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PREFACE 

Computer Science and Computer Engineering departments in a large number of uni¬ 

versities have been teaching a course on advanced operating systems for several years. 

Although the field of advanced operating systems is rapidly changing and operating 

systems design techniques have yet to be perfected, the topic is no longer in the state 

of infancy and a general consensus has developed as to what should be taught in such a 

course. Due to the lack of a centralized source of information, instructors for this course 

have generally relied on papers from the contemporary literature to teach the course. 

These two factors gave us the impetus to write this book to provide the much needed 

centralized source of information on advanced operating systems for use by instructors, 

students, researchers, practitioners, etc. 
Operating systems first appeared in the late fifties. Until the early seventies, op¬ 

erating systems for mainframe systems were the main topic of research. Over the last 

two decades, considerable amounts of research has been done in “distributed operating 

systems,” “database operating systems,” and “multiprocessor operating systems.” These 

topics form the basis of an advanced course in operating systems. Design issues of these 

operating systems and mechanisms to build these systems have been well investigated, 

have matured, and have stabilized (if not perfected yet) and it is imperative to teach 

them in an advanced course in operating systems. This book provides the information 

about these operating systems in a cohesive form. 
We decided on the contents of the book after surveying about fifty top Computer 

Science/Engineering departments in the United States and abroad to determine the 

coverage in their graduate level courses in operating systems. Deciding on the contents 

was very difficult and the book contains a complete set of topics common to all of these 

departments. Most chapters of this book have been developed fiom the lecture notes 

used in teaching advanced operating systems and distributed computing courses at The 

Ohio State University over the past several years. 
Most material in the book has been derived from their original sources (i.e., papers 

from contemporary literature). We have kept the presentation simple and stimulating, 

xix 
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nevertheless, the treatment of topics is detailed and up-to-date enough so that experts 

(researchers, etc.) in the field can use the book as a reference. 

Chapters of the book include examples, figures, cases, and bibliography/references. 

“Suggested Further Readings” lists are also included so that interested readers can 

explore material beyond the scope of this book. Every chapter has a set of problems 

which include conceptual, descriptive, and design problems. 

AUDIENCE 

This book is intended for a second course on operating systems, for senior level under¬ 

graduates or graduate students, in computer science and engineering curriculum. The 

book is self-contained; nevertheless, having an introductory course in operating systems 

will be helpful. The book is intended to provide a basic foundation in the design of 

advanced operating systems. Therefore, rather than discussing the design and the struc¬ 

ture of a specific operating system, the book emphasizes the fundamental concepts and 

mechanisms which form the basis of the design of advanced operating systems. The 

main emphasis of the book is on various alternative approaches to the solution of the 

problems encountered in the design of advanced operating systems. However, when we 

felt it appropriate, we have embedded relevant case studies to illustrate the fundamental 
concepts. 

The book can also be used in a graduate course on “distributed computing systems” 

since Parts II, III, and IV of the book cover the fundamental concepts and issues 
underlying the design of distributed systems. 

In addition, computer professionals such as researchers, practicing engineers, sys¬ 

tems designers/programmers, and consultants in industry as well as in research should 

find the book a very useful reference because it contains state of the art techniques to 

address the various design issues in advanced operating systems. 

ORGANIZATION OF THE BOOK 

The book is divided into six parts. Each part consists of related chapters and focuses 
on a specific topic in advanced operating systems. 

Chapter 1 gives an overview of the book. It introduces the concept of operating 

systems, of virtual machines, and of various types of operating system structures. It 

introduces the readers to advanced operating systems, gives the motivations for their 
design, and discusses the various types of advanced operating systems. 

Part I deals with process management in a single machine operating system. 

Chapter 2 describes the concept of a process and illustrates several mechanisms for 

process synchronization. Chapter 3 focuses on process deadlocks explaining how to 
detect, avoid, and recover from deadlocks. 

Part II introduces distributed operating systems. Chapter 4 introduces the architec¬ 

ture of distributed systems and the concept of distributed operating systems. It also ties 

in all the major components of a distributed operating system. It gives a global view of 

a distributed operating system and the role of each of the topics covered in Chapters 5 

through 11 in a distributed operating system. Therefore, a reader not well versed with 
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distributed operating systems should read Chapter 4 before proceeding to any of the 
Chapters 5 through 12. However, Chapters 5 through 12 are self contained and can be 
read in any order. Chapter 5 provides a theoretical foundation for distributed systems. 
Chapter 6 covers mutual exclusion and Chapter 7 covers deadlock detection in dis¬ 
tributed systems. Chapters 6 and 7 are the distributed system’s counterparts for process 
synchronization (Chapter 2) and for deadlock detection (Chapter 3) in nondistributed 
systems, respectively. Chapter 8 discusses the methods that processes in distributed 
systems use to arrive at a consensus under the occurrence of malicious failures. 

Part III deals with resource management in distributed systems. Chapter 9 (Dis¬ 
tributed File Systems), Chapter 10 (Distributed Shared Memory), and Chapter 11 
(Global Scheduling) each describe the management of different resources in distributed 
systems. 

In Part IV, Chapter 12 discusses various schemes for recovering from failures and 
Chapter 13 covers techniques for fault-tolerance in distributed systems. 

Part V deals with security and protection in computer systems. Chapter 14 dis¬ 
cusses various models and mechanisms for protection and security. Chapter 15 covers 
cryptographic techniques to protect the confidentiality of data. 

Part VI is on Multiprocessor Operating Systems. Chapter 16 describes the archi¬ 
tecture of multiprocessor systems. Chapter 17 discusses the design issues of a multi¬ 
processor operating system and mechanisms used in building multiprocessor operating 

systems. 
Finally, Part VII deals with database operating systems. Chapter 18 discusses the 

differences between general purpose and database operating systems. Chapter 19 intro¬ 
duces the concept of a transaction and gives a theoretical background for concurrency 
control. Chapter 20 discusses various algorithms for concurrency control. 
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CHAPTER 

1 
OVERVIEW 

1.1 INTRODUCTION 

The use of a bare hardware machine is cumbersome and inefficient because a large 

number of chores must be manually performed, such as entering programs and data 

at appropriate locations in the main memory, addressing and activating appropriate 

input-output devices, etc. When a machine is used by several users simultaneously, 

numerous other issues arise, such as the protection of user data and the time- and space¬ 

multiplexing of shared resources among them. An operating system relieves users of 

these cumbersome chores and increases efficiency by managing the system s resources. 

1.2 FUNCTIONS OF AN OPERATING SYSTEM 

An operating system is a layer of software on a bare hardware machine that performs 

two basic functions: 

Resource management. A user program accesses several hardware and software re¬ 

sources during its execution. Examples of resources are the CPU, main memory, input- 

output devices, and various types of software (compiler, linker-loader, files, etc.). It 

is the operating system that manages the resources and allocates them to users in an 

efficient and fair manner. Resource management encompasses the following functions: 

• Time management (CPU and disk scheduling). 

• Space management (main and secondary storages). 

3 
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• Process synchronization and deadlock handling. 

• Accounting and status information. 

User friendliness. An operating system hides the unpleasant, low-level details and 

idiosyncrasies of a bare hardware machine and provides users with a much friendlier 

interface to the machine. To load, manipulate, print, and execute programs, high-level 

commands can be used without the inconvenience of worrying about low-level details. 

The layer of operating system transforms a bare hardware machine into a virtual or 

abstract machine with added functionality (such as automatic resource management). 

Moreover, users of the virtual machine have the illusion that each one of them is the 

only user of the machine, even though the machine may be operating in a multiuser 

environment. 

User friendliness issues encompass the following tasks: 

• Execution environment (process management—creation, control, and termination— 

file manipulation, interrupt handling, support for I/O operations, language support). 

• Error detection and handling. 

• Protection and security. 

• Fault tolerance and failure recovery. 

1.3 DESIGN APPROACHES 

An operating system could be designed as a huge, jumbled collection of processes 

without any structure. Any process could call any other process to request a service 

from it. The execution of a user command would usually involve the activation of a 

series of processes. While an implementation of this kind could be acceptable for small 

operating systems, it would not be suitable for large operating systems as the lack of a 

proper structure would make it extremely hard to specify, code, test, and debug a large 
operating system. 

The design of general purpose operating systems has matured over the last two 

and a half decades and today’s operating systems are generally enormous and complex. 

A typical operating system that supports a multiprogramming environment can easily be 

tens of megabytes in length and its design, implementation, and testing amounts to the 

undertaking of a huge software project. In this section, we discuss design approaches 

intended to handle the complexities of today’s large operating systems. However, before 

we discuss these approaches, we first need to make the distinction between what should 

be done and how it should be done, in the context of operating system design. 

Separation of Policies and Mechanisms 

Policies refer to what should be done and mechanisms refer to how it should be done. 

For example, in CPU scheduling, mechanisms provide the means to implement various 

scheduling disciplines, and policy decides which CPU scheduling discipline (such as 
FCFS, SJTF, priority, etc.) will be used [14, 24] . 
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A good operating system design must separate policies from mechanisms. Since 

policies make use of underlying mechanisms, the separation of policies from mecha¬ 

nisms greatly contributes to flexibility, as policy decisions can be made at a higher level. 

Note that policies are likely to change with time, application, and users. If mechanisms 

are separated from policies, then a change in policies will not require changes in the 

mechanisms, and vice-versa. Otherwise, a change in policies may require a complete 

redesign. 

1.3.1 Layered Approach 

Dijkstra advocated the layered approach to lessen the design and implementation com¬ 

plexities of an operating system. The layered approach divides the operating system into 

several layers. The functions of an operating system are then vertically apportioned into 

these layers. Each layer has well-defined functionality and input-output interfaces with 

the two adjacent layers. Typically, the bottom layer interfaces with machine hardware 

and the top layer interfaces with users (or operators). The idea behind the layered ap¬ 

proach is the same as in the seven-layer architecture of the Open System Interconnection 

(OSI) model of the International Standards Organization (ISO). 

The layered approach has all the advantages of modular design. (In modular 

design, the system is divided into several modules and each module is designed inde¬ 

pendently.) Thus, each layer can be designed, coded, and tested independently. Con¬ 

sequently, the layered approach considerably simplifies the design, specification, and 

implementation (the coding and testing) of an operating system. However, a drawback 

of the layered approach is that operating system functions must be carefully assigned 

to various layers because a layer can make use only of the functionality provided by 

the layers beneath it. 
A classic example of the layered approach is the THE operating system [8], 

which consists of six layers. Figure 1.1 shows these layers with their associated func¬ 

tions. Another classic example of this approach is the MULTICS system [19], which 

is structured as several concentric layers (rings). This ring structure in MULTICS not 

only simplifies design and verification, but it also serves as an aid in designing and 

implementing protection. In MULTICS, privilege decreases from the inner ring to the 

successive outer rings. The ring structure nicely defines and implements the protection in 

MULTICS. 

level 

5 Operator (Console keyboard)_ 

4 User programs_ 

3 Buffering of input and output data stream 

2 Console message handler_ 

1 Memory handler_ 

0 Processor allocation and process synchronization 

Hardware. ....... FIGURE 1.1 
Structure of the THE operating system. 
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FIGURE 1.2 
Structure of a kernel-based 
operating system. 

1.3.2 The Kernel Based Approach 

The kernel-based design and structure of operating systems was suggested by 

Brinch Hansen [12]. The kernel (more appropriately called the nucleus) is a collec¬ 

tion of primitive facilities over which the rest of the operating system is built, using 

the functions provided by the kernel (see Fig. 1.2). Thus, a kernel provides an envi¬ 

ronment to build operating systems in which the designer has considerable flexibility 

because policy and optimization decisions are not made at the kernel level. It follows 

that a kernel should support only mechanisms and that all policy decisions should be 

left to the outer layer. An operating system is an orderly growth of software over the 

kernel where all decisions regarding process scheduling, resource allocation, execution 

environment, file system, and resource protection, etc. are made. 

According to Hansen, a kernel is a fundamental set of primitives that allows the 

dynamic creation and control of processes, as well as communication among them. 

Thus, the kernel as advocated by Hansen only supports the notion of a process and 

does not include the concept of a resource. However, as operating systems have matured 

in functionality and complexity, more functionality has been relegated to the kernel. 

A kernel should contain a minimal set of functionality that is adequate to build an 

operating system with a given set of objectives. Including too much functionality in a 

kernel results in low flexibility at a higher level, whereas including too little functionality 

in a kernel results in low functional support at a higher level. 

An outstanding example of a kernel is the Hydra, the kernel of an operating system 

for C.mmp, a multiprocessor system developed at Carnegie-Mellon University [28]. The 

Hydra kernel supports the notion of a resource and process, and provides mechanisms 

for the creation and representation of new types of resources and protected access to 
resources. 

1.3.3 The Virtual Machine Approach 

In the virtual machine approach, a virtual machine software layer on the bare hardware 

of the machine gives the illusion that all machine hardware (i.e., the processor, main 
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memory, secondary storage, etc.) is at the sole disposal of each user. A user can execute 

the entire instruction set, including the privileged instructions. The virtual machine 

software creates this illusion by appropriately time-multiplexing the system resources 

among all the users of the machine. 

A user can also run a single-user operating system on this virtual machine. The 

design of such a single-user operating system can be very simple and efficient because 

it does not have to deal with the complications that arise due to multiprogramming 

and protection. The virtual machine concept provides higher flexibility in that it allows 

different operating systems to run on different virtual machines. Uniprogrammed oper¬ 

ating systems can mix with multiprogrammed operating systems. The virtual machine 

concept provides a useful test-bed to experiment with new operating systems without 

interfering with other users of the machine. The efficient implementation of virtual 

machine software (e.g., VM/370), however, is a very difficult problem because virtual 

machine software is huge and complex. 

A classical example of this system is the IBM 370 system [21] wherein the virtual 

machine software, VM/370, provides a virtual machine to each user. When a user logs 

on, VM/370 creates a new virtual machine (i.e., a copy of the bare hardware of the 

IBM 370 system) for the user. In the IBM 370 system, users traditionally run the CMS 

(Conversational Monitor System) operating system, which is a single-user, interactive 

operating system. 

1.4 WHY ADVANCED OPERATING SYSTEMS 

In the 1960s and 1970s, most efforts in operating system design were largely focused 

on the so-called traditional operating systems, which ran on stand-alone computers with 

single processors. Considerable advances in integrated circuit and computer communi¬ 

cation technologies over the last two decades have spurred unprecedented interest in 

multicomputer systems and have resulted in the proliferation of a variety of computer 

architectures, viz., shared memory multiprocessors to distributed memory distributed 

systems. These multicomputer systems were prompted by the need for high-speed com¬ 

puting that conventional single processor systems were unable to provide [1], 

Multiprocessor systems and distributed systems have many idiosyncrasies not 

present in traditional single-processor systems. These idiosyncrasies render the design 

of operating systems for these multicomputer systems extremely difficult and require that 

nontrivial design issues be addressed. Due to their relative newness and enormous design 

complexity, operating systems for these multi computers are referred to as advanced or 

modern operating systems. An advanced operating system not only harnesses the power 

of a multicomputer system; it also provides a high-level coherent view of the system; a 

user views a multicomputer system as a single monolithic powerful machine. A study 

of advanced operating systems entails a study of these nontrivial design techniques. 

Due to the high demand and popularity of multicomputer systems, advanced oper¬ 

ating systems have gained substantial importance and a considerable amount of research 

has been done on them over the last two decades. This book presents a study of ad¬ 

vanced operating systems with a special emphasis on the concepts underlying the design 

techniques. 
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1.5 TYPES OF ADVANCED OPERATING SYSTEMS 

Figure 1.3 gives a classification of advanced operating systems. The impetus for ad¬ 

vanced operating systems has come from two directions. First, it has come from ad¬ 

vances in the architecture of multicomputer systems and is now driven by a wide variety 

of high-speed architectures. Hardware design of extremely fast parallel and distributed 

systems is fairly well understood. These architectures offer great potential for speed 

up but they also present a substantial challenge to operating system designers. Oper¬ 

ating system designs for two types of multicomputer systems, namely, multiprocessor 

systems and distributed computing systems, have been well-studied. 

A second class of advanced operating systems is driven by applications. There 

are several important applications that require special operating system support, as a 

requirement as well as for efficiency. General purpose operating systems are too broad 

in nature and inefficient and fail to provide adequate support for such applications. Two 

specific applications, namely, database systems and real-time systems, have received 

considerable attention in the past and the operating system issues for these systems have 

been extensively examined. Other applications include graphics systems, surveillance, 

and process control. 

A brief introduction of four advanced operating systems follows. 

Distributed Operating Systems 

Distributed operating systems are operating systems for a network of autonomous com¬ 

puters connected by a communication network. A distributed operating system controls 

and manages the hardware and software resources of a distributed system such that 

its users view the entire system as a powerful monolithic computer system. When a 

program is executed in a distributed system, the user is not aware of where the program 

is executed or of the location of the resources accessed. 

The basic issues in the design of a distributed operating system are the same as in 

a traditional operating system, viz., process synchronization, deadlocks, scheduling, file 

systems, interprocess communication, memory and buffer management, failure recovery, 

etc. However, several idiosyncrasies of a distributed system, namely, the lack of both 

Advanced operating 
systems 

\ ] 
Architecture driven Application driven 

[ 
Distributed Multiprocessor Database Real-time 

systems systems systems systems 

FIGURE 1.3 
A classification of advanced operating systems. 
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shared memory and a physical global clock, and unpredictable communication delays, 

make the design of distributed operating systems much more difficult. 

Multiprocessor Operating Systems 

A typical multiprocessor system consists of a set of processors that share a set of 

physical memory blocks over an interconnection network. Thus, a multiprocessor system 

is a tightly coupled system where processors share an address space. A multiprocessor 

operating system controls and manages the hardware and software resources such that 

users view the entire system as a powerful uniprocessor system; a user is not aware of 

the presence of multiple processors and the interconnection network. 

The basic issues in the design of a multiprocessor operating system are the same as 

in a traditional operating system. However, the issues of process synchronization, task 

scheduling, memory management, and protection and security, become more complex 

because the main memory is shared by many physical processors. 

Database Operating Systems 

Database systems place special requirements on operating systems. These requirements 

have their roots in the specific environment that database systems support. A database 

system must support: the concept of a transaction; operations to store, retrieve, and 

manipulate a large volume of data efficiently; primitives for concurrency control, and 

system failure recovery. To store temporary data and data retrieved from secondary 

storage, it must have a buffer management scheme. 
In this book, we primarily focus on concurrency control aspects of database oper¬ 

ating systems. Concurrency control, one of the most challenging problems in the design 

of database operating systems, has been actively studied over the last one and a half 

decades. An elegant theory of concurrency control exists and a rich set of algorithms 

to solve the problem have been developed. Recovery and fault tolerance are covered in 

Chaps. 12 and 13. 

Real-time Operating Systems 

Real-time systems also place special requirements on operating systems, which have 

their roots in the specific application that the real-time system is supporting. A distinct 

feature of real-time systems is that jobs have completion deadlines. A job should be 

completed before its deadline to be of use (in soft real-time systems) or to avert a 

disaster (in hard real-time systems). The major issue in the design of real-time operating 

systems is the scheduling of jobs in such a way that a maximum number of jobs satisfy 

their deadlines. Other issues include designing languages and primitives to effectively 

prepare and execute a job schedule. 

1.6 AN OVERVIEW OF THE BOOK 

In this book, we study three types of advanced operating systems, namely, distributed 

operating systems, multiprocessor operating systems, and database operating systems. 

Based on these topics, the book is divided into seven parts. 
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Part I, “Process Synchronization,” deals with the issues of process synchroniza¬ 

tion and process deadlocks in traditional operating systems. These topics are covered 

primarily to provide continuity from an introductory course in operating systems. 

Part II, “Distributed Operating Systems,” discusses theoretical and algorithmic 

issues in the design of distributed operating systems. It introduces the architecture of 

distributed systems, builds a theoretical foundation, and discusses algorithms for mutual 

exclusion, deadlock detection, and Byzantine agreement in distributed systems. 

Part III, “Distributed Resource Management,” discusses issues related to the man¬ 

agement of resources in distributed systems. It includes discussions on distributed file 

systems, distributed shared memory, and distributed scheduling (load sharing) in dis¬ 

tributed systems. 
Part IV, “Failure Recovery and Fault Tolerance,” covers techniques for recovery 

from failures and fault tolerance in distributed systems. It systematically introduces the 

issues and concepts behind recovery and fault tolerance and presents various schemes 

to achieve them. 
Part V, “Protection and Security,” deals with the protection of resources and the 

confidentiality of data of computer systems. It discusses various models of protection 

and several techniques to design secure computer systems. It also discusses several 

encryption/decryption schemes to protect the confidentiality of data. 

Part VI, “Multiprocessor Operating Systems,” describes the issues in the design 

of operating systems for multiprocessor systems. It first gives an overview of the archi¬ 

tectures of multiprocessor systems and then describes four major issues in the design of 

multiprocessor operating systems, namely, process synchronization, processor schedul¬ 

ing, memory management, fault tolerance, and system failure recovery. 

Part VII, “Database Operating Systems,” focuses on operating system support 

for database systems. It focuses primarily on the problem of concurrency control in 

database systems. It begins with a discussion on the theoretical aspects of concurrency 

control and concludes with a discussion on various concurrency control algorithms. 

1.7 SUMMARY 

An operating system is a software layer on a bare hardware machine with two basic 

functions: performing resource management and providing user friendliness. An oper¬ 

ating system manages the resources and allocates them to users in an efficient and fair 

manner, while hiding the unpleasant, low-level details of the bare hardware machine 
and providing a friendlier execution environment. 

A good operating system design separates policies from mechanisms. Policies 

refer to what should be done and mechanisms refer to how it should be done. Since 

policies make use of underlying mechanisms, the separation of policies from mech¬ 

anisms greatly contributes to flexibility, as policy decisions can be made at a higher 
level. 

Generally, operating systems are very large and complex—a typical operating 

system which supports a multiprogramming environment can be tens of megabytes in 

length—and their design, implementation, and testing amounts to an immense under¬ 

taking. Fortunately, there are several design and structuring approaches that mitigate 
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the design and implementation complexities of operating systems. In the layered ap¬ 

proach, an operating system is divided into several layers, and its functions are likewise 

apportioned. The layered approach results in modular design, whereby each layer can be 

designed, coded, and tested independently. In the kernel-based approach, there exists a 

collection of primitive facilities, the kernel, over which the rest of the operating system 

is built (using the functions provided by the kernel). Thus, a kernel provides an envi¬ 

ronment that can be used to build operating systems. In the virtual machine approach, 

a virtual machine software layer on the bare hardware of a machine creates the illusion 

that the entire machine is at the sole disposal of each user. This illusion is created by the 

time-multiplexing of resources among all users. A user can run his single-user operating 

system on this virtual machine. The design of such an operating system can be very 

simple and efficient because complications due to multiprogramming and protection do 

not arise. 

Considerable progress in the architecture of multicomputer systems, a wide avail¬ 

ability of high-speed architectures, and considerable sophistication in the application 

of computers in day-to-day life over the last two decades have spurred considerable 

interest in advanced operating systems, particularly, multiprocessor and distributed com¬ 

puter systems. Multicomputer systems offer great potential for speed enhancement, but 

present substantial challenges to operating system designers in the form of a number 

of characteristics not present in traditional single-processor systems. Another class of 

advanced operating system is driven by several important applications that require spe¬ 

cial operating system support. Two specific applications, namely, database systems and 

real-time systems, have received considerable attention and study. 
This book focuses on three types of advanced operating systems, viz., distributed 

operating systems, multiprocessor operating systems, and database operating systems. 

1.8 FURTHER READING 

An overview of operating systems, its evolution, structures, etc., is given in a tutorial 

article by Anderson [2]. For a history of operating systems, readers are referred to an ar¬ 

ticle by Weizer [27], Books on traditional operating systems include Brinch Hansen [13], 

Madnick and Donovan [15], Shaw [22], and Habermann [11]. Coffman and Denning [4] 

give a highly analytical treatment of the design issues in operating systems. Comer [5] 

presents a case study on the design of Xinu. Recent books on traditional operating sys¬ 

tems includes Bic and Shaw [3], Deitel [7], Finkel [9], Milenkovic [17], Silberschatz 

et al. [24], Stallings [25], and Shay [23]. 
The May 1990 issue of IEEE Computer Magazine is devoted to “Recent Devel¬ 

opments in Operating Systems.” Recently, several books have been published on the 

topics of advanced operating systems and distributed computing systems. These books 

touch upon various aspects of advanced operating system design. For example, Tanen- 

baum [26] focuses on practical aspects in distributed operating systems. Coulouris and 

Dollimore [6] has a major emphasis on the design of file systems in distributed sys¬ 

tems. Nutt [18] briefly covers theoretical as well as practical issues in the design of 

distributed operating systems. Raynal [20] covers algorithms for communication and 

synchronization in distributed systems. Maekawa et al. [27] has a theoretical treatment 
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of the advanced issues in the design of operating systems. Goscinski [10] discusses a 

number of topics in distributed operating systems. 
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CHAPTER 

2 
SYNCHRONIZATION 

MECHANISMS 

2.1 INTRODUCTION 

Processes that interact with each other often need to be synchronized. The synchroniza¬ 

tion of a process is normally achieved by regulating the flow of its execution. In this 

chapter, various mechanisms for process synchronization are presented. First, the notion 

of a process is presented, then the issue of synchronizing processes and mechanisms 

for synchronization are introduced. 

2.2 CONCEPT OF A PROCESS 

The notion of a process is fundamental to operating systems. Although there are many 

accepted definitions of a process, here we define the concept of process in the context of 

this book. A process is a program whose execution has started but is not yet complete 

(i.e., a program in execution). A process can be in any of the following three basic 

states: 

Running. The processor is executing the instructions of the corresponding process. 

Ready. The process is ready to be executed, but the processor is not available for 

the execution of this process. 

Blocked. The process is waiting for an event to occur. Examples of events are an 

I/O operation waiting to be completed, memory to be made available, a message to be 

received, etc. 

13 



14 ADVANCED CONCEPTS IN OPERATING SYSTEMS 

FIGURE 2.1 
State transition diagram of a process. 

Figure 2.1 depicts transitions among these states during the life cycle of a process. 

A running process gets blocked because a requested resource is not available or can 

become ready because the CPU decided to execute another process. A blocked process 

becomes ready when the needed resource becomes available to it. A ready process starts 

running when the CPU becomes available to it. 

A data structure commonly referred to as the Process Control Block (PCB), stores 

complete information about a process, such as id, process state, priority, privileges, 

virtual memory address translation maps, etc. The operating system as well as other 

processes can perform operations on a process. Examples of such operations are create, 

kill, signal, suspend, schedule, change-priority, resume, etc. A detailed treatment of 

these topics is beyond the scope of this book and can be found in [22], 

2.3 CONCURRENT PROCESSES 

Two processes are concurrent if their execution can overlap in time; that is, the execu¬ 

tion of the second process starts before the first process completes. In multiprocessor 

systems, since CPUs can simultaneously execute different processes, the concept of 

concurrency is concrete and easy to visualize. In a single CPU system, physical con¬ 

currency can be due to concurrent execution of the CPU and an I/O. If a CPU interleaves 

the execution of several processes, logical concurrency is obtained (as opposed to the 
physical concurrency of a multiprocessor system). 

Two processes are serial if the execution of one must be complete before the 

execution of the other can start. Normally, two processes are said to be concurrent 

if they are not serial. Concurrent processes generally interact through either of the 
following mechanisms: 

Shared variables. The processes access (read or write) a common variable or 
common data. 
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Message passing. The processes exchange information with each other by sending 

and receiving messages. 

If two processes do not interact, then their execution is transparent to each other 

(i.e., their concurrent execution is the same as their serial execution). 

2.3.1 Threads 

Traditionally, a process has a single address space and a single thread of control with 

which to execute a program within that address space. To execute a program, a pro¬ 

cess has to initialize and maintain state information. The state information typically is 

comprised of page tables, swap images, file descriptors, outstanding I/O requests, saved 

register values, etc. This information is maintained on a per program basis, and thus, 

a per process basis. The volume of this state information makes it expensive to create 

and maintain processes as well as to switch between them. 

To handle situations where creating, maintaining, and switching between processes 

occur frequently (e.g., parallel applications), threads or lightweight processes have been 

proposed. 
Threads separate the notion of execution from the rest of the definition of the 

process [1], A single thread executes a portion of a program, cooperating with other 

threads concurrently executing within the same address space. Each thread makes use 

of a separate program counter and a stack of activation records (that describe the state 

of the execution), and a control block. The control block contains the state information 

necessary for thread management, such as for putting a thread into a ready list and for 

synchronizing with other threads. Most of the information that is part of a process is 

common to all the threads executing within a single address space, and hence main¬ 

tenance is common to all the threads. By sharing common information, the overhead 

incurred in creating and maintaining information, and the amount of information that 

needs to be saved when switching between threads of the same program, is reduced 

significantly. Threads are treated in more detail in Sec. 17.4. 

2.4 THE CRITICAL SECTION PROBLEM 

When concurrent processes (or threads) interact through a shared variable, the integrity 

of the variable may be violated if access to the variable is not coordinated. Examples of 

integrity violations are (1) the variable does not record all changes, (2) a process may 

read inconsistent values, and (3) the final value of the variable may be inconsistent. 

A solution to this problem requires that processes be synchronized such that only 

one process can access the variable at any one time. This is why this problem is widely 

referred to as the problem of mutual exclusion. A critical section is a code segment in 

a process in which a shared resource is accessed. A solution to the problem of mutual 

exclusion must satisfy the following requirements: 

• Only one process can execute its critical section at any one time. 

• When no process is executing in its critical section, any process that requests entry 

to its critical section must be permitted to enter without delay. 



16 ADVANCED CONCEPTS IN OPERATING SYSTEMS 

• When two or more processes compete to enter their respective critical sections, the 

selection cannot be postponed indefinitely. 

• No process can prevent any other process from entering its critical section indef¬ 

initely; that is, every process should be given a fair chance to access the shared 

resource. 

2.4.1 Early Mechanisms for Mutual Exclusion 

Various versions of busy waiting [3, 6, 13, 14, 19] were some of the first mechanisms 

to achieve mutual exclusion. In this mechanism, a process that cannot enter its critical 

section continuously tests the value of a status variable to find if the shared resource is 

free. The status variable records the status of the shared resource. The main problems 

with this approach are the wastage of CPU cycles and the memory access bandwidth. 

Disabling interrupts, another mechanism that achieves mutual exclusion, is a 

mechanism where a process disables interrupts before entering the critical section and 

enables the interrupts immediately after exiting the critical section. Mutual exclusion is 

achieved because a process is not interrupted during the execution of its critical section 

and thus excludes all other processes from entering their critical section. The problems 

with this method are that it is applicable to only uniprocessor systems and important 

input-output events may be mishandled. 

In multiprocessor systems, a special instruction called the test-and-set instruction 

is used to achieve mutual exclusion. This instruction (typically completed in one clock 

cycle) performs a single indivisible operation on a designated/specific memory location. 

When this instruction is executed, a specified memory location is checked for a particular 

value; if they match, the memory location’s contents are altered. This instruction can 

be used as a building block for busy waiting or can be incorporated into schemes that 

relinquish the CPU when the instruction fails (i.e., a match is not found). 

2.4.2 Semaphores 

A semaphore is a high-level construct used to synchronize concurrent processes. A 

semaphore S is an integer variable on which processes can perform two indivisible 

operations (similar to a test-and-set operation), P(S) and V(S) [3], Each semaphore 

has a queue associated with it, where processes that are blocked on that semaphore 

wait. The P and V operations are defined as follows: 

P(S): if S' > 1 then S := S — 1 

else block the process on the semaphore queue; 

V(S): if some processes are blocked on the semaphore S 
then unblock a process 

else S := S + 1; 

When a V(S) operation is performed, a blocked process is picked up for execution. 

The queueing discipline of a semaphore queue depends upon the implementation. 

Depending upon the values a semaphore is allowed to take, there are two types 

of semaphores: a binary semaphore (the initial value is 1) and a resource counting 

semaphore (the initial value is normally more than 1). A semaphore is initialized by 
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Shared var 
mutex: semaphore (= 1); 

Process i (i = 1, n); 

begin 

P(mutex); 

execute CS; 

V (mutex); 

FIGURE 2.2 
end. Solution to mutual exclusion using a semaphore. 

the system. Note that for any semaphore, 

number of P operations — number of V operations < initial value. 

Binary semaphores are used to create mutual exclusion, because at any given time only 

one process can get past the P operation. Resource counting semaphores are primarily 

used to synchronize access to a shared resource by several concurrent processes. (To 

control how many processes can concurrently perform an operation.) 

Example 2.1. Figure 2.2 shows how we can use a binary semaphore to achieve mutual 
exclusion. If any process has performed a P(mutex) operation without performing 
the corresponding V(mutex) operation (i.e., the process is still inside its CS), then 
all other processes trying to enter the CS will wait on the P(mutex) operation until 
this process performs the V(mutex) operation (i.e., exits the CS). Therefore, mutual 

exclusion is achieved. 

