts like a single Ethernet.

In fact, bridges do more than replicate frames from one network to another: a
bridge makes intelligent decisions about which frames to forward. For example, if a
user has a computer and printer at their residence, the bridge in a cable modem will not
send copies of frames to the ISP if the frames are going from the user’s computer to the
user’s printer or vice versa.

How does a bridge know whether to forward frames? Bridges are called adaptive
or learning bridges because they use packet traffic to learn which computers are on each
network. Recall that a frame contains the address of the sender as well as the address
of a receiver. When it receives a frame, the bridge records the 48-bit source address.
On a typical network, each computer (or device) will send at least one broadcast or mul-
ticast frame, which means the bridge will learn the computer’s MAC address. Once it
learns the addresses of computers, a bridge will examine each frame and check the list
before forwarding a copy. If both the sender and receiver are on the same network, no
forwarding is needed.

The advantages of adaptive bridging should be obvious. Because it uses addresses
found in normal traffic, a bridging mechanism is both transparent and automatic — hu-
mans do not need to configure it. Because it does not forward traffic unnecessarily, a
bridge helps improve performance. To summarize:

An adaptive Ethernet bridge connects two Ethernets, forwards frames
from one to the other, and uses source addresses in packets to learn
which computers are on which Ethernet. A bridge uses the location of
computers to eliminate unnecessary forwarding.

2.12 Congestion And Packet Loss

In practice, most networking technology works so well that it is easy to assume
complete reliability. However, unless a packet system prereserves capacity before each
use, the system is susceptible to congestion and packet loss. To understand why, con-
sider a trivial example: an Ethernet switch with only three computers attached. Suppose
two computers send data to a third as Figure 2.5 illustrates.

Assume each of the connections to the switch operates at 1 Gbps, and consider
what happens if computers A and B send data to computer C continuously. A and B
will forward data at an aggregate rate of 2 Gbps. Because the connection to C can only
handle half that rate, the link to C will become congested.

Sec. 2.12 Congestion And Packet Loss 31

SwitchComputer A

Computer B

Computer C

Figure 2.5 An Ethernet with arrows indicating the flow of traffic.

To understand what happens to traffic, recall that Ethernet uses best-effort delivery
semantics. The switch has no way to inform A and B that an output link is congested,
and no way to stop incoming traffic. Internally, a switch has a finite amount of buffer
space. Once all buffers are used, the switch must discard additional frames that arrive.
Thus, even with only three computers connected to an Ethernet, it is possible that pack-
ets will be dropped.

At this point, it is only important to understand that congestion and loss can indeed
occur in packet networks. A later chapter examines TCP and the mechanisms that TCP
uses to avoid congestion.

2.13 Summary

Internet protocols are designed to accommodate a wide variety of underlying
hardware technologies. To understand some of the design decisions, it is necessary to
be familiar with the basics of network hardware.

Packet switching technologies are broadly divided into connection-oriented and
connectionless types. A packet switching network is further classified as a Wide Area
Network or Local Area Network, depending on whether the hardware supports com-
munication over long distances or is limited to short distances.

We reviewed several technologies used in the Internet, including Ethernet, Wi-Fi,
ZigBee, and the leased digital circuits that can be used for long-distance. We also con-
sidered VLANs and bridged networks. While the details of specific network technol-
ogies are not important, a general idea has emerged:

The Internet protocols are extremely flexible; a wide variety of under-
lying hardware technologies has been used to transfer Internet traffic.

Each hardware technology defines an addressing scheme known as MAC ad-
dresses. Differences are dramatic: Ethernet uses 48-bit MAC addresses, while 802.15.4
networks can use 16-bit or 64-bit MAC addresses. Because the goal is to interconnect
arbitrary network hardware, the Internet must accommodate all types of MAC ad-
dresses.

32 Overview Of Underlying Network Technologies Chap. 2

EXERCISES

2.1 Make a list of network technologies used at your location.
2.2 If Ethernet frames are sent over an OC-192 leased circuit, how long does it take to transmit

the bits from the largest possible Ethernet frame? The smallest possible frame? (Note: you
may exclude the CRC from your calculations.)

2.3 Study Ethernet switch technology. What is the spanning tree algorithm, and why is it
needed?

2.4 Read about IEEE 802.1Q. What does VLAN tagging accomplish?
2.5 What is the maximum packet size that can be sent over the 4G wireless networks used by

cell phones?
2.6 If your site uses Ethernet, find the size of the largest and smallest switches (i.e., the number

of ports to which computers can attach). How many switches are interconnected?
2.7 What is the maximum amount of data that can be transmitted in a Wi-Fi packet?
2.8 What is the maximum amount of data that can be transmitted in a ZigBee packet?
2.9 What characteristic of a satellite communication channel is most desirable? Least desir-

able?
2.10 Find a lower bound on the time it takes to transfer a gigabyte of data across a network that

operates at: 100 Mbps, 1000 Mbps, and 10 Gbps.
2.11 Do the processor, disk, and internal bus on your computer operate fast enough to read data

from a file on disk and send it across a network at 10 gigabits per second?
2.12 A wireless router that uses Wi-Fi technology to connect laptop computers to the Internet

has an Ethernet connection and wireless connections to multiple laptops. Consider data
flowing from the laptops to the Ethernet. If the Ethernet connection operates at 1 Gbps,
how many laptops must be connected to cause congestion on the Ethernet? (Hint: what is
the maximum data rate of a single Wi-Fi connection?)

This page intentionally left blank

Chapter Contents
3.1 Introduction, 35
3.2 Application-Level Interconnection, 35
3.3 Network-Level Interconnection, 37
3.4 Properties Of The Internet, 38
3.5 Internet Architecture, 39
3.6 Interconnection Of Multiple Networks With IP Routers, 39
3.7 The User’s View, 41
3.8 All Networks Are Equal, 42
3.9 The Unanswered Questions, 43
3.10 Summary, 43

3

Internetworking Concept
And Architectural Model

3.1 Introduction

So far, we have looked at the low-level details of transmission across individual
data networks, the foundation on which all computer communication is built. This
chapter makes a giant conceptual leap by describing a scheme that allows us to collect
the diverse network technologies into a coordinated whole. The primary goal is a sys-
tem that hides the details of underlying network hardware, while providing universal
communication services. The primary result is a high-level abstraction that provides the
framework for all design decisions. Succeeding chapters show how we use the abstrac-
tion described here to build the necessary layers of internet communication software and
how the software hides the underlying physical transport mechanisms. Later chapters
show how applications use the resulting communication system.

3.2 Application-Level Interconnection

When faced with heterogeneous systems, early designers relied on special applica-
tion programs, called application gateways, to hide the underlying differences and pro-
vide the appearance of uniformity. For example, one of the early incompatibilities arose
from commercial email systems. Each vendor designed their own email system. The
vendor chose a format for storing email, conventions for identifying a recipient, and a
method for transferring an email message from the sender to the recipient. Unfortunate-
ly, the systems were completely incompatible.

35

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

36 Internetworking Concept And Architectural Model Chap. 3

When a connection between email systems was needed, an application gateway
was used. The gateway software runs on a computer that connects to both email sys-
tems as Figure 3.1 illustrates.

Email system 1 Email system 2

Computer running an
application gateway

User 1’s
computer

User 2’s
computer

Figure 3.1 Illustration of an application gateway used to accommodate a pair
of heterogeneous email systems.

The application gateway must understand the details of the network connections
and the message protocols as well as the format of email messages used on the two
email systems. When user 1 sends an email message to user 2, user 1’s email is config-
ured to send the message to the application gateway. The application gateway must
translate the message and the email address to the form used by email system 2, and
then forward the message to user 2.

Using application programs to hide network details may seem quite reasonable.
Because everything can be handled by an application, no special hardware is needed.
Furthermore, the original email systems on the users’ computers remain unchanged. In
fact, neither the users nor the email software on the users’ computers can tell that the
other user has a different email system.

Unfortunately, the application gateway approach is both cumbersome and limited.
The primary disadvantage arises because a given application gateway can only handle
one specific application. For example, even if an email gateway is in place, the gate-
way cannot be used to transfer files, connect chat sessions, or forward text messages. A
second disadvantage arises when differences in functionality prevent interoperation. For
example, if email system 1 permits a sender to attach a file to a message, but email sys-
tem 2 does not, an application gateway will not be able to transfer messages that in-
clude files. A third disadvantage arises from the frequency of upgrades. Whenever ei-
ther vendor changes their email software, the gateway must be updated to handle the
change. Thus, application gateways must be updated frequently.

Our example only considers an application gateway that connects two systems.
Users who are experienced with networking understand that once the size grows suffi-
cient for a world-wide communication system and multiple vendors each create their
own application software, it will be impossible to maintain a set of application gateways
that interconnect all networks. Furthermore, to avoid building application gateways for
all possible combinations, the system quickly evolves to use a step-at-a-time communi-
cation paradigm in which a message is sent to the first application gateway which
translates and sends it to the second, and so on. Successful communication requires

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 3.2 Application-Level Interconnection 37

correct operation of all application gateways along the path. If any of them fail to per-
form the translation correctly, the message will not be delivered. Furthermore, the
source and destination may remain unable to detect or control the problem. Thus, sys-
tems that use application gateways cannot guarantee reliable communication.

3.3 Network-Level Interconnection

The alternative to using application-level gateways is a system based on network-
level interconnection. That is, we can devise a system that transfers packets from their
original source to their ultimate destination without using intermediate application pro-
grams. Switching packets instead of files or large messages has several advantages.
First, the scheme maps directly onto the underlying network hardware, making it ex-
tremely efficient. Second, network-level interconnection separates data communication
activities from application programs, permitting intermediate computers to handle net-
work traffic without understanding the applications that are sending or receiving mes-
sages. Third, using network-level communication keeps the entire system flexible, mak-
ing it possible to build general purpose communication facilities that are not limited to
specific uses. Fourth, we will see that the scheme allows network managers to add or
change network technologies while application programs remain unchanged.

The key to designing universal network-level interconnection can be found in an
abstract communication system concept known as internetworking. The internet con-
cept is extremely powerful. It detaches the notions of communication from the details
of network technologies and hides low-level details from users and applications. More
important, it drives all software design decisions and explains how to handle physical
addresses and routes. After reviewing basic motivations for internetworking, we will
consider the properties of an internet in more detail.

We begin with two fundamental observations about the design of communication
systems:

No single network hardware technology can satisfy all constraints.

Users desire universal interconnection.

The first observation is economic as well as technical. Inexpensive LAN technologies
that provide high-speed communication only cover short distances; wide area networks
that span long distances cannot supply local communication cheaply. It is possible to
achieve any two of high speed, long distance, and low cost, but not possible to achieve
all three. Therefore, because no single network technology satisfies all needs, we are
forced to consider multiple underlying hardware technologies.

The second observation is self-evident. An arbitrary user would like to be able to
communicate with an arbitrary endpoint, either another user or a computer system.
Given the desire for mobile access, we can say that an arbitrary user would like to en-
gage in communication from an arbitrary location. As a consequence, we desire a com-
munication system that is not constrained by the boundaries of physical networks.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

38 Internetworking Concept And Architectural Model Chap. 3

The goal is to build a unified, cooperative interconnection of networks that sup-
ports a universal communication service. Each computer will attach to a specific net-
work, such as those described in Chapter 2, and will use the technology-dependent com-
munication facilities of the underlying network. New software, inserted between the
technology-dependent communication mechanisms and application programs, will hide
all low-level details and make the collection of networks appear to be a single, large
network. Such an interconnection scheme is called an internetwork or an internet.

The idea of building an internet follows a standard pattern of system design:
researchers imagine a high-level facility and work from available underlying technol-
ogies to realize the imagined goal. In most cases, researchers build software that pro-
vides each of the needed mechanisms. The researchers continue until they produce a
working system that implements the envisioned system efficiently. The next section
shows the first step of the design process by defining the goal more precisely. Later
sections explain the approach, and successive chapters explain principles and details.

3.4 Properties Of The Internet

The notion of universal service is important, but it alone does not capture all the
ideas we have in mind for a unified internet. In fact, there can be many implementa-
tions of universal services. One of the first principles in our design focuses on encapsu-
lation: we want to hide the underlying internet architecture from users, and permit com-
munication without requiring knowledge of the internet’s structure. That is, we do not
want to require users or application programs to understand the details of underlying
networks or hardware interconnections to use the internet. We also do not want to man-
date a network interconnection topology. In particular, adding a new network to the in-
ternet should not mean connecting to a centralized switching point, nor should it mean
adding direct physical connections between the new network and all existing networks.
We want to be able to send data across intermediate networks even though they are not
directly connected to the source or destination computers. We want all computers in the
internet to share a universal set of machine identifiers (which can be thought of as
names or addresses).

Our notion of a unified internet also includes the idea of network and computer in-
dependence. That is, we want the set of operations used to establish communication or
to transfer data to remain independent of the underlying network technologies and the
destination computer. A user should not need to know about networks or remote com-
puters when invoking an application, and a programmer should not have to understand
the network interconnection topology or the type of a remote computer when creating
applications that communicate over our internet.

Sec. 3.5 Internet Architecture 39

3.5 Internet Architecture

We have seen how computers connect to individual networks. The question arises:
how are networks interconnected to form an internetwork? The answer has two parts.
Physically, two networks cannot be plugged together directly. Instead, they can only be
connected by a computer system that has the hardware needed to connect to each net-
work. A physical attachment does not provide the interconnection we have in mind,
however, because such a connection does not guarantee that a computer will cooperate
with other machines that wish to communicate. To have a viable internet, we need spe-
cial computers that are willing to transfer packets from one network to another. Com-
puters that interconnect two networks and pass packets from one to the other are called
internet routers or IP routers†.

To understand the interconnection, consider an example consisting of two physical
networks and a router as shown in Figure 3.2.

Net 1 R Net 2

Figure 3.2 Two physical networks interconnected by an IP router, R.

In the figure, router R connects to both network 1 and network 2. For R to act as a
router, it must capture packets on network 1 that are bound for machines on network 2
and transfer them. Similarly, R must capture packets on network 2 that are destined for
machines on network 1 and transfer them.

In the figure, clouds are used to denote physical networks because the exact
hardware is unimportant. Each network can be a LAN or a WAN, and each may have
many computers attached or a few computers attached. The use of clouds emphasizes
an important difference between routers and bridges — a bridge can only connect two
networks that use the same technology, but a router can connect arbitrary networks.

3.6 Interconnection Of Multiple Networks With IP Routers

Although it illustrates the basic connection strategy, Figure 3.2 is extremely
simplistic. A realistic internet will include multiple networks and routers. In such a
case, each router needs to know about networks beyond the networks to which it con-
nects directly. For example, consider Figure 3.3 which shows three networks intercon-
nected by two routers.

†The original literature used the term IP gateway. However, vendors have adopted the term IP router.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

40 Internetworking Concept And Architectural Model Chap. 3

Net 1 R1 Net 2 R2 Net 3

Figure 3.3 Three networks interconnected by two routers.

In the example, router R1 must transfer from network 1 to network 2 all packets des-
tined for computers on either network 2 or network 3. Similarly, router R2 must transfer
packets from network 3 that are destined for either network 2 or network 1. The impor-
tant point is that a router must handle packets for networks to which the router does not
attach. In a large internet composed of many networks, the router’s task of making de-
cisions about where to send packets becomes more complex.

The idea of a router seems simple, but it is important because it provides a way to
interconnect networks, not just computers. In fact, we have already discovered the prin-
ciple of interconnection used throughout an internet:

In a TCP/IP internet, special computer systems called IP routers pro-
vide interconnections among physical networks.

You might suspect that routers, which must each know how to forward packets to-
ward their destination, are large machines with enough primary or secondary memory to
hold information about every computer in the internet to which they attach. In fact,
routers used with TCP/IP internets can be modest computers similar to a desktop PC.
They do not need especially large disk storage nor do they need a huge main memory.
The trick that allows routers to be reasonable size lies in the following concept:

Routers use the destination network, not the destination computer,
when forwarding a packet.

Because packet forwarding is based on networks, the amount of information that a
router needs to keep is proportional to the number of networks in the internet, not the
number of computers. As we learned in Chapter 1, there are two orders of magnitude
fewer networks in the Internet than computers.

Because they play a key role in internet communication, we will return to routers
in later chapters to discuss the details of how they operate and how they learn about re-
mote destinations. For now, we will assume that it is possible and practical for each
router to have correct routes for all networks in an internet. We will also assume that
only routers provide connections between physical networks in an internet.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 3.7 The User’s View 41

3.7 The User’s View

Recall that an internet is designed to provide a universal interconnection among
computers independent of the particular networks to which they attach. We want a user
to view an internet as a single, virtual network to which all machines connect despite
their physical connections. Figure 3.4 illustrates the idea.

Internet

Hosts

Internet

Hosts

(a) (b)

Physical
netRouter

Figure 3.4 (a) The user’s view of a TCP/IP internet in which each computer
appears to attach to a single large network, and (b) the structure
of physical networks and routers that provide interconnection.

In the figure, part (a) shows the view that user’s have. They think of the internet
as a unified communication system. The user’s view simplifies the details and makes it
easy to conceptualize communication. Part (b) illustrates the constituent networks and
their interconnection with routers. Of course, each computer that connects to an internet
must run software that enforces the view of a single, physical network. The software
must hide details and allow application programs to send and receive packets to arbi-
trary locations as if the computer was connected to a single network.

The advantage of providing interconnection at the network level now becomes
clear. Because application programs that communicate over the internet do not know
the details of underlying connections, they can be run without change on any computer.
Because the details of each machine’s physical network connections are hidden in the
internet software, only the internet software needs to react when new physical connec-
tions are added or existing connections are removed. For example, a portable device
can connect to a Wi-Fi network in an airport, be turned off for a flight, and then con-

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

42 Internetworking Concept And Architectural Model Chap. 3

nected to a Wi-Fi network in another airport without affecting the applications in any
way. More important, it is possible to change the internal structure of the internet (e.g.,
by adding a network or a router) while application programs are executing.

A second advantage of having communication at the network level is more subtle:
users do not have to understand, remember, or specify how networks connect, what traf-
fic they carry, or what applications they support. In fact, internal networks do not know
about applications — they merely transport packets. As a result, programmers who do
not know about the internet structure can create applications, and the internet does not
need to be modified when a new application is created. As a result, network managers
are free to change interior parts of the underlying internet architecture without any ef-
fect on application software. Of course, if a computer moves to a new type of network,
the computer will need a new network interface card and the associated driver software,
but that is merely an upgrade in the capabilities of the computer rather than a change
due to the internet.

Figure 3.4b illustrates a point about internet topology: routers do not provide direct
connections among all pairs of networks in an internet. It may be necessary for traffic
traveling from one computer to another to pass through several routers as the traffic
crosses intermediate networks. Thus, networks participating in an internet are analo-
gous to a system of roads. Local networks feed traffic into larger networks, just as
local roads connect to highways. Major ISPs provide networks that handle transit
traffic, just as the U.S. interstate system forms a backbone of highways that handle
traffic going long distances.

3.8 All Networks Are Equal

Chapter 2 reviewed examples of the network hardware used to build TCP/IP inter-
nets, and illustrated the great diversity of technologies. We have described an internet
as a collection of cooperative, interconnected networks. It is now important to under-
stand a fundamental concept: from the internet point of view, any communication sys-
tem capable of transferring packets counts as a single network, independent of its delay
and throughput characteristics, maximum packet size, or geographic scale. In particular,
Figure 3.4b uses the same small cloud shape to depict each physical network because
TCP/IP treats them equally despite their differences. The point is:

The TCP/IP internet protocols treat all networks equally. A Local
Area Network such as an Ethernet, a Wide Area Network used as a
backbone, a wireless network such as a Wi-Fi hotspot, and a point-
to-point link between two computers each count as one network.

Readers unaccustomed to internet architecture may find it difficult to accept such a
simplistic view of networks. In essence, TCP/IP defines an abstraction of “network”
that hides the details of physical networks. In practice, network architects must choose

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 3.8 All Networks Are Equal 43

a technology that is appropriate for each use. We will learn, however, that abstracting
away from details helps make the TCP/IP protocols extremely flexible and powerful.

3.9 The Unanswered Questions

Our sketch of internets leaves many unanswered questions. For example, you
might wonder about the exact form of internet addresses assigned to computers or how
such addresses relate to the hardware addresses (e.g. 48-bit Ethernet MAC addresses)
described in Chapter 2. Chapters 5 and 6 confront the question of addressing. They
describe the format of IP addresses, and illustrate how software on a computer maps
between internet addresses and physical addresses. You might also want to know exact-
ly what a packet looks like when it travels through an internet, or what happens when
packets arrive too fast for a computer or router to handle. Chapter 7 answers these
questions. Finally, you might wonder how multiple application programs executing
concurrently on a single computer can send and receive packets to multiple destinations
without becoming entangled in each other’s transmissions, or how internet routers learn
about routes. All of the questions will be answered.

Although it may seem vague now, the direction we are following will let us learn
about both the structure and use of internet protocol software. We will examine each
part, looking at the concepts and principles as well as technical details. We began by
describing the physical communication layer on which an internet is built. Each of the
following chapters will explore one part of the internet software until we understand
how all the pieces fit together.

3.10 Summary

An internet is more than a collection of networks interconnected by computers. In-
ternetworking implies that the interconnected systems agree to conventions that allow
each host to communicate with every other host. In particular, an internet will allow
two host computers to communicate even if the communication path between them
passes across a network to which neither connects directly. Such cooperation is only
possible when host computers agree on a set of universal identifiers and a set of pro-
cedures for moving data to its final destination.

In an internet, interconnections among networks are formed by special-purpose
computer systems called IP routers that attach to two or more networks. A router for-
wards packets between networks by receiving them from one network and sending them
to another.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

44 Internetworking Concept And Architectural Model Chap. 3

EXERCISES

3.1 Commercial vendors sell wireless routers for use in a home. Read about such routers.
What processors are used? How many bits per second must such a router handle?

3.2 Approximately how many networks constitute the part of the Internet at your site? Approx-
imately how many routers?

3.3 Find out about the largest router used in your company or organization. How many net-
work connections does the router have?

3.4 Consider the internal structure of the example internet shown in Figure 3.4b. Which
routers are most critical to correct operation of the internet? Why?

3.5 Changing the information in a router can be tricky because it is impossible to change all
routers simultaneously. Investigate algorithms that guarantee to either install a change on a
set of computers or install it on none.

3.6 In an internet, routers periodically exchange information from their routing tables, making
it possible for a new router to appear and begin routing packets. Investigate the algorithms
used to exchange routing information.

3.7 Compare the organization of a TCP/IP internet to the XNS style of internets designed by
Xerox Corporation.

This page intentionally left blank

Chapter Contents
4.1 Introduction, 47
4.2 The Need For Multiple Protocols, 47
4.3 The Conceptual Layers Of Protocol Software, 49
4.4 Functionality Of The Layers, 49
4.5 ISO 7-Layer Reference Model, 50
4.6 X.25 And Its Relation To The ISO Model, 51
4.7 The TCP/IP 5-Layer Reference Model, 52
4.8 Locus Of Intelligence, 56
4.9 The Protocol Layering Principle, 57
4.10 The Layering Principle Applied To A Network, 58
4.11 Layering In Mesh Networks, 60
4.12 Two Important Boundaries In The TCP/IP Model, 62
4.13 Cross-Layer Optimizations, 63
4.14 The Basic Idea Behind Multiplexing And Demultiplexing, 64
4.15 Summary, 66

4

Protocol Layering

4.1 Introduction

The previous chapter reviews the architectural foundations of internetworking and
describes the interconnection of networks with routers. This chapter considers the struc-
ture of the software found in hosts and routers that carries out network communication.
It presents the general principle of layering, shows how layering makes protocol
software easier to understand and build, and traces the path that packets take through
the protocol software when they traverse a TCP/IP internet. Successive chapters fill in
details by explaining protocols at each layer.

4.2 The Need For Multiple Protocols

We said that protocols allow one to specify or understand communication without
knowing the details of a particular vendor’s network hardware. They are to computer
communication what programming languages are to computation. The analogy fits
well. Like assembly language, some protocols describe communication across a physi-
cal network. For example, the details of the Ethernet frame format, the meaning of
header fields, the order in which bits are transmitted on the wire, and the way CRC
errors are handled constitute a protocol that describes communication on an Ethernet.
We will see that the Internet Protocol is like a higher-level language that deals with
abstractions, including Internet addresses, the format of Internet packets, and the way
routers forward packets. Neither low-level nor high-level protocols are sufficient by
themselves; both must be present.

47

48 Protocol Layering Chap. 4

Network communication is a complex problem with many aspects. To understand
the complexity, think of some of the problems that can arise when computers communi-
cate over a data network:

Hardware Failure. A computer or router may fail either because
the hardware fails or because the operating system crashes. A net-
work transmission link may fail or accidentally become disconnect-
ed. Protocol software needs to detect such failures and recover
from them if possible.
Network Congestion. Even when all hardware and software
operates correctly, networks have finite capacity that can be ex-
ceeded. Protocol software needs to arrange a way to detect conges-
tion and suppress further traffic to avoid making the situation
worse.
Packet Delay Or Packet Loss. Sometimes, packets experience ex-
tremely long delays or are lost. Protocol software needs to learn
about failures or adapt to long delays.
Data Corruption. Electrical or magnetic interference or hardware
failures can cause transmission errors that corrupt the contents of
transmitted data; interference can be especially severe on wireless
networks. Protocol software needs to detect and recover from such
errors.
Data Duplication Or Inverted Arrivals. Networks that offer multi-
ple routes may deliver packets out of sequence or may deliver du-
plicates of packets. Protocol software needs to reorder packets and
remove any duplicates.

Taken together, the problems seem overwhelming. It is impossible to write a sin-
gle protocol specification that will handle them all. From the analogy with program-
ming languages, we can see how to conquer the complexity. Program translation has
been partitioned into four conceptual subproblems identified with the software that han-
dles each subproblem: compiler, assembler, link editor, and loader. The division makes
it possible for the designer to concentrate on one subproblem at a time, and for the im-
plementer to build and test each piece of software independently. We will see that pro-
tocol software is partitioned similarly.

Two final observations from our programming language analogy will help clarify
the organization of protocols. First, it should be clear that pieces of translation software
must agree on the exact format of data passed between them. For example, the data
passed from a compiler to an assembler consists of a program defined by the assembly
programming language. The translation process involves multiple representations. The
analogy holds for communication software because multiple protocols define the
representations of data passed among communication software modules. Second, the
four parts of the translator form a linear sequence in which output from the compiler be-
comes input to the assembler, and so on. Protocol software also uses a linear sequence.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 4.3 The Conceptual Layers Of Protocol Software 49

4.3 The Conceptual Layers Of Protocol Software

We think of the modules of protocol software on each computer as being stacked
vertically into layers, as Figure 4.1 illustrates. Each layer takes responsibility for hand-
ling one part of the problem.

Layer 1

Layer 2

. . .

Layer n

Sender

Layer 1

Layer 2

. . .

Layer n

Receiver

Network

Figure 4.1 The conceptual organization of protocol software in layers.

Conceptually, sending a message from an application on one computer to an appli-
cation on another means transferring the message down through successive layers of
protocol software on the sender’s machine, forwarding the message across the network,
and transferring the message up through successive layers of protocol software on the
receiver’s machine.

4.4 Functionality Of The Layers

Once a decision has been made to partition the communication problem and organ-
ize the protocol software into layers that each handle one subproblem, two interrelated
questions arise: how many layers should be created, and what functionality should re-
side in each layer? The questions are not easy to answer for several reasons. First,
given a set of goals and constraints governing a particular communication problem, it is
possible to choose an organization that will optimize protocol software for that problem.
Second, even when considering general network-level services such as reliable trans-
port, it is possible to choose from among fundamentally distinct approaches to solving
the problem. Third, the design of network (or internet) architecture and the organization

Sudha Madhuri Kanupuru

50 Protocol Layering Chap. 4

of the protocol software are interrelated; one cannot be designed without the other.
Two approaches to protocol layering dominate the field, and the next two sections con-
sider them.

4.5 ISO 7-Layer Reference Model

The first layering model was based on early work done by the International Organ-
ization for Standardization (ISO), and is known as ISO’s Reference Model of Open Sys-
tem Interconnection. It is often referred to as the ISO model. Unfortunately, the ISO
model predates work on the Internet, and does not describe the Internet protocols well.
It contains layers not used by TCP/IP protocols. Furthermore, in place of a layer devot-
ed to “internet,” the ISO model was designed for a single network and has a “network”
layer. Despite its shortcomings, the marketing and sales divisions of commercial ven-
dors still refer to the ISO model and introduce further confusion by claiming that it has
somehow been used in the design of their internet products. The ISO model contains 7
conceptual layers organized as Figure 4.2 shows.

Physical Hardware

Data Link

Network

Transport

Session

Presentation

Application

Physical Hardware1

2

3

4

5

6

7

FunctionalityLayer

Figure 4.2 The ISO 7-layer reference model. Because it was designed to
describe protocols in a single network, the model does not
describe the organization of TCP/IP protocols well.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 4.6 X.25 And Its Relation To The ISO Model 51

4.6 X.25 And Its Relation To The ISO Model

Although it was designed to provide a conceptual model and not an implementa-
tion guide, the ISO layering scheme was used as the basis for early protocol implemen-
tations. Among the protocols commonly associated with the ISO model, the suite of
protocols known as X.25 was probably the most recognized and widely used. X.25 was
established as a recommendation of the International Telecommunications Union
(ITU†), an organization that recommends standards for international telephone services.
X.25 was adopted by public data networks, and became especially popular in Europe.
Considering X.25 will help explain ISO layering.

In the X.25 view, a network operates much like a telephone system. A network
consists of packet switches that contain the intelligence needed to route packets. Com-
puters do not attach directly to communication wires of the network. Instead, each
computer attaches to one of the packet switches using a serial communication line. In
one sense, the connection between a host and an X.25 packet switch is a miniature net-
work consisting of one serial link. The host must follow a complicated procedure to
transfer packets across the network. Layers of the protocol standard specify various as-
pects of the network as follows.

Physical Layer. X.25 specifies a standard for the physical interconnection
between computers and network packet switches. In the reference model,
layer 1 specifies the physical interconnection including electrical charac-
teristics of voltage and current.

Data Link Layer. The layer 2 portion of the X.25 protocol specifies how
data travels between a computer and the packet switch to which it connects.
X.25 uses the term frame to refer to a unit of data as it transfers to a packet
switch. Because the underlying hardware delivers only a stream of bits, the
layer 2 protocol must define the format of frames and specify how the two
machines recognize frame boundaries. Because transmission errors can des-
troy data, the layer 2 protocol includes error detection (e.g., a frame check-
sum) as well as a timeout mechanism that causes a computer to resend a
frame until it has been transferred successfully. It is important to under-
stand that successful transfer at layer 2 means a frame has been passed to
the network packet switch; it does not mean that the packet switch was able
to forward or deliver the packet.

Network Layer. The ISO reference model specifies that the third layer con-
tains functionality that completes the definition of the interaction between
host and network. Called the network or communication subnet layer, the
layer defines the basic unit of transfer across the network, and includes the
concepts of destination addressing and forwarding. Because layer 2 and
layer 3 are conceptually independent, the size of a layer 3 packet can be
larger than the size of layer 2 frames (i.e., a computer can create a layer 3
packet and then layer 2 can divide the packet into smaller pieces for transfer
to the packet switch).

†The ITU was formerly known as the CCITT.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

52 Protocol Layering Chap. 4

Transport Layer. Layer 4 provides end-to-end reliability by having the des-
tination computer communicate with the source computer. The idea is that
even though lower layers of protocols provide reliability checks at each
transfer, the transport layer provides an extra check to insure that no
machine in the middle failed.

Session Layer. Higher layers of the ISO model describe how protocol
software can be organized to handle all the functionality needed by applica-
tion programs. When the ISO model was formed, networks were used to
connect a terminal (i.e., a screen and keyboard) to a remote computer. In
fact, the service offered by early public data networks focused on providing
terminal access. Layer 5 handles the details.

Presentation Layer. ISO layer 6 is intended to standardize the format of
data that application programs send over a network. One of the disadvan-
tages of standardizing data formats is that it stifles innovation — new appli-
cations cannot be deployed until their data format has been standardized.
Another disadvantage arises because specific groups claim the right to
standardize representations appropriate for their application domain (e.g., the
data formats for digital video are specified by groups that handle standards
for video rather than groups that standardize networks). Consequently,
presentation standards are usually ignored.

Application Layer. ISO layer 7 includes application programs that use the
network. Examples include electronic mail and file transfer programs.

4.7 The TCP/IP 5-Layer Reference Model

The second major layering model did not arise from a formal standards body. In-
stead, the model arose from researchers who designed the Internet and the TCP/IP pro-
tocol suite. When the TCP/IP protocols became popular, proponents of the older ISO
model attempted to stretch the ISO model to accommodate TCP/IP. However, the fact
remains that the original ISO model did not provide an internet layer, and instead de-
fined session and presentation layers that are not pertinent to TCP/IP protocols.

One of the major conceptual differences between the ISO and Internet layering
models arises from the way in which they were defined. The ISO model was prescrip-
tive — standards bodies convened a committee that wrote specifications for how proto-
cols should be built. They then started to implement protocols. The important point is
that the model predated the implementation. By contrast, the Internet model is descrip-
tive — researchers spent years understanding how to structure the protocols, building
prototype implementations, and documenting the results. After researchers were finally
convinced that they understood the design, a model was constructed. The point can be
summarized:

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 4.7 The TCP/IP 5-Layer Reference Model 53

Unlike the ISO model, which was defined by committees before proto-
cols were implemented, the Internet 5-layer reference model was for-
malized after protocols had been designed and tested.

TCP/IP protocols are organized into five conceptual layers — four layers define
packet processing and a fifth layer defines conventional network hardware. Figure 4.3
shows the conceptual layers and lists the form of data that passes between each succes-
sive pair of layers.

Physical Hardware

Network Interface

Internet

Transport

Application

Network-Specific
Frames

IP Packets

Transport Protocol
Packets

Messages or
Streams

1

2

3

4

5

FunctionalityLayer

Figure 4.3 The 5-layer TCP/IP reference model showing the form of objects
passed between layers.

The following paragraphs describe the general purpose of each layer. Later
chapters fill in many details and examine specific protocols at each layer.

Application Layer. At the highest layer, users invoke application programs
that access services available across a TCP/IP internet. An application in-
teracts with one of the transport layer protocols to send or receive data.
Each application program chooses the style of transport needed, which can
be either a sequence of individual messages or a continuous stream of bytes.
The application program passes data in the required form to the transport
layer for delivery.

Transport Layer. The primary duty of the transport layer is to provide com-
munication from one application program to another. Such communication
is called end-to-end, because it involves applications on two endpoints rath-
er than intermediate routers. A transport layer may regulate flow of infor-
mation. It may also provide reliable transport, ensuring that data arrives

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

54 Protocol Layering Chap. 4

without error and in sequence. To do so, transport protocol software ar-
ranges to have the receiving side send back acknowledgements and the
sending side retransmit lost packets. The transport software divides the
stream of data being transmitted into small pieces (sometimes called pack-
ets) and passes each packet along with a destination address to the next
layer for transmission.
As described below, a general purpose computer can have multiple applica-
tions accessing an internet at one time. The transport layer must accept data
from several applications and send it to the next lower layer. To do so, it
adds additional information to each packet, including values that identify
which application program sent the data and which application on the re-
ceiving end should receive the data. Transport protocols also use a check-
sum to protect against errors that cause bits to change. The receiving
machine uses the checksum to verify that the packet arrived intact, and uses
the destination information to identify the application program to which it
should be delivered.

Internet Layer. The internet layer handles communication from one com-
puter to another. It accepts a request to send a packet from the transport
layer along with an identification of the computer to which the packet
should be sent. Internet software encapsulates the transport packet in an IP
packet, fills in the header, and either sends the IP packet directly to the des-
tination (if the destination is on the local network) or sends it to a router to
be forwarded across the internet (if the destination is remote). Internet layer
software also handles incoming IP packets, checking their validity and using
the forwarding algorithm to decide whether the packet should be processed
locally or forwarded. For packets destined to the local machine, software in
the internet layer chooses the transport protocol that will handle the packet.

Network Interface Layer. The lowest-layer of TCP/IP software comprises a
network interface layer, responsible for accepting IP packets and transmit-
ting them over a specific network. A network interface may consist of a de-
vice driver (e.g., when the network is a local area network to which the
computer attaches) or a complex subsystem that implements a data link pro-
tocol. Some networking professionals do not distinguish between the two
types; they simply use the term MAC layer or data link layer.

In practice, TCP/IP Internet protocol software is much more complex than the sim-
ple model of Figure 4.3. Each layer makes decisions about the correctness of the mes-
sage and chooses an appropriate action based on the message type or destination ad-
dress. For example, the internet layer on the receiving machine must decide whether
the message has indeed reached the correct destination. The transport layer must decide
which application program should receive the message.

A primary difference between the simplistic model of layers illustrated in Figure
4.3 and the protocol software in a real system arises because a computer or a router can
have multiple network interfaces and multiple protocols can occur at each layer. To

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 4.7 The TCP/IP 5-Layer Reference Model 55

understand some of the complexity, consider Figure 4.4, which shows a comparison
between layers and software modules.

1

2

3

4

5

Physical Hardware

Network Interface

Internet

Transport

Application

Protocol 1 Protocol 2 Protocol 3

Interface 1 Interface 2 Interface 3

Network 1 Network 2 Network 3

app1 app2 app3 app4 app5 app6

IP module

Conceptual Layers Software Organization

(a) (b)

Figure 4.4 A comparison of (a) conceptual protocol layering and (b) a more
realistic view of protocol software with multiple network inter-
faces and multiple protocols.

The conceptual diagram in Figure 4.4(a) shows five layers of protocols with a sin-
gle box depicting each layer. The more realistic illustration of software in Figure 4.4(b)
shows that there may indeed be a layer with one protocol (Layer 3). However, there
can be multiple applications at Layer 5, and more than one application can use a given
transport protocol. We will learn that the Internet protocols have multiple transport pro-
tocols at Layer 4, multiple physical networks at Layer 1, and multiple network interface
modules at Layer 2.

Networking professional use the terms hour glass and narrow waist to describe the
role of the Internet Protocol in the TCP/IP suite. Figure 4.4(b) makes the terminology
obvious — although multiple independent protocols can exist above IP and multiple
networks can exist below IP, all outgoing or incoming traffic must pass through IP.

If a conceptual layering diagram does not accurately reflect the organization of
software modules, why is it used? Although a layering model does not capture all de-
tails, it does help explain some general concepts. For example, even though it does not
give the details about specific protocols, Figure 4.4(a) helps us understand that an out-
going message will traverse three intermediate protocol layers before being sent over a
network. Furthermore, we can use the layering model to explain the difference between
end systems (users’ computers) and intermediate systems (routers). Figure 4.5 shows
the layering used in an internet with three networks connected by two routers.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

56 Protocol Layering Chap. 4

Net Iface.

Internet

Net Iface.

Internet

Net Iface.

Internet

Net Iface.

Internet

Computer A Router 1 Router 2 Computer B

Transport

Sender

Transport

Receiver

Net 1 Net 2 Net 3

Figure 4.5 Conceptual layers of protocols needed in computers and routers to
transfer a message from an application on computer A to an ap-
plication on computer B.

In the figure, a sending application on computer A uses a transport protocol to send
data to a receiving application on computer B. The message passes down the protocol
stack on computer A, and is transmitted across network 1 to Router 1. When it reaches
the first router, the packet passes up to the internet layer (Layer 3), which forwards the
packet over network 2 to Router 2. On Router 2, the message passes up to Layer 3, and
is forwarded over network 3 to the destination. When it reaches the final destination
machine, the message passes up to the transport layer, which delivers the message to the
receiving application. Later chapters explain how IP handles forwarding, and show why
a transit packet does not use the transport protocol on a router.

4.8 Locus Of Intelligence

The Internet represents a significant departure from earlier network designs be-
cause much of the intelligence is placed outside of the network in the end systems (e.g.,
users’ computers). The original voice telephone network illustrates the difference. In
the analog telephone network, all the intelligence was located in phone switches; tele-
phones only contained passive electronics (i.e., a microphone, earpiece, and a mecha-
nism used to dial).

By contrast, the TCP/IP protocols require attached computers to run transport pro-
tocols and applications as well as Layer 3 and Layer 2 protocols. We have already
mentioned that transport protocols implement end-to-end reliability by retransmitting
lost packets. We will learn that transport protocols are complex, and that a computer at-
tached to the Internet must also participate in forwarding because the computer must

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 4.8 Locus Of Intelligence 57

choose a router to use when sending packets. Thus, unlike the analog telephone system,
a TCP/IP internet can be viewed as a relatively simple packet delivery system to which
intelligent hosts attach. The concept is fundamental:

TCP/IP protocols place much of the intelligence in hosts — routers in
the Internet forward Internet packets, but do not participate in
higher-layer services.

4.9 The Protocol Layering Principle

Independent of the particular layering scheme or the functions of the layers, the
operation of layered protocols is based on a fundamental idea. The idea, called the
layering principle, can be stated succinctly:

Layered protocols are designed so that layer n at the destination re-
ceives exactly the same object sent by layer n at the source.

Although it may seem obvious or even trivial, the layering principle provides an
important foundation that helps us design, implement, and understand protocols.
Specifically, the layering principle offers:

Protocol design independence
Definition of the end-to-end property

Protocol Design Independence. By placing a guarantee on the items passing
between each pair of layers, the layering principle allows protocol designers to work on
one layer at a time. A protocol designer can focus on the message exchange for a given
layer with the assurance that lower layers will not alter messages. For example, when
creating a file transfer application, a designer only needs to imagine two copies of the
file transfer application running on two computers. The interaction between the two
copies can be planned without thinking about other protocols because the designer can
assume each message will be delivered exactly as it was sent. The idea that the net-
work should not change messages seems so obvious to application programmers that
most of them cannot imagine building network applications without it.

Fortunately, the layering principle works for the design of lower layer protocols as
well. At each layer, a designer can depend on the layering principle being enforced by
lower layers; all a designer has to do is guarantee the layering principle to the next
higher layer. For example, when a protocol designer works on a new transport protocol,
the designer can assume the transport protocol module on the destination machine will
receive whatever message is sent by the transport protocol module on the sending
machine. The key idea is that a transport protocol can be designed independent of other
protocols.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

58 Protocol Layering Chap. 4

Definition Of The End-To-End Property. Informally, we classify a network tech-
nology as end-to-end if the technology provides communication from the original
source to the ultimate destination. The informal definition is used with protocols as
well. The layering principle allows us to be more precise: we say a protocol is end-to-
end if and only if the layering principle applies between the original source and ultimate
destination. Other protocols are classified as machine-to-machine because the layering
principle only applies across one network hop. The next section explains how the layer-
ing principle applies to Internet protocols.

4.10 The Layering Principle Applied To A Network

To understand how the layering principle applies in practice, consider two comput-
ers connected to a network. Figure 4.6 illustrates the layers of protocol software run-
ning in each computer and the messages that pass between layers.

Application

Transport

Internet

Network
Interface

Network
Interface

Internet

Transport

Application

Physical Network

Computer 1 Computer 2

identical
message

identical
packet

identical
IP packet

identical
frame

Figure 4.6 The layering principle when a message passes across a network
from an application on one computer to an application on another.

Sec. 4.10 The Layering Principle Applied To A Network 59

4.10.1 Layering In A TCP/IP Internet Environment

Our illustration of the layering principle is incomplete because the diagram in Fig-
ure 4.6 only shows layering for two computers connected to a single network. How
does the layering principle apply to an internet that can transfer messages across multi-
ple networks? Figure 4.7 answers the question by showing an example where a mes-
sage from an application program on one computer is sent to an application program on
another computer through a router.

Application

Transport

Internet

Network
Interface

Network
Interface

Internet

Network
Interface

Internet

Transport

Application

Physical Network 1 Physical Network 2

Computer 1 Computer 2

Router R

identical
message

identical
packet

identical
frame

identical
frame

identical
IP packet

identical
IP packet

Figure 4.7 The layering principle when a message passes from an application
on one computer, through a router, and is delivered to an applica-
tion on another computer.

As the figure shows, message delivery uses two separate network frames, one for
the transmission from computer 1 to router R and another from router R to computer 2.
The network layering principle states that the frame delivered to R is identical to the
frame sent by computer 1, and the frame delivered to computer 2 is identical to the
frame sent by router R. However, the two frames will definitely differ. By contrast, for
the application and transport protocols, the layering principle applies end-to-end. That
is, the message delivered on computer 2 is exactly the same message that the peer pro-
tocol sent on computer 1.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

60 Protocol Layering Chap. 4

It is easy to understand that for higher layers, the layering principle applies end-
to-end, and that at the lowest layer, it applies to a single machine transfer. It is not as
easy to see how the layering principle applies to the internet layer. On the one hand,
the goal of the Internet design is to present a large, virtual network, with the internet
layer sending packets across the virtual internet analogous to the way network hardware
sends frames across a single network. Thus, it seems logical to imagine an IP packet
being sent from the original source all the way to the ultimate destination, and to imag-
ine the layering principle guaranteeing that the ultimate destination receives exactly the
IP packet that the original source sent. On the other hand, we will learn that an IP
packet contains fields such as a time to live counter that must be changed each time the
packet passes through a router. Thus, the ultimate destination will not receive exactly
the same IP packet as the source sent. We conclude that although most of the IP packet
stays intact as it passes across a TCP/IP internet, the layering principle only applies to
packets across single machine transfers. Therefore, Figure 4.7 shows the internet layer
providing a machine-to-machine service rather than an end-to-end service.

4.11 Layering In Mesh Networks

The hardware technologies used in most networks guarantee that every attached
computer can reach other computers directly. However, some technologies do not
guarantee direct connections. For example, the ZigBee wireless technology described in
Chapter 2 uses low-power wireless radios that have limited range. Consequently, if
ZigBee systems are deployed in various rooms of a residence, interference from metal
structures may mean that a given radio may be able to reach some, but not all other ra-
dios. Similarly, a large ISP might choose to lease a set of point-to-point digital circuits
to interconnect many sites. Although each ZigBee radio can only reach a subset of the
nodes and each digital circuit only connects two points, we talk about a ZigBee “net-
work” and say that an ISP has a “network.” To distinguish such technologies from
conventional networking technologies, we use the term mesh network to characterize a
communication system constructed from many individual links.

How does a mesh network fit into our layering model? The answer depends on
how packets are forwarded across the links. On the one hand, if forwarding occurs at
Layer 2, the entire mesh can be modeled as a single physical network. We use the term
mesh-under to describe such a situation. On the other hand, if IP handles forwarding,
the mesh must be modeled as individual networks. We use the term IP route-over,
often shortened to route-over, to describe such cases.

Route-over. Most ISP networks use route-over. The ISP uses leased digital cir-
cuits to interconnect routers, and an individual router views the each circuit as a single
network. IP handles all forwarding, and the router uses standard Internet routing proto-
cols (described in later chapters) to construct the forwarding tables†.

Mesh-under. The IEEE 802.15.4 technology used in ZigBee networks can be con-
figured to act as individual links or as a complete network. That is, they can organize
themselves into a single mesh network by agreeing to discover neighbors and form a

†As Chapter 9 explains, it is possible to use an anonymous link mechanism that does not assign an IP
prefix to each link; using unnumbered links does not change the layering.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 4.11 Layering In Mesh Networks 61

Layer 2 mesh-under network that forwards packets without using IP, or they can form
individual links and allow IP to handle forwarding. In terms of our layering model, the
only change the mesh-under approach introduces is a software module added to the net-
work interface to control forwarding on individual links. We say that the new software
controls intra-network forwarding. The new software is sometimes referred to as an in-
tranet sublayer as Figure 4.8 illustrates.

. .

Physical Hardware

Network Interface

Intranet Sublayer

Internet

Transport

Application

Protocol 1 Protocol 2 Protocol 3

Interface 1 Interface 2
.

point-to-point
forwarding

Interface 3

Network 1 Network 3

app1 app2 app3 app4 app5 app6

IP module

Conceptual Layers Software Organization

(a) (b)

Figure 4.8 (a) Conceptual position of an intranet sublayer that handles for-
warding using a mesh-under approach, and (b) the corresponding
software organization.

Besides an intranet sublayer that handles forwarding across the set of individual
links, no other changes are required to the overall layering scheme to accommodate the
mesh-under approach. Interestingly, ZigBee uses a minor modification of the ideas
described above. Although it recommends using the route-over approach, the ZigBee
consortium does not recommend using standard IP routing protocols. Instead, the Zig-
Bee stack uses a special routing protocol that learns about destinations in the ZigBee
mesh and then configures IP forwarding across the individual links.

The main disadvantage of the route-over approach is that it proliferates many
routes at the IP layer (one for each connection between two machines), causing IP for-
warding tables to be larger than necessary. The main disadvantage of the mesh-under
approach is that it uses a separate forwarding table and a separate routing protocol to
update the forwarding table. The extra routing protocol means additional traffic, but be-
cause the mesh network is much smaller than the Internet and may be much more static,
a special-purpose mesh routing protocol can be more efficient than a general-purpose IP

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

62 Protocol Layering Chap. 4

routing protocol. A final disadvantage of the mesh-under approach is that intranet rout-
ing preempts IP routing which can make routing problems more difficult to diagnose
and repair.

4.12 Two Important Boundaries In The TCP/IP Model

The layering model includes two conceptual boundaries that may not be obvious: a
protocol address boundary that separates high-level and low-level addressing, and an
operating system boundary that separates protocol software from application programs.
Figure 4.9 illustrates the boundaries and the next sections explain them.

Network
Interface

Internet

Transport

Application

Physical
Hardware

Conceptual Layer Boundary

Only Internet addresses used

Physical addresses used

Software outside the operating system

Software inside the operating system

Figure 4.9 Two conceptual boundaries in the layering model.

4.12.1 High-Level Protocol Address Boundary

Chapter 2 describes the addresses used by various types of network hardware.
Later chapters describe Internet protocols and Internet addressing. It is important to dis-
tinguish where the two forms of addressing are used, and the layering model makes it
clear: there is a conceptual boundary between Layer 2 and Layer 3. Hardware (MAC)
addresses are used at Layers 1 and 2, but not above. Internet addresses are used by
Layers 3 through 5, but not by the underlying hardware. We can summarize:

Application programs and all protocol software from the internet
layer upward use only Internet addresses; addresses used by the net-
work hardware are isolated at lower layers.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 4.12 Two Important Boundaries In The TCP/IP Model 63

4.12.2 Operating System Boundary

Figure 4.9 illustrates another important boundary: the division between protocol
software that is implemented in an operating system and application software that is not.
Although researchers have experimented by making TCP/IP part of an application, most
implementations place the protocol software in the operating system where it can be
shared by all applications. The boundary is important, because passing data among
modules within the operating system is much less expensive than passing data between
the operating system and an application. Furthermore, a special API is needed to permit
an application to interact with protocol software. Chapter 21 discusses the boundary in
more detail, and describes an example interface that an operating system provides to ap-
plications.

4.13 Cross-Layer Optimizations

We have said that layering is a fundamental idea that provides the basis for proto-
col design. It allows the designer to divide a complicated problem into subproblems
and solve each one independently. Unfortunately, the software that results from strict
layering can be extremely inefficient. As an example, consider the job of the transport
layer. It must accept a stream of bytes from an application program, divide the stream
into packets, and send each packet across the underlying internet. To optimize transfer,
the transport layer should choose the largest packet size that will allow one packet to
travel in one network frame. In particular, if the destination machine attaches directly
to the same network as the source, only one physical network will be involved in the
transfer and the sender can optimize packet size for that network. If protocol software
preserves strict layering, however, the transport layer cannot know how the internet
module will forward traffic or which networks attach directly. Furthermore, the trans-
port layer will not understand the packet formats used by lower layers, nor will it be
able to determine how many octets of header will be added to the message it sends.
Thus, strict layering will prevent the transport layer from optimizing transfers.

Usually, implementers relax the strict layering scheme when building protocol
software. They allow upper layers of a protocol stack to obtain information such as the
maximum packet size or the route being used. When allocating packet buffers, trans-
port layer protocols can use the information to optimize processing by leaving sufficient
space for headers that will be added by lower-layer protocols. Similarly, lower-layer
protocols often retain all the headers on an incoming frame when passing the frame to
higher-layer protocols. Such optimizations can make dramatic improvements in effi-
ciency while retaining the basic layered structure.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

64 Protocol Layering Chap. 4

4.14 The Basic Idea Behind Multiplexing And Demultiplexing

Layered communication protocols use a pair of techniques known as multiplexing
and demultiplexing throughout the layering hierarchy. When sending a message, the
source computer includes extra bits that store meta-data, such as the message type, the
identity of the application program that sent the data, and the set of protocols that have
been used. At the receiving end, a destination computer uses the meta-data to guide
processing.

Ethernet provides a basic example. Each Ethernet frame includes a type field that
specifies what the frame carries. In later chapters, we will see that an Ethernet frame
can contain an IP packet, an ARP packet, or a RARP packet. The sender sets the type
field in the frame to indicate what is being sent. When the frame arrives, protocol
software on the receiving computer uses the frame type to choose a protocol module to
process the frame. We say that the software demultiplexes incoming frames. Figure
4.10 illustrates the concept.

Demultiplexing Based
On Frame Type

ARP ModuleIP Module RARP Module

Frame Arrives

Figure 4.10 Illustration of frame demultiplexing that uses a type field in the
frame header. Demultiplexing is used with most networks, in-
cluding Ethernet and Wi-Fi.

Multiplexing and demultiplexing occur at each layer. The demultiplexing illustrat-
ed in Figure 4.10 occurs at the network interface layer, Layer 2. To understand demul-
tiplexing at Layer 3, consider a frame that contains an IP packet. We have seen that
frame demultiplexing will pass the packet to the IP module for processing. Once it has
verified that the packet is valid (i.e., has indeed been delivered to the correct destina-
tion), IP will demultiplex further by passing the packet to the appropriate transport pro-
tocol module.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 4.14 The Basic Idea Behind Multiplexing And Demultiplexing 65

How can IP software know which transport protocol the sender used? Analogous
to an Ethernet frame, each IP packet has a type field in the header. The sender sets the
IP type field to indicate which transport protocol was used. In later chapters, we will
learn about TCP, UDP, and ICMP, each of which can be sent in an IP packet. Figure
4.11 illustrates how IP demultiplexes among the three examples.

ICMP Protocol UDP Protocol TCP Protocol

IP Module

IP Packet Arrives

Figure 4.11 Illustration of demultiplexing incoming IP packets based on the
type field in the IP header.

Our discussion of demultiplexing leaves many questions unanswered. How can we
insure that the sender and receiver agree on the values used in a type field? What hap-
pens if an incoming packet contains a type other than the types the receiver can handle?
Later chapters provide more information about demultiplexing, but we can give short
answers to the above questions now. If a receiver does not understand the type in an ar-
riving packet, the receiver discards the packet. To guarantee universal agreement on
types, standards bodies specify values to be used (e.g., IEEE specifies the set of values
for Ethernet types and the IETF specifies values for the Internet protocol). Provided
senders and receivers each agree to follow the standards, no problems arise. Of course,
researchers sometimes conduct experiments that use unassigned types. The rule that
computers drop unknown packets helps — even if a researcher broadcasts a packet with
an experimental type, no harm will occur because computers that do not understand the
type will discard the packet.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

66 Protocol Layering Chap. 4

4.15 Summary

Protocols are the standards that specify all aspects of communication across a com-
puter network. Protocols specify both the syntax (e.g., the format of messages) as well
as the semantics (e.g., how two computers exchange messages). Protocols include de-
tails such as voltages, how bits are sent, how errors are detected, and how the sender
and receiver agree that a message has been transferred successfully. To simplify proto-
col design and implementation, communication is segregated into subproblems that can
be solved independently. Each subproblem is assigned to a separate protocol.

The idea of layering is fundamental because it provides a conceptual framework
for protocol design that allows us to divide the problem into manageable pieces. In a
layered model, each layer handles one part of the communication problem. Protocols
follow the layering principle, which states that software implementing layer n on the
destination machine receives exactly the message sent by software implementing layer n
on the source machine.

We examined the 5-layer Internet reference model as well as the older ISO 7-layer
reference model. In both cases, the layering model provides only a conceptual frame-
work for protocol software. In practice, multiple protocols can occur at each layer, and
protocol software uses demultiplexing to distinguish among multiple protocols within a
given layer. The presence of multiple protocols at each layer makes protocols software
more complex than the layering models suggest.

EXERCISES

4.1 One of the main objections to layered protocols arises from the apparent overhead — copy-
ing occurs at each layer. How can copying be eliminated?

4.2 Layered protocols hide all underlying details from applications. Could application software
be optimized if an application knew about the underlying networks being used? Explain.

4.3 Should the Internet protocols include a presentation layer that specifies standards for each
data type (e.g., a graphic image type, a digital music type, etc)? Why or why not?

4.4 Build a case that TCP/IP is moving toward a six-layer protocol architecture that includes a
presentation layer. (Hint: various programs use the XDR protocol, XML, and ASN.1.)

4.5 Find out how a UNIX system uses the mbuf structure to make layered protocol software
efficient.

This page intentionally left blank

Chapter Contents
5.1 Introduction, 69
5.2 Universal Host Identifiers, 69
5.3 The Original IPv4 Classful Addressing Scheme, 71
5.4 Dotted Decimal Notation Used With IPv4, 72
5.5 IPv4 Subnet Addressing, 72
5.6 Fixed Length IPv4 Subnets, 75
5.7 Variable-Length IPv4 Subnets, 77
5.8 Implementation Of IPv4 Subnets With Masks, 77
5.9 IPv4 Subnet Mask Representation And Slash Notation, 78
5.10 The Current Classless IPv4 Addressing Scheme, 79
5.11 IPv4 Address Blocks And CIDR Slash Notation, 82
5.12 A Classless IPv4 Addressing Example, 82
5.13 IPv4 CIDR Blocks Reserved For Private Networks, 83
5.14 The IPv6 Addressing Scheme, 84
5.15 IPv6 Colon Hexadecimal Notation, 84
5.16 IPv6 Address Space Assignment, 85
5.17 Embedding IPv4 Addresses In IPv6 For Transition, 86
5.18 IPv6 Unicast Addresses And /64, 87
5.19 IPv6 Interface Identifiers And MAC Addresses, 88
5.20 IP Addresses, Hosts, And Network Connections, 89
5.21 Special Addresses, 90
5.22 Weaknesses In Internet Addressing, 94
5.23 Internet Address Assignment And Delegation Of Authority, 96
5.24 An Example IPv4 Address Assignment, 96
5.25 Summary, 98

5

Internet Addressing

5.1 Introduction

Chapter 3 defines a TCP/IP internet as a virtual network built by interconnecting
physical networks with routers. This chapter begins a discussion of addressing, an
essential part of the design that helps TCP/IP software hide physical network details and
makes the resulting internet appear to be a single, uniform entity.

In addition to discussing traditional Internet addressing, the chapter introduces IPv6
addresses. The traditional addressing scheme, which was introduced with version 4 of
the Internet Protocol, is widely used. The next version of the Internet Protocol, version
6, has already started to appear, and will eventually replace IPv4.

5.2 Universal Host Identifiers

TCP/IP uses the term host to refer to an end system that attaches to the Internet. A
host can be a large, powerful, general-purpose computer or a small, special-purpose sys-
tem. A host may have an interface that humans use (e.g., a screen and keyboard) or
may be an embedded device, such as a network printer. A host can use wired or wire-
less network technology. In short, the Internet divides all machines into two classes:
routers and hosts. Any device that is not a router is classified as a host. We will use
the terminology throughout the remainder of the text.

A communication system is said to supply universal communication service if the
system allows an attached host to communicate with any other attached host. To make
our communication system universal, it needs a globally accepted method of identifying
each host that attaches to it.

69

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

70 Internet Addressing Chap. 5

Often, identifiers are classified as names, addresses, or routes. Shoch suggests that
a name identifies what an object is, an address identifies where it is, and a route tells
how to get there†. Although they are intuitively appealing, the definitions can be
misleading. Names, addresses, and routes really refer to successively lower-level
representations of host identifiers. In general, humans prefer to use pronounceable
names to identify computers, while software works more efficiently with compact
binary identifiers that we think of as addresses. Either could have been chosen as the
TCP/IP host identifiers.

The decision was made to standardize on compact, binary addresses that make
computations such as the selection of a next hop efficient. For now, we will only dis-
cuss binary addresses, postponing until later the questions of how to map between
binary addresses and pronounceable names, and how to use addresses for forwarding
packets.

We think of an internet as a large network like any other physical network. The
difference, of course, is that an internet is a virtual structure, imagined by its designers
and implemented by protocol software running on hosts and routers. Because an inter-
net is virtual, its designers are free to choose packet formats and sizes, addresses,
delivery techniques, and so on; nothing is dictated by hardware.

The designers of TCP/IP chose a scheme analogous to physical network addressing
in which each host on an internet is assigned a unique integer address called its Internet
Protocol address or IP address. The clever part of internet addressing is that the in-
tegers are carefully chosen to make forwarding efficient. Specifically, an IP address is
divided into two parts: a prefix of the address identifies the network to which the host
attaches and a suffix identifies a specific host on the network. That is, all hosts at-
tached to the same network share a common prefix. We will see later why the division
is important. For now, it is sufficient to remember:

Each host on an IPv4 internet is assigned a unique Internet address
that is used in all communication with the host. To make forwarding
efficient, a prefix of the address identifies a network and a suffix iden-
tifies a host on the network.

The designers also decided to make IP addresses fixed size (32 bits was chosen for
IPv4 and 128 bits for IPv6). Conceptually, each address is a pair (netid, hostid), where
netid identifies a network and hostid identifies a host on that network. Once the deci-
sions are made to use fixed-size IP addresses and divide each address into a network ID
and host ID, a question arises: how large should each part be? The answer depends on
the size of networks we expect in our internet. Allocating many bits to the network pre-
fix allows our internet to contain many networks, but limits the size of each network.
Allocating many bits to a host suffix means a given network can be large, but limits the
number of networks in our internet.

†J. F. Shoch, “Internetwork Naming, Addressing, and Routing,” Proceedings of COMPCON 1978.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 5.3 The Original IPv4 Classful Addressing Scheme 71

5.3 The Original IPv4 Classful Addressing Scheme

This section describes the original IPv4 addressing mechanism. Although most of
it is no longer used, we present it here because it explains how the IPv4 multicast ad-
dress space was chosen. It also helps us understand subnet addressing, covered in the
next section, which evolved to the current classless addressing scheme.

To understand addressing, observe that an internet allows arbitrary network tech-
nologies, which means it will contain a mixture of large and small networks. To ac-
commodate the mixture, the designers did not choose a single division of the address.
Instead, they invented a classful addressing scheme that allowed a given network to be
large, medium, or small. Figure 5.1 illustrates how the original classful scheme divided
each IPv4 address into two parts.

0 netid hostid

1 0 netid hostid

1 1 0 netid hostid

1 1 1 0 multicast address

1 1 1 1 reserved for future use

Class A

Class B

Class C

Class D

Class E

0 1 2 3 4 8 16 24 31

Figure 5.1 The five forms of Internet (IP) addresses used with the original
IPv4 classful addressing scheme.

In the classful addressing scheme, each address is said to be self-identifying be-
cause the boundary between prefix and suffix can be computed from the address alone,
without reference to external information. In particular, the class of an address can be
determined from the three high-order bits, with two bits being sufficient to distinguish
among the three primary classes. Class A addresses, used for the handful of large net-
works that have more than 216 (i.e., 65,536) hosts, devote 7 bits to network ID and 24
bits to host ID. Class B addresses, used for medium size networks that have between 28

(i.e., 256) and 216 hosts, allocate 14 bits to the network ID and 16 bits to the host ID.
Finally, class C addresses, used for networks that have less than 28 hosts, allocate 21
bits to the network ID and only 8 bits to the host ID.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

72 Internet Addressing Chap. 5

5.4 Dotted Decimal Notation Used With IPv4

When communicated to humans, either in technical documents or through applica-
tion programs, IPv4 addresses are written as four decimal integers separated by decimal
points, where each integer gives the value of one octet of the address†. Thus, the 32-bit
internet address

10000000 00001010 00000010 00011110

is written

128.10.2.30

We will use dotted decimal notation when expressing IPv4 addresses throughout the
remainder of the text. Indeed, most TCP/IP software that displays or requires a human
to enter an IPv4 address uses dotted decimal notation. For example, application pro-
grams such as a web browser allow a user to enter a dotted decimal value instead of a
computer name. As an example of dotted decimal, the table in Figure 5.2 summarizes
the dotted decimal values for each address class.

Class Lowest Address Highest Address
A 1 . 0 . 0 . 0 127 . 0 . 0 . 0
B 128 . 0 . 0 . 0 191 . 255 . 0 . 0
C 192 . 0 . 0 . 0 223 . 255 . 255 . 0
D 224 . 0 . 0 . 0 239 . 255 . 255 . 255
E 240 . 0 . 0 . 0 255 . 255 . 255 . 254

Figure 5.2 The range of dotted decimal values that correspond to each of the
original IPv4 address classes.

5.5 IPv4 Subnet Addressing

In the early 1980s, as Local Area Networks became widely available, it became ap-
parent that the classful addressing scheme would have insufficient network addresses,
especially class B prefixes. The question arose: how can the technology accommodate
growth without abandoning the original classful addressing scheme? The first answer
was a technique called subnet addressing or subnetting. Subnetting allows a single net-
work prefix to be used for multiple physical networks. Although it appears to violate
the addressing scheme, subnetting became part of the standard and was widely de-
ployed.

To understand subnetting, it is important to think about individual sites connected
to the Internet. Imagine, for example, that a university started with a single Local Area
Network and obtained an IPv4 prefix. If the university adds another LAN, the original
addressing scheme would require the university to obtain a second network ID for the
second LAN. However, suppose the university only has a few computers. As long as

†A later section discusses colon hex notion used for IPv6 addresses.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 5.5 IPv4 Subnet Addressing 73

the university hides the details from the rest of the Internet, the university can assign
host addresses and arrange internal forwarding however it chooses. That is, a site can
choose to assign and use IPv4 addresses in unusual ways internally as long as:

All hosts and routers within the site agree to honor the site’s addressing
scheme.

Other sites on the Internet can treat addresses as standard addresses with a
network prefix that belongs to the site.

Subnet addressing takes advantage of the freedom by allowing a site to divide the
host portion of their addresses among multiple networks. The easiest way to see how
subnet addressing works is to consider an example. Suppose a site has been assigned a
single class B prefix, 128.10.0.0. The rest of the Internet assumes each address at the
site has one physical network with the 16-bit network ID 128.10. If the site obtains a
second physical network, the site can use subnet addressing by using a portion of the
host ID field to identify which physical network to use. Only hosts and routers at the
site will know that there are multiple physical networks and how to forward traffic
among them; routers and hosts in the rest of the Internet will assume there is a single
physical network at the site with hosts attached. Figure 5.3 shows an example using the
third octet of each address to identify a subnet.

REST OF THE
INTERNET R

H1 H2

H3 H4

Network 128.10.1.0

Network 128.10.2.0

128.10.1.1 128.10.1.2

128.10.2.1 128.10.2.2

All traffic to

128.10.0.0

Figure 5.3 Illustration of IPv4 subnet addressing using the third octet of an
address to specify a physical network.

In the figure, the site has decided to assign its two networks the subnet numbers 1
and 2. All hosts on the first network have addresses of the form:

128.10.1.*

where an asterisk denotes a host ID. For example, the figure shows two hosts on net-
work 1 with addresses 128.10.1.1 and 128.10.1.2. Similarly, hosts on network 2 have
addresses of the form:

128.10.2.*

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

74 Internet Addressing Chap. 5

When router R receives a packet, it checks the destination address. If the address starts
with 128.10.1, the router delivers the packet to a host on network 1; if the address starts
with 128.10.2, the router delivers the packet to a host on network 2. We will learn
more about how routers forward packets; at present, it is sufficient to understand that a
router at the site can use the third octet of the address to choose between the two net-
works.

Conceptually, adding subnets only changes the interpretation of IPv4 addresses
slightly. Instead of dividing the 32-bit IPv4 address into a network prefix and a host
suffix, subnetting divides the address into an internet portion and a local portion. The
interpretation of the internet portion remains the same as for networks that do not use
subnetting (i.e., it contains a network ID). However, interpretation of the local portion
of an address is left up to the site (within the constraints of the formal standard for sub-
net addressing). To summarize:

When using subnet addressing, we think of a 32-bit IPv4 address as
having an internet portion and a local portion, where the internet por-
tion identifies a site, possibly with multiple physical networks, and the
local portion identifies a physical network and host at that site.

The example in Figure 5.3 shows subnet addressing with a class B address that has
a 2-octet internet portion and a 2-octet local portion. To make forwarding among the
physical networks efficient, the site administrator in our example chose to use one octet
of the local portion to identify a physical network and the other octet to identify a host
on that network. Figure 5.4 illustrates how our example divides the IPv4 address.

Internet
portion

local
portion

Internet
portion

physical
network host

(a)

(b)

...........

...........

...........

Figure 5.4 (a) The interpretation of a 32-bit IPv4 address from Figure 5.3
when subnetting is used, and (b) the local portion divided into
two fields that identify a physical network at the site and a host
on that network.

Subnetting imposes a form of hierarchical addressing that leads to hierarchical
routing. Routers throughout the Internet use the top level of the hierarchy to forward a
packet to the correct site. Once the packet enters the site, local routers use the physical

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 5.5 IPv4 Subnet Addressing 75

network octet to select the correct network. When the packet reaches the correct net-
work, a router uses the host portion to identify a particular host.

Hierarchical addressing is not new; many systems have used it before. For exam-
ple, the U.S. telephone system divides a 10-digit phone number into a 3-digit area code,
3-digit exchange, and 4-digit connection. The advantage of using hierarchical address-
ing is that it accommodates large growth without requiring routers to understand details
about distant destinations. One disadvantage is that choosing a hierarchical structure is
complicated, and it often becomes difficult to change once a hierarchy has been estab-
lished.

5.6 Fixed Length IPv4 Subnets

In the example above, a site was assigned a 16-bit network prefix and used the
third octet of the address to identify a physical network at the site. The TCP/IP stan-
dard for subnet addressing recognizes that not every site will have a 16-bit prefix and
not every site will have the same needs for an address hierarchy. Consequently, the
standard allows sites flexibility in choosing how to assign subnets. To understand why
such flexibility is desirable, consider two examples. Figure 5.3 represents one example,
a site that only has two physical networks. As another example, imagine a company
that owns twenty large buildings and has deployed twenty LANs in each building. Sup-
pose the second site has a single 16-bit network prefix and it wants to use subnetting for
all its networks. How should the 16-bit local portion of the address be divided into
fields for a physical network and host?

The division shown in Figure 5.4 results in an 8-bit physical network identifier and
an 8-bit host identifier. Using eight bits to identify a physical network means a
manager can generate up to 256 unique physical network numbers. Similarly, with
eight bits for a host ID, a manager can generate up to 256 host IDs for each network†.
Unfortunately, the division does not suffice for the company in our second example be-
cause the company has 400 networks, which exceeds the 254 possible numbers.

To permit flexibility, the subnet standard does not specify that a site must always
use the third octet to specify a physical network. Instead, a site can choose how many
bits of the local portion to dedicate to the physical network and how many to dedicate
to the host ID. Our example company with 400 networks might choose the division
that Figure 5.5 illustrates because a 10-bit field allows up to 1022 networks.

Internet
portion

physical
network host

16 bits 10 bits 6 bits

Figure 5.5 A division of a 16-bit local portion that accommodates 400 net-
works.

†In practice, the limit is 254 subnets of 254 hosts per subnet because the standard reserves the all 1s and
all 0s subnet and host addresses.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

76 Internet Addressing Chap. 5

The idea of allowing a site to choose a division for the local portion of its address
and then using the division throughout the site is known as fixed-length subnetting.
Fixed-length subnetting is easy to understand because it partitions the local portion of
an address between networks and hosts. In essence, as a manager chooses how many
networks the site can have, the manager also determines the maximum number of hosts
on a given network. Figure 5.6 illustrates the possible choices if a site uses fixed-length
subnetting with a 16-bit local portion.

Network Bits Number of Networks Hosts per Network
0 1 65534
2 2 16382
3 6 8190
4 14 4094
5 30 2046
6 62 1022
7 126 510
8 254 254
9 510 126

10 1022 62
11 2046 30
12 4094 14
13 8190 6
14 16382 2

Figure 5.6 The possible ways to divide a 16-bit local portion of an IPv4 ad-
dress when using fixed-length subnetting. A site must choose one
line in the table.

As the figure illustrates, an organization that adopts fixed-length subnetting must
choose a compromise. If the organization opts for a large number of physical networks,
none of the networks can contain many hosts; if the organization expects to connect
many hosts to a network, the number of physical networks must be small. For example,
allocating 3 bits to identify a physical network results in up to 6 networks that each sup-
port up to 8190 hosts. Allocating 12 bits results in up to 4094 networks, but restricts
the size of each to 14 hosts.

It should be clear why the designers did not choose a specific division for subnet-
ting: no single partition of the local part of the address works for all organizations.
Some need many networks with few hosts per network, while others need a few net-
works with many hosts attached to each. More important, sites do not all receive a 16-
bit prefix, so the subnetting standard handles cases where a site is dividing fewer bits
(e.g., the site only has an 8-bit local portion in its addresses).

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 5.7 Variable-Length IPv4 Subnets 77

5.7 Variable-Length IPv4 Subnets

Most sites use fixed-length subnetting because it is straightforward to understand
and administer. However, the compromise described above makes fixed-length subnet-
ting unattractive if a site expects a mixture of large and small networks. When they in-
vented subnetting, the designers realized that fixed-length subnetting would not suffice
for all sites and created a standard that provides more flexibility. The standard specifies
that an organization can select a subnet partition on a per-network basis. Although the
technique is known as variable-length subnetting, the name is slightly misleading be-
cause the partition does not vary over time — once a partition has been selected for a
particular network, the partition never changes. All hosts and routers attached to that
network must follow the decision; if they do not, datagrams can be lost or misrouted.
We can summarize:

To allow maximum flexibility in choosing how to partition subnet ad-
dresses, the TCP/IP subnet standard permits variable-length subnet-
ting in which a partition can be chosen independently for each physi-
cal network. Once a subnet partition has been selected, all machines
on that network must honor it.

The chief advantage of variable-length subnetting is flexibility: an organization can
have a mixture of large and small networks, and can achieve higher utilization of the
address space. However, variable-length subnetting has serious disadvantages. The
most severe disadvantage arises because the scheme can be difficult to administer. The
partition for each subnet and the values chosen for subnet numbers must be assigned
carefully to avoid address ambiguity, a situation in which an address is interpreted dif-
ferently on two physical networks. In particular, because the network field used on one
physical network can be larger than the network field used on another network, some of
the host bits on the second network will be interpreted as network bits on the first net-
work. As a result, invalid variable-length subnets may make it impossible for all pairs
of hosts at the site to communicate. Furthermore, the ambiguity cannot be resolved ex-
cept by renumbering. Thus, network managers are discouraged from using variable-
length subnetting.

5.8 Implementation Of IPv4 Subnets With Masks

The subnet technology makes configuration of either fixed or variable length sub-
nets easy. The standard specifies that a 32-bit mask is used to specify the division.
Thus, a site using subnet addressing must choose a 32-bit subnet mask for each net-
work. The mask covers the internet portion of the address as well as the physical net-
work part of the local portion. That is, bits in the subnet mask are set to 1 if machines
on the network treat the corresponding bit in the IP address as part of the subnet prefix,
and 0 if they treat the bit as part of the host identifier.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

78 Internet Addressing Chap. 5

As an example, the following 32-bit subnet mask:

11111111 11111111 11111111 00000000

specifies that the first three octets identify the network and the fourth octet identifies a
host on that network. Similarly, the mask:

11111111 11111111 11111111 11000000

corresponds to the partition that Figure 5.5 illustrates where the physical network por-
tion occupies 10 bits.

An interesting twist in subnet addressing arises because the original standard did
not restrict subnet masks to select contiguous bits of the address. For example, a net-
work might be assigned the mask:

11111111 11111111 00011000 01000000

which selects the first two octets, two bits from the third octet, and one bit from the
fourth. Although the standard allows one to arrange interesting assignments of ad-
dresses, doing so makes network management almost impossible. Therefore, it is now
recommended that sites only use contiguous subnet masks.

5.9 IPv4 Subnet Mask Representation And Slash Notation

Specifying subnet masks in binary is both awkward and prone to errors. Therefore,
most software allows alternative representations. For example, most software allows
managers to use dotted decimal representation when specifying IPv4 subnet masks.
Dotted decimal has the advantage of being familiar, but the disadvantage of making it
difficult to understand bit patterns. Dotted decimal works well if a site can align the
subnet boundary on octet boundaries. The example in Figure 5.4b shows how easy it is
to understand subnetting when the third octet of an address is used to identify a physical
network and the fourth octet is used to identify a host. In such cases, the subnet mask
has dotted decimal representation 255.255.255.0, making it easy to write and under-
stand.

The literature also contains examples of subnet addresses and subnet masks
represented in braces as a 3-tuple:

{ <network number> , <subnet number> , <host number> }

In this representation, each section can be represented in dotted decimal, and the value
–1 means “all ones.” For example, if the subnet mask for a class B network is
255.255.255.0, it can be written {–1, –1, 0} .

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 5.9 IPv4 Subnet Mask Representation And Slash Notation 79

The chief advantage is that it abstracts away from the details of bit fields and em-
phasizes the values of the three parts of the address. The chief disadvantage is that it
does not accurately specify how many bits are used for each part of the address. For
example, the 3-tuple:

{ 128.10 , –1, 0 }

denotes an address with a network number 128.10, all ones in the subnet field, and all
zeroes in the host field. The address could correspond to a subnet where the boundary
occurs after the third octet or could correspond to a situation like the one shown in Fig-
ure 5.5 where the boundary allocates 10 bits to the network and 6 bits to the host.

To make it easy for humans to express and understand address masks, the IETF in-
vented a syntactic form that is both convenient and unambiguous. Known informally as
slash notation, the form specifies writing a slash followed by a decimal number that
gives the number of 1s in the mask. For example, instead of writing the dotted decimal
value 255.255.255.0, a manager can write / 24. Figure 5.7 lists each possible slash
value and the dotted decimal equivalent. The next section explains how variable-length
subnetting has been generalized and how slash notation is used in all routers.

5.10 The Current Classless IPv4 Addressing Scheme

We said that subnet addressing arose in an attempt to conserve the IPv4 address
space. By 1993, it became apparent that subnetting alone would not prevent Internet
growth from quickly exhausting the address space, and preliminary work began on de-
fining an entirely new version of IP with larger addresses. To accommodate growth un-
til the new version of IP could be standardized and adopted, a temporary solution was
invented.

Known as classless addressing, the temporary address scheme does away with
class A, B, and C addresses†. In place of the three classes, the new scheme extends the
idea used in subnet addressing to permit a network prefix to be an arbitrary length.
Later chapters explain that in addition to a new addressing model, the designers modi-
fied forwarding and route propagation techniques to handle classless addresses. As a
result, the entire technology has become known as Classless Inter-Domain Routing
(CIDR).

To understand the impact of CIDR, one needs to know three facts. First, the class-
ful scheme did not divide network addresses into equal size classes — although fewer
than seventeen thousand class B numbers were created, more than two million class C
network numbers were created. Second, because class C prefixes only suffice for small
networks and are not amenable to subnetting, demand for class C prefixes was much
smaller than demand for class B prefixes. Third, studies showed that at the rate class B
numbers were being assigned, class B prefixes would be exhausted quickly.

†Classless addressing preserves class D addresses, which are used for IPv4 multicast.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

80 Internet Addressing Chap. 5

Slash Notation Dotted Decimal Equivalent

/ 0 0 0 0 0. . .
/ 1 128 0 0 0. . .
/ 2 192 0 0 0. . .
/ 3 224 0 0 0. . .
/ 4 240 0 0 0. . .
/ 5 248 0 0 0. . .
/ 6 252 0 0 0. . .
/ 7 254 0 0 0. . .
/ 8 255 0 0 0. . .
/ 9 255 128 0 0. . .

/ 10 255 192 0 0. . .
/ 11 255 224 0 0. . .
/ 12 255 240 0 0. . .
/ 13 255 248 0 0. . .
/ 14 255 252 0 0. . .
/ 15 255 254 0 0. . .
/ 16 255 255 0 0. . .
/ 17 255 255 128 0. . .
/ 18 255 255 192 0. . .
/ 19 255 255 224 0. . .
/ 20 255 255 240 0. . .
/ 21 255 255 248 0. . .
/ 22 255 255 252 0. . .
/ 23 255 255 254 0. . .
/ 24 255 255 255 0. . .
/ 25 255 255 255 128. . .
/ 26 255 255 255 192. . .
/ 27 255 255 255 224. . .
/ 28 255 255 255 240. . .
/ 29 255 255 255 248. . .
/ 30 255 255 255 252. . .
/ 31 255 255 255 254. . .
/ 32 255 255 255 255. . .

Figure 5.7 Address masks expressed in slash notation along with the dotted
decimal equivalent of each.

Sudha Madhuri Kanupuru

Sec. 5.10 The Current Classless IPv4 Addressing Scheme 81

One of the first uses of classless addressing was known as supernetting. The intent
was to group together a set of contiguous class C addresses to be used instead of a class
B address. To understand how supernetting works, consider a medium-sized organiza-
tion that joins the Internet. Under the classful scheme, such an organization would re-
quest a class B prefix. The supernetting scheme allows an ISP to assign the organiza-
tion a block of class C addresses instead of a single class B number. The block must be
large enough to number all the networks in the organization and (as we will see) must
lie on a boundary that is a power of 2. For example, suppose the organization expects
to have 200 networks. Supernetting can assign the organization a block of 256 contigu-
ous class C numbers.

Although the first intended use of CIDR involved blocks of class C addresses, the
designers realized that CIDR could be applied in a much broader context. They en-
visioned a hierarchical addressing model in which each commercial Internet Service
Provider (ISP) could be given a large block of Internet addresses that the ISP could
then allocate to subscribers. Because it permits the network prefix to occur on an arbi-
trary bit boundary, CIDR allows an ISP to assign each subscriber a block of addresses
appropriate to the subscriber’s needs.

Like subnet addressing, CIDR uses a 32-bit address mask to specify the boundary
between prefix and suffix. Contiguous 1 bits in the mask specify the size of the prefix,
and 0 bits in the mask correspond to the suffix. At first glance, a CIDR mask appears
to be identical to a subnet mask. The major difference is that a CIDR mask is not
merely known within a site. Instead, a CIDR mask specifies the size of a network pre-
fix, and the prefix is known globally. For example, suppose an organization is assigned
a block of 2048 contiguous addresses starting at address 128.211.168.0. The table in
Figure 5.8 lists the binary values of addresses in the range.

Dotted Decimal 32-bit Binary Equivalent
Lowest 128.211.168.0 10000000 11010011 10101000 00000000
Highest 128.211.175.255 10000000 11010011 10101111 11111111

Figure 5.8 An example IPv4 CIDR block that contains 2048 host addresses.
The table shows the lowest and highest addresses in the range ex-
pressed as dotted decimal and binary values.

Because 2048 is 211, eleven bits are needed for the host portion of an address. That
means the CIDR address mask will have 21 bits set (i.e., the division between network
prefix and host suffix occurs after the 21st bit). In binary, the address mask is:

11111111 11111111 11111000 00000000

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

82 Internet Addressing Chap. 5

5.11 IPv4 Address Blocks And CIDR Slash Notation

Unlike the original classless scheme, CIDR addresses are not self-identifying. For
example, if a router encounters address 128.211.168.1, which is one of the addresses in
the example block, a router cannot know the position where the boundary lies unless
external information is present. Thus, when configuring a CIDR block, a network
manager must supply two pieces of information: the starting address and an address
mask that tells which bits are in the prefix.

As noted above, using binary or dotted decimal for a mask is both inconvenient
and error prone. Therefore, CIDR specifies that a manager should use slash notation to
specify the mask. Syntactically, the format, which is sometimes called CIDR notation,
consists of a starting address in dotted decimal followed by a mask size in slash nota-
tion. Thus, in CIDR notation, the block of addresses in Figure 5.8 is expressed:

128.211.168.0 / 21

where / 21 denotes an address mask with 21 bits set to 1†.

5.12 A Classless IPv4 Addressing Example

The table in Figure 5.8 illustrates one of the chief advantages of classless address-
ing: complete flexibility in allocating blocks of various sizes. When using CIDR, the
ISP can choose to assign each customer an address block of an appropriate size (i.e., the
size the customer needs rounded to the nearest power of 2). Observe that a CIDR mask
of N bits defines an address block of 32 – N host addresses. Therefore, a smaller ad-
dress block has a longer mask. If the ISP owns a CIDR block of N bits, the ISP can
choose to assign a customer any piece of its address space by using a mask longer than
N bits. For example, if the ISP is assigned 128.211.0.0 / 16, the ISP may choose to give
one of its customers the 2048 address in the / 21 range that Figure 5.8 specifies. If the
same ISP also has a small customer with only two computers, the ISP might choose to
assign another block 128.211.176.212 / 30, which covers the address range that Figure
5.9 specifies.

Dotted Decimal 32-bit Binary Equivalent
Lowest 128.211.176.212 10000000 11010011 10110000 11010100
Highest 128.211.176.215 10000000 11010011 10110000 11010111

Figure 5.9 An example IPv4 CIDR block, 128.211.176.212 / 30.

One way to think about classless addresses is as if each customer of an ISP obtains
a (variable-length) subnet of the ISP’s CIDR block. Thus, a given block of addresses
can be subdivided on an arbitrary bit boundary, and a router at the ISP can be config-
ured to forward correctly to each subdivision. As a result, the group of computers on a

†The table in Figure 5.7 on page 80 summarizes all possible values used in slash notation.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 5.12 A Classless IPv4 Addressing Example 83

given network will be assigned addresses in a contiguous range, but the range does not
need to correspond to the old class A, B, and C boundaries. Instead, the scheme makes
subdivision flexible by allowing one to specify the exact number of bits that correspond
to a prefix. To summarize:

Classless IPv4 addressing, which is now used throughout the Internet,
assigns each ISP a CIDR block and allows the ISP to partition ad-
dresses into contiguous subblocks, where the lowest address in a sub-
block starts at a power of two and the subblock contains a power of
two addresses.

5.13 IPv4 CIDR Blocks Reserved For Private Networks

How should addresses be assigned on a private intranet (i.e., on an internet that
does not connect to the global Internet)? In theory, arbitrary addresses can be used.
For example, on the global Internet, the IPv4 address block 9.0.0.0 / 8 has been assigned
to IBM Corporation. Although private intranets could use IBM’s address blocks, ex-
perience has shown that doing so is dangerous because packets tend to leak out onto the
global Internet, and will appear to come from valid sources. To avoid conflicts between
addresses used on private intranets and addresses used on the global Internet, the IETF
reserved several address prefixes and recommends using them on private intranets. Col-
lectively, the reserved prefixes are known as private addresses or nonroutable ad-
dresses. The latter term is used because the IETF prohibits packets that use private ad-
dresses from appearing on the global Internet. If a packet containing one of the private
addresses is accidentally forwarded onto the global Internet, a router will detect the
problem and discard the packet.

When classless addressing was invented, the set of reserved IPv4 prefixes was
redefined and extended. Figure 5.10 lists the values of private addresses using CIDR
notation as well as the dotted decimal value of the lowest and highest addresses in the
block. The last address block in the list, 169.254.0.0 / 16, is unusual because it is used
by systems that autoconfigure IP addresses. Although autoconfiguration is seldom used
with IPv4, a later chapter explains how it has become an integral part of IPv6.

Prefix Lowest Address Highest Address
10.0.0.0 / 8 10.0.0.0 10.255.255.255
172.16.0.0 / 12 172.16.0.0 172.31.255.255
192.168.0.0 / 16 192.168.0.0 192.168.255.255
169.254.0.0 / 16 169.254.0.0 169.254.255.255

Figure 5.10 The prefixes reserved for use with private intranets not connect-
ed to the global Internet. If a datagram sent to one of these ad-
dresses accidentally reaches the Internet, an error will result.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

84 Internet Addressing Chap. 5

5.14 The IPv6 Addressing Scheme

We said that each IPv6 address occupies 128 bits (16 octets). The large address
space guarantees that IPv6 can tolerate any reasonable address assignment scheme. In
fact, if the community decides to change the addressing scheme later, the address space
is sufficiently large to accommodate a reassignment.

It is difficult to comprehend the size of the IPv6 address space. One way to look
at it relates the magnitude to the size of the population: the address space is so large
that every person on the planet can have sufficient addresses to have their own internet
three times as large as the current Internet. A second way to think of IPv6 addressing
relates it to the physical space available: the earth’s surface has approximately 5.1 × 108

square kilometers, meaning that there are over 1024 addresses per square meter of the
earth’s surface. Another way to understand the size relates it to address exhaustion.
For example, consider how long it would take to assign all possible addresses. A 16-
octet integer can hold 2128 values. Thus, the address space is greater than 3.4 × 1038. If
addresses are assigned at the rate of one million addresses every microsecond, it would
take over 1020 years to assign all possible addresses.

5.15 IPv6 Colon Hexadecimal Notation

Although it solves the problem of having insufficient capacity, the large address
size poses an interesting new problem: humans who manage the Internet must read,
enter, and manipulate such addresses. Obviously, binary notation is untenable. The
dotted decimal notation used for IPv4 does not make IPv6 addresses sufficiently com-
pact either. To understand why, consider an example 128-bit number expressed in dot-
ted decimal notation:

104.230.140.100.255.255.255.255.0.0.17.128.150.10.255.255

To help make addresses slightly more compact and easier to enter, the IPv6
designers created colon hexadecimal notation (abbreviated colon hex) in which the
value of each 16-bit quantity is represented in hexadecimal separated by colons. For
example, when the value shown above in dotted decimal notation is translated to colon
hex notation and printed using the same spacing, it becomes:

68E6:8C64:FFFF:FFFF:0:1180:96A:FFFF

Colon hex notation has the obvious advantage of requiring fewer digits and fewer
separator characters than dotted decimal. In addition, colon hex notation includes two
techniques that make it extremely useful. First, colon hex notation allows zero
compression in which a string of repeated zeros is replaced by a pair of colons. For ex-
ample, the address:

FF05:0:0:0:0:0:0:B3

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 5.15 IPv6 Colon Hexadecimal Notation 85

can be written:

FF05::B3

To ensure that zero compression produces an unambiguous interpretation, the stan-
dards specify that it can be applied only once in any address. Zero compression is espe-
cially useful because the IPv6 assignments will create many addresses that contain con-
tiguous strings of zeros. Second, colon hex notation incorporates dotted decimal suf-
fixes; such combinations are intended to be used during the transition from IPv4 to
IPv6. For example, the following string is a valid colon hex notation:

0:0:0:0:0:0:128.10.2.1

Note that although the numbers separated by colons each specify the value of a
16-bit quantity, numbers in the dotted decimal portion each specify the value of one oc-
tet. Of course, zero compression can be used with the number above to produce an
equivalent colon hex string that looks quite similar to an IPv4 address:

::128.10.2.1

Finally, IPv6 extends CIDR-like notation by allowing an address to be followed by
a slash and an integer that specifies a number of bits. For example,

12AB::CD30:0:0:0:0/60

specifies the first 60 bits of the address which is 12AB00000000CD3 in hexadecimal.

5.16 IPv6 Address Space Assignment

The question of how to partition the IPv6 address space has generated much dis-
cussion. There are two central issues: how humans manage address assignment and
how routers handle the necessary forwarding tables. The first issue focuses on the prac-
tical problem of devising a hierarchy of authority. Unlike the current Internet, which
uses a two-level hierarchy of network prefix (assigned by an ISP) and host suffix (as-
signed by an organization), the large address space in IPv6 permits a multi-level hierar-
chy or multiple hierarchies. Large ISPs can start with large blocks of addresses and as-
sign subblocks to second-level ISPs, which can each assign subblocks from their alloca-
tion to third-level ISPs, and so on. The second issue focuses on router efficiency, and
will be explained later. For now, it is sufficient to understand that a router must exam-
ine each datagram, so the choice of assignment can affect the way routers handle for-
warding.

The IPv6 address space has been divided into blocks of addresses analogous to the
original classful scheme used with IPv4. The first 8 bits of an address are sufficient to
identify the basic types. Like IPv4 classful addressing, IPv6 does not partition the ad-

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

86 Internet Addressing Chap. 5

dress space into equal-size sections. Figure 5.11 lists the IPv6 prefixes and their mean-
ings.

Binary Prefix Type Of Address Fraction Of Address Space
0000 0000 Reserved (IPv4 compatibility) 1/256
0000 0001 Unassigned 1/256
0000 001 NSAP Addresses 1/128
0000 01 Unassigned 1/64
0000 1 Unassigned 1/32
0001 Unassigned 1/16
001 Global Unicast 1/8
010 Unassigned 1/8
011 Unassigned 1/8
100 Unassigned 1/8
101 Unassigned 1/8
110 Unassigned 1/8
1110 Unassigned 1/16
1111 0 Unassigned 1/32
1111 10 Unassigned 1/64
1111 110 Unassigned 1/128
1111 1110 0 Unassigned 1/512
1111 1110 10 Link-Local Unicast Addresses 1/1024
1111 1110 11 IANA - Reserved 1/1024
1111 1111 Multicast Addresses 1/256

Figure 5.11 Prefixes used to divide the IPv6 address space into blocks and
the purpose of each block.

As the figure shows, only 15% of the address space has been assigned. The IETF
will use the remaining portions as demand grows. Despite the sparse assignment, ad-
dresses have been chosen to make processing more efficient. For example, the high-
order octet of an address distinguishes between multicast (all 1 bits) and unicast (a mix-
ture of 0’s and 1’s).

5.17 Embedding IPv4 Addresses In IPv6 For Transition

To enable transition from IPv4 to IPv6, the designers have allocated a small frac-
tion of addresses in the IPv6 space to encode IPv4 addresses. For example, any address
that begins with 80 zero bits followed by 16 bits of all ones contains an IPv4 address in
the low-order 32 bits. In addition, a set of addresses are reserved for use with the State-
less IP/ICMP Translation protocol (SIIT). Figure 5.12 illustrates the two forms.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 5.17 Embedding IPv4 Addresses In IPv6 For Transition 87

Embedding an IPv4 address in an IPv6 address will be used during the transition
from IPv4 to IPv6 for two reasons. First, a computer may choose to upgrade from IPv4
to IPv6 software before it has been assigned a valid IPv6 address. Second, a computer
running IPv6 software may need to communicate with a computer that runs only IPv4
software.

64 zero bits 16 bits 16 bits 32 bits

0000 0000 0000 FFFF IPv4 Address

0000 0000 FFFF 0000 IPv4 Address

Figure 5.12 Two ways to embed an IPv4 address in an IPv6 address. The
second form is used for Stateless IP/ICMP Translation.

Having a way to embed an IPv4 address in an IPv6 address does not solve the
problem of making the two versions interoperate. In addition to address embedding,
packet translation is needed to convert between IPv4 and IPv6 packet formats. We will
understand the conversion after later chapters explain the two packet formats.

It may seem that translating protocol addresses could fail because higher layer pro-
tocols verify address integrity. In particular, we will see that TCP and UDP checksum
computations use a pseudo-header that includes the IP source and destination addresses.
As a result, it would seem that translating an address would invalidate the checksum.
However, the designers planned carefully to allow TCP or UDP on an IPv4 machine to
communicate with the corresponding transport protocol on an IPv6 machine. To avoid
checksum mismatch, the IPv6 encoding of an IPv4 address has been chosen so that the
16-bit one’s complement checksum for both an IPv4 address and the IPv6 embedded
version of the address are identical. The point is:

In addition to choosing technical details of a new Internet Protocol,
the IETF work on IPv6 has focused on finding a way to transition
from the current protocol to the new protocol. In particular, IPv6
provides a way to embed an IPv4 address in an IPv6 address such
that changing between the two forms does not affect the pseudo-
header checksum used by transport protocols.

5.18 IPv6 Unicast Addresses And /64

The IPv6 scheme for assigning each host computer an address extends the IPv4
scheme. Instead of dividing an address into two parts (a network ID and a host ID), an
IPv6 address is divided into three conceptual parts: a globally-unique prefix used to

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

88 Internet Addressing Chap. 5

identify a site, a subnet ID used to distinguish among multiple physical networks at the
destination site, and an interface ID used to identify a particular computer connected to
the subnet. Figure 5.13 illustrates the partitioning.

GLOBAL ROUTING PREFIX SUBNET ID INTERFACE ID

N bits 64–N bits 64 bits

Figure 5.13 The division of an IPv6 unicast address into three conceptual
parts. The interface ID always occupies 64 bits.

Note that the three-level hierarchy formalizes the idea of subnet addressing from
IPv4. Unlike subnetting, however, the IPv6 address structure is not restricted to a sin-
gle site. Instead, the address structure is recognized globally.

5.19 IPv6 Interface Identifiers And MAC Addresses

IPv6 uses the term interface identifier (interface ID) rather than host identifier to
emphasize that a host can have multiple interfaces and multiple IDs. As the next sec-
tion shows, IPv4 and IPv6 share the concept; only the terminology differs.

In Figure 5.13, the low-order 64 bits of an IPv6 unicast address identifies a specific
network interface. The IPv6 suffix was chosen to be large enough to allow a hardware
(MAC) address to be used as the unique ID. As we will see later, embedding a
hardware address in an IPv6 address makes finding the hardware address of a computer
trivial. Of course, to guarantee interoperability, all computers on a network must agree
to use the same representation for a hardware address. Consequently, the IPv6 stan-
dards specify exactly how to represent various forms of hardware addresses. In the sim-
plest case, the hardware address is placed directly in the low-order bits of an IPv6 ad-
dress; some formats use more complex transformations.

Two examples will help clarify the concept. IEEE defines a standard 64-bit glo-
bally unique MAC address format known as EUI-64. The only change needed when us-
ing an EUI-64 address in an IPv6 address consists of inverting bit 6 in the high-order
octet of the address. Bit 6 indicates whether the address is known to be globally
unique. A more complex change is required for a conventional 48-bit Ethernet address
as Figure 5.14 illustrates.

As the figure shows, bits from the original MAC address are not contiguous in an
IPv6 address. Instead, 16 bits with hexadecimal value FFFE16 are inserted in the mid-
dle. In addition, bit 6, which indicates whether the address has global scope, is changed
from 0 to 1. Remaining bits of the address, including the group bit (labeled g), the ID
of the company that manufactured the interface (labeled c), and the manufacturer’s ex-
tension are copied as shown.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 5.19 IPv6 Interface Identifiers And MAC Addresses 89

0 478 24

0 638 24 40

c cc c cc 0gcc c c c c c c c c c c c cc c

c c c c c c 1gc c c c c c c c c c cc c c c c1 1 1 1 11 1 1 1 1 11 1 1 1 0

extension

extension

(a)

(b)

Figure 5.14 (a) The format of a 48-bit Ethernet address, with bits that identi-
fy a manufacturer and extension, and (b) the address when
placed in the low-order 64 bits of an IPv6 unicast address.

5.20 IP Addresses, Hosts, And Network Connections

To simplify the discussion earlier in the chapter, we said that an IPv4 address iden-
tifies a host. However, the description is not strictly accurate. Consider a router that at-
taches to two physical networks. How can we assign a single IP address if every ad-
dress includes a network identifier as well as a host identifier? In fact, we cannot. A
similar situation exists for a conventional computer that has two or more physical net-
work connections (such computers are known as multi-homed hosts). Each of the
computer’s network connections must be assigned an address that identifies a network.
The idea is fundamental in both IPv4 and IPv6 addressing:

Because an IP address identifies a network as well as a host on the
network, an address does not specify an individual computer. Instead,
an address identifies a connection to a network.

A router that connects to n networks has n distinct IP addresses; one for each network
connection. IPv6 makes the distinction clear by using the term interface address (i.e.,
an address is assigned to the interface from a computer to a network). For IPv6 the sit-
uation is even more complex than multiple network connections: to handle migration
from one ISP to another, IPv6 specifies that a given interface can have multiple ad-
dresses at the same time. For now, we only need to keep in mind that each address
specifies a network connection. Chapter 18 will consider the issue further.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

90 Internet Addressing Chap. 5

5.21 Special Addresses

Both IPv4 and IPv6 have special interpretations for some addresses. For example,
an internet address can refer to a network as well as a host. The next sections describe
how the two versions handle special addresses.

5.21.1 IPv4 Network Address

By convention, in IPv4, host ID 0 is never assigned to an individual host. Instead,
an IPv4 address with zero in the host portion is used to refer to the network itself.

An IPv4 address that has a host ID of 0 is reserved to refer to the net-
work.

5.21.2 IPv4 Directed Broadcast Address

IPv4 includes a directed broadcast address that is sometimes called a network
broadcast address. When used as a destination address, it refers to all computers on a
network. The standard specifies that a hostid of all 1s is reserved for directed broad-
cast†.

When a packet is sent to such an address, a single copy of the packet is transferred
across the internet from the source to the destination. Routers along the path use the
network portion of the address without looking at the host portion. Once the packet
reaches a router attached to the final network, the router examines the host portion of
the address and if it finds all 1s, the router broadcasts the packet to all machines on the
network.

On some network technologies (e.g., Ethernet), the underlying hardware supports
broadcasting. On other technologies, software implements broadcast by sending an in-
dividual copy to each host on the network. The point is that having an IP directed
broadcast address does not guarantee that delivery will be efficient. In summary,

IPv4 supports directed broadcast in which a packet is sent to all com-
puters on a specific network; hardware broadcast is used if available.
A directed broadcast address has a valid network portion and a hostid
of all 1s.

Directed broadcast addresses provide a powerful and dangerous mechanism be-
cause an arbitrary sender can transmit a single packet that will be broadcast on the
specified network. To avoid potential problems, many sites configure routers to reject
all directed broadcast packets.

†An early release of TCP/IP code that accompanied Berkeley UNIX incorrectly used a hostid of all
zeroes for broadcast. Because the error still survives, TCP/IP software often includes an option that allows a
site to use a hostid of all zeroes for directed broadcast.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 5.21 Special Addresses 91

5.21.3 IPv4 Limited (Local Network) Broadcast Address

In addition to network-specific broadcast addresses described above, IPv4 supports
limited broadcasting, sometimes called local network broadcast. A limited broadcast
means a packet is broadcast across the local network. The local broadcast address con-
sists of thirty-two 1s (hence, it is sometimes called the “all 1s” broadcast address). As
we will see, a host can use the limited broadcast address at startup before the host learns
its IP address or the IP address of the network. Once the host learns the correct IP ad-
dress for the local network, directed broadcast is preferred.

To summarize:

An IPv4 limited broadcast address consists of thirty-two 1 bits. A
packet sent to the limited broadcast address will be broadcast across
the local network, and can be used at startup before a computer
learns its IP address.

5.21.4 IPv4 Subnet Broadcast Address

If a site uses subnetting, IPv4 defines a corresponding subnet broadcast address.
A subnet broadcast address consists of a network prefix, a subnet number, and all 1s in
the host field.

A subnet broadcast address is used to broadcast on a single network
within a site that uses subnetting. The address contains a network
and subnet prefix and has all 1s in the host field.

5.21.5 IPv4 All-0s Source Address

An address that consists of thirty-two zero bits is reserved for cases where a host
needs to communicate, but does not yet know its own IP address (i.e., at startup). In
particular, we will see that to obtain an IP address, a host sends a datagram to the limit-
ed broadcast address and uses address 0 to identify itself. The receiver understands that
the host does not yet have an IP address, and the receiver uses a special method to send
a reply.

In IPv4, an address with thirty-two 0 bits is used as a temporary
source address at startup before a host learns its IP address.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

92 Internet Addressing Chap. 5

5.21.6 IPv4 Multicast Addresses

In addition to unicast delivery, in which a packet is delivered to a single computer,
and broadcast delivery, in which a packet is delivered to all computers on a given net-
work, the IPv4 addressing scheme supports a special form of multipoint delivery known
as multicasting, in which a packet is delivered to a specific subset of hosts. Chapter 15
discusses multicast addressing and delivery in detail. For now, it is sufficient to under-
stand that any IPv4 address that begins with three 1 bits is used for multicasting.

5.21.7 IPv4 Loopback Address

The network prefix 127.0.0.0 / 8 (a value from the original class A range) is
reserved for loopback, and is intended for use in testing TCP/IP and for inter-process
communication on the local computer. By convention, programmers use 127.0.0.1 for
testing, but any host value can be used because TCP/IP software does not examine the
host portion.

When an application sends a packet to a 127 address, the protocol software in the
computer accepts the outgoing packet and immediately feeds the packet back to the
module that handles incoming packets, as if the packet just arrived. Loopback is re-
stricted to a local operating system; no packet with a 127 address should ever appear in
the Internet.

IPv4 reserves 127.0.0.0 / 8 for loopback testing; a packet destined to
any host with prefix 127 stays within the computer and does not travel
across a network.

5.21.8 Summary Of IPv4 Special Address Conventions

Figure 5.15 summarizes the special addresses used in IPv4. As the notes in the
figure mention, the all 0s address is never used as a destination, and can only be used as
a source address during initial startup. Once a computer learns its IP address, the
machine must not use all 0s as a source.

5.21.9 IPv6 Multicast And Anycast Addresses

In theory, the choice between multicast and broadcast is irrelevant because one can
be simulated with the other. That is, broadcasting and multicasting are duals of one
another that provide the same functionality. To understand why, consider how to simu-
late one with the other. If broadcast is available, a packet can be delivered to a group
by broadcasting to all machines and arranging for software on each machine to decide
whether to accept or discard the incoming packet. If multicast is available, a packet can
be delivered to all machines by arranging for all machines to listen to the all nodes mul-
ticast group.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 5.21 Special Addresses 93

all 0s

all 1s

net all 1s

net all 0s

net subnet all 1s

127 anything (often 1)

14 multicast group ID

Startup source address

Limited broadcast (local net)

Directed broadcast for net

Network address
Nonstandard directed broadcast

Subnet broadcast

Loopback

Multicast address

Figure 5.15 Summary of IPv4 special addresses.

Knowing that broadcasting and multicasting are theoretical duals of one another
does not help choose between them. IPv6 designers decided to avoid broadcast and use
only multicast. Therefore, IPv6 defines several reserved sets of multicast groups. For
example, if an IPv6 host wants to broadcast a packet that will reach routers on the local
network, the host sends the packet to the all routers multicast group. IPv6 also defines
an all hosts multicast group (the packet is delivered to all hosts on the local network)
and an all nodes multicast group (the packet is delivered to all hosts and all routers).

To understand why the designers of IPv6 chose multicasting as the central abstrac-
tion instead of broadcasting, consider applications instead of looking at the underlying
hardware. An application either needs to communicate with a single application or with
a group of applications. Direct communication is handled best via unicast; group com-
munication can be handled either by multicast or broadcast. In an Internet, group
membership is not related to (or restricted to) a single network — group members can
reside at arbitrary locations. Using broadcast for all group communication does not
scale across the global Internet, so multicast is the only option. Ironically, even efforts
to implement multicast on the global Internet have failed so far. Thus, little has been
accomplished by IPv6 multicast.

In addition to multicast, IPv6 introduces a new type of address known as an any-
cast address†. Anycast addressing is designed to handle server replication. A provider
can deploy a set of identical servers at arbitrary locations in the Internet. All servers in
the set must offer exactly the same service, and all are assigned the same anycast ad-
dress. Forwarding is set up so that a packet sent to the anycast address goes to the
nearest server.

†Anycast addresses were originally known as cluster addresses.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

94 Internet Addressing Chap. 5

5.21.10 IPv6 Link-Local Addresses

IPv6 defines a set of prefixes for unicast addresses that are not globally valid. In-
stead, the prefixes are said to be locally scoped or to have link-local scope. That is,
packets sent to the addresses are restricted to travel across a single network. The stan-
dard defines any IPv6 address that begins with the 10-bit binary prefix:

1111 1110 10

to be a link-local address. For example, when a computer boots, the computer forms an
IPv6 address by combining the link-local prefix with an interface MAC address as
described above.

Routers honor link-local scoping rules. A router can respond to a link-local packet
sent across a local network, but a router never forwards a packet that contains a link-
local address outside the specified scope (i.e., never off the local network).

Link-local addresses provide a way for a computer to talk to its neighbors (e.g., at
startup) without danger of packets being forwarded across the Internet. We will see, for
example, that an IPv6 node uses a link-local address at startup to discover its neighbors,
including the address of a router. Computers connected to an isolated network (i.e., a
network that does not have routers attached) can use link-local addresses to communi-
cate.

5.22 Weaknesses In Internet Addressing

Embedding network information in an internet address does have some disadvan-
tages. The most obvious disadvantage is that addresses refer to network connections,
not to the host computer:

If a host computer moves from one network to another, its internet ad-
dress must change.

IPv6 tries to alleviate the problem by making it easier to change an address. How-
ever, the basic problem remains. Chapter 18 discusses how the addressing scheme
makes mobility difficult.

A weakness of the IPv4 scheme arises from early binding — once a prefix size is
chosen, the maximum number of hosts on the network is fixed. If the network grows
beyond the original bound, a new prefix must be selected and all hosts on the network
must be renumbered. While renumbering may seem like a minor problem, changing
network addresses can be incredibly time-consuming and difficult to debug. IPv6
solves the problem of network growth by allocating an absurd number of bits (64) to a
suffix that identifies a host (or to be precise, a network interface).

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 5.22 Weaknesses In Internet Addressing 95

The most important flaw in the internet addressing scheme will become apparent
when we examine forwarding. However, its importance warrants a brief introduction
here. We have suggested that forwarding will be based on destination Internet ad-
dresses. Specifically, a router will use a prefix of the address that identifies a destina-
tion network. Now consider a host that has two network connections. We know that
such a host must have two IP addresses, one for each interface. The following is true:

Because forwarding uses the network portion of the IP address, the
path taken by packets traveling to a host with multiple IP addresses
depends on the address used.

The implications are surprising. Humans think of each host as a single entity and want
to use a single name. They are often surprised to find that they must learn more than
one name and even more surprised to find that packets sent using multiple names can
behave differently.

Another surprising consequence of the internet addressing scheme is that merely
knowing one IP address for a destination may not be sufficient. If a network is down, it
may be impossible to reach the destination using a specific address.

To understand, consider the example in Figure 5.16.

NETWORK 1

NETWORK 2

R Host A Host B

I1 I2 I3

I4 I5

Figure 5.16 An example of two networks with connections to a router, R,
conventional host, A, and a multi-homed host, B.

In the figure, hosts A and B both attach to network 1. Thus, we would normally
expect A to send to B’s address on network 1. Suppose, however, that B’s connection
to network 1 breaks (i.e., interface I3 becomes disconnected). If A tries to use B’s net-
work 1 address (i.e., the address for interface I3, A will conclude that B is down because
no packets go through. Surprisingly, if A sends to the address for interface I5, packets
will be forwarded through router R, and will reach B. That is, an alternate path exists
from A to B, but the path will not be used unless the alternate address is specified. We
will discuss the problem in later chapters when we consider forwarding and name bind-
ing.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

96 Internet Addressing Chap. 5

5.23 Internet Address Assignment And Delegation Of Authority

Each network prefix used in the global Internet must be unique. To ensure unique-
ness, all prefixes are assigned by a central authority. Originally, the Internet Assigned
Numbers Authority (IANA) had control over numbers assigned, and set the policy.
From the time the Internet began until the fall of 1998, a single individual, the late Jon
Postel, ran the IANA and assigned addresses. In late 1998, after Jon’s untimely death, a
new organization was created to handle address assignment. Named the Internet Cor-
poration for Assigned Names and Numbers (ICANN), the organization sets policy and
assigns values for names and other constants used in protocols as well as addresses.

Most sites that need an Internet prefix never interact with the central authority
directly. Instead, an organization usually contracts with a local Internet Service Provid-
er (ISP). In addition to providing physical network connections, ISPs obtain a valid ad-
dress prefix for each of their customers’ networks. Many local ISPs are, in fact, custo-
mers of larger ISPs — when a customer requests an address prefix, the local ISP merely
obtains a prefix from a larger ISP. Thus, only the largest ISPs need to contact one of
the regional address registries that ICANN has authorized to administer blocks of ad-
dresses (ARIN, RIPE, APNIC, LACNIC, or AFRINIC).

Note how delegation authority passes down the ISP hierarchy as addresses are as-
signed. By giving a block of addresses to a regional registry, ICANN delegates authori-
ty for their assignment. When it gives a subblock to a major ISP, a registry delegates
authority for assignment. At the lowest level, when an ISP gives part of its allocation
to an organization, the ISP grants the organization authority to subdivide the allocation
within the organization. The point is that when a block of addresses is allocated down
the hierarchy, the recipient receives authority to subdivide the block further.

5.24 An Example IPv4 Address Assignment

To clarify the IPv4 addressing scheme, consider an example of two networks at a
site. Figure 5.17 shows the conceptual architecture: two networks connected to an ISP.

The example shows three networks and the classless network numbers they have
been assigned. The Internet Service Provider’s network has been assigned 9.0.0.0 /8 .
An Ethernet at the site has been assigned 128.10.0.0 / 16 , and a Wi-Fi network at the
site has been assigned 128.210.0.0 /16 .

Figure 5.18 shows the same networks with host computers attached to the networks
and an Internet address assigned to each network connection. The figure shows three
hosts which are labeled Merlin, Lancelot, and Guenevere. The figure also shows two
routers: R1 connects the Ethernet and Wi-Fi networks, and R2 connects the site to an
ISP.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 5.24 An Example IPv4 Address Assignment 97

R1 R2

ETHERNET
128.10.0.0 / 16

WI-FI
NETWORK

128.210.0.0 / 16

ISP
9.0.0.0 / 8

routers

Figure 5.17 Example architecture of a site with IPv4 address prefixes as-
signed to two networks.

Host Merlin has connections to both the Ethernet and the Wi-Fi network, so it can
reach destinations on either network directly. The distinction between a router (e.g., R1)
and a multi-homed host (e.g., Merlin) arises from the configuration: a router is config-
ured to forward packets between the two networks; a host can use either network, but
does not forward packets.

R1 R2

ETHERNET
128.10.0.0 / 16

WI-FI
NETWORK

128.210.0.0 / 16

ISP
9.0.0.0 / 8

Merlin Lancelot Guenevere

128.10.0.3 128.10.0.26 128.10.0.8

128.210.0.50

128.10.0.6 128.10.0.250

9.0.0.76

128.210.0.3

Figure 5.18 The example network from Figure 5.17 with IPv4 addresses as-
signed to hosts and routers.

As the figure shows, an IP address is assigned to each network interface. Lancelot,
which connects only to the Ethernet, has been assigned 128.10.0.26 as its only IP ad-
dress. Because it is a dual-homed host, Merlin has been assigned address 128.10.0.3 for
its connection to the Ethernet and 128.210.0.3 for its connection to the Wi-Fi network.
Whoever made the address assignment chose the same value for the host number in
each address. Router R1 also has two addresses: 128.10.0.6 and 128.210.0.50. Note
that the host portion of the two addresses are unrelated. IP protocols do not care wheth-
er any of the bytes in the dotted decimal form of a computer’s addresses are the same or
different. However, network technicians, managers, and administrators need to enter

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

98 Internet Addressing Chap. 5

addresses for maintenance, testing, and debugging. Choosing to make all of a
machine’s addresses end with the same value makes it easier for humans to remember
or guess the address of a particular interface.

5.25 Summary

Each computer in a TCP/IP internet is assigned a unique binary address called an
Internet Protocol address or IP address. IPv4 uses 32-bit addresses which are parti-
tioned into two main pieces: a prefix identifies the network to which the computer at-
taches, and the suffix provides a unique identifier for a computer on that network. The
original IPv4 addressing scheme is known as classful; a prefix belongs to one of three
primary classes. Later variations extended the IPv4 addressing mechanism with subnet
addressing and classless addressing. Classless IPv4 addressing uses a bit mask to speci-
fy how many bits correspond to a prefix.

To make addresses easier for humans to understand, syntactic forms have been in-
vented. IPv4 addresses are written in dotted decimal notation in which each octet is
written in decimal, with the values separated by decimal points. IPv6 addresses are
written in colon hex notation, with octets represented in hexadecimal separated by
colons.

IP addresses refer to network connections rather than individual hosts. Therefore,
a router or multihomed host has multiple IP addresses.

Both IPv4 and IPv6 include special addresses. IPv4 permits network-specific,
subnet-specific, and local broadcast as well as multicast. IPv6 has link-local addresses
and anycast as well as multicast. A set of IPv4 prefixes has been reserved for use on
private intranets.

EXERCISES

5.1 How many class A, B, and C networks can exist? How many hosts can a network in each
class have? Be careful to allow for broadcast as well as class D and E addresses.

5.2 If your site uses IPv4, find out what size address mask is used. How many hosts does it
permit your site to have?

5.3 Does your site permit IPv4 directed broadcast packets? (Think of a way to test by using
ping.)

5.4 If your site uses IPv6, try sending a ping to the all-nodes multicast address. How many
responses are received?

5.5 If your site uses IPv6, find out when IPv6 was first deployed.
5.6 What is the chief difference between the IP addressing scheme and the U.S. telephone

numbering scheme?

Sudha Madhuri Kanupuru

Exercises 99

5.7 The address registries around the world cooperate to hand out blocks of IP addresses. Find
out how they ensure no ISP is given addresses that overlap with those given to another ISP.

5.8 How many IPv6 addresses would be needed to assign a unique address to every house in
your country? The world? Is the IPv6 address space sufficient?

5.9 Suppose each person on the planet had a smart phone, laptop computer, and ten other de-
vices that each had an IPv6 address. What percentage of the IPv6 address space would be
required?

Chapter Contents
6.1 Introduction, 101
6.2 The Address Resolution Problem, 101
6.3 Two Types Of Hardware Addresses, 102
6.4 Resolution Through Direct Mapping, 102
6.5 Resolution In A Direct-Mapped Network, 103
6.6 IPv4 Address Resolution Through Dynamic Binding, 104
6.7 The ARP Cache, 105
6.8 ARP Cache Timeout, 106
6.9 ARP Refinements, 106
6.10 Relationship Of ARP To Other Protocols, 108
6.11 ARP Implementation, 108
6.12 ARP Encapsulation And Identification, 110
6.13 ARP Message Format, 110
6.14 Automatic ARP Cache Revalidation, 112
6.15 Reverse Address Resolution (RARP), 112
6.16 ARP Caches In Layer 3 Switches, 113
6.17 Proxy ARP, 114
6.18 IPv6 Neighbor Discovery, 115
6.19 Summary, 116

6

Mapping Internet Addresses
To Physical Addresses
(ARP)

6.1 Introduction

The previous chapter describes the IPv4 and IPv6 addressing schemes and states
that an internet behaves like a virtual network, using only the assigned addresses when
sending and receiving packets. Chapter 2 reviews several network hardware technol-
ogies, and notes that two machines on a given physical network can communicate only
if they know each other’s physical network address. What we have not mentioned is
how a host or a router maps an IP address to the correct physical address when it needs
to send a packet across a physical network. This chapter considers the mapping, show-
ing how it is implemented in IPv4 and IPv6.

6.2 The Address Resolution Problem

Consider two machines A and B that connect to the same physical network. Each
machine has an assigned IP address, IA and IB, and a hardware (MAC) address, HA and
HB. Ultimately, communication must be carried out by sending frames across the
underlying network using the hardware addresses that the network equipment recog-
nizes. Our goal, however, is to allow applications and higher-level protocols to work
only with Internet addresses. That is, we want to devise software that hides the

101

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

102 Mapping Internet Addresses To Physical Addresses (ARP) Chap. 6

hardware addresses at a low level of the protocol stack. For example, assume machine
A needs to send an IP packet to machine B across the network to which they both at-
tach, but A only knows B’s Internet address, IB. The question arises: how does A map
B’s Internet address to B’s hardware address, HB? There are two answers, IPv4 usually
uses one and IPv6 usually uses the other. We will consider each.

It is important to note that address mapping must be performed at each step along
a path from the original source to the ultimate destination. In particular, two cases
arise. First, at the last step of delivering an IP packet, the packet must be sent across a
physical network to the ultimate destination. The machine sending the datagram (usual-
ly a router) must map the final destination’s Internet address to the destination’s
hardware address before transmission is possible. Second, at any point along the path
from the source to the destination other than the final step, the packet must be sent to an
intermediate router. We will see that the protocol software always uses an IP address to
identify the next router along the path. Thus, a sender must map the router’s Internet
address to a hardware address.

The problem of mapping high-level addresses to physical addresses is known as
the address resolution problem, and has been solved in several ways. Some protocol
suites keep tables in each machine that contain pairs of high-level and physical ad-
dresses. Other protocols solve the problem by embedding a hardware address in high-
level addresses. Using either approach exclusively makes high-level addressing awk-
ward at best. This chapter discusses two techniques for address resolution used by
TCP/IP protocols, and shows when each is appropriate.

6.3 Two Types Of Hardware Addresses

There are two basic types of hardware addresses: those that are larger than the host
portion of an IP address and those that are smaller. Because it dedicates 64 bits to the
host portion of an address, IPv6 accommodates all types of hardware addresses. There-
fore, the distinction is only important for IPv4. We will start by considering the tech-
nique used for IPv6 and for IPv4 when addresses are small enough. We will then con-
sider a technique that IPv4 uses when addresses are large.

6.4 Resolution Through Direct Mapping

IPv6 uses a technique known as direct mapping. The basic idea is straightforward:
use a computer’s hardware address as the host portion of the computer’s Internet ad-
dress. IPv4 can use direct mapping when addresses are sufficiently small. Figure 6.1
illustrates the concept.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 6.4 Resolution Through Direct Mapping 103

MAC address

IP address

network prefix host suffix

Figure 6.1 An illustration of a direct mapping scheme in which a computer’s
hardware address is embedded in the computer’s IP address.

To see how direct mapping works with IPv4, it is important to know that some
hardware uses small, configurable integers as hardware addresses. Whenever a new
computer is added to such a network, the system administrator chooses a hardware ad-
dress and configures the computer’s network interface card. The only important rule is
that no two computers can have the same address. To make assignment easy and safe,
an administrator typically assigns addresses sequentially: the first computer connected
to the network is assigned address 1, the second computer is assigned address 2, and so
on.

As long as a manager has the freedom to choose both an IP address and a hardware
address, the pair of addresses can be selected such that the hardware address and the
host portion of the IP address are identical. IPv6 makes such an assignment trivial —
the hardware address always fits into the area of the address used for an interface ID.
For IPv4, consider an example where a network has been assigned the IPv4 prefix:

192.5.48.0 / 24

The network prefix occupies the first three octets, leaving one octet for the host ID.
The first computer on the network is assigned hardware address 1 and IP address
192.5.48.1, the second computer is assigned hardware address 2 and IP address
192.5.48.2, and so on. That is, the network is configured such that the low-order octet
of each IP address is the same as the computer’s hardware address. Of course, the ex-
ample only works if the hardware addresses are between 1 and 254.

6.5 Resolution In A Direct-Mapped Network

If a computer’s IP address includes the computer’s hardware address, address reso-
lution is trivial. Given an IP address, the computer’s hardware address can be extracted
from the host portion. In the example above, if protocol software is given the IP ad-
dress of a computer on the network (e.g., 192.5.48.3), the corresponding hardware ad-
dress can be computed merely by extracting the low-order octet, 3. As the name direct
mapping implies, the mapping can be performed without reference to external data. In

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

104 Mapping Internet Addresses To Physical Addresses (ARP) Chap. 6

fact, the mapping is extremely efficient because it only requires a few machine instruc-
tions. Direct mapping has the advantage that new computers can be added to a network
without changing existing assignments and without propagating new information to ex-
isting computers.

Mathematically, direct mapping means selecting a function f that maps IP ad-
dresses to physical addresses. Resolving an IP address IA means computing

HA = f (IA)

Although it is possible to choose mappings other than the one described in the example
above, we want the computation of f to be efficient, and we want choices to be easy for
a human to understand. Thus, a scheme is preferred in which the relationship between
the IP address and hardware address is obvious.

6.6 IPv4 Address Resolution Through Dynamic Binding

Although it is efficient, direct mapping cannot be used with IPv4 if a hardware ad-
dresses is larger than an IPv4 address. Specifically, an Ethernet MAC address cannot
be directly mapped into an IPv4 address because a MAC address is 48 bits long and an
IPv4 address is only 32 bits long. Furthermore, because it is assigned when a device is
manufactured, an Ethernet MAC address cannot be changed.

Designers of TCP/IP protocols found a creative solution to the address resolution
problem for networks like Ethernet that have broadcast capability. The solution allows
new hosts or routers to be added to a network without recompiling code, and does not
require maintenance of a centralized database. To avoid maintaining a centralized data-
base, the designers chose to use a low-level protocol that resolves addresses dynamical-
ly. Named the Address Resolution Protocol (ARP), the protocol provides a mechanism
that is reasonably efficient and does not require an administrator to configure tables
manually.

The idea behind dynamic resolution with ARP is straightforward: when it wants to
resolve IP address IB, a host broadcasts an ARP request packet that asks the host with IP
address IB to respond with its hardware address HB. All hosts, including B, receive the
request, but only host B recognizes its IP address and sends a reply that contains its
hardware address. ARP is only used when a host needs to send an IP packet. There-
fore, when it receives a reply to its request, the host that made the request will use the
information to send an IP packet directly to B. We can summarize:

The Address Resolution Protocol, ARP, allows a host to find the phy-
sical address of a target host on the same physical network, given
only the target’s IP address.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 6.6 IPv4 Address Resolution Through Dynamic Binding 105

Figure 6.2 illustrates the ARP protocol by showing host A broadcasting a request
for B, and B responding. Note that although the request is broadcast; the reply is not.

X B YA

A X YB

(a)

(b)

Figure 6.2 Illustration of ARP where (a) host A broadcasts an ARP request
containing IB, and (b) host B responds with an ARP reply that
specifies its hardware address HB.

6.7 The ARP Cache

It may seem silly that before A can send an Internet packet to B it must send a
broadcast that consumes time on every host. Or it may seem even sillier that A broad-
casts the question, “how can I reach you?,” instead of just broadcasting the packet it
wants to deliver. But there is an important reason for the exchange. Broadcasting is far
too expensive to be used every time one machine needs to transmit a packet to another,
because every machine on the network must receive and process the broadcast packet.
So, ARP software in A uses an optimization: it records the answer and reuses the infor-
mation for successive transmissions.

The standard specifies that ARP software must maintain a cache of recently ac-
quired IP-to-hardware address bindings. That is, whenever a computer sends an ARP
request and receives an ARP reply, it saves the IP address and corresponding hardware
address information in its cache temporarily. Doing so reduces overall communication
costs dramatically. When transmitting a packet, a computer always looks in its cache
before sending an ARP request. If it finds the desired binding in its ARP cache, the
computer does not need to broadcast a request. Thus, when two computers on a net-
work communicate, they begin with an ARP request and response, and then repeatedly

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

106 Mapping Internet Addresses To Physical Addresses (ARP) Chap. 6

transfer packets without using ARP for each packet. Experience shows that because
most network communication involves more than one packet transfer, even a small
cache is worthwhile.

6.8 ARP Cache Timeout

An ARP cache provides an example of soft state, a technique commonly used in
network protocols. The name describes a situation in which information can become
stale without warning. In the case of ARP, consider two computers, A and B, both con-
nected to an Ethernet. Assume A has sent an ARP request, and B has replied. Further
assume that after the exchange B crashes. Computer A will not receive any notification
of the crash. Moreover, because it already has address binding information for B in its
ARP cache, computer A will continue to send packets to B. The Ethernet hardware pro-
vides no indication that B is not online because Ethernet does not have guaranteed
delivery. Thus, A has no way of knowing when information in its ARP cache has be-
come incorrect.

In a system that uses soft state, responsibility for correctness lies with the owner of
the cache. Typically, protocols that implement soft state use timers. A timer is set
when information is added to the cache; when the timer expires, the information is
deleted. For example, whenever address binding information is placed in an ARP
cache, the protocol requires a timer to be set, with a typical timeout being 20 minutes.
When the timer expires, the information must be removed. After removal there are two
possibilities. If no further packets are sent to the destination, nothing occurs. If a pack-
et must be sent to the destination and there is no binding present in the cache, the com-
puter follows the normal procedure of broadcasting an ARP request and obtaining the
binding. If the destination is still reachable, the new binding will be placed in the ARP
cache. If not, the sender will discover that the destination is not reachable.

The use of soft state in ARP has advantages and disadvantages. The chief advan-
tage arises from autonomy. First, a computer can determine when information in its
ARP cache should be revalidated independent of other computers. Second, a sender
does not need successful communication with the receiver or a third party to determine
that a binding has become invalid; if a target does not respond to an ARP request, the
sender will declare the target to be down. Third, the scheme does not rely on network
hardware to provide reliable transfer or inform a computer whether another computer is
online. The chief disadvantage of soft state arises from delay — if the timer interval is
N minutes, a sender may not detect that a receiver has crashed until N minutes elapse.

6.9 ARP Refinements

Several refinements of ARP have been included in the protocol that reduce the
amount of network traffic and automate recovery after a hardware address changes:

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 6.9 ARP Refinements 107

First, observe that host A only broadcasts an ARP request for B when it has
an Internet packet ready to send to B. Because most Internet protocols in-
volve a two-way exchange, there is a high probability that host B will send
an Internet packet back to A in the near future. To anticipate B’s need and
avoid extra network traffic, ARP requires A to include its IP-to-hardware ad-
dress binding when sending B a request. B extracts A’s binding from the re-
quest and saves the binding in its ARP cache. Thus, when sending an Inter-
net packet to A, B will find the binding is already in its cache.

Second, notice that because requests are broadcast, all machines on the net-
work receive a copy of the request. The protocol specifies that each
machine extract the sender’s IP-to-hardware address binding from the re-
quest, and use the information to update the binding in their cache. For ex-
ample, if A broadcasts a request, machines on the network will update their
information for A. Machines that do not already have an entry for A in their
cache do not add A’s information; the standard only specifies updating the
hardware address on existing entries. The idea is that if a machine has been
communicating with A, its cache should have the latest information, but if a
machine has not been communicating with A, its cache should not be
clogged with a useless entry.

Third, when a computer has its host interface replaced, (e.g., because the
hardware has failed), its physical address changes. Other computers on the
net that have stored a binding in their ARP cache need to be informed so
they can change the entry. The computer can notify others of a new address
by broadcasting a gratuitous ARP request. Changing a MAC address re-
quires replacing a NIC, which occurs when a computer is down. Because a
computer does not know whether its MAC address has changed, most com-
puters broadcast a gratuitous ARP during system initialization. Gratuitous
ARP has a secondary purpose: to see if any other machine is using the same
IP address. The booting machine sends an ARP request for its own IP ad-
dress; if it receives a reply, there must be a misconfiguration or a security
problem where a computer is intentionally spoofing.

The following summarizes the key idea of automatic cache updates.

The sender’s IP-to-hardware address binding is included in
every ARP broadcast; receivers use the information to update
their address binding information. The intended recipient uses
the information to create a new cache entry in anticipation of
a reply.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

108 Mapping Internet Addresses To Physical Addresses (ARP) Chap. 6

6.10 Relationship Of ARP To Other Protocols

As we have seen, because it uses direct mapping, IPv6 does not need ARP.
Thus, ARP merely provides one possible mechanism to map an IP address to a
hardware address. Interestingly, ARP and other address binding mechanisms
would be completely unnecessary if we could redesign all network hardware to
recognize IP addresses. Thus, from our point of view, address binding is only
needed to hide the underlying hardware addresses. Conceptually, we impose our
new IP addressing scheme on top of whatever low-level address mechanism the
hardware uses. Therefore, we view ARP as a low-level protocol associated with
the hardware rather than a key part of the TCP/IP protocols which run above the
hardware. The idea can be summarized:

ARP is a low-level protocol that hides the underlying address-
ing used by network hardware, permitting us to assign an ar-
bitrary IP address to every machine. We think of ARP as as-
sociated with the physical network system rather than as part
of the Internet protocols.

6.11 ARP Implementation

Functionally, ARP software is divided into two parts. The first part pro-
vides address resolution for outgoing packets: given the IP address of a comput-
er on the network, it finds the hardware address of the computer. If an address
is not in the cache, it sends a request. The second part handles incoming ARP
packets. It updates the cache, answers requests from other computers on the
network, and checks whether a reply matches an outstanding request.

Address resolution for outgoing packets seems straightforward, but small
details complicate an implementation. Given the IP address of a computer to
which a packet must be sent, the software consults its ARP cache to see if the
cache already contains the mapping from the IP address to a hardware address.
If the answer is found, the software extracts the hardware address, fills in the
destination address on the outgoing frame, and sends the frame. If the mapping
is not in cache, two things must happen. First, the host must store the outgoing
packet so it can be sent once the address has been resolved. Second, ARP
software must broadcast an ARP request.

Coordination between the part of ARP that sends requests and the part that
receives replies can become complicated. If a target machine is down or too
busy to accept the request, no reply will be received (or the reply may be de-
layed). Furthermore, because Ethernet is a best-effort delivery system, the ini-
tial ARP broadcast request or the reply can be lost. Therefore, a sender should
retransmit the request at least once, which means a timer must be used and the
input side must cancel the timer if a reply arrives. More important, the question

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 6.11 ARP Implementation 109

arises: while ARP is resolving a given IP address, what happens if another ap-
plication attempts to send to the same address? ARP may choose to create a
queue of outgoing packets, or simply may choose to discard successive packets.
In any case, the key design decisions involve concurrent access: can other appli-
cations proceed while ARP resolves an address? If another application attempts
to send to the same address, should the application be blocked or should ARP
merely create a queue of outgoing packets? How can ARP software be designed
to prevent it from unnecessarily broadcasting a second request to a computer?

One final detail distinguishes ARP cache management from the manage-
ment of a typical cache. In a typical cache, timeouts are used to eliminate inac-
tive entries. Thus, the timestamp on an entry is reset each time the entry is
used. When space must be reclaimed, the entry with the oldest timestamp is re-
moved from the cache. For an ARP cache, however, the time at which an entry
was last referenced is irrelevant — ARP can continue to use the entry even if
the destination computer has crashed. Thus, it is important to timeout an entry
even if the entry is still being used.

We said that the second part of the ARP software handles ARP packets that
arrive from the network. When an ARP packet arrives, the software first ex-
tracts the sender’s IP address and hardware address pair, and examines the local
cache to see if it already has an entry for the sender. If a cache entry exists for
the given IP address, the handler updates that entry by overwriting the physical
address with the physical address obtained from the packet. After updating the
cache, a receiver processes the rest of the ARP packet.

To process the rest of an ARP packet, the receiver checks the operation. If
the incoming packet is an ARP request, the receiving machine checks to see
whether it is the target of the request (i.e., some other machine has broadcast a
request and “I” am the target of the request). If so, the ARP software adds the
sender’s address pair to its cache (if the pair is not already present), forms a re-
ply, and sends the reply directly back to the requester. If the IP address men-
tioned in a request does not match the local IP address (i.e., the request is for
another computer), the incoming ARP packet is discarded.

If the incoming packet is an ARP reply, the receiver tries to match the re-
ply with a previously issued request. If the reply does not match a request, the
packet is discarded. Otherwise, the address binding is known (the entry in the
cache will already have been updated in the first step above). Therefore, the
ARP software examines the queue of outgoing IP packets (packets that have
been waiting for the response). ARP software places each IP packet in a frame,
uses the address binding information from the cache to fill in the destination ad-
dress in the frame, and sends the packet.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

110 Mapping Internet Addresses To Physical Addresses (ARP) Chap. 6

6.12 ARP Encapsulation And Identification

When ARP messages travel from one computer to another, they must be
carried in a network frame. As Figure 6.3 illustrates, an ARP message is carried
in the payload area of a frame (i.e., is treated as data).

FRAME
HEADER FRAME PAYLOAD AREA

ARP MESSAGE

Figure 6.3 An ARP message encapsulated in a physical network frame.

To identify the frame as carrying an ARP message, the sender assigns a special
value to the type field in the frame header. When a frame arrives at a computer, the
network software uses the frame type to determine its contents. In most technologies, a
single type value is used for all frames that carry an ARP message — network software
in the receiver must further examine the ARP message to distinguish between ARP re-
quests and ARP replies. For example, on an Ethernet, frames carrying ARP messages
have a type field of 0x0806, where the prefix 0x indicates a hexadecimal value. The
frame type for ARP has been standardized by IEEE (which owns the Ethernet stan-
dards). Thus, when ARP travels over any Ethernet, the type is always 0x0806. Other
hardware technologies may use other values.

6.13 ARP Message Format

Unlike most of the TCP/IP protocols, an ARP message does not have a fixed-
format header. Instead, to allow ARP to be used on a variety of network technologies,
the designers chose to make the length of hardware address fields depend on the ad-
dresses used by the underlying network. In fact, the designers did not restrict ARP to
IPv4 addresses. Instead, the size of protocol address fields in an ARP message depends
on the type of high-level protocol address being used. Ironically, with only a few ex-
ceptions such as research experiments, ARP is always used with 32-bit IPv4 protocol
addresses and 48-bit Ethernet hardware addresses. The point is:

The design allows ARP to map an arbitrary high-level protocol ad-
dress to an arbitrary network hardware address. In practice, ARP is
only used to map 32-bit IPv4 addresses to 48-bit Ethernet addresses.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 6.13 ARP Message Format 111

The example in Figure 6.4 shows the format of a 28-octet ARP message when
used with an IPv4 protocol address and an Ethernet hardware address. The protocol ad-
dress is 32 bits (4 octets) long, and the hardware address is 48-bits (6 octets) long.

0 8 16 24 31

HARDWARE TYPE PROTOCOL TYPE

HLEN PLEN OPERATION

SENDER HARD (octets 0-3)

SENDER HARD (octets 4-5) SENDER IPv4 (octets 0-1)

SENDER IPv4 (octets 2-3) TARGET HARD (octets 0-1)

TARGET HARD (octets 2-5)

TARGET IPv4 (octets 0-3)

Figure 6.4 The ARP message format when used to map an IPv4 address to
an Ethernet address.

The figure shows an ARP message with 4 octets per line, a format that is standard
throughout this text and the TCP/IP standards. Unfortunately, the 48-bit Ethernet ad-
dress means that fields in the ARP message do not all align neatly on 32-bit boundaries.
Thus, the diagram can be difficult to read. For example, the sender’s hardware address,
labeled SENDER HARD, occupies 6 contiguous octets, so it spans two lines in the di-
agram, the third line and half of the fourth line.

Field HARDWARE TYPE specifies a hardware interface type for which the sender
seeks an answer; it contains the value 1 to specify that the hardware address is an Ether-
net MAC address. Similarly, field PROTOCOL TYPE specifies the type of high-level
protocol address the sender has supplied; it contains 0x0800 (hexadecimal) to specify
that the protocol address is IPv4. The ARP message format makes it possible for a
computer to interpret any ARP message, even if the computer does not recognize the
protocol address type or hardware address type. Interpretation is possible because the
fixed fields near the beginning of a message labeled HLEN and PLEN specify the length
of a hardware address and the length of a protocol address.

Field OPERATION specifies an ARP request (1), ARP response (2), RARP† re-
quest (3), or RARP response (4). When sending an ARP packet, a sender places its
hardware address in fields SENDER HARD and its IPv4 address, if known, in SENDER
IPv4.

Fields TARGET HARD and TARGET IPv4 give the hardware address and protocol
address of the target machine, if known. For a response message (i.e., a reply), the tar-
get information can be extracted from the request message. When sending an ARP re-
quest, a sender knows the target’s IPv4 address, but does not know the target’s

†A later section describes RARP, a protocol that uses the same message format as ARP.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

112 Mapping Internet Addresses To Physical Addresses (ARP) Chap. 6

hardware address. Therefore, in a request, the target hardware address field contains
zeroes. To summarize:

An ARP reply carries the IPv4 address and hardware address of the
original requester as well as the IPv4 address and hardware address
of the sender. In a request, the target hardware address is set to zero
because it is unknown.

6.14 Automatic ARP Cache Revalidation

It is possible to use a technique that avoids introducing jitter (i.e., variance in
packet transfer times). To understand how jitter can occur, think of one computer send-
ing a steady stream of packets to another computer. Whenever the sender’s ARP timer
expires, ARP will remove the cache entry. The next outgoing packet will trigger ARP.
The packet will be delayed until ARP can send a request and receive a response. The
delay lasts approximately twice as long as it takes to transmit a packet. Although such
delays may seem negligible, they do introduce jitter, especially for real-time data such
as a voice phone call.

The key to avoiding jitter arises from early revalidation. That is, the implementa-
tion associates two counters with each entry in the ARP cache: the traditional timer and
a revalidation timer. The revalidation timer is set to a slightly smaller value than the
traditional timer. When the revalidation timer expires, the software examines the entry.
If datagrams have recently used the entry, the software sends an ARP request and con-
tinues to use the entry. When it receives a reply, both timers are reset. Of course, if no
reply arrives, the traditional timer will expire, and ARP will again try to obtain a
response. In normal cases, however, revalidation will reset the cache timer without in-
terrupting the flow of packets.

6.15 Reverse Address Resolution (RARP)

We saw above that the operation field in an ARP packet can specify a Reverse Ad-
dress Resolution (RARP) message. RARP was once an essential protocol used to
bootstrap systems that did not have stable storage (i.e., diskless devices). The paradigm
is straightforward: at startup, a system broadcasts a RARP request to obtain an IP ad-
dress. The request contains the sender’s Ethernet address. A server on the network re-
ceives the request, looks up the Ethernet address in a database, extracts the correspond-
ing IPv4 address from the database, and sends a RARP reply with the information.
Once the reply arrives, the diskless system continues to boot, and uses the IPv4 address
for all communication. Interestingly, RARP uses the same packet format as ARP†.
The only difference is that RARP uses Ethernet type 0x8035.

†The ARP packet format can be found on page 111.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 6.15 Reverse Address Resolution (RARP) 113

RARP is no longer important for diskless devices, but has an interesting use in
cloud data centers. In a data center, when a Virtual Machine migrates from one PC to
another, the VM retains the same Ethernet address it was using before. To let the
underlying Ethernet switch know that the move has occurred, the VM must send a
frame (the source address in the frame will cause the switch to update its tables).
Which frame should a VM send? Apparently, RARP was chosen because it has the ad-
vantage of updating the MAC address table in the switch without causing further pro-
cessing. In fact, after updating the address table, the switch will simply drop the RARP
packet.

6.16 ARP Caches In Layer 3 Switches

An Ethernet switch is classified as a Layer 3 switch if the switch understands IP
packets and can examine IP headers when deciding how to process a packet. Some
Layer 3 switches have an unusual implementation of ARP that can be confusing to
someone who is trying to understand the protocol.

The implementation arises from a desire to reduce ARP traffic. To see why optim-
ization is helpful, think about the traffic generated by ARP. Suppose a switch has 192
ports that connect to computers. If each computer implements ARP cache timeouts, the
computer will periodically timeout cache entries and then broadcast an ARP request.
Even if the computer uses automatic revalidation, the switch will receive periodic
broadcasts that must be sent to all computers.

How can a switch reduce broadcast traffic to computers? We observe three things.
First, a switch can watch ARP traffic and keep a record of bindings between IP ad-
dresses and Ethernet addresses. Second, if it has the necessary information, a switch
can respond to an ARP request without broadcasting the request. Third, an Ethernet ad-
dress can only change if a computer is powered down, and a switch can tell whether a
computer has been powered down. Therefore, a switch can create its own cache of
ARP information and can answer requests. For example, if computer A sends an ARP
request for computer B, the switch can intercept the request, look in its cache, and
create an ARP reply as if the reply came from B.

For a production environment, the optimization described above works well. Com-
puter A appears to broadcast an ARP request for B, and A receives a valid reply. It
reduces extra traffic, and does not require any modifications to the software running on
the computers. For anyone testing network protocols, however, it can be confusing. A
computer broadcasts a request that is not received by any other computer on the net-
work! Furthermore, the computer that sent the request receives a phantom reply that
was never sent by the source!

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

114 Mapping Internet Addresses To Physical Addresses (ARP) Chap. 6

6.17 Proxy ARP

Intranets sometimes use a technique known as proxy ARP to implement a form of
security. We will first examine proxy ARP, and then see how it can be used.

Early in the history of the Internet a technique was developed that allowed a single
IPv4 prefix to be used across two networks. Originally called The ARP Hack, the tech-
nique became known by the more formal term proxy ARP. Proxy ARP relies on a com-
puter that has two network connections and runs special-purpose ARP software. Figure
6.5 shows an example configuration in which proxy ARP can be used.

P

Network 1

Network 2

H1 H2

H3 H4

R
to rest of
Internet

computer running proxy ARP

Figure 6.5 Illustration of two networks using proxy ARP.

In the figure, the computer labeled P runs proxy ARP software. Computer P has a
database that contains the IPv4 address and the Ethernet MAC address of each other
machine on network 1 and network 2. The router and all the other hosts run standard
ARP; they are unaware that proxy ARP is being used. More important, all the other
hosts and the router are configured as if they are on a single network.

To understand proxy ARP interaction, consider what happens when router R re-
ceives a packet from the Internet that is destined for the IPv4 address being used. Be-
fore it can deliver the incoming packet, R must use ARP to find the hardware address of
the computer. R broadcasts an ARP request. There are two cases to consider: the desti-
nation is on network 1 or the destination is on network 2. Consider the first case (e.g.,
suppose the destination is host H1). All machines on network 1 receive a copy of R’s
request. Computer P looks in its database, discovers that H1 is on network 1, and ig-
nores the request. Host H1 also receives a copy of the request and responds normally
(i.e., sends an ARP reply).

Now consider the second case where R broadcasts a request for a machine on net-
work 2 (e.g., host H4). ARP was only intended to be used on a single network, so
broadcasting for a computer on another network seems like a violation of the protocol.
However, R is behaving correctly because it does not know there are two networks. All
computers on network 1 will receive a copy of the broadcast, including P. Computer P
consults its database, discovers that H4 is on network 2, and sends an ARP reply that

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 6.17 Proxy ARP 115

specifies R’s Ethernet address as the hardware address. R will receive the reply, place it
in the ARP cache, and send an IP packet to P (because P has impersonated H4). When
it receives an Internet packet, P examines the destination address in the packet, and for-
wards the packet to H4.

Proxy ARP also handles impersonation and forwarding when a computer on net-
work 2 sends to a computer on network 1. For example, when H4 forms an Internet
packet and needs to send the packet to router R, H4 will broadcast an ARP request for
R. P will receive a copy of the request, consult its database, and send an ARP reply
that impersonates R.

How can proxy ARP be used for security? Proxy ARP can be used for a firewall
or on a VPN connection. The idea is that because a proxy ARP machine impersonates
machines on the second network, all packets must travel though the proxy ARP
machine where they can be checked. In Figure 6.4, for example, a site could place all
hosts on network 2 and put firewall software in machine P. Whenever a packet arrives
from the Internet, the packet will go through P (where the packet can be examined and
firewall can be rules applied) on its way to the destination host.

6.18 IPv6 Neighbor Discovery

IPv6 uses the term neighbor to describe another computer on the same network.
IPv6’s Neighbor Discovery Protocol (NDP) replaces ARP and allows a host to map
between an IPv6 address and a hardware address†. However, NDP includes many other
functions. It allows a host to find the set of routers on a network, determine whether a
given neighbor is still reachable, learn the network prefix being used, determine charac-
teristics of the network hardware (e.g., the maximum packet size), configure an address
for each interface and verify that no other host on the network is using the address, and
find the best router to use for a given destination.

Instead of creating a protocol analogous to ARP to handle neighbor discovery, the
designers of IPv6 chose to use ICMPv6‡. Thus, ICMPv6 includes messages that a
computer uses to find its neighbors at startup and to check the status of a neighbor
periodically.

A key difference between ARP and NDP arises from the way each handles the
status of neighbors. ARP uses a late-binding approach with soft state. That is, ARP
waits until a datagram must be sent to a neighbor before taking any action. After it per-
forms an exchange, ARP stores the binding in its cache, and then sends IP packets to
the neighbor without checking the neighbor’s status until the ARP cache timer expires.
The delay can last many minutes. NDP uses early binding and takes a proactive ap-
proach to state maintenance. Instead of waiting until a datagram must be sent, an IPv6
node uses NDP to discover neighbors at startup. Furthermore, an IPv6 node continually
checks the status of neighbors. Thus, transmission of an IPv6 datagram to a neighbor
can proceed without delay and does not involve broadcast.

†See Chapter 22 for a discussion of NDP.
‡See Chapter 9 for a discussion of ICMPv6.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

116 Mapping Internet Addresses To Physical Addresses (ARP) Chap. 6

6.19 Summary

Internet protocol software uses IP addresses. To send a packet across a network,
however, hardware addresses must be used. Therefore, protocol software must map the
Internet address of a computer to a hardware address. If hardware addresses are smaller
than IP addresses, a direct mapping can be established by having the machine’s
hardware address embedded in its IP address. Because IPv6 has large addresses, it al-
ways uses direct mapping. IPv4 uses dynamic mapping when the hardware address is
larger than the host portion of an IPv4 address. The Address Resolution Protocol
(ARP) performs dynamic address resolution, using only the low-level network commun-
ication system. ARP permits a computer to resolve addresses without using a database
of bindings and without requiring a manager to configure software.

To find the hardware address of another computer on the same network, a machine
broadcasts an ARP request. The request contains the IPv4 address of the target
machine. All machines on a network receive an ARP request, and only the target
machine responds. The ARP reply contains the sender’s IPv4 address and hardware ad-
dress. Replies are sent unicast; they are not broadcast.

To make ARP efficient, each machine caches IP-to-hardware address bindings.
Using a cache avoids unnecessary broadcast traffic; early revalidation can be used to
eliminate jitter.

An older protocol related to ARP, RARP, is being used in cloud data centers. The
proxy ARP technique can be used in security systems, such as a VPN or a firewall that
is transparent to routers and hosts. IPv6 has replaced ARP with a Neighbor Discovery
Protocol (NDP). Unlike ARP, NDP continually checks neighbor status to determine
whether a neighbor has remained reachable.

EXERCISES

6.1 Given a small set of hardware addresses (positive integers), can you find a function f and
an assignment of IP addresses such that f maps the IP addresses 1-to-1 onto the physical ad-
dresses and computing f is efficient? (Hint: look at the literature on perfect hashing.)

6.2 In what special cases does a host connected to an Ethernet not need to use ARP or an ARP
cache before transmitting an IP datagram? (Hint: what about multicast?)

6.3 One common algorithm for managing the ARP cache replaces the least recently used entry
when adding a new one. Under what circumstances can this algorithm produce unneces-
sary network traffic?

6.4 Should ARP software modify the cache even when it receives information without specifi-
cally requesting it? Why or why not?

6.5 Any implementation of ARP that uses a fixed-size cache can fail when used on a network
that has many hosts and heavy ARP traffic. Explain how.

6.6 ARP is often cited as a security weakness. Explain why.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Exercises 117

6.7 Suppose machine C receives an ARP request sent from A looking for target B, and suppose
C has the binding from IB to HB in its cache. Should C answer the request? Explain.

6.8 ARP can prebuild a cache for all possible hosts on an Ethernet by iterating through the set
of possible IP addresses and sending an ARP request for each. Is doing so a good idea?
Why or why not?

6.9 Should early revalidation send a request for all possible IP address on the local network, all
entries in the ARP cache, or only for destinations that have experienced traffic recently?
Explain.

6.10 How can a computer use ARP at boot time to find out if any other machine on the network
is impersonating it? What are the disadvantages of the scheme?

6.11 Explain how sending IPv4 packets to nonexistent addresses on a remote Ethernet can gen-
erate broadcast traffic on that network.

6.12 Suppose a given Ethernet switch connects 4095 hosts and a router. If 99% of all traffic is
sent between individual hosts and the router, does ARP or NDP incur more overhead?

6.13 Answer the previous question for the case where traffic is uniformly distributed among ran-
dom pairs of hosts.

Chapter Contents
7.1 Introduction, 119
7.2 A Virtual Network, 119
7.3 Internet Architecture And Philosophy, 120
7.4 Principles Behind The Structure, 120
7.5 Connectionless Delivery System Characteristics, 121
7.6 Purpose And Importance Of The Internet Protocol, 122
7.7 The IP Datagram, 122
7.8 Datagram Type Of Service And Differentiated Services, 127
7.9 Datagram Encapsulation, 129
7.10 Datagram Size, Network MTU, and Fragmentation, 130
7.11 Datagram Reassembly, 134
7.12 Header Fields Used For Datagram Reassembly, 135
7.13 Time To Live (IPv4) And Hop Limit (IPv6), 136
7.14 Optional IP Items, 137
7.15 Options Processing During Fragmentation, 141
7.16 Network Byte Order, 143
7.17 Summary, 144

7

Internet Protocol:
Connectionless Datagram
Delivery (IPv4, IPv6)

7.1 Introduction

Previous chapters review pieces of network hardware and software that make inter-
net communication possible, explaining the underlying network technologies and ad-
dress resolution. This chapter explains the fundamental principle of connectionless
delivery, and discusses how it is provided by the Internet Protocol (IP), which is one of
the two major protocols used in internetworking (TCP being the other). We will study
the format of packets used for both IPv4 and IPv6, and will see how such packets form
the basis for all internet communication. The next two chapters continue our examina-
tion of the Internet Protocol by discussing packet forwarding and error handling.