Although semaphores provide a simple and sufficiently general scheme for all 

kinds of synchronization problems, they suffer from the following drawbacks: 

• A process that uses a semaphore has to know which other processes use the semaphore. 

It may also have to know how those processes are using the semaphore. This knowl¬ 

edge is required because the code of a process cannot be written in isolation, as the 

semaphore operations of all the interacting processes have to be coordinated. 

• Semaphore operations must be carefully installed in a process. The omission of a 

P or V operation may result in inconsistencies (i.e., a violation of the integrity of 

a shared resource) or deadlocks. 

• Programs using semaphores can be extremely hard to verify for correctness. 

2.5 OTHER SYNCHRONIZATION PROBLEMS 

In addition to mutual exclusion, there are many other situations where process synchro¬ 

nization is necessary. In the following sections, we discuss some common synchroniza- 
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tion problems. In these problems, the control of concurrent access to shared resources 

is essential. 

2.5.1 The Dining Philosophers Problem 

The dining philosophers problem is a classic synchronization problem that has formed 

the basis for a large class of synchronization problems. In one version of this problem, 

five philosophers are sitting in a circle, attempting to eat spaghetti with the help of 

forks. Each philosopher has a bowl of spaghetti but there are only five forks (with 

one fork placed to the left, and one to the right of each philosopher) to share among 

them. This creates a dilemma, as both forks (to the left and right) are needed by each 

philosopher to consume the spaghetti. 

A philosopher alternates between two phases: thinking and eating. In the thinking 

mode, a philosopher does not hold a fork. However, when hungry (after staying in the 

thinking mode for a finite time), a philosopher attempts to pick up both forks on the 

left and right sides. (At any given moment, only one philosopher can hold a given 

fork, and a philosopher cannot pick up two forks simultaneously). A philosopher can 

start eating only after obtaining both forks. Once a philosopher starts eating, the forks 

are not relinquished until the eating phase is over. When the eating phase concludes 

(which lasts for finite time), both forks are put back in their original position and the 
philosopher reenters the thinking phase. 

Note that no two neighboring philosophers can eat simultaneously. In any solution 

to this problem, the act of picking up a fork by a philosopher must be a critical section. 

Devising a deadlock-free solution to this problem, in which no philosopher starves, is 
nontrivial. 

2.5.2 The Producer-Consumer Problem 

In the producer-consumer problem, a set of producer processes supplies messages to a 

set of consumer processes. These processes share a common buffer pool where mes¬ 

sages are deposited by producers and removed by consumers. All the processes are 

asynchronous in the sense that producers and consumers may attempt to deposit or 

remove messages at any instant. Since producer processes may outpace consumer pro¬ 

cesses (or vice versa), two constraints need to be satisfied; no consumer process can 

remove a message when the buffer pool is empty and no producer process can deposit 
a message when the buffer pool is full. 

Integrity problems may arise if multiple consumers (or multiple producers) try 

to remove messages (or try to put messages) in the buffer pool simultaneously. For 

examples, associated data structures (e.g., pointers to buffers) may not be updated con¬ 

sistently, or two producers may try to put messages in the same buffer. Therefore, 

access to the buffer pool and the associated data structures must constitute a critical 
section in these processes. 

2.5.3 The Readers-Writers Problem 

In the readers-writers problem, the shared resource is a file that is accessed by both 

the reader and writer processes. Reader processes simply read the information in the 



SYNCHRONIZATION MECHANISMS 19 

file without changing its contents. Writer processes may change the information in the 

file. The basic synchronization constraint is that any number of readers should be able 

to concurrently access the file, but only one writer can access the file at a given time. 

Moreover, readers and writers must always exclude each other. 

There are several versions of this problem depending upon whether readers or 
writers are given priority. 

Reader’s Priority. In the reader’s priority case, arriving readers receive priority over 

waiting writers. A waiting or an arriving writer gains access to the file only when there 

are no readers in the system. When a writer is done with the file, all the waiting readers 

have priority over the waiting writers. 

Writer’s Priority. In the writer’s priority case, an arriving writer receives priority over 

waiting readers. A waiting or an arriving reader gains access to the file only when there 

are no writers in the system. When a reader is done with the file, waiting writers have 

priority over waiting readers to access the file. 

In the reader’s priority case, writers may starve (i.e., writers may wait indefinitely) 

and vice-versa. To overcome this problem, a weak reader’s priority case or a weak 

writer’s priority case can be used. In a weak reader’s priority case, an arriving reader 

still has priority over waiting writers. However, when a writer departs, both waiting 

readers and waiting writers have equal priority (that is, a waiting reader or a waiting 

writer is chosen randomly). 

2.5.4 Semaphore Solution to Readers-Writers Problem 

Example 2.2. Figure 2.3 shows how we can implement a readers priority solution 
to the readers-writers problem using semaphores. A reader calls the reader procedure 
and a writer calls the writer procedure to read and write the file, respectively. If a 
reader is reading, then in the reader procedure nreaders 7^ 0 and consequently, all 
arriving readers get to immediately read the file. If there are some writers waiting to 
write, one of them is blocked on the semaphore ‘wmutex’ and the rest of them are 
blocked on the semaphore ‘srmutex’ in the writer procedure. When the last reader 
finishes reading the file, it unblocks a writer waiting on the ‘wmutex’ semaphore. If 
some readers arrive while this writer is writing, the first reader will be blocked on the 
semaphore ‘wmutex’ and all subsequent readers will be blocked on the semaphore 
‘mutex’. When the writer departs, its U(wmutex) operation will unblock a waiting 
reader (if there is one) which subsequently causes all the waiting readers to unblock, 
one by one. The departing writer performs a V(srmutex) operation that unblocks a 
writer (if there is one) waiting on P(srmutex). Clearly, this writer will be blocked at 
P(wmutex) if nreaders is greater than 0 at this time. 

2.6 LANGUAGE MECHANISMS FOR SYNCHRONIZATION 

The early synchronization mechanisms described previously (Sec. 2.4.1) and sema¬ 

phores (Sec. 2.4.2) are too primitive to build large, complex, and reliable systems. The 

need for reliable and easily maintainable software is even greater when concurrency is 
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shared var 
nreaders : integer; 
mutex, wmutex, srmutex : semaphore; 
procedure reader; 

begin 
P(mutex); 

if nreaders = 0 
then nreaders:= nreaders + 1; P(wmutex) 

else 
nreaders:= nreaders + 1; 

V (mutex); 

read (/); 
P(mutex); 

nreaders := nreaders — 1; 

if nreaders = 0 then VXwmutex); 

V (mutex); 

end. 

procedure writer(d: data); 

begin 
P(srmutex); 

P(wmutex); 

write(/, d); 
V (wmutex); 

l/(srmutex); 

end. 

begin (* initialization *) 

mutex - wmutex = srmutex = 1; 

nreaders := 0; 

end. 

FIGURE 2.3 
A semaphore solution to the reader’s 
priority problem. 

involved. Parallel programs are more complex than sequential ones because processes 

interact more often, and time-dependent errors, which are not susceptible to traditional 

debugging techniques, are much more likely to occur. It is therefore imperative that 

higher level concepts are integrated into programming languages to ensure that correct¬ 

ness is supported and that underlying hardware implementation is of no concern to the 

programmer. In the following sections, several high-level mechanisms are discussed. 

2.6.1 Monitors 

Monitors are abstract data types for defining shared objects (or resources) and for 

scheduling access to these objects in a multiprogramming environment [9]. A monitor 
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consists of procedures, the shared object (resource), and administrative data. Procedures 

are the gateway to the shared resource and are called by the processes needing to access 

the resource. Procedures can also be viewed as a set of operations that can be performed 

on the resource. The structure of a monitor is illustrated in Fig. 2.4. The execution of 

a monitor obeys the following constraints: 

• Only one process can be active (i.e., executing a procedure) within the monitor at a 

time. Usually, an implicit process associated with the monitor ensures this. When a 

process is active within the monitor, processes trying to enter the monitor are placed 

in the monitor’s entry queue (common to the entire monitor). Thus, a monitor, by 

encapsulating the shared resource, easily guarantees mutual exclusion. 

• Procedures of a monitor can only access data local to the monitor; they cannot access 

an outside variable. 

• The variables or data local to a monitor cannot be directly accessed from outside 

the monitor. 

Since the main function of a monitor is to control access to a shared resource, 

it should be able to delay and resume the execution of the processes calling monitor’s 

procedures. The synchronization of processes is accomplished via two special operations 

namely, wait and signal, which are executed within the monitor’s procedures. Executing 

a wait operation suspends the caller process and the caller process thus relinquishes 

control of the monitor. Executing a signal operation causes exactly one waiting process 

to immediately regain control of the monitor. The signaling process is suspended on an 

urgent queue. The processes in the urgent queue have a higher priority for regaining 

control of the monitor than the processes trying to enter the monitor when a process 

relinquishes it. (Note that at any instant, two types of processes may be trying to gain 

< Monitor-name>:monitor begin 
Declaration of data local to the monitor. 

procedure < Name> (< formal parameters>); 

begin 
procedure body 

end; 

Declaration of other procedures 

begin 
Initialization of local data of the monitor 

end; 
end; 

FIGURE 2.4 
The structure of a monitor. 



22 ADVANCED CONCEPTS IN OPERATING SYSTEMS 

the control of the monitor: the processes waiting in the monitor’s entry queue to enter 

the monitor for the first time, and the processes waiting on the urgent queue.) When a 

waiting process is signaled, it starts execution from the very next statement following 

the wait statement. If there are no waiting processes, the signal has no effect. 

If there are a number of different reasons for the blocking or unblocking of 

processes, a condition variable associated with wait and signal operations helps to 

distinguish the processes to be blocked or unblocked for different reasons. The condition 

variable is not a data type in the conventional sense, rather, it is associated with a queue 

(initially empty) of processes that are currently waiting on that condition. The operation 

< condition variable >.queue returns true if the queue associated with the condition 

variable is not empty. Otherwise it returns false. The syntax of wait and signal operations 

associated with a condition is: 

Ccondition variable>.wait; 

<condition variable>.signal; 

One major advantage of monitors is the flexibility they allow in scheduling the processes 

waiting in queues. First-in-first-out discipline is generally used with queues, but priority 

queues can be implemented by enhancing the wait operation with a parameter. The 

parameter specifies the priority of the process to be delayed; the smaller the value of 

the parameter, the higher its priority. When a queue is signaled, the process with the 

highest priority in that queue is activated. The syntax for the priority wait is: 

< condition variable >.wait (< parameter >) 

Example 2.3. Figure 2.5 gives a solution to the reader’s priority problem (see 
Sec. 2.5.3) using monitors [9]. For proper synchronization, reader processes must 
call the startread procedure before accessing the file (shared resource) and call the 
endread when the read is finished. Likewise, writer processes must call startwrite 
before modifying the file and call endwrite when the write is finished. The monitor 
uses the boolean variable busy to indicate whether a writer is active (i.e„ accessing 
the file) and readercount to keep track of the number of active readers. 

On invoking startread, a reader process is blocked and placed in the queue of 
the OKtoread condition variable if busy is true (i.e., if there is an active writer); 
otherwise, the reader proceeds and performs the following. The process increments 
the readercount, and activates a waiting reader, if present, through the OKtoread.signal 
operation. On the completion of access, a reader invokes endread, where readercount is 
decremented. When there are no active readers (i.e., readercount = 0), the last exiting 
reader process performs the OKtowrite.signal operation to activate any waiting writer. 

A writer, on invoking startwrite, proceeds only when no other writer or readers 
are active. The writer process sets busy to true to indicate that a writer is active. On 
completion of the access, a writer invokes the endwrite procedure. The endwrite pro¬ 
cedure sets busy to false, indicating that no writer is active, and checks the OKtoread 
queue for the presence of waiting readers. If there is a waiting reader, the exiting 
writer signals it, otherwise it signals the writer queue. If a reader is activated in 
endwrite procedure, it increments the readercount and executes the OKtoread.signal, 
thereby activating the next waiting reader in the queue. This process continues until 
all the waiting readers have been activated, during which processes trying to enter the 
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readers-writers : monitor; 
begin 
readercount : integer; 
busy : boolean; 
OKtoread, OKtowrite : condition; 

procedure startread; 

begin 
if busy then OKtoread.wait; 
readercount := readercount + 1; 

OKtoread.signal; 
(* Once one reader can start, they all can *) 

end startread; 

procedure endread; 

begin 
readercount := readercount - 1; 

if readercount = 0 then OKtowrite.signal; 
end endread; 

procedure startwrite; 

begin 
if busy OR readercount 7^ 0 then OKtowrite.wait; 
busy := true; 
end startwrite; 

procedure endwrite; 

begin 
busy := false; 
if OKtoread.queue then OKtoread.signal 

else OKtowrite.signal; 

end endwrite; 

begin (* initialization *) 

readercount := 0; 

busy := false; 
end; 

end readers-writers; 

FIGURE 2.5 
A monitor solution for the reader’s-priority problem. 
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monitor are blocked and join the guard queue. But, after all the readers waiting on the 
OKtoread condition have been signaled, any newly arrived readers will gain access 
to the monitor before any waiting writers. In summary, the reader’s priority monitor, 
while not permitting a new writer to start when there is a reader waiting, permits any 
number of readers to proceed, as long as there is at least one active reader. 

Example 2.4. Figure 2.6 illustrates the use of priority wait. Consider a problem where 
multiple users share a printer. The monitor smallest-job-first of Fig. 2.6 synchronizes 
print requests that may arrive concurrently. To illustrate priority wait, the monitor 
prints the smallest file first. The printer process has the following execution sequence: 

loop 

smalles t-j ob- first. start-print-j ob; 

print the file; 

smallest-job-first.end-print-job; 

endloop 

When a user submits a print command, the procedure queue-print-job is invoked. 
If the printer is busy (i.e., printer-busy = true), the print request process is blocked 
and is queued on the OKtoprint condition. Otherwise, the request proceeds and sets 
printer-busy to true, spools the file into a buffer, and activates the printer process 
by executing the next-job-avail.signal operation. Note that the priority of a blocked 
request is dictated by the size of the file it is trying to print. When the printer finishes 
printing, it invokes the end-print-job procedure. This procedure sets printer-busy to 
false (to indicate that the printer is free) and activates a waiting print request through 
the OKtoprint.signal operation. The signal operation wakes up the process with the 
highest priority, i.e., the process requesting to print the smallest file among all waiting 
processes. This continues until there are no more print requests waiting, at which point 
the printer process is blocked in the start-print-job procedure on the next-job-avail 
condition. 

DRAWBACKS OF MONITORS. A major weakness of monitors is the absence of 

concurrency if a monitor encapsulates the resource, since only one process can be 

active within a monitor at a time. In the example of Fig. 2.5, to allow concurrent 

access for readers, the resource (a file) is separated from the monitor (it is not local to 

the monitor). For proper synchronization, procedures of the monitor must be invoked 

before and after accessing the shared resource. This arrangement, however, allows the 

possibility of processes improperly accessing the resources without first invoking the 

monitor’s procedures. Further, there is the possibility of deadlocks in the case of nested 

monitor calls. For example, consider a process calling a monitor procedure that in turn 

calls another lower level monitor procedure. If a wait is executed in the lower level 

monitor, the control of the lower level monitor is relinquished, but not the control of 

the higher level monitor. If the processes entering the higher level monitor can only 

cause signaling to occur in the lower level monitor, then deadlock occurs. 
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smallest-job-first : monitor; 

begin 

printer-busy : boolean; 

buffer : data; 
OKtoprint, next-job-avail : condition; 

function filesize (file) : integer; 

begin 
This function returns filesize of the file. 

end; 

procedure queue-print-job (file : data); 

begin 
if printer-busy then OKtoprint.wait (filesize(file)); 

printer-busy := true; 
buffer := file; (* spooling of user’s file *) 

next-job-avail.signal; 

end; 

procedure start-print-job (var file : data); 

begin 
if NOT printer-busy then next-job-avail.wait; 

file := buffer; (* copy file into printer’s buffer *) 

end; 

procedure end-print-job; 

begin 
printer-busy := false; 

OKtoprint.signal; 

end; 

begin 
printer-busy := false; 

end; 

end smallest-job-first. 

FIGURE 2.6 
A monitor solution for printing the smallest job first. 
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2.6.2 Serializers 

Hewitt and Atkinson [8] proposed serializers as a synchronization mechanism to over¬ 

come some of the deficiencies of monitors. Serializers allow concurrency inside and 

thus the shared resource can be encapsulated in a serializer. Serializers replace explicit 

signaling required by monitors with automatic signaling. This is achieved by requiring 

the condition for resuming the execution of a waiting process to be explicitly stated 

when a process waits. 

The basic structure of a serializer is similar to a monitor. Like monitors, serializers 

are abstract data types defined by a set of procedures (or operations) and can encapsulate 

the shared resource to form a protected resource object. The operations users invoke 

to access the resource are actually the operations of the serializers. Only one process 

has access to the serializer at a time. However, procedures of a serializer may have 

hollow regions wherein multiple processes can be concurrently active (see Fig. 2.7). 

When a process enters a hollow region, it releases the possession of the serializer and 

consequently, some other process can gain possession of the serializer. Any number of 

processes can be active in a hollow region. A hollow region in a procedure is specified 

by a join-crowd operation that allows processes to access the resource while releasing 

(but not exiting) the serializer, thereby allowing concurrency. The syntax of the join- 
crowd command is 

join-crowd (<crowd>) then <body> end 

On invocation of a join-crowd operation, possession of the serializer is released, the 

identity of the process invoking the join-crowd is recorded in the crowd, and the list of 

statements in the body is executed. At the end of the execution of the body, a leave- 

crowd operation is executed which results in the process regaining the possession of 

the serializer and the removal of the identity of the process from the crowd. 

The queue of a serializer is somewhat different than a monitor queue. Instead of 

condition variables, a serializer has queue variables. An enqueue operation, along with 

Procedure 

Hollow Region 

Hollow Region 

FIGURE 2.7 
The structure of a procedure of a serializer. 
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the condition the process is waiting for, provides a delaying or blocking facility. The 

syntax of the enqueue command is 

enqueue (<priority>, <queue-name>) until (<condition>) 

where priority specifies the priority of the process to be delayed. A process invoking 

the enqueue is placed at an appropriate position (based on the priority specified) of the 

specified queue and the condition is not checked until the process reaches the head of 

the queue. The serializer mechanism automatically restarts the process at the head of 

the queue when condition for which it is waiting is satisfied and no other process has 

control of the serializer. No explicit signaling is required, in contrast to monitors. 

Serializers derive their name from the fact that all of the events that gain and 

release possession of the serializer are totally ordered (serial) in time. A typical se¬ 

quence of events occurring in the use of a protected resource follows. A process gains 

possession of the serializer as a result of an entry event. The process waits (possession 

of the serializer is released) until a proper condition is established before accessing 

the resource. An establish event regains possession of the serializer as a result of a 

guarantee event, with the proper condition for accessing the resource established to 

be true. Then, a join-crowd event releases the possession of the serializer, records that 

there is another process in the crowd—an internal data structure of the serializer—that 

keeps track of which processes are using the resource. The leave-crowd event releases 

the resource, regaining possession of the serializer. An exit event releases the serializer. 

There is also a timeout event which regains possession of the serializer as a result of 

waiting for a condition longer than the specified period. 

Example 2.5. Figure 2.8 gives a solution to the readers-priority problem using seri¬ 
alizers. Note that empty(crowd) and empty(queue) operations permit us to check if a 
crowd or queue is empty. On invoking the procedure read, a reader process is blocked 
if there is an active writer (i.e., wcrowd is not empty); otherwise, reader proceeds and 
executes join-crowd operation thereby joining the crowd rcrowd (i.e., the presence of 
a reader in the resource (db) is recorded) and releasing the possession of the serial¬ 
izer. Releasing the serializer facilitates concurrent access to the resource by allowing 
another reader to gain the control of the serializer and execute a join-crowd operation. 
On completing the read operation, a reader leaves the body of the join-crowd which 
causes the automatic execution of a leave-crowd operation. The leave-crowd operation 
results in a reader regaining control of the serializer and its removal from the rcrowd 
(i.e., the reader is no longer accessing the resource). 

A writer, on the other hand, invokes the write procedure and proceeds to ex¬ 
ecute a join-crowd operation, only if there are no active writers (wcrowd is empty), 
no active readers (rcrowd is empty), and no readers are waiting (readq is empty); 
otherwise, a writer process is blocked and is queued in the writeq. On executing a 
join-crowd operation, a writer joins the crowd wcrowd and releases the possession 
of the serializer. Reader and writer processes trying to gain access to the resource 
when a writer is active are blocked and queued in readq and writeq, respectively. 
On completion of the access, a writer leaves the body of the join-crowd, causing the 
automatic execution of a leave-crowd operation. The leave-crowd operation results 
in the writer regaining control of the serializer and in the writer s removal fiom the 
wcrowd. Once a writer exits the serializer, wcrowd is empty and the condition toi 
waiting readers becomes true, and they proceed to execute join-crowd one by one. If 
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there are no waiting readers, then wcrowd, rcrowd, and readq are empty and hence a 
waiting writer, if present, will proceed to execute the join-crowd operation. 

Weak reader’s priority solution. A weak reader’s priority solution can be obtained by 

simply replacing the enqueue command in writer procedure by the following command: 

enqueue (writeq) until (empty(wcrowd) AND empty(rcrowd)); 

readerwriter : serializer 

var 

readq : queue; 

writeq : queue; 

rcrowd : crowd; (* readers crowd *) 

wcrowd : crowd; (* writers crowd *) 

db : database; (* the shared resource *) 

procedure read (k:key; var data : datatype); 

begin 

enqueue (readq) until empty (wcrowd); 
joincrowd (rcrowd) then 

data := read-opn(db[key]); 
end 

return (data); 

end read; 

procedure write (k:key, data:datatype); 

begin 

enqueue (writeq) until 

(empty(wcrowd) AND empty(rcrowd) AND empty (readq)); 
joincrowd (wcrowd) then 

write-opn (db[key], data); 
end 

end write; 

FIGURE 2.8 
A serializer solution to the readers-priority problem. 
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That is, a writer does not have to wait for readq to become empty. Consequently, when 

a writer departs and both a reader and a writer are waiting, dequeue conditions for both 

are satisfied and one of them is dequeued randomly. 

Writer’s priority solution. To obtain a writer’s priority solution, we need to replace 

the enqueue command in writer procedure by the following command: 

enqueue (writeq) until (empty(wcrowd) AND empty(rcrowd)); 

and also replace the enqueue command in the reader procedure by the following com¬ 

mand: 

enqueue (readq) until (empty(wcrowd) AND empty(writeq)); 

A major drawback of serializers is that they are more complex than monitors and 

therefore less efficient. For example, crowd is not a simple counter, but a complex data 

structure that stores the identity of processes. Also, the automatic signaling feature, while 

simplifying the task of a programmer, comes at a cost of higher overhead. Automatic 

signaling requires testing conditions waited upon by processes at the head of every 

queue every time possession of the serializer is relinquished. 

2.6.3 Path Expressions 

The concept of path expression was proposed by Campbell and Flabermann [2]. Con¬ 

ceptually, a “path expression” is a quite different approach to process synchronization. 

A path expression restricts the set of admissible execution histories of the operations 

on the shared resource so that no incorrect state is ever reached and it indicates the 

order in which operations on a shared resource can be interleaved. A path expression 

has the following form 

path S end; 

where S denotes possible execution histories. It is an expression whose variables are 

the operations on the resource and whose operators are: 

Sequencing (;). It defines a sequencing order among operations. For example, 

path open; read; close; end means that an open must be performed first, followed by 

a read and a close in that order. There is no concurrency in the execution of these 

operations. 

Selection (+). It signifies that only one of the operations connected by a + operator 

can be executed at a time. For example, path read + write end means that only read 

or only write can be executed at a given time, but the order of execution of these 

operations does not matter. 

Concurrency ({}). It signifies that any number of instances of the operation 

delimited by { and } can be in execution at a time. For example, path {read} end means 

that any number of read operations can be executed concurrently. The path expression 

path write; {read} end allows either several read operations or a single write operation 

to be executed at any time (read and write operations exclude each other). However, 

whenever the system is empty after all readers have finished, the writer must execute 
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first. Between every two write operations, at least one read operation must be executed. 

The path expression path {write; read} end means that at any time there can be any 

number of instantiations of the path write; read. At any instant, the number of read 

operations executed is less than or equal to the number of write operations executed. 

The path expression path (write + read} end is meaningless and does not impose any 

restriction on the execution of read and write operations. 

Example 2.6. The following path expression gives the weak reader’s priority solution 
to the readers-writers problem: 

path {read} + write end 

Clearly, this path expression allows either several read operations or a single write 
operation to be executed at any time (read and write operations exclude each other). 
Due to {read}, if a reader is reading, subsequent readers gain immediate access to 
the file. A waiting writer must wait until all readers have completed reading. This is 
a weak reader’s priority solution because when a writer exits and both a reader and a 
writer are waiting, then any one of them can get access next randomly. 

Example 2.7. A writer’s priority solution is implemented by the following combina¬ 
tion of path expressions (Note that when there is more than one path expression, the 
order of operations indicated by all the path expressions must be satisfied.): 

path start-read +{ start-write ; write} end 
path { start-read ; read} + write end 

A reader executes start-read followed by read and a writer executes start-write 
followed by write. Start-write and start-read are dummy procedures used solely for 
achieving desired synchronization. Due to the second path expression, no reader can 
succeed in executing start-read operation when a writer is performing a write operation. 
However, due to the first path expression, a writer will be able to execute a start-write 
operation when a writer is doing a write operation or when a reader is doing a read 
operation. Thus, writers succeed in gaining priority over readers by executing a start- 
write operation. When a writer is done, a waiting writer gets to execute write first, 
and all waiting readers are blocked until no writer is left. 

2.6.4 Communicating Sequential Processes (CSP) 

Hoare [10] suggests that input and output commands can be treated as synchronization 

primitives in a programming language. In communicating sequential processes (CSP), 

concurrent processes communicate through input-output commands and are synchro¬ 

nized by requiring input and output commands to be synchronous. Communication 

occurs whenever (1) an input command in one process specifies the name of another 

process as its source, (2) an output command in the other process specifies the name 

of the first process as its destination, and (3) the target variable of the input command 

matches in type with the value denoted by the expression of the output command. Under 

these conditions, the processes are said to correspond. Synchronous I/O means that the 

command that happens to be ready first is delayed until the corresponding command 
occurs or is ready. 
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The syntax of I/O commands are as follows: 

Input Command := <source process id>? Ctarget variable> 

Output Command:= destination process id> ! <expression> 

The concurrency among processes is expressed by the notation: 

[process Pi’s code || process P2’s code || ... ||process Pn’s code] 

GUARDED COMMANDS. A guarded command is fundamental to CSP and has the 

following syntax: 
G CL 

where G, referred to as a guard, is a boolean expression and CL is a list of commands. 

To execute a guarded command, first its guard (a boolean expression) is evaluated; if 

it is evaluated as false, the guard fails and the command list CL is not executed. The 

command list is executed only if the corresponding guard is evaluated as true. Hence, 

a guarded command succeeds only if its guard is evaluated as true, otherwise it fails. 

Note that an input command can be placed in a guard. In such situations, the guard 

is not true until the corresponding output command has been executed by some other 

process. (Normally, the command list CL does not contain input commands.) If a guard 

contains an input command, the input operation is executed when the corresponding 

guarded command is executed. 

THE ALTERNATIVE COMMAND. The alternative command has the following 

syntax: 
G i CL\ □ G2 -*• CL2 □ • • • □ Gr CLr 

An alternative command specifies execution of exactly one of its constituent 

guarded commands. If all guarded commands fail then the alternative command fails. 

Otherwise, one of the successful guarded commands is selected randomly and executed. 

This semantics gives the implementation an opportunity to make use of appropriate 

scheduling to ensure efficient execution and good response. 

THE REPETITIVE COMMAND. An alternative command can be executed repeatedly 

via a repetitive command given by the notation: 

*[Gi CL\ □ G2 —» CL2 □ • • ■ □ Gr CLn] 

A repetitive command specifies repeated executions of its alternative commands 

until the guards of all guarded commands fail. When all the guards fail, the repetitive 

command terminates with no effect. Otherwise, the alternative command is executed 

and the repetitive command is executed again (i.e., all guards are evaluated and the one 

with true guard is selected for execution). If all the boolean expressions in some guards 

are evaluated as true and all those guards also have input commands, then the execution 

of the repetitive command is delayed until (1) an output command corresponding to one 

of the input commands is ready or (2) all the processes named in the input commands 

have terminated. In the latter case, the repetitive command terminates. 
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EXAMPLES- We now discuss some examples from Hoare [10]. The following com¬ 

mand reads all the characters output by process west and outputs them to process east 

one by one. The command terminates when the process west terminates. 

*[c: character; west?c —> eastlc] 

Repetitive command in the following code scans the elements of array contents(i), 

for i = 0,1,2,..until either i > size or content(i) becomes equal to n for some i. 

i 0; *[i <size; content(i)^n —> % := i -T 1] 

THE PRODUCER-CONSUMER PROBLEM IN CSP 

Example 2.8. We now discuss a solution to the producer-consumer problem in CSP 
that illustrates the various features of the CSP explained above [10]. Central to the 
solution is a bounded-buffer process that synchronizes the producer and consumer 
processes. 

process bounded-buffer; 

pool: 0..9 of buffer; 

in, out: integer (initially = 0); 

*[ in < out+10; producer?pool(in mod 10) —> in := in+l; □ 
out< in; consumer?more() —> consumer!pool(out mod 10); 

out := out+1 ] 

A producer process outputs a buffer p to the bounded-buffer process by executing 
the following statement: 

bounded-buffer \p 

A consumer process inputs a buffer q from the bounded-buffer process by executing: 

bounded-buffer! more(); 
bounded-buffer?^ 

The input command in the guard of the bounded-buffer process is just a dummy com¬ 
mand whose sole purpose is to synchronize a consumer process with the bounded- 
buffer process (more() denotes a dummy message). If this set of input and output com¬ 
mands is removed, then the bounded-buffer process will wait on the second guarded 
command (because out < in will often be true) even though no consumer process is 
ready to consume a buffer. 

When out < in < out + 10, the boolean expression in both the guards are true 
and the selection of an alternative command depends upon which of the processes 
(producer or consumer) becomes ready first. When out — in, all buffers are empty 
and the control waits on the first alternative command, even if the consumer is currently 
ready. When in = out + 10, all buffers are full and the control waits on the second 
alternative command, even if the producer is currently ready. 

DRAWBACKS OF CSP. Although CSP provides a simple and fairly flexible means 

of specifying concurrency and synchronization, it has the following major drawbacks: 

• It requires explicit naming of processes in I/O commands. 

• It does not perform message buffering; instead it blocks an input or output command 

if the other counterpart is not ready. Therefore, it introduces delays and inefficiency. 



SYNCHRONIZATION MECHANISMS 33 

2.6.5 Ada Rendezvous 

Ada language has features that facilitate the development of huge and complex systems. 

In this section, we are interested in the process synchronization aspects of Ada. Ada 

allows concurrent processes to interact by both shared variables (i.e., shared memory) 

and message passing. We will primarily focus on Ada tasks, which are the unit of 

parallelism in Ada. 

ADA TASKS. An Ada task consists of two parts: task specification and task body. The 

task specification part consists of declarations and definitions of the services provided 

by a task (called entries) that can be accessed from the outside. The task body contains 

implementations of these entries and is the executable part of a task. 

Task Body 
task body < name > is 
Declaration of local variables 

begin 
List of statements 

exceptions 
Exception handlers 

end; 

Task Specification 
task [ type ] < name > is 
entry specifications 

end; 

ACCEPT STATEMENT. An entry in a task is implemented using an accept statement, 

which is similar to a procedure in conventional programming languages. The syntax of 

a statement is: 

accept < entry id>(< formal parameters>) do 

body of the accept statement 

end < entry id>; 

Accept statements can appear only in a task body. An entry specification, corre¬ 

sponding to each accept statement in a task body, must appear in the task specification 

part. An entry specification consists of: (1) an id and (2) a list of formal parameters. (It 

is like a “forward” declaration in Pascal.) An accept statement in a task can be called 

from other tasks. The syntax of a statement that calls for an accept statement A in a 

task B is B.A(<list of actual parameters>)”. 
Synchronization of an entry call and the execution of the corresponding accept 

statement is like the synchronization of input and output commands in CSP. After a task 

has called an entry statement, the called accept statement is not executed until the control 

(execution) has reached it in the task. (An accept statement can be embedded inside a 

task.) After the control has reached an accept statement in a task, it remains blocked until 

some task executes the corresponding entry call. Therefore, synchronization is achieved 

by blocking. An Ada rendezvous occurs when control reaches an accept statement in a 

task and some other task executes the corresponding entry call statement. 
After a rendezvous has occurred, the execution of an entry call is similar to a 

procedure call in conventional programming languages. Actual parameters are passed 
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from the caller to the called task, the body of the accept statement is executed in the 

called task, and the results (if any) are returned to the calling task. 