7.2 A Virtual Network

Chapter 3 discusses internet architecture in which routers connect multiple physical
networks. Looking at the architecture may be misleading, because the focus of internet
technology is on the abstraction that an internet provides to applications and users, not
on the underlying interconnection technology.

119

Sudha Madhuri Kanupuru

120 Internet Protocol: Connectionless Datagram Delivery (IPv4, IPv6) Chap. 7

Internet technology presents the abstraction of a single virtual net-
work that interconnects all hosts, and through which communication
is possible. The underlying architecture is both hidden and irrelevant.

In a sense, an internet is an abstraction of a large physical network. At the lowest level,
internet technology provides the same basic functionality as a physical network: it ac-
cepts packets and delivers them. Higher levels of internet software and network appli-
cations add most of the rich functionality that users perceive.

7.3 Internet Architecture And Philosophy

Conceptually, a TCP/IP internet provides three sets of services. Figure 7.1 lists the
three categories and illustrates dependencies among them.

APPLICATION SERVICES

RELIABLE TRANSPORT SERVICE

CONNECTIONLESS PACKET DELIVERY SERVICE

Figure 7.1 The three conceptual levels of internet services.

At the lowest level, a connectionless delivery service provides a foundation on
which everything rests. At the next level, a reliable transport service provides a
higher-level platform on which applications depend. We will explore each of the ser-
vices, understand the functionality they provide, the mechanisms they use, and the
specific protocols associated with them.

7.4 Principles Behind The Structure

Although we can associate protocol software with each of the levels in Figure 7.1,
the reason for identifying them as conceptual parts of the TCP/IP Internet technology is
that they clearly point out two philosophical underpinnings of the design. First, the fig-
ure shows that the design builds reliable service on top of an unreliable, connectionless
base. Second, it shows why the design has been so widely accepted: the lowest level
service exactly matches the facilities provided by underlying hardware networks and the
second level provides the service that applications expect.

Sec. 7.4 Principles Behind The Structure 121

The three-level concept accounts for much of the Internet’s success; as a conse-
quence of the basic design, the Internet technology has been surprisingly robust and
adaptable. The connectionless service runs over arbitrary network hardware, and the re-
liable transport service has been sufficient for a wide variety of applications. We can
summarize:

Internet protocols are designed around three conceptual levels of ser-
vice. A connectionless service at the lowest level matches underlying
hardware well, a reliable transport service provides service to appli-
cations, and a variety of applications provide the services users ex-
pect.

The design in Figure 7.1 is significant because it represents a dramatic departure
from previous thinking about data communication. Early networks followed the ap-
proach of building reliability at each level. The Internet protocols are organized to start
with a basic packet delivery service and then add reliability. When the design was first
proposed, many professionals doubted that it could work.

An advantage of the conceptual separation is that it enables one service to be
enhanced or replaced without disturbing others. In the early Internet, research and
development proceeded concurrently on all three levels. The separation will be espe-
cially important during the transition from IPv4 to IPv6 because it allows higher layer
protocols and applications to remain unchanged.

7.5 Connectionless Delivery System Characteristics

The most fundamental Internet service consists of a packet delivery system.
Technically, the service is defined as an unreliable, best-effort, connectionless packet
delivery system. The service is analogous to the service provided by most network
hardware because packet-switching technologies such as Ethernet operate on a best-
effort delivery paradigm. We use the technical term unreliable to mean that delivery is
not guaranteed. A packet may be lost, duplicated, delayed, or delivered out of order.
The connectionless service will not detect such conditions, nor will it inform the sender
or receiver. The basic service is classified as connectionless because each packet is
treated independently from all others. A sequence of packets sent from one computer to
another may travel over different paths, or some may be lost while others are delivered.
Finally, the service is said to use best-effort delivery because the Internet software
makes an earnest attempt to deliver packets. That is, the Internet does not discard pack-
ets capriciously; unreliability arises only when resources are exhausted or underlying
networks fail.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

122 Internet Protocol: Connectionless Datagram Delivery (IPv4, IPv6) Chap. 7

7.6 Purpose And Importance Of The Internet Protocol

The protocol that defines the unreliable, connectionless delivery mechanism is
called the Internet Protocol (IP). We will follow the convention used in standards doc-
uments by using the terms Internet Protocol and IP when statements apply broadly, and
only using IPv4 or IPv6 when a particular detail is applied to one version but not the
other.

The Internet Protocol provides three important specifications. First, IP defines the
basic unit of data transfer used throughout a TCP/IP internet. Thus, it specifies the ex-
act packet format used by all data as the data passes across an internet. Second, IP
software performs the forwarding function, choosing a path over which a packet will be
sent. The standards specify how forwarding is performed. Third, in addition to the pre-
cise, formal specification of data formats and forwarding, IP includes a set of rules that
embody the basis of unreliable delivery. The rules characterize how hosts and routers
should process packets, how and when error messages should be generated, and the con-
ditions under which packets can be discarded. The Internet Protocol is such a funda-
mental part of the design that the Internet is sometimes called an IP-based technology.

We begin our consideration of IP by looking at the packet format it specifies. The
chapter first examines the IPv4 packet format, and then considers the format used with
IPv6. We leave until later chapters the topics of packet forwarding and error handling.

7.7 The IP Datagram

On a physical network, the unit of transfer is a frame that contains a header and
data, where the header gives information such as the (physical) source and destination
addresses. The Internet calls its basic transfer unit an Internet datagram, usually abbre-
viated IP datagram†. In fact, TCP/IP technology has become so successful that when
someone uses the term datagram without any qualification, it is generally accepted to
mean IP datagram.

The analogy between a datagram and a network packet is strong. As Figure 7.2 il-
lustrates, a datagram is divided into a header and payload just like a typical network
frame. Also like a frame, the datagram header contains metadata such as the source and
destination addresses and a type field that identifies the contents of the datagram. The
difference, of course, is that the datagram header contains IP addresses, whereas the
frame header contains hardware addresses.

DATAGRAM HEADER DATAGRAM PAYLOAD

Figure 7.2 General form of an IP datagram, the Internet analogy of a net-
work frame.

†Networking professionals sometimes refer to “Internet packets” to refer to a datagram as it travels over a
network; the distinction will become clear when we talk about encapsulation.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 7.7 The IP Datagram 123

7.7.1 IPv4 Datagram Format

Now that we have described the general layout of an IP datagram, we can look at
the contents in more detail. Figure 7.3 shows the arrangement of fields in an IPv4 da-
tagram. The next paragraphs discuss some of the header fields; later sections on frag-
mentation and options cover remaining fields.

0 4 8 16 19 24 31

VERS HLEN SERVICE TYPE TOTAL LENGTH

IDENTIFICATION FLAGS FRAGMENT OFFSET

TIME TO LIVE PROTOCOL HEADER CHECKSUM

SOURCE IP ADDRESS

DESTINATION IP ADDRESS

IP OPTIONS (IF ANY) PADDING

PAYLOAD. . .

Figure 7.3 Format of an IPv4 datagram, the basic unit of transfer in a
TCP/IP internet.

Because an internet is virtual, the contents and format are not constrained by net-
work hardware. For example, the first 4-bit field in a datagram (VERS) contains the
version of the IP protocol that was used to create the datagram. Thus, for IPv4, the ver-
sion field contains the value 4. The field is used to verify that the sender, receiver, and
any routers in between them agree on the format of the datagram. All IP software is re-
quired to check the version field before processing a datagram to ensure it matches the
format the software expects. We will see that although the IPv6 datagram header
differs from the IPv4 header, IPv6 also uses the first four bits for a version number,
making it possible for a router or host computer to distinguish between the two ver-
sions. In general, a computer will reject any datagram if the computer does not have
software to handle the version specified in the datagram. Doing so prevents computers
from misinterpreting datagram contents or applying an outdated format.

The header length field (HLEN), also 4 bits, gives the datagram header length
measured in 32-bit words. As we will see, all fields in the header have fixed length ex-
cept for the IP OPTIONS and corresponding PADDING fields. The most common da-
tagram header, which contains no options and no padding, measures 20 octets and has a
header length field equal to 5.

The TOTAL LENGTH field gives the length of the IP datagram measured in octets,
including octets in the header and payload. The size of the payload area can be com-
puted by subtracting the length of the header (thirty two times HLEN) from the TOTAL
LENGTH. Because the TOTAL LENGTH field is 16 bits long, the maximum possible

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

124 Internet Protocol: Connectionless Datagram Delivery (IPv4, IPv6) Chap. 7

size of an IP datagram is 216 or 65,535 octets. For most applications the limit does not
present a problem. In fact, most underlying network technologies use much smaller
frame sizes; we will discuss the relationship between datagram size and frame size later.

Field PROTOCOL is analogous to the type field in a network frame; the value
specifies which high-level protocol was used to create the message carried in the PAY-
LOAD area of the datagram. In essence, the value of PROTOCOL specifies the format
of the PAYLOAD area. The mapping between a high-level protocol and the integer
value used in the PROTOCOL field must be administered by a central authority to
guarantee agreement across the entire Internet.

Field HEADER CHECKSUM ensures integrity of header values. The IP checksum
is formed by treating the header as a sequence of 16-bit integers (in network byte ord-
er), adding them together using one’s complement arithmetic, and then taking the one’s
complement of the result. For purposes of computing the checksum, field HEADER
CHECKSUM is assumed to contain zero.

It is important to note that the checksum only applies to values in the IP header
and not to the payload. Separating the checksums for headers and payloads has advan-
tages and disadvantages. Because the header usually occupies fewer octets than the
payload, having a separate checksum reduces processing time at routers which only
need to compute header checksums. The separation also allows higher-level protocols
to choose their own checksum scheme for the messages they send. The chief disadvan-
tage is that higher-level protocols are forced to add their own checksum or risk having a
corrupted payload go undetected.

Fields SOURCE IP ADDRESS and DESTINATION IP ADDRESS contain the 32-bit
IP addresses of the datagram’s sender and intended recipient. Although the datagram
may be forwarded through many intermediate routers, the source and destination fields
never change; they specify the IP addresses of the original source and ultimate destina-
tion†. Note that intermediate router addresses do not appear in the datagram. The idea
is fundamental to the overall design:

The source address field in a datagram always refers to the original
source and the destination address field refers to the ultimate destina-
tion.

The field labeled PAYLOAD in Figure 7.3 only shows the beginning of the area of
the datagram that carries the data. The length of the payload depends, of course, on
what is being sent in the datagram. The IP OPTIONS field, discussed below, is variable
length. The field labeled PADDING, depends on the options selected. It represents bits
containing zero that may be needed to ensure the datagram header extends to an exact
multiple of 32 bits (recall that the header length field is specified in units of 32-bit
words).

†An exception is made when the datagram includes the source route options listed below.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 7.7 The IP Datagram 125

7.7.2 IPv6 Datagram Format

IPv6 completely revises the datagram format by replacing the IPv4 datagram
header. Instead of trying to specify all details in a single header, IPv6 uses an extension
capability that allows the IETF to adapt the protocol. Figure 7.4 illustrates the concept:
an IPv6 datagram begins with a fixed-size base header followed by zero or more exten-
sion headers, followed by a payload.

PAYLOAD . . .
Base

Header
Extension
Header 1 . . . Extension

Header N

optional

Figure 7.4 The general form of an IPv6 datagram with a base header fol-
lowed by optional extension headers.

How can a receiver know which extension headers have been included in a given
datagram? Each IPv6 header contains a NEXT HEADER field that specifies the type of
the header that follows. The final header uses the NEXT HEADER field to specify the
type of the payload. Figure 7.5 illustrates the use of NEXT HEADER fields.

Base Header
NEXT=TCP TCP Segment

Base Header
NEXT=ROUTE

Route Header
NEXT=TCP TCP Segment

Base Header
NEXT=ROUTE

Route Header
NEXT=AUTH

Auth Header
NEXT=TCP TCP Segment

(a)

(b)

(c)

Figure 7.5 Illustration of the NEXT HEADER fields in IPv6 datagrams with
(a) only a base header, (b) a base header and one extension, and
(c) a base header and two extension headers.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

126 Internet Protocol: Connectionless Datagram Delivery (IPv4, IPv6) Chap. 7

The paradigm of a fixed base header followed by a set of optional extension
headers was chosen as a compromise between generality and efficiency. To be totally
general, IPv6 needs to include mechanisms to support functions such as fragmentation,
source routing, and authentication. However, choosing to allocate fixed fields in the da-
tagram header for all mechanisms is inefficient because most datagrams do not use all
mechanisms; the large IPv6 address size exacerbates the inefficiency. For example,
when sending a datagram across a single local area network, a header that contains
unused address fields can occupy a substantial fraction of each frame. More important,
the designers realized that no one can predict which facilities will be needed. There-
fore, the designers opted for extension headers as a way to provide generality without
forcing all datagrams to have large headers.

Some of the extension headers are intended for processing by the ultimate destina-
tion and some of the extension headers are used by intermediate routers along the path.
Observe that the use of NEXT HEADER fields means extensions are processed sequen-
tially. To speed processing, IPv6 requires extension headers that are used by intermedi-
ate routers to precede extension headers used by the final destination. We use the term
hop-by-hop header to refer to an extension header that an intermediate router must pro-
cess. Thus, hop-by-hop headers precede end-to-end headers.

7.7.3 IPv6 Base Header Format

Each IPv6 datagram begins with a 40-octet base header as Figure 7.6 illustrates.
Although it is twice as large as a typical IPv4 datagram header, the IPv6 base header
contains less information because fragmentation information has been moved to exten-
sion headers. In addition, IPv6 changes the alignment from 32-bit to 64-bit multiples.

0 4 12 16 24 31

VERS TRAFFIC CLASS FLOW LABEL

PAYLOAD LENGTH NEXT HEADER HOP LIMIT

SOURCE ADDRESS

DESTINATION ADDRESS

Figure 7.6 The IPv6 base header format; the size is fixed at 40 octets.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 7.7 The IP Datagram 127

As in IPv4, the initial 4-bit VERS field specifies the version of the protocol; 6
specifies an IPv6 datagram. As described below, the TRAFFIC CLASS field is inter-
preted exactly the same as IPv4’s TYPE OF SERVICE field. Field FLOW LABEL is in-
tended to allow IPv6 to be used with technologies that support resource reservation.
The underlying abstraction, a flow, consists of a path through an internet. Intermediate
routers along the path guarantee a specific quality of service for packets on the flow.
The FLOW LABEL holds an ID that allows a router to identify the flow, which is used
instead of the destination address when forwarding a datagram. Chapter 16 explains the
potential uses of a flow label in more detail. IPv6 uses a PAYLOAD LENGTH field
rather than a datagram length field; the difference is that the PAYLOAD LENGTH refers
only to the data being carried and does not include the size of the base header or exten-
sion header(s). To allow a payload to exceed 216 octets, IPv6 defines an extension
header that specifies a datagram to be a jumbogram. A NEXT HEADER field appears
in all headers (the base header as shown and each extension header); the field specifies
the type of the next extension header, and in the final header, gives the type of the pay-
load. The HOP LIMIT field specifies the maximum number of networks the datagram
can traverse before being discarded. Finally, the SOURCE ADDRESS and DESTINA-
TION ADDRESS fields specify the IPv6 addresses of the original sender and ultimate
destination.

7.8 Datagram Type Of Service And Differentiated Services

Informally called Type Of Service (TOS), the 8-bit SERVICE TYPE field in an IPv4
header and the TRAFFIC CLASS field in an IPv6 header specify how the datagram
should be handled. In IPv4, the field was originally divided into subfields that specified
the datagram’s precedence and desired path characteristics (low delay or high
throughput). In the late 1990s, the IETF redefined the meaning of the field to accom-
modate a set of differentiated services (DiffServ). Figure 7.7 illustrates the resulting
definition which applies to IPv6 as well as IPv4.

0 1 2 3 4 5 6 7

CODEPOINT UNUSED

Figure 7.7 The differentiated services (DiffServ) interpretation of bits in the
IPv4 SERVICE TYPE and IPv6 TRAFFIC CLASS header fields.

Under DiffServ, the first six bits of the field constitute a codepoint, which is some-
times abbreviated DSCP, and the last two bits are left unused. A codepoint value maps
to an underlying service definition, typically through an array of pointers. Although it
is possible to define 64 separate services, the designers suggest that a given router will
only need a few services, and multiple codepoints will map to each service. For exam-
ple, a router might be configured with a voice service, a video service, a network

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

128 Internet Protocol: Connectionless Datagram Delivery (IPv4, IPv6) Chap. 7

management service, and a normal data service. To maintain backward compatibility
with the original definition, the standard distinguishes between the first three bits of the
codepoint (bits that were formerly used for precedence) and the last three bits. When
the last three bits contain zero, the precedence bits define eight broad classes of service
that adhere to the same guidelines as the original definition: datagrams with a higher
number in their precedence field are given preferential treatment over datagrams with a
lower number. That is, the eight ordered classes are defined by codepoint values of the
form:

xxx000

where x denotes either a zero or a one.
The differentiated services design also accommodates another existing practice —

the widespread use of precedence 6 or 7 to give highest priority to routing traffic. The
standard includes a special case to handle the two precedence values. A router is re-
quired to implement at least two priority schemes: one for normal traffic and one for
high-priority traffic. When the last three bits of the CODEPOINT field are zero, the
router must map a codepoint with precedence 6 or 7 into the higher-priority class and
other codepoint values into the lower-priority class. Thus, if a datagram arrives that
was sent using the original TOS scheme, a router using the differentiated services
scheme will honor precedence 6 and 7 as the datagram sender expects.

Figure 7.8 illustrates how the 64 codepoint values are divided into three adminis-
trative pools.

Pool Codepoint Assigned By
1 xxxxx0 Standards organization
2 xxxx11 Local or experimental
3 xxxx01 Local or experimental

Figure 7.8 The three administrative pools of DiffServ codepoint values.

As the figure indicates, half of the values (i.e., the 32 values in pool 1) must be as-
signed interpretations by the IETF. Currently, all values in pools 2 and 3 are available
for experimental or local use. However, pool 3 is tentative — if the standards bodies
exhaust all values in pool 1, they will leave pool 2 alone, but may also choose to assign
values in pool 3.

The division into pools may seem unusual because it relies on the low-order bits of
the value to distinguish pools. Thus, rather than a contiguous set of values, pool 1 con-
tains every other codepoint value (i.e., the even numbers between 2 and 64). The divi-
sion was chosen to keep the eight codepoints corresponding to values xxx000 in the
same pool.

Whether the original TOS interpretation or the revised differentiated services in-
terpretation is used, it is important to realize that forwarding software must choose from
among the underlying physical network technologies at hand and must adhere to local

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 7.8 Datagram Type Of Service And Differentiated Services 129

policies. Thus, specifying a level of service in a datagram does not guarantee that
routers along the path will agree to honor the request. To summarize:

We regard the service type specification as a hint to the forwarding
algorithm that helps it choose among various paths to a destination
based on local policies and its knowledge of the hardware technol-
ogies available on those paths. An internet does not guarantee to
provide any particular type of service.

7.9 Datagram Encapsulation

Before we can understand the other fields in an IPv4 datagram, it is important to
consider how datagrams relate to physical network frames. We start with a question:
how large can a datagram be? Unlike physical network frames that must be recognized
by hardware, datagrams are handled by software. They can be of any length the proto-
col designers choose. We have seen that the IPv4 datagram format allots 16 bits to the
total length field, limiting the datagram to at most 65,535 octets.

More fundamental limits on datagram size arise in practice. We know that as da-
tagrams move from one machine to another, they must be transported by the underlying
network hardware. To make internet transportation efficient, we would like to guaran-
tee that each datagram travels in a distinct network frame. That is, we want our abstrac-
tion of a network packet to map directly onto a real packet if possible.

The idea of carrying one datagram in one network frame is called encapsulation,
and is used with both IPv4 and IPv6. To the underlying network, a datagram is like
any other message sent from one machine to another — the network hardware does not
recognize the datagram format, nor does it understand the IP destination address. In-
stead, the network treats a datagram as bytes of data to be transferred. Figure 7.9 illus-
trates the idea: when it travels across a network from one machine to another, the entire
datagram travels in the payload area of the network frame.

FRAME
HEADER FRAME PAYLOAD AREA

DATAGRAM
HEADER DATAGRAM PAYLOAD AREA

Figure 7.9 The encapsulation of an IP datagram in a frame. The underlying
network treats the entire datagram, including the header, as data.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

130 Internet Protocol: Connectionless Datagram Delivery (IPv4, IPv6) Chap. 7

How does a receiver know that the payload area in a frame contains an IP da-
tagram? The type field in the frame header identifies the data being carried. For exam-
ple, Ethernet uses the type value 0x0800 to specify that the payload contains an encap-
sulated IPv4 datagram and 0x86DD to specify that the payload contains an IPv6 da-
tagram.

7.10 Datagram Size, Network MTU, and Fragmentation

In the ideal case, an entire IP datagram fits into one physical frame, making
transmission across the underlying network efficient. To guarantee such efficiency, the
designers of IP might have selected a maximum datagram size such that a datagram
would always fit into one frame. But which frame size should be chosen? After all, a
datagram may travel across many types of networks as it moves across an internet from
its source to its final destination.

To understand the problem, we need a fact about network hardware: each packet-
switching technology places a fixed upper bound on the amount of data that can be
transferred in one frame. For example, Ethernet limits transfers to 1500 octets of data†.
We refer to the size limit as the network’s maximum transfer unit, maximum transmis-
sion unit or MTU. MTU sizes can be larger than 1500 or smaller: technologies like
IEEE 802.15.4 limit a transfer to 128 octets. Limiting datagrams to fit the smallest pos-
sible MTU in the internet makes transfers inefficient. The inefficiency is especially
severe because most paths in the Internet can carry much larger datagrams. However,
choosing a large size causes another problem. Because the hardware will not permit
packets larger than the MTU, we will not be able to send large datagrams in a single
network frame.

Two overarching internet design principles help us understand the dilemma:

The internet technology should accommodate the greatest possible
variety of network hardware.

The internet technology should accommodate the greatest possible
variety of network applications.

The first principle implies that we should not rule out a network technology merely
because the technology has a small MTU. The second principle suggests that applica-
tion programmers should be allowed to choose whatever datagram size they find ap-
propriate.

To satisfy both principles, TCP/IP protocols use a compromise. Instead of restrict-
ing datagram size a priori, the standards allow each application to choose a datagram
size that is best suited to the application. Then when transferring a datagram, check the
size to see if the datagram is less than the MTU. If the datagram does not fit into a
frame, divide the datagram into smaller pieces called fragments. Choose the fragment

†The limit of 1500 octets has become important because many networks in the global Internet use Ether-
net technology.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 7.10 Datagram Size, Network MTU, and Fragmentation 131

size such that each fragment can be sent in a network frame. The process of dividing a
datagram is known as fragmentation.

To understand fragmentation, consider three networks interconnected by two
routers as Figure 7.10 illustrates.

Net 2
MTU=620

R1 R2

Host
A

Host
B

Net 1

MTU=1500

Net 3

MTU=1500

Figure 7.10 An illustration of IPv4 fragmentation. Each router may need to
fragment datagrams before sending across network 2.

In the figure, each host attaches directly to an Ethernet, which has an MTU of
1500 octets. The standard requires routers to accept datagrams up to the maximum of
the MTUs of networks to which they attach. Thus, either host can create and send a da-
tagram up to 1500 octets, the MTU of the directly-connected network. If an application
running on host A sends a 1500-octet datagram to B, the datagram can travel across net-
work 1 in a single frame. However, because network 2 has an MTU of 620, fragmenta-
tion is required for the datagram to travel across network 2.

In addition to defining the MTU of each individual network, it will be important to
consider the MTU along a path through an internet. The path MTU is defined to be the
minimum of the MTUs on networks along the path. In the figure, the path from A to B
has a path MTU of 620.

Although they each provide datagram fragmentation, IPv4 and IPv6 take complete-
ly different approaches. IPv4 allows any router along a path to fragment a datagram.
In fact, if a later router along the path finds that a fragment is too large, the router can
divide the fragment into fragments that are even smaller. IPv6 requires the original
source to learn the path MTU and perform fragmentation; routers are forbidden from
performing fragmentation. The next sections consider the two approaches and give the
details for IPv4 and IPv6

7.10.1 IPv4 Datagram Fragmentation

In IPv4, fragmentation is delayed and only performed when necessary. Whether a
datagram will be fragmented depends on the path a datagram follows through an inter-
net. That is, a source only insures that a datagram can fit into a frame on the first net-
work it must traverse. Each router along the path looks at the MTU of next network

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

132 Internet Protocol: Connectionless Datagram Delivery (IPv4, IPv6) Chap. 7

over which the datagram must pass, and fragments the datagram if necessary. In Figure
7.10, for example, router R1 will fragment a 1500-octet datagram before sending it over
network 2.

We said that a host must insure a datagram can fit into a frame on the first net-
work. Applications often try to choose a message size that is compatible with the
underlying network. However, if an application chooses to send a large datagram, IP
software on the host software can perform fragmentation before sending it. In Figure
7.10, for example, if an application on host A creates a datagram larger than 1500 oc-
tets, IP software on the host will fragment the datagram before sending it. The point is:

IPv4 fragmentation occurs automatically at any point along the path
when a datagram is too large for a network over which it must pass;
the source only needs to insure that datagrams can travel over the
first hop.

How large should each fragment be? We said that each fragment must be small
enough to fit in a single frame. In the example, a fragment must be 620 octets or small-
er. A router could divide the datagram into fragments of approximately equal size.
Most IPv4 software simply extracts a series of fragments that each fill the MTU, and
then sends a final fragment of whatever size remains.

You may be surprised to learn that an IPv4 fragment uses the same format as a
complete IPv4 datagram. The FLAGS field in the datagram header contains a bit that
specifies whether the datagram is a complete datagram or a fragment. Another bit in
the FLAGS field specifies whether more fragments occur (i.e., whether a particular frag-
ment occupies the tail end of the original datagram). Finally, the OFFSET field in the
datagram header specifies where in the original datagram the data in the fragment be-
longs. An interesting fragmentation detail arises because the OFFSET field stores a po-
sition in multiples of eight octets. That is, an octet offset is computed by multiplying
the OFFSET field by eight. As a consequence, the size of each fragment must be
chosen to be a multiple of eight. Therefore, when performing fragmentation, IP chooses
the fragment size to be the largest multiple of eight that is less than or equal to the size
of the MTU. Figure 7.11 illustrates IPv4 fragmentation.

Fragmentation starts by replicating the original datagram header and then modify-
ing the FLAGS and OFFSET fields. The headers in fragments 1 and 2 have the more
fragments bit set in the FLAGS field; the header in fragment 3 has zero in the more
fragments bit. Note: in the figure, data offsets are shown as octet offsets in decimal;
they must be divided by eight to get the value stored in the fragment headers.

Each fragment contains a datagram header that duplicates most of the original da-
tagram header (except for bits in the FLAGS field that specify fragmentation), followed
by as much data as can be carried in the fragment while keeping the total length smaller
than the MTU of the network over which it must travel and the size of the data a multi-
ple of eight octets.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 7.10 Datagram Size, Network MTU, and Fragmentation 133

DATAGRAM
HEADER

data1

600 octets
data2

600 octets
data3

200 octets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

FRAGMENT 1
HEADER

FRAGMENT 2
HEADER

FRAGMENT 3
HEADER

data1

data2

data3

Fragment 1 (offset 0)

Fragment 2 (offset 600)

Fragment 3 (offset 1200)

(a)

(b)

Figure 7.11 (a) An original IPv4 datagram carrying 1400 octets of data and
(b) three fragments for an MTU of 620.

7.10.2 IPv6 Fragmentation And Path MTU Discovery (PMTUD)

Instead of delayed fragmentation, IPv6 uses a form of early binding: the original
source host is required to find the minimum MTU along the path to the destination and
fragment each datagram according to the path it will take. IP routers along the path are
not permitted to fragment IPv6 datagrams; if a datagram does not fit into the MTU of a
network, the router sends an error message to the original source and drops the da-
tagram.

In many ways, the IPv6 approach to fragmentation is the opposite of the IPv4 ap-
proach, which is puzzling. Why change? When IPv6 was being defined, phone com-
panies were pushing Asynchronous Transfer Mode (ATM) technologies, and the IPv6
designers assumed ATM would become widely used. ATM is a connection-oriented
technology, meaning that a sender must pre-establish a path to the destination and then
send along the path. Thus, the designers assumed that a source computer would learn
path characteristics (including the path MTU) when the path was established and the
path would not change.

Because networking technologies used in the Internet do not inform a host about
the path MTU, a host must engage in a trial-and-error mechanism to determine the path
MTU. Known as Path MTU Discovery (PMTUD), the mechanism consists of sending
an IPv6 datagram that fits in the MTU of the directly-connected network. If a network
along the path has a smaller MTU, a router will send an ICMP error message to the ori-
ginal source that specifies the smaller MTU. The host fragments datagrams according
to the new path MTU and tries again. If a later network along the path has an MTU

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

134 Internet Protocol: Connectionless Datagram Delivery (IPv4, IPv6) Chap. 7

that is even smaller, another router will send an error message. By repeatedly probing,
a host will eventually find the smallest MTU along the path.

What happens if the path changes and the new path MTU is larger? The source
will not learn about the increase because routers do not store state. Therefore, PMTUD
specifies that a host should probe periodically by sending a larger datagram. Because
we do not expect routes to change frequently and because the path MTU changes less
frequently than routes, most implementations of IPv6 choose a long time period before
probing again (e.g., ten minutes).

Recall that the IPv6 base header does not include fields to specify fragmentation.
Therefore, when it fragments an IPv6 datagram, a source inserts a Fragment Extension
Header into each fragment. Figure 7.12 illustrates the format.

0 8 16 29 31

NEXT HEADER RESERVED FRAGMENT OFFSET RES M

IDENTIFICATION

Figure 7.12 The format of an IPv6 Fragmentation Extension Header.

As the figure shows, the extension header includes the required NEXT HEADER
field. It also includes two fields that are reserved for future use. The remaining three
fields have the same meaning as IPv4 fragmentation control fields. A 13-bit FRAG-
MENT OFFSET field specifies where in the original datagram this fragment belongs,
the M bits is a more fragments bit that specifies whether a fragment is the final (right-
most) fragment of the original datagram, and the IDENTIFICATION field contains a
unique datagram ID that is shared by all the fragments of a datagram.

7.11 Datagram Reassembly

Eventually, fragments must be reassembled to produce a complete copy of the ori-
ginal datagram. The question arises: where should fragments be reassembled? That is,
should a datagram be reassembled when it reaches a network with a larger MTU, or
should the datagram remain fragmented and the fragments be transported to the ultimate
destination? We will see that the answer reveals another design decision.

In a TCP/IP internet, once a datagram has been fragmented, the fragments travel as
separate datagrams all the way to the ultimate destination where they are reassembled.
Preserving fragments all the way to the ultimate destination may seem odd because the
approach has two disadvantages. First, if only one network along the path has a small
MTU, sending small fragments over the other networks is inefficient, because transport-
ing small packets means more overhead than transporting large packets. Thus, even if
networks encountered after the point of fragmentation have very large MTUs, IP will
send small fragments across them. Second, if any fragments are lost, the datagram can-

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 7.11 Datagram Reassembly 135

not be reassembled. The mechanism used to handle fragment loss consists of a
reassembly timer. The ultimate destination starts a timer when a fragment arrives for a
given datagram. If the timer expires before all fragments arrive, the receiving machine
discards the surviving fragments. The source must retransmit the entire datagram; there
is no way for the receiver to request individual fragments. Thus, the probability of da-
tagram loss increases when fragmentation occurs because the loss of a single fragment
results in loss of the entire datagram.

Despite the minor disadvantages, performing reassembly at the ultimate destination
works well. It allows each fragment to be forwarded independently. More important, it
does not require intermediate routers to store or reassemble fragments. The decision to
reassemble at the ultimate destination is derived from an important principle in Internet
design: the state in routers should be minimized.

In the Internet, the ultimate destination reassembles fragments. The
design means that routers do not need to store fragments or keep oth-
er information about packets.

7.12 Header Fields Used For Datagram Reassembly

Three fields in an IPv4 datagram header or an IPv6 Fragment Extension Header
control reassembly of datagrams: IDENTIFICATION, FLAGS (M in IPv6), and FRAG-
MENT OFFSET. Field IDENTIFICATION contains a unique integer that identifies the
datagram. That is, each datagram sent by a given source has a unique ID. A typical
implementation uses a sequence number — a computer sends a datagram with identifi-
cation S, the next datagram will have identification S + 1. Assigning a unique identifi-
cation to each datagram is important because fragmentation starts by copying the iden-
tification number into each fragment. Thus, each fragment has exactly the same IDEN-
TIFICATION number as the original datagram. A destination uses the IDENTIFICA-
TION field in fragments along with the datagram source address to group all the frag-
ments of a given datagram. The value in the FRAGMENT OFFSET field specifies the
offset in the original datagram of the payload being carried in the fragment, measured in
units of 8 octets†, starting at offset zero. To reassemble the datagram, the destination
must obtain all fragments starting with the fragment that has offset 0 through the frag-
ment with the highest offset. Fragments do not necessarily arrive in order, and there is
no communication between the system that fragmented the datagram (a router in IPv4
or the sender in IPv6) and the destination trying to reassemble it.

In IPv4, the low-order two bits of the 3-bit FLAGS field control fragmentation.
Usually, applications using TCP/IP do not care about fragmentation because both frag-
mentation and reassembly are automatic procedures that occur at lower levels of the
protocol stack, invisible to applications. However, to test network software or debug
operational problems, it may be important to determine the size of datagrams for which
fragmentation occurs. The first control bit aids in such testing by specifying whether
the datagram may be fragmented. It is called the do not fragment bit because setting

†Offsets are specified in multiples of 8 octets to save space in the header.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

136 Internet Protocol: Connectionless Datagram Delivery (IPv4, IPv6) Chap. 7

the bit to 1 specifies that the datagram should not be fragmented. Whenever a router
needs to fragment a datagram that has the do not fragment bit set, the router discards
the datagram and sends an error message back to the source.

The low order bit in the FLAGS field in IPv4 or the M bit in IPv6 specifies wheth-
er the payload in the fragment belongs somewhere in the middle of the original da-
tagram or at the tail end. It is known as a more fragments bit because the value 1
means the payload in the fragment is not the tail of the datagram. Because fragments
may arrive out-of-order, the destination needs to know when all fragments for a da-
tagram have arrived. A given fragment does not specify the size of the original da-
tagram, so a receiver must compute the datagram size. The more fragments bit solves
the problem: once a fragment arrives with the more fragments bit turned off, the desti-
nation knows the fragment carries data from the tail of the original datagram. From the
FRAGMENT OFFSET field and the size of the fragment, the destination can compute
the length of the original datagram. Thus, once the tail of the original datagram arrives,
the destination can tell when all other fragments have arrived.

7.13 Time To Live (IPv4) And Hop Limit (IPv6)

Originally, the IPv4 TIME TO LIVE (TTL) header field specified how long, in
seconds, a datagram was allowed to remain in an internet — a sender set a maximum
time that each datagram should survive, and routers that processed the datagram decre-
mented the TTL as time passed. When a TTL reached zero, the datagram was discard-
ed.

Unfortunately, computing an exact time is impossible because routers do not know
the transit time for underlying networks. Furthermore, the notion of datagrams spend-
ing many seconds in transit became outdated (current routers and networks are designed
to forward each datagram within a few milliseconds). However, a mechanism was still
needed to handle a case where an internet has a forwarding problem when routers for-
ward datagrams in a circle. To prevent a datagram from traveling around a circle forev-
er, a rule was added as a fail-safe mechanism. The rule requires each router along the
path from source to destination to decrement the TTL by 1. In essence, each network
that a datagram traverses counts as one network hop. Thus, in practice, the TTL field is
now used to specify how many hops a datagram may traverse before being discarded.
IPv6 includes the exact same concept. To clarify the meaning, IPv6 uses the name
HOP LIMIT† in place of TIME-TO-LIVE.

IP software in each machine along a path from source to destination
decrements the field known as TIME-TO-LIVE (IPv4) or HOP LIMIT
(IPv6). When the field reaches zero the datagram is discarded.

A router does more than merely discard a datagram when the TTL reaches zero —
the router sends an error message back to the source. Chapter 9 describes error hand-
ling.

†Most networking professionals use the term hop count instead of hop limit.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 7.14 Optional IP Items 137

7.14 Optional IP Items

Both IPv4 and IPv6 define optional items that can be included in a datagram. In
IPv4, the IP OPTIONS field that follows the destination address is used to send optional
items. In IPv6, each of the extension headers is optional, and a given datagram may in-
clude multiple extensions.

In practice, few datagrams in the global Internet include optional items. Many of
the options in the standards are intended for special control or for network testing and
debugging. Options processing is an integral part of the IP protocol; all standard imple-
mentations must include it.

The next sections discuss options in IPv4 and IPv6. Because our purpose is to pro-
vide a conceptual overview rather than a catalog of all details, the text highlights exam-
ples and discusses how each example might be used.

7.14.1 IPv4 Options

If an IPv4 datagram contains options, the options follow the DESTINATION IP
ADDRESS field in the datagram header. The length of the options field depends on
which options have been included. Some options are one octet long and other options
are variable length. Each option starts with a single octet option code that identifies the
option. An option code may be followed by a single octet length and a set of data oc-
tets for that option. When multiple options are present, they appear contiguously, with
no special separators between them. That is, the options area of the header is treated as
an array of octets, and options are placed in the array one after another. The high-order
bit of an option code octet specifies whether the option should be copied into all frag-
ments or only the first fragment; a later section that discusses option processing ex-
plains copying.

Figure 7.13 lists examples of options that can accompany an IPv4 datagram. As
the list shows, most options are used for control purposes. The route and timestamp op-
tions are the most interesting because they provide a way to monitor or control how
routers forward datagrams.

Record Route Option. The record route option allows the source to create an emp-
ty list of IPv4 addresses and request that each router along the path add its IPv4 address
to the list. The list begins with a header that specifies the type of the option, a length
field, and a pointer. The length field specifies the number of octets in the list, and the
pointer specifies the offset of the next free item. Each router that forwards the datagram
compares the pointer to the length. If the pointer equals or exceeds the length, the list
is full. Otherwise, the router places its IP address in the next four octets of the option,
increments the pointer by four, and forwards the datagram.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

138 Internet Protocol: Connectionless Datagram Delivery (IPv4, IPv6) Chap. 7

Number Length Description

0 1 End of option list, used if options do not end at end
of header (see header padding field)

1 1 No operation. Used to align octets in a list
2 11 Security and handling restrictions for military apps.
3 var Loose source route. Used to request routing through

a set of specified routers
4 var Internet timestamp. Used to record a timestamp at

each hop along the path across an internet
7 var Record route. Causes each router along the path to

record its IP address in the options of the datagram
9 var Strict source route. Used to specify an exact path

through a set of routers
11 4 MTU Probe. Used by a host during IPv4 Path MTU

Discovery
12 4 MTU Reply. Returned by router during IPv4 Path MTU

Discovery
18 var Traceroute. Used by the traceroute program to find

the routers along a path
20 4 Router Alert. Causes each router along a path to

examine the datagram, even if a router is not the
ultimate destination

Figure 7.13 Examples of IPv4 options along with their length and a brief
description of each.

Source Route Options. Two options, Strict Source Route and Loose Source Route,
provide a way for a sender to control forwarding along a path through an internet. For
example, to test a particular network, a system administrator could use source route op-
tions to force IP datagrams to traverse the network, even if normal forwarding uses
another path.

The ability to source route packets is especially important as a tool for testing in a
production environment. It gives the network manager freedom to test a new experi-
mental network while simultaneously allowing users’ traffic to proceed along a path that
only includes production networks. Of course, source routing is only useful to someone
who understands the network topology; an average user has neither a motivation to con-
sider source routing nor the knowledge required to use it.

Strict Source Route. Strict source routing specifies a complete path through an in-
ternet (i.e., the path the datagram must follow to reach its destination). The path con-
sists of IPv4 addresses that each correspond to a router (or to the ultimate destination).
The word strict means that each pair of routers along the path must be directly connect-
ed by a network; an error results if a router cannot reach the next router specified in the
list.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 7.14 Optional IP Items 139

Loose Source Route. Loose source routing specifies a path through an internet,
and the option includes a sequence of IP addresses. Unlike strict source routing, a loose
source route specifies that the datagram must visit the sequence of IP addresses, but al-
lows multiple network hops between successive addresses on the list.

Both source route options require routers along the path to overwrite items in the
address list with their local network addresses. Thus, when the datagram arrives at its
destination, it contains a list of all addresses visited, exactly like the list produced by
the record route option.

Internet Timestamp Option. The timestamp option works like the record route op-
tion: the option field starts with an initially empty list, and each router along the path
from source to destination fills in one entry. Unlike the record route option, each entry
in a timestamp list contains two 32-bit values that are set to the IPv4 address of the
router that filled the entry and a 32-bit integer timestamp. Timestamps give the time
and date at which a router handles the datagram, expressed as milliseconds since mid-
night, Universal Time†.

7.14.2 IPv6 Optional Extensions

IPv6 uses the mechanism of extension headers in place of IPv4 options. Figure
7.14 lists examples of IPv6 options headers and explains their purpose.

Next Hdr Length Description

0 var Hop-by-Hop Options. A set of options that must
be examined at each hop

60 var Destination Options. A set of options passed to
the first hop router and each intermediate router

43 var Route Header. A header that allows various
types of routing information to be enclosed

44 8 Fragment Header. Present in a fragment to specify
the fields used for reassembly

51 var Authentication Header. Specifies the type of
authentication used and data for the receiver

50 var Encapsulation Security Payload Header. Specifies
the encryption used

60 var Destination Options. A set of options passed
to the ultimate destination

135 var Mobility Header. Used to specify forwarding
information for a mobile host

Figure 7.14 Example options headers used with IPv6 and the NEXT
HEADER value assigned to each.

†Universal Time was formerly called Greenwich Mean Time; it is the time of day at the prime meridian.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

140 Internet Protocol: Connectionless Datagram Delivery (IPv4, IPv6) Chap. 7

Some IPv6 options use a fixed-size extension header. For example, a fragment
header contains exactly eight octets†. However, many of the IPv6 extension headers,
such as examples listed in Figure 7.14, are variable size; the size depends on the con-
tents. For example, the Authentication Header specifies the form of authentication be-
ing used and contains an authentication message in the specified form.

The format of variable-length extension headers is not fixed. A header may con-
tain a single item (e.g., the Authentication Header contains an authentication message)
or a set of items. As an example, consider the Hop-By-Hop extension header. The
standard specifies a general format that allows multiple options to be enclosed. Figure
7.15 illustrates the format.

0 8 16 31

NEXT HEADER HDR EXT LEN

...OPTIONS...

Figure 7.15 The IPv6 Hop-By-Hop extension header that encloses multiple
options.

As the figure indicates, only the first two octets are specified: a NEXT HEADER
field and a Header Extension Length field (HDR EXT LEN). The length field specifies
the length of the extension header in octets. The body of the extension header follows a
Type-Length-Value (TLV) approach. The body consists of options that each begin with
a 2-octet header. The first octet specifies the type of the option, the second octet speci-
fies the length, and the next octets contain the value. As in IPv4, the options in the ex-
tension header are contiguous.

IPv6 requires datagram headers to be aligned to a multiple of eight octets.
Variable-size options mean that the Hop-By-Hop header may not align correctly. In
such cases, IPv6 defines two padding options that a sender can use to align the headers.
One of the two consists of a single octet of padding; the other uses two octets to specify
a padding length.

Initially, IPv6 included many of the same options as IPv4. For example, one of the
IPv6 extension headers is designated to be a Route Header, and the initial definition
provided strict source route and loose source route variants. The general format of the
route header was also taken from IPv4 — a list of addresses, a field that specified the
length of the list in octets, and a field that pointed to the next address. However, an as-
sessment of security concluded that giving users the ability to specify a source route
through an arbitrary list of addresses would allow an attacker to send a datagram around
a set of routers many times, consuming bandwidth. Therefore, the source route options
are now deprecated (i.e., the IETF discourages their use). They have instead been re-
placed by a source route that includes one intermediate site because a single intermedi-
ate site is needed for Mobile IPv6‡.

†Figure 7.12 on page 134 illustrates fields in the fragment header.
‡Chapter 18 describes mobile IP.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sec. 7.15 Options Processing During Fragmentation 141

7.15 Options Processing During Fragmentation

Both IPv4 and IPv6 use the same conceptual approach to handle options during
fragmentation. When creating fragments, the IP code examines each of the options in
the original datagram. If an option must be processed by intermediate routers, the op-
tion is copied into each fragment. However, if the option is only used at the ultimate
destination, the option is copied into the header of the first fragment but not the rest.
Omitting unnecessary options from later fragments reduces the total number of bits
transmitted. Interestingly, omitting options may also reduce the number of fragments
needed (i.e., a smaller header means a fragment can hold more data from the payload).

Although they use the same concept, IPv4 and IPv6 differ in most details. The
next sections describe how each handles options.

7.15.1 IPv4 Processing Options During Fragmentation

Recall that in IPv4, each option begins with a code octet. Each code octet contains
a copy bit that specifies whether the option should be replicated in all fragments or in
only one fragment. As an example, consider the record route option. Because each
fragment is treated as an independent datagram, there is no guarantee that all fragments
follow the same path to the destination. It may be interesting to learn a set of paths that
each of the fragments took, but the designers decided that a destination will have no
way to arbitrate among multiple paths. Therefore, the IP standard specifies that the
record route option should only be copied into one of the fragments.

Source route options provide an example of options that must be copied into each
fragment. When a sender specifies a source route, the sender intends for the datagram
to follow the specified path through an internet. If the datagram is fragmented at some
point along the path, all fragments should follow the remainder of the path that the
sender specified, which means that source routing information must be replicated in all
fragment headers. Therefore, the standard specifies that a source route option must be
copied into all fragments.

7.15.2 IPv6 Processing Options During Fragmentation

IPv6 divides a datagram into two conceptual pieces: an initial piece that is classi-
fied as unfragmentable and the remainder, which is classified as fragmentable. The
base header lies in the unfragmentable piece and the payload lies in the fragmentable
piece. Therefore, the only question is about the extension headers: how should each be
classified? As with IPv4, extension headers that are only processed by the ultimate des-
tination do not need to be present in each fragment. The IPv6 standards specify wheth-
er a header is fragmentable. In particular, the Hop-By-Hop Header and Route Header
are not fragmentable; other extension headers are fragmentable. Therefore, the frag-
mentable part of the datagram begins after the non-fragmentable extension headers. To
clarify the idea, consider the example in Figure 7.16, which illustrates the fragmentation

142 Internet Protocol: Connectionless Datagram Delivery (IPv4, IPv6) Chap. 7

of an IPv6 datagram that has a base header, four extension headers, and 1400 octets of
payload.

base
hdr.

hop.
hdr.

rte.
hdr.

auth.
hdr.

dest.
hdr.

unfragmentable fragmentable

data1

300 octets
data2

600 octets
data3

500 octets

.........

.........

base
hdr.

hop.
hdr.

rte.
hdr.

F

base
hdr.

hop.
hdr.

rte.
hdr.

F

base
hdr.

hop.
hdr.

rte.
hdr.

F

auth.
hdr.

dest.
hdr.

data1

data2

data3

Fragment 1 (offset 0)

Fragment 2 (offset 600)

Fragment 3 (offset 1200)

(a)

(b)

Figure 7.16 IPv6 fragmentation with (a) an IPv6 datagram with extension
headers divided into fragmentable and unfragmentable pieces,
and (b) a set of fragments.

As the figure indicates, each fragment starts with a copy of the unfragmentable
piece of the original datagram. In the figure, the unfragmentable piece includes a Base
Header, a Hop-By-Hop Header, and a Route Header. Following the unfragmentable
piece, a fragment has a Fragment Header labeled F in the figure.

IPv6 treats the fragmentable piece of the datagram as an array of octets to be divid-
ed into fragments. In the example, the first fragment carries an Authentication Header,
a Destination Header, and 300 octets of data from the original payload. The second
fragment carries the next 600 octets of payload from the original datagram, and the third
fragment carries the remainder of the payload. We can conclude from the figure that in
this particular instance the Authentication Header and Destination Header occupy ex-
actly 300 octets.

Sec. 7.16 Network Byte Order 143

7.16 Network Byte Order

Our discussion of header fields omits a fundamental idea: protocols must specify
enough detail to insure that both sides interpret data the same way. In particular, to
keep internetworking independent of any particular vendor’s machine architecture or
network hardware, we must specify a standard representation for data. Consider what
happens, for example, when software on one computer sends a 32-bit binary integer to
another computer. We can assume that the underlying network hardware will move the
sequence of bits from the first machine to the second without changing the order. How-
ever, not all computers store 32-bit integers in the same way. On some (called little en-
dian), the lowest memory address contains the low-order byte of the integer. On others
(called big endian), the lowest memory address holds the high-order byte of the integer.
Still others store integers in groups of 16-bit words, with the lowest addresses holding
the low-order word, but with bytes swapped. Thus, direct copying of bytes from one
machine to another may change the value of the integer.

Standardizing byte-order for integers is especially important for protocol headers
because a header usually contains binary values that specify information such as the
packet length or a type field that specifies the type of data in the payload area. Such
quantities must be understood by both the sender and receiver.

The TCP/IP protocols solve the byte-order problem by defining a network standard
byte order that all machines must use for binary fields in headers. Each host or router
converts binary items from the local representation to network standard byte order be-
fore sending a packet, and converts from network byte order to the host-specific order
when a packet arrives. Naturally, the payload field in a packet is exempt from the
byte-order standard because the TCP/IP protocols do not know what data is being car-
ried — application programmers are free to format their own data representation and
translation. When sending integer values, many application programmers choose to fol-
low the TCP/IP byte-order standards, but the choice is often made merely as a conveni-
ence (i.e., use an existing standard rather than choose one just for an application). In
any case, the issue of byte order is only relevant to application programmers; users sel-
dom deal with byte order problems directly.

The Internet standard for byte order specifies that integers are sent with the most
significant byte first (i.e., big endian style). If one considers the successive bytes in a
packet as it travels from one machine to another, a binary integer in that packet has its
most significant byte nearest the beginning of the packet and its least significant byte
nearest the end of the packet.

The Internet protocols define network byte order to be big endian. A
sender must convert all integer fields in packet headers to network
byte order before sending a packet, and a receiver must convert all in-
teger fields in packet headers to local byte order before processing a
packet.

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

Sudha Madhuri Kanupuru

144 Internet Protocol: Connectionless Datagram Delivery (IPv4, IPv6) Chap. 7

Many arguments have been offered about which data representation should be
used, and the Internet standard still comes under attack from time to time. In particular,
proponents of change argue that although most computers were big endian when the
standard was defined, most are now little endian. However, everyone agrees that hav-
ing a standard is crucial, and the exact form of the standard is far less important.

7.17 Summary

The fundamental service provided by TCP/IP Internet software consists of a con-
nectionless, unreliable, best-effort packet delivery system. The Internet Protocol (IP)
formally specifies the format of internet packets, called datagrams, and informally em-
bodies the ideas of connectionless delivery. This chapter concentrated on datagram for-
mats; later chapters will discuss IP forwarding and error handling.

Analogous to a physical frame, the IP datagram is divided into header and data
areas. Among other information, the datagram header contains the source and destina-
tion Internet addresses and the type of the item that follows the header. Version 6 of
the Internet Protocol changes the format from a single header with several fields to a
base header plus a series of extension headers.

A large datagram can be divided into fragments for transmission across a network
that has a small MTU. Each fragment travels as an independent datagram; the ultimate
destination reassembles fragments. In IPv4, a router performs fragmentation when a da-
tagram must be sent over a network and the datagram does not fit into the network
frame. In IPv6, the original source performs all fragmentation; a host must probe to
find the path MTU. Options that must be processed by intermediate routers are copied
into each fragment; options that are handled by the ultimate destination are sent in the
first fragment.

EXERCISES

7.1 What is the single greatest advantage of having a checksum cover only the datagram header
and not the payload? What is the disadvantage?

7.2 Is it necessary to use an IP checksum when sending packets over an Ethernet? Why or
why not?

7.3 What is the MTU of an 802.11 network? Fibre Channel? 802.15.4?
7.4 Do you expect a high-speed local area network to have larger or smaller MTU than a wide

area network? Why?
7.5 Argue that a fragment should not resemble a datagram.
7.6 Ethernet assigns a new type value for IPv6, which means the frame type can be used to dis-

tinguish between arriving IPv6 and IPv4 datagrams. Why is it necessary to have a version
number in the first four bits of each datagram?

Exercises 145

7.7 In the previous exercise, estimate how many total bits are transmitted around the world
each year just to carry the 4-bit version number.

7.8 What is the advantage of using a one’s complement checksum for IP instead of a Cyclic
Redundancy Check?

7.9 Suppose the Internet design was changed to allow routers along a path to reassemble da-
tagrams. How would the change affect security?

7.10 What is the minimum network MTU required to send an IPv4 datagram that contains at
least one octet of data? An IPv6 datagram?

7.11 Suppose you are hired to implement IP datagram processing in hardware. Is there any rear-
rangement of fields in the header that would make your hardware more efficient? Easier to
build?

7.12 When a minimum-size IP datagram travels across an Ethernet, how large is the frame? Ex-
plain.

7.13 The differentiated services interpretation of the SERVICE TYPE field allows up to 64
separate service levels. Argue that fewer levels are needed (i.e., make a list of all possible
services that a user might access).

Chapter Contents
8.1 Introduction, 147
8.2 Forwarding In An Internet, 147
8.3 Direct And Indirect Delivery, 149
8.4 Transmission Across A Single Network, 150
8.5 Indirect Delivery, 151
8.6 Table-Driven IP Forwarding, 152
8.7 Next-Hop Forwarding, 153
8.8 Default Routes And A Host Example, 155
8.9 Host-Specific Routes, 156
8.10 The IP Forwarding Algorithm, 157
8.11 Longest-Prefix Match Paradigm, 158
8.12 Forwarding Tables And IP Addresses, 160
8.13 Handling Incoming Datagrams, 161
8.14 Forwarding In The Presence Of Broadcast And Multicast, 162
8.15 Software Routers And Sequential Lookup, 163
8.16 Establishing Forwarding Tables, 163
8.17 Summary, 163

8

Internet Protocol:
Forwarding IP Datagrams

8.1 Introduction

We have seen that all internet services use an underlying, connectionless packet
delivery system and the basic unit of transfer in a TCP/IP internet is the IP datagram.
This chapter adds to the description of connectionless service by describing how routers
forward IP datagrams and deliver them to their final destinations. We think of the da-
tagram format from Chapter 7 as characterizing the static aspects of the Internet Proto-
col. The description of forwarding in this chapter characterizes the operational aspects.
The next chapter completes our basic presentation of IP by describing how errors are
handled. Later chapters show how other protocols use IP to provide higher-level ser-
vices.

8.2 Forwarding In An Internet

Traditionally, the term routing was used with packet switching systems such as the
Internet to refer to the process of choosing a path over which to send packets, and the
term router was used to describe the packet switching device that makes such a choice.
Approximately twenty years after the inception of the Internet, networking professionals
started using the term forwarding to refer to the process of choosing the path for a
packet. Interestingly, they retained the term router to refer to the system that performs
forwarding. We will follow popular usage, and use the term forwarding.

147

148 Internet Protocol: Forwarding IP Datagrams Chap. 8

Forwarding occurs at several levels. For example, within a switched Ethernet that
spans multiple physical chassis, the switches are responsible for forwarding Ethernet
frames among computers. The frame enters the switch through a port that connects to
the sending computer, and the switch transmits the frame out the port that leads to the
destination host. Such internal forwarding is completely self-contained inside a single
Ethernet network. Machines on the outside do not participate in Ethernet forwarding;
they merely view the network as an entity that accepts and delivers packets.

Remember that the goal of IP is to provide a virtual network that encompasses
multiple physical networks, and offers a connectionless datagram delivery service that is
an abstract version of the service provided by an Ethernet switch. That is, we want the
Internet to accept an Internet packet and deliver the packet to the intended recipient
(i.e., operate as if the Internet worked like a giant Ethernet switch). The major differ-
ences are that in place of frames the Internet accepts and delivers IP datagrams, and in
place of Ethernet addresses, the Internet uses IP addresses. Therefore, throughout the
chapter, we will restrict the discussion to IP forwarding.

The information IP software uses to make forwarding decisions is known as a For-
warding Information Base (FIB). Each IP module has its own FIB, and each has to
make forwarding decisions. The basic idea is straightforward: given a datagram, IP
chooses how to send the datagram on toward its destination. Unlike forwarding within
a single network, however, the IP forwarding algorithm does not simply choose among
a local set of destination computers. Instead, IP must be configured to send a datagram
across multiple physical networks.

Forwarding in an internet can be difficult, especially among computers that have
multiple physical network connections. You might imagine that forwarding software
would choose a path according to the current load on all the networks, the datagram
size, the type of data being carried, the type of service requested in the datagram header,
and (perhaps) the economic cost of various paths. We will see that most internet for-
warding software is much less sophisticated, however, and selects routes based on fixed
assumptions about shortest paths.

To understand IP forwarding completely, we must think about the architecture of a
TCP/IP internet. First, recall that an internet is composed of multiple physical networks
interconnected by routers. Each router has direct connections to two or more networks.
By contrast, a host computer usually connects directly to one physical network. We
know that it is possible to have a multi-homed host directly connected to multiple net-
works, but we will defer thinking about multi-homed hosts for now.

Both hosts and routers participate in forwarding an IP datagram to its destination.
When an application program on a host communicates with a remote application, proto-
col software on the host begins to generate IP datagrams. When it receives an outgoing
datagram, the IP software on the host makes a forwarding decision: it chooses where to
send the datagram. Even if a host only connects to a single network, the host may need
to make routing decisions. Figure 8.1 shows an example architecture where a host with
one network connection must make forwarding decisions.

Sec. 8.2 Forwarding In An Internet 149

Host

R1 R2

path to some
destinations

path to other
destinations

Figure 8.1 An example of a singly-homed host that must make a choice
between router R1 and router R2 when sending a datagram.

In the figure, two routers connect to the same network as the host. Some internet
destinations lie beyond router R1 and other destinations lie beyond R2. The host must
decide which router to use for a given datagram.

A router performs transit forwarding, which means the router will accept incoming
datagrams from any of the networks to which the router attaches, and will forward each
datagram on toward its destination. A question arises for multi-homed hosts. Suppose,
for example, that a computer has both Wi-Fi and 4G cellular network connections.
Should the computer act like a router and provide transit forwarding between the net-
works? We will see that any computer running TCP/IP has all the software needed to
forward datagrams. Thus, in theory, any computer with multiple network connections
can act as a router. However, the TCP/IP standards draw a sharp distinction between
the functions of a host and those of a router. Anyone who tries to mix host and router
functions on a single machine by configuring a host to provide transit forwarding dis-
covers that the machine may not perform as expected. For now, we will distinguish
hosts from routers, and assume that hosts do not perform the router’s function of
transferring packets from one network to another.

The Internet design distinguishes between hosts and routers.
Although a host with multiple network connections can be configured
to act as a router, the resulting system may not perform as expected.

8.3 Direct And Indirect Delivery

Loosely speaking, we can divide forwarding into two forms: direct delivery and in-
direct delivery. Direct delivery, the transmission of a datagram from one machine
across a single physical network directly to another, is the basis on which all internet
communication rests. Two machines can engage in direct delivery only if they both at-
tach directly to the same underlying physical transmission system (e.g., a single Ether-
net). Indirect delivery occurs when the destination of a datagram is not on a directly at-
tached network. Because the ultimate destination cannot be reached directly, the sender

150 Internet Protocol: Forwarding IP Datagrams Chap. 8

must choose a router, transfer the datagram across a directly-connected network to the
router, and allow the router to forward the datagram on toward the ultimate destination.

8.4 Transmission Across A Single Network

We know that one machine on a given physical network can send a frame directly
to another machine on the same network. We have also seen how IP software uses the
hardware. To transfer an IP datagram, the sender encapsulates the datagram in a physi-
cal frame as described in Chapter 7, maps the next-hop IP address to a hardware ad-
dress, places the hardware address in the frame, and uses the network hardware to
transfer the frame. As Chapter 6 describes, IPv4 typically uses ARP to map an IP ad-
dress into a hardware address, and IPv6 uses Neighbor Discovery to learn the hardware
addresses of neighboring nodes. Therefore, previous chapters examine all the pieces
needed to understand direct delivery. To summarize:

Transmission of an IP datagram between two machines on a single
physical network does not involve routers. The sender encapsulates
the datagram in a physical frame, binds the next-hop address to a
physical hardware address, and sends the resulting frame directly to
the destination.

The idea of sending datagrams directly across a single network may seem obvious,
but originally it was not. Before TCP/IP was invented, several network technologies re-
quired the equivalent of a router to be attached to each network. When two computers
on the network needed to communicate, they did so through the local router. Pro-
ponents argued that having all communication go through a router meant all communi-
cation used the same paradigm and allowed security to be implemented easily. The
TCP/IP design showed that direct communication reduced the network traffic by a fac-
tor of two.

Suppose the IP software on a machine is given an IP datagram. How does the
software know whether the destination lies on a directly connected network? The test is
straightforward and helps explain the IP addressing scheme. Recall that each IP address
is divided into a prefix that identifies the network and a suffix that identifies a host. To
determine if a destination lies on one of the directly connected networks, IP software
extracts the network portion of the destination IP address and compares the network ID
to the network ID of its own IP address(es). A match means the destination lies on a
directly-connected network and the datagram can be delivered directly to the destina-
tion. The test is computationally efficient, which highlights why the Internet address
scheme works well:

Sec. 8.4 Transmission Across A Single Network 151

Because the internet addresses of all machines on a single network in-
clude a common network prefix and extracting that prefix requires
only a few machine instructions, testing whether a destination can be
reached directly is efficient.

From an internet perspective, it is easiest to think of direct delivery as the final
step in any datagram transmission. A datagram may traverse many networks and inter-
mediate routers as it travels from source to destination. The final router along the path
will connect directly to the same physical network as the destination. Thus, the final
router will deliver the datagram using direct delivery. In essence, a path through an in-
ternet involves zero or more intermediate routers plus one step of direct delivery. The
special case arises when there are no routers in the path — the sending host must per-
form the direct delivery step.

8.5 Indirect Delivery

Indirect delivery is more difficult than direct delivery because the sending machine
must identify an initial router to handle the datagram. The router must then forward the
datagram on toward the destination network.

To visualize how indirect forwarding works, imagine a large internet with many
networks interconnected by routers, but with only two hosts at the far ends. When a
host has a datagram to send, the host encapsulates the datagram in a frame and sends
the frame to the nearest router. We know that the host can reach a router because all
physical networks are interconnected, so there must be a router attached to each net-
work. Thus, the originating host can reach a router using a single physical network.
Once the frame reaches the router, software extracts the encapsulated datagram, and the
IP software selects the next router along the path toward the destination. The datagram
is again placed in a frame and sent over the next physical network to a second router,
and so on, until it can be delivered directly. The concept can be summarized:

Routers in a TCP/IP internet form a cooperative, interconnected
structure. Datagrams pass from router to router until they reach a
router that can deliver the datagram directly.

The internet design concentrates forwarding knowledge in routers and insures that
a router can forward an arbitrary datagram. Hosts rely on routers for all indirect
delivery. We can summarize:

A host only knows about directly-connected networks; a host relies
on routers to transfer datagrams to remote destinations.

Each router knows how to reach all possible destinations in the in-
ternet; given a datagram, a router can forward it correctly.

152 Internet Protocol: Forwarding IP Datagrams Chap. 8

How can a router know how to reach a remote destination? How can a host know
which router to use for a given destination? The two questions are related because they
both involve IP forwarding. We will answer the questions in two stages by considering
a basic table-driven forwarding algorithm in this chapter and postponing a discussion of
how routers learn about remote destinations until Chapters 12–14.

8.6 Table-Driven IP Forwarding

IP performs datagram forwarding. The IP forwarding algorithm employs a data
structure that stores information about possible destinations and how to reach them.
The data structure is known formally as an Internet Protocol forwarding table or IP for-
warding table, and informally as simply a forwarding table†.

Because they each must forward datagrams, both hosts and routers have a forward-
ing table. We will see that the forwarding table on a typical host is much smaller than
the forwarding table on a router, but the advantage of using a table is that a single for-
warding mechanism handles both cases. Whenever it needs to transmit a datagram, IP
forwarding software consults the forwarding table to decide where to send the datagram.

What information should be kept in a forwarding table? If every forwarding table
contained information about every possible destination in an internet, it would be im-
possible to keep the tables current. Furthermore, because the number of possible desti-
nations is large, small special-purpose systems could not run IP because they would not
have sufficient space to store the forwarding information.

Conceptually, it is desirable to use the principle of information hiding and allow
machines to make forwarding decisions with minimal information. For example, we
would like to isolate information about specific hosts to the local environment in which
they exist, and arrange for machines that are far away to forward packets to them
without knowing such details. Fortunately, the IP address scheme helps achieve the
goal. Recall that IP addresses are assigned to make all machines connected to a given
physical network share a common prefix (the network portion of the address). We have
already seen that such an assignment makes the test for direct delivery efficient. It also
means that routing tables only need to contain network prefixes and not full IP ad-
dresses. The distinction is critical: the global Internet has over 800,000,000 individual
computers, but only 400,000 unique IPv4 prefixes. Thus, the forwarding information
needed for prefixes is three orders of magnitude smaller than the forwarding informa-
tion for individual computers. The point is:

Because it allows forwarding to be based on network prefixes, the IP
addressing scheme controls the size of forwarding tables.

When we discuss route propagation, we will see that the IP forwarding scheme
also has another advantage: we are only required to propagate information about net-
works, not about individual hosts. In fact, a host can attach to a network (e.g., Wi-Fi

†Originally, the table was known as a routing table; some networking professionals use the original ter-
minology.

Sec. 8.6 Table-Driven IP Forwarding 153

hot spot) and begin using the network without any changes in the forwarding tables in
routers.

8.7 Next-Hop Forwarding

We said that using the network portion of a destination IP address instead of the
complete address keeps forwarding tables small. It also makes forwarding efficient.
More important, it helps hide information, keeping the details of specific hosts confined
to the local environment in which the hosts operate. Conceptually, a forwarding table
contains a set of pairs (N, R), where N is the network prefix for a network in the internet
and R is the IP address of the “next” router along the path to network N. Router R is
called the next hop, and the idea of using a forwarding table to store a next hop for each
destination is called next-hop forwarding. Thus, the forwarding table in a router R only
specifies one step along the path from R to each destination network — the router does
not know the complete path to a destination.

It is important to understand that each entry in a forwarding table points to a router
that can be reached across a single network. That is, all routers listed in machine M’s
forwarding table must lie on networks to which M connects directly. When a datagram
is ready to leave M, IP software locates the destination IP address and extracts the net-
work portion. M then looks up the network portion in its forwarding table, selecting
one of the entries. The selected entry in the table will specify a next-hop router that can
be reached directly.

In practice, we apply the principle of information hiding to hosts as well. We in-
sist that although hosts have IP forwarding tables, they must keep minimal information
in their tables. The idea is to force hosts to rely on routers for most forwarding.

Figure 8.2 shows a concrete example that helps explain forwarding tables. The ex-
ample internet consists of four networks connected by three routers. The table in the
figure corresponds to the forwarding table for router R. Although the example uses
IPv4 addresses, the concept applies equally to IPv6.

In the figure, each network has been assigned a slash-8 prefix and each network in-
terface has been assigned a 32-bit IPv4 address. The network administrator who as-
signed IP addresses has chosen the same host suffix for both interfaces of a router. For
example, the interfaces on router Q have addresses 10.0.0.5 and 20.0.0.5. Although
IP allows arbitrary suffixes, choosing the same value for both interfaces makes address-
ing easier for humans to remember.

Because router R connects directly to networks 20.0.0.0 and 30.0.0.0, it can use
direct delivery to send to a host on either of those networks. The router uses ARP
(IPv4) or direct mapping (IPv6) to find the physical address of a computer on those net-
works. Given a datagram destined for a host on network 40.0.0.0, however, R cannot
deliver directly. Instead, R forwards the datagram to router S (address 30.0.0.7). S
will then deliver the datagram directly. R can reach address 30.0.0.7 because both R
and S attach directly to network 30.0.0.0.

154 Internet Protocol: Forwarding IP Datagrams Chap. 8

Network
10.0.0.0 / 8

Network
20.0.0.0 / 8

Network
30.0.0.0 / 8

Network
40.0.0.0 / 8Q R S

10.0.0.5 20.0.0.6 30.0.0.7

20.0.0.5 30.0.0.6 40.0.0.7

20.0.0.0 / 8

30.0.0.0 / 8

10.0.0.0 / 8

40.0.0.0 / 8

DELIVER DIRECTLY

DELIVER DIRECTLY

20.0.0.5

30.0.0.7

TO REACH HOSTS
ON THIS NETWORK

FORWARD TO
THIS ADDRESS

(a)

(b)

Figure 8.2 (a) An example internet with 4 networks and 3 routers, and (b)
the forwarding table in R.

As Figure 8.2 demonstrates, the size of the forwarding table depends on the
number of networks in the internet; the table only grows when new networks are added.
That is, the table size and contents are independent of the number of individual hosts
connected to the networks. We can summarize the underlying principle:

To hide information, keep forwarding tables small, and make forward-
ing decisions efficient, IP forwarding software only keeps information
about destination network addresses, not about individual host ad-
dresses.

Choosing routes based on the destination network prefix alone has several conse-
quences. First, in most implementations, it means that all traffic destined for a given
network takes the same path. As a result, even when multiple paths exist, they may not
be used concurrently. Also, in the simplest case, all traffic follows the same path
without regard to the delay or throughput of physical networks. Second, because only
the final router along the path attempts to communicate with the destination host, only
the final router can determine if the host exists or is operational. Thus, we need to ar-
range a way for the final router to send reports of delivery problems back to the original

Sec. 8.7 Next-Hop Forwarding 155

source. Third, because each router forwards traffic independently, datagrams traveling
from host A to host B may follow an entirely different path than datagrams traveling
from host B back to host A. Moreover, the path in one direction can be down (e.g., if a
network or router fails) even if the path in the other direction remains available. We
need to ensure that routers cooperate to guarantee that two-way communication is al-
ways possible.

8.8 Default Routes And A Host Example

The IP design includes an interesting optimization that further hides information
and reduces the size of forwarding tables: consolidation of multiple entries into a single
default case. Conceptually, a default case introduces a two-step algorithm. In the first
step, IP forwarding software looks in the forwarding table to find a next-hop. If no en-
try in the table matches the destination address, the forwarding software takes a second
step of checking for a default route. We say that the next hop specified in a default
route is a default router.

In practice, we will see that default routing does not require two separate steps. In-
stead, a default route can be incorporated into a forwarding table. That is, an extra en-
try can be added to a forwarding table that specifies a default router as the next hop.
The lookup algorithm can be arranged to match other table entries first and only exam-
ine the default entry if none of the other entries match. A later section explains the for-
warding algorithm that accommodates default routes.

A default route is especially useful when many destinations lie beyond a single
router. For example, consider a company that uses a router to connect two small
department networks to the company intranet. The router has a connection to each
department network and a connection to the rest of the company intranet. Forwarding is
straightforward because the router only needs three entries in its forwarding table: one
for each of the two departmental networks and a default route for all other destinations.

Default routing works especially well for typical host computers that obtain service
from an ISP. For example, when a user acquires service over a DSL line or cable
modem, the hardware connects the computer to a network at the ISP. The host uses a
router on the ISP’s network to reach an arbitrary destination in the global Internet. In
such cases, the forwarding table in the host table only needs two entries: one for the lo-
cal net at the ISP and a default entry that points to the ISP’s router. Figure 8.3 illus-
trates the idea.

Although the example in the figure uses IPv4 addresses, the same principle works
for IPv6: a host only needs to know about the local network plus have a default route
that is used to reach the rest of the Internet. Of course, an IPv6 address is four times as
large as an IPv4 address, which means that each entry in the forwarding table is four
times larger. The consequence for lookup times is more significant: on modern comput-
ers, an IPv4 address fits into a single integer, which means a computer can use a single
integer comparison to compare two IPv4 addresses. When comparing two IPv6 ad-
dresses, multiple comparisons are needed.

156 Internet Protocol: Forwarding IP Datagrams Chap. 8

Host

R

path to Internet
destinations

20.0.0.17

20.0.0.1

ISP network
20.0.0.0 / 8

20.0.0.0 / 8

DEFAULT

DELIVER DIRECTLY

20.0.0.17

TO REACH HOSTS
ON THIS NETWORK

FORWARD TO
THIS ADDRESS

(a)

(b)

Figure 8.3 (a) An example Internet connection using IPv4 addresses, and (b)
the forwarding table used in the host.

8.9 Host-Specific Routes

Although we said that all forwarding is based on networks and not on individual
hosts, most IP forwarding software allows a host-specific route to be specified as a spe-
cial case. Having host-specific routes gives a network administrator more control. The
ability to specify a route for individual machines turns out to have several possible uses:

Control over network use. An administrator can send traffic for
certain hosts along one path and traffic for remaining hosts along
another path. For example, an administrator can separate traffic
destined to the company’s web server from other traffic.

Testing a new network. A new, parallel network can be installed
and tested by sending traffic for specific hosts over the new net-
work while leaving all other traffic on the old network.

Security. An administrator can use host-specific routes to direct
traffic through security systems. For example, traffic destined to
the company’s financial department may need to traverse a secure
network that has special filters in place.

Although concepts like default routes and host-specific routes seem to be special
cases that require special handing, the next section explains how all forwarding informa-
tion can be combined into a single table and handled by a single, uniform lookup algo-
rithm.

Sec. 8.10 The IP Forwarding Algorithm 157

8.10 The IP Forwarding Algorithm

Taking all the special cases described above into account, it may seem that IP
software should take the following steps when deciding how to forward a datagram:

1. Extract the destination IP address, D, from the datagram

2. If the forwarding table contains a host-specific entry for destination D,

Forward the datagram to the next hop specified in the entry

3. If the network prefix of D matches the prefix of any directly connected network,

Send the datagram directly over the network to D

4. If the forwarding table contains an entry that matches the network prefix of D,

Forward the datagram to the next hop specified in the entry

5. If the forwarding table contains a default route,

Forward the datagram to the next hop specified in the default route

6. If none of the above cases has forwarded the datagram,

Declare a forwarding error

Thinking of the six steps individually helps us understand all the cases to be con-
sidered. In terms of implementation, however, programming six separate steps makes
the code clumsy and filled with special cases (e.g., checking whether a default route has
been specified). Early in the history of the Internet, designers found a way to unify all
the cases into a single lookup mechanism that is now used in most commercial IP
software. We will explain the conceptual algorithm, examine a straightforward imple-
mentation using a table, and then consider a version that scales to handle forwarding in
routers near the center of the Internet that have large forwarding tables.

The unified lookup scheme requires four items to be specified for each entry in the
forwarding table:

The IP address, A, that gives the destination for the entry
An address mask, M, that specifies how many bits of A to examine
The IP address of a next-hop router, R, or “deliver direct”
A network interface, I, to use when sending

The four items define a route unambiguously. It should be clear that each entry in
a forwarding table needs the third item, a next-hop router address. The fourth item is
needed because a router that attaches to multiple networks has multiple internal network
interfaces. When it forwards a datagram, IP must specify which internal interface to use
when sending the datagram. The first two items define a network prefix — the mask
specifies which bits of the destination address to use during comparison and the IP ad-

158 Internet Protocol: Forwarding IP Datagrams Chap. 8

dress, A, gives a value against which to compare. That is, the algorithm computes the
bit-wise logical and of the mask, M, with the destination address and then compares the
result to A, the first item in the entry.

We define the length of an address mask to be the number of 1 bits in the mask.
In slash notation, the length of a mask is given explicitly (e.g., / 28 denotes a mask with
length 28). The length of an address mask is important because the unified forwarding
algorithm includes more than traditional network prefixes. The mask, which determines
how many bits to examine during comparisons, also allows us to handle host-specific
and default cases. For example, consider an IPv6 destination. A / 64 mask means that a
comparison will consider the first 64 bits of the address (i.e., the network prefix). A
/ 128 mask means that all 128 bits of address A in the entry will be compared to the
destination (i.e., the entry specifies a host-specific route).

As another example of how the four items suffice for arbitrary forwarding, consid-
er a default route. To create an entry for a default route, the mask, M, is set to zero (all
zero bits), and the address field, A, is set to zero. No matter what destination address is
in a datagram, using a mask of all zeroes results in a value of zero, which is equal to
the value of A in the entry. In other words, the entry always matches (i.e., it provides a
default route). Algorithm 8.1 summarizes steps taken to forward a datagram.

In essence, the algorithm iterates through entries in the forwarding table until it
finds a match. The algorithm assumes entries are arranged in longest-prefix order (i.e.,
the entries with the longest mask occur first). Therefore, as soon as the destination
matches an entry, the algorithm can send the datagram to the specified next hop. There
are two cases: direct or indirect delivery. For direct delivery, the datagram destination
is used as the next hop. For indirect delivery, the forwarding table contains the address
of a router, R, to use as the next hop. Once a next hop has been determined, the algo-
rithm maps the next-hop address to a hardware address, creates a frame, fills in the
hardware address in the frame, and sends the frame carrying the datagram to the next
hop.

The algorithm assumes that the forwarding table contains a default route. Thus,
even if no other entries match a given destination, the default entry will match. Of
course, a manager could make a mistake and inadvertently remove the default route. In
such cases, our algorithm will iterate through the entire table without finding a match,
and will then reach the point at which it declares a forwarding error has occurred.

8.11 Longest-Prefix Match Paradigm

To make the algorithm work correctly, entries in the table must be examined in an
order that guarantees entries with a longer mask are checked before entries with a short-
er mask. For example, suppose the table contains a host-specific route for a host X and
also contains a network-specific route for the network portion of X. Both entries will
match X, but forwarding should choose the most specific match (i.e., the host-specific
route).

Sec. 8.11 Longest-Prefix Match Paradigm 159

Algorithm 8.1

ForwardIPDatagram (Datagram , ForwardingTable) {

Insure forwarding table is ordered with longest-prefix first

Extract the destination, D, from the datagram

For each table entry {

Compute the logical and of D with mask to obtain a prefix, P

If prefix P matches A, the address in entry {

/* Found a matching entry -- forward as specified */

if (next hop in entry is "deliver direct") {

Set NextHop to the destination address, D

} otherwise {

Set NextHop to the router address in the entry, R

}

Resolve address NextHop to a hardware address, H

Encapsulate the datagram in a frame using address H

Send the datagram over network using interface I

Stop because the datagram has been sent successfully

}

}

Stop and declare that a forwarding error has occurred

}

Algorithm 8.1 Unified IP Forwarding Algorithm in which each table entry
contains an address, A, a mask, M, a next-hop router, R (or
“direct delivery”), and a network interface, I.

We use the term longest-prefix match to describe the idea of examining the most-
specific routes first. If we imagine the forwarding table to be an array, the longest-
prefix match rule means entries in the array must be sorted in descending order accord-
ing to the length of their mask.

160 Internet Protocol: Forwarding IP Datagrams Chap. 8

8.12 Forwarding Tables And IP Addresses

It is important to understand that except for decrementing the hop limit (TTL in
IPv4) and recomputing the checksum, IP forwarding does not alter the original da-
tagram. In particular, the datagram source and destination addresses remain unaltered;
they specify the IP address of the original source and the IP address of the ultimate des-
tination†. When it executes the forwarding algorithm, IP computes a new address, the
IP address of the machine to which the datagram should be sent next. The new address
is most likely the address of a router. If the datagram can be delivered directly, the new
address is the same as the address of the ultimate destination.

In the algorithm, the IP address selected by the IP forwarding algorithm is called a
next-hop address because it tells where the datagram must be sent next. Where does IP
store the next-hop address? Not in the datagram; no place is reserved for it. In fact, IP
does not store the next-hop address at all. After it executes the forwarding algorithm,
the IP module passes the datagram and the next-hop address to the network interface
responsible for the network over which the datagram must be sent. In essence, IP re-
quests that the datagram be sent to the specified next-hop address.

When it receives a datagram and a next-hop address from IP, the network interface
must map the next-hop address to a hardware address, create a frame, place the
hardware address in the destination address field of the frame, encapsulate the datagram
in the payload area of the frame, and transmit the result. Once it has obtained a
hardware address, the network interface software discards the next-hop address.

It may seem odd that a forwarding table stores the IP address of each next hop in-
stead of the hardware address of the next hop. An IP address must be translated into a
corresponding hardware address before the datagram can be sent, so an extra step is re-
quired to map a next-hop IP address to an equivalent hardware address. If we imagine
a host sending a sequence of many datagrams to a single destination, the use of IP ad-
dresses for forwarding can seem incredibly inefficient. Each time an application gen-
erates a datagram, IP extracts the destination address and searches the forwarding table
to produce a next-hop address. IP then passes the datagram and next-hop address to the
network interface, which recomputes the binding to a hardware address. If the forward-
ing table stored hardware addresses, the binding between the next hop’s IP address and
hardware address could be performed once, saving unnecessary computation.

Why does IP software avoid using hardware addresses in a forwarding table? Fig-
ure 8.4 helps illustrates the two important reasons. First, a forwarding table provides an
especially clean interface between IP software that forwards datagrams and management
tools and high-level software that manipulate routes. Second, the goal of internetwork-
ing is to hide the details of underlying networks. Using only IP addresses in forwarding
tables allows network managers to work at a higher level of abstraction. A manager can
examine or change forwarding rules and debug forwarding problems while only using
IP addresses. Thus, a manager does not need to worry about or understand the underly-
ing hardware addresses.

†The only exception occurs when a datagram contains a source route option.

Sec. 8.12 Forwarding Tables And IP Addresses 161

FORWARDING
ALGORITHM

FORWARDING
TABLE

DATAGRAM
TO BE FORWARDED

EXAMINATION AND UPDATES
OF FORWARDING INFORMATION

DATAGRAM TO BE SENT
PLUS ADDRESS OF NEXT HOP

IP addresses used

Physical addresses used

Figure 8.4 Illustration of the forwarding algorithm using a forwarding table
while entries are being examined or changed.

The figure illustrates an interesting idea: concurrent access to forwarding informa-
tion. Datagram forwarding, which happens millisecond-to-millisecond, can continue to
use the forwarding table while a manager examines entries or makes changes. A
change takes effect immediately because the forwarding continues concurrently (unless
the manager manually disables network interfaces).

Figure 8.4 also illustrates the address boundary, an important conceptual division
between low-level software that understands hardware addresses and internet software
that only uses high-level addresses. Above the boundary, all software can be written to
use internet addresses; knowledge of hardware addresses is relegated to a few small,
low-level functions that transmit a datagram. We will see that observing the address
boundary also helps keep the implementation of higher-level protocols, such as TCP,
easy to understand, test, and modify.

8.13 Handling Incoming Datagrams

So far, we have discussed IP forwarding by describing how forwarding decisions
are made about outgoing datagrams. It should be clear, however, that IP software must
process incoming datagrams as well.

First consider host software. When an IP datagram arrives at a host, the network
interface software delivers the datagram to the IP module for processing. If the
datagram’s destination address matches the host’s IP address (or one of the host’s ad-
dresses), IP software on the host accepts the datagram and passes it to the appropriate
higher-level protocol software for further processing. If the destination IP address does
not match one of host’s addresses, the host is required to discard the datagram (i.e.,
hosts are forbidden from attempting to forward datagrams that are accidentally forward-
ed to the wrong machine).

162 Internet Protocol: Forwarding IP Datagrams Chap. 8

Now consider router software. Unlike a host, a router must perform forwarding.
However, a router can also run apps (e.g., network management apps). When an IP da-
tagram arrives at a router, the datagram is delivered to the IP software, and two cases
arise: the datagram has reached its final destination (i.e., it is intended for an app on the
router), or it must travel farther. As with hosts, if the datagram destination IP address
matches any of the router’s own IP addresses, IP software passes the datagram to
higher-level protocol software for processing. If the datagram has not reached its final
destination, IP forwards the datagram using the standard algorithm and the information
in the local forwarding table.

We said that a host should not forward datagrams (i.e., a host must discard da-
tagrams that are incorrectly delivered). There are four reasons why a host should re-
frain from performing any forwarding. First, when a host receives a datagram intended
for some other machine, something has gone wrong with internet addressing, forward-
ing, or delivery. The problem may not be revealed if the host takes corrective action by
forwarding the datagram. Second, forwarding will cause unnecessary network traffic
(and may steal CPU time from legitimate uses of the host). Third, simple errors can
cause chaos. Suppose that hosts are permitted to forward traffic, and imagine what hap-
pens if a computer accidentally broadcasts a datagram that is destined for a host, H.
Because it has been broadcast, a copy of the datagram will be delivered to every host on
the network. Each host examines the datagram and forwards the copy to H, which will
be bombarded with many copies. Fourth, as later chapters show, routers do more than
merely forward traffic. The next chapter explains that routers use a special protocol to
report errors, while hosts do not (again, to avoid having multiple error reports bombard
a source). Routers also propagate information to ensure that their forwarding tables are
consistent and correct. If hosts forward datagrams without participating fully in all
router protocols, unexpected anomalies can arise.

8.14 Forwarding In The Presence Of Broadcast And Multicast

Determining whether an IP datagram has reached its final destination is not quite
as trivial as described above. We said that when a datagram arrives, the receiving
machine must compare the destination address in the datagram to the IP address of each
network interface. Of course, if the destination matches, the machine keeps the da-
tagram and processes it. However, a machine must also handle datagrams that are
broadcast (IPv4) or multicast (IPv4 and IPv6) across one of the networks to which the
machine attaches. If the machine is participating in the multicast group† or an IPv4 da-
tagram has been broadcast across a local network, a copy of the datagram must be
passed to the local protocol stack for processing. A router may also need to forward a
copy on one or more of the other networks. For IPv4, directed broadcast introduces
several possibilities. If a directed broadcast is addressed to a network N and the da-
tagram arrives over network N, a router only needs to keep a copy for the local protocol
stack. However, if a directed broadcast for network N arrives over another network, the
router must keep a copy and also broadcast a copy over network N.

†Chapter 15 describes IP multicast.

Sec. 8.15 Software Routers And Sequential Lookup 163

8.15 Software Routers And Sequential Lookup

Our description of the forwarding algorithm implies that IP searches a forwarding
table sequentially. For low-end routers, sequential search is indeed used. Low-end
routers are often called software routers to emphasize that the router does not have
special-purpose hardware to assist in forwarding. Instead, a software router consists of
a general-purpose computer with a processor, memory, and network interface cards. All
the IP forwarding is performed by software.

Software routers can use sequential table search because the tables are small. For
example, consider a typical host. We expect the forwarding table to contain two entries
as Figure 8.3 illustrates. In such a situation, sequential search works fine. In fact, more
sophisticated search techniques only pay off for larger tables — the overhead of starting
a search means that sequential lookup wins for small tables.

Despite being useful in software routers, sequential search does not suffice for all
cases. A high-end router near the center of the IPv4 Internet has approximately 400,000
entries in its forwarding table. In such cases, sequential table search takes too long.
The most common data structure used for high-end forwarding tables consists of a trie†.
It is not important to know the details of a trie data structure and the lookup algorithm
used to search a trie, but we should be aware that high-end routers use more sophisticat-
ed mechanisms than the ones described in this chapter.

8.16 Establishing Forwarding Tables

We have discussed the IP forwarding algorithm and described how forwarding uses
a table. However, we have not specified how hosts or routers initialize their forwarding
tables, nor have we described how the contents of forwarding tables are updated as the
network changes. Later chapters deal with the questions and discuss protocols that al-
low routers to keep forwarding tables consistent. For now, it is important to understand
that IP software uses a forwarding table whenever it decides how to forward a da-
tagram. The consequence is that changing the values in a forwarding table will change
the paths that datagrams follow.

8.17 Summary

IP software forwards datagrams; the computation consists of using the destination
IP address and forwarding information. Direct delivery is possible if the destination
machine lies on a network to which the sending machine attaches. If the sender cannot
reach the destination directly, the sender must forward the datagram to a router. The
general paradigm is that hosts send an indirectly forwarded datagram to the nearest
router; the datagram travels through the internet from router to router until the last
router along the path can deliver the datagram directly to the ultimate destination.

†Pronounced “try.”

164 Internet Protocol: Forwarding IP Datagrams Chap. 8

IP keeps information needed for forwarding in a table known as a forwarding table.
When IP forwards a datagram, the forwarding algorithm produces the IP address of the
next machine (i.e., the address of the next hop) to which the datagram should be sent.
IP passes the datagram and next-hop address to network interface software. The inter-
face software encapsulates the datagram in a network frame, maps the next-hop internet
address to a hardware address, uses the hardware address as the frame destination, and
sends the frame across the underlying hardware network.

Internet forwarding only uses IP addresses; the binding between an IP address and
a hardware address is not part of the IP forwarding function. Because each forwarding
table entry includes an address mask, a single unified forwarding algorithm can handle
network-specific routes, host-specific routes, and a default route.

EXERCISES

8.1 Create forwarding tables for all the routers in Figure 8.2. Which router or routers will
benefit most from using a default route?

8.2 Examine the forwarding algorithm used on your local operating system. Are all forwarding
cases mentioned in the chapter covered? Does the algorithm allow entries that are not
described in the chapter?

8.3 When does a router modify the hop limit (or time-to-live) field in a datagram header?
8.4 Consider a machine with two physical network connections and two IP addresses I1 and I2.

Is it possible for that machine to receive a datagram destined for I2 over the network with
address I1? Explain.

8.5 In the above exercise, what is the appropriate response if such a situation arises?
8.6 Consider two hosts, A and B, that both attach to a common physical network, N. What

happens if another host on the network sends A a datagram that has IP destination B?
8.7 Modify Algorithm 8.1 to accommodate the IPv4 source route options discussed in Chapter

7.
8.8 When it forwards a datagram, a router performs a computation that takes time proportional

to the length of the datagram header. Explain the computation.
8.9 In the above question, can you find an optimization that performs the computation in a few

machine instructions?
8.10 A network administrator wants to monitor traffic destined for host H, and has purchased a

router R with monitoring software. The manager only wants traffic destined for H to pass
through R. Explain how to arrange forwarding to satisfy the manager.

8.11 Does Algorithm 8.1 allow a manager to specify forwarding for a multicast address? Ex-
plain.

8.12 Does Algorithm 8.1 apply to fragments or only to complete datagrams? Explain.

This page intentionally left blank

Chapter Contents
9.1 Introduction, 167
9.2 The Internet Control Message Protocol, 167
9.3 Error Reporting Vs. Error Correction, 169
9.4 ICMP Message Delivery, 170
9.5 Conceptual Layering, 171
9.6 ICMP Message Format, 171
9.7 Example ICMP Message Types Used With IPv4 And IPv6, 172
9.8 Testing Destination Reachability And Status (Ping), 173
9.9 Echo Request And Reply Message Format, 174
9.10 Checksum Computation And The IPv6 Pseudo-Header, 175
9.11 Reports Of Unreachable Destinations, 176
9.12 ICMP Error Reports Regarding Fragmentation, 178
9.13 Route Change Requests From Routers, 178
9.14 Detecting Circular Or Excessively Long Routes, 180
9.15 Reporting Other Problems, 181
9.16 Older ICMP Messages Used At Startup, 182
9.17 Summary, 182

9

Internet Protocol: Error And
Control Messages (ICMP)

9.1 Introduction

The previous chapter describes IP as a best-effort mechanism that makes an at-
tempt to deliver datagrams but does not guarantee delivery. The chapter shows how the
Internet Protocol arranges for each router to forward datagrams toward their destination.
A datagram travels through an internet from router to router until it reaches a router that
can deliver the datagram directly to its final destination. Best effort means that IP does
not discard datagrams capriciously. If a router does not know how to forward a da-
tagram, cannot contact the destination host when delivering a datagram, or the router
detects an unusual condition that affects its ability to transfer the datagram (e.g., net-
work failure), the router informs the original source about the problem. This chapter
discusses the mechanism that routers and hosts use to communicate such control or er-
ror information. We will see that routers use the mechanism to report problems and
hosts use the mechanism to find neighbors and to test whether destinations are reach-
able.

9.2 The Internet Control Message Protocol

In the connectionless system we have described so far, each router operates autono-
mously. When a datagram arrives, a router forwards or delivers the datagram and then
goes on to the next datagram; the router does not coordinate with the original sender of
a datagram. Such a system works well if all hosts and routers have been configured

167

168 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

correctly because they agree on routes to each destination. Unfortunately, no large
communication system works correctly all the time. Besides failures of network and
processor hardware, IP cannot deliver a datagram if the destination machine is tem-
porarily or permanently disconnected from the network, if the hop limit expires before a
datagram reaches its destination, or if an intermediate router becomes so overloaded that
it must discard a datagram. The important difference between having a single network
implemented with homogeneous, dedicated hardware and an internet implemented with
multiple, independent systems is that in the former, the designer can arrange for the
underlying hardware to inform attached hosts when problems arise. In an internet,
which has no such hardware mechanism, a sender cannot tell whether a delivery failure
resulted from a malfunction of the local network or a failure of a system somewhere
along the path to a destination. Debugging in such an environment becomes extremely
difficult. The IP protocol itself contains nothing to help the sender test connectivity or
learn about failures. Although we said that IP is unreliable, we want our internet to
detect and recover from errors whenever possible. Therefore, an additional mechanism
is needed.

To allow routers in an internet to report errors or provide information about unex-
pected circumstances, the designers added a special-purpose mechanism to the TCP/IP
protocols. Known as the Internet Control Message Protocol (ICMP), the mechanism is
considered a required part of IP and must be included in every IP implementation†.

ICMP is primarily intended to inform a source when a datagram sent by the source
experiences problems. However, the ultimate destination of an ICMP message is not an
application program running on the source computer or the user who launched the appli-
cation. Instead, ICMP messages are sent to Internet Protocol software on the source
computer. That is, when an ICMP error message arrives on a computer, the ICMP
software module on the computer handles the message. Of course, ICMP may take
further action in response to the incoming message. For example, ICMP might inform
an application or a higher-level protocol about an incoming message. We can summar-
ize:

The Internet Control Message Protocol allows routers to send error
or control messages back to the source of a datagram that caused a
problem. ICMP messages are not usually delivered to applications.
We think of ICMP as providing communication between an ICMP
module on one machine and an ICMP module on another.

ICMP was initially designed to allow routers to report the cause of delivery errors
to hosts, but ICMP is not restricted exclusively to routers. Although guidelines specify
that some ICMP messages should only be sent by routers, an arbitrary machine can
send an ICMP message to any other machine. Thus, a host can use ICMP to
correspond with a router or another host. The chief advantage of allowing hosts to use
ICMP is that it provides a single mechanism used for all control and information mes-
sages.

†When referring specifically to the version of ICMP that accompanies IPv4, we will write ICMPv4, and
when referring to the version that accompanies IPv6, we will write ICMPv6.

Sec. 9.3 Error Reporting Vs. Error Correction 169

9.3 Error Reporting Vs. Error Correction

Technically, ICMP is an error reporting mechanism. It provides a way for routers
that encounter an error to report the error to the original source, but ICMP does not in-
teract with the host nor does ICMP attempt to correct the error. The idea of reporting
problems rather than working to correct problems arises from the fundamental design
principle discussed earlier: routers are to be as stateless as possible. We note that the
idea of error reporting rather than error correction helps improve security. If a router
tried to maintain state when an error occurred, an attacker could simply flood the router
with incorrect packets and either not respond or respond very slowly when the router at-
tempted to correct the problem. Such an attack could exhaust router resources. Thus,
the idea of only reporting errors can prevent certain security attacks.

Although the protocol specification outlines intended uses of ICMP and suggests
possible actions to take in response to error reports, ICMP does not fully specify the ac-
tion to be taken for each possible error. Thus, hosts have flexibility in how they relate
error reports to applications. In short:

When a datagram causes an error, ICMP can only report the error
condition back to the original source of the datagram; the source
must relate the error to an individual application program or take
other action to correct the problem.

Most errors stem from the original source, but some do not. Because ICMP re-
ports problems to the original source, it cannot be used to inform intermediate routers
about problems. For example, suppose a datagram follows a path through a sequence of
routers, R1, R2, ..., Rk. If Rk has incorrect routing information and mistakenly forwards
the datagram to router RE, RE cannot use ICMP to report the error back to router Rk;
ICMP can only send a report back to the original source. Unfortunately, the original
source has no responsibility for the problem and cannot control the misbehaving router.
In fact, the source may not be able to determine which router caused the problem.

Why restrict ICMP to communication with the original source? The answer should
be clear from our discussion of datagram formats and forwarding in the previous
chapters. A datagram only contains fields that specify the original source and the ulti-
mate destination; it does not contain a complete record of its trip through the internet
(except for unusual cases when the record route option is used). Furthermore, because
routers can establish and change their own routing tables, there is no global knowledge
of routes. Thus, when a datagram reaches a given router, it is impossible to know the
path it has taken to arrive. If the router detects a problem, IP cannot know the set of in-
termediate machines that processed the datagram, so it cannot inform them of the prob-
lem. Instead of silently discarding the datagram, the router uses ICMP to inform the
original source that a problem has occurred, and trusts that host administrators will
cooperate with network administrators to locate and repair the problem.

170 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

9.4 ICMP Message Delivery

The designers of ICMP took a novel approach to error reporting: instead of using a
lower-level communications system to handle errors, they chose to use IP to carry
ICMP messages. That is, like all other traffic, ICMP messages travel across the inter-
net in the payload area of IP datagrams. The choice reflects an important assumption:
errors are rare. In particular, we assume that datagram forwarding will remain intact at
most times (i.e., error messages will be delivered). In practice, the assumption has
turned out to be valid — errors are indeed rare.

Because each ICMP message travels in an IP datagram, two levels of encapsulation
are required. Figure 9.1 illustrates the concept.

FRAME
HEADER FRAME PAYLOAD AREA

DATAGRAM
HEADER DATAGRAM PAYLOAD AREA

ICMP
HEADER ICMP PAYLOAD

Figure 9.1 The two levels of encapsulation used when an ICMP message is
sent across a network.

As the figure shows, each ICMP message travels across an internet in the payload
portion of an IP datagram, which itself travels across an underlying network in the pay-
load portion of a frame. Although both IPv4 and IPv6 use a datagram to carry an
ICMP message, the details differ. IPv4 uses the PROTOCOL field in the datagram
header as a type field. When an ICMP message is carried in the payload area of an
IPv4 datagram, the PROTOCOL field is set to 1. IPv6 uses the NEXT HEADER field to
specify the type of the item being carried. When an ICMP message is carried in the
payload area of an IPv6 datagram, the NEXT HEADER field of the header that is previ-
ous to the ICMP message contains 58.

In terms of processing, a datagram that carries an ICMP message is forwarded ex-
actly like a datagram that carries information for users; there is no additional reliability
or priority. Thus, error messages themselves may be lost, duplicated, or discarded.
Furthermore, in an already congested network, the error message may increase conges-
tion. An exception is made to the error handling procedures if an IP datagram carrying
an ICMP message causes an error. The exception, established to avoid the problem of
having error messages about error messages, specifies that ICMP messages are not gen-
erated for errors that result from datagrams carrying ICMP error messages.

Sec. 9.5 Conceptual Layering 171

9.5 Conceptual Layering

Usually, encapsulation and layering go hand-in-hand. For example, consider IP
and Ethernet. When it travels across an Ethernet, an IP datagram is encapsulated in an
Ethernet frame. The encapsulation follows the layering scheme presented in Chapter 4
because IP is a Layer 3 protocol and Ethernet is a Layer 2 technology. The Ethernet
type field allows a variety of higher-layer packets to be encapsulated in Ethernet frames
with no ambiguity.

ICMP represents an important exception. Although each ICMP message is encap-
sulated in an IP datagram, ICMP is not considered a higher-level protocol. Instead,
ICMP is a required part of IP, which means ICMP is classified as a Layer 3 protocol.
We can think of the encapsulation as using the existing IP-based forwarding scheme
rather than creating a parallel forwarding mechanism for ICMP messages. ICMP must
send error reports to the original source, so an ICMP message must travel across multi-
ple underlying networks to reach its final destination. Thus, ICMP messages cannot be
delivered by a Layer 2 transport alone.

9.6 ICMP Message Format

The standards define two sets of ICMP messages: a set for IPv4 and a larger set
for IPv6. In both versions of IP, each ICMP message has its own format. However, all
ICMP messages begin with the same three fields. Figure 9.2 illustrates the general for-
mat of an ICMP message.

TYPE CODE CHECKSUM

MESSAGE BODY
. . .

8 bits 8 bits 16 bits

Figure 9.2 The first three fields in each ICMP message.

As the figure shows, an ICMP message begins with an 8-bit integer ICMP message
TYPE field. The TYPE field identifies the specific ICMP message that follows. Be-
cause the format of a message is defined by the message type, a receiver uses the value
in the TYPE field to know how to parse the remainder of the message.

An 8-bit CODE field in an ICMP message provides further information about the
message type. For example, an ICMP TIME EXCEEDED message can have a code
value to indicate that the hop count (TTL) of the datagram reached zero or that reassem-
bly timed out before all fragments arrived.

172 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

The third field in each ICMP message consists of a 16-bit CHECKSUM that is
computed over the entire ICMP message. ICMP uses the same 16-bit one’s comple-
ment checksum as IP.

The message body in an ICMP message depends entirely on the ICMP type. How-
ever, for ICMP messages that report an error, the message body always includes the
header plus additional octets from the datagram that caused the problem†.

The reason ICMP returns more than the datagram header alone is to allow the re-
ceiver to determine more precisely which protocol(s) and which application program
were responsible for the datagram. As we will see later, higher-level protocols in the
TCP/IP suite are designed so that crucial information is encoded in the first few octets
beyond the IP header‡.

9.7 Example ICMP Message Types Used With IPv4 And IPv6

Figure 9.3 lists example ICMP message types used with IPv4. Later sections
describe the meanings in more detail and give examples of message formats.

Type Meaning Type Meaning
0 Echo Reply 17 Address Mask Request
3 Destination Unreachable 18 Address Mask Reply
4 Source Quench 30 Traceroute
5 Redirect (change a route) 31 Datagram Conversion Error
6 Alternate Host Address 32 Mobile Host Redirect
8 Echo Request 33 Where-Are-You (for IPv6)
9 Router Advertisement 34 I-Am-Here (for IPv6)

10 Router Discovery 35 Mobile Registration Request
11 Time Exceeded 36 Mobile Registration Reply
12 Parameter Problem 37 Domain Name Request
13 Timestamp Request 38 Domain Name Reply
14 Timestamp Reply 39 SKIP (Simple Key Mgmt)
15 Information Request 40 Photuris
16 Information Reply 41 Experimental Mobility

Figure 9.3 Example ICMPv4 message types and the meaning of each.
Values not listed are unassigned or reserved.

As the figure shows, many of the original ICMP messages were designed to carry
information rather than error messages (e.g., a host uses type 17 to request the address
mask being used on a network and a router responds with type 18 to report the address
mask). IPv6 distinguishes between error messages and informational messages by di-
viding the type values into two sets: types less than 128 are used for error messages,
and types between 128 and 255 are used for information message. Figure 9.4 lists ex-

†ICMP only returns part of the datagram that caused the problem to avoid having ICMP messages frag-
mented.

‡Both TCP and UDP store protocol port numbers in the first 32 bits.

Sec. 9.7 Example ICMP Message Types Used With IPv4 And IPv6 173

ample ICMP message types used with IPv6 and shows that although only four error
messages have been defined, IPv6 defines many informational messages.

Type Meaning Type Meaning
1 Destination Unreachable 138 Router Renumbering
2 Packet Too Big 139 ICMP Node Info. Query
3 Time Exceeded 140 ICMP Node Info. Response
4 Parameter Problem 141 Inverse Neighbor Solicitation

128 Echo Request 142 Inverse Neighbor Advertise.
129 Echo Reply 143 Multicast Listener Reports
130 Multicast Listener Query 144 Home Agent Request
131 Multicast Listener Report 145 Home Agent Reply
132 Multicast Listener Done 146 Mobile Prefix Solicitation
133 Router Solicitation (NDP) 147 Mobile Prefix Advertisement
134 Router Advertise. (NDP) 148 Certification Path Solicitation
135 Neighbor Solicitation (NDP) 149 Certification Path Advertise.
136 Neighbor Advertise. (NDP) 151 Multicast Router Advertise.
137 Redirect Message

Figure 9.4 Example ICMPv6 message types and the meaning of each.

As the figure shows, IPv6 incorporates three major subsystems into ICMP: the
Neighbor Discovery Protocol mentioned in Chapter 6, Multicast support described in
Chapter 15, and IP mobility described in Chapter 18. ICMP messages have been de-
fined for each of the subsystems. For example, when using Neighbor Discovery, an
IPv6 node can broadcast a Neighbor Solicitation Message (type 135) to discover
directly-reachable neighbors or a Router Solicitation Message (type 133) to discover
directly-reachable routers.

9.8 Testing Destination Reachability And Status (Ping)

The ping† program is perhaps the most widely used internet diagnostic tool. Ori-
ginally created for IPv4, ping has been extended to accommodate IPv6. In either case,
ping sends an ICMP Echo Request message to a remote computer. Any computer that
receives an ICMP Echo Request creates an ICMP Echo Reply and returns the reply to
the original sender. Thus, the ping program receives an the Echo Reply from the re-
mote machine. The request message contains an optional section for data, and the reply
contains a copy of the data that was sent in the request.

How can a simple message exchange help diagnose internet problems? When
sending an echo request, a user must specify a destination. The straightforward answer
is that an echo request and associated reply can be used to test whether a destination is
reachable and responding. Because both the request and reply travel in IP datagrams,

†Dave Mills once suggested that PING is an acronym for Packet InterNet Groper.

174 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

receiving a reply from a remote machine verifies that major pieces of the IP transport
system are working correctly. First, IP software on the source computer must have an
entry in its forwarding table for the destination. Second, the source computer has creat-
ed a correct datagram. Third, the source was able to reach a router, which means ARP
(IPv4) or Neighbor Discovery (IPv6) is working. Third, intermediate routers between
the source and destination must be operating, and must forward datagrams correctly in
both directions between the source and destination. Finally, the destination machine
must be running, the device driver must be able to receive and send packets, and both
ICMP and IP software modules must be working.

Several versions of ping exist. Most include options that allow a user to specify
whether to send a request and wait for a reply, send several requests and then wait for a
reply, or send requests periodically (e.g., every second) and display all replies. If ping
sends a series of requests, it displays statistics about message loss. The advantage of
sending a continuous series of requests arises from an ability to discover intermittent
problems. For example, consider a wireless network where electrical interference
causes loss but the interference occurs randomly (e.g., when a printer starts).

Most versions of ping also allow a user to specify the amount of data being sent in
each request. Sending a large ping packet is useful for testing fragmentation and
reassembly. Large packets also force IPv6 to engage in path MTU discovery. Thus, a
seemingly trivial application has several uses.

9.9 Echo Request And Reply Message Format

Both IPv4 and IPv6 use a single format for all ICMP Echo Request and Echo Re-
ply messages. Figure 9.5 illustrates the message format.

0 8 16 31

TYPE CODE (0) CHECKSUM

IDENTIFIER SEQUENCE NUMBER

OPTIONAL DATA
. . .

Figure 9.5 ICMP echo request or reply message format.

Although the same message format is used for echo requests and replies, the value
of the TYPE differs. For IPv4, the TYPE is 8 in a request and 0 in a reply. For IPv6,
the TYPE is 128 in a request and 129 in a reply. For any value in the TYPE field, the
CODE is zero (i.e., echo requests and replies do not use the code field).

Fields IDENTIFIER and SEQUENCE NUMBER are used by the sender to match
replies to requests. A receiving ICMP does not interpret the two fields, but does return
the same values in the reply that were found in the request. Therefore, a machine that

Sec. 9.9 Echo Request And Reply Message Format 175

sends a request can set the IDENTIFIER field to a value that identifies an application,
and can use the SEQUENCE NUMBER field to number successive requests sent by the
application. For example, the IDENTIFIER might be the process ID of the sending ap-
plication, which allows ICMP software to match incoming replies with the application
that sent a request.

The field labeled OPTIONAL DATA is a variable length field that contains data to
be returned to the sender. An echo reply always returns exactly the same data as was
received in the request. Although arbitrary data can be sent, typical ping programs store
sequential values in octets of the data area, making it easy to verify that the data re-
turned is exactly the same as the data sent without needing to store copies of packets.
As mentioned above, the variable size allows a manager to test fragmentation.

9.10 Checksum Computation And The IPv6 Pseudo-Header

Both IPv4 and IPv6 use the CHECKSUM field in an ICMP message, and both re-
quire a sender to compute a 16-bit one’s complement checksum of the complete mes-
sage. Furthermore, both versions require a receiver to validate the checksum and to dis-
card ICMP messages that have an invalid checksum. However, the details of the check-
sum computation differ because IPv6 adds an additional requirement: the checksum
used with IPv6 also covers fields from the IP base header. Conceptually, the designated
header fields are arranged into a pseudo-header as Figure 9.6 illustrates.

0 4 12 16 24 31

SOURCE ADDRESS

DESTINATION ADDRESS

ICMPv6 LENGTH

UNUSED (MUST BE ZERO) NEXT HEADER

Figure 9.6 The IPv6 pseudo-header used for the checksum computation with
ICMPv6.

176 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

The term pseudo-header and the use of dashed lines in the figure indicate that the
arrangement of extra fields is merely used for the checksum computation and is never
placed in a packet. We can imagine, for example, that the checksum code creates a
pseudo-header in memory by copying fields from the base header, appends a copy of
the ICMP message to the pseudo-header, and then computes a checksum across both the
pseudo-header and the message†.

Why did IPv6 include a pseudo-header in the checksum? The designers of IPv6
were conscious of possible security weaknesses, and wanted to insure that a computer
would not mistakenly process an ICMP message that was not intended for the computer.
Including a pseudo-header in the checksum adds an additional verification that the mes-
sage was delivered properly. The pseudo-header does not guarantee correctness — if
stronger security is needed, the datagram must be encrypted.

9.11 Reports Of Unreachable Destinations

Although IP implements a best-effort delivery mechanism, discarding datagrams
should not be taken lightly. Whenever an error prevents a router from forwarding or
delivering a datagram, the router sends an ICMP destination unreachable message back
to the source and then drops (i.e., discards) the datagram. Network unreachable errors
imply forwarding failures at intermediate points; host unreachable errors imply delivery
failures across the final hop‡.

Both IPv4 and IPv6 use the same format for destination unreachable messages.
Figure 9.7 illustrates the format.

0 8 16 31

TYPE CODE CHECKSUM

UNUSED (MUST BE ZERO)

PREFIX OF DATAGRAM THAT CAUSED THE PROBLEM
. . .

Figure 9.7 ICMP destination unreachable message format.

Although they use the same message format, the way IPv4 and IPv6 interpret fields
in the message differs slightly. IPv4 sets the TYPE to 3, and IPv6 sets the TYPE to 1.
As with Echo Request and Reply messages, IPv4 computes a CHECKSUM over the
ICMP message only and IPv6 includes a pseudo-header in the checksum.

The CODE field contains an integer that further describes the problem; codes for
IPv4 and IPv6 differ. Figure 9.8 lists the meaning of CODE values.

†In practice, it is possible to compute a checksum over the pseudo-header fields without copying them.
‡The IETF recommends only reporting host unreachable messages to the original source, and using rout-

ing protocols to handle other forwarding problems.

Sec. 9.11 Reports Of Unreachable Destinations 177

IPv4 interpretation

Code Meaning Code Meaning
0 Network unreachable 8 Source host isolated
1 Host unreachable 9 Comm. with net prohibited
2 Protocol unreachable 10 Comm. with host prohibited
3 Port unreachable 11 Net unreachable for TOS
4 Fragmentation needed 12 Host unreachable for TOS
5 Source route failed 13 Communication prohibited
6 Dest. net unknown 14 Host precedence violation
7 Dest. host unknown 15 Precedence cutoff

IPv6 interpretation

Code Meaning Code Meaning
0 No route to dest. 4 Port unreachable
1 Comm. prohibited 5 Source addr. failed policy
2 Beyond src. scope 6 Reject route to dest.
3 Address unreachable 7 Source route error

Figure 9.8 The CODE values for an ICMP destination unreachable message.

The two versions of IP also differ in the way they select a prefix of the datagram
that caused the problem. IPv4 sends the datagram header plus the first 64 bits of the
datagram payload. IPv6 allows the datagram carrying the ICMP message to be up to
1280 octets long (the IPv6 minimum MTU), and chooses a maximum prefix size ac-
cordingly. Because the ICMP error message contains a short prefix of the datagram that
caused the problem, the source will know exactly which address is unreachable.

Destinations may be unreachable because hardware is temporarily out of service,
because the sender specified a nonexistent destination address, or (in rare cir-
cumstances) because the router does not have a route to the destination network. Note
that although routers report failures they encounter, they may not detect all delivery
failures. For example, if the destination machine connects to an Ethernet network, the
network hardware does not provide acknowledgements. Therefore, a router can contin-
ue to send packets to a destination after the destination is powered down without receiv-
ing any indication that the packets are not being delivered. To summarize:

Although a router sends a destination unreachable message when it
encounters a datagram that cannot be forwarded or delivered, a
router cannot detect all such errors.

The meaning of port unreachable messages will become clear when we study how
higher-level protocols use abstract destination points called ports. Many of the remain-

178 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

ing codes are self explanatory. For example, a site may choose to restrict certain in-
coming or outgoing datagrams for administrative reasons. In IPv6, some addresses are
classified as site-local, meaning that the address cannot be used on the global Internet.
Attempting to send a datagram that has a site-local source address will trigger an error
that the datagram has been sent beyond the valid scope of the source address.

9.12 ICMP Error Reports Regarding Fragmentation

Both IPv4 and IPv6 allow a router to report an error when a datagram is too large
for a network over which it must travel and cannot be fragmented. However, the details
differ. IPv4 sends a destination unreachable message with the CODE field set to 4 and
IPv6 sends a packet too big message, which has a TYPE field of 2. It may seem that no
fragmentation reports are needed for IPv4 because a router can fragment an IPv4 da-
tagram. Recall that an IPv4 header includes a “do not fragment” bit. When the bit is
set, a router is prohibited from performing fragmentation, which causes the router to
send an ICMPv4 destination unreachable message with CODE 4.

The reason IPv6 defines a separate ICMP message to report fragmentation prob-
lems arises from the design. Routers are always prohibited from fragmenting an IPv6
datagram, which means a source must perform path MTU discovery. A key part of path
MTU discovery involves receiving information about the MTU of remote networks.
Therefore, the packet too big message contains a field that a router uses to inform the
source about the MTU of the network that caused the problem. Figure 9.9 illustrates
the message format.

0 8 16 31

TYPE CODE CHECKSUM

MTU

PREFIX OF DATAGRAM THAT CAUSED THE PROBLEM
. . .

Figure 9.9 The format of an ICMPv6 packet too big message.

9.13 Route Change Requests From Routers

Host forwarding tables usually remain static over long periods of time. A host ini-
tializes its forwarding table at system startup, and system administrators seldom change
the table during normal operation. As we will see in later chapters, routers are more
dynamic — they exchange routing information periodically to accommodate network
changes and keep their forwarding tables up-to-date. Thus, as a general rule:

Sec. 9.13 Route Change Requests From Routers 179

Routers are assumed to know correct routes; hosts begin with minimal
routing information and learn new routes from routers.

To follow the rule and to avoid sending forwarding information when configuring
a host, the initial host configuration usually specifies the minimum possible forwarding
information needed to communicate (e.g., the address of a single default router). Thus,
a host may begin with incomplete information and rely on routers to update its forward-
ing table as needed. When a router detects a host using a nonoptimal first hop, the
router sends the host an ICMP redirect message that instructs the host to change its for-
warding table. The router also forwards the original datagram on to its destination.

The advantage of the ICMP redirect scheme is simplicity: a host boots without any
need to download a forwarding table and can immediately communicate with any desti-
nation. A router only sends a redirect message if the host sends a datagram along a
non-preferred route. Thus, the host forwarding table remains small, but will have op-
timal routes for all destinations in use.

Because they are limited to interactions between a router and a host on a directly
connected network, redirect messages do not solve the problem of propagating routing
information in a general way. To understand why, consider Figure 9.10 which illus-
trates a set of networks connected by routers.

S
R1

R2 R3

R4

R5
D

Figure 9.10 Example topology showing why ICMP redirect messages do not
handle all routing problems.

In the figure, host S sends a datagram to destination D. If router R1 incorrectly for-
wards the datagram through router R2 instead of through router R4 (i.e., R1 incorrectly
chooses a longer path than necessary), the datagram will arrive at router R5. However,
R5 cannot send an ICMP redirect message to R1 because R5 does not know R1’s ad-
dress. Later chapters explore the problem of how to propagate routing information
across multiple networks.

As with several other ICMP message types, IPv4 and IPv6 use the same general
format for redirect messages. The message begins with the requisite TYPE, CODE, and
CHECKSUM fields. The message further contains two pieces of information: the IP ad-
dress of a router to use as a first hop and the destination address that caused the prob-
lem. The message formats differ. An IPv4 redirect message contains the 32-bit IPv4
address of a router followed by the prefix of the datagram that was incorrectly forward-

180 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

ed. An IPv6 redirect message contains the IPv6 address of a router and the IPv6 desti-
nation address that should be forwarded through the router. Figure 9.11 illustrates the
format used with IPv6.

0 4 12 16 24 31

TYPE (137) CODE (0) CHECKSUM

UNUSED (MUST BE ZERO)

ADDRESS OF A FIRST-HOP ROUTER

DESTINATION ADDRESS THAT SHOULD
BE FORWARDED THROUGH THE ROUTER

Figure 9.11 The ICMPv6 redirect message format.

As a general rule, routers only send ICMP redirect requests to hosts and not to oth-
er routers. Later chapters will explain protocols that routers use to exchange routing in-
formation.

9.14 Detecting Circular Or Excessively Long Routes

Because internet routers each use local information when forwarding datagrams, er-
rors or inconsistencies in forwarding information can produce a cycle known as a rout-
ing loop for a given destination, D. A routing loop can consist of two routers that each
forward a given datagram to the other, or it can consist of multiple routers that each for-
ward a datagram to the next router in the cycle. If a datagram enters a routing loop, it
will pass around the loop endlessly. As mentioned previously, to prevent datagrams
from circling forever in a TCP/IP internet, each IP datagram contains a hop limit.
Whenever it processes a datagram, a router decrements the hop limit and discards the
datagram when the count reaches zero. A router does not merely discard a datagram
that has exceed its hop limit. Instead, a router takes the further action of sending the
source an ICMP time exceeded message.

Both IPv4 and IPv6 send a time exceeded message, and both use the same format
as Figure 9.12 illustrates. IPv4 sets the TYPE to 11, and IPv6 sets the TYPE to 3.

Sec. 9.14 Detecting Circular Or Excessively Long Routes 181

0 8 16 31

TYPE CODE CHECKSUM

UNUSED (MUST BE ZERO)

PREFIX OF DATAGRAM THAT CAUSED THE PROBLEM
. . .

Figure 9.12 ICMP time exceeded message format.

It may seem odd that the message refers to time when the error being reported is a
hop limit. The name is derived from IPv4, which originally interpreted the hop limit as
a time to live (TTL) counter. Thus, it made sense to interpret TTL expiration as exceed-
ing a time limit. Although the interpretation of the field has changed, the name persists.

The time exceeded message is also used to report another time expiration: timeout
during the reassembly of a fragmented datagram. Recall that IP software on a destina-
tion host must gather fragments and construct a complete datagram. When a fragment
arrives for a new datagram, the host sets a timer. If one or more fragments do not ar-
rive before the timer expires, the fragments are discarded and the receiving host sends
an ICMP time exceeded message back to the source. ICMP uses the CODE field in a
time exceeded message to explain the nature of the timeout being reported as Figure
9.13 shows.

Code Value Meaning
0 Hop limit exceeded
1 Fragment reassembly time exceeded

Figure 9.13 Interpretation of the CODE field in an ICMP time exceeded
message. Both IPv4 and IPv6 use the same interpretation.

9.15 Reporting Other Problems

When a router or host finds problems with a datagram not covered by previous
ICMP error messages (e.g., an incorrect datagram header), it sends a parameter problem
message to the original source. In IPv4, a possible cause of such problems occurs when
arguments to an option are incorrect. In IPv6, parameter problems can arise if the value
in a header field is out of range, the NEXT HEADER type is not recognized, or one of
the options is not recognized. In such cases, a router sends a parameter problem mes-
sage and uses the CODE field to distinguish among subproblems. Figure 9.14 illus-
trates the format of a parameter problem message. Such messages are only sent when
a problem is so severe that the datagram must be discarded.

182 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

0 8 16 31

TYPE CODE CHECKSUM

POINTER

PREFIX OF DATAGRAM THAT CAUSED THE PROBLEM
. . .

Figure 9.14 ICMP parameter problem message format.

To make the message unambiguous, the sender uses the POINTER field in the
message header to identify the octet in the datagram that caused the problem.

9.16 Older ICMP Messages Used At Startup

Originally, ICMP defined a set of messages that a host used at startup to determine
its IP address, the address of a router, and the address mask used on the network. Even-
tually, a protocol known as DHCP† was introduced that provides an IPv4 host with all
the necessary information in a single exchange. In addition, ICMP defined messages
that a host or router could use to obtain the current time. Protocols to exchange time
information have also been devised, making the ICMP version obsolete. As a conse-
quence, IPv4 no longer uses ICMP messages that were designed to obtain information
at startup.

Interestingly, ICMPv6 has returned to one of the ideas that was originally part of
ICMPv4: router discovery. At startup, an IPv6 host multicasts an ICMPv6 Router
Discovery message to learn about routers on the local network. There are two concep-
tual differences between router discovery and DHCP that make it attractive for IPv6.
First, because the information is obtained directly from the router itself, there is never a
third-party error. With DHCP, such errors are possible because a DHCP server must be
configured with information to hand out. If a network manager fails to update the
DHCP configuration after a network changes, hosts may be given out-of-date informa-
tion. Second, ICMP router discovery uses a soft state technique with timers to prevent
hosts from retaining a forwarding table entry after a router crashes — routers advertise
their information periodically, and a host discards a route if the timer for the route ex-
pires.

9.17 Summary

The Internet Control Message Protocol is a required and integral part of IP that is
used to report errors and to send control information. In most cases, ICMP error mes-
sages originate from a router in the Internet. An ICMP message always goes back to
the original source of the datagram that caused the error.

†Chapter 22 examines DHCP as well as the protocols IPv6 uses at startup.

Sec. 9.17 Summary 183

ICMP includes destination unreachable messages that report when a datagram can-
not be forwarded to its destination, packet too big messages that specify a datagram
cannot fit in the MTU of a network, redirect messages that request a host to change the
first-hop in its forwarding table, time exceeded messages that report when a hop limit
expires or reassembly times out, and parameter problem messages for other header
problems. In addition, ICMP echo request / reply messages can be used to test whether
a destination is reachable. A set of older ICMPv4 messages that were intended to sup-
ply information to a host that booted are no longer used.

An ICMP message travels in the data area of an IP datagram and has three fixed-
length fields at the beginning of the message: an ICMP message type field, a code field,
and an ICMP checksum field. The message type determines the format of the rest of
the message as well as its meaning.

EXERCISES

9.1 Devise an experiment to record how many of each ICMP message type arrive at your host
during a day.

9.2 Examine the ping application on your computer. Try using ping with an IPv4 network
broadcast address or an IPv6 All Nodes address. How many computers answer? Read the
protocol documents to determine whether answering a broadcast request is required, recom-
mended, not recommended, or prohibited.

9.3 Explain how a traceroute application can use ICMP.
9.4 Should a router give ICMP messages priority over normal traffic? Why or why not?
9.5 Consider an Ethernet that has one conventional host, H, and 12 routers connected to it.

Find a single (slightly illegal) frame carrying an IP packet that when sent by host H causes
H to receive exactly 24 packets.

9.6 There is no ICMP message that allows a machine to inform the source that transmission er-
rors are causing datagrams to arrive with an incorrect checksum. Explain why.

9.7 In the previous question, under what circumstances might such a message be useful?
9.8 Should ICMP error messages contain a timestamp that specifies when they are sent? Why

or why not?
9.9 If routers at your site participate in ICMP router discovery, find out how many addresses

each router advertises on each interface.
9.10 Try to reach a server on a nonexistent host on your local network. Also try to communi-

cate with a nonexistent host on a remote network. In which case(s) do you receive an
ICMP error message, and which message(s) do you receive? Why?

Chapter Contents
10.1 Introduction, 185
10.2 Using A Protocol Port As An Ultimate Destination, 185
10.3 The User Datagram Protocol, 186
10.4 UDP Message Format, 187
10.5 Interpretation Of the UDP Checksum, 188
10.6 UDP Checksum Computation And The Pseudo-Header, 189
10.7 IPv4 UDP Pseudo-Header Format, 189
10.8 IPv6 UDP Pseudo-Header Format, 190
10.9 UDP Encapsulation And Protocol Layering, 190
10.10 Layering And The UDP Checksum Computation, 192
10.11 UDP Multiplexing, Demultiplexing, And Protocol Ports, 193
10.12 Reserved And Available UDP Port Numbers, 194
10.13 Summary, 196

10

User Datagram Protocol
(UDP)

10.1 Introduction

Previous chapters describe an abstract internet capable of transferring IP datagrams
among host computers, where each datagram is forwarded through the internet based on
the destination’s IP address. At the internet layer, a destination address identifies a host
computer; no further distinction is made regarding which user or which application on
the computer will receive the datagram. This chapter extends the TCP/IP protocol suite
by adding a mechanism that distinguishes among destinations within a given host, al-
lowing multiple application programs executing on a given computer to send and re-
ceive datagrams independently.

10.2 Using A Protocol Port As An Ultimate Destination

The operating systems in most computers permit multiple applications to execute
simultaneously. Using operating system jargon, we refer to each executing application
as a process. It may seem natural to say that an application is the ultimate destination
for a message. However, specifying a particular process on a particular machine as the
ultimate destination for a datagram is somewhat misleading. First, because a process is
created whenever an application is launched and destroyed when the application exits, a
sender seldom has enough knowledge about which process on a remote machine is run-
ning a given application. Second, we would like a scheme that allows TCP/IP to be
used on an arbitrary operating system, and the mechanisms used to identify a process

185

186 User Datagram Protocol (UDP) Chap. 10

vary among operating systems. Third, rebooting a computer can change the process as-
sociated with each application, but senders should not be required to know about such
changes. Fourth, we seek a mechanism that can identify a service the computer offers
without knowing how the service is implemented (e.g., to allow a sender to contact a
web server without knowing which process on the destination machine implements the
server function).

Instead of thinking of a running application as the ultimate destination, we will
imagine that each machine contains a set of abstract destination points called protocol
ports. Each protocol port is identified by a positive integer. The local operating system
provides an interface mechanism that processes use to specify a port or access it.

Most operating systems provide synchronous access to ports. From an
application’s point of view, synchronous access means the computation stops when the
application accesses the port. For example, if an application attempts to extract data
from a port before any data arrives, the operating system temporarily stops (blocks) the
application until data arrives. Once the data arrives, the operating system passes the
data to the application and restarts execution. In general, ports are buffered — if data
arrives before an application is ready to accept the data, the protocol software will hold
the data so it will not be lost. To achieve buffering, the protocol software located inside
the operating system places packets that arrive for a particular protocol port in a (finite)
queue until the application extracts them.

To communicate with a remote port, a sender needs to know both the IP address of
the destination machine and a protocol port number within that machine. Each message
carries two protocol port numbers: a destination port number specifies a port on the
destination computer to which the message has been sent, and a source port number
specifies a port on the sending machine from which the message has been sent. Be-
cause a message contains the port number the sending application has used, the applica-
tion on the destination machine has enough information to generate a reply and forward
the reply back to the sender.

10.3 The User Datagram Protocol

In the TCP/IP protocol suite, the User Datagram Protocol (UDP) provides the pri-
mary mechanism that application programs use to send datagrams to other application
programs. UDP messages contain protocol port numbers that are used to distinguish
among multiple applications executing on a single computer. That is, in addition to the
data sent, each UDP message contains both a destination port number and a source port
number, making it possible for the UDP software at the destination to deliver an incom-
ing message to the correct recipient and for the recipient to send a reply.

UDP uses the underlying Internet Protocol to transport a message from one
machine to another. Surprisingly, UDP provides applications with the same best-effort,
connectionless datagram delivery semantics as IP. That is, UDP does not guarantee that
messages arrive, does not guarantee messages arrive in the same order they are sent, and
does not provide any mechanisms to control the rate at which information flows

Sec. 10.3 The User Datagram Protocol 187

between a pair of communicating hosts. Thus, UDP messages can be lost, duplicated,
or arrive out of order. Furthermore, packets can arrive faster than the recipient can pro-
cess them. We can summarize:

The User Datagram Protocol (UDP) provides an unreliable, best-
effort, connectionless delivery service using IP to transport messages
between machines. UDP uses IP to carry messages, but adds the
ability to distinguish among multiple destinations within a given host
computer.

An important consequence arises from UDP semantics: an application that uses
UDP must take full responsibility for handling the problems of reliability, including
message loss, duplication, delay, out-of-order delivery, and loss of connectivity. Unfor-
tunately, application programmers sometimes choose UDP without understanding the li-
ability. Moreover, because network software is usually tested across Local Area Net-
works that have high reliability, high capacity, low delay, and no packet loss, testing
may not expose potential failures. Thus, applications that rely on UDP that work well
in a local environment can fail in dramatic ways when used across the global Internet.

10.4 UDP Message Format

We use the term user datagram to describe a UDP message; the emphasis on user
is meant to distinguish UDP datagrams from IP datagrams. Conceptually, a user da-
tagram consists of two parts: a header that contains meta-information, such as source
and destination protocol port numbers, and a payload area that contains the data being
sent. Figure 10.1 illustrates the organization.

UDP HEADER UDP PAYLOAD

Figure 10.1 The conceptual organization of a UDP message.

The header on a user datagram is extremely small: it consists of four fields that
specify the protocol port from which the message was sent, the protocol port to which
the message is destined, the message length, and a UDP checksum. Each field is six-
teen bits long, which means the entire header occupies a total of only eight octets. Fig-
ure 10.2 illustrates the header format.

188 User Datagram Protocol (UDP) Chap. 10

0 16 31

UDP SOURCE PORT UDP DESTINATION PORT

UDP MESSAGE LENGTH UDP CHECKSUM

DATA
. . .

Figure 10.2 The format of fields in a UDP datagram.

The UDP SOURCE PORT field contains a 16-bit protocol port number used by the
sending application, and the UDP DESTINATION PORT field contains the 16-bit UDP
protocol port number of the receiving application. In essence, protocol software uses
the port numbers to demultiplex datagrams among the applications waiting to receive
them. Interestingly, the UDP SOURCE PORT is optional. We think of it as identifying
the port to which a reply should be sent. In a one-way transfer where the receiver does
not send a reply, the source port is not needed and can be set to zero.

The UDP MESSAGE LENGTH field contains a count of octets in the UDP da-
tagram, including the UDP header and the user data. Thus, the minimum value is eight,
the length of the header alone. The UDP MESSAGE LENGTH field consists of sixteen
bits, which means the maximum value that can be represented is 65,535. As a practical
matter, however, we will see that a UDP message must fit into the payload area of an IP
datagram. Therefore, the maximum size permitted depends on the size of the IP
header(s), which are considerably larger in an IPv6 datagram than in an IPv4 datagram.

10.5 Interpretation Of the UDP Checksum

IPv4 and IPv6 differ in their interpretation of the UDP CHECKSUM field. For
IPv6, the UDP checksum is required. For IPv4, the UDP checksum is optional and
need not be used at all; a value of zero in the CHECKSUM field means that no check-
sum has been computed (i.e., a receiver should not verify the checksum). The IPv4
designers chose to make the checksum optional to allow implementations to operate
with little computational overhead when using UDP across a highly reliable local area
network. Recall, however, that IP does not compute a checksum on the data portion of
an IP datagram. Thus, the UDP checksum provides the only way to guarantee that data
has arrived intact and should be used†.

Beginners often wonder what happens to UDP messages for which the computed
checksum is zero. A computed value of zero is possible because UDP uses the same
checksum algorithm as IP: it divides the data into 16-bit quantities and computes the
one’s complement of their one’s complement sum. Surprisingly, zero is not a problem
because one’s complement arithmetic has two representations for zero: all bits set to
zero or all bits set to one. When the computed checksum is zero, UDP uses the
representation with all bits set to one.

†The author once experienced a problem in which a file copied across an Ethernet was corrupted because
the Ethernet NIC had failed and the application (NFS) used UDP without checksums.

Sec. 10.6 UDP Checksum Computation And The Pseudo-Header 189

10.6 UDP Checksum Computation And The Pseudo-Header

The UDP checksum covers more information than is present in the UDP datagram
alone. Information is extracted from the IP header and the checksum covers the extra
information as well as the UDP header and UDP payload. As with ICMPv6, we use the
term pseudo-header to refer to the extra information. We can imagine that the UDP
checksum software extracts the pseudo-header fields, places them in memory, appends a
copy of the UDP message, and computes a checksum over the entire object.

It is important to understand that a pseudo-header is only used for the checksum
computation. It is not part of the UDP message, is not placed in a packet, and is never
sent over a network. To emphasize the difference between a pseudo-header and other
header formats shown throughout the text, we use dashed lines in figures that illustrate
a pseudo-header.

The purpose of using a pseudo-header is to verify that a UDP datagram has
reached its correct destination. The key to understanding the pseudo-header lies in real-
izing that the correct destination consists of a specific machine and a specific protocol
port within that machine. The UDP header itself specifies only the protocol port
number. Thus, to verify the destination, UDP includes the destination IP address in the
checksum as well as the UDP header. At the ultimate destination, UDP software veri-
fies the checksum using the destination IP address obtained from the header of the IP
datagram that carried the UDP message. If the checksums agree, then it must be true
that the datagram has reached the intended destination host as well as the correct proto-
col port within that host.

10.7 IPv4 UDP Pseudo-Header Format

The pseudo-header used in the UDP checksum computation for IPv4 consists of 12
octets of data arranged as Figure 10.3 illustrates.

0 8 16 31

SOURCE IP ADDRESS

DESTINATION IP ADDRESS

ZERO PROTO UDP LENGTH

Figure 10.3 The 12 octets of the IPv4 pseudo-header used during UDP
checksum computation.

The fields of the pseudo-header labeled SOURCE IP ADDRESS and DESTINA-
TION IP ADDRESS contain the source and destination IPv4 addresses that will be
placed in an IPv4 datagram when sending the UDP message. Field PROTO contains
the IPv4 protocol type code (17 for UDP), and the field labeled UDP LENGTH contains

190 User Datagram Protocol (UDP) Chap. 10

the length of the UDP datagram (not including the pseudo-header). To verify the
checksum, the receiver must extract these fields from the IPv4 header, assemble them
into the pseudo-header format, and compute the checksum†.

10.8 IPv6 UDP Pseudo-Header Format

The pseudo-header used in the UDP checksum computation for IPv6 consists of 40
octets of data arranged as Figure 10.4 illustrates.

0 4 12 16 24 31

SOURCE ADDRESS

DESTINATION ADDRESS

UDP LENGTH

UNUSED (MUST BE ZERO) NEXT HEADER

Figure 10.4 The 40 octets of the IPv6 pseudo-header used during UDP
checksum computation.

Of course, the pseudo-header for IPv6 uses IPv6 source and destination addresses.
The other changes from IPv4 are that the PROTO field is replaced by the NEXT
HEADER field and the order of fields has changed.

10.9 UDP Encapsulation And Protocol Layering

UDP provides our first example of a transport protocol. In the 5-layer TCP/IP
reference model in Chapter 4, UDP lies in the transport layer above the internet layer.
Conceptually, applications access UDP, which uses IP to send and receive datagrams.
Figure 10.5 illustrates the conceptual layering.

†In practice, it is possible to build checksum software that performs the correct computation without
copying fields into a pseudo-header.

Sec. 10.9 UDP Encapsulation And Protocol Layering 191

Network Interface

Internet (IP)

Transport (UDP)

Application

Conceptual Layering

Figure 10.5 The conceptual layering of UDP between application programs
and IP.

In the case of UDP, the conceptual layering in the figure also implies encapsula-
tion. That is, because UDP is layered above IP, a complete UDP message, including
the UDP header and payload, is encapsulated in an IP datagram as it travels across an
internet. Of course, the datagram is encapsulated in a network frame as it travels across
an underlying network, which means there are two levels of encapsulation. Figure 10.6
illustrates the encapsulation.

FRAME
HEADER FRAME PAYLOAD AREA

DATAGRAM
HEADER DATAGRAM PAYLOAD AREA

UDP
HEADER UDP PAYLOAD

Figure 10.6 Two levels of encapsulation used when a UDP message travels
in an IP datagram, which travels in a network frame.

192 User Datagram Protocol (UDP) Chap. 10

As the figure indicates, encapsulation will result in a linear sequence of headers.
Therefore, if one captured a frame that contained UDP, the frame would start with a
frame header followed by an IP header followed by a UDP header. In terms of con-
structing an outgoing packet, we can imagine an application specifies data to be sent.
UDP prepends its header to the data and passes the UDP datagram to IP. The IP layer
prepends an IP header to what it receives from UDP. Finally, the network interface
layer embeds the IP datagram in a frame before sending it from one machine to another.
The format of the frame depends on the underlying network technology, but in most
technologies a frame includes an additional header. The point is that when looking at a
frame, the outermost header corresponds to the lowest protocol layer, while the inner-
most header corresponds to the highest protocol layer.

On input, a packet arrives when a device driver in the network interface layer re-
ceives a packet from the network interface device and places the packet in memory.
Processing begins an ascent through successively higher layers of protocol software.
Conceptually, each layer removes one header before passing the message up to the next
layer. By the time the transport layer passes data to the receiving process, all headers
have been removed. When considering how headers are inserted and removed, it is im-
portant to keep in mind the layering principle. In particular, observe that the layering
principle applies to UDP, which means that the UDP datagram received from IP on the
destination machine is identical to the datagram that UDP passed to IP on the source
machine. Also, the data that UDP delivers to an application on the receiving machine
will be exactly the data that an application passed to UDP on the sending machine.

The division of duties among various protocol layers is rigid and clear:

The IP layer is responsible only for transferring data between a pair
of hosts on an internet, while the UDP layer is responsible only for
differentiating among multiple sources or destinations within one host.

Thus, only the IP header identifies the source and destination hosts; only the UDP layer
identifies the source or destination ports within a host.

10.10 Layering And The UDP Checksum Computation

Observant readers will notice a seeming contradiction between the layering rules
and the UDP checksum computation. Recall that the UDP checksum includes a
pseudo-header that has fields for the source and destination IP addresses. It can be ar-
gued that the destination IP address must be known to the user when sending a UDP da-
tagram, and the user must pass the address to the UDP layer. Thus, the UDP layer can
obtain the destination IP address without interacting with the IP layer. However, the
source IP address depends on the route IP chooses for the datagram because the IP
source address identifies the network interface over which a datagram is transmitted.
Thus, unless it interacts with the IP layer, UDP cannot know the IP source address.

Sec. 10.10 Layering And The UDP Checksum Computation 193

We assume that UDP software asks the IP layer to compute the source and (possi-
bly) destination IP addresses, uses them to construct a pseudo-header, computes the
checksum, discards the pseudo-header, and then passes the UDP datagram to IP for
transmission. An alternative approach that produces greater efficiency arranges to have
the UDP layer encapsulate the UDP datagram in an IP datagram, obtain the source ad-
dress from IP, store the source and destination addresses in the appropriate fields of the
datagram header, compute the UDP checksum, and then pass the IP datagram to the IP
layer, which only needs to fill in the remaining IP header fields.

Does the strong interaction between UDP and IP violate our basic premise that
layering reflects separation of functionality? Yes. UDP has been tightly integrated with
the IP protocol. It is clearly a compromise of the layering rules, made for entirely prac-
tical reasons. We are willing to overlook the layering violation because it is impossible
to identify a destination application program fully without specifying the destination
machine, and the goal is to make the mapping between addresses used by UDP and
those used by IP efficient. One of the exercises examines this issue from a different
point of view, asking the reader to consider whether UDP should be separated from IP.

10.11 UDP Multiplexing, Demultiplexing, And Protocol Ports

We have seen in Chapter 4 that software throughout the layers of a protocol hierar-
chy must multiplex or demultiplex among multiple objects at the next layer. UDP
software provides another example of multiplexing and demultiplexing.

Multiplexing occurs on output. On a given host computer, multiple ap-
plications can use UDP simultaneously. Thus, we can envision UDP
software accepting outgoing messages from a set of applications, plac-
ing each in a UDP datagram, and passing the datagrams to IP for
transmission.

Demultiplexing occurs on input. We can envision UDP accepting in-
coming UDP datagrams from IP, choosing the application to which the
datagram has been sent, and passing the data to the application.

Conceptually, all multiplexing and demultiplexing between UDP software and ap-
plications occur through the port mechanism. In practice, each application program
must negotiate with the operating system to obtain a local protocol port number and
create the resources needed to send and receive UDP messages†. Once the operating
system has created the necessary resources, the application can send data; UDP code in
the operating system will create an outgoing UDP datagram and place the local port
number in the UDP SOURCE PORT field.

Conceptually, only the destination port number is needed to handle demultiplexing.
When it processes an incoming datagram, UDP accepts the datagram from the IP
software, extracts the UDP DESTINATION PORT from the header, and passes the data
to the application. Figure 10.7 illustrates demultiplexing.

†For now, we describe the mechanisms abstractly; Chapter 21 provides an example of the socket primi-
tives that many operating systems use to create and use ports.

194 User Datagram Protocol (UDP) Chap. 10

UDP: Demultiplexing
Based On Port

Port 2Port 1 Port 3

IP Layer

UDP Datagram arrives

Figure 10.7 Conceptual view of UDP demultiplexing incoming datagrams.

The easiest way to think of a UDP port is as a queue of incoming datagrams. In
most implementations, when an application negotiates with the operating system to allo-
cate a port, the operating system creates the internal queue needed to hold arriving da-
tagrams. The application can specify or change the queue size. When UDP receives a
datagram, it checks to see that the destination port number matches one of the ports
currently in use†. If it finds a match, UDP enqueues the new datagram at the port
where the application program can access it. If none of the allocated ports match the
incoming datagram, UDP sends an ICMP message to inform the source that the port
was unreachable and discards the datagram. Of course, an error also occurs if the port
is full. In such cases, UDP discards the incoming datagram and sends an ICMP mes-
sage.

10.12 Reserved And Available UDP Port Numbers

How should protocol port numbers be assigned? The problem is important because
applications running on two computers need to agree on port numbers before they can
interoperate. For example, when a user on computer A decides to place a VoIP phone
call to a user on computer B, the application software needs to know which protocol
port number the application on computer B is using. There are two fundamental ap-
proaches to port assignment. The first approach uses a central authority. Everyone
agrees to allow a central authority to assign port numbers as needed and to publish the
list of all assignments. Software is built according to the list. The approach is some-
times called universal assignment, and the port assignments specified by the authority
are called well-known port assignments.

†In practice, UDP demultiplexing allows an application to specify matching on a source port as well as a
destination port.

Sec. 10.12 Reserved And Available UDP Port Numbers 195

The second approach to port assignment uses dynamic binding. In the dynamic
binding approach, ports are not globally known. Instead, whenever an application pro-
gram needs a protocol port number, protocol software in the operating system chooses
an unused number and assigns it to the application. When an application needs to learn
the current protocol port assignments on another computer, the application must send a
request that asks for a port assignment (e.g., “What port is the VoIP phone service us-
ing?”). The target machine replies by giving the port number to use.

The TCP/IP designers adopted a hybrid scheme that assigns some port numbers a
priori, but leaves others available for local sites or application programs to assign
dynamically. The well-known port numbers assigned by the central authority begin at
low values and extend upward, leaving larger integer values available for dynamic as-
signment. The table in Figure 10.8 lists examples of well-known UDP protocol port
numbers.

Port Keyword Description
0 - Reserved
7 echo Echo
9 discard Discard

11 systat Active Users
13 daytime Daytime
15 netstat Network Status Program
17 qotd Quote of the Day
19 chargen Character Generator
37 time Time
42 name Host Name Server
43 whois Who Is
53 nameserver Domain Name Server
67 bootps BOOTP or DHCP Server
68 bootpc BOOTP or DHCP Client
69 tftp Trivial File Transfer
88 kerberos Kerberos Security Service

111 sunrpc ONC Remote Procedure Call (Sun RPC)
123 ntp Network Time Protocol
161 snmp Simple Network Management Protocol
162 snmp-trap SNMP traps
264 bgmp Border Gateway Multicast Protocol (BGMP)
389 ldap Lightweight Directory Access Protocol (LDAP)
512 biff UNIX comsat
514 syslog System Log
520 rip Routing Information Protocol (RIP)
525 timed Time Daemon
546 dhcpv6-c DHCPv6 client
547 dhcpv6-s DHCPv6 server
944 nsf Network File System (NFS) service
973 nfsv6 Network File System (NFS) over IPv6

Figure 10.8 Examples of well-known UDP protocol port numbers.

196 User Datagram Protocol (UDP) Chap. 10

10.13 Summary

Modern operating systems permit multiple application programs to execute con-
currently. The User Datagram Protocol, UDP, distinguishes among multiple applica-
tions on a given machine by allowing senders and receivers to assign a 16-bit protocol
port number to each application. A UDP message includes two protocol port numbers
that identify an application on the sending computer and an application on the destina-
tion computer. Some of the UDP port numbers are well known in the sense that they
are permanently assigned by a central authority and honored throughout the Internet.
Other port numbers are available for arbitrary application programs to use.

UDP is a thin protocol in the sense that it does not add significantly to the seman-
tics of IP. It merely provides application programs with the ability to communicate us-
ing IP’s unreliable connectionless packet delivery service. Thus, UDP messages can be
lost, duplicated, delayed, or delivered out of order; a pair of application programs that
use UDP must be prepared to handle the errors. If a UDP application does not handle
the errors, the application may work correctly over a highly reliable Local Area Net-
work but not over a Wide Area internet where problems of delay and loss are more
common.

In the protocol layering scheme, UDP resides at Layer 4, the transport layer, above
Layer 3, the internet layer, and below Layer 5, the application layer. Conceptually, the
transport layer is independent of the internet layer, but in practice they interact strongly.
The UDP checksum includes a pseudo-header with the IP source and destination ad-
dresses in it, meaning that UDP software must interact with IP software to find IP ad-
dresses before sending datagrams.

EXERCISES

10.1 Build two programs that use UDP and measure the average transfer speed with messages
of 256, 512, 1024, 2048, 4096, and 8192 octets. Can you explain the results. (Hint:
what is the MTU of the network you are using?)

10.2 Why is the UDP checksum separate from the IP checksum? Would you object to a pro-
tocol that used a single checksum for the complete IP datagram including the UDP mes-
sage?

10.3 Not using checksums can be dangerous. Explain how a single corrupted ARP packet
broadcast by machine P can make it impossible to reach another machine, Q.

10.4 Should the notion of multiple destinations identified by protocol ports have been built
into IP? Why, or why not?

10.5 What is the chief advantage of using preassigned UDP port numbers? The chief disad-
vantage?

10.6 What is the chief advantage of using protocol ports instead of process identifiers to
specify the destination within a machine?

Exercises 197

10.7 UDP provides unreliable datagram communication because it does not guarantee delivery
of the message. Devise a reliable datagram protocol that uses timeouts and acknowl-
edgements to guarantee delivery. How much network overhead and delay does reliabili-
ty introduce?

10.8 Name Registry. Suppose you want to allow arbitrary pairs of application programs to es-
tablish communication with UDP, but you do not wish to assign either of them a fixed
UDP port number. Instead, you would like potential correspondents to be identified by a
character string of 64 or fewer characters. Thus, an application on machine A might
want to communicate with the “special-long-id” application on machine B. Meanwhile,
suppose an application on machine C wants to communicate with an application on
machine A that has chosen an ID “my-own-private-id.” Show that you only need to as-
sign one UDP port to make such communication possible by designing software on each
machine that allows (a) a local application to pick an unused UDP port number over
which it will communicate, (b) a local application to register the 64-character name to
which it responds, and (c) a remote application to use UDP to establish communication
using only the 64-character name and destination internet address.

10.9 Implement the name registry software from the previous exercise.
10.10 Send UDP datagrams across a wide area network and measure the percentage lost and

the percentage reordered. Does the result depend on the time of day? The network
load?

10.11 The standard defines UDP port 7 to be an echo port — a datagram sent to the echo port
is simply sent back to the sender. What can a UDP echo service tell a manager that an
ICMP echo service cannot?

10.12 Consider a protocol design in which UDP and IPv4 are merged, and an address consists
of 48 bits that include a conventional 32-bit IPv4 address and a 16-bit port number.
What is the chief disadvantage of such a scheme?

Chapter Contents
11.1 Introduction, 199
11.2 The Need For Reliable Service, 199
11.3 Properties Of The Reliable Delivery Service, 200
11.4 Reliability: Acknowledgements And Retransmission, 201
11.5 The Sliding Window Paradigm, 203
11.6 The Transmission Control Protocol, 205
11.7 Layering, Ports, Connections, And Endpoints, 206
11.8 Passive And Active Opens, 208
11.9 Segments, Streams, And Sequence Numbers, 208
11.10 Variable Window Size And Flow Control, 209
11.11 TCP Segment Format, 210
11.12 Out Of Band Data, 212
11.13 TCP Options, 212
11.14 TCP Checksum Computation, 214
11.15 Acknowledgements, Retransmission, And Timeouts, 216
11.16 Accurate Measurement Of Round Trip Samples, 218
11.17 Karn’s Algorithm And Timer Backoff, 219
11.18 Responding To High Variance In Delay, 220
11.19 Response To Congestion, 223
11.20 Fast Recovery And Other Response Modifications, 225
11.21 Explicit Feedback Mechanisms (SACK and ECN), 227
11.22 Congestion, Tail Drop, And TCP, 228
11.23 Random Early Detection (RED), 229
11.24 Establishing A TCP Connection, 231
11.25 Initial Sequence Numbers, 232
11.26 Closing a TCP Connection, 233
11.27 TCP Connection Reset, 234
11.28 TCP State Machine, 235
11.29 Forcing Data Delivery, 236
11.30 Reserved TCP Port Numbers, 237
11.31 Silly Window Syndrome And Small Packets, 238
11.32 Avoiding Silly Window Syndrome, 239
11.33 Buffer Bloat And Its Effect On Latency, 242
11.34 Summary, 243

11

Reliable Stream Transport
Service (TCP)

11.1 Introduction

Previous chapters explore the unreliable connectionless packet delivery service,
which forms the basis for all Internet communication, and the IP protocol that defines it.
This chapter introduces a second key piece of the Internet protocol suite, a reliable
stream service implemented by the Transmission Control Protocol (TCP). We will see
that TCP adds substantial functionality to the protocols already discussed, and we will
see that it is substantially more complex than UDP.

11.2 The Need For Reliable Service

At the lowest level, computer communication networks provide unreliable packet
delivery. Packets can be lost when transmission errors interfere with data or when net-
work hardware fails. They can be delayed when networks become overloaded. Packet
switching systems change routes dynamically, which means they can deliver packets out
of order, deliver them after a substantial delay, or deliver duplicates.

At the highest level, application programs often need to send large volumes of data
from one computer to another. Using an unreliable connectionless delivery system for
large transfers becomes tedious and annoying; programmers must incorporate error
detection and recovery into each application. Because it is difficult to design, under-
stand, and implement software that correctly provides reliability, networking researchers
have worked to create a general purpose solution — a single reliable transfer protocol

199

200 Reliable Stream Transport Service (TCP) Chap. 11

that all applications can use. Having a single general purpose protocol means that ap-
plication programmers do not need to incorporate a reliable transfer protocol into each
application.

11.3 Properties Of The Reliable Delivery Service

The reliable transfer service that TCP provides to applications can be characterized
by five features that are discussed below:

Stream Orientation
Virtual Circuit Connection
Buffered Transfer
Unstructured Stream
Full Duplex Communication

Stream Orientation. When two application programs use TCP to transfer large
volumes of data, the data is viewed as a stream of octets. The application on the desti-
nation host receives exactly the same sequence of octets that was sent by the application
on the source host.

Virtual Circuit Connection. Before data transfer starts, both the sending and re-
ceiving applications must agree to establish a TCP connection. One application con-
tacts the other to initiate a connection. TCP software on the two hosts communicate by
sending messages across the underlying internet. They verify that the transfer is author-
ized and both sides are ready. Once all details have been settled, the protocol modules
inform the application programs on each end that a connection has been established and
that transfer can begin. TCP monitors data transfer; if communication fails for any rea-
son (e.g., because network hardware along the path fails), the application programs are
informed. We use the term virtual circuit to describe a TCP connection, because a con-
nection acts like a dedicated hardware circuit, even though all communication is per-
formed with packets.

Buffered Transfer. Application programs send a data stream across a TCP connec-
tion, repeatedly passing data octets to the protocol software. When transferring data, an
application uses whatever size pieces it finds convenient; the pieces can be as small as a
single octet. TCP places data in packets and sends the packets to the destination. On
the receiving host, TCP insures data is placed in the original order so the application re-
ceives octets in exactly the same order they were sent.

TCP is free to divide the stream into packets independent of the pieces the applica-
tion program transfers. To make transfer more efficient and to minimize network traf-
fic, implementations usually collect enough data from a stream to fill a reasonably large
datagram before transmitting it across an internet. Thus, even if the application pro-
gram generates the stream one octet at a time, transfer across an internet can be effi-
cient. Similarly, if the application program chooses to generate extremely large blocks
of data, the protocol software can choose to divide each block into pieces that each fit
into a single packet.

Sec. 11.3 Properties Of The Reliable Delivery Service 201

For applications where data must be transferred without waiting to fill a buffer, the
stream service provides a push mechanism that applications use to force immediate
transfer. At the sending side, a push forces protocol software to transfer all data that
has been generated without waiting to fill a buffer. On the receiving side, the push
causes TCP to make the data available to the application without delay. The push func-
tion only guarantees that all data will be transferred; it does not provide any boundaries.
Thus, even when delivery is forced, the protocol software may choose to divide the
stream in unexpected ways or if a receiving application is slow, data from several
pushed packets may be delivered to the application all at once.

Unstructured Stream. The TCP/IP stream service does not provide structured data
streams. For example, there is no way for a payroll application to identify the contents
of the stream as being payroll data, nor can stream service mark boundaries between
employee records. Application programs using the stream service must understand
stream content and agree on a stream format before they initiate a connection.

Full Duplex Communication. Connections provided by the TCP/IP stream service
allow concurrent transfer in both directions. Such connections are called full duplex.
Conceptually, a full duplex connection consists of two independent data streams flow-
ing in opposite directions; from an application’s point of view, there is no apparent in-
teraction between the two. TCP allows an application to terminate flow in one direction
while data continues to flow in the other direction, making the connection half duplex.
The advantage of a full duplex connection is that the underlying protocol software can
send control information for one stream back to the source in datagrams carrying data in
the opposite direction. Such piggybacking reduces network traffic.

11.4 Reliability: Acknowledgements And Retransmission

We said that the reliable stream delivery service guarantees delivery of a stream of
data sent from one computer to another without duplication or data loss. The question
arises: how can protocol software provide reliable transfer if the underlying communica-
tion system offers only unreliable packet delivery? The answer is complicated, but reli-
able protocols rely on a fundamental technique known as positive acknowledgement
with retransmission (PAR). The technique requires a recipient to communicate with the
source, sending back an acknowledgement (ACK) each time data arrives successfully.
When it sends a packet, the sending software starts a timer. If an acknowledgement ar-
rives before the timer expires, the sender cancels the timer and prepares to send more
data. If the timer expires before an acknowledgement arrives, the sender retransmits the
packet.

Before we can understand the TCP retransmission mechanism, we must consider a
few basics. The simplest possible retransmission scheme waits for a given packet to be
acknowledged before it sends the next packet. Known as send-and-wait, the approach
can only send one packet at a time. Figure 11.1 illustrates the packet exchange when
using send-and-wait.

202 Reliable Stream Transport Service (TCP) Chap. 11

Send Packet 1

Receive Packet 1
Send ACK 1

Receive ACK 1
Send Packet 2

Receive Packet 2
Send ACK 2

Receive ACK 2

Events At Sender Site Network Messages Events At Receiver Site

Figure 11.1 The packet exchange for a basic send-and-wait protocol. Time
proceeds down the figure.

The left side of the figure lists events at the sending host, and the right side of the
figure lists events at the receiving host. Each diagonal line crossing the middle shows
the transfer of one packet or one ACK.

Figure 11.2 uses the same format as Figure 11.1 to show what happens when a
packet is lost. The sender transmits a packet and starts a timer. The packet is lost,
which means no ACK will arrive. When the timer expires, the sender retransmits the
lost packet. The sender must start a timer after retransmission in case the second copy
is also lost. In the figure, the second copy arrives intact, which means the receiver
sends an ACK. When the ACK reaches the sending side, the sender cancels the timer.

In our description above, a sender must retain a copy of a packet that has been
transmitted in case the packet must be retransmitted. In practice, a sender only needs to
retain the data that goes in the packet along with sufficient information to allow the
sender to reconstruct the packet headers. The idea of keeping unacknowledged data is
important in TCP.

Although it handles packet loss or excessive delay, the acknowledgement mecha-
nism described above does not solve all problems: a packet can be duplicated. Dupli-
cates can arise if an excessive delay causes a sender to retransmit unnecessarily. Solv-
ing duplication requires careful thought because both packets and acknowledgements
can be duplicated. Usually, reliable protocols detect duplicate packets by assigning
each packet a sequence number and requiring the receiver to remember which sequence
numbers it has received. To avoid ambiguity, positive acknowledgement protocols ar-
range for each acknowledgement to contain the sequence number of the packet that ar-
rived. Thus, when an acknowledgment arrives, the acknowledgement is easily associat-
ed with a particular packet.

Sec. 11.4 Reliability: Acknowledgements And Retransmission 203

Send Packet 1
Start Timer

Packet should have arrived
ACK would have been sent

ACK would normally
arrive at this time

Timer Expires

Retransmit Packet 1
Start Timer

Receive Packet 1
Send ACK 1

Receive ACK 1
Cancel Timer

Events At Sender Site Network Messages Events At Receiver Site

packet
loss

Figure 11.2 Illustration of timeout and retransmission when a packet is lost.

11.5 The Sliding Window Paradigm

Before examining the TCP stream service, we need to explore an additional mecha-
nism that underlies reliable transmission. Known as a sliding window, the mechanism
improves overall throughput. To understand the motivation for sliding windows, recall
the sequence of events in Figure 11.1. To achieve reliability, the sender transmits a
packet and then waits for an acknowledgement before transmitting another. As the fig-
ure shows, data flows between the machines one packet at a time. The network will
remain completely idle until the acknowledgement returns. If we imagine a network
with high transmission delays, the problem becomes clear:

A simple positive acknowledgement protocol wastes a substantial
amount of network capacity because it must delay sending a new
packet until it receives an acknowledgement for the previous packet.

The sliding window technique uses a more complex form of positive acknowledge-
ment and retransmission. The key idea is that a sliding window allows a sender to
transmit multiple packets before waiting for an acknowledgement. The easiest way to
envision a sliding window in action is to think of a sequence of packets to be transmit-
ted as Figure 11.3 shows. The protocol places a small, fixed-size window on the se-
quence and transmits all packets that lie inside the window.

204 Reliable Stream Transport Service (TCP) Chap. 11

1 2 3 4 5 6 7 8 9 10 . . .

Initial window

1 2 3 4 5 6 7 8 9 10 . . .

Window slides

(a)

(b)

Figure 11.3 (a) A sliding window with eight packets in the window, and (b)
the window sliding so that packet 9 can be sent because an ac-
knowledgement has been received for packet 1.

We say that a packet is unacknowledged if it has been transmitted but no acknowl-
edgement has been received. Technically, the number of packets that can be unac-
knowledged at any given time is constrained by the window size, which is limited to a
small, fixed number. For example, in a sliding window protocol with window size 8,
the sender is permitted to transmit 8 packets before it receives an acknowledgement.

As Figure 11.3 shows, once the sender receives an acknowledgement for the first
packet inside the window, it “slides” the window along and sends the next packet. The
window slides forward each time an acknowledgement arrives.

The performance of sliding window protocols depends on the window size and the
speed at which the network accepts packets. Figure 11.4 shows an example of the
operation of a sliding window protocol for a window size of three packets. Note that
the sender transmits all three packets before receiving any acknowledgements.

With a window size of 1, a sliding window protocol is exactly the same as our
simple positive acknowledgement protocol. By increasing the window size, it is possi-
ble to eliminate network idle time completely. That is, in the steady state, the sender
can transmit packets as fast as the network can transfer them. To see the advantage of
sliding window, compare the rate at which data is transferred in Figures 11.1 and 11.4.
The main point is:

Because a well-tuned sliding window protocol keeps the network com-
pletely saturated with packets, it can obtain substantially higher
throughput than a simple positive acknowledgement protocol.

Conceptually, a sliding window protocol always remembers which packets have
been acknowledged and keeps a separate timer for each unacknowledged packet. If a

Sec. 11.5 The Sliding Window Paradigm 205

packet is lost, the timer expires and the sender retransmits that packet. When the sender
slides its window, it moves past all acknowledged packets. At the receiving end, the
protocol software keeps an analogous window, accepting and acknowledging packets as
they arrive. Thus, the window partitions the sequence of packets into three sets: those
packets to the left of the window have been successfully transmitted, received, and ac-
knowledged; those packets to the right have not yet been transmitted; and those packets
that lie in the window are being transmitted. The lowest numbered packet in the win-
dow is the first packet in the sequence that has not been acknowledged.

Send Packet 1

Send Packet 2

Send Packet 3

Receive Packet 1
Send ACK 1

Receive Packet 2
Send ACK 2

Receive Packet 3
Send ACK 3Receive ACK 1

Receive ACK 2

Receive ACK 3

Events At Sender Site Network Messages Events At Receiver Site

Figure 11.4 An example of sliding window with a window size of three.

11.6 The Transmission Control Protocol

Now that we understand the principle of sliding windows, we can examine the
Transmission Control Protocol (TCP), the protocol that provides reliable stream service.
The stream service is so significant that the entire Internet protocol suite is referred to
as TCP/IP.

We will make a key distinction between the TCP protocol and the software that
implements TCP. The TCP protocol provides a specification analogous to a blueprint;
TCP software implements the specification. Although it is sometimes convenient to
think of TCP as a piece of software, readers should recognize the distinction:

TCP is a communication protocol, not a piece of software.

Exactly what does TCP provide? TCP is complex, so there is no simple answer.
The protocol specifies the format of the data and acknowledgements that two computers
exchange to achieve a reliable transfer, as well as the procedures the computers use to

206 Reliable Stream Transport Service (TCP) Chap. 11

ensure that the data arrives correctly. It specifies how TCP software distinguishes
among multiple destinations on a given machine, and how communicating machines re-
cover from errors like lost or duplicated packets. The protocol also specifies how two
computers initiate a TCP connection and how they agree when it is complete.

It is also important to understand what the protocol does not include. Although the
TCP specification describes how application programs use TCP in general terms, it does
not dictate the details of the interface between an application program and TCP. That
is, the protocol documentation only discusses the operations TCP supplies; it does not
specify the exact procedures that applications invoke to access the operations. The rea-
son for leaving the application interface unspecified is flexibility. In particular, because
TCP software is part of a computer’s operating system, it needs to employ whatever in-
terface the operating system supplies. Allowing implementers flexibility makes it possi-
ble to have a single specification for TCP that can be used to build software for a
variety of computer systems.

Because it does not make assumptions about the underlying communication sys-
tem, TCP can be used across a wide variety of underlying networks. It can run across a
satellite with long delays, a wireless network where interference causes many packets to
be lost, or a leased connection in which delays vary dramatically depending on the
current congestion. Its ability to accommodate a large variety of underlying networks is
one of TCP’s strengths.

11.7 Layering, Ports, Connections, And Endpoints

TCP, which resides in the transport layer just above IP, allows multiple application
programs on a given computer to communicate concurrently, and it demultiplexes in-
coming TCP traffic among the applications. Thus, in terms of the layering model, TCP
is a conceptual peer of UDP, as Figure 11.5 shows:

Network Interface

Internet (IP)

User Datagram (UDP)Reliable Stream (TCP)

Application

Conceptual Layering

Figure 11.5 The conceptual layering of UDP and TCP above IP.

Sec. 11.7 Layering, Ports, Connections, And Endpoints 207

Although they are at the same conceptual layer, TCP and UDP provide completely dif-
ferent services. We will understand many of the differences as the chapter proceeds.

Like the User Datagram Protocol, TCP uses protocol port numbers to identify ap-
plication programs. Also like UDP, a TCP port number is sixteen bits long. Each TCP
port is assigned a small integer used to identify it. It is important to understand that
TCP ports are conceptually independent of UDP ports — one application can use UDP
port 30,000 while another application uses TCP port 30,000.

We said that a UDP port consists of a queue that holds incoming datagrams. TCP
ports are much more complex because a single port number does not identify an appli-
cation. Instead, TCP has been designed on a connection abstraction in which the ob-
jects to be identified are TCP connections, not individual ports. Each TCP connection
is specified by a pair of endpoints that correspond to the pair of communicating applica-
tions. Understanding that TCP uses the notion of connections is crucial because it helps
explain the meaning and use of TCP port numbers:

TCP uses the connection, not the protocol port, as its fundamental
abstraction; connections are identified by a pair of endpoints.

Exactly what are the “endpoints” of a TCP connection? We have said that a con-
nection consists of a virtual circuit between two application programs, so it might be
natural to assume that an application program serves as the connection endpoint. It is
not. Instead, TCP defines an endpoint to be a pair of integers (host, port), where host is
the IP address for a host and port is a TCP port on that host. For example, an IPv4
endpoint (128.10.2.3, 25) specifies TCP port 25 on the machine with IPv4 address
128.10.2.3.

Now that we have defined endpoints, it is easy to understand TCP connections.
Recall that a connection is defined by its two endpoints. Thus, if there is a connection
from machine (18.26.0.36) at MIT to machine (128.10.2.3) at Purdue University, it
might be defined by the endpoints:

(18.26.0.36, 1069) and (128.10.2.3, 25).

Meanwhile, another connection might be in progress from machine (128.9.0.32) at the
Information Sciences Institute to the same machine at Purdue, identified by its end-
points:

(128.9.0.32, 1184) and (128.10.2.3, 53).

So far, our examples of connections have been straightforward because the ports
used at all endpoints have been unique. However, the connection abstraction allows
multiple connections to share an endpoint. For example, we could add another connec-
tion to the two listed above from machine (128.2.254.139) at CMU to the machine at
Purdue using endpoints:

(128.2.254.139, 1184) and (128.10.2.3, 53).

It might seem strange that two connections can use the TCP port 53 on machine
128.10.2.3 simultaneously, but there is no ambiguity. Because TCP associates incom-

208 Reliable Stream Transport Service (TCP) Chap. 11

ing messages with a connection instead of a protocol port, it uses both endpoints to
identify the appropriate connection. The important idea to remember is:

Because TCP identifies a connection by a pair of endpoints, a given
TCP port number can be shared by multiple connections on the same
machine.

From a programmer’s point of view, the connection abstraction is significant. It
means a programmer can devise a program that provides concurrent service to multiple
connections simultaneously, without needing unique local port numbers for each con-
nection. For example, most systems provide concurrent access to their electronic mail
service, allowing multiple computers to send them electronic mail simultaneously. Be-
cause it uses TCP to communicate, the application that accepts incoming mail only
needs to use one local TCP port, even though multiple connections can proceed con-
currently.

11.8 Passive And Active Opens

Unlike UDP, TCP is a connection-oriented protocol that requires both endpoints to
agree to participate. That is, before TCP traffic can pass across an internet, application
programs at both ends of the connection must agree that the connection is desired. To
do so, the application program on one end performs a passive open by contacting the lo-
cal operating system and indicating that it will accept an incoming connection for a
specific port number. The protocol software prepares to accept a connection at the port.
The application program on the other end can then perform an active open by request-
ing that a TCP connection be established. The two TCP software modules communi-
cate to establish and verify a connection. Once a connection has been created, applica-
tion programs can begin to pass data; the TCP software modules at each end exchange
messages that guarantee reliable delivery. We will return to the details of establishing
connections after examining the TCP message format.

11.9 Segments, Streams, And Sequence Numbers

TCP views the data stream as a sequence of octets that it divides into segments for
transmission. Usually, each segment travels across the underlying internet in a single IP
datagram. TCP uses a specialized sliding window mechanism that optimizes throughput
and handles flow control. Like the sliding window protocol described earlier, the TCP
window mechanism makes it possible to send multiple segments before an acknowl-
edgement arrives. Doing so increases total throughput because it keeps the network
busy. We will see that the TCP form of a sliding window protocol also solves the end-
to-end flow control problem by allowing the receiver to restrict transmission until it has
sufficient buffer space to accommodate more data.

Sec. 11.9 Segments, Streams, And Sequence Numbers 209

The TCP sliding window mechanism operates at the octet level, not at the segment
or packet level. Octets of the data stream are numbered sequentially, and a sender
keeps three pointers associated with every connection. The pointers define a sliding
window as Figure 11.6 illustrates. The first pointer marks the left of the sliding win-
dow, separating octets that have been sent and acknowledged from octets yet to be ac-
knowledged. A second pointer marks the right of the sliding window and defines the
highest octet in the sequence that can be sent before more acknowledgements are re-
ceived. The third pointer marks the boundary inside the window that separates those
octets that have already been sent from those octets that have not been sent. The proto-
col software sends all octets in the window without delay, so the boundary inside the
window usually moves from left to right quickly.

1 2 3 4 5 6 7 8 9 10 11 . . .

Current window
...........

Figure 11.6 An example of TCP’s sliding window where octets through 2
have been sent and acknowledged, octets 3 through 6 have been
sent but not acknowledged, octets 7 though 9 have not been sent
but will be sent without delay, and octets 10 and higher cannot
be sent until the window moves.

We have described how the sender’s TCP window slides along and mentioned that
the receiver must maintain a similar window to recreate the stream. It is important to
understand, however, that because TCP connections are full duplex, two transfers
proceed simultaneously over each connection, one in each direction. We think of the
transfers as completely independent because at any time data can flow across the con-
nection in one direction, or in both directions. Thus, TCP software on a computer
maintains two windows per connection: one window slides along as the data stream is
sent, while the other slides along as data is received.

11.10 Variable Window Size And Flow Control

One difference between the TCP sliding window protocol and the simplified slid-
ing window protocol presented in Figure 11.4† arises because TCP allows the window
size to vary over time. Each acknowledgement, which specifies how many octets have
been received, contains a window advertisement that specifies how many additional oc-
tets of data the receiver is prepared to accept beyond the data being acknowledged. We
think of the window advertisement as specifying the receiver’s current buffer size. In
response to an increased window advertisement, the sender increases the size of its slid-

†Figure 11.4 can be found on page 205.

210 Reliable Stream Transport Service (TCP) Chap. 11

ing window and proceeds to send octets that have not been acknowledged. In response
to a decreased window advertisement, the sender decreases the size of its window and
stops sending octets beyond the boundary. TCP software must not contradict previous
advertisements by shrinking the window past previously acceptable positions in the oc-
tet stream. Instead, smaller advertisements accompany acknowledgements, so the win-
dow size only changes at the time it slides forward.

The advantage of using a variable size window is that it provides the ability to
handle flow control. To avoid receiving more data than it can store, the receiver sends
smaller window advertisements as its buffer fills. In the extreme case, the receiver ad-
vertises a window size of zero to stop all transmissions. Later, when buffer space be-
comes available, the receiver advertises a nonzero window size to trigger the flow of
data again†.

Having a mechanism for flow control is essential in an environment where comput-
ers of various speeds and sizes communicate through networks and routers of various
speeds and capacities. There are two independent problems. First, protocols need to
provide end-to-end flow control between the source and ultimate destination. For ex-
ample, when a hand-held smart phone communicates with a powerful supercomputer,
the smartphone needs to regulate the influx of data or protocol software will be overrun
quickly. Thus, TCP must implement end-to-end flow control to guarantee reliable
delivery. Second, a mechanism is needed that allows intermediate systems (i.e., routers)
to control a source that sends more traffic than the machine can tolerate.

When intermediate machines become overloaded, the condition is called conges-
tion, and mechanisms to solve the problem are called congestion control mechanisms.
TCP uses its sliding window scheme to solve the end-to-end flow control problem. We
will discuss congestion control later, but it should be noted that a well-designed proto-
col can detect and recover from congestion, while a poorly-designed protocol will make
congestion worse. In particular, a carefully chosen retransmission scheme can help
avoid congestion, but a poorly chosen scheme can exacerbate it by aggressively re-
transmitting.

11.11 TCP Segment Format

The unit of transfer between the TCP software on two machines is called a seg-
ment. Segments are exchanged to establish a connection, transfer data, send acknowl-
edgements, advertise window sizes, and close connections. Because TCP allows piggy-
backing, an acknowledgement traveling from computer A to computer B may travel in
the same segment as data traveling from computer A to computer B, even though the ac-
knowledgement refers to data sent from B to A‡.

†There are two exceptions to transmission when the window size is zero: a sender transmits a segment
with the urgent bit set when urgent data is available, and a sender probes a zero-sized window periodically in
case a nonzero advertisement is lost.

‡In practice, piggybacking does not usually occur because most applications do not send data in both
directions simultaneously.

Sec. 11.11 TCP Segment Format 211

Like most protocols, a message is divided into two conceptual parts: a header that
contains meta-data and a payload area that carries data. Figure 11.7 shows the TCP
segment format.

0 4 10 16 24 31

SOURCE PORT DESTINATION PORT

SEQUENCE NUMBER

ACKNOWLEDGEMENT NUMBER

HLEN RESERVED CODE BITS WINDOW

CHECKSUM URGENT POINTER

OPTIONS (IF ANY) PADDING

PAYLOAD. . .

Figure 11.7 TCP segment format with a TCP header followed by a payload.

The header, known as the TCP header, consists of at least 20 octets and may con-
tain more if the segment carries options. The header has the expected identification and
control information. Fields SOURCE PORT and DESTINATION PORT contain the
TCP port numbers that identify the application programs at the ends of the connection.
The SEQUENCE NUMBER field identifies the position in the sender’s octet stream of
the data in the segment. The ACKNOWLEDGEMENT NUMBER field identifies the
number of the octet that the source expects to receive next. Note that the sequence
number refers to the stream flowing in the same direction as the segment, while the ac-
knowledgement number refers to the stream flowing in the opposite direction from the
segment.

The HLEN† field contains an integer that specifies the length of the segment
header measured in 32-bit multiples. It is needed because the OPTIONS field varies in
length, depending on which options are included. Thus, the size of the TCP header
varies depending on the options selected. The 6-bit field marked RESERVED is
reserved for future use (a later section describes a proposed use).

Some segments carry only an acknowledgement, while some carry data. Others
carry requests to establish or close a connection. TCP software uses the 6-bit field la-
beled CODE BITS to determine the purpose and contents of the segment. The six bits
tell how to interpret other fields in the header according to the table in Figure 11.8.

TCP software advertises how much data it is willing to accept every time it sends a
segment by specifying its buffer size in the WINDOW field. The field contains a 16-bit
unsigned integer in network-standard byte order. Window advertisements provide an
example of piggybacking because they accompany all segments, including those carry-
ing data as well as those carrying only an acknowledgement.

†The TCP specification says the HLEN field is the offset of the data area within the segment.

212 Reliable Stream Transport Service (TCP) Chap. 11

Bit (left to right) Meaning if bit set to 1
URG Urgent pointer field is valid
ACK Acknowledgement field is valid
PSH This segment requests a push
RST Reset the connection
SYN Synchronize sequence numbers
FIN Sender has reached end of its byte stream

Figure 11.8 Bits of the CODE BITS field in the TCP header.

11.12 Out Of Band Data

Although TCP is a stream-oriented protocol, it is sometimes important for the pro-
gram at one end of a connection to send data out of band, without waiting for the pro-
gram at the other end of the connection to consume octets already in the stream. For
example, when TCP is used for a remote desktop application, the user may decide to
send a keyboard sequence that interrupts or aborts the currently running program. Such
signals are most often needed when an application on the remote machine freezes and
fails to respond to mouse clicks or normal keystrokes. The interrupt signal must be sent
without waiting for the remote program to read octets already in the TCP stream (or one
would not be able to abort programs that stop reading input).

To accommodate out-of-band signaling, TCP allows the sender to specify data as
urgent, meaning that the receiving application should be notified of its arrival as quickly
as possible, regardless of its position in the stream. The protocol specifies that when
urgent data is found, the receiving TCP should notify the application program associat-
ed with the connection to go into “urgent mode.” After all urgent data has been con-
sumed, TCP tells the application program to return to normal operation.

The exact details of how TCP informs an application about urgent data depend on
the computer’s operating system. The mechanism used to mark urgent data when
transmitting it in a segment consists of the URG code bit and the URGENT POINTER
field in the segment header. When the URG bit is set, the URGENT POINTER field
specifies the position in the segment where urgent data ends.

11.13 TCP Options

As Figure 11.7 indicates, a TCP header can contain zero or more options; the next
sections explain the available options. Each option begins with a 1-octet field that
specifies the option type followed by a 1-octet length field that specifies the size of the
option in octets. Recall that the header length is specified in 32-bit multiples. If the
options do not occupy an exact multiple of 32 bits, PADDING is added to the end of
the header.

Sec. 11.13 TCP Options 213

11.13.1 Maximum Segment Size Option

A sender can choose the amount of data that is placed in each segment. However,
both ends of a TCP connection need to agree on a maximum segment they will transfer.
TCP uses a maximum segment size (MSS) option to allow a receiver to specify the max-
imum size segment that it is willing to receive. An embedded system that only has a
few hundred bytes of buffer space can specify an MSS that restricts segments so they fit
in the buffer. MSS negotiation is especially significant because it permits heterogene-
ous systems to communicate — a supercomputer can communicate with a small wire-
less sensor node. To maximize throughput, when two computers attach to the same
physical network, TCP usually computes a maximum segment size such that the result-
ing IP datagrams will match the network MTU. If the endpoints do not lie on the same
physical network, they can attempt to discover the minimum MTU along the path
between them, or choose a maximum segment size equal to the minimum datagram pay-
load size.

In a general internet environment, choosing a good maximum segment size can be
difficult, because performance can be poor for either extremely large segment sizes or
extremely small segment sizes. On the one hand, when the segment size is small, net-
work utilization remains low. To see why, recall that TCP segments travel encapsulated
in IP datagrams which are encapsulated in physical network frames. Thus, each frame
carries at least 20 octets of TCP header plus 20 octets of IP header (IPv6 is larger).
Therefore, datagrams carrying only one octet of data use at most 1/41 of the underlying
network bandwidth for the data being transferred (less for IPv6).

On the other hand, extremely large segment sizes can also produce poor perfor-
mance. Large segments result in large IP datagrams. When such datagrams travel
across a path with small MTU, IP must fragment them. Unlike a TCP segment, a frag-
ment cannot be acknowledged or retransmitted independently; all fragments must arrive
or the entire datagram must be retransmitted. If the probability of losing a given frag-
ment is nonzero, increasing the segment size above the fragmentation threshold de-
creases the probability the datagram will arrive, which decreases throughput.

In theory, the optimum segment size, S, occurs when the IP datagrams carrying the
segments are as large as possible without requiring fragmentation anywhere along the
path, from the source to the destination. In practice, finding S means finding the path
MTU, which involves probing. For a short-lived TCP connection (e.g., where only a
few packets are exchanged), probing can introduce delay. Second, because routers in an
internet can change routes dynamically, the path datagrams follow between a pair of
communicating computers can change dynamically and so can the size at which da-
tagrams must be fragmented. Third, the optimum size depends on lower-level protocol
headers (e.g., the TCP segment size will be smaller if the IP datagram includes IPv4 op-
tions or IPv6 extension headers).

214 Reliable Stream Transport Service (TCP) Chap. 11

11.13.2 Window Scaling Option

Because the WINDOW field in the TCP header is 16 bits long, the maximum size
window is 64 Kbytes. Although the window was sufficient for early networks, a larger
window size is needed to obtain high throughput on a network, such as a satellite chan-
nel, that has a large delay-bandwidth product (informally called a long fat pipe).

To accommodate larger window sizes, a window scaling option was created for
TCP. The option consists of three octets: a type, a length, and a shift value, S. In
essence, the shift value specifies a binary scaling factor to be applied to the window
value. When window scaling is in effect, a receiver extracts the value from the WIN-
DOW field, W, and shifts W left S bits to obtain the actual window size.

Several details complicate the design. The option can be negotiated when the con-
nection is initially established, in which case all successive window advertisements are
assumed to use the negotiated scale, or the option can be specified on each segment, in
which case the scaling factor can vary from one segment to another. Furthermore, if ei-
ther side of a connection implements window scaling but does not need to scale its win-
dow, the side sends the option set to zero, which makes the scaling factor 1.

11.13.3 Timestamp Option

The TCP timestamp option was invented to help TCP compute the delay on the
underlying network. It can also handle the case where TCP sequence numbers exceed
232 (known as Protect Against Wrapped Sequence numbers, PAWS). In addition to the
required type and length fields, a timestamp option includes two values: a timestamp
value and an echo reply timestamp value. A sender places the time from its current
clock in the timestamp field when sending a packet; a receiver copies the timestamp
field into the echo reply field before returning an acknowledgement for the packet.
Thus, when an acknowledgement arrives, the sender can accurately compute the total
elapsed time since the segment was sent.

11.14 TCP Checksum Computation

The CHECKSUM field in the TCP header is a 16-bit one’s complement checksum
used to verify the integrity of the data as well as the TCP header. As with other check-
sums, TCP uses 16-bit arithmetic and takes the one’s complement of the one’s comple-
ment sum. To compute the checksum, TCP software on the sending machine follows a
procedure similar to the one described in Chapter 10 for UDP. Conceptually, TCP
prepends a pseudo-header to the TCP segment, appends enough zero bits to make the
segment a multiple of 16 bits, and computes the 16-bit checksum over the entire result.
As with UDP, the pseudo-header is not part of the segment, and is never transmitted in
a packet. At the receiving site, TCP software extracts fields from the IP header, recon-
structs a pseudo-header, and performs the same checksum computation to verify that the
segment arrived intact.

Sec. 11.14 TCP Checksum Computation 215

The purpose of using a TCP pseudo-header is exactly the same as in UDP. It al-
lows the receiver to verify that the segment has reached the correct endpoint, which in-
cludes both an IP address and a protocol port number. Both the source and destination
IP addresses are important to TCP because it must use them to identify the connection
to which the segment belongs. Therefore, whenever a datagram arrives carrying a TCP
segment, IP must pass to TCP the source and destination IP addresses from the da-
tagram as well as the segment itself. Figure 11.9 shows the format of the pseudo-
header used in the checksum computation for IPv4 and Figure 11.10 shows the format
for an IPv6 pseudo-header.

0 8 16 31

SOURCE IP ADDRESS

DESTINATION IP ADDRESS

ZERO PROTOCOL TCP LENGTH

Figure 11.9 The 12 octets of the IPv4 pseudo-header used in TCP checksum
computations.

0 4 12 16 24 31

SOURCE ADDRESS

DESTINATION ADDRESS

TCP LENGTH

UNUSED (MUST BE ZERO) NEXT HEADER

Figure 11.10 The 40 octets of the IPv6 pseudo-header used in TCP check-
sum computations.

Of course, the IPv4 pseudo-header uses IPv4 source and destination addresses and
the IPv6 pseudo-header uses IPv6 addresses. The PROTOCOL field (IPv4) or the
NEXT HEADER field (IPv6) is assigned the value 6, the value for datagrams carrying
TCP. The TCP LENGTH field specifies the total length of the TCP segment including
the TCP header.

216 Reliable Stream Transport Service (TCP) Chap. 11

11.15 Acknowledgements, Retransmission, And Timeouts

Because TCP sends data in variable length segments and because retransmitted
segments can include more data than the original, an acknowledgement cannot easily
refer to a datagram or a segment. Instead, an acknowledgement refers to a position in
the stream using the stream sequence numbers. The receiver collects data octets from
arriving segments and reconstructs an exact copy of the stream being sent. Because
segments travel in IP datagrams, they can be lost or delivered out of order; the receiver
uses the sequence number in each segment to know where the data in the segment fits
into the stream. At any time, a receiver will have reconstructed zero or more octets
contiguously from the beginning of the stream, but may also have additional pieces of
the stream from segments that arrived out of order. The receiver always acknowledges
the longest contiguous prefix of the stream that has been received correctly. Each ac-
knowledgement specifies a sequence value one greater than the highest octet position in
the contiguous prefix it received. Thus, the sender receives continuous feedback from
the receiver as it progresses through the stream. We can summarize this important idea:

A TCP acknowledgement specifies the sequence number of the next
octet that the receiver expects to receive.

The TCP acknowledgement scheme is called cumulative because it reports how
much of the stream has accumulated. Cumulative acknowledgements have both advan-
tages and disadvantages. One advantage is that acknowledgements are both easy to
generate and unambiguous. Another advantage is that lost acknowledgements do not
necessarily force retransmission. A major disadvantage is that the sender does not re-
ceive information about all successful transmissions, but only about a single position in
the stream that has been received.

To understand why lack of information about all successful transmissions makes
cumulative acknowledgements less efficient, think of a window that spans 5000 octets
starting at position 101 in the stream, and suppose the sender has transmitted all data in
the window by sending five segments. Suppose further that the first segment is lost, but
all others arrive intact. As each segment arrives, the receiver sends an acknowledge-
ment, but each acknowledgement specifies octet 101, the next highest contiguous octet
it expects to receive. There is no way for the receiver to tell the sender that most of the
data for the current window has arrived.

In our example, when a timeout occurs at the sender’s side, a sender must choose
between two potentially inefficient schemes. It may choose to retransmit one segment
or all five segments. Retransmitting all five segments is inefficient. When the first seg-
ment arrives, the receiver will have all the data in the window and will acknowledge
5101. If the sender follows the accepted standard and retransmits only the first unac-
knowledged segment, it must wait for the acknowledgement before it can decide what
and how much to send. Thus, retransmission reverts to a send-and-wait paradigm,
which loses the advantages of having a large window.

Sec. 11.15 Acknowledgements, Retransmission, And Timeouts 217

One of the most important and complex ideas in TCP is embedded in the way it
handles timeout and retransmission. Like other reliable protocols, TCP expects the des-
tination to send acknowledgements whenever it successfully receives new octets from
the data stream. Every time it sends a segment, TCP starts a timer and waits for an ac-
knowledgement. If the timer expires before data in the segment has been acknowl-
edged, TCP assumes that the segment was lost or corrupted and retransmits it.

To understand why the TCP retransmission algorithm differs from the algorithm
used in many network protocols, we need to remember that TCP is intended for use in
an internet environment. In an internet, a segment traveling between a pair of machines
may traverse a single Local Area Network (e.g., a high-speed Ethernet), or it may travel
across multiple intermediate networks through multiple routers. Thus, it is impossible
to know a priori how quickly acknowledgements will return to the source. Further-
more, the delay at each router depends on traffic, so the total time required for a seg-
ment to travel to the destination and an acknowledgement to return to the source can
vary dramatically from one instant to another. To understand, consider the world for
which TCP was designed. Figure 11.11 illustrates the situation by showing measure-
ments of round trip times (RTTs) for 100 consecutive packets sent across the global In-
ternet of the 1980s.

Although most modern networks do not behave quite as badly, the plot illustrates
the situations that TCP is designed to accommodate: incredibly long delays and changes
in the round trip delay on a given connection. To handle the situation, TCP uses an
adaptive retransmission algorithm. That is, TCP monitors the round trip time on each
connection and computes reasonable values for timeouts. As the performance of a con-
nection changes, TCP revises its timeout value (i.e., it adapts to the change).

To collect the data needed for an adaptive algorithm, TCP records the time at
which each segment is sent and the time at which an acknowledgement arrives for the
data in that segment. From the two times, TCP computes an elapsed time known as a
round trip sample. Whenever it obtains a new round trip sample, TCP must adjust its
notion of the average round trip time for the connection. To do so, TCP uses a weight-
ed average to estimate the round trip time and uses each new round trip sample to up-
date the average. The original averaging technique used a constant weighting factor, α,
where 0 ≤ α < 1, to weight the old average against the latest round trip sample†:

RTT = α ×RTT + (1–α)×New_Round_Trip_Sample

The idea is that choosing a value for α close to 1 makes the weighted average immune
to changes that last a short time (e.g., a single segment that encounters long delay).
Choosing a value for α close to 0 makes the weighted average respond to changes in
delay very quickly.

When it sends a segment, TCP computes a timeout value as a function of the
current round trip estimate. Early implementations of TCP used a constant weighting
factor, β (β > 1), and made the timeout greater than the current round trip average:

Timeout = β × RTT

†A later section explains how the computation has been modified in subsequent versions of TCP. The
simplistic formula used in early TCP implementations makes it easy to understand the basic concept of a
round-trip estimate that changes over time.

218 Reliable Stream Transport Service (TCP) Chap. 11

10 s

8 s

6 s

Time

4 s

2 s

1009080706050

Datagram Number

40302010

x.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x. .x. .x. .x.

.
.
.
.
.
.
.
.x.

.
.x.
.
.
.
.x. .x.

.
.
.
.
.
.
.x. .x.

.
.
.
.
.x. .x.

.
.
.
.x.
.
.
.x.
.

.x. .x.
.
.
.
.
.
.
.
.
.
.
.x.

.x.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x.
.
.x.
.
.
.x.

.x. .x. .x. .x.
.
.x.
.
.
.
.
.
.
.
.
.
.x.
.

.x.
.

.x.
.
.
.
.
.
.
.
.
.
.x.

.x.
.x. .x. .x.

.
.
.
.
.
.
.
.x. .x. .

.x.
.
.
.
.
.
.
.
.x.

.
.x.
.
.
.
.
.x. .x. .x.

.x. .x.
.x.
.
.
.
.
.x. .

.x.
.
.
.
.
.
.
.x. .x. .x.

.
.
.
.
.
.
.
.
.
.
.x.

.x.
.
.x.
.
.
.
.
.
.x.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x. .x.

.
.x.
.
.
.x.
.
.
.
.
.
.
.
.
.
.
.
.
.x. .

.x.
.
.
.x.
.
.
.
.x.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x.

.x.
.
.
.x.
.
.
.
.
.x.
.
.
.x. .x. .x.

.
.
.
.
.x.

.
.x.

.x.
.

.x.
.
.
.x.
.
.
.x.
.
.
.
.x. .x.

.
.
.
.x.
.
.
.x. .x.

.
.
.
.
.
.x.
.
.
.x. .x.

.
.
.
.
.x. .

.x.
.
.
.
.
.x.

.
.x.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x. .x. .x.

.
.
.
.x. .x.

.x.
.
.
.
.
.
.
.x.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x.
.

.x.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x.
.
.
.
.
.x. .x

Figure 11.11 An extreme case for TCP: a plot of Internet round trip times
from the 1980s. Although the Internet now operates with much
lower delay, delays still vary over time.

We can summarize the ideas presented so far:

To accommodate the varying delays encountered in an internet en-
vironment, TCP uses an adaptive retransmission algorithm that moni-
tors delays on each connection and adjusts its timeout parameter ac-
cordingly.

11.16 Accurate Measurement Of Round Trip Samples

In theory, measuring a round trip sample is trivial — it consists of subtracting the
time at which the segment is sent from the time at which the acknowledgement arrives.
However, complications arise because TCP uses a cumulative acknowledgement scheme
in which an acknowledgement refers to data received, and not to the instance of a

Sec. 11.16 Accurate Measurement Of Round Trip Samples 219

specific datagram that carried the data. Consider a retransmission. TCP forms a seg-
ment, places it in a datagram and sends it, the timer expires, and TCP sends the seg-
ment again in a second datagram. Because both datagrams carry exactly the same seg-
ment data, the sender has no way of knowing whether an acknowledgement corresponds
to the original or retransmitted datagram. This phenomenon has been called acknowl-
edgement ambiguity.

Should TCP assume an acknowledgement belongs with the earliest (i.e., original)
transmission or the latest (i.e., the most recent retransmission)? Surprisingly, neither as-
sumption works. Associating the acknowledgement with the original transmission can
make the estimated round trip time grow without bound in cases where an internet loses
datagrams†. If an acknowledgement arrives after one or more retransmissions, TCP
will measure the round trip sample from the original transmission, and compute a new
RTT using the excessively long sample. Thus, RTT will grow slightly. The next time
TCP sends a segment, the larger RTT will result in slightly longer timeouts, so if an ac-
knowledgement arrives after one or more retransmissions, the next sample round trip
time will be even larger, and so on.

Associating the acknowledgement with the most recent retransmission can also fail.
Consider what happens when the end-to-end delay suddenly increases. When TCP
sends a segment, it uses the old round trip estimate to compute a timeout, which is now
too small. The segment arrives and an acknowledgement starts back, but the increase in
delay means the timer expires before the acknowledgement arrives, and TCP retransmits
the segment. Shortly after TCP retransmits, the first acknowledgement arrives and is
associated with the retransmission. The round trip sample will be much too small and
will result in a slight decrease of the estimated round trip time, RTT. Unfortunately,
lowering the estimated round trip time guarantees that TCP will set the timeout too
small for the next segment. Ultimately, the estimated round trip time can stabilize at a
value, T, such that the correct round trip time is slightly longer than some multiple of T.
Implementations of TCP that associate acknowledgements with the most recent re-
transmission were observed in a stable state with RTT slightly less than one-half of the
correct value (i.e., TCP sends each segment exactly twice even though no loss occurs).

11.17 Karn’s Algorithm And Timer Backoff

If the original transmission and the most recent transmission both fail to provide
accurate round trip times, what should TCP do? The accepted answer is simple: TCP
should not update the round trip estimate for retransmitted segments. The idea, known
as Karn’s Algorithm, avoids the problem of ambiguous acknowledgements altogether by
only adjusting the estimated round trip for unambiguous acknowledgements (acknowl-
edgements that arrive for segments that have only been transmitted once).

Of course, a simplistic implementation of Karn’s algorithm, one that merely ig-
nores times from retransmitted segments, can lead to failure as well. Consider what
happens when TCP sends a segment after a sharp increase in delay. TCP computes a
timeout using the existing round trip estimate. The timeout will be too small for the

†The estimate can only grow arbitrarily large if every segment is lost at least once.

220 Reliable Stream Transport Service (TCP) Chap. 11

new delay and will force retransmission. If TCP ignores acknowledgements from re-
transmitted segments, it will never update the estimate and the cycle will continue.

To accommodate such failures, Karn’s algorithm requires the sender to combine re-
transmission timeouts with a timer backoff strategy. The backoff technique computes
an initial timeout using a formula like the one shown above. However, if the timer ex-
pires and causes a retransmission, TCP increases the timeout. In fact, each time it must
retransmit a segment, TCP increases the timeout (to keep timeouts from becoming ridi-
culously long, most implementations limit increases to an upper bound that is larger
than the delay along any path in the internet).

Implementations use a variety of techniques to compute backoff. Most choose a
multiplicative factor, γ, and set the new value to:

new_timeout = γ × timeout

Typically, γ is 2. (It has been argued that values of γ less than 2 lead to instabilities.)
Other implementations use a table of multiplicative factors, allowing arbitrary backoff at
each step†.

Karn’s algorithm combines the backoff technique with round trip estimation to
solve the problem of never increasing round trip estimates:

Karn’s algorithm: when computing the round trip estimate, ignore
samples that correspond to retransmitted segments, but use a backoff
strategy and retain the timeout value from a retransmitted packet for
subsequent packets until a valid sample is obtained.

Generally speaking, when an internet misbehaves, Karn’s algorithm separates computa-
tion of the timeout value from the current round trip estimate. It uses the round trip es-
timate to compute an initial timeout value, but then backs off the timeout on each re-
transmission until it can successfully transfer a segment. When it sends subsequent seg-
ments, TCP retains the timeout value that results from backoff. Finally, when an ac-
knowledgement arrives corresponding to a segment that did not require retransmission,
TCP recomputes the round trip estimate and resets the timeout accordingly. Experience
shows that Karn’s algorithm works well even in networks with high packet loss‡.

11.18 Responding To High Variance In Delay

Research into round trip estimation has shown that the computations described
above do not adapt to a wide range of variation in delay. Queueing theory suggests that
the round trip time increases proportional to 1/(1–L), where L is the current network
load, 0 ≤ L < 1, and the variation in round trip time, σ, is proportional to 1/(1–L) 2. If an
internet is running at 50% of capacity, we expect the round trip delay to vary by a fac-
tor of 4 from the mean round trip time. When the load reaches 80%, we expect a varia-
tion by a factor of 25. The original TCP standard specified the technique for estimating

†BSD UNIX uses a table of factors, but values in the table are equivalent to using γ =2.
‡Phil Karn developed the algorithm for TCP communication across a high-loss amateur radio connection.

Sec. 11.18 Responding To High Variance In Delay 221

round trip time that we described earlier. Using that technique and limiting β to the
suggested value of 2 means the round trip estimation can adapt to loads of at most 30%.

The 1989 specification for TCP requires implementations to estimate both the aver-
age round trip time and the variance and to use the estimated variance in place of the
constant β. As a result, new implementations of TCP can adapt to a wider range of
variation in delay and yield substantially higher throughput. Fortunately, the approxi-
mations require little computation; extremely efficient programs can be derived from the
following simple equations:

DIFF = SAMPLE – Old_RTT

Smoothed_RTT = Old_RTT + δ × DIFF

DEV = Old_DEV + ρ × (DIFF – Old_DEV)

Timeout = Smoothed_RTT + η × DEV

where DEV is the estimated mean deviation, δ is a fraction between 0 and 1 that con-
trols how quickly the new sample affects the weighted average, ρ is a fraction between
0 and 1 that controls how quickly the new sample affects the mean deviation, and η is a
factor that controls how much the deviation affects the round trip timeout.

To make the computation efficient, TCP chooses δ and ρ to each be an inverse of a
power of 2, scales the computation by 2n for an appropriate n, and uses integer arithmet-
ic. Research suggests using values of:

δ = 1 / 2 3

ρ = 1 / 2 2

η = 4

The original value for η in 4.3BSD UNIX was 2. After experience and measurements it
was changed to 4 in 4.4 BSD UNIX.

To illustrate how current versions of TCP adapt to changes in delay, we used a
random-number generator to produce a set of round-trip times and fed the set into the
round-trip estimate described above. Figure 11.12 illustrates the result. The plot shows
individual round-trip times plotted as individual points and the computed timeout plot-
ted as a solid line. Note how the retransmission timer varies as the round-trip time
changes. Although the round-trip times are artificial, they follow a pattern observed in
practice: successive packets show small variations in delay as the overall average rises
or falls.

Note that frequent change in the round-trip time, including a cycle of increase and
decrease, can produce an increase in the retransmission timer. Furthermore, although
the timer tends to increase quickly when delay rises, it does not decrease as rapidly
when delay falls.

222 Reliable Stream Transport Service (TCP) Chap. 11

100 ms

80 ms

60 ms

40 ms

20 ms

200180160140120100

Datagram Number

80604020

....
..
...
..
..
..
.
....
.
.
..
..
.
.
.
...
..
.....

.
..
.
..
.
.
....
.
.
.
.
.....

...
.
.
...
.
.
..
....
..
..
.
..
.
....
.
.
.
...
.
..
....
.
.
...
.
.
.
.
...
.
..
.
....
....
..
..
.
.
.
.
.....

.
.
.
..
.
..
....
....
....
.
..
.
.
..
.....

.
...
...
..
.
..
....
.
.
..
..
.
.
...
.
.
.

Figure 11.12 A set of 200 (randomly generated) round-trip times shown as
dots, and the TCP retransmission timer shown as a solid line.

Although the randomly-generated data illustrates the algorithm, it is important to
see how TCP performs on worst case data. Figure 11.13 uses the measurements from
Figure 11.11 to show how TCP responds to an extreme case of variance in delay. Re-
call that the goal is to have the retransmission timer estimate the actual round-trip time
as closely as possible without underestimating. The figure shows that although the ti-
mer responds quickly, it can underestimate. For example, between the two successive
datagrams marked with arrows, the delay doubles from less than 4 seconds to more than
8. More important, the abrupt change follows a period of relative stability in which the
variation in delay is small, making it impossible for any algorithm to anticipate the
change. In the case of the TCP algorithm, because the timeout (approximately 5
seconds) substantially underestimates the large delay, an unnecessary retransmission oc-

Sec. 11.18 Responding To High Variance In Delay 223

curs. However, the retransmission timer responds quickly to the increase in delay,
meaning that successive packets arrive without retransmission.

10 s

8 s

6 s

Time

4 s

2 s

1009080706050

Datagram Number

40302010

x.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x. .x. .x. .x.

.
.
.
.
.
.
.
.x.

.
.x.
.
.
.
.x. .x.

.
.
.
.
.
.
.x. .x.

.
.
.
.
.x. .x.

.
.
.
.x.
.
.
.x.
.

.x. .x.
.
.
.
.
.
.
.
.
.
.
.x.

.x.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x.
.
.x.
.
.
.x.

.x. .x. .x. .x.
.
.x.
.
.
.
.
.
.
.
.
.
.x.
.

.x. .
.x.
.
.
.
.
.
.
.
.
.
.x.

.x.
.x. .x. .x.

.
.
.
.
.
.
.
.x. .x. .

.x.
.
.
.
.
.
.
.
.x.

.
.x.
.
.
.
.
.x. .x. .x.

.x. .x.
.x.
.
.
.
.
.x. .

.x.
.
.
.
.
.
.
.x. .x. .x.

.
.
.
.
.
.
.
.
.
.
.x.

.x.
.
.x.
.
.
.
.
.
.x.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x. .x.

.
.x.
.
.
.x.
.
.
.
.
.
.
.
.
.
.
.
.
.x. .

.x.
.
.
.x.
.
.
.
.x.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x.

.x.
.
.
.x.
.
.
.
.
.x.
.
.
.x. .x. .x.

.
.
.
.
.x.

.
.x.

.x.
.

.x.
.
.
.x.
.
.
.x.
.
.
.
.x. .x.

.
.
.
.x.
.
.
.x. .x.

.
.
.
.
.
.x.
.
.
.x. .x.

.
.
.
.
.x. .

.x.
.
.
.
.
.x.

.
.x.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x. .x. .x.

.
.
.
.x. .x.

.x.
.
.
.
.
.
.
.x.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x.
.

.x.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.x.
.
.
.
.
.x. .x

Figure 11.13 The value of TCP’s retransmission timer for the extreme data
in Figure 11.11. Arrows mark two successive datagrams where
the delay doubles.

11.19 Response To Congestion

It may seem that TCP software could be designed by considering the interaction
between the two endpoints of a connection and the communication delays between
those endpoints. In practice, however, TCP must also react to congestion in an internet.
Congestion is a condition of severe delay caused by an overload of datagrams at one or
more switching points (e.g., at routers). When congestion occurs, delays increase and
the router begins to enqueue datagrams until it can forward them. We must remember
that each router has finite storage capacity and that datagrams compete for that storage

224 Reliable Stream Transport Service (TCP) Chap. 11

(i.e., in a datagram-based internet, there is no preallocation of resources to individual
TCP connections). In the worst case, the total number of datagrams arriving at the
congested router grows until the router reaches capacity and starts to drop datagrams.

Endpoints do not usually know the details of where congestion has occurred or
why. To them, congestion simply means increased delay. Unfortunately, most trans-
port protocols use timeout and retransmission, so they respond to increased delay by re-
transmitting datagrams. Retransmissions aggravate congestion instead of alleviating it.
If unchecked, the increased traffic will produce increased delay, leading to increased
traffic, and so on, until the network becomes useless. The condition is known as
congestion collapse.

TCP can help avoid congestion by reducing transmission rates when congestion oc-
curs. In fact, TCP reacts quickly by reducing the transmission rate automatically when-
ever delays occur. Of course, algorithms to avoid congestion must be constructed care-
fully because even under normal operating conditions an internet will exhibit wide vari-
ation in round trip delays.

To avoid congestion, the TCP standard now recommends using two techniques:
slow-start and multiplicative decrease. The two are related and can be implemented
easily. We said that for each connection, TCP must remember the size of the receiver’s
window (i.e., the buffer size advertised in acknowledgements). To control congestion,
TCP maintains a second limit, called the congestion window size or congestion window
that it uses to restrict data flow to less than the receiver’s buffer size when congestion
occurs. That is, at any time, TCP acts as if the window size is:

Allowed_window = min (receiver_advertisement, congestion_window)

In the steady state on a non-congested connection, the congestion window is the
same size as the receiver’s window. Reducing the congestion window reduces the traf-
fic TCP will inject into the connection. To estimate congestion window size, TCP as-
sumes that most datagram loss comes from congestion and uses the following strategy:

Multiplicative Decrease Congestion Avoidance: upon loss of a seg-
ment, reduce the congestion window by half (but never reduce the
window to less than one segment). When transmitting segments that
remain in the allowed window, backoff the retransmission timer ex-
ponentially.

Because TCP reduces the congestion window by half for every loss, it decreases
the window exponentially if loss continues. In other words, if congestion is likely, TCP
reduces the volume of traffic exponentially and the rate of retransmission exponentially.
If loss continues, TCP eventually limits transmission to a single datagram and continues
to double timeout values before retransmitting. The idea is to provide quick and signifi-
cant traffic reduction to allow routers enough time to clear the datagrams already in
their queues.

Sec. 11.19 Response To Congestion 225

How can TCP recover when congestion ends? You might suspect that TCP should
reverse the multiplicative decrease and double the congestion window when traffic be-
gins to flow again. However, doing so produces an unstable system that oscillates wild-
ly between no traffic and congestion. Instead, TCP uses a technique named slow-start†
to scale up transmission.

Slow-Start (Additive) Recovery: whenever starting traffic on a new
connection or increasing traffic after a period of congestion, start the
congestion window at the size of a single segment and increase the
congestion window by one segment each time an acknowledgement ar-
rives.

Slow-start avoids swamping the underlying internet with additional traffic immediately
after congestion clears as well as when a new connection starts.

The term slow-start may be a misnomer because under ideal conditions, the start is
not very slow. TCP initializes the congestion window to 1, sends an initial segment,
and waits. When the acknowledgement arrives, it increases the congestion window to
2, sends two segments, and waits. When the two acknowledgements arrive they each
increase the congestion window by 1, so TCP can send 4 segments. Acknowledge-
ments for those segments will increase the congestion window to 8. Within four round
trip times, TCP can send 16 segments, often enough to reach the receiver’s window lim-
it. Even for extremely large windows, it takes only log2 N round trips before TCP can
send N segments.

To avoid increasing the window size too quickly and causing additional conges-
tion, TCP adds one additional restriction. Once the congestion window reaches one half
of its original size before congestion, TCP enters a congestion avoidance phase and
slows down the rate of increment. During congestion avoidance, it increases the
congestion window by 1 only if all segments in the window have been acknowledged.
The overall approach is known as Additive Increase Multiplicative Decrease (AIMD).

Taken together, slow-start, additive increase, multiplicative decrease, measurement
of variation, and exponential timer backoff improve the performance of TCP dramatical-
ly without adding any significant computational overhead to the protocol software.
Versions of TCP that use these techniques have improved the performance of previous
versions significantly.

11.20 Fast Recovery And Other Response Modifications

Minor modifications have been made to TCP over many years. An early version
of TCP, sometimes referred to as Tahoe, used the retransmission scheme described
above, waiting for a timer to expire before retransmitting. In 1990, the Reno version of
TCP appeared that introduced several changes, including a heuristic known as fast
recovery or fast retransmit that has higher throughput in cases where only occasional
loss occurs. Following the Reno version, researchers explored a Vegas version.

†The term slow-start is attributed to John Nagle; the technique was originally called soft-start.

226 Reliable Stream Transport Service (TCP) Chap. 11

The trick used in fast recovery arises from TCP’s cumulative acknowledgement
scheme: loss of a single segment means that the arrival of subsequent segments will
cause the receiver to generate an ACK for the point in the stream where the missing
segment begins. From a sender’s point of view, a lost packet means multiple acknowl-
edgements will arrive that each carry the same sequence number. The fast retransmit
heuristic uses a series of three duplicate acknowledgements (i.e., an original plus three
identical copies) to trigger a retransmission without waiting for the timer to expire.

In a case where only one segment is lost, waiting for the retransmitted segment to
be acknowledged also reduces throughput. Therefore, to maintain higher throughput,
the fast retransmit heuristic continues to send data from the window while awaiting ac-
knowledgement of the retransmitted segment. Furthermore, the congestion window is
artificially inflated: the congestion window is halved for the retransmission, but then the
congestion window is increased by one maximum size segment for each duplicate ACK
that previously arrived or arrives after the retransmission occurs. As a result, while fast
retransmit occurs, TCP keeps many segments “in flight” between the sender and re-
ceiver.

A further optimization of the fast retransmit hueristic was incorporated in a later
modification of TCP known as the NewReno version. The optimization handles a case
where two segments are lost within a single window. In essence, when fast retransmit
occurs, NewReno records information about the current window and retransmits as
described above. When the ACK arrives, for the retransmitted segment, there are two
possibilities: the ACK specifies the sequence number at the end of the window (in
which case the retransmitted segment was the only segment missing from the window),
or the ACK specifies a sequence number higher than the missing segment, but less than
the end of the window (in which case a second segment from the window has also been
lost). In the latter case, NewReno proceeds to retransmit the second missing segment.

Minor modifications to the AIMD scheme† have been proposed and used in later
versions of TCP. To understand, consider how AIMD changes the sender’s congestion
window, w, in response to segment loss or the arrival of an acknowledgement:

w ← w − aw when loss is detected

w ← w +
w
b

when an ACK arrives

In the original scheme, a is .5 and b is 1. In thinking about protocols like STCP,
which is used in sensor networks, researchers proposed setting a to 0.125 and b to 0.01
to prevent the congestion window from oscillating and increase throughput slightly.
Other proposals for modifications (e.g. a protocol known as HSTCP) suggest making a
and b functions of w (i.e., a(w) and b(w)). Finally, proposals for TCP congestion con-
trol such as Vegas and FAST use increasing RTT as a measure of congestion instead of
packet loss, and define the congestion window size to be a function of the measured
RTT. Typically, the modifications only lead to performance improvements in special
cases (e.g., networks with high bandwidth and low loss rates); the AIMD congestion
control in NewReno is used for general cases.

†AIMD is defined in the previous section.

Sec. 11.20 Fast Recovery And Other Response Modifications 227

A final proposal related to TCP congestion control concerns UDP. Observe that
although TCP reduces transmission when congestion occurs, UDP does not, which
means that as TCP flows continue to back off, UDP flows consume more of the
bandwidth. A solution known as TCP Friendly Rate Control (TFRC) was proposed.
TFRC attempts to emulate TCP behavior by having a UDP receiver report datagram
loss back to the sender and by having the sender use the reported loss to compute a rate
at which UDP datagrams should be sent; TFRC has only been adopted for special cases.

11.21 Explicit Feedback Mechanisms (SACK and ECN)

Most versions of TCP use implicit techniques to detect loss and congestion. That
is, TCP uses timeout and duplicate ACKs to detect loss, and changes in round trip times
to detect congestion. Researchers have observed that slight improvements are possible
if TCP includes mechanisms that provide such information explicitly. The next two sec-
tions describe two explicit techniques that have been proposed.

11.21.1 Selective Acknowledgement (SACK)

The alternative to TCP’s cumulative acknowledgement mechanism is known as a
selective acknowledgement mechanism. In essence, selective acknowledgements allow a
receiver to specify exactly which data has been received and which is still missing. The
chief advantage of selective acknowledgements arises in situations where occasional
loss occurs: selective acknowledgements allow a sender to know exactly which seg-
ments to retransmit.

The Selective ACKnowledgement (SACK) mechanism proposed for TCP does not
completely replace the cumulative acknowledgement mechanism, nor is it mandatory.
Instead, TCP includes two options for SACK. The first option is used when the con-
nection is established to allow a sender to specify that SACK is permitted. The second
option is used by a receiver when sending an acknowledgement to include information
about specific blocks of data that were received. The information for each block in-
cludes the first sequence number in a block (called the left edge) and the sequence
number immediately beyond the block (called the right edge). Because the maximum
size of a segment header is fixed, an acknowledgement can contain at most four SACK
blocks. Interestingly, the SACK documents do not specify exactly how a sender
responds to SACK; most implementations retransmit all missing blocks.

11.21.2 Explicit Congestion Notification

A second proposed technique to avoid implicit measurement is intended to handle
congestion in the network. Known as Explicit Congestion Notification (ECN), the
mechanism requires routers throughout an internet to notify TCP as congestion occurs.
The mechanism is conceptually straightforward: as a TCP segment passes through the
internet, routers along the path use a pair of bits in the IP header to record congestion.

228 Reliable Stream Transport Service (TCP) Chap. 11

Thus, when a segment arrives, the receiver knows whether the segment experienced
congestion at any point. Unfortunately, the sender, not the receiver, needs to learn
about congestion. Therefore, the receiver uses the next ACK to inform the sender that
congestion occurred. The sender then responds by reducing its congestion window.

ECN uses two bits in the IP header to allow routers to record congestion, and uses
two bits in the TCP header (taken from the reserved area) to allow the sending and re-
ceiving TCP to communicate. One of the TCP header bits is used by a receiver to send
congestion information back to a sender; the other bit allows a sender to inform the re-
ceiver that the congestion notification has been received. Bits in the IP header are taken
from unused bits in the TYPE OF SERVICE field. A router can choose to set either bit
to specify that congestion occurred (two bits are used to make the mechanism more
robust).

11.22 Congestion, Tail Drop, And TCP

We said that communication protocols are divided into layers to make it possible
for designers to focus on a single problem at a time. The separation of functionality
into layers is both necessary and useful — it means that one layer can be changed
without affecting other layers, but it means that layers operate in isolation. For exam-
ple, because it operates end-to-end, TCP remains unchanged when the path between the
endpoints changes (e.g., routes change or additional networks routers are added). How-
ever, the isolation of layers restricts inter-layer communication. In particular, although
TCP on the original source interacts with TCP on the ultimate destination, it cannot in-
teract with lower-layer elements along the path†. Thus, neither the sending nor receiv-
ing TCP receives reports about conditions in the network, nor does either end inform
lower layers along the path before transferring data.

Researchers have observed that the lack of communication between layers means
that the choice of policy or implementation at one layer can have a dramatic effect on
the performance of higher layers. In the case of TCP, policies that routers use to handle
datagrams can have a significant effect on both the performance of a single TCP con-
nection and the aggregate throughput of all connections. For example, if a router delays
some datagrams more than others‡, TCP will back off its retransmission timer. If the
delay exceeds the retransmission timeout, TCP will assume congestion has occurred.
Thus, although each layer is defined independently, researchers try to devise mecha-
nisms and implementations that work well with protocols in other layers.

The most important interaction between IP implementation policies and TCP oc-
curs when a router becomes overrun and drops datagrams. Because a router places each
incoming datagram in a queue in memory until it can be processed, the policy focuses
on queue management. When datagrams arrive faster than they can be forwarded, the
queue grows; when datagrams arrive slower than they can be forwarded, the queue
shrinks. However, because memory is finite, the queue cannot grow without bound.
Early routers used a tail-drop policy to manage queue overflow:

† The Explicit Congestion Notification scheme mentioned above has not yet been adopted.
‡Variance in delay is referred to as jitter.

Sec. 11.22 Congestion, Tail Drop, And TCP 229

Tail-Drop Policy For Routers: if a packet queue is filled when a da-
tagram must be placed on the queue, discard the datagram.

The name tail-drop arises from the effect of the policy on an arriving sequence of da-
tagrams. Once the queue fills, the router begins discarding all additional datagrams.
That is, the router discards the “tail” of the sequence.

Tail-drop has an interesting effect on TCP. In the simple case where datagrams
traveling through a router carry segments from a single TCP connection, the loss causes
TCP to enter slow-start, which reduces throughput until TCP begins receiving ACKs
and increases the congestion window. A more severe problem can occur, however,
when the datagrams traveling through a router carry segments from many TCP connec-
tions because tail-drop can cause global synchronization. To see why, observe that da-
tagrams are typically multiplexed, with successive datagrams each coming from a dif-
ferent source. Thus, a tail-drop policy makes it likely that the router will discard one
segment from N connections rather than N segments from one connection. The simul-
taneous loss causes all N instances of TCP to enter slow-start at the same time†.

11.23 Random Early Detection (RED)

How can a router avoid global synchronization? The answer lies in a clever
scheme that avoids tail-drop whenever possible. Known as Random Early Detection,
Random Early Drop, or Random Early Discard, the scheme is more frequently referred
to by its acronym, RED. The general idea behind RED lies in randomization: instead of
waiting until a queue fills completely, a router monitors the queue size. As the queue
begins to fill, the router chooses datagrams at random to drop.

A router that implements RED runs the algorithm on each queue (e.g., each net-
work connection). To simplify our description, we will only discuss a single queue and
assume the reader realizes that the same technique must be applied to other queues.

A router uses two threshold values to mark positions in the queue: Tmin and Tmax.
The general operation of RED can be described by three rules that determine the dispo-
sition of a datagram that must be placed in the queue:

If the queue currently contains fewer than Tmin datagrams, add the new
datagram to the queue.

If the queue contains more than Tmax datagrams, discard the new da-
tagram.

If the queue contains between Tmin and Tmax datagrams, randomly dis-
card the datagram with a probability, p, that depends on the current
queue size.

†Interestingly, global synchronization does not occur if the number of TCP connections sharing a link is
sufficiently large (>500) and the RTTs vary.

230 Reliable Stream Transport Service (TCP) Chap. 11

The randomness of RED means that instead of waiting until the queue overflows
and then driving many TCP connections into slow-start, a router slowly and randomly
drops datagrams as congestion increases. We can summarize:

RED Policy For Routers: if the input queue is full when a datagram
arrives, discard the datagram; if the input queue is below a minimum
threshold, add the datagram to the queue; otherwise, discard the da-
tagram with a probability that depends on the queue size.

The key to making RED work well lies in the choice of the thresholds Tmin and
Tmax and the discard probability p. Tmin must be large enough to ensure that the queue
has sufficiently high throughput. For example, if the queue is connected to an output
link, the queue should drive the network at high utilization. Furthermore, because RED
operates like tail-drop when the queue size exceeds Tmax, the value of Tmax must be
greater than Tmin by more than the typical increase in queue size during one TCP round
trip time (e.g., set Tmax at least twice as large as Tmin). Otherwise, RED can cause the
same global oscillations as tail-drop (e.g., Tmin can be set to one-half of Tmax).

Computation of the discard probability, p, is the most complex aspect of RED. In-
stead of using a constant, a new value of p is computed for each datagram; the value
depends on the relationship between the current queue size and the thresholds. To
understand the scheme, observe that all RED processing can be viewed probabilistically.
When the queue size is less than Tmin, RED does not discard any datagrams, making
the discard probability 0. Similarly, when the queue size is greater than Tmax, RED dis-
cards all datagrams, making the discard probability 1. For intermediate values of queue
size, (i.e., those between Tmin and Tmax), the probability can vary from 0 to 1 linearly.

Although the linear scheme forms the basis of RED’s probability computation, a
change must be made to avoid overreacting. The need for the change arises because
network traffic is bursty, which results in rapid fluctuations of a router’s queue. If RED
used a simplistic linear scheme, later datagrams in each burst would be assigned high
probability of being dropped (because they arrive when the queue has more entries).
However, a router should not drop datagrams unnecessarily, because doing so has a
negative impact on TCP throughput. Thus, if a burst is short, it is unwise to drop da-
tagrams because the queue will never overflow. Of course, RED cannot postpone dis-
card indefinitely because a long-term burst will overflow the queue, resulting in a tail-
drop policy which has the potential to cause global synchronization problems.

How can RED assign a higher discard probability as the queue fills without dis-
carding datagrams from each burst? The answer lies in a technique borrowed from
TCP: instead of using the actual queue size at any instant, RED computes a weighted
average queue size, avg, and uses the average size to determine the probability. The
value of avg is an exponential weighted average, updated each time a datagram arrives
according to the equation:

avg = (1 – γ) × Old_avg + γ × Current_queue_size

Sec. 11.23 Random Early Detection (RED) 231

where γ denotes a value between 0 and 1. If γ is small enough, the average will track
long term trends, but will remain immune to short bursts†

In addition to equations that determine γ, RED contains other details that we have
glossed over. For example, RED computations can be made extremely efficient by
choosing constants as powers of two and using integer arithmetic. Another important
detail concerns the measurement of queue size, which affects both the RED computation
and its overall effect on TCP. In particular, because the time required to forward a da-
tagram is proportional to its size, it makes sense to measure the queue in octets rather
than in datagrams; doing so requires only minor changes to the equations for p and γ.
Measuring queue size in octets affects the type of traffic dropped because it makes the
discard probability proportional to the amount of data a sender puts in the stream, rather
than the number of segments. Small datagrams (e.g., those that carry remote login traf-
fic or requests to servers) have lower probability of being dropped than large datagrams
(e.g., those that carry file transfer traffic). One positive consequence of using datagram
size is that when acknowledgements travel over a congested path, they have a lower
probability of being dropped. As a result, if a (large) data segment does arrive, the
sending TCP will receive the ACK and will avoid unnecessary retransmission.

Both analysis and simulations show that RED works well. It handles congestion,
avoids the synchronization that results from tail-drop, and allows short bursts without
dropping datagrams unnecessarily. Consequently, the IETF now recommends that
routers implement RED.

11.24 Establishing A TCP Connection

To establish a connection, TCP uses a three-way handshake. That is, three mes-
sages are exchanged that allow each side to agree to form a connection and know that
the other side has agreed. The first segment of a handshake can be identified because it
has the SYN‡ bit set in the code field. The second message has both the SYN and
ACK bits set to indicate that it acknowledges the first SYN segment and continues the
handshake. The final handshake message is only an acknowledgement and is merely
used to inform the destination that both sides agree that a connection has been estab-
lished.

Usually, the TCP software on one machine waits passively for the handshake, and
the TCP software on another machine initiates it. However, the handshake is carefully
designed to work even if both machines attempt to initiate a connection simultaneously.
Thus, a connection can be established from either end or from both ends simultaneous-
ly. Once the connection has been established, data can flow in both directions equally
well (i.e., the connection is symmetric). That is, there is no master or slave, and the
side that initiates the connection has no special abilities or privileges. In the simplest
case, the handshake proceeds as Figure 11.14 illustrates.

†An example value suggested for γ is .002.
‡SYN stands for synchronization, and is pronounced “sin”; the segment carrying the SYN is called the

“sin segment.”

232 Reliable Stream Transport Service (TCP) Chap. 11

Send SYN seq=x

Receive SYN segment
Send SYN seq=y, ACK x+1

Receive SYN + ACK segment
Send ACK y+1

Receive ACK segment

Events At Site 1 Network Messages Events At Site 2

Figure 11.14 The sequence of messages in a three-way handshake. Time
proceeds down the page; diagonal lines represent segments sent
between sites.

It may seem that a two-message exchange would suffice to establish a connection.
However, the three-way handshake is both necessary and sufficient for correct syn-
chronization between the two ends of the connection given internet delivery semantics.
To understand the reason that connection establishment is difficult, remember that TCP
uses an unreliable packet delivery service. Therefore, messages can be lost, delayed,
duplicated, or delivered out of order. To accommodate loss, TCP must retransmit re-
quests. However, trouble can arise if excessive delay causes retransmission, which
means both the original and retransmitted copy arrive while the connection is being es-
tablished. Retransmitted requests can also be delayed until after a connection has been
established, used, and terminated! The three-way handshake and rules that prevent re-
starting a connection after it has terminated are carefully designed to compensate for all
possible situations.

11.25 Initial Sequence Numbers

The three-way handshake accomplishes two important functions. It guarantees that
both sides are ready to transfer data (and that they know they are both ready) and it al-
lows both sides to agree on initial sequence numbers. Sequence numbers are sent and
acknowledged during the handshake. Each machine must choose an initial sequence
number at random that it will use to identify octets in the stream it is sending. Se-
quence numbers cannot always start at the same value. In particular, TCP cannot mere-
ly choose sequence 1 every time it creates a connection (one of the exercises examines
problems that can arise if it does). Of course, it is important that both sides agree on an
initial number, so octet numbers used in acknowledgements agree with those used in
data segments.

Sec. 11.25 Initial Sequence Numbers 233

To see how machines can agree on sequence numbers for two streams after only
three messages, recall that each segment contains both a sequence number field and an
acknowledgement field. The machine that initiates a handshake, call it A, passes its ini-
tial sequence number, x, in the sequence field of the first SYN segment in the three-way
handshake. The other machine, B, receives the SYN, records the sequence number, and
replies by sending its initial sequence number in the sequence field as well as an ac-
knowledgement that specifies B expects octet x+1. In the final message of the
handshake, A “acknowledges” receiving from B all octets through y. In all cases, ac-
knowledgements follow the convention of using the number of the next octet expected.

We have described how TCP usually carries out the three-way handshake by ex-
changing segments that contain a minimum amount of information. Because of the pro-
tocol design, it is possible to send data along with the initial sequence numbers in the
handshake segments. In such cases, the TCP software must hold the data until the
handshake completes. Once a connection has been established, the TCP software can
release data being held and deliver it to a waiting application program quickly. The
reader is referred to the protocol specification for the details.

11.26 Closing a TCP Connection

Two applications that use TCP to communicate can terminate the conversation
gracefully using the close operation. Once again, it is important that both sides agree to
close a connection and both sides know the connection is closed. Therefore, TCP uses
a three-way handshake to close connections. To understand the handshake used to close
a connection, recall that TCP connections are full duplex and that we view them as con-
taining two independent stream transfers, one going in each direction. When an appli-
cation program tells TCP that it has no more data to send, TCP will close the connec-
tion in one direction. To close its half of a connection, the sending TCP finishes
transmitting the remaining data, waits for the receiver to acknowledge it, and then sends
a segment with the FIN bit set†. Upon receipt of a FIN, TCP sends an acknowledge-
ment and then informs the application that the other side has finished sending data. The
details depend on the operating system, but most systems use the “end-of-file” mecha-
nism.

Once a connection has been closed in a given direction, TCP refuses to accept
more data for that direction. Meanwhile, data can continue to flow in the opposite
direction until the sender closes it. Of course, a TCP endpoint that is still receiving data
must send acknowledgements, even if the data transmission in the reverse direction has
terminated. When both directions have been closed, the TCP software at each endpoint
deletes its record of the connection.

The details of closing a connection are even more subtle than suggested above be-
cause TCP uses a modified three-way handshake to close a connection. Figure 11.15 il-
lustrates the messages that are exchanged for the typical case where all communication
has finished and the connection is closed in both directions.

†A segment with the FIN bit set is called a “fin segment.”

234 Reliable Stream Transport Service (TCP) Chap. 11

(application closes connection)
Send FIN seq=x

Receive FIN segment
Send ACK x+1
(inform application)

Receive ACK segment

(application closes connection)
Send FIN seq=y, ACK x+1

Receive FIN + ACK segment
Send ACK y+1

Receive ACK segment

Events At Site 1 Network Messages Events At Site 2

Figure 11.15 The three-way handshake used to close a connection with an
extra ACK sent immediately upon receipt of a FIN.

The difference between three-way handshakes used to establish and close connec-
tions occurs after a machine receives the initial FIN segment. Instead of generating a
second FIN segment immediately, TCP sends an acknowledgement and then informs
the application of the request to shut down. Informing the application program of the
request and obtaining a response may take considerable time (e.g., it may involve hu-
man interaction). The acknowledgement prevents retransmission of the initial FIN seg-
ment during the delay. Finally, when the application program instructs TCP to shut
down the connection completely, TCP sends the second FIN segment and the original
site replies with the third message, an ACK.

11.27 TCP Connection Reset

Normally, an application program uses the close operation to shut down a connec-
tion when it finishes sending data. Thus, closing connections is considered a normal
part of use, analogous to closing files. We say that the connection terminated graceful-
ly. However, sometimes abnormal conditions arise that force an application or the net-
work software to break a connection without a graceful shutdown. TCP provides a reset
facility to handle abnormal disconnections.

To reset a connection, one side initiates termination by sending a segment with the
RST (RESET) bit in the CODE field set. The other side responds to a reset segment im-
mediately by aborting the connection. When a reset occurs, TCP informs any local ap-
plication that was using the connection. Note that a reset occurs immediately and can-
not be undone. We think of it as an instantaneous abort that terminates transfer in both
directions and releases resources, such as buffers.

Sec. 11.28 TCP State Machine 235

11.28 TCP State Machine

Like most protocols, the operation of TCP can best be explained with a theoretical
model called a finite state machine. Figure 11.16 shows the TCP state machine, with
circles representing states and arrows representing transitions between them.

CLOSED

LISTEN

SYN
RECVD

SYN
SENT

ESTAB-
LISHED

FIN
WAIT-1

CLOSE
WAIT

CLOSING

FIN
WAIT-2

TIMED
WAIT

LAST
ACK

anything / reset

begin

active open / syn

closepassive open

send / syn

syn / syn + ack

reset

ack

close / fin

syn / syn + ack

syn + ack / ack

close / fin

fin / ack

fin / ack

ack / fin-ack / ack

fin / ack

ack /

close / fin

ack /

close /
timeout /

reset

timeout after 2 segment lifetimes
.

.
.

.
.

.
.

.
.

.
.

.
.

.

.

.

.

.

.

.

Figure 11.16 The finite state machine for TCP. Labels on state transitions
show the input that caused the transition followed by the output
if any.

236 Reliable Stream Transport Service (TCP) Chap. 11

In the figure, the label on each state transition shows what causes the transition and
what TCP sends when it performs the transition. For example, the TCP software at
each endpoint begins in the CLOSED state. Application programs must issue either a
passive open command to wait for a connection from another machine, or an active
open command to initiate a connection. An active open command forces a transition
from the CLOSED state to the SYN SENT state. When it follows the transition to SYN
SENT, TCP emits a SYN segment. When the other side returns a segment with the
SYN and ACK bits set, TCP moves to the ESTABLISHED state, emits an ACK, and be-
gins data transfer.

The TIMED WAIT state reveals how TCP handles some of the problems incurred
with unreliable delivery. TCP keeps a notion of maximum segment lifetime (MSL), the
maximum time an old segment can remain alive in an internet. To avoid having seg-
ments from a previous connection interfere with a current one, TCP moves to the
TIMED WAIT state after closing a connection. It remains in that state for twice the
maximum segment lifetime before deleting its record of the connection. If any dupli-
cate segments arrive for the connection during the timeout interval, TCP will reject
them. However, to handle cases where the last acknowledgement was lost, TCP ac-
knowledges valid segments and restarts the timer. Because the timer allows TCP to dis-
tinguish old connections from new ones, it prevents TCP from sending a reset in
response to delayed segments from an old connection (e.g., if the other end retransmits
a FIN segment).

11.29 Forcing Data Delivery

We said that TCP is free to divide the stream of data into segments for transmis-
sion without regard to the size of transfer that applications use. The chief advantage of
allowing TCP to choose a division is efficiency. TCP can accumulate enough octets in
a buffer to make segments reasonably long, reducing the high overhead that occurs
when segments contain only a few data octets.

Although buffering improves network throughput, it can interfere with some appli-
cations. Consider using a TCP connection to pass characters from an interactive termi-
nal to a remote machine. The user expects instant response to each keystroke. If the
sending TCP buffers the data, response may be delayed, perhaps for hundreds of key-
strokes. Similarly, because the receiving TCP may buffer data before making it avail-
able to the application program on its end, forcing the sender to transmit data may not
be sufficient to guarantee delivery.

To accommodate interactive users, TCP provides a push operation that an applica-
tion can use to force delivery of octets currently in the stream without waiting for the
buffer to fill. The push operation does more than force the local TCP to send a seg-
ment. It also requests TCP to set the PSH bit in the segment code field, so the data will
be delivered to the application program on the receiving end. Thus, an interactive ap-
plication uses the push function after each keystroke. Similarly, applications that con-

Sec. 11.29 Forcing Data Delivery 237

trol a remote display can use the push function to insure that the data is sent across the
connection promptly and passed to the application on the other side immediately.

11.30 Reserved TCP Port Numbers

Like UDP, TCP uses a combination of statically and dynamically assigned protocol
port numbers. A set of well-known ports have been assigned by a central authority for
commonly invoked services (e.g., web servers and electronic mail servers). Other port
numbers are available for an operating system to allocate to local applications as need-
ed. Many well-known TCP ports now exist. Figure 11.17 lists some of the currently
assigned TCP ports.

Port Keyword Description
0 Reserved
7 echo Echo
9 discard Discard

13 daytime Daytime
19 chargen Character Generator
20 ftp-data File Transfer Protocol (data)
21 ftp File Transfer Protocol
22 ssh Secure Shell
23 telnet Terminal connection
25 smtp Simple Mail Transport Protocol
37 time Time
53 domain Domain name server
80 www World Wide Web
88 kerberos Kerberos security service

110 pop3 Post Office Protocol vers. 3
123 ntp Network Time Protocol
161 snmp Simple Network Management Protocol
179 bgp Border Gateway Protocol
443 https Secure HTTP
860 iscsi iSCSI (SCSI over IP)
993 imaps Secure IMAP
995 pop3s Secure POP3

30301 bittorrent BitTorrent service

Figure 11.17 Examples of currently assigned TCP port numbers.

We should point out that although TCP and UDP port numbers are independent,
the designers have chosen to use the same integer port numbers for any service that is
accessible from both UDP and TCP. For example, a domain name server can be ac-
cessed either with TCP or with UDP. When using either protocol, a client application
can use the same port number, 53, because IANA assigned 53 as the domain name ser-
vice port for both TCP and UDP.

238 Reliable Stream Transport Service (TCP) Chap. 11

11.31 Silly Window Syndrome And Small Packets

Researchers who developed TCP observed a serious performance problem that can
result when the sending and receiving applications operate at different speeds. To
understand the problem, remember that TCP buffers incoming data, and consider what
can happen if a receiving application chooses to read incoming data one octet at a time.
When a connection is first established, the receiving TCP allocates a buffer of K bytes,
and uses the WINDOW field in acknowledgement segments to advertise the available
buffer size to the sender. If the sending application generates data quickly, the sending
TCP will transmit segments with data for the entire window. Eventually, the sender
will receive an acknowledgement that specifies the entire window has been filled and no
additional space remains in the receiver’s buffer.

When the receiving application reads an octet of data from a full buffer, one octet
of space becomes available. We said that when space becomes available in its buffer,
TCP on the receiving machine generates an acknowledgement that uses the WINDOW
field to inform the sender. In the example, the receiver will advertise a window of 1
octet. When it learns that space is available, the sending TCP responds by transmitting
a segment that contains one octet of data.

Although single-octet window advertisements work correctly to keep the receiver’s
buffer filled, they result in a series of small data segments. The sending TCP must
compose a segment that contains one octet of data, place the segment in an IP datagram,
and transmit the result. When the receiving application reads another octet, TCP gen-
erates another acknowledgement, which causes the sender to transmit another segment
that contains one octet of data. The resulting interaction can reach a steady state in
which TCP sends a separate segment for each octet of data.

Transferring small segments unnecessarily consumes network bandwidth and intro-
duces computational overhead. Small segments consume more network bandwidth per
octet of data than large segments because each datagram has a header. If the datagram
only carries one octet of data; the ratio of header to data is large. Computational over-
head arises because TCP on both the sending and receiving computers must process
each segment. The sending TCP software must allocate buffer space, form a segment
header, and compute a checksum for the segment. Similarly, IP software on the sending
machine must encapsulate the segment in a datagram, compute a header checksum, for-
ward the datagram, and transfer it to the appropriate network interface. On the receiv-
ing machine, IP must verify the IP header checksum and pass the segment to TCP.
TCP must verify the segment checksum, examine the sequence number, extract the data,
and place it in a buffer.

Although we have described how small segments result when a receiver advertises
a small available window, a sender can also cause each segment to contain a small
amount of data. For example, imagine a TCP implementation that aggressively sends
data whenever it is available, and consider what happens if a sending application gen-
erates data one octet at a time. After the application generates an octet of data, TCP
creates and transmits a segment. TCP can also send a small segment if an application
generates data in fixed-sized blocks of B octets, and the sending TCP extracts data from

Sec. 11.31 Silly Window Syndrome And Small Packets 239

the buffer in maximum segment sized blocks, M, where M ≠ B, because the last block
in a buffer can be small.

The problem of TCP sending small segments became known as the silly window
syndrome (SWS). Early TCP implementations were plagued by SWS. To summarize,

Early TCP implementations exhibited a problem known as silly win-
dow syndrome, in which each acknowledgement advertises a small
amount of space available and each segment carries a small amount
of data.

11.32 Avoiding Silly Window Syndrome

TCP specifications now include heuristics that prevent silly window syndrome. A
heuristic used on the sending machine avoids transmitting a small amount of data in
each segment. Another heuristic used on the receiving machine avoids sending small
increments in window advertisements that can trigger small data packets. Although the
heuristics work well together, having both the sender and receiver avoid silly window
helps ensure good performance in the case that one end of a connection fails to correct-
ly implement silly window avoidance.

In practice, TCP software must contain both sender and receiver silly window
avoidance code. To understand why, recall that a TCP connection is full duplex — data
can flow in either direction. Thus, an implementation of TCP includes code to send
data as well as code to receive it.

11.32.1 Receive-Side Silly Window Avoidance

The heuristic a receiver uses to avoid silly window is straightforward and easier to
understand. In general, a receiver maintains an internal record of the currently available
window, but delays advertising an increase in window size to the sender until the win-
dow can advance a significant amount. The definition of “significant” depends on the
receiver’s buffer size and the maximum segment size. TCP defines it to be the
minimum of one half of the receiver’s buffer or the number of data octets in a
maximum-sized segment.

Receive-side silly window prevents small window advertisements in the case where
a receiving application extracts data octets slowly. For example, when a receiver’s
buffer fills completely, it sends an acknowledgement that contains a zero window adver-
tisement. As the receiving application extracts octets from the buffer, the receiving
TCP computes the newly available space in the buffer. Instead of sending a window
advertisement immediately, however, the receiver waits until the available space reaches
one half of the total buffer size or a maximum sized segment. Thus, the sender always
receives large increments in the current window, allowing it to transfer large segments.
The heuristic can be summarized as follows:

240 Reliable Stream Transport Service (TCP) Chap. 11

Receive-Side Silly Window Avoidance: before sending an updated win-
dow advertisement after advertising a zero window, wait for space to
become available that is either at least 50% of the total buffer size or
equal to a maximum sized segment.

11.32.2 Delayed Acknowledgements

Two approaches have been taken to implement silly window avoidance on the re-
ceive side. In the first approach, TCP acknowledges each segment that arrives, but does
not advertise an increase in its window until the window reaches the limits specified by
the silly window avoidance heuristic. In the second approach, TCP delays sending an
acknowledgement when silly window avoidance specifies that the window is not suffi-
ciently large to advertise. The standards recommend delaying acknowledgements.

Delayed acknowledgements have both advantages and disadvantages. The chief
advantage arises because delayed acknowledgements can decrease traffic and thereby in-
crease throughput. For example, if additional data arrives during the delay period, a
single acknowledgement will acknowledge all data received. If the receiving applica-
tion generates a response immediately after data arrives (e.g., a character echo for an in-
teractive session), a short delay may permit the acknowledgement to piggyback on a
data segment. Furthermore, TCP cannot move its window until the receiving applica-
tion extracts data from the buffer. In cases where the receiving application reads data as
soon as it arrives, a short delay allows TCP to send a single segment that acknowledges
the data and advertises an updated window. Without delayed acknowledgements, TCP
will acknowledge the arrival of data immediately, and later send an additional acknowl-
edgement to update the window size.

The disadvantages of delayed acknowledgements should be clear. Most important,
if a receiver delays acknowledgements too long, the sending TCP will retransmit the
segment. Unnecessary retransmissions lower throughput because they waste network
bandwidth. In addition, retransmissions require computational overhead on the sending
and receiving machines. Furthermore, TCP uses the arrival of acknowledgements to es-
timate round trip times; delaying acknowledgements can confuse the estimate and make
retransmission times too long.

To avoid potential problems, the TCP standards place a limit on the time TCP de-
lays an acknowledgement. Implementations cannot delay an acknowledgement for
more than 500 milliseconds. Furthermore, to guarantee that TCP receives a sufficient
number of round trip estimates, the standard recommends that a receiver should ac-
knowledge at least every other data segment.

Sec. 11.32 Avoiding Silly Window Syndrome 241

11.32.3 Send-Side Silly Window Avoidance

The heuristic a sending TCP uses to avoid silly window syndrome is both surpris-
ing and elegant. Recall that the goal is to avoid sending small segments. Also recall
that a sending application can generate data in arbitrarily small blocks (e.g., one octet at
a time). Thus, to achieve the goal, a sending TCP must allow the sending application to
make multiple calls to write (or send) and must collect the data transferred in each call
before transmitting it in a single, large segment. That is, a sending TCP must delay
sending a segment until it can accumulate a reasonable amount of data. The technique
is known as clumping.

The question arises, how long should TCP wait before transmitting data? On one
hand, if TCP waits too long, the application experiences large delays. More important,
TCP cannot know whether to wait because it cannot know whether the application will
generate more data in the near future. On the other hand, if TCP does not wait long
enough, segments will be small and throughput will be low.

Protocols designed prior to TCP confronted the same problem and used techniques
to clump data into larger packets. For example, to achieve efficient transfer across a
network, early remote terminal protocols delayed transmitting each keystroke for a few
hundred milliseconds to determine whether the user would continue to press keys. Be-
cause TCP is designed to be general, however, it can be used by a diverse set of appli-
cations. Characters may travel across a TCP connection because a user is typing on a
keyboard or because a program is transferring a file. A fixed delay is not optimal for
all applications.

Like the algorithm TCP uses for retransmission and the slow-start algorithm used
to avoid congestion, the technique a sending TCP uses to avoid sending small packets is
adaptive — the delay depends on the current performance of the underlying internet.
Like slow-start, send-side silly window avoidance is called self clocking because it does
not compute delays. Instead, TCP uses the arrival of an acknowledgement to trigger the
transmission of additional packets. The heuristic can be summarized:

Send-Side Silly Window Avoidance: when a sending application gen-
erates additional data to be sent over a connection for which previous
data has been transmitted but not acknowledged, place the new data
in the output buffer as usual, but do not send additional segments
until there is sufficient data to fill a maximum-sized segment. If still
waiting to send when an acknowledgement arrives, send all data that
has accumulated in the buffer. Apply the rule even when the user re-
quests a push operation.

If an application generates data one octet at a time, TCP will send the first octet
immediately. However, until the ACK arrives, TCP will accumulate additional octets in
its buffer. Thus, if the application is reasonably fast compared to the network (i.e., a
file transfer), successive segments will each contain many octets. If the application is

242 Reliable Stream Transport Service (TCP) Chap. 11

slow compared to the network (e.g., a user typing on a keyboard), small segments will
be sent without long delay.

Known as the Nagle algorithm after its inventor, the technique is especially elegant
because it requires little computational overhead. A host does not need to keep separate
timers for each connection, nor does the host need to examine a clock when an applica-
tion generates data. More important, although the technique adapts to arbitrary combi-
nations of network delay, maximum segment size, and application speed, it does not
lower throughput in conventional cases.

To understand why throughput remains high for conventional communication, ob-
serve that applications optimized for high throughput do not generate data one octet at a
time (doing so would incur unnecessary operating system overhead). Instead, such ap-
plications write large blocks of data with each call. Thus, the outgoing TCP buffer be-
gins with sufficient data for at least one maximum size segment. Furthermore, because
the application produces data faster than TCP can transfer data, the sending buffer
remains nearly full and TCP does not delay transmission. As a result, TCP continues to
send segments at whatever rate the underlying internet can tolerate, while the applica-
tion continues to fill the buffer. To summarize:

TCP now requires the sender and receiver to implement heuristics
that avoid the silly window syndrome. A receiver avoids advertising a
small window, and a sender uses an adaptive scheme to delay
transmission so it can clump data into large segments.

11.33 Buffer Bloat And Its Effect On Latency

TCP is designed to maximize throughput by adapting to conditions in the network.
As a result, TCP keeps buffers in network devices nearly full. Over several decades,
the price of memory has dropped and vendors have increased the amount of memory in
network devices. Even a small home Wi-Fi router has orders of magnitude more
memory than the largest routers of the 1980s.

It may seem that adding memory to a network device will always improve perfor-
mance because the device can accommodate packet bursts with fewer packets being
dropped. However, a serious problem can arise when network devices have large
memories and send packets across slow links: long latency. Increased latency means
that real-time communication, such as VoIP phone calls, becomes unusable.

To appreciate the problem, consider a Wi-Fi router in a home. Assume two users
are using the Internet: one is downloading a movie and the other is using Skype to
make a phone call. Assume the router uses only 4 MB of memory as a packet buffer (a
conservative estimate). Because it uses TCP and always has data to send, the movie
download will keep the buffer nearly full. The Skype conversation sends data at a
much lower rate than the download. When a Skype packet arrives, the packet will be
placed in the back of the buffer, and will not be delivered until all the packets that were
waiting in the buffer have been sent. How long does it take to empty a buffer? A Wi-

Sec. 11.33 Buffer Bloat And Its Effect On Latency 243

Fi connection using 802.11g has an effective delivery rate of approximately 20 Mbps.
A megabyte of memory contains 8,388,608 bits, so a 4 megabyte buffer holds
33,554,432 bits. We know that the receiver will transmit ACKs, which means the
router cannot send data from the buffer continuously. For purposes of analysis, assume
a best case where the network has no other traffic and there is no delay between pack-
ets. Even under the idealized conditions, the time to transmit a buffer of data is:

Buffer delay =
2.0 × 107 bits / second

3.36 × 107 bits = 1.68 seconds

In other words, the user who is attempting to conduct a Skype call will experience an
intolerable delay. The delay is noticeable even if a user is only browsing the Web.

We use the term buffer bloat to describe the use of very large buffers in network
devices. The most surprising aspect of buffer bloat is that increasing the network
bandwidth before the bottleneck link will not improve performance and may make la-
tency worse. That is, paying for a higher-speed Internet connection will not solve the
problem. For more information on the subject, see the following video:

http://www.youtube.com/watch?v=-D-cJNtKwuw

11.34 Summary

The Transmission Control Protocol, TCP, defines a key service for internet com-
munication, namely, reliable stream delivery. TCP provides a full duplex connection
between two machines, allowing them to exchange large volumes of data efficiently.

Because it uses a sliding window protocol, TCP can make efficient use of a net-
work. Because it makes few assumptions about the underlying delivery system, TCP is
flexible enough to operate over a large variety of delivery systems. Because it provides
flow control, TCP allows systems of widely varying speeds to communicate.

The basic unit of transfer used by TCP is a segment. Segments are used to pass
data or control information (e.g., to allow TCP software on two machines to establish
connections or break them). The segment format permits a machine to piggyback ac-
knowledgements for data flowing in one direction by including them in the segment
headers of data flowing in the opposite direction.

TCP implements flow control by having the receiver advertise the amount of data
it is willing to accept. It also supports out-of-band messages using an urgent data facili-
ty, and forces delivery using a push mechanism.

The current TCP standard specifies exponential backoff for retransmission timers
and congestion avoidance algorithms like slow-start, additive increase, and multiplica-
tive decrease. In addition, TCP uses heuristics to avoid transferring small packets. Fi-
nally, the IETF recommends that routers use RED instead of tail-drop because doing so
avoids TCP synchronization and improves throughput.

244 Reliable Stream Transport Service (TCP) Chap. 11

EXERCISES

11.1 TCP uses a finite field to contain stream sequence numbers. Study the protocol specifi-
cation to find out how it allows an arbitrary length stream to pass from one machine to
another.

11.2 The text notes that one of the TCP options permits a receiver to specify the maximum
segment size it is willing to accept. Why does TCP support an option to specify max-
imum segment size when it also has a window advertisement mechanism?

11.3 Under what conditions of delay, bandwidth, load, and packet loss will TCP retransmit
significant volumes of data unnecessarily?

11.4 A single lost TCP acknowledgement does not necessarily force a retransmission. Ex-
plain why.

11.5 Experiment with local machines to determine how TCP handles computer reboots. Es-
tablish a connection from machine X to machine Y and leave the connection idle. Re-
boot machine Y and then force the application on machine X to send a segment. What
happens?

11.6 Imagine an implementation of TCP that discards segments that arrive out of order, even
if they fall in the current window. That is, the imagined version only accepts segments
that extend the byte stream it has already received. Does it work? How does it compare
to a standard TCP implementation?

11.7 Consider computation of a TCP checksum. Assume that although the checksum field in
the segment has not been set to zero, the result of computing the checksum is zero.
What can you conclude?

11.8 What are the arguments for and against automatically closing idle TCP connections?
11.9 If two application programs use TCP to send data but only send one character per seg-

ment (e.g., by using the push operation), what is the maximum percent of the network
bandwidth they will have for their data with IPv4? With IPv6?

11.10 Suppose an implementation of TCP uses initial sequence number 1 when it creates a
connection. Explain how a system crash and restart can confuse a remote system into
believing that the old connection remained open.

11.11 Find out how implementations of TCP solve the overlapping segment problem. The
problem arises because the receiver must accept only one copy of all bytes from the data
stream even if the sender transmits two segments that partially overlap one another (e.g.,
the first segment carries bytes 100 through 200 and the second carries bytes 150 through
250).

11.12 Trace the TCP finite state machine transitions for two ends of a connection. Assume
one side executes a passive open and the other side executes an active open, and step
through the three-way handshake.

11.13 Read the TCP specification to find out the exact conditions under which TCP can make
the transition from FIN WAIT-1 to TIMED WAIT.

11.14 Trace the TCP state transitions for two machines that agree to close a connection grace-
fully.

11.15 Assume TCP is sending segments using a maximum window size of 64 Kbytes on a
channel that has infinite bandwidth and an average round-trip time of 20 milliseconds.
What is the maximum throughput? How does throughput change if the round-trip time

Exercises 245

increases to 40 milliseconds (while bandwidth remains infinite)? Did you need to as-
sume IPv4 or IPv6 to answer the question? Why or why not?

11.16 Can you derive an equation that expresses the maximum possible TCP throughput as a
function of the network bandwidth, the network delay, and the time to process a segment
and generate an acknowledgement. (Hint: consider the previous exercise.)

11.17 Describe (abnormal) circumstances that can leave one end of a connection in state FIN
WAIT-2 indefinitely. (Hint: think of datagram loss and system crashes.)

11.18 Show that when a router implements RED, the probability a packet will be discarded
from a particular TCP connection is proportional to the percentage of traffic that the con-
nection generates.

11.19 Argue that fast retransmit could be even faster if it used one duplicate ACK as a trigger.
Why does the standard require multiple duplicate ACKs?

11.20 To see if a SACK scheme is needed in the modern Internet, measure the datagram loss
on a long-lived TCP connection (e.g., a video streaming application). How many seg-
ments are lost? What can you conclude?

11.21 Consider a wireless router with a 3 Mbps connection to the Internet and a (bloated)
buffer of 256 MB. If two users are downloading movies and a third user tries to contact
google.com, what is the minimum time before the third user receives a response?

11.22 In the previous exercise, does your answer change if the connection between the router
and the Internet is 10 Mbps? Why or why not?

Chapter Contents
12.1 Introduction, 247
12.2 The Origin Of Forwarding Tables, 248
12.3 Forwarding With Partial Information, 249
12.4 Original Internet Architecture And Cores, 251
12.5 Beyond The Core Architecture To Peer Backbones, 253
12.6 Automatic Route Propagation And A FIB, 254
12.7 Distance-Vector (Bellman-Ford) Routing, 255
12.8 Reliability And Routing Protocols, 257
12.9 Link-State (SPF) Routing, 258
12.10 Summary, 259

12

Routing Architecture: Cores,
Peers, And Algorithms

12.1 Introduction

Previous chapters concentrate on the communication services TCP/IP offers to ap-
plications and the details of the protocols in hosts and routers that provide the services.
In the discussion, we assumed that routers always contain correct routes, and saw that a
router can use the ICMP redirect mechanism to instruct a directly-connected host to
change a route.

This chapter considers two broad questions: what values should each forwarding
table contain, and how can those values be obtained? To answer the first question, we
will consider the relationship between internet architecture and routing. In particular,
we will discuss internets structured around a backbone and those composed of multiple
peer networks, and consider the consequences for routing. The former is typical of a
corporate intranet; the latter applies to the global Internet. To answer the second ques-
tion, we will consider the two basic types of route propagation algorithms and see how
each supplies routing information automatically.

We begin by discussing forwarding in general. Later sections concentrate on inter-
net architecture and describe the algorithms routers use to exchange routing information.
Chapters 13 and 14 continue to expand our discussion of routing. They explore proto-
cols that routers owned by two independent administrative groups use to exchange in-
formation, and protocols that a single group uses among all its routers.

247

248 Routing Architecture: Cores, Peers, And Algorithms Chap. 12

12.2 The Origin Of Forwarding Tables

Recall from Chapter 3 that IP routers provide active interconnections among net-
works. Each router attaches to two or more physical networks and forwards IP da-
tagrams among them, accepting datagrams that arrive over one network interface and
sending them out over another interface. Except for destinations on directly attached
networks, hosts pass all IP traffic to routers which forward datagrams on toward their fi-
nal destinations. In the general case, a datagram travels from router to router until it
reaches a router that attaches directly to the same network as the final destination.
Thus, the router system forms the architectural basis of an internet and handles all traf-
fic except for direct delivery from one host to another.

Chapter 8 describes the algorithm that hosts and routers follow when they forward
datagrams, and shows how the algorithm uses a table to make decisions. Each entry in
the forwarding table uses an address and a mask to specify the network prefix for a par-
ticular destination and gives the address of the next router along a path used to reach
that network. In practice, each entry also specifies a local network interface that should
be used to reach the next hop.

We have not said how hosts or routers obtain the information for their forwarding
tables. The issue has two aspects: what values should be placed in the tables, and how
routers obtain the values. Both choices depend on the architectural complexity and size
of the internet as well as administrative policies.

In general, establishing routes involves two steps: initialization and update. A host
or router must establish an initial table of routes when it starts, and it must update the
table as routes change (e.g., when hardware fails, making a particular network unus-
able). This chapter will focus on routers; Chapter 22 describes how hosts use DHCP to
obtain initial entries for a forwarding table.

Initialization depends on the hardware and operating system. In some systems, the
router reads an initial forwarding table from secondary storage at startup, either a disk
or flash memory. In others, the router begins with an empty table that is filled in by ex-
ecuting a startup script when the router boots. Among other things, the startup script
contains commands that initialize the network hardware and configure an IP address for
each network interface. Finally, some systems start by broadcasting (or multicasting) a
message that discovers neighbors and requests the neighbors to supply information
about network addresses being used.

Once an initial forwarding table has been built, a router must accommodate
changes in routes. In small, slowly changing internets, managers can establish and
modify routes by hand. In large, rapidly changing environments, however, manual up-
date is impossibly slow and prone to human errors. Automated methods are needed.
Before we can understand the automatic protocols used to exchange routing informa-
tion, we need to review several underlying ideas. The next sections do so, providing
the necessary conceptual foundation for routing.

Sec. 12.3 Forwarding With Partial Information 249

12.3 Forwarding With Partial Information

The principal difference between routers and typical hosts is that hosts usually
know little about the structure of the internet to which they connect. Hosts do not have
complete knowledge of all possible destination addresses, or even of all possible desti-
nation networks. In fact, many hosts have only two entries in their forwarding table: an
entry for the local network, and a default entry for a directly-connected router. The host
sends all nonlocal datagrams to the local router for delivery. The point is:

A host can forward datagrams successfully even if it only has partial
forwarding information because it can rely on a router.

Can routers also forward datagrams with only partial information? Yes, but only
under certain circumstances. To understand the criteria, imagine an internet to be a
foreign country crisscrossed with dirt roads that have directional signs posted at inter-
sections. Imagine that you have no map, cannot ask directions because you cannot
speak the local language, and have no knowledge about visible landmarks, but you need
to travel to a village named Sussex. You leave on your journey, following the only road
out of town, and begin to look for directional signs. The first sign reads:

Norfolk to the left; Hammond to the right; others straight ahead.†

Because the destination you seek is not listed explicitly, you continue straight ahead. In
routing jargon, we say you follow a default route. After several more signs, you finally
find one that reads:

Essex to the left; Sussex to the right; others straight ahead.

You turn to the right, follow several more signs, and emerge on a road that leads to
Sussex.

Our imagined travel is analogous to a datagram traversing an internet, and the road
signs are analogous to forwarding tables in routers along the path. Without a map or
other navigational aids, travel is completely dependent on road signs, just as datagram
forwarding in an internet depends entirely on forwarding tables. Clearly, it is possible
to navigate even though each road sign contains only partial information.

A central question concerns correctness. As a traveler, you might ask: “How can I
be sure that following the signs will lead to my destination?” You also might ask: “How
can I be sure that following the signs will lead me to my destination along a shortest
path?” These questions may seem especially troublesome if you pass many signs
without finding your destination listed explicitly. Of course, the answers depend on the
topology of the road system and the contents of the signs, but the fundamental idea is
that when taken as a whole, the information on the signs should be both consistent and
complete. Looking at this another way, we see that it is not necessary for each intersec-
tion to have a sign for every destination. The signs can list default paths as long as all

†Fortunately, signs are printed in a language you can read.

250 Routing Architecture: Cores, Peers, And Algorithms Chap. 12

explicit signs point along a shortest path, and the turns for shortest paths to all destina-
tions are marked. A few examples will explain some ways that consistency can be
achieved.

At one extreme, consider a simple star-shaped topology of roads in which each
town has exactly one road leading to it, and all the roads meet at a central point. Figure
12.1 illustrates the topology.

Concord

EssexNorfolk

Sussex

Boston Lexington

Figure 12.1 An example star-shaped topology of roads connecting towns.

We imagine a sign at the central intersection that lists each possible town and the
road to reach that town. In other words, only the central intersection has information
about each possible destination; a traveler always proceeds to the central intersection on
the way to any destination.

At another extreme, we can imagine an arbitrary set of connected roads and a sign
at each intersection listing all possible destinations. To guarantee that the signs lead
travelers along the best route, it must be true that at any intersection if the sign for des-
tination D points to road R, no road other than R leads to a shorter path to D.

Neither of the architectural extremes works well for a larger internet routing sys-
tem. On one hand, the central intersection approach fails because no equipment is fast
enough to serve as a central switch through which all traffic passes. On the other hand,
having information about all possible destinations in all routers is impractical because it
requires propagating large volumes of information whenever a change occurs in the in-
ternet. Therefore, we seek a solution that allows groups to manage local routers autono-
mously, adding new network interconnections and routes without changing the forward-
ing information in distant routers.

To understand the routing architecture used in the Internet, consider a third topolo-
gy in which half of the cities lie in the eastern part of the country and half lie in the
western part. Suppose a single bridge spans the river that separates east from west. As-
sume that people living in the eastern part do not like westerners, so they are unwilling
to allow any road sign in the east to list destinations in the west. Assume that people
living in the west do the opposite. Routing will be consistent if every road sign in the
east lists all eastern destinations explicitly and points the default path to the bridge, and
every road sign in the west lists all western destinations explicitly and points the default
path to the bridge. However, there is a catch: if a tourist arrives who has accidentally

Sec. 12.3 Forwarding With Partial Information 251

written down the name of a non-existent town, the tourist could cross the bridge one
way and then find that the default path points back to the bridge.

12.4 Original Internet Architecture And Cores

Much of our knowledge of forwarding and route propagation protocols has been
derived from experience with the Internet. When TCP/IP was first developed, partici-
pating research sites were connected to the ARPANET, which served as a backbone net-
work connecting all sites on the Internet. During initial experiments, each site managed
forwarding tables and installed routes to other destinations by hand. As the fledgling
Internet began to grow, it became apparent that manual maintenance of routes was im-
practical; automated mechanisms were needed. The concept of a backbone network
continues to be used: many large enterprises have a backbone that connects sites on the
enterprise’s intranet.

The Internet designers selected a router architecture that followed the star-shaped
topology described above. The original design used a small, central set of routers that
kept complete information about all possible destinations, and a larger set of outlying
routers that kept partial information. In terms of our analogy, it is like designating a
small set of centrally located intersections that have signs listing all destinations, and al-
lowing the outlying intersections to list only local destinations. As long as the default
route at each outlying intersection points to one of the central intersections, travelers
will eventually reach their destination.

The central set of routers that maintained complete information was known as the
core of the Internet. Because each core router stores a route for each possible destina-
tion, a core router does not need a default route. Therefore, the set of core routers is
sometimes referred to as the default-free zone. The advantage of partitioning Internet
routing into a two-tier system is that it permits local administrators to manage local
changes in outlying routers without affecting other parts of the Internet. The disadvan-
tage is that it introduces the potential for inconsistency. In the worst case, an error in
an outlying router can make distant routes unreachable.

We can summarize the ideas:

The advantage of a core routing architecture lies in autonomy: the
manager of a noncore router can make changes locally. The chief
disadvantage is inconsistency: an outlying site can introduce errors
that make some destinations unreachable.

Inconsistencies among forwarding tables can arise from errors in the algorithms
that compute forwarding tables, incorrect data supplied to those algorithms, or errors
that occur while transmitting the results to other routers. Protocol designers look for
ways to limit the impact of errors, with the objective being to keep all routes consistent
at all times. If routes become inconsistent, the routing protocols should be robust

252 Routing Architecture: Cores, Peers, And Algorithms Chap. 12

enough to detect and correct the errors quickly. Most important, the protocols should
be designed to constrain the effect of errors.

The early Internet architecture is easy to understand if one remembers that the In-
ternet evolved with a wide-area backbone, the ARPANET, already in place. A major
motivation for the core router system came from the desire to connect local networks to
the backbone. Figure 12.2 illustrates the idea.

BACKBONE NETWORK

R1 R2 Rn

Local Net 1 Local Net 2 Local Net n

Core
Routers. . .

Figure 12.2 The early Internet core router system viewed as a set of routers
that connect local area networks to the backbone. The architec-
ture is now used in enterprise networks.

To understand why routers in Figure 12.2 cannot use partial information, consider
the path a datagram follows if a set of routers use a default route. At the source site,
the local router checks to see if it has an explicit route to the destination, and if not,
sends the datagram along the path specified by its default route. All datagrams for
which the router has no explicit route follow the same default path regardless of their
ultimate destination. The next router along the path diverts datagrams for which it has
an explicit route, and sends the rest along its default route. To ensure global consisten-
cy, the chain of default routes must reach every router in a giant cycle. Thus, the archi-
tecture requires all local sites to coordinate their default routes.

There are two problems with a routing architecture that involves a set of default
routes. First, suppose a computer accidentally generates a datagram to a nonexistent
destination (i.e., to an IP address that has not been assigned). The host sends the da-
tagram to the local router, the local router follows the default path to the next router,
and so on. Unfortunately, because default routes form a cycle, the datagram will go
around the cycle until the hop limit expires. Second, if we ignore the problem of
nonexistent addresses, forwarding is inefficient. A datagram that follows the default
routes may pass through n – 1 routers before it reaches a router that connects to the lo-
cal network of the destination.

To avoid the inefficiencies and potential routing loops that default routes can
cause, the early Internet prohibited default routes in core routers. Instead of using de-
fault routes, the designers arranged for routers to communicate with one another and
exchange routing information so that each router learned how to forward datagrams

Sec. 12.4 Original Internet Architecture And Cores 253

directly. Arranging for core routers to exchange routing information is easy — the
routers all attach to the backbone network, which means they can communicate directly.

12.5 Beyond The Core Architecture To Peer Backbones

The introduction of the NSFNET backbone into the Internet added new complexity
to the routing structure and forced designers to invent a new routing architecture. More
important, the change in architecture foreshadowed the current Internet in which a set of
Tier-1 ISPs each have a wide-area backbone to which customer sites connect. In many
ways, the work on NSFNET and the routing architecture that was created to support it
was key in moving away from the original Internet architecture to the current Internet
architecture.

The primary change that occurred with the NSFNET backbone was the evolution
from a single, central backbone to a set of peer backbone networks, often called peers
or routing peers. Although the global Internet now has several Tier-1 peers, we can
understand the routing situation by considering only two. Figure 12.3 illustrates an In-
ternet topology with a pair of backbone networks.

BACKBONE 1

BACKBONE 2

HOST 1 HOST 2

HOST 3 HOST 4

R1 R2 R3

Figure 12.3 An example of two peer backbones interconnected by multiple
routers similar to the two peer backbones in the Internet in 1989.

To help us understand the difficulties of IP routing among peer backbones, the fig-
ure shows four hosts directly connected to the backbones. Although such direct connec-
tion may seem unrealistic, it simplifies the example. Look at the figure and consider
routes from host 3 to host 2. Assume for the moment that the figure shows geographic
orientation: host 3 is on the West Coast attached to backbone 2, while host 2 is on the
East Coast attached to backbone 1. When establishing routes between hosts 3 and 2,
the managers must decide among three options:

254 Routing Architecture: Cores, Peers, And Algorithms Chap. 12

(a) Route the traffic from host 3 through the West Coast router, R1,
and then across backbone 1.

(b) Forward the traffic from host 3 across backbone 2, through the
Midwest router, R2, and then across backbone 1 to host 2.

(c) Forward the traffic across backbone 2, through the East Coast
router, R3, and then to host 2.

A more circuitous route is possible as well: traffic could flow from host 3 through
the West Coast router, across backbone 1 to the Midwest router, back onto backbone 2
to the East Coast router, and finally across backbone 1 to host 2. Such a route may or
may not be advisable, depending on the policies for network use and the capacity of
various routers and backbones. Nevertheless, we will concentrate on routing in which a
datagram never traverses a network twice (i.e., never moves to a network, moves off the
network, and then moves back to the network again).

Intuitively, we would like all traffic to take a shortest path. That is, we would like
traffic between a pair of geographically close hosts to take a short path independent of
the routes chosen for long-distance traffic. For example, it is desirable for traffic from
host 3 to host 1 to flow through the West Coast router, R1, because such a path mini-
mizes the total distance that the datagram travels. More important, if a datagram must
travel across a backbone, an ISP would like to keep the datagram on its backbone (be-
cause doing so is economically less expensive than using a peer).

The goals above seem straightforward and sensible. However, they cannot be
translated into a reasonable routing scheme for two reasons. First, although the stan-
dard IP forwarding algorithm uses the network portion of an IP address to choose a
route, optimal forwarding in a peer backbone architecture requires individual routes for
individual hosts. For example, consider the forwarding table in host 3. The optimal
next hop for host 1 is the west-coast router, R1, and the optimal next hop for host 2 is
the east-coast router, R3. However, hosts 1 and 2 both connect to backbone 1, which
means they have the same network prefix. Therefore, instead of using network prefixes,
the host forwarding table must contain host-specific routes. Second, managers of the
two backbones must agree to keep routes consistent among all routers or a forwarding
loop (routing loop) can develop in which a set of the routers forward to each other in a
cycle.

12.6 Automatic Route Propagation And A FIB

We said that the original Internet core system avoided default routes because it
propagated complete information about all possible destinations to every core router.
Many corporate intranets now use a similar approach — they propagate information
about each destination in the corporation to all routers in their intranet. The next sec-
tions discuss two basic types of algorithms that compute and propagate routing informa-
tion; later chapters discuss protocols that use the algorithms.

Sec. 12.6 Automatic Route Propagation And A FIB 255

Routing protocols serve two important functions. First, they compute a set of
shortest paths. Second, they respond to network failures or topology changes by con-
tinually updating the routing information. Thus, when we think about route propaga-
tion, it is important to consider the dynamic behavior of protocols and algorithms.

Conceptually, routing protocols operate independently from the forwarding mecha-
nism. That is, routing protocol software runs as a separate process that uses IP to ex-
change messages with routing protocol software on other routers. Routing protocols
learn about destinations, compute a shortest path to each destination, and pass informa-
tion to the routing protocol software on other routers.

Although a routing protocol computes shortest paths, the routing protocol software
does not store information directly in the router’s forwarding table. Instead, routing
software creates a Forwarding Information Base (FIB). A FIB may contain extra infor-
mation not found in a forwarding table, such as the source of the routing information,
how old the information is (i.e., the last time a routing protocol on another router sent a
message about the route), and whether a manager has temporarily overridden a specific
route.

When the FIB changes, routing software recomputes a forwarding table for the
router and installs the new forwarding table. A crucial step occurs between items being
placed in a FIB and the items being propagated to the forwarding table: policy rules are
applied. Policies allow a manager to control which items are automatically installed in
the forwarding table. Therefore, even if routing software finds a shorter path to a par-
ticular destination and places the information in the FIB, policies may prevent the path
from being injected into the forwarding table.

12.7 Distance-Vector (Bellman-Ford) Routing

The term distance-vector† refers to a class of algorithms used to propagate routing
information. The idea behind distance-vector algorithms is quite simple. Each router
keeps a list of all known destinations in its FIB. When it boots, a router initializes its
FIB to contain an entry for each directly connected network. Each entry in the FIB
identifies a destination network, a next-hop router used to reach the destination, and the
“distance” to the network (according to some measure of distance). For example, some
distance-vector protocols use the number of network hops as a measure of distance. A
directly-connected network is zero hops away; if a datagram must travel through N
routers to reach a destination, the destination is N hops away. Figure 12.4 illustrates the
initial contents of a FIB on a router that attaches to two networks. In the figure, each
entry corresponds to a directly-connected network (zero hops away).

‡The terms vector-distance, Ford-Fulkerson, Bellman-Ford, and Bellman are synonymous with distance-
vector; the last three are taken from the names of researchers who published the idea.

256 Routing Architecture: Cores, Peers, And Algorithms Chap. 12

Destination Distance Route
Net 1 0 direct
Net 2 0 direct

Figure 12.4 An initial FIB used with a distance-vector algorithm. Each entry
contains the IP address of a directly connected network and an
integer distance to the network.

When using distance-vector, routing software on each router sends a copy of its
FIB to any other router it can reach directly. When a report arrives at router K from
router J, K examines the set of destinations reported and the distance to each and ap-
plies three rules:

If J lists a destination that K does not have in its FIB, K adds a new
entry to its FIB with the next hop of J.

If J knows a shorter way to reach a destination D, K replaces the next
hop in its FIB entry for D with J.

If K’s FIB entry for destination D already lists J as the next hop and J’s
distance to the destination has changed, K replaces the distance in its
FIB entry.

The first rule can be interpreted, “If my neighbor knows a way to reach a destina-
tion that I don’t know, I can use the neighbor as a next hop.” The second rule can be in-
terpreted, “If my neighbor has a shorter route to a destination, I can use the neighbor as
a next hop.” The third rule can be interpreted, “If I am using my neighbor as the next
hop for a destination and the neighbor’s cost to reach the destination changes, my cost
must change.”

Figure 12.5 shows an existing FIB in a router, K, and a distance-vector update
message from another router, J. Three items in the message cause changes in the FIB.
Note that if J reports a distance N hops to a given destination and K uses J as a next
hop, the distance stored in K’s FIB will have distance N + 1 (i.e., the distance from J to
the destination plus the distance to reach J). The third column in our example FIB is
labeled Route. In practice, the column contains the IP address of a next-hop router. To
make it easy to understand, the figure simply lists a symbolic name (e.g., Router J).

The term distance-vector comes from the information sent in the periodic mes-
sages. A message contains a list of pairs (D, V), where D is a distance to a destination
and V identifies the destination (called the vector). Note that distance-vector algorithms
report routes in the first person (i.e., we think of a router advertising, “I can reach desti-
nation V at distance D”). In such a design, all routers must participate in the distance-
vector exchange for the routes to be efficient and consistent.

Sec. 12.7 Distance-Vector (Bellman-Ford) Routing 257

Destination Distance Route
Net 1
Net 2
Net 4
Net 17
Net 24
Net 30
Net 42

0
0
8
5
6
2
2

direct
direct

Router L
Router M
Router J
Router Q
Router J

Destination Distance
Net 1
Net 4
Net 17
Net 21
Net 24
Net 30
Net 42

2
3
6
4
5

10
3

(a) (b)

Figure 12.5 (a) An existing FIB in router K, and (b) an incoming routing
update message from router J that will cause changes.

Although they are easy to implement, distance-vector algorithms have several
disadvantages. In a completely static environment, distance-vector algorithms do indeed
compute shortest paths and correctly propagate routes to all destinations. When routes
change rapidly, however, the computations may not stabilize. When a route changes
(i.e, a new connection appears or an old one fails), the information propagates slowly
from one router to another. Meanwhile, some routers may have incorrect routing infor-
mation.

12.8 Reliability And Routing Protocols

Most routing protocols use connectionless transport — early protocols encapsulated
messages directly in IP; modern routing protocols usually encapsulate in UDP†. Unfor-
tunately, UDP offers the same semantics as IP: messages can be lost, delayed, duplicat-
ed, corrupted, or delivered out of order. Thus, a routing protocol that uses them must
compensate for failures.

Routing protocols use several techniques to handle reliability. First, checksums are
used to handle corruption. Loss is either handled by soft state‡ or through acknowl-
edgements and retransmission. Sequence numbers are used to handle two problems.
First, sequence numbers allow a receiver to handle out-of-order delivery by placing in-
coming messages back in the correct order. Second, sequence numbers can be used to
handle replay, a condition that can occur if a duplicate of a message is delayed and ar-
rives long after newer updates have been processed. Chapter 14 illustrates how
distance-vector protocols can exhibit slow convergence, and discusses additional tech-
niques that distance-vector protocols use to avoid problems. In particular, the chapter
covers split horizon and poison reverse techniques.

†The next chapter discusses an exception — a routing protocol that uses TCP.
‡Recall that soft state relies on timeouts to remove old information.

258 Routing Architecture: Cores, Peers, And Algorithms Chap. 12

12.9 Link-State (SPF) Routing

The main disadvantage of the distance-vector algorithm is that it does not scale
well. Besides the problem of slow response to change mentioned earlier, the algorithm
requires the exchange of large messages — because each routing update contains an en-
try for every possible network, message size is proportional to the total number of net-
works in an internet. Furthermore, because a distance-vector protocol requires every
router to participate, the volume of information exchanged can be enormous.

The primary alternative to distance-vector algorithms is a class of algorithms
known as link state, link status, or Shortest Path First† (SPF). The SPF algorithm re-
quires each participating router to compute topology information. The easiest way to
think of topology information is to imagine that every router has a map that shows all
other routers and the networks to which they connect. In abstract terms, the routers
correspond to nodes in a graph, and networks that connect routers correspond to edges.
There is an edge (link) between two nodes in the topology graph if and only if the
corresponding routers can communicate directly.

Instead of sending messages that contain a list of destinations that a router can
reach, each router participating in an SPF algorithm performs two tasks:

Actively test the status of each neighboring router. Two routers are
considered neighbors if they attach to a common network.

Periodically broadcast link-state messages of the form, “The link
between me and router X is up” or “The link between me and router X
is down.”

To test the status of a directly connected neighbor, the two neighbors exchange
short messages that verify that the neighbor is alive and reachable. If the neighbor re-
plies, the link between them is said to be up. Otherwise, the link is said to be down‡.
To inform all other routers, each router periodically broadcasts a message that lists the
status (state) of each of its links. A status message does not specify routes — it simply
reports whether communication is possible between pairs of routers. When using a
link-state algorithm, the protocol software must find a way to deliver each link-state
message to all routers, even if the underlying network does not support broadcast.
Thus, individual copies of each message may be forwarded point-to-point.

Whenever a link-state message arrives, software running on the router uses the in-
formation to update its map of the internet. First, it extracts the pair of routers men-
tioned in the message and makes sure that the local graph contains an edge between the
two. Second, it uses the status reported in the message to mark the link as up or down.
Whenever an incoming message causes a change in the local topology graph, the link-
state algorithm recomputes routes by applying Dijkstra’s algorithm. The algorithm
computes the shortest path from the local router to each destination. The resulting in-
formation is placed in the FIB, and if policies permit, used to change the forwarding
table.

†Dijkstra, the inventor of the algorithm, coined the name “shortest path first,” but it is misleading be-
cause all routing algorithms compute shortest paths.

‡In practice, to prevent oscillations between the up and down states, many protocols use a k-out-of-n rule
to test liveness, meaning that the link remains up until a significant percentage of requests have no reply, and
then it remains down until a significant percentage of messages receive a reply.

Sec. 12.9 Link-State (SPF) Routing 259

One of the chief advantages of SPF algorithms is that each router computes routes
independently using the same original status data; they do not depend on the computa-
tion of intermediate routers. Compare the approach to a distance-vector algorithm in
which each router updates its FIB and then sends the updated information to neighbors
— if the software in any router along the path is incorrect, all successive routers will re-
ceive incorrect information. With a link-state algorithm, routers do not depend on inter-
mediate computation — the link-status messages propagate throughout the network un-
changed, making it is easier to debug problems. Because each router performs the
shortest path computation locally, the computation is guaranteed to converge. Finally,
because each link-status message only carries information about the direct connection
between a pair of routers, the size does not depend on the number of networks in the
underlying internet. Therefore, SPF algorithms scale better than distance-vector algo-
rithms.

12.10 Summary

To ensure that all networks remain reachable with high reliability, an internet must
provide globally consistent forwarding. Hosts and most routers contain only partial
routing information; they depend on default routes to send datagrams to distant destina-
tions. Originally, the global Internet solved the routing problem by using a core router
architecture in which a set of core routers each contained complete information about all
networks.

When additional backbone networks were added to the Internet, a new routing ar-
chitecture arose to match the extended topology. Currently, a set of separately managed
peer backbone networks exist that interconnect at multiple places.

When they exchange routing information, routers usually use one of two basic al-
gorithms; distance-vector or link-state (also called SPF). The chief disadvantage of
distance-vector algorithms is that they perform a distributed shortest path computation
that may not converge if the status of network connections changes continually. Thus,
for large internets or internets where the underlying topology changes quickly, SPF al-
gorithms are superior.

EXERCISES

12.1 Suppose a router discovers it is about to forward an IP datagram back over the same net-
work interface on which the datagram arrived. What should it do? Why?

12.2 After reading RFC 823 and RFC 1812, explain what an Internet core router (i.e., one
with complete routing information) should do in the situation described in the previous
question.

12.3 How can routers in a core system use default routes to send all illegal datagrams to a
specific machine?

260 Routing Architecture: Cores, Peers, And Algorithms Chap. 12

12.4 Imagine that a manager accidentally misconfigures a router to advertise that it has direct
connections to six specific networks when it does not. How can other routers that re-
ceive the advertisement protect themselves from invalid advertisements while still ac-
cepting other updates from “untrusted” routers?

12.5 Which ICMP messages does a router generate?
12.6 Assume a router is using unreliable transport for delivery. How can the router determine

whether a designated neighbor’s status is up or down? (Hint: consult RFC 823 to find
out how the original core system solved the problem.)

12.7 Suppose two routers each advertise the same cost, k, to reach a given network, N.
Describe the circumstances under which forwarding through one of them may take fewer
total hops than forwarding through the other one.

12.8 How does a router know whether an incoming datagram carries a routing update mes-
sage?

12.9 Consider the distance-vector update shown in Figure 12.5 carefully. For each item up-
dated in the table, give the reason why the router will perform the update.

12.10 Consider the use of sequence numbers to ensure that two routers do not become con-
fused when datagrams are duplicated, delayed, or delivered out of order. How should
initial sequence numbers be selected? Why?

This page intentionally left blank

Chapter Contents
13.1 Introduction, 263
13.2 The Scope Of A Routing Update Protocol, 263
13.3 Determining A Practical Limit On Group Size, 264
13.4 A Fundamental Idea: Extra Hops, 266
13.5 Autonomous System Concept, 267
13.6 Exterior Gateway Protocols And Reachability, 268
13.7 BGP Characteristics, 269
13.8 BGP Functionality And Message Types, 270
13.9 BGP Message Header, 271
13.10 BGP OPEN Message, 272
13.11 BGP UPDATE Message, 273
13.12 Compressed IPv4 Mask-Address Pairs, 274
13.13 BGP Path Attributes, 274
13.14 BGP KEEPALIVE Message, 276
13.15 Information From The Receiver’s Perspective, 277
13.16 The Key Restriction Of Exterior Gateway Protocols, 278
13.17 The Internet Routing Architecture And Registries, 280
13.18 BGP NOTIFICATION Message, 280
13.19 BGP Multiprotocol Extensions For IPv6, 281
13.20 Multiprotocol Reachable NLRI Attribute, 283
13.21 Internet Routing And Economics, 284
13.22 Summary, 285

13

Routing Among
Autonomous Systems
(BGP)

13.1 Introduction

The previous chapter introduces the idea of route propagation. This chapter ex-
tends our understanding of internet routing architectures and discusses the concept of
autonomous systems. We will see that autonomous systems correspond to large ISPs or
large enterprises, and that each autonomous system comprises a group of networks and
routers operating under one administrative authority.

The central topic of the chapter is a routing protocol named BGP that is used to
provide routing among autonomous systems. BGP is the key routing protocol used at
the center of the Internet to allow each major ISP to inform other peers about destina-
tions that it can reach.

13.2 The Scope Of A Routing Update Protocol

A fundamental principle guides the design of a routing architecture: no routing up-
date protocol can scale to allow all routers in the global Internet to exchange routing in-
formation. Instead, routers must be divided into separate groups, and routing protocols
designed to operate within a group. There are three reasons that routers must be divid-
ed:

263

264 Routing Among Autonomous Systems (BGP) Chap. 13

Traffic. Even if each site only has a single network, no routing proto-
col can accommodate an arbitrary number of sites, because adding sites
increases routing traffic — if the set of routers is sufficiently large, the
routing traffic becomes overwhelming. Distance-vector protocols re-
quire routers to exchange the entire set of networks (i.e., the size of
each update is proportional to the size of a forwarding table). Link-
state protocols periodically broadcast announcements of connectivity
between pairs of routers (i.e., broadcasts would travel throughout the
Internet).

Indirect Communication. Because they do not share a common net-
work, routers in the global Internet cannot communicate directly. In
many cases, a router is far from the center of the Internet, meaning that
the only path the router can use to reach all other routers goes through
many intermediate hops.

Administrative Boundaries. In the Internet, the networks and routers
are not all owned and managed by a single entity. More important,
shortest paths are not always used! Instead, large ISPs route traffic
along paths that generate revenue or have lower financial cost. There-
fore, a routing architecture must provide a way for each administrative
group to control routing and access independently.

The consequences of limiting router interaction are significant. The idea provides
the motivation for much of the routing architecture used in the Internet, and explains
some of the mechanisms we will study. To summarize this important principle:

Although it is desirable for routers to exchange routing information, it
is impractical for all routers in an arbitrarily large internet, such as
the global Internet, to participate in a single routing update protocol.

13.3 Determining A Practical Limit On Group Size

The above discussion leaves many questions open. For example, what internet size
is considered large? If only a limited set of routers can participate in an exchange of
routing information, what happens to routers that are excluded? Do they function
correctly? Can a router that is not participating ever forward a datagram to a router that
is participating? Can a participating router forward a datagram to a non-participating
router?

The answer to the question of size involves understanding the traffic a specific pro-
tocol will generate, the capacity of the networks that connect the routers, and other re-
quirements, such as whether the protocol requires broadcast. There are two issues: de-
lay and overhead.

Sec. 13.3 Determining A Practical Limit On Group Size 265

Delay. The main delay of interest is not how long it takes a single routing update
message to propagate. Instead, the question concerns convergence time, the maximum
delay until all routers are informed about a change. When routers use a distance-vector
protocol, each router must receive the new information, update its FIB, and then for-
ward the information to its neighbors. In an internet with N routers arranged in a linear
topology, N steps are required. Thus, N must be limited to guarantee rapid distribution
of information.

Overhead. The issue of overhead is also easy to understand. Because each router
that participates in a routing protocol must send messages, a larger set of participating
routers means more routing traffic. Furthermore, if routing messages contain a list of
possible destinations, the size of each message grows as the number of routers and net-
works increase. To ensure that routing traffic remains a small percentage of the total
traffic on the underlying networks, the size of routing messages must be limited.

In fact, few network managers have sufficient information about routing protocols
to perform detailed analysis of the delay or overhead. Instead, they follow a simple
heuristic guideline:

It is safe to allow up to a dozen routers to participate in a single rout-
ing information protocol across a wide area network; approximately
five times as many can safely participate across a set of local area
networks.

Of course, the rule only gives general advice and there are many exceptions. For
example, if the underlying networks have especially low delay and high capacity, the
number of participating routers can be larger. Similarly, if the underlying networks
have unusually low capacity or a high amount of traffic, the number of participating
routers must be smaller to avoid overloading the networks with routing traffic.

Because an internet is not static, it can be difficult to estimate how much traffic
routing protocols will generate or what percentage of the underlying bandwidth the rout-
ing traffic will consume. For example, as the number of hosts on a network grows over
time, increases in the traffic generated consume more of the spare network capacity. In
addition, increased traffic can arise from new applications. Therefore, network
managers cannot rely solely on the guideline above when choosing a routing architec-
ture. Instead, they usually implement a traffic monitoring scheme. In essence, a traffic
monitor listens passively to a network and records statistics about the traffic. In partic-
ular, a monitor can compute both the network utilization (i.e., percentage of the underly-
ing bandwidth being used) and the percentage of packets carrying routing protocol mes-
sages. A manager can observe traffic trends by taking measurements over long periods
(e.g., weeks or months), and can use the output to determine whether too many routers
are participating in a single routing protocol.

266 Routing Among Autonomous Systems (BGP) Chap. 13

13.4 A Fundamental Idea: Extra Hops

Although the number of routers that participate in a single routing protocol must be
limited, doing so has an important consequence because it means that some routers will
be outside the group. For example, consider a corporate intranet with a backbone and a
set of routers that all participate in a routing update protocol. Suppose a new depart-
ment is added to the network and the new department acquires a router. It might seem
that the new router would not need to participate in the routing update protocol — the
“outsider” could merely use a member of the group as a default.

The same situation occurred in the early Internet. As new sites were added, the
core system functioned as a central routing mechanism to which noncore routers sent
datagrams for delivery. Researchers uncovered an important lesson: if a router outside
of a group uses a member of the group as a default route, routing will be suboptimal.
More important, one does not need a large number of routers or a wide area network —
the problem can occur even in a small corporate network in which a nonparticipating
router uses a participating router for delivery.

To understand how nonoptimal forwarding occurs, consider the example network
configuration in Figure 13.1.

Backbone NetworkLocal Net 1 Local Net 2R1 R2

R3

nonparticipating
router

participating
router

participating
router

Figure 13.1 An example architecture that can cause the extra hop problem if
a nonparticipating router uses a participating router as a default
next hop.

In the figure, routers R1 and R2 connect to local area networks 1 and 2, respective-
ly. Each router participates in a routing protocol, and knows how to reach both net-
works. A new router, R3 is added. Instead of configuring R3 to participate in the rout-
ing update protocol, the manager configures it to use one of the existing routers, say R1,
as a default.

If R1 has a datagram destined for a host on local network 1, no problem occurs.
However, if R3 has a datagram destined for local network 2, it will send the datagram
across the backbone to R1, which must then forward the datagram back across the back-
bone to router R2. The optimal route, of course, requires R3 to send datagrams destined
for network 2 directly to R2. Notice that the choice of a participating router makes no
difference: only destinations that lie beyond the chosen router have optimal routes. For

Sec. 13.4 A Fundamental Idea: Extra Hops 267

all other destinations, a datagram will make a second, unnecessary trip across the back-
bone network. Also recall that routers cannot use ICMP redirect messages to inform R3

that it has nonoptimal routes, because ICMP redirect messages can only be sent to the
original source and not to intermediate routers.

We call the anomaly illustrated in Figure 13.1 the extra hop problem. The prob-
lem is insidious because everything appears to work correctly — datagrams do indeed
reach their destination. However, because routing is not optimal, the system is extreme-
ly inefficient. Each datagram that takes an extra hop consumes resources on the inter-
mediate router as well as twice as much of the backbone capacity as it should. The ex-
tra hop problem was first discovered in the early Internet. Solving the problem required
us to change our view of routing architecture:

Treating a group of routers that participate in a routing update proto-
col as a default delivery system can introduce an extra hop for da-
tagram traffic; a mechanism is needed that allows nonparticipating
routers to learn routes from participating routers so they can choose
optimal routes.

13.5 Autonomous System Concept

How should the Internet be divided into sets of routers that can each run a routing
update protocol? The key to the answer lies in realizing that the Internet does not con-
sist of independent networks. Instead, networks and routers are owned by organizations
and individuals. Because the networks and routers owned by a given entity fall under a
single administrative authority, the authority can guarantee that internal routes remain
consistent and viable. Furthermore, the administrative authority can choose one or more
of its routers to apprise the outside world of networks within the organization and to
learn about networks that are outside the organization.

For purposes of routing, a group of networks and routers controlled by a single ad-
ministrative authority is called an Autonomous System (AS). The idea is that we will let
each autonomous system choose its own mechanisms for discovering, propagating, vali-
dating, and checking the consistency of routes (the next chapter reviews some of the
protocols that autonomous systems use to propagate routing information internally).
Then, we will arrange ways for an autonomous system to summarize routing informa-
tion and send the summary to neighboring autonomous systems.

Is an autonomous system an ISP? It can be, but an autonomous system can also be
a large enterprise (e.g., a major corporation or university). Although the definition of
an autonomous system may seem vague, the definition is intended to include almost any
group that runs a large network. Of course, the boundaries between autonomous sys-
tems must be defined precisely to allow automated algorithms to make routing deci-
sions, and to prevent the routing update protocols used in one autonomous system from
accidentally spilling over into another. Furthermore, each autonomous system defines a
set of policies. For example, an autonomous system may prefer to avoid routing pack-

268 Routing Among Autonomous Systems (BGP) Chap. 13

ets through a competitor’s autonomous system, even if such a path exists. To make it
possible for automated routing algorithms to distinguish among autonomous systems,
each is assigned an autonomous system number by the central authority that is charged
with assigning all Internet numbers. When routers in two autonomous systems ex-
change routing information, the protocol arranges for each router to learn the other’s au-
tonomous system number.

We can summarize the idea:

The Internet is divided into autonomous systems that are each owned
and operated by a single administrative authority. An autonomous
system is free to choose an internal routing architecture and proto-
cols.

In practice, although some large organizations have obtained autonomous system
numbers to allow them to connect to multiple ISPs, it is easiest to think of each autono-
mous system as corresponding to a large ISP. The point is:

In the current Internet, each large ISP is an autonomous system.
During informal discussions, engineers often refer to routing among
major ISPs when they mean routing among autonomous systems.

13.6 Exterior Gateway Protocols And Reachability

We said that an autonomous system must summarize information from its routing
update protocols and propagate that information to other autonomous systems. To do
so, an autonomous system configures one or more of its routers to communicate with
routers in other autonomous systems. Information flows in two directions. First, the
router must collect information about networks inside its autonomous system and pass
the information out. Second, the router must accept information about networks in oth-
er autonomous system(s) and disseminate the information inside. Technically, we say
that the autonomous system advertises network reachability to the outside, and we use
the term Exterior Gateway Protocol† (EGP) to denote any protocol used to pass net-
work reachability information between two autonomous systems. Strictly speaking, an
EGP is not a routing protocol because advertising reachability is not the same as pro-
pagating routing information. In practice, however, most networking professionals do
not make a distinction — one is likely to hear exterior gateway protocols referred to as
routing protocols.

Currently, a single EGP is used to exchange reachability information in the Inter-
net. Known as the Border Gateway Protocol (BGP), it has evolved through four (quite
different) versions. Each version is numbered, which gives rise to the formal name of
the current version, BGP-4. Following standard practice in the networking industry, we
will use the term BGP in place of BGP-4.

†The terminology was coined at a time when a router was called a gateway, and has persisted.

Sec. 13.6 Exterior Gateway Protocols And Reachability 269

When a pair of autonomous systems agree to use BGP to exchange routing infor-
mation, each must designate a router† that will speak BGP on its behalf; the two routers
are said to become BGP peers of one another. Because a router speaking BGP must
communicate with a peer in another autonomous system, it makes sense to select a
machine that is near the border (i.e., the edge) of the autonomous system. Hence, BGP
terminology calls the router a border gateway or border router. Figure 13.2 illustrates
the idea.

BGP
used

R1 R2

Autonomous
System 1

Autonomous
System 2

Figure 13.2 Conceptual illustration of BGP used between router R1 in one
autonomous system and router R2 in another autonomous system.

In the figure, information flows in both directions. Router R1 gathers information
about networks in autonomous system 1 and uses BGP to report the information to
router R2, while router R2 gathers information about networks in autonomous system 2
and uses BGP to report the information to router R1.

13.7 BGP Characteristics

BGP is unusual in several ways. Most important, because it advertises reachability
instead of routing information, BGP does not use either the distance-vector algorithm or
the link-state algorithm. Instead, BGP uses a modification known as a path-vector algo-
rithm. BGP is characterized by the following:

Inter-Autonomous System Communication. Because BGP is designed as an exteri-
or gateway protocol, its primary role is to allow one autonomous system to communi-
cate with another.

Coordination Among Multiple BGP Speakers. If an autonomous system has multi-
ple routers each communicating with a peer in an outside autonomous system, a form of
BGP known as iBGP can be used to coordinate among routers inside the system to
guarantee that they all propagate consistent information.

†Although it is possible to run BGP on a system other than a router, most autonomous systems choose to
run BGP on a router that has a direct connection to another autonomous system.

270 Routing Among Autonomous Systems (BGP) Chap. 13

Propagation Of Reachability Information. BGP allows an autonomous system to
advertise destinations that are reachable either in or through it, and to learn such infor-
mation from another autonomous system.

Next-Hop Paradigm. Like distance-vector routing protocols, BGP supplies next
hop information for each destination.

Policy Support. Unlike most distance-vector protocols that advertise exactly the
routes in the local forwarding table, BGP can implement policies that the local adminis-
trator chooses. In particular, a router running BGP can be configured to distinguish
between the set of destinations reachable by computers inside its autonomous system
and the set of destinations advertised to other autonomous systems.

Reliable Transport. BGP is unusual among protocols that pass routing information
because it assumes reliable transport. Therefore, BGP uses TCP for all communication.

Path Information. Instead of specifying destinations that can be reached and a next
hop for each, BGP uses a path-vector paradigm in which advertisements specify path
information that allows a receiver to learn a series of autonomous systems along a path
to the destination.

Incremental Updates. To conserve network bandwidth, BGP does not pass full in-
formation in each update message. Instead, full information is exchanged once, and
then successive messages carry incremental changes called deltas.

Support For IPv4 and IPv6. BGP supports IPv4 classless addresses and IPv6 ad-
dresses. That is, BGP sends a prefix length along with each address.

Route Aggregation. BGP conserves network bandwidth by allowing a sender to
aggregate route information and send a single entry to represent multiple, related desti-
nations (e.g., many networks owned by a single AS).

Authentication. BGP allows a receiver to authenticate messages (i.e., verify the
identity of a sender).

13.8 BGP Functionality And Message Types

BGP peers perform three basic functions. The first function consists of initial peer
acquisition and authentication. The two peers establish a TCP connection and perform
a message exchange that guarantees both sides have agreed to communicate. The
second function forms the primary focus of the protocol — each side sends positive or
negative reachability information. That is, a sender can advertise that one or more des-
tinations are reachable by giving a next hop for each, or the sender can declare that one
or more previously advertised destinations are no longer reachable. The third function
provides ongoing verification that the peers and the network connections between them
are functioning correctly.

Sec. 13.8 BGP Functionality And Message Types 271

To handle the three functions described above, BGP defines five basic message
types. Figure 13.3 contains a summary.

Type Code Message Type Description
1 OPEN Initialize communication
2 UPDATE Advertise or withdraw routes
3 NOTIFICATION Response to an incorrect message
4 KEEPALIVE Actively test peer connectivity
5 REFRESH Request readvertisement from peer

Figure 13.3 The five basic message types in BGP.

13.9 BGP Message Header

Each BGP message begins with a fixed header that identifies the message type.
Figure 13.4 illustrates the header format.

0 16 24 31

MARKER

LENGTH TYPE

Figure 13.4 The format of the header that precedes every BGP message.

In the figure, the 16-octet MARKER field contains a value that both sides agree to
use to mark the beginning of a message. The 2-octet LENGTH field specifies the total
message length measured in octets. The minimum message size is 19 octets (for a mes-
sage type that has only a header and no data following the header), and the maximum
allowable length is 4096 octets. Finally, the 1-octet TYPE field contains one of the five
values for the message type listed in Figure 13.3.

The MARKER field may seem unusual. In the initial message, the marker consists
of all 1s; if the peers agree to use an authentication mechanism, the marker can contain
authentication information. In any case, both sides must agree on the value so it can be
used for synchronization. To understand why synchronization is necessary, recall that
all BGP messages are exchanged across a stream transport (i.e., TCP), which does not
identify the boundary between one message and the next. In such an environment, a
simple error on either side can have dramatic consequences. In particular, if either the
sender or receiver software miscounts the octets in a message, a synchronization error

272 Routing Among Autonomous Systems (BGP) Chap. 13

will occur in which a receiver incorrectly reads items in the stream as a header. More
important, because the transport protocol does not specify message boundaries, the
transport protocol will not alert the receiver to the error. Thus, to ensure that the sender
and receiver remain synchronized, BGP places a well-known sequence value at the be-
ginning of each message, and requires a receiver to verify that the value is intact before
processing the message.

13.10 BGP OPEN Message

As soon as two BGP peers establish a TCP connection, they each send an OPEN
message to declare their autonomous system number and establish other operating
parameters. In addition to the standard header, an OPEN message contains a value for a
hold timer that is used to specify the maximum number of seconds which may elapse
between the receipt of two successive messages. Figure 13.5 illustrates the format.

0 8 16 31

VERSION

AUTONOMOUS SYSTEMS NUM

HOLD TIME

BGP IDENTIFIER

PARM. LEN

Optional Parameters (variable)

Figure 13.5 The format of the IPv4 BGP OPEN message that is sent at start-
up. Octets shown in the figure follow the standard message
header.

Most fields in the figure are straightforward. The VERSION field identifies the
protocol version used (the version for the format shown is version 4; a later section
discusses BGP extensions for IPv6). Recall that each autonomous system is assigned a
unique number. Field AUTONOMOUS SYSTEMS NUM gives the autonomous system
number of the sender’s system. The HOLD TIME field specifies a maximum time that
the receiver should wait for a message from the sender. The receiver is required to im-
plement a timer using the specified value. The timer is reset each time a message ar-
rives; if the timer expires, the receiver assumes the sender is no longer available (and
stops forwarding datagrams along routes learned from the sender).

Sec. 13.10 BGP OPEN Message 273

Field BGP IDENTIFIER contains a 32-bit integer value that uniquely identifies the
sender. If a machine has multiple peers (e.g., perhaps in multiple autonomous systems),
the machine must use the same identifier in all communication. The protocol specifies
that the identifier is an IP address. Thus, a border router must choose one of its IPv4
addresses to use with all BGP peers.

The last field of an OPEN message is optional. If present, field PARM. LEN speci-
fies the length measured in octets, and the field labeled Optional Parameters contains a
list of parameters. The parameter list has been labeled variable to indicate that the size
varies from message to message. When parameters are present, each parameter in the
list is preceded by a 2-octet header, with the first octet specifying the type of the param-
eter and the second octet specifying the length. If there are no parameters, the value of
PARM. LEN is zero and the message ends with no further data.

When it accepts an incoming OPEN message, a border router speaking BGP
responds by sending a KEEPALIVE message (discussed below). Each peer must send
an OPEN and receive a KEEPALIVE message before they can exchange routing infor-
mation. Thus, a KEEPALIVE message functions as the acknowledgement for an OPEN.

13.11 BGP UPDATE Message

Once BGP peers have created a TCP connection, sent OPEN messages, and ac-
knowledged them, the peers use UPDATE messages to advertise new destinations that
are reachable or to withdraw previous advertisements when a destination has become
unreachable. Figure 13.6 illustrates the format of UPDATE messages.

0 15

WITHDRAWN LENGTH

PATH ATTR LENGTH

Withdrawn Destinations (variable). . .

Path Attributes (variable). . .

Destination Networks (variable). . .

Figure 13.6 BGP UPDATE message format in which variable size areas of
the message may be omitted. These octets follow the standard
message header.

As the figure shows, each UPDATE message is divided into two parts: the first
part lists previously advertised destinations that are being withdrawn, and the second
part specifies new destinations being advertised. The second part lists path attributes

274 Routing Among Autonomous Systems (BGP) Chap. 13

followed by a set of destination networks that use the attributes. Fields labeled variable
do not have a fixed size. In fact, variable-size fields do not need to be present — if the
information is not needed for a particular UPDATE, the corresponding field is omitted
from the message. Field WITHDRAWN LENGTH is a 2-octet field that specifies the
size of the Withdrawn Destinations field that follows. If no destinations are being with-
drawn, WITHDRAWN LENGTH contains zero. Similarly, the PATH ATTR LENGTH
field specifies the size of the Path Attributes that are associated with new destinations
being advertised. If there are no new destinations, the PATH ATTR LENGTH field con-
tains zero.

13.12 Compressed IPv4 Mask-Address Pairs

Both the Withdrawn Destinations and the Destination Networks fields can contain
a list of IPv4 network addresses. Conceptually, BGP should send an address mask with
each IPv4 address. Instead of sending an address and a mask as separate 32-bit quanti-
ties, BGP uses a compressed representation to reduce message size. Figure 13.7 illus-
trates the format:

0 8 31

LEN

IPv4 Address Prefix (1-4 octets)

Figure 13.7 The compressed format BGP uses to store an IPv4 destination
address and the associated address mask.

As the figure shows, BGP does not actually send a bit mask. Instead, it encodes
information about the mask into a single octet that precedes each address. The mask
octet contains a binary integer that specifies the number of bits in the mask (mask bits
are assumed to be contiguous). The address that follows the mask octet is also
compressed — only those octets covered by the mask are included. Thus, only one ad-
dress octet follows a mask value of 8 or less, two follow a mask value of 9 to 16, three
follow a mask value of 17 to 24, and four follow a mask value of 25 to 32. Interesting-
ly, the standard also allows a mask octet to contain zero (in which case no address oc-
tets follow it). A zero length mask is useful because it corresponds to a default route.

13.13 BGP Path Attributes

We said that BGP is not a traditional distance-vector protocol. Instead of merely
advertising a distance to each destination, BGP advertises additional information, in-
cluding a path. The additional information is contained in the Path Attributes field of
an update message. A sender can use the path attributes to specify: a next hop for the
advertised destinations, a list of autonomous systems along the path to the destinations,

Sec. 13.13 BGP Path Attributes 275

and whether the path information was learned from another autonomous system or
derived from within the sender’s autonomous system.

It is important to note that the path attributes are factored to reduce the size of the
UPDATE message, meaning that the attributes apply to all destinations advertised in the
message. Thus, if a BGP sender intends to advertise paths to several sets of destina-
tions that each have their own path attributes, BGP must send multiple UPDATE mes-
sages.

Path attributes are important in BGP for three reasons. First, path information al-
lows a receiver to check for forwarding loops. The sender specifies an exact path of au-
tonomous systems that will be used to reach the destination. If the receiver’s autono-
mous system appears on the list, the advertisement must be rejected or there will be a
forwarding loop. Second, path information allows a receiver to implement policy con-
straints (e.g., reject a path that includes a competitor’s autonomous system). Third, path
information allows a receiver to know the source of all routes. In addition to allowing a
sender to specify whether the information came from inside its autonomous system or
from another system, the path attributes allow the sender to declare whether the infor-
mation was collected with an exterior gateway protocol such as BGP or an interior gate-
way protocol†. Thus, each receiver can decide whether to accept or reject routes that
originate in autonomous systems beyond its peers.

Conceptually, the Path Attributes field contains a list of items, where each item
consists of a triple:

(type, length, value)

Instead of using fixed-size fields for the three items, the designers chose a flexible en-
coding scheme that minimizes the space each item occupies. The type field has a fixed
size of two octets, the length field is one or two octets, and size of the value field
depends on the length. Figure 13.8 illustrates that the type field is divided into two oc-
tets.

0 1 2 3 4 5 6 7 8 15

Flag Bits Type Code

(a)

Flag Bits Description

0
1
2
3

5-7

0 for required attribute, 1 if optional
1 for transitive, 0 for nontransitive
0 for complete, 1 for partial
0 if length field is one octet, 1 if two
unused (must be zero)

(b)

Figure 13.8 (a) The two-octet type field that appears before each BGP attri-
bute path item, and (b) the meaning of each flag bit.

†The next chapter describes interior gateway protocols.

276 Routing Among Autonomous Systems (BGP) Chap. 13

Each item in the Path attributes field can have one of eight possible type codes.
Figure 13.9 summarizes the possibilities.

Type Code Meaning
1 ID of the origin of the path information
2 List of autonomous systems on path to destination
3 Next hop to use for destination
4 Discriminator used for multiple AS exit points
5 Preference used within an autonomous system
6 Indication that routes have been aggregated
7 ID of autonomous system that aggregated routes
8 ID of community for advertised destinations

Figure 13.9 The BGP attribute type codes and the meaning of each.

For each item in the Path Attributes list, a length field follows the 2-octet type
field, and is either one or two octets long. As Figure 13.8 shows, flag bit 3 specifies
the size of the length field. A receiver uses the type field to determine the size of the
length field, and then uses the contents of the length field to compute the size of the
value field.

13.14 BGP KEEPALIVE Message

Two BGP peers periodically exchange KEEPALIVE messages to test network con-
nectivity and to verify that both peers continue to function. A KEEPALIVE message
consists of the standard message header with no additional data. Thus, the total mes-
sage size is 19 octets (the minimum BGP message size).

There are two reasons why BGP uses KEEPALIVE messages. First, periodic mes-
sage exchange is needed because BGP uses TCP for transport, and TCP does not in-
clude a mechanism to continually test whether a connection endpoint is reachable.
However, TCP does report an error to an application if an attempt to send data fails.
Therefore, as long as both sides periodically send a KEEPALIVE, they will be informed
if the TCP connection fails. Second, KEEPALIVE messages conserve bandwidth com-
pared to other messages. Many early routing protocols relied on periodic exchange of
routing information to test connectivity. However, because routing information changes
infrequently, the message content seldom changes. Unfortunately, because routing mes-
sages are often large, resending the same message wastes network bandwidth. To avoid
the inefficiency, BGP separates the functionality of route update from connectivity test-
ing, allowing BGP to send small KEEPALIVE messages frequently and reserving larger
UPDATE messages for situations when reachability information changes.