Example 2.9. Figure 2.9 presents a solution to the producer-consumer problem where 
a single buffer is used. The producer processes call store and the consumer processes 
call remove entries, respectively. The single-buffer task synchronizes these two pro¬ 
cesses. 

Note that the task in Example 2.9 achieves synchronization by blocking a process. 

It does not permit a producer process to run ahead and place more than one message 

in the buffer. For every store, a remove operation must have been executed. (Store and 

remove are executed in an alternating manner.) Next, we discuss the select statement, 

which permits more flexibility and power in programming asynchronous events. 

SELECT STATEMENT. An Ada select statement provides the capability to efficiently 

process asynchronous or nondeterministic events. It is similar in syntax and semantics 

to an alternative command of CSP. It allows the grouping of several accept statements 

such that they can be called (and executed) in any order rather than sequentially from 

beginning to end. Ada has three types of select statements, namely, selective_wait, 

conditional_entry_call, and timed_entry_call; however, the discussion of just one type, 

selective_wait, is sufficient to illustrate the synchronization mechanism of Ada. 

task single-buffer is 

entry store(xibuffer); 

entry remove(y:buffer); 

end; 

task body single-buffer is 
temp: buffer; 

begin 
loop 

accept store(x:buffer); 
temp:= x; 

end store; 

accept remove(y:buffer); 

y:= temp; 

end remove; 

end loop 
end single-buffer; 

FIGURE 2.9 
A task for producer-consumer synchronization. 
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The syntax of this select statement is: 

select_statement::= select < select_alternative> 

{ or < select_alternative> } 

[else < statement> ] 

end select; 
select_altemative::= [ when < condition> = > ] 

< accept_statement> { < list of statements>} 

The when <condition> part of an accept statement will be referred to as a guard, 

due to its resemblance to a CSP guard. An accept statement in a select statement is said 

to be open if the condition in its guard is true or if it does not have a guard. A select 

statement is executed in the following manner: 

1. All the guards are evaluated to determine what accept statements are open. 

2. An open statement, with which rendezvous is possible, is randomly selected for 

execution. 

3. If no accept statement is open or a rendezvous is not possible for any of the 

open statements, then if “else alternative” is present, then the statements in “else 

alternative” are executed. 

4. If “else alternative” is not present and no statement is open, an exception is raised. 

If a select statement is placed inside an infinite loop, it has a similar effect as that 

of a repetitive statement in CSP. 

Example 2.10. The example in Fig. 2.10 illustrates an Ada task that uses a select 
statement to solve the producer-consumer problem with a bounded number of buffers. 
The producer processes call store and the consumer processes call remove entries, 
respectively. The task has a ring of 10 buffers; consequently, the producer process 
can place several messages in the ring buffer even if the previous messages have not 
yet been removed. Store and remove entries can be called (and executed) many times 

successively. 

2.7 AXIOMATIC VERIFICATION OF PARALLEL 

PROGRAMS 

So far, the design of concurrent programs under numerous programming languages 

have been discussed without much concern as to the verification and correctness of the 

various properties of these programs. A verification method not only helps us prove 

various properties about a parallel program, but it also provides us with an insight into 

parallel programs and gives us intuitive guidance concerning the development of correct 

parallel programs. 
In this section, an axiomatic method that can be used to prove various properties 

of parallel programs is discussed. The axiomatic method was developed by Owicki and 

Gries [18] and is based on Hoare’s [11] axioms for parallel programs. The Owicki-Gries 

axiomatic method is stronger than Hoare’s axiomatic method and can prove many other 

properties (i.e., mutual exclusion, freedom from deadlocks, etc.) of parallel programs 
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task bounded-buffer is 
entry store(x:buffer); 

entry remove(y:buffer); 

end; 

task body bounded-buffer is 

ring: [0..9] of buffer; 

head, tail: integer; 

head:= 0; 

tail:= 0; 

begin 
loop 

select 

when head < tail+10 — > 

accept store(x:buffer); 

ring[head mod 10]:=x; 

head:= head+1; 

end store; 

or 

when tail< head = > 

accept remove(y:buffer); 

ring[tail mod 10]; 

tail:= tail+1; 

end remove; 

end select; 

end loop 
end bounded-buffer; 

FIGURE 2.10 
A task for producer-consumer synchronization 
with multiple buffers. 

rather than just their partial correctness. (A program is partially correct if it either 
produces the correct results or fails to terminate.) 

In Hoare’s axiomatic method, axioms are used to express the effects of the state¬ 

ments in a program. Partial correctness of a statement S is defined in terms of two 

assertions that are defined on the variables in the statement. If assertions P and Q are 

defined on the variables in a statement S, then the notation “{P} S {Q}”, referred to 

as the axiom of S, denotes the partial correctness of S with respect to assertions P and 

Q, and means that if P is true before the execution of S starts, then Q will be true 

after the execution of S is over. P and Q are called, respectively, the precondition and 
the postcondition of S. 
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2.7.1 The Language 

The parallel programming language used in this section is based on Algol 60 and 

was proposed by Owicki and Gries [18]. Besides the usual assignment, conditional, 

while/for, etc. statements, it contains the following two special statements for obtaining 

parallelism: 

Cobegin statement. A cobegin statement has the following syntax: 

resource ri(variable list), ..., rm(variable list): 

cobegin S\ || S2 || ... || Sn coend 

where a resource r7; is a set of shared variables and Si, S2, • • •, Sn are statements, called 

processes, to be executed in parallel. The execution of cobegin S'i||S,2||... \\Sn coend 
statement causes statements S\, S2, • • • Sn to execute in parallel. 

With-when statement. A with-when statement provides synchronization and protection 

of shared variables and has the following form: 

with r when B do S 

where r is a resource, B is a boolean expression, and S is a statement that uses the 

variables of resource r (and does not contain a cobegin or another with-when statement). 

When a process tries to execute such a statement, it is blocked until B is true and the 

process has exclusive control of r. S is executed by a process only when the process 

has control of r and B is true. A with-when statement is also called a critical section 

statement. Note that the execution of two or more with-when statements on the same 

resource is serialized. 
The with-when statement reduces the problems caused by concurrent access to 

shared variables by ensuring that only one process will access the variables in a resource 

at a time. Despite this restriction, the result of the execution of a parallel program 

depends upon how the operations or statements of the processes are interleaved. The 

term computation will be used to denote a particular instance of the execution of a 

parallel program. In general, there are numerous possible computations for parallel 

programs and each computation may result in different final values for the program 

variables. The specific computation produced by an execution depends upon the relative 

speeds of the parallel processes and the order in which they access the shared variables. 

Assumption. For the sake of clarity and ease of presentation, we restrict our discussion 

to parallel programs with one resource and one cobegin statement. In general, a parallel 

program can have any number of resources and cobegin statements and the results 

discussed here are valid for those programs. 

2.7.2 The Axioms 

We now discuss axioms for cobegin and with-when statements. The verification of vari¬ 

ous properties of parallel programs makes use of an assertion I{r), called the invariant, 

for a resource r, which describes acceptable states of the resource. Invariant J(r) must 
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be true before the execution of parallel program begins, and must remain true during 

its execution except when the critical section for r is being executed. Next, we present 

axioms for cobegin and with-when statements. 

Axiom 2.1. Parallel Execution Axiom. If ‘{Pi}S'i{Qi}\ ‘{P2}S2{Q2}\ •••, 
i{Pn}Sn{Qny, no variable free in P or Qi is changed in Sj (i p j), and all 
variables in I(r) belong to resource r, then 

{Pi A P2 A ... A Pn A J(r)} 
resource r: cobegin S\ ||S2|| • • • ||*SVi coend 

{Q1 A Q2 a . .. A Qn A J(r)} 

Axiom 2.2. Critical Section Axiom. If {/(r) A P A B}S {/(r) A Q} and I{r) is 
the invariant of the cobegin statement for which S’ is a process, and no variable free 
in P and Q is changed in any other process, then 

{P} with r when B do S {Q}. 

Example 2.11. Figure 2.11 shows an example of an axiomatic proof of partial cor¬ 
rectness of a program called addl. Preconditions and postconditions are interspersed 
with the statements. The precondition and postcondition of a statement S respec¬ 
tively precedes and follows the corresponding statement (with proper indentation) in 
Fig. 2.11. If {P} S {Q} and S' is a statement in program S, then the precondition 
and postcondition of S' must be such that when execution of S starts with P true: 

• The precondition of S' is true whenever S' is ready for execution. 

• The postcondition of S' is true whenever execution of S' is over. 

Clearly, {x = 0} addl {x = 2} holds for the program in Fig. 2.11. It can be easily 
shown that the postcondition of the cobegin statement, {y = lAz = 1 A/(r)}, implies 
the postcondition for addl. Clearly, (y = l Az = l A x := y + z) => x = 2. 

2.7.3 Auxiliary Variables 

The axioms discussed so far are inadequate for the verification of the properties of many 

parallel programs. Additional variables, auxiliary variables, and statements associated 

with them may be needed. For example, consider the program add2 shown in Fig. 2.12. 

Clearly, for this program {x = 0} add2 {x = 2} holds. However, from the axioms 

discussed thus far, this cannot be proved. If we compare programs addl to addl, we 

note that program addl has the same effect on variable x as addl even though addl 

has some extra variables and statements. Note that for addl, {x = 0} addl {x = 2} 

holds. Now, starting from add2, insert variables y and 2 and some statements in it so 

that it is converted into addl—of course, this will not change the original behavior of 

add2—\and then use the fact {x = 0} addl {x = 2} to conclude that {x = 0} add2 

{x = 2} holds. Variables that are used in this manner; whose sole purpose is to aid in 

the verification but not to change the program behavior, are called auxiliary variables. 

Auxiliary variables are powerful tools in verifying the properties of parallel programs. 
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{x = 0} 

addl: begin y 0; z := 0; 

{y 0 A z := 0 A I(r)} 

resource r(x, y, z): 

cobegin 

{:y = °) 
with r when true do 

{y = 0 A /(r)} 

begin x := x + 1; y := 1 end 

{y = 1 A /(r)} 

{?/=!} 

{z = 0} 
with r when true do 

{z — 0 A J(r)} 

begin x := x + 1; z 

{z — 1 A 7(r)} 

{z = 1} 
coend 

{y = 1 A z = 1 A I(r)} 

end 

{x = 2} 

I(r) ={x := y + z} 

Definition 2.1. The auxiliary variables AV of a program S' is a set of variables such 
that x £ AV =4> ‘x appears in S only in assignments of the form x:= E\ where any 
variable (even the one not in AV) may be used in E. 

Clearly, variables y and z in program addl are auxiliary variables. 

Axiom 2.3. Auxiliary Variable Axiom. If AV is a set of auxiliary variables for a 
program S and S' is obtained from S by deleting all the assignments to variables in 
AV, then {P}S{Q} =4> {P}S'{Q} provided P and Q do not refer to any variable 

from AV. 

The auxiliary variable axiom in some sense completes the axioms for parallel pro¬ 

grams. If we have a parallel program for which a proof is not possible, then sufficient 

:= 1 end 

FIGURE 2.11 
Program addl and associated assertions. 

add2: resource r(x) : 

cobegin 

with r when true do 

begin x := x + 1 end 

with r when true do 

begin x := x + 1 end 

coend 

FIGURE 2.12 
Program add2. 



40 ADVANCED CONCEPTS IN OPERATING SYSTEMS 

auxiliary variables and related statements can be added to the program such that a proof 

exists for the modified program. Then, the auxiliary variable axiom can be applied to 

yield a proof for the original program. 

2.7.4 An Example: Proof of Mutual Exclusion 

We now illustrate the Owicki-Gries axiomatic method for verification of parallel pro¬ 

grams with the help of an example. Figure 2.13 shows a program that consists of two 

processes, P\ and P2, which make access to a critical section. The program is supposed 

to ensure mutually exclusive access to the critical section with the help of the variable 

sem. For mutual exclusion, we must show that statements P[ and P2 will never be 

executed concurrently. Intuitively, mutual exclusion is maintained because the initial 

value of sem is 1 and a process indivisibly decrements it before entering the critical 

section. However, we use the Owicki-Gries axiomatic method to formally show that 

mutual exclusion is maintained. Figure 2.14 shows the program, which is extended 

with auxiliary variables x and y, and associated statements (which aid in the verifica¬ 

tion of the program). Pre and post conditions are shown before and after the respective 

statements (or program or process). Invariant for resource r is as follows: 

I(r) — {0 < sem < l}A{0<ai + y-|- sem <1} 

It is easy to verify that /(r) is an invariant for P\ and P2. We now show that 

mutual exclusion is enforced. Since the critical section does not access any variable in 

resource r, invariant I(r) continues to hold during the execution of the critical section. 

Thus, we can make the following two assertions: 

Pi is executing the critical section =>{x= 1 A/(r)} 

P2 is executing the critical section =>- {y = 1 A /(r)} 

mutex 1: 

begin sem := 1; 

resource r(sem): 

cobegin 

Pi: with r when sem > 0 do 

begin sem := sem — 1 

P/: Execute critical section; 

with r when true do 

begin sem := sem + 1 
l! 
il 

P2: with r when sem > 0 do 

begin sem := sem — 1 

P2: Execute critical section; 

with r when true do 

begin sem sem + 1 
coend 

end 

end 

end 

end 

end 
FIGURE 2.13 
Program mutex 1. 
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mutex2: 

begin x:= 0; y:= 0; sem:= 1; 

{x = 0Ay = 0A 7(r)} 

resource r(sem, x, i/): 

cobegin 

{x = 0} 

Pi: with r when sem > 0 do 

{x = 0 A 7(r)} 

begin sem := sem — 1; x := x + 1 end 

{x = 1 A 7(r)} 

Pj' : Execute critical section; 

{x = 1 A 7(r)} 
with r when true do 

{x = 1 A 7(r)} 

begin sem := sem + 1; x := x — 1 end 

{x = 0 A 7(r)} 

{x = 0} 

{y = 0} 
P2 : with r when sem > 0 do 

{y = 0 A 7(r)} 
begin sem := sem — 1; y := y + 1 end 

{y = 1 A 7(r)} 
P?': Execute critical section; 

{y = 1 A 7(r)} 
with r when true do 

{y = 1 A 7(r)} 
begin sem := sem +1; y := y — 1 end 

{y = 0 A 7(r)} 

{y = °} 
coend 
{x = 0Ay = 0A 7(r)} 

end 

FIGURE 2.14 
Program mutex2. 

Therefore, if both Pi and P2 are executing the critical section (CS) concurrently, 

both implications must be true; that is, 

(Pj is executing the CS) A (P2 is executing the CS) 

=> {x — 1 A 7(r)} A {y = 1 A 7(r)} 

{x = 1 A y = 1 A 7(r)} 
^ {x = 1 A y = 1 A {0 < sem < 1} A {0 < x + y + sem < 1}} 

=>■ false. 
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Consequently, Pi and P2 cannot execute the critical section concurrently. This 

is because conditions that are necessary for P\ and P2 to execute the critical section 

concurrently will never be true simultaneously. Owicki and Gries have formally stated 

this result in the following theorem: 

Theorem 2.1. Mutual Exclusion Theorem. Suppose S\ and S2 are two statements 
in different parallel processes of a program S, and neither Si nor S2 belongs to a 
critical section for resource r with invariant 7(r). Let P\ and P2 be two assertions 
such that 

pre(5'[) =A P\ holds for all statements S[ in Si 

pre(S2) =A P2 holds for all statements S'2 in S2 

where pre(Sj) and pre^) are derived from a proof of {P}S{Q}; that is, P, is true 
throughout the execution of St. Then if 

(PiAPiA/(r)) =>- false. 

Si and S2 are mutually exclusive if P is true when the execution of S begins. 

2.8 SUMMARY 

Concurrent programs are much more complex than sequential programs because pro¬ 

cesses may interact in a complex and time-dependent manner. Concurrent processes 

often interact with each other and need synchronization for correctness. In this chapter, 

the notions of processes and threads were discussed, the problem of synchronization 

of processes was described, and various mechanisms for process synchronization were 
introduced. 

Classic process synchronization problems include the problem of critical section, 

where concurrent access to a shared variable must be serialized. Other synchronization 

problems are the readers-writers problem, the producer-consumer problem, and the 
dining philosophers problem. 

Early solutions to the critical section problem include busy waiting, disabling 

interrupts, and some special hardware instructions (like test-and-set). Dijkstra introduced 

the concept of semaphores to deal with the critical section problem. A semaphore is an 

integer on which processes can perform P and V operations. In addition to the critical 

section problem, semaphores can be used to solve a wide variety of other process 
synchronization problems. 

Synchronization mechanisms and semaphores are too primitive to build large, 

complex, and reliable systems. High-level programming language primitives are avail¬ 

able for easy development and maintenance of reliable concurrent software. In this chap¬ 

ter, we discussed several high-level languages mechanisms, viz., monitors, serializers, 

path expressions, CSP, and ADA rendezvous, for process synchronization. A monitor 

consists of abstract data types for defining a shared abstract object (or resource) and for 

scheduling access to them in a concurrent programming environment. A serializer over¬ 

comes some of the deficiencies of monitors by allowing concurrency inside a procedure 

and by replacing explicit signaling, required by monitors, with automatic signaling. A 
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path expression restricts admissible execution histories of concurrent operations on the 

shared resource so that no incorrect state is ever reached. In communicating sequential 

processes (CSP), concurrent processes communicate through input-output commands 

and synchronize by requiring input and output commands to be synchronous. Ada al¬ 

lows the implementation of concurrent programs via a unit of parallelism called tasks. 

Ada allows concurrent processes to interact by sharing variables (i.e., shared memory) 

as well as by message passing. 

Finally, a technique based on axioms to verify the correctness of parallel programs 

was described. 

2.9 FURTHER READING 

In this chapter, we introduced the concept of processes, concurrent processes, and 

threads, which are fundamental to computing in multiprocessor (and multiprogrammed) 

systems. Anderson, Lazowska, and Levy present a detailed discussion on thread man¬ 

agement in [1], A discussion by Draves et al., on how storage requirements for threads 

have been reduced in the Mach kernel, can be found in [5]. The implementation of 

threads in the Synthesis kernel is described by Massalin and Pu in [17] and in the 

Psyche parallel operating system described by Marsh et al., in [16]. 

Dijkstra’s landmark paper [4] was the first to discuss the problem of critical section 

and to introduce semaphores to achieve mutual exclusion. This paper also contains four 

solutions to mutual exclusion between two processes. Dijkstra [3] and Peterson [19] 

have given n-process solutions to the critical section problem. Knuth [13], Eisenberg 

and McGuire [6], and Lamport [14] have presented n-process solutions to the critical 

section problem where the waiting period of a process before entering critical section 

is bounded. Reed and Kanodia introduce the concepts of sequencers and eventcounts 

to synchronize concurrent processes in [21], 
For a detailed description of monitors, readers are referred to Hoare [9]. Howard 

discusses techniques for a correctness proof of monitors in [12]. For more details on 

serializers, readers are referred to Hewitt and Atkinson [8J. More details on path ex¬ 

pressions can be found in Campbell and Habermann [2]. 
Hilzer [20] discusses the ability of semaphores, monitors, and Ada rendezvous 

mechanisms to encapsulate and hide information; what task granularity each mechanism 

can support; and whether or not unnecessary context switches are required when a 

process is allocated a processor under each mechanism. 
Several languages exist for concurrent programming. For example, concurrent 

Pascal by Brinch Hansen [7], Modula by Wirth [23], and Mesa by Lampson and 

Redell [15], 

PROBLEMS 

2.1. Why does the interrupt disable method to achieve mutual exclusion not work for 

multiprocessor systems? 

2.2. In the design of the readers-writers problem using a monitor, why is it advisable to 
keep the protected resource external to the monitor? 
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2.3. Explain what the following path expressions do: 
(a) path {open + read}; close end 
(.b) path {openread ; read} ; {openwrite ; write} end 

2.4. On one hand, access to the monitor should be mutually exclusive while on the other 
hand, procedures of a monitor should be reentrant. Why? (Explain the paradox.) 

2.5. How do serializers solve several deficiencies of monitors? 

2.6. Compare and contrast the communication and synchronization mechanisms of CSP 
and Ada. 

2.7. Give a reader’s priority solution to the readers-writers problem using CSP. 

2.8. Write a monitor to solve the readers-writers problem in a FCFS order. It works as 
follows: It serves readers and writers in a FCFS order; however, if there are many 
readers back to back, it will serve all those readers concurrently. 

2.9. Write a monitor to solve the readers-writers problem that works as follows: If readers 
and writers are both waiting, then it alternates between readers and writers. Otherwise 
it processes them normally (i.e., readers concurrently and writers serially). 

2.10. Write a monitor to solve the producer-consumer problem. 

2.11. Give a solution to the producer-consumer problem using Ada. 

2.12. Write an Ada task to solve the readers-writers problem with reader’s priority. 
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CHAPTER 

3 
PROCESS 
DEADLOCKS 

3.1 INTRODUCTION 

A deadlock is a situation where a process or a set of processes is blocked, waiting on 

an event that will never occur. In the case of a deadlock, the intervention of a process 

outside of those involved in the deadlock is required to recover from the deadlock. The 

formation and existence of deadlocks in a system lowers system efficiency (e.g., resource 

utilization, etc.). Therefore, avoiding performance degradation due to deadlocks requires 

that a system be deadlock free or that deadlocks be quickly detected and eliminated. 

The theoretical aspects of deadlocks are discussed in this chapter. A graph-based 

model of computer systems is reviewed and the deadlock properties analyzed [11], 

Strategies to deal effectively with deadlocks are developed. The material in this chapter 

will enhance the understanding of the problem of deadlocks and assist in the design of 
deadlock free systems. 

3.2 PRELIMINARIES 

3.2.1 Definition 

A deadlock occurs when a set of processes in a system is blocked waiting on require¬ 

ments that can never be satisfied. These processes, while holding some resources, are 

46 



PROCESS DEADLOCKS 47 

requesting access to resources held by the other processes in the same set. That is, the 

processes are involved in a circular wait. 
For the purpose of characterization of deadlocks, a system state is commonly 

modeled by a wait-for-graph (WFG). The nodes of this graph are the processes of the 

system and the directed edges represent the blocking relation between processes. There 

is an edge from process pi to process Pj iff pi needs a resource currently held by 

Pj. A cycle in the WFG is the simplest indication of a deadlock in the system, yet a 

precise definition of deadlock in terms of the properties of the graph depends upon the 

underlying model of deadlock. 
The simplest illustration of a deadlock consists of two processes, each hold¬ 

ing a different resource in exclusive mode and each requesting access to the re¬ 

source held by the other process. Once a deadlock is formed, all the processes in¬ 

volved in the deadlock remain blocked unless the deadlock is resolved (i.e., bro¬ 

ken). A deadlock requires the intervention of some process outside those involved 

in the deadlock for its detection and resolution (because all deadlocked processes are 

blocked). 
The problem of deadlocks is common in computer systems where resource shar¬ 

ing is frequent. Consider two processes requiring a disk and a printer at some stage 

of their execution. If one process acquires the disk and waits for the printer that the 

other process has acquired, which in turn waits for the disk, then deadlock occurs if 

neither process is willing to yield until its request is met. This particular problem can 

easily be fixed by making both processes request the disk and printer in the same order. 

However, the application of this solution to all situations is difficult because specific 

process requirements are hard to predict. 

3.2.2 Deadlock vs. Starvation 

Starvation occurs when a process waits for a resource that continually becomes available 

but is never assigned to that process because of priority or a flaw in the design of the 

scheduler. There are two major differences between deadlock and starvation: 

• In starvation, it is not certain that a process will ever get the requested resource, 

whereas a deadlocked process is permanently blocked because the required resource 

never becomes available (unless external actions are taken). 

• In starvation, the resource under contention is in continuous use, whereas this is not 

true in a deadlock. 

For example, in the reader’s priority solution to the readers-writers problem (Chap. 2), 

readers can starve writers. The starvation problem is easier to tackle than the deadlocks 

problem. For example, the readers-writers solution can easily be fixed by keeping a 

count of successive reader executions and then allowing a writer when the count exceeds 

a threshold value. 
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3.2.3 Fundamental Causes of Deadlocks 

The following four conditions are necessary for deadlocks to occur in a computer system 

13]: 

• Exclusive access. Processes request exclusive access to resources. 

• Wait while hold. Processes hold previously acquired resources while waiting for 

additional resources. 

• No preemption. A resource cannot be preempted from a process without aborting 

the process. 

• Circular Wait. There exists a set of blocked processes involved in a circular wait. 

A system is prone to deadlocks only if it satisfies all of the above conditions. Note 

that in most systems, the first three conditions are generally desirable. Exclusive access 

is required to maintain the integrity of a shared resource. Wait while hold is needed to 

increase resource availability—instead of claiming all the required resources at once, 

wait while hold allows the acquiring of resources as they are needed. No preemption 

is required to avoid wastage of useful computation. 

3.2.4 Deadlock Handling Strategies 

There are several strategies to handle the problem of deadlocks, viz., deadlock preven¬ 
tion, deadlock detection, and deadlock avoidance. 

In the deadlock prevention strategy, resources are granted to requesting processes 

in such a way that granting a request for a resource never leads to deadlocks. This 

strategy ensures that at least one of the four conditions necessary for deadlock never 

occurs (see Sec. 3.2.3). In the deadlock detection strategy, resources are granted to 

requesting processes without any check. Periodically (or whenever a request for a re¬ 

source has to wait), the status of resource allocation and pending requests is examined 

to determine if a set of processes is deadlocked. This examination is performed by a 

deadlock detection algorithm. If a deadlock is discovered, the system recovers from it 

by aborting one or more of the deadlocked processes. Finally, in the deadlock avoid¬ 

ance strategy, a resource is granted to a requesting process only if the resulting system 

state is safe. A state is safe if there exists at least one sequence of execution for all 

processes such that all of them can run to completion. The first algorithm for deadlock 

avoidance, called the banker’s algorithm, was proposed by Dijkstra [5] and generalized 
for multiple resources by Habermann [9]. 

3.3 MODELS OF DEADLOCKS 

Depending upon the type of resource requests of processes, there are four types of 

deadlocks. For example, a process may request and need only one resource, many 

resources, or a few of many resources. Deadlock models are distinguished by the type 

of request. We next discuss these request models', their request types and corresponding 
deadlock models. 
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The types of request models are the single-unit request model, the AND request 
model, the OR request model, the AND-OR request model, and the P-out-of-Q request 
model. These models represent a broad spectrum of systems and applications and have 
different conditions for deadlocks. Unless otherwise noted, we will use the AND request 
model as the standard request model for the rest of the chapter. 

3.3.1 The Single-Unit Request Model 

The single-unit request model is the simplest request model since a process is re¬ 
stricted to requesting only one unit of a resource at a time. Thus, in this model, the 
outdegree of nodes in the WFG is one. A deadlock in this model corresponds to a 
cycle in the wait-for-graph, provided that there is only one unit of every resource in 
the system. Due to its simplicity, this model has been widely used to model resource 

acquisition. 

3.3.2 The AND Request Model 

In the AND request model, a process can simultaneously request multiple resources 
and it remains blocked until it is granted all of the requested resources. Clearly, the 
single-unit request model is a special case of the AND request model. The AND request 
model is more powerful and allows more concurrency as a process can request several 
resources simultaneously rather than requesting resources one by one. 

Note that the outdegree of nodes in the WFG can be greater than one in this 
model. A deadlock in this model corresponds to a cycle in the wait-for-graph, provided 
that there is only one copy of every resource in the system. However, a process can be 
involved in more than one deadlock in the AND request model. In contrast, a process 
can be involved only in one deadlock in the single-unit request model. 

3.3.3 The OR Request Model 

In the OR request model, a process can simultaneously request multiple resources and 
it remains blocked until it is granted any one of the requested resources. Note that 
the single-unit request model is also a special case of the OR request model. The OR 
request model is more flexible than the single-unit request model. A typical example 
of the OR request model is a read request for a replicated data object, where leading 

any copy of the data object satisfies the request. 
Note that a cycle in the wait-for-graph is not a sufficient condition for a dead¬ 

lock in an OR request model even if there is only one copy of each resource in the 
system. This is because if a process is involved in a cycle, it only means that the 
process may be unable to get only one of the several requested resources, (i.e., the 
one which lies on the cycle.) The process can still get one of the remaining requested 

resources. 
The presence of a knot in the wait-for-graph is a sufficient condition for a deadlock 

in an OR request model. A knot is a subset of a graph such that starting from any node 
in the subset, it is impossible to leave the knot by following the edges of the graph. 
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3.3.4 The AND-OR Request Model 

The AND-OR request model is a generalization of the AND and the OR request models. 

In the AND-OR request model, process requests are specified by using a predicate 

whose atoms or variables are the resources. For example, a request “i?i AND (i?2 

OR #3)” can be satisfied with either “f?i AND f?2” or with “i?i AND R3”. A knot 

in the wait-for-graph is a sufficient condition for a deadlock in the AND-OR request 
model. 

3.3.5 The P-out-of-Q Request Model 

In the P-out-of-Q request model, a process simultaneously requests Q resources and 

remains blocked until it is granted any P of those resources. Note that the AND and the 

OR request models are special cases of the P-out-of-Q request model. When P = Q, it is 

the AND request model and when P = 1, it is the OR request model. A typical example 

of the P-out-of-Q request model is a quorum in quorum-based consensus algorithms. 

A knot in the wait-for-graph is a sufficient condition for a deadlock in the P-out-of-Q 
request model. 

3.4 MODELS OF RESOURCES 

The modeling of resources is important in understanding deadlocks because processes 

interact with each other by requesting and blocking for resources. A resource is any 

object that processes can request and wait for [11]. A resource can consist of any 

number of identical units and a process can request any number of units of a 
resource. 

3.4.1 TYpes of Resources 

REUSABLE RESOURCES. A reusable resource does not vanish as a result of its use 

but can be used over and over again. In a system, a reusable resource has a fixed number 

of units and these units can neither be created nor destroyed. A process requests a unit, 

holds it during usage, and then releases it on completion of usage. The unit of reusable 

resource can then be assigned to another waiting process, if any. Examples of reusable 
resources are the CPU, main-memory, and I/O devices. 

CONSUMABLE RESOURCES. A consumable resource vanishes as a result of its 

use. When a unit of a consumable resource is allocated to a process, it is consumed 

and ceases to exist. There is no fixed number of units of a consumable resource in a 

system since the resource units can be created and consumed. There are one or more 

producers of a consumable resource. When a producer of a resource is not blocked, it 

can produce any number of units of that resource. Examples of consumable resources 
are messages, interrupt signals, and the V operation in semaphores. 
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3.4.2 Types of Resource Accesses 

A resource can be accessed in two modes: exclusive and shared. In the exclusive access 

mode, a resource can be accessed by only one process at a time. Two or more processes 

cannot simultaneously access a resource in the exclusive access mode. In the shared 

access mode, a resource can be accessed by any number of processes simultaneously. 

Note that exclusive and shared access modes are mutually incompatible. That is, a 

resource cannot be accessed in exclusive mode and shared mode simultaneously. Also, 

note that the two modes of accesse make sense only for reusable resources because in 

consumable resources, a resource is immediately consumed by a process. When multiple 

units (or copies) of a resource exist, its one unit can be accessed in shared mode (by 

several processes) and other units can be accessed in exclusive mode. 

In this chapter, we consider only the exclusive access mode. This is because simul¬ 

taneous treatment of the two access modes complicates both the graphical representation 

of the system state and its reasoning for deadlocks and is beyond the scope of this book. 

3.5 A GRAPH-THEORETIC MODEL OF A SYSTEM STATE 

3.5.1 General Resource Systems 

A general resource system is characterized by the following entities [11]. 

• A nonempty set of processes II ={P\, P2, ..., Pn}- 

• A nonempty set of resources T = {R\, R2, ..., Rm}- T can be partitioned into two 

disjoint sets: Tr, a set of reusable resources and Tc, a set of consumable resources. 

• For every reusable resource Rt, there exists a nonnegative integer t, denoting the 

total number of units of the resource present in the system. 

• For every consumable resource Ri, there exists a nonempty subset of processes of II, 

called the producers of Ri. (It denotes the processes that can produce the resource.) 

3.5.2 General Resource Graph 

The state of a system is modeled by a directed graph whose nodes correspond to 

processes and resources and whose edges represent interaction among these processes 

and resources. A process is denoted by a rectangle and a resource by a circle. A 

consumable resource is denoted by a thick circle. Changes in the system state are 

represented by changes in the graph. 
A general resource graph is a bi-partite^ directed graph whose disjoint set of 

nodes are II - {Pu P2, ..., Pn} and T = {Ru R2, ..., Rm}. A nonnegative integer 
vector (n, V2, ..., rm), called the available units vector, denotes the number of units of 

the resources available in any state. 

t A bi-partite graph is a graph whose nodes can be divided into two disjoint sets such that two 

adjacent nodes cannot come from the same set. 
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An edge, denoted by (P, K), directed from a process node P to a resource node 

R is called a request edge. It indicates that the process is requesting one unit of that 

resource. An edge (R, P), directed from a reusable resource node R to a process node 

P is called an assignment edge. It indicates that the process has been assigned one unit 

of that resource. An edge (R, P), directed from a consumable resource node R to a 

process node P is called a producer edge. It indicates that the process is a producer of 

that resource. 
Let #(P, R) denote the number of outgoing edges from node P to node R, 

#(R, P) denote the number of outgoing edges from node R to node P, #(P, *) denote 

the total number of outgoing edges from node P, and #(R, *) denote the total number of 

outgoing edges from node R. A general resource graph then must satisfy the following 

conditions. 