Recall that a BGP speaker specifies a hold timer when it opens a connection; the
hold timer defines a maximum time that BGP is to wait without receiving a message.
As a special case, the hold timer can be zero to specify that no KEEPALIVE messages

Sec. 13.14 BGP KEEPALIVE Message 277

are used. If the hold timer is greater than zero, the standard recommends setting the
KEEPALIVE interval to one third of the hold timer. In no case can a BGP peer make
the KEEPALIVE interval less than one second (which agrees with the requirement that a
nonzero hold timer cannot be less than three seconds).

13.15 Information From The Receiver’s Perspective

An Exterior Gateway Protocol, such as BGP, differs from traditional routing proto-
cols in a significant way: a peer that uses an exterior protocol does not merely report in-
formation from its own FIB. Instead, exterior protocols provide information that is
correct from the outsider’s perspective. We say that an exterior protocol supplies
third-party routing information. There are two issues: policies and optimal routes. The
policy issue is obvious: a router inside an autonomous system may be allowed to reach
some destinations that outsiders are prohibited from reaching. The routing issue means
that a peer must advertise a next hop that is optimal from the outsider’s perspective.
The architecture in Figure 13.10 can be used to illustrate the idea.

R1 R2

R3

R4

To peer in other Autonomous System

Runs BGP

Net 5

Net 1 Net 2

Net 3

Net 4

Figure 13.10 Example of an autonomous system where R2 runs BGP and re-
ports information from the outsider’s perspective, not from its
own forwarding table.

278 Routing Among Autonomous Systems (BGP) Chap. 13

In the figure, router R2 has been designated to speak BGP on behalf of the autono-
mous system. It must report reachability to networks 1 through 4. However, when giv-
ing a next hop, it should report network 1 as reachable through router R1, networks 3
and 4 as reachable through router R3, and network 2 as reachable through R2. The key
point is that if R2 lists itself as the next hop for all destinations in the autonomous sys-
tem, routing will be suboptimal. The peer would send all traffic to R2. In particular,
when a datagram arrives from the peer destined for networks 1, 3, or 4, the peer would
send to R2 and the datagram would then take an extra hop across network 5.

13.16 The Key Restriction Of Exterior Gateway Protocols

We have already seen that because exterior protocols follow policy restrictions, the
networks they advertise may be a subset of the networks they can reach. However,
there is a more fundamental limitation imposed on exterior routing:

An exterior gateway protocol does not communicate or interpret dis-
tance metrics, even if metrics are available.

Although it allows a peer to declare that a destination has become unreachable or
to give a list of autonomous systems on the path to the destination, BGP cannot
transmit or compare the cost of two routes unless the routes come from within the same
autonomous system. In essence, BGP can only specify whether a path exists to a given
destination; it cannot transmit or compute the shorter of two paths.

We can see now why BGP is careful to label the origin of information it sends.
The essential observation is this: when a router receives advertisements for a given des-
tination from peers in two different autonomous systems, it cannot compare the costs.
Thus, advertising reachability with BGP is equivalent to saying, “My autonomous sys-
tem provides a path to this network.” There is no way for the router to say, “My auton-
omous system provides a better path to this network than another autonomous system.”

Looking at interpretation of distances allows us to see that BGP cannot be used as
a routing algorithm. Suppose a router, R, receives BGP advertisements from two
separate autonomous systems. Furthermore, suppose each of the two autonomous sys-
tems advertises reachability to a destination, D. One of them advertises a path that re-
quires a datagram to travel through three ASes and the other advertises a path that re-
quires a datagram to travel through four ASes. Which path has lower cost? Surprising-
ly, router R cannot tell.

It may seem that a peer should use the length of the path when comparing BGP ad-
vertisements. After all, if one path lists autonomous systems F, G, H, and I, and anoth-
er path lists autonomous systems X, Y, and Z, intuition tells us that the latter path is
shorter. However, a given autonomous system can be large or small. Once a datagram
reaches the autonomous system, the datagram may need to traverse multiple networks.
How many? What are the network characteristics of delay and throughput? A border
router cannot answer the questions because:

Sec. 13.16 The Key Restriction Of Exterior Gateway Protocols 279

The internal structure of an autonomous system is hidden, and no in-
formation about the cost of paths inside the system is provided by
BGP.

The consequence is that a peer has no way of comparing the real cost of two paths
if all the peer receives is a list of autonomous systems. It could turn out that a path
with four ASes involves much faster networks than a path with three ASes.

Because BGP does not allow an autonomous system to specify a metric with each
route, the autonomous system must be careful to advertise only routes that traffic should
follow. We can summarize:

Because an Exterior Gateway Protocol like BGP only propagates
reachability information, a receiver can implement policy constraints,
but cannot choose a least cost route. Therefore, BGP should only be
used to advertise paths that traffic should follow.

The key point here is: an autonomous system that uses BGP to provide exterior
routing information must either rely on policies or assume that every autonomous sys-
tem transit is equally expensive. Although it may seem innocuous, the restriction has
some surprising consequences:

1. Although BGP can advertise multiple paths to a given network, it does
not provide a way for an autonomous system to request that traffic be
forwarded over multiple paths. That is, at any given instant, all traffic
sent from a computer in one autonomous system to a network in anoth-
er will traverse one path, even if multiple physical connections are
present. Also note that an outside autonomous system will only use
one return path, even if the source system divides outgoing traffic
among two or more paths. As a result, delay and throughput between a
pair of hosts can be asymmetric, making traffic difficult to monitor or
debug and errors difficult to report.

2. BGP does not support load sharing on peers between arbitrary autono-
mous systems. If two autonomous systems have multiple routers con-
necting them, one would like to balance the traffic equally among all
routers. BGP allows autonomous systems to divide the load by net-
work (e.g., to partition themselves into multiple subsets and have mul-
tiple routers advertise partitions), but it does not support more general
load sharing.

3. As a special case of point 2, BGP alone is inadequate for optimal rout-
ing in an architecture that has two or more wide area networks inter-
connected at multiple points. Instead, managers must manually config-
ure which networks are advertised by each exterior router.

280 Routing Among Autonomous Systems (BGP) Chap. 13

4. To have rationalized routing, all autonomous systems in the Internet
must agree on a consistent scheme for advertising reachability. That is,
BGP alone will not guarantee global consistency.

13.17 The Internet Routing Architecture And Registries

For the Internet to operate flawlessly, routing information must be globally con-
sistent. Individual protocols such as BGP that handle the exchange between a pair of
routers, do not guarantee global consistency. Thus, further effort is needed to rational-
ize routing information globally. In the original Internet routing architecture, the core
system guaranteed globally consistent routing information because at any time the core
had exactly one path to each destination. However, the core system and its successor
(called the routing arbiter system) have been removed. Ironically, no single mechanism
has been devised as a replacement to handle the task of routing rationalization — the
current Internet does not have a central mechanism to validate routes and guarantee glo-
bal consistency.

To understand the current routing architecture, we need to examine the physical to-
pology. A pair of ISPs can interconnect privately (e.g., by agreeing to lease a circuit
between two routers), or can interconnect at Internet Exchange Points (IXPs), which are
also known as Network Access Points (NAPs). We say that the ISPs engage in private
peering or that they enter into a peering agreement. In terms of routing, a private peer-
ing represents the boundary between the two autonomous systems. The two ISPs define
their relationship, which can be viewed as upstream (a large ISP agrees to take traffic
from a smaller ISP), downstream, (a large ISP passes traffic to a smaller ISP), or transit
(an ISP agrees to accept and forward traffic to other ISPs).

To assist in assuring that routes are valid, ISPs use services known as Routing Reg-
istries. In essence, a Routing Registry maintains information about which ISPs own
which blocks of addresses. Thus, if ISP A sends an advertisement to ISP B claiming to
have reachability to network N, ISP B can use information from a Routing Registry to
verify that address N has been assign to ISP A. Unfortunately, many Routing Registries
exist, and there is no mechanism in place to validate the data in a registry. Thus, tem-
porary routing problems occur, such as black holes, in which a given address is not
reachable from all parts of the Internet. Of course, ISPs and most Routing Registries at-
tempt to find and repair such problems quickly, but without a centralized, authoritative
registry, Internet routing is not flawless.

13.18 BGP NOTIFICATION Message

In addition to the OPEN and UPDATE message types described above, BGP sup-
ports a NOTIFICATION message type used for control or when an error occurs. Errors
are permanent — once it detects a problem, BGP sends a notification message and then
closes the TCP connection. Figure 13.11 illustrates the message format.

Sec. 13.18 BGP NOTIFICATION Message 281

0 8 16 31

ERR CODE ERR SUBCODE DATA

Figure 13.11 BGP NOTIFICATION message format. These octets follow
the standard message header.

The 8-bit field labeled ERR CODE specifies one of the possible reasons listed in
Figure 13.12.

ERR CODE Meaning
1 Error in message header
2 Error in OPEN message
3 Error in UPDATE message
4 Hold timer expired
5 Finite state machine error
6 Cease (terminate connection)

Figure 13.12 The possible values of the ERR CODE field in a BGP NOTIFI-
CATION message.

For each possible ERR CODE, the ERR SUBCODE field contains a further explanation.
Figure 13.13 lists the possible values.

13.19 BGP Multiprotocol Extensions For IPv6

BGP was originally designed to convey IPv4 routing information. By 2000, it had
become apparent that autonomous systems needed to exchange additional types of rout-
ing information. At the time, the two most pressing needs were IPv6 and MPLS, which
is described in Chapter 16. Rather than create one version of BGP for IPv6 and another
version for MPLS, a group in the IETF created multiprotocol extensions. The idea is
that when advertising destinations, a sender can specify that the destination addresses
are of a particular address family. To send IPv6 information a sender specifies the IPv6
address family, and to send MPLS information a sender specifies the MPLS address
family.

Only three items carried in BGP messages use IPv4 addresses: the address of a
destination that is advertised, the address of a next hop used to reach the destination,
and the address of an aggregator that has aggregated prefixes. The extensions are
designed to allow any of the three items to use an arbitrary address family rather than
IPv4.

282 Routing Among Autonomous Systems (BGP) Chap. 13

Subcodes For Message Header Errors

1 Connection not synchronized
2 Incorrect message length
3 Incorrect message type

Subcodes For OPEN Message Errors

1 Version number unsupported
2 Peer AS invalid
3 BGP identifier invalid
4 Unsupported optional parameter
5 Deprecated (no longer used)
6 Hold time unacceptable

Subcodes For UPDATE Message Errors

1 Attribute list malformed
2 Unrecognized attribute
3 Missing attribute
4 Attribute flags error
5 Attribute length error
6 Invalid ORIGIN attribute
7 Deprecated (no longer used)
8 Next hop invalid
9 Error in optional attribute

10 Invalid network field
11 Malformed AS path

Figure 13.13 The meaning of the ERR SUBCODE field in a BGP NOTIFI-
CATION message.

The designers chose two key properties for the multiprotocol extensions:

Optional. Multiprotocol extensions are not required.

Non-transitive. A router may not pass the extensions to other ASes.

The decisions are important for two reasons. Making the extensions optional
guarantees backward compatibility (i.e., old BGP software will continue to function). If
an implementation of BGP does not understand the extensions, it will simply ignore the
extensions and the routes they advertise. The prohibition on forwarding extensions
keeps Internet routing from being vulnerable to attack. If blind forwarding were permit-
ted, an AS that did not understand the extensions might inadvertently forward incorrect
information, which the next AS would trust.

Sec. 13.19 BGP Multiprotocol Extensions For IPv6 283

The multiprotocol extensions are carried in BGP’s Path Attributes. Two new attri-
bute types were created to allow a sender to specify a list of non-IPv4 destinations that
are reachable and a list of non-IPv4 destinations that are unreachable. Rather than use
the term reachable destinations, the extensions use the term Network Layer Reachabili-
ty Information (NLRI). Consequently, the two attributes types are:

Multiprotocol Reachable NLRI (Type 14)

Multiprotocol Unreachable NLRI (Type 15)

13.20 Multiprotocol Reachable NLRI Attribute

A router uses the Multiprotocol Reachable NLRI attribute to advertise reachable
destinations, either within its autonomous system or destinations reachable through the
autonomous system. Each destination in the attribute is called a Subnetwork Protocol
Address (SNPA). Figure 13.14 lists the fields in the attribute:

0 7 15

Address Family Family Extension Addr. Length

Next Hop Address (variable). . .
Num. of SNPAs, N

Length of SNPA 1

SNPA 1 (variable). . .
Length of SNPA 2

SNPA 2 (variable). . .
... ...

Length of SNPA N

SNPA N (variable). . .
Network Layer Reachability Information (variable). . .

Figure 13.14 The format of a BGP Multiprotocol Reachable NLRI attribute
used for IPv6 and other non-IPv4 destination addresses.

284 Routing Among Autonomous Systems (BGP) Chap. 13

As the figure shows, the attribute starts with fields that give the address family and
address length. The attribute then specifies a next-hop address and a set of destinations
(SNPAs) reachable through the next hop. Each destination is preceded by a 1-octet
length.

13.21 Internet Routing And Economics

Although research on routing focuses on finding mechanisms that compute shortest
paths, shortest paths are not the primary concern of Tier-1 ISPs; economics is. Before
they interconnect their networks and begin passing traffic, a pair of ISPs negotiates a
business contract. Typical contacts specify one of three possibilities:

ISP 1 is a customer of ISP 2.

ISP 2 is a customer of ISP 1.

The two ISPs are peers.

The customer relationship is defined by the flow of data: an ISP that receives more
data than it sends is defined to be a customer and must pay a fee. The definition is easy
to understand if we consider a small ISP. When a residential user becomes a customer
of a local ISP (e.g., a cable provider), the user must pay a fee because the user will
download much more data than they send (e.g., each time a user browses the Web, data
must be sent from the provider to the user). The amount the customer pays depends on
how much data the customer wants to download. At the next level of the ISP hierarchy,
a local ISP becomes a customer of a larger ISP — because it downloads more data than
it generates, the local ISP must pay the larger ISP.

What about two Tier-1 ISPs at the top of the hierarchy? If they are truly peers, the
two ISPs will each have the same number of customers. Thus, on average, they expect
the same amount of data to travel in each direction between them. So, they write a con-
tract in which they agree to peer, which means they will split the cost of a connection
between them. However, they also agree to monitor the data that passes across the con-
nection. If during a given month more data passes from ISP 1 to ISP 2, the contract
stipulates that ISP 2 will pay ISP 1 an amount that depends on the difference in the
amount of data.

Once contracts have been set up, ISPs try to arrange routing to generate the most
revenue. Usually, customers pay the most for data. Therefore, if a customer advertises
reachability to a given destination, an ISP will prefer to send data through the customer
rather than a peer. Furthermore, if an ISP wants to avoid taking data from a peer, the
ISP can arrange BGP messages that cause the peer to stop sending (e.g., if an ISP puts
the peer’s AS number on the path in an advertisement, the peer will reject the path as
having a routing loop). The point is:

Sec. 13.21 Internet Routing And Economics 285

At the center of the Internet, routing is based largely on economics
rather than shortest paths. Major ISPs arrange policies, preferences,
and BGP advertisements to force datagrams along routes that gen-
erate the most revenue, independent of whether the route is shortest.

13.22 Summary

In a large internet, routers must be partitioned into groups or the volume of routing
traffic would be intolerable. The global Internet is composed of a set of autonomous
systems, where each autonomous system consists of routers and networks under one ad-
ministrative authority. An autonomous system uses an Exterior Gateway Protocol to
advertise routes to other autonomous systems. Specifically, an autonomous system
must advertise reachability of its networks to another system before its networks are
reachable from sources within the other system.

The Border Gateway Protocol, BGP, is the most widely used Exterior Gateway
Protocol. BGP contains five message types that are used to initiate communication
(OPEN), send reachability information (UPDATE), report an error condition (NOTIFI-
CATION), revalidate information (REFRESH), and ensure peers remain in communica-
tion (KEEPALIVE). Each message starts with a standard header. BGP uses TCP for
communication.

Although originally created for IPv4, BGP has been extended to handle other pro-
tocols. In particular, a set of multiprotocol extensions allow BGP to pass information
about MPLS as well as IPv6.

In the global Internet, each large ISP is a separate autonomous system, and the
boundary between autonomous systems consists of a peering agreement between two
ISPs. Physically, peering can occur in an Internet Exchange Point or over a private
leased circuit. An ISP uses BGP to communicate with its peer, both to advertise net-
works (i.e., address prefixes) that can be reached through it and to learn about networks
that can be reached by forwarding to the peer. Although services known as Routing
Registries exist that aid ISPs in validating advertisements, problems can occur because
the Internet does not currently have an authoritative, centralized registry.

At the center of the Internet, routing is based on economics rather than shortest
paths. Major ISPs choose routes that will maximize their revenue and minimize their
costs.

EXERCISES

13.1 If your site runs an Exterior Gateway Protocol such as BGP, how many routes do you
advertise? How many routes do you import from an ISP?

286 Routing Among Autonomous Systems (BGP) Chap. 13

13.2 Some implementations of BGP use a hold down mechanism that causes the protocol to
delay accepting an OPEN from a peer for a fixed time following the receipt of a cease
request message from that neighbor. Find out what problem a hold down helps solve.

13.3 The formal specification of BGP includes a finite state machine that explains how BGP
operates. Draw a diagram of the state machine and label transitions.

13.4 What happens if a router in an autonomous system sends BGP routing update messages
to a router in another autonomous system, claiming to have reachability for every possi-
ble Internet destination?

13.5 Can two autonomous systems establish a forwarding loop by sending BGP update mes-
sages to one another? Why or why not?

13.6 Should a router that uses BGP to advertise routes treat the set of routes advertised dif-
ferently than the set of routes in the local forwarding table? For example, should a
router ever advertise reachability if it has not installed a route to that network in its for-
warding table? Why or why not? (Hint: read RFC 1771.)

13.7 With regard to the previous question, examine the BGP-4 specification carefully. Is it
legal to advertise reachability to a destination that is not listed in the local forwarding
table?

13.8 If you work for a large corporation, find out whether it includes more than one autono-
mous system. If so, how do they exchange routing information?

13.9 What is the chief advantage of dividing a large, multi-national corporation into multiple
autonomous systems? What is the chief disadvantage?

13.10 Corporations A and B use BGP to exchange routing information. The network adminis-
trator at Corporation A configures BGP to omit network N from advertisements sent to
B, which is intended to prevent computers in B from reaching machines on network N.
Is network N secure? Why or why not?

13.11 Because BGP uses a reliable transport protocol, KEEPALIVE messages cannot be lost.
Does it make sense to specify a keepalive interval as one-third of the hold timer value?
Why or why not?

13.12 Consult the RFCs for details of the Path Attributes field. What is the minimum size of a
BGP UPDATE message?

This page intentionally left blank

Chapter Contents
14.1 Introduction, 289
14.2 Static Vs. Dynamic Interior Routes, 289
14.3 Routing Information Protocol (RIP), 293
14.4 Slow Convergence Problem, 294
14.5 Solving The Slow Convergence Problem, 296
14.6 RIP Message Format (IPv4), 297
14.7 Fields In A RIP Message, 299
14.8 RIP For IPv6 (RIPng), 299
14.9 The Disadvantage Of Using Hop Counts, 301
14.10 Delay Metric (HELLO), 301
14.11 Delay Metrics, Oscillation, And Route Flapping, 302
14.12 The Open SPF Protocol (OSPF), 303
14.13 OSPFv2 Message Formats (IPv4), 305
14.14 Changes In OSPFv3 To Support IPv6, 310
14.15 IS-IS Route Propagation Protocol, 312
14.16 Trust And Route Hijacking, 313
14.17 Gated: A Routing Gateway Daemon, 313
14.18 Artificial Metrics And Metric Transformation, 314
14.19 Routing With Partial Information, 315
14.20 Summary, 315

14

Routing Within An
Autonomous System (RIP,
RIPng, OSPF, IS-IS)

14.1 Introduction

The previous chapter introduces the autonomous system concept and examines
BGP, an Exterior Gateway Protocol that a router uses to advertise networks within its
system to other autonomous systems. This chapter completes our overview of internet
routing by examining how a router in an autonomous system learns about other net-
works within its autonomous system.

14.2 Static Vs. Dynamic Interior Routes

Two routers within an autonomous system are said to be interior to one another.
For example, two routers on a university campus are considered interior to one another
as long as machines on the campus are collected into a single autonomous system.

How can routers in an autonomous system learn about networks within the autono-
mous system? In the smallest intranets, network managers can establish and modify
routes manually. The manager keeps a list of networks and updates the forwarding
tables whenever a new network is added to, or deleted from, the autonomous system.
For example, consider the small corporate intranet shown in Figure 14.1.

289

290 Routing Within An Autonomous System (RIP, RIPng, OSPF, IS-IS) Chap. 14

R2

R1

R4R3

Net 2

Net 3

Net 1

Net 4 Net 5

Figure 14.1 An example of a small intranet consisting of five networks and
four routers. Only one possible route exists between any two
hosts in the example.

Routing for the intranet in the figure is trivial because only one path exists between
any two points. If a network or router fails, the intranet will be disconnected because
there are no redundant paths. Therefore, a manager can configure routes in all hosts
and routers manually, and never needs to change the routes. Of course, if the intranet
changes (e.g., a new network is added), the manager must reconfigure the routes accord-
ingly.

The disadvantages of a manual system are obvious: manual systems cannot accom-
modate rapid growth and rely on humans to change routes whenever a network failure
occurs. In most intranets, humans simply cannot respond to changes fast enough to
handle problems; automated methods must be used. To understand how automated
routing can increase reliability, consider what happens if we add one additional router to
the intranet in Figure 14.1, producing the intranet shown in Figure 14.2.

In the figure, multiple paths exist between some hosts. In such cases, a manager
usually chooses one path to be a primary path (i.e., the path that will be used for all
traffic). If a router or network along the primary path fails, routes must be changed to
send traffic along an alternate path. Automated route changes help in two ways. First,
because computers can respond to failures much faster than humans, automated route
changes are less time consuming. Second, because humans can make small errors when
entering network addresses, automated routing is less error-prone. Thus, even in small
internets, an automated system is used to change routes quickly and reliably.

Sec. 14.2 Static Vs. Dynamic Interior Routes 291

R2

R1

R4R3

R5

Net 2

Net 3

Net 1

Net 4 Net 5

Figure 14.2 The addition of router R5 introduces an alternate path between
networks 2 and 3. Routing software can quickly adapt to a
failure and automatically switch routes to the alternate path.

To automate the task of keeping routing information accurate, interior routers
periodically communicate with one another to exchange routing information. Unlike
exterior router communication, for which BGP provides a widely accepted standard, no
single protocol has emerged for use within an autonomous system or a site. Part of the
reason for diversity arises from the diversity in autonomous systems. Some autono-
mous systems correspond to a large enterprise (e.g., a corporation) at a single site, while
others correspond to an organization with many sites connected by a wide area network.
Even if we consider individual Internet sites, the network topologies (e.g., degree of
redundancy), sizes, and network technologies vary widely. Another reason for diversity
of interior routing protocols stems from the tradeoffs between ease of configuration,
functionality, and traffic the protocols impose on the underlying networks — protocols
that are easy to install and configure may not provide the functionality needed or may
impose intolerable load on the networks. As a result, a handful of protocols have be-
come popular, but no single protocol is always optimal.

Although multiple interior protocols are used, a given autonomous system often
chooses to limit the number of protocols that are deployed. A small AS tends to choose
a single protocol and use it exclusively to propagate routing information internally.
Even larger autonomous systems tend to choose a small set. There are two reasons.
First, one of the most complex aspects of routing arises from the interaction of proto-
cols. If protocol A is used on some routers and protocol B is used on other routers, at
least one router between the two sets must communicate using both protocols and must
have a way to transfer information between them. Such interactions are complex, and
care must be taken or differences in protocols can lead to unexpected consequences.
Second, because routing protocols are difficult to understand and configure, each auton-

292 Routing Within An Autonomous System (RIP, RIPng, OSPF, IS-IS) Chap. 14

omous system must have a staff that is trained to install, configure, and support each in-
dividual protocol, as well as software that handles interactions among them. Training
can be expensive, so limiting the number of protocols can reduce costs.

We use the term Interior Gateway Protocol (IGP) as a generic description that
refers to any protocol that interior routers use when they exchange routing information.
Figure 14.3 illustrates the general idea: two autonomous systems each use a specific
IGP to propagate routing information among interior routers. The systems then use
BGP to summarize information and communicate it to other autonomous systems.

BGP
used

R1 R2

Autonomous
System 1

Autonomous
System 2

IGP1

used
IGP2

used

Figure 14.3 Conceptual view of two autonomous systems, each using its own
IGP internally, and then using BGP to communicate routes to
another system.

In the figure, IGP1 refers to the interior routing protocol used within autonomous
system 1, and IGP2 refers to the protocol used within autonomous system 2. Router R1

will use IGP1 to obtain routes internally, summarize the information, apply policies, and
then use BGP to export the resulting information. Similarly, router R2 will use IGP2 to
obtain information that it exports. We can summarize the key concept:

If multiple routing protocols are used, a single router may run two or
more routing protocols simultaneously.

In particular, routers that run BGP to advertise reachability usually also need to run an
IGP to obtain information from within their autonomous system. The next sections
describe specific interior gateway protocols; later sections consider some consequences
of using multiple protocols.

Sec. 14.3 Routing Information Protocol (RIP) 293

14.3 Routing Information Protocol (RIP)

14.3.1 History of RIP

The Routing Information Protocol (RIP) has remained in widespread use since ear-
ly in the Internet. Originally, RIP was known by the name of an application that imple-
ments it, routed†. The routed software was designed at the University of California at
Berkeley to provide consistent routing information among machines on local networks.
The protocol was based on earlier research done at Xerox Corporation’s Palo Alto
Research Center (PARC). The Berkeley version of RIP generalized the PARC version
to cover multiple families of networks. RIP relies on physical network broadcast to
make routing exchanges quickly, and was not originally designed to be used on large,
wide area networks. Vendors later developed versions of RIP suitable for use on
WANs.

Despite minor improvements over its predecessors, the popularity of RIP as an IGP
does not arise from its technical merits alone. Instead, it is the result of Berkeley distri-
buting routed software along with their popular 4BSD UNIX systems. Many early
TCP/IP sites adopted and installed RIP without considering its technical merits or limi-
tations. Once installed and running, it became the basis for local routing, and vendors
began offering products compatible with RIP.

14.3.2 RIP Operation

The underlying RIP protocol is a straightforward implementation of distance-vector
routing for local networks. RIP supports two type of participants: active and passive.
Active participants advertise their routes to others; passive participants listen to RIP
messages and use them to update their forwarding table, but do not advertise. Only a
router can run RIP in active mode; if a host runs RIP, the host must use passive mode.

A router running RIP in active mode broadcasts a routing update message every 30
seconds. The update contains information taken from the router’s current FIB. Each
update contains a set of pairs, where each pair specifies an IP network address and an
integer distance to that network. RIP uses a hop count metric to measure distances. In
the RIP metric, a router is defined to be one hop from a directly connected network‡,
two hops from a network that is reachable through one other router, and so on. Thus,
the number of hops or the hop count along a path from a given source to a given desti-
nation refers to the number of networks that a datagram encounters along that path. It
should be obvious that using hop counts to calculate shortest paths does not always pro-
duce optimal results. For example, a path with hop count 3 that crosses three Ethernets
may be substantially faster than a path with hop count 2 that crosses two satellite con-
nections. To compensate for differences in technologies, many RIP implementations al-
low managers to configure artificially high hop counts when advertising connections to
slow networks.

Both active and passive RIP participants listen to all broadcast messages and up-
date their forwarding tables according to the distance-vector algorithm described in

†The name comes from the UNIX convention of attaching “d” to the names of daemon processes; it is
pronounced “route-d”.

‡Other routing protocols define a direct connection to be zero hops; we say that RIP uses 1-origin hop
counts.

294 Routing Within An Autonomous System (RIP, RIPng, OSPF, IS-IS) Chap. 14

Chapter 12. For example, if the routers in the intranet of Figure 14.2 on page 291 use
RIP, router R1 will broadcast a message on network 2 that contains the pair (1, 1), mean-
ing that it can reach network 1 at distance (i.e., cost) 1. Routers R2 and R5 will receive
the broadcast and install a route to network 1 through R1 (at cost 2). Later, routers R2

and R5 will include the pair (1, 2) when they broadcast their RIP messages on network
3. Eventually, all routers will install a route to network 1.

RIP specifies a few rules to improve performance and reliability. For example,
once a router learns a route from another router, it must apply hysteresis, meaning that
it does not replace the route with an equal cost route. In our example, if routers R2 and
R5 both advertise network 1 at cost 2, routers R3 and R4 will install a route through the
one that happens to advertise first. We can summarize:

To prevent oscillation among equal cost paths, RIP specifies that ex-
isting routes should be retained until a new route has strictly lower
cost.

What happens if a router fails (e.g., the router crashes)? RIP specifies that when a
router receives and installs a route in its forwarding table, the router must start a timer
for the entry. The timer is reset whenever the router receives another RIP message ad-
vertising the same route. The route becomes invalid if 180 seconds pass without the
route being advertised again.

RIP must handle three kinds of errors caused by the underlying algorithm. First,
because the algorithm does not explicitly detect forwarding loops, RIP must either as-
sume participants can be trusted or take precautions to prevent such loops. Second, to
prevent instabilities, RIP must use a low value for the maximum possible distance (RIP
uses 16). Thus, for intranets in which legitimate hop counts approach 16, managers
must divide the intranet into sections or use an alternative protocol†. Third, the
distance-vector algorithm used by RIP can create a problem known as slow convergence
or count to infinity in which inconsistencies arise because routing update messages
propagate slowly across the network. Choosing a small infinity (16) helps limit slow
convergence, but does not eliminate it.

14.4 Slow Convergence Problem

Forwarding table inconsistencies and the slow convergence problem are not unique
to RIP. They are fundamental problems that can occur with any distance-vector proto-
col in which update messages carry only pairs of destination network and distance to
that network. To understand the problem, consider using a distance-vector protocol on
the routers in Figure 14.2 (page 291). To simply the example, we will only consider
three routers, R1, R2, and R3, and only consider the routes they have for network 1. To
reach network 1, R3 forwards to R2, and R2 forwards to R1. Part (a) of Figure 14.4 illus-
trates the forwarding.

†Note that the hop count used in RIP measures the span of the intranet — the longest distance between
two routers — rather than the total number of networks or routers. Most corporate intranets have a span that
is much smaller than 16.

Sec. 14.4 Slow Convergence Problem 295

Network
1

R1 R2 R3

(a)

Network
1

R1 R2 R3

(b)

Network
1

R1 R2 R3

(c)

Figure 14.4 Illustration of the slow convergence problem with (a) three
routers that have a route to network 1, (b) the connection to net-
work 1 has failed and R1 has lost its router, and (c) a routing
loop caused because R2 advertises a route to network 1.

In part (a), we assume all routers are running a distance-vector protocol. We will
assume RIP, but the idea applies to any distance-vector protocol. Router R1 has a direct
connection to network 1. Therefore, when it broadcasts the set of destinations from its
FIB, R1 includes an entry for network 1 at distance 1. Router R2 has learned the route
from R1, installed the route in its forwarding table, and advertises the route at distance
2. Finally, R3 has learned the route from R2 and advertises the route at distance 3.

In part (b) of the figure, we assume a failure has occurred and disconnected R1

from network 1. Perhaps the connection between router R1 and network 1 was un-
plugged or network 1 lost power. The network interface in R1 will detect the loss of
connectivity, and IP will remove the route to network 1 from the forwarding table (or
leave the entry, but set the distance to infinity so the route will not be used).

Remember that R2 broadcasts its routing information periodically. Suppose that
immediately after R1 detects the failure and removes the route from its table, R2 broad-
casts its routing information. Among other items in the broadcast, R2 will announce a
route to network 1 at distance 2. However, unless the protocol includes extra mecha-
nisms to prevent it, the rules for distance-vector routing mean that R1 will examine the
broadcast from R2, find a route to network 1, and add a new route to its table with dis-
tance 3 (the distance R2 advertised plus 1) and R2 as the next hop.

Unfortunately, part (c) of the figure shows what has happened: R1 has installed a
route for network 1 that goes through R2, and R2 has a route that goes through R1. At
this point, if either R1 or R2 receives a datagram destined for network 1, they will route
the datagram back and forth until the datagram’s hop limit is reached. In other words:

296 Routing Within An Autonomous System (RIP, RIPng, OSPF, IS-IS) Chap. 14

A conventional distance-vector algorithm can form a routing loop
after a failure occurs because routing information that a router sent
can reach the router again.

The problem persists because the two routers will continue to remain confused
about routing. In the next round of routing exchanges, R1 will broadcast an advertise-
ment that includes the current cost to reach network 1. When it receives the advertise-
ment from R1, R2 will learn that the new distance is 3. R2 updates its distance to reach
network 1, making the distance 4. In the third round, R1 receives a routing update from
R2 which includes the increased distance. R1 will increases its distance to 5 and adver-
tise the higher distance in the next update. The two routers continue sending routing
update messages back and forth, and the distance increases by 1 on each exchange. Up-
dates continue until the count reaches infinity (16 for RIP).

14.5 Solving The Slow Convergence Problem

A technique known as split horizon update has been invented that allows distance-
vector protocols, such as RIP, to solve the slow convergence problem. When using
split horizon, a router does not propagate information about a route back over the same
interface from which the route arrived. In our example, split horizon prevents router R2

from advertising a route to network 1 back to router R1, so if R1 loses connectivity to
network 1, it will stop advertising a route. With split horizon, no forwarding loop ap-
pears in the example network. Instead, after a few rounds of routing updates, all routers
will agree that the network is unreachable. However, the split horizon heuristic does
not prevent forwarding loops in all possible topologies as one of the exercises suggests.

Another way to think of the slow convergence problem is in terms of information
flow. If a router advertises a short route to some network, all receiving routers respond
quickly to install that route. If a router stops advertising a route, the protocol must
depend on a timeout mechanism before it considers the route unreachable. Once the
timeout occurs, the router finds an alternative route and starts propagating that informa-
tion. Unfortunately, a router cannot know if the alternate route depended on the route
that just disappeared. Thus, negative information does not always propagate quickly. A
short epigram captures the idea and explains the phenomenon:

In routing protocols, good news travels quickly; bad news travels
slowly.

Another technique used to solve the slow convergence problem employs hold
down. Hold down forces a participating router to ignore information about a network
for a fixed period of time following receipt of a message that claims the network is un-
reachable. For RIP, the hold down period is set to 60 seconds, twice as long as a nor-
mal update period. The idea is to wait long enough to ensure that all machines receive

Sec. 14.5 Solving The Slow Convergence Problem 297

the bad news and not mistakenly accept a message that is out of date. It should be not-
ed that all machines participating in a RIP exchange need to use identical notions of
hold down, or forwarding loops can occur. The disadvantage of a hold down technique
is that if forwarding loops occur, they will be preserved for the duration of the hold
down period. More important, the hold down technique preserves all incorrect routes
during the hold down period, even when alternatives exist.

A final technique that helps solve the slow convergence problem is called poison
reverse. Once a connection disappears, the router advertising the connection retains the
entry for several update periods, and includes an infinite cost route in its broadcasts. To
make poison reverse most effective, it must be combined with triggered updates. The
triggered update mechanism forces a router to broadcast routing information immediate-
ly after receiving bad news. That is, the router does not wait until its next periodic
broadcast. By sending an update immediately, a router minimizes the time it is vulner-
able (i.e., the time during which neighbors might advertise short routes because they
have not received the bad news).

Unfortunately, while triggered updates, poison reverse, hold down, and split hor-
izon techniques all solve some problems, they introduce others. For example, consider
what happens with triggered updates when many routers share a common network. A
single broadcast may change all their forwarding tables, triggering a new round of
broadcasts. If the second round of broadcasts changes tables, it will trigger even more
broadcasts. A broadcast avalanche can result†.

The use of broadcast, potential for forwarding loops, and use of hold down to
prevent slow convergence can make RIP extremely inefficient in a wide area network.
Broadcasting always takes substantial bandwidth. Even if no avalanche problems occur,
having all machines broadcast periodically means that the traffic increases as the
number of routers increases. The potential for forwarding loops can also be deadly
when line capacity is limited. Once lines become saturated by looping packets, it may
be difficult or impossible for routers to exchange the routing messages needed to break
the cycle. Also, in a wide area network, hold down periods are so long that the timers
used by higher-level protocols can expire and lead to broken connections.

14.6 RIP Message Format (IPv4)

RIP messages can be broadly classified into two types: routing information mes-
sages and messages used to request information. Both use the same format, which con-
sists of a fixed header followed by an optional list of network and distance pairs. Fig-
ure 14.5 shows the message format used with RIP version 2 (RIP2), the current version.

In the figure, field COMMAND specifies an operation; only five commands are de-
fined. Figure 14.6 lists the commands and the meaning of each.

†To help avoid an avalanche, RIP requires each router to wait a small random time before sending a trig-
gered update.

298 Routing Within An Autonomous System (RIP, RIPng, OSPF, IS-IS) Chap. 14

0 8 16 24 31

COMMAND (1–5) VERSION (2) MUST BE ZERO

FAMILY OF NET 1 ROUTE TAG FOR NET 1

IP ADDRESS OF NET 1

SUBNET MASK FOR NET 1

NEXT HOP FOR NET 1

DISTANCE TO NET 1

FAMILY OF NET 2 ROUTE TAG FOR NET 2

IP ADDRESS OF NET 2

SUBNET MASK FOR NET 2

NEXT HOP FOR NET 2

DISTANCE TO NET 2

. . .

Figure 14.5 The format of an IPv4 version 2 RIP message. After the 32-bit
header, the message contains a sequence of pairs, where each
pair specifies an IPv4 prefix, next hop, and distance to the desti-
nation.

Command Meaning
1 Request for partial or full routing information
2 Response containing network-distance pairs from

sender’s forwarding information base
9 Update Request (used with demand circuits)

10 Update Response (used with demand circuits)
11 Update Acknowledge (used with demand circuits)

Figure 14.6 The commands used with RIP. In typical implementations, only
command 2 is used.

Although we have described RIP as sending routing updates periodically, the pro-
tocol includes commands that permit queries to be sent. For example, a host or router
can send a request command to request routing information. Routers can use the
response command to reply to requests. In most cases, a router periodically broadcasts
unsolicited response messages. Field VERSION in Figure 14.5 contains the protocol
version number (2 in this case), and is used by the receiver to verify it will interpret the
message correctly.

Sec. 14.7 Fields In A RIP Message 299

14.7 Fields In A RIP Message

Because it was initially used with addresses other than IPv4, RIP uses a 16-bit
FAMILY OF NET field to specify the type of the address that follows. Values for the
field were adopted values from 4.3 BSD Unix; IPv4 addresses are assigned family 2.
Two fields in each entry specify an IPv4 prefix: IP ADDRESS OF NET and SUBNET
MASK FOR NET. As expected, the mask specifies which bits in the address correspond
to the prefix. The NEXT HOP FOR NET field specifies the address of a router that is
the next hop for the route. The last field of each entry in a RIP message, DISTANCE
TO NET, contains an integer count of the distance to the specified network. As dis-
cussed above, RIP uses 1-origin routes, which means a directly connected network is
one hop away. Furthermore, because RIP interprets 16 as infinity (i.e., no route exists),
all distances are limited to the range 1 through 16. Surprisingly, the distance is as-
signed a 32-bit field, even though only the low-order five bits are used.

RIP2 attaches a 16-bit ROUTE TAG FOR NET field to each entry. A router must
send the same tag it receives when it transmits the route. Thus, the route tag provides a
way to propagate additional information such as the origin of the route. In particular, if
RIP2 learns a route from another autonomous system, it can use the route tag to propa-
gate the autonomous system’s number.

In addition to unicast IPv4 addresses, RIP uses the convention that a zero address
(e.g., 0.0.0.0), denotes a default route. RIP attaches a distance metric to every route it
advertises, including the default route. Thus, it is possible to arrange for two routers to
advertise a default route (e.g., a route to the rest of the internet) at different metrics,
making one of them a primary path and the other a backup.

To prevent RIP from increasing the CPU load of hosts unnecessarily, the designers
allow RIP2 to multicast updates instead of broadcasting them. Furthermore, RIP2 is as-
signed a fixed multicast address, 224.0.0.9, which means that machines using RIP2 do
not need to run IGMP†. Finally, RIP2 multicast is restricted to a single network.

Note that a RIP message does not contain an explicit length field or an explicit
count of entries. Instead, RIP assumes that the underlying delivery mechanism will tell
the receiver the length of an incoming message. In particular, when used with TCP/IP,
RIP messages rely on UDP to tell the receiver the message length. RIP operates on
UDP port 520. Although a RIP request can originate at other UDP ports, the destina-
tion UDP port for requests is always 520, as is the source port from which RIP broad-
cast messages originate.

14.8 RIP For IPv6 (RIPng)

It may seem that the FAMILY OF NET field in the original design permits arbitrary
protocol addresses to be used. However, instead of merely using the existing design, a
new version of RIP was created for IPv6. Called RIPng‡, the new protocol has an en-
tirely new message format and even operates on a different UDP port than RIP (port
521 as opposed to port 520). Figure 14.7 illustrates the format.

†Chapter 15 describes the Internet Group Management Protocol.
‡The suffix ng stands for “next generation”; IPv6 was initially named IPng.

300 Routing Within An Autonomous System (RIP, RIPng, OSPF, IS-IS) Chap. 14

0 8 16 31

COMMAND (1-2) VERSION (1) MUST BE ZERO

ROUTE TABLE ENTRY 1
(20 OCTETS)

ROUTE TABLE ENTRY N
(20 OCTETS)

...
...

Figure 14.7 The overall format of a RIPng message used to carry IPv6 rout-
ing information.

Like RIP2, a RIPng message does not include a size field, nor does it include a
count of items that follow; a receiver computes the number of route table entries from
the size of the packet (which is obtained from UDP). As the figure indicates, each
ROUTE TABLE ENTRY occupies 20 octets (i.e., the figure is not drawn to scale). Fig-
ure 14.8 illustrates the format of an individual route table entry.

0 16 24 31

IPv6 PREFIX

ROUTE TAG PREFIX LENGTH METRIC

Figure 14.8 The format of each ROUTE TABLE ENTRY in a RIPng mes-
sage

Observant readers may have noticed that RIPng does not include a field that stores
the next hop for a route. The designers were aware that including a next hop in each
route table entry would make the message size extremely large. Therefore, they chose
an alternative: a route table entry with a metric field of 0xFF specifies a next hop rather
than a destination. The next hop applies to all the route table entries that follow until
another next hop entry or the end of the message.

Other than the new message format, the use of IPv6 addresses, and the special pro-
vision for a next hop, RIPng resembles RIP. Messages are still sent via UDP, and

Sec. 14.8 RIP For IPv6 (RIPng) 301

RIPng still transmits a routing update every 30 seconds and uses a timeout of 180
seconds before considering a route expired. RIPng also preserves the techniques of split
horizon, poison reverse, and triggered updates.

14.9 The Disadvantage Of Using Hop Counts

Using RIP or RIPng as an interior gateway protocol restricts routing to a hop-count
metric. Even in the best cases, hop counts provide only a crude measure of network
capacity or responsiveness. We know that using hop counts does not always yield
routes with least delay or highest capacity. Furthermore, computing routes on the basis
of minimum hop counts has the severe disadvantage that it makes routing relatively
static because routes cannot respond to changes in network load. Therefore, it may
seem odd that a protocol would be designed to use a hop-count metric. The next sec-
tions consider an alternative metric and explain why hop count metrics remain popular
despite their limitations.

14.10 Delay Metric (HELLO)

Although now obsolete, the HELLO protocol provides an example of an IGP that
was once deployed in the Internet and uses a routing metric other than hop count. Each
HELLO message carried timestamp information as well as routing information, which
allowed routers using HELLO to synchronize their clocks. Interestingly, HELLO used
the synchronized clocks to find the delay on the link between each pair of routers so
that each router could compute shortest delay paths to all destinations.

The basic idea behind HELLO is simple: use a distance-vector algorithm to propa-
gate routing information. Instead of having routers report a hop count, however, HEL-
LO reports an estimate of the delay to the destination. Having synchronized clocks al-
lows a router to estimate delay by placing a timestamp on each packet. Before sending
a packet, the sender places the current clock value in the packet as a timestamp, and the
receiver subtracts the value from the current clock value. Having synchronized clocks
allows delay to be computed without relying on round-trip samples, which means the
delay in each direction can be estimated independently (i.e., congestion in one direction
will not affect the estimated delay in the other direction).

HELLO uses the standard distance-vector approach for updates. When a message
arrives from machine X, the receiver examines each entry in the message and changes
the next hop to X if the route through X is less expensive than the current route (i.e., the
delay to X plus the delay from X to the destination is less than the current delay to the
destination).

302 Routing Within An Autonomous System (RIP, RIPng, OSPF, IS-IS) Chap. 14

14.11 Delay Metrics, Oscillation, And Route Flapping

It may seem that using delay as a routing metric would produce better routes than
using a hop count and that all routing protocols should adopt a delay metric. In fact,
HELLO worked well in the early Internet backbone. However, there is an important
reason why delay is not used as a metric in current protocols: instability.

Even if two paths have identical characteristics, any protocol that changes routes
quickly can become unstable. Instability arises because delay, unlike hop counts, is not
static. Minor variations in delay measurements occur because of hardware clock drift,
CPU load during measurement, or bit delays caused by link-level synchronization.
Thus, if a routing protocol reacts quickly to slight differences in delay, it can produce a
two-stage oscillation effect in which traffic switches back and forth between the alter-
nate paths. In the first stage, the router finds the delay on path 1 slightly less and
abruptly switches traffic onto it. In the next round, the router finds that changing the
load to path 1 has increased the delay and that path 2 now has slightly less delay. So,
the router switches traffic back to path 2 and the situation repeats.

To help avoid oscillation, protocols that use delay implement several heuristics.
First, they employ the hold down technique discussed previously to prevent routes from
changing rapidly. Second, instead of measuring as accurately as possible and compar-
ing the values directly, the protocols round measurements to large multiples or imple-
ment a minimum threshold by ignoring differences less than the threshold. Third, in-
stead of comparing each individual delay measurement, they keep a running average of
recent values or alternatively apply a K-out-of-N rule that requires at least K of the most
recent N delay measurements be less than the current delay before the route can be
changed.

Even with heuristics, protocols that use delay can become unstable when compar-
ing delays on paths that do not have identical characteristics. To understand why, it is
necessary to know that traffic can have a dramatic effect on delay. With no traffic, the
network delay is simply the time required for the hardware to transfer bits from one
point to another. As the traffic load imposed on the network increases, delays begin to
rise because routers in the system need to enqueue packets that are waiting for transmis-
sion. If the load is even slightly more than 100% of the network capacity, the queue
becomes unbounded, meaning that the effective delay becomes infinite. To summarize:

The effective delay across a network depends on traffic; as the load
approaches 100% of the network capacity, delay grows rapidly.

Because delays are extremely sensitive to changes in load, protocols that use delay
as a metric can easily fall into a positive feedback cycle. The cycle is triggered by a
small external change in load (e.g., one computer injecting a burst of additional traffic).
The increased traffic raises the delay, which causes the protocol to change routes. How-
ever, because a route change affects the load, it can produce an even larger change in

Sec. 14.11 Delay Metrics, Oscillation, And Route Flapping 303

delays, which means the protocol will again recompute routes. As a result, protocols
that use delay must contain mechanisms to dampen oscillation.

We described heuristics that can solve simple cases of route oscillation when paths
have identical throughput characteristics and the load is not excessive. The heuristics
can become ineffective, however, when alternative paths have different delay and
throughput characteristics. As an example consider the delay on two paths: one over a
satellite and the other over a low-capacity digital circuit (e.g., a fractional T1 circuit).
In the first stage of the protocol when both paths are idle, the digital circuit will appear
to have significantly lower delay than the satellite, and will be chosen for traffic. Be-
cause the circuit has low capacity, it will quickly become overloaded, and the delay will
rise sharply. In the second stage, the delay on the circuit will be much greater than that
of the satellite, so the protocol will switch traffic away from the overloaded path. Be-
cause the satellite path has large capacity, traffic which overloaded the serial line does
not impose a significant load on the satellite, meaning that the delay on the satellite path
does not change with traffic. In the next round, the delay on the unloaded digital circuit
will once again appear to be much smaller than the delay on the satellite path. The
protocol will reverse the routing, and the cycle will continue. We say that the routes
flap back and forth. Such oscillations do, in fact, occur in practice. As the example
shows, they are difficult to manage because traffic which has little effect on one net-
work can overload another. The point is:

Although intuition suggests that routing should use paths with lowest
delay, doing so makes routing subject to oscillations known as route
flapping.

14.12 The Open SPF Protocol (OSPF)

In Chapter 12, we said that a link-state approach to routing, which employs an SPF
graph algorithm to compute shortest paths, scales better than a distance-vector algo-
rithm. To encourage the adoption of link-state technology, a working group of the
IETF designed an interior gateway protocol that uses the link-state algorithm. Named
Open SPF (OSPF), the protocol tackles several ambitious goals.

Open Standard. As the name implies, the specification is available in the published
literature. Making it an open standard that anyone can implement without paying
license fees has encouraged many vendors to support OSPF.

Type Of Service Routing. Managers can install multiple routes to a given destina-
tion, one for each priority or type of service. A router running OSPF can use both
the destination address and type of service when choosing a route.

Load Balancing. If a manager specifies multiple routes to a given destination at the
same cost, OSPF distributes traffic over all routes equally.

304 Routing Within An Autonomous System (RIP, RIPng, OSPF, IS-IS) Chap. 14

Hierarchical Subdivision Into Areas. To handle large intranets and limit routing
overhead, OSPF allows a site to partition its networks and routers into subsets called
areas. Each area is self-contained; knowledge of an area’s topology remains hidden
from other areas. Thus, multiple groups within a given site can cooperate in the use
of OSPF for routing even though each group retains the ability to change its internal
network topology independently.

Support For Authentication. OSPF allows all exchanges between routers to be au-
thenticated. OSPF supports a variety of authentication schemes, and allows one area
to choose a different scheme than another area.

Arbitrary Granularity. OSPF includes support for host-specific, subnet-specific,
network-specific, and default routes.

Support For Multi-Access Networks. To accommodate networks such as Ethernet,
OSPF extends the SPF algorithm. Normally, SPF requires each pair of routers to
broadcast messages about the link between them. If K routers attach to an Ethernet,
they will broadcast K2 status messages. Instead of a graph that uses point-to-point
connections, OSPF reduces broadcasts by allowing a more complex graph topology
in which each node represents either a router or a network. A designated gateway
(i.e., a designated router) sends link-status messages on behalf of all routers attached
to the network.

Multicast Delivery. To reduce the load on nonparticipating systems, OSPF uses
hardware multicast capabilities, where they exist, to deliver link-status messages.
OSPF sends messages via IP multicast, and allows the IP multicast mechanism to
map the multicast into the underlying network; two IPv4 multicast addresses are
preassigned to OSPF 224.0.0.5 for all routers and 224.0.0.6 for all nodes.

Virtual Topology. A manager can create a virtual network topology. For example, a
manager can configure a virtual link between two routers in the routing graph even if
the physical connection between the two routers requires communication across mul-
tiple transit networks.

Route Importation. OSPF can import and disseminate routing information learned
from external sites (i.e., from routers that do not use OSPF). OSPF messages distin-
guish between information acquired from external sources and information acquired
from routers interior to the site.

Direct Use Of IP. Unlike RIP and RIPng, OSPF messages are encapsulated directly
in IP datagrams. The value 89 is used in the PROTO field (IPv4) or the NEXT HOP
field (IPv6) in the header to identify the datagram is carrying OSPF.

Sec. 14.13 OSPFv2 Message Formats (IPv4) 305

14.13 OSPFv2 Message Formats (IPv4)

Currently, the standard version of OSPF is version 2. Version 2 was created for
IPv4 and cannot handle IPv6. Unlike RIP, where the IETF chose to create an entirely
new protocol for IPv6, an IETF working group has proposed that the changes in
OSPFv2 for IPv6 merely be incorporated in a new version of OSPF, version 3. We will
first examine the version 2 message formats used with IPv4, and then consider the ver-
sion 3 message formats used with IPv6. To distinguish between them, we will write
OSPFv2 and OSPFv3.

Each OSPFv2 message begins with a fixed, 24-octet header. Figure 14.9 illustrates
the format.

0 8 16 24 31

VERSION (2) TYPE MESSAGE LENGTH

SOURCE ROUTER IP ADDRESS

AREA ID

CHECKSUM AUTHENTICATION TYPE

AUTHENTICATION (octets 0–3)

AUTHENTICATION (octets 4–7)

Figure 14.9 The fixed 24-octet OSPFv2 header that appears in each message.

Field VERSION specifies the version of the protocol as 2. Field TYPE identifies
the message type as one of the following types (which are explained in the next sec-
tions):

Type Meaning
1 Hello (used to test reachability)
2 Database description (topology)
3 Link-status request
4 Link-status update
5 Link-status acknowledgement

The field labeled SOURCE ROUTER IP ADDRESS gives the address of the sender,
and the field labeled AREA ID gives the 32-bit identification number of the area. By
convention, Area 0 is the backbone area. Because each message can include authentica-
tion, field AUTHENTICATION TYPE specifies which authentication scheme is used
(e.g., 0 means no authentication and 1 means a simple password is used).

306 Routing Within An Autonomous System (RIP, RIPng, OSPF, IS-IS) Chap. 14

14.13.1 OSPFv2 Hello Message Format

OSPFv2 sends hello messages on each link periodically to establish and test neigh-
bor reachability. Figure 14.10 shows the message format. Field NETWORK MASK
contains an address mask for the network over which the message has been sent. Field
ROUTER DEAD INTERVAL gives a time in seconds after which a nonresponding
neighbor is considered dead. Field HELLO INTERVAL is the normal period, in
seconds, between hello messages. Field GWAY PRIO is the integer priority of this
router, and is used in selecting a backup designated router. The fields labeled DESIG-
NATED ROUTER and BACKUP DESIGNATED ROUTER contain IP addresses that
give the sender’s view of the designated router and backup designated router for the net-
work over which the message is sent. Finally, fields labeled NEIGHBOR IP ADDRESS
give the IP addresses of all neighbors from which the sender has recently received hello
messages.

0 8 16 24 31

OSPF HEADER WITH TYPE = 1

NETWORK MASK

HELLO INTERVAL OPTIONS GWAY PRIO

ROUTER DEAD INTERVAL

DESIGNATED ROUTER

BACKUP DESIGNATED ROUTER

NEIGHBOR1 IP ADDRESS

NEIGHBOR2 IP ADDRESS

. . .

NEIGHBORn IP ADDRESS

Figure 14.10 The OSPFv2 hello message format. A pair of neighbor routers
exchanges hello messages periodically to test reachability.

14.13.2 OSPFv2 Database Description Message Format

Routers exchange OSPFv2 database description messages to initialize their net-
work topology database. In the exchange, one router serves as a master, while the other
is a slave. The slave acknowledges each database description message with a response.
Figure 14.11 shows the format.

Sec. 14.13 OSPFv2 Message Formats (IPv4) 307

Because it can be large, a topology database may be divided into multiple mes-
sages using the I and M bits. Bit I is set to 1 in the initial message; bit M is set to 1 if
additional messages follow. Bit S indicates whether a message was sent by a master (1)
or by a slave (0). Field DATABASE SEQUENCE NUMBER numbers messages sequen-
tially so the receiver can tell if one is missing. The initial message contains a random
integer R; subsequent messages contain sequential integers starting at R.

Field INTERFACE MTU gives the size of the largest IP datagram that can be
transmitted over the interface without fragmentation. The fields from LS AGE through
LS LENGTH describe one link in the network topology; they are repeated for each link.

0 8 16 24 29 31

OSPF HEADER WITH TYPE = 2

INTERFACE MTU OPTIONS All 0’s I M S

DATABASE SEQUENCE NUMBER

LS AGE LS OPTIONS LS TYPE

LINK ID

ADVERTISING ROUTER

LINK SEQUENCE NUMBER

LINK CHECKSUM LS LENGTH

. . .

Figure 14.11 OSPFv2 database description message format. The fields
starting at LS AGE are repeated for each link being specified.

Field LS TYPE describes the type of a link. The possible values are given by the fol-
lowing table.

LS Type Meaning
1 Router link
2 Network link
3 Summary link (IP network)
4 Summary link (link to border router)
5 External link (link to another site)

Field LINK ID gives an identification for the link (which can be the IP address of a
router or a network, depending on the link type).

308 Routing Within An Autonomous System (RIP, RIPng, OSPF, IS-IS) Chap. 14

Field LS AGE helps order messages — it gives the time in seconds since the link
was established. Field ADVERTISING ROUTER specifies the address of the router ad-
vertising this link, and LINK SEQUENCE NUMBER contains an integer generated by
that router to ensure that messages are not missed or received out of order. Field LINK
CHECKSUM provides further assurance that the link information has not been corrupt-
ed.

14.13.3 OSPFv2 Link-Status Request Message Format

After exchanging database description messages with a neighbor, a router has an
initial description of the network. However, a router may discover that parts of its data-
base are out of date. To request that the neighbor supply updated information, the
router sends a link-status request message. The message lists specific links for which
information is needed, as shown in Figure 14.12. The neighbor responds with the most
current information it has about the links in the request message. The three fields
shown in the figure are repeated for each link about which status is requested. More
than one request message may be needed if the list of requests is long.

0 16 31

OSPF HEADER WITH TYPE = 3

LS TYPE

LINK ID

ADVERTISING ROUTER

. . .

Figure 14.12 OSPFv2 link-status request message format. A router sends
the message to a neighbor to request current information about
a specific set of links.

14.13.4 OSPFv2 Link-Status Update Message Format

Because OSPF uses a link-state algorithm, routers must periodically broadcast mes-
sages that specify the status of directly-connected links. To do so, routers use a type 4
OSPFv2 message that is named a link-status update. Each update message consists of a
count of advertisements followed by a list of advertisements. Figure 14.13 shows the
format of link-status update messages.

In the figure, each link-status advertisement (LSA) has a format that specifies infor-
mation about the network being advertised. Figure 14.14 shows the format of the link-
status advertisement. The values used in each field are the same as in the database
description message.

Sec. 14.13 OSPFv2 Message Formats (IPv4) 309

0 16 31

OSPF HEADER WITH TYPE = 4

NUMBER OF LINK STATUS ADVERTISEMENTS

LINK STATUS ADVERTISEMENT1

. . .

LINK STATUS ADVERTISEMENTn

Figure 14.13 OSPFv2 link-status update message format. A router sends
such a message to broadcast information about its directly con-
nected links to all other routers.

0 16 31

LS AGE LS TYPE

LINK ID

ADVERTISING ROUTER

LINK SEQUENCE NUMBER

LINK CHECKSUM LS LENGTH

Figure 14.14 The format of an OSPFv2 link-status advertisement used in a
link-status message.

Following the link-status header comes one of four possible formats to describe the
links from a router to a given area, the links from a router to a specific network, the
links from a router to the physical networks that constitute a single, subnetted IP net-
work (see Chapter 5), or the links from a router to networks at other sites. In all cases,
the LS TYPE field in the link-status header specifies which of the formats has been
used. Thus, a router that receives a link-status update message knows exactly which of
the described destinations lie inside the site and which are external.

310 Routing Within An Autonomous System (RIP, RIPng, OSPF, IS-IS) Chap. 14

14.14 Changes In OSPFv3 To Support IPv6

Although the basics of OSPF remain the same in version 3, many details have
changed. The protocol still uses the link-state approach†. All addressing has been re-
moved from the basic protocol, making it protocol-independent except for IP addresses
in link-status advertisements. In particular, OSPFv2 used a 32-bit IP address to identify
a router; OSPFv3 uses a 32-bit router ID. Similarly, area identifiers remain at 32 bits,
but are not related to IPv4 addresses (even though dotted decimal is used to express
them). OSPFv3 honors IPv6 routing scopes: link-local, area-wide, and AS-wide, mean-
ing that broadcasts will not be propagated beyond the intended set of recipients.
OSPFv3 allows independent instances of OSPF to run on a set of routers and networks
at the same time. Each instance has a unique ID, and packets carry the instance ID.
For example, it would be possible to have an instance propagating IPv6 routing infor-
mation while another instance propagates MPLS routing information. Finally, OSPFv3
removes all authentication from individual messages, and instead, relies on the IPv6 au-
thentication header.

The most significant change between OSPFv2 and OSPFv3 arises from the mes-
sage formats, which all change. There are two motivations. First, messages must be
changed to accommodate IPv6 addresses. Second, because IPv6 addresses are much
larger, the designers decided that merely replacing each occurrence of an IPv4 address
with an IPv6 address would make messages too large. Therefore, whenever possible,
OSPFv3 minimizes the number of IPv6 addresses carried in a message and substitutes
32-bit identifiers for any identifier that does not need to be an IPv6 address.

14.14.1 OSPFv3 Message Formats

Each OSPFv3 message begins with a fixed, 16-octet header. Figure 14.15 illus-
trates the format.

0 8 16 24 31

VERSION (3) TYPE MESSAGE LENGTH

SOURCE ROUTER ID

AREA ID

CHECKSUM INSTANCE ID 0

Figure 14.15 The fixed 16-octet OSPFv3 header that appears in each mes-
sage.

Note that the version number occupies the first octet, exactly as in OSPFv2.
Therefore, OSPFv3 messages can be sent using the same NEXT HEADER value as

†Unfortunately, the terminology has become somewhat ambiguous because IPv6 uses the term link in
place of IP subnet (to permit multiple IPv6 prefixes to be assigned to a given network). In most cases, the
IPv6 concept and OSPFv3 concept align, but the distinction can be important in special cases.

Sec. 14.14 Changes In OSPFv3 To Support IPv6 311

OSPFv2 with no ambiguity. Also note that the fixed header is smaller than the OSPFv2
header because authentication information has been removed.

14.14.2 OSPFv3 Hello Message Format

The OSPFv3 hello message helps illustrate the basic change from IPv4 addressing
to 32-bit identifiers. The goal is to keep the packet size small while separating the pro-
tocol from IPv4. As Figure 14.16 illustrates, readers should compare the version 3 for-
mat to the version 2 format shown on page 306.

0 8 16 24 31

OSPFv3 HEADER WITH TYPE = 1

INTERFACE ID

ROUTER PRIO OPTIONS

HELLO INTERVAL ROUTER DEAD INTERVAL

DESIGNATED ROUTER ID

BACKUP DESIGNATED ROUTER ID

NEIGHBOR1 ID

NEIGHBOR2 ID

. . .

NEIGHBORn ID

Figure 14.16 The OSPFv3 hello message format. All IPv4 addresses have
been replaced by 32-bit identifiers.

14.14.3 Other OSPFv3 Features And Messages

OSPFv3 combines and generalizes many of the facilities and features that have
been defined for OSPFv2. Consequently, OSPFv3 defines several types of link-status
advertisement (LSA). For example, OSPFv3 supports router LSAs, link LSAs, inter-
area prefix LSAs, inter-area router LSAs, AS-external LSAa, intra-area prefix LSAs,
and Not So Stubby Area (NSSA) LSAs. Each link-status message begins with a header
that is the same as the OSPFv2 header illustrated in Figure 14.14 on page 309, and uses
the type field to identify the remaining contents.

The point of providing multiple LSA types is to support large autonomous systems
that have a complex topology and complex rules for areas. In particular, Tier-1 provid-

312 Routing Within An Autonomous System (RIP, RIPng, OSPF, IS-IS) Chap. 14

ers use OSPF as an IGP across an intranet that includes a backbone, many regional net-
works, and many attached networks.

14.15 IS-IS Route Propagation Protocol

About the same time the IETF defined OSPF, Digital Equipment Corporation
developed an interior route propagation protocol named IS-IS†. IS-IS was part of
Digital’s DECnet Phase V protocol suite, and was later standardized by ISO in 1992 for
use in the now-defunct OSI protocols. The name expands to Intermediate System - In-
termediate System, and is equivalent to our definition of an Interior Gateway Protocol.

IS-IS and OSPF are conceptually quite close; only the details differ. Both use the
link-state algorithm, both require each participating router to propagate link-status mes-
sages for directly-connected routers, and both use incoming link-status messages to
build a topology database. Both protocols permit status messages to be multicast if the
underlying network supports multicast. Furthermore, both protocols use the Shortest
Path First algorithm to compute shortest paths.

Unlike OSPF, IS-IS was not originally designed to handle IP. Therefore, it was
later extended, and the extended version is known as Integrated IS-IS or Dual IS-IS.
Because it was extended to handle IP, IS-IS has the advantage of not being integrated
with IPv4. Thus, unlike OSPF, which required a new version to handle IPv6, Dual IS-
IS accommodates IPv6 as yet another address family. IS-IS also differs from OSPF be-
cause IS-IS does not use IP for communication. Instead, IS-IS packets are encapsulated
in network frames and sent directly over the underlying network.

Like OSPF, IS-IS allows managers to subdivide routers into areas. However, the
definition of an area differs from OSPF. In particular, IS-IS does not require an ISP to
define Area 0 to be a backbone network through which all traffic flows. Instead, IS-IS
defines a router as Level 1 (intra-area), Level 2 (inter-area), or Level 1-2 (both intra-area
and inter-area). A Level 1 router only communicates with other Level 1 routers in the
same area. A Level 2 router only communicates with Level 2 routers in other areas. A
Level 1-2 router connects the other two sets. Thus, unlike OSPF which imposes a star-
shaped topology, IS-IS allows the center to be a set of Level 2 networks.

Proponents of OSPF point out that OSPF has been extended to handle many spe-
cial cases that arise in a large ISP. For example, OSPF has mechanisms to deal with
stub networks, not-so-stubby networks, and communication with other IETF protocols.
Proponents of IS-IS point out that IS-IS is less “chatty” (i.e., sends fewer messages per
unit time), and can handle larger areas (i.e., areas with more routers). Thus, IS-IS is
considered a suitable alternative to OSPF for special cases.

†The name is spelled out “I-S-I-S”.

Sec. 14.16 Trust And Route Hijacking 313

14.16 Trust And Route Hijacking

We have already observed that a single router may use an Interior Gateway Proto-
col to gather routing information within its autonomous system and an Exterior Gate-
way Protocol to advertise routes to other autonomous systems. In principle, it should
be easy to construct a single piece of software that combines information from the two
protocols, making it possible to gather routes and advertise them without human inter-
vention. In practice, technical and political obstacles make doing so complex.

Technically, IGP protocols, like RIP and Hello, are routing protocols. A router
uses such protocols to update its forwarding table based on information it acquires from
other routers inside its autonomous system. Thus, RIP or OSPF software changes the
local forwarding table when new routing updates arrive carrying new information. IGPs
trust routers within the same autonomous system to pass correct data.

In contrast, exterior protocols such as BGP do not trust arbitrary routers and do not
reveal all information from the local forwarding table. Instead, exterior protocols keep
a database of network reachability, and apply policy constraints when sending or receiv-
ing information. Ignoring such policy constraints can affect routing in a larger sense —
some parts of the Internet can be become unreachable. For example, if a router in an
autonomous system that is running an IGP happens to propagate a low-cost route to a
network at Purdue University when it has no such route, other routers that receive the
advertisement accept and install the route. Consequently, routers within the AS where
the mistake occurred will forward Purdue traffic incorrectly; Purdue may become un-
reachable from networks within the AS. The problem becomes more serious if Exterior
Gateway Protocols propagate incorrect information — if an AS incorrectly claims to
have route to a given destination, the destination may become unreachable throughout
the Internet. We say that the destination address has been hijacked.

14.17 Gated: A Routing Gateway Daemon

A mechanism has been created to provide an interface among a large set of routing
protocols, such as RIP, RIPng, BGP, HELLO, and OSPF. The mechanism also includes
routing information learned via ICMP and ICMPv6. Known as gated†, the mechanism
understands multiple protocols (both interior and exterior gateway protocols, including
BGP), and ensures that policy constraints are honored. For example, gated can accept
RIP messages and modify the local computer’s forwarding table. It can also advertise
routes from within its autonomous system using BGP. The rules gated follows allow a
system administrator to specify exactly which networks gated may and may not adver-
tise and how to report distances to those networks. Thus, although gated is not an IGP,
it plays an important role in routing because it demonstrates that it is feasible to build
an automated mechanism linking an IGP with BGP without sacrificing protection.

Gated has an interesting history. It was originally created by Mark Fedor at Cor-
nell, and was adopted by MERIT for use with the NSFNET backbone. Academic

†The name is short for gateway daemon, and is pronounced “gate d.”

314 Routing Within An Autonomous System (RIP, RIPng, OSPF, IS-IS) Chap. 14

researchers contributed new ideas, an industry consortium was formed, and eventually,
MERIT sold gated to Nexthop.

14.18 Artificial Metrics And Metric Transformation

The previous chapter said that ISPs often choose routes for economic rather than
technical reasons. To do so, network managers configure routing protocols manually,
and assign artificial weights or distances, which the protocol software uses in place of
actual weights or distances. Consider a network using RIP. If a manager wants to
direct traffic over a path that has more hops than the optimal path, the manager can con-
figure a router to specify that the optimal path is several hops longer. For example, one
router can be configured to advertise a directly-connected network as distance 5. Simi-
larly, when using OSPF, each link must be assigned a weight. Rather than base the
weight on the capacity of the underlying network, a manager can choose artificial
weights that make the protocol software prefer one path over another. In the largest
ISPs, the assignment of artificial weights is important because it has a direct and signifi-
cant relationship to revenue. Therefore, large ISPs often hire talented individuals whose
entire job is to analyze routing and choose weights that will optimize revenue.

Software like gated helps network managers control routing by offering metric
transformations. A manager can place such software between two groups of routers that
each use an IGP and configure the software to transform metrics so routing proceeds as
desired. For example, there may be a low-cost route used within one group that is
reserved for internal use. To avoid having outsiders use the reserved route, software on
the border between groups artificially inflates the cost of the route before advertising it
externally. Thus, outsiders think the route is expensive and choose an alternative. The
point is:

Although we have described routing protocols as finding shortest
paths, protocol software usually includes configuration options that
allow a network manager to override actual costs and use artificial
values that will cause traffic to follow routes the manager prefers.

Of course, a manager could achieve the same result by manually configuring the
forwarding tables in all routers. Using artificial metrics has a significant advantage: if a
network fails, the software will automatically select an alternate route. Therefore,
managers focus on configuring metrics rather than on configuring forwarding tables.

Sec. 14.19 Routing With Partial Information 315

14.19 Routing With Partial Information

We began our discussion of internet router architecture and routing by discussing
the concept of partial information. Hosts can route with only partial information be-
cause they rely on routers. It should be clear now that not all routers have complete in-
formation. Most autonomous systems have a single router that connects the autono-
mous system to other autonomous systems. For example, if the site connects to the glo-
bal Internet, at least one router must have a connection that leads from the site to an
ISP. Routers within the autonomous system know about destinations within that auton-
omous system, but they use a default route to send all other traffic to the ISP.

How to do routing with partial information becomes obvious if we examine a
router’s forwarding tables. Routers at the center of the Internet have a complete set of
routes to all possible destinations; such routers do not use default routing. Routers
beyond those in ISPs at the center of the Internet do not usually have a complete set of
routes; they rely on a default route to handle network addresses they do not understand.

Using default routes for most routers has two consequences. First, it means that
local routing errors can go undetected. For example, if a machine in an autonomous
system incorrectly routes a packet to an external autonomous system instead of to a lo-
cal router, the external system may send it back (perhaps to a different entry point).
Thus, connectivity may appear to be preserved even if routing is incorrect. The prob-
lem may not seem severe for small autonomous systems that have high-speed local area
networks. However, in a wide area network, incorrect routes can be disastrous because
the path packets take may involve multiple ISPs, which incurs a long delay, and ISPs
along the path may charge for transit, which results in needless loss of revenue.
Second, on the positive side, using default routes whenever possible means that the
routing update messages exchanged by most routers will be much smaller than they
would be if complete information were included.

14.20 Summary

The owner of an autonomous system (AS) is free to choose protocols that pass
routing information among routers within the AS. Manual maintenance of routing in-
formation suffices only for small, slowly changing internets that have minimal intercon-
nection; most require automated procedures that discover and update routes automatical-
ly. We use the term Interior Gateway Protocol (IGP) to refer to a protocol that is used
to exchange routing information within an AS.

An IGP implements either the distance-vector algorithm or the link-state algorithm,
which is known by the name Shortest Path First (SPF). We examined three IGPs: RIP,
HELLO, and OSPF. RIP is a distance-vector protocol that uses split horizon, hold-
down, and poison reverse techniques to help eliminate forwarding loops and the prob-
lem of counting to infinity. Although it is obsolete, Hello is interesting because it illus-
trates a distance-vector protocol that uses delay instead of hop counts as a distance
metric. We discussed the disadvantages of using delay as a routing metric, and pointed

316 Routing Within An Autonomous System (RIP, RIPng, OSPF, IS-IS) Chap. 14

out that although heuristics can prevent instabilities from arising when paths have equal
throughput characteristics, long-term instabilities arise when paths have different charac-
teristics. OSPF implements the link-status algorithm and comes in two versions:
OSPFv2 for IPv4 and OSPFv3 for IPv6. IS-IS is an alternative that handles some spe-
cial cases better than OSPF.

Although routing protocols are described as computing shortest paths, protocol
software includes configuration options that allow managers to inflate costs artificially.
By configuring costs carefully, a manager can direct traffic along paths that implement
corporate policy or generate the most revenue, while still having the ability to route
along alternative paths automatically when network equipment fails.

EXERCISES

14.1 What network families does RIP support? Why?
14.2 Consider a large autonomous system using an IGP that bases routes on delay. What dif-

ficulty does the autonomous system have if a subgroup decides to use RIP on its routers?
Explain.

14.3 Within a RIP message, each IP address is aligned on a 32-bit boundary. Will such ad-
dresses be aligned on a 32-bit boundary if the IP datagram carrying the message starts on
a 32-bit boundary? Why or why not?

14.4 An autonomous system can be as small as a single local area network or as large as mul-
tiple wide area networks. Why does the variation in size make it difficult to define a
single IGP that works well in all situations?

14.5 Characterize the circumstances under which the split horizon technique will prevent slow
convergence.

14.6 Consider an internet composed of many local area networks running RIP as an IGP.
Find an example that shows how a forwarding loop can result even if the code uses
“hold down” after receiving information that a network is unreachable.

14.7 Should a host ever run RIP in active mode? Why or why not?
14.8 Under what circumstances will a hop count metric produce better routes than a metric

that uses delay?
14.9 Can you imagine a situation in which an autonomous system chooses not to advertise all

its networks? (Hint: think of a university.)
14.10 In broad terms, we could say that an IGP distributes the local forwarding table, while

BGP distributes a table of networks and routers used to reach them (i.e., a router can
send a BGP advertisement that does not exactly match items in its own forwarding
table). What are the advantages of each approach?

14.11 Consider a function used to convert between delay and hop-count metrics. Can you find
properties of such functions that are sufficient to prevent forwarding loops? Are the pro-
perties necessary as well?

14.12 Are there circumstances under which an SPF protocol can form forwarding loops?
(Hint: think of best-effort delivery.)

Exercises 317

14.13 Build an application program that sends a request to a router running RIP and displays
the routes returned.

14.14 Read the RIP specification carefully. Can routes reported in a response to a query differ
from the routes reported by a routing update message? If so how?

14.15 Read the OSPFv2 specification carefully. How can a manager use OSPF’s virtual link
facility?

14.16 OSPFv2 allows managers to assign many of their own identifiers, possibly leading to
duplication of values at multiple sites. Which identifier(s) may need to change if two
sites running OSPFv2 decide to merge?

14.17 Can you use ICMP redirect messages to pass routing information among interior
routers? Why or why not?

14.18 Read the specification for OSPFv3. What is a stub area, and what is a not so stubby
area (NSSA)? Why are the two important?

14.19 What timeout does the OSPFv3 standard recommend for a Hello interval?
14.20 Write a program that takes as input a description of your organization’s internet, uses

SNMP to obtain forwarding tables from all the routers, and reports any inconsistencies.
14.21 If your organization runs software such as gated or Zebra that manages multiple TCP/IP

routing protocols, obtain a copy of the configuration files and explain the meaning of
each item.

Chapter Contents
15.1 Introduction, 319
15.2 Hardware Broadcast, 319
15.3 Hardware Multicast, 320
15.4 Ethernet Multicast, 321
15.5 The Conceptual Building Blocks Of Internet Multicast, 321
15.6 The IP Multicast Scheme, 322
15.7 IPv4 And IPv6 Multicast Addresses, 323
15.8 Multicast Address Semantics, 326
15.9 Mapping IP Multicast To Ethernet Multicast, 327
15.10 Hosts And Multicast Delivery, 328
15.11 Multicast Scope, 328
15.12 Host Participation In IP Multicasting, 329
15.13 IPv4 Internet Group Management Protocol (IGMP), 330
15.14 IGMP Details, 331
15.15 IGMP Group Membership State Transitions, 332
15.16 IGMP Membership Query Message Format, 333
15.17 IGMP Membership Report Message Format, 334
15.18 IPv6 Multicast Group Membership With MLDv2, 335
15.19 Multicast Forwarding And Routing Information, 337
15.20 Basic Multicast Forwarding Paradigms, 339
15.21 Consequences Of TRPF, 341
15.22 Multicast Trees, 342
15.23 The Essence Of Multicast Route Propagation, 343
15.24 Reverse Path Multicasting, 344
15.25 Example Multicast Routing Protocols, 345
15.26 Reliable Multicast And ACK Implosions, 347
15.27 Summary, 349

15

Internet Multicasting

15.1 Introduction

Earlier chapters define the mechanisms IP uses to forward and deliver unicast da-
tagrams. This chapter explores another feature of IP: multipoint datagram delivery. We
begin with a brief review of the underlying hardware support. Later sections describe
IP addressing for multipoint delivery and the protocols that routers use to propagate
necessary routing information.

15.2 Hardware Broadcast

Many hardware technologies contain mechanisms to send packets to multiple desti-
nations simultaneously (or nearly simultaneously). In Chapter 2, we review several
technologies and discuss the most common form of multipoint delivery: hardware
broadcast. Broadcast delivery means that the network delivers one copy of a packet to
each destination. The details of hardware broadcast vary. On some technologies, the
hardware sends a single copy of a packet and arranges for each attached computer to re-
ceive a copy. On other networks, the networking equipment implements broadcast by
forwarding an independent copy of a broadcast packet to each individual computer.

Most hardware technologies provide a special, reserved destination address called a
broadcast address. To specify broadcast delivery, all a sender needs to do is create a
frame where the destination address field contains the broadcast address. For example,
Ethernet uses the all 1s hardware address as a broadcast address; each computer at-
tached to an Ethernet network accepts frames sent to the broadcast address as well as
packets sent to the computer’s unicast MAC address.

319

320 Internet Multicasting Chap. 15

The chief disadvantage of hardware broadcast arises from its demand on resources
— in addition to using network bandwidth, each broadcast consumes computational
resources on the computers attached to the network. In principle, it might be possible
to design internet software that used broadcast for all datagrams sent across a network.
Every computer would receive a copy of each datagram, and IP software on the com-
puter could examine the IP destination address and discard datagrams intended for other
machines. In practice, however, such a scheme is nonsense because each computer
would spend CPU cycles to discard most of the datagrams that arrived. Thus, the
designers of TCP/IP devised address binding mechanisms that allow datagrams to be
delivered via unicast.

15.3 Hardware Multicast

Some hardware technologies support a second form of multi-point delivery called
hardware multicast. Unlike hardware broadcast, hardware multicast allows each com-
puter to choose whether it will participate in receiving a given multicast. Typically, a
hardware technology reserves a large set of addresses for use with multicast. When a
group of applications want to use hardware multicast, they choose one particular multi-
cast address to use for communication. The application running on a computer must
ask the operating system to configure the network interface card to recognize the multi-
cast address that has been selected. After the hardware has been configured, the com-
puter will receive a copy of any packet sent to the multicast address.

We use the term multicast group to denote the set of computers that are listening
to a particular multicast address. If applications on six computers are listening to a par-
ticular multicast address, the multicast group is said to have six members. In many
hardware technologies, a multicast group is defined only by the set of listeners — an ar-
bitrary computer can send a packet to a given multicast address (i.e., the sender does
not need to be a member of the multicast group).

At a conceptual level, multicast addressing can be viewed as sufficiently general to
include all other forms of addressing. For example, we can imagine a conventional uni-
cast address to be a multicast address to which exactly one computer is listening. Simi-
larly, we can think of a broadcast address as a multicast address to which all computers
on a particular network are listening. Other multicast addresses can correspond to arbi-
trary subsets of computers on the network, possibly the empty set.

Despite its apparent generality, multicast addressing will not replace conventional
forms of addressing because there is a fundamental difference in the way the underlying
hardware mechanisms implement packet forwarding and delivery. Instead of a single
computer or all computers, a multicast address identifies an arbitrary subset of comput-
ers, and members of the group can change at any time. Therefore, hardware cannot
determine exactly where a given computer connects to the network, and must flood
packets to all computers and let them choose whether to accept the packet. Flooding is
expensive because it prevents packet transfers in parallel. Therefore, we can conclude:

Sec. 15.3 Hardware Multicast 321

Although it is interesting to think of multicast addressing as a gen-
eralization that subsumes unicast and broadcast addresses, the under-
lying forwarding and delivery mechanisms can make multicast less
efficient.

15.4 Ethernet Multicast

Ethernet provides an example of hardware multicasting, and is especially pertinent
to IP multicasting because Ethernet is widely deployed in the global Internet. One-half
of the Ethernet address space is reserved for multicast — the low-order bit of the high-
order octet distinguishes conventional unicast addresses (0) from multicast addresses
(1). In dashed hexadecimal notation†, the multicast bit is given by:

01-00-00-00-00-0016

When an Ethernet interface board is initialized, it begins accepting packets destined
for either the unicast hardware address or the Ethernet broadcast address. However, de-
vice driver software can reconfigure the device to allow it to also recognize one or more
multicast addresses. For example, suppose the driver configures the Ethernet multicast
address:

01-5E-00-00-00-0116

After configuration, the interface hardware will accept any packet sent to the computer’s
unicast MAC address, the broadcast MAC address, or the example multicast MAC ad-
dress (the hardware will continue to ignore packets sent to other multicast addresses).
The next sections explain IP multicast semantics and how IP uses basic multicast
hardware.

15.5 The Conceptual Building Blocks Of Internet Multicast

Three conceptual building blocks are required for a general purpose internet multi-
casting system:

A multicast addressing scheme

An effective notification and delivery mechanism

An efficient internetwork forwarding facility

Many details and constraints present challenges for an overall design. For exam-
ple, in addition to providing sufficient addresses for many groups, the multicast ad-
dressing scheme must accommodate two conflicting goals: allow local autonomy in as-
signing addresses while defining addresses that have meaning globally. Similarly, hosts

†Dashed hexadecimal notation represents each octet as two hexadecimal digits with octets separated by a
dash; the subscript 16 can be omitted only when the context is unambiguous.

322 Internet Multicasting Chap. 15

need a notification mechanism to inform routers about multicast groups in which they
are participating, and routers need a delivery mechanism to transfer multicast packets to
hosts. Again there are two possibilities: internet multicast should make effective use of
hardware multicast when it is available, but it should also allow delivery over networks
that do not have hardware support for multicast. Finally, a multicast forwarding facility
presents the biggest design challenge of the three: the goal is a scheme that is both effi-
cient and dynamic — it should forward multicast packets along shortest paths, should
not send a copy of a datagram along a path if the path does not lead to a member of the
group, and should allow hosts to join and leave groups at any time.

We will see that the IP multicasting mechanism includes all three building blocks.
It defines multicast addressing for both IPv4 and IPv6, provides a mechanism that al-
lows hosts to join and leave IP multicast groups, specifies how multicast datagrams are
transferred across individual hardware networks, and provides a set of protocols routers
can use to exchange multicast routing information and construct forwarding tables for
multicast groups. The next section lists properties of the IP multicast scheme, and the
remainder of the chapter considers each aspect in more detail, beginning with address-
ing.

15.6 The IP Multicast Scheme

IP multicasting is an abstraction of hardware multicasting. It follows the paradigm
of allowing transmission to a subset of host computers, but generalizes the concept to
allow the subset to spread across arbitrary physical networks throughout an internet.
The idea is that whenever possible, a single copy of a multicast datagram is transmitted
until a router must forward the datagram along multiple paths. At that point, one copy
of the datagram is sent down each path. Thus, the goal is to avoid unnecessary duplica-
tion.

In IP terminology, a subset of computers listening to a given IP multicast address
is known as an IP multicast group. IP multicasting is available for both IPv4 and IPv6.
The definition is incredibly ambitious, and has the following general characteristics:

One IP Multicast Address Per Group. Each IP multicast group is assigned a
unique IP multicast address. A few IP multicast addresses are permanently as-
signed by the Internet authority, and correspond to groups that always exist
even if they have no current members. Other addresses are temporary, and are
available for private use.

Number Of Groups. IPv4 provides addresses for up to 228 simultaneous multi-
cast groups; IPv6 provides many more. In a practical sense, the limit on ad-
dresses does not pose a restriction on IP multicast. Instead, practical restric-
tions on the number of simultaneous multicast groups arise from constraints on
forwarding table size and the network traffic needed to propagate routes as
group membership changes.

Sec. 15.6 The IP Multicast Scheme 323

Dynamic Group Membership. An arbitrary host can join or leave an IP multi-
cast group at any time. Furthermore, a host may be a member of an arbitrary
number of multicast groups simultaneously.

Use Of Hardware. If the underlying network hardware supports multicast, IP
uses hardware multicast to deliver an IP multicast datagram on the network. If
the hardware does not support multicast, IP uses broadcast or unicast to deliver
IP multicast datagrams.

Internetwork Forwarding. Because members of an IP multicast group can at-
tach to arbitrary networks throughout an internet, special multicast routers are
required to forward IP multicast datagrams. In most cases, instead of using
separate routers, multicast capability is added to conventional routers.

Delivery Semantics. IP multicast uses the same best-effort delivery semantics
as other IP datagram delivery, meaning that multicast datagrams can be lost,
delayed, duplicated, or delivered out of order.

Membership And Transmission. An arbitrary host may send datagrams to any
multicast group; group membership is only used to determine whether the host
receives datagrams sent to the group.

15.7 IPv4 And IPv6 Multicast Addresses

We said that IP multicast addresses are divided into two types: those that are per-
manently assigned and those that are available for temporary use. Permanent addresses
are called well-known; they are defined for major services on the global Internet as
well as for infrastructure maintenance (e.g., we saw that RIP and RIPng use a well-
known multicast address). Other multicast addresses correspond to transient multicast
groups that are created when needed and discarded when the count of group members
reaches zero.

Like hardware multicasting, IP multicasting uses the datagram’s destination ad-
dress to specify that a particular datagram must be delivered via multicast. IPv4
reserves class D addresses for multicast: the first 4 bits contain 1110 and identify the
address as a multicast address. In IPv6, a multicast address has the first 8 bits set to 1
as Figure 15.1 illustrates.

0 1 2 3

0 1 2 3 4 5 6 7

1 1 1 0 Group ID (28 bits)

1 1 1 1 1 1 1 1 Group ID (120 bits)

IPv4:

IPv6:

Figure 15.1 The format of IPv4 and IPv6 multicast addresses. A prefix iden-
tifies the address as multicast.

324 Internet Multicasting Chap. 15

In each case, the remainder of an address following the prefix consists of an identi-
fier for a particular multicast group. IPv4 allocates 28 bits to multicast group IDs,
which means 108 groups are possible. IPv6 allocates 120 bits for group IDs, giving 1036

possible groups! The multicast group ID is not partitioned into bits that identify the ori-
gin or owner of the group.

15.7.1 IPv4 Multicast Address Space

When expressed in dotted decimal notation, IPv4 multicast addresses range from

224.0.0.0 through 239.255.255.255

Many parts of the address space have been assigned special meaning. For example, the
lowest address, 224.0.0.0, is reserved; it cannot be assigned to any group. Addresses up
through 224.0.0.255 are restricted to a single network (i.e., a router is prohibited from
forwarding a datagram sent to any address in the range, and a sender is supposed to set
the TTL to 1), and addresses 239.0.0.0 through 239.255.255.255 are restricted to one or-
ganization (i.e., routers should not forward them across external links). Figure 15.2
shows how the IPv4 multicast address space is divided.

Address Range Meaning
224.0.0.0 Base Address (Reserved)
224.0.0.1 – 224.0.0.255 Scope restricted to one network
224.0.1.0 – 238.255.255.255 Scope is global across the Internet
239.0.0.0 – 239.255.255.255 Scope restricted to one organization

Figure 15.2 The division of the IPv4 multicast address space according to
scope.

Figure 15.3 lists a few examples of specific IPv4 multicast address assignments.
Many other addresses have been assigned, and some vendors have chosen addresses to
use with their systems.

Address Assigned Purpose
224.0.0.1 All Systems on this Subnet
224.0.0.2 All Routers on this Subnet
224.0.0.5 OSPFIGP All Routers
224.0.0.6 OSPFIGP Designated Routers
224.0.0.9 RIP2 Routers
224.0.0.12 DHCP Server / Relay Agent
224.0.0.22 IGMP

Figure 15.3 Examples of IPv4 multicast address assignments. All the exam-
ples have a scope restricted to one network.

Sec. 15.7 IPv4 And IPv6 Multicast Addresses 325

In Figure 15.3, address 224.0.0.1 is permanently assigned to the all systems group,
and address 224.0.0.2 is permanently assigned to the all routers group. The all systems
group includes all hosts and routers on a network that are participating in IP multicast,
whereas the all routers group includes only the routers that are participating. Both of
these groups are used for control protocols and must be on the same local network as
the sender; there are no IP multicast addresses that refer to all systems in the Internet or
all routers in the Internet.

15.7.2 IPv6 Multicast Address Space

Like IPv4, IPv6 specifies the scope associated with multicast addresses. Recall
that the first octet of an IPv6 multicast address contains all 1s. IPv6 uses the second
octet of the address to specify the scope. Figure 15.4 lists the assignments.

Second Octet Meaning
0x?0 Reserved
0x?1 Scope is restricted to a computer (loopback)
0x?2 Scope is restricted to the local network
0x?3 Scope is equivalent to IPv4 local scope
0x?4 Scope is administratively configured
0x?5 Scope is restricted to a single site
0x?8 Scope is restricted to a single organization
0x?E Scope is global across the Internet

Figure 15.4 The use of the second octet in an address to specify the scope of
an IPv6 multicast address.

In the figure, constants starting with 0x are hexadecimal. The question mark denotes an
arbitrary nibble. Thus, 0x?1 refers to 0x01, 0x11, 0x21... 0xF1.

Using an octet to specify the scope allows a service to be accessed with a variety
of scopes. For example, the Network Time Protocol (NTP) has been assigned the multi-
cast group ID 0x101. The scope of the assignment is unrestricted, meaning that a
sender can choose the scope of a multicast. For example, it is possible to send a multi-
cast datagram to all NTP servers on a single link (address FF02::101) or all NTP
servers in an organization (address FF08::101). Only the second octet of the address
differs.

Some services are assigned a specific scope or a specific set of scopes, because the
IETF can foresee no reason to send a multicast to the group globally. For example, the
All Nodes multicast group is limited — one cannot specify a multicast datagram for all
nodes throughout the Internet. Most routing protocols are also limited to a single link
because the intended communication is between routers on the same underlying net-
work. Figure 15.5 lists a few examples of permanently assigned IPv6 multicast ad-
dresses.

326 Internet Multicasting Chap. 15

Address Assigned Purpose
FF02::1 All nodes on the local network segment
FF02::2 All routers on the local network segment
FF02::5 OSPFv3 AllSPF routers
FF02::6 OSPFv3 AllDR routers
FF02::9 RIP routers
FF02::a EIGRP routers
FF02::d PIM routers
FF02::1:2 DHCP servers and relay agents on the local network
FF05::1:3 DHCP servers on the local network site
FF0x::FB Multicast DNS
FF0x::101 Network Time Protocol
FF0x::108 Network Information Service
FF0x::114 Available for experiments

Figure 15.5 Examples of a few permanent IPv6 multicast address assign-
ments using colon hex notation and abbreviating zeroes with
double colons. Many other addresses have specific meanings.

As with IPv4, vendors have chosen certain IPv6 multicast addresses for use with
their products. Although not all choices are officially registered with the Internet au-
thority that controls addressing, they are generally honored.

15.8 Multicast Address Semantics

The rules IP follows when forwarding a multicast datagram differ dramatically
from the rules used to forward unicast datagrams. For example, a multicast address can
only be used as a destination address. Thus, if a router finds a multicast address in the
source address field of a datagram or in an option (e.g., source route), the router drops
the datagram. Furthermore, no ICMP error messages can be generated about multicast
datagrams. The restriction applies to ICMP echo (i.e., ping requests) as well as conven-
tional errors such as destination unreachable. Therefore, a ping sent to a multicast ad-
dress will go unanswered.

The rule prohibiting ICMP errors is somewhat surprising, because IP routers do
honor the hop limit field in the header of a multicast datagram. As usual, each router
decrements the count, and discards the datagram if the count reaches zero. The only
distinction is that a router does not send an ICMP message for a multicast datagram.
We will see that some multicast protocols use the hop limit as a way to limit datagram
propagation.

Sec. 15.9 Mapping IP Multicast To Ethernet Multicast 327

15.9 Mapping IP Multicast To Ethernet Multicast

Although they do not cover all types of network hardware, the IP multicast stan-
dards do specify how to map an IP multicast address to an Ethernet multicast address.
For IPv4, the mapping is efficient and easy to understand: IANA owns the Ethernet ad-
dress prefix 0x01005E†. A mapping has been defined as follows:

To map an IPv4 multicast address to the corresponding Ethernet mul-
ticast address, place the low-order 23 bits of the IPv4 multicast ad-
dress into the low-order 23 bits of the special Ethernet multicast ad-
dress 01-00-5E-00-00-0016.

For example, the IPv4 multicast address 224.0.0.2 becomes Ethernet multicast address
01-00-5E-00-00-0216.

IPv6 does not use the same mapping as IPv4. In fact, the two versions do not even
share the same MAC prefix. Instead, IPv6 uses the Ethernet prefix 0x3333 and selects
32 bits of the IP multicast group ID:

To map an IPv6 multicast address to the corresponding Ethernet mul-
ticast address, place the low-order 32 bits of the IPv6 multicast ad-
dress into the low-order 32 bits of the special Ethernet multicast ad-
dress 33-33-00-00-00-0016.

For example, IPv6 multicast address FF02:09:09:1949::DC:1 would map to the Ethernet
MAC address 33-33-00-DC-00-01.

Interestingly, neither the IPv4 nor IPv6 mappings are unique. Because IPv4 multi-
cast addresses have 28 significant bits that identify the multicast group, more than one
multicast group may map onto the same Ethernet multicast address at the same time.
Similarly, many IPv6 multicast group IDs map to the same Ethernet multicast. The
designers chose the scheme as a compromise. On one hand, using 23 (IPv4) or 32
(IPv6) of the group ID bits for a hardware address means most of the multicast address
is included. The set of addresses is large enough so the chances of two groups choosing
addresses with the low-order bits identical is small. On the other hand, arranging for IP
to use a fixed part of the Ethernet multicast address space makes debugging much easier
and eliminates interference between Internet protocols and other protocols that share an
Ethernet. The consequence of the design is that some multicast datagrams may be re-
ceived at a host that are not destined for that host. Thus, the IP software must carefully
check addresses on all incoming datagrams, and discard any unwanted multicast da-
tagrams.

†The IEEE assigns an Organizational Unique Identifier (OUI) prefix to each organization that creates
Ethernet addresses.

328 Internet Multicasting Chap. 15

15.10 Hosts And Multicast Delivery

We said that IP multicasting can be used on a single physical network or
throughout an internet. In the former case, a host can send directly to a destination host
merely by placing the datagram in a frame and using a hardware multicast address to
which the receiver is listening. In the latter case, multicast routers are needed to for-
ward copies of multicast datagrams across multiple networks to all hosts participating in
a multicast group. Thus, if a host has a datagram with scope other than the local net-
work, the host must send the datagram to a multicast router. Surprisingly, a host does
not need to install a route to a multicast router, nor does IP software use a default route
to reach a multicast router. Instead, the technique a host uses to forward a multicast da-
tagram to a router is unlike the forwarding for unicast and broadcast datagrams — a
host merely uses the local network hardware’s multicast capability to transmit the da-
tagram. Multicast routers listen for all IP multicast transmissions; if a multicast router
is present on the network, it will receive the datagram and forward it on to another net-
work if necessary†. Thus, the primary difference between local and nonlocal multicast
lies in multicast routers, not in hosts.

15.11 Multicast Scope

The term multicast scope is used for two concepts. We use the term to clarify the
set of hosts that are listening to a given multicast group or to specify a property of a
multicast address. In the case of specifying how hosts are located, we use the term to
clarify whether the current members of the group are on one network, multiple networks
within a site, multiple networks at multiple sites within an organization, multiple net-
works within an administratively-defined boundary, or arbitrary networks in the global
Internet. In the second case, we know that the standards specify how far a datagram
sent to a specific address will propagate (i.e., the set of networks over which a datagram
sent to the address will be forwarded). Informally, we sometimes use the term range in
place of scope.

IP uses two techniques to control multicast scope. The first technique relies on the
datagram’s hop limit field to control its range. By setting the hop limit to a small value,
a host can limit the distance the datagram will be forwarded. For example, the standard
specifies that control messages, which are used for communication between a host and a
router on the same network, must have a hop limit of 1. As a consequence, a router
never forwards any datagram carrying control information because the hop limit has
reached zero. Similarly, if two applications running on a single host want to use IP
multicast for interprocess communication (e.g., for testing software), they can choose a
TTL value of 0 to prevent the datagram from leaving the host. It is possible to use suc-
cessively larger values of the TTL field to further extend the notion of scope. For ex-
ample, some router vendors suggest configuring routers at a site to restrict multicast da-
tagrams from leaving the site unless the datagram has a hop limit greater than 15. The
point is: the hop limit in a datagram header provides coarse-grain control over the
datagram’s scope.

†In practice, sites that use IP multicast usually configure conventional routers to handle multicast for-
warding as well as unicast forwarding.

Sec. 15.11 Multicast Scope 329

The second technique, which is known as administrative scoping, consists of
choosing multicast addresses that have limited scope. According to the standard,
routers in the Internet are forbidden from forwarding any datagram that has an address
chosen from the restricted space. Thus, to prevent multicast communication among
group members from accidentally reaching outsiders, an organization can assign the
group an address that has local scope (e.g., restricted to a site or restricted to an organi-
zation).

15.12 Host Participation In IP Multicasting

A host can participate in IP multicast at one of three levels as Figure 15.6 shows:

Level Meaning
0 Host can neither send nor receive IP multicast
1 Host can send but not receive IP multicast
2 Host can both send and receive IP multicast

Figure 15.6 The three levels of host participation in IP multicast.

Extending IP software to allow a host to send IP multicast is not difficult; provid-
ing host software that can receive IP multicast datagrams is more complex. To send a
multicast datagram, an application must be able to supply a multicast address as a desti-
nation. To receive multicast, an application must be able to declare that it wants to join
or leave a particular multicast group, and protocol software must forward a copy of an
arriving datagram to each application that joined the group. Furthermore, multicast da-
tagrams do not arrive at a host automatically: later sections explain that when it joins a
multicast group, a host must use a special protocol to inform a local multicast router of
its membership status. Much of the software complexity arises from an IP multicast
design decision:

A host joins specific IP multicast groups on specific networks.

That is, a host with multiple network connections may join a particular multicast group
on one network and not on another. To understand the reason for keeping group
membership associated with networks, remember that it is possible to use IP multicast-
ing among local sets of machines. The host may want to use a multicast application to
interact with machines on one network, but not with machines on another.

Because group membership is associated with particular networks, the software
must keep separate lists of multicast addresses for each network to which the host at-
taches. Furthermore, an application program must specify a particular network when it
asks to join or leave a multicast group. Of course, most applications do not know (or
care) about the networks to which a host attaches, which means they do not know
which network to specify when they need to join a multicast group.

330 Internet Multicasting Chap. 15

15.13 IPv4 Internet Group Management Protocol (IGMP)

We said that to send or receive in IPv4 multicast across a single local network, a
host only needs software that allows it to use the underlying network to transmit and re-
ceive IP multicast datagrams. However, to participate in a multicast that spans multiple
networks, the host must inform at least one local multicast router. The local router con-
tacts other multicast routers, passing on the membership information and establishing
routes. We will see that the concept is similar to conventional route propagation among
Internet routers.

Multicast routers do not act until at least one host on a given network joins a mul-
ticast group. When it decides to join a multicast group, a host informs a local multicast
router. An IPv4 host uses the Internet Group Management Protocol (IGMP). Because
the current version is 3, the protocol described here is officially known as IGMPv3.

IGMP is a standard for IPv4; it is required on all machines that receive IPv4 multi-
cast (i.e., all hosts and routers that participate at level 2). IGMP uses IP datagrams to
carry messages. Furthermore, we consider IGMP to be a service that is integrated with
IP, analogous to ICMP. Therefore, we should not think of IGMP as a protocol used by
arbitrary applications:

Although it uses IP datagrams to carry messages, we think of IGMP
as an integral part of IPv4, not an independent protocol.

Conceptually, IGMP has two phases. Phase 1: When it joins a new multicast
group, a host sends an IGMP message to the group’s multicast address declaring its
membership. Local multicast routers receive the message, and establish necessary rout-
ing by propagating the group membership information to other multicast routers
throughout the Internet. Phase 2: Because membership is dynamic, local multicast
routers periodically poll hosts on the local network to determine whether any hosts still
remain members of each group. If any host responds for a given group, the router
keeps the group active. If no host reports membership in a group after several polls, the
multicast router assumes that none of the hosts on the network remain in the group, and
stops advertising group membership to other multicast routers.

To further complicate group membership, IGMP permits an application on a host
to install a source address filter that specifies whether the host should include or ex-
clude multicast traffic from a given source address. Thus, it is possible to join a multi-
cast group, but to exclude datagrams sent to the group by a given source. The presence
of filters is important because IGMP allows a host to pass the set of filter specifications
to the local multicast router along with group membership information. In the case
where two applications disagree (i.e., one application excludes a given source and
another includes the source), software on the host must rationalize the two specifica-
tions and then handle the decision about which applications receive a given datagram
locally.

Sec. 15.14 IGMP Details 331

15.14 IGMP Details

IGMP is carefully designed to avoid adding overhead that can congest networks.
In particular, because a given network can include multiple multicast routers as well as
multiple hosts that participate in multicasting, IGMP must avoid having participants
generate unnecessary control traffic. There are several ways IGMP minimizes its effect
on the network:

All communication between hosts and multicast routers uses IP multi-
cast. That is, when sending messages, IGMP always uses IPv4 multi-
cast. Therefore, datagrams carrying IGMP messages are transmitted
using hardware multicast if it is available, meaning that a host which is
not participating in IP multicast never receives IGMP messages.

When polling to determine group membership, a multicast router sends
a single query to request information about all groups instead of send-
ing a separate message to each. The default polling rate is 125 seconds,
which means that IGMP does not generate much traffic.

If multiple multicast routers attach to the same network, they quickly
and efficiently choose a single router to poll host membership, which
means the IGMP traffic on a network does not increase when more
multicast routers are added.

Hosts do not respond to a router’s IGMP query simultaneously. In-
stead, each query contains a value, N, that specifies a maximum
response time (the default is 10 seconds). When a query arrives, a host
chooses a random delay between 0 and N that it waits before sending a
response. If a host is a member of multiple groups, the host chooses a
different random number for each. Thus, a host’s response to a router’s
query will be spaced over 10 seconds.

If a host is a member of multiple multicast groups, the host can send re-
ports for multiple group memberships in a single packet to minimize
traffic.

Although such careful attention to detail may seem unnecessary, the dynamic na-
ture of IP multicast means that the messages exchanged over a given network depend
on applications. So, unlike routing protocols where the traffic depends on the protocol,
IGMP traffic depends on the number of multicast groups to which applications are
listening.

332 Internet Multicasting Chap. 15

15.15 IGMP Group Membership State Transitions

On a host, IGMP must remember the status of each multicast group to which the
host belongs along with the source filters associated with each group†. We think of a
host as keeping a table in which it records group membership information. Initially, all
entries in the table are unused. Whenever an application program on the host joins a
new group, IGMP software allocates an entry and fills in information about the group,
including address filters that the application has specified. When an application leaves
a group, the corresponding entry is removed from the table. When forming a report, the
software consults the table, rationalizes all filters for a group, and forms a single report.

The actions IGMP software takes in response to various events can best be ex-
plained by the state transition diagram in Figure 15.7.

NON-
MEMBER MEMBERDELAYING

MEMBER

join group /start timer

leave group /cancel timer

reference count becomes zero / leave group

timer expires /send response

query arrives /start timer

another host responds /cancel timer

Figure 15.7 The three possible states of an entry in a host’s multicast group
table and transitions among them, where each transition is la-
beled with an event and an action. The state transitions do not
show messages sent when joining and leaving a group.

A host maintains an independent table entry for each group of which it is currently
a member. As the figure shows, when a host first joins the group or when a query ar-
rives from a multicast router, the host moves the entry to the DELAYING MEMBER
state and chooses a random delay. If another host in the group responds to the router’s
query before the timer expires, the host cancels its timer and moves to the MEMBER
state. If the timer expires, the host sends a response message before moving to the
MEMBER state. Because a router only generates a query every 125 seconds, one ex-
pects a host to remain in the MEMBER state most of the time.

The diagram in Figure 15.7 omits a few details. For example, if a query arrives
while the host is in the DELAYING MEMBER state, the protocol requires the host to
reset its timer.

†The all systems group, 224.0.0.1, is an exception — a host never reports membership in that group.

Sec. 15.16 IGMP Membership Query Message Format 333

15.16 IGMP Membership Query Message Format

IGMPv3 defines two message types: a membership query message that a router
sends to probe for group members, and a membership report message that a host gen-
erates to report the groups that applications on the host are currently using. Figure 15.8
illustrates the membership query message format.

0 8 16 31

TYPE (0x11) RESP CODE CHECKSUM

GROUP ADDRESS

RES S QRV QQIC NUM SOURCES

SOURCE ADDRESS 1

SOURCE ADDRESS 2

...
SOURCE ADDRESS N

Figure 15.8 The format of an IGMP membership query message.

As the figure shows, a membership query message begins with a fixed-size header
of twelve octets. Field TYPE identifies the type of message, with the types for various
versions of IGMP listed in Figure 15.9.

Type Protocol Vers. Meaning
0x11 3 Membership query
0x22 3 Membership report
0x12 1 Membership report
0x16 2 Membership report
0x17 2 Leave group

Figure 15.9 IGMP message types. For backward compatibility, version 3 of
the protocol includes version 1 and 2 message types.

When a router polls for group membership, the field labeled RESP CODE specifies
a maximum interval for the random delay that group members compute. If the field
starts with a 0 bit, the value is taken to be an integer measured in tenths of seconds; if
the field begins with a 1, the value is a floating point number with three bits of ex-
ponent and four bits of mantissa. Each host in the group delays a random time between
zero and the specified value before responding. As we said, the default value is 10
seconds, which means all hosts in a group choose a random value between 0 and 10.
IGMP allows routers to set a maximum value in each query message to give managers

334 Internet Multicasting Chap. 15

control over IGMP traffic. If a network contains many hosts, a higher delay value
further spreads out response times, and thereby lowers the probability of having more
than one host respond to the query. The CHECKSUM field contains a checksum for the
message (IGMP checksums are computed over the IGMP message only, and use the
same 16-bit one’s complement algorithm as IP). The GROUP ADDRESS field is either
used to specify a particular group or contains zero for a general query. That is, when it
sends a query to a specific group or a specific group and source combination, a router
fills in the GROUP ADDRESS field. The S field indicates whether a router should
suppress the normal timer updates that are performed when an update arrives; the bit
does not apply to hosts. Field QRV controls robustness by allowing IGMP to send a
packet multiple times on a lossy network. The default value is 2; a sender transmits the
message QRV–1 times. Field QQIC specifies the Querier’s Query Interval (i.e., the time
between membership queries). QQIC uses the same representation as field RESP
CODE.

The last part of an IGMP query message consists of zero or more sources; field
NUM SOURCES specifies the number of entries that follow. Each SOURCE ADDRESS
consists of a 32-bit IP address. The number of sources is zero in a general query (i.e., a
request from a router for information about all multicast groups in use on the network)
and in a group specific query (i.e., a request from a router for information about a speci-
fied multicast group). For a group and source specific query, the message contains a
list of one or more sources; a router uses such a message to request reception status for
a combination of the multicast group and any of the specified sources.

15.17 IGMP Membership Report Message Format

The second type of message used with IGMPv3 is a membership report that hosts
use to pass participation status to a router. Figure 15.10 illustrates the format. As the
figure shows, a membership report message consists of an 8-octet header that specifies
the message type and an integer count of group records, K, followed by K group
records. Figure 15.11 illustrates the format of each group record. The format is
straightforward. The initial field, labeled REC TYPE, allows the sender to specify
whether the list of sources in the record corresponds to an inclusive filter, an exclusive
filter, or a change in a previous report (e.g., an additional source to be included or ex-
cluded). The field labeled MULTICAST ADDRESS specifies the multicast address to
which the group record refers, and the field labeled NUM OF SOURCES specifies the
number of source addresses contained in the group record.

It is important to note that IGMP does not provide all possible messages or facili-
ties. For example, IGMP does not include a mechanism that allows a host to discover
the IP address of a group — application software must know the group address before it
can use IGMP to join the group. Thus, some applications use permanently assigned
group addresses, some allow a manager to configure the address when the software is
installed, and others obtain the address dynamically (e.g., from a server). Similarly,
IGMPv3 does not provide explicit messages a host can issue to leave a group or to
listen for all communication on a group. Instead, to leave a group, a host sends a

Sec. 15.17 IGMP Membership Report Message Format 335

membership report message that specifies an inclusive filter with an empty IP source
address list. To listen to all sources, a host sends a membership report message that
specifies an exclusive filter with an empty IP source address list.

0 8 16 31

TYPE (0x22) RESERVED CHECKSUM

RESERVED NUM GROUP RECORDS (K)

Group Record 1

Group Record 2

...

Group Record K

Figure 15.10 The format of an IGMPv3 membership report message.

0 8 16 31

REC TYPE ZEROES NUM OF SOURCES

MULTICAST ADDRESS

SOURCE ADDRESS 1

SOURCE ADDRESS 2

...

SOURCE ADDRESS N

Figure 15.11 The format of each group record within an IGMPv3 member-
ship report message.

15.18 IPv6 Multicast Group Membership With MLDv2

IPv6 does not use IGMP. Instead, it defines a Multicast Listener Discovery Proto-
col. The current version is 2, and the protocol is abbreviated MLDv2. Despite the
changes, IPv4 and IPv6 use essentially the same approach. In fact, the MLDv2 standard
states that MLDv2 is merely a translation of IGMP to use IPv6 semantics.

A host uses MLDv2 to inform multicast routers on the local network of the host’s
group membership(s). As in IGMP, once a host announces membership, a router on the

336 Internet Multicasting Chap. 15

network uses MLDv2 to poll the host periodically to determine whether the host is still
a member of the group(s). A set of multicast routers on a given network cooperate to
choose one querier router that will send periodic queries; if the current querier router
fails, another multicast router on the network takes over the responsibility.

MLDv2 defines three types of query messages that routers send: General Queries,
Multicast Address Specific Queries, and Multicast Address and Source Specific Queries.
As with IGMP, a typical multicast router sends general queries which ask hosts to
respond by specifying multicast groups to which they are listening. Figure 15.12 illus-
trates the format of an MLDv2 query message.

0 8 16 31

TYPE (130) CODE (0) CHECKSUM

MAXIMUM RESPONSE CODE RESERVED

SPECIFIC MULTICAST ADDRESS
OR ZERO FOR A GENERAL QUERY

RESV S QRV QQIC NUMBER OF SOURCES (N)

SOURCE 1 ADDRESS

... ..
.

SOURCE N ADDRESS

Figure 15.12 The format of an MLDv2 query message. A multicast router
sends such messages to determine whether hosts on a network
are participating in multicast.

As mentioned earlier, the QQIC field specifies a query interval. In a general
query, there is no specific multicast address, so the field is set to zero, and because
there are no sources, the NUMBER OF SOURCES field contains zero and the message
contains no SOURCE ADDRESS fields.

Sec. 15.18 IPv6 Multicast Group Membership With MLDv2 337

When a query arrives, a host follows the same steps as in IGMP: the host delays a
random time and answers by sending a reply that specifies the multicast addresses to
which the host is still listening. The reply consists of a Multicast Listener Report mes-
sage. Figure 15.13 shows the general format.

0 8 16 31

TYPE (143) RESERVED CHECKSUM

RESERVED NUMBER OF RECORDS (N)

MULTICAST ADDRESS RECORD 1

... ..
.

MULTICAST ADDRESS RECORD N

Figure 15.13 The general form of a Multicast Listener Report message.

Instead of merely listing multicast addresses to which the host is listening, the
Multicast Listener Report specifies a list of multicast address records. Each record on
the list specifies the multicast address of a group followed by a series of unicast ad-
dresses on which the host is listening. It may seem odd that a host specifies more than
one unicast address because most hosts are singly-homed. Thus, we would expect a
host to have only one unicast address. However, IPv6 allows a host to have multiple
addresses on a single network. Therefore, the Listener Report allows multiple addresses
per entry.

15.19 Multicast Forwarding And Routing Information

Although IP’s multicast addressing scheme allows a host to send and receive local
multicasts and IGMP or MLDv2 allow a router to keep track of hosts on a local net-
work that are listening to multicast groups, we have not specified how multicast routers
exchange group membership information or how the routers ensure that a copy of each
multicast datagram reaches all group members.

Interestingly, several protocols have been proposed that allow routers to exchange
multicast routing information. However, no single standard has emerged as the leader.
In fact, although much effort has been expended, there is no agreement on an overall
design — existing protocols differ in their goals and basic approach. Consequently,
multicasting is not widely used in the global Internet.

338 Internet Multicasting Chap. 15

Why is multicast routing so difficult? Why not extend conventional routing
schemes to handle multicast? The answer is that multicast routing protocols differ from
conventional routing protocols in fundamental ways because multicast forwarding
differs from conventional forwarding. To appreciate some of the differences, consider
multicast forwarding over the architecture that Figure 15.14 depicts.

network 1

network 2

network 3
R

A

EDCB

F G

Figure 15.14 A simple internet with three networks connected by a router
that illustrates multicast forwarding. Hosts marked with a dot
participate in one multicast group, while those marked with an
“X” participate in another.

15.19.1 Need For Dynamic Forwarding

Even for the simple topology shown in Figure 15.14, multicast forwarding differs
from unicast forwarding. For example, the figure shows two multicast groups: the
group denoted by a dot has members A, B, and C, and the group denoted by a cross has
members D, E, and F. The dotted group has no members on network 2. To avoid
needless transmissions, router R should never send packets intended for the dotted
group across network 2. However, a host can join any group at any time — if the host
is the first on its network to join the group, multicast forwarding must be changed to in-
clude the network. Thus, we come to an important difference between conventional
route propagation and multicast route propagation:

Unlike unicast forwarding in which routes change only when the to-
pology changes or equipment fails, multicast routes can change sim-
ply because an application program joins or leaves a multicast group.

Sec. 15.19 Multicast Forwarding And Routing Information 339

15.19.2 Insufficiency Of Destination Forwarding

The example in Figure 15.14 illustrates another aspect of multicast forwarding. If
host F and host E each send a datagram to the cross group, router R will receive and
forward them. Because both datagrams are directed at the same group, they have the
same destination address. However, the correct forwarding actions differ: R sends the
datagram from E to network 2, and sends the datagram from F to network 1. Interest-
ingly, when it receives a datagram destinated for the cross group sent by host A, the
router uses a third action: it forwards two copies, one to network 1 and the other to net-
work 2. Thus, we see the second major difference between conventional forwarding
and multicast forwarding:

Unlike unicast forwarding, multicast forwarding requires a router to
examine more than the destination address.

15.19.3 Arbitrary Senders

The final feature of multicast forwarding illustrated by Figure 15.14 arises because
IP allows an arbitrary host, one that is not necessarily a member of the group, to send a
datagram to the group. In the figure, host G can send a datagram to the dotted group,
even though G is not a member of any group and there are no members of the dotted
group on G’s network. More important, as it travels through the internet, the datagram
may pass across other networks that have no group members attached. We can sum-
marize:

A multicast datagram may originate on a computer that is not part of
the multicast group, and may be forwarded across networks that do
not have any group members attached.

15.20 Basic Multicast Forwarding Paradigms

We know from the example above that multicast routers must use more than a des-
tination address when processing a datagram. Exactly what information does a multi-
cast router use when deciding how to forward a datagram? The answer lies in under-
standing that because a multicast destination represents a set of computers, an optimal
forwarding system will reach all members of the set without sending a datagram across
a given network twice. Although a single multicast router such as the one in Figure
15.14 can simply avoid sending a datagram back over the interface on which it arrives,
using the interface alone will not prevent a datagram from being forwarded among a set
of routers that are arranged in a cycle. To avoid such forwarding loops, multicast
routers rely on the datagram’s source address.

340 Internet Multicasting Chap. 15

One of the first ideas to emerge for multicast forwarding was a form of broadcast-
ing described earlier. Known as Reverse Path Forwarding† (RPF), the scheme uses a
datagram’s source address to prevent the datagram from traveling around a loop repeat-
edly. To use RPF, a multicast router must have a conventional unicast forwarding table
with shortest paths to all destinations. When a datagram arrives, the router extracts the
source address, looks it up in its unicast forwarding table, and finds I, the interface that
leads to the source. If the datagram arrived over interface I, the router forwards a copy
to each of the other interfaces; otherwise, the router discards the copy.

Because it ensures that a copy of each multicast datagram is sent across every net-
work in an internet, the basic RPF scheme guarantees that every host in a multicast
group will receive a copy of each datagram sent to the group. However, RPF alone is
not used for multicast forwarding because it wastes network cycles by sending multicast
datagrams over networks that neither have group members nor lead to group members.

To avoid propagating multicast datagrams where they are not needed, a modified
form of RPF was invented. Known as Truncated Reverse Path Forwarding (TRPF) or
Truncated Reverse Path Broadcasting (TRPB), the scheme follows the RPF algorithm,
but further restricts propagation by avoiding paths that do not lead to group members.
To use TRPF, a multicast router needs two pieces of information: a conventional unicast
forwarding table and a list of multicast groups reachable through each network inter-
face. When a multicast datagram arrives, the router first applies the RPF rule. If RPF
specifies discarding the copy, the router does so. However, if RPF specifies sending the
datagram over a particular interface, the router makes an additional check to verify that
one or more members of the group designated in the datagram’s destination address are
reachable via the interface. If no group members are reachable over the interface, the
router skips that interface, and continues examining the next one. In fact, we can now
understand the origin of the term truncated — a router truncates forwarding when no
group members lie along the path.

We can summarize:

When making a forwarding decision, a multicast router uses both the
datagram’s source and destination addresses. The basic mechanism
is known as Truncated Reverse Path Forwarding (TRPF).

†Reverse path forwarding is sometimes called Reverse Path Broadcasting (RPB).

Sec. 15.20 Basic Multicast Forwarding Paradigms 341

15.21 Consequences Of TRPF

Although TRPF guarantees that each member of a multicast group receives a copy
of each datagram sent to the group, it has two surprising consequences. First, because it
relies on RPF to prevent loops, TRPF delivers an extra copy of datagrams to some net-
works just like conventional RPF. Figure 15.15 illustrates how duplicates can arise.

network 1

network 2 network 3

network 4

R1 R2

R3 R4

A

B

Figure 15.15 A topology that causes an RPF scheme to deliver multiple
copies of a datagram to some destinations.

In the figure, when host A sends a datagram, routers R1 and R2 each receive a copy.
Because the datagram arrives over the interface that lies along the shortest path to A, R1

forwards a copy to network 2, and R2 forwards a copy to network 3. When it receives a
copy from network 2 (the shortest path to A), R3 forwards the copy to network 4. Un-
fortunately, R4 also forwards a copy to network 4. Thus, although RPF allows R3 and
R4 to prevent a loop by discarding the copy that arrives over network 4, host B receives
two copies of the datagram.

A second surprising consequence arises because TRPF uses both source and desti-
nation addresses when forwarding datagrams: delivery depends on a datagram’s source.
For example, Figure 15.16 shows how multicast routers forward datagrams from two
different sources across a fixed topology.

342 Internet Multicasting Chap. 15

R1 R2

R3 R4 R5 R6

X

Y Z

net 1

net 2 net 3

net 4 net 5 net 6

(a)

R1 R2

R3 R4 R5 R6

X

Y Z

net 1

net 2 net 3

net 4 net 5 net 6

(b)

Figure 15.16 Examples of paths a multicast datagram follows under TRPF
assuming the source is (a) host X, and (b) host Z, and the group
has a member on each of the networks. The number of copies
received depends on the source.

As the figure shows, the source affects both the path a datagram follows to reach a
given network as well as the delivery details. For example, in part (a) of Figure 15.16,
a transmission by host X causes TRPF to deliver two copies of the datagram to network
5. In part (b), only one copy of a transmission by host Z reaches network 5, but two
copies reach networks 2 and 4.

15.22 Multicast Trees

Researchers use graph theory terminology to describe the set of paths from a given
source to all members of a multicast group: the paths define a graph-theoretic tree†,
which is sometimes called a forwarding tree or a delivery tree. Each multicast router

†A graph is a tree if it does not contain any cycles (i.e., a router does not appear on more than one path).

Sec. 15.22 Multicast Trees 343

corresponds to a node in the tree, and a network that connects two routers corresponds
to an edge in the tree. The source of a datagram is the root or root node of the tree.
Finally, the last router along each of the paths from the source is called a leaf router.
The terminology is sometimes applied to networks as well — researchers call a network
hanging off a leaf router a leaf network.

As an example of the terminology, consider Figure 15.16. Part (a) shows a tree
with root X, and leaves R3, R4, R5, and R6. Technically, part (b) does not show a tree
because router R3 lies along two paths. Informally, researchers often overlook the de-
tails and refer to such graphs as trees.

The graph terminology allows us to express an important principle:

A multicast forwarding tree is defined as a set of paths through multi-
cast routers from a source to all members of a multicast group. For a
given multicast group, each possible source of datagrams can deter-
mine a different forwarding tree.

One of the immediate consequences of the principle concerns the size of tables
used to forward multicast. Unlike conventional unicast forwarding tables, each entry in
a multicast table is identified by a pair:

(multicast group, source)

Conceptually, source identifies a single host that can send datagrams to the group
(i.e., any host in the internet). In practice, keeping a separate entry for each host is un-
wise because the forwarding trees defined by all hosts on a single network are identical.
Thus, to save space, forwarding protocols use a network prefix as a source. That is,
each router defines one forwarding entry that is used for all hosts on the same IP net-
work.

Aggregating entries by network prefix instead of by host address reduces the table
size dramatically. However, multicast forwarding tables can grow much larger than
conventional forwarding tables. Unlike a conventional unicast table in which the size is
proportional to the number of networks in the underlying internet, a multicast table has
size proportional to the product of the number of networks in the internet and the
number of multicast groups.

15.23 The Essence Of Multicast Route Propagation

Observant readers may have noticed an inconsistency between the features of IP
multicasting and TRPF. We said that TRPF is used instead of conventional RPF to
avoid unnecessary traffic: TRPF does not forward a datagram to a network unless that
network leads to at least one member of the group. Consequently, a multicast router
must have knowledge of group membership. We also said that IP allows any host to
join or leave a multicast group at any time, which can result in rapid membership

344 Internet Multicasting Chap. 15

changes. More important, membership does not follow local scope — a host that joins
may be far from a multicast router that is forwarding datagrams to the group. So, group
membership information must be propagated across the underlying internet.

The issue of dynamic group membership is central to multicast routing; all multi-
cast routing schemes provide a mechanism for propagating membership information as
well as a way to use the information when forwarding datagrams. In general, because
membership can change rapidly, the information available at a given router is imperfect,
so route updates may lag changes. Therefore, a multicast design represents a tradeoff
between the overhead of extra routing traffic and inefficient data transmission. On the
one hand, if group membership information is not propagated rapidly, multicast routers
will not make optimal decisions (i.e., they either forward datagrams across some net-
works unnecessarily or fail to send datagrams to all group members). On the other
hand, a multicast routing scheme that communicates every membership change to every
router is doomed because the resulting traffic can overwhelm an internet. Each design
chooses a compromise between the two extremes.

15.24 Reverse Path Multicasting

One of the earliest forms of multicast routing was derived from TRPF. Known as
Reverse Path Multicast (RPM), the scheme extends TRPF to make it more dynamic.
Three assumptions underlie the design. First, it is more important to ensure that a mul-
ticast datagram reaches each member of the group to which it is sent than to eliminate
unnecessary transmission. Second, multicast routers each contain a conventional unicast
forwarding table that has correct information. Third, multicast routing should improve
efficiency when possible (i.e., eliminate needless transmission).

RPM uses a two step process. When it begins, RPM uses the RPF broadcast
scheme to send a copy of each datagram across all networks in the internet. Doing so
ensures that all group members receive a copy. Simultaneously, RPM proceeds to have
multicast routers inform one another about paths that do not lead to group members.
Once it learns that no group members lie along a given path, a router stops forwarding
along that path.

How do multicast routers learn about the location of group members? As in most
multicast routing schemes, RPM propagates membership information bottom-up. The
information starts with hosts that choose to join or leave groups. Hosts communicate
membership information with their local router by using local protocols IGMP or
MLDv2. The local protocols only inform a multicast router about local members on
each of its directly-attached networks; the router will not learn about distant group
members. As a consequence, a multicast router that attaches a leaf network to the rest
of the Internet can decide which multicast datagrams to forward over the leaf network.
If a leaf network does not contain members for group G, the router connecting the leaf
network to the rest of the Internet will not forward datagrams for group G. As soon as
any host on a network joins group G, the leaf router will inform the next router along
the path back to the source and will begin forwarding datagrams that arrive destined for

Sec. 15.24 Reverse Path Multicasting 345

group G. Conversely, if all hosts beyond a given router leave group G, the router in-
forms the next router along the path to the source to stop sending datagrams destined
for G.

Using graph-theoretic terminology, we say that when a router learns that a group
has no members along a path and stops forwarding, it has pruned (i.e., removed) the
path from the forwarding tree. In fact, RPM is called a broadcast and prune strategy
because a router broadcasts (using RPF) until it receives information that allows it to
prune a path. Researchers also use another term for the RPM algorithm: they say that
the system is data-driven because a router does not send group membership information
to any other routers until datagrams arrive for that group.

In the data-driven model, a multicast router must also handle the case where a host
decides to join a particular group after the router has pruned the path for that group.
RPM uses a bottom-up approach to accommodate rejoining a group that has been
pruned: when a host informs a local multicast router, M1, that the host wants to rejoin a
particular group, M1 consults its record of the group and obtains the address of the mul-
ticast router, M2, to which it had previously sent a prune request. M1 sends a new mes-
sage that undoes the effect of the previous prune and causes datagrams to flow again.
Such messages are known as graft requests, and the algorithm is said to graft the previ-
ously pruned branch back onto the tree.

15.25 Example Multicast Routing Protocols

The IETF has investigated many multicast protocols, including Distance Vector
Multicast Routing Protocol (DVMRP), Core Based Trees (CBT), and Protocol Indepen-
dent Multicast (PIM). Although the protocols have been implemented and vendors have
offered some support, none of them has become widely used. The next sections provide
a brief description of each protocol.

15.25.1 Distance Vector Multicast Routing Protocol And Tunneling

An early protocol, known as the Distance Vector Multicast Routing Protocol
(DVMRP), allows multicast routers to pass group membership and routing information
among themselves. DVMRP resembles the RIP protocol described in Chapter 14, but
has been extended for multicast. In essence, the protocol passes information about
current multicast group membership and the cost to transfer datagrams between the
routers. For each possible (group, source) pair, the routers impose a forwarding tree on
top of the physical interconnections. When a router receives a datagram destined for an
IP multicast group, it sends a copy of the datagram out over the network links that
correspond to branches in the forwarding tree†. DVMPR is implemented by a Unix
program named mrouted that uses a special multicast kernel.

Mrouted uses multicast tunneling to allow sites to forward multicast across the In-
ternet. At each site, a manager configures an mrouted tunnel to other sites. The tunnel
uses IP-in-IP encapsulation to send multicast. That is, when it receives a multicast da-

†DVMRP changed substantially between version 2 and 3 when it incorporated the RPM algorithm
described above.

346 Internet Multicasting Chap. 15

tagram generated by a local host, mrouted encapsulates the datagram in a conventional
unicast datagram, and forwards a copy to mrouted at each of the other sites. When it
receives a unicast datagram through one of its tunnels, mrouted extracts the multicast
datagram, and then forwards according to its multicast forwarding table.

15.25.2 Core Based Trees (CBT)

The Core Based Trees (CBT) multicast routing protocol takes another approach to
building a multicast forwarding system. CBT avoids broadcasting and allows all
sources to share the same forwarding tree whenever possible. To avoid broadcasting,
CBT does not forward multicasts along a path until one or more hosts along that path
join the multicast group. Thus, CBT reverses the flood-and-prune approach used by
DVMRP — instead of forwarding datagrams until negative information has been pro-
pagated, CBT does not forward along a path until positive information has been re-
ceived. We say that instead of using the data-driven paradigm, CBT uses a demand-
driven paradigm.

The demand-driven paradigm in CBT means that when a host uses IGMP to join a
particular group, the local router must inform other routers before datagrams will be for-
warded. Which router or routers should be informed? The question is critical in all
demand-driven multicast routing schemes. Recall that in a data-driven scheme, a router
uses the arrival of data traffic to know where to send routing messages (it propagates
routing messages back over networks from which the traffic arrives). However, in a
demand-driven scheme, no traffic will arrive for a group until the membership informa-
tion has been propagated.

CBT uses a combination of static and dynamic algorithms to build a multicast for-
warding tree. To make the scheme scalable, CBT divides the underlying internet into
regions, where the size of a region is determined by network administrators. Within
each region, one of the routers is designated as a core router, and other routers in the
region must either be configured to know the core router for their region or to use a
dynamic discovery mechanism to find the core router when they boot.

Knowledge of a core router is important because it allows multicast routers in a re-
gion to form a shared tree for the region. As soon as a host joins a multicast group, a
local router, L, receives the host request. Router L generates a CBT join request, which
it sends to the core router using conventional unicast forwarding. Each intermediate
router along the path to the core router examines the request. As soon as the request
reaches a router R that is already part of the CBT shared tree, R returns an acknowl-
edgement, passes the group membership information on to its parent, and begins for-
warding traffic for the new group. As the acknowledgement passes back to the leaf
router, intermediate routers examine the message, and configure their multicast forward-
ing tables to forward datagrams for the group. Thus, router L is linked into the for-
warding tree at router R.

We can summarize:

Sec. 15.25 Example Multicast Routing Protocols 347

Because CBT uses a demand-driven paradigm, it divides an internet
into regions and designates a core router for each region; other
routers in the region dynamically build a forwarding tree by sending
join requests to the core.

15.25.3 Protocol Independent Multicast (PIM)

In reality, PIM consists of two independent protocols that share little beyond the
name and basic message header formats: Protocol Independent Multicast — Dense
Mode (PIM-DM) and Protocol Independent Multicast — Sparse Mode (PIM-SM). The
distinction arises because no single protocol works well in all situations. In particular,
PIM’s dense mode is designed for a LAN environment in which all, or nearly all, net-
works have hosts listening to each multicast group; whereas, PIM’s sparse mode is
designed to accommodate a wide area environment in which the members of a given
multicast group are spread wide and involve only a small subset of all possible net-
works.

The term protocol independence arises because PIM assumes a traditional unicast
forwarding table that contains a shortest path to each destination. Because PIM does
not specify how such a table should be built, an arbitrary routing protocol can be used.
Thus, we say that PIM operates independently from the unicast routing update
protocol(s) that a router employs.

To accommodate many listeners, PIM-DM uses a broadcast-and-prune approach in
which datagrams are forwarded to all routers using RPF until a router sends an explicit
prune request. By contrast, PIM’s sparse mode can be viewed as an extension of basic
concepts from CBT. Sparse mode designates a router, called a Rendezvous Point (RP),
that is the functional equivalent of a CBT core router.

15.26 Reliable Multicast And ACK Implosions

The term reliable multicast refers to any system that uses multicast delivery, but
also guarantees that all group members receive data in order without any loss, duplica-
tion, or corruption. In theory, reliable multicast combines the advantage of a forward-
ing scheme that is more efficient than broadcast with the benefit of having all data ar-
rive intact. Thus, reliable multicast has great potential benefit and applicability (e.g., a
stock exchange could use reliable multicast to deliver stock prices to many destina-
tions).

In practice, reliable multicast is not as general or straightforward as it sounds.
First, if a multicast group has multiple senders, the notion of delivering datagrams in se-
quence becomes meaningless. Second, we have seen that widely used multicast for-
warding schemes such as RPF can produce duplication even on small internets. Third,
in addition to guarantees that all data will eventually arrive, applications like audio or

348 Internet Multicasting Chap. 15

video expect reliable systems to bound the delay and jitter. Fourth, because reliability
requires acknowledgements and a multicast group can have an arbitrary number of
members, traditional reliable protocols require a sender to handle an arbitrary number of
acknowledgements. Unfortunately, no computer has enough processing power to do so.
We refer to the problem as an ACK implosion; the problem has become the focus of
much research.

To overcome the ACK implosion problem, reliable multicast protocols take a
hierarchical approach in which multicasting is restricted to a single source†. Before
data is sent, a forwarding tree is established from the source to all group members and
acknowledgement points must be identified.

An acknowledgement point, which is also known as an acknowledgement aggrega-
tor or designated router (DR), consists of a router in the multicast forwarding tree that
agrees to cache copies of the data and process acknowledgements from routers or hosts
further down the tree. If a retransmission is required, the acknowledgement point ob-
tains a copy from its cache.

Most reliable multicast schemes use negative rather than positive acknowledge-
ments — a receiving host does not respond unless a datagram is lost. To allow a host
to detect loss, each datagram must be assigned a unique sequence number. When a gap
appears in sequence numbers, a host detects loss and sends a NACK to request re-
transmission of the missing datagram. The NACK propagates along the forwarding tree
toward the source until it reaches an acknowledgement point. The acknowledgement
point processes the NACK, and retransmits a copy of the lost datagram along the for-
warding tree.

How does an acknowledgement point ensure that it has a copy of all datagrams in
the sequence? It uses the same scheme as a host. When a datagram arrives, the ac-
knowledgement point checks the sequence number, places a copy in its memory, and
then proceeds to propagate the datagram down the forwarding tree. If it finds that a da-
tagram is missing, the acknowledgement point sends a NACK up the tree toward the
source. The NACK either reaches another acknowledgement point that has a copy of
the datagram (in which case the acknowledgement point transmits a second copy), or
the NACK reaches the source (which retransmits the missing datagram).

The choice of a branching topology and acknowledgement points is crucial to the
success of a reliable multicast scheme. Without sufficient acknowledgement points, a
missing datagram can cause an ACK implosion. In particular, if a given router has
many descendants, a lost datagram can cause that router to be overrun with retransmis-
sion requests. Unfortunately, automating selection of acknowledgement points has not
turned out to be simple. Consequently, many reliable multicast protocols require manu-
al configuration. Thus, reliable multicast is best suited to: services that tend to persist
over long periods of time, topologies that do not change rapidly, and situations where
intermediate routers agree to serve as acknowledgement points.

Is there an alternative approach to reliability? Some researchers have experimented
with protocols that incorporate redundant information to reduce or eliminate retransmis-
sion. One scheme sends redundant datagrams. Instead of sending a single copy of each
datagram, the source sends N copies (typically 2 or 3). Redundant datagrams work

†Note that a single source does not limit functionality, because the source can agree to forward any mes-
sage it receives via unicast. Thus, an arbitrary host can send a packet to the source, which then multicasts the
packet to the group.

Sec. 15.26 Reliable Multicast And ACK Implosions 349

especially well when routers implement a Random Early Discard (RED) strategy be-
cause the probability of more than one copy being discarded is extremely small.

Another approach to redundancy involves forward error-correcting codes. Analo-
gous to the error-correcting codes used with audio CDs, the scheme requires a sender to
incorporate error-correction information into each datagram in a data stream. If one da-
tagram is lost, the error correcting code contains sufficient redundant information to al-
low a receiver to reconstruct the missing datagram without requesting a retransmission.

15.27 Summary

IP multicasting is an abstraction of hardware multicasting. It allows delivery of a
datagram to an arbitrary subset of computers. Both IPv4 and IPv6 define a set of multi-
cast addresses. IPv6 uses the second octet to represent scope, allowing the scope to be
independent of the service. IP multicast uses hardware multicast, if available.

IP multicast groups are dynamic: a host can join or leave a group at any time. For
local multicast, hosts only need the ability to send and receive multicast datagrams. For
IP multicast that spans multiple networks, multicast routers must propagate group
membership information and arrange routing so that each member of a multicast group
receives a copy of every datagram sent to the group. The IP multicasting scheme is
complicated by the rule that an arbitrary host can send to a multicast group, even if the
host is not a member.

Hosts communicate their group membership to multicast routers using IGMP
(IPv4) or MLDv2 (IPv6). The protocols are closely related, and have been designed to
be efficient and to avoid using excessive network resources.

A variety of protocols have been designed to propagate multicast routing informa-
tion across an internet. The two basic approaches are data-driven and demand-driven.
In either case, the amount of information in a multicast forwarding table is much larger
than in a unicast forwarding table because multicasting requires entries for each (group,
source) pair.

Not all routers in the global Internet propagate multicast routes or forward multi-
cast traffic. Tunneling can be used to connect multicast islands that are separated by
parts of an internet that do not support multicast routing. When using a tunnel, a pro-
gram encapsulates a multicast datagram in a conventional unicast datagram. The re-
ceiver extracts and handles the multicast datagram.

Reliable multicast refers to a scheme that uses multicast forwarding but offers reli-
able delivery semantics. To avoid the ACK implosion problem, reliable multicast
designs either use a hierarchy of acknowledgement points or send redundant informa-
tion.

350 Internet Multicasting Chap. 15

EXERCISES

15.1 The IPv4 standard suggests using 23 bits of an IP multicast address to form a hardware
multicast address. In such a scheme, how many IP multicast addresses map to a single
hardware multicast address?

15.2 Answer the question above for IPv6.
15.3 Argue that IP multicast group IDs do not need as many bits as have been allocated.

Suppose a group ID used 23 bits and analyze the disadvantages. (Hint: what are the
practical limits on the number of groups to which a host can belong and the number of
hosts on a single network?)

15.4 IP software must always check the destination addresses on incoming multicast da-
tagrams and discard datagrams if the host is not in the specified multicast group. Ex-
plain how the host might receive a multicast destined for a group to which that host is
not a member.

15.5 Multicast routers need to know whether a group has members on a given network be-
cause the router needs to know which multicast trees to join. Is there any advantage to
routers knowing the exact set of hosts on a network that belong to a given multicast
group? Explain.

15.6 Find three applications that can benefit from IP multicast.
15.7 The standard says that IP software must arrange to deliver a copy of any outgoing multi-

cast datagram to application programs on the same host that belong to the specified mul-
ticast group. Does the design make programming easier or more difficult? Explain.

15.8 When the underlying hardware does not support multicast, IP multicast uses hardware
broadcast for delivery. How can doing so cause problems? Is there any advantage to
using IP multicast over such networks?

15.9 DVMRP was derived from RIP. Read RFC 1075 on DVMRP and compare the two pro-
tocols. How much more complex is DVMRP than RIP?

15.10 Version 3 of IGMP and MLDv2 both include a measure of robustness that is intended to
accommodate packet loss by allowing transmission of multiple copies of a message.
How does the protocol arrive at an estimate of the robustness value needed on a given
network?

15.11 Explain why a multi-homed host may need to join a multicast group on one network, but
not on another. (Hint: consider an audio teleconference.)

15.12 Suppose an application programmer makes a choice to simplify programming: when
joining a multicast group, simply join on each network to which the host attaches. Show
that joining on all local interfaces can lead to arbitrary traffic on remote networks.

15.13 Estimate the size of the multicast forwarding table needed to handle multicast of audio
from 100 radio stations, if each station has a total of ten million listeners at random loca-
tions around the world.

15.14 Consider a cable TV provider using IP technology. Assume each set-top box uses IP
and devise a scheme in which the cable provider broadcasts all channels to a neighbor-
hood distribution point and then uses multicast to deliver to residences.

Exercises 351

15.15 Argue that only two types of multicast are practical in the Internet: statically configured
commercial services that multicast to large numbers of subscribers and dynamically con-
figured services that include a few participants (e.g., family members in three households
participating in a single IP phone call).

15.16 Consider reliable multicast achieved through redundant transmission. If a given link has
high probability of corruption, is it better to send redundant copies of a datagram or to
send one copy that uses forward error-correcting codes? Explain.

15.17 The data-driven multicast routing paradigm works best on local networks that have low
delay and excess capacity, while the demand-driven paradigm works best in a wide area
environment that has limited capacity and higher delay. Does it make sense to devise a
single protocol that combines the two schemes? Why or why not? (Hint: consider
MOSPF.)

15.18 Read the PIM-SM protocol specification to find how the protocol defines the notion of
sparse. Find an example of an internet in which the population of group members is
sparse, but for which DVMRP is a better multicast routing protocol.

15.19 Devise a quantitative measure that can be used to decide when PIM-SM should switch
from a shared tree to a shortest path tree.

Chapter Contents
16.1 Introduction, 353
16.2 Switching Technology, 353
16.3 Flows And Flow Setup, 355
16.4 Large Networks, Label Swapping, And Paths, 355
16.5 Using Switching With IP, 357
16.6 IP Switching Technologies And MPLS, 357
16.7 Labels And Label Assignment, 359
16.8 Hierarchical Use Of MPLS And A Label Stack, 359
16.9 MPLS Encapsulation, 360
16.10 Label Semantics, 361
16.11 Label Switching Router, 362
16.12 Control Processing And Label Distribution, 363
16.13 MPLS And Fragmentation, 364
16.14 Mesh Topology And Traffic Engineering, 364
16.15 Summary, 365

16

Label Switching, Flows,
And MPLS

16.1 Introduction

Earlier chapters describe IP addressing and describe how hosts and routers use a
forwarding table and the longest-prefix match algorithm to look up a next hop and for-
ward datagrams. This chapter considers an alternative approach that avoids the over-
head of longest prefix matching. The chapter presents the basic idea of label switching,
explains the technology, and describes its use for traffic engineering.

The next chapter continues the discussion by considering software defined net-
working, and explains how the basic idea of flow labels can be used in a software-
defined network.

16.2 Switching Technology

In the 1980s, as the Internet grew in popularity, researchers began to explore ways
to increase the performance of packet processing systems. An idea emerged that was
eventually adopted by commercial vendors: replace IP’s connectionless packet switch-
ing approach that requires longest-prefix table lookup with a connection-oriented ap-
proach that accommodates a faster lookup algorithm. The general concept, which is
known as label switching, led vendors to create a networking technology known as
Asynchronous Transfer Mode (ATM). In the 1990s, ATM had a short-lived popularity,
but the fad faded.

353

354 Label Switching, Flows, And MPLS Chap. 16

There were several reasons for ATM’s eventual demise. The main reason was
economic: Ethernet switches and IP routers were much less expensive than ATM
switches, and once the IETF created label switching technologies using conventional IP
routers, IT departments did not find compelling reasons for ATM. Once we understand
the general concepts, we see how it is possible to implement switching with a conven-
tional router that does not rely on expensive, connection-oriented hardware.

At the heart of switching lies a basic observation about lookup: if there are N items
in a forwarding table, a computer requires on average approximately log2N steps to per-
form a longest-prefix match. The proponents of label switching point out that hardware
can perform an array index in one step. Furthermore, indexing can translate directly
into combinatorial hardware, while searching usually involves multiple memory refer-
ences.

Switching technologies exploit indexing to achieve extremely high-speed forward-
ing. To do so, each packet carries a small integer known as a label. When a packet ar-
rives at a switch, the switch extracts the label and uses the value as an index into the
table that specifies the appropriate action. Each switch has a set of output interfaces,
and the action usually consists of sending the packet out one of the interfaces. Figure
16.1 illustrates the concept.

S1

S2

S3

0

1

0

0
1
2

ActionLabel

(a)

(b)

0

1

2

3

send out interface 1

send out interface 1

send out interface 0

send out interface 1
...

Figure 16.1 Illustration of basic switching with (a) a network of three inter-
connected switches, and (b) a table from switch S1.

In the figure, the table entries specify how switch S1 forwards packets with labels
in the range 0 through 3. According to the table, a packet with label 2 will be forward-
ed out interface 0, which leads to switch S2; a packet with a label of 0, 1, or 3 will be
forwarded over interface 1, which leads to switch S3.

Sec. 16.3 Flows And Flow Setup 355

16.3 Flows And Flow Setup

The chief drawback of the basic switching scheme described above arises because
each label consists of a small integer. How can the scheme be extended to a network
that has many destinations? The key to answering the question involves rethinking our
assumptions about internets and forwarding:

Instead of focusing on destinations, focus on packet flows.

Instead of assuming that forwarding tables remain static, imagine a sys-
tem that can set up or change forwarding tables quickly.

We define a packet flow to be a sequence of packets sent from a given source to a
given destination. For example, all the packets on a TCP connection constitute a single
flow. A flow also might correspond to a VoIP phone call or a longer-term interaction,
such as all the packets sent from a router in a company’s east-coast office to a router in
the company’s west-coast office. We can summarize the key idea:

Switching technologies use the flow abstraction and create forward-
ing for flows rather than for destinations.

In terms of packet flows, we will assume a mechanism exists to create entries in
switches when a flow is set up and remove entries when a flow terminates. Unlike a
conventional internet where forwarding tables remain static, the tables in switches are
expected to change frequently. Of course, the system to set up flows needs mechanisms
that understand destinations and how to reach them. Thus, flow setup may need to
understand conventional forwarding that uses destinations. For now, we will concen-
trate on the operation of switches, and will postpone the discussion of flow setup until
later in the chapter.

16.4 Large Networks, Label Swapping, And Paths

In the simplistic description above, each flow must be assigned a unique label. A
packet carries the label assigned to its flow, and at every switch the forwarding mecha-
nism uses the label to select an outgoing interface. Unfortunately, the simplistic scheme
does not scale to large networks. Before a unique label can be assigned to a flow,
software would need to verify that no other flow anywhere in the internet is using the
label. Therefore, before a flow could be established, the setup system would have to
communicate with every switch in the internet.

Designers found an ingenious way to solve the problem of scale while preserving
the speed of switching. The solution allows the label to be chosen independently for
each switch along the path. That is, instead of a unique label for a given flow, a new
label can be chosen at each switch along a path. Only one additional mechanism is

356 Label Switching, Flows, And MPLS Chap. 16

needed to make independent label selection work: a switch must be able to rewrite the
label on packets. The system is known as label swapping, label switching, or label
rewriting.

To understand label swapping, we must focus on the path a given flow will follow
through the network. When label swapping is used, the label on a packet can change as
the packet passes from switch to switch. That is, the action a switch performs can in-
clude rewriting the label. Figure 16.2 illustrates a path through three switches.

S0 S1 S3

S2

0

1
0

0

0

ActionLabel
0

2

3

1

label → 1; send out 0

label → 3; send out 0

label → 2; send out 0

label → 0; send out 0

ActionLabel
0

1

2

3

label → 0; send out 1

label → 2; send out 0

label → 3; send out 1

label → 2; send out 1
ActionLabel

0

1

3

2

label → 2; send out 0

label → 4; send out 0

label → 3; send out 0

label → 1; send out 0

Figure 16.2 Illustration of label swapping, in which the label in a packet can
be rewritten by each switch.

In the figure, a packet that enters S0 with label 1 has the label rewritten before be-
ing forwarded. Thus, when switch S1 receives the packet, the label will be 0. Similar-
ly, S1 replaces the label with 2 before sending the packet to S3. S3 replace the label
with 1. Label swapping makes it easier to configure a switched network because it al-
lows a manager to define a path through the network without forcing the same label to
be used at each point along the path. In fact, a label only needs to be valid across one
hop — the two switches that share the physical connection need to agree on the label to
be assigned to each flow that crosses the connection.

The point is:

Switching uses a connection-oriented approach. To avoid the need
for global agreement on the use of labels, the technology allows a
manager to define a path of switches without requiring that the same
label be used along the entire path.

Sec. 16.5 Using Switching With IP 357

16.5 Using Switching With IP

The question arises, can we create a technology that has the advantages of label
switching and the advantages of IP’s destination-based forwarding? The answer is yes.
Although the connection-oriented paradigms used with switching appear to conflict with
IP’s connectionless paradigm, the two have been combined. There are three advan-
tages:

Fast forwarding

Aggregated route information

Ability to manage aggregate flows

Fast Forwarding. The point is easy to understand: switching allows routers to per-
form forwarding faster because the router can use indexing in place of forwarding table
lookup. Of course, hardware implementations of conventional IP forwarding are ex-
tremely fast (i.e., can forward many inputs each operating at 10 Gbps without dropping
any packets). So, the choice between switching or forwarding largely depends on the
cost.

Aggregated Route Information. Large Tier-1 ISPs at the center of the Internet use
switching as a way to avoid having complete routing tables in each of their routers.
When a packet first reaches the ISP, an edge router examines the destination address
and chooses one of several paths. For example, one path might lead to a peer ISP, a
second path might lead to another peer ISP, and a third might lead to a large customer.
The packet is assigned a label, and routers on the ISP’s backbone use the label to for-
ward the packet. In such cases labels are coarse-grain — the label only specifies the
next ISP to which the packet should be sent and not the ultimate destination. Therefore,
all traffic going to a given ISP will have the same label. In other words, all packet trav-
eling to the same next hop are aggregated into a single flow.

Ability To Manage Aggregate Flows. ISPs often write Service Level Agreements
(SLAs) regarding traffic that can be sent across a peering point. Usually, such SLAs
refer to aggregate traffic (e.g., all traffic forwarded between the two ISPs or all VoIP
traffic). Having a label assigned to each aggregate makes it easier to implement mecha-
nisms that measure or enforce the SLA.

16.6 IP Switching Technologies And MPLS

So far, we have described label switching as a general-purpose, connection-
oriented network technology. We will now consider how label switching has been com-
bined with Internet technology. Ipsilon Corporation was one of the first companies to
produce products that merged IP and switching hardware. In fact, Ipsilon used modified
ATM hardware switches, named their technology IP switching, and called their devices
IP switches. Since Ipsilon, other companies have produced a series of designs and
names, including tag switching, Layer 3 switching, and label switching. Several of the

358 Label Switching, Flows, And MPLS Chap. 16

ideas have been folded into a standard endorsed by the IETF known as Multi-Protocol
Label Switching (MPLS). As the term multi-protocol implies, MPLS is designed to car-
ry arbitrary payloads. In practice, MPLS is used almost exclusively to transport IP.

How is MPLS used? The general idea is straightforward: a large ISP (or even a
corporation that has a large intranet) uses MPLS at the center of its network, sometimes
called an MPLS core. Routers near the edge of the ISP’s network (i.e., routers that con-
nect to customers) use conventional forwarding; only routers in the core understand
MPLS and use switching. In most cases, MPLS is not used to establish paths for indi-
vidual flows. Instead, the ISP configures semi-permanent MPLS paths across the core
that stay in place. For example, at each main entry point to the core, the ISP configures
a path to each of the exit points.

Routers near the edge of an ISP’s network examine each datagram and choose
whether to use one of the MPLS paths or handle the datagram with conventional for-
warding. For example, if a customer in one city sends a datagram to another customer
in the same city, the edge router can deliver the datagram without crossing the MPLS
core. However, if the datagram must travel to a remote location or the datagram re-
quires special handling, an edge router can choose one of the MPLS paths and send the
datagram along the path. When it reaches the end of the MPLS path, the datagram ar-
rives at another edge router, which will use conventional forwarding for delivery.

As mentioned earlier, one of the main motivations for using MPLS is the ability to
aggregate flows as they cross the ISP’s core. However, MPLS allows ISPs to offer spe-
cial services to individual customers as well. For example, consider a large corporation
with offices in New York and San Francisco. Suppose the corporation wants a secure
connection between its two sites with performance guarantees. One way to achieve
such a connection consists of leasing a digital circuit. Another alternative involves
MPLS: an ISP can establish an MPLS path between the two offices, and can configure
routers along the path to provide a performance guarantee.

When two major ISPs connect at a peering point, there are two options: they can
each maintain a separate MPLS core or they can cooperate to interconnect their MPLS
cores. The disadvantage of using separate cores arises when a datagram must traverse
both cores. The datagram travels across the first ISP’s core to an edge router that re-
moves the label. The datagram then passes to a router in the second ISP, which assigns
a new label and forwards the datagram across the second MPLS core. If the two ISPs
agree to interconnect their MPLS cores, a label can be assigned once, and the datagram
is switched along an MPLS path until it reaches the edge router in the second ISP that
removes the label and delivers the datagram. The disadvantage of such an interconnec-
tion arises from the need to coordinate — both ISPs must agree on label assignments
used across the connection.