1. For every reusable resource Rp 

• The number of assignment edges, #(Ri, *) < U. 

• n = u - #(Ri, *) 
• VPj : Pj G n :: #(Pj,Ri) + #(Ri,Pj) < U. That is, at any instant a process 

cannot request more than the total units of a reusable resource. 

2. For every consumable resource Rp. 

• There is an edge from Ri to a process Pj iff Pj is a producer of 

• Ti > 0. 

Example 3.1. Figure 3.1 shows the general resource graph of a state of a system with 
two processes and two resources. Process P\ holds one unit of R\ and process Pj 
holds one unit of Ri. Process P\ is active and P2 is blocked, waiting to be assigned 
a unit of R\. P2 is a producer of the consumable resource R2. One unit of both of 
the resources is available. The little circles inside a resource node denote the resource 
units. 

FIGURE 3.1 
An example of a general resource graph. 
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3.5.3 Operations on the General Resource Graph 

The system state and the corresponding general resource graph change as the processes 

execute operations. A process can perform the following three operations: request a re¬ 

source, acquire a resource, and release (‘produce’ for a consumable resource) a resource. 

These operations affect the system state in the following way: 

Request: If a process P; is active in a state S, then it can request one or more 

number of units of resource Rj taking the system to state T such that state T has 

e number of edges from node Pi to node Rj where e is the number of units of Rj 

requested by Pi. Thus, a request operation results in an addition of request edges to the 

general resource graph. 

Example 3.2. If P\ in Fig. 3.1 makes requests for one unit of R\ and P2, then the 
resulting state is shown in Fig. 3.2. 

Acquisition. In state S, if a process Pi has e number of request edges to resource 

Rj and rj > e, then e units of Rj can be assigned to Pi, taking the system to state T 
which is obtained from S in the following way: (1) rj is decreased by e, (2) if Rj is a 

reusable resource, then each request edge (Pi, Rj) is replaced by an assignment edge 

(Rj, P^, and (3) if Rj is a consumable resource, then all e request edges (Pi, Rj) are 

deleted. 

Example 3.3. After Pi in Fig. 3.2 has been assigned its requests for one unit of Pi 
and P2 each, then the resulting state is shown in Fig. 3.3. 

Release. If in state S, no request edges are directed from Pi and some edges 

(assignment or producer) are directed from Rj to Pi, then P, can release some units of 

R3 taking the system to a state T in which rj, the available units of Rj, are increased. 

If Rj is a reusable resource, then r3 is incremented by a quantity equal to the number 

FIGURE 3.2 
The state after Pi has made its requests. 
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FIGURE 3.3 
The state after P\ has been assigned its 
requests. 

of (Rj, Pi) assignment edges deleted in T. If Rj is a consumable resource, then rj is 

incremented by any number of units in T. (That is, a producer of Rj can produce any 
number of units of Rj.) 

Example 3.4. After Pi in Fig. 3.3 has released one unit of R\, the resulting state is 
shown in Fig. 3.4. 

Definition 3.1. A process Pi is blocked in a state if and only if for some resource 
Rj, the number of request edges (Pi, Rj) exceeds r3. 

FIGURE 3.4 
The state after Pi has released one unit of 
Ri. 
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3.6 NECESSARY AND SUFFICIENT CONDITIONS FOR A 
DEADLOCK 

In this section, we discuss the necessary and sufficient conditions for a deadlock in 

general resource systems. We present only the statement of conditions for deadlocks; 

their proofs can be found in [11]. A blocked process is deadlocked if and only if there 

is no way for it to become unblocked. A process is not deadlocked if and only if we 

can find a sequence of operations that leaves the process unblocked. 

We next discuss the graph reduction method to test a system state for deadlocks. 

A graph reduction corresponds to the best possible set of operations (i.e., the most 

optimistic operations) that can be executed in a system to unblock the blocked processes. 

The graph reduction method is an optimistic method since it assumes that a process 

does not make additional requests for a resource. If a process is left unblocked as a 

result of the graph reduction method, it means that in the current state, the process is not 

involved in a deadlock. If a process cannot be made unblocked by the graph reduction 

method, then the process is deadlocked in the current state. 

3.6.1 The Graph Reduction Method 

A general resource graph can be reduced in the following way by a process Pi, which 

is not blocked. 

1. For each reusable resource Rj, delete all edges (Pi, Rj) and (Rj, Pi) from the 

graph. For each assignment edge (Rj, Pi) deleted, increase rj by one. 

2. For each consumable resource Rj, 

• Decrement rj by the number of edges (Pi, Rj). 

• If Pi is a producer of Rj, then set rj to oo. 
• Delete all edges (Pi, Rj) and (Rj, Pi). 

After a general resource graph has been reduced by a process, some additional 

resources are freed. Consequently, more processes become unblocked, which can then 

be used in the next reduction and so on. Thus, the graph reduction can be repeatedly 

performed on a general resource graph. At any stage of reduction, there may be several 

processes that can be reduced and any can be selected for reduction. In general, the 

final outcome depends on the sequence in which the processes have been reduced. The 

final outcome can be one of the following: (1) all the processes are reduced or (2) the 

graph reaches a stage where no further process reduction is possible. 

Definition 3.2. A general resource graph is completely reducible if a sequence of 

reductions deletes all edges in the graph. 

Theorem 3.1. A process Pl is not deadlocked in a general resource graph if and only 
if a sequence of reductions applied to that graph leaves the graph in a state in which 

Pi is not blocked. 

Corollary 3.1. A system state is deadlock free if its general resource graph is com¬ 

pletely reducible. 
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Thus, the reducibility of a general resource graph implies that the corresponding 

state is free from a deadlock. However, the reverse is not true. That is, if a system 

state is deadlock free, its general resource graph need not be completely reducible. 

Therefore, the lack of reducibility of a general resource graph does not imply that 

the corresponding state is deadlocked. However, the lack of reducibility of a general 

resource graph does indicates that the system is bound to deadlock in the near future. 

Theorem 3.1 and its corollary, respectively, state the sufficient conditions for a 

process and a system state to be deadlock-free. However, they do not give an efficient 

method for detecting a deadlock, since checking for a deadlock in a system with n 

processes (using Theorem 3.1 or its corollary) requires trying all possible (n!) different 

reduction sequences of the processes. Moreover, the corollary gives only the condition 

for freedom from deadlock and does not give a sufficient condition for the presence of 
a deadlock. 

We now define an important type of state of a general resource graph for which 

a simpler necessary and sufficient condition for deadlocks exists. 

Definition 3.3. A state is an expedient state if all processes having outstanding re¬ 
quests are blocked. 

Thus, a state wherein a process is waiting for the assignment of some units of 

resources and at least that many units of those resources are currently available, then 

that state is not expedient. This is because the process is not blocked in that state and 

is simply waiting for that resource to be assigned by the system. Note that blocked 

means waiting to be assigned a resource when sufficient units of that resource are not 
available. 

Example 3.5. Figure 3.2 shows the general resource graph of a state that is not 
expedient because both processes P\ and P2 are waiting in this state even though the 
requests of one of them can be met. 

A state that is not expedient becomes expedient if all possible grantable requests 

have been granted. For example. Fig. 3.3 represents an expedient state. 

Definition 3.4. A node y is reachable from a node x in a graph, denoted by x —> y, 
iff there is a path (i.e., a sequence of directed edges) from node x to node y. 

Definition 3.5. A cycle in a graph is a path that starts and ends on the same node. 
Clearly, if nodes in C lie on a cycle, then \/x £ C :: x —> x. 

Definition 3.6. A node in a directed graph is a sink iff it has only incoming edges to 
it. 

Definition 3.7. A knot K in a graph is a nonempty set of nodes such that for every 
node x in I<, all nodes in K and only the nodes in K are reachable from x. ((VxVy £ 
K =4> x —+ y) AND (Vx £ K 3z :: x —> z => z e K)). 
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It is clear that no node in a knot is a sink or has a path leading to a sink. Also, an 

active process corresponds to a sink node in an expedient general resource graph. Note 

that graph reduction is essentially a process of removing sink nodes from a general 

resource graph. 

Theorem 3.2. In a general resource graph, 

• A cycle is a necessary condition for a deadlock. 

• If the graph is expedient, then a knot is a sufficient condition for a deadlock. 

Thus, a deadlock in a system state implies the existence of a cycle in the corre¬ 

sponding general resource graph. Also, the existence of a knot in an expedient general 

resource graph implies a deadlock in the corresponding system state. However, the ab¬ 

sence of a knot in a general resource graph does not imply the absence of a deadlock in 

the corresponding system state since a knot is not a necessary condition for deadlock. 

Even if a general resource graph does not contain a knot, the corresponding system 

state may be deadlocked. 

Example 3.6. Figure 3.5 shows a general resource graph where processes P\ and 
P2 are deadlocked, but there is no knot in the graph. However, note that the general 
resource graph has a cycle. 

Corollary 3.2. If, in an expedient general resource graph, a node Pi is not a sink and 
no path starting from Pt leads to a sink, then the process Pi is deadlocked. 

Note that Corollary 3.2 is an outcome of Theorem 3.2 because essentially Pi is 

in a knot. 

FIGURE 3.5 
An example of a deadlock with no knot. 
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Although Theorem 3.2 and its corollary give concrete conditions for a deadlock 

as compared to the graph reduction method, they do not suggest a more efficient or 

powerful method for testing a general resource graph for a deadlock. Note that the 

absence of a knot in an expedient general resource graph does not imply freedom 

from deadlock. Next, we discuss some special cases of a general resource system 

for which simpler necessary and sufficient conditions exist for a deadlock. Note that 

Theorems 3.1 and 3.2 and their corollaries still hold for these special cases. There exist 

computationally efficient methods of deadlock detection in these special cases. 

3.7 SYSTEMS WITH SINGLE-UNIT REQUESTS 

Recall that in systems with single-unit requests, a process can only request one resource 

unit at a time. Thus, a general resource graph of such a system can contain only 

one outgoing edge from a process node. This restriction considerably simplifies the 

conditions for deadlocks in a general resource system. 

Theorem 3.3. An expedient general resource graph with single-unit requests repre¬ 
sents a deadlock state if and only if it contains a knot. 

Note that the assumption of a single-unit request is essential in Theorem 3.3. 

For example, in Fig. 3.5 process P2 has two outstanding requests and it is seen that a 

deadlock exists even in the absence of a knot in the graph. 

Theorem 3.3 suggests an efficient method for the detection of deadlocks in systems 

with single-unit requests. A system state can be checked for deadlocks to see if its 

general resource graph contains a knot. The absence of a knot in a general resource 

graph implies the absence of a deadlock in the corresponding state. A general resource 

graph can be easily checked for a knot by successively making all the ancestors of sinks 

into sinks. A general resource graph does not contain a knot if and only if all nodes 

become sinks. Note the resemblance between this procedure and the graph reduction 
procedure for the detection of deadlocks. 

3.8 SYSTEMS WITH ONLY CONSUMABLE RESOURCES 

A consumable resource system is one in which there are only consumable resources. 

Associated with a resource is a set of processes, called the producers of that resource. 

We assume that every process is a producer or a consumer of at least one resource. 

In a consumable resource system, no simpler necessary and sufficient conditions exist 

(other than those stated in Theorems 3.1 and 3.2 and their corollaries) for a deadlock. 

We discuss an analysis of a consumable resource system that permits us to check to 
see if a consumable resource system will ever deadlock. 

We characterize a consumable resource system by a claim-limited graph and use 

this graph to determine if the system is free from deadlocks. The claim-limited graph 

of a consumable resource system denotes the following state of the system: 

• Each resource has zero available units. 

• It has a request edge (P%, Rj) if and only if P, is a consumer of Rj. 
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Example 3.7. Figure 3.6 gives the claim-limited graph of a system that has two 
consumable resources R\ and R2 and two processes Pi and P>. Process Pi is a 
producer for R\ and consumer of R2, and process P2 is a producer for R2 and 
consumer of Pi. 

The claim-limited graph of a consumable resource system represents the most 

desperate (i.e., the worst case) situation of a system where all the units of all the 

resources have been exhausted and every consumer of every resource is requesting one 

unit of all the resources that it could possibly request. Now, the system is deadlock- 

free if the system can emerge from this situation such that all the processes become 

unblocked. 

Theorem 3.4. A consumable resource only system is deadlock-free if its claim-limited 

graph is completely reducible. 

Example 3.8. The claim-limited graph of Fig. 3.6 cannot be reduced because no 
process is running in this state. Thus, the system is not deadlock-free. 

In Example 3.8, if the system had had a third process that was a producer of 

any of these resources and was not a consumer of any of these resources, then the 

system would have been deadlock-free. Thus, deadlock freedom in consumable resource 

systems requires that there be at least one producer of some resources that is not a 

consumer of any of the resources. That is, there must be some producer-only processes 

to prevent this worst case situation from occurring. 
Claim-limited graph analysis is a conservative technique because it imposes a very 

strong criterion for testing for deadlock freedom. A system may fail the claim-limited 

graph reducibility test, and still be free from deadlocks, as shown in Example 3.9. 

Example 3.9. Consider a system where two processes P\ and P2 execute their critical 
sections using P and V operations on a binary semaphore “mutex”. 

R. 
FIGURE 3.6 
A claim-limited graph of a system. 
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Process P\\ Process P2', 

P {mutex); 

access critical section; 

V(mutex); 

P(mutex); 

access critical section; 

V (mutex); 

loop loop 

In this example, both the processes are producers as well as consumers. Thus, this 

system of two processes fails the claim-limited graph reducibility test, but the system 
is free from deadlocks. 

3.9 SYSTEMS WITH ONLY REUSABLE RESOURCES 

The consideration of deadlock detection in systems with only reusable resource follows. 

Theorem 3.5. Let S' be a state of a reusable resource system. Then, 

• If different sequences of reductions applied to S result in states that cannot be 
reduced, then all of these resulting states are identical. 

• S is not a deadlock state if and only if S is completely reducible. 

This theorem considerably simplifies checking a state for a deadlock because we 

can now reduce the graph in any sequence of processes since all reduction sequences 
give the same final outcome. 

We make an important observation when we compare the second part of Theorem 

3.5 with Corollary 3.1. Corollary 3.1 states that in the general resource system, “com¬ 

plete reducibility of the graph” “the state is free from deadlock,” but not vice-versa. 

However, in reusable resource systems, this condition is applicable in both directions. 

That is, the following also holds: “a state is free from deadlock” =4> “complete reducibil¬ 

ity of the corresponding graph.” Thus, in reusable resource systems, if a resource graph 

cannot be completely reduced, then the corresponding system state is deadlocked. 

3.9.1 Systems with Single-Unit Resources 

In single-unit resource systems, there is only one unit of every resource. If there is 

only a single unit of every resource in a reusable resource system, then the check for 
deadlocks takes the simplest condition. 

Theorem 3.6. It there is only a single unit of every resource, then a cycle in an 
expedient resource graph is a necessary and sufficient condition for a deadlock. 

Thus, in a single-unit resource system, deadlocks can be efficiently detected by 

checking an expedient graph for a cycle. Time complexity for the search of a cycle of 

n nodes is O(n2). Readers should compare the results of Theorem 3.6 with the results 
of Theorem 3.3. 
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3.9.2 Deadlock Detection 

In the deadlock detection strategy, resources are granted to requesting processes without 

any check. Periodically, or whenever a request for a resource has to wait^, the system 

state is examined to determine if a set of processes is deadlocked. This examination 

can be performed by reducing the general resource graph, by checking for a knot, or 

by checking for a cycle. The actual criterion used depends upon the system model. If 

a deadlock is discovered, the system recovers from it by resolving the deadlock. 

A deadlock is resolved by aborting one or more processes involved in the deadlock 

and granting the released resources to other processes involved in the deadlock. A 

process is aborted by withdrawing all of its resource requests, restoring its state to an 

appropriate previous state, relinquishing all the resources that it acquired after that state, 

and restoring the state of all the relinquished resources to their original states. In the 

simplest form, a deadlock is resolved by aborting and restarting a process, relinquishing 

all the resources that the process held. 

3.9.3 Deadlock Prevention 

In the deadlock prevention strategy, resources are granted to requesting processes in such 

a way that a request for a resource never leads to deadlock. This strategy ensures that at 

least one of the four conditions necessary for a deadlock never occurs (see Sec. 3.2.3). 

The simplest way of preventing deadlock is to acquire all the needed resources before 

the process begins, thus eliminating the wait while hold condition [2]. In another method 

of deadlock prevention, a blocked process releases the resources which are requested 

by an active process, thereby eliminating the no-preemption condition. Rosenkrantz et 

al. have proposed the following optimization of this method [14]: All processes are 

assigned unique priorities that can be totally ordered. A requesting process preempts 

another process, which holds the needed resource only if the requesting process has 

higher priority [14], This method reduces the preemptions by 50 percent and also 

prevents deadlocks. 
In Havender’s resource ordering method [10], all of the resources are uniquely 

ordered and all of the processes request the resources in ascending order only, elim¬ 

inating the circular wait condition. If a process already holds some resources, then it 

can request only those resources ranked higher in the ordering. Acquiring resources in 

this manner precludes the formation of a cycle or a knot in the resource graph. 

3.9.4 Deadlock Avoidance 

Deadlock avoidance strategy requires that the maximum resource requirement of a 

process be known at every point during its execution (called the claim of the process). 

The crux of deadlock avoidance is that a resource is granted to a requesting process 

tNote that a deadlock occurs only when a request for a resource is forced to wait (except when a 

process can wait for multiple resources simultaneously). 
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only if the resulting state is safe. A state is safe if there exists at least one sequence 

of execution for all processes such that all of them can run to completion. Next, we 

discuss a deadlock avoidance algorithm due to Habermann [9] that is a generalization 

of Dijkstra’s banker’s algorithm [5]. 
For a system with n processes and m resources, a state is defined by the following 

matrices 

Max-Avail matrix A = (a\ 02 • • • am ) 

where a, is the number of units of resource Rz in the system. 

Max-Claim matrix B 

(bn b\2 ■ b\m ^ (B,\ 

bn bn ■ ^2m 
— 

Bi 

V bnl bnl bnm / \Bn) 

where bij is the maximum number of units of resource Rj that will ever be held by 

process Pi. 

( Cl 1 C12 ■ Cl m ^ /Ci\ 
Allocation matrix C = 

c2i c22 • C-2 m 

= 
Cl 

V Cnl Cn2 C-nm / [cj 

where aj is the number of units of resource Rj that are currently held by process Pr. 

It is obvious that the following conditions must hold in any state: 

Rl. Vfc Bk < A (no process can claim more units of resources than are available). 

R2. C < B (no process attempts to request more resources than its maximum 
claim). 

R3. ELt ck < A (at no time, more resources are allocated than are available). 

Definition 3.8. Available matrix D is defined in the following way: 

n 

D = ( 0J1 d2 ... dm) = A - Cfc 

k=1 

Entry dz of matrix D denotes that di units of resource Rt are available in the 
current state. 

Definition 3.9. Need matrix E is defined in the following way: 

( ci 1 ei2 • (Ex \ 

E = 
e2i e22 ■ ^2m 

II 
O

 I 

cq II 

E2 

y Cnl Cn2 ' &nm / \EnJ 
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Entry of matrix E denotes that the process Pi may need additional units of 

resource Rj prior to completion. Ei = (en e& ■ ■ ■ eim) denotes the outstanding 

resource need of process Pi. 
A process Pi makes a request in terms of the following request vector 

Ft = (fil fi 2 ■■■ fim) 

Of course Fi < Ei, or else the condition R2 is violated. If Fi < D, then the 

request can be satisfied, otherwise it must be blocked. If the request can be satisfied, 

the system pretends to have allocated the request of Pt by modifying the state in the 

following way. 

D:=D-Ft 

Ci '.= Ci + Fi 

Ei := Ei - Fi 

The request is actually granted only if the resulting state is a safe state, which is checked 

by the following algorithm (initially, all the processes are tagged “unfinished”): 

The Safe-State Checking Algorithm 

1. Pick an unfinished process P\ such that E% < D. If no such process exists, then go 

to Step 3. 

2. D := D + Ci. (Return the resources allocated to Pi to the available pool.) Tag Pt 

as “finished.” Go to Step 1. 

3. If all processes are tagged “finished,” the current system state is a safe state; oth¬ 

erwise, it is not a safe state. 

If, from the above algorithm, the system state is not a safe state, the request is 

blocked and the following operations are performed to reset the system state. 

D := D + Fi 

Ci := Ct - Ft 

Ei := Ei + Fi 

Also, for a process Pi tagged “finished” in Step 2 of the algorithm, the following 

additional operations are performed to reset its state. 

D := D — Ci 

Tag Pi as “unfinished.” 

Example 3.10. Consider the state of a system defined by the following matrices. 

A = (2 4 3) 
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B = 

C = 

Note that in this state the available and the need matrices are defined as 

D = (Oil) 

/0 0 2 
E = | 110 

\0 1 0 

If process P\ makes a request 

F\ = ( 0 0 1 ) 

should it be granted? If the request is granted, it results in the following state. 

D = (0 10) 

C = 

E 

In this state, P3 can complete because E?, < D returning (1 0 1) to the available 
pool of resources, D 

D 111) 

In this state, the outstanding needs of both P and P2 can satisfied. Thus, the 
state resulting from the assignment of the request of Pi is a safe state and the request 
F\ of Pi can be granted. 

3.9.5 Pros and Cons of Different Strategies 

Deadlock prevention is inefficient since the static allocation of resources reduces con¬ 

currency and a process may need to be preempted even though there is no deadlock. It 

is restrictive because it may require the allocation of the future resource requirements 

of a process before it starts executing. However, deadlock prevention is suitable for 

systems where the roll-back of processes is impossible or very expensive and the re¬ 

source requirements of the processes are known a priori (i.e., use of static allocation of 
resources is possible). 
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Deadlock avoidance may disallow the granting of a resource even though grant¬ 

ing it may not actually lead to a deadlock. It also requires that the future resource 

requirements of processes be known a priori. In addition, each resource request has the 

overhead of checking for a safe state. However, in deadlock avoidance, a process is 

never rolled back. 

Deadlock detection has the overhead of checking the state graph for cycles even 

though there may not be a deadlock. It requires the roll-back of processes in case of a 

deadlock. However, it permits maximum concurrency among all three strategies since a 

request is never delayed if the requested resource is available. It does not require future 

resource requirements of processes to be known and is the least restrictive of the three 

strategies. 

It is difficult to claim which deadlock handling strategy is the best because it is 

heavily application dependent. Deadlock prevention and deadlock avoidance are con¬ 

servative and cautious strategies. They are preferred if deadlocks are frequent and/or 

if occurrence of a deadlock is highly undesirable. Whereas, deadlock detection is a 

lazy and optimistic strategy which grants a resource to a request immediately if the 

resource is available, hoping that this will not lead to a deadlock. If a deadlock occurs, 

it recovers from it by aborting some processes. This strategy is preferred if deadlocks 

are infrequent. 

3.10 SUMMARY 

A general resource graph is a convenient way to model a state of a general resource 

system for the purpose of deadlock characterization. In a general resource system, 

the reducibility of a general resource graph is a necessary and sufficient condition 

for determining the absence of deadlocks. A cycle in a general resource graph is a 

necessary condition for a deadlock. If a general resource graph is expedient, then a 

knot is a sufficient condition for a deadlock. A knot becomes both a necessary and 

sufficient condition for a deadlock in an expedient general resource graph if a process 

can request only a single unit of any resource at any time. 
In consumable resource only systems, reducibility of the claim-limited resource 

graph criterion can be used to determine if a system is deadlock free. In reusable resource 

only systems, the process of graph reduction does not depend upon the sequence in 

which the graph reduction is performed. This simplifies the test for deadlocks because 

a graph can be reduced in any sequence. Moreover, if in reusable resource only systems, 

every resource has only one unit, then a cycle becomes both a necessary and sufficient 

condition for deadlock. 

3.11 FURTHER READING 

The classic deadlock problem received considerable attention in the late 1960s and 

1970s. Dijkstra [5] was the first to discuss the deadlock problem as ‘deadly embrace’ 

and he introduced the banker’s algorithm to avoid this problem. Later, Habermann [9] 

extended the banker’s algorithm for multiple resource types. Havender [10] discusses 

a resource ordering method to prevent deadlocks. 
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Coffman et al. [3] and Holt [111 were the first to formalize the problem of dead¬ 

locks in terms of a graph-theoretic model and to identify conditions for system dead¬ 

locks. Nutt [13] transforms Holt’s deadlock model into a finite state automaton model 

where final states correspond to deadlocks. Bittman and Unterauer [1] discuss the AND- 

OR wait model and give algorithms to detect deadlocks in the model. DeVillers [4] 

presents a game-theoretic model and an interpretation of the deadlock avoidance prob¬ 

lem. Fontano [6] presents a dynamic deadlock avoidance algorithm. Frailey [7] discusses 

a practical deadlock avoidance algorithm implemented in Purdue University’s MACE 

operating system on the CDC 6500. Gold [8] discusses the computational complexity 

of several deadlock avoidance algorithms. A survey on the deadlock problem is given 

by Isloor and Marsland [12]. 

PROBLEMS 

3.1. Give an example of a general resource graph that cannot be completely reduced, but 
which represents a system state that is free from deadlock. 

3.2. Construct a general resource graph for the following scenario and determine if the 
graph is completely reducible: Ri, R2, and Rj are reusable resources with a total of 
two, two, and three units. Process P\ is allocated one unit each of R2 and R3 and is 
requesting one unit of R\. Process P2 is allocated one unit of R\ and is requesting 
two units of f?3- Process P3 is allocated one unit each of R\ and R2 and is requesting 
one unit of R3. 

3.3. Compare and contrast the banker’s algorithm for deadlock avoidance (discussed in 
Sec. 3.9.4) and the graph reduction method for deadlock detection of Sec. 3.6.1. 

3.4. Show that the ordered request policy of Havender prevents deadlocks. 

3.5. Consider a computer system which has four identical units of a resource R. There are 
three processes each with a maximum claim of two units of resource R. Processes 
can request these resources in any way, that is, two in one shot or one by one. The 
system always satisfies a request for a resource if enough resources are available. If 
the processes don’t request any other kind of resource, show that the system never 
deadlocks. 

3.6. Assume a system has P processes and R identical units of a reusable resource. If 
each process can claim at most two units of the resource, show that the system will 
be deadlock free iff P < R— 1. 

3.7. Assume a system has P processes and R identical units of a reusable resource. If 
each process can claim at most N units of the resource, show that the system will be 
deadlock free iff R > P(N — 1) + 1. 

3.8. Consider the following preemption method to prevent deadlocks: All processes are as¬ 
signed unique priorities that can be totally ordered. A requesting process is allowed to 
preempt another process that holds the needed resource only if the requesting process 
has higher priority, otherwise, it is blocked. Show that this method prevents deadlocks. 

3.9. In a system, processes request resources at a rate r and 70 percent of the requests 
find that all the needed resources are currently available. 
(a) If the cost of a check for a safe state in conjunction with deadlock avoidance is 

Cda, then what is the cost of using deadlock avoidance in the system? 
(b) Suppose that deadlock detection/resolution is employed in the system and a that 

deadlock detection is initiated only when a request waits due to the unavailability 
of needed resources. What is the cost of using deadlock detection/resolution if (1) 
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only 10 percent of the deadlock detection initiations discover a deadlock, (2) the 
cost of each deadlock detection initiation is Cdi, and (3) the cost of a deadlock 
resolution is Cdr- 
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OF DISTRIBUTED 

SYSTEMS 

4.1 INTRODUCTION 

The term distributed system is used to describe a system with the following charac¬ 

teristics: it consists of several computers that do not share a memory or a clock; the 

computers communicate with each other by exchanging messages over a communica¬ 

tion network (see Fig. 4.1); and each computer has its own memory and runs its own 

operating system (see Sec. 4.5.8). The resources owned and controlled by a computer 

are said to be local to it, while the resources owned and controlled by other computers 

and those that can only be accessed through the network are said to be remote. Typically, 

accessing remote resources is more expensive than accessing local resources because of 

the communication delays that occur in the network and the CPU overhead incurred to 

process communication protocols (see Sec. 4.6). Based on the context, the terms com¬ 

puter, node, host, site, machine, processor, and workstation are used interchangeably to 

denote a computer throughout this book. 
The main purpose of this chapter is to serve as an introduction to Part II (Dis¬ 

tributed Operating Systems) and Part III (Distributed Resource Management). This 

chapter presents the issues that arise in the design of a distributed operating system. In 

addition, this chapter discusses how communication is handled between computers and 

how programs communicate to perform distributed computations. 

71 
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FIGURE 4.1 
Architecture of a distributed system. 

4.2 MOTIVATIONS 

The impetus behind the development of distributed systems was the availability of 

powerful microprocessors at low cost as well as significant advances in communication 

technology. The availability of powerful yet cheap microprocessors led to the devel¬ 

opment of powerful workstations that satisfy a single user’s needs. These powerful 

stand-alone workstations satisfy user need by providing such things as bit-mapped dis¬ 

plays and visual interfaces, which traditional time-sharing mainframe systems do not 
support. 

When a group of people work together, there is generally a need to communicate 

with each other, to share data, and to share expensive resources (such as high qual¬ 

ity printers, disk drives, etc.). This requires interconnecting computers and resources. 

Designing such systems became feasible with the availability of cheap and powerful 

microprocessors, and advances in communication technology. 

When a few powerful workstations are interconnected and can communicate with 

each other, the total computing power available in such a system can be enormous. 

Such a system generally only costs tens of thousands of dollars. On the other hand, 

if one tries to obtain a single machine with the computing power equal to that of a 

network of workstations, the cost can be as high as a few million dollars. Hence, the 

main advantage of distributed systems is that they have a decisive price/performance 
advantage over more traditional time-sharing systems [47]. 

Other significant advantages of distributed systems over traditional time-sharing 
systems are as follows: 
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Resource sharing. Since a computer can request a service from another computer 

by sending an appropriate request to it over the communication network, hardware and 

software resources can be shared among computers. For example, a printer, a compiler, 

a text processor, or a database at a computer can be shared with remote computers. 

Enhanced performance. A distributed computing system is capable of providing 

rapid response time and higher system throughput. This ability is mainly due to the 

fact that many tasks can be concurrently executed at different computers. Moreover, 

distributed systems can employ a load distributing technique to improve response time. 

In load distributing, tasks at heavily loaded computers are transferred to lightly loaded 

computers, thereby reducing the time tasks wait before receiving service. 

Improved reliability and availability. A distributed computing system provides 

improved reliability and availability because a few components of the system can fail 

without affecting the availability of the rest of the system. Also, through the replication 

of data (e.g., files and directories) and services, distributed systems can be made fault 

tolerant. Services are processes that provide functionality (e.g., a file service provides 

file system management; a mail service provides an electronic mail facility). 

Modular expandability. Distributed computing systems are inherently amenable 

to modular expansion because new hardware and software resources can be easily added 

without replacing the existing resources. 

4.3 SYSTEM ARCHITECTURE TYPES 

Tanenbaum and Renesse [47] classified distributed systems into three broad categories, 

namely, the minicomputer model, the workstation model, and the processor pool model. 

In the minicomputer model, the distributed system consists of several minicomput¬ 

ers (e.g., VAXs). Each computer supports multiple users and provides access to remote 

resources. The ratio of the number of processors to the number of users is normally 

less than one. 
In the workstation model, the distributed system consists of a number of work¬ 

stations (up to several thousand). Each user has a workstation at his disposal, where in 

general, all of the user’s work is performed. With the help of a distributed file system, a 

user can access data regardless of the location of the data or of the user’s workstation. 

The ratio of the number of processors to the number of users is normally one. The 

workstations are typically equipped with a powerful processor, memory, a bit-mapped 

display, and in some cases a math co-processor and local disk storage. Athena [11] and 

Andrew [32] are examples of this workstation model. 
In the processor pool model, the ratio of the number of processors to the number 

of users is normally greater than one. This model attempts to allocate one or more 

processors according to a user’s needs. Once the processors assigned to a user complete 

their tasks, they return to the pool and await a new assignment. Amoeba [48] is an 

experimental system that is a combination of the workstation and the processor pool 

models. In Amoeba, each user has a workstation where the user performs tasks that 

require a quick interactive response (such as editing). In addition to the workstation, 

users have access to a pool of processors for running applications that require greater 

speed (such as parallel algorithms performing significant numerical computations). 
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4.4 DISTRIBUTED OPERATING SYSTEMS 

An operating system is a program that manages the resources of a computer system 
and provides users with a friendly interface to the system. A distributed operating 
system extends the concepts of resource management and user friendly interface for 
shared memory computers a step further, encompassing a distributed computing system 
consisting of several autonomous computers connected by a communication network. 

A distributed operating system appears to its users as a centralized operating 
system for a single machine, but it runs on multiple-independent computers. An identical 
copy of the operating system (or a different operating system providing similar services) 
may run at every computer. On the other hand, some computers in the system that serve a 
special purpose might run an extended version of the operating system. The key concept 
is transparency. In other words, the use of multiple processors and the accessing of 
remote data should be invisible (transparent) to the user. The user views the system as 
a virtual uniprocessor, and not as a collection of distinct machines [47], For instance, a 
user simply submits a job to the distributed operating system through a computer. The 
distributed operating system performs distributed execution of the job. The user does not 
know on what computers the job was executed, on what computers the hies needed for 
execution were stored, or how the communication and synchronization among different 
computers were carried out. 

4.5 ISSUES IN DISTRIBUTED OPERATING SYSTEMS 

Some important issues that arise in the design of a distributed operating system include 
the unavailability of up-to-date global knowledge, naming, scalability, compatibility, 
process synchronization, resource management, security, and structuring of the operating 
system. These issues are discussed next. 

4.5.1 Global Knowledge 

In the case of shared memory computer systems, the up-to-date state of all the processes 
and resources, in other words, the global (entire) state of the system, is completely and 
accurately known. Hence, the potentially problematic issues that arise in the design of 
these systems are well understood and efficient solutions to them exist. In distributed 
computing systems, these same issues take on new dimensions and their solutions 
become much more complex for the following reasons. Due to the unavailability of 
a global memory and a global clock, and due to unpredictable message delays, it is 
practically impossible for a computer to collect up-to-date information about the global 
state of the distributed computing system [24]. Therefore, a fundamental problem in the 
design of a distributed operating system is to determine efficient techniques to implement 
decentralized system wide control, where a computer does not know the current and 
complete status of the global state. Another significant problem, given the absence of a 
global clock, is the question of how to order all the events that occur at different times 
at different computers present in the system. Note that the temporal ordering of events 
is a fundamental concept in the design and development of distributed systems (e.g., 
an operating system may schedule jobs based on their time of arrival). 
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Chapter 5 describes two logical clock schemes which allow the ordering of events 

in distributed systems despite the absence of a global clock. It also presents a mechanism 

employed to obtain a global state in distributed systems. 

Chapter 8 describes several algorithms to achieve consensus in distributed systems 

in the absence of global knowledge. For example, a token (a special control message) 

controls access to shared data in many mutual exclusion algorithms (see Chap. 6 ), and a 

token can also be used to control access to the communication network (see Sec. 4.6.2). 

If the token is lost due to a communication or computer failure, then only one computer 

should generate a new token and only one token should be generated. This requires 

that all the computers in the system arrive at the consensus that the token is indeed 

lost and consequently decide which computer should generate a new token. Note that 

due to unpredictable communication delays, a token may be in transit, and this may 

only appear to be lost. Thus, in the absence of global knowledge about the state of the 

computers and their communication links, arriving at a consensus in distributed systems 

is a significant challenge. 

4.5.2 Naming 

Names are used to refer to objects. Objects that can be named in computer systems 

include computers, printers, services, files, and users. An example of a service is a 

name sen’ice. A name service maps a logical name into a physical address by making 

use of a table lookup, an algorithm, or through a combination of the two [11]. In 

the implementation of a table lookup, tables (also known as directories) that store 

names and their physical addresses are used for mapping names to their addresses. 

In distributed systems, the directories may be replicated and stored at many different 

locations to overcome a single point of failure as well as to increase the availability 

of the name service. The two main drawbacks of replication are: (1) It requires more 

storage capacity, and (2) synchronization requirements need to be met when directories 

are updated, as the directory at each location would need an updated copy. On the 

other hand, directories may be partitioned to overcome the drawbacks of replicated 

directories. The problem with partitioned directories is the difficulty encountered when 

attempting to find the partition containing a name and address of interest. This may 

be handled through yet another directory or through a broadcast search [11]. Note, 

however, that a partitioned directory is less reliable than a replicated directory. 

If an algorithm is used for mapping, the algorithm would depend upon the structure 

of the names. Several examples of name resolving algorithms can be found in Sec. 9.4.1. 

Another issue in naming is the method of naming objects such that an object can 

be located irrespective of its logical name. This topic is treated in Sec. 9.4.1. 

4.5.3 Scalability 

Systems generally grow with time. The techniques used in designing a system should 

not result in system unavailability or degraded performance when growth occurs. For 

example, broadcast based protocols work well for small systems (systems having a small 

number of computers) but not for large systems. Consider a distributed file system that 
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locates files by broadcasting queries. Under this file system, every computer in the 

distributed system is subjected to message handling overhead, irrespective of whether it 

has the requested hie or not. As the number of users increase and the system gets larger, 

the number of hie location queries will increase and the overhead will grow larger as 

well, hurting the performance of every computer. In general, any design approach in 

which the requirement of a scarce resource (such as storage, communication bandwidth, 

and manpower) increases linearly with the number of computers in the system, is likely 

to be too costly to implement. For example, a design requiring that information regarding 

the system’s conhguration or directories be stored at every computer is not suitable, 

even for systems of moderate size [11]. 

4.5.4 Compatibility 

Compatibility refers to the notion of interoperability among the resources in a system. 

The three different levels of compatibility that exist in distributed systems are the binary 

level, the execution level, and the protocol level [11]. 

In a system that is compatible at the binary level, all processors execute the same 

binary instruction repertoire, even though the processors may differ in performance and 

in input-output. The Emerald distributed system [21] exhibits binary level compatibility. 

A significant advantage of binary level compatibility is that it is easier for system 

development, as the code for many functions provided by the system programs directly 

depend on the underlying machine level instructions. On the other hand, the distributed 

system cannot include computers with different architectures from the same or different 

vendors. Because of this major restriction, binary compatibility is rarely supported in 
large distributed systems. 

Execution level compatibility is said to exist in a distributed system if the same 

source code can be compiled and executed properly on any computer in the system 

[11]. Both Andrew [32] and Athena [11] systems support execution level compatibility. 

Protocol level compatibility is the least restrictive form of compatibility. It achieves 

interoperability by requiring all system components to support a common set of proto¬ 

cols. A significant advantage of protocol level compatibility is that individual computers 

can run different operating systems while not sacrificing their interoperability. For ex¬ 

ample, a distributed system supporting protocol level compatibility employs common 

protocols for essential system services such as file access (for example see Sun NFS, 
Sec. 9.5.1), naming, and authentication. 

4.5.5 Process Synchronization 

The synchronization of processes in distributed systems is difficult because of the un¬ 

availability of shared memory. A distributed operating system has to synchronize pro¬ 

cesses running at different computers when they try to concurrently access a shared 

resource, such as a file directory. For correctness, it is necessary that the shared re¬ 

source be accessed by a single process at a time. This problem is known as the mutual 

exclusion problem, wherein concurrent access to a shared resource by several uncoor¬ 

dinated user requests must be serialized to secure the integrity of the shared resource. 
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Chapter 6 describes several algorithms for achieving mutual exclusion and compares 

their performance. 

In distributed systems, processes can request resources (local or remote) and re¬ 

lease resources in any order that may not be known a priori. If the sequence of the 

allocation of resources to processes is not controlled in such environments, deadlocks 

may occur. It is important that deadlocks are detected and resolved as soon as possi¬ 

ble, otherwise, system performance can degrade severely. Chapter 7 discusses several 

deadlock handling strategies and describes several deadlock detection techniques for 

distributed systems. 

4.5.6 Resource Management 

Resource management in distributed operating systems is concerned with making both 

local and remote resources available to users in an effective manner. Users of a dis¬ 

tributed operating system should be able to access remote resources as easily as they 

can access local resources. In other words, the specific location of resources should 

be hidden from the users. The resources of a distributed system are made available 

to users in the following ways: data migration, computation migration, and distributed 

scheduling [41]. 

DATA MIGRATION. In the process of data migration, data is brought to the location 

of the computation that needs access to it by the distributed operating system. The data 

in question may be a file (stored locally or remotely) or contents of a physical memory 

(local or of another computer). If a computation updates a set of data, the original 

location (remote or local) may have to be similarly updated. 
If the data accessed is a file, then the computation’s data access request is brought 

under the purview of the distributed file system by the distributed operating system. A 

distributed file system is the component of a distributed operating system that imple¬ 

ments a common file system available to the autonomous computers in the system. The 

primary goal of a distributed file system is to provide the same functional capability to 

access files regardless of their location in the network as that provided by a file system 

of a time-sharing mainframe operating system that only accesses files residing at one 

location. Ideally, the user doesn’t need to be aware of the location of files to access 

them. This property of a distributed file system is known as network transparency. Im¬ 

portant issues in the design of a distributed file system, common mechanisms employed 

in the building of distributed file systems, and several case studies of distributed file 

systems are presented in Chap. 9. 
If, on the other hand, the data accessed is in the physical memory of another 

computer, then a computation’s data access request is brought under the purview of 

distributed shared memory management by the distributed operating system. A dis¬ 

tributed shared memory provides a virtual address space that is shared among all the 

computers in a distributed system. A distributed shared memory is an implementation 

of the shared memory concept in distributed systems that have no physically shared 

memory. The major issues in distributed shared memory implementation concern the 



78 ADVANCED CONCEPTS IN OPERATING SYSTEMS 

maintenance of consistency of the shared data and the minimization of delays in the 

access of data. Distributed shared memory management is discussed in Chap. 10. 

COMPUTATION MIGRATION. In computation migration, the computation migrates 

to another location. Migrating computation may be efficient under certain circumstances. 

For example, when information is needed concerning a remote file directory, it is more 

efficient to send a message (i.e., a computation) requesting the necessary information 

and receive the information back, rather than having the entire directory transferred 

and then finding the necessary information locally. In distributed scheduling (discussed 

next), one computer may require another computer’s status (such as its load level). It 

is more efficient and safe to find this information at the remote computer and send 

the required information back, rather than to transfer the private data structure of the 

operating system at the remote computer to the requesting computer so that it can 

obtain the necessary information. The remote procedure call (RPC) mechanism has 

been widely used for computation migration and for providing communication between 

computers. The RPC mechanism is discussed in Sec. 4.7.2. Note that in computation 

migration, only a part of the computation of a process is normally carried out on a 
different machine. 

DISTRIBUTED SCHEDUUING. In distributed scheduling, processes are transferred 

from one computer to another by the distributed operating system. That is, a process 

may be executed at a computer different from where it originated. Process relocation 

may be desirable if the computer where a process originated is overloaded or it does 

not have the necessary resources (such as a math co-processor) required by the pro¬ 

cess. Distributed scheduling is responsible for judiciously and transparently distributing 

processes amongst computers such that overall performance is maximized. Improved 

performance is mainly due to the enhanced utilization of computers through the concur¬ 

rent execution of processes. Various issues in distributed scheduling, several distributed 

scheduling algorithms, and case studies of several implementations are discussed in 
Chap. 11. 

4.5.7 Security 

The security of a system is the responsibility of its operating system. Two issues that 

must be considered in the design of security for computer systems are authentication 

and authorization [11], Authentication is the process of guaranteeing that an entity is 

what it claims to be. Authorization is the process of deciding what privileges an entity 

has and making only these privileges available. The security of computer systems and 

various protection mechanisms to achieve security are discussed in Chaps. 14 and 15. 

4.5.8 Structuring 

The structure of an operating system defines how various parts of the operating system 
are organized. 
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THE MONOLITHIC KERNEL. The traditional method of structuring operating sys¬ 

tems is to construct them as one big monolithic kernel. This kernel would consist of 

all the services provided by the operating system. However, in the case of distributed 

systems that often consist of diskless workstations, workstations with local disk storage, 

multiprocessor computers suitable for intensive numerical computations, etc., it seems 

wasteful for every computer to run a huge monolithic operating system when not every 

computer would use every service provided by the operating system. For example, a 

diskless workstation would not make use of the storage related operations provided 

by the file system. This concern has led to the development of the collective kernel 

structure. 

THE COLLECTIVE KERNEL STRUCTURE. In the collective kernel structure, an 

operating system is structured as a collection of processes that are largely independent 

of each other [52], 
In collective kernel structuring, the operating system services (e.g., distributed 

memory management, distributed file systems, distributed scheduling, name services, 

the RPC facility, time management, etc.) are implemented as independent processes. 

The nucleus of the operating system, also referred to as the microkernel, supports the 

interaction (through messages) between the processes providing the system services. In 

addition, the microkernel provides services that are typically essential to every computer 

in a distributed system, such as task management (e.g., local scheduling of tasks), 

processor management, virtual memory management, etc. The microkernel runs on all 

the computers in a distributed system. The other processes (all or a few) may or may not 

run at a computer depending on the need and the hardware available at that computer. 

The collective kernel structure can readily make use of a very helpful design 

technique known as policy and mechanism separation [52], By separating policies and 

mechanisms in an implementation, one can change any given policy without changing 

the underlying mechanisms. 
Mach [1], V-kernel [12], Chorus [39], and Galaxy [43] are examples of operating 

systems that use the collective kernel structuring technique. 

OBJECT ORIENTED OPERATING SYSTEM. While the various services provided 

by an operating system can be realized as a set of processes (this model has been referred 

to as process-model by Goscinski [19]), another popular approach is to implement the 

services as objects. An operating system that is structured using objects in this manner 

is known as an object-oriented operating system. 
In an object-oriented operating system, the system services are implemented as 

a collection of objects. Each object encapsulates a data structure and defines a set of 

operations on that data structure. Each object is given a type that designates the prop¬ 

erties of the object: process, directory, file, etc. By performing operations defined on 

an object, the data encapsulated can be accessed and modified. This model is amenable 

to the collective structuring and policy and mechanism separation techniques. Exam¬ 

ples of object-oriented operating systems are Eden [3], Choices [10], x-kernel [20], 

Medusa [34], Clouds [38], Amoeba [48], and Muse [52], 



80 ADVANCED CONCEPTS IN OPERATING SYSTEMS 

4.5.9 Client-Server Computing Model 

In the client-server model, processes are categorized as servers and clients. Servers are 

the processes that provide services. Processes that need services are referred to as clients. 

In the client-server model, a client process needing a service (e.g., reading data from a 

file) sends a message to the server and waits for a reply message. The server process, 

after performing the requested task, sends the result in the form of a reply message to 

the client process. Note that servers merely respond to the requests of the clients, and 

do not typically initiate conversations with clients. In systems with multiple servers, 

it is desirable that when providing services to clients, the locations and conversations 

among the servers are transparent to the clients. Clients typically make use of a cache 

to minimize the frequency of sending data requests to the servers. Systems structured 

on the client-server model can easily adapt the collective kernel structuring technique. 

4.6 COMMUNICATION NETWORKS 

This Section introduces the communication aspects of distributed systems. All the com¬ 

puters in a distributed system are interconnected through a computer communication 

network. A computer can exchange messages with other computers and access data 

stored at another computer through this network. Communication networks are broadly 

classified as Wide Area Networks and Local Area Networks. 

4.6.1 Wide Area Networks 

Wide area networks (WANs) are employed to interconnect various devices (such as 

computers and terminals) spread over a wide geographic area that may cover different 

cities, states, and countries. WANs have also been referred to as Long Haul Networks. 

The communication facility in a WAN consists of switches that are usually intercon¬ 

nected by communication links. (See Fig. 4.2.) These links may be established through 

FIGURE 4.2 
A point-to-point network. 
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telephone lines, satellites, microwave links, or any combination of the three. Most 

WANs employ a technique known as point-to-point or store-and-forward where data is 

transferred between computers through a series of switches. 

Switches are special purpose computers primarily responsible for routing data from 

one point to another through an appropriate path while avoiding network congestion. 

Note that a path or a portion of a path may become congested due to heavy data 

communication through that path, and/or to limited bandwidth (The bandwidth of a 

communication link refers to the amount of data that can be communicated over the 

link in a given amount of time). The data being communicated in a WAN can be lost 

for any of the following reasons: switch crashes, communication link failure, limited 

buffer capacity at switches, transmission error, etc. 

PACKET SWITCHING VERSUS CIRCUIT SWITCHING. The communication net¬ 

work can be utilized in one of the following two modes, namely, circuit switching or 

packet switching [46]. In circuit switching, a dedicated path is established between two 

devices wishing to communicate, and the path remains intact for the entire duration 

in which the two devices communicate. The telephone system uses circuit switching. 

When one subscriber dials another subscriber’s number or when one connects his ter¬ 

minal to a computer by dialing the computer’s number, a dedicated path between the 

two points is established through various switches. The path is broken when one side 

terminates the conversation. 
In packet switching, a connection is established between the source device (termi¬ 

nal or computer) and its nearest switch [46]. The data or message to be communicated 

is broken down into smaller units called packets (several hundred to several thousands 

bytes in length), with each packet containing the address of the destination. The pack¬ 

ets are then sent to the nearest switch. These packets are routed from one switch to 

another switch in the communication network until they arrive at the switch connected 

to the destination device, at which point the data is delivered to the destination. Thus, 

in packet switching, a communication path (switches and links) is not reserved by any 

two devices wishing to communicate, but rather is dynamically shared among many 

devices on a demand basis. The achievable utilization of the communication subnet is 

higher under packet switching compared to circuit switching because the subnet can 

be shared by many devices. Also, parallel transmission, and hence reduction in data 

transmission time, is possible because packets forming one message may travel along 

different paths. Moreover, data transmission in computer networks is sporadic rather 

than continuous. Thus, most computer networks use packet switching to permit better 

utilization of the network. One disadvantage of packet switching, however, is that the 

breaking of a message into packets and assembling them back at the destination carries 

some cost. 

THE ISO OSI REFERENCE MODEL. Generally, WANs must interconnect heteroge¬ 

neous types of equipment (e.g., computers, terminals, printers). These types of equip¬ 

ment may differ from each other in their speed, word length, information representation, 

or in many other criteria. To communicate in such a heterogeneous environment, the 
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ISO OSI reference model' provides a framework for communication protocols [53]. It 

organizes the protocols as seven layers and specifies the functions of each layer. The 

organization of these seven layers is shown in Fig. 4.3. In this model, user programs 

run in the application layer. 

When an application program running at computer A wants to send a message to an 

application program at computer B, the following chain of events occur. The application 

at computer A passes the message down to the presentation layer (on computer A itself). 

The presentation layer transforms the data (explained later), adds a header containing 

some control information to the message, and passes the resulting message to the session 

layer. The session layer adds its owner header to the message and passes the resulting 

message to the next layer. This continues on until the message reaches the physical 

layer. The physical layer on computer A transmits the raw data bits to the physical layer 

running at computer B. Note that the message is routed to compute B through various 

intermediate switches in the communication network. Once the message is received at 

computer B, the protocol at each layer strips the header added by its counterpart at 

computer A, performs the necessary processing identified by the header, and passes the 

message on to the next layer. This continues until the message reaches its destination—a 
process in the application layer at computer B. 

The ISO OSI model does not specify how the layers should be implemented. 

Every layer is aware only of the protocols and header formats of its counterpart. It does 

not understand the header or the protocols used by the other layers. This makes each 

layer independent, so any layer can change its protocol without affecting other layers 
as long as the interfaces between the layers remain unchanged. 

We next give a brief overview of the ISO OSI model [46]. Complete information 
about the model can be found in [46, 53], 

FIGURE 4.3 
The ISO OSI reference model. 

1 International Standards Organization’s Reference Model of Open Systems Interconnection. 
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AN OVERVIEW OF THE ISO OSI LAYERS. The physical layer’s function is to 

allow a device to send raw bit streams of data over the communication network. It is 

not concerned with transmission errors, how bits are organized, or what they mean. 

This layer should, however, be aware of and take care of the communication network 

implementation details such as circuit/packet switching, the type of network (i.e., tele¬ 

phone system, digital transmission, etc.), the voltage levels used for representing 0 and 

1 bits, the number of pins and their assignments in network connectors, etc. 

The data-link layer is responsible for recovering from transmission errors and for 

flow control. Flow control takes care of any disparity between the speeds at which the 

bits can be sent and received. The data-link layer makes the communication facility 

provided by the physical layer reliable. 

The network layer is mainly responsible for routing and congestion control. It 

breaks a message into packets and decides which outgoing line will carry the packets 

toward their destination. 
The transport layer’s primary function is to hide all the details of the communica¬ 

tion network from the layers above. It provides a network independent device-to-device 

(or end-to-end) communication. This layer can provide the ability to the network to in¬ 

form a host that the network has crashed or has lost certain packets. Thus, the transport 

layer can provide improved reliability if necessary. 

The session layer is responsible for establishing and maintaining a connection, 

known as a session, between two processes. Establishing a connection may involve the 

authentication of the communicating processes and the selection of the right transport 

service. In addition, the session layer may keep track of the outstanding requests and 

replies from processes and order them in such a manner to simplify the design of user 

programs. 
The presentation layer is the interface between a user program and the rest of 

the network. It provides data transformation utilities to take care of the differences in 

representing information at the source and at the destination. In addition, the presentation 

layer may perform data compression, encryption, and conversion to and from network 

standards for terminals and files. 
The application layer’s function is to provide a facility for the user processes to use 

the ISO OSI protocols. Its content is left to the users. (For example, specific applications 

such as airline and banking may have their own standards for the application layer.) 

4.6.2 Local Area Networks 

A local area network (LAN) is a communication network that interconnects a variety 

of data communication devices within a small geographic area [45], In our context, 

the data communicating devices typically include computers, terminals, and peripheral 

devices. Some of the key characteristics of LANs are: 

• High data transmission rates (10 megabits per second to 100 megabits per second). 

• The geographic scope of LANs is small, generally confined to a single building or 

perhaps several buildings (such as a college campus). 

• Low transmission error rate. 
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FIGURE 4.4 
Network topologies. 

Widely used network topologies for LANs are bus, ring, and tree (See Fig. 4.4). 

The communication media can be coaxial cable, twisted pair wire, or optical fiber. 

BUS/TREE TOPOLOGY. In the bus topology, the communication devices transmit 

data in the form of packets where each packet contains the address of the destination 

and a message. A packet propagates throughout the medium, the bus, and is available to 

all the other devices, but is received only by the addressed device [45]. A tree topology 

LAN is obtained by interconnecting many bus topology LANs to a common bus (see 

Fig. 4.4). Bus topology LANs can be viewed as branches of a tree. In the bus topology, 

all the devices connected to the LAN are allowed to transmit at any time. However, as 

the devices share a common data path (i.e., the bus), a protocol to control the access 

to the bus is necessary. We next discuss two protocols to control access to the bus. 

The CSMA/CD protocol. The most commonly used access control protocol 

for bus topology is CSMA/CD (Carrier Sense Multiple Access with Collision De¬ 

tection) [45]. Under this protocol, a device wishing to transmit listens to the medium 

to determine whether another transmission is in progress. If so, the device waits for 

a random amount of time before trying again. If no other transmission is in progress, 

the device starts transmitting data and continues to listen to the medium while it is 

transmitting. If another device starts transmitting simultaneously, the two transmissions 

collide. If a collision is detected, a short jamming signal is transmitted over the bus to 

inform all the devices that there has been a collision. The devices will then wait for a 

random amount of time before attempting to transmit again. The principal advantage 

of this protocol is its simplicity. Its principal disadvantage is that under a heavy load, 

contention for the bus rises and performance degrades because of frequent collisions. 

Thus, a bus using the CSMA/CD protocol cannot support a large number of devices per 

bus. Ethernet is an example of a LAN that is based on the CSMA/CD principle [31]. 

When the CSMA/CD protocol is used for a tree topology, packets transmitted by 

one device to another will not enter the common bus unless the destination device is 

on another branch of the tree. Hence, the common bus serves as a backbone connecting 
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many LANs. In large systems, the backbone is normally a high speed medium with a 
bandwidth of 100 megabits per second. 

The token bus protocol. An alternative to the CSMA/CD protocol is the token 

bus technique [45], In this technique, devices physically organized in a bus/tree topol¬ 

ogy form a logical ring, and each device knows the identity of the devices preceding 

and following it on the ring. Access to the bus is controlled through a token (a con¬ 

trol packet). The device holding the token is allowed to transmit, poll other devices, 

and receive replies from other devices. The devices not holding the token can receive 

messages and can only respond to polls or requests for acknowledgment. A device is 

allowed to keep the token for a specific amount of duration, after which it has to send 

the token to the device following it on the logical ring. 

RING TOPOLOGY. The main alternative to the bus/tree topology is the ring topology 

(see Fig. 4.4). Note that, in the token bus protocol, the ring is logical, whereas in the 

ring topology, the ring is physical. In this topology, data is transmitted point-to-point. 

At each point, the address on the packet is copied and checked to see if the packet 

is meant for the device connected at that point. If the address of the device and the 

address in the packet match, the rest of the packet is copied, otherwise, the entire packet 

is retransmitted to the next device on the ring. 

The token ring protocol. A widely used access control protocol to control access 

to the ring is the token ring technique [17, 45]. Under this technique, a token circulates 

around the ring. The token is labeled free when no device is transmitting. When a 

device wishes to transmit, it waits for the token to arrive, labels the token as busy on 

arrival, and retransmits the token. Immediately following the release of the token, the 

device transmits data. The transmitting device will mark the token as free when the 

busy token returns to the device and the device has completed its transmission. The 

main advantage of the token ring protocol is that it is not sensitive to the load on the 

network; the entire bandwidth of the medium can be utilized. The major disadvantage 

of the token ring protocol is its complexity. The token has to be maintained error-free. 

If the token is lost, care must be taken to generate only one token. The maintenance of 

the token may require a separate process to monitor it. 

The slotted ring protocol. The slotted ring is another technique used to control 

access to a ring network [37, 45], In this technique, a number of fixed length slots 

continuously circulate around the ring. The ring is like a conveyor belt. A device 

wishing to transmit data waits for a slot marked empty to arrive, marks it full, and 

inserts the destination’s address and the data into the slot as it goes by. The device is 

not allowed to retransmit again until this slot returns to the device, at which time it is 

marked as empty by the device. As each device knows how many slots are circulating 

around the ring, it can determine the slot it had marked previously. After the newly 

emptied slot continues on, the device is again free to transmit data. A few bits are 

reserved in each slot so that the result of the transmission (accepted, busy, or rejected) 

can be returned to the source. 
The key advantage of the slotted ring technique is its simplicity, which translates 

into reliability. The prime disadvantage is wasted bandwidth. When the ring is not 
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heavily utilized, many empty slots will be circulating, but a particular device wishing 

to transmit considerable amounts of data can only transmit once per round-trip ring time. 

4.7 COMMUNICATION PRIMITIVES 

The communication network provides a means to send raw bit streams of data in 

distributed systems. The communication primitives are the high-level constructs with 

which programs use the underlying communication network. They play a significant role 

in the effective usage of distributed systems. The communication primitives influence a 

programmer’s choice of algorithms as well as the ultimate performance of the programs. 

They influence both the ease of use of a system and the efficiency of applications that 

are developed for the system [29]. 
We next discuss two communication models, namely, message passing and remote 

procedure call, that provide communication primitives. These two models have been 

widely used to develop distributed operating systems and applications for distributed 

systems. 

4.7.1 The Message Passing Model 

The message passing model provides two basic communication primitives, namely, 

SEND and RECEIVE [47], The SEND primitive has two parameters, a message and its 

destination. The RECEIVE primitive has two parameters, the source (including anyone) 

of a message and a buffer for storing the message. An application of these primitives 

can be found in the client-server computation model. In the client-server model, a client 

process needing some service (e.g., reading data from a file) sends a message to the 

server and waits for a reply message. After performing the task, the server process 

sends the result in the form of a reply message to the client process. While these two 

primitives provide the basic communication ability to programs, the semantics of these 

primitives also play a significant role in ease of developing programs that use them. 

We next discuss two design issues that decide the semantics of these two primitives. 

BLOCKING VS. NONBLOCKING PRIMITIVES. In the standard message passing 

model, messages are copied three times: from the user buffer to the kernel buffer, 

from the kernel buffer on the sending computer to the kernel buffer on the receiving 

computer, and finally from the buffer on the receiving computer to a user buffer [29]. 

This is known as the buffered option. 

With nonblocking primitives, the SEND primitive returns control to the user pro¬ 

cess as soon as the message is copied from the user buffer onto the kernel buffer. 

The corresponding RECEIVE primitive signals its intention to receive a message and 

provides a buffer to copy the message. The receiving process may either periodically 

check for the arrival of a message or be signaled by the kernel upon arrival of a mes¬ 

sage. The primary advantage of nonblocking primitives is that programs have maximum 

flexibility to perform computation and communication in any order they want. On the 

other hand, a significant disadvantage of nonblocking primitives is that programming 

becomes tricky and difficult. Programs may become time-dependent where problems 

(or system states) are irreproducible, making the programs very difficult to debug [47], 
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In the unbuffered option, data is copied from one user buffer to another user buffer 

directly [29]. In this case, a program issuing a SEND should avoid reusing the user 

buffer until the message has been transmitted. For large messages (thousands of bytes), 

a combination of unbuffered and nonblocking semantics allows almost complete overlap 

between the communication and the ongoing computational activity in the user program. 

A natural use of nonblocking communication occurs in producer-consumer rela¬ 

tionships. The consumer process can issue a nonblocking RECEIVE. If a message is 

present, the consumer process reads it, otherwise it performs some other computation. 

The producer process can issue nonblocking SENDs. If a SEND fails for any reason 

(e.g., the buffer is full), it can be retried later. 

With blocking primitives, the SEND primitive does not return control to the user 

program until the message has been sent (an unreliable blocking primitive) or until an 

acknowledgment has been received (a reliable blocking primitive). In both cases, the 

user buffer can be reused as soon as the control is returned to the user program. The 

corresponding RECEIVE primitive does not return control until a message is copied to 

the user buffer. A reliable RECEIVE primitive automatically sends an acknowledgment, 

while an unreliable RECEIVE primitive does not send an acknowledgment [47]. The 

primary advantage of employing blocking primitives is that the behavior of the programs 

is predictable, and hence programming is relatively easy. The primary disadvantage 

is the lack of flexibility in programming and the absence of concurrency between 

computation and communication. 

SYNCHRONOUS VS. ASYNCHRONOUS PRIMITIVES. We now address the ques¬ 

tion of whether to buffer or not to buffer messages. With synchronous primitives, a 

SEND primitive is blocked until a corresponding RECEIVE primitive is executed at 

the receiving computer. This strategy is also referred to as a rendezvous. A blocking- 

synchronous primitive can be extended to an unblocking-synchronous primitive by first 

copying the message to a buffer at the sending side, and then allowing the process to 

perform other computational activity except another SEND. 

With asynchronous primitives, the messages are buffered. A SEND primitive does 

not block even if there is no corresponding execution of a RECEIVE primitive. The 

corresponding RECEIVE primitive can either be a blocking or a nonblocking primitive. 

One disadvantage of buffering messages is that it is more complex, as it involves cre¬ 

ating, managing, and destroying buffers. Another issue is what to do with the messages 

that are meant for processes that have already died [47]. 

4.7.2 Remote Procedure Calls 

While the message passing communication model provides a highly flexible communi¬ 

cation ability, programmers using such a model must handle the following details. 

• Pairing of responses with request messages. 

• Data representation (when computers of different architectures or programs written 

in different programming languages are communicating). 
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• Knowing the address of the remote machine or the server. 

• Taking care of communication and system failures. 

The handling of all these details in programs makes the development of programs for 

distributed computations difficult. In addition, these programs can be time-dependent, 

making it almost impossible to reproduce errors and debug. These difficulties led to 

the development of the remote procedure call (RPC) mechanism [9]. RPC mechanisms 

hide all the above details from programmers. The RPC mechanism is based on the 

observation that procedure call is a well known and well understood mechanism for 

transfer of control and data within a program running on a single computer (a shared 

memory system). The RPC mechanism extends this same mechanism to transfer control 

and data across a communication network (a non-shared memory system) [9]. A remote 

procedure call can be viewed as an interaction between a client and a server, where the 

client needing a service invokes a procedure at the server. A simple RPC mechanism 

works as follows. 

Basic RPC operation. On invoking a remote procedure, the calling process (the client) 

is suspended and parameters, if any, are passed to the remote machine (the server) where 

the procedure will execute. On completion of the procedure execution, the results are 

passed back from the server to the client and the client resumes execution as if it had 

called a local procedure. While the RPC mechanism looks simple, the issues that arise in 

designing and implementing it are not so simple. We next discuss several of those issues. 

4.7.3 Design Issues in RPC 

Structure. A widely used organization for RPC mechanisms is based on the concept 

of stub procedures [4, 9, 40] (see Fig. 4.5). When a program (client) makes a remote 

procedure call, say P(x,y), it actually makes a local call on a dummy procedure or 

a client-stub procedure corresponding to procedure P. The client-stub procedure con¬ 

structs a message containing the identity of the remote procedure and parameters, if 

any, to be passed. It then sends the message to the remote server machine (a primitive 

similar to SEND explained in Sec. 4.7.1 may be used for this purpose). A stub pro¬ 

cedure at the remote machine receives the message (a primitive similar to RECEIVE 

may be used) and makes a local call to the procedure specified in the message and 

passes the parameters received to the procedure. When the remote procedure completes 

execution, the control returns to the server-stub procedure. The server-stub procedure 

passes the results back to the client-stub procedure at the calling machine, which returns 

the results to the client. The stub procedures can be generated at compile time or can 
be linked at run time. 