Sec. 16.7 Labels And Label Assignment 359

16.7 Labels And Label Assignment

We said that an edge router examines each datagram and chooses whether to send
the datagram along an MPLS path. Before an edge router can send a datagram across
an MPLS core, the datagram must be assigned a label. Because MPLS performs label
swapping, the label assigned to a datagram is only the initial label for a path. One can
think of the mapping from a datagram to a label as a mathematical function:

label = f (datagram)

where label is the initial label for one of the MPLS paths that has been set up, and f is a
function that performs the mapping.

In practice, function f does not usually examine the entire datagram. In most in-
stances, f only looks at selected header fields. The next chapter describes packet classif-
ication in detail.

16.8 Hierarchical Use Of MPLS And A Label Stack

Consider the use of MPLS in an organization where networks are arranged into a
two-level hierarchy: an outer region that uses conventional IP forwarding and an inner
region that uses MPLS. As we will see, the protocol makes additional levels of hierar-
chy possible. For example, suppose a corporation has three campuses, with multiple
buildings on each campus. The corporation can use conventional forwarding within a
building, one level of MPLS to interconnect the buildings within a campus, and a
second level of MPLS to interconnect sites. Two levels of hierarchy allows the cor-
poration to choose policies for traffic between sites separately from the policies used
between buildings (e.g., the path that traffic travels between buildings is determined by
the type of traffic, but all traffic between a pair of sites follows the same path).

To provide for a multi-level hierarchy, MPLS incorporates a label stack. That is,
instead of attaching a single label to a packet, MPLS allows multiple labels to be at-
tached. At any time, only the top label is used; once the packet finishes traversing a
level, the top label is removed and processing continues with the next label.

In the case of our example corporation, it is possible to arrange two MPLS areas
— one for traffic traveling between buildings and one for traffic traveling between two
sites. Thus, when a datagram travels between two buildings at a given site, the da-
tagram will have one label attached (the label will be removed when the datagram
reaches the correct building). If a datagram must travel between sites and then to the
correct building at the destination site, the datagram will have two labels attached. The
top label will be used to move the datagram between the sites, and will be removed
once the datagram reaches the correct site. When the top label is removed, the second
label will be used to forward the datagram to the correct building.

360 Label Switching, Flows, And MPLS Chap. 16

16.9 MPLS Encapsulation

Interestingly, MPLS does not require the underlying network to use a connection-
oriented paradigm or support label switching. But conventional networks do not pro-
vide a way to pass a label along with a packet and the IPv4 datagram header does not
provide space to store a label. So, the question arises: how can an MPLS label accom-
pany a datagram across a conventional network? The answer lies in an encapsulation
technique: we think of MPLS as a packet format that can encapsulate an arbitrary pay-
load. The primary use is the encapsulation of IPv4 datagrams†. Figure 16.3 illustrates
the conceptual encapsulation.

FRAME
HEADER FRAME PAYLOAD

MPLS
HDR MPLS PAYLOAD

DATAGRAM
HEADER DATAGRAM PAYLOAD

Figure 16.3 The encapsulation used with MPLS to send an IPv4 datagram
over a conventional network, such as an Ethernet. An MPLS
header is variable size, and depends on the number of entries in
the label stack.

As an example, consider using MPLS to send a datagram across an Ethernet.
When using MPLS, the Ethernet type field is set to 0x8847 for unicast transmission‡.
Thus, there is no ambiguity about the contents of a frame — a receiver can use the
frame type to determine whether the frame carries MPLS or a conventional datagram.

An MPLS header is variable length. The header consists of one or more entries,
each of which is 32 bits long and specifies a label plus information used to control label
processing. Figure 16.4 illustrates the format of an entry in the header.

0 20 22 24 31

LABEL EXP S TTL

Figure 16.4 Illustration of the fields in an MPLS header entry. An MPLS
header consists of one or more of these entries.

†Although MPLS can be used for IPv6, the presence of a flow label in the IPv6 header reduces the need
for MPLS.

‡Ethernet type 0x8848 has been assigned for use when MPLS is multicast, but MPLS does not handle
multicast well.

Sec. 16.9 MPLS Encapsulation 361

As Figure 16.4 indicates, there is no field to specify the overall size of an MPLS
header, nor does the header contain a field to specify the type of the payload. To
understand why, recall that MPLS is a connection-oriented technology. Before an
MPLS frame can be sent across a single link, an entire path must be set up. The label
switching router along the path must be configured to know exactly how to process a
packet with a given label. Therefore, when the MPLS path is configured, the two sides
will agree on the size of the MPLS label stack and the contents of the payload area.

An entry in the MPLS header begins with a LABEL field that the receiver uses to
process the packet. If the receiver is an intermediate hop along an MPLS path, the re-
ceiver performs label switching and continues. If the receiver lies at the boundary
between two levels in an MPLS hierarchy, the receiver will remove the first label on the
stack and use the next label. When the packet reaches the final hop along an MPLS
path, the receiver will remove the final MPLS header and use conventional IP forward-
ing tables to handle the encapsulated datagram.

The field labeled EXP in an MPLS header entry is reserved for experimental use.
The S bit is set to 1 to denote the bottom of the stack (i.e., the last entry in an MPLS
header); in other entries, the S bit is 0. Finally, the TTL field (Time To Live) is analo-
gous to the TTL field in an IPv4 datagram header: each switch along the path that uses
the label to forward the packet decrements the TTL value. If the TTL reaches zero,
MPLS discards the packet. Thus, MPLS prevents a packet from cycling forever, even if
a manager misconfigures switches and accidentally creates a forwarding loop.

16.10 Label Semantics

Note that an MPLS label is 20 bits wide. In theory, an MPLS configuration can
use all 20 bits of the label to accommodate up to 220 simultaneous flows (i.e., 1,048,576
flows). In practice, however, MPLS installations seldom use a large number of flows
because a manager is usually required to authorize and configure each switched path.

The description of switching above explains that a label is used as an index into an
array. Indeed, some switching implementations, especially hardware implementations,
do use a label as an index. However, MPLS does not require that each label correspond
to an array index. Instead, MPLS implementations allow a label to be an arbitrary 20-
bit integer. When it receives an incoming packet, an MPLS router extracts the label and
performs a lookup. Typically, the lookup mechanism uses a hashing algorithm, which
means the lookup is approximately as fast as an array index†.

Allowing arbitrary values in labels makes it possible for managers to choose labels
that make monitoring and debugging easier. For example, if there are three main paths
through a corporate network, each path can be assigned a prefix 0, 1, or 2, and the pre-
fix can be used at each hop along the path. If a problem occurs and a network manager
captures packets, having bits in the label that identify a path makes it easier to associate
the packet with a path.

†On average, hashing only requires one probe to find the correct entry in a table if the load factor of the
table is low.

362 Label Switching, Flows, And MPLS Chap. 16

16.11 Label Switching Router

A router that implements MPLS is known as a Label Switching Router (LSR).
Typically, an LSR consists of a conventional router that has been augmented with
software (and possibly hardware) to handle MPLS. Conceptually, MPLS processing
and conventional datagram processing are completely separate. When a packet arrives,
the LSR uses the frame type to decide how to process the packet, as Figure 16.5 illus-
trates.

Demultiplexing Based
On Frame Type

MPLS Module IP Module ARP Module RARP Module

Frame Arrives

Figure 16.5 Frame demultiplexing in an LSR that handles both MPLS and
conventional IP forwarding.

In practice, having both MPLS and IP capability in a single LSR allows the router
to serve as the interface between a non-MPLS internet and an MPLS core. That is, an
LSR can accept a datagram from a conventional network, classify the datagram to as-
sign an initial MPLS label, and forward the datagram over an MPLS path. Similarly,
the LSR can accept a packet over an MPLS path, remove the label, and forward the da-
tagram over a conventional network. The two functions are known as MPLS ingress
and MPLS egress.

The table inside an LSR that specifies an action for each label is known as a Next
Hop Label Forwarding Table, and each entry in the table is called a Next Hop Label
Forwarding Entry (NHLFE). Each NHLFE specifies two items, and may specify three
more:

Next hop information (e.g., the outgoing interface)

The operation to be performed

Sec. 16.11 Label Switching Router 363

The encapsulation to use (optional)

How to encode the label (optional)

Other information needed to handle the packet (optional)

An NHLFE contains an operation field that specifies whether the packet is crossing a
transition to or from one level of the MPLS hierarchy to another, or merely being switched
along a path within a single level. The possibilities are:

Replace the label at the top of the stack with a specified new label, and
continue to forward via MPLS at the current level of the hierarchy.

Pop the label stack to exit one level of MPLS hierarchy. Either use the
next label on the stack to forward the datagram, or use conventional
forwarding if the final label was removed.

Replace the label on the top of the stack with a specified new label, and
then push one or more new labels on the stack to increase the level(s)
of MPLS hierarchy.

16.12 Control Processing And Label Distribution

The discussion above has focused on data path processing (i.e., forwarding packets).
In addition, engineers who defined MPLS considered mechanisms for a control path. Con-
trol path processing refers to configuration and management — control path protocols make
it easy for a manager to create or manage a path through an MPLS core, which is known as
a label switched path (LSP).

The primary functionality provided by a control path protocol is automatic selection of
labels. That is, the protocols allow a manager to establish an MPLS path by specifying
where the path should go without manually configuring the labels to use at each LSR along
the path. The protocols allow pairs of LSRs along the path to choose an unused label for
the link between a pair, and fill in NHLFE information for the new path so the labels can be
swapped at each hop.

The process of choosing labels along a path is known as label distribution. Two proto-
cols have been created to perform label distribution for MPLS: the Label Distribution Proto-
col (LDP), which is sometimes referred to as MPLS-LDP, and the Constraint-based Routing
LDP (CR-LDP). Label distribution handles the task of insuring that labels are assigned con-
sistently; the constraint-based routing extension of LDP handles the task of building paths
along routes that match a set of administrative constraints. In addition, existing protocols
such as OSPF, BGP, and RSVP have also been extended to provide label distribution.
Although it recognizes the need for a label distribution protocol, the IETF working group
that developed MPLS has not specified any of the protocols as the required standard.

364 Label Switching, Flows, And MPLS Chap. 16

16.13 MPLS And Fragmentation

Observant readers may have realized that there is a potential problem with MPLS and
fragmentation. In fact, MPLS and IP fragmentation interact in two ways. First, we said that
when it sends a datagram over a label switched path, MPLS adds a header of at least four
octets. Doing so can have an interesting consequence, especially in a case where the under-
lying networks have the same MTU. For example, consider an ingress LSR that connects an
Ethernet using conventional IP forwarding to an MPLS core that uses label switching. If a
datagram arrives over a non-MPLS path with size exactly equal to the Ethernet MTU, ad-
ding a 32-bit MPLS header will make the resulting payload exceed the Ethernet MTU. As a
result, the ingress LSR must fragment the original datagram, add the MPLS header to each
fragment, and transmit two packets across the MPLS core instead of one.

A second interaction between MPLS and fragmentation occurs when an ingress LSR
receives IP fragments instead of a complete datagram. When the datagram exits the MPLS
core, a router may need to examine TCP or UDP port numbers as well as IP addresses to de-
cide how to process the packet. Unfortunately, only the first fragment of a datagram con-
tains the transport protocol header. Thus, an ingress LSR must either collect fragments and
reassemble the datagram or rely only on the IP source and destination addresses. A large
ISP that uses MPLS has two choices. On the one hand, the ISP can require customers to
use a smaller MTU than the network allows (e.g., an Ethernet MTU of 1492 octets leaves
room for two MPLS header entries without any significant decrease in overall throughput).
On the other hand, an ISP can simply decide to prohibit the use of MPLS with fragments.
That is, in cases where the egress router must examine transport layer fields, the ingress
router examines each datagram and drops any datagram that is too large to send over an
MPLS path without fragmentation.

16.14 Mesh Topology And Traffic Engineering

Interestingly, many ISPs who use MPLS follow a straightforward approach: they define
a full mesh of MPLS paths. That is, if the ISP has K sites and peers with J other ISPs, the
ISP defines an MPLS path for each possible pair of points. As a result, traffic moving
between any pair of sites travels over a single MPLS path between the sites. A beneficial
side effect of defining separate paths arises from the ability to measure (or control) the traf-
fic traveling from one site to another. For example, by watching a single MPLS connection,
an ISP can determine how much traffic travels from one of its sites across a peering connec-
tion to another ISP.

Some sites extend the idea of a full mesh by defining multiple paths between each pair
of sites to accommodate various types of traffic. For example, an MPLS path with
minimum hops might be reserved for VoIP, which needs minimum delay, while a longer
path might be used for other traffic, such as email and web traffic. Many LSRs provide a
mechanism to guarantee a given MPLS path a percentage of the underlying network. There-
fore, an ISP can specify that an MPLS path carrying voice traffic always receives N percent
of the network capacity. MPLS classification makes it possible to use a variety of measures

Sec. 16.14 Mesh Topology And Traffic Engineering 365

to choose a path for data, including the IP source address as well as the transport protocol
port numbers. The point is:

Because MPLS classification can use arbitrary fields in a datagram, in-
cluding the IP source address, the service a datagram receives can depend
on the customer sending the datagram as well as the type of data being
carried.

As an alternative to assigning a single MPLS path for each aggregate flow, MPLS al-
lows an ISP to balance traffic between two disjoint paths. Furthermore, to insure high relia-
bility, the ISP can arrange to use the two paths as mutual backups — if one path fails, all
traffic can be forwarded along the other path.

We use the term traffic engineering to characterize the process of using MPLS to direct
traffic along routes that achieve an organization’s policies. A manager creates a set of
MPLS paths, specifies the LSRs along each path, and designs rules that assign a datagram to
one of the paths. Many traffic engineering facilities allows managers to use some of the
Quality of Service (QoS) techniques defined in Chapter 26 to control the rate of traffic on
each path. Thus, it is possible to define two MPLS flows over a single physical connection,
and use QoS techniques to guarantee that if each flow has traffic to send, 75% of the under-
lying network capacity is devoted to one flow and the remaining 25% to the other flow.

16.15 Summary

To achieve high speed, switching technologies use indexing rather than longest-prefix
lookup. As a consequence, switching follows a connection-oriented paradigm. Because
switches along a path can rewrite labels, the label assigned to a flow can change along the
path.

The standard for switching IP datagrams, which is known as MPLS, was created by the
IETF. When sending a datagram along a label switched path, MPLS prepends a header,
creating a stack of one or more labels; subsequent LSRs along the path use the labels to for-
ward the datagram without performing routing table lookups. An ingress LSR classifies
each datagram that arrives from a non-MPLS host or router, and an egress LSR can pass da-
tagrams from an MPLS path to a non-MPLS host or router.

EXERCISES

16.1 Consider the IPv6 datagram format described in Chapter 7. What mechanism relates directly
to MPLS?

16.2 Read about MPLS. Should MPLS accommodate Layer 2 forwarding (i.e., bridging) as well
as optimized IP forwarding? Why or why not?

366 Label Switching, Flows, And MPLS Chap. 16

16.3 If all traffic from host X will traverse a two-level MPLS hierarchy, what action could be tak-
en to ensure that no fragmentation will occur?

16.4 Read more about the Label Distribution Protocol, LDP, and the Constraint-based Routing ex-
tension. What are the possible constraints that can be used?

16.5 If a router at your site supports MPLS, enable MPLS switching and measure the performance
improvement over conventional routing table lookup. (Hint: be sure to measure many packets
to a given destination to avoid having measurements affected by the cost of handling the ini-
tial packet.)

16.6 Is it possible to conduct an experiment to determine whether your ISP uses MPLS? (Assume
it is possible to transmit arbitrary packets.)

16.7 Cisco Systems, Inc. offers a switching technology known as Multi-Layer Switching (MLS).
Read about MLS. In what ways does MLS differ from MPLS?

16.8 If your site has a VLAN switch that offers MLS service, enable the service and test what hap-
pens if one sends a valid Ethernet frame that contains an incorrect IP datagram. Should a
Layer 2 switch examine IP headers? Why or why not?

16.9 Assume that it is possible to obtain a copy of all frames that travel across an Ethernet. How
do you know whether a given frame is MPLS? If you encounter an MPLS frame, how can
you determine the size of the MPLS header?

This page intentionally left blank

Chapter Contents
17.1 Introduction, 369
17.2 Motivation For Classification, 370
17.3 Classification Instead Of Demultiplexing, 371
17.4 Layering When Classification Is Used, 372
17.5 Classification Hardware And Network Switches, 372
17.6 Switching Decisions And VLAN Tags, 374
17.7 Classification Hardware, 375
17.8 High-Speed Classification And TCAM, 375
17.9 The Size Of A TCAM, 377
17.10 Classification-Enabled Generalized Forwarding, 378
17.11 Summary, 379

17

Packet Classification

17.1 Introduction

Earlier chapters describe traditional packet processing systems and explain two
fundamental concepts. First, we saw how each layer of protocol software in a host or
router uses a type field in a protocol header for demultiplexing. The type field in a
frame is used to select a Layer 3 module to handle the frame, the type field in an IP
header is used to select a transport layer protocol module, and so on. Second, we saw
how IP performs datagram forwarding by looking up a destination address to select a
next-hop.

This chapter takes an entirely different view of packet processing than previous
chapters. In place of demultiplexing, we will consider a technique known as classifica-
tion. Instead of assuming that a packet proceeds through a protocol stack one layer at a
time, we will examine a technique that crosses layers.

Packet classification is pertinent to three topics covered in other chapters. First,
the previous chapter describes MPLS, and we will see that routers use classification
when choosing an MPLS path over which to send a datagram. Second, earlier chapters
describe Ethernet switches, and we will learn that switches use classification instead of
demultiplexing. Finally, Chapter 28 will complete our discussion of classification by
introducing the important topic of Software Defined Networking (SDN). We will see
that classification forms the basis of SDN technologies, and understand how a
software-defined network subsumes concepts from MPLS as well as concepts from
Ethernet switches.

369

370 Packet Classification Chap. 17

17.2 Motivation For Classification

To understand the motivation for classification, consider a router with protocol
software arranged in a traditional layered stack, as Figure 17.1 illustrates.

. . .

Router

Apps (Layer 5)

TCP (Layer 4)

IP (Layer 3)

inter-
face 1

inter-
face 2

inter-
face N

net 1 net 2 net N

...

Figure 17.1 The protocol stack in a traditional router with layers involved in
forwarding a transit datagram highlighted.

As the figure indicates, datagram forwarding usually only requires protocols up
through Layer 3. Packet processing relies on demultiplexing at each layer of the proto-
col stack. When a frame arrives, protocol software looks at the type field to learn about
the contents of the frame payload. If the frame carries an IP datagram, the payload is
sent to the IP protocol module for processing. IP uses the destination address to select
a next-hop address. If the datagram is in transit (i.e., passing through the router on its
way to a destination), IP forwards the datagram by sending it back out one of the inter-
faces. A datagram only reaches TCP if the datagram is destined for the router itself.

To understand why traditional layering does not solve all problems, consider
MPLS processing as described in the previous chapter. In particular, consider a router
at the border between a traditional internet and an MPLS core. Such a router must ac-
cept packets that arrive from the traditional internet and choose an MPLS path over
which to send the packet. Why is layering pertinent to path selection? In many cases,
network managers use transport layer protocol port numbers when choosing a path. For
example, suppose a manager wants to send all web traffic down a specific MPLS path.
All the web traffic will use TCP port 80, which means that the selection must examine
TCP port numbers.

Unfortunately, in a traditional demultiplexing scheme, a datagram does not reach
the transport layer unless the datagram is destined for the router itself. Therefore, pro-
tocol software must be reorganized to handle MPLS path selection. We can summarize:

Sec. 17.2 Motivation For Classification 371

A traditional protocol stack is insufficient for the task of MPLS path
selection, because path selection often involves transport layer infor-
mation and a traditional stack will not send transit datagrams to the
transport layer.

17.3 Classification Instead Of Demultiplexing

How should protocol software be structured to handle tasks like MPLS path selec-
tion? The answer lies in a technology known as classification. A classification system
differs from conventional demultiplexing in two ways:

Ability to cross multiple layers

Faster than demultiplexing

To understand classification, imagine a packet that has been received at a router
and placed in memory. Recall that encapsulation means that the packet will have a set
of contiguous protocol headers at the beginning. For example, Figure 17.2 illustrates
the headers in a TCP packet (e.g., a request sent to a web server) that has arrived over
an Ethernet.

Ethernet
header

IP
header

TCP
header . . . TCP Payload . . .

Figure 17.2 The arrangement of protocol header fields in a TCP packet.

Given a packet in memory, how can we quickly determine whether the packet is
destined for the Web? A simplistic approach simply looks at one field in the headers:
the TCP destination port number. However, it could be that the packet isn’t a TCP
packet at all. Maybe the frame is carrying ARP instead of IP. Or maybe the frame
does indeed contain an IP datagram, but instead of TCP, the transport layer protocol is
UDP. To make certain that it is destined for the Web, software needs to verify each of
the headers: the frame contains an IP datagram, the IP datagram contains a TCP seg-
ment, and the TCP segment is destined for the Web.

Instead of parsing protocol headers, think of the packet as an array of octets in
memory. As an example, consider IPv4†. To be an IPv4 datagram, the Ethernet type
field (located in array positions 12 through 13) must contain 0x0800. The IPv4 protocol
field, located at position 23 must contain 6 (the protocol number for TCP). The desti-
nation port field in the TCP header must contain 80. To know the exact position of the
TCP header, we must know the size of the IP header. Therefore, we check the header
length octet of the IPv4 header. If the octet contains 0x45, the TCP destination port
number will be found in array positions 36 through 37.

†We use IPv4 to keep the examples small; although the concepts apply to IPv6, extension headers com-
plicate the details.

372 Packet Classification Chap. 17

As another example, consider Voice over IP (VoIP) traffic that uses the Real-Time
Transport Protocol (RTP). Because RTP is not assigned a specific UDP port, vendors
employ a heuristic to determine whether a given packet carries RTP traffic: check the
Ethernet and IP headers to verify that a packet carries UDP, and then examine the octets
at a known offset in the RTP message to verify that the value in the packet matches the
value expected by a known codec.

Observe that all the checks described in the preceding paragraphs only require ar-
ray lookup. That is, the lookup mechanism merely checks to verify that location X con-
tains value Y, location Z contains value W, and so on — the mechanism does not need
to understand any of the protocol headers or the meaning of octets. Furthermore, ob-
serve that the lookup scheme crosses multiple layers of the protocol stack.

We use the term classifier to describe a mechanism that uses the lookup approach
described above, and we say that the result is a packet classification. In practice, a clas-
sification mechanism usually takes a list of classification rules and applies them until a
match is found. For example, a manager might specify three rules: send all web traffic
to MPLS path 1, send all FTP traffic to MPLS path 2, and send all VPN traffic to
MPLS path 3.

17.4 Layering When Classification Is Used

If classification crosses protocol layers, how does it relate to our earlier layering
diagrams? We think of a classification layer as an extra layer that has been squeezed
between the Network Interface layer and IP. Once a packet arrives, the packet passes
from the Network Interface module to the classification layer. All packets proceed to
the classifier; no demultiplexing occurs before classification. If any of the classification
rules match the packet, the classification layer follows the rule. Otherwise, the packet
proceeds up the traditional protocol stack. For example, Figure 17.3 illustrates layering
when classification is used to send some packets across MPLS paths.

Interestingly, the classification layer can subsume the first level of demultiplexing.
That is, instead of only classifying packets for MPLS paths, the classifier can be config-
ured with additional rules that check the type field in a frame for IP, ARP, RARP, and
so on.

17.5 Classification Hardware And Network Switches

The description above describes a classification mechanism that is implemented in
software — an extra layer is added to a software protocol stack that classifies frames
once they arrive at a router. Classification is also implemented in hardware. In particu-
lar, Ethernet switches and other packet processing hardware devices contain classifica-
tion hardware that allows packet forwarding to proceed at high speed. The next sec-
tions explain hardware classification mechanisms. Chapter 28 continues the discussion

Sec. 17.5 Classification Hardware And Network Switches 373

by showing how Software Defined Networking technologies use the classification
mechanisms in switches to achieve traffic engineering at high speed.

. . .

Traditional Stack

Label Switching Code
Apps (Layer 5)

TCP (Layer 4)

IP (Layer 3)

Classifier

MPLS Module

inter-
face 1

inter-
face 2

inter-
face N

net 1 net 2 net N

...

Figure 17.3 Layering when a router uses classification to select MPLS paths.

We think of network devices, such as switches, as being divided into broad
categories by the level of protocol headers they examine and the consequent level of
functionality they provide:

Layer 2 switching
Layer 2 VLAN switching
Layer 3 switching
Layer 4 switching

Chapter 2 describes Layer 2 switches. In essence, such a switch examines the
MAC source address in each incoming frame to learn the MAC address of the computer
that is attached to each port. Once a switch learns the MAC addresses of all the at-
tached computers, the switch can use the destination MAC address in each frame to
make a forwarding decision. If the frame is unicast, the switch only sends one copy of
the frame on the port to which the specified computer is attached. For a frame destined
to the broadcast or a multicast address, the switch delivers a copy of the frame to all
ports.

A VLAN switch permits the manager to assign each port to a specific VLAN.
VLAN switches extend forwarding in one minor way: instead of sending broadcasts and
multicasts to all ports on the switch, a VLAN switch consults the VLAN configuration
and only sends to ports on the same VLAN as the source.

374 Packet Classification Chap. 17

A Layer 3 switch acts like a combination of a VLAN switch and a router. Instead
of only using the Ethernet header when forwarding a frame, the switch can look at
fields in the IP header. In particular, the switch watches the source IP address in in-
coming packets to learn the IP address of the computer attached to each switch port.
The switch can then uses the IP destination address in a packet to forward the packet to
its correct destination.

A Layer 4 switch extends the examination of a packet to the transport layer. That
is, the switch can include the TCP or UDP source and destination port fields when mak-
ing a forwarding decision.

17.6 Switching Decisions And VLAN Tags

All types of switching hardware rely on classification. That is, switches operate on
packets as if a packet is merely an array of octets and individual fields in the packet are
specified by giving offsets in the array. Thus, instead of demultiplexing packets, a
switch treats a packet syntactically by applying a set of classification rules similar to the
rules described above.

Surprisingly, even VLAN processing is handled in a syntactic manner. Instead of
merely keeping VLAN information in a separate data structure that holds meta informa-
tion, the switch inserts an extra field in an incoming packet and places the VLAN
number of the packet in the extra field. Because it is just another field, the classifier
can reference the VLAN number just like any other header field.

We use the term VLAN tag to refer to the extra field inserted in a packet. The tag
contains the VLAN number that the manager assigned to the port over which the frame
arrived. For Ethernet, IEEE standard 802.1Q specifies placing the VLAN tag field after
the MAC source address field. Figure 17.4 illustrates the format.

. . .6 octets 6 octets 4 octets 2 octets 46–1500 octets

Destination
Address

Source
Address

VLAN
Tag

Frame
Type Frame Payload (Data)

Figure 17.4 Illustration of an IEEE 802.1Q VLAN tag field inserted in an
Ethernet frame after the frame arrives at a VLAN switch.

A VLAN tag is only used internally — once the switch has selected an output port
and is ready to transmit the frame, the tag is removed. Thus, when computers attached
to a switch send and receive frames, the frames do not contain a VLAN tag.

An exception can be made to the rule: a manager can configure one or more ports
on a switch to leave VLAN tags in frames when sending the frame. The purpose is to
allow two or more switches to be configured to operate as a single, large switch. That
is, the switches can share a set of VLANs — a manager can configure each VLAN to
include ports on one or both of the switches.

Sec. 17.7 Classification Hardware 375

17.7 Classification Hardware

We can think of hardware in a switch as being divided into three main com-
ponents: a classifier, a set of units that perform actions, and a management component
that controls the overall operation. Figure 17.5 illustrates the overall organization and
the flow of packets.

...

MANAGEMENT

CLASSIFIER

ACTION 1

ACTION 2

ACTION N

packet
arrives

configuration
occurs

Figure 17.5 The conceptual organization of hardware in a switch.

As the figure indicates, the classifier provides the high-speed data path that packets
follow. A packet arrives, and the classifier uses the rules that have been configured to
choose an action. The management module usually consists of a general-purpose pro-
cessor that runs management software. A network manager can interact with the
management module to configure the switch, in which case the management module
can create or modify the set of rules the classifier follows.

As with MPLS classification, a switch must be able to handle two types of traffic:
transit traffic and traffic destined for the switch itself. For example, to provide manage-
ment or routing functions, a switch may have a local TCP/IP protocol stack, and packets
destined for the switch must be passed to the local stack. Therefore, one of the actions
a classifier takes may be pass packet to the local stack for demultiplexing.

17.8 High-Speed Classification And TCAM

Modern switches can allow each interface to operate at 10 Gbps. At 10 Gbps, a
frame only takes 1.2 microseconds to arrive, and a switch usually has many interfaces.
A conventional processor cannot handle classification at such speeds. So the question
arises: how does a hardware classifier achieve high speed? The answer lies in a
hardware technology known as Ternary Content Addressable Memory (TCAM).

TCAM uses parallelism to achieve high speed — instead of testing one field of a
packet at a given time, TCAM checks all fields simultaneously. Furthermore, TCAM
performs multiple checks at the same time. To understand how TCAM works, think of
a packet as a string of bits. We imagine TCAM hardware as having two parts: one part

376 Packet Classification Chap. 17

holds the bits from a packet and the other part is an array of values that will be com-
pared to the packet. Entries in the array are known as slots. Figure 17.6 illustrates the
idea.

...

bits from a packet

pattern in slot 1

pattern in slot 2

pattern in slot 3

pattern in slot N

action1

action2

action3

actionn

parallel comparison
with all slots

action

check results
in parallel

Figure 17.6 The conceptual organization of a high-speed hardware classifier
that uses TCAM technology.

In the figure, each slot contains two parts. The first part consists of hardware that
compares the bits from the packet to the pattern stored in the slot. The second part
stores a value that specifies an action to be taken if the pattern matches the packet. If a
match occurs, the slot hardware passes the action to the component that checks all the
results and announces an answer.

One of the most important details concerns the way TCAM handles multiple
matches. In essence, the output circuitry selects one match and ignores the others. That
is, if multiple slots each pass an action to the output circuit, the circuit only accepts one
and passes the action as the output of the classification. For example, the hardware may
choose the lowest slot that matches. In any case, the action that the TCAM announces
corresponds to the action from one of the matching slots.

The figure indicates that a slot holds a pattern rather than an exact value. Instead
of merely comparing each bit in the pattern to the corresponding bit in the packet, the
hardware performs a pattern match. The adjective ternary is used because each bit po-
sition in a pattern can have three possible values: a one, a zero, or a “don’t care.”
When a slot compares its pattern to the packet, the hardware only checks the one and
zero bits in the pattern — the hardware ignores pattern bits that contain “don’t care.”
Thus, a pattern can specify exact values for some fields in a packet header and omit
other fields.

To understand TCAM pattern matching, consider a pattern that identifies IP pack-
ets. Identifying such packets is easy because an Ethernet frame that carries an IP da-
tagram will have the value 0x0800 in the Ethernet type field. Furthermore, the type

Sec. 17.8 High-Speed Classification And TCAM 377

field occupies a fixed position in the frame: bits 96 through 111. Thus, we can create a
pattern that starts with 96 ‘don’t care” bits (to cover the Ethernet destination and source
MAC addresses) followed by sixteen bits with the binary value 0000100000000000 (the
binary equivalent of 0x0800) to cover the type field. All remaining bit positions in the
pattern will be “don’t care.” Figure 17.7 illustrates the pattern and example packets.

* * * * * * * * * * * * 08 00 * * * * ...

00 24 e8 3a b1 f1 00 24 e8 3a b2 6a 08 06 00 01 08 00 ...

00 24 e8 3a b2 6a 00 24 e8 3a b1 f1 08 00 45 00 00 28 ...

(a) A pattern shown in hexadecimal

(b) A frame carrying an ARP reply

(c) A frame carrying an IP datagram

Figure 17.7 (a) A pattern in a TCAM with asterisks indicating “don’t care”,
(b) an ARP packet that does not match the pattern, and (c) an IP
datagram that matches the pattern.

Although a TCAM hardware slot has one position for each bit, the figure does not
display individual bits. Instead, each box corresponds to one octet, and the value in a
box is a hexadecimal value that corresponds to eight bits. We use hexadecimal simply
because binary strings are too long to fit comfortably onto a printed page.

17.9 The Size Of A TCAM

A question arises: how large is a TCAM? The question can be divided into two
important aspects:

The number of bits in a slot
The total number of slots

Bits per slot. The number of bits per slot depends on the type of Ethernet switch.
A basic switch uses the destination MAC address to classify a packet. Therefore, the
TCAM in a basic switch only needs 48 bit positions. A VLAN switch needs 128 bit
positions to cover the VLAN tag as Figure 17.4 illustrates†. A Layer 3 switch must
have sufficient bit positions to cover the IP header as well as the Ethernet header.

Total slots. The total number of TCAM slots determines the maximum number of
patterns a switch can hold. The TCAM in a typical switch has 32,000 entries. When a
switch learns the MAC address of a computer that has been plugged into a port, the
switch can store a pattern for the address. For example, if a computer with MAC ad-

†Figure 17.4 can be found on page 374.

378 Packet Classification Chap. 17

dress X is plugged into port 29, the switch can create a pattern in which destination ad-
dress bits match X and the action is send packet to output port 29.

A switch can also use patterns to control broadcasting. When a manager config-
ures a VLAN, the switch can add an entry for the VLAN broadcast. For example, if a
manager configures VLAN 9, an entry can be added in which the destination address
bits are all 1s (i.e., the Ethernet broadcast address) and the VLAN tag is 9. The action
associated with the entry is broadcast on VLAN 9.

A Layer 3 switch can learn the IP source address of computers attached to the
switch, and can use TCAM to store an entry for each IP address. Similarly, it is possi-
ble to create entries that match Layer 4 protocol port numbers (e.g., to direct all web
traffic to a specific output). Chapter 28 considers another interesting use of classifica-
tion hardware: a manager can place patterns in the classifier to establish paths through a
network and direct traffic along the paths. Because such classification rules cross multi-
ple layers of the protocol stack, the potential number of items stored in a TCAM can be
large.

TCAM seems like an ideal mechanism because it is both extremely fast and versa-
tile. However, TCAM has a significant drawback: cost. In addition, because it operates
in parallel, TCAM consumes much more energy than conventional memory. Therefore,
designers minimize the amount of TCAM to keep costs and power consumption low.

17.10 Classification-Enabled Generalized Forwarding

Perhaps, the most significant advantage of a classification mechanism arises from
the generalizations it enables. Because classification examines arbitrary fields in a
packet before any demultiplexing occurs, cross-layer combinations are possible. For ex-
ample, classification can specify that all packets from a given MAC address should be
forwarded to a specific output port regardless of the packet type or the packet contents.
In addition, classification can make forwarding decisions depend on the source address
in a packet as well as the destination. An ISP can use source addresses to distinguish
among customers. For example, an ISP can forward all packets with IP source address
X along one path while forwarding packets with IP source address Y along another path,
even if all the packets have the same destination address.

ISPs use the generality that classification offers to handle traffic engineering that is
not usually available in a conventional protocol stack. In particular, classification al-
lows ISPs to offer tiered services. An ISP can arrange to use both the type of traffic
and the amount a customer pays when classifying packets. Once the packet has been
classified, all packets with the same classification can be forwarded along the appropri-
ate path.

Sec. 17.11 Summary 379

17.11 Summary

Classification is a fundamental performance optimization that allows a packet pro-
cessing system to cross layers of the protocol stack without demultiplexing. A classifier
treats each packet as an array of bits and checks the contents of fields at specific loca-
tions in the array.

Classification is used with MPLS as well as in Ethernet switches. Most Ethernet
switches implement classification in hardware; a hardware technology known as TCAM
uses parallelism to perform classification at extremely high speed.

EXERCISES

17.1 Read about Ethernet switches and find the size of TCAM used.
17.2 If your site employs MPLS, make a list of the classification rules that are used and state

the purpose of each.
17.3 If a Layer 2 switch has P ports that connect to computers, what is the maximum number

of MAC destination addresses the switch needs to place in its classifier? Be careful be-
cause the answer is not obvious.

17.4 Write classification rules that send all VoIP traffic down MPLS path 1, web traffic down
MPLS path 2, ssh traffic down MPLS path 3, and all other traffic down MPLS path 4.

17.5 A manager wants to send all multicast traffic down MPLS path 17 and all other traffic
down MPLS path 18. What is the simplest set of classification rules that can be used?

17.6 Does your answer to the previous question change if a site uses both IPv4 and IPv6?
17.7 The text asserts that classification is needed to process packets that arrive at 10 Gbps be-

cause an Ethernet frame only takes 1.2 microseconds to arrive. How many bits are in
the payload of such a frame?

17.8 In the previous problem, how many instructions can a high-speed processor execute in
1.2 microseconds?

17.9 On most networks, the smallest packets contain a TCP ACK traveling in an IPv4 da-
tagram. How long does it take for such a frame to arrive?

Chapter Contents
18.1 Introduction, 381
18.2 Mobility, Addressing, And Routing, 381
18.3 Mobility Via Host Address Change, 382
18.4 Mobility Via Changes In Datagram Forwarding, 383
18.5 The Mobile IP Technology, 383
18.6 Overview Of Mobile IP Operation, 384
18.7 Overhead And Frequency Of Change, 384
18.8 Mobile IPv4 Addressing, 385
18.9 IPv4 Foreign Agent Discovery, 386
18.10 IPv4 Registration, 387
18.11 IPv4 Registration Message Format, 388
18.12 Communication With An IPv4 Foreign Agent, 388
18.13 IPv6 Mobility Support, 389
18.14 Datagram Transmission, Reception, And Tunneling, 390
18.15 Assessment Of IP Mobility And Unsolved Problems, 391
18.16 Alternative Identifier-Locator Separation Technologies, 395
18.17 Summary, 396

18

Mobility And Mobile IP

18.1 Introduction

Previous chapters describe the IP addressing and forwarding schemes used with
stationary computers and an IP addressing and forwarding scheme that uses network-
based addressing.

This chapter considers technology that allows a portable computer to move from
one network to another. We will see that the extension can work with wired or wireless
networks, has versions that apply to IPv4 or IPv6, and retains backward compatibility
with existing internet routing.

18.2 Mobility, Addressing, And Routing

In the broadest sense, the term mobile computing refers to a system that allows
computers to move from one location to another. Although wireless technologies allow
rapid and easy mobility, wireless access is not required — a traveler might carry a lap-
top computer and connect to a remote wired network (e.g., in a hotel).

The IP addressing scheme, which was designed and optimized for stationary hosts,
makes mobility difficult. A prefix of each host address identifies the network to which
the host attaches, and routers use the prefix to forward datagrams to the correct network
for final delivery. As a result, moving a host to a new network requires one of two pos-
sible changes:

The host’s address must change.
Datagram forwarding must change.

381

382 Mobility And Mobile IP Chap. 18

18.3 Mobility Via Host Address Change

The approach of changing a host’s IP address is widely used in the global Internet
and works well for slow, semi-permanent mobility. For example, consider a user who
carries a computer to a coffee shop and stays for a while sipping coffee while using the
shop’s Wi-Fi connection. Or consider a traveler who carries a computer to a hotel
room, works at the hotel for two days, and then returns home. As we will see in
Chapter 22, such mobility is enabled with dynamic address assignment. In particular,
IPv4 hosts use the DHCP protocol to obtain an IP address, and IPv6 hosts use the IPv6
Neighbor Discovery protocol to generate and verify a unique address.

Most operating systems perform address assignment automatically without inform-
ing the user. There are two conditions that trigger dynamic address acquisition. First,
when it boots, an IPv4 host always runs DHCP and an IPv6 host generates a unicast ad-
dress and validates uniqueness. Second, an operating system reassigns an address when
it detects the loss and then reacquisition of network connectivity. Thus, if a portable
computer remains running while it is moved from one Wi-Fi hotspot to another, the
operating system will detect disconnection from the first Wi-Fi network and reconnec-
tion to the second.

Although it works well for casual users, changing a host’s address has disadvan-
tages. An address change breaks all ongoing transport layer connections. For example,
a transport connection is used to watch a streaming video or to use a VPN. In each
case, changing a host’s IP address breaks all transport layer connections and causes the
operating system to inform applications that are using the connections. An application
can recover from connection loss by informing the user or by restarting the connection
automatically. Even if an application restarts a connection, restarting may take time,
which means a user may notice a disruption in service.

If a host offers network services (i.e., runs servers), changing an IP address has
more severe consequences. Typically, each application that runs a service must be re-
started. Furthermore, computers that run services are usually assigned a domain name.
Thus, when the computer’s IP address changes, the host’s DNS entry must also be up-
dated†. Of course, an arbitrary computer is not permitted to change a DNS entry,
which means additional infrastructure is needed to authenticate DNS updates.

The point is:

Although dynamic address assignment enables a basic form of mobili-
ty that allows a user to move a host from one network to another,
changing a host’s address has the disadvantage of breaking transport
layer connections.

†Chapter 23 explains the Domain Name System (DNS).

Sec. 18.4 Mobility Via Changes In Datagram Forwarding 383

18.4 Mobility Via Changes In Datagram Forwarding

Can we allow a host to retain its original IP address when it moves to a new net-
work? In theory, the answer is yes — all we need to do is change forwarding tables in
routers throughout the Internet so datagrams destined for the host will be forwarded to
the new network. We could even create network hardware that detects the presence of
new IP addresses and informs the routing system about their presence.

Unfortunately, the simplistic scheme described above is impractical because host-
specific routing does not scale to the size of the global Internet. Internet routing only
works because routing protocols exchange information about networks rather than hosts
and because networks are stationary. That is, the total size of routing information is
limited and the information is relatively static. If routing protocols are used to handle
hosts instead of networks, the amount of routing traffic becomes overwhelming, even if
only a small fraction of hosts change location each day. The point is:

We cannot use host-specific routing to handle mobility because the
global Internet does not have sufficient capacity to propagate host-
specific routes that change frequently.

18.5 The Mobile IP Technology

The IETF devised a technology to permit IP mobility; versions are available for
both IPv4 and IPv6. Officially named IP mobility support and popularly called mobile
IP†, the technology provides a compromise. Mobile IP has the advantages of not
changing a host’s IP address and not requiring host-specific routing, but the disadvan-
tage that datagram forwarding can be inefficient. The general characteristics include:

Transparency. Mobility is transparent to applications, transport layer proto-
cols, and routers. In particular, a TCP connection can survive a change in
location. The only proviso is that if the transition takes a long time (i.e., a
host remains disconnected from all networks for a while), the connection
cannot be used during the transition. The reason is that TCP will timeout
the connection after two maximum segment lifetimes.

Backward Compatibility. A host using mobile IPv4 can interoperate with
stationary hosts that run conventional IPv4 software as well as with other
mobile IPv4 hosts. Similarly, a host using mobile IPv6 can interoperate
with stationary hosts that use IPv6 or other mobile IPv6 hosts. That is, a
mobile host uses the same IP address scheme as a stationary host.

Scalability. The solution permits mobility across the global Internet.

Security. Mobile IP can ensure that all messages are authenticated (i.e., to
prevent an arbitrary computer from impersonating a mobile host).

†When it is necessary to distinguish, we use the terms mobile IPv4 and mobile IPv6

384 Mobility And Mobile IP Chap. 18

Macro Mobility. Rather than attempting to handle continuous, high-speed
movement, such as a cell phone in a car, mobile IP focuses on the problem
of long-duration moves (e.g., a user who takes a portable device on a busi-
ness trip).

18.6 Overview Of Mobile IP Operation

How can mobile IP allow a host to retain its address without requiring routers to
learn host-specific routes? Mobile IP solves the problem by allowing a host to hold two
addresses simultaneously: a permanent and fixed primary address that applications use,
and a secondary address that is temporary and associated with a particular network to
which the host is attached. A temporary address is only valid for one location; when it
moves to another location, a mobile host must obtain a new temporary address.

A mobile host is assumed to have a permanent home in the Internet, and a mobile
host’s primary address is the address that the host has been assigned on its home net-
work. Furthermore, to support mobility, a host’s home network must include a special
network system known as a home agent. Typically, home agent software runs in a con-
ventional router, but that is not strictly necessary. In essence, a home agent agrees to
intercept each datagram that arrives for the host’s permanent address and forward the
datagram to the host’s current location (later sections discuss details).

How does a home agent know the current location of a mobile host? After it
moves to a foreign network, a mobile host must obtain a secondary (i.e., temporary) ad-
dress, and must then contact its home agent to inform the agent about the current loca-
tion. We say that the mobile host registers a secondary address with its home agent.

The secondary address is only valid while a mobile host remains at a given loca-
tion. If the host moves again, it must obtain a new secondary address for the new loca-
tion and inform the home agent of the change. Finally, when a mobile host returns
home, it must contact the home agent to deregister, meaning that the agent will stop in-
tercepting datagrams. In fact, a mobile host can choose to deregister before it returns
home (e.g., when it leaves a remote location).

18.7 Overhead And Frequency Of Change

We said that mobile IP technology is designed to support macro mobility. In par-
ticular, mobile IP is not intended for the continuous, high-speed network change associ-
ated with a smart phone being used in a car as it moves down a highway. Thus, we
think of a traveler using mobile IP once they reach a new destination rather than at each
point along the trip.

The reason that mobile IP does not support rapid changes should be obvious: over-
head. Networks in the Internet do not monitor devices or track their movements. Most
important, network systems do not coordinate to perform hand-off. Instead, each
mobile device must monitor its network connection and detect when it has moved from

Sec. 18.7 Overhead And Frequency Of Change 385

one network to another. When it does detect a change, the mobile device must com-
municate across the foreign network to request a secondary address for the network.
Once it has obtained a secondary address, the mobile device must communicate with its
home agent to register the address and establish forwarding. Note that a mobile device
can be arbitrarily far from its home network, which means that registration may involve
communication across arbitrary distance. The point is:

Because it requires considerable overhead after each change, mobile
IP is intended for situations in which a host moves infrequently and
remains at a given location for a relatively long period of time (e.g.,
hours or days).

The details of addressing, registration, and forwarding will become clear as we
understand the technology. We first consider mobility for IPv4, which illustrates the
basic concepts, and then consider why so much additional complexity is needed to sup-
port mobile IPv6†.

18.8 Mobile IPv4 Addressing

When using IPv4, a mobile host’s primary or home address is a conventional IPv4
address that is assigned and administered as usual. Applications on a mobile host al-
ways use the primary address; they remain unaware of any other address. The host’s
secondary address, which is also known as a care-of address, is a temporary address
that is used only by the mobile IP software on the host. A care-of address is only valid
for a given foreign network.

Mobile IPv4 supports two types of care-of addresses that differ in the method by
which the address is obtained and in the way datagram forwarding occurs:

Co-located

Foreign Agent

IPv4 Co-located Care-of Address. A co-located address allows a mobile computer
to handle all forwarding and datagram tunneling without any assistance from hosts or
routers on the foreign network. In fact, from the point of view of systems on the
foreign network, the mobile host appears to be a conventional host that follows the nor-
mal pattern of obtaining a local address, using the address, and then relinquishing the
address. The temporary address is assigned via DHCP like any other address.

The chief advantage of a co-located address arises from its universal applicability.
Because the mobile host handles all registration and communication details, no addi-
tional facilities are required on the foreign network. Thus, a mobile host can use co-
located care-of addressing on an arbitrary network, including a conventional Wi-Fi
hotspot, such as those found in a coffee shop.

†The standard for IPv6 mobility, RFC 6275, comprises 169 pages, defines many message types, and
gives many rules for protocol operation.

386 Mobility And Mobile IP Chap. 18

There are two disadvantages of the co-located approach. First, co-location requires
extra software on a mobile host. Second, the foreign network cannot distinguish a host
that uses mobile IP from an arbitrary visitor. We will see that the inability to identify a
host as using mobile IP can impact forwarding.

IPv4 Foreign Agent Care-of Address. The second type of temporary address al-
lows a foreign network to know whether a host is using mobile IP because a system on
the foreign network participates in all forwarding. The system is known as a foreign
agent, and a temporary address used with the scheme is known as a foreign agent care-
of address. To use the foreign agent approach, a mobile host does not obtain a local ad-
dress itself. In particular, a mobile host does not use DHCP. Instead, when a mobile
host arrives at a foreign site, the mobile host uses a discovery protocol to obtain the
identity of a foreign agent. The mobile host then communicates with the agent to learn
the care-of address to use. Surprisingly, a foreign agent does not need to assign each
mobile host a unique address. Instead, when using a foreign agent, the care-of address
is the agent’s IPv4 address. The agent then delivers incoming datagrams to the correct
visiting mobile host.

18.9 IPv4 Foreign Agent Discovery

The process of IPv4 foreign agent discovery uses the ICMP router discovery mech-
anism in which each router periodically sends an ICMP router advertisement message,
and allows a host to send an ICMP router solicitation to prompt for an advertisement†.
A router that acts as a foreign agent appends a mobility agent extension‡ to each mes-
sage; the extension specifies the network prefix, which a mobile host uses to determine
that it has moved to a new network. Interestingly, mobility extensions do not use a
separate ICMP message type. Instead, a mobile extension is present if the datagram
length specified in the IP header is greater than the length specified in the ICMP router
discovery message. Figure 18.1 illustrates the extension format.

0 8 16 24 31

TYPE (16) LENGTH SEQUENCE NUM

LIFETIME CODE RESERVED

ONE OR MORE CARE-OF ADDRESSES

Figure 18.1 The format of an IPv4 mobility agent advertisement extension
message when sent by a foreign agent. The extension is append-
ed to an ICMP router advertisement.

Each extension message begins with a 1-octet TYPE field followed by a 1-octet
LENGTH field. The LENGTH field specifies the size of the extension message in oc-
tets, excluding the TYPE and LENGTH octets. The LIFETIME field specifies the max-

†A mobile host can also multicast to the all agents group (224.0.0.11).
‡A mobility agent also appends a prefix extension to each message.

Sec. 18.9 IPv4 Foreign Agent Discovery 387

imum amount of time in seconds that the agent is willing to accept registration requests,
with all 1s indicating infinity. Field SEQUENCE NUM specifies a sequence number for
the message to allow a recipient to determine when a message is lost, and the last field
lists the address of at least one foreign agent. Each bit in the CODE field defines a
specific feature of the agent as listed in Figure 18.2.

Bit Meaning
7 Registration with an agent is required even when

using a co-located care-of address
6 The agent is busy and is not accepting registrations
5 Agent functions as a home agent
4 Agent functions as a foreign agent
3 Agent uses minimal encapsulation
2 Agent uses GRE-style encapsulation
1 Unused (must be zero)
0 Agent supports reversed tunneling

Figure 18.2 Bits of the CODE field of an IPv4 mobility agent advertisement,
with bit 0 being the least-significant bit of the octet.

As the figure indicates, bit 2 and bit 3 specify the encapsulation used when a
mobile host communicates with the foreign agent. Minimal encapsulation is a standard
for IP-in-IP tunneling that abbreviates fields from the original header to save space.
Generic Route Encapsulation (GRE) is a standard that allows an arbitrary protocol to be
encapsulated; IP-in-IP is one particular case.

18.10 IPv4 Registration

Before it can receive datagrams at a foreign location, a mobile host must be regis-
tered with its home agent. If it is using a foreign agent care-of address, the mobile host
must be registered with a foreign agent. The registration protocol allows a host to:

Register with an agent on the foreign network, if needed

Register with its home agent to request forwarding

Renew a registration that is due to expire

Deregister after returning home

If it obtains a co-located care-of address, a mobile host performs registration direct-
ly; the co-located care-of address is used in all communication with the mobile’s home
agent. If it obtains a foreign agent care-of address, a mobile host allows the foreign
agent to register with the home agent on the host’s behalf.

388 Mobility And Mobile IP Chap. 18

18.11 IPv4 Registration Message Format

All registration messages are sent via UDP; agents use port 434. A registration
message begins with a set of fixed-size fields followed by variable-length extensions.
Each request is required to contain a mobile-home authentication extension that allows
the home agent to verify the mobile’s identity. Figure 18.3 illustrates the message
format.

0 8 16 31

TYPE (1 or 3) FLAGS/CODE LIFETIME

HOME ADDRESS

HOME AGENT

CARE-OF-ADDRESS (request only)

IDENTIFICATION

EXTENSIONS . . .

Figure 18.3 The format of an IPv4 mobile IP registration request or mobile
IP reply message.

The TYPE field specifies whether the message is a request (1) or a reply (3). The
LIFETIME field specifies the number of seconds the registration is valid (a zero re-
quests immediate deregistration, and all 1s specifies an infinite lifetime). The HOME
ADDRESS, HOME AGENT, and CARE-OF ADDRESS fields specify the two IP ad-
dresses of the mobile and the address of its home agent, and the IDENTIFICATION
field contains a 64-bit number generated by the mobile that is used to match requests
with incoming replies and to prevent the mobile from accepting old messages. Bits of
the FLAGS/CODE field are used as a result code in a registration reply message and to
specify forwarding details in a registration request, such as whether the registration
corresponds to an additional (i.e., new) address request and the encapsulation that the
agent should use when forwarding datagrams to the mobile.

18.12 Communication With An IPv4 Foreign Agent

We said that a foreign agent can assign one of its IPv4 addresses for use as a care-
of address. The consequence is that the mobile will not have a unique address on the
foreign network. The question becomes: how can a foreign agent and a mobile host
communicate over a network if the mobile does not have a valid IP address on the net-
work? Communication requires relaxing the rules for IP addressing and using an alter-

Sec. 18.12 Communication With An IPv4 Foreign Agent 389

native scheme for address binding: when a mobile host sends to a foreign agent, the
mobile is allowed to use its home address as an IP source address, and when a foreign
agent sends a datagram to a mobile, the agent is allowed to use the mobile’s home ad-
dress as an IP destination address. To avoid sending an invalid ARP request, a foreign
agent records the mobile’s hardware address when the first request arrives and uses the
hardware address to send a reply. Thus, although it does not use ARP, the foreign
agent can send datagrams to a mobile via hardware unicast. We can summarize:

If a mobile does not have a unique foreign address, a foreign agent
must use the mobile’s home address for communication. Instead of
relying on ARP for address binding, the agent records the mobile’s
hardware address when a request arrives and uses the recorded infor-
mation to supply the necessary binding.

18.13 IPv6 Mobility Support

Experience with mobile IPv4 and the design of the IPv6 protocol led the IETF to
make significant changes between mobile IPv4 and mobile IPv6. The IETF intended to
integrate mobility support more tightly into the protocol, compensate for some of the
problems and weaknesses that had been discovered with mobile IPv4, and stimulate use.
The differences can be characterized as follows:

IPv6 does not use a foreign agent or a foreign agent care-of ad-
dress. Instead, an IPv6 mobile host uses a co-located care-of ad-
dress and handles all communication with a home agent directly.

Because it permits a host to have multiple IP addresses, IPv6
makes it easy for a mobile host to have a home address and a co-
located care-of address simultaneously.

Because IPv6 does not broadcast a request to discover a home
agent, an IPv6 host only receives a response from one agent. (IPv4
can receive responses from each agent on the home network.)

Unlike communication between a mobile IPv4 host and a foreign
agent, mobile IPv6 does not depend on link-layer forwarding.

As we will see later, the IPv6 routing extension header makes for-
warding to an IPv6 mobile host more efficient than forwarding to
an IPv4 mobile host.

An IPv6 mobile host does not need a foreign agent because the
host can generate a local address and communicate with a router on
the foreign network.

390 Mobility And Mobile IP Chap. 18

18.14 Datagram Transmission, Reception, And Tunneling

Once it has registered, a mobile host on a foreign network can communicate with
an arbitrary computer, X. There are two possibilities. In the simplest case, the mobile
host creates and sends an outgoing datagram that has computer X’s IP address in the
destination address field and the mobile’s home address in the IP source address field.
The outgoing datagram follows a shortest path from the mobile host to destination X.

Technically, using a home address as a source address violates the TCP/IP stan-
dards because a datagram will be transmitted by a host on network N, and the IP source
address in the datagram will not match the IP prefix for network N. If a network
manager chooses to apply strict rules, the manager may configure routers to prohibit
transmissions where the source address does not match the local network. How can
such restrictions be overcome? Mobile IPv4 uses a two-step technique known as tun-
neling. In essence, the mobile host uses tunneling to send an outgoing datagram back
to its home agent, and the home agent transmits the datagram as if the mobile host were
located on the home network.

To use tunneling, a mobile host encapsulates an outgoing datagram, D1, in another
datagram, D2. The source address on D2 is the mobile’s care-of address and the destina-
tion is the address of the mobile’s home agent. When it receives a tunneled datagram,
the home agent extracts the inner datagram, D1, and forwards D1 to its destination.
Both steps use valid addresses. The transmission from the mobile host to the home
agent has a source address on the foreign network. The inner datagram, which travels
from the home agent to destination X, has a source address on the home network.

For mobile IPv4, a reply will not follow the shortest path directly to the mobile.
Instead, a reply will always travel to the mobile’s home network first. The home agent,
which has learned the mobile’s location from the registration, intercepts the reply and
uses tunneling to deliver the reply to the mobile. That is, when it receives a datagram
destined for a mobile host, a home agent also uses tunneling — it encapsulates the reply
in another datagram, D3, uses the mobile’s care-of address as the destination for D3, and
sends the encapsulated datagram to the mobile. Figure 18.4 illustrates the path of a re-
ply from a computer, D, to a mobile host, M.

We can summarize:

Because a mobile uses its home address as a source address when
communicating with an arbitrary destination, each IPv4 reply is for-
warded to the mobile’s home network, where an agent intercepts the
datagram, encapsulates it in another datagram, and forwards it either
directly to the mobile or to the foreign agent the mobile is using.

Mobile IPv6 uses an interesting optimization to avoid inefficient routes. Before it
communicates with a destination D, a mobile host informs its home agent. The host
then includes a mobility header in datagrams it sends. Destination D can communicate

Sec. 18.14 Datagram Transmission, Reception, And Tunneling 391

with the home agent, verify the mobile host’s current location, and use an IPv6 route
header to direct the datagram to the mobile host’s current location.

INTERNET

Mobile’s Home site Foreign Site

sending computer, D

home agent mobile host, M

tunneling used

Figure 18.4 The path a reply takes from computer D to mobile host M when
the mobile host is connected to a foreign network.

Of course, the exchanges among a mobile host, home agent, and destination must
be secure. Furthermore, an exchange must occur for each destination. Therefore, the
entire procedure entails considerable overhead, and is only suitable for situations in
which a mobile remains attached to a given foreign network for an extended time and
communicates with a given destination extensively. The point is:

To optimize reply forwarding, IPv6 makes it possible for a destination
to learn a mobile host’s current location and send datagrams directly
to the mobile without going through a home agent; because route op-
timization requires several message exchanges, it is only useful for
mobiles that move infrequently and tend to communicate with a given
destination extensively.

18.15 Assessment Of IP Mobility And Unsolved Problems

Despite the best intentions of the IETF, mobile IP has not been an overwhelming
success. One reason for the lack of interest has arisen from a shift in the type of mobil-
ity that users enjoy. When IP mobility was envisioned, mobility was limited to bulky
laptop computers — a user could transport a laptop computer to a remote site and then
use the computer. Now, many mobile users have smart phones that allow continuous,
online mobility.

392 Mobility And Mobile IP Chap. 18

Two more influences have further conspired to discourage the use of mobile IP.
First, VPN technology (covered in the next chapter) was invented. A VPN allows a re-
mote device to retain a home address and have complete access to its home network as
if the remote device is attached directly to its home network. Second, few applications
now rely on IP addresses or reverse DNS lookup. Instead, because authentication
schemes that use passwords allow a user to access services like email from a computer
with an arbitrary IP address, retaining an IP address is not as important as it once was.
More important: using an arbitrary address allows efficient routing. For example, when
a user travels to a distance city, connects to Wi-Fi hotspot, and accesses a web page, da-
tagrams travel directly between the user’s device and the web server without a detour to
the user’s home network.

Weaknesses of the mobile IP scheme can be summarized:

Lack of hand-off and hierarchical routes

Problems with authentication on foreign networks

Inefficient reverse forwarding, especially for mobile IPv4

Duplicate address detection in mobile IPv6

Communication with hosts on the mobile’s home network

The next sections consider each of these topics in more detail.

18.15.1 Lack Of Hand-Off And Hierarchical Routes

When they thought of mobility, the designers envisioned portable computers being
used in remote locations. Consequently, mobile IP does not behave like a cellular sys-
tem. It does not have facilities for high-speed hand-off among local cell towers, nor
does it provide a system of hierarchical routing that could restrict the scope of route
changes during migration from an access network to an adjacent access network.

18.15.2 Problems With Authentication On Foreign Networks

Although some foreign networks permit unrestricted access, many do not. In par-
ticular, networks often require a user to authenticate themselves before access will be
granted. For example, a hotel might require a guest to enter a room number and last
name before the guest is granted access. Typically, authentication requires the user to
obtain an IP address and then use the address to launch a web browser. The hotel inter-
cepts the web request, and displays an authentication page for the user. Once authenti-
cation has been completed, the user’s device is granted access to the global Internet.

Mobile IP cannot handle web-based access authentication for two reasons. First,
mobile IP always begins by registering with a home agent. A remote network that re-
quires authentication will not forward packets to the home agent until authentication
completes. Second, mobile IP specifies that applications must always use the mobile

Sec. 18.15 Assessment Of IP Mobility And Unsolved Problems 393

host’s home address. Thus, even if the user launches a web browser, the browser will
attempt to use an IP address from the home network, and the authentication mechanism
will reject the connection.

18.15.3 Inefficient Reverse Forwarding, Especially For Mobile IPv4

As we have seen, a reply sent to an IPv4 mobile host will always be forwarded to
the mobile’s home network first and then to the mobile’s current location. The problem
is especially severe because computer communication exhibits spatial locality of refer-
ence — a mobile host visiting a foreign network tends to communicate with computers
on the foreign network. To understand why spatial locality is a problem, consider Fig-
ure 18.5.

R1

INTERNETR2 R3
MD

Home Site Foreign Site

mobile host

destination

mobile’s original home

home agent

Figure 18.5 A topology in which mobile IPv4 routing is incredibly ineffi-
cient. When a mobile host, M, communicates with a local desti-
nation, D, replies from D travel across the Internet to the
mobile’s home agent, R1, and then back to the mobile host.

In the figure, mobile M has moved from its home network to a foreign network.
The mobile has registered with its home agent, router R1, and the home agent has
agreed to forward datagrams. When the mobile host communicates with destination D,
which is located at the same site as the mobile, replies sent from D to M follow a path
through R3, across the Internet to the mobile’s home network, and are then tunneled
back across the Internet to the mobile host. That is, a datagram sent between two adja-
cent computers crosses the Internet twice. Because crossing the Internet can take orders
of magnitude longer than local delivery, the situation described above is sometimes
called the two-crossing problem. If destination D is not on the same network as the
mobile, a slightly less severe version of the problem occurs which is known as triangle
forwarding or dog-leg forwarding.

If a site knows that a given mobile host will visit for a long time and expects the
mobile host to interact with local computers, the network manager can install host-
specific routes to avoid inefficient forwarding. Each router at the site must have a
host-specific route for the visiting mobile host. The disadvantage of such an arrange-
ment arises from the lack of automated updates: when the mobile host leaves the site,

394 Mobility And Mobile IP Chap. 18

the manager must manually remove the host-specific routes or the host will be unreach-
able from computers at the site. We can summarize:

Mobile IP introduces a routing inefficiency known as the two-crossing
problem that occurs when a visiting mobile communicates with a com-
puter at or near the foreign site. Each datagram sent to the mobile
travels across the Internet to the mobile’s home agent which then for-
wards the datagram back to the foreign site. Eliminating the ineffi-
ciency requires propagation of a host-specific route.

18.15.4 Duplicate Address Detection In Mobile IPv6

In IPv6, when a host joins a new network, the host takes three steps: the host finds
the network prefix (or prefixes) being used on the network, generates a unicast address,
and verifies that the address is unique. The first and third steps require a packet ex-
change, and include timeout. A mobile host must perform duplicate address detection
each time the host changes networks and obtains a care-of address for the new network.
Ironically, the standard specifies that an IPv6 mobile host must also generate and check
a unique link-local address. The overhead of duplicate address detection makes IPv6
unsuitable for rapid movement.

18.15.5 Communication With Hosts On The Mobile’s Home Network

Another interesting problem arises when a computer on the mobile’s home network
attempts to communicate with a mobile that is visiting a foreign network. We said that
when a mobile computer is currently away from home, its home agent intercepts all da-
tagrams that arrive at the home site destined for the mobile. Intercepting datagrams that
arrive at the site is relatively straightforward: a network manager chooses to run home
agent software on the router that connects the home site to the rest of the Internet.

A special case arises, however, when a host on a mobile’s home network sends a
datagram to the mobile. Because IP specifies direct delivery over the local network, the
sender will not forward the datagram through a router. Instead, an IPv4 sender will use
ARP to find the mobile’s hardware address, and an IPv6 host will use neighbor
discovery. In either case, the host will encapsulate the datagram in a frame and transmit
the frame directly to the mobile.

If a mobile has moved to a foreign network, hosts and routers on the home net-
work cannot send datagrams directly to the mobile. Therefore, the home agent must ar-
range to capture and forward all datagrams destined for the mobile, including those sent
by local hosts. An IPv4 home agent uses a form of proxy ARP to handle local intercep-
tion: whenever a computer on the home network ARPs for an IPv4 mobile host that has
moved to a foreign network, the home agent answers the ARP request and supplies its
own hardware address. That is, local IPv4 hosts are tricked into forwarding any da-

Sec. 18.15 Assessment Of IP Mobility And Unsolved Problems 395

tagram destined for the mobile to the home agent; the home agent can then forward the
datagram to the mobile on the foreign network.

For IPv6, local transmission poses a greater problem that requires additional proto-
col support. In particular, computers on an IPv6 network use the Neighbor Discovery
Protocol (NDP) to know which neighbors are present. If a mobile leaves the home net-
work, other computers using NDP will quickly declare that the mobile is unreachable†.
Therefore, mobile IP must arrange a way that hosts on the home network can be in-
formed when a mobile host has moved to another location.

To solve the problem, mobile IPv6 modifies neighbor discovery. In essence, a
home agent acts as a proxy when a mobile is away. The home agent informs computers
on the local network that a specific host is mobile. If they encounter datagrams intend-
ed for the mobile host, other computers on the home network forward the datagrams ac-
cordingly. When the mobile returns home, the forwarding must be removed.

18.16 Alternative Identifier-Locator Separation Technologies

The fundamental problem a designer faces when adding mobility support to IP
arises from a fundamental principle of IP addressing: the prefix in an IP address ties the
address to a specific network. That is, an IP address serves as a locator. The advantage
of a locator lies in an efficient routing system that forwards each datagram to the correct
destination network. The disadvantage of a locator arises from its inability to accom-
modate movement: if the location changes, the address must change. Ethernet MAC
addressing illustrates the alternative: an Ethernet address is a globally-unique value, but
does not contain any information about where the computer is located. That is, an ad-
dress serves as a unique identifier. The disadvantage of using an identifier arises from
routing inefficiency: host-specific routes are needed.

How can one design an addressing scheme that combines the advantages of both
locators and identifiers? We have seen the fundamental idea: a host address needs two
conceptual parts. The first part is a globally-unique identifier that never changes and
the second is a locator that changes when the host moves to a new network. In mobile
IP, the two conceptual pieces are represented by two independent IP addresses. That is
a host stores two addresses, and uses its home address as an identifier and its care-of
address as a locator.

Several proposals have been created to formalize the idea of an identifier-locator
pair. The approaches differ in the size of the two items, the way values are assigned,
whether the two parts are viewed as bit fields in a single large address or as two
separate items, and whether both parts are visible to applications. For example, Cisco
Systems defined the Locator/ID Separation Protocol (LISP), which uses a pair of IP ad-
dresses similar to the way mobile IP uses addresses. The IETF has defined a protocol
named TRansparent Interconnection of Lots of Links (TRILL) that extends the idea of
learning bridges to mobility in a wide area internet.

†Chapter 22 discusses NDP, which is sometimes written IPv6-ND to emphasize that the protocol is an in-
tegral part of IPv6.

396 Mobility And Mobile IP Chap. 18

18.17 Summary

Mobile IP allows a computer to move from one network to another without chang-
ing its IP address and without requiring routers to propagate a host-specific route.
When it moves from its original home network to a foreign network, a mobile computer
must obtain an additional, temporary address known as a care-of address. Applications
use the mobile’s original, home address; the care-of address is only used by underlying
network software to enable forwarding and delivery across the foreign network.

Once it detects that it has moved, an IPv4 mobile either obtains a co-located care-
of address or discovers a foreign mobility agent and requests the foreign agent to assign
a care-of address. An IPv6 mobile can generate a co-located care-of address without
needing a foreign agent. After obtaining a care-of address, the mobile registers with its
home agent (either directly or indirectly through the foreign agent), and requests that the
agent forward datagrams.

Once registration is complete, a mobile can use its home address to communicate
with an arbitrary computer on the Internet. Datagrams sent by the mobile are forwarded
directly to the specified destination. Reply routing can be inefficient because a da-
tagram sent to the mobile will be forwarded to the mobile’s home network where it is
intercepted by the home agent, encapsulated in IP, and then tunneled to the mobile.

The scheme for mobile IP was designed for slow movement, such as visiting a
hotel. When applied to devices that move rapidly, mobile IP has severe drawbacks and
has not been widely adopted.

EXERCISES

18.1 Compare the encapsulation schemes in RFCs 2003 and 2004. What are the advantages
and disadvantages of each?

18.2 Read the mobile IP specification carefully. How frequently must a router send a mobili-
ty agent advertisement? Why?

18.3 Consult the mobile IP specification. When a foreign agent forwards a registration re-
quest to a mobile’s home agent, which protocol ports are used? Why?

18.4 The specification for mobile IP allows a single router to function as both a home agent
for a network and a foreign agent that supports visitors on the network. What are the
advantages and disadvantages of using a single router for both functions?

18.5 Read the specification for mobile IPv6. How many separate message formats are de-
fined?

18.6 Suppose a cell phone provider adopts mobile IPv6 for use with their phones. Compute
the number of packets sent when a phone passes from one network to another.

18.7 Extend the previous exercise. If N active cell phone users drive along a highway at 60
MPH and each must switch from one cell tower to another within a 1500 foot area half-
way between two cell towers, estimate the network capacity needed to handle the mes-
sages mobile IPv6 generates to relocate phones from one cell tower to another.

Exercises 397

18.8 Read the specifications for mobile IPv4 and mobile IPv6 to determine how a mobile host
joins a multicast group. How are multicast datagrams routed to the mobile in each case?
Which approach is more efficient? Explain.

18.9 Compare mobile IPv4 and mobile IPv6 to Cisco’s LISP protocol. What are the differ-
ences in functionality?

18.10 Compare mobile IPv4 and mobile IPv6 to the TRILL protocol. What does TRILL offer?
18.11 Read about hand-off protocols used in a cellular network. Can similar protocols be used

with IP? Why or why not?
18.12 Consider the applications you use. Do any of the applications require you to retain an IP

address (i.e., does your personal Internet device need a permanent home address)? Ex-
plain.

Chapter Contents
19.1 Introduction, 399
19.2 Virtualization, 399
19.3 Virtual Private Networks (VPNs), 400
19.4 VPN Tunneling And IP-in-IP Encapsulation, 401
19.5 VPN Addressing And Forwarding, 402
19.6 Extending VPN Technology To Individual Hosts, 404
19.7 Using A VPN With Private IP Addresses, 404
19.8 Network Address Translation (NAT), 405
19.9 NAT Translation Table Creation, 407
19.10 Variant Of NAT, 409
19.11 An Example Of NAT Translation, 409
19.12 Interaction Between NAT And ICMP, 411
19.13 Interaction Between NAT And Applications, 411
19.14 NAT In The Presence Of Fragmentation, 412
19.15 Conceptual Address Domains, 413
19.16 Linux, Windows, And Mac Versions Of NAT, 413
19.17 Overlay Networks, 413
19.18 Multiple Simultaneous Overlays, 415
19.19 Summary, 415

19

Network Virtualization:
VPNs, NATs, And Overlays

19.1 Introduction

Previous chapters describe an internet as a single-level abstraction that consists of
networks interconnected by routers. This chapter considers an alternative — a two-level
internet architecture that virtualizes the Internet. The first level consists of a conven-
tional internet that provides universal connectivity. An organization uses the underlying
connectivity to build a second level that conforms to the needs of the organization.

The chapter examines three technologies that employ virtualization. One technolo-
gy permits a corporation to connect multiple sites across the global Internet, or to allow
an employee to use the global Internet to access the corporate network from an arbitrary
remote location while keeping all communication confidential. A second form allows a
site to provide global Internet access for many hosts while only using a single globally-
valid IP address. A third technology allows an organization to create an arbitrary net-
work topology on top of the Internet topology.

19.2 Virtualization

We use the term virtualization to describe an abstraction that is used to hide imple-
mentation details and provide high-level functionality. In general, virtualization mecha-
nisms use an underlying mechanism that does not include the necessary desired func-
tionality.

399

400 Network Virtualization: VPNs, NATs, And Overlays Chap. 19

We have already seen technologies and protocols that provide a level of network
virtualization. For example, a VLAN Ethernet switch allows a manager to configure the
switch to act like a set of independent Ethernet switches. TCP provides the abstraction
of a reliable, end-to-end connection. In each case, however, the service is an illusion —
the underlying mechanism does not offer the service that the virtualization creates.
TCP, for example, builds reliable, connection-oriented delivery over an unreliable con-
nectionless transport.

This chapter shows that several forms of network virtualization are useful as well
as popular. We will consider the motivation and uses of virtualizations as well as the
mechanisms used to create each form. Chapter 28 continues the discussion by consider-
ing a technology that can be used to create virtual paths through an internet.

19.3 Virtual Private Networks (VPNs)

Packet switching used in the global Internet has the advantage of low cost, but the
disadvantage that packets from multiple users travel across a given network. As a
result, the global Internet cannot guarantee that communication conducted over the In-
ternet remains private. In particular, if an organization comprises multiple sites, the
contents of datagrams that travel across the Internet between the sites can be viewed by
outsiders because they pass across networks owned by outsiders (i.e., ISPs).

When thinking about privacy, network managers often classify networks into a
two-level architecture that distinguishes between networks that are internal to an organi-
zation and networks that are external. Because the organization can control the internal
networks it owns, the organization can make guarantees about how data is routed and
prevent it from becoming visible to others. Thus, internal networks can guarantee
privacy, while external networks cannot.

If an organization has multiple sites, how can the organization guarantee privacy
for traffic sent among the sites? The easiest approach consists of building a completely
isolated network that is owned and operated by the organization. We use the term
private network or private intranet for such a network. Because a private network uses
leased digital circuits to interconnect sites and because the phone companies guarantee
that no outsiders have access to such circuits, all data remains private as it travels from
one site to another.

Unfortunately, a completely private intranet may not suffice for two reasons. First,
most organizations need access to the global Internet (e.g., to contact customers and
suppliers). Second, leased digital circuits are expensive. Consequently, many organiza-
tions seek alternatives that offer lower cost. One approach uses a form of virtualization
that Chapter 16 discusses: MPLS. An MPLS connection may cost significantly less
than a leased digital circuit of the same capacity.

Despite being less expensive than a digital circuit, an MPLS path is much more ex-
pensive than a traditional Internet connection. Thus, the choice is clear: lowest cost can
be achieved by sending traffic over the global Internet, and the greatest privacy can be
achieved by dedicated connections. The question arises: is it possible to achieve a high

Sec. 19.3 Virtual Private Networks (VPNs) 401

degree of privacy and the low cost of conventional Internet connections? Phrased
another way, one can ask:

How can an organization that uses the global Internet to connect its
sites guarantee that all communication is kept private?

The answer lies in a technology known as a Virtual Private Network (VPN). The
idea of a VPN is straightforward: send datagrams across the global Internet but encrypt
the contents. The term private arises because the use of encryption means that com-
munication between any pair of computers remains concealed from outsiders. The term
virtual arises because a VPN does not require dedicated leased circuits to connect one
site to another. Figure 19.1 illustrates the concept.

INTERNET

Site 1 Site 2encryption used

Figure 19.1 Illustration of a VPN that uses encryption when sending data
across the global Internet between two routers at two sites of an
organization.

19.4 VPN Tunneling And IP-in-IP Encapsulation

A technique mentioned in the previous chapter plays an important role in VPN
technology: tunneling. A VPN uses tunneling for the same reason as mobile IP: to send
a datagram across the Internet between two sites. Why not just forward the datagram
normally? The answer lies in increased privacy (i.e., confidentiality). Encrypting the
payload in a datagram does not guarantee absolute privacy because an outsider can use
the IP source and destination fields, the datagram type field, and the frequency and
volume of traffic to guess who is communicating. A VPN encrypts an entire datagram,
including the IP header. In fact, to hide information from outsiders, some VPNs pad all
datagrams with extra octets before encrypting them, which means an outsider cannot use
the length of the datagram to deduce the type of communication. The consequence is
that encryption means the datagram header cannot be used for forwarding.

402 Network Virtualization: VPNs, NATs, And Overlays Chap. 19

Most VPNs use IP-in-IP tunneling. That is, the original datagram is encrypted,
and the result is placed in the payload section of another datagram for transmission.
Figure 19.2 illustrates the encapsulation.

DATAGRAM
HEADER DATAGRAM PAYLOAD AREA

ENCRYPTED VERSION OF ORIGINAL DATAGRAM

Figure 19.2 Illustration of IP-in-IP encapsulation used with a VPN. The ori-
ginal datagram is encrypted before being sent.

An organization may have many computers at each site. For maximal privacy, in-
dividual computers do not participate in a VPN. Instead, a manager arranges forward-
ing so that datagrams sent across the VPN tunnel always travel from a router at one site
to a router at the other site. When a datagram arrives over the tunnel, the receiving
router decrypts the payload to reproduce the original datagram, which it then forwards
within the site. Although the datagrams traverse arbitrary networks as they pass across
the Internet, outsiders cannot decode the contents because an outsider does not have the
encryption key. Furthermore, even the identity of the original source and ultimate desti-
nation are hidden, because the header of the original datagram is encrypted. Thus, only
two addresses in the outer datagram header are visible: the source address is the IP ad-
dress of the router at one end of a tunnel, and the destination address is the IP address
of the router at the other end of the tunnel. Consequently, an outsider cannot deduce
which computers at the two sites are communicating.

To summarize:

Although a VPN sends data across the global Internet, outsiders can-
not deduce which computers at the two sites are communicating or
what data they are exchanging.

19.5 VPN Addressing And Forwarding

The easiest way to understand VPN addressing and routing is to think of each VPN
tunnel as a replacement for a leased circuit between two routers. As usual, the forward-
ing table in each of the two routers contains entries for destinations inside the organiza-
tion. The forwarding table also contains a network interface that corresponds to the
VPN tunnel, and datagrams sent to another site are directed across the tunnel. Figure
19.3 illustrates the idea by showing networks at two sites and the forwarding table for a

Sec. 19.5 VPN Addressing And Forwarding 403

router that handles VPN tunneling. Although the example uses IPv4, the same ap-
proach can be used for IPv6.

INTERNET

R1

R2

R3

R4

128.10.1.0 / 24

128.10.2.0 / 24

192.5.48.0 / 24

128.210.0.0 / 16

Site 1 Site 2

Forwarding table in router R1

destination next hop

128.10.1.0 / 24 direct

128.10.2.0 / 24 R2

192.5.48.0 / 24 tunnel to R3

128.210.0.0 / 16 tunnel to R3

default ISP’s router

Figure 19.3 A VPN that spans two sites and R1’s forwarding table with a
VPN tunnel from R1 to R3 configured like a point-to-point cir-
cuit.

The figure shows a default entry in R1’s forwarding table with an ISP as the next
hop. The idea is that computers at site 1 can access computers at site 2 or computers on
the global Internet. The tunnel is only used for site-to-site access; other datagrams are
forwarded to the ISP.

As an example of forwarding in a VPN, consider a datagram sent from a computer
on network 128.10.2.0 to a computer on network 128.210.0.0. The sending host for-
wards the datagram to R2, which forwards it to R1. According to the forwarding table in
R1, the datagram must be sent across the tunnel to R3. Therefore, R1 encrypts the da-
tagram, encapsulates the result in the payload area of an outer datagram with destination
R3. R1 then forwards the outer datagram through the local ISP and across the Internet.
The datagram arrives at R3, which recognizes it as tunneled from R1. R3 decrypts the
payload to produce the original datagram, looks up the destination in its forwarding
table, and forwards the datagram to R4 for delivery.

404 Network Virtualization: VPNs, NATs, And Overlays Chap. 19

19.6 Extending VPN Technology To Individual Hosts

Many corporations use VPN technology to permit employees to work from remote
locations. The employee is given VPN software that runs on a mobile device (e.g., a
laptop). To use the VPN software, a user boots their device, connects to an arbitrary
network, and obtains an IP address from a local network provider as usual. If a user is
working at home, they connect to the ISP that provides their residential Internet service.
If they are working in a hotel, they can obtain service from the ISP that serves hotel
guests, and so on. Once a network connection has been obtained, the user launches the
VPN software, which is pre-configured to form a tunnel to a router on the corporate net-
work.

VPN software reconfigures the protocol stack in the user’s computer. When it be-
gins, the VPN software forms a tunnel to the corporate network and communicates over
the tunnel to obtain a second IP address (i.e., an address on the corporate network). The
software then configures the protocol stack to restrict all communication to go over the
VPN tunnel. That is, applications on the computer only see the IP address that was ob-
tained from the corporate network. All datagrams that applications send are transferred
over the tunnel to the corporate network, and only datagrams coming in from the tunnel
are delivered to applications. Therefore, from an application’s point of view, the user’s
computer appears to be attached directly to the corporate network.

To insure that communication is confidential, all datagrams traveling across the
tunnel are encrypted. However, there is a potential security flaw: unlike a router, a lap-
top can be stolen easily. If the VPN software can handle encryption and decryption, an
outsider who steals the laptop would be able to obtain access to the corporate network.
Therefore, VPN software issued to users usually requires a password. The password is
combined with the time-of-day to generate a one-time encryption key that is used for a
single session. Without the correct VPN password, a stolen laptop cannot be used to
gain access to the corporate network.

19.7 Using A VPN With Private IP Addresses

Interestingly, although a VPN uses the global Internet when communicating
between sites, the technology makes it possible to create a private intranet that does not
provide global Internet connectivity for hosts on the corporate network. To see how,
imagine assigning hosts non-routable addresses (e.g., an IPv6 site-specific address or an
IPv4 private address). One router at each site is assigned a globally-valid IP address,
and the router is configured to form a VPN tunnel to the router at the other site. Figure
19.4 illustrates the concept.

Sec. 19.7 Using A VPN With Private IP Addresses 405

INTERNET
Site 1

using subnet
10.1.0.0

Site 2
using subnet

10.2.0.0
R1 R2

valid IP address

10.1 address

valid IP address

10.2 address

Figure 19.4 Example of a VPN that interconnects two sites over the global
Internet while computers at each site use non-routable (i.e.,
private) addresses.

In the figure, the organization has chosen to use the non-routable IPv4 prefix
10.0.0.0 / 8 (a prefix that has been reserved for use in a private network). Site 1 uses
subnet 10.1.0.0/16, while site 2 uses subnet 10.2.0.0/16. Only two globally valid IP
addresses are needed to make a VPN possible. One is assigned to the connection from
router R1 to the Internet, and the other is assigned to the connection from R2 to the Inter-
net. The two sites may be far apart and may obtain service from two independent ISPs,
which means that the two globally-valid addresses may be unrelated. Routers and hosts
within each site use the private address space; only the two routers that participate in
VPN tunneling need to know about or use globally-valid IP addresses.

19.8 Network Address Translation (NAT)

The previous sections describe a form of virtualization that allows an organization
to connect sites across the global Internet while keeping all communication confidential.
This section considers a technology that inverts the virtualization by providing IP-level
access between hosts at a site and the global Internet, without requiring each host at the
site to have a globally-valid IP address. Known as Network Address Translation (NAT),
the technology has become extremely popular for both consumers and small businesses.
For example, wireless routers used in homes employ NAT.

The idea behind NAT is straightforward. A site places a NAT device, informally
called a NAT box†, between network(s) at the site and the rest of the Internet as Figure
19.5 illustrates.

†Although the name implies that NAT requires special-purpose hardware, it is possible to run NAT
software on a general-purpose computer (e.g., a PC).

406 Network Virtualization: VPNs, NATs, And Overlays Chap. 19

INTERNET

NAT

SITE

Internet views
NAT box as a

single host

Site views the
NAT box as a
default router

Hosts (and routers) at the site
only use non-routable addresses

Figure 19.5 Illustration of a NAT box that allows a site to use non-routable
IP addresses.

From the point of view of hosts at the site, the NAT box appears to be a router that
connects to the Internet. That is, forwarding at the site is set up to direct outgoing da-
tagrams to the NAT box. From the point of an ISP that provides service to the site, the
NAT box appears to be a single host. That is, the NAT box obtains a single, globally-
valid IP address, and appears to use the address to send and receive datagrams.

The key to NAT technology arises because NAT translates (i.e., changes) da-
tagrams that travel in either direction. When a host at the site sends a datagram to a
destination on the Internet, NAT places information about the outgoing datagram (in-
cluding a record of the original sender) in a table, changes fields in the header, and
sends the modified datagram to its destination. In particular, NAT changes the source
IP address to make it appear that the datagram came from the NAT box. Thus, if a site
on the Internet that receives a datagram replies, the reply will be sent to the NAT box.
When it receives a datagram from the Internet, the NAT box consults its table, finds the
original sender, changes fields in the header, and forwards the datagram. In particular,
NAT changes the IP destination address to the private address that the host at the site is
using.

Because both outgoing and incoming datagrams travel through the NAT box, NAT
software can fool both hosts behind the NAT box and arbitrary hosts in the Internet.
When a host in the Internet receives datagrams from the site, the datagrams appear to
have originated at the NAT box. When a host behind the NAT box obtains an IP ad-
dress, the address is non-routable (or site-local). However, the host can use the non-
routable source address when sending and receiving datagrams with an arbitrary Internet
host.

The chief advantage of NAT arises from its combination of generality and trans-
parency. NAT is more general than a set of application gateways because it allows an
arbitrary internal host to access an arbitrary service on a computer in the global Internet.
NAT is transparent because hosts at the site run completely standard protocol software.
To summarize:

Sec. 19.8 Network Address Translation (NAT) 407

Network Address Translation (NAT) technology provides transparent
IP-level access to the Internet for a host that has a private, non-
routable IP address.

19.9 NAT Translation Table Creation

Our overview of NAT glosses over a few details because it does not specify how a
NAT box knows which internal host should receive a datagram that arrives from the In-
ternet. We said that NAT maintains a translation table and uses the table when for-
warding to a host. What information does NAT place in the translation table and when
are table entries created?

The most widely used form of NAT† stores six items in its translation table:

Internal IP. The non-routable IP address used by an internal
computer.

Internal Port. The protocol port number used by an internal
computer.

External IP. The IP address of an external computer located
somewhere in the Internet.

External Port. The protocol port number used by an external
computer.

Payload Type. The transport protocol type (e.g., TCP, UDP, or
ICMP).

NAT Port. The protocol port number used by a NAT box (to
avoid situations in which two internal computers choose the same
port number).

When a datagram arrives from the Internet, NAT searches the table. If the IP
source address in the datagram matches External IP, the source protocol port number
matches NAT Port, and the datagram type matches Payload Type, NAT uses the table
entry. NAT replaces the datagram’s destination IP address (which is always the address
of the NAT box itself) with Internal IP, replaces the destination protocol port number
with Internal Port, and sends the datagram to the internal host.

Of course, a table entry must be created before a datagram arrives from the Inter-
net; otherwise, NAT has no way to identify the correct internal host to which the da-
tagram should be forwarded. How and when is the table initialized? The above
description implies that outgoing datagrams are always used to create table entries.
Although we have described the most widely used form of NAT, others exist. The pos-
sibilities include:

†Technically, the version of NAT described here is Network Address and Port Translation (NAPT).

408 Network Virtualization: VPNs, NATs, And Overlays Chap. 19

Manual Initialization. A manager configures the translation table
manually before any communication occurs.

Outgoing Datagrams. The table is built as a side-effect of an inter-
nal host sending a datagram. NAT uses the outgoing datagram to
create a translation table entry that records the source and destina-
tion addresses.

Incoming Name Lookups. The table is built as a side-effect of
handling domain name lookups. When a host on the Internet looks
up the domain name of an internal host†, the DNS software sends
the address of the NAT box as the answer and creates an entry in
the NAT translation table to forward to the correct internal host.

Each initialization technique has advantages and disadvantages. Manual initializa-
tion provides permanent mappings that allow arbitrary hosts in the Internet to reach ser-
vices at the site. Using an outgoing datagram to initialize the table has the advantage of
making outgoing communication completely automatic, but has the disadvantage of not
allowing outsiders to initiate communication. Using incoming domain name lookups
accommodates communication initiated from outside, but requires modifying the
domain name software.

As we said above, most implementations of NAT use outgoing datagrams to ini-
tialize the table; the strategy is especially popular for wireless routers used at Wi-Fi hot
spots. The router can be connected directly to an ISP, exactly like a host. For example,
the wireless router can be plugged into the DSL or cable modem the ISP supplies. The
wireless router then offers Wi-Fi radio connections. When a mobile host connects via
Wi-Fi, NAT software running in the wireless router assigns the mobile host a private,
non-routable IP address and assigns its address as a default router address. A mobile
host can communicate with any host on the Internet merely by sending datagrams to the
wireless router over the Wi-Fi network. Figure 19.6 illustrates the architecture.

INTERNET

Wireless router
(Wi-Fi hotspot)

Hosts using
Wi-Fi

Figure 19.6 The use of NAT by a wireless router. Each host is assigned a
private IP address.

†Chapter 23 describes how the Domain Name System (DNS) operates.

Sec. 19.9 NAT Translation Table Creation 409

A wireless router must assign an IP address to a host whenever the host connects.
For example, if a host uses IPv4, the router might assign the first host 192.168.0.1, the
second 192.168.0.2, and so on. When a host sends a datagram to a destination on the
Internet, the host forwards the datagram over the Wi-Fi network, and the wireless router
applies the outgoing NAT mapping before sending the datagram over the Internet.
Similarly, when a reply arrives from the Internet, the wireless router applies the incom-
ing NAT translation and forwards the datagram over the Wi-Fi network to the correct
host.

19.10 Variant Of NAT

Many variants of NAT exist, and many names have been used to describe the vari-
ants. So far, we have described symmetric NAT that allows an arbitrary host at the site
to contact an arbitrary protocol port on a host in the Internet. Many of the proposed
variants focus on running servers behind a NAT box to allow external Internet hosts to
initiate communication (i.e., packets can arrive before a host at the site sends a packet).
For example, a variant known as port restricted cone NAT uses one outgoing packet to
establish an external port, and then sends all packets that arrive at the port to the inter-
nal host. Thus, if internal host H1 sends a packet from source port X and the NAT box
maps it to external port Y, all incoming packets destined for port Y will be directed to
port X on H1, no matter which host in the Internet sends the packets.

19.11 An Example Of NAT Translation

An example will clarify NAT translation. Recall that the version of NAT we have
discussed is called NAPT because it translates protocol ports as well as IP addresses.
Figure 19.7 illustrates the contents of an IPv4 translation table used with NAPT when
four computers at a site have created six TCP connections to external sites on the Inter-
net.

Internal Internal External External NAT Payload
IP Address Port IP Address Port Port Type
192.168.0.5 38023 128.10.19.20 80 41003 tcp
192.168.0.1 41007 128.10.19.20 80 41010 tcp
192.168.0.6 56600 207.200.75.200 80 41012 tcp
192.168.0.6 56612 128.10.18.3 25 41016 tcp
192.168.0.5 41025 128.10.19.20 25 41009 tcp
192.168.0.3 38023 128.210.1.5 80 41007 tcp

Figure 19.7 An example of a translation table used by NAPT. The table in-
cludes port numbers as well as IPv4 addresses.

410 Network Virtualization: VPNs, NATs, And Overlays Chap. 19

The figure illustrates three interesting cases: a single host at the site has formed
connections to two hosts on the Internet, two hosts at the site have each formed a con-
nection to the same web server on the Internet, and two hosts at the site are using the
same source port number simultaneously.

In the figure, each entry corresponds to a TCP connection. Internet host
192.168.0.6 has formed two connections to external hosts, one to a web server (port 80)
on external host 207.200.75.200 and the other to an email server (port 25) on external
host 128.10.18.3. Two internal hosts, 192.168.0.5 and 192.168.0.1, are both accessing
protocol port 80 on external computer 128.10.19.20. Because each host at the site is
free to choose a source port number, uniqueness cannot be guaranteed. In the example,
TCP connections from 192.168.0.5 and 192.168.0.3 both have source port 38023. Thus,
to avoid potential conflicts, NAT assigns a unique NAT port to each communication
that is used on the Internet. Furthermore, a NAT port is unrelated to the source port that
a sending host chooses. Thus, the connection from host 192.168.0.1 can use port
41007, and the NAT box can use port 41007 for a completely different connection.

Recall that TCP identifies each connection with a 4-tuple that represents the IP ad-
dress and protocol port number of each endpoint. For example, the first two entries in
the table correspond to TCP connections with the following 4-tuples:

(192.168.0.5, 38023, 128.10.19.20, 80)
(192.168.0.1, 41007, 128.10.19.20, 80)

However, when computer 128.10.19.20 in the Internet receives datagrams, the NAT box
will have translated the source address, which means the same two connections will
have the following 4-tuples:

(G, 41003, 128.10.19.20, 80)
(G, 41010, 128.10.19.20, 80)

where G is the globally valid address of the NAT box.
The primary advantage of NAPT lies in the generality it achieves with a single glo-

bally valid IP address; the primary disadvantage arises because it restricts communica-
tion to TCP, UDP, and ICMP†. Because almost all applications use TCP or UDP,
NAPT is transparent. A computer at the site can use arbitrary source port numbers, and
can access multiple external computers simultaneously. Meanwhile, multiple computers
at the site can access the same port on a given external computer simultaneously
without interference. To summarize:

Although several variants of NAT exist, the NAPT form is the most po-
pular because it translates protocol port numbers as well as IP ad-
dresses.

†The next section explains that a NAT box translates and forwards some ICMP messages, and handles
other messages locally.

Sec. 19.12 Interaction Between NAT And ICMP 411

19.12 Interaction Between NAT And ICMP

Although we have described NAT as operating on IP addresses and protocol port
numbers, the address translation can affect other parts of a packet. For example, con-
sider ICMP. To maintain the illusion of transparency, NAT must understand and
change the contents of an ICMP message. For example, suppose an internal host uses
ping to test reachability of a destination on the Internet. The host expects to receive an
ICMP echo reply for each ICMP echo request message it sends. Thus, NAT must for-
ward incoming echo replies to the correct host. However, NAT does not forward all
ICMP messages that arrive from the Internet (e.g., if routes in the NAT box are in-
correct, an ICMP message must be processed locally). Thus, when an ICMP message
arrives from the Internet, NAT must first determine whether the message should be han-
dled locally or sent to an internal host.

Before forwarding to an internal host, NAT must translate the entire ICMP mes-
sage. To understand the need for ICMP translation, consider an ICMP destination un-
reachable message. The message contains the header from a datagram, D, that caused
the error. Unfortunately, NAT translated addresses before sending D, so the source ad-
dress in D is the globally-valid address of the NAT box rather than the address of the
internal host. Thus, before forwarding the ICMP message back to the internal host,
NAT must open the ICMP message and translate the addresses in D so they appear in
exactly the form that the internal host used. After making the change, NAT must
recompute the checksum in D, the checksum in the ICMP header, and the checksum in
the outer datagram header.

19.13 Interaction Between NAT And Applications

Although ICMP complicates NAT, providing transparency to some application pro-
tocols requires substantial effort. In general, NAT will not work with any application
that sends IP addresses or protocol ports as data. In particular, the File Transfer Proto-
col (FTP), which is used to download large files, establishes a control connection
between the client and server, and then forms a new TCP connection for each file
transfer. As part of the protocol, one side obtains a protocol port on the local machine,
converts the number to ASCII, and sends the result across the control connection to the
other side. The other side then forms a TCP connection to the specified port. Consider
what happens when communication between the two sides passes through a NAT box.
A host behind the NAT box can form a control connection. However, if the host ob-
tains a local port and passes the information to the other side, NAT will not expect
packets to arrive and will discard them. Therefore, FTP can only work if NAT moni-
tors the contents of the control connection, selects a port number, and changes the data
stream to reflect the new number.

Many implementations of NAT recognize popular application protocols, including
FTP, and make the necessary change in the data stream. As an alternative, variants of
applications have been created that avoid passing such information in the data stream

412 Network Virtualization: VPNs, NATs, And Overlays Chap. 19

(i.e., avoid making connections in the reverse direction). For example a version of FTP
that does not require the server to connect back to the client is known as passive FTP.
Application programmers must be aware of NAT, and to make their applications totally
general, they should avoid passing addresses or port numbers in the data stream. To
summarize:

NAT affects ICMP and application protocols; except for a few stan-
dard applications like FTP, an application protocol that passes IP ad-
dresses or protocol port numbers as data will not operate correctly
across NAT.

Changing items in a data stream increases the complexity of NAPT in two ways.
First, it means that NAPT must have detailed knowledge of each application that
transfers such information. Second, if the port numbers are represented in ASCII, as is
the case with FTP, changing the value can change the number of octets transferred. In-
serting even one additional octet into a TCP connection is difficult because each octet in
the stream has a sequence number. A sender does not know that additional data has
been inserted, and continues to assign sequence numbers without the additional data.
When it receives additional data, the receiver will generate acknowledgements that ac-
count for the data. Thus, after it inserts additional data, NAT must use a technique
known as TCP splicing to translate the sequence numbers in each outgoing segment and
in each incoming acknowledgement.

19.14 NAT In The Presence Of Fragmentation

The above description of NAT has made an important assumption about IP: a NAT
system receives complete IP datagrams and not fragments. What happens if a datagram
is fragmented? IP addresses are not a problem because each fragment contains the IP
addresses of the source and destination hosts. Unfortunately, fragmentation has a signi-
ficant consequence for NAPT (the most widely used variant of NAT). As Figure 19.7
shows, NAPT table lookup uses protocol port numbers from the transport header as well
as IP addresses from the IP header. Unfortunately, port numbers are not present in all
fragments because only the first fragment of a datagram carries the transport protocol
header. Thus, before it can perform the lookup, a NAPT system must receive and ex-
amine the first fragment of the datagram. IP semantics further complicate NAT because
fragments can arrive out-of-order. Therefore, the fragment carrying the transport header
may not arrive before other fragments.

A NAPT system can follow one of two designs: the system can save the fragments
and attempt to reassemble the datagram, or the system can discard fragments and only
process complete datagrams. Neither option is desirable. Reassembly requires state in-
formation, which means the system cannot scale to high speed or large numbers of
flows (and is susceptible to malicious attack). Discarding fragments means the system
will not process arbitrary traffic. In practice, only those NAPT systems that are

Sec. 19.14 NAT In The Presence Of Fragmentation 413

designed for slow-speed networks choose to reassemble; many systems reject fragment-
ed datagrams.

19.15 Conceptual Address Domains

We have described NAT as a technology that can be used to connect a private net-
work to the global Internet. In fact, NAT can be used to interconnect any two address
domains. Thus, NAT can be used between two corporations that each have a private
network using address 10.0.0.0. More important, NAT can be used at two levels:
between a customer’s private address domain and an ISP’s private address domain as
well as between the ISP’s address domain and the global Internet. Finally, NAT can be
combined with VPN technology to form a hybrid architecture in which private ad-
dresses are used within the organization, and NAT is used to provide connectivity
between each site and the global Internet.

As an example of multiple levels of NAT, consider an individual who works at
home from several computers which are connected to a LAN. The individual can as-
sign private addresses to the computers at home, and use NAT between the home net-
work and the corporate intranet. The corporation can also assign private addresses and
use NAT between its intranet and the global Internet.

19.16 Linux, Windows, And Mac Versions Of NAT

In addition to stand-alone devices, such as wireless routers, software implementa-
tions of NAT exist that allow a conventional computer to perform NAT functions. For
example, Microsoft uses the name Internet Connection Sharing for NAT software that
users can configure; additional software is available for Windows servers. Several ver-
sions of NAT have been created for the Linux operating system. In particular, iptables
and IP Masquerade both implement NAT. In general, NAT software consists of a com-
bination: application tools that allow a user to configure NAT and kernel support for
packet rewriting and firewalling. Most NAT software supports multiple variants. For
example, because it offers stateful packet inspection, iptables can be configured to han-
dle basic NAT or NAPT.

19.17 Overlay Networks

The theme of this chapter is virtualization: using technologies that provide abstract
services to a subset of computers that mimic the service provided by dedicated
hardware. For example, VPN technology allows users to connect their computers to a
distant network as if there were a direct connection. NAT technology allows a set of
computers with private addresses to communicate with arbitrary destinations on the In-
ternet as if each computer in the set had a globally-valid IP address. Can we extend

414 Network Virtualization: VPNs, NATs, And Overlays Chap. 19

virtualization further? Yes. We will see that it is possible to create a virtual network
that connects an arbitrarily large set of hosts across many sites and allows the hosts to
communicate as if they all attached to a single hardware network.

How might an overlay network be useful? We already discussed a prime example
when we considered VPNs: security. Suppose a corporation has six sites and wants to
create a corporate intranet. The corporation would like to guarantee that communication
among sites is kept confidential. VPN technology allows the corporation to configure
routers at each site to use the Internet in place of individual links and encrypt datagrams
that flow across the virtual links.

Overlay networking extends virtualization in two ways. First, instead of individual
links, overlay technology can be used to create an entire network. Second, instead of
creating a virtual internet, overlay technology can be used to create a virtual layer 2 net-
work.

To understand how an overlay network operates, imagine our example corporation
with six sites. As with a VPN, the corporation configures one or more routers at each
site to tunnel datagrams to other sites. More important, the corporation can impose an
arbitrary routing topology and arbitrary traffic policies. For example, if the corporation
observes that video traffic sent directly from site 1 to site 4 experiences high delays,
overlay routing can be arranged as if there is a direct link between each pair of sites ex-
cept for 1 and 4. Alternatively, if sites 1 – 3 are on the east coast and sites 4 – 6 are on
the west coast, the corporation might arrange the overlay network to emulate three
long-distance links. Figure 19.8 illustrates the two possible routing topologies.

1

2

3

4

5

6

1

2

3

4

5

6

(a) (b)

Figure 19.8 Example of two possible topologies that can be achieved with
overlay technology.

It is important to understand that the topologies shown in the figure are virtual, not
real. In practice, there are no links. Instead, all sites connect to the Internet and use the
Internet to deliver datagrams. Thus, only the overlay configuration in Figure 19.8(a)
can prevent site 1 from sending datagrams directly to site 4.

Sec. 19.18 Multiple Simultaneous Overlays 415

19.18 Multiple Simultaneous Overlays

The topologies in Figure 19.8 may seem somewhat pointless. After all, if all sites
connect to the global Internet, datagrams can be forwarded directly to the correct desti-
nation site. However, an organization may have reasons for preferring one topology
over another. To understand, suppose that the organization has established routing poli-
cies for subgroups. For example, a policy may require that all financial traffic must be
isolated from customer traffic or that computers in the legal department at each site
must be on a private network that is isolated from the Internet.

The two key ideas behind overlay technologies are:

Operation within a site

Simultaneous operation of many overlays

Operation within a site. Although we have described the overlays for wide-area
topologies that connect sites, overlay technology extends to hosts and routers within a
site. Thus, it is possible to create a separate overlay network that connects computers
owned by the financial department and another overlay that connects the computers
owned by the legal department.

Simultaneous operation of many overlays. The second key idea in overlay technol-
ogy is the simultaneous operation of multiple overlays. That is, several overlay net-
works can co-exist (i.e., operate at the same time), making it possible for an organiza-
tion to create multiple virtual networks that only meet at specific interconnection points.
In our example, computers in the legal department can be completely isolated from oth-
er computers.

Chapter 28 continues the discussion of virtualization and overlay networks. The
chapter combines the concepts of VPN and overlay networking presented in this chapter
with the concepts of classification and switching discussed in Chapter 17. We will see
that the result is a technology that can be used to configure virtual paths.

19.19 Summary

Virtualization technologies allow us to create artificial networks with desirable pro-
perties by imposing constraints on conventional Internet communication. We examined
three virtualization technologies: VPN, NAT, and overlay networks.

Although a private network guarantees confidentiality, the cost can be high. Virtu-
al Private Network (VPN) technology offers a lower-cost alternative by which an organ-
ization can use the global Internet to interconnect multiple sites and use encryption to
guarantee that intersite traffic remains confidential. Like a traditional private network, a
VPN can either be completely isolated (in which case hosts are assigned private ad-
dresses) or a hybrid architecture that allows hosts to communicate with destinations on
the global Internet.

416 Network Virtualization: VPNs, NATs, And Overlays Chap. 19

Network Address Translation provides transparent IP-level access to the global In-
ternet from a host that has a private address. NAT is especially popular with wireless
routers used in Wi-Fi hot spots. NAT translates (i.e., rewrites) datagrams that travel
from a host at the site to the Internet or back from the Internet to a host at the site.
Although several variants of NAT exist, the most popular is known as Network And
Port Translation (NAPT). In addition to rewriting IP addresses, NAPT rewrites
transport-level protocol port numbers, which provides complete generality and permits
arbitrary applications running on arbitrary computers at the site to access services on the
Internet simultaneously.

Overlay networking technologies allow an organization to define a network among
multiple sites as if the sites were connected by leased digital circuits. The overlay de-
fines possible interconnections among sites. With an overlay, conventional routing pro-
tocols can be used to find routes along the overlay paths.

EXERCISES

19.1 Under what circumstances will a VPN transfer substantially more packets than conven-
tional IP when sending the same data across the Internet? (Hint: think about encapsula-
tion.)

19.2 Software implementations of NAT that are used to provide remote employees access to
an organization’s intranet often reduce the network MTU that is reported to local appli-
cations. Explain why.

19.3 Look up the definition of cone as applied to NAT. When is a NAT system considered to
be full cone?

19.4 NAT translates both source and destination IP addresses. Which addresses are translated
on datagrams that arrive from the Internet?

19.5 Consider an ICMP host unreachable message sent through two NAT boxes that intercon-
nect three address domains. How many address translations will occur? How many
translations of protocol port numbers will occur?

19.6 Imagine that we decide to create a new Internet parallel to the existing Internet that allo-
cates addresses from the same address space. Can NAT technology be used to connect
the two arbitrarily large Internets that use the same address space? If so, explain how.
If not, explain why not.

19.7 Is NAT completely transparent to a host? To answer the question, try to find a sequence
of packets that a host can transmit to determine whether it is located behind a NAT box.

19.8 What are the advantages of combining NAT technology with VPN technology? The
disadvantages?

19.9 Configure NAT on a Linux system between a private address domain and the Internet.
Which well-known services work correctly and which do not?

19.10 Read about a variant of NAT called twice NAT that allows communication to be initiated
from either side of the NAT box at any time. How does twice NAT ensure that transla-
tions are consistent? If two instances of twice NAT are used to interconnect three ad-
dress domains, is the result completely transparent to all hosts?

Exercises 417

19.11 Draw a diagram of the protocol layering used with an overlay network.
19.12 Overlay technology can be used with Layer 2 as well as Layer 3. Design a system that

uses an overlay to form a large Ethernet VLAN that includes multiple sites.

Chapter Contents
20.1 Introduction, 419
20.2 The Client-Server Model, 420
20.3 A Trivial Example: UDP Echo Server, 420
20.4 Time And Date Service, 422
20.5 Sequential And Concurrent Servers, 423
20.6 Server Complexity, 425
20.7 Broadcasting Requests, 426
20.8 Client-Server Alternatives And Extensions, 426
20.9 Summary, 428

20

Client-Server Model
Of Interaction

20.1 Introduction

Previous chapters present the details of TCP/IP technology, including the protocols
that provide basic services and protocols that routers use to propagate routing informa-
tion. Now that we understand the basic technology, we turn to the question of how ap-
plication programs profit from the cooperative use of the TCP/IP protocols and the glo-
bal Internet. While the example applications are both practical and interesting, they do
not form the main emphasis because no Internet application lasts forever. New applica-
tions are created and old applications fade. Therefore, our focus rests on the patterns of
interaction among communicating application programs.

The primary pattern of interaction among applications that use a network is known
as the client-server paradigm. Client-server interaction forms the basis of network com-
munication, and provides the foundation for application services. Various high-level
extensions to the client-server model have been created, including peer-to-peer network-
ing and map-reduce processing. Despite marketing hype, the extensions do not replace
client-server interactions. Instead, the new models merely suggest new ways to organ-
ize large distributed systems — at the lowest level, they rely on client-server interac-
tions.

This chapter considers the basic client-sever model; later chapters describe its use
in specific applications. Volume 3 expands the discussion by explaining in detail how
applications, such as web servers, use processes and threads.

419

420 Client-Server Model Of Interaction Chap. 20

20.2 The Client-Server Model

A server is an application program that offers a service over a network. A server
accepts an incoming request, forms a response, and returns the result to the requester.
For the simplest services, each request arrives in a single datagram and the server re-
turns a response in another datagram.

An executing program becomes a client when it sends a request to a server and
waits for a response. Because the client-server model is a convenient and natural exten-
sion of interprocess communication used on a single machine, it is easy for program-
mers to build programs that use the model to interact.

Servers can perform simple or complex tasks. For example, a time-of-day server
merely returns the current time whenever a client sends the server a packet. A web
server receives requests from browsers to fetch copies of web pages; the server returns
the requested page for each request.

We said that a server is an application program. In fact, a server is a running ap-
plication, which is usually called a process. The advantage of implementing servers as
application programs is a server can execute on any computing system that supports
TCP/IP communication. As the load on a server increases, the server can be run on a
faster CPU. Technologies exist that allow a server to be replicated on multiple physical
computers to increase reliability or performance — incoming requests are spread among
the computers running the server to reduce the load. If a computer’s primary purpose is
support of a particular server program, the term “server” may be applied to the comput-
er as well as to the server program. Thus, one hears statements such as “machine A is
our web server.”

20.3 A Trivial Example: UDP Echo Server

The simplest form of client-server interaction uses datagram delivery to convey
messages from a client to a server and back. For example, Figure 20.1 illustrates the in-
teraction in a UDP echo server. A UDP echo server is started first and must be running
before the client sends a request. The server specifies that it will use the port reserved
for the UDP echo service, UDP port 7. The server then enters an infinite loop that has
three steps:

(1) Wait for a datagram to arrive at the UDP echo port

(2) Reverse the source and destination addresses† (including source and
destination IP addresses as well as UDP port numbers)

(3) Return the resulting datagram to its original sender

Once it is running, the server application program can supply the echo service. At
some sites in the Internet, an application becomes a client of the UDP echo service by
sending a datagram.

†One of the exercises suggests considering this step in more detail.

Sec. 20.3 A Trivial Example: UDP Echo Server 421

client

.

.

.

.

echo
server

.

.

.

.

client

.

.

.

.

echo
server

.

.

.

.

(a)

(b)

request sent to
well-known port

reply sent to
client’s port

Figure 20.1 The UDP echo service as an example of the client-server model.
In (a), the client sends a request to the server’s IP address and
UDP port. In (b), the server returns a response.

Who would use an echo service? It is not a service that the average user finds in-
teresting. However, programmers who design, implement, measure, or modify network
protocol software, or network managers who test routes and debug communication
problems, often use echo servers in testing. For example, an echo service can be used
to determine if it is possible to reach a remote machine. Furthermore, a client will re-
ceive back exactly the same data as it sent. A client can check the data in a reply to
determine whether datagrams are being corrupted in transit.

A major distinction between clients and servers arises from their use of protocol
port numbers. A server uses the well-known port number associated with the service it
offers. A client knows that a UDP echo server will use port 7 because the standards
reserve port 7 for the echo service. However, a client does not use a well-known port.
Instead, a client obtains an unused UDP protocol port from its local operating system,
and uses the port number as the source port when sending a UDP message. The client
waits for a reply, and the server uses the source port in incoming messages to send a re-
ply back to the correct client.

The UDP echo service illustrates two important points that are generally true about
client-server interaction. The first concerns the difference between the lifetime of
servers and clients:

422 Client-Server Model Of Interaction Chap. 20

A server starts execution before interaction begins and continues to
accept requests and send responses without ever terminating. A client
is any program that makes a request and awaits a response; the client
(usually) terminates after using a server.

The second point, which is more technical, concerns the use of reserved and non-
reserved port identifiers:

A server waits for requests at a well-known port that has been
reserved for the service it offers. A client allocates an arbitrary,
unused, nonreserved port for its communication.

It is important to realize that client-server interaction requires only one of the two
ports (the one used by a server) to be reserved. The idea is crucial to the overall para-
digm because it allows multiple applications on a given computer to communicate with
a server simultaneously. For example, suppose two users are using a large timesharing
system at the same time. Suppose that each user runs a UDP echo client and they all
send a message to the same UDP echo server. Will confusion result? No. Because
each client obtains a unique local port number, there is never ambiguity in the server’s
replies.

20.4 Time And Date Service

The echo server is extremely simple, and little code is required to implement either
the server or client side (provided that the operating system offers a reasonable way to
access the underlying UDP/IP protocols). Our second example, a time server, is equally
trivial. However, the example shows that even trivial applications can be useful, and
the time service raises the question of data representation.

A time server solves the problem of automatically setting a computer’s time-of-day
clock. When it boots, a computer contacts a time-of-day server and uses the reply to set
its local clock. If additional accuracy is needed, a computer can contact a time server
periodically.

20.4.1 Data Representation And Network Standard Byte Order

How should time be represented? One useful representation stores the time and
date in a single integer by giving a count of seconds after an epoch date. The TCP/IP
protocols define the epoch date to be January 1, 1900, and store the time in a 32-bit in-
teger. The representation accommodates all dates for a few decades in the future; by
the time a 32-bit integer is exhausted, most computers are expected to have 64-bit in-
teger capability.

Sec. 20.4 Time And Date Service 423

Simply specifying that a value will be stored as a 32-bit integer is insufficient be-
cause the representation of integers varies among computers. Most application protocol
designers follow the same approach as the TCP/IP protocols: integers are represented in
network standard byte order. That is, before sending a message, the sending applica-
tion translates each integer from the local machine’s byte order to network byte order,
and upon receiving a message, the receiving application translates each integer from
network byte order to the local host byte order. Thus, two computers with different in-
teger representations can exchange integers without ambiguity.

Most applications also follow the TCP/IP standards when choosing their standard
for network byte order: they use big endian representation. In big endian order, the
most significant byte of the integer comes first, followed by the next most significant
byte, and so on. It may seem that using a network standard byte order introduces extra
overhead or that the choice of big endian order is inefficient. However, experience has
shown that the overhead involved in translating between local byte order and network
byte order is trivial compared to the other costs of message processing. Furthermore,
using a single, well-known byte order standard prevents many problems and ambigui-
ties.

20.4.2 Time Server Interaction

The interaction between a client and a time server illustrates an interesting twist on
client-server interaction. A time service operates much like an echo service. The server
begins first, and waits to be contacted. However, the time protocol does not define a re-
quest message. Instead, the time server uses the arrival of a UDP message to trigger a
response. That is, a time server assumes any arriving UDP message, independent of the
message size or contents, is a request for the current time. Therefore, the server
responds to each incoming message by sending a reply that contains the current time in
a 32-bit integer. Figure 20.2 illustrates the interaction.

We can summarize:

Sending an arbitrary datagram to a time server is equivalent to mak-
ing a request for the current time; the server responds by returning a
UDP message that contains the current time in network standard byte
order.

20.5 Sequential And Concurrent Servers

The examples above illustrate basic sequential servers (i.e., a server that processes
one request at a time). After accepting a request, a sequential server sends a reply be-
fore waiting for another request to arrive. The idea of sequential servers raises an im-
portant question about protocol software: what happens if a subsequent request arrives
while a server is busy handling a previous request?

424 Client-Server Model Of Interaction Chap. 20

client
app.

.

.

.

.

time
server

.

.

.

.

client
app.

.

.

.

.

time
server

.

.

.

.

(a)

(b)

arbitrary message sent
to the time server port

reply containing the current
time sent to the client’s port

Figure 20.2 Illustration of the interaction used with a time server. The pro-
tocol does not define a request message because an arbitrary
UDP datagram will trigger a reply.

For our trivial examples, the question is irrelevant. For servers, such as a video
download server, in which a single request can take minutes or hours to honor, the
question becomes important. In general, servers must be engineered to meet the expect-
ed demand. Two techniques can be used to accommodate many requests:

Incoming requests can be placed in a queue

A server can satisfy multiple requests concurrently

Request queuing. If a sequential server is busy processing a request when a subse-
quent request arrives, the server cannot place the incoming request in a queue. Unfor-
tunately, packets tend to arrive in bursts, which means that multiple requests can arrive
in rapid succession. To handle bursts, protocol software is designed to provide a queue
for each application. Because queueing is merely intended to handle bursts, typical
queue sizes are extremely small (e.g., some operating systems limit a queue to five or
fewer entries). Therefore, queueing only suffices for applications where the expected
processing time is negligible.

Concurrent servers. To handle multiple simultaneous requests, most production
servers are concurrent. A concurrent server can handle multiple requests “at the same
time.” We use the term concurrent rather than simultaneous to emphasize that all

Sec. 20.5 Sequential And Concurrent Servers 425

clients share the underlying computational and network resources. A concurrent server
can handle an arbitrarily large set of clients at a given time, but the service each client
receives degrades proportional to the number of clients.

To understand why concurrency is important, imagine what would happen with a
sequential server if a client requests a video download over an extremely slow network.
No other client requests would be honored. With a concurrent design, however, a
server will honor other requests while it continues to send packets over the slow con-
nection.

The key to a concurrent server lies in the operating system abstraction of a con-
current process and the ability to create processes dynamically. Figure 20.3 gives the
basic steps a concurrent server follows.

Open port
The server opens the well-known port at which it can be
reached.

Wait for client
The server waits for the next client request to arrive.

Start copy
The server starts an independent, concurrent copy of itself to
handle the request (i.e., a concurrent process or thread). The
copy handles one request and then terminates.

Continue
The original server returns to the wait step, and continues ac-
cepting new requests while the newly created copy handles the
previous request concurrently.

Figure 20.3 The steps a concurrent server takes that allow the server to han-
dle multiple requests at the same time.

20.6 Server Complexity

The chief advantage of a concurrent server is the ability to handle requests prompt-
ly: a request that arrives later does not need to wait for requests that started earlier to
complete. The chief disadvantage is complexity: a concurrent server is more difficult to
construct.

In addition to the complexity that results because servers handle requests con-
currently, complexity also arises because servers must enforce authorization and protec-
tion rules. Because they read system files, keep logs, and access protected data, server
applications usually need to execute with highest privilege. A privileged program must
be designed carefully because the operating system will not restrict a server program if
it attempts to access an arbitrary user’s files, access an arbitrary database, or send an ar-

426 Client-Server Model Of Interaction Chap. 20

bitrary packet. Thus, servers cannot blindly honor requests from other sites. Instead,
each server takes responsibility for enforcing the system access and protection policies.
For example, a file server must examine a request and decide whether the client is au-
thorized to access the specified file.

Finally, servers are complex to design and implement because a server must pro-
tect itself against malformed requests or requests that will cause the server application
to abort. Often, it is difficult to foresee potential problems. For example, one project at
Purdue University designed a file server that allowed student operating systems to ac-
cess files on a UNIX timesharing system. Students discovered that requesting the
server to open a file named /dev/tty caused the server to abort because in UNIX the
name refers to the control terminal a program is using. However, because it was
launched at startup, the file server had no control terminal. Therefore, an attempt to
open the control terminal caused the operating system to abort the server process.

We can summarize our discussion of servers:

Servers are usually more difficult to build than clients. Although they
can be implemented with application programs, servers must enforce
all the access and protection policies of the computer system on which
they run, and must protect themselves against possible errors.

20.7 Broadcasting Requests

So far, all our examples of client-server interaction require the client to know the
complete server address. In some cases, however, a client does not know the server’s
address. For example, when it boots, a computer can use DHCP to obtain an address,
but the client does not know the address of a server†. Instead, the client broadcasts its
request.

The point is:

For protocols where the client does not know the location of a server,
the client-server paradigm permits client programs to broadcast re-
quests.

20.8 Client-Server Alternatives And Extensions

We said that client-server interaction is the basis for almost all Internet communi-
cation. However, the question arises: what variations are possible? Three general ap-
proaches are used:

†Chapter 22 examines DHCP.

Sec. 20.8 Client-Server Alternatives And Extensions 427

Proxy caching

Prefetching

Peer-to-peer access

Proxy caching. We said that the conventional client-server paradigm requires an
application to become a client and contact a server whenever it needs information from
the server. However, latency can be a problem, especially in cases were the server is
far from the client. If requests are likely to be repeated, caching can improve the per-
formance of client-server interaction by reducing latency and lowering network traffic.
For example, consider a set of employees in a corporation with access to the Web. If
one employee finds a web page useful or interesting, the employee is likely to pass the
URL to a few friends who then view the page and pass the URL to other friends. Thus,
a given web page may be accessed a dozen times. With a conventional client-server ap-
proach, each access requires the page to be fetched from the server.

To improve performance, a corporation can install a proxy web cache. When it re-
ceives a request, the proxy cache looks on its disk to see if the requested item is avail-
able. If not, the proxy contacts the appropriate web server to obtain the item, places a
copy on disk, and returns a copy to the browser that made the request. Because the
proxy can satisfy each subsequent request from its local disk, the web server is only
contacted once.

Of course, clients must agree to use the proxy or the approach will not work. That
is, each user must configure their web browser to contact the proxy for requests (most
web browsers have a setting that uses a proxy). Individuals have strong motivation for
using a proxy because the proxy does not inject significant overhead and may improve
performance considerably.

Other examples of client-server caching exist. For example, the ARP protocol
presented in Chapter 6 also follows the client-server model. ARP uses a cache to avoid
repeatedly requesting the MAC address of a neighbor. If ARP did not use a cache, net-
work traffic would double.

Prefetching. Although it improves performance, caching does not change the
essence of client-server interaction — information is fetched only when the first client
makes a request. That is, an application executes until it needs information and then
acts as a client to obtain the information. Taking a demand-driven view of the world is
natural and arises from experience. Caching helps alleviate the cost of obtaining infor-
mation by lowering the retrieval cost for subsequent fetches, but does not reduce the
cost of the first fetch.

How can we lower retrieval cost for an initial request? The answer lies in pre-
fetching — arrange to collect and store information before any particular program re-
quests it. Prefetching reduces the latency for the initial request. More important,
precollecting information means that a client can obtain an answer even if the network
is temporarily disconnected or congested when the client makes a request.

An early Unix program named ruptime illustrates the idea of prefetching that is
now used in many data center management systems. The ruptime program provided the

428 Client-Server Model Of Interaction Chap. 20

CPU load of all computers on the local network. A ruptime client always operated in-
stantly because the information was prefetched by a background application. Each com-
puter on the network would broadcast its current load periodically, and the background
programs collected announcements sent by other computers. Pre-collecting performance
information is important because an overloaded computer cannot respond to a request
quickly.

Precollection has two disadvantages. First, precollection uses processor and net-
work resources even if no client will access the data being collected. In our perfor-
mance example, each machine must participate by broadcasting its status and collecting
broadcasts from other machines. If only a few machines participate in the broadcast,
precollection costs will be insignificant. In a large data center cluster that includes hun-
dreds of machines, the broadcast traffic generated by precollection can impose signifi-
cant load on the network. Thus, precollection is usually reserved for special cases
where the processing cost and network overhead can be limited.

Peer-to-peer access. The third variation of client-server interaction is known as
peer-to-peer networking (P2P). P2P was popularized by file sharing applications that
allow users to exchange files, such as MP3 files containing music or videos.

The idea behind the peer-to-peer approach is straightforward: instead of having a
single server, arrange to give many servers a copy of each file and allow a user to
download from the nearest server. The same idea is used by Content Distribution Net-
work (CDN) technologies, such as the one pioneered by Akami. However, peer-to-peer
networking adds an interesting twist: instead of special server computers, a peer-to-peer
system relies on users’ computers. That is, in exchange for file access, a user agrees to
allow their computer to be used like a server. When a client makes a request, the peer-
to-peer system knows the set of users who have downloaded a copy and selects one that
will provide fastest access for the new request. Some peer-to-peer file systems start
downloads from a handful of locations, and then use the download that proceeds the
fastest. Other peer-to-peer systems divide files into chunks and arrange for a chunk of
the file to be downloaded from one location while other chunks are downloaded from
other locations. In any case, once a user has downloaded an item (i.e., a complete file
or a chunk of the file), the user’s computer becomes a potential source of the item for
other users to download.

20.9 Summary

Many modern applications use computer networks and the Internet to communi-
cate. The primary pattern of use is known as client-server interaction. A server process
waits for a request, performs actions based on the request, and returns a reply. A client
program formulates a request, sends the request to a server, and awaits a reply. Some
clients send requests directly, while others broadcast requests; broadcasting is especially
useful when an application does not know the address of a server.

We examined a few trivial examples of clients and servers, such as a time-of-day
service and a UDP echo service. The time-of-day service illustrates the importance of

Sec. 20.9 Summary 429

network standard byte order, and also shows that a service does not need to define a re-
quest format.

Although trivial services use a sequential approach, most production servers permit
concurrent processing. Because it creates a separate process to handle each request, a
concurrent server does not require a client to wait for previous requests to be served.
Concurrency is especially important for services, such as video download, in which it
can take minutes or hours to satisfy a single request.

We considered alternatives and extensions to the client-server paradigm, including
caching, prefetching, and peer-to-peer interactions. Each technique can increase perfor-
mance, depending on the pattern of repeated requests and the time required to access
data.

EXERCISES

20.1 Build a UDP echo client that sends a datagram to a specified echo server, awaits a reply,
and compares it to the original message.

20.2 Carefully consider how a UDP echo server forms a reply. Under what conditions is it
incorrect to create new IP addresses by reversing the source and destination IP ad-
dresses?

20.3 Although most servers are implemented by separate application programs, an ICMP echo
server is usually built into the protocol software in the operating system. What are the
advantages and disadvantages of having an application program (user process) per
server?

20.4 Suppose you do not know the IP address of a local host computer that runs a UDP echo
server, but you know that it responds to requests sent to port 7. Is there an IP address
you can use to reach the server? Explain.

20.5 Build a UDP client for the Internet time service, and demonstrate that it works correctly.
20.6 Can a server run on the same physical host computer as a client? Explain.
20.7 Consider a data center cluster with 200 computers. If each computer broadcasts its

current load every 5 seconds and each message contains 240 octets of information (plus
associated headers), how much network capacity is used by the broadcasts?

20.8 What servers are running on computers at your site? If you do not have access to sys-
tem configuration files that list the servers started for a given computer, see if your sys-
tem has a command that prints a list of open TCP and UDP ports (e.g., the UNIX netstat
command).

20.9 Some servers allow a manager to implement graceful shutdown or restart. What is the
advantage of graceful server shutdown?

20.10 Suppose a concurrent server follows the algorithm given in Figure 20.3 (on page 425).
What vulnerability does such a server exhibit?

Chapter Contents
21.1 Introduction, 431
21.2 Versions Of The Socket API, 432
21.3 The UNIX I/O Paradigm And Network I/O, 432
21.4 Adding Network I/O to UNIX, 432
21.5 The Socket Abstraction And Socket Operations, 433
21.6 Obtaining And Setting Socket Options, 438
21.7 How A Server Accepts TCP Connections, 439
21.8 Servers That Handle Multiple Services, 440
21.9 Obtaining And Setting The Host Name, 441
21.10 Library Functions Related To Sockets, 442
21.11 Network Byte Order And Conversion Routines, 443
21.12 IP Address Manipulation Routines, 444
21.13 Accessing The Domain Name System, 444
21.14 Obtaining Information About Hosts, 446
21.15 Obtaining Information About Networks, 447
21.16 Obtaining Information About Protocols, 447
21.17 Obtaining Information About Network Services, 447
21.18 An Example Client, 448
21.19 An Example Server, 453
21.20 Summary, 460

21

The Socket API

21.1 Introduction

Earlier chapters discuss the principles and concepts that underlie the TCP/IP proto-
cols, and the previous chapter considers the client-server paradigm that applications use
to communicate over a TCP/IP internet. The chapters omit an important detail: they do
not specify the exact interface that application programs use to interact with protocol
software. This chapter completes the discussion by consider an Application Program
Interface (API) that has become a de facto standard for the Internet. The chapter
describes the overall approach taken, and reviews enough of the functions in the API to
explain an example. We gloss over many details and focus on understanding the basics;
doing so will help us appreciate the code needed for a trivial client-server application.
Volume 3 expands the discussion by showing more details and larger examples of client
and server applications that use the API.

There are two reasons we postponed the discussion of APIs until this chapter.
First, the TCP/IP standards do not specify the exact interface that applications use to ac-
cess network services; the details depend on the operating system. Second, it is impor-
tant to distinguish between the functionality that protocols provide and the functionality
that is made available through a specific interface. For example, TCP is designed to
handle an extreme case where two endpoints each try to form a TCP connection simul-
taneously. However, none of the widely-used APIs ever permitted such a case.

431

432 The Socket API Chap. 21

21.2 Versions Of The Socket API

We will examine the socket API, which is informally called sockets. The socket
interface was originally created as part of the BSD Unix operating system. Versions of
sockets appear in more recent BSD systems, Linux, and Mac OS X; Microsoft adapted
a version of sockets known as Windows Sockets† for their operating systems.

The chapter provides an overview of the socket API that applies to all systems and
shows a basic example that follows the BSD style. Readers who want further details
and examples for a specific version of the API are referred to Volume 3 of the text,
which comes in versions for BSD, Linux, and Windows sockets.

21.3 The UNIX I/O Paradigm And Network I/O

Developed in the late 1960s and early 1970s, the UNIX operating system was ori-
ginally designed as a timesharing system for single processor computers. It is a
process-oriented operating system in which each application program executes as a user
level process. An application program interacts with the operating system by making
system calls. From the programmer’s point of view, a system call looks and behaves
exactly like other function calls. A system call can take arguments and can return one
or more results. Arguments can be data values (e.g., integers) or pointers to objects in
the application program (e.g., a buffer to be filled with characters).

Derived from those in Multics and earlier systems, the UNIX input and output
(I/O) primitives follow a paradigm sometimes referred to as open-close-read-write. Be-
fore an application can perform I/O operations, it calls open to specify the file or device
to be used. The call to open returns a small integer file descriptor‡ that the application
uses to perform I/O operations. Once it has opened a file (or device), an application in-
vokes read or write operations to transfer data. A call has arguments that specify the
descriptor to use, the address of a buffer, and the number of bytes to transfer. After all
transfer operations are complete, the user process calls close to inform the operating
system that it has finished using the file or device.

21.4 Adding Network I/O to UNIX

The group adding network protocols to BSD UNIX made two design decisions.
The first design decision arose from the rich functionality of network protocols. Be-
cause network protocols offer many more possibilities than conventional devices and
files, interaction between applications and network protocols needed to specify new
functions. For example, a protocol interface must allow programmers to create both
server code (that awaits connections passively) as well as client code (that forms con-
nections actively). In addition, an application program that sends a datagram may wish
to specify the destination address along with each datagram instead of binding the desti-
nation address to the socket. To handle all cases, the designers chose to abandon the

†Programmers often use the term WINSOCK to refer to Windows Sockets.
‡The term “file descriptor” arises because in UNIX devices are mapped into the file system.

Sec. 21.4 Adding Network I/O to UNIX 433

traditional UNIX open-close-read-write paradigm and add several new system calls.
The design increased the complexity of the I/O interface substantially, but was neces-
sary.

The second design decision arose because many protocols existed, and it was not
obvious that TCP/IP would be so successful. Therefore, designers attempted to build a
general mechanism to accommodate all protocols. For example, the generality makes it
possible for the operating system to include software for other protocol suites as well as
TCP/IP and to allow an application program to use one or more of the protocol suites at
a given time. As a consequence, an application program cannot merely supply a binary
value and expect the protocols to interpret the value as an IP address. Instead, an appli-
cation must specify the type of the address (i.e., the address family) explicitly. The
generality has paid off for IPv6 — instead of redesigning the socket interface, engineers
merely needed to add options for IPv6 addresses.

21.5 The Socket Abstraction And Socket Operations

The basis for network I/O in the socket API centers on an operating system
abstraction known as the socket. We think of a socket as a mechanism that provides an
application with a descriptor that can be used for network communication. Sockets are
dynamic — an application program requests a socket when one is needed and releases
the socket when it has finished performing I/O.

Sockets do share one thing with other I/O — a socket is given a descriptor just like
an open file. In most systems, a single set of descriptors are used. Thus, descriptors 5
and 7 might correspond to an open file, and descriptor 6 might correspond to a socket
for a TCP connection.

21.5.1 Creating A Socket

The socket function creates a socket on demand. The function takes three integer
arguments and returns an integer descriptor:

descriptor = socket(pfam, type, protocol)

Argument pfam specifies the protocol family to be used with the socket (i.e., it specifies
how to interpret addresses). The most important families are IP version 4 (PF_INET†)
and IP version 6 (PF_INET6).

Argument type specifies the type of communication desired. Possible types in-
clude a reliable stream delivery service (SOCK_STREAM), a connectionless datagram
delivery service (SOCK_DGRAM), and a raw type (SOCK_RAW) that allows privileged
programs to access special protocols or network interfaces.

Because a single protocol family can have multiple protocols that provide the same
type of communication, the socket call has a third argument that can be used to select a

†Upper case terms used throughout the examples are the names of symbolic constants that programmers
use with the socket API.

434 The Socket API Chap. 21

specific protocol; if the protocol family only contains one protocol of a given type (e.g.,
only TCP supplies a SOCK_STREAM service for IPv4 and IPv6), the third argument
can be set to 0.

21.5.2 Socket Inheritance And Termination

In UNIX systems, the fork and exec system calls are used to create a process run-
ning a specific application program. In most systems, when a new process is created,
the newly created process inherits access to all open sockets. A concurrent server uses
socket inheritance to create a new process to handle each new client.

Both the old and the new process share access rights to existing descriptors.
Therefore, both can access the socket for a given client. Thus, it is the responsibility of
the programmer to ensure that the two processes use the shared socket meaningfully.

When a process finishes using a socket it calls close. Close has the form:

close(descriptor)

where argument descriptor specifies the descriptor of a socket to close. When a process
terminates for any reason, the system closes all sockets that remain open. Internally, a
call to close decrements the reference count for a socket and destroys the socket if the
count reaches zero.

21.5.3 Specifying A Local Address

Initially, a socket is created without any association to local or destination ad-
dresses. For the TCP/IP protocols, this means that a new socket does not begin with lo-
cal or remote IP addresses or protocol port numbers. Client programs do not care about
the local address they use, and are willing to allow the protocol software to fill in the
computer’s IP address and choose a port number. However, server processes that
operate at a well-known port must be able to specify the port to the system. Once a
socket has been created, a server uses the bind function to establish a local address for
the socket†. Bind has the following form:

bind(descriptor, localaddr, addrlen)

Argument descriptor is the integer descriptor of the socket to be bound. Argument lo-
caladdr is a structure that specifies the local endpoint to which the socket should be
bound, and argument addrlen is an integer that specifies the length of the structure
measured in bytes. Instead of giving the endpoint merely as a sequence of bytes, the
designers chose to define a structure. Figure 21.1 illustrates the sockaddr_in structure
used for IPv4 endpoints.

†If a client does not call bind, the operating system assigns a port number automatically; typically, port
numbers are assigned sequentially.

Sec. 21.5 The Socket Abstraction And Socket Operations 435

0 16 31

ADDRESS FAMILY (2) PROTOCOL PORT

IPv4 ADDRESS

Figure 21.1 The sockaddr_in structure used when passing an IPv4 endpoint
to a socket function.

The structure begins with a 16-bit ADDRESS FAMILY field that identifies the pro-
tocol suite to which the address belongs; each protocol family defines the layout of the
remainder of the structure. The value 2 in the ADDRESS FAMILY field indicates that
the structure is used for IPv4, and therefore, the remainder of the structure consists of a
16-bit protocol port number and a 32-bit IPv4 address. When passed as an argument,
the structure must be cast to a generic structure, sockaddr.

For IPv6 addresses, an application may need to supply two additional pieces of in-
formation: an identifier for an IPv6 flow or the scope of an address (e.g., link-local,
site-local, or global). Figure 21.2 illustrates the sockaddr_in6 structure used to
represent an IPv6 endpoint.

0 16 31

FAMILY PROTOCOL PORT

IPv6 FLOW INFORMATION

IPv6 ADDRESS

SCOPE ID

Figure 21.2 The sockaddr_in6 structure used when passing an IPv6 endpoint
to a socket function.

Although it is possible to specify arbitrary values in the address structure when cal-
ling bind, not all possible bindings are valid. For example, the caller might request a
local protocol port that is already in use by another program, or it might request an in-
valid IP address. In such cases, the bind call fails and returns an error code.

436 The Socket API Chap. 21

21.5.4 Connecting A Socket To A Destination Endpoint

Initially, a socket is created in the unconnected state, which means that the socket
is not associated with any remote destination. The function connect binds a permanent
remote endpoint to a socket, placing it in the connected state. An application program
must call connect to establish a connection before it can transfer data through a reliable
stream socket. Sockets used with connectionless datagram services do not need to be
connected before they are used, but doing so makes it possible to transfer data without
specifying the destination each time.

The connect function has the form:

connect(descriptor, destaddr, addrlen)

Argument descriptor is the integer descriptor of the socket to connect. Argument dest-
addr is a socket address structure that specifies the destination address to which the
socket should be bound. Argument addrlen specifies the length of the destination ad-
dress measured in bytes.

The semantics of connect depend on the underlying protocol. Selecting the reliable
stream delivery service in the PF_INET or PF_INET6 families means choosing TCP.
In such cases, connect builds a TCP connection with the destination and returns an error
if it cannot. In the case of connectionless service, connect does nothing more than store
the destination endpoint locally.

21.5.5 Sending Data Through A Socket

Once an application program has established a socket, it can use the socket to
transmit data. There are five possible functions from which to choose: send, sendto,
sendmsg, write, and writev. Send, write, and writev only work with connected sockets
because they do not allow the caller to specify a destination address. The differences
between the three are minor. A call to send takes four arguments:

send(descriptor, buffer, length, flags)

Argument descriptor is an integer socket descriptor, argument buffer contains the ad-
dress of the data to be sent, argument length specifies the number of bytes to send, and
argument flags controls the transmission. One value for flags allows the sender to
specify that the data should be sent out-of-band (e.g., TCP urgent data). A call to send
blocks until the data can be transferred (e.g., it blocks if internal system buffers for the
socket are full). Another value for flags allows the caller to request that the message be
sent without using the local forwarding table. The intention is to allow the caller to
take control of forwarding, making it possible to write network debugging software. Of
course, not all sockets support all requests from arbitrary programs. Some requests re-
quire a program to have special privileges; other requests are simply not supported on
all sockets. Like most system calls, send returns an error code to the application calling
it, allowing the programmer to know if the operation succeeded.

Sec. 21.5 The Socket Abstraction And Socket Operations 437

21.5.6 Receiving Data Through A Socket

Analogous to the five different output operations, the socket API offers five func-
tions that a process can use to receive data through a socket: read, readv, recv,
recvfrom, and recvmsg. The input operations recv and read can only be used when the
socket is connected. Recv has the form:

recv(descriptor, buffer, length, flags)

Argument descriptor specifies a socket descriptor from which data should be received.
Argument buffer specifies the address in memory into which the message should be
placed, argument length specifies the length of the buffer area, and argument flags al-
lows the caller to control the reception. Among the possible values for the flags argu-
ment is one that allows the caller to look ahead by extracting a copy of the next incom-
ing message without removing the message from the socket.

To form a reply, a UDP server needs to obtain more than the contents of the UDP
payload — it must also obtain the sender’s IP address and protocol port number. To do
so, it uses the socket function recvfrom. A call has the form:

recvfrom(descriptor, buffer, length, flags, fromaddr, fromlen)

The two additional arguments, fromaddr and fromlen, are pointers to a socket address
structure and an integer. The operating system records the sender’s endpoint informa-
tion in location fromaddr and the length of the endpoint information in location from-
len. When sending a reply, a UDP server can pass the endpoint information to function
sendto. Thus, forming a reply is straightforward.

21.5.7 Obtaining Local And Remote Socket Endpoint Information

We said that newly created processes inherit the set of open sockets from the pro-
cess that created them. Sometimes, a newly created process needs to extract the remote
endpoint address from a socket that has been inherited. In addition, because the operat-
ing system fills in the local endpoint information automatically, a process may need to
determine the local endpoint address that is used for a socket. Two functions provide
such information: getpeername and getsockname (despite the function names, both han-
dle what we think of as endpoint addresses, not domain names).

A process calls getpeername to determine the endpoint of a peer (i.e., the remote
application to which a socket connects). The call has the form:

getpeername(descriptor, destaddr, addrlen)

Argument descriptor specifies the socket for which the destination endpoint is desired.
Argument destaddr is a pointer to a structure of type sockaddr (see Figures 21.1 and
21.2) that will receive the endpoint information. Finally, argument addrlen is a pointer

438 The Socket API Chap. 21

to an integer that will receive the length of the endpoint structure. Getpeername only
works with connected sockets.

Function getsockname returns the local endpoint associated with a socket. A call
has the form:

getsockname(descriptor, localaddr, addrlen)

As expected, argument descriptor specifies the socket for which the local endpoint is
desired. Argument localaddr is a pointer to a structure of type sockaddr that will con-
tain the endpoint, and argument addrlen is a pointer to an integer that will contain the
length of the endpoint structure.

21.6 Obtaining And Setting Socket Options

In addition to binding a socket to a local endpoint or connecting it to a destination
endpoint, the need arises for a mechanism that permits application programs to control
the socket. For example, when using protocols that employ timeout and retransmission,
the application program may want to obtain or set the timeout parameters. The applica-
tion may also want to control the allocation of buffer space, determine if the socket al-
lows transmission of broadcast, or control processing of out-of-band data. Rather than
add new functions for each new control operation, the designers decided to build a sin-
gle mechanism. The mechanism has two operations: getsockopt and setsockopt.

Function getsockopt allows the application to request information about the socket.
A caller specifies the socket, the option of interest, and a location at which to store the
requested information. The operating system examines its internal data structures for
the socket, and passes the requested information to the caller. The call has the form:

getsockopt(descriptor, level, optionid, optionval, length)

Argument descriptor specifies the socket for which information is needed. Argument
level identifies whether the operation applies to the socket itself or to the underlying
protocols being used. Argument optionid specifies a single option to which the request
applies. The pair of arguments optionval and length specify two pointers. The first
gives the address of a buffer into which the system places the requested value, and the
second gives the address of an integer into which the system places the length of the
option value.

Function setsockopt allows an application program to set a socket option using the
set of values obtained with getsockopt. The caller specifies a socket for which the op-
tion should be set, the option to be changed, and a value for the option. The call to set-
sockopt has the form:

setsockopt(descriptor, level, optionid, optionval, length)

Sec. 21.6 Obtaining And Setting Socket Options 439

where the arguments are like those for getsockopt, except that the length argument is an
integer that specifies the number of bytes in the option being passed to the system. The
caller must supply a legal value for the option as well as a correct length for that value.
Of course, not all options apply to all sockets. The correctness and semantics of indivi-
dual requests depend on the current state of the socket and the underlying protocols be-
ing used.

21.6.1 Specifying A Queue Length For A Server

We said that the operating system maintains a queue of incoming requests. A
queue is especially important for sequential servers, but may also be needed to handle
packet bursts for concurrent servers. One of the options that applies to sockets is used
so frequently that a separate function has been dedicated to it: setting the queue length.

Socket function listen allows servers to prepare a socket for incoming connections.
In terms of the underlying protocols, listen puts the socket in a passive mode ready to
accept connections. Only servers use listen. In addition to placing a protocol in passive
mode, listen contains an argument that configures the size of a queue for incoming re-
quests. A call has the form:

listen(descriptor, qlength)

Argument descriptor gives the descriptor of a socket that should be prepared for use by
a server, and argument qlength specifies the length of the request queue for that socket.
After the call, the system will enqueue up to qlength requests for connections. If the
queue is full when a request arrives, the operating system will refuse the connection by
discarding the request. Listen applies only to sockets that have selected reliable stream
delivery service.

21.7 How A Server Accepts TCP Connections

As we have seen, a server process uses the functions socket, bind, and listen to
create a socket, bind it to a well-known protocol port, and specify a queue length for
connection requests. Note that the call to bind associates the socket with a well-known
protocol port, but that the socket is not connected to a specific remote destination. In
fact, the remote destination must specify a wildcard, allowing the socket to receive con-
nection requests from an arbitrary client.

Once a socket has been established, the server needs to wait for a connection. To
do so, the server calls function accept. A call to accept blocks until a new connection
request arrives. The call has the form:

newsock = accept(descriptor, addr, addrlen)

Argument descriptor specifies the descriptor of the socket on which to wait. Argument
addr is a pointer to a structure of type sockaddr, and addrlen is a pointer to an integer.

440 The Socket API Chap. 21

When a request arrives, the system fills in argument addr with the endpoint information
of the client that made the request, and sets addrlen to the length of the endpoint struc-
ture. Finally, the system creates a new socket that has its destination connected to the
requesting client, and returns the new socket descriptor to the caller. The original sock-
et still has a wildcard remote destination, and it still remains open. Thus, the original
server can continue to accept additional requests at the original socket.

When a connection request arrives, the call to accept returns. The server can either
handle the request itself or use the concurrent approach. If it handles the request itself,
the server sends a reply, closes the new socket, and then calls accept to obtain the next
connection request. In the concurrent approach, after the call to accept returns, the
server creates a new process to handle the request (in UNIX terminology, it forks a
child process to handle the request). The child process inherits a copy of the new sock-
et, so it can proceed to service the request. When it finishes, the child closes the socket
and terminates. Meanwhile, the original server process closes its copy of the new sock-
et (after starting the child), and continues to call accept to obtain the next connection
request.

The concurrent design for servers may seem confusing because multiple processes
will be using the same local protocol port number. The key to understanding the mech-
anism lies in the way underlying protocols treat protocol ports. Recall that in TCP, a
pair of endpoints define a connection. Thus, it does not matter how many processes use
a given local protocol port number as long as they connect to different destinations. In
the case of a concurrent server, there is one process per client and one additional pro-
cess that accepts connections. The socket that the original server process uses has a
wildcard for the remote destination, allowing an arbitrary remote site to form a new
connection. When accept returns a new socket, the socket will have a specific remote
endpoint. When a TCP segment arrives, the protocol software will send the segment to
the socket that is already connected to the segment’s source. If no such socket exists,
the segment will be sent to the socket that has a wildcard for its remote destination.
Because the socket with a wildcard remote destination does not have an open connec-
tion, it will only honor a TCP segment that requests a new connection (i.e., a SYN seg-
ment); all others will be discarded.

21.8 Servers That Handle Multiple Services

The socket API provides another interesting possibility for server design because it
allows a single process to wait for connections on multiple sockets. The system call
that makes the design possible is called select, and it applies to I/O in general, not just
to communication over sockets†. A call to select has the form:

nready = select(ndesc, indesc, outdesc, excdesc, timeout)

In general, a call to select blocks waiting for one of a set of file descriptors to be-
come ready. Argument ndesc specifies how many descriptors should be examined (the

†The version of select in Windows Sockets applies only to socket descriptors.

Sec. 21.8 Servers That Handle Multiple Services 441

descriptors checked are always 0 through ndesc-1). Argument indesc is a pointer to a
bit mask that specifies the file descriptors to check for input, argument outdesc is a
pointer to a bit mask that specifies the file descriptors to check for output, and argument
excdesc is a pointer to a bit mask that specifies the file descriptors to check for excep-
tion conditions. Finally, if argument timeout is nonzero, it is the address of an integer
that specifies how long to wait for a connection before returning to the caller. A zero
value for timeout forces the call to block until a descriptor becomes ready. Because the
timeout argument contains the address of the timeout integer and not the integer itself, a
process can also request zero delay by passing the address of an integer that contains
zero (i.e., a process can poll to see if I/O is ready).

A call to select returns the number of descriptors from the specified set that are
ready for I/O. It also changes the bit masks specified by indesc, outdesc, and excdesc to
inform the application which of the selected file descriptors are ready. Thus, before cal-
ling select, the caller must turn on those bits that correspond to descriptors to be
checked. Following the call, all bits that remain set to 1 correspond to a ready file
descriptor.

To communicate over more than one socket, a process first creates all the sockets it
needs, and then uses select to determine which socket becomes ready for I/O first.
Once it finds a socket is ready, the process uses the input or output functions defined
above to communicate.

21.9 Obtaining And Setting The Host Name

Although IP uses a destination address when delivering datagrams, user and appli-
cation programs use a name to refer to a computer. For computers on the Internet, a
computer’s name is derived from the Domain Name System described in Chapter 23.
The gethostname function allows an application to obtain the local computer’s name. A
related function, sethostname, allows a manager to set the host name to a given string.
Gethostname has the form:

gethostname(name, length)

Argument name gives the address of an array of bytes where the name is to be stored,
and argument length is an integer that specifies the maximum length of a name (i.e., the
size of the name array). The function returns the length of the name that is retrieved.
To set the host name, a privileged application calls:

sethostname(name, length)

where argument name gives the address of an array in which a name has been stored,
and argument length is an integer that gives the length of the name.

442 The Socket API Chap. 21

21.10 Library Functions Related To Sockets

In addition to the functions described previously, the socket API offers a large set
of functions that perform useful tasks related to networking. Because they do not in-
teract directly with protocol software, many of the additional socket functions are im-
plemented as library routines. Figure 21.3 illustrates the difference between system
calls and library routines.

System Calls In
Computer’s Operating System

Application Program Code

Library Routines Used

application program bound with library routines it calls

Figure 21.3 Illustration of the difference between library routines, which are
bound into an application program, and system calls, which are
part of the operating system.

As the figure shows, a system call passes control directly to the computer’s operat-
ing system. Calling a library function passes control to a copy of the function that has
been incorporated into the application. An application can make a system call directly
or can invoke library functions that (usually) make a system call.

Many of the socket library functions provide database services that allow a process
to determine the names of machines and network services, protocol port numbers, and
other related information. For example, one set of library routines provides access to
the database of network services. We think of entries in the services database as 3-
tuples:

(service_name, protocol, protocol_port_number)

where service_name is a string that gives the name of the service, protocol is a transport
protocol that is used to access the service, and protocol_port_number is the port number
to use. For example, the UDP echo service described in Chapter 20 has an entry:

("echo", "udp", 7)

The next sections examine examples of library routines, explaining their purposes
and providing information about how they are used. We will see that sets of socket li-
brary functions often follow the same pattern. Each set allows the application to: estab-

Sec. 21.10 Library Functions Related To Sockets 443

lish communication with the database (which can be a file on the local computer or a
remote server), obtain entries one at a time, and terminate use. The routines used for
the three operations are named setXent, getXent, and endXent, where X is the name of
the database. For example, the library routines for the host database are named
sethostent, gethostent, and endhostent. The sections that describe the routines summa-
rize the calls without repeating the details of their use.

21.11 Network Byte Order And Conversion Routines

Recall that machines differ in the way they store integer quantities and that the
TCP/IP protocols define a network standard byte order that is independent of any com-
puter. The socket API provides four macros that convert between the local machine
byte order and the network standard byte order. To make programs portable, they must
be written to call the conversion routines every time they copy an integer value from the
local machine to a network packet or when they copy a value from a network packet to
the local machine.

All four conversion routines are functions that take a value as an argument and re-
turn a new value with the bytes rearranged. For example, to convert a short (2-byte) in-
teger from network byte order to the local host byte order, a programmer calls ntohs
(network to host short). The format is:

localshort = ntohs(netshort)

Argument netshort is a 2-byte (16-bit) integer in network standard byte order and the
result, localshort, is the same integer in local host byte order.

The C programming language calls 4-byte (32 bit) integers longs. Function ntohl
(network to host long) converts a 4-byte long from network standard byte order to local
host byte order. Programs invoke ntohl as a function, supplying a long integer in net-
work byte order as an argument:

locallong = ntohl(netlong)

Two analogous functions allow the programmer to convert from local host byte
order to network standard byte order. Function htons converts a 2-byte (short) integer
in the host’s local byte order to a 2-byte integer in network standard byte order. Pro-
grams invoke htons as a function:

netshort = htons(localshort)

The final conversion routine, htonl, converts a 4-byte integer to network standard
byte order. Like the others, htonl is a function:

netlong = htonl(locallong)

444 The Socket API Chap. 21

21.12 IP Address Manipulation Routines

Because many programs translate between 32-bit IPv4 addresses and the
corresponding dotted decimal notation or between 128-bit IPv6 addresses and colon-hex
notation, the socket library includes utility routines that perform the translations. For
example, function inet_aton translates from dotted decimal format to a 32-bit IPv4 ad-
dress in network byte order. A call has the form:

error_code = inet_aton(string, address)

where argument string gives the address of an ASCII string that contains the IPv4 ad-
dress expressed in dotted decimal format, and address is a pointer to a 32-bit integer
into which the binary value is placed. The dotted decimal form can have one to four
segments of digits separated by periods (dots). If all four appear, each segment
corresponds to a single octet of the resulting 32-bit integer. If fewer than four appear,
the last segment is expanded to fill remaining octets of the address.