Binding. Binding is a process that determines the remote procedure, and the machine 

on which it will be executed, upon a remote procedure invocation. The binding process 

may also check the compatibility of the parameters passed and the procedure type called 
with what is expected from the remote procedure. 
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One approach for binding in the client-server model makes use of a binding 

server [9, 44] (see Fig. 4.5). The servers register the services they provide with the 

binding server. The binding server essentially stores the server machine addresses along 

with the services they provide. When a client makes a remote procedure call, the 

client-stub procedure obtains the address of the server machine by querying the binding 

server. Another approach used for binding is where the client specifies the machine 

and the service required, and the binding server returns the port number required for 

communicating with the service requested [4]. Note that the first method is location 

transparent while the latter is not. 

Parameter and result passing. To pass parameters or results to a remote procedure, a 

stub procedure has to convert the parameters and results into an appropriate represen¬ 

tation (a representation that is understood by the remote machine) first and then pack 

them into a buffer in a form suitable for transmission. After the message is received, 

the message must be unpacked (see Fig. 4.5). 
Converting data into an appropriate representation becomes expensive if it has to 

be done on every call. One way to avoid conversions is to send the parameters along 

with a code identifying the format used so that the receiver can do the conversion, (only, 

of course, if it uses a different representation). This approach requires the machine to 

know how to convert all the formats that can possibly be used. This approach also has 

poor portability because whenever a new representation (because of a new machine 

type or a new language) is introduced into the system, existing software needs to be 

updated [47]. 
Alternatively, each data type may have a standard format in the message. In this 

technique, the sender will convert the data to the standard format and the receiver 

will convert from the standard format to its local representation. With this approach a 

machine doesn’t need to know how to convert all the formats that can possibly be used. 

Binding 
Server 

FIGURE 4.5 
Remote procedure call. 
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This method, however, is wasteful if both the sender and the receiver use the same 

internal representation [47], 
Another issue is how to deal with passing parameters by value and by reference. 

Passing parameters by value is simple, as the stub procedure simply copies the pa¬ 

rameters into the message. However, passing parameters by reference is exceedingly 

more complicated. For example, just passing file pointers is inadequate, because the 

privileges associated with the calling process also have to be passed [47], Moreover, 

the semantics associated with passing parameters in local procedure calls and remote 

procedure calls can be different. For example, in Argus [28], the structures pointed to 

by pointers are copied onto the remote machine, and hence, the calling machine and 

the remote machine do not share the data structures directly. 

Error handling, semantics, and correctness. A remote procedure call can fail for 

at least two reasons: computer failures and communication failures (such as when a 

transmitted message does not reach its destination). 
Handling failures in distributed systems is difficult. For example, consider the 

case where messages are lost occasionally. If the remote server is slow, the program 

that invokes the remote procedure may invoke the remote procedure more than once, 

suspecting a message loss. This could result in more than one execution of the procedure 

at the remote machine. Also, consider the case where the client machine, after having 

invoked a remote procedure, crashes immediately. In this case, the remote procedure 

is executed in vain, as there is no machine to receive the result. On the other hand, if 

the client machine recovers quickly and reissues the remote procedure call, then there 

is a possibility of more than one execution of the remote procedure. The unwanted 

executions have been referred to as orphans [22], 

In view of the above problems associated with distributed system failure, it is clear 

that the semantics of RPCs play a significant role in the ease of development of programs 

for distributed computation. The semantics of RPCs are classified as follows [33, 36]: 

“At least once” semantics. If the remote procedure call succeeds, it implies that 

at least one execution of the remote procedure has taken place at the remote machine. 

If the call does not succeed, it is possible that zero, a partial, one, or more executions 

have taken place. 

“Exactly once” semantics. If the remote procedure call succeeds, it implies that 

exactly one execution of the remote procedure has taken place at the remote machine. 

However, if the remote procedure call does not succeed, it is possible that zero, a partial, 
or one execution has taken place. 

In view of the above, it is apparent that a stronger semantics for RPCs are neces¬ 

sary for the RPC mechanism to significantly improve upon the message passing model. 

Liskov and Scheifler [ 28] stronger semantics for RPCs. 

“At most once” semantics. Same as exactly once semantics, but in addition, calls 

that do not terminate normally do not produce any side effects. These semantics are 

also referred to as Zero-or-one semantics. A number of RPC mechanisms implemented 

support at-most-once semantics [2, 5, 9, 15, 36, 44]. 
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Correctness condition. Panzieri and Srivastava [36] define a simple correctness con¬ 

dition for remote procedure calls as follows: 

Let Ci denote a call made by a machine and Wt represent the corresponding 

computation invoked at the called machine. 

Let C2 happen after C\ (denoted by C\ —> C2) and computations W\ and W2 

share the same data such that W\ and/or W2 modify the shared data. 

To be correct in the presence of failures, an RPC implementation should satisfy 

the following correctness criterion. 

Ci -* C2 implies Wi W2. 

OTHER ISSUES. The RPC mechanisms make use of the communication facility pro¬ 

vided by the underlying network to pass messages to remote machines. One of the issues 

to be resolved is whether to build the RPC mechanism on top of a flow-controlled and 

error-controlled virtual-circuit mechanism (similar to establishing sessions in WANs) or 

directly on top of an unreliable, connectionless (datagram) service [47], (In a datagram 

service, a machine simply sends a message in the form of packets to the destination, and 

there is no extensive two-way communication such as automatic acknowledgments.) 

As RPC mechanisms became a widely accepted method for communication in 

distributed systems, a need to specify a remote procedure call as low-latency or high- 

throughput became necessary, depending on the application. Low-latency calls require 

minimum round-trip delay and are made in case of infrequent calls (such as calls to 

a mail-server). On the other hand, the aim of high-throughput calls is to obtain maxi¬ 

mum possible throughput from the underlying communication facility. This type of call 

is typically made when bulk data transfer is required, such as in the case of calls to 

file servers. The ASTRA RPC mechanism [4] provides the ability to a user to specify 

whether low-latency or high-throughput is desired. For high-throughput calls, ASTRA 

makes use of virtual circuit (TCP) protocol. For low-latency calls, ASTRA makes use of 

a datagram facility that is more suitable for intermittent exchange due to its simplicity. 

Stream [28] is another RPC mechanism designed mainly to achieve high-throughput. It 

also makes use of the TCP protocol. In both the ASTRA and Stream implementations, 

high-throughput is achieved by buffering the messages and immediately returning con¬ 

trol to the user. The user can then make more calls. The buffer is flushed when it is full 

or convenient. By buffering the messages, the overhead to process the communication 

protocols on every remote procedure call is avoided. For low-latency calls, the buffer 

is flushed immediately. Future [51] is an RPC facility that is specifically designed for 

low-latency. 
Note that invoking a remote procedure call blocks the calling process. However, 

these semantics severely limits the concurrency that can be achieved. Several RPC 

designs have tried to overcome this limitation. 
One way to achieve parallelism is through creating multiple processes for each 

remote procedure call [6]. This scheme allows a process to make multiple calls to 

many servers and still execute in parallel with the servers. However, creating processes, 

switching between processes, and destroying processes may not be economical under 

all circumstances. This approach also does not scale well for large systems consisting 

of hundreds of computers [40], 
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In MultiRPC [40], a process is allowed to invoke a procedure on many servers 

concurrently but not two different procedures in parallel. The calling process is blocked 

until all the responses are received or until the call is explicitly terminated by the calling 

process. 

Parallel procedure call (PARPC) [30] is another scheme which is similar to Multi¬ 

RPC. In PARPC, invoking a parallel procedure call executes a procedure in n different 

address spaces (e.g., at n different servers) in parallel. The caller remains blocked while 

the n procedures execute. When a result becomes available, the caller is unblocked to 

execute a statement to process the result of the returned call. After executing the state¬ 

ment, the caller reblocks to wait for the next result. The caller resumes execution after 

all the n calls have returned or when the caller explicitly terminates the PARPC call. 

To overcome the limitations of blocking semantics, asynchronous RPC mecha¬ 

nisms have been developed where a calling process does not block after invoking a 

remote procedure [4, 44]. ASTRA [4] offers further flexibility by allowing client pro¬ 

cesses to accept replies in any order. The main disadvantage of these semantics is that, 

like in message passing primitives, programming becomes difficult. 

Bershad et al. [7] performed a study to determine the frequency of intermachine 

procedure calls. According to their study, less than ten percent of all system calls cross 

the machine boundary. Note that intramachine calls can be made efficient by avoiding 

the marshaling of data and other RPC related network protocols. ASTRA optimizes 

the intramachine call by avoiding the above overhead and by using the most efficient 

interprocess communication mechanism provided by the host operating system to pass 
messages. 

According to Gifford [18] existing RPC facilities have the following two short¬ 
comings: 

• Incremental results: In the present RPC facilities, a remote procedure cannot easily 

return incremental results to the calling process while its execution is still in progress. 

• Protocol flexibility: In present RPC systems, remote procedures are not first-class 

objects. (A first-class object is a value that can be freely stored in memory, passed 

as a parameter to both local and remote procedures, and returned as a result from 

both local and remote procedures [18].) This feature can make protocols inflexible. 

For example, the following protocol is not implementable unless remote procedures 

are first-class objects: A process wishes to provide a server with a procedure for use 

under certain circumstances, and the server then wishes to pass this procedure on to 
another server. 

To overcome the above limitations, Gifford has proposed a new communication 

model called the channel model [18]. In this model, remote procedures are first-class 

objects. An abstraction called a pipe permits the efficient transportation of bulk data 

and incremental results, and an abstraction called channel groups allows the sequencing 

of calls on pipes and procedures. Complete details on this model are beyond the scope 
of this book and can be found in [18]. 
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4.8 SUMMARY 

The driving force behind the development of distributed systems is the availability 

of powerful yet cheap microprocessors at low cost and advances in communication 

technology. These developments have made it feasible to design and develop distributed 

systems comprised of many computers, interconnected by communication networks. 

The primary advantages of distributed systems over traditional time-sharing mainframe 

systems are: low price/performance ratio, resources can be shared among many users, 

improved system response through load distributing, higher availability and reliability, 

and modular expandability. 
While many architectures are possible for distributed systems, the workstation 

model, where a number of workstations are interconnected by LANs, is the most widely 

employed model for distributed systems. 
To realize the benefits of a distributed system, it is necessary that its resources are 

managed efficiently. It is the responsibility of distributed operating systems to manage 

resources efficiently and to provide a friendly interface to the users. Several areas of 

distributed operating systems in which a significant amount of work has been done 

were introduced in Sec. 4.5. These areas will be discussed in detail in the forthcoming 

chapters (5 through 12). 
Local area networks provide a basic communication facility for distributed sys¬ 

tems, due to their low communication delays and low error rates. Wide area networks, 

because of their higher communication delays and error rates, are mainly employed 

to interconnect distributed systems based on LANs and computers spread over a wide 

geographic area. 
Communication primitives are the means through which programs can use the 

underlying communication network. They play a significant role in the effective usage 

of distributed systems. Communication primitives influence the programmer’s choice 

of algorithms as well as the ultimate performance of the programs. They influence both 

the ease of use of a system and the efficiency of applications that are developed for the 

system. Message passing primitives are the basic communication primitives that provide 

a facility for programs to send and receive messages. However, writing programs using 

these primitives is difficult because a programmer has to take care of many details, 

such as the pairing of responses with request messages, data representation, knowing 

the address of the remote machine or the server, and taking care of communication and 

system failures. The RPC mechanism has been widely accepted as the mechanism to 

support communication in distributed systems as they take care of the above details. 

They are based on the well known and well understood procedure call mechanism. 

An RPC mechanism extends a procedure-call mechanism to encompass communication 

networks. 
In the coming decade, we can hope to see many more advances in scalability 

techniques (as distributed systems grow to encompass thousands of computers) and in 

linking heterogeneous environments (which may include different machines tunning 

different operating systems and groups of machines linked together by different types 

of networks). 
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4.9 FURTHER READING 

The development of distributed operating systems has come a long way in the past 

decade. Some examples of distributed operating systems operating are: Mach [1], 

Eden [3, 23], ISIS [8], Athena [11], V-system [13], Clouds: [16], Domain [25], Ar¬ 

gus [27], Andrew [32], Sprite [35], Galaxy [43], Amoeba [48], and Locus [50]. 

The distributed object-based programming system is an amalgamation of concepts 

of object-based programming (which encourages the design of a program as a set 

of autonomous components) and distributed systems (which permits a collection of 

autonomous components to be treated as a single entity). Chin and Chanson [14] provide 

a survey of the design and implementation of distributed object-based programming 

systems. An in-depth discussion on client-server computing can be found in a paper by 
Sinha [42], 

Lin and Gannon [26] discuss an atomic RPC scheme which supports at-most once 

semantics with the help of built-in facilities for backward error recovery. Panzieri and 

Shrivastava [36] describe an RPC facility supporting orphan detection and killing. Tay 

and Ananda [49] have presented a survey of RPC mechanisms and a comprehensive 
bibliography for RPC mechanisms. 
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CHAPTER 

5 
THEORETICAL 
FOUNDATIONS 

5.1 INTRODUCTION 

A distributed system is a collection of computers that are spatially separated and do not 

share a common memory. The processes executing on these computers communicate 

with one another by exchanging messages over communication channels. The messages 

are delivered after an arbitrary transmission delay. 
In this chapter, we first discuss the inherent limitations of distributed systems 

caused by the lack of common memory and a systemwide common clock that can be 

shared by all the processes. The rest of the chapter is devoted to the discussion of 

how to overcome these inherent limitations. The theoretical foundations developed in 

this chapter are the most fundamental to distributed computing and are made use of 

throughout the book. 

5.2 INHERENT LIMITATIONS OF A DISTRIBUTED 

SYSTEM 

In this section, we discuss the inherent limitations of distributed systems and their 

impact on the design and development of distributed systems. With the help of an 

example, we illustrate the difficulties encountered due to the limitations in distributed 

systems. 
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5.2.1 Absence of a Global Clock 

In a distributed system, there exists no systemwide common clock (global clock). In 

other words, the notion of global time does not exist. A reader might think that this 

problem can be easily solved by either having a clock common to all the computers 

(processes) in the system or having synchronized clocks, one at each computer. Unfor¬ 

tunately, these two approaches cannot solve the problem for the following reasons. 

Suppose a global (common) clock is available for all the processes in the system. 

In this case, two different processes can observe a global clock value at different instants 

due to unpredictable message transmission delays. Therefore, two different processes 

may falsely perceive two different instants in physical time to be a single instant in 

physical time. 

On the other hand, if we provide each computer in the system with a physical clock 

and try to synchronize them, these physical clocks can drift from the physical time and 

the drift rate may vary from clock to clock due to technological limitations, Therefore, 

this approach can also have two different processes running at different computers that 

perceive two different instants in physical time as a single instant. Hence, we cannot 

have a system of perfectly synchronized clocks. 

IMPACT OF THE ABSENCE OF GLOBAL TIME. The concept of temporal ordering 

of events pervades our thinking about systems and is integral to the design and devel¬ 

opment of distributed systems [12]. For example, an operating system is responsible 

for scheduling processes. A basic criterion used in scheduling is the temporal order in 

which requests to execute processes arrive (the arrival of a request is an event). Due to 

the absence of global time, it is difficult to reason about the temporal order of events in 

a distributed system. Hence, algorithms for a distributed system are more difficult to de¬ 

sign and debug compared to algorithms for centralized systems. In addition, the absence 

of a global clock makes it harder to collect up-to-date information on the state of the en¬ 

tire system. The detailed description and analysis of this shortcoming is discussed next. 

5.2.2 Absence of Shared Memory 

Since the computers in a distributed system do not share common memory, an up-to- 

date state of the entire system is not available to any individual process. Up-to-date 

state of the system is necessary for reasoning about the system’s behavior, debugging, 
recovering from failures (see Chap. 12), etc. 

A process in a distributed system can obtain a coherent but partial view of the 

system or a complete but incoherent view of the system [13]. A view is said to be 

coherent if all the observations of different processes (computers) are made at the same 

physical time. A complete view encompasses the local views (local state) at all the 

computers and any messages that are in transit in the distributed system. A complete 

view is also referred to as a global state. Similarly, the global state of a distributed 

computation encompasses the local states of all the processes and any messages that 

are in transit between the processes. Because of the absence of a global clock in a 

distributed system, obtaining a coherent global state of the system is difficult. 

The following simple situation illustrates the difficulty in obtaining a coherent 
global state while underlining the need for a coherent global state. 
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Example 5.1. Let SI and S2 be two distinct sites (entities) of a distributed system 
(see Fig. 5.1) that maintain bank accounts A and B, respectively. A site in our example 
refers to a process. Knowledge of the global state of the system may be necessary to 
compute the net balance of both accounts. The initial state of the two accounts is shown 
in Fig. 5.1(a). Let site SI transfer, say, $50 from account A to account B. During 
the collection of a global state, if site S1 records the state of A immediately after the 
debit has occurred, and site S2 saves the state of B before the fund transfer message 
has reached B, then the global system state will show $50 missing (see Fig. 5.1(b)). 
Note that the communication channel cannot record its state by itself. Hence, sites 
have to coordinate their state recording activities in order to record the channel state. 
On the other hand, if A’s state is recorded immediately before the transfer and B’s 
state is recorded after account B has been credited $50, then the global system state 
will show an extra $50 (see Fig. 5.1(c)). 

We next present two schemes that implement an abstract notion of virtual time 

to order events in a distributed system. In addition, readers will find the application of 

these schemes throughout the book (see Secs. 6.5 and 6.6, Chap. 7, Secs. 13.3, 13.4, 

and 15.10). We also describe an application that makes use of one of the schemes. 

Local state 
of A 

Local state 
of B 

FIGURE 5.1 
A distributed system with two sites. 
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5.3 LAMPORT’S LOGICAL CLOCKS 

Lamport [12] proposed the following scheme to order events in a distributed system 

using logical clocks. The execution of processes is characterized by a sequence of 

events. Depending on the application, the execution of a procedure could be one event or 

the execution of an instruction could be one event. When processes exchange messages, 

sending a message constitutes one event and receiving a message constitutes one event. 

Definitions 

Due to the absence of perfectly synchronized clocks and global time in distributed 

systems, the order in which two events occur at two different computers cannot be 

determined based on the local time at which they occur. However, under certain con¬ 

ditions, it is possible to ascertain the order in which two events occur based solely on 

the behavior exhibited by the underlying computation. We next define a relation that 

orders events based on the behavior of the underlying computation. 

HAPPENED BEFORE RELATION (—>■). The happened before relation captures the 

causal dependencies between events, i.e., whether two events are causally related or 
not. The relation —► is defined as follows: 

• a —> b, if a and b are events in the same process and a occurred before b. 

• a —> b, if a is the event of sending a message m in a process and b is the event of 
receipt of the same message m by another process. 

• If a —► b and b —> c, then a —>• c, i.e., >” relation is transitive. 

In distributed systems, processes interact with each other and affect the outcome 

of events of processes. Being able to ascertain order between events is very important 

for designing, debugging, and understanding the sequence of execution in distributed 

computation. In general, an event changes the system state, which in turn influences the 

occurrence and outcome of future events. That is, past events influence future events 

and this influence among causally related events (those events that can be ordered by 
‘-a’) is referred to as causal affects. 

CAUSALLY RELATED EVENTS. Event a causally affects event b if a —> b. 

CONCURRENT EVENTS. Two distinct events a and b are said to be concurrent 

(denoted by a\\b) if a b and b /> a. In other words, concurrent events do not 
causally affect each other. 

For any two events a and b in a system, either a —> b, b —► a, or a\\b. 

Example 5.2. In the space-time diagram of Fig. 5.2, eu, ei2, ei3, and eX4 are events 
in process P\ and e2i, e22, e23, and e24 are events in process If. The arrows represent 
message transfers between the processes. For example, arrow ei2e23 corresponds to a 
message sent from process Px to process P2, ei2 is the event of sending the message 
at Pi, and e23 is the event of receiving the same message at P2. In Fig. 5.2, we see 
that e22 —> en, eo —> e^, and therefore e22 —> eu. In other words, event e22 causally 
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C 

Global Time 

FIGURE 5.2 
A space-time diagram. 

affects event eu. Note that whenever a —> b holds for two events a and b, there exists 
a path from a to 6 which moves only forward along the time axis in the space-time 
diagram. Events e2i and en are concurrent even though e\\ appears to have occurred 
before e2i in real (global) time for a global observer. 

Logical Clocks 

In order to realize the relation —Lamport [12] introduced the following system of 

logical clocks. There is a clock C\ at each process Pi in the system. The clock C,; 

can be thought of as a function that assigns a number Ci(a) to any event a, called 

the timestamp of event a, at Pi. The numbers assigned by the system of clocks have 

no relation to physical time, and hence the name logical clocks. The logical clocks 

take monotonically increasing values. These clocks can be implemented by counters. 

Typically, the timestamp of an event is the value of the clock when it occurs. 

CONDITIONS SATISFIED BY THE SYSTEM OF CLOCKS. For any events a and b: 

if a -a b, then C(a) < C(b) 

The happened before relation ‘-a’ can now be realized by using the logical clocks 

if the following two conditions are met: 

[Cl] For any two events a and b in a process Pi, if a occurs before b, then 

Ci(a) < Ci(b) 

[C2] If a is the event of sending a message m in process Pi and b is the event of 

receiving the same message m at process Pj, then 

Ciia) < Cj(b) 

The following implementation rules (IR) for the clocks guarantee that the clocks 

satisfy the correctness conditions Cl and C2: 
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[IRl] Clock C{ is incremented between any two successive events in pro¬ 

cess Pi: 

Ci := Ci + d (d > 0) (5.1) 

If a and b are two successive events in Pi and a —> b, then Ci(b) — Ci(a) + d. 

[IR2] If event a is the sending of message m by process Pi, then message m 

is assigned a timestamp tm = Ci(a) (note that the value of Ci(a) is obtained after 

applying rule IRl). On receiving the same message m by process Pj, Cj is set to a 

value greater than or equal to its present value and greater than tm. 

Cj := max(Cj,tm + d) (d > 0) (5.2) 

Note that the message receipt event at Pj increments Cj as per rule IRl. The 

updated value of Cj is used in Eq. 5.2. Usually, d in Eqs. 5.1 and 5.2 has a value of 1. 

Lamport’s happened before relation, —defines an irreflexive partial order among 

the events. The set of all the events in a distributed computation can be totally ordered 

(the ordering relation is denoted by =+) using the above system of clocks as follows: 

If a is any event at process Pi and b is any event at process Pj then a =+ b if and only 

if either 

Ci(a) < Cj(b) or 

Ci(a) = Cj(b) and Pi + Pj 

where + is any arbitrary relation that totally orders the processes to break ties. A simple 

way to implement -< is to assign unique identification numbers to each process and then 

Pi A Pj, if i < j. 

Lamport’s mutual exclusion algorithm, discussed in Sec. 6.6, illustrates the use 

of the ability to totally order the events in a distributed system. 

Example 5.3. Figure 5.3 gives an example of how logical clocks are updated under 
Lamport’s scheme. Both the clock values Cpx and Cp, are assumed to be zero initially 
and d is assumed to be 1. e\\ is an internal event in process P\ which causes Cp, to 
be incremented to 1 due to IRl. Similarly, e2i and e22 are two events in P2 resulting in 
Cp2 = 2 due to IRl. ei6 is a message send event in Pi which increments Cpx to 6 due 
to IRl. The message is assigned a timestamp = 6. The event e25, corresponding to the 
receive event of the above message, increments the clock Cp, to 7 (max(4+1,6+1)) 
due to rules IRl and IR2. Similarly, e24 is a send event in P2. The message is assigned a 
timestamp = 4. The event en corresponding to the receive event of the above message 
increments the clock Cpx to 7 (max(6+l, 4+1)) due to rules IRl and and IR2. 

VIRTUAL TIME. Lamport’s system of logical clocks implements an approximation 

to global/physical time, which is referred to as virtual time. Virtual time advances along 
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FIGURE 5.3 
How Lamport’s logical clocks advance. 

with the progression of events and is therefore discrete. If no events occur in the system, 

virtual time stops, unlike physical time which continuously progresses. Therefore, to 

wait for a virtual time instant to pass is risky as it may never occur [16]. 

5.3.1 A Limitation of Lamport’s Clocks 

Note that in Lamport’s system of logical clocks, if a —► 6 then 67(a) < 67(6). However, 

the reverse is not necessarily true if the events have occurred in different processes. 

That is, if a and b are events in different processes and 67(a) < 67(6), then a —>• b is not 

necessarily true; events a and b may be causally related or may not be causally related. 

Thus, Lamport’s system of clocks is not powerful enough to capture such situations. 

The next example illustrates this limitation of Lamport’s clocks. 

Example 5.4. Figure 5.4 shows a computation over three processes. Clearly, 67(en) < 

67(622) and 67(en) < 67(e32). However, we can see from the figure that event eu is 
causally related to event e22 but not to event e32, since a path exists from e\\ to e22 

but not from eu to e32. Note that the initial clock values are assumed to be zero 
and d of equations 5.1 and 5.2 is assumed to equal 1. In other words, in Lamport’s 
system of clocks, we can guarantee that if 67(a) < 67(6) then 6 a (i.e., the future 
cannot influence the past), however, we cannot say whether events a and 6 are causally 
related or not (i.e., whether there exists a path between a and 6 that moves only forward 
along the time axis in the space-time diagram) by just looking at the timestamps of 

the events. 

Time 
FIGURE 5.4 
A space-time diagram. 
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The reason for the above limitation is that each clock can independently advance 

due to the occurrence of local events in a process and the Lamport’s clock system cannot 

distinguish between the advancements of clocks due to local events from those due 

to the exchange of messages between processes. (Notice that only message exchanges 

establish paths in a space-time diagram between events occurring in different processes.) 

Therefore, using the timestamps assigned by Lamport’s clocks, we cannot reason about 

the causal relationship between two events occurring in different processes by just 

looking at the timestamps of the events. In the next section, we present a scheme of 

vector clocks that gives us the ability to decide whether two events are causally related 

or not by simply looking at their timestamps. 

5.4 VECTOR CLOCKS 

The system of vector clocks was independently proposed by Fidge [5] and Mattem [16]. 

A concept similar to vector clocks was proposed previously by Strom and Yemini [38] 

for keeping track of transitive dependencies among processes for recovery purposes. 

Let n be the number of processes in a distributed system. Each process Pi is equipped 

with a clock Ci, which is an integer vector of length n. The clock Ci can be thought 

of as a function that assigns a vector Ci(a) to any event a. Ci(a) is referred to as the 

timestamp of event a at Pi. Ci\i\, the ith entry of Ci, corresponds to p’s own logical 

time. C\[j], j / i is p’s best guess of the logical time at Pj. More specifically, at any 

point in time, the jth entry of Ci indicates the time of occurrence of the last event at 

Pj which “happened before” the current point in time at Pi. This “happened before” 

relationship could be established directly by communication from Pj to P, or indirectly 

through communication with other processes. 

The implementation rules for the vector clocks are as follows [16]: 

[IR1] Clock Ci is incremented between any two successive events in pro¬ 
cess Pi 

CS] := Ci[i] + d (d > 0) (5.3) 

[IR2] If event a is the sending of the message m by process Pr, then message 

m is assigned a vector timestamp tm = Ci(a)\ on receiving the same message m by 
process Pj, Cj is updated as follows: 

Vfc, Cj[k] max(Cj[k],tm[k]) (5.4) 

Note that, on the receipt of messages, a process learns about the more recent clock 
values of the rest of the processes in the system. 

In rule IR1, we treat message send and message receive by a process as events. In 

rule IR2, a message is assigned a timestamp after the sender process has incremented 

its clock due to IR1. If it is necessary to allow for propagation time for a message, then 
IR2 can be performed after performing the following step [5], 

If Cj[i] < tm[i} then Cj[i\ := tm[i] +d (d > 0) 

However, the above step is not necessary to relate events causally and hence, we do 
not make use of it in the following discussion. 
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Assertion. At any instant. 

Vi, Vj : Cm > C3 [i] 

The proof is obvious because no process P3 / Pi can have more up-to-date knowledge 

about the clock value of process i and clocks are monotonically nondecreasing. 

Example 5.5. Figure 5.5 illustrates an example of how clocks advance and the dis¬ 
semination of time occurs in a system using vector clocks {d is assumed to be 1 and 
all clock values are initially zero). 

Event en is an internal event in process P\ that causes Cr[l] to be incremented 
to 1 due to IR1. ei2 is a message send event in P\ which causes C\[l] to be incre¬ 
mented to 2 due to IR1. en is a message receive event in P2 that causes C2[2] to be 
incremented to 2 due to IR1, and C2[\] to be set to 2 due to IR2. e2\ is a send event 
in P2 which causes C*3[3] to be incremented to 1 due to IR1. Event e23, a receive 
event in P2, causes C2[l\ to be incremented to 3 due to IR1, and C2[3] to be set to 1 
due to IR2. e24 is a send event in P2 and en is the corresponding receive event. Note 
that C\ [3] is set to 1 due to IR2, and process P\ has learned that the local clock value 
at Pi is at least 1 through a message from P2. 

Vector timestamps can be compared as follows [16]. For any two vector time- 

stamps ta and tb of events a and b, respectively: 

Equal: ta = tb iff Vi, ta[i] = tb[i]-. 

Not Equal: ta / tb iff Eli, ta[i] 7^ tb\i]; 
Less Than or Equal: ta < tb iff Vi, ta[i] < tb[i]; 

Not Less Than or Equal To: ta £ tb iff 3i, ta[i] > tb[i]- 

Less Than: ta < tb iff (ta <tb A ta / tb)\ 

Not Less Than: ta it tb iff ~'(t a < tb A f/ tb); 

Concurrent: ta\\tb iff Cta it tb a tb it tay, 

Note that the relation “<” is a partial order. Elowever, the relation “||” is not a 

partial order because it is not transitive. 

CAUSALLY RELATED EVENTS. Events a and b are causally related, if ta < tb or 

tb <ta. Otherwise, these events are concurrent. 

Time 

FIGURE 5.5 
Dissemination of time in virtual 
clocks. 
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In the system of vector clocks, 

a -»• b iff ta < tb (5.5) 

Thus, the system of vector clocks allows us to order events and decide whether 

two events are causally related or not by simply looking at the timestamps of the 

events. If we know the processes where the events occur, the above test can be further 

simplified (see Problem 5.1). Note that an event e can causally affect another event e' 

(events en and e22 in Fig. 5.5 if there exists a path that propagates the (local) time 

knowledge of event e to event e' [16]. 
In the next section, we present an application of vector clocks for the causal 

ordering of messages. 

5.5 CAUSAL ORDERING OF MESSAGES 

The causal ordering of messages was first proposed by Birman and Joseph [9] and was 

implemented in ISIS. The causal ordering of messages deals with the notion of main¬ 

taining the same causal relationship that holds among “message send" events with the 

corresponding “message receive” events. In other words, if Send(M\) —* Send(M2) 

(where Send(M) is the event sending message M), then every recipient of both mes¬ 

sages Mi and M2 must receive Mi before M2. The causal ordering of messages should 

not be confused with the causal ordering of events, which deals with the notion of causal 

relationship among the events. In a distributed system, the causal ordering of messages 

is not automatically guaranteed. For example, Fig. 5.6 shows a violation of causal or¬ 

dering of messages in a distributed system. In this example, Send(M\) —► SendiMj). 

However, M2 is delivered before Ml to process P3. (The numbers circled indicate the 

correct causal order to deliver messages.) 

Techniques for the causal ordering of messages are useful in developing distributed 

algorithms and may simplify the algorithms themselves. For example, for applications 

such as replicated database systems, it is important that every process in charge of 

updating a replica receives the updates in the same order to maintain the consistency of 

the database [9], In the absence of causal ordering of messages, each and every update 

must be checked to ensure that it does not violate the consistency constraints. 

We next describe two protocols that make use of vector clocks for the causal order¬ 

ing of messages in distributed systems. The first protocol is implemented in ISIS [2], 

wherein the processes are assumed to communicate using broadcast messages. The 

Time 

FIGURE 5.6 
An example of the violation of causal 
ordering of messages. 
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second protocol does not require processes to communicate only through broadcast 

messages. Both protocols require that the messages be delivered reliably (lossless and 
uncorrupted). 

BASIC IDEA. The basic idea of both the protocols is to deliver a message to a process 

only if the message immediately preceding it has been delivered to the process. Other¬ 

wise, the message is not delivered immediately but is buffered until the message imme¬ 

diately preceding it is delivered. A vector accompanying each message contains the nec¬ 

essary information for a process to decide whether there exists a message preceding it. 