Function inet_ntoa performs the inverse of inet_aton by mapping a 32-bit IPv4 ad-
dress to an ASCII string in dotted decimal format. It has the form:

str = inet_ntoa(internetaddr)

where argument internetaddr is a 32-bit IPv4 address in network byte order, and str is
the address of the resulting ASCII version.

21.13 Accessing The Domain Name System

A set of five library functions constitute the interface to the Domain Name System†
(DNS). Application programs that call the library functions become clients of the
Domain Name System. That is, when an application calls a library function to obtain
information, the library function forms a query, sends the query to a domain name
server, and awaits an answer. Once the answer arrives, the library function returns the
information to the application that made the call. Because many options exist, the li-
brary functions have only a few basic arguments. They rely on a global structure, res,
to hold additional arguments. For example, one field in res enables debugging mes-
sages, while another field controls whether the application specifies using UDP or TCP
for queries. Most fields in res begin with reasonable defaults, so socket library func-
tions can often be used without changing res.

A program calls res_init before calling other functions. The call takes no argu-
ments:

res_init()

Res_init stores the name of a domain name server in global structure res, making the
system ready to contact the server.

†Chapter 23 considers the Domain Name System in detail.

Sec. 21.13 Accessing The Domain Name System 445

Function res_mkquery forms a domain name query and places the query in a buffer
in memory. The form of the call is:

res_mkquery(op, dname, class, type, data, datalen, newrr, buffer, buflen)

The first seven arguments correspond directly to the fields of a domain name
query. Argument op specifies the requested operation, dname gives the address of a
character array that contains a domain name, class is an integer that gives the class of
the query, type is an integer that gives the type of the query, data gives the address of
an array of data to be included in the query, and datalen is an integer that gives the
length of the data. In addition to the library functions, the socket API provides applica-
tion programs with definitions of symbolic constants for important values. Thus, pro-
grammers can use the Domain Name System without understanding the details of the
protocol. The last two arguments, buffer and buflen, specify the address of an area into
which the query should be placed and the integer length of the buffer area, respectively.
In the current implementation, argument newrr is unused.

Once a program has formed a query, it calls res_send to send it to a name server
and obtain a response. The form is:

res_send(buffer, buflen, answer, anslen)

Argument buffer is a pointer to memory that holds the message to be sent (presum-
ably, the application called function res_mkquery to form the message). Argument
buflen is an integer that specifies the length. Argument answer gives the address in
memory into which a response should be written, and integer argument anslen specifies
the length of the answer area.

In addition to functions that make and send queries, the socket library contains two
functions that translate domain names between conventional ASCII and the compressed
format used in queries. Function dn_expand expands a compressed domain name into a
full ASCII version. It has the form:

dn_expand(msg, eom, compressed, full, fullen)

Argument msg gives the address of a domain name message that contains the name to
be expanded, with eom specifying the end-of-message limit beyond which the expansion
cannot go. Argument compressed is a pointer to the first byte of the compressed name.
Argument full is a pointer to an array into which the expanded name should be written,
and argument fullen is an integer that specifies the length of the array.

Generating a compressed name is more complex than expanding a compressed
name because compression involves eliminating common suffixes. When compressing
names, the client must keep a record of suffixes that have appeared previously. Func-
tion dn_comp compresses a full domain name by comparing suffixes to a list of previ-
ously used suffixes and eliminating the longest possible suffix. A call has the form:

dn_comp(full, compressed, cmprlen, prevptrs, lastptr)

446 The Socket API Chap. 21

Argument full gives the address of a full domain name. Argument compressed
points to an array of bytes that will hold the compressed name, with argument cmprlen
specifying the length of the array. The argument prevptrs is the address of an array of
pointers to previously compressed suffixes in the current message, with lastptr pointing
to the end of the array. Normally, dn_comp compresses the name and updates prevptrs
and lastptr if a new suffix has been used.

Function dn_comp can also be used to translate a domain name from ASCII to the
internal form without compression (i.e., without removing suffixes). To do so, a pro-
cess invokes dn_comp with the prevptrs argument set to NULL (i.e., zero).

21.14 Obtaining Information About Hosts

Library functions exist that allow an application to retrieve information about a
host given either its domain name or its IP address. The library functions make the ap-
plication a client of the Domain Name System: they send a request to a domain name
server and wait for a response. For example, function gethostbyname takes a domain
name and returns a pointer to a structure of information for the specified host. A call
takes the form:

ptr = gethostbyname(namestr)

Argument namestr is a pointer to a character string that contains a domain name for the
host. The value returned, ptr, points to a structure that contains the following informa-
tion: the official host name, a list of aliases that have been registered for the host, the
host address type (i.e., IPv4, IPv6, or some other type), the length of an address, and a
list of one or more addresses for the host. More details can be found in the UNIX
Programmer’s Manual.

Function gethostbyaddr produces the same information as gethostbyname. The
difference between the two functions is that gethostbyaddr accepts a host address as an
argument:

ptr = gethostbyaddr(addr, len, type)

Argument addr is a pointer to a sequence of bytes that contain a host address. Argu-
ment len is an integer that gives the length of the address, and argument type is an in-
teger that specifies the type of the address (e.g., that it is an IPv6 address).

As mentioned earlier, functions sethostent, gethostent, and endhostent provide
sequential access to the host database — an application can open the database, extract
entries sequentially, and then close the database.

Sec. 21.15 Obtaining Information About Networks 447

21.15 Obtaining Information About Networks

The socket library also includes functions that allow an application to access a da-
tabase of networks. Function getnetbyname obtains and formats the contents of an entry
from the database given the domain name of a network. A call has the form:

ptr = getnetbyname(name)

where argument name is a pointer to a string that contains the name of the network for
which information is desired. The value returned is a pointer to a structure that contains
fields for the official name of the network, a list of registered aliases, an integer address
type (i.e., IPv4, IPv6, or some other type), and the address prefix used with the network
(i.e., the network portion of an IP address with the host portion set to zero).

21.16 Obtaining Information About Protocols

Five library functions provide access to the database of protocols available on a
machine. Each protocol has an official name, registered aliases, and an official protocol
number. Function getprotobyname allows a caller to obtain information about a proto-
col given its name:

ptr = getprotobyname(name)

Argument name is a pointer to an ASCII string that contains the name of the protocol
for which information is desired. The function returns a pointer to a structure that has
fields for the official protocol name, a list of aliases, and a unique integer value as-
signed to the protocol.

Function getprotobynumber allows a process to search for protocol information
using the protocol number as a key:

ptr = getprotobynumber(number)

Finally, functions getprotoent, setprotoent, and endprotoent provide sequential access to
the protocol database.

21.17 Obtaining Information About Network Services

Recall from Chapters 10 and 11 that some UDP and TCP protocol port numbers
are reserved for well-known services. For example, TCP port 37 is reserved for the
time protocol described in the previous chapter. The entry in the services database
specifies the service name, time, a protocol, (e.g., TCP), and the protocol port number
37. Five library functions exist that obtain information about services and the protocol
ports they use.

448 The Socket API Chap. 21

Function getservbyname is the most important because it maps a named service
onto a port number:

ptr = getservbyname(name, proto)

Argument name specifies the address of a string that contains the name of the desired
service, and argument proto is a string that gives the name of the protocol with which
the service is to be used. Typically, protocols are limited to TCP and UDP. The value
returned is a pointer to a structure that contains fields for the name of the service, a list
of aliases, an identification of the protocol with which the service is used, and an in-
teger protocol port number assigned for that service.

Function getservbyport allows the caller to obtain an entry from the services data-
base given the port number assigned to it. A call has the form:

ptr = getservbyport(port, proto)

Argument port is the integer protocol port number assigned to the service, and argument
proto specifies the protocol for which the service is desired. As with other databases,
an application can access the services database sequentially using setservent, getservent,
and endservent.

21.18 An Example Client

The following example C program illustrates how an application uses the socket
API to access TCP/IP protocols. The client forms a TCP connection to a server, sends
the lines of text a user enters, and displays the server’s response to each.

/**/
/* */
/* Program: Client to test the example echo server */
/* */
/* Method: Form a TCP connection to the echo server and repeatedly */
/* read a line of text, send the text to the server and */
/* receive the same text back from the server. */
/* */
/* Use: client [-p port] host */
/* */
/* where port is a TCP port number or name, and host is */
/* the name or IP address of the server’s host */
/* */
/* Author: Barry Shein, bxs@TheWorld.com, 3/1/2013 */
/* */
/**/

Sec. 21.18 An Example Client 449

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <getopt.h>
#include <string.h>
#include <stdarg.h>
#include <sys/types.h>
#include <errno.h>
#include <fcntl.h>
#include <time.h>

#ifdef USE_READLINE
#include <readline/readline.h>
#include <readline/history.h>
#endif /* USE_READLINE */

#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>

static char *prog; /* ptr to program name (for messages) */
#define DEFAULT_PORT "9000" /* must match server default port */

/* Define process exit codes */

#define EX_OK 0 /* Normal termination */
#define EX_ARGFAIL 1 /* Incorrect arguments */
#define EX_SYSERR 2 /* Error in system call */

/* Log - display an error or informational message for the user */

static void Log(char *fmt,...) {
va_list ap;

va_start(ap,fmt);
(void)vfprintf(stderr,fmt,ap);
va_end(ap);

}

/* Fatal - display a fatal error message to the user and then exit */

static void Fatal(int exval,char *fmt,...) {
va_list ap;

va_start(ap,fmt);

450 The Socket API Chap. 21

(void)vfprintf(stderr,fmt,ap);
va_end(ap);
exit(exval);

}

/* getLine - get one line of input from keyboard */

static char *getLine(char *prompt) {
#ifdef USE_READLINE

return(readline(prompt));
#else /* !USE_READLINE */

(void)fputs(prompt,stdout); /* display the prompt */
fflush(stdout);

/* read one line from the keyboard return NULL */
if(fgets(buf,sizeof(buf),stdin) == NULL)

return(NULL);
else {

char *p;

/* emulate readline() and strip NEWLINE */
if((p = strrchr(buf,’\n’)) != NULL)

*p = ’\0’;
return(strdup(buf)); /* readline returns allocated buffer */

}
#endif /* !USE_READLINE */
}

/* initClient - initialize and create a connection to the server */

static int initClient(char *host,char *port) {
struct addrinfo hints;
struct addrinfo *result, *rp;
int s;

memset(&hints,0,sizeof(hints));
hints.ai_family = AF_UNSPEC; /* use IPv4 or IPv6 */
hints.ai_socktype = SOCK_STREAM; /* stream socket (TCP) */

/* Get address of server host */
if((s = getaddrinfo(host,port,&hints,&result)) != 0)

Fatal(EX_SYSERR,"%s: getaddrinfo: %s\n",prog,gai_strerror(s));

/* try each address corresponding to name */

Sec. 21.18 An Example Client 451

for(rp=result; rp != NULL; rp = rp->ai_next) {
int sock, ret; /* socket descriptor and return value */
char hostnum[NI_MAXHOST]; /* host name */

/* Get numeric address of the host for message */
if((ret = getnameinfo(rp->ai_addr,rp->ai_addrlen,hostnum,

sizeof(hostnum), NULL,0,NI_NUMERICHOST)) != 0) {
Log("%s: getnameinfo: %s\n",prog,gai_strerror(ret));

} else {
(void)printf("Trying %s...",hostnum);
fflush(stdout);

}

/* Get a new socket */

if((sock =
socket(rp->ai_family,rp->ai_socktype,rp->ai_protocol)) < 0) {
if((rp->ai_family == AF_INET6) && (errno == EAFNOSUPPORT))

Log("\nsocket: no IPv6 support on this host\n");
else

Log("\nsocket: %s\n",strerror(errno));
continue;

}

/* try to connect the new socket to the server */

if(connect(sock,rp->ai_addr,rp->ai_addrlen) < 0) {
Log("connect: %s\n",strerror(errno));
(void)shutdown(sock,SHUT_RDWR);
continue;

} else { /* success */
(void)printf("connected to %s\n",host);
return(sock);
break;

}
}
Fatal(EX_ARGFAIL,"%s: could not connect to host %s\n",prog,host);
return(-1); /* never reached, but this suppresses warning */

}

/* runClient - read from keyboard, send to server, echo response */

static void runClient(int sock) {
FILE *sfp;
char *input;

452 The Socket API Chap. 21

/* create a buffered stream for socket */
if((sfp = fdopen(sock,"r+")) == NULL) {

(void)shutdown(sock,SHUT_RDWR);
Fatal(EX_SYSERR,"%s: couldn’t create buffered sock.\n",prog);

}
setlinebuf(sfp);

(void)printf("\nWelcome to %s: period newline exits\n\n",prog);

/* read keyboard... */
while(((input=getLine("> ")) != NULL) && (strcmp(input,".") != 0)) {

char buf[BUFSIZ];

(void)fprintf(sfp,"%s\n",input); /* write to socket */
free(input);
if(fgets(buf,sizeof(buf),sfp) == NULL) { /* get response */

Log("%s: lost connection\n",prog);
break;

} else
(void)printf("response: %s",buf); /* echo server resp. */

}
}

/* doneClient - finish: close socket */

static void doneClient(int sock) {
if(sock >= 0)

if(shutdown(sock,SHUT_RDWR) != 0)
Log("%s: shutdown error: %s\n",strerror(errno));

Log("client connection closed\n");
}

/* Usage - helpful command line message */

static void Usage(void) {
(void)printf("Usage: %s [-p port] host\n",prog);
exit(EX_OK);

}

/* main - parse command line and start client */

int main(int argc,char **argv) {
int c;
char *host = NULL;

Sec. 21.18 An Example Client 453

char *port = DEFAULT_PORT;
int sock;

prog = strrchr(*argv,’/’) ? strrchr(*argv,’/’)+1 : *argv;

while((c = getopt(argc,argv,"hp:")) != EOF)
switch(c) {
case ’p’:
port = optarg;
break;

case ’h’:
default:
Usage();

}
if(optind < argc) {

host = argv[optind++];
if (optind != argc) {

Log("%s: too many command line args\n",prog);
Usage();

}
} else {

Log("%s: missing host arg\n",prog);
Usage();

}
sock = initClient(host,port); /* call will exit on error or failure */
runClient(sock);
doneClient(sock);
exit(EX_OK);

}

21.19 An Example Server

The example server code is only slightly more complex than the client code. The
overall operation is straightforward: the server is iterative. The server begins by speci-
fying a port to use, and then waits for connections. The server accepts an incoming
TCP connection, runs a service, and waits for the next connection. The service used is
a trivial echo service: the server reads incoming lines of text and sends each line back to
the client unchanged. The client must terminate the connection.

The server will allow a client to use either IPv4 or IPv6 (assuming IPv6 is avail-
able). Even on systems where the protocol stack is not configured for IPv6, the code
assumes that include files are available for programs to use.

454 The Socket API Chap. 21

/**/
/* */
/* Program: Server that offers a text echo service via TCP on */
/* IPv4 or IPv6 */
/* */
/* Method: Repeatedly accept a TCP connection, echo lines of text */
/* until the client closes the connection, and go on to */
/* wait for the next connection. */
/* */
/* Use: server [-p port] */
/* */
/* where port is a TCP port number or name */
/* */
/* Author: Barry Shein, bxs@TheWorld.com, 3/1/2013 */
/* */
/**/
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <getopt.h>
#include <string.h>
#include <stdarg.h>
#include <sys/types.h>
#include <errno.h>
#include <signal.h>
#include <setjmp.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>

static char *prog; /* ptr to program name (for messages) */

/* This is arbitrary but should be unprivileged (>1024) */
#define DEFAULT_PORT "9000" /* must match client default port */

/* Define process exit codes */

#define EX_OK 0 /* Normal termination */
#define EX_ARGFAIL 1 /* Incorrect arguments */
#define EX_SYSERR 2 /* Error in system call */
#define EX_NOMEM 3 /* Cannot allocate memory */

/* Server structure used to pass information internally */

typedef struct {

Sec. 21.19 An Example Server 455

int sock; /* socket descriptor */
char *port_name; /* ptr to name of port being used */
int port_number; /* integer value for port */
FILE *ferr; /* stdio handle for error messages */

} _Server, *Server;

/* Log - display an error or informational message for the user */

static void Log(Server srv, char *fmt,...) {
va_list ap;

va_start(ap,fmt);
(void)vfprintf(srv->ferr,fmt,ap);
va_end(ap);

}

/* Fatal - display a fatal error message to the user and then exit */

static void Fatal(Server srv,int exval,char *fmt,...) {
va_list ap;
va_start(ap,fmt);
(void)vfprintf(srv->ferr,fmt,ap);
va_end(ap);
exit(exval);

}

/* newServer - Create a new server object */

static Server newServer(void) {
Server srv;

/* Allocate memory for new server, exit on error */

if((srv = (Server)calloc(1,sizeof(*srv))) == NULL) {
(void)fprintf(stderr,"%s",strerror(errno));
exit(EX_NOMEM);

} else {
srv->ferr = stderr; /* initialize log output */
return(srv);

}
}

/* freeServer - free memory associated with instance of a server struct */

static void freeServer(Server srv) {

456 The Socket API Chap. 21

if(srv->port_name != NULL)
free(srv->port_name);

free(srv);
}

/* initServer - Initialize instance of a server struct */

static Server initServer(char *port) {
Server srv;
char *protocol = "tcp";
struct protoent *pp;
struct servent *sport;
char *ep;
extern const struct in6_addr in6addr_any;
struct sockaddr_storage sa;
int sopt = 0;
extern int errno;

srv = newServer(); /* exits on failure */
srv->port_name = strdup(port); /* save port name they passed */

/* Look up protocol number for "tcp" */

if((pp = getprotobyname(protocol)) == NULL)
Fatal(srv,EX_ARGFAIL,"initServer: %s\n",strerror(errno));

/* First see if port number is a string of digits, such as "9000", */
/* and then see if it is a name such as "echo" (see /etc/services) */

if(((srv->port_number=strtol(srv->port_name,&ep,0))>0) && (*ep==’\0’))
srv->port_number = htons(srv->port_number);

else if((sport = getservbyname(srv->port_name,protocol)) == NULL)
Fatal(srv,EX_ARGFAIL,"initServer: bad port ’%s’\n",srv->port_name);

else
srv->port_number = sport->s_port; /* Success */

/* Get a new IPv4 or IPv6 socket and prepare it for bind() */

(void)memset(&sa,0,sizeof(sa));
if((srv->sock = socket(AF_INET6,SOCK_STREAM,pp->p_proto)) < 0) {

if(errno == EAFNOSUPPORT) { /* No IPv6 on this system; use IPv4 */
if((srv->sock = socket(AF_INET,SOCK_STREAM,pp->p_proto)) < 0)

Fatal(srv,EX_SYSERR,"initServer: socket: %s\n",
strerror(errno));

else {

Sec. 21.19 An Example Server 457

struct sockaddr_in *sa4 = (struct sockaddr_in *)&sa;
sa4->sin_family = AF_INET;
sa4->sin_port = srv->port_number;
sa4->sin_addr.s_addr = INADDR_ANY;

}
}

} else { /* IPv6 supported */
struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)&sa;
/* Set the socket option IPV6_V6ONLY to zero (off) so we */
/* will listen for both IPv6 and IPv4 incoming connections. */
if(setsockopt(srv->sock,IPPROTO_IPV6,IPV6_V6ONLY,&sopt,

sizeof(sopt)) < 0)
Fatal(srv,EX_SYSERR,"initServer: setsockopt: %s\n",

strerror(errno));
sa6->sin6_family = AF_INET6;
sa6->sin6_port = srv->port_number;
sa6->sin6_addr = in6addr_any; /* Listen to any iface & addr */

}

/* Bind the new socket to the service */

if(bind(srv->sock,(const struct sockaddr *)&sa,sizeof(sa)) < 0)
Fatal(srv,EX_SYSERR,"initServer: bind: %s\n",strerror(errno));

/* Set the maximum number of waiting incoming connections */
if(listen(srv->sock,SOMAXCONN) < 0)

Fatal(srv,EX_SYSERR,"initServer: listen: %s\n",strerror(errno));
return(srv);

}

/* runServer - Run the server & iteratively accept incoming connections */

static void runServer(Server srv) {
while(1) { /* Iterate forever (unti the user aborts the process) */

int s;

/* sockaddr_storage is large enough to hold either IPv6 or */
/* IPv4 socket information, as defined by system. */

struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
struct sockaddr *sap = (struct sockaddr *)&addr;

/* accept will block waiting for a new incoming connection */
memset(&addr,0,sizeof(addr));
if((s = accept(srv->sock,sap,&addrlen)) >= 0) {

458 The Socket API Chap. 21

char host[NI_MAXHOST];
char service[NI_MAXSERV];
FILE *sfp;

/* Get information about the new client */

/*NOTUSED if(getpeername(s,sap,&addrlen) != 0) {
Log(srv,"getpeername: %s\n",strerror(errno));
(void)shutdown(s,SHUT_RDWR);
continue;

} else END_NOTUSED*/ if(getnameinfo(sap,addrlen, host,
sizeof(host), service,sizeof(service),0) != 0) {

Log(srv,"getnameinfo: %s\n",strerror(errno));
(void)shutdown(s,SHUT_RDWR);
continue;

}
Log(srv,"accept: host=%s port=%s\n",host,service);

/* create a buffered stream for new socket */

if((sfp = fdopen(s,"r+")) == NULL) {
Log(srv,"fdopen: error creating buffered stream?\n");
(void)shutdown(s,SHUT_RDWR);
continue;

} else { /* A valid connection has been accepted */
char buf[BUFSIZ];

/* loop, reading input and responding with char count */
setlinebuf(sfp);
while(fgets(buf,sizeof(buf),sfp) != NULL) {

Log(srv,"client: %s",buf);
(void)fprintf(sfp,"got %zd chars\n",strlen(buf));

}
Log(srv,"client closed connection\n");
if(shutdown(s,SHUT_RDWR) != 0)

Log(srv,"%s: shutdown error: %s\n",strerror(errno));
(void)fclose(sfp); /* free any memory associated */

/* with stdio file pointer sfp */
}

}
}

}

/* doneServer - user aborted process, so close server socket and Log */

Sec. 21.19 An Example Server 459

static void doneServer(Server srv) {
if(shutdown(srv->sock,SHUT_RDWR) != 0)

Log(srv,"%s: shutdown error: %s\n",strerror(errno));
freeServer(srv);
Log(srv,"\n%s: shut down\n\n",prog);

}

/* Handle server shutdown when various signals occur */

static jmp_buf sigenv;
static void onSignal(int signo) {

longjmp(sigenv,signo); /* send back signal num if anyone cares */
}

/* Usage - Print a message informing the user about args, and then exit */

static void Usage(void) {
(void)printf("Usage: %s [-p tcp_port]\n",prog);
exit(EX_OK);

}

/* main - main program: parse arguments and then start the server */

int main(int argc,char **argv) {
Server srv;
char *port = DEFAULT_PORT; /* default protocol port to use */
int c;

prog = strrchr(*argv,’/’) ? strrchr(*argv,’/’)+1 : *argv;

/* Parse argument */

while((c = getopt(argc,argv,"hp:")) != EOF)
switch(c) {
case ’p’: /* port name or number from command line */

port = optarg;
break;

case ’h’: /* help, falls through... */
default: /* unrecognized command arg */
Usage();

}

srv = initServer(port); /* this call exits on error */

if(setjmp(sigenv) > 0) {

460 The Socket API Chap. 21

doneServer(srv); /* to here on signal */
exit(EX_OK);

} else {
signal(SIGHUP,onSignal);
signal(SIGINT,onSignal);
signal(SIGTERM,onSignal);

}

Log(srv,"\n%s: Initialized, waiting for incoming connections\n\n",prog);
runServer(srv);
return(EX_OK); /* suppresses compile warning */

}

21.20 Summary

Although the TCP/IP standards do not define the exact interface between an appli-
cation program and TCP/IP protocols, the socket API has become a de facto standard
used by vendors such as Microsoft and Apple as well as in Linux. Sockets adopted the
UNIX open-close-read-write paradigm, and added many new functions. A server appli-
cation must create a socket, bind addresses to the socket, accept incoming connections
or messages, and send replies. A client must create a socket, connect the socket to a re-
mote endpoint, and then communicate. When an application finishes using a socket, the
application must close the socket. In addition to the socket system calls, the socket API
includes many library routines that help programmers create and manipulate IP ad-
dresses, convert integers between the local machine format and network standard byte
order, and search for information such as host addresses.

We examined example code for a client and server that illustrated the use of the
socket API for a basic textual echo service. In addition to many details related to the
use of sockets, the example code is complicated because it is written to use either IPv4
or IPv6, with IPv6 being given preference.

EXERCISES

21.1 Download the example client and server from comerbooks.com and run them on your
local system.

21.2 Build a simple server that accepts multiple concurrent TCP connections. To test your
server, have the process that handles a connection print a short message, delay a random
time, print another message, and exit.

21.3 When is the listen call important?
21.4 What functions does your local system provide to access the Domain Name System?

Exercises 461

21.5 Devise a server that uses a single Linux process (i.e., a single thread of execution), but
handles multiple concurrent TCP connections. (Hint: think of select.)

21.6 Read about alternatives to the socket interface, such as the Transport Library Interface
(TLI) and compare them to sockets. What are the major conceptual differences?

21.7 Each operating system limits the number of sockets a given program can use at any time.
How many sockets can a program create on your local system?

21.8 Can the socket/file descriptor mechanism and associated read and write operations be
considered a form of object-oriented design? Explain why or why not.

21.9 Consider an alternative API design that provides an interface for each layer of protocol
software (e.g., the API allows an application program to send and receive raw frames
without using IP, or to send and receive IP datagrams without using UDP or TCP).
What are the advantages of having such an interface? The disadvantages?

21.10 A client and server can both run on the same computer and use a TCP socket to com-
municate. Explain how it is possible to build a client and server that can communicate
on a single machine without learning the host’s IP address.

21.11 Experiment with the sample server in this chapter to see if you can generate TCP con-
nections sufficiently fast to exceed the backlog the server specifies. Do you expect in-
coming connection requests to exceed the backlog faster if the server operates on a com-
puter that has one core than on a computer that has four cores? Explain.

21.12 Some of the functions in the original socket API are now irrelevant. Make a list of
socket functions that are no longer useful.

21.13 Read more about IPv6 address scope. If a server binds a socket to an address with link-
local scope, which computers can contact the server?

21.14 If a programmer wants to create a server that can be reached either via IPv4 or IPv6,
what socket functions should the programmer use and how should addresses be speci-
fied?

Chapter Contents
22.1 Introduction, 463
22.2 History Of IPv4 Bootstrapping, 464
22.3 Using IP To Determine An IP Address, 464
22.4 DHCP Retransmission And Randomization, 465
22.5 DHCP Message Format, 465
22.6 The Need For Dynamic Configuration, 468
22.7 DHCP Leases And Dynamic Address Assignment, 469
22.8 Multiple Addresses And Relays, 469
22.9 DHCP Address Acquisition States, 470
22.10 Early Lease Termination, 471
22.11 Lease Renewal States, 472
22.12 DHCP Options And Message Type, 473
22.13 DHCP Option Overload, 474
22.14 DHCP And Domain Names, 474
22.15 Managed And Unmanaged Configuration, 474
22.16 Managed And Unmanaged Configuration For IPv6, 475
22.17 IPv6 Configuration Options And Potential Conflicts, 476
22.18 IPv6 Neighbor Discovery Protocol (NDP), 477
22.19 ICMPv6 Router Solicitation Message, 478
22.20 ICMPv6 Router Advertisement Message, 478
22.21 ICMPv6 Neighbor Solicitation Message, 479
22.22 ICMPv6 Neighbor Advertisement Message, 480
22.23 ICMPv6 Redirect Message, 480
22.24 Summary, 481

22

Bootstrap And
Autoconfiguration (DHCP,
NDP, IPv6-ND)

22.1 Introduction

Earlier chapters explain how TCP/IP protocols operate in the steady state. The
chapters assume hosts and routers are running and the protocol software has been con-
figured and initialized. This chapter examines system startup and discusses the steps a
system takes to initialize the protocol stack. Interestingly, the chapter explains that
many systems use the client-server paradigm as part of their bootstrap procedure. In
particular, the chapter considers a host computer attached to a TCP/IP internet. It ex-
plains how the computer can obtain an IPv4 or IPv6 address and the associated informa-
tion, including an address mask, network prefix, and the addresses of a default router
and a name server. The chapter describes the protocols a host can use to obtain the
necessary information. Such automatic initialization is important because it permits a
user to connect a computer to the Internet without understanding the details of ad-
dresses, masks, routers, or how to configure protocol software. The chapter concludes
with a discussion of IPv6 Neighbor Discovery, which handles tasks such as address
binding in addition to configuration.

The bootstrapping procedures described here are surprising because they use IP to
transfer messages. It might seem impossible to use IP before a computer has learned its
own IP address. We will see, however, that the special IP addresses described earlier
make such communication possible.

463

464 Bootstrap And Autoconfiguration (DHCP, NDP, IPv6-ND) Chap. 22

22.2 History Of IPv4 Bootstrapping

As Chapter 6 describes, the RARP protocol was initially developed to permit a
host computer to obtain its IPv4 address. Later, a more general protocol named
BOOTstrap Protocol (BOOTP) replaced RARP. Finally, the Dynamic Host Configura-
tion Protocol (DHCP) was developed as an extension of BOOTP†. Because DHCP was
derived from BOOTP, our description of basics applies broadly to both. To simplify
the discussion, we will focus primarily on DHCP.

Because it uses UDP and IP, DHCP can be implemented by an application pro-
gram. Like other application protocols, DHCP follows the client-server paradigm. In
the simplest cases, DHCP requires only a single packet exchange in which a host com-
puter sends a packet to request bootstrap information and a server responds by sending
a single packet that specifies items needed at startup, including the computer’s IPv4 ad-
dress, the IPv4 address of a default router, and the IPv4 address of a domain name
server. DHCP also includes a vendor-specific option in the reply that allows a vendor
to send additional information used only for their computers‡.

22.3 Using IP To Determine An IP Address

We said that DHCP uses UDP to carry messages and that UDP messages are en-
capsulated in IP datagrams for delivery. To understand how a computer can send
DHCP in an IP datagram before the computer learns its IP address, recall from Chapter
5 that there are several special-case IPv4 addresses. In particular, when used as a desti-
nation address, the IPv4 address consisting of all 1s (255.255.255.255) specifies limited
broadcast. IP software can accept and broadcast datagrams that specify the limited
broadcast address even before the software has discovered its local IP address informa-
tion. The point is:

An application program can use the limited broadcast IPv4 address to
force IP software to broadcast a datagram on the local network be-
fore the IP software on the host has discovered its IP address.

Suppose client machine A wants to use DHCP to find bootstrap information (in-
cluding its IPv4 address) and suppose B is the server on the same physical net that will
answer the request. Because it does not know B’s IPv4 address or the IP prefix for the
network, A must broadcast its initial DHCP request using the IPv4 limited broadcast
address. Can B send a directed reply? No, it cannot, even though B knows A’s IPv4
address. To see why, consider what happens if an application on B attempts to send a
datagram using A’s IP address. After routing the datagram, IP software on B will pass
the datagram to the network interface software. The interface software must map the
next-hop IPv4 address to a corresponding hardware address. If the network interface
uses ARP as described in Chapter 6, ARP will fail — A has not yet received the DHCP

†Defining DHCP as an extension of BOOTP enabled DHCP to be deployed without replacing existing
BOOTP relay agents.

‡As we will see, the term options is somewhat misleading because DHCP uses an options field to carry
much of the bootstrap information.

Sec. 22.3 Using IP To Determine An IP Address 465

reply, so A does not recognize its IP address. Therefore, A cannot answer B’s ARP re-
quest. As a consequence, B has only two alternatives: B can broadcast the reply back to
A, or B can extract A’s MAC address from the frame that carried the request and use the
MAC address to send a directed reply. Most protocol stacks do not permit an applica-
tion to create and send an arbitrary Layer 2 frame. Thus, one technique consists of ex-
tracting A’s MAC address from the request packet and adding the entry to the local
ARP cache for A. Once the entry has been placed in the ARP cache, outgoing packets
will be sent to A (until the entry expires).

22.4 DHCP Retransmission And Randomization

DHCP places all responsibility for reliable communication on the client. We know
that because UDP uses IP for delivery, messages can be delayed, lost, delivered out of
order, or duplicated. Furthermore, because IP does not provide a checksum for data, the
UDP datagram could arrive with some bits corrupted. To guard against corruption,
DHCP requires that UDP have the checksum turned on. The DHCP standard also
specifies that requests and replies should be sent with the do not fragment bit set to ac-
commodate clients that have too little memory to reassemble datagrams. Finally, to
handle duplicates, DHCP is constructed to allow multiple replies; the protocol only ac-
cepts and processes the first reply†.

To handle datagram loss, DHCP uses the conventional technique of timeout and
retransmission. When it transmits a request, the client starts a timer. If no reply arrives
before the timer expires, the client must retransmit the request. Of course, after a power
failure all machines on a network will reboot simultaneously, possibly overrunning the
DHCP server(s) with simultaneous requests. Similarly, if all clients use exactly the
same retransmission timeout, many or all of them can attempt to retransmit simultane-
ously. To avoid simultaneous actions, the DHCP specification recommends adding a
random delay. In addition to choosing an initial timeout between 0 and 4 seconds at
random, the specification recommends doubling the timer after each retransmission.
After the timer reaches a large value, 60 seconds, the client does not increase the timer,
but continues to use randomization. Doubling the timeout after each retransmission
keeps DHCP from adding excessive traffic to a congested network; the randomization
helps avoid simultaneous transmissions.

22.5 DHCP Message Format

To keep an implementation as simple as possible, DHCP messages have fixed-
length fields, and replies have the same format as requests. Although we said that
clients and servers are programs, the DHCP protocol uses the terms loosely, referring to
the machine that sends a DHCP request as the client and any machine that sends a reply
as a server. Figure 22.1 shows the DHCP message format.

†Although the standard allows a client to wait for replies from multiple servers, most implementations ac-
cept and process the first reply.

466 Bootstrap And Autoconfiguration (DHCP, NDP, IPv6-ND) Chap. 22

0 8 16 24 31

OP HTYPE HLEN HOPS

TRANSACTION ID

SECONDS FLAGS

CLIENT IPv4 ADDRESS

YOUR IPv4 ADDRESS

SERVER IPv4 ADDRESS

ROUTER IPv4 ADDRESS

CLIENT HARDWARE ADDRESS (16 OCTETS)
...

SERVER HOST NAME (64 OCTETS)
...

BOOT FILE NAME (128 OCTETS)
...

OPTIONS (VARIABLE)
...

Figure 22.1 The format of a DHCP message. The protocol uses fixed fields
to keep the DHCP software small enough to fit into ROM.

Field OP specifies whether the message is a request (1) or a reply (2). As in ARP,
fields HTYPE and HLEN specify the network hardware type and length of the hardware
address (e.g., Ethernet has type 1 and address length 6)†. The client places 0 in the
HOPS field. If it receives the request and decides to pass the request on to another
machine (e.g., to allow bootstrapping across multiple routers), the DHCP server incre-
ments the HOPS count. The TRANSACTION ID field contains an integer that clients
use to match responses with requests. The SECONDS field reports the number of
seconds since the client started to boot.

The CLIENT IPv4 ADDRESS field and all fields following it contain the most im-
portant information. To allow the greatest flexibility, clients fill in as much information
as they know and leave remaining fields set to zero. For example, if a client knows the
name or address of a specific server from which it wants information, it can fill in the
SERVER IPv4 ADDRESS or SERVER HOST NAME field. If these fields are nonzero,
only the server with matching name/address will answer the request; if they are zero,
any server that receives the request will reply.

DHCP can be used from a client that already knows its IPv4 address (i.e., to obtain
other information). A client that knows its IP address places it in the CLIENT IPv4

†Values for the HTYPE field are assigned by the IETF.

Sec. 22.5 DHCP Message Format 467

ADDRESS field; other clients use zero. If the client’s IP address is zero in the request,
a server returns the client’s IP address in the YOUR IPv4 ADDRESS field.

The 16-bit FLAGS field allows control of the request and response. As Figure 22.2
shows, only the high-order bit of the FLAGS field has been assigned a meaning.

MUST BE ZEROB

0 15

Figure 22.2 The format of the 16-bit FLAGS field in a DHCP message. The
leftmost bit is interpreted as a broadcast request; all others bits
must be set to zero.

A client uses the high-order bit in the FLAGS field to control whether the server
sends the response via unicast or broadcast. To understand why a client might choose a
broadcast response, recall that while it communicates with a DHCP server, a client does
not yet have an IP address, which means the client cannot answer ARP queries. Thus,
to ensure that the client can receive messages sent by a DHCP server, a client can re-
quest that the server send responses using IP broadcast, which corresponds to hardware
broadcast. The rules for datagram processing allow IP to discard any datagram that ar-
rives via hardware unicast if the destination address does not match the computer’s
address. However, IP is required to accept and handle any datagram sent to the IP
broadcast address.

Interestingly, DHCP does not provide space in the message to download a specific
memory image for an embedded system. Instead, DHCP provides a BOOT FILE
NAME field that a small diskless system can use. The client can use the field to supply
a generic name like “unix,” which means, “I want to boot the UNIX operating system
for this machine.” The DHCP server consults its configuration database to map the gen-
eric name into a specific file name that contains the memory image appropriate for the
client hardware, and returns the fully qualified file name in its reply. Of course, the
configuration database also allows completely automatic bootstrapping, in which the
client places zeros in the BOOT FILE NAME field and DHCP selects a memory image
for the machine. The client then uses a standard file transfer protocol such as TFTP to
obtain the image. The advantage of the approach is that a diskless client can use a
generic name without encoding a specific file, and the network manager can change the
location of a boot image without changing the ROM in embedded systems.

Items in the OPTIONS area all use a Type-Length-Value (TLV) style encoding —
each item contains a type octet, a length octet, and ends with a value of the specified
length. Two options are especially significant: an IPv4 subnet mask for the local net-
work and an IPv4 address of a default router.

468 Bootstrap And Autoconfiguration (DHCP, NDP, IPv6-ND) Chap. 22

22.6 The Need For Dynamic Configuration

Early bootstrap protocols operated in a relatively static environment in which each
host had a permanent network connection. A manager created a configuration file that
specified a set of parameters for each host, including an IP address. The file did not
change frequently because the configuration usually remained stable. Typically, a con-
figuration continued unchanged for weeks.

In the modern Internet, however, ISPs have a continually changing set of custo-
mers, and portable laptop computers with wireless connections make it possible to move
a computer from one location to another quickly and easily. To handle automated ad-
dress assignment, DHCP allows a computer to obtain an IP address quickly and dynam-
ically. That is, when configuring a DHCP server, a manager supplies a set of IPv4 ad-
dresses. Whenever a new computer connects to the network, the new computer contacts
the server and requests an address. The server chooses one of the addresses from the
set that the manager specified, and allocates the address to the computer.

To be completely general, DHCP allows three types of address assignment:

Static

Automatic

Dynamic

A manager chooses how DHCP will respond for each network and for each host.
Like its predecessor BOOTP, DHCP allows static configuration in which a manager
manually configures a specific address for a given computer. DHCP also permits a
form of automatic address configuration in which a manager allows the DHCP server to
assign a permanent address to a computer when the computer first attaches to the net-
work. Finally, DHCP permits dynamic address configuration in which a server “loans”
an address to a computer for a limited time. Dynamic address assignment is the most
powerful and novel aspect of DHCP.

A DHCP server uses the identity of a client and a configuration file to decide how
to proceed. When a client contacts a DHCP server, the client sends an identifier, usual-
ly the client’s hardware address. The server uses the client’s identifier (and the network
over which the request arrives) to determine how to assign the client an IP address.
Thus, a manager has complete control over how addresses are assigned. A server can
be configured to assign an IPv4 address to one computer statically, while allowing other
computers to obtain addresses automatically or dynamically. To summarize:

DHCP permits a computer to obtain all the information needed to
communicate on a given network (including an IPv4 address, subnet
mask, and the address of a default router) when the computer boots.

Sec. 22.7 DHCP Leases And Dynamic Address Assignment 469

22.7 DHCP Leases And Dynamic Address Assignment

DHCP’s dynamic address assignment is temporary. We say that a DHCP server
leases an address to a client for a finite period of time. The server specifies the lease
period when it allocates the address. During the lease period, the server will not lease
the same address to another client. At the end of the lease period, the client must renew
the lease or stop using the address.

How long should a DHCP lease last? The optimal time for a lease depends on the
particular network and the needs of a particular host. For example, to guarantee that ad-
dresses can be recycled quickly, computers on a network used by students in a universi-
ty laboratory can have a short lease period (e.g., one hour). By contrast, a corporate
network might use a lease period of one day or one week. An ISP might make the
duration of a lease depend on a customer’s contract. To accommodate all possible en-
vironments, DHCP does not specify a fixed constant for the lease period. Instead, the
protocol allows a client to request a specific lease period, and allows a server to inform
the client of the lease period it grants. Thus, a manager can decide how long each
server should allocate an address to a client. In the extreme, DHCP reserves a value for
infinity to permit a lease to last arbitrarily long (i.e., to make a permanent address as-
signment).

22.8 Multiple Addresses And Relays

A multi-homed computer connects to more than one network. When such a com-
puter boots, it may need to obtain configuration information for each of its interfaces.
As we have seen, a DHCP message only provides the computer with one IPv4 address
and only provides information (e.g., the subnet mask) for one network. The DHCP
design means a computer with multiple interfaces must handle each interface separately.
Thus, although we describe DHCP as if a computer needs only one address, the reader
must remember that each interface of a multi-homed computer needs its own address.
If a multi-homed host chooses to send requests on multiple interfaces, the DHCP client
software for each interface may be at a different point in the protocol.

DHCP uses the notion of a relay agent to permit a computer to contact a server on
a nonlocal network. When a relay agent, typically a router, receives a broadcast request
from a client, it forwards the request to a DHCP server and returns a reply that is sent
from the DHCP server to the host. Relay agents can complicate multi-homed confi-
guration because a server may receive multiple requests from the same computer.
Although DHCP uses the term client identifier, we assume that a multi-homed client
sends a different identifier for each interface (e.g., a unique hardware address for each
interface). Thus, a server will always be able to distinguish among requests from a
multi-homed host, even when the server receives such requests via a relay agent.

470 Bootstrap And Autoconfiguration (DHCP, NDP, IPv6-ND) Chap. 22

22.9 DHCP Address Acquisition States

When it uses DHCP to obtain an IPv4 address, a client is in one of six states. The
state transition diagram in Figure 22.3 shows events and messages that cause a client to
change state.

REBIND

INITIALIZE

BOUND

RENEW

SELECT

REQUEST

/ DHCPDISCOVER

Select Offer /
DHCPREQUEST

DHCPOFFER

DHCPACK

DHCPACK

DHCPACK

DHCPNACKDHCPNACK
or

Lease Expires

Lease Reaches
50% Expiration /
DHCPREQUEST

Lease Reaches
87.5% Expiration /
DHCPREQUEST

Host Boots

Cancel Lease / DHCPRELEASE

Figure 22.3 The six main states of a DHCP client and transitions among
them. Each label on a transition lists the incoming message or
event that causes the transmission, followed by a slash and the
message the client sends.

When it first boots, a DHCP client enters the INITIALIZE state. To start acquiring
an IPv4 address, the client first contacts all DHCP servers in the local net. To do so,
the client broadcasts a DHCPDISCOVER message and moves to the state labeled
SELECT. Because the protocol is an extension of BOOTP, the client sends the
DHCPDISCOVER message in a UDP datagram with the destination port set to the

Sec. 22.9 DHCP Address Acquisition States 471

BOOTP port (i.e., port 67). All DHCP servers on the local net receive the message, and
those servers that have been programmed to respond to the particular client send a
DHCPOFFER message. Thus, a client may receive zero or more responses.

While in state SELECT, the client collects DHCPOFFER responses from DHCP
servers. Each offer contains configuration information for the client along with an IPv4
address that the server is offering to lease to the client. The client must choose one of
the responses (e.g., the first to arrive), and negotiate with the server for a lease. To do
so, the client sends the server a DHCPREQUEST message and enters the REQUEST
state. To acknowledge receipt of the request and start the lease, the server responds by
sending a DHCPACK. Arrival of the acknowledgement causes the client to move to the
BOUND state, where the client proceeds to use the address. To summarize:

To use DHCP, a host becomes a client by broadcasting a message to
all servers on the local network. The host then collects offers from
servers, selects one of the offers, and verifies acceptance with the
server.

22.10 Early Lease Termination

We think of the BOUND state as the normal state of operation; a client typically
remains in the BOUND state while it uses the IP address it has acquired. If a client has
secondary storage (e.g., a local disk), the client can store the IPv4 address it was as-
signed, and request the same address when it restarts again. In some cases, however, a
client in the BOUND state may discover it no longer needs an IP address. For example,
suppose a user attaches a laptop computer to a network, uses DHCP to acquire an IP ad-
dress, and then uses the computer to read electronic mail. The protocol specifies that a
lease must last a minimum of one hour, which may be longer than the user needs.

When an address is no longer needed, DHCP allows a client to terminate the lease
early without waiting for the lease to expire. Early termination is especially important
if the number of IP addresses a server has available is much smaller than the number of
computers that attach to the network. If each client terminates its lease as soon as the
IP address is no longer needed, the server will be able to assign the address to another
client.

To terminate a lease early, a client sends a DHCPRELEASE message to the server.
Releasing an address is a final action that prevents the client from using the address
further. Thus, after transmitting the release message, the client must not send any other
datagrams that use the address. In terms of the state transition diagram of Figure 22.3,
a host that sends a DHCPRELEASE leaves the BOUND state, and must start at the INI-
TIALIZE state again before it can use IP.

472 Bootstrap And Autoconfiguration (DHCP, NDP, IPv6-ND) Chap. 22

22.11 Lease Renewal States

We said that when it acquires an address, a DHCP client moves to the BOUND
state. Upon entering the BOUND state, the client sets three timers that control lease
renewal, rebinding, and expiration. A DHCP server can specify explicit values for the
timers when it allocates an address to the client; if the server does not specify timer
values, the client uses defaults. The default value for the first timer is one-half of the
total lease time. When the first timer expires, the client must attempt to renew its lease.
To request a renewal, the client sends a DHCPREQUEST message to the server from
which the lease was obtained. The client then moves to the RENEW state to await a
response. The DHCPREQUEST contains the IP address the client is currently using,
and asks the server to extend the lease on the address. As in the initial lease negotia-
tion, a client can request a period for the extension, but the server ultimately controls
the renewal. A server can respond to a client’s renewal request in one of two ways: it
can instruct the client to stop using the address or it can approve continued use. If it
approves, the server sends a DHCPACK, which causes the client to return to the
BOUND state and continue using the address. The DHCPACK can also contain new
values for the client’s timers. If a server rejects continued use, the server sends a
DHCPNACK (negative acknowledgement), which causes the client to stop using the ad-
dress immediately and return to the INITIALIZE state.

After sending a DHCPREQUEST message that requests an extension on its lease, a
client remains in state RENEW awaiting a response. If no response arrives, the server
that granted the lease is either down or unreachable. To handle the situation, DHCP re-
lies on a second timer, which was set when the client entered the BOUND state. The
second timer expires after 87.5% of the lease period, and causes the client to move from
state RENEW to state REBIND. When making the transition, the client assumes the old
DHCP server is unavailable, and begins broadcasting a DHCPREQUEST message to
any server on the local net. Any server configured to provide service to the client can
respond positively (i.e., to extend the lease), or negatively (i.e. to deny further use of the
IP address). If it receives a positive response, the client returns to the BOUND state,
and resets the two timers. If it receives a negative response, the client must move to the
INITIALIZE state, must immediately stop using the IP address, and must acquire a new
IP address before it can continue to use IP.

After moving to the REBIND state, a client will have asked the original server plus
all servers on the local net for a lease extension. In the rare case that a client does not
receive a response from any server before its third timer expires, the lease expires. The
client must stop using the IP address, must move back to the INITIALIZE state, and
must acquire a new address.

Sec. 22.12 DHCP Options And Message Type 473

22.12 DHCP Options And Message Type

Surprisingly, DHCP does not allocate fixed fields in the message header for the
message type or lease information. Instead, DHCP retains the BOOTP message format
and uses the OPTIONS field to identify the message as DHCP. Figure 22.4 illustrates
the DHCP message type option that specifies the DHCP message being sent.

0 8 16 23

CODE (53) LENGTH (1) TYPE (1 - 8)

TYPE FIELD Corresponding DHCP Message Type
1 DHCPDISCOVER
2 DHCPOFFER
3 DHCPREQUEST
4 DHCPDECLINE
5 DHCPACK
6 DHCPNACK
7 DHCPRELEASE
8 DHCPINFORM

Figure 22.4 The format of a DHCP option used to specify the DHCP mes-
sage type with a list of the possible values for the third octet.

Over 200 OPTIONS have been defined for use in a DHCP reply; each has a type
and length field that together determine the size of the option. The assignments are
somewhat haphazard because vendors used values that were initially reserved. As it as-
signed codes, the IETF decided to avoid conflicts by avoiding codes that the vendors
were using. Figure 22.5 lists a few of the possible options.

Item Item Length Contents
Type Code Octet of Value

Subnet mask 1 4 Subnet mask to use
Routers 3 N IPv4 addresses of N/4 routers
DNS Servers 6 N IPv4 addresses of N/4 servers
Hostname 12 N N bytes of client host name
Boot Size 13 2 2-octet integer size of boot file
Default IP TTL 23 1 Value for datagram TTL
NTP Servers (time) 42 N IPv4 addresses of N/4 servers
Mail Servers (SMTP) 69 N IPv4 addresses of N/4 servers
Web Servers 72 N IPv4 addresses of N/4 servers

Figure 22.5 Examples of OPTIONS that can be present in an IPv4 DHCP
reply†.

†Because each IPv4 address occupies 4 octets, a field of N octets holds N/ 4 IPv4 addresses.

474 Bootstrap And Autoconfiguration (DHCP, NDP, IPv6-ND) Chap. 22

22.13 DHCP Option Overload

Fields SERVER HOST NAME and BOOT FILE NAME in the DHCP message
header each occupy many octets. If a given message does not contain information in ei-
ther of those fields, the space is wasted. To allow a DHCP server to use the two fields
for other options, DHCP defines an Option Overload option. When present, the over-
load option tells a receiver to ignore the usual meaning of the SERVER HOST NAME
and BOOT FILE NAME fields, and look for options in the fields instead.

22.14 DHCP And Domain Names

Although it can allocate an IP address to a computer on demand, DHCP does not
completely automate all the procedures required to attach a permanent host to an inter-
net. In particular, the DHCP protocol does not specify any interaction with the Domain
Name System (DNS)†. Thus, unless an additional mechanism is used, the binding
between a host name and the IP address DHCP assigns the host will remain indepen-
dent.

Despite the lack of a standard, some DHCP servers do indeed interact with DNS
when they assign an address. For example, Unix systems such as Linux or BSD ar-
range for DHCP to coordinate with the DNS software, which is known as named bind‡
or simply bind. Similarly, the Microsoft DHCP software coordinates with the Microsoft
DNS software to ensure a host that is assigned a DHCP address also has a domain
name. The coordination mechanisms also work in reverse to ensure that when a DHCP
lease is revoked, a DHCP server notifies DNS to revoke the corresponding name.

22.15 Managed And Unmanaged Configuration

There are two broad approaches to configuration of network devices that have
consequences for both the network infrastructure and configuration protocols.

Managed

Unmanaged

Managed. A managed system requires network operators to install and configure
servers. When a computer joins a network, the computer contacts a configuration server
to obtain information about addressing, routing, and other services. Although it is diffi-
cult to envision managed services in the abstract, our discussion of DHCP makes the
concept clear because DHCP is often used as a canonical example of managed confi-
guration.

Unmanaged. An unmanaged system does not require a network manager to assign
addresses nor does it require configuration servers. Instead, when a computer joins a
network the computer generates a unique address, and then uses the address to com-

†Chapter 23 considers the Domain Name System in detail.
‡The term named is short for name daemon.

Sec. 22.15 Managed And Unmanaged Configuration 475

municate. The original AppleTalk protocol illustrates an unmanaged system: when it
joined a network, a computer used a random number generator to choose an address,
and then broadcast a message to verify that the address was not already in use. If
another computer was already using the address, a new random value was selected until
a unique address was found. No other configuration was needed because services were
reached by broadcasting requests.

Each approach to configuration has advantages and disadvantages. An unmanaged
network has the advantages of not requiring humans to configure and operate a set of
servers. Thus, computers and other devices (e.g., printers) can attach and communicate
automatically. Unfortunately, the unmanaged approach also has disadvantages. Ran-
dom address assignment can lead to conflicts if a computer is temporarily disconnected
or busy when a new computer joins and chooses the same address. Furthermore, as the
network size increases, the use of broadcast becomes a problem — an unmanaged ap-
proach can work across a single network, but not across the global Internet.

A managed approach has the chief advantage of giving each network owner com-
plete control over the computers and devices that attach to the network. Network
managers usually prefer the managed approach because a knowledgeable staff is re-
quired for other tasks and a configuration server can be run on hardware with other
servers.

22.16 Managed And Unmanaged Configuration For IPv6

When IPv6 was first envisioned, the designers thought about a special case: two
IPv6 hosts that connect without any servers on their network. For example, consider
two IPv6 mobile devices that have Wi-Fi capability. The designers thought it should be
possible for the devices to communicate directly without requiring a base station and
without requiring a server to hand out addresses. Consequently, the designers adopted
an unmanaged approach in which address assignment is automated. They use the term
IPv6 stateless autoconfiguration to describe the IPv6 address allocation scheme. When-
ever a host joins an unmanaged network, the host employs stateless autoconfiguration to
generate an IPv6 address and begin communication. Thus, stateless autoconfiguration
means hosts can communicate without requiring a server to hand out addresses.

Many managers objected to stateless autoconfiguration. Network operators who
manage large commercial ISP networks were especially disappointed. Because they
manage for-profit services that charge customers for network connections, the operators
wanted control over which hosts connect to their network (i.e., to exclude non-
customers). In particular, the operators wanted a managed service that would give them
control over address assignment.

In terms of managed address assignment services, DHCP is widely accepted as the
industry standard. Network operators like DHCP because it gives an operator precise
control over how addresses are assigned. In particular, a manager can choose the as-
signment policy on a host-by-host basis by pre-assigning a fixed IP address to a given
host or allowing the host to obtain an address from a pool automatically.

476 Bootstrap And Autoconfiguration (DHCP, NDP, IPv6-ND) Chap. 22

22.17 IPv6 Configuration Options And Potential Conflicts

To satisfy network operators who want a managed solution and individuals who
want to be able to create ad-hoc networks, the IETF decided to endorse two approaches
to IPv6 address configuration:

Managed via DHCPv6

Unmanaged via stateless autoconfiguration

Managed via DHCPv6. A new version of DHCP has been created for IPv6.
Named DHCPv6, the new version is conceptually similar to the original DHCP. Like
the original, for example, the new version requires a server to be available for each net-
work and requires a host to contact the server to obtain an IP address. However, be-
cause IPv6 does not support broadcast, a host cannot use broadcast to reach a DHCPv6
server the same way an IPv4 host broadcasts a DHCP request. Instead, IPv6 allows a
host to generate a link-local address and use link-local multicast, which is effectively
the same as an IPv4 limited broadcast.

Unfortunately, DHCPv6 is substantially more complex than DHCP. Like most of
IPv6, DHCPv6 tries to accommodate all possibilities. DHCPv6 completely changes the
format of messages and adds several new message types that give additional functionali-
ty. For example, the specification allows prefix delegation in which a server delegates a
set of prefixes to another server (e.g., to a home router for assignment to devices in the
home). Some of the increased complexity arises from the IPv6 provision that allows a
host to use multiple network prefixes on a given interface. Other complexity arises be-
cause DHCPv6 allows for authentication. The result is that the RFC that defines
DHCPv6 is over twice the size of the RFC that defines DHCP†.

Unmanaged via stateless autoconfiguration. We said that in IPv6, stateless auto-
configuration refers to the method of address creation for an unmanaged link. Stateless
autoconfiguration relies on the IPv6 Neighbor Discovery Protocol (NDP) described in
the next section. We will see that NDP provides much more functionality than
managed address configuration. However, when comparing NDP to DHCPv6 we only
need to consider the basics: without using a configuration server, a host can generate an
IPv6 address and verify that the address is unique (i.e., no other node on the network is
using the same address).

The use of two approaches for IPv6 configuration leads to questions. Is one ap-
proach preferred over another? Can a given host use both approaches? If both are used
and the resulting IPv6 addresses differ, should the host retain the two IPv6 addresses or
should one address be discontinued? The standards do not specify preferences or how
to handle address conflicts. Instead, the standards merely provide two alternative tech-
nologies. We can summarize:

IPv6 standards include schemes for managed and unmanaged address
assignment. The standards do not specify which is preferred or how
to handle situations where conflicts arise.

†Direct comparison of the RFCs for DHCP and DHCPv6 is somewhat unfair because the DHCPv6
specification includes some of the options.

Sec. 22.17 IPv6 Configuration Options And Potential Conflicts 477

22.18 IPv6 Neighbor Discovery Protocol (NDP)

IPv6’s Neighbor Discovery Protocol (NDP or IPv6-ND) includes low-level func-
tionality such as Layer 2 address resolution and host redirect messages. Therefore, it
may seem that NDP belongs in early chapters of the text. However, the discussion has
been delayed until this chapter because NDP also includes functionality from higher-
layer protocols. Specifically, NDP provides a mechanism for address configuration.

NDP operates at Layer 3 by using ICMPv6 messages. The following lists the ma-
jor functions that NDP provides:

Router Discovery: a host can identify the set of routers on a given
link

Next-hop Routes: a host can find the next-hop router for a given
destination

Neighbor Discovery: a node can identify the set of nodes on a
given link

Neighbor Unreachability Detection (NUD): a node monitors its
neighbors continuously to learn when a neighbor becomes unreach-
able

Address Prefix Discovery: a host can learn the network prefix(es)
being used on a link

Configuration Parameter Discovery: a host can determine parame-
ters, such as the MTU used on a given link

Stateless Autoconfiguration: a host can generate an address for use
on a link

Duplicate Address Detection (DAD): a node can determine whether
an address it generates is already in use

Address Resolution: a node can map an IPv6 address to an
equivalent MAC address

DNS Server Discovery: a node can find the set of DNS servers on a
link

Redirect: a router can inform a node about a preferred first-hop
router.

To achieve the above, NDP defines five ICMPv6 message types:

Router Solicitation

Router Advertisement

Neighbor Solicitation

Neighbor Advertisement

Redirect

478 Bootstrap And Autoconfiguration (DHCP, NDP, IPv6-ND) Chap. 22

Instead of defining a unique message type for each of the functions described
above, NDP uses a combination of the five ICMPv6 message types to achieve each
function. The following sections discuss each of the five message types.

22.19 ICMPv6 Router Solicitation Message

A host sends a Router Solicitation message to prompt routers to respond. Figure
22.6 illustrates the format of a Router Solicitation.

0 8 16 24 31

TYPE (133) CODE (0) CHECKSUM

RESERVED

OPTIONS
...

Figure 22.6 The format of an ICMPv6 Router Solicitation Message.

If a node already knows its IP address, the OPTIONS field contains the node’s MAC
address (called a link layer address in IPv6).

22.20 ICMPv6 Router Advertisement Message

A router sends a Router Advertisement message periodically or when prompted by
a Router Solicitation. The message allows a router to announce its presence on the net-
work and its availability as a node through which off-link traffic can be forwarded.
Figure 22.7 illustrates the format of a Router Advertisement.

0 8 16 24 31

TYPE (134) CODE (0) CHECKSUM

CUR. HOP LIMIT M O RESERVED ROUTER LIFETIME

REACHABLE TIME

RETRANSMIT TIME

OPTIONS
...

Figure 22.7 The format of an ICMPv6 Router Advertisement message.

Sec. 22.20 ICMPv6 Router Advertisement Message 479

The CUR. HOP LIMIT specifies a value that the should be used as the HOP LIMIT
in each outgoing datagram, the M bit specifies whether the network is using managed
address assignment (i.e., DHCPv6), and the O bit specifies whether other configuration
information is available via DHCPv6. If the router can be used as a default router, the
ROUTER LIFETIME field gives the amount of time the router can be used in seconds.
Field REACHABLE TIME specifies how long (in milliseconds) a neighbor remains
reachable after the neighbor has responded, and field RETRANSMIT TIME specifies
how frequently to retransmit Neighbor Solicitation messages. Possible options include
the senders MAC address, the MTU used on the link, and a list of one or more IPv6
prefixes used on the link.

22.21 ICMPv6 Neighbor Solicitation Message

A node sends a Neighbor Solicitation message for two reasons: to obtain the MAC
address of a neighbor (the IPv6 equivalent of ARP) and to test whether a neighbor is
still reachable. Figure 22.8 illustrates the format of a Neighbor Solicitation.

0 8 16 24 31

TYPE (135) CODE (0) CHECKSUM

RESERVED

TARGET IPv6 ADDRESS

OPTIONS
...

Figure 22.8 The format of an ICMPv6 Neighbor Solicitation message.

Field TARGET IPv6 ADDRESS gives the IP address of a neighbor for which a
MAC address is needed. If the sender already has an IP address, the OPTIONS field in-
cludes the sender’s MAC address so the receiver knows the sender’s IP-to-MAC ad-
dress binding.

480 Bootstrap And Autoconfiguration (DHCP, NDP, IPv6-ND) Chap. 22

22.22 ICMPv6 Neighbor Advertisement Message

A node sends a Neighbor Advertisement message in response to a Neighbor Solici-
tation message or to propagate reachability. Figure 22.9 illustrates the format of a
Neighbor Advertisement.

0 1 2 8 16 24 31

TYPE (136) CODE (0) CHECKSUM

R S O RESERVED

TARGET IPv6 ADDRESS

OPTIONS
...

Figure 22.9 The format of an ICMPv6 Neighbor Advertisement message.

The R bit indicates that the sender is a router, the S bit indicates that the advertise-
ment is a response to a Neighbor Solicitation message, and the O bit indicates that in-
formation in the message should override any information that the receiver has previ-
ously cached. Despite its name, field TARGET IPv6 ADDRESS gives the IP address of
the sender (the sender was the target of the Neighbor Solicitation message that prompt-
ed the advertisement). The OPTIONS field gives the sender’s MAC address.

22.23 ICMPv6 Redirect Message

A router sends a Redirect message for exactly the same reason an IPv4 router
sends an ICMP redirect: to request a host to change its first hop for a specific destina-
tion. Figure 22.10 illustrates the format of a Redirect message.

As expected, a Redirect message specifies two IPv6 addresses: a destination and
the address of a first hop to use. Typically, a Redirect message is prompted when a
router receives a datagram from a host on a directly-connected link and the router finds
that the destination is reached through another router on the same link. When a host re-
ceives a Redirect, the host must change its forwarding table to use the specified FIRST
HOP IPv6 ADDRESS for future datagrams sent to the DESTINATION IPv6 ADDRESS.

Sec. 22.23 ICMPv6 Redirect Message 481

0 8 16 24 31

TYPE (137) CODE (0) CHECKSUM

RESERVED

FIRST HOP IPv6 ADDRESS

DESTINATION IPv6 ADDRESS

OPTIONS
...

Figure 22.10 The format of an ICMPv6 Redirect message.

22.24 Summary

The Dynamic Host Configuration Protocol allows an IPv4 computer to obtain in-
formation at startup, including an IP address, the address of a default router, and the
address of a domain name server. DHCP permits a server to allocate IP addresses au-
tomatically or dynamically. Dynamic allocation is necessary for environments such as a
wireless network where computers can attach and detach quickly.

To use DHCP, a computer becomes a client. The computer broadcasts a request
for DHCP servers, selects one of the offers it receives, and exchanges messages with the
server to obtain a lease on the advertised IPv4 address. A relay agent can forward
DHCP requests on behalf of the client, which means a site can have a single DHCP
server handle address assignment for multiple subnets.

When a client obtains an IPv4 address from DHCP, the client starts three timers.
After the first timer expires, the client attempts to renew its lease. If a second timer ex-
pires before renewal completes, the client attempts to rebind its address from any avail-
able DHCP server. If the final timer expires before a lease has been renewed, the client
stops using the address and returns to the initial state to acquire a new address. A finite
state machine specifies lease acquisition and renewal.

We say that DHCP provides managed address assignment; the alternative is an un-
managed system in which each computer chooses an address and verifies that the ad-
dress is unique. IPv6 offers both managed and unmanaged assignment. The IPv6

482 Bootstrap And Autoconfiguration (DHCP, NDP, IPv6-ND) Chap. 22

managed approach uses DHCPv6, and the IPv6 unmanaged approach uses stateless ad-
dress autoconfiguration.

Stateless autoconfiguration is handled by the IPv6 Neighbor Discovery Protocol
(NDP or IPv6-ND), which also handles address resolution and neighbor reachability.
NDP defines five ICMPv6 messages: two for router solicitation and advertisement, two
for neighbor solicitation and advertisement, and one for first-hop redirection.

EXERCISES

22.1 DHCP does not contain an explicit field for returning the time of day from the server to
the client, but makes it part of the (optional) vendor-specific information. Should the
time be included in the required fields? Why or why not?

22.2 Argue that separation of configuration and storage of memory images is not good. (See
RFC 951 for hints.)

22.3 The DHCP message format is inconsistent because it has two fields for a client IP ad-
dress and one for the name of the boot image. If the client leaves its IP address field
empty, the server returns the client’s IP address in the second field. If the client leaves
the boot file name field empty, the server replaces it with an explicit name. Why?

22.4 Read the standard to find out how clients and servers use the HOPS field in a DHCP
message.

22.5 When a DHCP client receives a reply via hardware broadcast, how does it know whether
the reply is intended for another DHCP client on the same physical net?

22.6 When a machine obtains its subnet mask with DHCP instead of ICMP, it places less load
on other host computers. Explain.

22.7 Read the standard to find out how a DHCP client and server can agree on a lease dura-
tion without having synchronized clocks.

22.8 Consider a host that has a disk and uses DHCP to obtain an IP address. If the host
stores its address on the disk along with the date the lease expires and then reboots
within the lease period, can it use the address? Why or why not?

22.9 DHCP mandates a minimum address lease of one hour. Can you imagine a situation in
which DHCP’s minimum lease causes inconvenience? Explain.

22.10 Read the RFC to find out how DHCP specifies renewal and rebinding timers. Should a
server ever set one without the other? Why or why not?

22.11 The state transition diagram for DHCP does not show retransmission. Read the standard
to find out how many times a client should retransmit a request.

22.12 Can DHCP guarantee that a client is not “spoofing” (i.e., can DHCP guarantee that it
will not send configuration information for host A to host B)? Why or why not?

22.13 DHCP specifies that a client must be prepared to handle at least 312 octets of options.
How did the number 312 arise?

22.14 Can a computer that uses DHCP to obtain an IPv4 address run a server? If so, how does
a client reach the server?

Exercises 483

22.15 Suppose an IPv6 computer attaches to a network that does not have any routers. How
does the IPv6 node know that it should use stateless autoconfiguration to obtain an IPv6
address?

22.16 Extend the previous question: if an IPv6 node attaches to a network that does have a
router, how does the node know whether to use stateless autoconfiguration?

22.17 If an IPv6 node uses stateless autoconfiguration, can the node run a server? Explain.

Chapter Contents
23.1 Introduction, 485
23.2 Names For Computers, 486
23.3 Flat Namespace, 486
23.4 Hierarchical Names, 487
23.5 Delegation Of Authority For Names, 488
23.6 Subset Authority, 488
23.7 Internet Domain Names, 489
23.8 Top-Level Domains, 490
23.9 Name Syntax And Type, 492
23.10 Mapping Domain Names To Addresses, 493
23.11 Domain Name Resolution, 495
23.12 Efficient Translation, 496
23.13 Caching: The Key To Efficiency, 497
23.14 Domain Name System Message Format, 498
23.15 Compressed Name Format, 501
23.16 Abbreviation Of Domain Names, 501
23.17 Inverse Mappings, 502
23.18 Pointer Queries, 503
23.19 Object Types And Resource Record Contents, 504
23.20 Obtaining Authority For A Subdomain, 505
23.21 Server Operation And Replication, 505
23.22 Dynamic DNS Update And Notification, 506
23.23 DNS Security Extensions (DNSSEC), 506
23.24 Multicast DNS And Service Discovery, 507
23.25 Summary, 508

23

The Domain Name System
(DNS)

23.1 Introduction

The protocols described in earlier chapters use binary values called Internet Proto-
col addresses (IP addresses) to identify hosts and routers. Although such addresses pro-
vide a convenient, compact representation for specifying the source and destination in
datagrams sent across an internet, users prefer to assign machines pronounceable, easily
remembered names.

This chapter considers a scheme for assigning meaningful high-level names to a
large set of machines, and discusses a mechanism that maps between high-level
machine names and binary IP addresses. It considers both the translation from high-
level names to IP addresses and the translation from IP addresses to high-level machine
names. The naming scheme is interesting for two reasons. First, it has been used to as-
sign machine names throughout the Internet. Second, because it uses a geographically
distributed set of servers to map names to addresses, the implementation of the name
mapping mechanism provides a large scale example of the client-server paradigm
described in Chapter 20.

485

486 The Domain Name System (DNS) Chap. 23

23.2 Names For Computers

The earliest computer systems forced users to understand numeric addresses for ob-
jects like system tables and peripheral devices. Timesharing systems advanced comput-
ing by allowing users to invent meaningful symbolic names for both physical objects
(e.g., peripheral devices) and abstract objects (e.g., files). A similar pattern has emerged
in computer networking. Early systems supported point-to-point connections between
computers and used low-level MAC addresses to specify computers. Internetworking
introduced universal addressing as well as protocol software to map universal addresses
into low-level MAC addresses. Because the Internet contains millions of machines,
users need meaningful, symbolic names to identify specific computers that they use.

Early computer names reflected the small environment in which they were chosen.
It was quite common for a site with a handful of machines to choose names based on
the machines’ purposes. For example, machines often had names like accounting,
development, and production. Users find such names preferable to cumbersome
hardware addresses.

Although the distinction between address and name is intuitively appealing, it is
artificial. Any name is merely an identifier that consists of a sequence of characters
chosen from a finite alphabet. Names are only useful if the system can efficiently map
them to the object they denote. Thus, we think of an IP address as a low-level name,
and we say that users prefer high-level names for computers.

The form of high-level names is important because it determines how names are
translated to low-level names or bound to objects, as well as how name assignments are
authorized. With only a few machines, choosing high-level names is easy — each ad-
ministrator can choose an arbitrary name and verify that the name is not in use in the
local environment. For example, when its main departmental computer was connected
to the Internet in 1980, the Computer Science department at Purdue University chose
the name purdue to identify the connected machine. At the time, the list of potential
conflicts contained only a few dozen names. By mid 1986, the official list of hosts on
the Internet contained 3100 officially registered names and 6500 official aliases.
Although the list was growing rapidly in the 1980s, most sites had additional machines
(typically, personal computers) that were unregistered. In the current Internet, with hun-
dreds of millions of machines, choosing symbolic names is much more difficult.

23.3 Flat Namespace

The original set of machine names used throughout the Internet formed a flat
namespace, in which each name consisted of a sequence of characters without any
further structure. In the original scheme, a central site, the Network Information Center
(NIC), administered the namespace and determined whether a new name was appropri-
ate (i.e., it prohibited obscene names or new names that conflicted with existing names).

Sec. 23.3 Flat Namespace 487

The chief advantage of a flat namespace is that names are convenient and short; the
chief disadvantage is that a flat namespace cannot generalize to large sets of machines
for both technical and administrative reasons. First, because names are drawn from a
single set of identifiers, the potential for conflict increases as the number of sites in-
creases. Second, because authority for adding new names must rest at a single site, the
administrative workload at that central site also increases with the number of sites. To
understand the severity of the problem, imagine a central authority trying to handle the
current Internet where a new computer appears approximately ten times per second.
Third, because the name-to-address bindings change frequently, the cost of maintaining
correct copies of the entire list at each site is high and increases as the number of sites
increases. Alternatively, if the name database resides at a single site, network traffic to
that site increases with the number of sites.

23.4 Hierarchical Names

How can a naming system accommodate a large, rapidly expanding set of names
without requiring a central site to administer it? The answer lies in decentralizing the
naming mechanism by delegating authority for parts of the namespace and distributing
responsibility for the mapping between names and addresses. The Internet uses such a
scheme. Before examining the details, we will consider the motivation and intuition
behind it.

The partitioning of a namespace must be defined in a way that supports efficient
name mapping and guarantees autonomous control of name assignment. Optimizing
only for efficient mapping can lead to solutions that retain a flat namespace and reduce
traffic by dividing the names among multiple mapping machines. Optimizing only for
administrative ease can lead to solutions that make delegation of authority easy but
name mapping expensive or complex.

To understand how the namespace should be divided, consider the internal struc-
ture of large organizations. At the top, a chief executive has overall responsibility. Be-
cause the chief executive cannot oversee everything, the organization may be partitioned
into divisions, with an executive in charge of each division. The chief executive grants
each division autonomy within specified limits. More to the point, the executive in
charge of a particular division can hire or fire employees, assign offices, and delegate
authority, without obtaining direct permission from the chief executive.

Besides making it easy to delegate authority, the hierarchy of a large organization
introduces autonomous operation. For example, when an office worker needs informa-
tion like the telephone number of a new employee, he or she begins by asking local
clerical workers (who may contact clerical workers in other divisions). The point is that
although authority always passes down the corporate hierarchy, information can flow
across the hierarchy from one office to another.

488 The Domain Name System (DNS) Chap. 23

23.5 Delegation Of Authority For Names

A hierarchical naming scheme works like the management of a large organization.
The namespace is partitioned at the top level, and authority for names in subdivisions is
passed to designated agents. For example, one might choose to partition the namespace
based on site name and to delegate to each site responsibility for maintaining names
within its partition. The topmost level of the hierarchy divides the namespace and
delegates authority for each division; it need not be bothered by changes within a divi-
sion.

The syntax of hierarchically assigned names often reflects the hierarchical delega-
tion of authority used to assign them. As an example, consider a namespace with
names of the form:

local . site

where site is the site name authorized by the central authority, local is the part of a
name controlled by the site, and the period† character is a delimiter used to separate
them. When the topmost authority approves adding a new site, X, it adds X to the list
of valid sites and delegates to site X authority for all names that end in . X .

23.6 Subset Authority

In a hierarchical namespace, authority may be further subdivided at each level. In
our example of partition by sites, the site itself may consist of several administrative
groups, and the site authority may choose to subdivide its namespace among the groups.
The idea is to keep subdividing the namespace until each subdivision is small enough to
be manageable.

Syntactically, subdividing the namespace introduces another partition of the name.
For example, adding a group subdivision to names already partitioned by site produces
the following name syntax:

local . group . site

Because the topmost level delegates authority, group names do not have to agree among
all sites. A university site might choose group names like engineering, science, and
arts, while a corporate site might choose group names like production, accounting, and
personnel.

The U.S. telephone system provides another example of a hierarchical naming syn-
tax. The 10 digits of a phone number have been partitioned into a 3-digit area code, 3-
digit exchange, and 4-digit subscriber number within the exchange. Each exchange has
authority for assigning subscriber numbers within its piece of the namespace. Although
it is possible to group arbitrary subscribers into exchanges and to group arbitrary ex-
changes into area codes, the assignment of telephone numbers is not capricious; the
numbers are carefully chosen to make it easy to route phone calls across the telephone
network.

†In domain names, the period delimiter is pronounced “dot.”

Sec. 23.6 Subset Authority 489

The telephone example is important because it illustrates a key distinction between
the hierarchical naming scheme used in a TCP/IP internet and other hierarchies: parti-
tioning the set of machines owned by an organization along lines of authority does not
necessarily imply partitioning by physical location. For example, it could be that at
some university, a single building houses the mathematics department as well as the
computer science department. It might even turn out that although the machines from
these two groups fall under completely separate administrative domains, they connect to
the same physical network. It also may happen that a single group owns machines on
several physical networks. For these reasons, the TCP/IP naming scheme allows arbi-
trary delegation of authority for the hierarchical namespace without regard to physical
connections. The concept can be summarized:

In the Internet, hierarchical machine names are assigned according to
the structure of organizations that obtain authority for parts of the
namespace, not necessarily according to the structure of the physical
network interconnections.

Of course, at many sites the organizational hierarchy corresponds with the structure of
physical network interconnections. For example, suppose the computers in a given
department all connect to the same network. If the department is assigned part of the
naming hierarchy, all machines with names in that part of the hierarchy will also con-
nect to a single physical network.

23.7 Internet Domain Names

The Domain Name System (DNS) is the system that provides name to address map-
ping for the Internet. DNS has two conceptually independent aspects. The first is
abstract: it specifies the name syntax and rules for delegating authority over names.
The second is concrete: it specifies the implementation of a distributed computing sys-
tem that efficiently maps names to addresses. This section considers the name syntax,
and later sections examine the implementation.

The Domain Name System uses a hierarchical naming scheme known as domain
names. As in our earlier examples, a domain name consists of a sequence of subnames
separated by a delimiter character, the dot. In our examples, we said that individual
sections of the name might represent sites or groups, but DNS simply calls each section
a label. Thus, the domain name:

cs . purdue . edu

contains three labels: cs, purdue, and edu. Any suffix of a label in a domain name is
also called a domain. In the above example, the lowest-level domain is cs . purdue . edu,
(the domain name for the Computer Science department at Purdue University), the
second level domain is purdue . edu (the domain name for Purdue University), and the

490 The Domain Name System (DNS) Chap. 23

top-level domain is edu (the domain name for educational institutions). As the example
shows, domain names are written with the local label first and the top domain last. As
we will see, writing them in this order makes it possible to compress messages that con-
tain multiple domain names.

23.8 Top-Level Domains

Figure 23.1 lists examples of the global top-level domain names currently in use.

Domain Name Meaning
aero Air transport industry
arpa Infrastructure domain
asia Regional domain for Asia
biz Businesses
cat Catalan language and cultural
com Commercial organization
coop Cooperative associations
edu Educational institution (4-year)
gov United States government
info Information
int International treaty organizations
jobs Human resource management
mil United States military
museum Museums
name Individuals
net Major network support centers
org Organizations other than those above
pro Credentialed professionals
travel Travel industry
xxx Internet pornography
country code Each country (geographic scheme)

Figure 23.1 The top-level domains assigned in the Internet and their mean-
ings. Although labels are shown in lower case, domain name
comparisons are insensitive to case, so COM is equivalent to
com.

The Internet Corporation for Assigned Names and Numbers (ICANN), which as-
signs names, has struggled with the question of how many top-level domains are needed
and what names should be allowed. The 2-letter country code scheme, once thought to
be permanent, is subject to political changes. For example, when Germany reunified,
the top-level domain dd that had been assigned to East Germany was made obsolete.

Sec. 23.8 Top-Level Domains 491

An internationalization mechanism has been invented to permit names in other character
sets. Thus, the figure only gives a snapshot that may change as new top-level names
are approved and become active.

Conceptually, the top-level names permit two different naming hierarchies: geo-
graphic and organizational. The geographic scheme divides the universe of machines
by country. Machines in the United States fall under the top-level domain us; when a
foreign country wants to register machines in the Domain Name System, the central au-
thority assigns the country a new top-level domain with the country’s international stan-
dard 2-letter identifier as its label. The authority for the US domain has chosen to
divide it into one second-level domain per state. For example, the domain for the state
of Virginia is:

va . us

As an alternative to the geographic hierarchy, the top-level domains allow organi-
zations to be grouped by organizational type. When an organization wants to partici-
pate in the Domain Name System, it chooses how it wishes to be registered and re-
quests approval. A domain name registrar reviews the application and assigns the or-
ganization a subdomain† under one of the existing top-level domains. The owner of a
given top-level domain can decide what to allow and how to further partition the
namespace. For example, in the United Kingdom, which has the two-letter country
code uk, universities and other academic institutions are registered under domain ac.uk.

An example will help clarify the relationship between the naming hierarchy and
authority for names. A machine named xinu in the Computer Science department at
Purdue University has the official domain name:

xinu . cs . purdue . edu

The machine name was approved and registered by the local network manager in the
Computer Science department. The department manager had previously obtained au-
thority for the subdomain cs . purdue . edu from a university network authority, who had
obtained permission to manage the subdomain purdue . edu from the Internet authority.
The Internet authority retains control of the edu domain, so new universities can only be
added with its permission. Similarly, the university network manager at Purdue Univer-
sity retains authority for the purdue . edu subdomain, so new third-level domains may
only be added with the manager’s permission.

Figure 23.2 illustrates a small part of the Internet domain name hierarchy. As the
figure shows, IBM corporation, a commercial organization, registered as ibm . com, Pur-
due University registered as purdue . edu, and the National Science Foundation, a
government agency, registered as nsf . gov. In contrast, the Corporation for National
Research Initiatives chose to register under the geographic hierarchy as
cnri . reston . va . us.

†The standard does not define the term subdomain. We have chosen to use the term because its analogy
to subset helps clarify the relationship among domains.

492 The Domain Name System (DNS) Chap. 23

com edu gov us

ibm purdue nsf va

math cs ecn reston

cnri

. . .

unnamed root

Figure 23.2 A small part of the Internet domain name hierarchy (tree). In
practice, the tree is broad and flat; most host entries appear by
the fifth level.

23.9 Name Syntax And Type

The Domain Name System is quite general because it allows multiple naming
hierarchies to be embedded in one system. In addition, the system can hold various
types of mappings. For example, a given name can be the name of a host computer that
has an IPv4 address, a host computer that has an IPv6 address, a mail server, and so on.
Interestingly, the syntax of names does not indicate the type.

To permit a client to distinguish among multiple types of entries in the system,
each named item stored is assigned a type that specifies whether it is the address of a
computer, a mailbox, a user, and so on. When a client asks the domain system to
resolve a name, it must specify the type of answer desired. For example, when an elec-
tronic mail application uses the domain system to resolve a name, it specifies that the
answer should be the address of a mail exchanger. When a browser resolves a domain
name for a web site, the browser must specify that it seeks the IP address of the server
computer. Interestingly, a given name can map to multiple items. When resolving a
name, the answer received depends on the type specified in the query. Thus, if a user
sends email to someone at x . com and types x . com into a browser, the two actions may
result in contacting two entirely different computers. We can summarize the key point:

Sec. 23.9 Name Syntax And Type 493

A given name may map to more than one item in the domain system.
The client specifies the type of object desired when resolving a name,
and the server returns objects of that type.

In addition to specifying the type of answer sought, the domain system allows the
client to specify the protocol family to use. The domain system partitions the entire set
of names by class, allowing a single database to store mappings for multiple protocol
suites†.

The syntax of a name does not determine the protocol class or the type of object to
which the name refers. In particular, the number of labels in a name does not determine
whether the name refers to an individual object (machine) or a domain. Thus, in our
example, it is possible to have a machine named

gwen . purdue . edu

even though

cs . purdue . edu

names a subdomain. We can summarize this important point:

One cannot distinguish the names of subdomains from the names of
individual objects or the type of an object using only the domain name
syntax.

23.10 Mapping Domain Names To Addresses

In addition to the rules for name syntax and delegation of authority, the domain
name scheme includes an efficient, reliable, general purpose, distributed system for
mapping names to addresses. The system is distributed in the technical sense, meaning
that a set of servers operating at multiple sites cooperatively solve the mapping prob-
lem. It is efficient in the sense that most names can be mapped locally; only a few re-
quire internet traffic. It is general purpose because it is not restricted to computer
names (although we will use that example for now). Finally, it is reliable in that no sin-
gle server failure will prevent the system from operating correctly.

The domain mechanism for mapping names to addresses consists of independent,
cooperative systems called name servers. A name server is a server program that sup-
plies name-to-address translation, mapping from domain names to IP addresses. Often,
server software executes on a dedicated processor, and the machine itself is called the
name server. The client software, called a name resolver, may contact one or more
name servers when translating a name.

†In practice, few domain servers use multiple protocol suites.

494 The Domain Name System (DNS) Chap. 23

The easiest way to understand how domain servers work is to imagine them ar-
ranged in a tree structure that corresponds to the naming hierarchy, as Figure 23.3 illus-
trates. The root of the tree is a server that recognizes the top-level domains and knows
which server resolves each domain. Given a name to resolve, the root can choose the
correct server for that name. At the next level, a set of name servers each provide
answers for one top-level domain (e.g., edu). A server at this level knows which
servers can resolve each of the subdomains under its domain. At the third level of the
tree, name servers provide answers for subdomains (e.g., purdue under edu). The con-
ceptual tree continues with one server at each level for which a subdomain has been de-
fined.

Links in the conceptual tree do not indicate physical network connections. Instead,
they show which other name servers a given server knows and contacts. The servers
themselves may be located at arbitrary locations on an internet. Thus, the tree of
servers is an abstraction that uses an internet for communication.

server for
.com

server for
.edu

server for
.gov

server for
.us

Root
Server

server for
ibm.com

server for
purdue .edu

server for
nsf.gov

server for
va .us

. . .

Figure 23.3 The conceptual arrangement of domain name servers in a tree
that corresponds to the naming hierarchy. In theory, each server
knows the addresses of all lower-level servers for all sub-
domains within the domain it handles.

If servers in the domain system worked exactly as our simplistic model suggests,
the relationship between connectivity and authorization would be quite simple. When
authority was granted for a subdomain, the organization requesting it would need to es-
tablish a domain name server for that subdomain and link it into the tree.

Sec. 23.10 Mapping Domain Names To Addresses 495

In practice, the relationship between the naming hierarchy and the tree of servers is
not as simple as our model implies. The tree of servers has few levels because a single
physical server can contain all of the information for large parts of the naming hierar-
chy. In particular, organizations often collect information from all of their subdomains
into a single server. Figure 23.4 shows a more realistic organization of servers for the
naming hierarchy of Figure 23.2.

server for
ibm.com

server for
purdue .edu

server for
nsf.gov

server for
reston .va .us

Root
Server

. . .

Figure 23.4 A realistic organization of servers for the naming hierarchy of
Figure 23.2. Because the tree is broad and flat, only a few
servers need to be contacted when resolving a name.

A root server contains information about the root and top-level domains, and each
organization uses a single server for its names. Because the tree of servers is shallow,
at most two servers need to be contacted to resolve a name like xinu . cs . purdue . edu:
the root server and the server for domain purdue . edu (i.e., the root server knows which
server handles purdue . edu, and the entire domain information for Purdue University re-
sides in one server).

23.11 Domain Name Resolution

Although the conceptual tree makes understanding the relationship between servers
easy, it hides several subtle details. Looking at the name resolution algorithm will help
explain them. Conceptually, domain name resolution proceeds top-down, starting with
the root name server and proceeding to servers located at the leaves of the tree. There
are two ways to use the Domain Name System: by contacting name servers one at a
time or asking the name server system to perform the complete translation. In either
case, the client software forms a domain name query that contains the name to be
resolved, a declaration of the class of the name, the type of answer desired, and a code
that specifies whether the name server should translate the name completely. The client
sends the query to a name server for resolution.

496 The Domain Name System (DNS) Chap. 23

When a domain name server receives a query, it checks to see if the name lies in
the subdomain for which it is an authority. If so, it translates the name to an address
according to its database, and appends an answer to the query before sending it back to
the client. If the name server cannot resolve the name completely, it checks to see what
type of interaction the client specified. If the client requested complete translation (re-
cursive resolution, in domain name terminology), the server contacts a domain name
server that can resolve the name and returns the answer to the client. If the client re-
quested non-recursive resolution (iterative resolution), the name server cannot supply an
answer. It generates a reply that specifies the name server the client should contact to
resolve the name.

How does a client find a name server at which to begin the search? How does a
name server find other name servers that can answer questions when it cannot? The
answers are simple. A client must know how to contact at least one name server. To
ensure that a domain name server can reach others, the domain system requires that
each server know the address of at least one root server†. In addition, a server may
know the address of a server for the domain immediately above it (called the parent).

Domain name servers use a well-known protocol port for all communication, so
clients know how to communicate with a name server once they know the IP address of
the machine in which the server executes. How does a client learn the address of a
name server? Many systems obtain the address of a domain server automatically as part
of the bootstrap process‡. For example, bootstrap protocols such as IPv4’s DHCP and
IPv6’s NDP or DHCPv6 can supply a name server address. Of course, other ap-
proaches are possible. For example, the address of a name server can be bound into ap-
plication programs at compile time. Alternatively, the address can be stored in a file on
secondary storage.

23.12 Efficient Translation

Although it may seem natural to resolve queries by working down the tree of name
servers, doing so can lead to inefficiencies for three reasons. First, because most name
resolution refers to local names, tracing a path through the hierarchy to contact the local
authority would be inefficient. Second, if each name resolution always started by con-
tacting the top level of the hierarchy, the machine at that point would become overload-
ed. Third, failure of machines at the top levels of the hierarchy would prevent name
resolution, even if the local authority could resolve the name. The telephone number
hierarchy mentioned earlier helps explain. Although telephone numbers are assigned
hierarchically, they are resolved in a bottom-up fashion. Because the majority of tele-
phone calls are local, they can be resolved by the local exchange without searching the
hierarchy. Furthermore, calls within a given area code can be resolved without contact-
ing sites outside the area code. When applied to domain names, these ideas lead to a
two-step name resolution mechanism that preserves the administrative hierarchy but per-
mits efficient translation.

†For reliability, there are multiple servers for each node in the domain server tree; the root server is furth-
er replicated to provide load balancing.

‡See Chapter 22 for a discussion of bootstrapping protocols.

Sec. 23.12 Efficient Translation 497

In the two-step name resolution process, resolution begins with the local name
server. If the local server cannot resolve a name, the query must then be sent to another
server in the domain system. The following is a key idea:

A client always contacts a local domain name server first.

23.13 Caching: The Key To Efficiency

If a resolver sends each nonlocal query to a root server, the cost of lookup for non-
local names can be extremely high. Even if queries go directly to the server that has
authority for the name, name lookup can present a heavy load to the Internet. Thus, to
improve the overall performance of a name server system, it is necessary to lower the
cost of lookup for nonlocal names.

Internet name servers use caching to make resolution efficient. Each server main-
tains a cache of answers to recent lookups as well as a record of where the answer was
obtained. When a client asks the server to resolve a name, the server first checks to see
if it has authority for the name according to the standard procedure. If not, the server
checks its cache to see if the name has been resolved recently. Servers report cached
information to clients, but mark it as a nonauthoritative binding and give the domain
name of the server, S, from which they obtained the binding. The local server also
sends along additional information that tells the client the binding between S and an IP
address. Therefore, clients receive answers quickly, but the information may be out-of-
date. Because efficiency is important, a client will accept the nonauthoritative answer
and proceed.

Caching works well in the Domain Name System because name to address bind-
ings change infrequently. However, they do change. If servers cached information the
first time it was requested and never updated an entry, entries in the cache could be-
come stale (i.e., incorrect). To keep the cache correct, servers only save cached infor-
mation while the information is valid — once an item becomes stale, a server removes
the item from the cache. After an entry has been removed from its cache, a server must
go back to the authoritative source and obtain the binding to satisfy subsequent requests.

The key to DNS success arises because a server does not apply a single fixed
timeout to all entries. Instead, DNS allows the authority for an entry to configure its
timeout. That is, whenever an authority responds to a request, the authority includes a
Time To Live (TTL) value in the response that specifies how long the binding will
remain valid. Thus, authorities can reduce network overhead by specifying long
timeouts for entries that they expect to remain unchanged, while specifying short
timeouts for entries that they expect to change.

Caching is important in hosts as well as in local name servers. Most resolver
software caches DNS entries in the host. Thus, if a user looks up the same name re-
peatedly, subsequent lookups can be resolved from the local cache without using the
network.

498 The Domain Name System (DNS) Chap. 23

23.14 Domain Name System Message Format

Looking at the details of messages exchanged between clients and domain name
servers will help clarify how the system operates from the view of a typical application
program. We assume that a user invokes an application program and supplies the name
of a destination machine with which the application must communicate. Before it can
use protocols like TCP or UDP to communicate with the specified machine, the applica-
tion program must find the machine’s IP address. It passes the domain name to a local
resolver and requests an IP address. The local resolver checks its cache, and returns the
answer if one is present. If the local resolver does not have an answer, it formats a
message and sends it to a name server (i.e., the local resolver becomes a client).
Although our example only involves one name, the message format allows a client to
ask multiple questions in a single message. Each question consists of a domain name
for which the client seeks an IP address, a specification of the query class (i.e., inter-
net), and the type of object desired (e.g., address). The name server responds by return-
ing a similar message that contains answers to the questions for which the server has
bindings. If the name server cannot answer all questions, the response will contain in-
formation about other name servers that the client can contact to obtain the answers.

Responses also contain information about the name servers that are authorities for
the replies and the IP addresses of those servers. Figure 23.5 shows the message
format.

0 16 31

IDENTIFICATION PARAMETER

NUMBER OF QUESTIONS NUMBER OF ANSWERS

NUMBER OF AUTHORITY NUMBER OF ADDITIONAL

QUESTION SECTION
. . .

ANSWER SECTION
. . .

AUTHORITY SECTION
. . .

ADDITIONAL INFORMATION SECTION
. . .

Figure 23.5 Domain name server message format. The QUESTION,
ANSWER, AUTHORITY, and ADDITIONAL INFORMATION
sections are variable length.

Sec. 23.14 Domain Name System Message Format 499

As the figure shows, each message begins with a fixed header. The header con-
tains a unique IDENTIFICATION field that the client uses to match responses to
queries, and a PARAMETER field that specifies the operation requested and a response
code. Figure 23.6 gives the interpretation of bits in the PARAMETER field.

Bit of PARAMETER field Meaning
0 Operation:

0 Query
1 Response

1-4 Query Type:
0 Standard
1 Inverse
2 Server status request
4 Notify
5 Update

5 Set if answer authoritative
6 Set if message truncated
7 Set if recursion desired
8 Set if recursion available
9 Set if data is authenticated

10 Set if checking is disabled
11 Reserved

12-15 Response Type:
0 No error
1 Format error in query
2 Server failure
3 Name does not exist
5 Refused
6 Name exists when it should not
7 RR set exists
8 RR set that should exist does not
9 Server not authoritative for the zone
10 Name not contained in zone

Figure 23.6 The meaning of bits of the PARAMETER field in a DNS server
message. Bits are numbered left to right starting at 0.

In Figure 23.5, the fields labeled NUMBER OF each give a count of entries in the
corresponding sections that occur later in the message. For example, the field labeled
NUMBER OF QUESTIONS gives the count of entries that appear in the QUESTION
SECTION of the message.

The QUESTION SECTION contains queries for which answers are desired. The
client fills in only the question section; the server returns the questions and answers in

500 The Domain Name System (DNS) Chap. 23

its response. Each question consists of a QUERY DOMAIN NAME field followed by
QUERY TYPE and QUERY CLASS fields, as Figure 23.7 shows.

0 16 31

QUERY DOMAIN NAME
. . .

QUERY TYPE QUERY CLASS

Figure 23.7 The format of entries in the QUESTION SECTION of a domain
name server message. The domain name is variable length. A
client fills in the questions; a server returns the questions along
with answers.

Although the QUERY DOMAIN NAME field has variable length, we will see in the
next section that the internal representation of domain names makes it possible for the
receiver to know the exact length. The QUERY TYPE field encodes the type of the
question (e.g., whether the question refers to a machine name or a mail address). The
QUERY CLASS field allows domain names to be used for arbitrary objects because offi-
cial Internet names are only one possible class. It should be noted that although the di-
agram in Figure 23.7 follows our convention of showing formats in 32-bit multiples, the
QUERY DOMAIN NAME field may contain an arbitrary number of octets. No padding
is used. Therefore, messages sent to or from domain name servers may contain an odd
number of octets.

In a domain name server message, each of the ANSWER SECTION, AUTHORITY
SECTION, and ADDITIONAL INFORMATION SECTION fields consists of a set of
resource records that describe domain names and mappings. Each resource record
describes one name. Figure 23.8 shows the format of a resource record.

0 16 31

RESOURCE DOMAIN NAME
. . .

TYPE CLASS

TIME TO LIVE

RESOURCE DATA LENGTH

RESOURCE DATA
. . .

Figure 23.8 The format of a resource record used in later sections of mes-
sages returned by domain name servers.

Sec. 23.14 Domain Name System Message Format 501

The RESOURCE DOMAIN NAME field contains the domain name to which this
resource record refers. It may be an arbitrary length. The TYPE field specifies the type
of the data included in the resource record; the CLASS field specifies the data’s class.
The TIME TO LIVE field contains a 32-bit integer. The integer specifies the number of
seconds that information in the resource record can be cached. Clients use the TIME
TO LIVE value to set a timeout when they cache the resource record. The last two
fields contain the results of the binding, with the RESOURCE DATA LENGTH field
specifying the count of octets in the RESOURCE DATA field.

23.15 Compressed Name Format

When represented in a message, domain names are stored as a sequence of labels.
Each label begins with an octet that specifies its length. Thus, the receiver reconstructs
a domain name by repeatedly reading a 1-octet length, n, and then reading a label n oc-
tets long. A length octet containing zero marks the end of the name.

Domain name servers often return multiple answers to a query, and in many cases,
suffixes of the domain overlap. To conserve space in a reply packet, a name server
compresses names by storing only one copy of each domain name. When extracting a
domain name from a message, the client software must check each segment of the name
to see whether it consists of a literal string (in the format of a 1-octet count followed by
the characters that make up the name) or a pointer to a literal string. When it en-
counters a pointer, the client must follow the pointer to find the remainder of the name.

Pointers always occur at the beginning of segments and are encoded in the count
byte. If the top two bits of the 8-bit segment count field are 1s, the client must take the
next 14 bits as an integer pointer. If the top two bits are zero, the next 6 bits specify
the number of characters in the label.

23.16 Abbreviation Of Domain Names

The U.S. telephone number hierarchy illustrates another useful feature of local
resolution, name abbreviation. Abbreviation provides a method of shortening names
when the resolving process can supply part of the name automatically. Normally, a
subscriber omits the area code when dialing a local telephone number. The resulting
digits form an abbreviated name assumed to lie within the same area code as the
subscriber’s phone. Abbreviation also works well for machine names. Given a name
like xyz, the resolving process can assume it lies in the same local authority as the
machine on which it is being resolved. Thus, the resolver can supply missing parts of
the name automatically. For example, within the Computer Science department at Pur-
due, the abbreviated name:

xinu

is equivalent to the full domain name:

502 The Domain Name System (DNS) Chap. 23

xinu . cs . purdue . edu

Most client software implements abbreviations with a domain name suffix list. The lo-
cal network manager configures a list of possible suffixes to be appended to names dur-
ing lookup. When a resolver encounters a name, it steps through the list, appending
each suffix and looking up the resulting name. For example, the suffix list for the
Computer Science department at Purdue includes:

. cs . purdue . edu

. purdue . edu
null

Thus, a local resolver first appends cs . purdue . edu to the name xinu. If that lookup
fails, the resolver appends purdue . edu onto the name and tries again. The last suffix in
the example list is the null string, meaning that if all other lookups fail, the resolver will
attempt to look up the name with no suffix. Managers can use the suffix list to make
abbreviation convenient or to restrict application programs to local names.

We said that the client takes responsibility for the expansion of such abbreviations,
but it should be emphasized that such abbreviations are not part of the Domain Name
System itself. The domain system only allows lookup of a fully specified domain
name. As a consequence, programs that depend on abbreviations may not work correct-
ly outside the environment in which they were built. We can summarize:

The Domain Name System only maps full domain names into ad-
dresses; abbreviations are not part of the DNS itself, but are intro-
duced by client software to make local names convenient for users.

23.17 Inverse Mappings

We said that the Domain Name System can provide mappings other than a com-
puter name to an IP address. Inverse queries allow the client to ask a server to map in
the opposite direction by taking an answer and generating the question that would pro-
duce that answer. Of course, not all answers have a unique question. Even when they
do, a server may not be able to provide it. Although inverse queries have been part of
the domain system since it was first specified, they are generally not used because there
is often no way to find the server that can resolve the query without searching the entire
set of servers.

Sec. 23.18 Pointer Queries 503

23.18 Pointer Queries

One form of inverse mapping is an authentication mechanism that a server uses to
verify that a client is authorized to access the service: the server maps the client’s IP ad-
dress to a domain name. For example, a server at corporation example.com might be
configured to provide the service only to clients from the same corporation. When a
client contacts the server, the server maps the client’s IP address to an equivalent
domain name and verifies that the name ends in example.com before granting access.
Reverse lookup is so important that the domain system supports a special domain and a
special form of question called a pointer query to provide the service. In a pointer
query, the question presented to a domain name server specifies an IP address encoded
as a printable string in the form of a domain name (i.e., a textual representation of digits
separated by periods). A pointer query requests the name server to return the correct
domain name for the machine with the specified IP address.

Pointer queries are not difficult to generate. Consider IPv4. When we think of an
IPv4 address written in dotted-decimal form, it has the following format:

aaa . bbb . ccc . ddd

To form a pointer query, the client rearranges the dotted decimal representation of the
address into a string of the form:

ddd . ccc . bbb . aaa . in-addr . arpa

The new form is a name in the special in-addr . arpa domain†.
IPv6 is more complex and results in much longer names. To form a pointer query,

a client represents the IPv6 address as a series of nibbles (i.e., 4-bit quantities), writes
each nibble in hexadecimal, reverses the order and appends ip6.arpa. For example, the
IPv6 address:

2001:18e8:0808:0000:0000:00d0:b75d:19f9

is represented as:

9 .f .9 .1 .d .5 .7 .b .0 .d .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .8 .0 .8 .0 .8 .e .8 .1 .1 .0 .0 .2 .ip6 .arpa

Because the local name server is not usually the authority for the domains arpa,
in-addr . arpa, or ip6 . arpa, the local name server will need to contact other name
servers to complete the resolution. To make the resolution of pointer queries efficient,
the Internet root domain servers maintain a database of valid IP addresses along with in-
formation about domain name servers that can resolve each address group.

†The octets of the IP address must be reversed when forming a domain name because IP addresses have
the most significant octets first, while domain names have the least-significant octets first.

504 The Domain Name System (DNS) Chap. 23

23.19 Object Types And Resource Record Contents

We have mentioned that the Domain Name System can be used for translating a
domain name to a mail exchanger address as well as for translating a host name to an IP
address. The domain system is quite general in that it can be used for arbitrary
hierarchical names. For example, one might decide to store the names of available
computational services along with a mapping from each name to the telephone number
to call to find out about the corresponding service. Or one might store names of proto-
col products along with a mapping to the names and addresses of vendors that offer
such products.

Recall that the domain system accommodates a variety of mappings by including a
type in each resource record. When sending a request, a client must specify the type in
its query†; servers specify the data type in all resource records they return. The type
determines the contents of the resource record according to the table in Figure 23.9.

Type Meaning Contents
A IPv4 Host Address 32-bit IPv4 address
AAAA IPv6 Host Address 128-bit IPv6 address
CNAME Canonical Name Canonical domain name for an alias
HINFO CPU & OS Name of CPU and operating system
MINFO Mailbox Info Information about a mailbox or mail list
MX Mail Exchanger 16-bit preference and name of host that

acts as mail exchanger for the domain
NS Name Server Name of authoritative server for domain
PTR Pointer Domain name (like a symbolic link)
SOA Start of Authority Multiple fields that specify which

parts of the naming hierarchy
a server implements

TXT Arbitrary text Uninterpreted string of ASCII text

Figure 23.9 A few examples of DNS resource record types. More than fifty
types have been defined.

Most data is of type A or AAAA, meaning that it consists of the name of a host at-
tached to the Internet along with the host’s IP address. The second most useful domain
type, MX, is assigned to names used for electronic mail exchangers. It allows a site to
specify multiple hosts that are each capable of accepting mail. When sending electronic
mail, the user specifies an electronic mail address in the form user@domain-part. The
mail system uses the domain system to resolve domain-part with query type MX. The
domain system returns a set of resource records that each contain a preference field and
a host’s domain name. The mail system steps through the set from highest preference
to lowest (lower numbers mean higher preference). For each MX resource record, the

†Queries can specify a few additional types (e.g., there is a query type that requests all resource records).

Sec. 23.19 Object Types And Resource Record Contents 505

mailer extracts the domain name and uses a type A or type AAAA query to resolve that
name to an IP address. It then tries to contact the host and deliver mail. If the host is
unavailable, the mailer will continue trying other hosts on the list.

To make lookup efficient, a server always returns additional bindings that it knows
in the ADDITIONAL INFORMATION SECTION of a response. In the case of MX
records, a domain server can use the ADDITIONAL INFORMATION SECTION to return
type A or AAAA resource records for domain names reported in the ANSWER SECTION.
Doing so substantially reduces the number of queries a mailer sends to its domain
server.

23.20 Obtaining Authority For A Subdomain

Before an institution is granted authority for an official second-level domain, it
must agree to operate a domain name server that meets Internet standards. Of course, a
domain name server must obey the protocol standards that specify message formats and
the rules for responding to requests. The server must also know the addresses of
servers that handle each subdomain (if any exist) as well as the address of at least one
root server. In the current Internet, each enterprise does not need to operate its own
name server. Instead, companies exist that, for an annual fee, run domain name servers
on behalf of others. In fact, such companies compete for business: they offer a variety
of related services, such as verifying that a domain name is available, registering the
name with the regional registries, and registering inverse mappings via pointer queries.

23.21 Server Operation And Replication

In practice, the domain system is much more complex than we have outlined. In
most cases, a single physical server can handle more than one part of the naming hierar-
chy. For example, a single name server at Purdue University once handled both the
second-level domain purdue . edu as well as the geographic domain laf . in . us. A sub-
tree of names managed by a given name server forms a zone of authority, and the proto-
cols provide for zone download where a client can obtain a copy of the entire set of
names and resource records from a server. Another practical complication arises be-
cause servers must be able to handle many requests, even though some requests take a
long time to resolve. Usually, servers support concurrent activity, allowing work to
proceed on later requests while earlier ones are being processed. Handling requests
concurrently is especially important when the server receives a recursive request that
forces it to send the request on to another server for resolution.

Server operation is also complicated because the Internet authority requires that the
information in every domain name server be replicated. Information must appear in at
least two servers that do not operate on the same computer. In practice, the require-
ments are quite stringent: the servers must have no single common point of failure.
Avoiding common points of failure means that the two name servers cannot both attach

506 The Domain Name System (DNS) Chap. 23

to the same network; they cannot even obtain electrical power from the same source.
Thus, to meet the requirements, a site must find at least one other site that agrees to
operate a backup name server. Of course, at any point in the tree of servers, a name
server must know how to locate both the primary and backup name servers for sub-
domains, and the server must direct queries to a backup name server if the primary
name server is unavailable.

23.22 Dynamic DNS Update And Notification

Our discussions of NAT in Chapter 19 and DHCP in Chapter 22 both mention the
need for interaction with DNS. In the case of a NAT box that obtains a dynamic ad-
dress from an ISP, a server can only be placed behind the NAT box if the domain name
server and the NAT system coordinate. In the case of DHCP, when a host obtains a
dynamic address, the DNS server for the host must be updated with the host’s current
address. To handle the situations described above and to permit multiple parties to
share administration (e.g., to allow multiple registrars to jointly manage a top-level
domain), the IETF developed a technology known as Dynamic DNS.

There are two aspects of Dynamic DNS: update and notification. As the name im-
plies, Dynamic DNS update permits changes to be made dynamically to the information
that a DNS server stores. Thus, when it assigns an IP address to a host, a DHCP server
can use the dynamic update mechanism to inform the DNS server about the assignment.
Notification messages solve the problem of propagating changes. In particular, observe
that because DNS uses backup servers, changes made in the primary server must be
propagated to each backup. When a dynamic change occurs, the primary server sends a
notification message to the backup servers, which allows each backup server to request
an update of the zone information. Because it avoids sending copies unnecessarily, no-
tification takes less bandwidth than merely using a small timeout for updates.

23.23 DNS Security Extensions (DNSSEC)

Because it is among the most important aspects of Internet infrastructure, the
Domain Name System is often cited as a critical mechanism that should be protected.
In particular, if a host is giving incorrect answers to DNS queries, application software
or users can be fooled into believing imposter web sites or revealing confidential infor-
mation. To help protect DNS, the IETF has invented a technology known as DNS Se-
curity (DNSSEC).

The primary services provided by DNSSEC include authentication of the message
origin and integrity of the data. That is, when it uses DNSSEC, a host can verify a
DNS message did indeed originate at an authoritative DNS server (i.e., the server
responsible for the name in the query) and that the data in the message arrived without
being changed. Furthermore, DNSSEC can authenticate negative answers — a host can
obtain an authenticated message that states a particular domain name does not exist.

Sec. 23.23 DNS Security Extensions (DNSSEC) 507

Despite offering authentication and integrity, DNSSEC does not solve all prob-
lems. In particular, DNSSEC does not provide confidentiality, nor does it fend off
denial-of-service attacks. The former means that even if a host uses DNSSEC, an out-
side observer snooping on a network will be able to know which names the host looks
up (i.e., the observer may be able to guess why a given business is being contacted).
The inability to fend off denial-of-service attacks means that even if a host and server
both use DNSSEC, there is no guarantee that messages sent between them will be re-
ceived.

To provide authentication and data integrity, DNSSEC uses a digital signature
mechanism — in addition to the requested information, a reply from a DNSSEC server
contains a digital signature that allows the receiver to verify that the contents of the
message were not changed. One of the most interesting aspects of DNSSEC arises from
the way the digital signature mechanism is administered. Like many security mecha-
nisms, the DNSSEC mechanism uses public key encryption technology. The interesting
twist is that to distribute public keys, DNSSEC uses the Domain Name System. That
is, a new type has been defined that allows a name to map to a public key. Each server
contains the public keys for zones further down the hierarchy (e.g., the server for . com
contains the public key for example . com). To guarantee security for the entire system,
the public key for the top level of the hierarchy (i.e., the key for a root server) must be
manually configured into a resolver.

23.24 Multicast DNS And Service Discovery

Because the Domain Name System permits arbitrary record types to be added,
several groups have created names for objects other than computers. One particular use
stands out. Known as multicast DNS (mDNS), the service is intended for networks that
do not have dedicated DNS servers. For example, consider a pair of smart phones that
have Wi-Fi interfaces.

Instead of using a DNS server, mDNS uses IP multicast. Suppose host A needs to
know the IP address of host B. Host A multicasts its request. All hosts participating in
mDNS receive the multicast, and host B multicasts its reply. In addition, a host that
participates in mDNS caches mDNS replies, which means that the binding can be satis-
fied from the cache.

In addition to domain name resolution, mDNS has been extended to handle DNS
Service Discovery (DNS-SD). The basic idea is straightforward: create service names in
the DNS hierarchy using the .local suffix, and use mDNS to look up the name. Thus, a
smart phone can use DNS-SD to discover other cell phones in the area that are willing
to participate in a given application. The phones only need to agree on a name for the
service.

The chief disadvantage of using mDNS for service discovery arises from the traffic
generated. Instead of two smart phones, imagine a set of N smart phones. Each adver-
tises itself as offering a service and then waits to be synced with a variety of applica-
tions. Now imagine the situation where N is large and the phones are using a flat (i.e.,

508 The Domain Name System (DNS) Chap. 23

non-routed) open wireless network, such as a Wi-Fi hotspot in a coffee shop on a busy
street in a city. Each phone that connects sends a multicast for the services it offers,
and others respond by connecting. Unless N is small, the traffic can dominate the net-
work.

23.25 Summary

Hierarchical naming systems allow delegation of authority for names, making it
possible to accommodate an arbitrarily large set of names without overwhelming a cen-
tral site with administrative duties. Although name resolution is separate from delega-
tion of authority, it is possible to create hierarchical naming systems in which resolution
is an efficient process that starts at the local server, even though delegation of authority
always flows from the top of the hierarchy downward.

We examined the Internet’s Domain Name System (DNS) and saw that it offers a
hierarchical naming scheme. DNS uses distributed lookup in which domain name
servers map each domain name to an IP address or mail exchanger address. Clients be-
gin by trying to resolve names locally. When the local server cannot resolve the name,
the client must choose to work through the tree of name servers iteratively or request
the local name server to do it recursively. Finally, we saw that the Domain Name Sys-
tem supports a variety of bindings including bindings from IPv4 or IPv6 addresses to
high-level names.

DNSSEC provides a mechanism that can be used to secure DNS; it authenticates
replies and guarantees the integrity of the answers. DNSSEC uses public-key encryp-
tion, and arranges to use DNS to distribute the set of public keys.

Multicast DNS (mDNS) allows two hosts on an isolated network to obtain the IP
address of hosts on the network without relying on a DNS server. An extension to
mDNS, DNS-SD, provides general service discovery. A smart phone can use DNS-SD
to discover other smart phones in its vicinity that are willing to participate in a given
application service. The chief disadvantage of mDNS and DNS-SD arises from the traf-
fic generated when a network contains many nodes.

EXERCISES

23.1 The name of a computer should never be bound into an operating system at compile
time. Explain why.

23.2 Would you prefer to use a computer that obtained its name from a remote file or from a
configuration server? Why?

23.3 Why does each name server know the IP address of its parent instead of the domain
name of its parent?

Exercises 509

23.4 Devise a naming scheme that tolerates changes to the naming hierarchy. As an example,
consider two large companies that each have an independent naming hierarchy, and sup-
pose the companies merge. Can you arrange to have all previous names still work
correctly?

23.5 Read the standard and find out how the Domain Name System uses SOA records. What
is the motivation for SOA?

23.6 The Internet Domain Name System can also accommodate mailbox names. Find out
how.

23.7 The standard suggests that when a program needs to find the domain name associated
with an IP address, it should send an inverse query to the local server first and use
domain in-addr . arpa or ip6 . arpa only if that fails. Why?

23.8 How would you accommodate abbreviations in a domain naming scheme? As an exam-
ple, show two sites that are both registered under .edu and a top level server. Explain
how each site would treat each type of abbreviation.

23.9 Obtain the official description of the Domain Name System and build a client program.
Look up the name xinu .cs .purdue .edu.

23.10 Extend the exercise above to include a pointer query. Try looking up the domain name
for address 128.10.19.20 .

23.11 Find a copy of the dig application, and use it to look up the names in the two previous
exercises.

23.12 If we extended the domain name syntax to include a dot after the top-level domain,
names and abbreviations would be unambiguous. What are the advantages and disad-
vantages of the extension?

23.13 Read the RFCs on the Domain Name System. What are the maximum and minimum
possible values a DNS server can store in the TIME-TO-LIVE field of a resource record?
What is the motivation for the choices?

23.14 Should the Domain Name System permit partial match queries (i.e., a wildcard as part of
a name)? Why or why not?

23.15 The Computer Science department at Purdue University chose to place the following
type A resource record entry in its domain name server:

localhost.cs.purdue.edu 127.0.0.1

Explain what will happen if a remote site tries to ping a machine with domain name
localhost.cs.purdue.edu.

Chapter Contents
24.1 Introduction, 511
24.2 Electronic Mail, 511
24.3 Mailbox Names And Aliases, 512
24.4 Alias Expansion And Mail Forwarding, 513
24.5 TCP/IP Standards For Electronic Mail Service, 514
24.6 Simple Mail Transfer Protocol (SMTP), 515
24.7 Mail Retrieval And Mailbox Manipulation Protocols, 517
24.8 The MIME Extensions For Non-ASCII Data, 519
24.9 MIME Multipart Messages, 521
24.10 Summary, 522

24

Electronic Mail (SMTP,
POP, IMAP, MIME)

24.1 Introduction

This chapter continues our exploration of internetworking by considering electronic
mail services and the protocols that support mail transfer and access. The chapter
describes how a mail system is organized, explains how mail system software uses the
client-server paradigm to transfer each message, and describes message representation.
We will see that email illustrates several key ideas in application protocol design.

24.2 Electronic Mail

An electronic mail (email) system allows users to transfer memos across the Inter-
net. Email is a widely-used application service that offers a fast, convenient method of
transferring information, accommodates small notes or large files, and allows communi-
cation between individuals or among a group.

Email differs fundamentally from most other uses of networks because a mail sys-
tem must provide for instances when the remote destination is temporarily unreachable.
To handle delayed delivery, mail systems use a technique known as spooling. When a
user sends an email message, the user’s local system places a copy in its private storage
(called a spool†) along with identification of the sender, recipient, destination machine,
and time of deposit. The system then initiates the transfer to the remote machine as a
background activity, allowing the sender to proceed with other computational activities.
Figure 24.1 illustrates the concept.

†A mail spool area is sometimes called a mail queue even though the term is technically inaccurate.

511

512 Electronic Mail (SMTP, POP, IMAP, MIME) Chap. 24

user
inter-
face

.

........

outgoing
mail spool

area

mailboxes
for

incoming
mail

client
(background

transfer)

server
(to accept

mail)

TCP connection

for outgoing mail

TCP connection

for incoming mail

user sends mail

user reads mail

Figure 24.1 Conceptual components of an electronic mail system. The user
invokes a mail interface application to deposit or retrieve mail;
all transfers occur in the background.

The background mail transfer process becomes a client that uses the Domain Name
System to map the destination machine name to an IP address. The client then attempts
to form a TCP connection to the mail server on the destination machine. If the connec-
tion succeeds, the client transfers a copy of the message to the remote server, which
stores a copy of the message temporarily. Once the client and server agree that the
transfer is complete, the client removes the local copy and the server moves its copy to
the user’s mailbox. If the client cannot form a TCP connection or if the connection
fails, the client records the time of the attempt and terminates. The sending email sys-
tem sweeps through the spool area periodically, typically once every 30 minutes, check-
ing for undelivered mail. Whenever it finds a message or whenever a user deposits new
outgoing mail, the background process attempts delivery. If it finds that a mail message
cannot be delivered after a few hours, the mail software informs the sender; after an ex-
tended time (e.g., 3 days), the mail software usually returns the message to the sender.

24.3 Mailbox Names And Aliases

There are three important ideas hidden in our simplistic description of mail
delivery. First, users specify each recipient by giving a text string that contains two
items separated by an at-sign:

user @ domain-name

where domain-name is the domain name of a mail destination† to which the mail should
be delivered, and user is the name of a mailbox on that machine. For example, the
author’s electronic mail address is:

comer @ purdue . edu

†Technically, the domain name specifies a mail exchanger, not a host.

Sec. 24.3 Mailbox Names And Aliases 513

Second, the names used in such specifications are independent of other names as-
signed to machines. Typically, a mailbox is the same as a user’s login id, and a
computer’s domain name is used as the mail destination. However, many other designs
are possible. For example, a mailbox can designate a position such as department-head.
Because the Domain Name System includes a separate query type for mail destinations,
it is possible to decouple mail destination names from the usual domain names assigned
to machines. Thus, mail sent to a user at example.com may go to a different machine
than a ping request sent to the same name. Third, our simplistic diagram fails to ac-
count for mail forwarding, in which some mail that arrives on a given machine is for-
warded to another computer.

24.4 Alias Expansion And Mail Forwarding

Most email servers provide mail forwarding software that employs a mail alias ex-
pansion mechanism. A forwarder allows each incoming message to be sent to one or
more destinations. Typically, a forwarder uses a database of mail aliases to map an in-
coming recipient address into a set of addresses, S, and then forwards a copy to each ad-
dress in S.

Because they can be many-to-one or one-to-many, alias mappings increase mail
system functionality and convenience substantially. A single user can have multiple
mail identifiers, or a group can have a single mail alias. In the latter case, the set of re-
cipients associated with an identifier is called an electronic mailing list. Figure 24.2 il-
lustrates the components of a mail system that supports mail aliases and list expansion.

user
inter-
face

.

........

alias
expansion

and
forwarding

alias
database

outgoing
mail spool

area

mailboxes
for

incoming
mail

server
(to accept

mail)

client
(background

transfer)

user sends mail

user reads mail

Figure 24.2 An extension of the mail system in Figure 24.1 that supports
mail aliases and forwarding. Each incoming and outgoing mes-
sage passes through the alias expansion mechanism.

514 Electronic Mail (SMTP, POP, IMAP, MIME) Chap. 24

As the figure shows, an incoming and outgoing mail message passes through the
mail forwarder that expands aliases. Thus, if the alias database specifies that mail ad-
dress x maps to replacement y, alias expansion will rewrite destination address x, chang-
ing it to y. The alias expansion program then determines whether y specifies a local or
remote address, so it knows whether to place the message in the local user’s mailbox or
send it to the outgoing mail queue.

Mail alias expansion can be dangerous. Suppose two sites establish conflicting
aliases. For example, assume the alias database at site A maps mail address x into mail
address y @ B, and the alias database at site B maps mail address y into address x @ A.
Any mail message sent to address x at site A will be forwarded to site B, then back to
A, and so on†.

24.5 TCP/IP Standards For Electronic Mail Service

Recall that the goal of the TCP/IP protocol suite design is to provide for interoper-
ability across the widest range of computer systems and networks. To extend the in-
teroperability of electronic mail, TCP/IP divides its mail standards into two sets. One
standard, given in RFC 2822, specifies the syntactic format used for mail messages‡;
the other standard specifies the details of electronic mail exchange between two com-
puters.

According to RFC 2822, a mail message is represented as text and is divided into
two parts, a header and a body, which are separated by a blank line. The standard for
mail messages specifies the exact format of mail headers as well as the semantic in-
terpretation of each header field; it leaves the format of the body up to the sender. In
particular, the standard specifies that headers contain readable text, divided into lines
that consist of a keyword followed by a colon followed by a value. Some keywords are
required, others are optional, and the rest are uninterpreted. For example, the header
must contain a line that specifies the destination. The line begins with To: and contains
the electronic mail address of the intended recipient on the remainder of the line. A line
that begins with From: contains the electronic mail address of the sender. Optionally,
the sender may specify an address to which a reply should be sent (i.e., to allow the
sender to specify that a reply should be sent to an address other than the sender’s mail-
box). If present, a line that begins with Reply-to: specifies the address for a reply. If
no such line exists, the recipient will use information on the From: line as the return ad-
dress.

The mail message format is chosen to make it easy to process and transport across
heterogeneous machines. Keeping the mail header format straightforward allows it to
be used on a wide range of systems. Restricting messages to readable text avoids the
problems of selecting a standard binary representation and translating between the stan-
dard representation and the local machine’s representation.

†In practice, most mail forwarders terminate messages after the number of exchanges reaches a predeter-
mined threshold.

‡The original standard was specified in RFC 822; the IETF delayed issuing the replacement until RFC
2822 to make the numbers correlate.

Sec. 24.6 Simple Mail Transfer Protocol (SMTP) 515

24.6 Simple Mail Transfer Protocol (SMTP)

In addition to message formats, the TCP/IP protocol suite specifies a standard for
the exchange of mail between machines. That is, the standard specifies the exact format
of messages a client on one machine uses to transfer mail to a server on another. The
standard transfer protocol is known as the Simple Mail Transfer Protocol (SMTP). As
the name implies, SMTP is simpler than the earlier Mail Transfer Protocol (MTP). The
SMTP protocol focuses specifically on how the underlying mail delivery system passes
messages across an internet from one machine to another. It does not specify how the
mail system accepts mail from a user or how the user interface presents the user with
incoming mail. Also, SMTP does not specify how mail is stored or how frequently the
mail system attempts to send messages.

SMTP is surprisingly straightforward. Communication follows a design that is
prevalent in many application-layer protocols: all communication between a client and a
server consists of readable ASCII text. Each line begins with a command name, which
can be an abbreviated name or 3-digit number; the remaining text on the line either
gives arguments for the command or text that humans use to debug mail software.
Although SMTP rigidly defines the command format, humans can easily read a tran-
script of interactions between a mail client and a server because each command appears
on a separate line. Initially, the client establishes a reliable stream connection to the
server and waits for the server to send a 220 READY FOR MAIL message. (If the
server is overloaded, it may delay sending the 220 command temporarily.) Upon re-
ceipt of the 220 command, the client sends a HELO† command (if the client supports
the extensions defined in RFC 2821, the client sends an alternative, EHLO). The end of
a line marks the end of a command. The server responds to a HELO by identifying it-
self. Once communication has been established, the client can transmit one or more
mail messages and then terminate the connection. The server must acknowledge each
command. A client can abort the entire connection or abort the current message
transfer.

A message transfer begins with a MAIL command that gives the sender identifica-
tion as well as a FROM: field that contains the address to which errors should be re-
ported. A server prepares its data structures to receive a new mail message, and replies
to a MAIL command by sending the response 250. Response 250 means that all is well
and the client should proceed. The full response consists of the text 250 OK.

After a successful MAIL command, the client issues a series of RCPT commands
that identify recipients of the mail message. The server must acknowledge each RCPT
command by sending 250 OK or by sending the error message 550 No such user here.

After all RCPT commands have been acknowledged, the client issues a DATA
command. In essence, a DATA command informs the server that the client is ready to
transfer the body of a mail message. The server responds with message 354 Start mail
input, and specifies the sequence of characters used to terminate the mail message. The
termination sequence consists of 5 characters: carriage return, line feed, period, carriage
return, and line feed‡.

†HELO is an abbreviation for “hello.”
‡SMTP uses CR-LF (carriage return followed by line feed) to terminate a line, and forbids the body of a

mail message to have a period on a line by itself.

516 Electronic Mail (SMTP, POP, IMAP, MIME) Chap. 24

An example will clarify the communication in an SMTP exchange. Suppose user
Smith at host Alpha.edu sends a message to users Jones, Green, and Brown at host
Beta.gov. The SMTP client software on host Alpha.edu contacts the SMTP server
software on host Beta.gov, and begins the exchange shown in Figure 24.3.

S: 220 Beta.gov Simple Mail Transfer Service Ready
C: HELO Alpha.edu
S: 250 Beta.gov

C: MAIL FROM:<Smith@Alpha.edu>
S: 250 OK

C: RCPT TO:<Jones@Beta.gov>
S: 250 OK

C: RCPT TO:<Green@Beta.gov>
S: 550 No such user here

C: RCPT TO:<Brown@Beta.gov>
S: 250 OK

C: DATA
S: 354 Start mail input; end with <CR><LF>.<CR><LF>
C: ...sends body of mail message...
C: ...continues for as many lines as message contains
C: <CR><LF>.<CR><LF>
S: 250 OK

C: QUIT
S: 221 Beta.gov Service closing transmission channel

Figure 24.3 Example of an SMTP transfer from Alpha.edu to Beta.gov dur-
ing which recipient Green is not recognized. Lines that begin
with “C:” are transmitted by the client (Alpha), and lines that
begin “S:” are transmitted by the server.

In the example, the server rejects recipient Green because it does not recognize the
name as a valid mail destination (i.e., Green is neither a user nor a mailing list). The
SMTP protocol does not specify the details of how a client handles such errors — the
client must decide. Although a client can abort the delivery if an error occurs, most
clients do not. Instead, a client continues delivery to all valid recipients and then re-
ports problems to the original sender. Usually, the client reports errors using electronic
mail. The error message contains a summary of the error as well as the header of the
mail message that caused the problem.

Sec. 24.6 Simple Mail Transfer Protocol (SMTP) 517

Once it has finished sending all mail messages, a client issues a QUIT command.
The server responds with command 221, which means it agrees to terminate. Both
sides then close the TCP connection gracefully.

SMTP is much more complex than we have outlined here. For example, if a user
has moved, the server may know the user’s new mailbox address. SMTP allows the
server to inform the client about the new address so the client can use the address in fu-
ture correspondence. When informing the client about a new address, the server may
choose to forward the mail that triggered the message, or it may request that the client
take the responsibility for forwarding. In addition, SMTP includes Transport Layer Se-
curity (TLS) extensions that allow an SMTP session to be encrypted.

24.7 Mail Retrieval And Mailbox Manipulation Protocols

The SMTP transfer scheme described above implies that a server must remain
ready to accept email at all times. The scenario works well if the server runs on a com-
puter that has a permanent Internet connection, but it does not work well for a device
that has intermittent connectivity (e.g., a smart phone that is often powered down or
otherwise unavailable). It makes no sense for a device with intermittent connectivity to
run an email server because the server will only be available while the user’s device is
connected — all other attempts to contact the server will fail, and email sent to the user
will remain undelivered. The question arises: how can a user without a permanent con-
nection receive email?

The answer to the question lies in a two-stage delivery process. In the first stage,
each user is assigned a mailbox on a computer that is always on and has a permanent
Internet connection. The computer runs a conventional SMTP server, which remains
ready to accept email. In the second stage, the user connects to the Internet and runs a
protocol that retrieves messages from the permanent mailbox. Figure 24.4 illustrates the
idea.

email server
(always on)user’s device

(sometimes on)
INTERNET

interface app
contacts server

server has
user’s mailbox

interface
app

Figure 24.4 Illustration of email access when the email server and user’s
mailbox are not located on the user’s computer.

518 Electronic Mail (SMTP, POP, IMAP, MIME) Chap. 24

A variety of techniques have been used to permit a user’s mailbox to reside on a
remote computer. For example, many ISPs that offer email service provide a web-based
interface to email. That is, a user launches a web browser and connects to a special
web page that displays email. Companies like Microsoft offer proprietary mechanisms
that allow an organization to have a single email server that users can access remotely.

Remote access was pioneered by the IETF, which defined two protocols that allow
a remote application to access mail in a permanent mailbox that is stored on a server.
Although they have similar functionality, the protocols take opposite approaches: one
allows the user to download a copy of messages, and the other allows a user to view
and manipulate messages on the server. The next two sections describe the two proto-
cols.

24.7.1 Post Office Protocol

The most popular protocol used to transfer email messages from a permanent re-
mote mailbox to a local computer or portable device is known as version 3 of the Post
Office Protocol (POP3); a secure version of the protocol is known as POP3S. The user
invokes a POP3 client application, which creates a TCP connection to a POP3 server on
the mailbox computer. The user first sends a login and a password to authenticate the
session. Once authentication has been accepted, the client sends commands to retrieve a
copy of one or more messages and to delete the messages from the permanent mailbox.
The messages are stored and transferred as text files in the standard format specified by
RFC 2822.

Note that the computer with the permanent mailbox must run two servers — an
SMTP server and a POP3 server. The SMTP server accepts mail sent to a user and
places each incoming message in the user’s mailbox. The POP3 server allows a user to
examine each message in their mailbox, save a copy on the local computer, and delete
the message from the mailbox on the server. To ensure correct operation, the two
servers must coordinate use of the mailbox so that if a message arrives via SMTP while
a user is extracting messages via POP3, the mailbox is left in a valid state.

24.7.2 Internet Message Access Protocol

Version 4 of the Internet Message Access Protocol (IMAP4) is an alternative to
POP3 that allows users to view and manipulate messages on the server; a secure version
of IMAP4 has also been defined, and is known as IMAPS. Like POP3, IMAP4 defines
an abstraction known as a mailbox; mailboxes are located on the same computer as a
server. Also like POP3, a user runs an application that becomes an IMAP4 client. The
application contacts the server to view and manipulate messages. Unlike POP3, howev-
er, IMAP4 allows a user to access mail messages from multiple locations (e.g., from
work and from home), and ensures that all copies are synchronized and consistent.

IMAP4 also provides extended functionality for message retrieval and processing.
A user can obtain information about a message or examine header fields without retriev-
ing the entire message. In addition, a user can search for a specified string and retrieve

Sec. 24.7 Mail Retrieval And Mailbox Manipulation Protocols 519

portions of a message. Partial retrieval is especially useful for slow-speed connections
because it means a user does not need to download useless information.

24.8 The MIME Extensions For Non-ASCII Data

The Internet standards for email were created when email messages consisted of
text. Users liked email, but wanted a way to send attachments (i.e., data files) along
with an email message. Consequently, the IETF created Multipurpose Internet Mail Ex-
tensions (MIME) to permit transmission of non-ASCII data items through email. MIME
does not change or replace protocols such as SMTP, POP3, and IMAP4. Instead,
MIME allows arbitrary data to be encoded in ASCII and then transmitted in a standard
email message. To accommodate arbitrary data types and representations, each MIME
message includes information that tells the recipient the type of the data and the encod-
ing used. MIME information resides in the RFC 2822 mail header — the MIME header
lines specify the MIME version, the data type, and the encoding that was used to con-
vert the data to ASCII. Most users never see the MIME encoding because a typical
mail reader application removes or hides such details.

Figure 24.5 illustrates a MIME message that contains a photograph in standard
JPEG† representation. The JPEG image has been converted to a 7-bit ASCII represen-
tation using the base64 encoding.

From: bill@acollege.edu
To: john@example.com
MIME-Version: 1.0
Content-Type: image/jpeg
Content-Transfer-Encoding: base64

...data for the image goes here...

Figure 24.5 An example of the header in a MIME message. Header lines
identify the type of the data as well as the encoding used.

In the figure, the header line MIME-Version: declares that the message was com-
posed using version 1.0 of the MIME protocol. The Content-Type: declaration specifies
that the data is a JPEG image, and the Content-Transfer-Encoding: header declares that
base64 encoding was used to convert the image to ASCII.

The base64 encoding is analogous to hexadecimal because it allows arbitrary
binary values to be represented using printable characters. Instead of sixteen characters,
base64 uses sixty-four, which makes the resulting file smaller. Base64 was chosen to
provide sixty-four ASCII characters that have the same representation across various
versions of ISO English character sets‡. Thus, a receiver can be guaranteed that the im-
age extracted from the encoded data is exactly the same as the original image.

†JPEG is the Joint Picture Encoding Group standard used for digital pictures.
‡The characters consist of 26 uppercase letters, 26 lowercase letters, ten digits, the plus sign, and the

slash character.

520 Electronic Mail (SMTP, POP, IMAP, MIME) Chap. 24

If one were to examine the data actually transferred, it would appear to be a non-
sense stream of characters. For example, Figure 24.6 shows the first few lines from a
jpeg image that has been encoded in Base64 for transmission with MIME.

/9j/4AAQSkZJRgABAQEAYABgAAD/4QBERXhpZgAATU0AKgAAAAgAA0AAAAMAAAABAAAAAEABAAEA
AAABAAAAAEACAAIAAAAKAAAAMgAAAAB0d2ltZy5jb20A/9sAQwANCQoLCggNCwsLDw4NEBQhFRQS
EhQoHR4YITAqMjEvKi4tNDtLQDQ4RzktLkJZQkdOUFRVVDM/XWNcUmJLU1RR/9sAQwEODw8UERQn
FRUnUTYuNlFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFR
/8AAEQgAgACAAwEiAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQ
AAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYX

Figure 24.6 Example of the base64 encoding used with MIME. The lines
are taken from a large jpeg file.

To view the image in a figure, a receiver’s mail application must first convert from
base64 encoding back to binary and then run an application that displays a JPEG image
on the user’s screen. In most email systems, the conversion is performed automatically;
a user sees icons or actual files that have been attached to an email message.

How does a mail interface application know how to handle each attachment? The
MIME standard specifies that a Content-Type declaration must contain two identifiers, a
content type and a subtype, separated by a slash. In Figure 24.5, image is the content
type, and jpeg is the subtype.

The MIME standard defines seven basic content types, the valid subtypes for each,
and transfer encodings. For example, although an image must be of subtype jpeg or gif;
content type text cannot use either subtype. In addition to the standard types and sub-
types, MIME permits a sender and receiver to define private content types†. Figure
24.7 lists the seven basic content types.

Content Type Used When Data In the Message Is
text Textual (e.g. a document).
image A still photograph or computer-generated image
audio A sound recording
video A video recording that includes motion
application Raw data for a program
multipart Multiple messages that each have a separate content

type and encoding
message An entire email message (e.g., a memo that has been

forwarded) or an external reference to a
message (e.g., an FTP server and file name)

Figure 24.7 The seven basic types that can appear in a MIME Content-Type
declaration and their meanings.

†To avoid potential name conflicts, the standard requires that names chosen for private content types each
begin with the two-character string X- .

Sec. 24.8 The MIME Extensions For Non-ASCII Data 521

24.9 MIME Multipart Messages

The MIME multipart content type is useful because it adds considerable flexibility.
The standard defines four possible subtypes for a multipart message; each provides im-
portant functionality. Subtype mixed allows a single message to contain multiple, in-
dependent submessages that each can have an independent type and encoding. Mixed
multipart messages make it possible to include text, graphics, and audio in a single mes-
sage, or to send a memo with additional data segments attached, similar to enclosures
included with a business letter. Subtype alternative allows a single message to include
multiple representations of the same data. Alternative multipart messages are useful
when sending a memo to many recipients who do not all use the same hardware facili-
ties or application software. For example, one can send a document as both plain
ASCII text and in formatted form, allowing recipients who have computers with graphic
capabilities to select the formatted form for viewing†. Subtype parallel permits a single
message to include subparts that are to be displayed together (e.g., video and audio sub-
parts must be played simultaneously). Finally, subtype digest permits a single message
to contain a set of other messages (e.g., a collection of the email messages from a dis-
cussion).

Figure 24.8 illustrates an email message that contains two parts. The first is a
message in plain text and the second is an image.

From: bill@acollege.edu
To: john@example.com
MIME-Version: 1.0
Content-Type: Multipart/Mixed; Boundary=StartOfNextPart

--StartOfNextPart
Content-Type: text/plain
Content-Transfer-Encoding: 7bit
John,

Here is the photo of our research lab that I promised
to send you. You can see the equipment you donated.

Thanks again,
Bill

--StartOfNextPart
Content-Type: image/gif
Content-Transfer-Encoding: base64

...data for the image...

Figure 24.8 An example of a MIME mixed multipart message. Each part of
the message has an independent content type and subtype.

†Many email systems use the alternative MIME subtype to send a message in both ASCII and HTML
formats.

522 Electronic Mail (SMTP, POP, IMAP, MIME) Chap. 24

Figure 24.8 illustrates a few details of MIME. For example, each header line can
contain parameters of the form X = Y after basic declarations. The keyword Boundary=
following the multipart content type declaration in the header defines the string used to
separate parts of the message. In the example, the sender has selected the string Star-
tOfNextPart to serve as the boundary. Declarations of the content type and transfer
encoding for a submessage, if included, immediately follow the boundary line. In the
example, the second submessage is declared to be a Graphics Interchange Format
(GIF) image.

24.10 Summary

Electronic mail is among the most widely available application services on the In-
ternet. Like most TCP/IP services, email follows the client-server paradigm. A mail
system buffers outgoing and incoming messages, allowing the transfer from client and
server to occur in background.

The TCP/IP protocol suite provides two separate standards that specify the mail
message format and mail transfer details. The mail message format, defined in RFC
2822, uses a blank line to separate a message header and the body. The Simple Mail
Transfer Protocol (SMTP) defines how a mail system on one machine transfers mail to
a server on another. Version 3 of the Post Office Protocol (POP3) and version 4 of the
Internet Message Access Protocol (IMAP4) specify how a user can retrieve the contents
of a mailbox; they allow a user to have a permanent mailbox on a computer with con-
tinuous Internet connectivity and to access the contents from a computer with intermit-
tent connectivity.

The Multipurpose Internet Mail Extensions (MIME) provides a mechanism that al-
lows arbitrary data to be transferred using SMTP. MIME adds lines to the header of an
email message to define the type of the data and the encoding used. MIME’s mixed
multipart type permits a single message to contain multiple data types.

EXERCISES

24.1 Find out if your computing system allows you to invoke SMTP directly.
24.2 Build an SMTP client and use it to transfer a mail message.
24.3 See if you can send mail through a mail forwarder back to yourself.
24.4 Make a list of mail address formats that your site handles, and write a set of rules for

parsing them.
24.5 Find out how a Linux system can be configured to act as a mail forwarder.
24.6 Find out how often your local mail system attempts delivery, and how long it will con-

tinue before giving up.

Exercises 523

24.7 Some mail systems allow users to direct incoming mail to a program instead of storing it
in a mailbox. Build a program that accepts your incoming mail, places your mail in a
file, and then sends a reply to tell the sender you are on vacation.

24.8 Read the SMTP standard carefully. Then use TELNET to connect to the SMTP port on
a remote machine and type the commands to ask the remote SMTP server to expand a
mail alias. Verify that the server returns the correct expansion.

24.9 A user receives mail in which the To: field specifies the string important-people. The
mail was sent from a computer on which the alias important-people includes no valid
mailbox identifiers. Read the SMTP specification carefully to see how such a situation
is possible.

24.10 POP3 separates message retrieval and deletion by allowing a user to retrieve and view a
message without deleting it from the permanent mailbox. What are the advantages and
disadvantages of such separation?

24.11 Read about POP3. How does the TOP command operate, and why is it useful?
24.12 Read about IMAP4. How does IMAP4 guarantee consistency when multiple concurrent

clients access a given mailbox at the same time?
24.13 Read the MIME RFCs carefully. What servers can be specified in a MIME external

reference?
24.14 If you use a smartphone with a limit on the number of data bytes received each month,

would you prefer POP3 or IMAP4? Explain.
24.15 To disguise the recipients, spam messages often list Undisclosed Recipients in the To:

field. Does your email interface allow you to send a message to a user that shows up in
the user’s mailbox as being sent to Undisclosed Recipients? Explain.

Chapter Contents
25.1 Introduction, 525
25.2 Importance Of The Web, 525
25.3 Architectural Components, 526
25.4 Uniform Resource Locators, 526
25.5 An Example HTML Document, 527
25.6 Hypertext Transfer Protocol, 528
25.7 HTTP GET Request, 528
25.8 Error Messages, 529
25.9 Persistent Connections, 530
25.10 Data Length And Program Output, 530
25.11 Length Encoding And Headers, 531
25.12 Negotiation, 532
25.13 Conditional Requests, 533
25.14 Proxy Servers And Caching, 533
25.15 Caching, 534
25.16 Other HTTP Functionality, 535
25.17 HTTP, Security, And E-Commerce, 535
25.18 Summary, 536

25

World Wide Web (HTTP)

25.1 Introduction

This chapter continues the discussion of applications that use TCP/IP technology
by focusing on the application that has had the most impact: the World Wide Web (the
Web). After a brief overview of concepts, the chapter examines the primary protocol
used to transfer a web page between a server and a web browser. The discussion covers
caching as well as the basic transfer mechanism.

25.2 Importance Of The Web

During the early history of the Internet, data transfers using the File Transfer Pro-
tocol (FTP) accounted for approximately one third of Internet traffic, more than any
other application. From its inception in the early 1990s, however, the Web has had a
high growth rate. By 1995, web traffic overtook FTP to become the largest consumer
of Internet backbone bandwidth, and has remained the leading application.

The impact of the Web cannot be understood from traffic statistics alone. More
people know about and use the Web than any other Internet application. In fact, for
many users, the Internet and the Web are indistinguishable.

525

526 World Wide Web (HTTP) Chap. 25

25.3 Architectural Components

Conceptually, the Web consists of a large set of documents, called web pages, that
are accessible to Internet users. Each web page is classified as a hypermedia document.
The prefix hyper is used because a document can contain selectable links that refer to
other documents, and the suffix media is used to indicate that a web document can con-
tain items other than text (e.g., graphics images).

Two main building blocks are used to implement the Web on top of the global In-
ternet: a web browser and a web server. A browser consists of an application program
that a user invokes to access and display a web page. A browser becomes a client that
contacts the appropriate web server to obtain a copy of a specified page. Because a
given server can manage more than one web page, a browser must specify the exact
page when making a request.

The data representation standard used for a web page depends on its contents. For
example, standard graphics representations such as Graphics Interchange Format (GIF)
or Joint Picture Encoding Group (JPEG) can be used for a page that contains a single
graphics image. Pages that contain a mixture of text and other items are represented us-
ing the HyperText Markup Language (HTML). An HTML document consists of a file
that contains text along with embedded commands, called tags, that give guidelines for
display. A tag is enclosed in less-than and greater-than symbols; some tags come in
pairs that apply to all items between the pair. For example, the two commands
<CENTER> and </CENTER> cause items between the commands to be centered in the
browser’s window.

25.4 Uniform Resource Locators

Each web page is assigned a unique name that is used to identify it. The name,
which is called a Uniform Resource Locator (URL)†, begins with a specification of the
scheme used to access the page. In effect, the scheme specifies the transfer protocol;
the format of the remainder of the URL depends on the scheme. For example, a URL
that follows the http scheme has the following form‡:

http: // hostname [:port] / path [;parameters] [?query]

where italic denotes an item to be supplied and brackets denote an optional item. For
now, it is sufficient to understand that the hostname string specifies the domain name,
dotted decimal IPv4 address, or colon hex IPv6 address of the computer on which the
server for the page operates, :port is an optional protocol port number needed only in
cases where the server does not use the well-known web port (80), path is a string that
identifies one particular document on the server, ;parameters is an optional string that
specifies additional parameters supplied by the client, and ?query is an optional string
used when the browser sends a question. A user is unlikely ever to see or use the op-
tional parts directly. Instead, URLs that a user enters contain only a hostname and path.

†A URL is a specific type of the more general Uniform Resource Identifier (URI).
‡Some of the literature refers to the initial string, http:, as a pragma.

Sec. 25.4 Uniform Resource Locators 527

For example, the URL:

http://www.cs.purdue.edu/people/comer/

specifies the author’s web page at Purdue University. The server operates on computer
www.cs.purdue.edu, and the document is named / people /comer/ .

The protocol standards distinguish between the absolute form of a URL, illustrated
above, and a relative form. A relative URL, which is seldom seen by a user, is only
meaningful after communication has been established with a specific web server. For
example, when communicating with server www.cs.purdue.edu, only the string
/ people /comer/ is needed to specify the document named by the absolute URL above.
We can summarize:

Each web page is assigned a unique identifier known as a Uniform
Resource Locator (URL). The absolute form of a URL contains a full
specification; a relative form that omits the address of the server is
only useful when the server is implicitly known.

25.5 An Example HTML Document

An example will illustrate how a URL is produced from a selectable link in a doc-
ument. For each selectable link, a document contains a pair of values: an item to be
displayed on the screen and a URL to follow if the user selects the item. In HTML, a
pair of tags <A> and , which are known as an anchor, define a selectable link; a
URL is added to the first tag, and items to be displayed are placed between the two
tags. For example, the following HTML document contains a selectable link:

<HTML>
The author of this text is

Douglas Comer.

</HTML>

When the document is displayed, a single line of text appears on the screen:

The author of this text is Douglas Comer.

The browser underlines the phrase Douglas Comer to indicate that it corresponds
to a selectable link. Internally, the browser stores the URL from the <A> tag, which it
follows when the user selects the link.

528 World Wide Web (HTTP) Chap. 25

25.6 Hypertext Transfer Protocol

The protocol used for communication between a browser and a web server or
between intermediate machines and web servers is known as the HyperText Transfer
Protocol (HTTP). HTTP has the following set of characteristics:

Application Layer. HTTP operates at the application layer. It as-
sumes a reliable, connection-oriented transport protocol such as
TCP, but does not provide reliability or retransmission itself.

Request / Response. Once a transport session has been established,
one side (usually a browser) must send an HTTP request to which
the other side responds.

Stateless. Each HTTP request is self-contained; the server does not
keep a history of previous requests or previous sessions.

Bi-Directional Transfer. In most cases, a browser requests a web
page, and the server transfers a copy to the browser. HTTP also al-
lows transfer from a browser to a server (e.g., when a user supplies
data).

Capability Negotiation. HTTP allows browsers and servers to
negotiate details such as the character set to be used during
transfers. A sender can specify the capabilities it offers, and a re-
ceiver can specify the capabilities it accepts.

Support For Caching. To improve response time, a browser caches
a copy of each web page it retrieves. If a user requests a page
again, the browser can interrogate the server to determine whether
the contents of the page has changed since the copy was cached.

Support For Intermediaries. HTTP allows a machine along the
path between a browser and a server to act as a proxy server that
caches web pages and answers a browser’s request from its cache.

25.7 HTTP GET Request

In the simplest case, a browser contacts a web server directly to obtain a page.
The browser begins with a URL, extracts the hostname section, uses DNS to map the
name into an equivalent IP address, and uses the resulting IP address to form a TCP
connection to the web server. Once the TCP connection is in place, the browser and
web server use HTTP to communicate; the browser sends a request to retrieve a specific
page, and the server responds by sending a copy of the page.

A browser sends an HTTP GET command to request a web page from a server†.
The request consists of a single line of text that begins with the keyword GET and is

†The standard uses the object-oriented term method instead of command.

Sec. 25.7 HTTP GET Request 529

followed by a URL and an HTTP version number. For example, to retrieve the web
page in the example above from server www.cs.purdue.edu, a browser can send the
following request with an absolute URL:

GET http://www.cs.purdue.edu/people/comer/ HTTP/1.1

Once a TCP connection is in place, there is no need to send an absolute URL — the
following relative URL will retrieve the same page:

GET /people/comer/ HTTP/1.1

To summarize:

The Hypertext Transfer Protocol (HTTP) is used between a browser
and a web server. The browser sends a GET request to which a
server responds by sending the requested page.

25.8 Error Messages

How should a web server respond when it receives an illegal request? In most
cases, the request has been sent by a browser, and the browser will attempt to display
whatever the server returns. Consequently, servers usually generate error messages in
valid HTML. For example, one server generates the following error message as a
response whenever the server cannot honor a request:

<HTML>
<HEAD> <TITLE>400 Bad Request</TITLE>
</HEAD>
<BODY>

<H1>Error In Request</H1> Your browser sent a request
that this server could not understand.

</BODY>
</HTML>

The browser uses the head of the document (i.e., the items between <HEAD> and
</HEAD>) internally, and only shows the body of the document to the user. The pair
of tags <H1> and </H1> causes the browser to display Error In Request as a heading
(i.e., large and bold), resulting in two lines of output on the user’s screen:

Error In Request
Your browser sent a request that this server could not understand.

530 World Wide Web (HTTP) Chap. 25

25.9 Persistent Connections

The first version of HTTP uses a paradigm of one TCP connection per data
transfer. A client opens a TCP connection and sends a GET request. The server sends
a copy of the requested page and closes the connection. The paradigm has the advan-
tage of being unambiguous — the client merely reads until an end of file condition is
encountered, and then closes its end of the connection.

Version 1.1 of HTTP changes the basic paradigm in a fundamental way: instead of
using a TCP connection per transfer, version 1.1 adopts a persistent connection ap-
proach as the default. That is, once a client opens a TCP connection to a particular web
server, the client leaves the connection in place during multiple requests and responses.
When either a client or server is ready to close the connection, it informs the other side,
and the connection is closed.

The chief advantage of persistent connections lies in reduced overhead — fewer
TCP connections means lower response latency, less overhead on the underlying net-
works, less memory used for buffers, and less use of CPU time. A browser using a per-
sistent connection can further optimize by pipelining requests (i.e., send requests back-
to-back without waiting for a response). Pipelining is especially attractive in situations
where multiple images must be retrieved for a given web page, and the underlying inter-
net has both high throughput and long delay.

The chief disadvantage of using a persistent connection lies in the need to identify
the beginning and end of each item sent over the connection. There are two possible
techniques to handle the situation: either send a length followed by the item, or send a
sentinel value after the item to mark the end. HTTP cannot reserve a sentinel value be-
cause the items transmitted include graphics images that can contain arbitrary sequences
of octets. Thus, to avoid ambiguity between sentinel values and data, HTTP uses the
approach of sending a length followed by an item of that size.

25.10 Data Length And Program Output

It may be inconvenient or even impossible for a web server to know the length of a
web page before sending the page. To understand why, one must know that many web
pages are generated upon request. That is, the server uses a technology such as the
Common Gateway Interface (CGI) that allows a computer program running on the
server machine to create a web page. When a request arrives that corresponds to a
CGI-generated page, the web server runs the appropriate CGI program, and sends the
output from the program back to the client as a response. Dynamic web page genera-
tion allows the creation of information that is current (e.g., a list of the current scores in
sporting events or a list of sites that match a search term), but the server may not know
the exact data size in advance. Furthermore, saving the data to a file before sending it
is undesirable for two reasons: it uses resources at the web server and delays transmis-
sion. Thus, to provide for dynamic web pages, the HTTP standard specifies that if the

Sec. 25.10 Data Length And Program Output 531

server does not know the length of a page a priori, the server can inform the browser
that it will close the connection after transmitting the page. To summarize:

To allow a TCP connection to persist through multiple requests and
responses, HTTP sends a length before each response. If it does not
know the length, a server informs the client, sends the response, and
then closes the connection.

25.11 Length Encoding And Headers

What representation should a server use to send length information? Interestingly,
HTTP borrows the basic format from email, using the same format specified in RFC
2822 for email messages and MIME Extensions†. Like a standard RFC 2822 email
message, each HTTP transmission contains a header, a blank line, and the document be-
ing sent. Furthermore, each line in the header contains a keyword, a colon, and infor-
mation. Figure 25.1 lists a few of the possible HTTP headers and their meaning.

Header Meaning
Content-Length: Size of document in octets
Content-Type: Type of the document
Content-Encoding: Encoding used for document
Content-Language: Language(s) used in document

Figure 25.1 Examples headers that can appear before a document. The
Content-Type: and Content-Encoding: headers are taken directly
from MIME.

As an example, consider Figure 25.2 which shows a few of the headers that are
used when a short HTML document (34 characters) is transferred across a persistent
TCP connection.

Content-Length: 34
Content-Language: en
Content-Encoding: ascii

<HTML> A trivial example. </HTML>

Figure 25.2 An illustration of an HTTP transfer with header lines used to
specify attributes, a blank line, and the document itself. A
Content-Length: header is required if the connection is per-
sistent.

†See the previous chapter for a discussion of email and MIME.

532 World Wide Web (HTTP) Chap. 25

In addition to the headers listed in Figure 25.1, HTTP includes a wide variety of
headers that allow a browser and server to exchange meta information. For example, if
a server does not know the length of a page, the server closes the connection after send-
ing the document. However, the server does not act without warning — the server in-
forms the browser to expect a close. To do so, the server includes a Connection: header
before the document in place of a Content-Length: header:

Connection: close

When it receives a connection header, the browser knows that the server intends to
close the connection after the transfer; the browser is forbidden from sending further re-
quests. The next sections describe the purposes of other HTTP headers.

25.12 Negotiation

In addition to specifying details about a document being sent, HTTP uses headers
to permit a client and server to negotiate capabilities. The set of negotiable capabilities
includes a wide variety of characteristics about the connection (e.g., whether access is
authenticated), representation (e.g., whether graphics images in JPEG format are accept-
able or which types of compression can be used), content (e.g., whether text files must
be in English), and control (e.g., the length of time a page remains valid).

There are two basic types of negotiation: server-driven and agent-driven (i.e.,
browser-driven). Server-driven negotiation begins with a request from a browser. The
request specifies a list of preferences along with the URL of the desired document. The
server selects, from among the available representations, one that satisfies the browser’s
preferences. If multiple documents satisfy the browser’s preferences, the server uses a
local policy to select one. For example, if a document is stored in multiple languages
and a request specifies a preference for English, the server will send the English ver-
sion.

Agent-driven negotiation means that a browser uses a two-step process to perform
the selection. First, the browser sends a request to the server to ask what is available.
The server returns a list of possibilities. The browser selects one of the possibilities,
and sends a second request to obtain the document. The disadvantage of agent-driven
negotiation is that it requires two server interactions; the advantage is that a browser re-
tains control over the choice.

A browser uses an HTTP Accept: header to specify which media or representations
are acceptable. The header lists names of formats with a preference value assigned to
each. For example,

Accept: text/html, text/plain; q=0.5, text/x-dvi; q=0.8

specifies that the browser is willing to accept the text/html media type, but if the type
does not exist, the browser will accept text/x-dvi, and if that does not exist, text/plain.

Sec. 25.12 Negotiation 533

The numeric values associated with the second and third entry can be thought of as a
preference level, where no value is equivalent to q=1, and a value of q=0 means the
type is unacceptable. For media types where “quality” is meaningful (e.g., audio), the
value of q can be interpreted as a willingness to accept a given media type if it is the
best available after other forms are reduced in quality by q percent.

A variety of Accept headers exist that correspond to the Content headers described
earlier. For example, a browser can send any of the following:

Accept-Encoding:
Accept-Charset:
Accept-Language:

to specify which encodings, character sets, and languages the browser is willing to
accept.

We can summarize the discussion about negotiation:

HTTP uses MIME-like headers to carry meta information. Both
browsers and servers send headers that allow them to negotiate
agreement on the document representation and encoding to be used.

25.13 Conditional Requests

HTTP allows a sender to make a request conditional. That is, when a browser
sends a request, it includes a header that qualifies conditions under which the request
should be honored. If the specified condition is not met, the server does not return the
requested document. Conditional requests allow a browser to optimize retrieval by
avoiding unnecessary transfers. One of the most useful conditions uses an If-Modified-
Since: request — it allows a browser to avoid transferring a document unless it has been
updated since a specified date. For example, a browser can include the header:

If-Modified-Since: Mon, 01 Apr 2013 05:00:01 GMT

with a GET request to avoid a transfer if the document is older than April 1, 2013.

25.14 Proxy Servers And Caching

Proxy servers are an important part of the web architecture because they provide an
optimization that can decrease latency and reduce the load on servers. Two forms of
proxy servers exist: nontransparent and transparent. As the name implies, a nontran-
sparent server is visible to a user — the user configures a browser to contact the proxy
instead of the original source. A transparent proxy does not require any changes to a
browser’s configuration. Instead, a transparent proxy examines all TCP connections

534 World Wide Web (HTTP) Chap. 25

that pass through the proxy, and intercepts any connection to port 80. In either case, a
proxy caches web pages and answers subsequent requests for a page from the cache.

HTTP includes explicit support for proxy servers. The protocol specifies exactly
how a proxy handles each request, how headers should be interpreted by proxies, how a
browser negotiates with a proxy, and how a proxy negotiates with a server. Further-
more, several HTTP headers have been designed specifically for use by proxies. For
example, one header allows a proxy to authenticate itself to a server, and another allows
each proxy that handles a web page to record its identity so the ultimate recipient re-
ceives a list of all intermediate proxies. Finally, HTTP allows a server to control how
proxies handle each web page. For example, a server can include the Max-Forwards:
header in a response to limit the number of proxies that handle a page before it is
delivered to a browser. If the server specifies a count of one, as in:

Max-Forwards: 1

at most one proxy can handle the page along the path from the server to the browser. A
count of zero prohibits any proxy from handling the page.

25.15 Caching

The goal of caching is improved efficiency: a cache reduces both latency and net-
work traffic by eliminating unnecessary transfers. The most obvious aspect of caching
is storage. When a web page is initially accessed, a copy is stored on disk, either by the
browser, an intermediate proxy, or both. Subsequent requests for the same page can
short-circuit the lookup process and retrieve a copy of the page from the cache instead
of the web server.

The central question in all caching schemes concerns timing: how long should an
item be kept in a cache? On one hand, keeping a cached copy too long results in the
copy becoming stale, which means that changes to the original are not reflected in the
cached copy. On the other hand, if the cached copy is not kept long enough, inefficien-
cy results because the next request must go back to the server.

HTTP allows a web server to control caching in two ways. First, when it answers
a request for a page, a server can specify caching details, including whether the page
can be cached at all, whether a proxy can cache the page, the community with which a
cached copy can be shared, the time at which the cached copy must expire, and limits
on transformations that can be applied to the copy. Second, HTTP allows a browser to
force revalidation of a page. To do so, the browser sends a request for the page, and
uses a header to specify that the maximum age (i.e., the time since a copy of the page
was stored) cannot be greater than zero. No copy of the page in a cache can be used to
satisfy the request because the copy will have a nonzero age. Thus, only the original
web server will answer the request. Intermediate proxies along the way will receive a
fresh copy for their cache as will the browser that issued the request.

Sec. 25.15 Caching 535

To summarize:

Caching is key to the efficient operation of the Web. HTTP allows
web servers to control whether and how a page can be cached as well
as its lifetime; a browser can force a request for a page to bypass
caches and obtain a fresh copy from the server that owns the page.

25.16 Other HTTP Functionality

Our description of HTTP has focused exclusively on retrieval in which a client,
typically a browser, issues a GET request to retrieve a copy of a web page from a
server. However, HTTP includes facilities that allow more complex interactions
between a client and server. In particular, HTTP offers PUT and POST methods that al-
low a client to send data to a server. Thus, it is possible to build a script that prompts a
user for an ID and password and then transfers the results to the server.

Surprisingly, although it permits transfer in either direction, the underlying HTTP
protocol remains stateless (i.e., does not require a persistent transport layer connection
to remain in place during an interaction). Thus, additional information is often used to
coordinate a series of transfers. For example, in response to an ID and password, a
server might send an identifying integer known as a cookie that the client returns in suc-
cessive transfers.

25.17 HTTP, Security, And E-Commerce

Although it defines a mechanism that can be used to access web pages, HTTP does
not provide security. Thus, before they make web purchases that require the transfer of
information such as a credit card number, users need assurance that the transaction is
safe. There are two issues: confidentiality of the data being transferred and authentica-
tion of the web site offering items for sale. As we will see in Chapter 29, encryption is
used to ensure confidentiality. In addition, a certificate mechanism can be used to au-
thenticate the merchant.

A security technology has been devised for use with web transactions. Known as
HTTP over SSL (HTTPS), the technology runs HTTP over the Secure Socket Layer
(SSL) protocol. HTTPS solves both security issues related to e-commerce: because they
are encrypted, data transfers are confidential, and because SSL uses a certificate tree, a
merchant is authenticated.

536 World Wide Web (HTTP) Chap. 25

25.18 Summary

The World Wide Web consists of hypermedia documents stored on a set of web
servers and accessed by browsers. Each document is assigned a URL that uniquely
identifies it; the URL specifies the protocol used to retrieve the document, the location
of the server, and the path to the document on that server.

The HyperText Markup Language, HTML, allows a document to contain text
along with embedded commands that control formatting. HTML also allows a docu-
ment to contain links to other documents.

A browser and server use the HyperText Transfer Protocol, HTTP, to transfer in-
formation. HTTP is an application-level protocol with explicit support for negotiation,
proxy servers, caching, and persistent connections. A related technology known as
HTTPS uses SSL to provide secure HTTP communication.

EXERCISES

25.1 Read the standard for URLs. What does it mean when a pound sign (#) is followed by a
string at the end of a URL?

25.2 Extend the previous exercise. Is it legal to send the pound sign suffix on a URL to a
web server? Why or why not?

25.3 How does a browser distinguish between a document that contains HTML and a docu-
ment that contains arbitrary text? To find out, experiment by using a browser to read
from a file. Does the browser use the name of the file or the contents to decide how to
interpret the file?

25.4 What is the purpose of an HTTP TRACE command?
25.5 What is the difference between an HTTP PUT command and an HTTP POST command?

When is each useful?
25.6 When is an HTTP Keep-Alive header used?
25.7 Can an arbitrary web server function as a proxy? To find out, choose an arbitrary web

server and configure your browser to use it as a proxy. Do the results surprise you?
25.8 Download and install the Squid transparent proxy cache. What networking facilities in

the OS does Squid use to cache web pages?
25.9 Read about HTTP’s must-revalidate cache control directive. Give an example of a web

page that would use such a directive.
25.10 Suppose you work for a company that configures your laptop computer always to use the

company’s proxy web server. Explain what happens if you travel and connect to the In-
ternet at a hotel.

25.11 If a browser does not send an HTTP Content-Length: header before a request, how does
a server respond?

25.12 Read more about HTTPS and explain the impact of HTTPS on caching. Under what cir-
cumstances can a proxy cache web pages when using HTTPS?

Exercises 537

25.13 Read the HTTP specification carefully. Can HTTP be used for streaming video? Ex-
plain why or why not.

25.14 Consider a denial-of-service attack on a web server in which a perpetrator arranges to
have many clients form a connection to the server and repeatedly send requests for non-
existent web pages. How can such an attack be prevented?

25.15 Because many web pages include ads, most web pages contain at least some dynamic
content (i.e., content that is generated when the page is fetched). How should a web
designer arrange such pages to maximize caching effectiveness?

Chapter Contents
26.1 Introduction, 539
26.2 Digitizing And Encoding, 539
26.3 Audio And Video Transmission And Reproduction, 540
26.4 Jitter And Playback Delay, 541
26.5 Real-time Transport Protocol (RTP), 542
26.6 Streams, Mixing, And Multicasting, 544
26.7 RTP Encapsulation, 544
26.8 RTP Control Protocol (RTCP), 545
26.9 RTCP Operation, 545
26.10 IP Telephony And Signaling, 546
26.11 Quality Of Service Controversy, 549
26.12 QoS, Utilization, And Capacity, 550
26.13 Emergency Services And Preemption, 551
26.14 IntServ And Resource Reservation, 551
26.15 DiffServ And Per-Hop Behavior, 553
26.16 Traffic Scheduling, 553
26.17 Traffic Policing And Shaping, 555
26.18 Summary, 556

26

Voice And Video Over IP
(RTP, RSVP, QoS)

26.1 Introduction

Previous chapters consider applications that transfer email messages and data files.
This chapter focuses on the transfer of real-time data, such as voice and video over an
IP network. In addition to discussing the protocols used to transport such data, the
chapter considers two broader issues. First, it examines protocols and technologies used
for commercial IP telephone service. Second, it examines the question of how routers
in an IP network can guarantee sufficient quality of service to provide high-quality
video and audio reproduction.

26.2 Digitizing And Encoding

Before voice or video can be sent over a packet network, hardware known as a
coder / decoder (codec) must be used to convert the analog signal to digital form. The
most common type of codec, a waveform coder, measures the amplitude of the input
signal at regular intervals and converts each sample into a digital value (i.e., an in-
teger)†. At the receiving side, a codec accepts a sequence of integers as input and
creates a continuous analog signal that matches the digital values.

Several digital encoding standards exist, with the main tradeoff being between
quality of reproduction and the size of digital representation. For example, the conven-
tional telephone system uses the Pulse Code Modulation (PCM) standard that specifies
taking an 8-bit sample every 125 µ seconds (i.e., 8000 times per second). As a result, a

†An alternative known as a voice coder / decoder (vocodec) recognizes and encodes human speech rather
than general waveforms.

539

540 Voice And Video Over IP (RTP, RSVP, QoS) Chap. 26

digitized telephone call produces data at a rate of 64 Kbps. The PCM encoding pro-
duces a surprising amount of output — storing an uncompressed 128-second audio clip
requires one megabyte of memory.

There are three ways to reduce the amount of data generated by digital encoding:
take fewer samples per second, use fewer bits to encode each sample, or use a digital
compression scheme to reduce the size of the resulting output. Various systems exist
that use one or more of the techniques, making it possible to find products that produce
encoded audio at a rate of only 2.2 Kbps. However, each technique has disadvantages.
The chief disadvantage of taking fewer samples or using fewer bits to encode a sample
is lower quality audio — the system cannot reproduce as large a range of sound fre-
quencies. The chief disadvantage of compression is delay — digitized output must be
held while it is compressed. Furthermore, because greater reduction in size requires
more processing, the best compression either requires a fast CPU or introduces longer
delay. Thus, compression is most useful when delay is unimportant (e.g., when the out-
put from a codec is being stored in a file).

26.3 Audio And Video Transmission And Reproduction

Many audio and video applications are classified as real-time because they require
timely transmission and delivery†. For example, interactive telephone calls and stream-
ing videos are classified as real-time because audio and video must be delivered without
significant delay or users find the result unsatisfactory. Timely transfer means more
than low delay because the resulting signal is unintelligible unless it is presented in ex-
actly the same order as the original and with exactly the same timing. Thus, if a send-
ing system takes a sample every 125 µ seconds. A receiving system must convert digi-
tal values to analog at exactly the same rate as they were sampled.

How can a network guarantee that the stream is delivered at exactly the same rate
that the sender used? The original U.S. telephone system introduced one answer: an
isochronous architecture. Isochronous design means that the entire system, including
the digital circuits, must be engineered to deliver output with exactly the same timing as
was used to generate input. Thus, an isochronous system with multiple paths between
any two points must be engineered so all paths have exactly the same delay.

TCP/IP technology and the global Internet are not isochronous. We have seen that
datagrams can be duplicated, delayed, or arrive out of order. Variance in delay, known
as jitter, is especially pervasive in IP networks. To allow meaningful transmission and
reproduction of digitized signals across a network with IP semantics, additional protocol
support is required. To handle datagram duplication and out-of-order delivery, each
transmission must contain a sequence number. To handle jitter, each transmission must
contain a timestamp that tells the receiver at which time the data in the packet should be
played back. Separating sequence and timing information allows a receiver to recon-
struct the signal accurately, independent of how the packets arrive. Such timing infor-
mation is especially critical when a datagram is lost or if the sender stops encoding dur-

†Timeliness is more important than reliability; there is no time for retransmission — data that does not
arrive in time must be skipped.

Sec. 26.3 Audio And Video Transmission And Reproduction 541

ing periods of silence; it allows the receiver to pause during playback the amount of
time specified by the timestamps. To summarize:

Because an IP internet is not isochronous, additional protocol support
is required to deliver real-time data such as audio and video. In ad-
dition to basic sequence information that allows detection of duplicate
or reordered packets, each packet must carry a separate timestamp
that tells the receiver the exact time at which the data in the packet
should be played.

26.4 Jitter And Playback Delay

How can a receiver recreate a signal accurately if the network introduces jitter?
The receiver must implement a playback buffer† as Figure 26.1 illustrates.

K

items extracted
at a fixed rate

items inserted at
a variable rate

Figure 26.1 The conceptual organization of a playback buffer that compen-
sates for jitter. The buffer holds K time units of data.

When a session begins, the receiver delays playback and places incoming data in
the buffer. When data in the buffer reaches a predetermined threshold, known as the
playback point, output begins. The playback point, labeled K in the figure, is measured
in time units of data to be played. Thus, playback begins when a receiver has accumu-
lated K time units of data.

Applications that play streaming audio or video usually present users with a graph-
ical representation of playback buffering. Typically, the display consists of a horizontal
bar that represents the time required to display the object. For example, if a user plays
the video for a 30-minute television show, the display represents time from zero to 30
minutes. At any time, shading is used to divide the bar into three segments. A segment
on the left shows the amount of the video that has been played, the next segment shows
the amount of the unplayed video that has been downloaded, and the third segment
shows the amount of the video that must still be downloaded. We use the term play-
back point to refer to the point in the video currently being displayed and the term
download point to refer to the amount of the video currently downloaded. Figure 26.2
shows how a playback display might appear to a user with the segments labeled.

†A playback buffer is also called a jitter buffer.

542 Voice And Video Over IP (RTP, RSVP, QoS) Chap. 26

0:00 0:30

already
played

downloaded, but
not yet played

playback
point

download
point

Figure 26.2 Illustration of a display that shows playback buffering for a 30-
minute streaming video with segments and points labeled.

As playback proceeds, datagrams continue to arrive. If there is no jitter, new data
will arrive at exactly the same rate old data is being extracted and played, meaning the
buffer will always contain exactly K time units of unplayed data. If a datagram experi-
ences a small delay, playback is unaffected. The buffer size decreases steadily as data
is extracted, and playback continues uninterrupted for K time units. When a delayed
datagram arrives, the buffer is refilled.

Of course, a playback buffer cannot compensate for datagram loss. In such cases,
playback eventually reaches an unfilled position in the buffer. In the figure, the play-
back point reaches the download point. When playback exhausts all available data, out-
put must pause for a time period corresponding to the missing data.

The choice of K is a compromise between loss and delay†. If K is too small, a
small amount of jitter causes the system to exhaust the playback buffer before the data
arrives. If K is too large, the system remains immune to jitter, but the extra delay, when
added to the transmission delay in the network, may be noticeable to users. Despite the
disadvantages, most applications that send real-time data across an IP internet depend
on playback buffering as the primary solution for jitter.

26.5 Real-time Transport Protocol (RTP)

The protocol used to transmit digitized audio or video signals over an IP internet is
known as the Real-time Transport Protocol (RTP). Interestingly, RTP does not contain
mechanisms that ensure packets traverse an internet in a timely manner; such guaran-
tees, if they exist, must be made by the underlying system. Instead, RTP provides two
key facilities: a sequence number in each packet that allows a receiver to detect out-of-
order delivery or loss, and a timestamp that allows a receiver to control playback.

Because RTP is designed to carry a wide variety of real-time data, including both
audio and video, RTP does not enforce a specific encoding for data. Instead, each pack-
et begins with a header; initial fields in the header specify how to interpret remaining
header fields and how to interpret the payload. Figure 26.3 illustrates the format of
RTP’s header.

†Although network loss and jitter can be used to determine a value for K dynamically, many playback
buffering schemes use a constant.

Sec. 26.5 Real-time Transport Protocol (RTP) 543

0 1 3 8 16 31

VER P X CC M PTYPE SEQUENCE NUM

TIMESTAMP

SYNCHRONIZATION SOURCE IDENTIFIER

CONTRIBUTING SOURCE ID
. . .

Figure 26.3 Illustration of the header used with RTP. Each message begins
with this header; the exact interpretation of remaining fields in
the message depends on the payload type, PTYPE.

As the figure shows, each packet begins with a two-bit RTP version number in
field VER; the current version is 2. The P bit specifies whether zero padding follows
the payload; it is used with encryption that requires data to be allocated in fixed-size
blocks. Some applications define an optional header extension to be placed between the
header shown above and the payload. If the application type allows an extension, the X
bit is used to specify whether the extension is present in the packet. The four-bit CC
field contains a count of contributing source IDs in the header. Interpretation of the M
(marker) bit depends on the application; it is used by applications that need to mark
points in the data stream (e.g., the beginning of each frame when sending video). The
seven-bit PTYPE field specifies the payload type being sent in the message; interpreta-
tion of remaining fields in the header and payload depends on the value in PTYPE. The
sixteen-bit SEQUENCE NUM field contains a sequence number for the packet. The
first sequence number in a particular session is chosen at random.

The payload type affects the interpretation of the TIMESTAMP field. Conceptual-
ly, a timestamp is a 32-bit value that gives the time at which the first octet of digitized
data was sampled, with the initial timestamp for a session chosen at random. The stan-
dard specifies that the timestamp is incremented continuously, even during periods
when no signal is detected and no values are sent, but the standard does not specify the
exact granularity. Instead, the granularity is determined by the payload type, which
means that each application can choose a clock granularity that allows a receiver to po-
sition items in the output with accuracy appropriate to the application. For example, if
a stream of audio data is being transmitted over RTP, a logical timestamp granularity of
one clock tick per sample might be appropriate†. Thus, an audio timestamp might have
a granularity of one tick for each 125 µ seconds. When a stream contains video data, a
sample might correspond to one frame. However, a granularity of one tick per frame
will be undesirable — a higher granularity will achieve smoother playback.

The separation of sequence number and timestamp is important for cases where a
sample spans multiple packets. In particular, the standard allows the timestamps in two
packets to be identical in the case where two packets contain data that was sampled at
the same time.

†The TIMESTAMP is sometimes referred to as a MEDIA TIMESTAMP to emphasize that its granularity
depends on the type of signal being measured.

544 Voice And Video Over IP (RTP, RSVP, QoS) Chap. 26

26.6 Streams, Mixing, And Multicasting

A key part of RTP is its support for translation and mixing. Translation refers to
changing the encoding of a stream at an intermediate station (e.g., to reduce the resolu-
tion of a video broadcast before sending to a cell phone). Mixing refers to the process
of receiving streams of data from multiple sources, combining them into a single
stream, and sending the result. To understand the need for mixing, imagine that indivi-
duals at multiple sites participate in a conference call using IP. To minimize the
number of RTP streams, the group can designate a mixer, and arrange for each site to
establish an RTP session to the mixer. The mixer combines the audio streams (possibly
by converting them back to analog and resampling the resulting signal), and sends the
result as a single digital stream.

Fields in the RTP header support mixing by indicating that mixing has occurred
and identifying the sources of data. The field in Figure 26.3 labeled SYNCHRONIZA-
TION SOURCE IDENTIFIER specifies the source of a stream. Each source must
choose a unique 32-bit identifier; the protocol includes a mechanism for resolving con-
flicts if they arise. When a mixer combines multiple streams, the mixer becomes the
synchronization source for the new stream. Information about the original sources is
not lost, however, because the mixer uses the variable-size CONTRIBUTING SOURCE
ID field to provide the synchronization IDs of streams that were mixed together. The
four-bit CC field gives a count of contributing sources, which means that a maximum of
15 sources can be listed.

RTP is designed to work with IP multicasting, and mixing is especially attractive
in a multicast environment. To understand why, imagine a teleconference that includes
many participants. Unicasting requires a station to send a copy of each outgoing RTP
packet to each participant. With multicasting, however, a station only needs to send
one copy of the packet, which will be delivered to all participants. Furthermore, if mix-
ing is used, all sources can unicast to a mixer, which combines them into a single
stream before multicasting. Thus, the combination of mixing and multicast results in
substantially fewer datagrams being delivered to each participating host.

26.7 RTP Encapsulation

Its name implies that RTP is a transport level protocol. Indeed, if it functioned
like a conventional transport protocol, RTP would require each message to be encapsu-
lated directly in an IP datagram. In fact, the name is a misnomer because RTP does not
function like a transport protocol†. That is, direct encapsulation of RTP messages in IP
datagrams does not occur in practice. Instead, RTP runs over UDP, meaning that each
RTP message is encapsulated in a UDP datagram. The chief advantage of using UDP is
concurrency — a single computer can have multiple applications using RTP without in-
terference.

Unlike many of the application protocols we have seen, RTP does not use a
reserved UDP port number. Instead, a port is allocated for use with each session, and
the remote application must be informed about the port number. By convention, RTP

†The name Real-time Transfer Protocol would have been more appropriate.

Sec. 26.7 RTP Encapsulation 545

chooses an even numbered UDP port; the following section explains that a companion
protocol, RTCP, uses the next sequential port number.

26.8 RTP Control Protocol (RTCP)

Our description of real-time transmission has focused on the protocol mechanisms
that allow a sender to associate a timestamp with real-time data and allow a receiver to
reproduce the content. Another aspect of real-time transmission is equally important:
monitoring of the underlying network during the session and providing out-of-band
communication between the endpoints. Such a mechanism is especially important in
cases where adaptive coding schemes are used. For example, an application might
choose a lower-bandwidth encoding when the underlying network becomes congested,
or a receiver might vary the size of its playback buffer when network delay or jitter
changes. Finally, an out-of-band mechanism can be used to send information in parallel
with the real-time data (e.g., captions to accompany a video stream).

A companion protocol and integral part of RTP, known as the RTP Control Proto-
col (RTCP), provides the needed control functionality. RTCP allows senders and re-
ceivers to transmit a series of reports to one another that contain additional information
about the data being transferred and the performance of the network. RTCP messages
are encapsulated in UDP for transmission†, and are sent using a port number one
greater than the port number of the RTP stream to which they pertain.

26.9 RTCP Operation

Figure 26.4 lists the five basic message types RTCP uses to allow senders and re-
ceivers to exchange information about a session.

Type Meaning
200 Sender report
201 Receiver report
202 Source description message
203 Bye message
204 Application specific message

Figure 26.4 The five RTCP message types. Each message begins with a
fixed header that identifies the type.

The last two messages on the list are easiest to understand. A sender transmits a
bye message when shutting down a stream and an application specific message to de-
fine a new message type. For example, to send closed-caption information along with a
video stream, an application might choose to define a new RTCP message type.

†Because some messages are short, the standard allows multiple RTCP messages to be combined into a
single UDP datagram for transmission.

546 Voice And Video Over IP (RTP, RSVP, QoS) Chap. 26

Receivers periodically transmit receiver report messages that inform the source
about conditions of reception. Receiver report messages are important for two reasons.
First, the messages allow each receiver participating in a session, as well as a sender, to
learn about reception conditions of other receivers. Second, the messages allow re-
ceivers to adapt their rate of reporting to avoid using excessive bandwidth and
overwhelming the sender. The adaptive scheme guarantees that the total control traffic
will remain less than 5% of the real-time data traffic and that receiver reports generate
less than 75% of the control traffic. Each receiver report identifies one or more syn-
chronization sources, and contains a separate section for each source. A section speci-
fies the highest sequence number packet received from the source, the cumulative and
percentage packet loss experienced, the time since the last RTCP sender report arrived
from the source, and the interarrival jitter.

Senders periodically transmit a sender report message that provides an absolute
timestamp. To understand the need for a timestamp, recall that RTP allows each stream
to choose a granularity for its timestamp and that the first timestamp is chosen at ran-
dom. The absolute timestamp in a sender report is essential because it provides the
only mechanism a receiver has to synchronize multiple streams. In particular, because
RTP requires a separate stream for each media type, the transmission of video and ac-
companying audio requires two streams. The absolute timestamp information allows a
receiver to play the two streams simultaneously.

In addition to the periodic sender report messages, senders also transmit source
description messages that provide general information about the user who owns or con-
trols the source. Each message contains one section for each outgoing RTP stream; the
contents are intended for humans to read. For example, the only required field consists
of a canonical name for the stream owner, a character string in the form:

user @ host

where host is either the domain name of the computer or its IP address in dotted de-
cimal or hex colon form, and user is a login name. Optional fields in the source
description contain further details such as the user’s email address (which may differ
from the canonical name), telephone number, the geographic location of the site, the ap-
plication program or tool used to create the stream, or other textual notes about the
source.

26.10 IP Telephony And Signaling

One aspect of real-time transmission stands out as especially important: the use of
IP as the foundation for telephone service. Known as IP telephony or Voice over IP
(VoIP), the approach is now employed by many telephone companies. The question
arises: what additional technologies are needed before VoIP can completely replace the
existing isochronous telephone system? Although no simple answer exists, three basic
components are needed. First, we have seen that a protocol like RTP is required when
transferring real-time data across an IP internet. The protocol labels each sample with a

Sec. 26.10 IP Telephony And Signaling 547

timestamp that allows a receiver to recreate an analog output signal that exactly matches
the original input signal. Second, a mechanism is needed to establish and terminate
telephone calls. Third, researchers are investigating ways an IP internet can be made to
function like an isochronous network.

The telephone industry uses the term signaling to refer to the process of establish-
ing a telephone call. Specifically, the signaling mechanism used in the conventional
Public Switched Telephone Network (PSTN) is Signaling System 7 (SS7); SS7 performs
call routing before audio is sent. Given a phone number, SS7 forms a circuit through
the network, rings the designated telephone, and connects the circuit when the phone is
answered. SS7 also handles details such as call forwarding and error conditions such as
the destination phone being busy.

Before IP can be used to make phone calls, signaling functionality must be avail-
able. Furthermore, to enable adoption by the phone companies, the signaling system
used by IP telephony must be compatible with extant telephone signaling — it must be
possible for the IP telephony system to interoperate with the conventional phone system
at all levels. Thus, it must be possible to translate between the signaling used with IP
and SS7, just as it must be possible to translate between the voice encoding used with
IP and standard PCM encoding. As a consequence, the two signaling mechanisms will
have equivalent functionality.

The general approach to interoperability uses a gateway between the IP phone sys-
tem and the conventional phone system. A call can be initiated on either side of the
gateway. When a signaling request arrives, the gateway translates and forwards the re-
quest; the gateway must also translate and forward the response. Finally, after signaling
is complete and a call has been established, the gateway must forward voice in both
directions, translating from the encoding used on one side to the encoding used on the
other.

Two groups have proposed standards for IP telephony. The ITU has defined a
suite of protocols known as H.323, and the IETF has proposed a signaling protocol
known as the Session Initiation Protocol (SIP). The next sections summarize the two
approaches.

26.10.1 H.323 Standards

The ITU originally created H.323 to allow the transmission of voice over local area
network technologies. The standard has been extended to allow transmission of voice
over IP internets, and telephone companies have adopted it. H.323 is not a single proto-
col. Instead, it specifies how multiple protocols can be combined to form a functional
IP telephony system. For example, in addition to gateways, H.323 defines devices
known as gatekeepers that each provide a contact point for telephones using IP. To ob-
tain permission to place outgoing calls and enable the phone system to direct incoming
calls to the correct destination, each IP telephone must register with a gatekeeper.
H.323 includes the necessary registration protocols.

548 Voice And Video Over IP (RTP, RSVP, QoS) Chap. 26

In addition to specifying a protocol for the transmission of real-time voice and
video, the H.323 framework provides protocols that specify how participants transfer
and share data. Of particular significance is data sharing related to a real-time
teleconference. For example, a pair of users engaged in an audio-video conference can
also share an on-screen whiteboard, send still images, or exchange copies of documents.

Figure 26.5 lists the four major protocols that form the building blocks of H.323.

Protocol Purpose
H.225.0 Signaling used to establish a call
H.245 Control and feedback during the call
RTP Real-time data transfer (sequence and timing)
T.120 Exchange of data associated with a call

Figure 26.5 The four basic protocols that H.323 uses for IP telephony.

Taken together, the suite of H.323 protocols covers all aspects of IP telephony, includ-
ing phone registration, signaling, real-time data encoding and transfer (both voice and
video), and control.

Figure 26.6 illustrates relationships among the protocols that constitute H.323. As
the figure shows, the entire suite ultimately depends on UDP and TCP running over IP.

IP

UDP TCP

RTP
RTCP

H.225.0
Registr.

H.225.0
Signaling

H.245
Control

T.120
Data

audio / video applications signaling and control

audio
codec

video
codec

data
applications

Figure 26.6 Relationships among major protocols that constitute the ITU’s
H.323 IP telephony standard. Protocols that are omitted handle
details such as security and FAX transmission.

26.10.2 Session Initiation Protocol (SIP)

The IETF has proposed an alternative to H.323, called the Session Initiation Proto-
col (SIP), that only covers signaling; SIP does not recommend specific codecs nor does
it require the use of RTP for real-time transfer. Thus, SIP does not provide all the func-
tionality of H.323.

Sec. 26.10 IP Telephony And Signaling 549

SIP uses client-server interaction, with servers being divided into two types. A
user agent server runs in a SIP telephone. Each user agent server is assigned an identi-
fier (e.g., user @ site), and can receive incoming calls. The second type of server is an
intermediate server that is placed between two SIP telephones to handle tasks such as
call set up and call forwarding. An intermediate server can function as a proxy server
that can forward an incoming call request to the next proxy server along the path or to
the called phone. An intermediate server can also function as a redirect server that tells
a caller how to reach the requested destination.

To provide information about a call, SIP relies on a companion protocol, the Ses-
sion Description Protocol (SDP). SDP is especially important in a conference call be-
cause it permits participants to join and leave a call dynamically. SDP also specifies
details such as the media encoding, protocol port numbers, and multicast address.

26.11 Quality Of Service Controversy

The term Quality of Service (QoS) refers to statistical performance guarantees that
a network system can make regarding loss, delay, throughput, and jitter. An isochro-
nous network that is engineered to meet strict performance bounds is said to provide
QoS guarantees, while a packet switched network that uses best effort delivery is said to
provide no QoS guarantee. Is guaranteed QoS needed for real-time transfer of voice
and video over IP? If so, how should it be implemented? A major controversy sur-
rounds the two questions. On one hand, engineers who designed the telephone system
insist that toll-quality voice reproduction requires the underlying system to provide QoS
guarantees about delay and loss for each phone call. On the other hand, engineers who
designed IP insist that the Internet works reasonably well without QoS guarantees and
that adding per-flow QoS is infeasible because routers will make the system both ex-
pensive and slow.

The QoS controversy has produced many proposals, implementations, and experi-
ments. Although it operates without QoS, the Internet is already used to send audio and
video. Commercial providers offer IP telephone services, and telephone companies
around the world are switching to IP. Many efforts to provide QoS have been unsuc-
cessful. For example, Asynchronous Transfer Mode (ATM), which was created by tele-
phone companies as an alternative to the Internet, has almost disappeared. ATM at-
tempted to provide QoS guarantees for each individual connection (i.e., each flow).
After an effort known as Integrated Services (IntServ) investigated defining per-flow
quality of service, the IETF changed direction and adopted a conservative Differentiated
Services (DiffServ) approach that divides traffic into separate classes. The differentiated
services scheme, which sacrifices fine grain control for less complex forwarding, is
sometimes called a Class of Service (CoS) approach.

550 Voice And Video Over IP (RTP, RSVP, QoS) Chap. 26

26.12 QoS, Utilization, And Capacity

The debate over QoS is reminiscent of earlier debates on resource allocation, such
as those waged over operating system policies for memory allocation and processor
scheduling. In the earlier debates, proponents argued that improved resource allocation
would optimize the overall throughput of a computing system, thereby giving users
better service. The argument has intuitive appeal, and much research was conducted.
Unfortunately, none of the processor and memory management schemes worked well in
practice. Users remained dissatisfied. After decades, however, computing did improve
and users were happy with the results. What changed? Processors became much faster
and memories became much larger. Instead of relying on scheduling algorithms to find
the best way to share a slow processor among many computations, the hardware became
so fast that a processor could keep up with the required computation.

The analogy with networking is strong. Proponents of QoS are making the same
argument about network resources. They assert that if network resources are scheduled
effectively (i.e., the network gives some packets priority over others), users will be hap-
py. The premise is especially attractive to network operators because, if true, it will
allow them to sell upgraded service with the existing underlying infrastructure. Unfor-
tunately, experience with networking reveals:

When a network has sufficient resources for all traffic, QoS con-
straints are unnecessary; when traffic exceeds network capacity, no
QoS system can satisfy all users’ demands.

The central issue is utilization. On the one hand, a network with 1% utilization
does not need QoS because no packet is ever blocked. On the other hand, a network
where utilization exceeds 100% of capacity will fail under any QoS. Nevertheless, pro-
ponents of QoS mechanisms assert that sophisticated QoS mechanisms should be able
to achieve two goals. First, by dividing the existing resources among more users, QoS
will make the system more fair. Second, by shaping the traffic from each user, QoS al-
lows the network to run at higher utilization without danger of collapse.

One of the major reasons complicated QoS mechanisms have not been widely
adopted arises from increases in the performance of networks. Network capacity has in-
creased dramatically during the past thirty years, and will continue to increase in the
foreseeable future. As long as rapid performance increases allow capacity to exceed
demand, QoS mechanisms merely constitute unnecessary overhead. However, if
demand rises more rapidly than capacity, QoS may become an economic issue — by as-
sociating higher prices with higher levels of service, ISPs can use cost to ration capacity
(and reap higher profits because no increase in infrastructure will be required).

Sec. 26.13 Emergency Services And Preemption 551

26.13 Emergency Services And Preemption

Are there valid reasons to prioritize traffic? Of course. For example, if network
management traffic has low priority, a manager may be unable to diagnose the source of
congestion or take steps to correct the problem. Similarly, consider a network that han-
dles VoIP telephone service. On such a network, emergency calls (to 911 in the U.S.)
should not be blocked waiting for normal traffic. Thus, packets that carry voice sam-
ples from an emergency call should have priority.

It may seem that the examples provide a strong argument for a QoS mechanism
that understands the purpose of each flow. As a later section explains, a per-flow mech-
anism is not needed. Emergency calls and network management traffic can be handled
by a system that has only two or three levels of priority. More important, a QoS mech-
anism that only guarantees a percentage of the underlying network capacity may not
work if the capacity is reduced. For example, consider a QoS system that reserves 1%
of the network capacity for management traffic. In normal situations, 1% may be more
than sufficient. However, consider what happens if a network hardware failure begins
to corrupt a few bits in packets randomly. The QoS guarantee means that after a net-
work management packet is sent, ninety-nine other packets will be sent before another
network management packet is sent (e.g., a retransmission). Thus, the time between
successive network management packets is long. If successive management packets are
corrupted, the time required to diagnose the problem can be long.

What is needed to handle cases like the one above is not a typical QoS system, but
an absolute priority scheme. In particular, we need a mechanism that allows emergency
traffic to preempt the network. Under a preemption policy, emergency traffic is granted
highest priority, which means that if a packet carrying emergency traffic arrives, the
packet is sent immediately without waiting for other traffic.

26.14 IntServ And Resource Reservation

Two decades ago, the IETF began to consider the question of resource allocation.
Specifically, the IETF began with the question: if QoS is needed, how can an IP net-
work provide it? At the time, many groups argued for fine-grain QoS, which led the
IETF to a program of research called Integrated Services (IntServ). The IntServ ap-
proach has two parts. Before data is transferred, the endpoints must specify the
resources needed, and all routers along the path between the endpoints must agree to
supply the resources; the procedure can be viewed as a form of signaling. Second, as
datagrams traverse the flow, routers need to monitor and control traffic forwarding.
Monitoring, sometimes called traffic policing, is needed to ensure that the traffic sent on
a flow does not exceed the specified bounds.

QoS guarantees are especially difficult in a packet switching network because traf-
fic is often bursty. For example, a flow that specifies an average throughput of 1 Mbps
may have 2 Mbps of traffic for ten milliseconds followed by no traffic for ten mil-
liseconds. Although the router must contend with a flood of packets for ten mil-

552 Voice And Video Over IP (RTP, RSVP, QoS) Chap. 26

liseconds, the flow still meets the required average. To control queueing and forward-
ing, a router that offers QoS usually implements a mechanism to handle packet bursts.
The idea, which is known as traffic shaping, is to smooth each burst. To smooth bursts,
a router temporarily queues incoming datagrams and then sends them at a steady rate of
1 Mbps.

26.14.1 Resource ReSerVation Protocol (RSVP)

As part of the IntServ work, the IETF developed two protocols to provide QoS: the
Resource ReSerVation Protocol (RSVP) to reserve resources and the Common Open
Policy Services (COPS)† protocol to enforce constraints. Both protocols require
changes to the basic Internet infrastructure — all routers must agree to reserve resources
(e.g., link capacity) for each flow between a pair of endpoints.

RSVP handles reservation requests and replies. It is not a route propagation proto-
col, nor does it enforce policies once a flow has been established. Instead, RSVP
operates before any data is sent. To initiate an end-to-end flow, an endpoint first sends
an RSVP path message to determine the path to the destination; the datagram carrying
the message uses a router alert option (IPv4) or a special hop-by-hop header (IPv6) to
guarantee that routers examine the message. After it receives a reply to its path mes-
sage, the endpoint sends an RSVP request message to reserve resources for the flow.
The request specifies the QoS bounds desired; each router that forwards the request
along to the destination must agree to reserve the resources the request specifies. If any
router along the path denies the request, the router uses RSVP to send a negative reply
back to the source. If all systems along the path agree to honor the request, RSVP re-
turns a positive reply.

Each RSVP flow is simplex (i.e., unidirectional). If a pair of communicating appli-
cations requires QoS guarantees in two directions, each endpoint must use RSVP to re-
quest a flow. Because RSVP uses existing forwarding, there is no guarantee that the
two flows will pass through the same routers, nor does approval of a flow in one direc-
tion imply approval in the other. We can summarize:

An endpoint uses RSVP to request a simplex flow through an IP inter-
net with specified QoS bounds. If each router along the path agrees
to honor the request, the flow is approved; otherwise, the flow is
denied. If a pair of applications needs QoS in two directions, each
endpoint must use RSVP to request a separate flow.

26.14.2 IntServ Enforcement (COPS)

When an RSVP request arrives, a router must consider two aspects: feasibility (i.e.,
whether the router has the resources necessary to satisfy the request) and policy (i.e.,
whether the request lies within policy constraints). Feasibility is a local decision — a
router can decide how to manage the bandwidth, memory, and processing power that is

†The name COPS is meant as a humorous reference to traffic police.

Sec. 26.14 IntServ And Resource Reservation 553

available. However, policy enforcement requires global cooperation — all routers must
agree to the same set of policies.

To implement global policies, the IETF architecture uses a two-level model with
client-server interaction between the levels. When a router receives an RSVP request, it
becomes a client that consults a server known as a Policy Decision Point (PDP) to
determine whether the request meets policy constraints. The PDP does not handle traf-
fic; it merely evaluates requests to see if they satisfy global policies. If a PDP approves
a request, the router must operate as a Policy Enforcement Point (PEP) to ensure traffic
adheres to the approved policy.

The COPS protocol defines the client-server interaction between a router and a
PDP (or between a router and a local PDP if an organization has multiple levels of poli-
cy servers). Although COPS defines its own message header, the underlying format
shares many details with RSVP. In particular, COPS uses the same format as RSVP for
individual items in a request message. Thus, when a router receives an RSVP request,
it can extract items related to policy, place them in a COPS message, and send the
result to a PDP.

26.15 DiffServ And Per-Hop Behavior

After much work on RSVP and IntServ, the IETF decided to pursue an entirely
different approach: instead of looking for technologies that provide QoS for each indivi-
dual flow, the new work focuses on groups of flows. That is, a small set of categories
is created, and each flow is assigned to one of the categories. The result is DiffServ†,
which differs from IntServ in two significant ways. First, instead of specifying
resources needed for an individual flow, DiffServ allocates service to a class (i.e., a set
of flows that match a specified set of parameters). Second, unlike the RSVP scheme in
which a reservation is made end-to-end, DiffServ allows each node along the path to de-
fine the service that a given class will receive. For example, a router can choose to
divide bandwidth so that the DiffServ class known as Expedited Forwarding (EF) re-
ceives 50% of the bandwidth and the remaining 50% is divided among the classes that
are known as Assured Forwarding (AF). The next router along the path can choose to
give the EF class 90% of the bandwidth and divide the AF classes among the remaining
10%. We use the phrase per-hop behavior to describe the approach and to point out
that DiffServ does not provide end-to-end guarantees.

26.16 Traffic Scheduling

To implement any form of QoS, a router needs to assign priorities to outgoing traf-
fic and choose which packet to send at a given time. The process of selecting from
among a set of packets is known as traffic scheduling, and the mechanism is called a
traffic scheduler. There are four aspects to consider when constructing a traffic
scheduler:

†Chapter 7 describes the DiffServ mechanism and the datagram header field it uses.

554 Voice And Video Over IP (RTP, RSVP, QoS) Chap. 26

Fairness. The scheduler should ensure that the resources (i.e.,
bandwidth) consumed by a flow fall within the amount assigned to
the flow†.

Delay. Packets on a given flow should not be delayed excessively.

Adaptability. If a given flow does not have packets to send, the
scheduler should divide the extra bandwidth among other flows
proportional to their assigned resources.

Computational Overhead. Because it operates in the fast path, a
scheduler must not incur much computational overhead. In particu-
lar, theoretical algorithms such as Generalized Processor Schedul-
ing (GPS) cannot be used.

The most straightforward practical traffic scheduling scheme is named Weighted
Round Robin (WRR) because it assigns each flow a weight and attempts to send data
from the flow according to the flow’s weight. For example, we can imagine three
flows, A, B, and C, with weights 2, 2, and 4, respectively. If all three flows have pack-
ets waiting to be sent, the scheduler should send twice as much from flow C (weight 4)
as from A or B (each with weight 2).

It may seem that a WRR scheduler could achieve the desired weights by selecting
from flows in the following order:

C C A B

That is, the scheduler repeatedly makes selections:

C C A B C C A B C C A B . . .

The pattern appears to achieve the desired weights because one half of the selec-
tions come from flow C, one quarter come from B, and one quarter come from A.
Furthermore, the pattern services each queue at regular intervals throughout the se-
quence, which means that no flow is delayed unnecessarily (i.e., the rate at which pack-
ets are sent from a given flow is constant).

Although the sequence above does make the packet rate match the assigned
weights, the WRR approach does not achieve the goal of making the data rates match
the weights because datagrams are not uniform size. For example, if the average da-
tagram size on flow C is half of the average datagram size on flow A, selecting flow C
twice as often as flow A will make the data rate of the two flows equal.

To solve the problem, a modified algorithm was invented that accommodates
variable-size packets. Known as Deficit Round Robin (DRR), the algorithm computes
weights in terms of total octets sent rather than number of packets. Initially, the algo-
rithm allocates a number of octets to each flow proportional to the bandwidth the flow
should receive. When a flow is selected, DRR transmits as many packets as possible
without exceeding the allotted number of octets. The algorithm then computes the

†Throughout this section we discuss scheduling among flows; the reader should understand that when
DiffServ is used, the same techniques are used for traffic scheduling among classes.

Sec. 26.16 Traffic Scheduling 555

remainder (i.e., the difference between the number of octets that was allocated and the
size of the packets actually sent), and adds the remainder to the amount that will be sent
in the next round. Thus, DRR keeps a running total of the deficit that each flow should
receive. Even if the deficit gained on a given round is small, the value will grow
through multiple rounds until it is large enough to accommodate an extra packet. Thus,
over time the proportion of data that DRR sends from a given flow approaches the
weighted value for the flow.

Round-robin scheduling algorithms such as WRR and DRR have advantages and
disadvantages. The chief advantage arises from efficiency: once weights have been as-
signed, little computation is required to make a packet selection. In fact, if all packets
are the same size and weights are selected as multiples, the weighted selection can be
achieved through the use of an array rather than through computation.

Despite the advantages, round-robin algorithms do have drawbacks. First, the de-
lay that a given flow experiences depends on the number of other flows that have traffic
to send. In the worst case, a given flow may need to wait while the scheduler sends one
or more packets from each of the other flows. Second, because they send a burst of
packets from a given queue and then delay while servicing other queues, round robin al-
gorithms can introduce jitter.

26.17 Traffic Policing And Shaping

A traffic policer is required to verify that arriving traffic does not exceed its stated
statistical profile. Suppose a scheduler allocates 25% of the outgoing bandwidth to a
DiffServ class, Q. If three incoming flows all map to class Q, the flows will compete
for the bandwidth allocated to Q. If the system does not monitor incoming traffic, one
of the flows might take all the bandwidth allocated to class Q. So, a policing mecha-
nism protects other flows to insure that each receives its fair share.

Several mechanisms have been proposed for traffic policing. In general, the idea is
to slow down traffic to an agreed rate, the traffic shaping idea mentioned above. An
early traffic shaping mechanism, based on the leaky bucket approach, uses a counter to
control the packet rate. Conceptually, the algorithm increments the counter periodical-
ly; each time a packet arrives, the algorithm decrements the counter. If the counter be-
comes negative, the incoming flow has exceeded its allocated packet rate.

Using a packet rate to shape traffic does not make sense in the Internet because da-
tagrams vary in size. Thus, more sophisticated policing schemes have been proposed to
accommodate variable-size packets. For example, a token bucket mechanism extends
the approach outlined above by making the counter correspond to bits rather than pack-
ets. The counter is incremented periodically in accordance with the desired data rate,
and decremented by the number of bits in each arriving packet.

In practice, the policing mechanisms described do not require a timer to periodical-
ly update a counter. Instead, each time a packet arrives, the policer examines the clock
to determine how much time has elapsed since the flow was processed last, and uses the
amount of time to compute an increment for the counter. Computing an increment has
less computational overhead, and makes traffic policing more efficient.

556 Voice And Video Over IP (RTP, RSVP, QoS) Chap. 26

26.18 Summary

Real-time data consists of audio or video in which the playback of a sample must
match the time at which the sample was captured. A hardware unit known as a codec
encodes analog data such as audio in digital form. The telephone standard for digital
audio encoding, Pulse Code Modulation (PCM), produces digital values at 64 Kbps;
other encodings sacrifice some fidelity to achieve lower bit rates.

RTP is used to transfer real-time data across an IP network. Each RTP message
contains two key pieces of information: a sequence number and a media timestamp. A
receiver uses the sequence number to place messages in order and detect lost datagrams.
A receiver uses a timestamp to determine when to play the encoded values. An associ-
ated control protocol, RTCP, is used to supply information about sources and to allow a
mixer to combine several streams. To accommodate burstiness and jitter an application
that plays real-time data uses a playback buffer and introduces a slight delay before
playing an item.

Commercial IP telephone services exist that use VoIP technology; most telephone
companies are moving to IP. Two standards have been created for use with IP telepho-
ny: the ITU created the H.323 standard and the IETF created SIP.

A debate continues over whether Quality of Service (QoS) guarantees are needed
to provide real-time services. Initially, the IETF followed a program known as Integrat-
ed Services (IntServ) that explored per-flow QoS. Later, the IETF decided to move to a
Differentiated Services (DiffServ) approach that provides QoS among classes of flows
rather than individual flows.

Implementation of QoS requires a traffic scheduling mechanism to select packets
from outgoing queues and traffic policing to monitor incoming flows. Because it is
computationally efficient and handles variable-size packets, the Deficit Round Robin al-
gorithm is among the most practical for traffic scheduling. The leaky bucket algorithm
is among the most pragmatic for traffic policing and shaping.

EXERCISES

26.1 Read about the Real-Time Streaming Protocol, RTSP. What are the major differences
between RTSP and RTP?

26.2 Find out how the Skype voice telephone service operates. How does it set up a connec-
tion?

26.3 Network operators have an adage: you can always buy more bandwidth, but you can’t
buy lower delay. What does the adage mean?

26.4 If an RTP message arrives with a sequence number far greater than the sequence expect-
ed, what does the protocol do? Why?

26.5 Consider a video shot from your cell phone and transferred over the Internet in real time.
How much capacity is required? (Hint: what is the resolution of the camera in your cell
phone?)

Exercises 557

26.6 Consider a conference telephone call that uses RTP to connect N users. Give two possi-
ble implementations that could achieve the call.

26.7 A movie usually has two conceptual streams: a video stream and an audio stream. How
can RTP be used to transfer a movie?

26.8 Are sequence numbers necessary in RTP, or can a timestamp be used instead? Explain.
26.9 An engineer insists that “SIP is for children; grown-ups all use H.323.” What does the

engineer mean? Guess the type of company for which the engineer works.
26.10 When VoIP was first introduced, some countries decided to make the technology illegal.

Find out why.
26.11 Would you prefer an Internet where QoS was required for all traffic? Why or why not?
26.12 Measure the utilization on your connection to the Internet. If all traffic required QoS

reservation, would service be better or worse? Explain.
26.13 Suppose you are asked to set up DiffServ classes for a cable ISP. The ISP’s network,

which only uses IPv6, must handle: broadcast television channels, voice (i.e., VoIP),
movie download, residential Internet service, and streaming video on demand. How do
you assign DiffServ classes? Why?

26.14 If the input to a traffic shaper is extremely bursty (i.e., sporadic bursts of packets with
fairly long periods of no traffic), the output from the shaper may not be steady. What
technique can be used to guarantee smooth output? (Hint: consider a method described
in a previous chapter.)

Chapter Contents
27.1 Introduction, 559
27.2 The Level Of Management Protocols, 559
27.3 Architectural Model, 561
27.4 Protocol Framework, 562
27.5 Examples of MIB Variables, 564
27.6 The Structure Of Management Information, 564
27.7 Formal Definitions Using ASN.1, 565
27.8 Structure And Representation Of MIB Object Names, 566
27.9 MIB Changes And Additions For IPv6, 571
27.10 Simple Network Management Protocol, 571
27.11 SNMP Message Format, 574
27.12 An Example Encoded SNMP Message, 577
27.13 Security In SNMPv3, 579
27.14 Summary, 580

27

Network Management
(SNMP)

27.1 Introduction

In addition to protocols that provide network level services and application pro-
grams that use those services, a subsystem is needed that allows a manager to configure
a network, control routing, debug problems, and identify situations in which computers
violate policies. We refer to such activities as network management. This chapter con-
siders the ideas behind TCP/IP network management, and describes a protocol used for
network management.

27.2 The Level Of Management Protocols

When data networks first appeared, designers followed a management approach
used in telephone systems by designing special management mechanisms into the net-
work. For example, wide area networks usually defined management messages as part
of their link-level protocol. If a packet switch began misbehaving, a network manager
could instruct a neighboring packet switch to send it a special control packet. An in-
coming control packet caused the receiver to suspend normal operation and respond to
the command in the control packet. A manager could interrogate a packet switch, ex-
amine or change routes, test one of the communication interfaces, or reboot the switch.
Once the problem was repaired, a manager could instruct the switch to resume normal
operations. Because management tools were part of the lowest-level protocol, managers
were often able to control switches even if higher-level protocols failed.

559

560 Network Management (SNMP) Chap. 27

Unlike a homogeneous wide area network, the Internet does not have a single
link-level protocol. Instead, the Internet consists of multiple physical network types and
devices from multiple vendors. As a result, the Internet requires a new network
management paradigm that offers three important capabilities. First, a single manager
must be able to control many types of devices, including IP routers, bridges, modems,
workstations, and printers. Second, because the Internet contains multiple types of net-
works, the controlled entities will not share a common link-level protocol. Third, the
set of machines a manager controls may attach to a variety of networks. In particular, a
manager may need to control one or more machines that do not attach to the same phy-
sical network as the manager’s computer. Thus, it may not be possible for a manager to
communicate with machines unless the management software uses protocols that pro-
vide end-to-end connectivity across an internet. As a consequence, the network
management protocol used with TCP/IP operates above the transport level:

In a TCP/IP internet, a manager needs to examine and control hosts,
routers, and other network devices. Because such devices attach to
arbitrary networks, protocols for network management operate at the
application layer and communicate using TCP/IP transport layer pro-
tocols.

Designing network management software to operate at the application level has
several advantages. Because the protocols can be designed without regard to the under-
lying network, one set of protocols can be used for all networks. Because the protocols
can be designed without regard to the hardware on the managed device, the same proto-
cols can be used for all managed devices. From a manager’s point of view, having a
single set of management protocols means uniformity — all routers respond to exactly
the same set of commands. Furthermore, because the management software uses IP for
communication, a manager can control the routers across an entire TCP/IP internet
without having direct attachment to every physical network or router.

Of course, building management software at the application level also has disad-
vantages. Unless the operating system, IP software, and transport protocol software
work correctly, the manager may not be able to contact a router that needs managing.
For example, if a router’s forwarding table becomes damaged, it may be impossible to
correct the table or reboot the machine from a remote site. If the operating system on a
router crashes, it will be impossible to reach the application program that implements
the internet management protocols, even if the router can still process hardware inter-
rupts and forward packets. When the idea of building network management at the ap-
plication layer was first proposed, many network engineers declared that the whole ap-
proach was flawed. In fact, many network researchers also raised serious objections.

Sec. 27.3 Architectural Model 561

27.3 Architectural Model

Despite the potential disadvantages, having TCP/IP management software operate
at the application level has worked well in practice. The most significant advantage of
placing network management protocols at a high level becomes apparent when one con-
siders a large internet, where a manager’s computer does not need to attach directly to
all physical networks that contain managed entities. Figure 27.1 shows an example in-
tranet that helps explain the management architecture.

MA

MA

MA

MAMA

MC

MA

MA

Devices being managed

Manager’s Host

Router being managed

Other devices

Figure 27.1 Example of network management where a manager invokes
management client (MC) software that can contact management
agent (MA) software that runs on devices throughout an intranet.

As the figure shows, client software usually runs on the manager’s workstation.
Each participating managed system, which can be a router or a network device, runs a
management server†. In IETF terminology, the management server software is called a
management agent or merely an agent. A manager invokes client software on the local

†We use the term managed system to include conventional devices such as routers and desktop comput-
ers, as well as specialized devices such as printers and sensors.

562 Network Management (SNMP) Chap. 27

host computer and specifies an agent with which it wishes to communicate. After the
client connects to the specified agent, the manager can request that the client software
send queries to obtain information or send commands that configure and control the
managed device.

Of course, not all devices in a large internet fall under a single manager. Most
managers only control devices at their local sites; a large site may have multiple
managers. Network management software uses an authentication mechanism to ensure
only authorized managers can access or control a particular device. Some management
protocols support multiple levels of authorization, allowing a manager specific
privileges on each device. For example, a specific router might allow several managers
to obtain information, while only allowing a select subset of managers to change infor-
mation or control the router.

27.4 Protocol Framework

TCP/IP network management protocols divide the management problem into two
parts and specify separate standards for each part. The first part concerns communica-
tion between client software running in a manager’s host and an agent running in a
managed device. The protocol defines the format and meaning of messages clients and
servers exchange as well as the form of names and addresses. The second part concerns
the specific devices being managed. We will see that the protocol specifies a set of data
items a managed device must make available to a manager, the name of each data item,
the syntax used to express the name, and the semantics associated with accessing or
modifying the data item.

27.4.1 The TCP/IP Protocol For Network Management

The Simple Network Management Protocol (SNMP) is the standard for network
management in the TCP/IP protocol suite. SNMP has evolved through three genera-
tions. Consequently, the current version is known as SNMPv3. The changes among
versions have been relatively minor — all three versions use the same general frame-
work, and many features are backward compatible.

In addition to specifying details such as the message format and the use of trans-
port protocols, the SNMP standard defines a set of operations and the meaning of each.
We will see that the approach is minimalistic — a few operations provide all functional-
ity. We will start by examining SNMP for IPv4; a later section summarizes the changes
for IPv6.

27.4.2 A Standard For Managed Information

A device being managed maintains control and status information that a manager
can access. For example, a router keeps statistics on the status of its network interfaces
along with counts of incoming and outgoing packets, dropped datagrams, and error mes-

Sec. 27.4 Protocol Framework 563

sages generated. A modem keeps statistics about the number of bits (or characters) sent
and received and the status of the carrier (whether the modem at the other end of the
connection is responding). Although it allows a manager to access statistics, SNMP
does not specify exactly which data can be accessed on which devices. Instead, a
separate standard specifies the details for each type of device. Known as a Management
Information Base (MIB), the standard specifies the data items that each managed device
must keep, the operations allowed on each data item, and the meaning of the operations.
For example, the MIB for IP specifies that the software must keep a count of all octets
that arrive over each network interface and that network management software can only
read the count.

The MIB for TCP/IP divides management information into many categories. The
choice of categories is important because identifiers used to specify items include a
code for the category. Figure 27.2 lists a few examples of categories used with IPv4.

MIB category Includes Information About
system The host or router operating system

interfaces Individual network interfaces
at Address translation (e.g., ARP mappings)
ip Internet Protocol software version 4

ipv6 Internet Protocol software version 6
icmp Internet Control Message Protocol software version 4

ipv6Icmp Internet Control Message Protocol software version 6
tcp Transmission Control Protocol software
udp User Datagram Protocol software
ospf Open Shortest Path First software
bgp Border Gateway Protocol software

rmon Remote network monitoring
rip-2 Routing Information Protocol software
dns Domain name system software

Figure 27.2 Example categories of MIB information. The category is encod-
ed in the identifier used to specify an object.

Keeping the MIB definition independent of the network management protocol has
advantages for both vendors and users. A vendor can include SNMP agent software in
a product such as a router, with the guarantee that the software will continue to adhere
to the standard after new MIB items are defined. A customer can use the same network
management client software to manage multiple devices that have slightly different ver-
sions of a MIB. Of course, a device that does not have new MIB items cannot provide
the information for those items. However, because all managed devices use the same
language for communication, each device can parse a query and either provide the re-
quested information or send an error message explaining the requested item is not avail-
able.

564 Network Management (SNMP) Chap. 27

27.5 Examples of MIB Variables

Early versions of SNMP collected variables together in a single large MIB, with
the entire set documented in a single RFC. To avoid having the MIB specification be-
come unwieldy, the IETF decided to allow the publication of many individual MIB doc-
uments that each specify a set of MIB variables for a specific type of device. As a
result, more than 100 separate MIB documents have been defined as part of the stan-
dards process; they specify more than 10,000 individual variables. For example,
separate RFCs now exist that specify the MIB variables associated with devices such as:
a hardware bridge, an uninterruptible power supply, an Ethernet switch, and a cable
modem. In addition, many vendors have defined MIB variables for their specific
hardware or software products.

Examining a few of the MIB data items associated with TCP/IP protocols will help
clarify the contents. Figure 27.3 lists example MIB variables along with their
categories.

Most of the items listed in Figure 27.3 have numeric values — each can be stored
in a single integer. However, the MIB also defines more complex structures. For ex-
ample, the MIB variable ipRoutingTable refers to an entire forwarding table†. Addi-
tional MIB variables under the table (not listed in the figure) define the contents of a
forwarding table entry, and allow the network management protocols to reference an in-
dividual entry in the forwarding table, including the prefix, address mask, and next hop
fields. Of course, MIB variables present only a logical definition of each data item —
the internal data structures a router uses may differ from the MIB definition. When a
query arrives, software in the agent on the router is responsible for mapping between
the MIB variable references in the query and the internal data structure the router uses
to store the information.

27.6 The Structure Of Management Information

In addition to the standards that specify MIB variables and their meanings, a
separate standard specifies a set of rules used to define and identify MIB variables. The
rules are known as the Structure of Management Information (SMI) specification. To
keep network management protocols simple, the SMI places restrictions on the types of
variables allowed in the MIB, specifies the rules for naming MIB variables, and creates
rules for defining variable types. For example, the SMI standard includes definitions of
the term Counter (defining it to be an integer in the range of 0 to 232 – 1) and the term
InetAddress (defining it to be a string of octets), and specifies that the definition of MIB
variables should use the terminology. More important, the rules in the SMI describe
how the MIB refers to tables of values (e.g., an IPv4 routing table).

†When the MIB was defined, the terminology routing table was used instead of forwarding table.

Sec. 27.6 The Structure Of Management Information 565

MIB Variable Meaning
Category system

sysUpTime Time since last reboot
Category system

ifNumber Number of network interfaces
ifMtu MTU for an interface (IPv4)
ipv6IfEffectiveMtu MTU for an interface (IPv6)

Category ip
ipDefaultTTL Value IPv4 uses as a TTL
ipv6DefaultHopLimit Value IPv6 uses as a hop limit
ipInReceives Number of IPv4 datagrams received
ipv6IfStatsInReceives Number of IPv6 datagrams received
ipForwDatagrams Number of IPv4 datagrams forwarded
ipv6IfStatsOutForwDatagrams Number of IPv6 datagrams forwarded
ipOutNoRoutes Number of routing failures
ipReasmOKs Number of datagrams reassembled
ipFragOKs Number of IPv4 datagrams fragmented
ipv6IfStatsOutFragOKs Number of IPv6 datagrams fragmented
ipRoutingTable IPv4 forwarding table
ipv6RouteTable IPv6 forwarding table
ipv6AddrTable IPv6 interface address table
ipv6IfStatsTable IPv6 statistics for each interface

Category icmp
icmpInEchos Number of ICMP Echo Requests recvd

Category tcp
tcpRtoMin Minimum retransmission time for TCP
tcpMaxConn Maximum TCP connections allowed
tcpInSegs Number of segments TCP has received

Category udp
udpInDatagrams Number of UDP datagrams received

Figure 27.3 Examples of MIB variables along with their categories.

27.7 Formal Definitions Using ASN.1

The SMI standard specifies that all MIB variables must be defined and referenced
using ISO’s Abstract Syntax Notation 1 (ASN.1†). ASN.1 is a formal language that has
two main features: a notation used in documents that humans read and a compact en-
coded representation of the same information used in communication protocols. In both
cases, the use of a precise and formal notation removes ambiguity from both the
representation and meaning. For example, instead of saying that a variable contains an
integer value, a protocol designer who uses ASN.1 must state the exact form and range

†ASN.1 is usually pronounced by reading the dot: “A-S-N dot 1”.

566 Network Management (SNMP) Chap. 27

of each numeric value. Such precision is especially important when implementations
include heterogeneous computers that do not all use the same representations for data
items.

In addition to specifying the name and contents of each item, ASN.1 defines a set
of Basic Encoding Rules (BER) that specify precisely how to encode both names and
data items in a message. Thus, once the documentation of a MIB has been expressed
using ASN.1, variables can be translated directly and mechanically into the encoded
form used in messages. In summary:

The TCP/IP network management protocols use a formal notation
called ASN.1 to define names and types for variables in the manage-
ment information base. The precise notation makes the form and con-
tents of variables unambiguous.

27.8 Structure And Representation Of MIB Object Names

We said that ASN.1 specifies how to represent both data items and names. How-
ever, understanding the names used for MIB variables requires us to know about the
underlying namespace. Names for MIB variables are taken from the object identifier
namespace administered by ISO and ITU. The key idea behind the object identifier
namespace is that it provides a namespace in which all possible objects can be designat-
ed. The namespace is not restricted to variables used in network management — it in-
cludes names for arbitrary objects (e.g., each international protocol standard document
has a name).

The object identifier namespace is absolute (global), meaning that names are struc-
tured to make them globally unique. Like most namespaces that are large and absolute,
the object identifier namespace is hierarchical. Authority for parts of the namespace is
subdivided at each level, allowing individual groups to obtain authority to assign some
of the names without consulting a central authority for each assignment†.

Figure 27.4 illustrates pertinent parts of the object identifier hierarchy and shows
the position of the mgmt and mib nodes used by TCP/IP network management proto-
cols. The root of the object identifier hierarchy is unnamed, but has three direct descen-
dants managed by: ISO, ITU, and jointly by ISO and ITU, as the top level of the figure
illustrates. Each node in the hierarchy is assigned both a short textual name and a
unique integer identifier (humans use the text string to help understand object names;
computer software uses the integer to form a compact, encoded representation for use in
messages). ISO allocated the org subtree for use by other national or international stan-
dards organizations (including U.S. standards organizations). The U.S. National Insti-
tute for Standards and Technology (NIST)‡ allocated subtree dod under org for the U.S.
Department of Defense. Finally, the IAB petitioned the Department of Defense to allo-
cate an internet subtree in the namespace and then to allocate four subtrees, including
mgmt. The mib subtree was allocated under mgmt.

†Chapter 23 explains how authority is delegated in a hierarchical namespace.
‡NIST was formerly the National Bureau of Standards.

Sec. 27.8 Structure And Representation Of MIB Object Names 567

unnamed

itu
2

iso
1

joint-
iso-itu

3

org
3

dod
6

internet
1

mgmt
2

directory
1

experi-
mental

3
private

4

mib
1

Figure 27.4 Part of the hierarchical object identifier namespace used to name
MIB variables. An object’s name begins with a path through the
hierarchy.

The name of an object in the hierarchy is the sequence of labels on the nodes along
a path from the root to the object. The sequence is written with periods separating the
individual components. When expressed for humans to read, textual names are used.
When names are sent in messages, numeric values are used instead. For example, the
string 1 . 3 . 6 . 1 . 2 . 1 denotes the node labeled mib. Because they fall under the MIB
node, all MIB variables have names beginning with the prefix 1 . 3 . 6 . 1 . 2 . 1.

568 Network Management (SNMP) Chap. 27

Earlier we said that the MIB groups variables into categories. The exact meaning
of the categories can now be explained: the categories are the subtrees of the mib node
of the object identifier namespace. Figure 27.5 illustrates the idea by showing the first
few nodes for subtrees under the mib node.

internet
1

..

.

mgmt
2

mib
1

directory
1

experi-
mental

3
private

4

system
1

inter-
faces

2

addr.
trans.

3
ip
4

icmp
5

tcp
6

udp
7

label from the root to
this point is 1 . 3 . 6

Figure 27.5 Part of the object identifier namespace under the IAB mib node.
Each subtree corresponds to one of the categories of MIB vari-
ables.

Two examples will make the naming syntax clear. Figure 27.5 shows that the
category labeled ip has been assigned the numeric value 4. Thus, the names of all MIB
variables corresponding to IP have an identifier that begins with the prefix
1 . 3 . 6 . 1 . 2 . 1 . 4. If one wanted to write out the textual labels instead of the numeric
representation, the name would be:

iso . org . dod . internet . mgmt . mib . ip

A MIB variable named ipInReceives has been assigned numeric identifier 3 under the ip
node in the namespace, so its name is:

Sec. 27.8 Structure And Representation Of MIB Object Names 569

iso . org . dod . internet . mgmt . mib . ip . ipInReceives

and the corresponding numeric representation is:

1 . 3 . 6 . 1 . 2 . 1 . 4 . 3

When network management protocols use names of MIB variables in messages, each
name has a suffix appended. For simple variables, the suffix 0 refers to the instance of
the variable with that name. So, when it appears in a message sent to a router, the
numeric representation of ipInReceives is:

1 . 3 . 6 . 1 . 2 . 1 . 4 . 3 . 0

which refers to the instance of ipInReceives on that router. Note that there is no way to
guess the numeric value or suffix assigned to a variable. One must consult the pub-
lished standards to find which numeric values have been assigned to each object type.
Thus, programs that provide mappings between the textual forms and underlying numer-
ic values do so entirely by consulting tables of equivalences — there is no closed-form
computation that performs the transformation.

As a second, more complex example, consider the MIB variable ipAddrTable,
which contains a list of the IPv4 addresses for each network interface. The variable ex-
ists in the namespace as a subtree under ip, and has been assigned the numeric value 20.
Therefore, a reference to it has the prefix:

iso . org . dod . internet . mgmt . mib . ip . ipAddrTable

with a numeric equivalent:

1 . 3 . 6 . 1 . 2 . 1 . 4 . 20

In programming language terms, we think of the IP address table as a one-dimensional
array, where each element of the array consists of a structure (record) that contains five
items: an IP address, the integer index of an interface corresponding to the entry, an IP
subnet mask, an IP broadcast address, and an integer that specifies the maximum
datagram size that the router will reassemble. Of course, it is unlikely that a router has
such an array in memory. The router may keep this information in many variables or
may need to follow pointers to find it. However, the MIB provides a name for the array
as if it existed, and allows network management software on individual routers to map
table references into appropriate internal variables. The point is:

Although they appear to specify details about data structures, MIB
standards do not dictate the implementation. Instead, MIB definitions
provide a uniform, virtual interface that managers use to access data;
an agent must translate between the virtual items in a MIB and the
internal implementation.

570 Network Management (SNMP) Chap. 27

Using ASN.1 style notation, we can define ipAddrTable:

ipAddrTable ::= SEQUENCE OF IpAddrEntry

where SEQUENCE and OF are keywords that define an ipAddrTable to be a one-
dimensional array of IpAddrEntrys. Each entry in the array is defined to consist of five
fields (the definition assumes that IpAddress has already been defined).

IpAddrEntry ::= SEQUENCE {
ipAdEntAddr

IpAddress,
ipAdEntIfIndex

INTEGER,
ipAdEntNetMask

IpAddress,
ipAdEntBcastAddr

IpAddress,
ipAdEntReasmMaxSize

INTEGER (0..65535)
}

Further definitions must be given to assign numeric values to ipAddrEntry and to
each item in the IpAddrEntry sequence. For example, the definition:

ipAddrEntry { ipAddrTable 1 }

specifies that an ipAddrEntry is under ipAddrTable and has numeric value 1. Similarly,
the definition:

ipAdEntNetMask { ipAddrEntry 3 }

assigns ipAdEntNetMask numeric value 3 under ipAddrEntry.
We said that ipAddrTable is like a one-dimensional array. However, there is a sig-

nificant difference in the way programmers use arrays and the way network manage-
ment software uses tables in the MIB. Programmers think of an array as a set of ele-
ments that have an index used to select a specific element. For example, the program-
mer might write xyz[3] to select the third element from array xyz. ASN.1 syntax does
not use integer indices. Instead, MIB tables append a suffix onto the name to select a
specific element in the table. For our example of an IP address table, the standard
specifies that the suffix used to select an item consists of an IP address. Syntactically,
the IP address (in dotted decimal notation) is concatenated onto the end of the object
name to form the reference. Thus, to specify the network mask field in the IP address
table entry corresponding to address 128 . 10 . 2 . 3, one uses the name:

iso.org.dod.internet.mgmt.mib.ip.ipAddrTable.ipAddrEntry.ipAdEntNetMask.128.10.2.3

Sec. 27.8 Structure And Representation Of MIB Object Names 571

which, in numeric form, becomes:

1 . 3 . 6 . 1 . 2 . 1 . 4 . 20 . 1 . 3 . 128 . 10 . 2 . 3

Although concatenating an index to the end of a name may seem awkward, it provides a
powerful tool that allows clients to search tables without knowing the number of items
or the type of data used as an index. A later section shows how network management
protocols use this feature to step through a table one element at a time.

27.9 MIB Changes And Additions For IPv6

IPv6 changes the MIB slightly. Instead of using current MIB variables that
correspond to IP (e.g., a count of all IP datagrams that have arrived), the IETF decided
to use separate variables for IPv6. Thus, new names were defined for IPv6 and the
previously-defined MIB variables for IP now refer only to IPv4. Similarly, a new
category has been established for ICMPv6.

Part of the motivation for a new MIB structure arises because IPv6 did not merely
change the size of addresses. Instead, IPv6 changes the way addresses are assigned. In
particular, IPv6 allows multiple IP prefixes to be assigned to a given interface simul-
taneously. Therefore, the IPv6 MIB must be structured in a way that creates a table
(i.e., an array) of entries that hold addresses. Similarly, because IPv6 uses Neighbor
Discovery instead of ARP, an IPv6 table gives IP-to-MAC address bindings. Figure
27.6 lists the tables used with IPv6 and explains the purpose of each.

Table Purpose
ipv6IfTable Information about IPv6 interfaces
ipv6IfStatsTable Traffic statistics for each interface
ipv6AddrPrefixTable IPv6 prefixes for each interface
ipv6AddrTable IPv6 addresses for each interface
ipv6RouteTable The IPv6 (unicast) forwarding table
ipv6NetToMediaTable IPv6 address-to-physical address

Figure 27.6 The six major MIB tables introduced for IPv6 and a description
of their contents.

27.10 Simple Network Management Protocol

Network management protocols specify communication between a network
management application running on the manager’s computer and a network manage-
ment agent (i.e., server) executing on a managed device. In addition to defining the
form and meaning of messages exchanged and the representation of names and values
in those messages, network management protocols also define administrative relation-

572 Network Management (SNMP) Chap. 27

ships among routers being managed. That is, they provide for authentication of
managers.

One might expect network management protocols to contain many commands.
Some early protocols, for example, supported commands that allowed the manager to:
reboot the system, add or delete routes, disable or enable a particular network interface,
and remove cached address bindings. The main disadvantage of building management
protocols around commands arises from the resulting complexity. For example, the
command to delete a routing table entry differs from the command to disable an inter-
face. As a result, the protocol must be changed to accommodate new functionality.

SNMP takes an interesting alternative approach to network management. Instead
of defining a large set of commands, SNMP casts all operations in a fetch-store para-
digm†. Conceptually, SNMP contains only two commands that allow a manager to
fetch a value from a data item or store a value into a data item. All other operations are
defined as side-effects of these two operations. For example, although SNMP does not
have an explicit reboot operation, system reboot is defined by declaring a MIB variable
that gives the time until the next reboot, allowing a manager to assign the variable a
value. If the manager assigns the value zero, the device will be rebooted instantly (i.e.,
the assignment acts like a reboot command).

The chief advantages of using a fetch-store paradigm are stability, simplicity, and
flexibility. SNMP is especially stable because its definition remains fixed, even though
new data items are added to the MIB and new operations are defined as side-effects of
storing into those items. SNMP is simple to implement, understand, and debug because
it avoids the complexity of having special cases for each command. Finally, SNMP is
especially flexible because it can accommodate arbitrary functionality in an elegant
framework.

From a manager’s point of view, of course, SNMP remains hidden. The user inter-
face to network management software can phrase operations as imperative commands
(e.g., reboot). Thus, there is little visible difference between the way a manager uses
SNMP and other network management protocols. In fact, vendors sell network manage-
ment software that offers a graphical user interface. Such software displays diagrams of
network connectivity, and uses a point-and-click style of interaction.

In practice, SNMP offers more than fetch and store operations. Figure 27.7 lists
the eight operations. In practice, only some of them are essential. For example, opera-
tions get-request and set-request provide the basic fetch and store operations. After a
device receives a message and performs the operation, the device sends a response. A
single get-request or set-request message can specify operations on multiple MIB vari-
ables. SNMP specifies that operations must be atomic, meaning that the agent must ei-
ther perform all operations in a message or none of them. In particular, if a set-request
specifies multiple assignments and any of the items are in error, no assignments will be
made.

†Readers familiar with hardware architecture will observe that the I/O bus on a typical computer also
casts all operations into a fetch-store paradigm.

Sec. 27.10 Simple Network Management Protocol 573

Command Meaning
get-request Fetch a value from a specific variable
get-next-request Fetch a value without knowing its exact name
get-bulk-request Fetch a large volume of data (e.g., a table)
response A response to any of the above requests
set-request Store a value in a specific variable
inform-request Reference to third-part data (e.g., for a proxy)
snmpv2-trap Reply triggered by an event
report Undefined at present

Figure 27.7 The set of possible SNMP operations. Get-next-request allows
the manager to iterate through a table of items.

We said that SNMP follows a request-response paradigm in which a manager is-
sues a command and the managed device responds. In fact, SNMP allows an exception:
a manager can configure a device to send snmpv2-trap messages asynchronously. For
example, an SNMP server can be configured to send an snmpv2-trap message to the
manager whenever one of its attached networks becomes unreachable (i.e., an interface
goes down). Similarly, a device can be configured to send an snmpv2-trap message
whenever one of the counters exceeds a predefined threshold.

27.10.1 Searching Tables Using Names

Recall that ASN.1 does not provide mechanisms for declaring arrays or indexing
them in the usual sense. However, it is possible to denote individual elements of a table
by appending a suffix to the object identifier for the table. Unfortunately, a client pro-
gram may wish to examine entries in a table for which it does not know all valid suf-
fixes. The get-next-request operation handles the problem by allowing a manager to
iterate through a table without knowing how many items the table contains. The rules
are quite simple. When sending a get-next-request, the client supplies a prefix of a
valid object identifier, P. The agent examines the set of object identifiers for all vari-
ables it controls, and sends a response for the variable that occurs immediately after
prefix P in lexicographic order. That is, the agent must know the ASN.1 names of all
variables and be able to select the first variable with an object identifier lexicographical-
ly greater than P. The mechanism allows a manager to iterate through all entries in a
table without knowing the identifiers for individual items. Each table has a name.
When storing an item in a table, SNMP creates a name that begins with the name of the
table and has a suffix that identifies a particular object in the table. The idea of assign-
ing a name to each table is key: the name does not correspond to a variable, but allows
a client to form a get-next request by specifying the name of the table. Assuming the
table is non-empty, the managed device will return the value of the first element in the
table. Once the first item in the table has been retrieved, the client can use the name of
the first item in a subsequent get-next request to retrieve the second item, and so on.
The iteration continues until the device returns an item with a name that does not match
the table prefix (i.e., one item beyond the end of the table).

574 Network Management (SNMP) Chap. 27

Consider an example search. Recall that ipAddrTable uses IP addresses to identify
entries in the table. A client that does not know which IP addresses are in the table on
a given router cannot form a complete object identifier. However, the client can still
use the get-next-request operation to search the table by sending the prefix:

iso . org . dod . internet . mgmt . mib . ip . ipAddrTable . ipAddrEntry . ipAdEntNetMask

which, in numeric form, is:

1 . 3 . 6 . 1 . 2 . 1 . 4 . 20 . 1 . 3

The server returns the network mask field of the first entry in ipAddrTable. The client
uses the full object identifier returned by the server to request the next item in the table.

27.11 SNMP Message Format

Unlike most TCP/IP protocols, SNMP messages do not have fixed fields. Instead,
they use the standard ASN.1 encoding. Thus, a message can be difficult for humans to
decode and understand. After examining the SNMP message definition in ASN.1 nota-
tion, we will review the ASN.1 encoding scheme briefly, and see an example of an en-
coded SNMP message.

Figure 27.8 shows how an SNMP message can be described with an ASN.1-style
grammar. In general, each item in the grammar consists of a descriptive name followed
by a declaration of the item’s type. For example, an item such as:

msgVersion INTEGER (0. .2147483647)

declares the name msgVersion to be a nonnegative integer less than or equal to
2147483647.

SNMPv3Message ::=
SEQUENCE {

msgVersion INTEGER (0..2147483647),
-- note: version number 3 is used for SNMPv3

msgGlobalData HeaderData,
msgSecurityParameters OCTET STRING,
msgData ScopedPduData

}

Figure 27.8 The SNMP message format in ASN.1-style notation. Text fol-
lowing two consecutive dashes is a comment.

As the figure shows, each SNMP message consists of four main parts: an integer
that identifies the protocol version, additional header data, a set of security parameters,
and a data area that carries the payload. A precise definition must be supplied for each

Sec. 27.11 SNMP Message Format 575

of the terms used. For example, Figure 27.9 illustrates how the contents of the Header-
Data section can be specified.

HeaderData ::= SEQUENCE {
msgID INTEGER (0..2147483647),

-- used to match responses with requests
msgMaxSize INTEGER (484..2147483647),

-- maximum size reply the sender can accept
msgFlags OCTET STRING (SIZE(1)),

-- Individual flag bits specify message characteristics
-- bit 7 authorization used
-- bit 6 privacy used
-- bit 5 reportability (i.e., a response needed)

msgSecurityModel INTEGER (1..2147483647)
-- determines exact format of security parameters that follow

}

Figure 27.9 The definition of the HeaderData area in an SNMP message.

The data area in an SNMP message is divided into Protocol Data Units (PDUs).
Each PDU consists of a request (sent by client) or a response (sent by an agent).
SNMPv3 allows each PDU to be sent as plain text or to be encrypted for confidentiali-
ty. Thus, the grammar specifies a CHOICE. In programming language terminology,
the concept is known as a discriminated union.

ScopedPduData ::= CHOICE {
plaintext ScopedPDU,
encryptedPDU OCTET STRING -- encrypted ScopedPDU value

}

An encrypted PDU begins with an identifier of the engine† that produced it. The
engine ID is followed by the name of the context and the octets of the encrypted mes-
sage.

ScopedPDU ::= SEQUENCE {
contextEngineID OCTET STRING,
contextName OCTET STRING,
data ANY -- e.g., a PDU as defined below

}

The item labeled data in the ScopedPDU definition has a type ANY because field
contextName defines the exact details of the item. The SNMPv3 Message Processing
Model (v3MP) specifies that the data must consist of one of the SNMP PDUs as Figure
27.10 illustrates:

†SNMPv3 distinguishes between an application that uses the service SNMP supplies and an engine,
which is the underlying software that transmits requests and receives responses.

576 Network Management (SNMP) Chap. 27

PDU ::=
CHOICE {

get-request
GetRequest-PDU,

get-next-request
GetNextRequest-PDU,

get-bulk-request
GetBulkRequest-PDU,

response
Response-PDU,

set-request
SetRequest-PDU,

inform-request
InformRequest-PDU,

snmpV2-trap
SNMPv2-Trap-PDU,

report
Report-PDU,

}

Figure 27.10 The ASN.1 definitions of an SNMP PDU. The syntax for each
request type must be specified further.

The definition specifies that each PDU consists of one of eight types. To complete
the definition of an SNMP message, the standard must further specify the syntax of the
eight individual types. For example, Figure 27.11 shows the definition of a get-request.

GetRequest-PDU ::= [0]
IMPLICIT SEQUENCE {

request-id
Integer32,

error-status
INTEGER (0..18),

error-index
INTEGER (0..max-bindings),

variable-bindings
VarBindList

}

Figure 27.11 The ASN.1 definition of a get-request message. Formally, the
message is defined to be a GetRequest-PDU.

Further definitions in the standard specify the remaining undefined terms. Both
error-status and error-index are single octet integers which contain the value zero in a

Sec. 27.11 SNMP Message Format 577

request. If an error occurs, the values sent in a response identify the cause of the error.
Finally, VarBindList contains a list of object identifiers for which the client seeks
values. In ASN.1 terms, the definitions specify that VarBindList is a sequence of pairs
of object name and value. ASN.1 represents the pairs as a sequence of two items.
Thus, in the simplest possible request, VarBindList is a sequence of two items: a name
and a null.

27.12 An Example Encoded SNMP Message

The encoded form of ASN.1 uses variable-length fields to represent items. In gen-
eral, each field begins with a header that specifies the type of an object and its length in
bytes. For example, each SEQUENCE begins with an octet containing the value 30
(hexadecimal); the next octet specifies the number of following octets that constitute the
sequence.

Figure 27.12 contains an example SNMP message that illustrates how values are
encoded into octets. The message is a get-request that specifies data item sysDescr
(numeric object identifier 1 . 3 . 6 . 1 . 2 . 1 . 1 . 1 . 0). Because the example shows an actu-
al message, it includes many details that have not been discussed. In particular, the
message contains a msgSecurityParameters section; the example message uses the
UsmSecurityParameters form of security parameters. It should be possible, however, to
correlate other sections of the message with the definitions above.

As Figure 27.12 shows, the message starts with a code for SEQUENCE which has
a length of 103 octets†. The first item in the sequence is a 1-octet integer that specifies
the protocol version; the value 3 indicates that this is an SNMPv3 message. Successive
fields define a message ID and the maximum message size the sender can accept in a
reply. Security information, including the name of the user (ComerBook) follows the
message header.

The GetRequest-PDU occupies the tail of the message. The sequence labeled
ScopedPDU specifies a context in which to interpret the remainder of the message. The
octet A0 specifies the operation as a get-Request. Bit five of A0 indicates a nonprimi-
tive data type, and the high-order bit means the interpretation of the octet is context
specific. That is, the hexadecimal value A0 only specifies a GetRequest-PDU when
used in context; it is not a universally reserved value. Following the A0 request octet,
the length octet specifies the request is 26 octets long. The length of the request-ID is 2
octets; the error-status and error-index fields are each one octet. Finally, the Var-
BindList sequence of pairs contains one binding, a single object identifier bound to a
null value. The identifier is encoded as expected except that the first two numeric la-
bels are combined into a single octet.

†Sequence items occur frequently in an SNMP message because SNMP uses SEQUENCE instead of con-
ventional programming language constructs like array or struct.

578 Network Management (SNMP) Chap. 27

30 67 02 01 03
SEQUENCE len=103 INTEGER len=1 vers=3

30 0D 02 01 2A
SEQUENCE len=13 INTEGER len=1 msgID=42

02 02 08 00
INTEGER len=2 maxmsgsize=2048

04 01 04
string len=1 msgFlags=0x04 (bits mean noAuth, noPriv, reportable)

02 01 03
INTEGER len=1 used-based security

04 25 30 23
string len=37 SEQUENCE len=35 UsmSecurityParameters

04 0C 00 00 00 63 00 00 00
string len=12 msgAuthoritativeEngineID ...

A1 C0 93 8E 23
engine is at IP address 192.147.142.35, port 161

02 01 00
INTEGER len=1 msgAuthoritativeEngineBoots=0

02 01 00
INTEGER len=1 msgAuthoritativeEngineTime=0

04 09 43 6F 6D 65 72 42 6F
string len=9 -----msgUserName value is "ComerBook"-------------

6F 6B

04 00
string len=0 msgAuthenticationParameters (none)

04 00
string len=0 msgPrivacyParameters (none)

30 2C
SEQUENCE len=44 ScopedPDU

04 0C 00 00 00 63 00 00
string len=12 -------------------contextEngineID-------

00 A1 c0 93 8E 23

04 00
string len=0 contextName = "" (default)

Sec. 27.12 An Example Encoded SNMP Message 579

CONTEXT [0] IMPLICIT SEQUENCE

A0 1A
getreq. len=26

02 02 4D C6
INTEGER len=2 request-id = 19910

02 01 00
INTEGER len=1 error-status = noError(0)

02 01 00
INTEGER len=1 error-index=0

30 0E
SEQUENCE len=14 VarBindList

30 0C
SEQUENCE len=12 VarBind

06 08
OBJECT IDENTIFIER name len=8

2B 06 01 02 01 01 01 00
1.3 . 6 . 1 . 2 . 1 . 1 . 1 . 0 (sysDescr.0)

05 00
null len=0 (no value specified)

Figure 27.12 An example of an encoded SNMPv3 get-request for data item
sysDescr with octets shown in hexadecimal and a comment ex-
plaining their meaning below. Related octets have been
grouped onto lines; they are contiguous in the message.

27.13 Security In SNMPv3

Version 3 of SNMP represents an evolution that follows and extends the basic
framework of earlier versions. The primary changes arise in the areas of security and
administration. The goals were twofold. First, SNMPv3 is designed to have both gen-
eral and flexible security policies, making it possible for the interactions between a
manager and managed devices to adhere to the security policies an organization speci-
fies. Second, the system is designed to make administration of security easy.

To achieve generality and flexibility, SNMPv3 includes facilities for several as-
pects of security, and allows each to be configured independently. For example,
SNMPv3 supports message authentication to ensure that instructions originate from a
valid manager, privacy to ensure that no one can read messages as they pass between a
manager’s station and a managed device, and authorization and view-based access con-

580 Network Management (SNMP) Chap. 27

trol to ensure that only authorized managers access particular items. To make the secu-
rity system easy to configure or change, SNMPv3 allows remote configuration, meaning
that an authorized manager can change the configuration of the security items listed
above without being physically present at the device.

27.14 Summary

Network management protocols allow a manager to monitor and control network
devices, such as hosts and routers. A network management client executes on a
manager’s workstation and can contact one or more servers, called agents, running on
the managed devices. Because an internet consists of heterogeneous machines and net-
works, TCP/IP management software executes as application programs and uses a trans-
port protocol (e.g., UDP) for communication between clients and servers.

The standard TCP/IP network management protocol is SNMP, the Simple Network
Management Protocol. SNMP defines a low-level management protocol that provides
two conceptual operations: fetch a value from a variable or store a value into a variable.
In SNMP, most other operations occur as side-effects of changing values in variables.
SNMP defines the format of messages that travel between a manager’s computer and a
managed entity.

A set of companion standards to SNMP define the set of variables that a managed
entity maintains. The set of variables constitute a Management Information Base
(MIB). MIB variables are described using ASN.1, a formal language that provides a
concise encoded form as well as a precise human-readable notation for names and ob-
jects. ASN.1 uses a hierarchical namespace to guarantee that all MIB names are global-
ly unique while still allowing subgroups to assign parts of the namespace.

EXERCISES

27.1 Capture an SNMP packet with a network analyzer and decode the fields.
27.2 Read the standard to find out how ASN.1 encodes the first two numeric values from an

object identifier in a single octet. What is the motivation for the encoding?
27.3 Suppose the MIB designers need to define a variable that corresponds to a two-

dimensional array. Explain how ASN.1 notation can accommodate references to such a
variable.

27.4 What are the advantages and disadvantages of defining globally unique ASN.1 names for
MIB variables?

27.5 Consult the standards and match each field in Figure 27.12 with a corresponding ASN.1
definition.

27.6 If you have SNMP client code available, try using it to read MIB variables in a local
router. What is the advantage of allowing arbitrary managers to read variables in all
routers? The disadvantage?

Exercises 581

27.7 Read the MIB specification to find the definition of variable ipRoutingTable that
corresponds to an IPv4 routing table. Design a program that will use SNMP to contact
multiple routers and see if any entries in their forwarding tables cause a routing loop.
Exactly what ASN.1 names should such a program generate?

27.8 Extend the previous exercise to perform the same task for IPv6.
27.9 Consider the implementation of an SNMP agent. Does it make sense to arrange MIB

variables in memory exactly the way SNMP describes them? Why or why not?
27.10 Argue that SNMP is a misnomer because SNMP is not “simple.”
27.11 Read about the IPsec security standard described in Chapter 29. If an organization uses

IPsec, are the security features of SNMPv3 also necessary? Why or why not?
27.12 Does it make sense to use SNMP to manage all devices? Why or why not? (Hint: con-

sider a simple hardware device such as a DSL modem.)

Chapter Contents
28.1 Introduction, 583
28.2 Routes, Paths, And Connections, 583
28.3 Traffic Engineering And Control Of Path Selection, 584
28.4 Connection-Oriented Networks And Routing Overlays, 584
28.5 SDN: A New Hybrid Approach, 586
28.6 Separation Of Data And Control, 586
28.7 The SDN Architecture And External Controllers, 588
28.8 SDN Across Multiple Devices, 589
28.9 Implementing SDN With Conventional Switches, 590
28.10 OpenFlow Technology, 592
28.11 OpenFlow Basics, 592
28.12 Specific Fields In An OpenFlow Pattern, 593
28.13 Actions That OpenFlow Can Take, 594
28.14 OpenFlow Extensions And Additions, 595
28.15 OpenFlow Messages, 598
28.16 Uses Of OpenFlow, 599
28.17 OpenFlow: Excitement, Hype, And Limitations, 599
28.18 Software Defined Radio (SDR), 600
28.19 Summary, 601

28

Software Defined Networking
(SDN, OpenFlow)

28.1 Introduction

Previous chapters describe the fundamental communication paradigm offered by IP
and used in the global Internet: a best-effort packet delivery service. The communica-
tion system consists of routers that use the destination address of each datagram to de-
cide how to forward the datagram toward its destination.

This chapter considers an alternative: a communication system that can direct traf-
fic along paths prescribed by network managers, according to a wide variety of criteria.
The chapter briefly considers the motivation for the new approach and a few potential
uses. It then explores the use of extant hardware, and examines one particular technolo-
gy managers can use to specify paths. We will see that the approach presented here is
not completely new. Instead, it combines many ideas from previous chapters, including
MPLS (Chapter 16), packet classification (Chapter 17), Ethernet switching (Chapter 2),
and network virtualization (Chapter 19).

28.2 Routes, Paths, And Connections

The basic IP forwarding paradigm can be characterized as egalitarian in the sense
that all traffic from a given source to a given destination follows the same path. More-
over, once any datagram reaches a router, forwarding proceeds by using the datagram’s
destination and is independent of the datagram’s source or contents. That is, a forward-
ing table in a router only contains one entry for a given destination.

583

584 Software Defined Networking (SDN, OpenFlow) Chap. 28

As see have seen, several variations have been created. For example, Chapter 15
introduces the concept of tunneling and Chapter 16 discusses MPLS, which allows an
edge router to consider individual packets and choose a path along which to send each
packet. Specifically, we saw how a datagram can be encapsulated in an MPLS header.
and how intermediate routers use the information in the encapsulating header rather than
the datagram’s destination address when making forwarding decisions.

28.3 Traffic Engineering And Control Of Path Selection

Recall from Chapter 16 that a major motivation for MPLS arises from the desire of
network operators to perform traffic engineering. That is, instead of sending all traffic
for a destination along a single path, a network manager may want to choose paths
based on the type of the traffic, the priority assigned to datagrams, the amount each
sender has paid, or other economic considerations. In essence, traffic engineering
moves from a system where routing protocols make decisions to a system where net-
work operators have control of the paths datagrams follow. An operator can specify
how each individual datagram is mapped into one of the pre-defined MPLS paths ap-
propriate for the datagram. Note that the MPLS path selected for a given datagram may
not be a shortest path through intermediate routers. More important, MPLS networks
usually guarantee that all the datagrams from a given flow are mapped to the same
MPLS path. The point is:

Traffic engineering technologies move from a paradigm where routing
protocols find shortest paths that all datagrams must follow to a sys-
tem where a network manager can control the path for each individu-
al flow.

28.4 Connection-Oriented Networks And Routing Overlays

Two broad approaches have been used to provide per-flow control in a communi-
cation system:

Use a connection-oriented network infrastructure

Impose routing overlays on a packet-switched infrastructure

Connection-Oriented Networks. A connection-oriented network sets up an in-
dependent forwarding path for each flow. Various connection-oriented network technol-
ogies have been created (e.g., X.25 and ATM). Although details vary, each technology
follows the same generic approach: before an application can send data, the application
must contact the network to request a connection be established. The network can
chooses a specific path for each connection. After using the connection to communi-

Sec. 28.4 Connection-Oriented Networks And Routing Overlays 585

cate, the application again contacts the network to request that the connection be ter-
minated.

Because each use requires a new end-to-end connection, a connection-oriented net-
work gives a manager control over path selection and forwarding. Typically, a manager
configures a set of policies at each switch in the network. Connection setup requires
each switch along a path to agree to the connection. When a connection request arrives
at a switch, the switch consults the policies to determine whether and how to satisfy the
request.

Routing Overlay Technologies. A routing overlay consists of a forwarding system
that imposes a virtual network topology and then uses existing internet forwarding to
deliver packets among nodes in the virtual topology. In essence, the routing overlay
creates a set of tunnels. From the point of view of routing protocols, each tunnel acts
like a point-to-point network connection between routers. Thus, routing protocols only
find paths across the tunnels, which means that forwarding will be constrained to the
virtual topology.

Chapter 19 discusses the general idea of overlay networks and other chapters pro-
vide specific examples. Chapter 18 discusses how mobile IP uses tunneling to forward
datagrams to a mobile that is temporarily away from home, and Chapter 16 describes
the use of overlays in label switching technologies, such as MPLS.

Both connection-oriented networking and overlay technologies have advantages
and disadvantages. A connection-oriented network can be implemented in hardware,
which means it can use high-speed hardware-based classification and label switching
mechanisms. Therefore, a connection-oriented network can scale to higher network data
rates. Because they are created by software, overlays are flexible and easy to change.
Furthermore, if sites are connected by the global Internet, an arbitrary overlay topology
can be imposed or changed quickly. More important, a set of topologies can be im-
posed simultaneously, which allows traffic to be segregated onto multiple virtual net-
works.

In addition to requiring processing overhead, overlays can result in inefficient rout-
ing. To understand why, observe that the overlay abstraction hides the architecture and
costs of the underlying network. For example, suppose a company configures overlay
tunnels among six sites and each tunnel goes across the global Internet between sites.
The company can use an estimate of the Internet costs to configure artificial routing
metrics that direct traffic along preferred routes. However, the Internet routing system
and the overlay routing system operate independently. If the routing cost of an underly-
ing network increases, the overlay system will not learn of the change. Consequently,
overlay forwarding will continue to follow the original path. The point is:

Although connection-oriented networks and overlay routing technol-
ogies can each give network managers control over traffic, each ap-
proach has some disadvantages.

586 Software Defined Networking (SDN, OpenFlow) Chap. 28

28.5 SDN: A New Hybrid Approach

The question arises: can we combine connection-oriented networking technologies
and routing overlay technologies to overcome their individual weaknesses and enjoy the
strengths of both approaches? For specialized cases, the answer is yes. The combina-
tion, which is known as Software Defined Networking (SDN), uses the following ideas:

To avoid the overhead that arises from performing classifica-
tion in software, use high-speed classification hardware.

To avoid the bottleneck that results from performing packet
forwarding in software, use high-speed forwarding hardware.

To give managers reliability and enable traffic engineering,
avoid using routing protocols to set the routes for all traffic
and instead allow managers to specify how to handle each
case.

To scale to the size of the Internet, allow management applica-
tions rather than humans to configure and control the network
devices.

The next sections examine each of the basic ideas and then describe a specific technolo-
gy that incorporates them.

28.6 Separation Of Data And Control

Conceptually, a network device, such as a router or switch, can be divided into two
parts: mechanisms that permit managers to configure and control the device and mech-
anisms that handle packets. To capture the dichotomy, we use the terms control plane
and data plane. The data plane handles all packet processing and forwarding. The
control plane provides a management interface. Figure 28.1 illustrates the conceptual
division.

As the figure indicates, the connections over which packets arrive and depart have
much higher capacity than the management connection used for control. We use the
terms data path to refer to the high-capacity path for packet traffic and control path to
refer to the lower-capacity path a manager uses to control the device.

Unfortunately, when they create network devices, vendors usually follow a highly
integrated approach in which the device’s control plane and data plane are tightly cou-
pled. The device exports a management interface that allows a manager to control
specific functions. For example, a vendor’s interface on a VLAN switch allows a
manager to specify a set of VLANs and associate a given port with one of the VLANs.
Similarly, a vendor’s interface on a router allows a manager to fill in forwarding table
entries. However, a manager cannot configure specific classification rules or control
how individual packets are handled.

Sec. 28.6 Separation Of Data And Control 587

control and
configure

packet processing
and forwarding

management interface

path data
follows

control plane

data plane

network
device

Figure 28.1 Illustration of the two conceptual parts of a network device: the
control and data planes.

To achieve a hybrid solution, we must find a way to separate the data plane and
control plane. That is, we need a way to replace the vendor’s control plane system with
a customized version. Our new control system must have direct access to the data plane
hardware, and must be able to configure packet processing and forwarding. Figure 28.2
illustrates the concept: a new control system added to a network device.

control and
configure

our new
control system

packet processing
and forwarding

our new
management interface

path data
follows

control plane

data plane

network
device

original interface
(now unneeded)

Figure 28.2 The conceptual organization of a device with a new control sys-
tem replacing the vendor’s system.

In theory, it might be possible to install a new control system in a network device
without adding more hardware. To understand why, observe that most control systems
are implemented in software: an embedded processor executes the control program from
ROM. Thus, the control system can be changed by loading new software into the
ROM. In practice, replacing the vendor’s control software is untenable for two reasons.

588 Software Defined Networking (SDN, OpenFlow) Chap. 28

First, SDN technology relies on conventional configuration and forwarding to be in
place initially. Second, because many of the tasks control software performs are specif-
ic to the underlying hardware, the control plane must be specialized for each hardware
device. The point is:

Although SDN technology needs a new control plane functionality in
network devices, completely replacing the vendor’s control software is
impractical.

28.7 The SDN Architecture And External Controllers

The approach that has been adopted for SDN separates control software from the
underlying network devices. Instead of completely rewriting the vendors’ control
software, SDN uses an augmentation approach: SDN software runs in an external sys-
tem and a small module is added to the device that allows the external SDN system to
configure the underlying hardware. The external system, usually a conventional PC, is
called a controller. Figure 28.3 illustrates the architecture.

control and
configure

SDN
module

packet processing
and forwarding

External Controller

SDN software

path data
follows

control plane

data plane

network
device

original interface
(now unneeded)

General-purpose computer
(e.g., PC running Linux)

Figure 28.3 The basic SDN architecture with an external controller configur-
ing classification and forwarding hardware in a network device.

As the figure shows, adding an external controller extends control plane functional-
ity outside the device. A new SDN module must be added to the control plane of a de-
vice to permit the external controller to configure the data plane. The figure shows the
SDN module as small because the code does not contain intelligence nor does it provide

Sec. 28.7 The SDN Architecture And External Controllers 589

a conventional management interface. Instead, the SDN module merely accepts low-
level commands from the external controller and passes each command through to the
data plane processing unit. The point is that an SDN module is minimalistic — it con-
tains substantially less complexity and functionality than a typical control plane mecha-
nism.

By moving complex control-plane functions to an external controller, the SDN ap-
proach gives managers more control. A manager can configure whatever classification
and forwarding rules the SDN software allows, even if they differ from conventional
VLAN or IP subnet rules allowed by the vendor’s software. We will see that a manager
can choose how to classify and forward each individual packet. In essence, SDN uses
the data classification and forwarding hardware in a network device, but ignores the
control plane that the vendor supplies. The idea can be summarized:

The SDN approach separates control plane processing from data
plane processing by moving control functions into an external con-
troller. Because it issues low-level commands that configure the data
plane of the device, an external controller can offer a manager more
control than the vendor’s control-plane software.

28.8 SDN Across Multiple Devices

The description above focuses on the basic mechanism by explaining how SDN
technology can be used to configure and control a single network device. To provide
meaningful capabilities for an internet, the technology must be extended to multiple net-
work devices (e.g., all the devices in a campus intranet or in an ISP’s network). The
important idea is that we want all the controllers to be connected to a network, which
will enable management application software running on the controllers to communicate
and coordinate across the entire set of devices.

Two fundamental questions concern an overall architecture: how many controllers
are needed, and how should they be interconnected? As one might imagine, the number
of external controllers required depends on the type of network devices being controlled
and the SDN software. If the network devices are small (e.g., modems) and the com-
puter used as a controller is powerful, a single controller can handle many devices.
However, if a given device requires the control system to handle many exceptions or
make frequent changes to the configuration, a controller may only be able to handle one
network device. For now, we will assume that each network device has a dedicated
controller; later sections consider an extension where a controller can handle multiple
devices.

In terms of communication among controllers, we will imagine that a separate
management network exists to connect the set of controllers. Controllers use the
management network to communicate with one another, which means that we can create
management application software that runs on the controllers and coordinates across the
entire set of devices. To permit a human manager to set policies and perform other

590 Software Defined Networking (SDN, OpenFlow) Chap. 28

management tasks, we will assume that the management network also includes a
manager’s computer. Figure 28.4 illustrates an idealized version of a management net-
work that interconnects controllers.

MANAGEMENT
NETWORK

MANGER’S
COMPUTER

NETWORK
DEVICE 1

NETWORK
DEVICE 2

NETWORK
DEVICE N

. . .

external controllers
for network devices

Figure 28.4 An idealized interconnection of SDN controllers on a separate
management network. Management applications on the controll-
ers use the management network to coordinate with one another.

Because it only shows a management network, the figure omits an important piece
of the architecture: the data networks that are being controlled. Without seeing any of
the data networks, it may be difficult to understand why controllers need to be connect-
ed. The answer is that the network devices being controlled share data networks. For
example, suppose device 1 and device 2 are both VLAN switches that have a direct data
connection. Further suppose that the two switches are co-located in a large university
lab where they connect a set of computers. If a manager configures a VLAN for the
lab, the VLAN must span both switches and the configurations must be coordinated.
When the SDN approach is used, management applications running in the two controll-
ers must coordinate; to do so, the management applications communicate over the
management network.

28.9 Implementing SDN With Conventional Switches

Perhaps the most interesting aspect of SDN technology arises from the integration
of the management and the data network. SDN adopts the same approach as SNMP:
management traffic travels over the same wires as data traffic†. That is, rather than use
a physically separate network, the management system uses the network that is being
managed.

†Chapter 27 covers SNMP and explains how management traffic runs over the data network that is being
managed.

Sec. 28.9 Implementing SDN With Conventional Switches 591

To understand the SDN paradigm, consider the physical connection between an
Ethernet switch and the SDN controller for the switch. Instead of using a specialized
hardware interface, the controller can connect to a standard Ethernet port on the switch.
Of course, the switch must be configured to recognize the controller as privileged to
prevent the switch from accepting SDN commands from an arbitrary computer. Figure
28.5 illustrates the simplest possible arrangement: a direct connection between a con-
troller and a switch.

Ethernet Switch
controller

... ...

standard Ethernet
connection

remaining switch ports
connect to computers
or other switches

remaining switch ports
connect to computers

or other switches

Figure 28.5 The connection between an Ethernet switch and the SDN con-
troller for the switch.

The idea can be generalized. Observe that most intranets contain multiple
switches. If we imagine a conventional intranet, Layer 2 and Layer 3 forwarding in the
switches is arranged in a way that allows a controller connected to a switch to commun-
icate with other switches. For example, each switch will be assigned an IP address and
forwarding will be configured so a computer can send an IP datagram to any switch.
SDN assumes such a configuration has been put in place before SDN software takes
control. Thus, a controller can use IP to reach any network device. In essence, the
management network in Figure 28.4 is a virtual overlay on a conventional intranet rath-
er than a separate physical network. As with SNMP, managers and management appli-
cations using SDN must be careful to preserve connectivity in the management overlay
— incorrect changes to forwarding rules can leave a controller unable to communicate
with one or more switches.

592 Software Defined Networking (SDN, OpenFlow) Chap. 28

28.10 OpenFlow Technology

Several questions arise. Exactly what configuration and control capabilities should
a switch offer to an external SDN controller? When sending an SDN request to the
switch, what format should a controller use? How can a switch distinguish between
SDN requests intended for the switch itself and other packets that the controller is send-
ing (e.g., packets sent to other controllers)? In short, what protocol should be used
between a controller and a switch?

The answer to the questions lies in a protocol known as OpenFlow†. Originally
created at Stanford University as a way for researchers to experiment with new network
protocols, OpenFlow has gained wider acceptance. Many switch vendors have agreed
to add OpenFlow capability to their switches, and larger deployments of OpenFlow are
being used.

Because the control-plane in most switches runs an operating system, an OpenFlow
module can be added to the switch easily. The OpenFlow module operates exactly like
the SDN module shown in Figure 28.3‡ — most of the intelligence is located in the
external controller, and the module in the switch merely acts as an intermediary that
translates messages from the external controller into commands that are passed to the
data plane hardware.

We use the term OpenFlow switch to refer to a switch that accepts the OpenFlow
protocol. OpenFlow is not an IETF standard. Instead, the OpenFlow Switch Specifica-
tion, the central standard document for OpenFlow, is maintained by the OpenFlow Con-
sortium:

OpenFlowSwitch .org

OpenFlow provides a technology for network virtualization. An OpenFlow switch
can be configured to handle both specialized network traffic (including nonstandard ex-
perimental protocols) and production network traffic simultaneously. OpenFlow per-
mits multiple traffic types to co-exist without interference. We will see that the pres-
ence of a production network is crucial to OpenFlow because the production network
permits a controller to communicate with a switch. More important, even if a switch
has conventional forwarding rules, OpenFlow can establish exceptions. For example, if
the normal forwarding rules send traffic for IP destination X to a given switch port,
OpenFlow allows an administrator to specify that IP traffic for X that originates from IP
source Y should be forwarded to another switch port.

28.11 OpenFlow Basics

There are two versions of the OpenFlow protocol. A whitepaper written in 2008
describes the basic idea and specifies how a basic OpenFlow switch operates. The
OpenFlow specification, released in version 1.1, expands the model, fills in protocol de-
tails, and includes additional functionality. Our investigation of OpenFlow begins by

†The web site http://www.openflow.org/ wk/ index.php/ OpenFlow_Tutorial contains a tutorial, and
www.opennetworking.org has OpenFlow standards documents.

‡Figure 28.3 can be found on page 588.

Sec. 28.11 OpenFlow Basics 593

examining the overall concept; later sections continue the discussion by describing the
expanded model and more advanced features. In both the basic and advanced versions,
OpenFlow specifies three aspects of the technology:

The communication used between a controller and a switch

The set of items that can be configured and controlled in a switch

The format of messages a controller and switch use to communicate

Communication. OpenFlow specifies that a controller and switch use TCP to com-
municate. Furthermore, OpenFlow specifies that communication should occur over a
secure communication channel. Although a TCP connection is permitted, the use of
SSL (described in Chapter 29) is recommended as a way to guarantee confidentiality of
all communication. It is important to remember that OpenFlow does not require a
direct physical connection between a controller and a network device. Instead, Open-
Flow assumes that a stable production network will remain in place and that a controller
will always be able to use the production network to communicate with the network
device(s) that are being controlled. The use of TCP over SSL means a single controller
can establish communication with multiple network devices even if the controller does
not have a physical connection to each device.

Items That Can Be Configured. OpenFlow specifies that a Type 0 OpenFlow
switch (a minimum configuration) has a Flow Table that implements classification† and
forwarding. The classification part of a Flow Table holds a set of patterns that are
matched against packets. In most switches, pattern matching is implemented with
TCAM hardware, but OpenFlow allows a vendor to choose an implementation. In addi-
tion to a pattern, each entry in the Flow Table is assumed to contain an action that
specifies how to process a packet that matches the pattern and statistics related to the
entry. The statistics include a count of packets that match the entry, a count of octets in
packets that match the entry, and a timestamp that specifies the last time the entry was
matched. Statistics can be accessed by an OpenFlow controller, and are useful for mak-
ing decisions about traffic engineering.

Format Of Messages. A later section describes the format of messages used with
version 1.1 of OpenFlow; for now, it is sufficient to know that the specification defines
the exact message format and a representation for data items. For example, OpenFlow
specifies that integers are sent in big endian order.

28.12 Specific Fields In An OpenFlow Pattern

Recall from Chapter 17 that classification mechanisms specify combinations of bits
in packet headers. Thus, it is possible to specify values for arbitrary header fields. To
save costs, some switches only provide classification hardware for specific cases (e.g.,
the VLAN tag field and IP addresses, but not transport layer headers). To accommo-
date switches that do not offer arbitrary pattern matching, OpenFlow defines a minimal

†See Chapter 17 for a discussion of classification.

594 Software Defined Networking (SDN, OpenFlow) Chap. 28

set of requirements for a Type 0 switch. Figure 28.6 lists the fields that an OpenFlow
switch must be able to match.

Field Meaning
In Port Switch port over which the packet arrived
Ether src 48-bit Ethernet source address
Ether dst 48-bit Ethernet destination address
Ether Type 16-bit Ethernet type field
VLAN id 12-bit VLAN tag in the packet
IPv4 src 32-bit IPv4 source address
IPv4 dst 32-bit IPv4 destination address
IPv4 Proto 8-bit IPv4 protocol field
TCP/UDP/SCTP src 16-bit TCP/UDP/SCTP source port
TCP/UDP/SCTP dst 16-bit TCP/UDP/SCTP destination port

Figure 28.6 Fields in packet headers that can be used for classification in a
Type 0 OpenFlow switch.

Readers may be surprised to see that many of the fields in Figure 28.6 are related
to conventional protocols. That is, the fields allow OpenFlow to match TCP traffic run-
ning over IPv4 and Ethernet. Does the set of fields limit experiments? Yes: the fields
mean that a Type 0 OpenFlow switch cannot specify special forwarding for ping traffic,
nor can it distinguish between ARP requests and replies. However, even a Type 0
OpenFlow switch allows experimenters to use an unassigned Ethernet type or to estab-
lish special forwarding for all traffic that arrives over a given switch port. Thus, many
experiments are possible.

28.13 Actions That OpenFlow Can Take

As Figure 28.7 lists, a Type 0 OpenFlow switch defines three basic actions that can
be associated with a classification pattern.

Action Effect

1 Forward the packet to a given switch port or a
specified set of switch ports.

2 Encapsulate the packet and send to the external
controller for processing.

3 Drop (discard) the packet without any further
processing.

Figure 28.7 Possible actions a Type 0 OpenFlow switch can take when a
packet matches one of the classification rules.

Sec. 28.13 Actions That OpenFlow Can Take 595

Action 1 is the most common case. When a switch is booted, the vendor’s control
software configures the switch with forwarding rules such that every packet that arrives
at the switch will be forwarded. Thus, in most instances, OpenFlow only has to config-
ure exceptions. The idea of forwarding to a set of switch ports is used to implement
broadcast and multicast.

Action 2 is intended to permit an external controller to handle packets for which no
forwarding has been established. For example, consider how OpenFlow can be used to
establish per-flow forwarding. OpenFlow begins by specifying Action 2 as a default for
all TCP traffic. When the first packet of a new TCP connection arrives, the switch fol-
lows Action 2 by encapsulating the packet and forwarding the result to the external con-
troller. The controller can choose a path for the TCP flow, configure a classification
rule in the switch, and then forward the packet to the switch for further processing (i.e.,
to be forwarded according to the new classification rule). All subsequent packets on the
TCP connection follow the new classification rule.

Action 3 is intended to allow OpenFlow to handle problems, such as a denial-of-
service attack or excessive broadcast from a given host. When a problem is detected,
the external controller can identify the source and configure Action 3 for the source,
which causes the switch to drop all packets from the source.

We said that in addition to experimental forwarding, an OpenFlow switch also sup-
ports a production network. The question arises: how does the switch handle produc-
tion traffic? There are two possibilities: special VLANs are configured for OpenFlow
and production traffic occurs on other VLANs, or OpenFlow includes a fourth action
that causes a packet to be forwarded according to the rules configured for the produc-
tion network. OpenFlow allows either approach.

28.14 OpenFlow Extensions And Additions

Version 1.1 of the OpenFlow specification extends the basic model and adds con-
siderable functionality. Additions can be classified into five categories:

Multiple Flow Tables that are arranged in a pipeline

Additional packet header fields available for matching

A field used to pass information along the pipeline

New actions that provide significant functionality

A Group Table that allows a set of actions to be performed

A Pipeline of Flow Tables. In version 1.1, the underlying model of a switch was
changed. Instead of a single Flow Table, an OpenFlow switch is assumed to have one
or more Flow Tables arranged in a pipeline. Matching always begins with the first
Flow Table in the pipeline. As before, each entry in a Flow Table specifies an action.
One possible action specifies that processing should continue by jumping to the i th Flow

596 Software Defined Networking (SDN, OpenFlow) Chap. 28

Table, where i is farther along the pipeline. A jump can never specify a previous Flow
Table — each jump must move forward, which means there can never be a loop. When
the packet reaches a Flow Table that does not specify a jump, the switch performs one
or more actions, such as forwarding the packet.

Additional Packet Header Fields. Version 1.1 includes new protocols and the
header fields that correspond to each. MPLS is a significant new protocol because it
means OpenFlow can be used to configure MPLS paths. Figure 28.8 lists the fields
available for use with classification (called match fields in the specification).

Field Meaning
Ingress Port Switch port over which the packet arrived
Metadata 64-bit field of metadata used in the pipeline
Ether src 48-bit Ethernet source address
Ether dst 48-bit Ethernet destination address
Ether Type 16-bit Ethernet type field
VLAN id 12-bit VLAN tag in the packet
VLAN priority 3-bit VLAN priority number
MPLS label 20-bit MPLS label
MPLS class 3-bit MPLS traffic class
IPv4 src 32-bit IPv4 source address
IPv4 dst 32-bit IPv4 destination address
IPv4 Proto 8-bit IPv4 protocol field
ARP opcode 8-bit ARP opcode
IPv4 tos 8-bit IPv4 Type of Service bits
TCP/UDP/SCTP src 16-bit TCP/UDP/SCTP source port
TCP/UDP/SCTP dst 16-bit TCP/UDP/SCTP destination port
ICMP type 8-bit ICMP type field
ICMP code 8-bit ICMP code field

Figure 28.8 Fields available for use with Version 1.1 of OpenFlow.

As the figure shows, OpenFlow is not completely general because it does not per-
mit matching on all possible header fields. More important, OpenFlow does not always
permit a controller to exploit the underlying switch hardware. To see why, recall from
Chapter 17 that the classification mechanism in many switches allows matching to oc-
cur on arbitrary bit fields. Emerging versions of OpenFlow are expected to take advan-
tage of the capability; instead of specifying well-known header fields, a controller can
specify each classification pattern as a triple:

(bit_offset, length, pattern)

where bit_offset specifies an arbitrary bit position in a packet, length specifies the size
of a bit field starting at the specified offset, and pattern is a bit string of length bits that
is to be matched.

Sec. 28.14 OpenFlow Extensions And Additions 597

Intra-pipeline Communication. The field labeled Metadata in Figure 28.8 is not
part of the packet. Instead, the field is intended for use within the pipeline. For exam-
ple, one stage of the pipeline might compute a next-hop IPv4 address that it needs to
pass to a later stage of the pipeline along with the packet. OpenFlow does not specify
the contents of the Metadata field — the pipeline must be arranged so that successive
stages of the pipeline know the contents and format of information that is passed.

New Actions. In Version 1.1, actions are not performed immediately when a match
occurs. Instead, a set of actions to be performed is accumulated as a packet proceeds
along the pipeline. Each stage of the pipeline can add or remove actions from the set.
When the packet reaches a pipeline stage that does not specify a jump to another stage
(i.e., the final stage of the pipeline), OpenFlow performs all the actions that have accu-
mulated. OpenFlow requires that the action set contain an output action that specifies
the ultimate disposition of the packet (e.g., the output port over which to forward).

In addition to changing the way actions are performed, Version 1.1 defines a set of
required actions that every OpenFlow switch must support and a long list of optional
actions that are recommended, but not required. For example, the specification includes
actions that manipulate the TTL in a datagram header. Another action allows Open-
Flow to forward a packet to the switch’s local protocol stack. Many of the new actions
are intended to support MPLS. In particular, a switch may need to receive an incoming
IP datagram, encapsulate the datagram in an MPLS shim header, place the result in an
Ethernet frame, and forward the resulting frame. Similarly, a switch may need to de-
encapsulate a datagram when an MPLS packet arrives so the datagram can be forwarded
without the MPLS shim header. Finally, because Version 1.1 includes QoS queueing,
actions have been defined that allow a switch to place a packet on a particular queue.

A Group Table. A Group Table adds flexibility to the forwarding paradigm, and
handles several cases. For example, an entry in a Group Table can specify how to for-
ward packets, and multiple classification rules can direct flows to the entry. Alterna-
tively, an entry in a Group Table can specify forwarding to any switch port in a speci-
fied set. Selection is performed in a device-specific manner (e.g., the switch computes
a hash of header fields and uses the value to select one of the specified ports). The idea
is that a set of switch ports that all connect to the same next hop can act like a single
high-capacity connection.

Each Group Table entry contains four items: a 32-bit identifier that uniquely iden-
tifies the group, a type, a set of counters that collect statistics, and a set of Action Buck-
ets that each specify an action. Figure 28.9 lists the possible group types.

A fast fail-over type provides a limited form of conditional execution in which a
controller can configure a set of buckets that each specify a forwarding action. Each
bucket is associated with a liveness test. For example, the switch might monitor output
ports and declare a port is no longer live if a carrier is lost (e.g., the device is un-
plugged). Once a particular bucket is no longer live, a fast fail-over selection will skip
the bucket and try an alternative. The idea is to avoid the delay that would be entailed
if each loss of liveness caused the switch to inform the external controller and the exter-
nal controller had to reconfigure the forwarding.

598 Software Defined Networking (SDN, OpenFlow) Chap. 28

Type Meaning

all Execute all Action Buckets for the group (e.g., to
handle broadcast)

select Execute one Action Bucket (e.g., using a hash or
round-robin algorithm for selection)

indirect Execute the only Action Bucket defined for the
group (designed to allow multiple Flow Table
entries to point to a single group)

fast fail-over Execute the first live Action Bucket (or drop the
packet if no bucket is live)

Figure 28.9 The four OpenFlow group types and the meaning of each.

28.15 OpenFlow Messages

An OpenFlow message begins with a fixed-size header that comprises sixteen oc-
tets. Figure 28.10 illustrates the message format.

0 8 16 31

VERS TYPE TOTAL LENGTH

TRANSACTION ID

Figure 28.10 The fixed-size header used for every OpenFlow message.

Field VERS is a version number (e.g., the value 0x02 specifies version 2). The
TYPE field specifies the type of the message that follows. OpenFlow defines twenty-
four message types. The TOTAL LENGTH field specifies the total length of the mes-
sage, including the header, measured in octets. The TRANSACTION ID is a unique
value that allows the controller to match replies with requests.

The format of the rest of the message beyond the header is determined by the mes-
sage type. Although an examination of all message formats is beyond the scope of our
overview, it should be noted that there are several categories of messages: controller-
to-switch, asynchronous (the switch informs the controller when an event has occurred),
and symmetric (e.g., an echo request and response). The reader is referred to the Open-
Flow Specification for further information.

Sec. 28.16 Uses Of OpenFlow 599

28.16 Uses Of OpenFlow

How can OpenFlow be used? OpenFlow allows a manager to configure forward-
ing as a function of source, destination, and type fields in a packet header. Thus, many
configurations are possible. A few examples will illustrate some of the possibilities:

Experimental protocol used between two hosts

Layer 2 VLAN that crosses a wide area

Source-based IP forwarding

On-demand VPN connection between two sites

Because OpenFlow can use the Ethernet type field when making forwarding deci-
sions, forwarding can allow two hosts to exchange Ethernet packets that use a nonstan-
dard Layer 3 protocol. OpenFlow can also recognize the VLAN ID assigned to packets,
and can use VLAN IDs to create a VLAN that spans a pair of switches across a wide
area. Unlike conventional Ethernet or IP forwarding, OpenFlow can examine the source
address fields in a packet, and the combination of source and destination addresses can
be used when choosing a route. Thus, traffic to a given destination from source host A
can be sent along a different path than traffic from source host B. As a final example,
consider a VPN tunnel. Because Version 1.1 allows encapsulation, OpenFlow can
create a VPN tunnel when the first packet of a TCP connection appears.

The list is not exhaustive because many arrangements are possible. However, the
key to understanding OpenFlow does not lie in thinking about configurations or for-
warding rules. Instead, the important point is that OpenFlow allows experimenters to
build custom network management software that can coordinate the actions of multiple
controllers. Thus, OpenFlow can be used to make multiple switches act in a consistent
manner.

28.17 OpenFlow: Excitement, Hype, And Limitations

The research community has embraced OpenFlow with wild enthusiasm. Many
university researchers have been eager to adopt and try OpenFlow. Those who do not
have access to switch hardware are conducting experiments on software emulators. En-
tire research meetings and conferences are devoted to papers and presentations on Open-
Flow. Startup companies are being formed. In the excitement, many of the claims tend
toward hyperbole. One researcher proudly announced that OpenFlow would “break the
chains” that are holding us to vendor-supplied network management.

Despite the hype, we have seen that OpenFlow does not completely fulfill the SDN
goal of making all devices completely configurable. Instead, OpenFlow selects a small
subset of possible devices, functions, and capabilities. The next paragraphs highlight a
few limitations.

600 Software Defined Networking (SDN, OpenFlow) Chap. 28

Limited Devices. OpenFlow does not allow a manager to control arbitrary devices.
Although it has been used with a handful of devices, such as access points, the primary
work on OpenFlow has been directed toward switches.

Ethernet Only. As we have seen, Version 1.1 of the OpenFlow specification
focuses on Ethernet frames. In particular, OpenFlow defines pattern matches for fields
in Ethernet frame headers, but not for other frames. Although Ethernet is widespread,
no comprehensive system is complete without Wi-Fi or the framing used on digital
circuits.

IPv4 Focus. Originally, Version 1.1 of OpenFlow focused exclusively on IPv4 and
the associated support protocols, such as ARP and ICMP. The specification was later
extended to include matching for IPv6 and its associated protocols (e.g., Neighbor
Discovery). The focus on IPv4 was especially surprising given the original purpose of
OpenFlow: to encourage research. Emerging versions include support for more proto-
cols, including IPv6.

Given the limitations, many network vendors have taken a sober view of Open-
Flow. They point out that the lack of generality limits OpenFlow’s applicability. How-
ever, many switch vendors have agreed to add an OpenFlow module to their products.
Consequently, the excitement surrounding OpenFlow remains high.

28.18 Software Defined Radio (SDR)

The basic idea in Software Defined Networking — separation of data and control
planes — has also been applied to wireless networking. The result is known as
Software Defined Radio (SDR). One of the key components in SDR is a flexible radio
device (i.e., a chip). Unlike a conventional design in which details such as the frequen-
cy to use and the signal modulation are hard-wired into the equipment, an SDR radio
allows the details to be specified while the radio is operating. More important, the con-
figuration can be changed easily, and the radio can handle multiple frequencies at the
same time. Thus, it is possible to configure the radio device to move from one frequen-
cy to another (frequency hopping) or use two frequencies at the same time. A pair of
SDR radios can scan a set of frequencies, find a frequency not in use, and agree to use
it.

One obvious use of a configurable radio chip is that a vendor can use the same
chip in multiple products and simply configure each one according to the needs of the
product. However, the chief advantage of SDR arises because a radio system can be
created that allows application software to configure the chip dynamically. That is, ap-
plication software running on a radio device can sense the frequencies being used, and
then adjust the chip accordingly. Thus, two SDR devices can find ways to communi-
cate that maximize throughput and minimize interference with other radios.

One of the limitations of SDR technology arises from the limitations of antennas.
In SDN, configuration merely chooses paths for packets, but SDR deals with Layer 1
parameters. When the frequency changes, the antenna needed to transmit or receive
electromagnetic radiation also changes. Experimental SDR designs have used a variety

Sec. 28.18 Software Defined Radio (SDR) 601

of techniques, including limiting frequencies to a specific range, using multiple antennas
that each cover a set of frequencies, and using antennas in a new way that can add the
radiation from multiple small antennas to achieve the same capability as one larger
antenna.

28.19 Summary

Software Defined Networking separates control plane processing from data plane
processing and moves control processing to an external controller (e.g., a PC). In
essence, intelligence is located in the external controller; a minimalistic module in a net-
work device accepts requests from the controller and configures the device’s data plane
accordingly.

The primary SDN technology is known as OpenFlow. OpenFlow, which was
designed to permit researchers to experiment with new protocols and network manage-
ment applications, uses the classification and forwarding mechanisms in the data plane
of an Ethernet switch. The original whitepaper describes a basic version of OpenFlow
that handles Ethernet, IPv4, and TCP; Version 1.1 of the OpenFlow specification ex-
tends the model to have a pipeline of Flow Tables, many new actions and messages,
and a Group Table that allows multiple output ports to operate as a parallel bundle and
fast fail-over. Although the research community is enthusiastic, vendors point out
OpenFlow’s limitations.

EXERCISES

28.1 If your organization uses an SDN technology, find out why.
28.2 A pipeline of Flow Tables can be implemented by using metadata and iteratively search-

ing a single table. Show that any packet processing that can be achieved by a pipeline
can also be handled by iterative lookup.

28.3 Read the OpenFlow specification carefully. How would you use OpenFlow to create a
conventional IP forwarding table?

28.4 Suppose two researchers who have host computers attached to an OpenFlow switch want
to experiment with a nonstandard Layer 3 protocol. What are the possible ways to con-
figure the switch to support the experiment? What are the advantages and disadvantages
of each?

28.5 Take the tutorial on the OpenFlow web site and learn how OpenFlow handles ARP.
28.6 Read the OpenFlow specification carefully. Can a set of controllers be arranged in a

hierarchy? If so, what is the reason? If not, why not?
28.7 What is the purpose of the indirect type in a Group Table entry?
28.8 As a packet travels along an OpenFlow pipeline, each stage in the pipeline can record

one or more actions to be taken on the packet or can remove one or more actions that
were specified in previous stages. Find an example where removing an action is useful.

602 Software Defined Networking (SDN, OpenFlow) Chap. 28

28.9 OpenFlow includes a LOCAL action that delivers a packet to the switch’s local protocol
stack, and a NORMAL action that causes the packet to be forwarded according to the
traditional forwarding rules in the switch. If traditional forwarding includes delivery to
the switch’s stack, why are both actions needed?

28.10 Does Version 1.1 of OpenFlow allow a Flow Table entry to check the Type-Of-Service
(TOS) bits in an IP header? Does Version 1.1 allow an action that sets the TOS bits?
Explain.

28.11 Consult the Open Networking Foundation web site:

www.opennetworking.org

to find the latest version of the OpenFlow protocol specification. List the most signifi-
cant new features that have been added.

This page intentionally left blank

Chapter Contents
29.1 Introduction, 605
29.2 Protecting Resources, 606
29.3 Information Policy, 607
29.4 Internet Security, 607
29.5 IP Security (IPsec), 608
29.6 IPsec Authentication Header, 608
29.7 Security Association, 610
29.8 IPsec Encapsulating Security Payload, 611
29.9 Authentication And Mutable Header Fields, 612
29.10 IPsec Tunneling, 613
29.11 Required Security Algorithms, 613
29.12 Secure Socket Layer (SSL and TLS), 614
29.13 Firewalls And Internet Access, 614
29.14 Multiple Connections And Weakest Links, 614
29.15 Firewall Implementation And Packet Filters, 615
29.16 Firewall Rules And The 5-Tuple, 615
29.17 Security And Packet Filter Specification, 617
29.18 The Consequence Of Restricted Access For Clients, 618
29.19 Stateful Firewalls, 618
29.20 Content Protection And Proxies, 619
29.21 Monitoring And Logging, 620
29.22 Summary, 620

29

Internet Security
And Firewall Design
(IPsec, SSL)

29.1 Introduction

Security in an internet environment is both important and difficult. It is important
because information has significant value — information can be bought and sold direct-
ly or used indirectly to create valuable artifacts. Security in an internet is difficult be-
cause security involves understanding when and how participating users, computers, ser-
vices, and networks can trust one another, as well as understanding the technical details
of network hardware and protocols. A single weakness can compromise the security of
an entire network. More important, because TCP/IP supports a wide diversity of users,
services, and networks, and an internet can span many political and organizational
boundaries, participating individuals and organizations may not agree on a level of trust
or policies for handling data.

This chapter considers two fundamental techniques that form the basis for internet
security: perimeter security and encryption. Perimeter security allows an organization
to determine the services and networks it will make available to outsiders and the extent
to which outsiders can use resources. Encryption handles most other aspects of securi-
ty. We begin by reviewing a few basic concepts and terminology.

605

606 Internet Security And Firewall Design (IPsec, SSL) Chap. 29

29.2 Protecting Resources

The terms network security and information security refer in a broad sense to con-
fidence that information and services available on a network are authentic and cannot be
accessed by unauthorized users. Security implies safety, including assurance of data in-
tegrity, freedom from unauthorized access of computational resources, freedom from
snooping or wiretapping, and freedom from disruption of service. Of course, just as no
physical property is absolutely secure against crime, no network is completely secure.
Organizations make an effort to secure networks for the same reason they make an ef-
fort to secure buildings and offices: basic security measures can discourage crime by
making it significantly more difficult.

Providing security for information requires protecting both physical and abstract
resources. Physical resources include passive storage devices such as disks as well as
active devices such as users’ computers and smart phones. In a network environment,
physical security extends to the cables, switches, and routers that form the network in-
frastructure. Indeed, although it is seldom mentioned, physical security often plays an
integral role in an overall security plan. Good physical security can eliminate sabotage
(e.g., disabling a router to cause packets to be forwarded through an alternative, less
secure path).

Protecting an abstract resource such as information is usually more difficult than
providing physical security because information is elusive. Information security encom-
passes many aspects of protection:

Data Integrity. A secure system must protect information from unau-
thorized change.

Data Availability. The system must guarantee that outsiders cannot
prevent legitimate access to data (e.g., any outsider should not be able
to block customers from accessing a web site).

Privacy Or Confidentiality. The system must prevent outsiders from
making copies of data as it passes across a network or understanding the
contents if copies are made.

Authorization. Although physical security often classifies people and
resources into broad categories, (e.g., all nonemployees are forbidden
from using a particular hallway), security for information usually needs
to be more restrictive (e.g., some parts of an employee’s record are
available only to the personnel office, others are available only to the
employee’s boss, and others are available to the payroll office).

Authentication. The system must allow two communicating entities to
validate each other’s identity.

Replay Avoidance. To prevent outsiders from capturing copies of pack-
ets and using them later, the system must prevent a retransmitted copy
of a packet from being accepted.

Sec. 29.2 Protecting Resources 607

29.3 Information Policy

Before an organization can enforce network security, the organization
must assess risks and develop a clear policy regarding information access
and protection. The policy specifies who will be granted access to each
piece of information, the rules an individual must follow in disseminating
the information to others, and a statement of how the organization will
react to violations.

An information policy begins with people because:

Humans are usually the most susceptible point in any se-
curity scheme. A worker who is malicious, careless, or
unaware of an organization’s information policy can
compromise the best security.

29.4 Internet Security

Internet security is difficult because datagrams traveling from source
to destination often pass across many intermediate networks and through
routers that are not owned or controlled by either the sender or the reci-
pient. Thus, because datagrams can be intercepted or compromised, the
contents cannot be trusted. As an example, consider a server that attempts
to use source authentication to verify that requests originated from valid
customers. Source authentication requires the server to examine the source
IP address on each incoming datagram, and only accept requests from
computers on an authorized list. Because it can be broken easily, source
authentication is classified as weak. In particular, an intermediate router
can watch traffic traveling to and from the server, and record the IP ad-
dress of a valid customer. Later, the intermediate router can manufacture a
request that has the same source address (and intercept the reply). The
point is:

An authorization scheme that uses a remote machine’s
IP address to authenticate its identity does not suffice in
an unsecure internet. An imposter who gains control of
an intermediate router can obtain access by impersonat-
ing an authorized client.

Stronger authentication requires encryption. Careful choices of an en-
cryption algorithm and associated keys can make it virtually impossible for
intermediate machines to decode messages or manufacture messages that
are valid.

608 Internet Security And Firewall Design (IPsec, SSL) Chap. 29

29.5 IP Security (IPsec)

The IETF has devised a set of protocols that provide secure Internet
communication. Collectively known as IPsec (short for IP security), the
protocols offer authentication and privacy services at the IP layer, and can
be used with both IPv4 and IPv6. More important, instead of completely
specifying the functionality or the encryption algorithm to be used, the
IETF chose to make the system both flexible and extensible. For example,
an application that employs IPsec can choose whether to use an authentica-
tion facility that validates the sender or to use an encryption facility that
also ensures the payload will remain confidential. The choices can be
asymmetric in each direction (e.g., one endpoint can choose to use authen-
tication when sending datagrams and the other endpoint can choose to
send datagrams without authentication). Furthermore, IPsec does not re-
strict senders to a specific encryption or authentication algorithm. Instead,
IPsec provides a general framework that allows each pair of communicat-
ing endpoints to choose algorithms and parameters, such as the size of a
key. To guarantee interoperability, IPsec does include a basic set of en-
cryption algorithms that all implementations must recognize. The point is:

IPsec is not a single security protocol. Instead, IPsec
provides a set of security algorithms plus a general
framework that allows a pair of communicating entities
to use whichever algorithms provide security appropriate
for the communication.

29.6 IPsec Authentication Header

IPsec follows the basic approach that has been adopted for IPv6: a
separate Authentication Header (AH) carries authentication information.
Interestingly, IPsec applies the same approach to IPv4. That is, instead of
modifying the IPv4 header, IPsec inserts an extra header in the datagram.
We think of inserting a header because authentication can be added as a
last step, after the datagram has been created. Figure 29.1 illustrates an
authentication header being inserted into a datagram that has carries TCP.

As the figure shows, IPsec inserts the authentication header immedi-
ately after the original IP header, but before the transport header. For
IPv4, IPsec modifies the PROTOCOL field in the IP header to specify that
the payload is authentication; for IPv6, IPsec uses the NEXT HEADER
field. In either case, the value 51 indicates that the item following the IP
header is an authentication header.

Sec. 29.6 IPsec Authentication Header 609

IP
HEADER

TCP
HEADER

TCP
PAYLOAD

IP
HEADER

AUTHENTICATION
HEADER

TCP
HEADER

TCP
PAYLOAD

(a)

(b)

Figure 29.1 Illustration of (a) an IP datagram, and (b) the same datagram
after an IPsec authentication header has been inserted. The ap-
proach is used for both IPv4 and IPv6.

An authentication header is not a fixed size. Instead, the header begins with a set
of fixed-size fields that describe the security information being carried followed by a
variable-size area that depends on the type of authentication being used. Figure 29.2 il-
lustrates the authentication header format.

0 8 16 31

NEXT HEADER PAYLOAD LEN RESERVED

SECURITY PARAMETERS INDEX

SEQUENCE NUMBER

AUTHENTICATION DATA (VARIABLE)
. . .

Figure 29.2 The IPsec authentication header format. The same format is
used with IPv4 and IPv6.

How does a receiver determine the type of information carried in the datagram?
The authentication header has its own NEXT HEADER field that specifies the type —
IPsec records the original PROTOCOL value in the NEXT HEADER field of the authen-
tication header. When a datagram arrives, the receiver uses security information from
the authentication header to verify the sender, and uses the NEXT HEADER field in the
authentication header to further demultiplex the datagram.

The idea of inserting an extra header and the concept of a NEXT HEADER field in
each header were originally designed for use with IPv6. When IPsec was retro-fitted
from IPv6 into IPv4, the designers chose to retain the general approach even though it
does not follow the usual IPv4 paradigm.

610 Internet Security And Firewall Design (IPsec, SSL) Chap. 29

Interestingly, the PAYLOAD LEN field does not specify the size of the final pay-
load area in the datagram. Instead, it specifies the length of the authentication header
itself. Thus, a receiver will be able to know where the authentication header ends, even
if the receiver does not understand the specific authentication scheme being used.

Remaining fields in the authentication header are used to specify the type of au-
thentication being used. Field SEQUENCE NUMBER contains a unique sequence
number for each packet sent; the number starts at zero when a particular security algo-
rithm is selected and increases monotonically. The SECURITY PARAMETERS INDEX
field specifies the security scheme used, and the AUTHENTICATION DATA field con-
tains data for the selected security scheme.

29.7 Security Association

To understand the reason for using a security parameters index, observe that a se-
curity scheme defines many possible variations. For example, the security scheme
includes an authentication algorithm, a key (or keys) that the algorithm uses, a lifetime
over which the key will remain valid, a lifetime over which the destination agrees to use
the algorithm, and a list of source addresses that are authorized to use the scheme.
Further observe that the information cannot fit into the header.

To save space in the header, IPsec arranges for each receiver to collect all the de-
tails about a security scheme into an abstraction known as a security association (SA).
Each SA is given a number, known as a security parameters index, through which the
SA is known. Before a sender can use IPsec to communicate with a receiver, the sender
and receiver must agree on an index value for a particular SA. The sender then places
the index value in the field SECURITY PARAMETERS INDEX of each outgoing da-
tagram.

Index values are not globally specified. Instead, each destination creates as many
SAs as it needs, and assigns an index value to each. The destination can specify a life-
time for each SA, and can reuse index values once an SA becomes invalid. Conse-
quently, the security parameters index cannot be interpreted without consulting the
destination (e.g., the index 1 can have entirely different meanings to two destinations).
To summarize:

A destination uses the security parameters index to identify the securi-
ty association for a packet. The values are not global; a combination
of destination address and security parameters index is needed to
identify each SA.

Sec. 29.8 IPsec Encapsulating Security Payload 611

29.8 IPsec Encapsulating Security Payload

To handle confidentiality as well as authentication, IPsec uses an Encapsulating
Security Payload (ESP), which is more complex than an authentication header. Instead
of inserting an extra header, ESP requires a sender to replace the IP payload with an en-
crypted version of the payload. A receiver decrypts the payload and recreates the origi-
nal datagram.

As with authentication, IPsec sets the NEXT HEADER (IPv6) or PROTOCOL
(IPv4) field in the IP header to indicate that ESP has been used. The value chosen is
50. An ESP header has a NEXT HEADER field that specifies the type of the original
payload. Figure 29.3 illustrates how ESP modifies a datagram.

IP
HEADER

TCP
HEADER

TCP
DATA

IP
HEADER

ESP
HEADER

TCP
HEADER

TCP
DATA

ESP
TRAILER

ESP
AUTH

(a)

(b)

encrypted
authenticated

Figure 29.3 (a) A datagram, and (b) the same datagram using IPsec Encapsu-
lating Security Payload. Intermediate routers can only interpret
unencrypted fields.

As the figure shows, ESP adds three additional areas to the datagram. An ESP
HEADER immediately follows the IP header and precedes the encrypted payload. An
ESP TRAILER is encrypted along with the payload. Finally a variable-size ESP AUTH
field follows the encrypted section. Why is authentication present? The idea is that
ESP is not an alternative to authentication, but should be an addition. Thus, authentica-
tion is a required part of ESP.

Although it accurately represents the use of IPsec with IPv4, Figure 29.3 overlooks
an important concept in IPv6: multiple headers. In the simplest case, an IPv6 datagram
might be structured exactly as in the figure, with an IPv6 base header followed by a
TCP header and TCP payload. However, the set of optional IPv6 headers include hop-
by-hop headers that are processed by intermediate routers. For example, the datagram
might contain a source route header that specifies a set of intermediate points along a
path to the destination. If ESP encrypts the entire datagram following the IPv6 base
header, hop-by-hop information would be unavailable to routers. Therefore, ESP is
only applied to items that follow the hop-by-hop headers.

612 Internet Security And Firewall Design (IPsec, SSL) Chap. 29

The ESP headers use many of the same fields found in the authentication header,
but rearrange their order. For example, an ESP HEADER consists of 8 octets that iden-
tify the security parameters index and a sequence number.

0 16 31

SECURITY PARAMETERS INDEX

SEQUENCE NUMBER

The ESP TRAILER consists of optional padding, a padding length field, PAD LENGTH,
and a NEXT HEADER field that is followed by a variable amount of authentication
data.

0 16 24 31

0 – 255 OCTETS OF PADDING PAD LENGTH NEXT HEADER

ESP AUTHENTICATION DATA (VARIABLE)
. . .

Padding is optional; it may be present for three reasons. First, some decryption al-
gorithms require zeroes following an encrypted message. Second, note that the NEXT
HEADER field occupies the right-most octet of a 4-octet header field. The alignment is
important because IPsec requires the authentication data that follows the trailer to be
aligned at the start of a 4-octet boundary. Thus, padding may be needed to ensure
alignment. Third, some sites may choose to add random amounts of padding to each
datagram so eavesdroppers at intermediate points along the path cannot use the size of a
datagram to guess its purpose.

29.9 Authentication And Mutable Header Fields

The IPsec authentication mechanism is designed to ensure that an arriving da-
tagram is identical to the datagram sent by the source. However, such a guarantee is
impossible to make. To understand why, recall that IP is classified as a machine-to-
machine layer because the layering principle only applies across one hop. In particular,
each intermediate router decrements the hop-limit (IPv6) or time-to-live (IPv4) field and
recomputes the checksum.

IPsec uses the term mutable fields to refer to IP header fields that are changed in
transit. To prevent such changes causing authentication errors, IPsec specifically omits
mutable fields from the authentication computation. Thus, when a datagram arrives,
IPsec only authenticates immutable fields (e.g., the source address and protocol type).

Sec. 29.10 IPsec Tunneling 613

29.10 IPsec Tunneling

Recall from Chapter 19 that VPN technology uses encryption along with IP-in-IP
tunneling to keep inter-site transfers confidential. IPsec is specifically designed to
accommodate an encrypted tunnel. In particular, the standard defines tunneled versions
of both the authentication header and the encapsulating security payload. Figure 29.4
illustrates the layout of datagrams in tunneling mode.

OUTER IP
HEADER

AUTHENTICATION
HEADER

INNER IP DATAGRAM
(INCLUDING IP HEADER)

OUTER IP
HEADER

ESP
HEADER

INNER IP DATAGRAM
(INCLUDING IP HEADER)

ESP
TRAILER

ESP
AUTH

(a)

(b)

encrypted
authenticated

Figure 29.4 Illustration of IPsec tunneling mode for (a) an authenticated da-
tagram and (b) an encapsulated security payload. The entire
inner datagram is protected.

29.11 Required Security Algorithms

IPsec defines a minimal set of security algorithms that are mandatory (i.e., that all
implementations must supply). In each case, the standard defines specific uses. Figure
29.5 lists the required security algorithms.

Authentication

HMAC with MD5 RFC 2403
HMAC with SHA-1 RFC 2404

Encapsulating Security Payload

DES in CBC mode RFC 2405
HMAC with MD5 RFC 2403
HMAC with SHA-1 RFC 2404
Null Authentication
Null Encryption

Figure 29.5 The security algorithms that are mandatory for IPsec.

614 Internet Security And Firewall Design (IPsec, SSL) Chap. 29

29.12 Secure Socket Layer (SSL and TLS)

By the mid 1990s when it became evident that security was important for Internet
commerce, several groups proposed security mechanisms for use with the Web.
Although not formally adopted by the IETF, one of the proposals has become a de facto
standard.

Known as the Secure Sockets Layer (SSL), the technology was originally developed
by Netscape, Inc. As the name implies, SSL resides at the same layer as the socket
API. When a client uses SSL to contact a server, the SSL protocol allows each side to
authenticate itself to the other. The two sides then negotiate to select an encryption al-
gorithm that they both support. Finally, SSL allows the two sides to establish an en-
crypted connection (i.e., a connection that uses the chosen encryption algorithm to
guarantee privacy). The IETF used SSL as the basis for a protocol known as Transport
Layer Security (TLS). SSL and TLS are so closely related that they both use the same
well-known port and most implementations of SSL support TLS.

29.13 Firewalls And Internet Access

Mechanisms that control internet access handle the problem of screening a particu-
lar network or an organization from unwanted communication. Such mechanisms can
help prevent outsiders from: obtaining information, changing information, or disrupting
communication on an organization’s intranet. Successful access control requires a care-
ful combination of restrictions on network topology, intermediate information staging,
and packet filters.

A single technique, known as an internet firewall†, has emerged as the basis for in-
ternet access control. An organization places a firewall on its connection to the global
Internet (or to any untrusted external site). A firewall partitions an internet into two re-
gions, referred to informally as the inside and outside.

29.14 Multiple Connections And Weakest Links

Although the concept seems simple, details complicate firewall construction. First,
an organization’s intranet can have multiple external connections. The organization
must form a security perimeter by installing a firewall on each external connection. To
guarantee that the perimeter is effective, all firewalls must be configured to use exactly
the same access restrictions. Otherwise, it may be possible to circumvent the restric-
tions imposed by one firewall by entering the organization’s internet through another‡.
We can summarize:

†The term firewall is derived from building architecture in which a firewall is a thick, fireproof partition
that makes a section of a building impenetrable to fire.

‡The well-known idea that security is only as strong as the weakest point has been termed the weakest
link axiom in reference to the adage that a chain is only as strong as its weakest link.

Sec. 29.14 Multiple Connections And Weakest Links 615

An organization that has multiple external connections must install a
firewall on each external connection and must coordinate all
firewalls. Failure to restrict access identically on all firewalls can
leave the organization vulnerable.

29.15 Firewall Implementation And Packet Filters

How should a firewall be implemented? In theory, a firewall simply blocks all
unauthorized communication between computers in the organization and computers out-
side the organization. In practice, the details depend on the network technology, the
capacity of the connection, the traffic load, and the organization’s policies. No single
solution works for all organizations — firewall systems are designed to be configurable.
Informally called a packet filter, the mechanism requires the manager to specify how
the firewall should dispose of each datagram. For example, the manager might choose
to filter (i.e., block) all datagrams that come from one source and allow those from
another, or a manager might choose to block all datagrams destined for some TCP ports
and allow datagrams destined for others.

To operate at network speeds, a packet filter needs hardware and software opti-
mized for the task. Many commercial routers include hardware for high-speed packet
filtering. Once a manager configures the firewall rules, the filter operates at wire speed,
discarding unwanted packets without delaying valid packets.

Because TCP/IP does not dictate a standard for packet filters, each network vendor
is free to choose the capabilities of their packet filter as well as the interface a manager
uses to configure the filter. Some firewall systems offer a graphical interface. For ex-
ample, the firewall might run a web server that displays web pages with configuration
options. A manager can use a conventional web browser to access the server and speci-
fy a configuration. Other firewall systems use a command-line interface.

If a router offers firewall functionality, the interface usually permits a manager to
configure separate filter rules for each interface. Having a separate specification for
each interface is important because one interface of a router may connect to an external
network (e.g., an ISP), while other interfaces connect to internal networks. Thus, the
rules for which packets to reject vary between interfaces.

29.16 Firewall Rules And The 5-Tuple

Many firewall rules focus on the five fields found in protocol headers that are suf-
ficient to identify a TCP connection. In the industry, the set is known as the 5-tuple.
Figure 29.6 lists the fields.

616 Internet Security And Firewall Design (IPsec, SSL) Chap. 29

IPsrc IP source address
IPdst IP destination address
Proto Transport protocol type (e.g., TCP or UDP)
srcPort Source port number for transport protocol
dstPort Destination port number for transport protocol

Figure 29.6 Header fields that make up the 5-tuple. The five fields are suffi-
cient to identify an individual TCP connection.

Because it refers to IP datagrams, the 5-tuple does not include a Layer 2 type field.
That is, we tacitly assume the Layer 2 frame specified the packet to be an IP datagram.

A firewall packet filter usually allows a manager to specify arbitrary combinations
of fields in the 5-tuple, and may provide additional possibilities. Figure 29.7 illustrates
an example filter specification that refers to fields of the 5-tuple.

R 12 INSIDEOUTSIDE

Arrival Interface IPsrc IPdst Proto srcPort dstPort

2 * * TCP * 21
2 * * TCP * 23
1 128.5.0.0 / 16 * TCP * 25
2 * * UDP * 43
2 * * UDP * 69
2 * * TCP * 79

Figure 29.7 A router with two interfaces and an example datagram filter
specification.

In the figure, a manager has chosen to block incoming datagrams destined for FTP
(TCP port 21), TELNET (TCP port 23), WHOIS (UDP port 43), TFTP (UDP port 69),
and FINGER (TCP port 79). In addition, the filter blocks outgoing datagrams that ori-
ginate from any host with an address that matches the IPv4 prefix 128.5.0.0/ 16 and a
destination of a remote email server (TCP port 25).