BIRMAN-SCHIPER-STEPHENSON PROTOCOL 

1. Before broadcasting a message m, a process Pi increments the vector time VTpi [?'] 

and timestamps m. Note that (VTpt[i] — 1) indicates how many messages from Pi 

precede m. 

2. A process P3 ^ Pi, upon receiving message m timestamped VTm from Pi, delays 

its delivery until both the following conditions are satisfied. 

a. VTP.[i] = VTrn[i\ - 1 

b. VTP.\k\ > Vl'mlk| Vfce{l,2,...,n}-{i} 
where n is the total number of processes. 

Delayed messages are queued at each process in a queue that is sorted by vector 

time of the messages. Concurrent messages are ordered by the time of their 

receipt. 

3. When a message is delivered at a process Pj, VTpj is updated according to the 

vector clocks rule IR2 (see Eq. 5.4). 

Step 2 is the key to the protocol. Step 2(a) ensures that process Pj has received 

all the messages from Pi that preceed m. Step 2(b) ensures that Pj has received all 

those messages received by Pi before sending m. Since the event ordering relation 

imposed by vector clocks is acyclic, the protocol is deadlock free. 

The Birman-Schiper-Stephenson causal ordering protocol requires that the pro¬ 

cesses communicate through broadcast messages. We next describe a protocol proposed 

by Schiper, Eggli, and Sandoz [20], which does not require processes to communicate 

only by broadcast messages. 

SCHIPER-EGGLI-SANDOZ PROTOCOL 

Data structures and notations. Each process P maintains a vector denoted by VIP of 

size (N — 1), where N is the number of processes in the system. An element of V-P is 

an ordered pair (P', t) where P' is the ID of the destination process of a message and 

t is a vector timestamp. The processes in the system are assumed to use vector clocks. 

The communication channels can be non-FIFO. The following notations are used in 

describing the protocol: 

• £m = logical time at the sending of message M. 

• tp. - present/current logical time at process Pi. 
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THE PROTOCOL 

Sending of a message M from process P1 to process P2 

• Send message M (timestamped £m) along with V-P\ to process P2. 

• Insert pair (P2, ^m) into V-P\. If V-P\ contains a pair (P2,t), it simply gets over¬ 

written by the new pair (P2, tM)- Note that the pair (P2, ^m) was not sent to P2. Any 

future message carrying the pair (P2, tM) cannot be delivered to P2 until tM < tp2. 

Arrival of a message M at process P2 

If V-M (the vector accompanying message M) does not contain any pair (P2, t) 
then the message can be delivered 

else (* A pair (Pz,t) exists in V-M *) 

If t tp2 then 

the message cannot be delivered (*it is buffered for later delivery*) 

else 

the message can be delivered. 

If message M can be delivered at process P2, then the following three actions are taken: 

1. Merge V-M accompanying M with V-P2 in the following manner: 

• If (3 (P,t) e V-M, such that P / P2) and (V(P',£) G VJA, P' 7^ P), then 

insert (P, t) into VIP2. This rule performs the following: if there is no entry for 

process P in VJP2, and V-M contains an entry for process P, insert that entry 

into V-P2. 
• VP, P 7^ P2, if ((P, t) G V-M) A ((P, t') G V-P2), then the algorithm takes the 

following actions: (P, t) G VIP2 can be substituted by the pair (P, £sup) where 

fsup is such that Vi,fSUp[«] = max(£[z], t'[i]). This rule is simply performing the 
step in Eq. 5.4 for each entry in V_P2. 

Due to the above two actions, the algorithm satisfies the following two 
conditions: 

a. No message can be delivered to P as long as t' < tp is not true. 

b. No message can be delivered to P as long as t < tp is not true. 

2. Update site P2N logical clock. 

3. Check for the buffered messages that can now be delivered since local clock has 
been updated. 

A pair (P, t) can be deleted from the vector maintained at a site after ensuring 

that the pair (P, t) has become obsolete (i.e., no longer needed) (see Problem 5.3). 

5.6 GLOBAL STATE 

We now address the problem of collecting or recording a coherent (consistent) global 

state in distributed systems, a challenging task due to the absence of a global clock and 
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shared memory. First, we reexamine the bank account example of Sec. 5.2 to develop 

the correctness criteria for a consistent global state recording algorithm. 

Figure 5.7 shows the stages of a computation when $50 is transferred from account 

A to account B. The communication channels Cl and C2 are assumed to be FIFO. 

Suppose the state of account A at site SI was recorded when the global state 

was 1 (see Fig. 5.7). Now assume that the global state changes to 2, and the state of 

communication channels Cl and C2 and of account B are recorded when the global 

state is 2. Then the composite of all the states recorded would show account A’s balance 

as $500, account B’s balance as $200, and a message in transit to transfer $50. In other 

words, an extra amount of $50 would appear in the global state. The reason for this 

inconsistency is that A’s state was recorded before the message was sent and the channel 

Cl’s state was recorded after the message was sent. Therefore, a recorded global state 

may be inconsistent if n < n' where n is the number of messages sent by A along 

GLOBAL STATE: I 

\ Cl TRANSFER $50 , 
( $450 $200 

C2:EMPTY 

S1:A S2:B 

GLOBAL STATE: 3 

FIGURE 5.7 
Global-states and their transitions in the 
bank accounts example. 
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the channel before A’s state was recorded and n' is the number of messages sent by A 

along the channel before the channel’s state was recorded. 

Suppose channels state were recorded when the global state was 1 and A and B’s 

states were recorded when the global state was 2. Then the composite of A, B. and the 

channels state will show a deficit of $50. This means that the recorded global state may 

be inconsistent if n > n'. Hence, a consistent global state requires 

n = n! (5.6) 

On similar lines, one can show that a consistent global state requires 

m — m! (5.7) 

where m! - number of messages received along the channel before account B’s state 

was recorded and m - number of messages received along the channel by B before the 

channel’s state was recorded. 

Since in no system the number of messages sent along the channel can be less 

than the number of messages received along that channel, we have 

rt > m (5.8) 

From Eqs. 5.6 and 5.8, we get 

n>m (5.9) 

Therefore, a consistent global state must satisfy Eq. 5.9 . In other words, the 

state of a communication channel in a consistent global state should be the sequence 

of messages sent along that channel before the sender’s state was recorded, excluding 

the sequence of messages received along that channel before the receiver's state was 
recorded [8]. 

The above observations result in a simple algorithm (described in Sec. 5.6.1) for 

recording a consistent global state. Before describing the algorithm, some definitions 
for formally describing a system state are given. 

Definitions 

LOCAL STATE. For a site (computer) Si, its local state at a given time is defined by 

the local context of the distributed application [7], Let LSi denote the local state of S{ 
at any time. 

Let sendirriij) denote the send event of a message by Si to Sj, and rec(ra^) 
denote the receive event of message my by site Sj. Let time(x) denote the time at 

which state x was recorded and timersend(m)) denote the time at which event send{m) 
occurred. 
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For a message rrnj sent by Si to Sj, we say that 

• send(rriij) £ LSi iff time{send{rriij)) < time(LSi). 

• rec(rriij) £ LSj iff time(rec(rriij)) < time(LSj). 

For the local states LSi and LSj of any two sites S',; and Sj, we define two sets of 

messages. These sets contain messages that were sent from site Si to site Sj. 

Transit: transit(LSi, LSj) = {rriij j sendirriij) £ LSi A rec(rriij) ^ LSj} 

Inconsistent: inconsistent(LSi, LSj) = {my | send(rriij) ^ LS{ A rec(my) £ 

GLOBAL STATE. A global state, GS1, of a system is a collection of the local states 

of its sites; That is, GS = {L5i, LS2,..., LSn} where n is the number of sites in the 

system. 
Note that any collection of local states of sites need not represent a consistent 

global state. Consistency has a connotation that for every effect or outcome recorded 

in a global state, the cause of the effect must also be recorded in the global state. We 

next give definitions characterizing global states. 

Consistent global state. A global state GS = {LSi, LS2, • • •, LSn} is consistent iff 

Mi,\/j : 1 < i,j < n :: inconsistent(LSi, LSj) = $ 

Thus, in a consistent global state, for every received message a corresponding send 

event is recorded in the global state. In an inconsistent global state, there is at least 

one message whose receive event is recorded but its send event is not recorded in the 

global state. In Fig. 5.8, the global state {LS12, LS23, LS33} and {LSn, LS22, LS32} 
correspond to consistent and inconsistent global states, respectively. 

Transitless global state. A global state is transitless if and only if 

Vi,Vj : 1 < i,j < n :: transit(LSi, LSj) — $ 

Thus, all communication channels are empty in a transitless global state. 

FIGURE 5.8 
Global states in a distributed 
computation. 
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Strongly consistent global state. A global state is strongly consistent if it is consistent 

and transitless. In a strongly consistent state, not only the send events of all the recorded 

received events are recorded, but the receive events of all the recorded send events are 

also recorded. Thus, a strongly consistent state corresponds to a consistent global state 

in which all channels are empty. In Fig. 5.8, the global state {LSn, LS21, LS31} is a 

strongly consistent global state. 

A note. While the definitions of this section are defined for a group of sites, they 

can also be applied to a group of cooperating processes by simply replacing sites with 

processes in the definitions. For instance, GS = {LS\, LS2, ■ ■., LSn} represents a 

global state of n cooperating processes, where LS{ is the local state of process P%. 

5.6.1 Chandy-Lamport’s Global State Recording Algorithm 

Chandy and Lamport [8] were the first to propose a distributed algorithm to capture a 

consistent global state. The algorithm uses a marker (a special message) to initiate the 

algorithm and the marker has no effect on the underlying computation. The communi¬ 

cation channels are assumed to be FIFO. The recorded global state is also referred to 
as a snapshot of the system state. 

Marker Sending Rule for a process P 

• P records its state. 

• For each outgoing channel C from P on which a marker has not been already sent, 

P sends a marker along C before P sends further messages along C. 

Marker Receiving Rule for a process Q. On receipt of a marker along a channel C: 

If Q has not recorded its state 
then 

begin 

Record the state of C as an empty sequence. 

Follow the “Marker Sending Rule.” 
end 

else 

Record the state of C as the sequence of messages received 

along C after Q's state was recorded and before Q received 
the marker along C. 

The role of markers in conjunction with FIFO channels is to act as delimiters for 

the messages in the channels so that the channel state recorded by the process at the 

receiving end of the channel satisfies the condition given by Eq. 5.9. A marker delineates 

messages into those that need to be included in the recorded state and those that are 

not to be recorded in the state. The global state recording algorithm can be initiated 

by any process by executing the marker sending rule. Also, the global state recording 
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algorithm can be initiated by several processes concurrently with each process getting 

its own version of a consistent global state. Each initiation needs its own unique marker 

(such as <process-id, sequence number>) and different initiations by a process can be 

distinguished by a local sequence number. A simple way to collect all the recorded 

information is for each process to send the information it recorded to the initiator of 

the recording process. The identification of the initiator process can be easily carried 

by the marker. 

A Note on the Collected Global State 

It is possible that the global state recorded by the above algorithm is not identical to 

any of the global states the system actually went through during the computation. This 

can happen because a site can change its state asynchronously before the markers sent 

by it are received by other sites. If the state changes while the markers are in transit, 

the composite of all the states recorded will not correspond to the state of the system 

at any instant of time. The question of the significance of the recorded global state if 

the system may have never passed through it arises. Before discussing the utility of a 

collected global state, we state a result from [8] without giving its proof. This result 

gives an important property of a collected global state. 
Suppose the algorithm is initiated when the system is in global state Si and it 

terminates when the system is in global state St. Let Sc denote the collected global state 

by the algorithm, and Seq denote the sequence of actions which take the system from 

state Si to St. Then, there exists a sequence Seq' that is a permutation of Seq such 

that Sc can be reached from Si by executing a prefix of Seq' and St can be reached 

from Sc by executing the rest of the actions in Seq' (see Fig. 5.9). 
The usefulness of the recorded global state lies in its ability to detect stable prop¬ 

erties (a stable property is one that persists) such as the termination of a computation 

and a deadlock among processes. Note that if a stable property holds before the record¬ 

ing algorithm begins execution, it continues to hold (unless resolved in the case of a 

deadlock), and will therefore be included in the recorded global state. 
Even though the global state recording algorithm can be used for termination 

detection, it is an expensive way of doing it. In Sec. 5.8 , we give an efficient algorithm 

for termination detection. 

Seq 

FIGURE 5.9 
A property of a collected global state. 
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5.7 CUTS OF A DISTRIBUTED COMPUTATION 

The notion of a cut captures a global state in a distributed computation. A cut is a 

graphical representation of a global state in the history of a distributed computation. A 

consistent cut is a graphical representation of a consistent global state in the history of 

a distributed computation. 

CUT. A cut of a distributed computation is a set C = {cj, C2,..., cn}, where C{ is 

the cut event at site Sl in the history of the distributed computation. 

Graphically, a cut is a zig-zig line that connects the corresponding cut events in 

the time-space diagram. For example, in Fig. 5.10, events ci, C2, C3, and C4 form a cut. 

If a cut event c* at site Si is Si’s local state at that instant, then clearly a cut 

denotes a global state of the system. 

CONSISTENT CUT. Let denote an event at site Sk- A cut C = {c\, C2, ■.., cn} 
is a consistent cut iff 

VSi,V$j, flei, flej such that (e* —> ej) A (ej —> Cj) A (e; /> Ci) 

where c* G C and c3 G C. 

That is, a cut is a consistent cut if every message that was received before a cut 

event was sent before the cut event at the sender site in the cut. For example, the cut 

in Fig. 5.10 is not consistent because the message sent by S2 is received before C3 but 

the corresponding send did not occur before event c2. That is, e -a- e',e' —> c3, and 
e /> c2. 

Theorem 5.1. A cut C = {ci, C2,..., cn}, is a consistent cut if and only if no two 
cut events are causally related, that is, V a V Cj :: —>(c* —► Cj) A —>{Cj —► Ci) [16]. 

Thus, a set of concurrent cut events form a consistent cut and vice versa. We will 

omit a detailed proof of this theorem, but will give the intuition behind it. A detailed 
proof can be found in [18]. 

Consider two events c\ and C2 in Fig. 5.11 which are not concurrent because 

cj —> C2. Clearly, ci and C2 do not lie on a consistent cut. On the other hand, if 

two events are concurrent, it implies that no message sent after one of them has been 

received before the other one. Thus, concurrent cut events form a consistent cut. 

52 

^4 FIGURE 5.10 
A cut. 
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FIGURE 5.11 
A cut where cut events are not concurrent. 

TIME OF A CUT. If each cut event is assigned a vector timestamp, then a cut in a 

distributed computation can be assigned a timestamp in the following manner: 

If C = {ci, C2,..., cn} is a cut, where c* is a cut event at site Si with vector 

timestamp VTCi, then the vector time of the cut, VTC, is defined as follows: 

VTC = sup (VTCI, VTC2,... ,VTCn) 

where sup is a componentwise maximum operation. That is, 

VTc[i] = max(VTCl[i],VTC2[i],...,VTCn[i]). 

Theorem 5.2. If C = {ci, C2,..., cn} is a cut with a vector time VTC, then the cut 
is consistent iff 

VTC = (VTC] [1], VTc2[2], ..., VTCn[ri]) 

Proof. If C is a consistent cut, then from the previous theorem, events ci, C2,..., cn 
are concurrent. In other words, VzVj, c%\i| > Cj[i\. Therefore, 

sup(VTC], VTC2,...,VTCn) = (VTC1[ 1], VTCl[2],..., VTcJn]) 

For sufficiency, note that VTC = (VTCl [1], VTCl[2],..., VTCn[n]) implies that no 
message sent after a cut event d has been received before another cut event Cj. Thus, 
cut events ci, ca,..., cn form a consistent cut. □ 

5.8 TERMINATION DETECTION 

A distributed computation generally consists of a set of cooperating processes which 

communicate with each other by exchanging messages. In the case of a distributed com¬ 

putation, it is important to know when the computation has terminated. The problem 

of termination detection arises in many distributed algorithms and computations. For 

example, how to determine when an election, a deadlock detection, a deadlock resolu¬ 

tion, or a token generating algorithm has terminated. Termination detection, in fact, is 

an example of the usage of the coherent view (consistent global state) of a distributed 

system. A large number of algorithms have been developed for termination detection. 

In this section, we present the termination detection algorithm proposed by Huang [8]. 

SYSTEM MODEL. A process may either be in an active state or idle state. Only 

active processes can send messages. An active process may become idle at any time. 

An idle process can become active on receiving a computation message. Computation 

messages are those that are related to the underlying computation being performed by 
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the cooperating processes. A computation is said to have terminated if and only if all 

the processes are idle and there are no messages in transit. The messages sent by the 

termination detection algorithm are referred to as control messages. 

BASIC IDEA. One of the cooperating processes monitors the computation and is 

called the controlling agent. Initially all processes are idle, the controlling agent’s weight 

equals 1, and the weight of the rest of the processes is zero. The computation starts when 

the controlling agent sends a computation message to one of the processes. Any time 

a process sends a message, the process’s weight is split between itself and the process 

receiving the message (the message carries the weight for the receiving process). The 

weight received along with a message is added to the weight of the process. Thus, 

the algorithm assigns a weight W (0 < W < 1) to each active process (including the 

controlling agent) and to each message in transit. The weights assigned are such that, at 

any time, they satisfy an invariant W = 1. On finishing the computation, a process 

sends its weight to the controlling agent, which adds the received weight to its own 

weight. When the weight of the controlling agent is once again equal to 1, it concludes 

that the computation has terminated. 

NOTATIONS. The following notations are used in the algorithm: 

• B(DW) = Computation message sent as a part of the computation and DW is the 

weight assigned to it. 

• C{DW) = Control message sent from the processes to the controlling agent and 

D W is the weight assigned to it. 

Huang’s Termination Detection Algorithm 

Rule 1. The controlling agent or an active process having weight W may send a 

computation message to a process P by doing: 

Derive W\ and W2 such that 

Wi + W2 = W, Wi >0, W2 > 0; 

W := Wi; 
Send B(W2) to P; 

Rule 2. On receipt of B(DW), a process P having weight W does: 

W W + DW; 
If P is idle, P becomes active; 

Rule 3. An active process having weight W may become idle at any time by 
doing: 

Send C(W) to the controlling agent; 

W := 0; 

(The process becomes idle); 
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Rule 4. On receiving C(DW), the controlling agent having weight W takes the 
following actions: 

W := W + DW\ 
If W = 1, conclude that the computation has terminated. 

PROOF OF CORRECTNESS. Let 

A : The set of weights of all the active processes. 

B : The set of weights of all the computation messages in transit. 

C : The set of weights of all the control messages in transit. 

Wc : Weight of the controlling agent. 

The following Pi and P2 are the invariants. 

Pi : Wc + W = 1 
We(AUBUC) 

P2: VWe(AUBUC), W > 0 
Hence, 

wc = 1 => w = 0 by Pi 
we(AuBuc) 

J2 W — 0 =>; (AU B UC) = 4> by P2 
we(AuBuC) 

(A U B U C) = (f) =>- (A U B) = 0 

(AUP) = 0 implies the termination of computation by definition. We can verify 

that the algorithm never detects a false termination as follows: 

(A U B) = 0 =}► Wc + W = 1 by pi 
wee 

Since the message transmission delay is finite, eventually Wc = 1. Therefore, the 

algorithm detects every true termination in finite time. 

The above algorithm can be extended to dynamic systems where an active process 

may spawn off another active process or may migrate from one site to another. When 

one process creates another, its weight can be split as in Rule 1 and the two resulting 

weights can be assigned to the creating and the created processes. 

An efficient scheme to implement the system of weights is presented in [8], This 

scheme can generate a large number of weights while maintaining the invariants. The 

details of the implementation of the scheme of weights are beyond the scope of this 

book and the reader is referred to [8]. 
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5.9 SUMMARY 

Two basic characteristics of a distributed system—the absence of global time and the 

absence of shared memory—were the main focus of this chapter. Two schemes, namely, 

Lamport’s logical clocks and vector clocks to order events in a distributed system and 

their usefulness in designing distributed algorithms were discussed. Through a simple 

bank account example, it was shown how difficult it is to reason about the (global) 

state of a system in the absence of shared memory and perfectly synchronized clocks. 

The notion of a cut was introduced, which graphically represents a global state. We 

then described two algorithms for collecting a global state. While Chandy-Lamport’s 

algorithm can collect a consistent global state, the algorithm of Sec. 5.8 was tailored 

to deal with the termination detection problem. 

5.10 FURTHER READING 

Algorithms for distributed computation are difficult to debug, as the events of the 

computation are occurring at different computers and affect the system state differently 

depending on the order in which they occur. Vector clocks can aid in the debugging of 

distributed computations since they provide an effective way to decide in which order 

events occurred, and hence, an effective way to reason about the dependencies of events 

and their outcomes on one another [4]. 
A major drawback of the algorithms’ causal ordering of messages (Sec. 5.5) is 

that they do not work in the case of communication failures. A rollback mechanism 

can overcome this problem [20]. The above problem is also dealt with in the fault 

tolerant schemes implemented in ISIS [1] and in the Time-Warp mechanism proposed 

by Jefferson [9]. Jefferson states that for a correct implementation of virtual time, 

it is necessary and sufficient that messages be handled in timestamp order at each 

process. Time warp mechanism includes an elegant rollback mechanism to handle out 

of timestamp order message arrivals. Other related works include [19, 21]. 

The global state recording algorithm (Sec. 5.6.1) requires FIFO communication 

channels to record consistent global states. Li, Radhakrishnan, and Venkatesh [14] and 

Lai and Yang [11] have proposed a scheme to record consistent global state when the 

communication channels are non-FIFO. Spezialetti and Kearns [22] have proposed an 

efficient way to collect local state information to form global states. 

Distributed breakpoints is a concept related to consistent system state. Fowler and 

Zwaenepoel [6] and Miller and Choi [17] have discussed breakpoints for distributed 

systems and proposed algorithms for obtaining breakpoints in distributed systems. 

Algorithms for termination detection is a well researched topic. A comprehensive 

list of references for termination detection algorithms can be found in [15]. An appli¬ 

cation of the termination detection algorithm (Sec. 5.8) can be found in a deadlock 

detection algorithm proposed by Kshemkalyani and Singhal [10]. 

PROBLEMS 

5.1. How can Eq. 5.5 in Sec. 5.4 be simplified if we know the processes where events 
occur? 
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5.2. If each process uses a different value for d in Eqs. 5.1, 5.2, and 5.3, will the logical 
clocks and vector clocks schemes satisfy the total order relation =b and Eq. 5.5? 

5.3. In the algorithm for the causal ordering of messages, when can a pair (s, t) be deleted 
from the vector maintained at a site? 

5.4. What effect does a communication failure have on a system using the two algorithms 
for the causal ordering of messages? 

5.5. If a site S has to broadcast message M to a set of sites, will the causal ordering 
algorithm work properly without modification? If your answer is yes, justify your 
answer. If your answer is no, then give the necessary modifications to the causal 
ordering algorithm? 

5.6. Modify the global-state recording algorithm to record global-state in a non-FIFO 
communication environment. State any assumptions that you make. 

5.7. Consider a distributed system where each node has its own clock. Assume that all the 
clocks in the system are perfectly synchronized. Also, assume that the communication 
network is reliable. Give an algorithm for recording the global state. Note that your 
algorithm should be simpler than the Chandy-Lamport algorithm. 
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CHAPTER 

6 
DISTRIBUTED 

MUTUAL 
EXCLUSION 

6.1 INTRODUCTION 

In the problem of mutual exclusion, concurrent access to a shared resource by several 

uncoordinated user-requests is serialized to secure the integrity of the shared resource. It 

requires that the actions performed by a user on a shared resource must be atomic. That 

is, if several users concurrently access a shared resource then the actions performed by a 

user, as far as the other users are concerned, must be instantaneous and indivisible such 

that the net effect on the shared resource is the same as if user actions were executed 

serially, as opposed to in an interleaved manner. 
The problem of mutual exclusion frequently arises in distributed systems whenever 

concurrent access to shared resources by several sites is involved. For correctness, it is 

necessary that the shared resource be accessed by a single site (or process) at a time. 

A typical example is directory management, where an update to a directory must be 

done atomically because if updates and reads to a directory proceed concurrently, reads 

may obtain inconsistent information. If an entry contains several fields, a read operation 

may read some fields before the update and some after the update. Mutual exclusion 

is a fundamental issue in the design of distributed systems and an efficient and robust 

technique for mutual exclusion is essential to the viable design of distributed systems. 
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Mutual exclusion in single-computer systems vs. distributed 
systems 

The problem of mutual exclusion in a single-computer system, where shared memory 

exists, was studied in Chap. 2. In single-computer systems, the status of a shared 

resource and the status of users is readily available in the shared memory, and solutions 

to the mutual exclusion problem can be easily implemented using shared variables (e.g., 

semaphores). However, in distributed systems, both the shared resources and the users 

may be distributed and shared memory does not exist. Consequently, approaches based 

on shared variables are not applicable to distributed systems and approaches based on 

message passing must be used. 

The problem of mutual exclusion becomes much more complex in distributed 

systems (as compared to single-computer systems) because of the lack of both shared 

memory and a common physical clock and because of unpredictable message delays. 

Owing to these factors, it is virtually impossible for a site in a distributed system to 

have current and complete knowledge of the state of the system. 

6.2 THE CLASSIFICATION OF MUTUAL EXCLUSION 
ALGORITHMS 

Over the last decade, the problem of mutual exclusion has received considerable at¬ 

tention and several algorithms to achieve mutual exclusion in distributed systems have 

been proposed. They tend to differ in their communication topology (e.g., tree, ring, 

and any arbitrary graph) and in the amount of information maintained by each site 

about other sites. These algorithms can be grouped into two classes. The algorithms in 

the first class are nontoken-based, e.g., [4, 9, 10, 16, 19]. These algorithms require two 

or more successive rounds of message exchanges among the sites. These algorithms 

are assertion based because a site can enter its critical section (CS) when an assertion 

defined on its local variables becomes true. Mutual exclusion is enforced because the 
assertion becomes true only at one site at any given time. 

The algorithms in the second class are token-based, e.g., [11, 14, 20, 21, 22], In 

these algorithms, a unique token (also known as the PRIVILEGE message) is shared 

among the sites. A site is allowed to enter its CS if it possesses the token and it continues 

to hold the token until the execution of the CS is over. These algorithms essentially 
differ in the way a site carries out the search for the token. 

In this chapter, we describe several distributed mutual exclusion algorithms and 

compare their features and performance. We discuss relationship among various mutual 
exclusion algorithms and examine trade offs among them. 

6.3 PRELIMINARIES 

We now describe the underlying system model and requirements that mutual exclusion 

algorithms should meet. We also introduce terminology that is used in describing the 
performance of mutual exclusion algorithms. 
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SYSTEM MODEL. At any instant, a site may have several requests for CS. A site 

queues up these requests and serves them one at a time. A site can be in one of the 

following three states: requesting CS, executing CS, or neither requesting nor executing 

CS (i.e., idle). In the requesting CS state, the site is blocked and cannot make further 

requests for CS. In the idle state, the site is executing outside its CS. In the token-based 

algorithms, a site can also be in a state where a site holding the token is executing 

outside the CS. Such a state is refered to as an idle token state. 

6.3.1 Requirements of Mutual Exclusion Algorithms 

The primary objective of a mutual exclusion algorithm is to maintain mutual exclusion; 

that is, to guarantee that only one request accesses the CS at a time. In addition, the 

following characteristics are considered important in a mutual exclusion algorithm: 

Freedom from Deadlocks. Two or more sites should not endlessly wait for mes¬ 

sages that will never arrive. 

Freedom from Starvation. A site should not be forced to wait indefinitely to 

execute CS while other sites are repeatedly executing CS. That is, every requesting site 

should get an opportunity to execute CS in a finite time. 

Fairness. Fairness dictates that requests must be executed in the order they are 

made (or the order in which they arrive in the system). Since a physical global clock 

does not exist, time is determined by logical clocks. Note that fairness implies freedom 

from starvation, but not vice-versa. 

Fault Tolerance. A mutual exclusion algorithm is fault-tolerant if in the wake of 

a failure, it can reorganize itself so that it continues to function without any (prolonged) 

disruptions. 

6.3.2 How to Measure the Performance 

The performance of mutual exclusion algorithms is generally measured by the following 

four metrics: First, the number of messages necessary per CS invocation. Second, the 

synchronization delay, which is the time required after a site leaves the CS and before 

the next site enters the CS (see Fig. 6.1). Note that normally one or more sequential 

message exchanges are required after a site exits the CS and before the next site enters 

the CS. Third, the response time, which is the time interval a request waits for its CS 

execution to be over after its request messages have been sent out (see Fig. 6.2). Thus, 

response time does not include the time a request waits at a site before its request 

messages have been sent out. Fourth, the system throughput, which is the rate at which 

the system executes requests for the CS. If sd is the synchronization delay and E is the 

average critical section execution time, then the throughput is given by the following 

equation: 

system throughput = 1 /(sd + E) 
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Last site 
exits CS 

Next site 
enters CS 

time FIGURE 6.1 
Synchronization delay. delay 

LOW AND HIGH LOAD PERFORMANCE. Performance of a mutual exclusion al¬ 
gorithm depends upon the loading conditions of the system and is often studied under 
two special loading conditions, viz., low load and high load. Under low load condi¬ 
tions, there is seldom more than one request for mutual exclusion simultaneously in 
the system. Under high load conditions, there is always a pending request for mutual 
exclusion at a site. Thus, after having executed a request, a site immediately initiates 
activities to let the next site execute its CS. A site is seldom in an idle state under high 
load conditions. For many mutual exclusion algorithms, the performance metrics can 
be easily determined under low and high loads through simple reasoning. 

BEST AND WORST CASE PERFORMANCE. Generally, mutual exclusion algo¬ 
rithms have best and worst cases for the performance metrics. In the best case, prevail¬ 
ing conditions are such that a performance metric attains the best possible value. For 
example, in most algorithms the best value of the response time is a round-trip message 
delay plus CS execution time, 2T + E (where T is the average message delay and E 
is the average critical section execution time). 

Often for mutual exclusion algorithms, the best and worst cases coincide with low 
and high loads, respectively. For example, the best and worst values of the response 
time are achieved when the load is, respectively, low and high. The best and the 
worse message traffic is generated in Maekawa’s algorithm [10] at low and high load 
conditions, respectively. When the value of a performance metric fluctuates statistically, 
we generally talk about the average value of that metric. 

Its request 
CS Request messages 

arrives sent out 
The site enters 
theCS 

The site exits 
the CS 

FIGURE 6.2 
Response time. 
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6.4 A SIMPLE SOLUTION TO DISTRIBUTED MUTUAL 
EXCLUSION 

In a simple solution to distributed mutual exclusion, a site, called the control site, is 

assigned the task of granting permission for the CS execution. To request the CS, a site 

sends a REQUEST message to the control site. The control site queues up the requests 

for the CS and grants them permission, one by one. This method to achieve mutual 

exclusion in distributed systems requires only three messages per CS execution. 

This naive, centralized solution has several drawbacks. First, there is a single point 

of failure, the control site. Second, the control site is likely to be swamped with extra 

work. Also, the communication links near the control site are likely to be congested and 

become a bottleneck. Third, the synchronization delay of this algorithm is 2T because 

a site should first release permission to the control site and then the control site should 

grant permission to the next site to execute the CS. This has serious implications for 

the system throughput, which is equal to 1/(2T + E) in this algorithm. Note that if 

the synchronization delay is reduced to T, the system throughput is almost doubled 

to 1/(T + E). We later discuss several mutual exclusion algorithms that reduce the 

synchronization delay to T at the cost of higher message traffic. 

6.5 NON-TOKEN-BASED ALGORITHMS 

In non-token-based mutual exclusion algorithms, a site communicates with a set of other 

sites to arbitrate who should execute the CS next. For a site Si, request set Ri contains 

ids of all those sites from which site Si must acquire permission before entering the CS. 

Next, we discuss some non-token-based mutual exclusion algorithms which are good 

representatives of this class. 
Non-token-based mutual exclusion algorithms use timestamps to order requests 

for the CS and to resolve conflicts between simultaneous requests for the CS. In all 

these algorithms, logical clocks are maintained and updated according to Lamport’s 

scheme [9]. Each request for the CS gets a timestamp, and smaller timestamp requests 

have priority over larger timestamp requests. 

6.6 LAMPORT’S ALGORITHM 

Lamport was the first to give a distributed mutual exclusion algorithm as an illustration 

of his clock synchronization scheme [9]. In Lamport’s algorithm, Vi: 1 < i < N :: Ri = 

{<>1, S2, Sjsr}. Every site Si keeps a queue, request.queuei, which contains mutual 

exclusion requests ordered by their timestamps. This algorithm requires messages to be 

delivered in the FIFO order between every pair of sites. 

The Algorithm 

Requesting the critical section. 

1. When a site Si wants to enter the CS, it sends a REQUESTS, i) message to all 

the sites in its request set R% and places the request on request .queuei- ((tsi, i) is 

the timestamp of the request.) 
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2. When a site Sj receives the REQUESTCs^, i) message from site Si, it returns a 

timestamped REPLY message to St and places site St ’ s request on request.queuej. 