Sec. 29.17 Security And Packet Filter Specification 617

29.17 Security And Packet Filter Specification

Although the example filter configuration in Figure 29.7 specifies a small list of
services to be blocked, such an approach does not work well for an effective firewall.
There are three reasons.

1. The number of well-known ports is large and growing rapidly. Thus,
listing each service requires a manager to update the list continually.
Unfortunately, an error of omission can leave the firewall vulnerable.

2. Second, much of the traffic on an internet does not travel to or from a
well-known port. In addition to programmers who can choose port
numbers for their private client-server applications, services like Re-
mote Procedure Call (RPC) and file sharing applications assign ports
dynamically.

3. Third, listing ports of well-known services leaves the firewall vulner-
able to tunneling. Tunneling can circumvent security if a host on the
inside agrees to accept encapsulated datagrams from an outsider, re-
moves one layer of encapsulation, and forwards the datagram to the
service that would otherwise be restricted by the firewall. The problem
is significant because malware that is inadvertently installed on a user’s
computer can exploit weaknesses in the firewall.

How can a firewall use a packet filter effectively? The answer lies in reversing the
filter configuration: instead of specifying which datagrams should be blocked, a firewall
should be configured to block all datagrams except those that the manager admits. That
is, a manager must specify the hosts and protocol ports for which external communica-
tion has been approved. By default, all communication is prohibited. Before enabling
any port, a manager must examine the organization’s information policy carefully and
determine that the policy allows the communication. In practice, the packet filters in
many commercial products allow a manager to specify a set of datagrams to admit in-
stead of a set of datagrams to block. We can summarize:

To be effective, a firewall that uses datagram filtering should restrict
access to all IP sources, IP destinations, protocols, and protocol ports
except those computers, networks, and services the organization expli-
citly decides to make available externally. A packet filter that allows
a manager to specify which datagrams to admit instead of which da-
tagrams to block can make such restrictions easy to specify.

618 Internet Security And Firewall Design (IPsec, SSL) Chap. 29

29.18 The Consequence Of Restricted Access For Clients

It may seem that our simplistic rule of blocking all datagrams that arrive for an un-
known protocol port will solve many security problems by preventing outsiders from
accessing arbitrary servers in the organization. Such a firewall has an interesting conse-
quence: it also prevents an arbitrary computer inside the firewall from becoming a client
that accesses a service outside the firewall. To understand why, recall that although
each server operates at a well-known port, a client does not. When a client application
begins, the application requests the operating system to assign a protocol port number
that is neither among the well-known ports nor currently in use on the client’s comput-
er. When it begins to communicate with a server outside the organization, the client
generates one or more datagrams and sends them to the server. Each outgoing datagram
has the client’s protocol port as the source port and the server’s well-known protocol
port as the destination port. Assuming the external server has been approved, the
firewall will not block datagrams as they leave. When it generates a response, however,
the server reverses the protocol ports, which means the client’s port becomes the desti-
nation port. When a response reaches the firewall, the firewall rules will block the
packet because no rule has been created to approve the destination port. Thus, we can
see an important idea:

If an organization’s firewall restricts incoming datagrams except for
ports that correspond to services the organization makes available
externally, an arbitrary application inside the organization cannot be-
come a client of a server outside the organization.

29.19 Stateful Firewalls

How can arbitrary clients within the organization be allowed to access services on
the Internet without admitting incoming datagrams that are destined to arbitrary protocol
ports? The answer lies in a technique known as a stateful firewall. In essence, the
firewall monitors all outgoing datagrams and adapts the filter rules accordingly to ac-
commodate replies.

As an example of a stateful firewall, suppose a client on the inside of an organiza-
tion forms a TCP connection to a web server. If the client has source IP address I1 and
source TCP port P1 and connects to a web server at port 80 with IP address I2, the out-
going SYN segment that initiates the connection will pass through the firewall, which
records the 5-tuple:

(I1, I2, TCP, P1, 80)

When the server returns a SYN+ACK, the firewall will match the two endpoints to the
tuple that was stored, and the incoming segment will be admitted.

Sec. 29.19 Stateful Firewalls 619

Interestingly, a stateful firewall does not permit clients inside the organization to
initiate connections to arbitrary destinations. Instead, the actions of a stateful firewall
are still controlled by a set of packet filter rules. Thus, a firewall administrator can still
choose whether to permit or deny transit for a given packet. In the case of a packet that
is allowed to pass through the firewall, the filter rule can further specify whether to
record state information that will permit a reply to be returned.

How should state be managed in a stateful firewall? There are two broad ap-
proaches: a firewall can use soft state by setting a timer that removes inactive state in-
formation after a timeout period, or connection monitoring in which the firewall
watches packets on the flow and removes state information when the flow terminates
(e.g., when a FIN is received on a TCP connection). Even if a stateful firewall attempts
to monitor connections, soft state is usually a backup to handle cases such as a UDP
flow that does not have explicit termination.

29.20 Content Protection And Proxies

The security mechanisms described above focus on access. Another aspect of se-
curity focuses on content. We know, for example, that an imported file or email mes-
sage can contain a virus. In general, such problems can only be eliminated by a system
that examines incoming content.

One approach, known as Deep Packet Inspection (DPI), examines the payload of
incoming packets. Although it can catch some problems, DPI cannot always handle sit-
uations where content is divided into many packets and the packets arrive out of order.
Thus, alternatives have been invented that extract the content from a connection and
then examine the result before allowing it to pass into the organization.

A mechanism that examines content acts as an application proxy. For example, an
organization can run an HTTP proxy that intercepts each outgoing request, obtains a
copy of the requested item, and scans the copy. If the copy is found to be free from a
virus, the proxy forwards the copy to the client. If the copy contains a virus, the client
is sent an error message. Note that an application proxy can be transparent (i.e., except
for a delay, the client does not realize a proxy has intercepted a request) or nontran-
sparent (i.e., the client must be configured to use a specific proxy).

Although many organizations use a stateful firewall to protect the organization
against random probes from the outside, fewer check content. Thus, it is typical to find
an organization that is immune to arbitrary attacks from the outside, but is still plagued
with email viruses and trojan horse problems when an unsuspecting employee imports a
program that can breach a firewall by forming an outgoing connection.

620 Internet Security And Firewall Design (IPsec, SSL) Chap. 29

29.21 Monitoring And Logging

Monitoring is one of the most important aspects of a firewall design. A network
manager who is responsible for a firewall needs to be aware of attempts to bypass secu-
rity. A list of failed penetration attempts can provide a manager clues about the attack-
er, such as an IP address or a pattern of times at which attempts are made. Thus, a
firewall must report incidents.

Firewall monitoring can be active or passive. In active monitoring, a firewall noti-
fies a manager whenever an incident occurs. The chief advantage of active monitoring
is speed — a manager is notified quickly whenever a potential problem arises. The
chief disadvantage is that active monitors often produce so much information that a
manager cannot comprehend it or notice problems. Thus, many managers prefer pas-
sive monitoring, or a combination of passive monitoring with a few high-risk incidents
reported by an active monitor.

In passive monitoring, a firewall logs a record of each incident in a file on disk. A
passive monitor usually records information about normal traffic (e.g., simple statistics)
as well as datagrams that are filtered. A manager can access the log at any time; most
managers use a computer program. The chief advantage of passive monitoring arises
from its record of events — a manager can consult the log to observe trends and when a
security problem does occur, review the history of events that led to the problem. More
important, a manager can analyze the log periodically (e.g., daily) to determine whether
attempts to access the organization increase or decrease over time.

29.22 Summary

Security problems arise because an internet can connect organizations that do not
have mutual trust. Several technologies are available to help ensure that information
remains secure when being sent across an internet. The Secure Sockets Layer (SSL)
protocol adds encryption and authentication to the socket API. IPsec allows a user to
choose between two basic schemes: one that provides authentication of the datagram
and one that provides authentication plus privacy. IPsec modifies a datagram either by
inserting an Authentication Header or by using an Encapsulating Security Payload,
which inserts a header and trailer and encrypts the data being sent. IPsec provides a
general framework that allows each pair of communicating entities to choose an encryp-
tion algorithm. Because security is often used with tunneling (e.g., in a VPN), IPsec
defines a secure tunnel mode.

The firewall mechanism is used to control internet access. An organization places
a firewall at each external connection to guarantee that the organization’s intranet
remains free from unauthorized traffic. A firewall contains a packet filter that an ad-
ministrator must configure to specify which packets can pass in each direction. A state-
ful firewall can be configured so the firewall automatically allows reply packets once an
outgoing connection has been established.

Exercises 621

EXERCISES

29.1 Read the description of a packet filter for a commercially available router. What
features does it offer?

29.2 Collect a log of all traffic entering your site. Analyze the log to determine the percen-
tage of traffic that arrives from or is destined to a well-known protocol port. Do the
results surprise you?

29.3 If encryption software is available on your computer, measure the time required to en-
crypt a 10 Gbyte file, transfer it to another computer, and decrypt it. Compare the result
to the time required for the transfer if no encryption is used.

29.4 Survey users at your site to determine if they send sensitive information in email. Are
users aware that messages are transferred in plain text, and that anyone watching net-
work traffic can see the contents of an email message?

29.5 Can a firewall be combined with NAT? What are the consequences?
29.6 The military only releases information to those who “need to know.” Will such a scheme

work for all information in your organization? Why or why not?
29.7 Give two reasons why the group of people who administer an organization’s security

policies should be separate from the group of people who administer the organization’s
computer and network systems.

29.8 Some organizations use firewalls to isolate groups of users internally. Give examples of
ways that internal firewalls can improve network performance and examples of ways
internal firewalls can degrade network performance.

29.9 If your organization uses IPsec, find out which algorithms are being used. What is the
key size?

29.10 Can IPsec be used with NAT? Explain.

Chapter Contents
30.1 Introduction, 623
30.2 Sensing, Monitoring, And Control, 624
30.3 Power Conservation And Energy Harvesting, 624
30.4 A World Of Intelligent Embedded Devices, 625
30.5 The Importance of Communication, 625
30.6 Example: Electronic Ads In Shopping Malls, 626
30.7 Collecting Data From Embedded Systems, 627
30.8 Wireless Networking And IEEE 802.15.4, 627
30.9 A Mesh Network For Smart Grid Sensors, 628
30.10 A Forwarding Tree For a Sensor Mesh, 629
30.11 Using Layer 2 And Layer 3 Protocols In A Mesh, 630
30.12 The ZigBee IPv6 Protocol Stack, 631
30.13 Forwarding In A ZigBee Route-Over Mesh, 633
30.14 Assessment Of Using IPv6 Route-Over For A Mesh, 635
30.15 Summary, 637

30

Connected Embedded Systems
(The Internet of Things)

30.1 Introduction

Early chapters describe the principles, protocols, and architecture behind TCP/IP
and the global Internet. Later chapters focus on application protocols and paradigms
that applications use to communicate over an internet. Most Internet applications,
which include email, web browsing, music download, chat programs, and even network
management, have one thing in common: a human initiates communication. Indeed, the
early Internet has been described as focused on providing communication mechanisms
that humans use.

This chapter focuses on a major new area that is emerging as part of the Internet:
communication among intelligent embedded systems. The idea is that computing sys-
tems can be embedded in many devices, and the systems will be able to communicate
with other devices. Of course, some of the embedded devices will provide data for hu-
mans to view and use, so human interaction is included. However, the major emphasis
will be on systems that can interact with their environment, rather than on conventional
computers that store data and run applications. Researchers and professionals working
on the topic have coined the terms Internet of Things† (IoT) and Machine to Machine
(M2M) applications to capture the idea.

The chapter begins by presenting examples of intelligent embedded systems and
the way they use communication. It then discusses one particular technology in detail:
a protocol stack for a wireless network that is intended for smart grid applications. The
use of IPv6 and some of the consequences of the IPv6 design are of particular relevance
to the discussion.

†Despite sounding awkward, the phrase Internet of Things appears to be widely accepted. However, one
vendor’s marketing department uses a variation: the Internet of Everything.

623

624 Connected Embedded Systems (The Internet of Things) Chap. 30

30.2 Sensing, Monitoring, And Control

We use the term embedded system to refer to a computational system that is an in-
tegral part of another mechanism or device. The chief difference between an embedded
system and a conventional computer system arises from their external connections. A
conventional computer system deals with information: the computer can store, access,
and manipulate data. In contrast, an embedded system can sense and control the physi-
cal world around it.

As an example, consider a thermostat used to control a heating and air conditioning
system. A modern thermostat (called a “smart thermostat”) constitutes an embedded
system: the thermostat contains an embedded processor that runs software to perform all
functions. A user can configure the thermostat to use the time of day to change set-
tings. The thermostat has connections to a variety of sensors that might include: an in-
door temperature sensor, an outdoor temperature sensor, a sensor that detects airflow
(i.e., whether the fan is operating), and a sensor connected to push buttons that allow a
user to set the desired temperature. More advanced systems have sensors for the rela-
tive humidity of the air. In addition, the thermostat has connections to controls that
allow the processor to turn the heater or air conditioner on or off, regulate the speed of
the fan, and control humidifier and dehumidifier functions.

Most computer users are already familiar with embedded systems. For example, a
printer connected to a computer incorporates an embedded system. When a computer
sends a document to the printer, the printer’s embedded system controls the motors and
mechanisms in the printer, causing them to feed sheets of paper through the printer,
move the ink jet mechanism, and spray drops of ink. The printer also contains sensors
that can detect a paper jam or low ink supplies.

General Electric, the largest industrial company in the U.S., is going much further
than items for the consumer market. G.E. produces aircraft engines, power plant tur-
bines, locomotives for railroads, medical imaging equipment, and heavy-duty machinery
that transports people, heats homes, and powers factories. Using the phrase industrial
Internet, G.E. has launched a major initiative to incorporate communicating embedded
systems in both its factories and its products.

30.3 Power Conservation And Energy Harvesting

Some embedded systems, such as the embedded control system in a printer, attach
to a reliable source of continual power. However, many embedded systems rely on
temporary power, and are designed to conserve energy. For example, cell phones run
on batteries and environmental sensors located in remote locations (e.g., a desert) may
use photocells.

As a special case, some embedded systems are designed to harvest energy from the
environment around them. For example, a sensor in the ocean might use the motion of
waves to generate power, and a sensor near a hot spring might use thermal energy. En-
ergy harvesting even includes the kinetic energy that humans generate merely by open-

Sec. 30.3 Power Conservation And Energy Harvesting 625

ing a door or flipping a light switch. An embedded system that uses harvested energy
may need to operate periodically — the system might need to accumulate energy until a
sufficient charge is available (e.g., to run a radio transmitter).

30.4 A World Of Intelligent Embedded Devices

To understand the Internet of Things, we have to imagine that embedded systems
will be everywhere: houses, office buildings, vehicles, shopping malls, and on street
corners. Consider vehicles as an example. In addition to embedded systems that pro-
vide information, entertainment, and navigation, each car will have an embedded system
that finds the distance to surrounding cars, senses objects in the road, and warns of
changes in the pavement (e.g., a slight drop or bump due to construction). Embedded
systems will be able to sense lanes and warn the driver if the car drifts out of its lane or
when traffic congestion lies ahead. If the system is intelligent, it can monitor other cars
and apply the brakes if necessary. Furthermore, an intelligent system can identify the
driver (e.g., via facial recognition), monitor the individual’s driving habits, and adjust
reaction times accordingly.

In office buildings, embedded systems can sense the presence of individuals and
adjust lights and heating or cooling accordingly. The system can also change the heat-
ing and cooling systems when windows are open. More important, by adding intelli-
gence to embedded systems, the system will be able to learn patterns. For example, if
an employee moves in and out of their office frequently during the work day, the sys-
tem can learn not to turn off the heat until the employee is absent for a longer time.
Similarly, if an employee tends to work late, the system will learn the pattern and con-
trol the office accordingly. Thus, if an employee with flexible hours goes home at three
o’clock each day, an intelligent system can learn the pattern and shut down lighting and
heating early.

30.5 The Importance of Communication

Why is emphasis shifting to intelligent embedded systems that can communicate?
There are many advantages: communication allows control, coordination, and transfer of
data. Small embedded systems can achieve much more by working together with near-
by embedded systems or by accessing remote information.

As an example, consider a set of sensors used to assess the stress on bridges.
Measuring stress is important in understanding how much traffic a bridge can carry
safely. Stress measurements can indicate when reinforcement is warranted or if the
bridge should be replaced. To measure stress, engineers place small battery-powered
sensors at various points along the bridge. Without communication, each sensor must
store measurements along with a timestamp. Periodically, engineers collect the stored
data and reset the sensor to collect more. If each sensor includes a radio, the set of sen-

626 Connected Embedded Systems (The Internet of Things) Chap. 30

sors can form a wireless network. Network communication allows the sensors to coor-
dinate so they take each reading simultaneously. It also allows the sensors to send the
results to a common collection point, possibly at a location far from the bridge.
Although collecting readings electronically is much more convenient than a manual
method, the most important aspect of communication is the new functionality it enables.
In the case of sensors, uploading data in real time makes it possible to detect dangerous
situations and divert traffic before a disaster occurs.

As a second example of communication, consider smart meters used by utility
companies. The traditional approach used to assess usage consists of placing a meter
outside each customer’s location and sending a person to record the meter reading each
month. A smart meter incorporates wireless communication, which means the utility
company can read the meter from a remote location. Even if the wireless network only
reaches to the street, the meter can be read from a passing vehicle, which lowers the
cost of reading meters dramatically.

30.6 Example: Electronic Ads In Shopping Malls

Many shopping malls now have large video display panels that show ads. The ads
change continuously — stores in the mall pay a fee to show fixed images or full-motion
videos of their products. They also advertise discounts and feature special short-term
promotions (e.g., for the next 30 minutes if you buy product Y at store X and mention
this ad, you will receive a second one free). Communication is needed to download ads
dynamically because the content and schedules can change at any time — management
needs the ability to control which ad is displayed on a given screen and how long the ad
remains visible.

Where is the controller that management uses located, and what networking tech-
nology is needed to connect the controller to the individual displays? The answer is in-
teresting and a bit surprising: each display contains a TCP/IP protocol stack and a con-
nection to the global Internet. There are two reasons. First, an Internet connection al-
lows the controller to be located anywhere. In particular, the mall can outsource IT
functions by placing the controller “in the cloud.” More important, having an Internet
connection means that the content does not need to reside on the same physical host as
the controller.

Allowing content to be separate from the controller is important because many
stores in a mall are part of a national (or international) chain. For example, Apple Com-
puter may have stores in many malls. Individual stores do not produce promotional
videos. Instead, the parent company creates all advertising and makes it available to in-
dividual stores. The video content for ads resides on the parent company’s server.
Having Internet access means the controller only needs to specify a schedule of items to
display along with the URL of each item. Because they each have Internet access, the
display systems can download a copy of each item they have been assigned to show
(possibly through a local cache to improve performance).

Sec. 30.7 Collecting Data From Embedded Systems 627

30.7 Collecting Data From Embedded Systems

The shopping mall example illustrates another important capability of networked
systems: the ability to collect data. Although it is not obvious to customers, some of
the displays in shopping malls are equipped with a camera, and the software is pro-
grammed to operate the camera. When someone approaches the display, the system
uses the camera to detect their presence and apply facial recognition algorithms. Once
faces have been identified, the system uses facial features (e.g., the distance between the
eyes) to analyze the individual. With high accuracy, software in the embedded system
is able to tell whether the individual in front of the camera is male or female as well as
their approximate age. Instead of merely following a predetermined schedule of ads to
display, the system can use the characteristics of the individual to choose an appropriate
ad. Thus, a middle-aged male might be shown an ad for a sports car instead of an ad
for a dress.

Although a camera can be used to select ads, the system can also use a camera to
gather and report data about the interaction. For example, the system can upload statis-
tics about how many people watched a given ad, their sex and age, and how long the
person or group remained in front of the display. Grocery stores are using the same ap-
proach: they are installing cameras with embedded processing capability over freezers
and at other locations in the store. The cameras record whether customers stop to look
at a given product display, how long each person stands still and looks, and how many
customers finally select a product or merely move on. In each case, the information is
uploaded to a server for analysis†.

To summarize:

Adding communication capability to an intelligent embedded system
allows information to flow in two directions: data can be downloaded
to control the actions of the system, and the system can upload data
gathered from sensors.

30.8 Wireless Networking And IEEE 802.15.4

Many of our examples use wireless networking technology. Wireless networks
work extremely well for environmental sensors that are deployed across a wide area
(e.g., sensors on a bridge or earthquake sensors deployed for miles around a fault).
However, wireless networking is also used for semi-permanent deployments in a small
area. For example, using wireless networking on the electronic displays in malls means
that a display unit can be moved without installing a new network connection. The
units are large and heavy, which means that the installation is semi-permanent (i.e., the
display remains stationary for weeks). The use of wireless makes relocation much
easier than a wired network.

†The examples presented here are not mere speculations — these systems exist and are being deployed.

628 Connected Embedded Systems (The Internet of Things) Chap. 30

What wireless networking technologies should be used to connect an intelligent
embedded system? The answer depends on several factors, including the geographic
distance between nodes of the network, desired data rates, and the power to be used.
Power is especially important for two reasons. First, many embedded sensor systems
run on battery power. To maximize battery life, the power consumption must be
minimized (we note that, among other things, reducing overall power utilization may
mean reducing the amount of power used by the radio transmitter, and may mean reduc-
ing the memory or processor speed). Second, even if the embedded system has a source
of power, it may be necessary to limit the signal strength to avoid interfering with other
devices or other transmissions.

Several low-power wireless networking technologies have been standardized, in-
cluding the well-known blue-tooth technology. For our example, we will use a low-
power personal-area network technology defined by the IEEE standard 802.15.4. The
IEEE standard specifies the physical and MAC layers of the network, and other groups
have defined upper-layer protocols for use on the network. Various versions of
802.15.4 have been produced; they differ in the frequency bands and modulation tech-
niques used. For our purposes, it is only necessary to understand that the data rate is re-
latively low (a maximum of 250 Kbps), the MTU is extremely small (127 octets), and
the distance limited (a maximum of 10 meters with a conventional antenna and power
from a battery). The next sections consider an application of 802.15.4 wireless technol-
ogy and upper layers of a protocol stack.

30.9 A Mesh Network For Smart Grid Sensors

One application of 802.15.4 wireless technology arises from an effort to add intelli-
gent computer management to the electrical power distribution system. Known as
Smart Grid, the overall plan includes placing sensors in all devices that use electricity.
In addition to large systems, such as those used for heating and cooling, the designers
envision sensors in kitchen appliances (e.g., ovens, refrigerators, dishwashers, and even
toasters), computer systems, and entertainment systems (e.g., televisions and stereos).
The utility companies want to charge more during peak hours, and the sensors will
communicate with the utility company to find out about pricing and warn users when
prices are high. Alternatively, the sensors will be capable of disabling certain uses dur-
ing peak hours.

The most obvious design for a system of sensors consists of placing a base station
in each residence and using a wireless technology that allows the base station to com-
municate with each sensor. The approach is known as a hub-and-spoke topology. As
we have seen, 802.11 (Wi-Fi) technologies use a hub-and-spoke approach. However,
such a design does not work well for all situations. In particular, metal pipes and other
obstructions that interfere with wireless signals can make it impossible to reach all loca-
tions from a single point, especially for portable appliances that can be moved from one
room to another. Therefore, the designers envision an adaptive system in which the set
of sensor nodes automatically forms a self-organized mesh network (usually abbreviated

Sec. 30.9 A Mesh Network For Smart Grid Sensors 629

as mesh). Each node in the mesh performs two tasks: communication for the appliance
to which it attaches and forwarding for other nodes.

Each residence will contain a border router that connects sensor nodes in the
residence to the outside world. When a node boots, it joins the mesh and tries to estab-
lish a connection to the border router. If it can reach the border router, the node com-
municates directly with the border router. If it cannot reach the border router directly,
the node searches for a nearby neighbor node that does have a path to the border router.
In essence, the neighbor agrees to act like a router that forwards packets.

If multiple neighbors have a path to the border router, a node applies a selection al-
gorithm to choose one. The selection algorithm can take into account several metrics,
including quality of the radio signal (i.e., the level of interference), latency, link capaci-
ty, and capacity of intermediate forwarding nodes. Once a node has a path to the border
router, it informs neighbors and agrees to forward their packets. Thus, if it is possible
to create a network that gives each node connectivity, the nodes will form a mesh net-
work automatically. To summarize:

Rather than using a single, powerful base station that can reach the
sensor in each electrical applicance, a system is being designed in
which a set of sensor nodes self-organizes to form a mesh network;
each node in the mesh agrees to forward packets for other nodes.

30.10 A Forwarding Tree For a Sensor Mesh

Our description makes the selection of paths in a mesh seem trivial. In fact, a
mesh offers many possible paths. Furthermore, the distinction between routing (choos-
ing paths among networks) and forwarding (choosing paths within a network) is blurred
because we can think of each radio link like a network. More important, connectivity is
pair-wise among nodes. The routing aggregation that occurs from an IP prefix does not
apply because a mesh does not function like a single network to which all nodes attach.
If mesh nodes are mobile, forwarding must change dynamically. Despite the potential
complexity of mesh routing, we need to find a solution that works for basic cases.
Therefore, we will assume a static mesh topology, and only consider forwarding
between the border router and individual nodes.

If each sensor node chooses one way to reach the border router, the forwarding
paths in the network form a tree (i.e., a graph with no cycles). Figure 30.1 illustrates a
set of nodes and one possible forwarding tree. As the figure indicates, a border router is
usually larger than other nodes in the network (i.e., has more processing power and
memory). We will see that a border router is expected to run servers that provide ser-
vices to the mesh as a whole.

630 Connected Embedded Systems (The Internet of Things) Chap. 30

border
router

n1

n2 n3

n4

n5 n6 n7

n8
n9

n10
n11 n12

Figure 30.1 An example forwarding tree imposed on a set of sensor nodes. A
tree results if each node chooses one path to the border router.

30.11 Using Layer 2 And Layer 3 Protocols In A Mesh

Recall from Chapter 4 that two approaches have been devised to create a forward-
ing tree across a mesh:

Mesh-under: forwarding uses Layer 2 protocols

Route-over: forwarding uses Layer 3 protocols

In either approach, when a node enters the mesh, the node must choose how to link it-
self into the tree. There are two steps. In the first step, a node must find the set of
neighboring nodes that can be reached directly and asses the quality of the radio signal
for each neighbor. In the second step, the node must choose either to communicate
with the border router directly or to use one of the neighbors when forwarding packets.
Note that the quality of a signal is of key importance — even if a node can reach the
border router directly, the node may choose an indirect path if the signal quality of the
direct connection is sufficiently low.

Mesh-under. With the mesh-under approach, which is favored by IEEE, a node
uses Layer 2 protocols to form a forwarding tree. The idea is similar to the bridge and
spanning tree protocols used for Ethernet. For example, a node uses a Layer 2 broad-
cast to discover which neighbors are within radio range. Each neighbor responds,
which allows the pair to learn that they can reach each other and the signal quality. The
border router also uses Layer 2 broadcast to advertise itself. Nodes in the mesh pass
along information about which nodes they can reach. Eventually, each node in the
mesh is aware of other nodes and how to reach them, as well as how to forward broad-
cast packets. Thus, given the Layer 2 address of the border router, nodes in the mesh
will know how to forward packets (i.e., they will have formed a forwarding tree).

Sec. 30.11 Using Layer 2 And Layer 3 Protocols In A Mesh 631

Route-over. With the route-over approach, which is favored by the IETF, a node
uses Layer 3 protocols to identify neighbors and form a forwarding tree. Of course, the
underlying hardware does not understand IP addresses or the IP datagram format. Thus,
Layer 3 communication uses Layer 2 packets. For example, consider finding neighbors.
Software generates a Layer 3 datagram with a local broadcast address, and the datagram
is sent via hardware broadcast.

In terms of an IP protocol stack, the major difference between mesh-under and
route-over arises in IP forwarding. The mesh-under approach treats the entire set of
nodes as one network. IP assigns a prefix to the network and IP forwarding causes any
datagram destined for a node on the network to be passed to the interface. Layer 2 ac-
cepts the datagram from IP and uses the information that has been gathered to forward
the datagram.

The route-over approach makes IP aware that some nodes on the network are
reachable directly and others are not. In IPv6 terminology, we say that a node is either
on link or off link. To handle nodes that are not directly reachable, IP uses source rout-
ing. That is, IP must understand the topology of the mesh and be able to specify a path
(e.g., go to node 9, then node 5, then node 1, and finally to the border router). The next
sections describe the ZigBee protocol stack that uses the route-over approach and
assesses some of the problems that arise.

30.12 The ZigBee IPv6 Protocol Stack

The ZigBee Alliance and the IETF are exploring the use of IPv6 in a mesh design
that follows the route-over approach. Figure 30.2 lists three IETF working groups relat-
ed to the ZigBee effort.

Name Purpose
6lowpan IP-over-802.15.4 shim layer
roll RPL routing protocol for mesh networks
coap Lightweight RESTful protocol for constrained devices

Figure 30.2 IETF working groups related to the ZigBee effort.

The basic idea of the ZigBee route-over design is to use IPv6 when possible and
introduce modifications as needed. A protocol has been created to compress IPv6 da-
tagrams and send them over an 802.15.4 radio link. A modified form of IPv6 Neighbor
Discovery is used to find the IP addresses of directly-reachable neighbors, and a proto-
col has been invented to allow neighbors to exchange characteristics. In addition, a new
routing protocol is used to gather information about connectivity throughout the mesh.
Finally, an IPv6 source route header is used to forward each datagram hop-by-hop
across the mesh. The next sections describe some of the basic protocols.

632 Connected Embedded Systems (The Internet of Things) Chap. 30

30.12.1 IPv6 Over Low Power Wireless Networks (6LoWPAN)

The 6LoWPAN effort (IPv6 over Low-power Wireless Personal Area Networks)
defines the transmission of IPv6 over a 802.15.4 radio link. The primary problem is a
conflict between the IPv6 requirement for an MTU of at least 1280 octets and the
802.15.4 protocol that species a maximum of 127 octets. In fact, if AES-CCM-128 en-
cryption is used, the available payload size is reduced to 81 octets. To send an IPv6
datagram over such a link, 6LoWPAN introduces an extra shim layer that performs
compression and transmission. The shim layer accepts an outgoing IPv6 datagram,
compresses the header, divides the datagram into a series of pieces we will call fraglets,
and sends each fraglet in a separate packet. On the receiving side, the 6LoWPAN shim
layer accepts incoming fraglets, recombines them into a single datagram, decompresses
the header, and passes the result to the IP layer. Thus, IPv6 is configured to send and
receive complete datagrams.

Note that 6LoWPAN does not use conventional IPv6 fragmentation. There are two
reasons. First, 6LoWPAN only needs to operate over a single link. Thus, the protocol
is much simpler because all the fraglets of a datagram must arrive in order. Second,
IPv6 fragmentation cannot handle an MTU of 127 octets.

30.12.2 6LoWPAN Neighbor Discovery (6LoWPAN-ND)

As we have seen, IPv6 Neighbor Discovery (IPv6-ND) includes duplicate address
detection. A fundamental assumption is that each IPv6 prefix maps to a broadcast
domain; a node can use a broadcast transmission to reach all other nodes that share the
prefix. In a mesh network, however, a broadcast may only reach some of the nodes in
the mesh. We say that some nodes are off link. As a result, conventional duplicate ad-
dress detection, which assumes all nodes are reachable via broadcast or multicast, will
not work correctly.

6LoWPAN-ND defines several changes and optimizations of IPv6-ND that are in-
tended specifically for lossy, low-power wireless networks. In general, 6LoWPAN-ND
avoids all mechanisms that flood packets across the mesh. Instead of requiring each
node to perform duplicate address detection, 6LoWPAN-ND uses a registration ap-
proach in which a node in the mesh can register its address with software that runs on
the border router. Each node registers its address, and software on the border router
flags any duplicates (recall that a border router has the processing power and memory
needed to handle network-wide services, such as address registration). Finally,
6LoWPAN-ND allows nodes to sleep (i.e., go into stasis state to conserve power).
When the node reawakens, it renews its address registration.

30.12.3 Mesh Link Establishment (MLE)

IPv6 is designed with the assumption that links have been configured before IP
software runs. In particular, the radio connection between two nodes cannot be assessed

Sec. 30.12 The ZigBee IPv6 Protocol Stack 633

by sending a packet in one direction: a two-way exchange is needed. Furthermore, IPv6
expects exchanges to be authenticated, which means that links must already be in place.
To allow an IPv6 route-over mesh, a lower-level protocol is required that pairs of nodes
can use to test and configure the links between them.

ZigBee uses the Mesh Link Establishment (MLE) protocol for link configuration.
MLE allows two nodes to assess the quality of the signal during packet transmission,
exchange configuration information (including address information), and choose a type
of security for the link. In addition, MLE can assess multiple links that lead to the
border router, and choose one to use.

30.13 Forwarding In A ZigBee Route-Over Mesh

Perhaps the most serious consequence of using IPv6 to implement a route-over
mesh arises from the requirement for source routing. We know that some nodes of the
network will be on link (i.e., directly reachable), but others will be off link (i.e., only
reachable indirectly). Therefore, IP must use more than the network prefix to decide
how to forward a datagram. There are two ways to handle the problem: storing mode
and nonstoring mode.

Storing mode. As the term storing implies, each node in the network stores a sig-
nificant amount of information. In particular, each node learns and stores the topology
of the entire network (i.e., which pairs of nodes can communicate). When it needs to
send a datagram, the IP software consults the stored information to obtain a path
through the mesh to the destination. The sender places the path in a source route header
and sends the datagram.

Non-storing mode. In non-storing mode, each node in the network only learns two
things: the set of directly-reachable neighbors and the identify of one neighbor that
leads to the border router. However, the border router (which is presumed to have sig-
nificantly more memory and processor capability than individual nodes) learns the com-
plete topology of the network. When a node has a datagram to send, the node forwards
the datagram to the border router. The border router, which knows the topology, uses
source routing to send the datagram to its destination.

Non-storing mode may seem to waste network resources because a datagram sent
from one node to another first goes to the border router and then to its destination.
However, non-storing mode has been selected to permit individual nodes to be extreme-
ly small (have limited memory). Although networks are expected to have only a few
nodes (perhaps two dozen), the size is important. Even if a network contains only a
few nodes, mesh nodes will not have memory sufficient to store forwarding tables for
the entire mesh; for a larger mesh, storing mode implies that each node must store ex-
tremely large tables. Using non-storing mode means each node in the network only
needs to keep the following items in memory:

634 Connected Embedded Systems (The Internet of Things) Chap. 30

A list of all directly-reachable neighbors, including the MAC ad-
dress of each

The identity of the neighbor that has been chosen as the path to the
border router.

30.13.1 Routing Protocol For Low-Power And Lossy Networks (RPL)

The IETF has defined a protocol that can be used with IPv6 in a route-over mesh
network. Known as Routing Protocol For Low-Power And Lossy Networks (RPL), the
protocol allows nodes to advertise direct connections and to learn about connections. In
non-storing mode, RPL propagates connection information “upward” to the border
router. The border router runs a special version of RPL software that gathers the infor-
mation, which means that it learns the topology of the entire mesh.

Once it learns the topology, the border router computes a forwarding tree. Instead
of a tree and an undirected graph, RPL makes each link directed and the direction is
toward the root (i.e., toward the border router). Thus, RPL calls the graph of the mesh
topology a Destination-Oriented Directed Acyclic Graph (DODAG). Figure 30.3 illus-
trates the DODAG form of the tree from Figure 30.1†.

border
router

n1

n2 n3

n4

n5 n6 n7

n8
n9

n10
n11 n12

Figure 30.3 The DODAG RPL defines for the tree in Figure 30.1.

The DODAG representation is merely a detail of the protocol. When a border
router needs to send a datagram to one of the nodes, the source route used in the header
will list nodes down the tree (i.e., in the reverse of the arrows in the figure).

RPL separates nodes in the tree into three types: root (the border router acts as the
root of the DODAG), leaf (i.e., a node that has only one connection), and intermediate
(a node that has at least two connections and forwards datagrams). Because intermedi-
ate nodes forward packets, the ZigBee standards use the term ZigBee IP router, abbrevi-
ated ZIP router. Leaf nodes do not run RPL. Instead, each leaf node connects to a ZIP

†Figure 30.1 can be found on page 630.

Sec. 30.13 Forwarding In A ZigBee Route-Over Mesh 635

router, which handles all forwarding responsibilities for the leaf node. That is, a ZIP
router informs the border router about each leaf node to which it connects.

RPL is much more complex than indicated here. For example, RPL can also be
used with storing mode; messages must specify the mode being used. In addition, RPL
has the ability to distribute information down the tree. For example, it is possible to
use RPL to inform nodes about IP prefixes being used.

30.13.2 Other Protocols In The ZigBee Specification

Besides the major protocols defined above, the ZigBee specification includes many
other protocols. ZigBee uses IPv6 and ICMPv6, TCP, UDP, Protocol for carrying Au-
thentication for Network Access (PANA), multicast DNS (mDNS), DNS Service
Discovery (DNS-SD), and Transport Layer Security (TLS), which is used in conjunction
with PANA, EAP, and EAP-TLS for authentication. Finally, applications that conform
to the Smart Energy Profile 2.0 can use HTTP. Figure 30.4 summarizes the major pro-
tocols.

IEEE 802.15.4 MAC and PHY standards

6LoWPAN adaptation (shim) layer

IPv6, ICMPv6, 6LoWPAN-ND RPL

Transport (TCP and UDP)

TLS mDNS
DNS-SD PANA MLE

Applications (possibly using SEP2 profile)

Figure 30.4 The layer of major protocols used in a ZigBee mesh network.

30.14 Assessment Of Using IPv6 Route-Over For A Mesh

Many questions arise about the route-over approach and the use of IPv6 for a mesh
of low-power sensor nodes. Is a route-over design better than a mesh-under design?
How much additional protocol overhead is needed for route-over? Will a route-over
implementation require more memory than a mesh-under implementation? If so, how
much more? Does it make sense to use IPv6 in a mesh network that has an extremely
small MTU and extremely slow links? If RPL uses non-storing mode, what is the over-

636 Connected Embedded Systems (The Internet of Things) Chap. 30

head in terms of additional packet forwarding? How much of IPv6 and the IPv6 sup-
port protocols must change to make them operate in the mesh environment?

We have already seen that the IPv6 specification prohibits using IPv6 over a net-
work with an MTU smaller than 1280. Thus, a 6LoWPAN shim layer is needed to
allow IPv6 to use a technology that has an MTU of only 127 (less than 127 if an
authentication header is used). A further complication with small MTU arises because
802.15.4 networks can be lossy. Although the 6LoWPAN specification recognizes los-
sy behavior, it relies on the use of fraglets, which means that the probability of
datagram loss (or delay for retransmission) will be much higher than the probability of
loss for a single packet.

Another problem related to MTU arises because a border router must forward da-
tagrams that arrive from outside the mesh. The IPv6 standard specifies a minimum link
MTU of 1280. Suppose the border router advertises an MTU of 1280 on external links.
When a datagram arrives from the outside, the datagram must be further encapsulated
before transmission across the mesh. Unfortunately, the additional header increases the
datagram size to 1280+δ, which makes it larger than the 6LoWPAN MTU of 1280.
One solution defines the 6LoWPAN MTU to be 1280+δ, but requires the border router
to enforce an MTU of 1280 for external sources. The disadvantage of embedding spe-
cial restrictions in IP code arises from the lack of generality — the use of nonstandard
techniques to handle a mesh makes the protocol stack brittle. For example, if someone
invents a new path MTU discovery mechanism, the new mechanism cannot be integrat-
ed into the border router until it has been modified to honor the special MTU rules.

Designers realized that conventional IPv6 protocols cannot be used to configure a
radio link or to perform a two-way signal assessment, so they created MLE. They also
had to replace IPv6 Neighbor Discovery because nodes in the mesh share an IP prefix,
but do not share a single broadcast domain (i.e., some nodes are off link). Further ques-
tions about protocols arise because RPL and ICMPv6 both support propagation of net-
work information (e.g., address prefixes) downward. Which should be used?

A final inefficiency in the use of IPv6 arises from a fundamental design decision:
an IPv6 datagram header cannot be modified. We know that to transit the mesh, a da-
tagram must include a source route header and must carry RPL information. However,
such information is only relevant within the mesh. More important, the information
cannot be sent outside the mesh because the datagram might pass across another ZigBee
mesh — the extra headers must be removed to avoid being misinterpreted. Similarly, if
a datagram passes from the outside into the mesh, the appropriate headers must be
added. As a consequence of the IPv6 design, headers cannot be changed. Therefore,
the only option is encapsulation: each IPv6 datagram sent across the mesh must be en-
capsulated in an outer IPv6 datagram that has the appropriate headers. In normal net-
works, IP-in-IP encapsulation adds a small overhead. For an 802.15.4 network, howev-
er, the extra header is huge relative to the MTU. As a result, the overhead increases
significantly. To summarize:

Sec. 30.14 Assessment Of Using IPv6 Route-Over For A Mesh 637

Although it is possible to use a route-over paradigm and IPv6 for a
ZigBee mesh, doing so means inventing many alternative protocols
and incurs significant overhead.

30.15 Summary

The early Internet focused on connecting users to remote resources. A new trend
focuses on an Internet of Things, in which intelligent embedded systems that sense and
control their environment use Internet technology to communicate. Examples include
sensors in vehicles, residences, office buildings, shopping malls, and on civil infrastruc-
ture.

A consortium of vendors known as the ZigBee Alliance is exploring the use of
IEEE 802.15.4 wireless network technology with a mesh of Smart Grid sensors. A Zig-
Bee network has a border router that connects to the outside; other nodes in the mesh
self-organize to connect and establish forwarding.

In terms of protocols, the ZigBee Alliance is working with the IETF on a route-
over approach that uses IPv6. In principle, a route-over system uses Layer 3 forward-
ing. In practice, IPv6 and the associated support protocols are insufficient for a low-
power, lossy wireless mesh technology that has a small MTU and a low data rate. Con-
sequently, work has focused on replacing many parts of IPv6, adding a shim layer to ac-
commodate small MTU, and inventing a new mesh routing protocol. Even with the
changes, the design of IPv6 introduces many inefficiencies.

EXERCISES

30.1 Suppose your car had an embedded system that could recognize your face and configure
the car accordingly. What parameters would you choose to set?

30.2 One of the first uses of connected embedded systems arose from cash registers. When a
consumer makes a purchase, the cash register identifies the consumer (e.g., from a
frequent-shopper ID or a credit card) and sends details of the purchase back to a server.
Find examples of other connected embedded systems that consumers use.

30.3 Cameras are being placed in supermarkets to monitor shoppers’ habits. If the store also
installs cameras at check-out counters, it may be possible to learn the identity of indivi-
duals. What are the consequences for privacy?

30.4 If you had to design protocols for a mesh network, would you choose mesh-under or
route-over? Justify your choice.

30.5 If applications assume an MTU of 1280 and an original IPv6 datagram must be encapsu-
lated in an outer IPv6 datagram, how many fraglets must be sent to transmit the da-
tagram?

638 Connected Embedded Systems (The Internet of Things) Chap. 30

30.6 Assume a datagram is divided into K fraglets and the probability of losing a given fra-
glet is p (0≤p≤1). What is the probability that the datagram will be lost?

30.7 What are the advantages of using IPv6 as the basis for an Internet of Things? What are
the disadvantages?

30.8 Consider the choice of paths in a mesh network. One possible metric chooses a path
with fewest hops. Explain why a hop count metric does not always work well in a mesh
network.

30.9 The work on a ZigBee stack resulted in yet another routing protocol, RPL. Why was a
new protocol invented instead of using existing routing protocols (e.g., RIP, OSPF)?

30.10 Compare the 6LoWPAN-ND model of address registration with the use of DHCP for ad-
dress assignment. What are the differences? Under what circumstances is one prefer-
able?

Appendix 1

Glossary Of Internetworking
Terms And Abbreviations

TCP/IP Terminology

Like most large undertakings, TCP/IP and the Internet have created their own
language. A curious blend of networking jargon, protocol names, and abbreviations, the
terminology is both difficult to learn and difficult to remember. To outsiders, discus-
sions among the cognoscenti sound like meaningless babble laced with acronyms at
every possible opportunity. Even after a moderate amount of exposure, readers may
find that specific terms are difficult to understand. The problem is compounded be-
cause some terminology is loosely defined, the volume is overwhelming, and various
subgroups have attempted to redefine terms from time to time.

This glossary helps solve the problem by providing short definitions for terms used
by the protocols and throughout the Internet. The glossary is not intended as a tutorial
for beginners. Instead, we focus on providing a concise reference to make it easy for
those who are generally knowledgeable about networking to look up the meaning of
specific terms or acronyms quickly. Readers will find it substantially more useful as a
reference after they have studied the text than before.

639

640 Glossary of Internetworking Terms and Abbreviations Appendix 1

A Glossary of Terms and Abbreviations
In Alphabetical Order

10/100/1000 hardware
A term applied to Ethernet hardware that negotiates whether to operate at 10 Mbps,
100 Mbps, or 1 Gbps.

1000Base-T, 1000Base-X
The technical names for Gigabit Ethernet over twisted pair and optical fiber.

10GigE
The name used for Ethernet that operates at 10 Gbps.

127.0.0.1
The IP loopback address used for testing. Packets sent to this address are processed
by the local protocol software without ever being sent across a network.

1280 (MTU)
The minimum datagram size all IPv6 hosts and routers must handle.

2822 mail
The standard format for electronic mail messages (from RFC 2822).

3-way handshake
The technique used in TCP to start or terminate a connection reliably.

5-layer reference model
The protocol layering model used by TCP/IP. See 7-layer reference model.

5-tuple
A reference to the five fields needed to identify a TCP connection: source and desti-
nation IP addresses, source and destination protocol ports, and the payload type.

576 (MTU)
The minimum datagram size all IPv4 hosts and routers must handle.

6LoWPAN
A standard used to send IPv6 across low-power wireless networks.

7-layer reference model
An older protocol layering model created by ISO. See 5-layer reference model.

TCP/IP Internet Terms In Alphabetical Order 641

802.11
A prefix for IEEE standards that specify wireless networking. Specific standards in-
clude 802.11a, 802.11b, 802.11g, 802.11i, and 802.11n.

802.15.4
An IEEE standard for a low-power wireless network technology.

802.3
The IEEE standard for Ethernet.

ABR
Either Available Bit Rate, an ATM designation for service that does not guarantee a
rate, or Area Border Router, an OSPF designation for a router that communicates
with another area.

ACK
Abbreviation for acknowledgement.

acknowledgement
A response sent by a receiver to indicate successful reception. Typically, an ac-
knowledgement is sent when a packet arrives.

active open
The operation that a client performs to establish a TCP connection with a server at a
known address.

adaptive retransmission
The scheme TCP uses to make the retransmission timer track changes in the round-
trip time.

address
An integer value used to identify a particular computer. Each packet sent to the
computer contains the address.

address binding
Synonym for address resolution.

address mask
A binary value with 1 bits indicating the network prefix and 0 bits indicating the
host suffix. In IPv4, an address mask is 32 bits long; in IPv6, an address mask is
128 bits long.

address resolution
Conversion of a protocol address into a corresponding hardware (MAC) address
(e.g., conversion of an IP address into an Ethernet address). See ARP and IPv6-ND.

642 Glossary of Internetworking Terms and Abbreviations Appendix 1

ADSL
(Asymmetric Digital Subscriber Line) A popular technology for simultaneously
sending data over the same wires used for telephone service.

AFRINIC
See registry.

agent
In network management, an agent is the server software that runs on a network de-
vice that is being managed.

AH
(Authentication Header) A header used by IPsec to guarantee the authenticity of a
datagram’s source.

AIMD
(Additive Increase Multiplicative Decrease) A reference to TCP’s congestion control
mechanism in which the congestion window decreases rapidly and increases slowly.

all routers group
The well-known IP multicast group that includes all routers on the local network.

all systems group
The well-known IP multicast group that includes all hosts and routers on the local
network.

anonymous FTP
An FTP session that uses login name anonymous to access public files. A server
that permits anonymous FTP often allows the password guest.

anonymous network
A synonym for unnumbered network.

ANSI
(American National Standards Institute) An organization that defines U.S. standards
for the information processing industry.

anycast
An address form introduced with IPv6 in which a datagram sent to the address can
be routed to any of a set of computers. An anycast address was originally called a
cluster address.

API
(Application Program Interface) The specification of the interface an application
uses. The socket API is the most popular for Internet communication.

TCP/IP Internet Terms In Alphabetical Order 643

APNIC
See registry.

area
In OSPF, a group of routers that exchange routing information.

area manager
A person in charge of an IETF area. The set of area managers form the IESG.

ARIN
See registry.

ARP
(Address Resolution Protocol) The protocol used to dynamically bind an IPv4 ad-
dress to a hardware (MAC) address. ARP is used across a single physical network
and is limited to networks that support hardware broadcast.

ARPA
(Advanced Research Projects Agency) The government agency that funded the AR-
PANET, and later, the global Internet. ARPA is also known as DARPA.

ARPANET
A pioneering long haul network funded by ARPA and built by BBN. It served from
1969 through 1990 as the basis for early networking research and as a central back-
bone during development of the Internet. The ARPANET consisted of individual
packet switching nodes interconnected by leased lines.

AS
(Autonomous System) A collection of routers and networks that fall under one ad-
ministrative entity and cooperate closely to propagate network reachability (and
routing) information among themselves using an interior gateway protocol of their
choice. Routers within an autonomous system have a high degree of trust. Before
two autonomous systems can communicate, one router in each system sends reacha-
bility information to a router in the other.

ASN.1
(Abstract Syntax Notation . 1) The ISO presentation standard protocol used by
SNMP to represent messages.

ATM
(Asynchronous Transfer Mode) A connection-oriented network technology that uses
small, fixed-size cells at the lowest layer.

authority zone
A part of the domain name hierarchy in which a single name server is the authority.

644 Glossary of Internetworking Terms and Abbreviations Appendix 1

autonomous system
See AS.

base header
The required header found at the beginning of each IPv6 datagram.

base64
An encoding used with MIME to send non-textual data such as a binary file through
email.

baseband
Characteristic of any network technology like Ethernet in which all stations share
access to the medium. Compare to broadband.

BCP
(Best Current Practice) A label given to a subset of RFCs that contain recommenda-
tions from the IETF about the use, configuration, and deployment of internet tech-
nologies.

Bellman-Ford
A synonym for distance-vector.

best-effort delivery
Characteristic of network technologies that do not provide reliability at link levels.
IP works well over best-effort delivery hardware because IP does not assume that
the underlying network provides reliability. The UDP protocol provides best-effort
delivery service to application programs.

BGP
(Border Gateway Protocol) The major exterior gateway protocol used in the Inter-
net. Four major versions of BGP have appeared, with BGP-4 being the current.

big endian
A format for storage or transmission of binary data in which the most-significant
byte (bit) comes first. The TCP/IP standard network byte order is big endian. Com-
pare to little endian.

binary exponential backoff
A technique used to control network contention or congestion quickly. A sender
doubles the amount of time it waits between each successive retransmission.

bind
The name of popular commercial DNS software that originally was derived from
software in BSD Unix.

TCP/IP Internet Terms In Alphabetical Order 645

bps
(bits per second) A measure of the rate of data transmission.

bridge
A device that connects two or more networks and forwards frames among them.
Bridges differ from routers because bridges use physical addresses, while routers use
IP addresses.

broadband
Characteristic of a network technology that multiplexes multiple, independent net-
work carriers onto a single cable (usually using frequency division multiplexing).
Compare to baseband.

broadcast
A packet delivery system that delivers a copy of a given packet to all hosts that at-
tach to it is said to broadcast the packet. Broadcast can be implemented with
hardware (e.g., as in Ethernet) or software (e.g., IP broadcasting in the presence of
subnets). See multicast and unicast.

broadcast and prune
A technique used in data-driven multicast forwarding in which routers forward each
datagram to each network until they learn that the network has no group members.

BSD UNIX
(Berkeley Software Distribution UNIX) A version of the UNIX operating system
modified at U.C. Berkeley to contain TCP/IP protocols.

buffer bloat
A term used to criticize vendors who use incredibly large packet buffers, even in
small devices (e.g., a cable modem or a wireless router). Large buffers can cause
long delays that impact real-time communication.

care-of address
A temporary IP address used by a mobile while visiting a foreign network.

category 5 cable
The standard for wiring used with twisted pair Ethernet. Variants include Cat5,
Cat5e, and Cat6, which each provide more speed than the previous category.

CBT
(Core Based Trees) A demand-driven multicast routing protocol that builds shared
forwarding trees.

CCITT
(Consultative Committee on International Telephony and Telegraphy) The former
name of the ITU.

646 Glossary of Internetworking Terms and Abbreviations Appendix 1

cell
A small, fixed-size packet. An ATM cell contains 48 octets of data and 5 octets of
header.

CGI
(Common Gateway Interface) A technology a server uses to create a web page
dynamically when the request arrives.

checksum
A small integer value sent with a packet and used to detect errors that can result
when a packet is transmitted from one machine to another.

CIDR
(Classless Inter-Domain Routing) The standard that specifies the details of both
classless addressing and an associated routing scheme.

CL network
See connectionless service.

class of address
In classful addressing, the class of an address determines the location of the boun-
dary between network prefix and host suffix.

classful addressing
The original IPv4 addressing scheme in which host addresses were divided into
three classes: A, B, and C.

classless addressing
An extension of the original IPv4 addressing scheme that ignores the original class
boundaries to make better use of the address space.

client-server
The model of interaction in a distributed system in which a client program on one
computer sends a request to a server program on another computer and awaits a
response.

closed window
A situation in TCP where a receiver has sent a window advertisement of size zero
because no additional buffer space is available. When space becomes available, the
receiver opens the window again.

CO
See connection-oriented service.

TCP/IP Internet Terms In Alphabetical Order 647

codec
(coder / decoder) A hardware device used to convert between an analog audio signal
and a stream of digital values.

congestion
A situation in which traffic (temporarily) exceeds the capacity of networks or
routers.

connection
An abstraction provided by protocol software. TCP provides a connection from one
application program to another.

connection-oriented service
Characteristic of the service offered by any networking technology in which com-
municating parties first establish communication and then send data. TCP provides
connection-oriented service as does ATM hardware.

connectionless service
Characteristic of the service offered by any networking technology in which each
message or packet identifies the destination and is handled independently. Both IP
and UDP provide connectionless service.

COPS
(Common Open Policy Service) A protocol used with RSVP to verify whether a re-
quest meets policy constraints.

CoS
(Class of Service) The designation assigned to a packet that determines its priority
and how it is routed.

count to infinity
An informal name for the slow convergence problem.

CR-LF
(Carriage Return - Line Feed) The two-character sequence used to terminate each
line of text in application layer protocols such as TELNET and SMTP.

CRC
(Cyclic Redundancy Code) A small, integer value sent with a packet that is used to
detect transmission errors. Also see checksum.

648 Glossary of Internetworking Terms and Abbreviations Appendix 1

CSMA/CA
(Carrier Sense Multiple Access with Collision Avoidance) A characteristic of net-
work hardware that operates by allowing multiple stations to contend for access to a
transmission medium by listening to see if the medium is idle and by sending a
short reservation message to inform other stations before transmitting data. 802.11
wireless networks use CSMA/CA.

CSMA/CD
(Carrier Sense Multiple Access with Collision Detection) The original access control
scheme used with Ethernet and now replaced with Ethernet switching.

CSU/DSU
(Channel Service Unit / Data Service Unit) An electronic device that connects a
computer or router to a digital circuit leased by the telephone company. Although
the device fills two roles, it usually consists of a single physical piece of hardware.

cumulative acknowledgement
The acknowledgement scheme used by TCP in which an acknowledgement reports
the point in a stream at which data has been received successfully. See SACK.

DARPA
(Defense Advanced Research Projects Agency) The government agency that funded
the ARPANET, and later, the global Internet. DARPA is also known as ARPA.

datagram
See IP datagram.

DCE
(Data Communications Equipment) Equipment in the network, as opposed to user’s
equipment that attaches to the network. See DTE.

default free zone
The core of the Internet in which default routing is prohibited.

default route
A single entry in a list of routes that covers all destinations which are not included
explicitly. The routing tables in most routers and hosts contain an entry for a de-
fault route.

delay
One of the two primary measures of a network. Delay refers to the difference
between the time a bit of data is injected into a network and the time the bit exits.

delayed acknowledgement
A heuristic employed by a receiving TCP to avoid silly window syndrome.

TCP/IP Internet Terms In Alphabetical Order 649

demultiplex
To separate from a common input into several outputs. Demultiplexing occurs at
each layer of the protocol stack. See multiplex.

DHCP
(Dynamic Host Configuration Protocol) A protocol that a host uses to obtain config-
uration information including an IP address, the address of a router, and the address
of a domain name server.

DiffServ
(Differentiated Services) The definition used for type-of-service in an IP datagram.
DiffServ uses six bits in the IP header.

dig
An application program used by network managers to query the Domain Name
System.

directed broadcast address
An IPv4 address that specifies all hosts on a specific network. Use of directed
broadcast is discouraged.

distance-vector
A class of routing update protocols in which each participating router sends its
neighbors a list of networks it can reach and the distance to each network. See
link-state.

DNS
(Domain Name System) The system used to map human-readable machine names
into IP addresses. DNS uses a hierarchy of servers.

DNS-SD
(Domain Name System Service Discovery) A protocol that uses mDNS to find a ser-
vice.

DNSSEC
(Domain Name System SECurity) A set of security extensions for the Domain Name
System.

domain name
A name consisting of a sequence of labels separated by periods (dots). Each com-
puter in the Internet is assigned a unique domain name.

Domain Name System
See DNS.

650 Glossary of Internetworking Terms and Abbreviations Appendix 1

dotted decimal notation
A syntactic form used to represent 32-bit binary integers. Four 8-bit values are writ-
ten in base 10 with periods (dots) separating them.

dotted hex notation
A syntactic form used to represent binary values that consists of hexadecimal values
for each 8-bit quantity with dots separating them.

dotted quad notation
A syntactic form used to represent binary values that consists of hexadecimal values
for each 16-bit quantity with dots separating them.

DPI
(Deep Packet Inspection) A security mechanism that considers items that lie in the
payload area of a packet as well as the header.

DRR
(Deficit Round Robin) An algorithm used for traffic shaping.

DSL
(Digital Subscriber Line) A set of technologies used to provide high-speed data ser-
vice over the copper wires that connect between telephone offices and local
residences or businesses.

DTE
(Data Terminal Equipment) Equipment that attaches to a network, as opposed to
equipment that forms the network. Also see DCE.

DVMRP
(Distance Vector Multicast Routing Protocol) A protocol used to propagate multi-
cast routes.

E.164
An address format specified by ITU.

echo request and reply
A type of message that is used to test network connectivity. The ping program uses
ICMP echo request and reply messages.

ECN
(Explicit Congestion Notification) A mechanism that allows a router to inform end
systems when a packet encounters congestion.

EF
(Expedited Forwarding) A DiffServ class for high-priority packets.

TCP/IP Internet Terms In Alphabetical Order 651

EGP
(Exterior Gateway Protocol) A term applied to any protocol used by a router in one
autonomous system to advertise network reachability to a router in another autono-
mous system. BGP-4 is currently the most widely used exterior gateway protocol.

encapsulation
The technique used by layered protocols in which a lower-level protocol accepts a
message from a higher-level protocol and places it in the data portion of the low-
level packet.

end-to-end
Characteristic of any mechanism that provides communication from the original
source to the final destination. Protocols like TCP are classified as end-to-end.

epoch date
A point in history chosen as the date from which time is measured. TCP/IP uses
January 1, 1900, Universal Time (formerly called Greenwich Mean Time) as its
epoch date.

ESP
(Encapsulating Security Payload) A packet format used by IPsec to send encrypted
information.

Ethernet
A popular local area network technology originally invented at the Xerox
Corporation’s Palo Alto Research Center. Ethernet is a best-effort delivery system
that uses CSMA/CD technology.

EUI-64
A 64-bit IEEE Layer 2 addressing standard.

exponential backoff
See binary exponential backoff.

extension header
Any of the optional IPv6 headers that follows the base header.

Exterior Gateway Protocol
See EGP.

eXternal Data Representation
See XDR.

extra hop problem
An error condition in which communication is possible, but each datagram takes an
extra, unnecessary trip across a network.

652 Glossary of Internetworking Terms and Abbreviations Appendix 1

fair queueing
A well-known technique for traffic scheduling that is used in routers. See WRR.

FDM
(Frequency Division Multiplexing) The method of passing multiple, independent sig-
nals across a single medium by assigning each a unique carrier frequency.
Hardware to combine signals is called a multiplexor; hardware to separate them is
called a demultiplexor. Also see TDM.

FIB
(Forwarding Information Base) The data collected by routing protocols and used to
build a forwarding table.

file server
An application program that provides remote clients with access to files. The term
is also used for the computer that runs the file server application.

FIN
A type of TCP segment. To close a connection, each side must send a FIN.

firewall
A mechanism placed between an organization’s internal intranet and the Internet to
provide security.

fixed-length subnetting
A subnet address assignment scheme in which all physical nets in an organization
use the same mask. The alternative is variable-length subnetting.

flat namespace
Characteristic of any naming scheme in which object names are selected from a sin-
gle set of strings (e.g., street names in a typical city).

flow
A term used to characterize a sequence of packets sent from a source to a destina-
tion. Some networking technologies define a separate flow for each pair of com-
municating applications, while others define a single flow to include all packets
between a pair of hosts. See 5-tuple.

flow control
Control exerted by a receiver, typically in a transport protocol, to limit the rate at
which a sender transfers data.

Ford-Fulkerson algorithm
A synonym for the distance-vector algorithm that refers to the researchers who
discovered it.

TCP/IP Internet Terms In Alphabetical Order 653

forwarding
The process of accepting an incoming packet, looking up a next hop in a routing
table, and sending the packet on to the next hop.

forwarding loop
An error condition in which a cycle of routers each has the next router in the cycle
as the shortest path to a given destination. Also known as a routing loop.

fragment extension header
An optional header used by IPv6 to mark a datagram as a fragment.

fragmentation
The process of dividing an IP datagram into smaller pieces. A router fragments a
datagram when the network MTU is smaller than the datagram; the ultimate destina-
tion reassembles fragments.

frame
A term for a Layer 2 packet derived from early protocols that added special start-
of-frame and end-of-frame markers when transmitting a packet.

Frame Relay
The name of an older connection-oriented network technology offered by telephone
companies.

FTP
(File Transfer Protocol) A standard application layer protocol for file transfer.

full duplex
Characteristic of a technology that allows simultaneous transfer of data in two direc-
tions.

FYI
(For Your Information) A subset of the RFCs that contain tutorials or general infor-
mation about topics related to TCP/IP or the connected Internet.

gated
(gateway daemon) A program that runs on a router and interconnects multiple rout-
ing protocols, often an IGP and an EGP.

gateway
Any mechanism that connects two or more heterogeneous systems and translates
among them. Originally, researchers used the term IP gateway; vendors adopted IP
router.

654 Glossary of Internetworking Terms and Abbreviations Appendix 1

Gbps
(Giga bits per second) A measure of the rate of data transmission equal to 109 bits
per second. Also see Kbps and Mbps.

GigE
(Gigabit Ethernet) An Ethernet technology that operates at 1 Gbps.

graceful shutdown
A protocol mechanism that allows two communicating parties to agree to terminate
communication without confusion even if underlying packets are lost, delayed, or
duplicated. TCP uses a 3-way handshake to guarantee graceful shutdown.

GRE
(Generic Routing Encapsulation) A scheme for encapsulating information in IP that
includes IP-in-IP as one possibility.

H.323
An ITU recommendation for a suite of protocols used for IP telephony.

half duplex
Characteristic of a technology that only permits data transmission in one direction at
a time. Compare to full duplex.

hardware address
An address used by a physical network (e.g., Ethernet uses a 48-bit hardware ad-
dress). Synonyms include physical address and MAC address.

header
Information at the beginning of a packet or message that describes the contents and
specifies a destination.

HELO
The command on the initial exchange of the SMTP protocol.

hierarchical addressing
An addressing scheme in which an address can be subdivided into parts that each
identify successively finer granularity. IPv4 and IPv6 both use a two-level hierarchy
in which the first part of an address identifies a network and the second part identi-
fies a particular host on that network. Subnetting can be used to introduce addition-
al levels of addressing hierarchy.

historic
An IETF classification used to discourage the use of a protocol. In essence, a proto-
col that is declared historic is obsolete.

TCP/IP Internet Terms In Alphabetical Order 655

hold down
A short, fixed time period following a change to a routing table during which no
further changes are accepted. Hold down helps avoid forwarding loops.

hop count
A measure of distance between two points in the Internet. A hop count of n means
that n networks separate the source and destination.

hop limit
The IPv6 name for the datagram header field that IPv4 originally called time to live.
Now applied to IPv4 as well. The hop limit prevents datagrams from following a
forwarding loop forever.

hop-by-hop
A reference to processing that is performed at each router (as opposed to end-to-
end). IPv6 classifies some extension headers as hop-by-hop

host
The TCP/IP term for an end-user computer system. In addition to desktop systems,
hosts include devices such as printers, laptops, and small embedded systems. Com-
pare to IP router.

host requirements
RFC documents that specify revisions and updates of many TCP/IP protocols. See
router requirements.

host-specific route
An entry in a routing table that refers to a single host computer as opposed to routes
that refer to a network, an IP subnet, or a default.

HTML
(HyperText Markup Language) The standard document format used for web pages.

HTTP
(HyperText Transfer Protocol) The protocol used to transfer web documents from a
server to a browser.

HTTPS
(HyperText Transfer Protocol with Security) A secure version of HTTP.

IAB
(Internet Architecture Board) A group of people in the IETF who set policy and
direction for TCP/IP protocols. The IAB was originally known as the Internet Ac-
tivities Board. See IETF.

656 Glossary of Internetworking Terms and Abbreviations Appendix 1

IANA
(Internet Assigned Numbers Authority) The group responsible for assigning values
used in protocols.

ICANN
(Internet Corporation For Assigned Names and Numbers) A group responsible for
setting policy and coordinating registries that assign IP addresses.

ICMP
(Internet Control Message Protocol) An integral part of the Internet Protocol (IP)
that handles error and control messages (e.g., ping). Routers and hosts use ICMP to
send reports of problems about datagrams back to the original source that sent the
datagram.

ICMPv6
(Internet Control Message Protocol version 6) The version of ICMP that has been
defined for use with IPv6.

identifier-locator split
The idea that to support mobility, an IP address must be divided into a piece that
identifies a node and a piece that specifies where the node is presently located.

IEEE
(Institute of Electrical and Electronic Engineers) A professional society that pub-
lishes standards for many Local Area networks, such as Ethernet.

IESG
(Internet Engineering Steering Group) A committee consisting of the IETF chairper-
son and the area managers that charters working groups and approves RFCs.

IETF
(Internet Engineering Task Force) A group of people under the IAB who work on
the design and engineering of TCP/IP and the global Internet. The IETF is divided
into areas, which are further subdivided into working groups.

IGMP
(Internet Group Management Protocol) A protocol that hosts use to keep local
routers apprised of their membership in multicast groups. IGMPv3 refers to the
current version (3).

IGP
(Interior Gateway Protocol) The generic term applied to any protocol used to propa-
gate network reachability and routing information within an autonomous system.

TCP/IP Internet Terms In Alphabetical Order 657

IMAP
(Internet Message Access Protocol) A protocol used to transfer email messages
between a user’s mailbox and an agent that the user runs to read email. A secure
version is named IMAPS. See SMTP.

inter-autonomous system routing
A synonym for exterior routing. See BGP and CIDR.

inter-domain routing
A synonym for exterior routing. See BGP and CIDR.

Interior Gateway Protocol
See IGP.

International Organization for Standardization
See ISO.

International Telecommunications Union
See ITU.

Internet
A collection of data networks around the world that are interconnected by routers
and use TCP/IP protocols to function as a single, large, virtual network.

Internet address
See IP address.

Internet draft
A draft document generated by the IETF; if approved, the document will become an
RFC.

Internet of Things
A reference to a shift from early Internet applications that provided communication
for humans to new services that connect embedded systems, such as sensors.

Internet Protocol
See IP.

interoperability
The ability of software and hardware on multiple machines from multiple vendors to
communicate efficiently, reliably, and meaningfully.

intranet
A private corporate network consisting of hosts, routers, and networks that use
TCP/IP technology. Most corporate intranets connect to the Internet.

658 Glossary of Internetworking Terms and Abbreviations Appendix 1

IntServ
(Integrated Services) The original effort to add QoS to TCP/IP. See DiffServ.

IP
(Internet Protocol) The protocol in the TCP/IP suite that defines the connectionless,
best-effort packet delivery service that forms the basis for the Internet. The term
can refer to version 4 or 6 (IPv4 or IPv6).

IP address
A binary number assigned to each host in the Internet. An IPv4 address is 32 bits
long; an IPv6 address is 128 bits.

IP datagram
The basic unit of information passed across a TCP/IP internet analogous to a
hardware packet. Each datagram contains the addresses of the original sender and
ultimate destination.

IP gateway
The term originally used for IP router.

IP multicast
An addressing and forwarding scheme that allows transmission of IP datagrams to a
subset of hosts. The Internet currently does not have extensive facilities to handle
IP multicast.

IP router
A special purpose network system that connects two or more (possibly heterogene-
ous) networks and passes IP traffic between them.

IP switching
Originally, a high-speed IP forwarding technology developed by Ipsilon Corpora-
tion, now generally used in reference to any of several similar technologies.

IP telephony
A telephone system that uses IP to transport digitized voice. See VoIP.

IP-in-IP
The encapsulation of one IP datagram inside another for transmission through a tun-
nel. IP-in-IP is used with VPNs and IPv6.

IPng
(Internet Protocol — the next generation) An older term used for IPv6.

IPsec
(IP security) A security standard used with either IPv4 or IPv6 to allow a sender to
authenticate or encrypt a datagram.

TCP/IP Internet Terms In Alphabetical Order 659

IPv4
(Internet Protocol version 4) A reference to the original version of IP defined in
1978 and used as the basis for the global Internet. IPv4 is being replaced by IPv6.

IPv6
(Internet Protocol version 6) A reference to the version of IP defined in the 1990s as
a successor to IPv4.

IPv6 migration
A reference to the change from an IPv4 Internet to an IPv6 Internet. Several stra-
tegies have been proposed, including the use of dual stacks (each computer runs
both IPv4 and IPv6) and translation (a device at the boundary between an IPv4 net-
work and an IPv6 network sends the payload from one type of datagram in a da-
tagram of the other type).

IPv6-ND
(IPv6 Neighbor Discovery) A support protocol that an IPv6 node uses to identify
other nodes attached to the same network and learn their MAC addresses. See ARP.

IRTF
(Internet Research Task Force) A relatively inactive group parallel to the IETF.

IS-IS
(Intermediate System to Intermediate System) A routing protocol designed for OSI,
but later modified for use with TCP/IP.

ISO
(International Organization for Standardization) An international body that drafts,
discusses, proposes, and specifies standards for network protocols. ISO is best
known for its 7-layer reference model that describes the conceptual organization of
protocols.

isochronous
Characteristic of a network system that does not introduce jitter. The conventional
telephone system is isochronous.

ISP
(Internet Service Provider) Any organization that sells Internet access, either per-
manent connectivity or dialup access.

ITU
(International Telecommunication Union) An international organization that sets
standards for interconnection of telephone equipment.

660 Glossary of Internetworking Terms and Abbreviations Appendix 1

IXP
(Internet eXchange Point) A physical location at which ISPs connect. See NAP and
peering agreement.

jitter
A term used to describe unwanted variance in delay caused when one packet in a se-
quence must be delayed more than another. Jitter can result when routers in a pack-
et switching network experience congestion.

Karn’s Algorithm
An algorithm that allows transport protocols to distinguish between valid and invalid
round-trip time samples, and thus, improve round-trip estimations.

Kbps
(Kilo bits per second) A measure of the rate of data transmission equal to 103 bits
per second. Also see Gbps and Mbps.

keepalive
A small message sent periodically between two communicating entities to ensure
that network connectivity remains intact and that both sides are still responding.

LACNIC
See registry.

LAN
(Local Area Network) Any physical network technology designed to span short dis-
tances (up to a few thousand meters). See WAN.

Layer 1
A reference to the lowest layer in a layering model. Layer 1 includes physical con-
nections and voltages on wires.

Layer 2
A reference to the second lowest layer in a layering model. Layer 2 includes frame
format and addressing.

Layer 3
A reference to the IP layer that provides internetworking.

Layer 4
A reference to the transport layer that includes TCP and UDP.

link-state
A class of routing update protocols in which each participating router broadcasts
status messages and each router uses Dijkstra’s SPF algorithm to compute shortest
routes to each destination. See distance-vector.

TCP/IP Internet Terms In Alphabetical Order 661

link-status
A synonym for link-state.

link-local address
An address used with IPv6 that has significance only on a single network.

LIS
(Logical IP Subnet) A term used when IP runs over ATM to describe a virtual net-
work that has a single IP prefix.

little endian
A format for storage or transmission of binary data in which the least-significant
byte (bit) comes first. See big endian.

logical subnet
See LIS.

long haul network
Older term for WAN.

longest-prefix match
See LPM.

loopback address
A network address used for testing that causes outgoing packets to be delivered to
the local machine. IP uses 127.0.0.0 / 8 as the loopback prefix, so 127.0.0.1 is a
loopback address.

LPM
(Longest-Prefix Match) The technique used when searching a routing table that
chooses an entry with the largest prefix that matches the target address.

LSP
(Label Switched Path) A path through a series of LSRs that run MPLS.

LSR
(Loose Source Route also Label Switching Router) Loose Source Route is an IP op-
tion that contains a list of router addresses that the datagram must visit in order.
The datagram may also be forwarded to additional intermediate stops. A Label
Switching Router is a router that has facilities to forward MPLS traffic. Usually,
such a router also handles conventional IP forwarding, and can be configured to
transfer packets between MPLS and conventional IP. A Label Switching Router
uses labels instead of addresses when forwarding datagrams. See SSR and MPLS.

662 Glossary of Internetworking Terms and Abbreviations Appendix 1

MABR
(Multicast Area Border Router) The MOSPF term for a multicast router that ex-
changes routing information with another area.

MAC
(Media Access Control) A general reference to the low-level hardware protocols
used to access a particular network. The term MAC address is often used as a
synonym for physical address.

mail exchanger
A computer that accepts email. DNS has a separate lookup type for mail ex-
changers.

Management Information Base
See MIB.

mask
See address mask.

maximum transfer unit
See MTU.

MBONE
(Multicast backBONE) A cooperative agreement among sites to forward multicast
datagrams across the Internet by use of IP tunneling.

Mbps
(Millions of bits per second) A measure of the rate of data transmission equal to 106

bits per second. Also see Gbps and Kbps.

mDNS
(multicast DNS) A mechanism that uses IP multicast to allow a host to find another
host’s IP address or the addresses of hosts that offer a service.

mesh network
A type of network in which a set of nodes establishes point-to-point links between
pairs of nodes and agrees to forward packets on behalf of other nodes. A mesh is
typically used for a wireless network.

mesh-under
An approach to building mesh networks that uses Layer 2 protocols to forward pack-
ets. See route-over.

MIB
(Management Information Base) The set of variables (database) that a system run-
ning an SNMP agent maintains. Managers can fetch or store into MIB variables.

TCP/IP Internet Terms In Alphabetical Order 663

MIME
(Multipurpose Internet Mail Extensions) A standard used to encode data such as im-
ages as printable ASCII text for transmission through email.

MLS
(Multi-Layer Switching) An IP switching technology offered by Cisco Systems.

mobile IP
A technology developed by the IETF to permit a computer to travel to a new site
while retaining its original IP address.

MOSPF
(Multicast Open Shortest Path First) Multicast extensions to the OSPF routing pro-
tocol.

MPLS
(Multi-Protocol Label Switching) A technology that uses high-speed switching
hardware to carry IP datagrams. MPLS is derived from IP switching.

mrouted
(multicast route daemon) A program used with a protocol stack that supports IP
multicast to establish multicast forwarding.

MSL
(Maximum Segment Lifetime) The longest time a datagram can survive in the Inter-
net. Protocols use the MSL to guarantee a bound on the time duplicate packets can
survive.

MSS
(Maximum Segment Size) A value negotiated when using TCP that specifies the larg-
est amount of data that can be transmitted in one segment.

MTU
(Maximum Transmission Unit) The largest amount of data that can be transferred
across a given physical network in a single packet.

multi-homed host
A TCP/IP host that has connections to two or more physical networks.

multicast
A technique that allows copies of a single packet to be passed to a selected subset of
all possible destinations. Some hardware (e.g., Ethernet) supports multicast. See
broadcast and unicast.

664 Glossary of Internetworking Terms and Abbreviations Appendix 1

multiplex
To combine data from several sources into a single stream in such a way that it can
be separated again later. See demultiplex.

multiplicative decrease
A technique used by TCP to reduce transmission when congestion occurs. The size
of the effective window is reduced by half each time a segment is lost.

MX record
(Mail eXchanger record) A type of DNS record used to store the address of a mail
server for a given domain.

NACK
(Negative ACKnowledgment) A message returned to deny a request.

Nagle algorithm
A self-clocking heuristic that clumps outgoing data to improve throughput and avoid
silly window syndrome.

name resolution
The process of mapping a name into a corresponding address. The Domain Name
System provides a mechanism for naming computers in which programs use remote
name servers to resolve a machine name into an IP address.

NAP
(Network Access Point) A physical location where ISPs interconnect networks. Also
see IXP.

NAPT
(Network Address and Port Translation) The most popular form of NAT in which
protocol port numbers and IP addresses are used in the translation.

NAT
(Network Address Translation) A technology that allows hosts using private ad-
dresses to communicate with an arbitrary destination on the Internet.

net 10 address
A general reference to a nonroutable address (i.e., one that is reserved for use in an
intranet and not used on the Internet).

network byte order
The TCP/IP standard for transmission of integers that specifies the most significant
byte appears first (big endian).

network management
See MIB and SNMP.

TCP/IP Internet Terms In Alphabetical Order 665

Next Header
A field used in IPv6 to specify the type of the item that follows.

next-hop forwarding
The paradigm used in the Internet where each router only knows how to forward a
packet one hop.

NFS
(Network File System) A protocol that uses UDP to allow a set of cooperating com-
puters to access each other’s file systems.

NIC
(Network Interface Card) A hardware device that plugs into the bus on a computer
and connects the computer to a network.

NOC
(Network Operations Center) Originally, the organization at BBN that monitored
and controlled several networks that formed part of the Internet. Now, used for any
organization that manages a network.

nonroutable address
Any address using a prefix reserved for use in intranets. Routers in the Internet will
not forward datagrams that contain a nonroutable address. See net 10 address.

NVT
(Network Virtual Terminal) The character-oriented protocol used by TELNET.

OC series standards
A series of standards for the transmission of data over optical fiber. For example,
OC-48 has a bit rate of approximately 2.5 gigabits per second.

octet
An 8-bit unit of data. Although engineers frequently use the term byte as a
synonym for octet, a byte can be smaller or larger than 8 bits.

off link
Two IPv6 nodes that share a prefix but are not directly connected. Most often, the
term refers to a mesh network. See on link.

on link
Two IPv6 nodes that share a prefix and are directly connected. See off link.

one-armed router
An IP router that understands two addressing domains, but only has one physical
network connection. Also called a one-armed firewall.

666 Glossary of Internetworking Terms and Abbreviations Appendix 1

OpenFlow
A protocol used to implement Software Defined Networking. See SDN.

OSPF
(Open Shortest Path First) A link-state routing protocol designed by the IETF.

OUI
(Organizationally Unique Identifier) Part of an address assigned to an organization
that manufactures network hardware; the organization assigns a unique address to
each device by using its OUI plus a suffix number.

out-of-band data
Data sent outside the normal delivery path, often used to carry abnormal or error in-
dicators (e.g., TCP’s urgent data).

P2P
(Peer to Peer) A paradigm applications use to propagate information quickly, in
which each client agrees to act as a server and make information available to other
clients.

packet
A small unit of data sent across a packet switching network.

packet filter
A mechanism in a router that can be configured to reject some types of packets and
admit others. Packet filters are used to create a security firewall.

PAR
(Positive Acknowledgement with Retransmission) The paradigm protocols use to
achieve reliable data transport.

passive open
The operation that a server performs to wait at a known port for a TCP connection.

path MTU
The minimum MTU along a path from the source to destination (i.e., the size of the
largest datagram that can be sent along the path without fragmentation).

PCM
(Pulse Code Modulation) A standard for voice encoding used in digital telephony
that produces 8000 8-bit samples per second.

PDU
(Protocol Data Unit also Packet Data Unit) An ISO term for packet that was adopt-
ed for use with SNMP messages.

TCP/IP Internet Terms In Alphabetical Order 667

peering agreement
A cooperative agreement between two ISPs to exchange both reachability informa-
tion and data packets. In addition to peering at IXPs, large ISPs often have private
peering agreements.

perimeter security
A network security mechanism that places a firewall at each connection between a
site and outside networks.

physical address
A synonym for MAC address or hardware address.

PIM-DM
(Protocol Independent Multicast Dense Mode) A multicast routing protocol.

PIM-SM
(Protocol Independent Multicast Sparse Mode) A multicast routing protocol that
uses an approach similar to CBT.

ping
(Packet InterNet Groper) The name of a program used with TCP/IP internets to test
reachability of destinations by sending them an ICMP echo request and waiting for a
reply. The term is now used like a verb as in, “please ping host A to see if it is
alive.”

playback point
The minimum amount of data required in a jitter buffer before playback can begin.

PoE
(Power over Ethernet) A technology used with IP telephones to supply power over
the same cable used for an Ethernet connection.

point-to-point network
Any network technology that connects exactly two machines (e.g., a leased circuit or
dialup connection).

poison reverse
A heuristic used by distance-vector protocols such as RIP to avoid forwarding loops.

POP
(Post Office Protocol) A protocol used to access and extract email from a mailbox.
The current version is POP3, and a secure version is named POP3S.

port
See protocol port.

668 Glossary of Internetworking Terms and Abbreviations Appendix 1

POS
(Packet Over SONET) The method used to send packets over a SONET network.

positive acknowledgement
Synonym for acknowledgement.

POTS
(Plain Old Telephone Service) A reference to the standard voice telephone system.

PPP
(Point to Point Protocol) A protocol for framing when sending IP datagrams across
a serial line.

PPPoE
A version of the Point to Point Protocol used over Ethernet.

promiscuous mode
A feature of network interface hardware that allows a computer to receive all pack-
ets on the network.

protocol
A formal description of message formats and the rules two or more machines must
follow to exchange messages.

protocol port
TCP/IP transport protocols use the protocol port abstraction to distinguish among
multiple applications within a given host computer. TCP and UDP use small in-
tegers as port numbers.

provider prefix
An addressing scheme in which an ISP owns a network prefix and assigns each cus-
tomer addresses that begin with the prefix.

provisioned service
A service that is configured manually.

proxy
Any device or system that acts in place of another (e.g., a proxy web server acts in
place of another web server).

proxy ARP
The technique in which one machine, usually a router, answers ARP requests intend-
ed for another by supplying its own physical address. Proxy ARP allows multiple
networks to share a single IP prefix.

TCP/IP Internet Terms In Alphabetical Order 669

pseudo-header
Additional information used in a TCP or UDP checksum computation, but not
present in the UDP datagram or TCP segment. A pseudo-header includes source
and destination IP addresses.

PSTN
(Public Switched Telephone Network) The standard voice telephone system.

public key encryption
An encryption technique that generates encryption keys in pairs. One of the pair
must be kept secret, and one is published.

push
The operation an application performs on a TCP connection to force data to be sent
immediately. A bit in the segment header marks pushed data.

PVC
(Permanent Virtual Circuit) The type of ATM virtual circuit established by an ad-
ministrator rather than by software in a computer. See SVC.

QoS
(Quality of Service) Bounds on the loss, delay, jitter, and minimum throughput that
a network guarantees to deliver.

RARP
(Reverse ARP) An old protocol used to obtain an IPv4 address; now being used in
data centers to inform a switch about virtual machine migration.

RDP
(Remote Desktop Protocol) A protocol defined by Microsoft that provides a remote
desktop capability for their operating systems.

reachability
A destination is reachable from a given source if a route exists from the source to
the destination.

reassembly
The process of collecting all the fragments of an IP datagram and using them to
create a copy of the original datagram. The ultimate destination performs reassem-
bly.

RED
(Random Early Detection) A technique routers use instead of tail-drop to manage
buffers when memory begins to fill. See tail-drop.

670 Glossary of Internetworking Terms and Abbreviations Appendix 1

redirect
An ICMP message sent from a router to a host on a local network to instruct the
host to change a route.

reference model
A description of how layered protocols fit together. TCP/IP uses a 5-layer reference
model; earlier protocols used the ISO 7-layer reference model.

registry
An organization authorized to assign blocks of IP addresses. The registries include:
AFRINIC, APNIC, ARIN, LACNIC, and RIPE.

reliable transfer
Characteristic of a mechanism that guarantees to deliver data without loss, without
corruption, without duplication, and in the same order as it was sent, or to inform
the sender that delivery is impossible.

replay
An error situation in which packets from a previous session are erroneously accepted
as part of a later session.

reserved address
A synonym for nonroutable address.

reset (TCP)
A segment sent by TCP in response to an error condition such as a malformed in-
coming segment or an incoming segment for which the receiver has no record of a
connection.

resolution
See address resolution

RFC
(Request For Comments) The name of a series of documents that contain surveys,
measurements, ideas, techniques, and observations, as well as proposed and accepted
TCP/IP protocol standards. RFCs are available on-line.

RIP
(Routing Information Protocol) A protocol used to propagate routing information in-
side an autonomous system.

RIPE
See registry.

round trip time
See RTT.

TCP/IP Internet Terms In Alphabetical Order 671

route
The path that network traffic takes from source to destination.

route aggregation
The technique used by routing protocols to combine multiple destinations that have
the same next hop into a single entry.

route-over
An approach to building mesh networks that uses Layer 3 protocols to forward pack-
ets. See mesh-under.

routed
(route daemon) A UNIX program that implements the RIP protocol. Pronounced
“route-d.”

router
See IP router.

router requirements
A document that contains updates to TCP/IP protocols used in routers. See host re-
quirements.

routing loop
An error condition in which a cycle of routers each has the next router in the cycle
as the shortest path to a given destination. Also known as a forwarding loop.

RPC
(Remote Procedure Call) A technology in which a program invokes services across
a network by making modified procedure calls.

RPF
(Reverse Path Forwarding) A technique used to propagate broadcast packets that en-
sures there are no forwarding loops. IP uses reverse path forwarding to propagate
subnet broadcast and multicast datagrams.

RPM
(Reverse Path Multicast) A general approach to multicasting that uses the TRPB al-
gorithm.

RST
(ReSeT) An abbreviation for a TCP reset segment.

RSVP
(Resource ReserVation Protocol) The protocol that allows an endpoint to request a
flow with specific QoS; each router along the path to the destination must agree to
approve the request.

672 Glossary of Internetworking Terms and Abbreviations Appendix 1

RTCP
(RTP Control Protocol) The companion protocol to RTP used to control a session.

RTO
(Round-trip Time-Out) The time a protocol waits before retransmitting a packet.
See RTT.

RTP
(Real-time Transport Protocol) The primary protocol used to transfer real-time data
such as voice and video over the Internet.

RTT
(Round Trip Time) The total time taken for a single packet or datagram to leave one
computer, reach another, and return.

SA
(Security Association) Used with IPsec to denote a binding between a set of security
parameters and an identifier carried in a datagram header. A host chooses SA bind-
ings; they are not globally standardized. See SPI.

SACK
(Selective ACKnowledgement) An optional addition to the TCP acknowledgement
mechanism that allows a receiver to specify which segments have been received.
Compare with cumulative acknowledgement.

scoped address
A term used with IPv6 to refer to an address that is limited to a link, a site, or an or-
ganization.

scp
(secure copy program) A program that operates like the Unix copy command, cp,
except that scp can transfer files from one computer to another and use encryption to
keep the transfer secure.

SDN
(Software Defined Networking) The separation of the control plane from the data
plane of a network device to permit an external controller to specify forwarding.

SDR
(Software Defined Radio) An approach analogous to SDN that allows software to set
radio characteristics, such as frequency and modulation.

Security Association
See SA.

TCP/IP Internet Terms In Alphabetical Order 673

segment
The unit of transfer used by TCP.

selective acknowledgement
See SACK.

self clocking
Characteristic of any system that operates periodically without requiring an external
clock (e.g., uses the arrival of a packet to trigger an action).

server
An application program that supplies service to clients over a network.

shortest path first
See SPF.

signaling
A telephony term that refers to protocols which establish a circuit.

silly window syndrome
A condition that can arise in TCP in which the receiver repeatedly advertises a small
window and the sender repeatedly sends a small segment to fill it.

SIP
(Session Initiation Protocol) A protocol devised by the IETF for signaling in IP
telephony.

sliding window
Characteristic of a protocol that allows a sender to transmit more than one packet of
data before receiving an acknowledgement. The number of outstanding packets or
bytes is known as the window size; increasing the window size improves
throughput.

slow convergence
A problem in distance-vector protocols in which two or more routers form a
forwarding loop that persists until the routing protocols increment the distance to
infinity.

slow start
A congestion avoidance scheme in TCP in which TCP increases its window size as
ACKs arrive.

SMTP
(Simple Mail Transfer Protocol) The TCP/IP standard protocol for transferring elec-
tronic mail messages from one machine to another.

674 Glossary of Internetworking Terms and Abbreviations Appendix 1

SNAP
(SubNetwork Attachment Point) An IEEE standard for a small header placed in the
data area of a frame to specify the data type.

SNMP
(Simple Network Management Protocol) A protocol used to manage devices such as
hosts, routers, and printers. Also see MIB.

SOA
(Start Of Authority) A keyword used with DNS to denote the beginning of the
records for which a particular server is the authority.

socket API
The definition of an interface between application programs and TCP/IP software.

soft state
A technique in which a receiver times out information rather than depending on the
sender to maintain it.

Software Defined Networking
See SDN.

Software Defined Radio
See SDR.

source quench
An ICMP message sent back to the source when datagrams overrun a router.

source route
A route that is determined by the source and specified as a list of specific intermedi-
ate routers the packet should visit. See LSR and SSR.

SPF
(Shortest Path First) A class of routing update protocols that uses Dijkstra’s algo-
rithm to compute shortest paths. See link-state.

SPI
(Security Parameters Index) The identifier IPsec uses to specify the Security Associ-
ation (SA) that should be used to process a datagram.

split horizon
A heuristic used by distance-vector protocols such as RIP to avoid forwarding loops.

SS7
(Signaling System 7) The conventional telephone system standard used for signaling.

TCP/IP Internet Terms In Alphabetical Order 675

ssh
(secure shell) An alternative to TELNET that uses encryption to keep sessions confi-
dential.

SSL
(Secure Sockets Layer) A de facto standard for secure communication originally
created by Netscape, Inc.

SSR
(Strict Source Route) An IPv4 option that contains a list of router addresses that the
datagram must visit in order. See LSR.

standard byte order
See network byte order.

STD
(STanDard) The designation used to classify a particular RFC as describing a stan-
dard protocol.

store-and-forward
The paradigm used by packet switching systems in which an incoming packet is
stored in memory until it can be forwarded on toward its destination.

subnet addressing
An extension of the IP addressing scheme that allows a site to use a single IP net-
work address for multiple physical networks.

subnet mask
See address mask.

SubNetwork Attachment Point
See SNAP.

supernet addressing
Another name for CIDR.

SVC
(Switched Virtual Circuit) The type of ATM virtual circuit established when needed
by software rather than by an administrator.

SWS
See silly window syndrome.

SYN
(SYNchronizing segment) The first segment sent by the TCP protocol, it is used to
synchronize the two ends of a connection in preparation for opening a connection.

676 Glossary of Internetworking Terms and Abbreviations Appendix 1

tail-drop
A policy routers use to manage buffers by discarding all packets that arrive after
memory is full. See RED.

TCP
(Transmission Control Protocol) The TCP/IP standard transport layer protocol that
provides the reliable, full duplex, stream service on which many application proto-
cols depend.

TCP splicing
A technique in which an intermediate system rewrites TCP segments to map from
one sequence space to another. The technique is used in systems that establish two
TCP connections and then map one into the other so neither endpoint is aware of the
splice.

TCP/IP Internet Protocol Suite
The official name of the TCP/IP protocols.

TDM
(Time Division Multiplexing) A technique used to multiplex multiple signals onto a
single hardware transmission channel by allowing each signal to use the channel for
a short time before going on to the next one. See FDM.

TELNET
An early TCP/IP standard protocol for remote terminal access sometimes used by
network managers to control network devices.

TFTP
(Trivial File Transfer Protocol) A TCP/IP standard protocol for file transfer with
minimal capability and minimal overhead.

three-way handshake
The 3-segment exchange TCP uses to reliably start or gracefully terminate a connec-
tion.

TLV encoding
Any representation format that encodes each item with three fields: a type, a length,
and a value.

TOS
(Type Of Service) A reference to the original interpretation of the field in an IPv4
header that allows the sender to specify the type of service desired. Now replaced
by DiffServ.

TCP/IP Internet Terms In Alphabetical Order 677

traceroute
A program that uses successively larger TTL values and ICMP error messages to
determine intermediate hops along the path to a destination.

traffic class
A reference to a set of services available in the DiffServ interpretation.

traffic policing
Checking to ensure that incoming traffic adheres to preestablished bounds.

traffic shaping
Ensuring that outgoing traffic adheres to a specified rate.

triggered updates
A heuristic used with distance-vector protocols such as RIP to send an update as
soon as routes change without waiting for the next update cycle.

TRPB
(Truncated Reverse Path Broadcast) A technique used in data-driven multicasting to
forward multicast datagrams.

TRPF
(Truncated Reverse Path Forwarding) A synonym for TRPB.

TTL
(Time To Live) A value in the IPv4 header used to ensure that a datagram does not
remain in the Internet forever, even if routes are incorrectly configured. Now inter-
preted as a hop limit.

tunneling
A technique in which a packet is encapsulated in a high-level protocol for transmis-
sion. Tunneling is used for VPNs. See IP-in-IP.

twisted pair Ethernet
Ethernet wiring scheme that uses twisted pair cable. See GigE and category 5
cable.

type of service routing
A routing scheme in which the choice of path depends on the characteristics of the
network needed by the flow as well as the shortest path to the destination.

UDP
(User Datagram Protocol) A transport protocol that allows an application program
on one machine to send a datagram to an application program on another.

678 Glossary of Internetworking Terms and Abbreviations Appendix 1

unicast
An address that specifies forwarding a packet to a single destination. See broadcast
and multicast.

unnumbered network
A technique for conserving IP network prefixes in which a point-to-point connection
between two routers is not assigned a prefix.

unreliable delivery
Characteristic of a mechanism that does not guarantee to deliver data without loss,
corruption, duplication, or in the same order as it was sent. See best-effort delivery.

urgent data
A facility that TCP uses to send data out of band.

URL
(Uniform Resource Locator) A syntactic form that specifies an item and a protocol
used to access the item.

variable-length subnetting
A subnet address assignment scheme in which each physical net in an organization
can have a different mask. See fixed-length subnetting.

VC
(Virtual Circuit) A path through a network from one application to another that is
used to send data.

vector-distance
Now called distance-vector.

VLAN
(Virtual Local Area Network) A set of ports on an Ethernet switch that are config-
ured by the network manager to be part of a single broadcast domain.

VLSM
(Variable Length Subnet Mask) The mask used with variable-length subnetting.

VoIP
(Voice over IP) Technology that allows voice telephone calls to be carried over the
Internet. See IP telephony.

VPN
(Virtual Private Network) A technology that connects two or more separate sites
over the Internet, but allows them to function as if they were a single, private net-
work.

TCP/IP Internet Terms In Alphabetical Order 679

WAN
(Wide Area Network) Any physical network technology that spans large geographic
distances. See LAN and long haul network.

well-known port
A protocol port number used by TCP or UDP that is preassigned to a specific ser-
vice (e.g., email).

Wi-Fi
A marketing term vendors use to sell IEEE 802.11 wireless network products.

Wi-MAX
A marketing term vendors use to sell IEEE 802.16 wireless network products.

window
See sliding window.

window advertisement
A value used by TCP to allow a receiver to tell a sender the size of an available
buffer.

Windows Sockets Interface
A variant of the socket API developed by Microsoft that is also called WINSOCK.

working group
A committee in the IETF working on a particular protocol or design issue.

World Wide Web
The large hypermedia service available on the Internet that allows a user to browse
information.

WRR
(Weighted Round-Robin) A packet scheduling mechanism used to accept packets
from multiple queues and send them across a single transmission channel. WRR al-
lows each queue to be given a guaranteed percentage of the channel bandwidth.

WWW
See World Wide Web.

X-Window System
A software system developed at MIT for presenting and managing output on bit-
mapped displays.

680 Glossary of Internetworking Terms and Abbreviations Appendix 1

XDR
(eXternal Data Representation) The standard for a machine-independent data
representation. To use XDR, a sender translates from the local machine representa-
tion to the standard external representation and a receiver translates from the exter-
nal representation to the local machine representation.

zero window
See closed window.

ZigBee
An alliance of vendors that is standardizing protocols for use with a wireless mesh
network of sensors.

zone of authority
Term used in the Domain Name System to refer to the group of names for which a
given name server is an authority.

Index

Constants and numeric items

0x0800 130
0x86DD 130
10 Gigabit Ethernet 22
1000Base-T 23, 640
1000Base-X 23, 640
10GigE 22, 640
125 µ seconds 539
127.0.0.1 92, 640
1280 (MTU) 640
16 (RIP) 294
2822 (email) 514
3-way handshake 231, 640
3rd-party routes 277
5-layer reference model 52, 53, 640
5-tuple 640
576 (MTU) 640
6LoWPAN 640
6LoWPAN-ND 632
7-layer reference model 50, 640
802.11 26, 641
802.15.4 627, 628, 641
802.16 26
802.1Q 374
802.3 22, 641
822 (email) 514

A

ABR 641
Abstract Syntax Notation 1 565
accept function (socket API) 439

access control 614
access point 26
ACK 201
acknowledgement 201, 216, 240, 641

aggregator 348
ambiguity 219
cumulative 216
delayed 240

active open 208, 641
active RIP 293
adaptive retransmission 217, 641
additive increase (TCP) 225
address 5, 38, 70, 486, 641

Ethernet 24
IPv4 71
IPv6 84
MAC 24
all 1s 91
ambiguity 77
binding 641
broadcast 24
classful 71
cluster 93
co-located 385
directed broadcast 90
dotted decimal notation 72
family 281
foreign agent 385
hardware 21, 24
lease 469
limited broadcast 91
link-local 94

682 Index

local broadcast 91
locally scoped 94
loopback 92
mask 81, 641
multicast 24, 92, 322
network broadcast 90
nonroutable 83
physical 24
private 83
registries 96
reserved 83
resolution 101, 102, 641
subnet broadcast 91
unicast 24

Address Resolution Protocol 104
administrative scoping 329
ADSL 642
AF 553
AFRINIC 96, 642
agent 384, 561, 642
AH 608, 642
AIMD 225, 642
algorithm (shortest path) 258
algorithm for IP forwarding 159
alias (email) 513
all 1s broadcast 91
all agents group 386
all routers group 93, 325, 642
all systems group 325, 332, 642
alternative subtype (MIME) 521
ambiguity of acknowledgements 219
anonymous FTP 642
anonymous network 642
ANSI 642
anycast 92, 93, 642
API 431, 642
APNIC 96, 643
application

gateway 35
process 185
proxy 619

Application Program Interface 431
architecture 120
area 304, 643
area manager 8, 643

ARIN 96, 643
ARP 104, 643

cache 106
encapsulation 110
hack 114
message 111
proxy 114

ARPA 2, 643
ARPANET 6, 643
AS 267, 643
ASN.1 565, 643
Assured Forwarding 553
Asynchronous Transfer Mode 133, 353,

549
ATM 133, 353, 549, 643
atomic assignment 572
audio 539
authentication 304, 388, 506, 635
Authentication Header 608
authority zone 505, 643
autoconfiguration 83
autonomous system 263, 267, 644

B

backoff (TCP retransmission) 220
bad news 296
base header 125, 644
base64 519, 644
baseband 644
Basic Encoding Rules (ASN.1) 566
BBN 6
BCP 644
Bellman-Ford 255, 644
BER 566
Berkeley Software Distribution 6
best-effort delivery 23, 120, 121, 186,

323, 644
BGP 263, 268, 292, 644

header 271
multiprotocol extensions 281

BGP-4 268
big endian 143, 423, 644
binary exponential backoff 644
bind (DNS software) 474, 644

Index 683

bind function 434
black hole 280
BOOTP 464
bootstrap 112, 463
BOOTstrap Protocol 464
Border Gateway Protocol 268
border router 269
bps 645
bridge 29, 645
broadband 645
broadcast 23, 319, 645

address 24, 90, 319
and prune 345, 645
delivery 92
domain 29
limited 91
local 91
subnet 91

browser 526
buffer bloat 243, 645
buffering 200
byte order 143
byte vs. octet 25

C

cable modem 29
cache 106
caching in DNS 497
canonical name (RTP) 546
care-of address 385, 645
category 5 cable 645
CBT 345, 645
CCITT 51, 645
cell 646
CGI 646
checksum 124, 172, 188, 192, 214, 646
CIDR 79, 646
CIDR notation 82
circuit switching 20
CL network 646
class

A, B, or C address 71
of address 646
of name 493

Class of Service 549
classful addressing 71, 646
classification 371, 372
classifier 372
classless addressing 79, 646
Classless Inter-Domain Routing 79
client 420, 465
client (example) 448
client-server 419, 420, 646
client-server programming

see Volume III
close system call 434
closed window 646
closing a TCP connection 233
cloud data center 4
clumping 241
cluster address 93
CO 646
co-located address 385
code bits 212
codec 539, 647
codepoint 127
coder/decoder 539
colon hexadecimal notation 84
Common Gateway Interface 530
Common Open Policy Services 552
Computer Science NETwork 7
concurrent server 424
conditional request 533
configuration 474
congestion 223, 647

avoidance 225
control 210

connected socket 436
connection 5, 20, 231, 647

TCP 200
abstraction 207
closing 233
endpoint 207
reset 234

connection-oriented 20, 647
connectionless 121, 186, 647
connectionless packet delivery 4
consistent routing 280
Constraint-based Routing LDP 363

684 Index

content type 519, 520
context specific 577
control message 167
cookie 535
COPS 552, 647
Core Based Trees 345
core of the Internet 251
core router 346
CoS 549, 647
count to infinity 294, 647
CR-LDP 363
CR-LF 515, 647
CRC 25, 647
CSMA/CA 648
CSMA/CD 648
CSNET 7
CSU/DSU 648
cumulative acknowledgement 216, 648
cyclic redundancy check 25

D

DARPA 2, 648
dashed hex notation 321
data center 113
data link layer 53
data stream (TCP) 208
datagram 5, 122, 648

UDP 187
fragmentation 130
header (IPv4) 123
options 137
reassembly 135
size 130
time to live 136

DCA 6
DCE 648
Deep Packet Inspection 619
default

free zone 251, 648
route 155, 249, 299, 648

Defense Communication Agency 6
Deficit Round Robin 554
delay 21, 301, 648
delay metric 302

delayed acknowledgement 240, 648
demand-driven 346
demultiplex 64, 370, 649
dense mode 347
designated router 304, 348
destination

address 21
port 186, 188
unreachable 176, 411

DHCP 182, 463, 464, 649
dialup 28
differentiated service 127
DiffServ 127, 549, 649
dig application program 649
digest subtype (MIME) 521
Digital Subscriber Line 29
digitization and codecs 539
direct address mapping 103
direct delivery 149
direct mapping 102
directed broadcast address 90, 649
discovery mechanism 346
distance 299
Distance Vector Multicast Routing Proto-

col 345
distance-vector 255, 649
DNS 408, 444, 485, 489, 506, 649
DNS Service Discovery 507, 635
DNS-SD 507, 635, 649
DNSSEC 506, 649
dn_comp function 445
dn_expand function 445
do not fragment 135, 465
dog-leg forwarding 393
domain

name 649
name registrar 491
name resolution 495
name server 493
pointer query 502
suffix list 502

Domain Name System 444, 485, 489,
649

dotted decimal notation 72, 650
dotted hex notation 650

Index 685

dotted quad notation 650
download point 541
downstream 280
DPI 619, 650
DR 348
dropping packets 176
DRR 554, 650
DSCP 127
DSL 29, 650
DTE 650
Dual IS-IS 312
dual stack 15
duplicate acknowledgements 226
DVMRP 345, 650
Dynamic DNS 506
Dynamic Host Configuration Proto-

col 464

E

E.164 650
E1 27
echo request/reply (ICMP) 173, 411, 650
echo request/reply (UDP) 420
ECN 227, 650
EF (DiffServ) 553, 650
EGP 268, 651
EHLO 515
electronic mail 4, 511, 513
email

see electronic mail
embedded systems 623
Encapsulating Security Payload 611
encapsulation 129, 191, 360, 651

ARP 110
ICMP 170
IP 129

encoding type 519
encryption 607
end-to-end 53, 58, 228, 651
endhostent function 446
endpoint 207
endprotoent function 447
endservent function 448
energy harvesting 624

engine (SNMP) 575
epoch date 422, 651
error messages 167
error reporting mechanism 169
ESP 611, 651
established state 236
establishing a connection 231
Ethernet 22, 651

address 24
header 25
multicast 321
switch 22
type 130

EUI-64 88, 651
example.client 448
example.server 454
exclusive filter (IGMP) 334
exec system call 434
Expedited Forwarding 553
Explicit Congestion Notification 227
exponential backoff 651
extension header 125, 651
Exterior Gateway Protocol 268, 651
eXternal Data Representation 651
extra hop problem 267, 651

F

fair queueing 652
fast retransmit/recovery 225
FAST TCP 226
fat pipe 214
FDM 652
FIB 148, 255, 652
file descriptor 432
file server 652
File Transfer Protocol 411, 525
FIN 233, 652
finite state machine (TCP) 235
firewall 605, 614, 652
fixed-length subnetting 652
flapping (routes) 303
flat namespace 486, 652
flow 127, 353, 355, 549, 652

control 208, 209, 652

686 Index

table 593
Ford-Fulkerson 255, 652
foreign

agent (mobile IPv4) 386
agent address 385
network 384

fork system call 434
forward error-correcting codes 349
forwarding 122, 147, 513, 653

algorithm 159
information base 148, 255
intra-network 61
loop 254, 275, 653
table 152, 248
transit 149
tree (multicast) 342

fraglet 632
fragment 130
Fragment Extension Header 653
fragmentation 130, 131, 141, 178, 364,

412, 653
frame 25, 51, 653
Frame Relay 653
FTP 411, 412, 525, 653
full duplex 201, 653
FYI 653

G

gated 313, 653
gatekeeper 547
gateway 35, 39, 268, 547, 653
Gbps 654
General Queries 336
Generalized Processor Scheduling 554
Generic Routing Encapsulation 387
gethostbyaddr function 446
gethostbyname function 446
gethostent function 446
gethostname function 441
getnetbyname function 447
getpeername function 437
getprotobyname function 447
getprotobynumber function 447
getprotoent function 447

getservbyname function 448
getservbyport function 448
getservent function 448
getsockname function 438
getsockopt function 438
GIF 520, 526
Gigabit Ethernet 22
GigE 22, 654
good news 296
goofs and missteps

see IPv6
GPS 554
graceful shutdown 233, 234, 654
graft request 345
Graphics Interchange Format 526
gratuitous ARP 107
GRE 387, 654
group record (IGMP) 334

H

H.323 547, 654
half duplex 201, 654
hardware

address 21, 24, 102, 654
broadcast 319
multicast 320

harvesting energy 624
hashing 361
header 654

ARP 111
BGP 271
Ethernet 25
IPv4 123
IPv6 126
OSPFv2 305
OSPFv3 310
TCP 211

hello (OSPFv2) 306
HELO 515
hijack 313
historic (IETF classification) 654
hold down 286, 296, 302, 655
hold timer 272
home agent 384

Index 687

hop 136
hop count 136, 293, 301, 655
hop limit 127, 136, 180, 326, 612, 655
hop-by-hop header (IPv6) 126, 140
hop-count metric 293
host 69
host requirements 655
host-specific route 156, 655
HSTCP 226
HTML 526, 655
htonl or htons function 443
HTTP 525, 528, 655
HTTPS 535, 655
hub-and-spoke 628
HyperText Markup Language 526
HyperText Transfer Protocol 528

I

I/O 432
IAB 7, 655
IANA 96, 656
iBGP 269
ICANN 96, 490, 656
ICMP 167, 168, 656

destination unreachable 411
echo request/reply 173, 411
encapsulation 170
redirect 411
use with NAT 411

ICMPv6 656
Neighbor Advertisement 480
Neighbor Solicitation 479
Redirect 480
Router Advertisement 478
Router Solicitation 478

identifier-locator
pair 395
split 656

IEEE 22, 656
802.15.4 627, 628
802.1Q 374

IESG 8, 656
IETF 8, 656
IGMP 299, 656

IGMPv3 330
IGP 292, 656
IMAP 518, 657
IMAPS 518
implementation of TCP/IP protocols

see Volume II
in-flight segments 226
inclusive filter (IGMP) 334
inconsistencies in routing 251
indirect delivery 149
industrial Internet 624
inet_aton function 444
inet_ntoa function 444
infinity

(DHCP) 469
(IPv6 mobility) 387
(RIP) 294, 299

information security 606
initial sequence numbers 232
instability of routes 302
Int. Telecommunication Union 51
Integrated IS-IS 312
Integrated Services 549
inter-autonomous system routing 657
inter-domain routing 657
interface identifier 88
Interior Gateway Protocol 292, 657
interior router 289
International Org. for Standard. 657
International Tel. Union 657, 659
Internet 657

Architecture Board 7
Assigned Number Authority 96
Connection Sharing 413
Control Message Protocol 168
Corporation for Assigned Names and

Numbers 490
Engineering Steering Group 8
Engineering Task Force 8
Exchange Point 280
Group Management Protocol 299
Message Access Protocol 518
Protocol 12, 119, 122, 657
Research Task Force 8
Service Provider 81, 96

688 Index

address 71, 657
architecture 120
datagram 122
draft 9, 657
firewall 614
of Everything 623
of Things 623, 657
research group 6
router 39
security 606

interoperability 3, 657
intra-network forwarding 61
intranet 400, 657
intranet sublayer 61
IntServ 549, 551, 658
inverse query 502
IoT 623
IP 119, 658

Masquerade 413
address 70, 658
checksum 124
datagram 122, 658
destination address 124
encapsulation 129
forwarding 148
forwarding table 152, 248
gateway 147, 658
mobility 94, 381, 383
more fragments bit 136
multicast 322
multicasting 92, 658
reassembly 134
route-over 60
router 39, 147, 658
source address 124
switching 357, 658
telephony 546, 658

IP-based technology 122
IP-in-IP 345, 402, 613, 658
ipAddrTable 569
ipInReceives 568
IPng 299, 658
IPsec 608, 658
iptables 413
IPv4 12, 119, 122, 659

address 71
datagram header 123
fragmentation 141
header 123
options 137, 141
reassembly 135
time to live 136
timestamp 139

IPv6 13, 119, 122, 659
Neighbor Discovery Protocol 477
Path MTU Discovery 133
address 84
datagram format 125
extension header 125
extensions 137
fragmentation 133, 141
hop limit 136
hop-by-hop header 140
migration 14, 659
options 141
route header 140
stateless autoconfiguration 475

IPv6-ND 395, 659
IRTF 8, 659
IS-IS 289, 659
ISO 50, 565, 566, 659
ISO model 50
isochronous 540, 659
isolated network 94
ISP 81, 96, 659
iterative name resolution 496
ITU 51, 547, 566, 659
IXP 280, 660

J

jitter 228, 540, 660
jitter buffer 541
Joint Picture Encoding Group 519, 526
Jon Postel 9
JPEG 519, 520, 526
jumbogram 127

K

K-out-of-N 258, 302

Index 689

Kbps 660
keepalive 660

L

label 354, 489
distribution protocol 363
rewriting 356
stack 359
swapping 356
switched path 363
switching 353, 356, 357

Label Switching Router 362
LACNIC 96, 660
LAN 21, 660
Layer

2 switch 373
3 switch 113
3 switching 357

layering 47, 49, 192, 206, 228
ISO 50
TCP/IP 52

LDP 363
leaky bucket 555
lease (DHCP) 469
Level (IS-IS) 312
limited broadcast 91
link-local address 94, 661
link-state 258, 303, 660
link-status 258, 661
link-status advertisement 311
Linux 16
LIS 661
listen function 439
little endian 143, 661
liveness test (OpenFlow) 597
load balancing 303
Local Area Network 21
local network broadcast 91
locality of reference 393
locally scoped address 94
locator 395
login 518
long fat pipe 214
long haul network 21, 661

longest-prefix match 159, 661
loopback address 92, 661
loose source route 138, 139
LPM 661
LSA 311
LSP 363, 661
LSR 362, 661

M

M2M 623
MABR 662
MAC 24, 662

address 24
layer 53

machine-to-machine 58, 612, 623
mail address 512
mail exchanger 492, 662
mailing list 513
managed configuration 474
management agent 561
Management Information Base 662
mapping of IP address 102
mask 77, 81, 662
match fields (OpenFlow) 596
maximum segment lifetime 236
maximum segment size 213
maximum transfer unit 130, 662
maximum transmission unit 130
MBONE 662
Mbps 662
mDNS 507, 635, 662
Media Access Control 24
MEDIA TIMESTAMP 543
membership query and report 333, 334
Mesh Link Establishment 632, 633
mesh network 60, 629, 662
mesh-under 60, 630, 662
metric 302
MIB 662
MILNET 6
MIME 519, 663
mixed subtype (MIME) 521
mixing 544
MLE 632, 633

690 Index

MLS 663
mobile

IP 383, 663
IPv4 383
IPv6 383
computing 381

mobility 94, 381, 383
model client-server 420
more fragments bit 136
MOSPF 663
MPLS 353, 358, 663

core 358, 359
egress 362
encapsulation 360
fragmentation 364
ingress 362

MPLS-LDP 363
mrouted 663
MSL 236, 663
MSS 213, 663
MTU 130, 213, 663
multi-homed host 89, 663
Multi-Protocol Label Switching 358
Multicast

Address Specific Queries 336
Address and Source Specific

Queries 336
Listener Report 337

multicast 24, 92, 319, 320, 360, 663
DNS 507, 635
Ethernet 321
address 24, 320, 323
router 323, 328
scope 328

multipart type (MIME) 521
multiplex 64, 664
multiplicative decrease 224, 225, 664
multiprotocol extensions (BGP) 281
Multipurpose Internet Mail Exten-

sions 519
mutable fields 612
MX record 664

N

NACK 348, 664
Nagle 225
Nagle algorithm 242, 664
name 38, 70, 485, 486

resolution 493, 495, 496, 664
server 493
syntax 492

named bind 474
NAP 280, 664
NAPT 664
NAT 399, 405, 664

box 405
example 409

National Institute for Standards and Tech-
nology 566

NBS 566
NDP 115, 477
negative acknowledgement 348
negotiation 532
Neighbor

Advertisement 480
Discovery (6LoWPAN) 632
Discovery Protocol 115, 477
Solicitation 479

net 10 address 664
netstat 429
Network

Access Point 280
Address Translation 405
Interface Card 23
Layer Reachability Information 283

network 20
MTU 130
address 21, 70
broadcast address 90
byte order 664
hop 136
management 559, 664
point-to-point 28
reachability 268
security 606
services 4
standard byte order 143, 423

Index 691

virtualization 399
NewReno TCP 226
news traveling 296
NEXT HEADER 125, 609, 665
Next Hop Label Forwarding Table 362
next-hop

address 160
forwarding 153, 665

NFS 665
NHLFE 362
NIC 23, 486, 665
NLRI 283
NOC 665
non-selfreferential 691
nonroutable address 83, 665
nonstoring mode 633
notification (DNS) 506
NSF 7
NSFNET backbone 7
ntohs and htohl 443
null 577
number of hops 293
NVT 665

O

object identifier 566
OC series standards 665
OC-3 27
octet 665
octet vs. byte 25
on/off link 632, 665
one-armed router 665
open (TCP) 208
Open SPF protocol 303
open standard 12, 303
open system interconnection 2
open-close-read-write 432
OpenFlow 592, 666
operating system boundary 63
options 137, 212, 474
Organizational Unique Identifier 327
OS-192 27
oscillation 302
OSPF 289, 303, 666

area 304
message format 305

OSPFv2 305
OSPFv3 305

hello message 311
message format 310

OUI 327, 666
out-of-band 212, 545, 666
overlapping segment problem 244
overlay network 399

P

P2P 428, 666
packet 20, 666
packet filter 615, 666
Packet Over SONET 28
packet switching 20
page (web) 526
PANA 635
PAR 201, 666
paradox

see non-selfreferential
parallel subtype (MIME) 521
PARC 293
parent domain 496
partial forwarding information 249
passive FTP 412
passive open 208, 666
passive RIP 293
password 518
path MTU 131, 213, 666
Path MTU Discovery 133, 178
path-vector algorithm 269
PAWS 214
payload 25
payload length 127
PCM 27, 539, 666
PDU 575, 666
peer

(routing) 247
backbone networks 253

peer-to-peer networking 427, 428
peering agreement 280, 667
perimeter security 614, 667

692 Index

persistent connection 530
PF_INET and PF_INET6 433
physical address 24, 102, 667
piggybacking 201
PIM 345, 347, 667
ping 173, 183, 411, 667
pipeline 530
playback 541, 667
PMTUD 133
PoE 667
point-to-point network 28, 667
pointer query 502, 503
poison reverse 297, 667
policer 555
policy 552
policy constraint 275
POP 667
POP3/ POP3S 518
port 177, 667

restricted cone NAT 409
unreachable 194

POS 28, 668
positive acknowledgement 201, 668
positive feedback cycle 302
POST 535
Post Office Protocol 518
Postel, Jon 9, 96
POTS 668
PPP / PPPoE 668
preference level 533
prefetching 427
prefix delegation 476
primary

address 384
path 290

privacy 400
private

address 83
intranet 400

process 185, 420
promiscuous mode 668
protect against wrapped sequence 214
protocol 2, 185, 303, 668

ARP 101, 111
BGP 268

CBT 345
DHCP 463
DVMRP 345
ICMP 167
IGP 292
IP 119, 122
IS-IS 289
Internet 119
OSPF 289, 303
PIM 345, 347
RARP 112
RIP 289, 293, 297
RTCP 545
RTP 542
SMTP 515
SNMP 562
TCP 199
UDP 186
layering 47, 49, 53
mobile IP 381
network management 562
port 186, 207, 237, 668
standards 7
stream 199

Protocol Data Unit 575
Protocol Independent Multicast 345
provider prefix 668
provisioned service 668
proxy 668

ARP 114, 394, 668
cache 427
server 528, 533, 549

prune 345, 347
pseudo-header 87, 175, 189, 214, 215,

669
PSTN 547, 669
public key encryption 507, 669
Public Switched Telephone Network 547
Pulse Code Modulation 27, 539
push (TCP) 201, 236, 669
PUT 535
PVC 669

Index 693

Q

QoS 365, 549, 669
Quality of Service 365, 549
querier router 336

R

Random Early Detection 229
Random Early Discard 229, 349
Random Early Drop 229
range (multicast) 328
RARP 112, 669
RDP 669
reachability 669
read system call 437
real-time 540
Real-time Transport Protocol 542
reassembly 134, 669
reassembly timer 135
Receiver Report message (RTP) 546
receiver SWS avoidance 239
record route option 137
recursive name resolution 496
recv system call 437
recvfrom function 437
RED 229, 349, 669
redirect 178, 179, 411, 480, 670
redirect server 549
reference model 50, 670
registrar 491
registration request 388
registry 670
relay agent 469
reliable multicast 347
reliable stream service 120
reliable transfer 201, 670
remote desktop 4
remote login 4
Remote Procedure Call 617
Rendezvous Point 347
Reno TCP 225
renumbering 94
replay 257, 606, 670
Request For Comments 8
reserved address 83, 670

reset (TCP) 234, 670
resolution of domain name 495
resolving addresses 102
resource records 500
Resource ReSerVation Protocol 552
res_init function 444
res_mkquery function 445
res_send 445
retransmission 201, 216, 217
revalidation 112, 534
Reverse Address Resolution 112
Reverse Path Broadcasting 340
Reverse Path Forwarding 340
Reverse Path Multicast 344
RFC 8, 670
RIP 289, 293, 670

default route 299
protocol 297

RIPE 96, 670
RIPng 289
root node 343
round trip sample 217
round trip time 217, 670
route 70, 179, 671

aggregation 671
default 155
flapping 303
header (IPv6) 140
host-specific 156
metric 301

route-over 60, 631, 671
routed 293, 671
router 39, 40, 147, 151, 179, 671

alert 552
designated 304
discovery 386
requirements 671

Router Advertisement 478
Router Solicitation 478
routing 147, 247, 263

SPF 258
core 251
extra hop problem 267
inconsistencies 251
link-state 258

694 Index

loop 180, 254, 671
metrics 302
peers 253
policy 275
table 152

Routing Information Protocol 293
Routing Protocol For Low-Power And

Lossy Networks 634
Routing Registry 280
RP 347
RPB 340
RPC 617, 671
RPF 340, 671
RPL 634
RPM 344, 671
RST 671
RSVP 552, 671
RTCP 545, 672
RTO 672
RTP 542, 545, 672
RTT 217, 672
ruptime 427

S

SA 610, 672
SACK 227, 672
sample (round trip) 217
scheduling traffic 553
scope (multicast) 328
scoped address 672
scp 672
SDN 586, 672
SDP 549
SDR 600, 672
secondary address 384
Secure Sockets Layer 614
security 156, 605, 606

association 610
parameters index 610
perimeter 614

Security Association 672
segment 208, 210, 673
select function 440
selectable link 526

selective acknowledgement 227, 673
self clocking 241, 673
self-identifying address 71
self-identifying frame 25
self-organized mesh 629
send system call 436
Sender Report message (RTP) 546
sender SWS avoidance 241
sentinel value 530
sequence number 257
server 419, 420, 465, 673

example 453
time-of-day 420
web 420, 526

service
reliable stream transport 199
unreliable packet delivery 122

Service Level Agreement 357
Session Description Protocol 549
Session Initiation Protocol 547, 548
sethostent function 446
sethostname function 441
setprotoent function 447
setservent function 448
setsockopt function 438
shared tree 346
shortest path algorithm 258
Shortest Path First 673
signaling 547, 551, 673
Signaling System 7 547
SIIT 86
silly window syndrome 239, 673
Simple Mail Transfer Protocol 515
Simple Network Management Proto-

col 562
simplex flow (RSVP) 552
SIP 547, 548, 673
size of routing group 265
SLA 357
slash notation 79
sliding window 203, 209, 673
slow

convergence 294, 296, 673
start 224, 673

Smart Energy Profile 635

Index 695

SMI 564
SMTP 673
SNAP 674
SNMP 562, 674
SNPA 283
SOA 674
socket 6, 433

API 432, 674
function 433
interface 16

sockets 432
soft state 106, 182, 257, 619, 674
soft-start 225
Software Defined Networking 586, 674
Software Defined Radio 600, 674
software router 163
source

address 21
address filter 330
authentication 607
port 186, 188
quench 674
route 674
route option 138

Source Description message 546
sparse mode 347
spatial locality 393
SPF 258, 674
SPI 674
split horizon 296, 674
spooling 511
SS7 547, 674
ssh 675
SSL 614, 675
SSR 675
stale 534
standard byte order 143, 675
standards 27
star topology 250
state machine 235
stateful firewall 618
stateless autoconfiguration 475, 476
Stateless IP/ICMP Translation 86
states of TCP FSM 235
STD 675

stop and wait 201
store-and-forward 675
storing mode 633
stream 5, 200
strict source route 138
Structure of Management Informa-

tion 564
STS standards 27
subnet

addressing 72, 675
broadcast 91
mask 77, 675

subnetting 72
SubNetwork Attachment Point 675
subtype 520
supernet addressing 675
supernetting 81
SVC 675
switch Layer 3 113
switched optical network 28
switching 353
SWS 239, 675
symmetric NAT 409
SYN 231, 236, 675
synchronization error 271
synchronize 546
system call 432

T

T1 27
tag 526
tag switching 357
Tahoe TCP 225
tail-drop 228, 676
Task Force 8
TCAM 375
TCP 199, 205, 676

3-way handshake 231
FIN 233
Friendly Rate Control 227
Nagle algorithm 242
RST 236
SYN 231
Vegas 226

696 Index

acknowledgements 216
adaptive retransmission 217, 221
ambiguity of acknowledgements 219
characteristics 200
checksum 214
clumping 241
code bits 212, 234
congestion control 210
connection 200
connection close 233
connection establishment 231
flow control 209
full duplex 201
graceful shutdown 233
header 211
initial sequence 232
maximum segment size 213
options 212
out-of-band data 212
port numbers 207
protocol 199, 205
protocol port 237
pseudo-header 214, 215
push 201, 236
reset 234, 236
segment format 211
sequence number 208
silly window syndrome 239
splicing 412, 676
state machine 235
timestamp option 214
urgent data 212
window 238
window advertisement 209
zero window 210

TCP/IP 2
TCP/IP Internet Protocol Suite 676
TDM 676
technology independence 5
telephone system 488
TELNET 676
Ternary Content Addressable

Memory 375
TFRC 227
TFTP 676

three-way handshake 231, 676
threshold 302
Tier-1 ISP 253
time and date service 422
time exceeded message 180
time to live 60, 136, 181, 497, 612
time-of-day server 420
timed wait state 236
timeout 217

ARP 106
and retransmission 465

timer
ARP 106
backoff 220
reassembly 135

timestamp 139, 540, 543
timestamp option 139, 214
TLI 461
TLS 517, 614
TLV encoding 467, 676
token bucket 555
TOS 127, 676
traceroute 183, 677
traffic

class 127, 677
engineering 365
monitor 265
policing 551, 555, 677
scheduling 553
shaping 552, 677

transient multicast group 323
transit 280, 370
transit forwarding 149
translation 544
Transmission Control Protocol 199, 205
transparent 406
Transport Layer Security 517, 614
Transport Library Interface 461
transport service 5
triangle forwarding 393
triggered updates 297, 677
TRPB 340, 677
TRPF 340, 677
truncated RPF 340
TTL 136, 361, 497, 677

Index 697

tunneling 345, 390, 401, 677
twice NAT 416
twisted pair Ethernet 677
two-crossing problem 393
two-stage oscillation 302
type

field 124
of service 127
of service routing 303, 677

Type-Length-Value 467

U

UDP 185, 186, 677
datagram format 187
echo server 420
encapsulation 191
port 186
pseudo-header 189
semantics 186

unacknowledged packet 204
unconnected socket 436
unicast 678

address 24, 320
delivery 92

Uniform Resource Identifier 526
Uniform Resource Locator 526
universal

assignment 194
communication service 69
interconnection 5, 37
time 139

UNIX 432
unmanaged configuration 474
unnumbered network 678
unreachable destination 176
unreliable delivery 120, 121, 678
update (DNS) 506
upstream 280
urgent data 212, 678
URI 526
URL 526, 678
user

agent server 549
datagram 185, 187, 463

User Datagram Protocol 186

V

v3MP 575
variable-length subnetting 77, 678
variance in delay 220
VC 678
vector-distance 255, 678
Vegas TCP 226
video 4, 539
Virtual

Local Area Network 28
Machine 113
Private Network 401

virtual circuit 200
virtual network 119
virtualization 399
VLAN 28, 678

switch 373
tag 374

VLSM 678
VM 113
vocodec 539
voice 4
voice coder/decoder 539
Voice over IP 546
VoIP 546, 678
VPN 399, 401, 678

W

WAN 21, 679
waveform coder 539
weak authentication 607
weakest link axiom 614
web 3, 525, 526
web server 420
weighted average 230
well-known port 194, 237, 679
Wi-Fi 26, 679
Wi-MAX 26, 679
Wide Area Network 21
wildcard 439
window 203, 238, 679

advertisement 209, 679

698 Index

size 204
sliding 203, 209
zero 210

Windows Sockets Interface 16, 432, 679
WINSOCK 432
working group 8, 679
World Wide Web 9, 525, 679
write 241
WRR 679
WWW 679

X

X-Window System 679
X.25 51
XDR 680

Z

zero compression 84
zero window 210, 680
ZigBee 26, 631, 634, 680
ZIP router 634
zone of authority 505, 680

 ~StormRG~

	Cover
	Title Page
	Copyright Page
	About The Author
	Contents
	Foreword
	Preface
	Chapter 1 Introduction And Overview
	1.1 The Motivation For Internetworking
	1.2 The TCP/IP Internet
	1.3 Internet Services
	1.4 History And Scope Of The Internet
	1.5 The Internet Architecture Board
	1.6 The IAB Reorganization
	1.7 Internet Request For Comments (RFCs)
	1.8 Internet Growth
	1.9 Transition To IPv6
	1.10 Committee Design And The New Version of IP
	1.11 Relationship Between IPv4 And IPv6
	1.12 IPv6 Migration
	1.13 Dual Stack Systems
	1.14 Organization Of The Text
	1.15 Summary

	Chapter 2 Overview Of Underlying Network Technologies
	2.1 Introduction
	2.2 Two Approaches To Network Communication
	2.3 WAN And LAN
	2.4 Hardware Addressing Schemes
	2.5 Ethernet (IEEE 802.3)
	2.6 Wi-Fi (IEEE 802.11)
	2.7 ZigBee (IEEE 802.15.4)
	2.8 Optical Carrier And Packet Over SONET (OC, POS)
	2.9 Point-To-Point Networks
	2.10 VLAN Technology And Broadcast Domains
	2.11 Bridging
	2.12 Congestion And Packet Loss
	2.13 Summary

	Chapter 3 Internetworking Concept And Architectural Model
	3.1 Introduction
	3.2 Application-Level Interconnection
	3.3 Network-Level Interconnection
	3.4 Properties Of The Internet
	3.5 Internet Architecture
	3.6 Interconnection Of Multiple Networks With IP Routers
	3.7 The User’s View
	3.8 All Networks Are Equal
	3.9 The Unanswered Questions
	3.10 Summary

	Chapter 4 Protocol Layering
	4.1 Introduction
	4.2 The Need For Multiple Protocols
	4.3 The Conceptual Layers Of Protocol Software
	4.4 Functionality Of The Layers
	4.5 ISO 7-Layer Reference Model
	4.6 X.25 And Its Relation To The ISO Model
	4.7 The TCP/IP 5-Layer Reference Model
	4.8 Locus Of Intelligence
	4.9 The Protocol Layering Principle
	4.10 The Layering Principle Applied To A Network
	4.11 Layering In Mesh Networks
	4.12 Two Important Boundaries In The TCP/IP Model
	4.13 Cross-Layer Optimizations
	4.14 The Basic Idea Behind Multiplexing And Demultiplexing
	4.15 Summary

	Chapter 5 Internet Addressing
	5.1 Introduction
	5.2 Universal Host Identifiers
	5.3 The Original IPv4 Classful Addressing Scheme
	5.4 Dotted Decimal Notation Used With IPv4
	5.5 IPv4 Subnet Addressing
	5.6 Fixed Length IPv4 Subnets
	5.7 Variable-Length IPv4 Subnets
	5.8 Implementation Of IPv4 Subnets With Masks
	5.9 IPv4 Subnet Mask Representation And Slash Notation
	5.10 The Current Classless IPv4 Addressing Scheme
	5.11 IPv4 Address Blocks And CIDR Slash Notation
	5.12 A Classless IPv4 Addressing Example
	5.13 IPv4 CIDR Blocks Reserved For Private Networks
	5.14 The IPv6 Addressing Scheme
	5.15 IPv6 Colon Hexadecimal Notation
	5.16 IPv6 Address Space Assignment
	5.17 Embedding IPv4 Addresses In IPv6 For Transition
	5.18 IPv6 Unicast Addresses And /64
	5.19 IPv6 Interface Identifiers And MAC Addresses
	5.20 IP Addresses, Hosts, And Network Connections
	5.21 Special Addresses
	5.22 Weaknesses In Internet Addressing
	5.23 Internet Address Assignment And Delegation Of Authority
	5.24 An Example IPv4 Address Assignment
	5.25 Summary

	Chapter 6 Mapping Internet Addresses To Physical Addresses (ARP)
	6.1 Introduction
	6.2 The Address Resolution Problem
	6.3 Two Types Of Hardware Addresses
	6.4 Resolution Through Direct Mapping
	6.5 Resolution In A Direct-Mapped Network
	6.6 IPv4 Address Resolution Through Dynamic Binding
	6.7 The ARP Cache
	6.8 ARP Cache Timeout
	6.9 ARP Refinements
	6.10 Relationship Of ARP To Other Protocols
	6.11 ARP Implementation
	6.12 ARP Encapsulation And Identification
	6.13 ARP Message Format
	6.14 Automatic ARP Cache Revalidation
	6.15 Reverse Address Resolution (RARP)
	6.16 ARP Caches In Layer 3 Switches
	6.17 Proxy ARP
	6.18 IPv6 Neighbor Discovery
	6.19 Summary

	Chapter 7 Internet Protocol: Connectionless Datagram Delivery (IPv4, IPv6)
	7.1 Introduction
	7.2 A Virtual Network
	7.3 Internet Architecture And Philosophy
	7.4 Principles Behind The Structure
	7.5 Connectionless Delivery System Characteristics
	7.6 Purpose And Importance Of The Internet Protocol
	7.7 The IP Datagram
	7.8 Datagram Type Of Service And Differentiated Services
	7.9 Datagram Encapsulation
	7.10 Datagram Size, Network MTU, and Fragmentation
	7.11 Datagram Reassembly
	7.12 Header Fields Used For Datagram Reassembly
	7.13 Time To Live (IPv4) And Hop Limit (IPv6)
	7.14 Optional IP Items
	7.15 Options Processing During Fragmentation
	7.16 Network Byte Order
	7.17 Summary

	Chapter 8 Internet Protocol: Forwarding IP Datagrams
	8.1 Introduction
	8.2 Forwarding In An Internet
	8.3 Direct And Indirect Delivery
	8.4 Transmission Across A Single Network
	8.5 Indirect Delivery
	8.6 Table-Driven IP Forwarding
	8.7 Next-Hop Forwarding
	8.8 Default Routes And A Host Example
	8.9 Host-Specific Routes
	8.10 The IP Forwarding Algorithm
	8.11 Longest-Prefix Match Paradigm
	8.12 Forwarding Tables And IP Addresses
	8.13 Handling Incoming Datagrams
	8.14 Forwarding In The Presence Of Broadcast And Multicast
	8.15 Software Routers And Sequential Lookup
	8.16 Establishing Forwarding Tables
	8.17 Summary

	Chapter 9 Internet Protocol: Error And Control Messages (ICMP)
	9.1 Introduction
	9.2 The Internet Control Message Protocol
	9.3 Error Reporting Vs. Error Correction
	9.4 ICMP Message Delivery
	9.5 Conceptual Layering
	9.6 ICMP Message Format
	9.7 Example ICMP Message Types Used With IPv4 And IPv6
	9.8 Testing Destination Reachability And Status (Ping)
	9.9 Echo Request And Reply Message Format
	9.10 Checksum Computation And The IPv6 Pseudo-Header
	9.11 Reports Of Unreachable Destinations
	9.12 ICMP Error Reports Regarding Fragmentation
	9.13 Route Change Requests From Routers
	9.14 Detecting Circular Or Excessively Long Routes
	9.15 Reporting Other Problems
	9.16 Older ICMP Messages Used At Startup
	9.17 Summary

	Chapter 10 User Datagram Protocol (UDP)
	10.1 Introduction
	10.2 Using A Protocol Port As An Ultimate Destination
	10.3 The User Datagram Protocol
	10.4 UDP Message Format
	10.5 Interpretation Of the UDP Checksum
	10.6 UDP Checksum Computation And The Pseudo-Header
	10.7 IPv4 UDP Pseudo-Header Format
	10.8 IPv6 UDP Pseudo-Header Format
	10.9 UDP Encapsulation And Protocol Layering
	10.10 Layering And The UDP Checksum Computation
	10.11 UDP Multiplexing, Demultiplexing, And Protocol Ports
	10.12 Reserved And Available UDP Port Numbers
	10.13 Summary

	Chapter 11 Reliable Stream Transport Service (TCP)
	11.1 Introduction
	11.2 The Need For Reliable Service
	11.3 Properties Of The Reliable Delivery Service
	11.4 Reliability: Acknowledgements And Retransmission
	11.5 The Sliding Window Paradigm
	11.6 The Transmission Control Protocol
	11.7 Layering, Ports, Connections, And Endpoints
	11.8 Passive And Active Opens
	11.9 Segments, Streams, And Sequence Numbers
	11.10 Variable Window Size And Flow Control
	11.11 TCP Segment Format
	11.12 Out Of Band Data
	11.13 TCP Options
	11.14 TCP Checksum Computation
	11.15 Acknowledgements, Retransmission, And Timeouts
	11.16 Accurate Measurement Of Round Trip Samples
	11.17 Karn’s Algorithm And Timer Backoff
	11.18 Responding To High Variance In Delay
	11.19 Response To Congestion
	11.20 Fast Recovery And Other Response Modifications
	11.21 Explicit Feedback Mechanisms (SACK and ECN)
	11.22 Congestion, Tail Drop, And TCP
	11.23 Random Early Detection (RED)
	11.24 Establishing A TCP Connection
	11.25 Initial Sequence Numbers
	11.26 Closing a TCP Connection
	11.27 TCP Connection Reset
	11.28 TCP State Machine
	11.29 Forcing Data Delivery
	11.30 Reserved TCP Port Numbers
	11.31 Silly Window Syndrome And Small Packets
	11.32 Avoiding Silly Window Syndrome
	11.33 Buffer Bloat And Its Effect On Latency
	11.34 Summary

	Chapter 12 Routing Architecture: Cores, Peers, And Algorithms
	12.1 Introduction
	12.2 The Origin Of Forwarding Tables
	12.3 Forwarding With Partial Information
	12.4 Original Internet Architecture And Cores
	12.5 Beyond The Core Architecture To Peer Backbones
	12.6 Automatic Route Propagation And A FIB
	12.7 Distance-Vector (Bellman-Ford) Routing
	12.8 Reliability And Routing Protocols
	12.9 Link-State (SPF) Routing
	12.10 Summary

	Chapter 13 Routing Among Autonomous Systems (BGP)
	13.1 Introduction
	13.2 The Scope Of A Routing Update Protocol
	13.3 Determining A Practical Limit On Group Size
	13.4 A Fundamental Idea: Extra Hops
	13.5 Autonomous System Concept
	13.6 Exterior Gateway Protocols And Reachability
	13.7 BGP Characteristics
	13.8 BGP Functionality And Message Types
	13.9 BGP Message Header
	13.10 BGP OPEN Message
	13.11 BGP UPDATE Message
	13.12 Compressed IPv4 Mask-Address Pairs
	13.13 BGP Path Attributes
	13.14 BGP KEEPALIVE Message
	13.15 Information From The Receiver’s Perspective
	13.16 The Key Restriction Of Exterior Gateway Protocols
	13.17 The Internet Routing Architecture And Registries
	13.18 BGP NOTIFICATION Message
	13.19 BGP Multiprotocol Extensions For IPv6
	13.20 Multiprotocol Reachable NLRI Attribute
	13.21 Internet Routing And Economics
	13.22 Summary

	Chapter 14 Routing Within An Autonomous System (RIP, RIPng, OSPF, IS-IS)
	14.1 Introduction
	14.2 Static Vs. Dynamic Interior Routes
	14.3 Routing Information Protocol (RIP)
	14.4 Slow Convergence Problem
	14.5 Solving The Slow Convergence Problem
	14.6 RIP Message Format (IPv4)
	14.7 Fields In A RIP Message
	14.8 RIP For IPv6 (RIPng)
	14.9 The Disadvantage Of Using Hop Counts
	14.10 Delay Metric (HELLO)
	14.11 Delay Metrics, Oscillation, And Route Flapping
	14.12 The Open SPF Protocol (OSPF)
	14.13 OSPFv2 Message Formats (IPv4)
	14.14 Changes In OSPFv3 To Support IPv6
	14.15 IS-IS Route Propagation Protocol
	14.16 Trust And Route Hijacking
	14.17 Gated: A Routing Gateway Daemon
	14.18 Artificial Metrics And Metric Transformation
	14.19 Routing With Partial Information
	14.20 Summary

	Chapter 15 Internet Multicasting
	15.1 Introduction
	15.2 Hardware Broadcast
	15.3 Hardware Multicast
	15.4 Ethernet Multicast
	15.5 The Conceptual Building Blocks Of Internet Multicast
	15.6 The IP Multicast Scheme
	15.7 IPv4 And IPv6 Multicast Addresses
	15.8 Multicast Address Semantics
	15.9 Mapping IP Multicast To Ethernet Multicast
	15.10 Hosts And Multicast Delivery
	15.11 Multicast Scope
	15.12 Host Participation In IP Multicasting
	15.13 IPv4 Internet Group Management Protocol (IGMP)
	15.14 IGMP Details
	15.15 IGMP Group Membership State Transitions
	15.16 IGMP Membership Query Message Format
	15.17 IGMP Membership Report Message Format
	15.18 IPv6 Multicast Group Membership With MLDv2
	15.19 Multicast Forwarding And Routing Information
	15.20 Basic Multicast Forwarding Paradigms
	15.21 Consequences Of TRPF
	15.22 Multicast Trees
	15.23 The Essence Of Multicast Route Propagation
	15.24 Reverse Path Multicasting
	15.25 Example Multicast Routing Protocols
	15.26 Reliable Multicast And ACK Implosions
	15.27 Summary

	Chapter 16 Label Switching, Flows, And MPLS
	16.1 Introduction
	16.2 Switching Technology
	16.3 Flows And Flow Setup
	16.4 Large Networks, Label Swapping, And Paths
	16.5 Using Switching With IP
	16.6 IP Switching Technologies And MPLS
	16.7 Labels And Label Assignment
	16.8 Hierarchical Use Of MPLS And A Label Stack
	16.9 MPLS Encapsulation
	16.10 Label Semantics
	16.11 Label Switching Router
	16.12 Control Processing And Label Distribution
	16.13 MPLS And Fragmentation
	16.14 Mesh Topology And Traffic Engineering
	16.15 Summary

	Chapter 17 Packet Classification
	17.1 Introduction
	17.2 Motivation For Classification
	17.3 Classification Instead Of Demultiplexing
	17.4 Layering When Classification Is Used
	17.5 Classification Hardware And Network Switches
	17.6 Switching Decisions And VLAN Tags
	17.7 Classification Hardware
	17.8 High-Speed Classification And TCAM
	17.9 The Size Of A TCAM
	17.10 Classification-Enabled Generalized Forwarding
	17.11 Summary

	Chapter 18 Mobility And Mobile IP
	18.1 Introduction
	18.2 Mobility, Addressing, And Routing
	18.3 Mobility Via Host Address Change
	18.4 Mobility Via Changes In Datagram Forwarding
	18.5 The Mobile IP Technology
	18.6 Overview Of Mobile IP Operation
	18.7 Overhead And Frequency Of Change
	18.8 Mobile IPv4 Addressing
	18.9 IPv4 Foreign Agent Discovery
	18.10 IPv4 Registration
	18.11 IPv4 Registration Message Format
	18.12 Communication With An IPv4 Foreign Agent
	18.13 IPv6 Mobility Support
	18.14 Datagram Transmission, Reception, And Tunneling
	18.15 Assessment Of IP Mobility And Unsolved Problems
	18.16 Alternative Identifier-Locator Separation Technologies
	18.17 Summary

	Chapter 19 Network Virtualization: VPNs, NATs, And Overlays
	19.1 Introduction
	19.2 Virtualization
	19.3 Virtual Private Networks (VPNs)
	19.4 VPN Tunneling And IP-in-IP Encapsulation
	19.5 VPN Addressing And Forwarding
	19.6 Extending VPN Technology To Individual Hosts
	19.7 Using A VPN With Private IP Addresses
	19.8 Network Address Translation (NAT)
	19.9 NAT Translation Table Creation
	19.10 Variant Of NAT
	19.11 An Example Of NAT Translation
	19.12 Interaction Between NAT And ICMP
	19.13 Interaction Between NAT And Applications
	19.14 NAT In The Presence Of Fragmentation
	19.15 Conceptual Address Domains
	19.16 Linux, Windows, And Mac Versions Of NAT
	19.17 Overlay Networks
	19.18 Multiple Simultaneous Overlays
	19.19 Summary

	Chapter 20 Client-Server Model Of Interaction
	20.1 Introduction
	20.2 The Client-Server Model
	20.3 A Trivial Example: UDP Echo Server
	20.4 Time And Date Service
	20.5 Sequential And Concurrent Servers
	20.6 Server Complexity
	20.7 Broadcasting Requests
	20.8 Client-Server Alternatives And Extensions
	20.9 Summary

	Chapter 21 The Socket API
	21.1 Introduction
	21.2 Versions Of The Socket API
	21.3 The UNIX I/O Paradigm And Network I/O
	21.4 Adding Network I/O to UNIX
	21.5 The Socket Abstraction And Socket Operations
	21.6 Obtaining And Setting Socket Options
	21.7 How A Server Accepts TCP Connections
	21.8 Servers That Handle Multiple Services
	21.9 Obtaining And Setting The Host Name
	21.10 Library Functions Related To Sockets
	21.11 Network Byte Order And Conversion Routines
	21.12 IP Address Manipulation Routines
	21.13 Accessing The Domain Name System
	21.14 Obtaining Information About Hosts
	21.15 Obtaining Information About Networks
	21.16 Obtaining Information About Protocols
	21.17 Obtaining Information About Network Services
	21.18 An Example Client
	21.19 An Example Server
	21.20 Summary

	Chapter 22 Bootstrap And Autoconfiguration (DHCP, NDP, IPv6-ND)
	22.1 Introduction
	22.2 History Of IPv4 Bootstrapping
	22.3 Using IP To Determine An IP Address
	22.4 DHCP Retransmission And Randomization
	22.5 DHCP Message Format
	22.6 The Need For Dynamic Configuration
	22.7 DHCP Leases And Dynamic Address Assignment
	22.8 Multiple Addresses And Relays
	22.9 DHCP Address Acquisition States
	22.10 Early Lease Termination
	22.11 Lease Renewal States
	22.12 DHCP Options And Message Type
	22.13 DHCP Option Overload
	22.14 DHCP And Domain Names
	22.15 Managed And Unmanaged Configuration
	22.16 Managed And Unmanaged Configuration For IPv6
	22.17 IPv6 Configuration Options And Potential Conflicts
	22.18 IPv6 Neighbor Discovery Protocol (NDP)
	22.19 ICMPv6 Router Solicitation Message
	22.20 ICMPv6 Router Advertisement Message
	22.21 ICMPv6 Neighbor Solicitation Message
	22.22 ICMPv6 Neighbor Advertisement Message
	22.23 ICMPv6 Redirect Message
	22.24 Summary

	Chapter 23 The Domain Name System (DNS)
	23.1 Introduction
	23.2 Names For Computers
	23.3 Flat Namespace
	23.4 Hierarchical Names
	23.5 Delegation Of Authority For Names
	23.6 Subset Authority
	23.7 Internet Domain Names
	23.8 Top-Level Domains
	23.9 Name Syntax And Type
	23.10 Mapping Domain Names To Addresses
	23.11 Domain Name Resolution
	23.12 Efficient Translation
	23.13 Caching: The Key To Efficiency
	23.14 Domain Name System Message Format
	23.15 Compressed Name Format
	23.16 Abbreviation Of Domain Names
	23.17 Inverse Mappings
	23.18 Pointer Queries
	23.19 Object Types And Resource Record Contents
	23.20 Obtaining Authority For A Subdomain
	23.21 Server Operation And Replication
	23.22 Dynamic DNS Update And Notification
	23.23 DNS Security Extensions (DNSSEC)
	23.24 Multicast DNS And Service Discovery
	23.25 Summary

	Chapter 24 Electronic Mail (SMTP, POP, IMAP, MIME)
	24.1 Introduction
	24.2 Electronic Mail
	24.3 Mailbox Names And Aliases
	24.4 Alias Expansion And Mail Forwarding
	24.5 TCP/IP Standards For Electronic Mail Service
	24.6 Simple Mail Transfer Protocol (SMTP)
	24.7 Mail Retrieval And Mailbox Manipulation Protocols
	24.8 The MIME Extensions For Non-ASCII Data
	24.9 MIME Multipart Messages
	24.10 Summary

	Chapter 25 World Wide Web (HTTP)
	25.1 Introduction
	25.2 Importance Of The Web
	25.3 Architectural Components
	25.4 Uniform Resource Locators
	25.5 An Example HTML Document
	25.6 Hypertext Transfer Protocol
	25.7 HTTP GET Request
	25.8 Error Messages
	25.9 Persistent Connections
	25.10 Data Length And Program Output
	25.11 Length Encoding And Headers
	25.12 Negotiation
	25.13 Conditional Requests
	25.14 Proxy Servers And Caching
	25.15 Caching
	25.16 Other HTTP Functionality
	25.17 HTTP, Security, And E-Commerce
	25.18 Summary

	Chapter 26 Voice And Video Over IP (RTP, RSVP, QoS)
	26.1 Introduction
	26.2 Digitizing And Encoding
	26.3 Audio And Video Transmission And Reproduction
	26.4 Jitter And Playback Delay
	26.5 Real-time Transport Protocol (RTP)
	26.6 Streams, Mixing, And Multicasting
	26.7 RTP Encapsulation
	26.8 RTP Control Protocol (RTCP)
	26.9 RTCP Operation
	26.10 IP Telephony And Signaling
	26.11 Quality Of Service Controversy
	26.12 QoS, Utilization, And Capacity
	26.13 Emergency Services And Preemption
	26.14 IntServ And Resource Reservation
	26.15 DiffServ And Per-Hop Behavior
	26.16 Traffic Scheduling
	26.17 Traffic Policing And Shaping
	26.18 Summary

	Chapter 27 Network Management (SNMP)
	27.1 Introduction
	27.2 The Level Of Management Protocols
	27.3 Architectural Model
	27.4 Protocol Framework
	27.5 Examples of MIB Variables
	27.6 The Structure Of Management Information
	27.7 Formal Definitions Using ASN.1
	27.8 Structure And Representation Of MIB Object Names
	27.9 MIB Changes And Additions For IPv6
	27.10 Simple Network Management Protocol
	27.11 SNMP Message Format
	27.12 An Example Encoded SNMP Message
	27.13 Security In SNMPv3
	27.14 Summary

	Chapter 28 Software Defined Networking (SDN, OpenFlow)
	28.1 Introduction
	28.2 Routes, Paths, And Connections
	28.3 Traffic Engineering And Control Of Path Selection
	28.4 Connection-Oriented Networks And Routing Overlays
	28.5 SDN: A New Hybrid Approach
	28.6 Separation Of Data And Control
	28.7 The SDN Architecture And External Controllers
	28.8 SDN Across Multiple Devices
	28.9 Implementing SDN With Conventional Switches
	28.10 OpenFlow Technology
	28.11 OpenFlow Basics
	28.12 Specific Fields In An OpenFlow Pattern
	28.13 Actions That OpenFlow Can Take
	28.14 OpenFlow Extensions And Additions
	28.15 OpenFlow Messages
	28.16 Uses Of OpenFlow
	28.17 OpenFlow: Excitement, Hype, And Limitations
	28.18 Software Defined Radio (SDR)
	28.19 Summary

	Chapter 29 Internet Security And Firewall Design (IPsec, SSL)
	29.1 Introduction
	29.2 Protecting Resources
	29.3 Information Policy
	29.4 Internet Security
	29.5 IP Security (IPsec)
	29.6 IPsec Authentication Header
	29.7 Security Association
	29.8 IPsec Encapsulating Security Payload
	29.9 Authentication And Mutable Header Fields
	29.10 IPsec Tunneling
	29.11 Required Security Algorithms
	29.12 Secure Socket Layer (SSL and TLS)
	29.13 Firewalls And Internet Access
	29.14 Multiple Connections And Weakest Links
	29.15 Firewall Implementation And Packet Filters
	29.16 Firewall Rules And The 5-Tuple
	29.17 Security And Packet Filter Specification
	29.18 The Consequence Of Restricted Access For Clients
	29.19 Stateful Firewalls
	29.20 Content Protection And Proxies
	29.21 Monitoring And Logging
	29.22 Summary

	Chapter 30 Connected Embedded Systems (The Internet of Things)
	30.1 Introduction
	30.2 Sensing, Monitoring, And Control
	30.3 Power Conservation And Energy Harvesting
	30.4 A World Of Intelligent Embedded Devices
	30.5 The Importance of Communication
	30.6 Example: Electronic Ads In Shopping Malls
	30.7 Collecting Data From Embedded Systems
	30.8 Wireless Networking And IEEE 802.15.4
	30.9 A Mesh Network For Smart Grid Sensors
	30.10 A Forwarding Tree For a Sensor Mesh
	30.11 Using Layer 2 And Layer 3 Protocols In A Mesh
	30.12 The ZigBee IPv6 Protocol Stack
	30.13 Forwarding In A ZigBee Route-Over Mesh
	30.14 Assessment Of Using IPv6 Route-Over For A Mesh
	30.15 Summary

	Appendix 1 Glossary Of Internetworking Terms And Abbreviations
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