Executing the critical section. Site Si enters the CS when the two following conditions 

hold: 

[LI:] Si has received a message with timestamp larger than (tsi, i) from all other sites. 

[L2:] Si s request is at the top of request.queuei. 

Releasing the critical section. 

3. Site Si, upon exiting the CS, removes its request from the top of its request queue 

and sends a timestamped RELEASE message to all the sites in its request set. 

4. When a site Sj receives a RELEASE message from site Si, it removes Si’s request 
from its request queue. 

When a site removes a request from its request queue, its own request may come 

at the top of the queue, enabling it to enter the CS. The algorithm executes CS requests 
in the increasing order of timestamps. 

Correctness 

Theorem 6.1. Lamport’s algorithm achieves mutual exclusion. 

Proof: The proof is by contradiction. Suppose two sites St and Sj are executing 
the CS concurrently. For this to happen, conditions LI and L2 must hold at both 
the sites concurrently. This implies that at some instant in time, say t, both Sl and 
Sj have their own requests at the top of their request-queues and condition LI 
holds at them. Without a loss of generality, assume that Sf s request has a smaller 
timestamp than the request of Sj. Due to condition LI and the FIFO property of 
the communication channels, it is clear that at instant t, the request of 5, must be 
present in request.queuej, when S3 was executing its CS. This implies that Sj’s own 
request is at the top of its own request.queue when a smaller timestamp request. 
Si s request, is present in the request.queue j—a contradiction! Hence, Lamport’s 
algorithm achieves mutual exclusion. □ 

Example 6.1. In Fig. 6.3 through Fig. 6.6, we illustrate the operation of Lamport’s 
algorithm. In Fig. 6.3, sites Si and S3 are making requests for the CS and send out 
REQUEST messages to other sites. The timestamps of the requests are (2, 1) and (1, 
2), respectively. In Fig. 6.4, S2 has received REPLY messages from all the other sites 
and its request is at the top of its request.queue. Consequently, it enters the CS. In 
Fig. 6.5, S2 exits and sends RELEASE messages to all other sites. In Fig. 6.6, site S\ 
has received REPLY messages from all other sites and its request is at the top of its 
request.queue, Consequently, it enters the CS next. 
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PERFORMANCE. Lamport’s algorithm requires 3(N—l) messages per CS invocation: 

(N—l) REQUEST, (N — 1) REPLY, and (N — 1) RELEASE messages. Synchronization 

delay in the algorithm is T. 

AN OPTIMIZATION. Lamport’s algorithm can be optimized to require between 

3(N — 1) and 2(N — 1) messages per CS execution by suppressing REPLY messages 

FIGURE 6.3 
Sites Si and S2 are making requests for the CS. 

FIGURE 6.4 
Site S2 enters the CS. 

FIGURE 6.5 
Site S2 exits the CS and sends RELEASE messages. 
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Sj enters the 
critical section 

FIGURE 6.6 
Site S\ enters the CS. 

in certain situations. For example, suppose site Sj receives a REQUEST message from 

site Si after it has sent its own REQUEST message with timestamp higher than the 

timestamp of site Si s request. In this case, site Sj need not send a REPLY message to 

site Si. This is because when site Si receives site Sj's request with a timestamp higher 

than its own, it can conclude that site Sj does not have any smaller timestamp request 

that is still pending (because the communication medium preserves message ordering). 

6.7 THE RICART-AGRAWALA ALGORITHM 

The Ricart-Agrawala algorithm [16] is an optimization of Lamport's algorithm that 

dispenses with RELEASE messages by cleverly merging them with REPLY messages. 

In this algorithm also, Vi : 1 < i < N :: Ri = (S), S2, ... , Sn}- 

The Algorithm 

Requesting the critical section. 

1. When a site Si wants to enter the CS, it sends a timestamped REQUEST message 
to all the sites in its request set. 

2. When site Sj receives a REQUEST message from site Si, it sends a REPLY message 

to site Si if site Sj is neither requesting nor executing the CS or if site Sj is 

requesting and Si's request’s timestamp is smaller than site Sj's own request’s 
timestamp. The request is deferred otherwise. 

Executing the critical section 

3. Site Si enters the CS after it has received REPLY messages from all the sites in its 
request set. 

Releasing the critical section 

4. When site Si exits the CS, it sends REPLY messages to all the deferred requests. 
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A site’s REPLY messages are blocked only by sites that are requesting the CS with 

higher priority (i.e., a smaller timestamp). Thus, when a site sends out REPLY messages 

to all the deferred requests, the site with the next highest priority request receives the 

last needed REPLY message and enters the CS. The execution of CS requests in this 

algorithm is always in the order of their timestamps. 

CORRECTNESS 

Theorem 6.2. The Ricart-Agrawala algorithm achieves mutual exclusion. 

Proof: The proof is by contradiction. Suppose two sites St and Sj are executing the 
CS concurrently and S/ s request has a higher priority (i.e., a smaller timestamp) than 
the request of Sj. Clearly, St received Sj’s request after it had made its own request. 
(Otherwise, S/ s request would have lower priority.) Thus, Sj can concurrently execute 
the CS with Si only if Si returns a REPLY to Sj (in response to Sj’s request) before 
Si exits the CS. However, this is impossible because S/s request has lower priority. 
Therefore, the Ricart-Agrawala algorithm achieves mutual exclusion. □ 

In the Ricart-Agrawala algorithm, for every requesting pair of sites, the site with 

higher priority request will always defer the request of the lower priority site. At any 

time, only the highest priority request succeeds in getting all the needed REPLY mes¬ 

sages. 

Example 6.2. Figures 6.7 through 6.10 illustrate the operation of the Ricart-Agrawala 
algorithm. In Fig. 6.7, sites Si and S2 are making requests for the CS, sending out 
REQUEST messages to other sites. The timestamps of the requests are (2, 1) and (1, 
2), respectively. In Fig. 6.8, S2 has received REPLY messages from all other sites 
and consequently, it enters the CS. In Fig. 6.9, S2 exits the CS and sends a REPLY 
mesage to site Si. In Fig. 6.10, site Si has received REPLY messages from all other 
sites and enters the CS next. 

PERFORMANCE. The Ricart-Agrawala algorithm requires 2(N— 1) messages per CS 

execution: (N - 1) REQUEST and (N - 1) REPLY messages. Synchronization delay 

in the algorithm is T. 

AN OPTIMIZATION. Roucairol and Carvalho [4] proposed an improvement to the 

Ricart-Agrawala algorithm by observing that once a site Si has received a REPLY 

message from a site Sj, the authorization implicit in this message remains valid until Sj 

FIGURE 6.7 
Sites Si and S2 are making requests for 
the CS. time 
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enters the 
critical section 

FIGURE 6.8 
Site S2 enter the CS. 

FIGURE 6.9 
Site S2 exits the CS and sends RELEASE messages. 

Sj enters the 

critical section 

FIGURE 6.10 
Site S1 enters the CS. 

sends a REPLY message to Sj (which happens only after the reception of a REQUEST 

message from Sj). Therefore, after site Si has received a REPLY message from site Sj, 
site Si can enter its CS any number of times without requesting permission from site Sj 
until Si sends a REPLY message to Sj. With this change, a site in the Ricart-Agrawala 

algorithm requests permission from a dynamically varying set of sites and requires 0 
to 2(N — 1) messages per CS execution. 
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6.8 MAEKAWA’S ALGORITHM 

Maekawa’s algorithm [10] is a departure from the general trend in the following two 

ways: First, a site does not request permission from every other site, but only from a 

subset of the sites. This is a radically different approach as compared to the Lamport 

and the Ricart-Agrawala algorithms, where all sites participate in the conflict resolution 

of all other sites. In Maekawa’s algorithm, the request set of sites are chosen such that 

Vi Vj : 1 < i,j < TV :: Ri n Rj / 4>. Consequently, every pair of sites has a site that 

mediates conflicts between that pair. Second, in Maekawa’s algorithm a site can send 

out only one REPLY message at a time. A site can only send a REPLY message only 

after it has received a RELEASE message for the previous REPLY message. Therefore, 

a site Si locks all the sites in Ri in exclusive mode before executing its CS. 

THE CONSTRUCTION OF REQUEST SETS. The request sets for sites in Maekawa’s 

algorithm are constructed to satisfy the following conditions: 

Ml: (Vi Vj : i ± j, 1 < i, j < N :: R, n Rj / <j>) 

M2: (Vi : 1 < i < N :: Sz € R*) 

M3: (Vi : l < i < N :: \R,\ = K) 

M4: Any site Sj is contained in K number of Rts, 1 < i, j < N. Maekawa 

established the following relation between N and K: N = K(K — 1) + 1. This relation 

gives \Ri\ = y/N. 

Since there is at least one common site between the request sets of any two sites 

(condition Ml), every pair of sites has a common site that mediates conflicts between 

the pair. A site can have only one outstanding REPLY message at any time; that is, it 

grants permission to an incoming request if it has not granted permission to some other 

site. Therefore, mutual exclusion is guaranteed. This algorithm requires the delivery of 

messages to be in the order they are sent between every pair of sites. 

Conditions Ml and M2 are necessary for correctness, whereas conditions M3 and 

M4 provide other desirable features to the algorithm. Condition M3 states that the size 

of the request sets of all the sites must be equal, implying that all sites should have to 

do an equal amount of work to invoke mutual exclusion. Condition M4 enforces that 

exactly the same number of sites should request permission from any site, implying 

that all sites have equal responsibility in granting permission to other sites. 

The Algorithm 

Maekawa’s algorithm works in the following manner: 

Requesting the critical section. 

1. A site Si requests access to the CS by sending REQUEST(i) messages to all the 

sites in its request set Ri. 
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2. When a site Sj receives the REQUEST(z) message, it sends a REPLYQ) mes¬ 

sage to Si provided it hasn’t sent a REPLY message to a site from the time it 

received the last RELEASE message. Otherwise, it queues up the REQETEST for 

later consideration. 

Executing the critical section. 

3. Site Si accesses the CS only after receiving REPLY messages from all the sites in 

Rt- 

Releasing the critical section. 

4. After the execution of the CS is over, site St sends RELEASE^) message to all 

the sites in Ri. 

5. When a site Sj receives a RELEASE(i) message from site S\, it sends a REPLY 

message to the next site waiting in the queue and deletes that entry from the queue. 

If the queue is empty, then the site updates its state to reflect that the site has not 

sent out any REPLY message. 

CORRECTNESS 

Theorem 6.3. Maekawa’s algorithm achieves mutual exclusion. 

Proof: The proof is by contradiction. Suppose two sites Sz and Sj are concurrently 
executing the CS. If Ri C Rj = {5fc}, then site Sk must have sent REPLY messages 
to both Si and Sj concurrently, which is a contradiction. □ 

PERFORMANCE. Note that the size of a request set is \/~N. Therefore, the execution 

of a CS requires \/~N REQUEST, y/N REPLY, and \^N RELEASE messages, resulting 

in 3yfN messages per CS execution. Synchronization delay in this algorithm is IT. As 

discussed next, Maekawa’s algorithm is deadlock-prone. Measures to handle deadlocks 

require additional messages. 

THE PROBLEM OF DEADLOCKS. Maekawa's algorithm is prone to deadlocks 

because a site is exclusively locked by other sites and requests are not prioritized by 

their timestamps [10, 17]. Without the loss of generality, assume three sites Si, Sj, 
and Sk simultaneously invoke mutual exclusion. (Suppose Rj n Rj— {*SV/}, Rj n Rk— 

{Sjk}, and Rk Cl Ri= {Ski}.) Since sites do not send REQUEST messages to the sites 

in their request sets in any particular order, it is possible that due to arbitrary message 

delays, Sj3 has been locked by Si (forcing Sj to wait at 5,-y), Sjk has been locked by 

Sj (forcing Sk to wait at Sjk), and Ski has been locked by Sk (forcing Si to wait at 

Ski) resulting in a deadlock involving the sites Si, Sj, and Sk- 

HANDLING DEADLOCKS. Maekawa’s algorithm handles deadlocks by requiring a 

site to yield a lock if the timestamp of its request is larger than the timestamp of some 
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other request waiting for the same lock (unless the former has succeeded in locking all 

the needed sites) [10, 17]. A site suspects a deadlock (and initiates message exchanges 

to resolve it) whenever a higher priority request finds that a lower priority request 

has already locked the site. Deadlock handling requires the following three types of 
messages: 

FAILED. A FAILED message from site Si to site S3 indicates that Si cannot 

grant Sj ’ s request because it has currently granted permission to a site with a higher 
priority request. 

INQUIRE. An INQUIRE message from Si to Sj indicates that Si would like to 

find out from Sj if it has succeeded in locking all the sites in its request set. 

YIELD. A YIELD message from site Si to Sj indicates that St is returning the 

permission to Sj (to yield to a higher priority request at Sj). 

Details of the deadlock handling steps are as follows: 

• When a REQUEST(ts, i) from site Si blocks at site Sj because Sj has currently 

granted permission to site Sk, then Sj sends a FAILED (j) message to Si if Sj’s 
request has lower priority. Otherwise, Sj sends an INQUIREQ) message to site Sk- 

• In response to an INQUIRE (j) message from site Sj, site Sk sends a YIELD(A;) 

message to Sj, provided, Sk has received a FAILED message from a site in its 

request set or if it sent a YIELD to any of these sites, but has not received a new 

GRANT from it. 

• In response to a YIELD(k) message from site Sk, site Sj assumes it has been 

released by Sk, places the request of Sk at the appropriate location in the request 

queue, and sends a GRANT(j) to the top request’s site in the queue. 

Thus, Maekawa-type algorithms require extra messages to handle deadlocks and 

may exchange these messages even though there is no deadlock. The maximum number 

of messages required per CS execution in this case is 5 \/N. 

6.9 A GENERALIZED NON-TOKEN-BASED ALGORITHM 

Sanders gave a generalized non-token-based mutual exclusion algorithm for distributed 

systems [17] and all the existing non-token-based mutual exclusion algorithms are 

special cases of this algorithm. The concept of information structure forms the basis 

for unifying different non-token-based mutual exclusion algorithms. 

6.9.1 Information Structures 

The information structure of a mutual exclusion algorithm defines the data structure 

needed at a site to record the status of other sites. The information kept in the infor¬ 

mation structure is used by a site in making decisions (i.e., from which sites to request 

permission) when invoking mutual exclusion. 
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The information structures at a site Sz consists of the following three sets: a 

request set Ri, an inform set R, and a status set SR. These sets consist of the ids of 

the sites of the system. A site must acquire permission from all the sites in its request 

set before entering CS. Every site must inform all the sites in its inform set of its status 

change due to the wait to enter the CS and due to the exit from the CS. The status 

set SR contains the ids of sites for which maintains status information. Note that 

the inform set and the status set are dependent on each other. The contents of one is 

decided by the contents of the other. If Si G Ij => Sj G Sti. 
A site also maintains a variable CSSTAT, which indicates the site’s knowledge of 

the status of the CS. Every site maintains a queue which contains REQUEST messages, 

in the order of their timestamps, for which no GRANT message has been sent. 

CORRECTNESS CONDITION. To guarantee mutual exclusion, the information struc¬ 

ture of sites in the generalized algorithm must satisfy the conditions given by the fol¬ 

lowing theorem [17]: 

Theorem 6.4. If Vi : 1 < i < N:: Si G R, then the following two conditions are 
necessary and sufficient to guarantee mutual exclusion: 

Gl: Vi : 1 < i < N :: R C Ri 

G2: VAQ : 1 < i, j < N :: (R n R R <f>) V (Sl G R3 A S3 G RR 

The correctness condition G2 states that for every pair of sites, either they request 
permission from each other or they request permission from a common site (which 
maintains the status information of both). 

6.9.2 The Generalized Algorithm 

In the generalized algorithm, each request for a CS is assigned a timestamp that is main¬ 

tained according to Lamport’s scheme [9], Timestamps are used to prioritize requests 
in case of conflicts. 

Requesting the critical section. 

1. To execute CS, a site sends timestamped REQUEST messages to all the sites in its 
request set. 

2. On the receipt of a REQUEST message, a site Si takes the following actions: 

• It places the request in its queue (which is ordered by timestamps). 

• If CSSTAT indicates that the CS is free, then it sends a GRANT message to the 

site at the top of the queue and removes its entry from the queue. If the recipient 

of the GRANT message is in SR, then CSSTAT is set to indicate that the site is 
in CS. 
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Executing the critical section. 

3. A site executes the CS only after it has received a GRANT message from all the 

sites in its request set. 

Releasing the critical section. 

4. On exiting the CS, the site sends a RELEASE message to every site in its inform 

set. On receiving a RELEASE message, a site Si takes the following actions: 

• CSSTAT is set to free. 

• If its queue is nonempty, then it sends a GRANT message to the site at the top of 

the queue and removes its entry from the queue. If the recipient of the GRANT 

message is in Sti, then CSSTAT is set to indicate that the site is in the CS. 

• The previous action is repeated until CSSTAT indicates that a site is in the CS 

or its queue becomes empty. 

The proof of correctness is quite involved and is therefore omitted. Interested 

readers are encouraged to refer to the original paper [17]. 

DISCUSSION OF THE GENERALIZED ALGORITHM. The generalized algorithm 

combines the strategies of the Ricart-Agrawala algorithm [16] and Maekawa’s [10] al¬ 

gorithm. In both these algorithms, a site invoking mutual exclusion acquires permission 

from a set of sites. However, the semantics of permission are very different in both the 

algorithms. In the Ricart-Agrawala algorithm, a site can grant permission to many sites 

simultaneously. A site grants permission to a requesting site immediately if it is not 

requesting the CS or its own request has lower priority. Otherwise, it defers granting 

permission until its execution of the CS is over. The Semantics of granting permission 

in this algorithm is essentially, “As far as I am concerned, it is OK for you to enter the 

CS. ” A site handles a REQUEST message to take care of its mutual exclusion with 

respect to all other sites. 
In Maekawa’s algorithm, a site can grant permission only to one site at a time. A 

site grants permission to a site only if it has not currently granted permission to another 

site. Otherwise, it delays granting permission until the currently granted permission has 

been released. Thus, acquiring permission is like locking the site in the exclusive mode. 

The semantics of granting permission in this algorithm is “As far as all the sites in my 

status set are concerned, it is OK for you to enter the CS. ” Thus, a site Si handles a 

REQUEST message so that the requesting site can have mutual exclusion with respect 

to sites in Sfs status set. By granting permission to a site, the site guarantees that no 

other sites in its status set can execute the CS concurrently. 
In the generalized algorithm, a site Si acquires permission of the Maekawa type 

from all the sites in its inform set f, and acquires permission of the Ricart-Agrawala 

type from all the sites in set Rr - f. In response to a REQUEST message, a site 

Sj sends Maekawa type permission to sites in its status set and sends Ricart-Agrawala 

type permission to all the other sites. After a site has granted Maekawa type permission, 

it cannot grant permission to any other site unless it has been released. However, in 

the generalized algorithm a site can concurrently grant many Ricart-Agrawala type 

permissions preceding a Maekawa type permission. 
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If the first predicate of correctness condition G2 is false for all Si and Sj, then the 

resulting algorithm of the Ricart-Agrawala type. If the second predicate of condition 

G2 is false for all Si and Sj, then the resulting algorithm is of the Maekawa type. If 

the first predicate is true for some sites and the second predicate is true for other sites, 

then the resulting algorithm is a generalized mutual exclusion algorithm. 

Example 6.3. Figure 6.11 illustrates three mutual exclusion algorithms in terms of 
their information structures [17]. A solid arrow from Si to Sj indicates that Sj G h 
and Sj G R,. A dashed arrow from Si to Sj indicates that Sj G Rt and Sj & A- Fig¬ 
ure 6.11(a) shows the information structure of a mutual exclusion algorithm in which 
a single site, Si, controls entry into the CS [3]. Figure 6.11(b) shows the informa¬ 
tion structure of a mutual exclusion algorithm where every site requests permission 
of every other site to enter the CS and a site maintains information about its own 
status. An example of such an algorithm is the Ricart-Agrawala algorithm [16]. Fig¬ 
ure 6.11(c) shows the information structure of Maekawa’s mutual exclusion algorithm 
with 4 sites. Note that in this case, the request set and the inform set of every site is 
identical and Vi Vj : i ^ j, 1 < i, j < 4 :: R( n Rj ± cf). 
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6.9.3 Static vs. Dynamic Information Structures 

Non-token-based mutual exclusion algorithms can be classified as either static or dy¬ 

namic information structure algorithms. In static information structure algorithms, the 

contents of request sets, inform sets, and status sets remain fixed and do not change as 

sites execute CS. Examples of such algorithms are Lamport’s [9], Maekawa’s [10], and 

Ricart-Agrawala’s [16] algorithms. In dynamic information structure algorithms, the 

contents of these sets change as the sites execute CS. Examples of such algorithms are 

found in [4] and [19], The design of dynamic information structure mutual exclusion 

algorithms is much more complex because it requires rules for updating the informa¬ 

tion structure such that the conditions for mutual exclusion are always satisfied. This 

is the reason that most mutual exclusion algorithms for distributed systems have static 
information structures. 

6.10 TOKEN-BASED ALGORITHMS 

In token-based algorithms, a unique token is shared among all sites. A site is allowed 

to enter its CS if it possesses the token. Depending upon the way a site carries out 

its search for the token, there are numerous token-based algorithms. Next, we discuss 

some representative token-based mutual exclusion algorithms. 

Before we start with the discussion of token-based algorithms, two comments are 

in order: First, token-based algorithms use sequence numbers instead of timestamps. 

Every request for the token contains a sequence number and the sequence numbers 

of sites advance independently. A site increments its sequence number counter every 

time it makes a request for the token. A primary function of the sequence numbers is to 

distinguish between old and current requests. Second, a correctness proof of token-based 

algorithms to ensure that mutual exclusion is enforced is trivial because an algorithm 

guarantees mutual exclusion so long as a site holds the token during the execution of 

the CS. Rather, the issues of freedom from starvation and freedom from deadlock are 

prominent. 

6.11 SUZUKI-KASAMI’S BROADCAST ALGORITHM 

In the Suzuki-Kasami’s algorithm [21], if a site attempting to enter the CS does not 

have the token, it broadcasts a REQUEST message for the token to all the other sites. A 

site that possesses the token sends it to the requesting site upon receiving its REQUEST 

message. If a site receives a REQUEST message when it is executing the CS, it sends 

the token only after it has exited the CS. A site holding the token can enter its CS 

repeatedly until it sends the token to some other site. 
The main design issues in this algorithm are: (1) distinguishing outdated RE¬ 

QUEST messages from current REQUEST messages and (2) determining which site 

has an outstanding request for the CS. 
Outdated REQUEST messages are distinguished from current REQUEST mes¬ 

sages in the following manner: A REQUEST message of site Sj has the form RE- 

QUEST(j, n) where n (n = 1,2,...) is a sequence number that indicates that site Sj is 

requesting its nth CS execution. A site St keeps an array of integers RNi[ 1..N] where 
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RNi\j] is the largest sequence number received so far in a REQUEST message from 

site Sj. A REQUEST(j, n) message received by site Si is outdated if f?A^j[j] > n. 

When site Si receives a REQUEST(j, n) message, it sets 7?AQ[j]: = max(itCVj[j], n). 

Sites with outstanding requests for the CS are determined in the following manner: 

The token consists of a queue of requesting sites, Q, and an array of integers LN[1..N] 

where LN[j] is the sequence number of the request that site Sj executed most recently. 

After executing its CS, a site Si updates LN[i]:=iT/Vj[i] to indicate that its request 

corresponding to sequence number iTZVj[i] has been executed. The token array LN[1..N] 

permits a site to determine if some other site has an outstanding request for the CS. 

Note that at site Si if RNi{]] = LN[j]+l, then site Sj is currently requesting the token. 

After having executed the CS, a site checks this condition for all the j’s to determine 

all the sites that are requesting the token and places their ids in queue Q if not already 

present in this queue Q. Then the site sends the token to the site at the head of the 

queue Q. 

The Algorithm 

Requesting the critical section 

1. If the requesting site Si does not have the token, then it increments its sequence 

number, RNi[i], and sends a REQUEST(i, sn) message to all other sites, (sn is 

the updated value of i?,7Vj[iJ.) 

2. When a site Sj receives this message, it sets RNj[i] to max(f?Af,[i]. sn). If Sj has 

the idle token, then it sends the token to Si if RNj [i]=LN[i]+l. 

Executing the critical section. 

3. Site Si executes the CS when it has received the token. 

Releasing the critical section. Having finished the execution of the CS, site St takes 
the following actions: 

4. It sets LN[i] element of the token array equal to _R_/Vt[i]. 

5. For every site Sj whose ID is not in the token queue, it appends its ID to the token 
queue if i?^[j]=LN[j]+l. 

6. If token queue is nonempty after the above update, then it deletes the top site ID 

from the queue and sends the token to the site indicated by the ID. 

Thus, after having executed its CS, a site gives priority to other sites with out¬ 

standing requests for the CS (over its pending requests for the CS). The Suzuki-Kasami 

algorithm is not symmetric because a site retains the token even if it does not have a 

request for the CS, which is contrary to the spirit of Ricart and Agrawala’s definition 

of a symmetric algorithm: “no site possesses the right to access its CS when it has not 
been requested. ” 
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CORRECTNESS 

Theorem 6.5. A requesting site enters the CS in finite time. 

Proof: Token request messages of a site Si reach other sites in finite time. Since one 
of these sites will have the token in finite time, site Si s request will be placed in the 
token queue in finite time. Since there can be at most A — 1 requests in front of this 
request in the token queue, site Si will execute the CS in finite time. □ 

PERFORMANCE. The beauty of the Suzuki-Kasami algorithm lies in its simplicity 

and efficiency. The algorithm requires 0 or A messages per CS invocation. Synchro¬ 

nization delay in this algorithm is 0 or T. No message is needed and the synchronization 

delay is zero if a site holds the idle token at the time of its request. 

6.12 SINGHAL’S HEURISTIC ALGORITHM 

In Singhal’s token-based heuristic algorithm [20], each site maintains information about 

the state of other sites in the system and uses it to select a set of sites that are likely to 

have the token. The site requests the token only from these sites, reducing the number 

of messages required to execute the CS. It is called a heuristic algorithm because sites 

are heuristically selected for sending token request messages. 

When token request messages are sent only to a subset of sites, it is necessary that 

a requesting site sends a request message to a site that either holds the token or is going 

to obtain the token in the near future. Otherwise, there is a potential for deadlocks or 

starvation. Thus, one design requirement is that a site must select a subset of sites such 

that at least one of those sites is guaranteed to get the token in near future. 

DATA STRUCTURES. A site Si maintains two arrays, viz., SVi[\ ..N] and ,SAi[l..N], 

to store the information about sites in the system. These arrays store the state and the 

highest known sequence number for each site, respectively. Similarly, the token contains 

two such arrays as well (denoted by TSV[1..N] and TSN[1..N]). Sequence numbers are 

used to detect outdated requests. A site can be in one of the following states: 

7Z —requesting the CS 

£ —executing the CS 

Ti —holding the idle token 

J\f —none of the above 

The arrays are initialized as follows: 

For every site Si, i = 1 ... A do 
N for j= A... i; S’U[j]:= U for j= i-1 ...1; 

SNi\j]:= 0 for j = 1 ... A} 
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Initially, site Si is in state 7i (i.e., [1] := 7i). 

For the token 

{TSV[j]:= J\f and TSN[j]:= 0 for j= 1 ... TV} 

Note that arrays SV[1..N] of sites are initialized such that for any two sites 5} 

and Sj, either SVi\}] = 7Z or SVj[i] = 71. Since the heuristic selects every site that is 

requesting the CS according to local information (i.e., the SV array), for any two sites 

that are requesting the CS concurrently, one will always send a token request message 

to the other. This ensures that sites are not isolated from each other and a site’s request 

message reaches a site that either holds the token or is going to get the token in near 

future. 

The Algorithm 

Requesting the critical section 

1. If the requesting site Si does not have the token, then it takes the following actions: 

• It sets <S'ki[i]:= 7Z. 

• It increments <S'7V^[i]:=1S'A7j[i] + 1. 

• It sends REQUESTS, sn) message to all sites Sj for which SV;[j] - 7Z. (sn is 

the updated value of SN{[i].) 

2. When a site Sj receives the REQUEST(i, sn) message, it discards the message if 

SNj[i] > sn because the message is out dated. Otherwise, it sets SNj[i] to ‘sn’ 

and takes the following actions based on its own state: 

• SVj[j]=Af: Set SVj[i]:= 71. 

• SVj[j]=TZ: If SVj[i\^n, then set SVj[i]:=7Z and send a REQUEST(j, SNj[j]) 
message to Si (else do nothing). 

• SVj[j]=S: Set SVj[i]:= 71. 

• SVj[j]=7i: Set 5Fj[i]:= 7Z, TSV[iJ:= TZ, TSN[iJ:= sn, [j]:= M. and send the 
token to site Si. 

Executing the critical section 

3. Si executes the CS after it has received the token. Just before entering the CS, St 

sets S'V)[iJ to S. 

Releasing the critical section 

4. Having finished the execution of the CS, site Si sets SVj[i]:= J\f and TSV[i]:= Af, 

and updates its local and token vectors in the following way: 
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For all Sj, j= 1 to N do 

if SN^] > TSN[j] 
then 

(* update token information from local information *) 

{TSVfj]:= SViUJ; TSN[j]:= SN&j]} 
else 

(* update local information from token information *) 

{Smi-= TSVjj]; SNi\j]:= TSN[j]} 

5. If (Vj :: 5,Fi[j]=A/'), then set SVi[i]:=7i, else send the token to a site Sj such that 
SVi\j]=TZ. 

The fairness of the algorithm depends upon the degree of fairness with which a 

site is selected for receiving the token, after a site is finished with the execution of 

its CS. Ideally, the token should not be granted to a site twice or more, while other 

sites are waiting for the token. Two arbitration rules to ensure fairness in scheduling 

the token among requesting sites are proposed in [20], 

EXPLANATION. When a site requests access to the critical section, it sends request 

messages to all the sites which, according to its local state information, are also currently 

requesting the CS. The central idea behind the algorithm is that a site’s request for the 

token reaches a site that has the token even though the site does not send request 

messages to all sites. This is a consequence of the following two factors: (1) How state 

vectors are initialized and updated and (2) How the sites are selected to send token 

request messages. 

A site updates its state information (arrays SN and SV) from the request mes¬ 

sages it receives from other sites and from the information in the token that it receives 

for critical section access. A site Si sets SVifj] to 1Z when it receives a current request 

message from site Sj or when it receives the token, which has more up-to-date infor¬ 

mation about site Sj and TSV[j]= 1Z. Site Si sets SFjJj] to J\f when it receives the 

token, which has more up-to-date information about site Sj and TSV[i]=A/\ Note that 

if at site Sx, S7V)[j] > TSN[j], then site Si has more up-to-date information about site 

Sj, otherwise the token has more up-to-date information about site Sj. Since a site does 

not send request messages to all sites in the system and a site does not send messages 

to cancel its request messages, the token plays an important role in the dissemination 

of system state information. 

CORRECTNESS 

Theorem 6.6. A requesting site enters the CS in finite time. 

Proof: Even though a requesting site does not send token request messages to all 
other sites, its token request message reaches a site that has the token in finite time. 
(The proof of this is very complicated and is therefore omitted. Interested readers are 
referred to [20].) When this site updates the token vector, entry for the requesting site 
is set to 7Z and consequently, the requesting site gets the token in finite time. □ 
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PERFORMANCE. A salient feature of this algorithm is that a site can access the 

critical section without communicating with every site in the system. In low to moderate 

loads, the average message traffic is N/2 because each site sends REQUEST messages 

to half the sites on average. It increases to N at high loads as most sites will be 

requesting the CS (which is reflected at site S{ by S,Vi[j]= 7Z for most j s). The 

synchronization delay in this algorithm is T. An interesting feature of this algorithm 

is that it adapts itself to the environment of nonuniform traffic of CS requests and 

to statistical fluctuations in the traffic of CS requests to further reduce the number of 

messages exchanged. 
The algorithm does not have any additional message overhead for the dissemina¬ 

tion of state information, except for a slightly larger token message (which is passed 

comparatively infrequently). Since entries in the token state array (TSV) are either 7Z 

or J\T, this array can be a binary array. 

6.13 RAYMOND’S TREE-BASED ALGORITHM 

In Raymond’s tree-based algorithm [14], sites are logically arranged as a directed tree 

such that the edges of the tree are assigned directions toward the site (root of the tree) 

that has the token. Every site has a local variable holder that points to an immediate 

neighbor node on a directed path to the root node. Thus, holder variables at the sites 

define logical tree structure among the sites. If we follow holder variables at sites, 

every site has a directed path leading to the site holding the token. At root site, holder 

points to itself. An example of a tree configuration is shown in Fig. 6.12. 

Every site keeps a FIFO queue, called request.q, which stores the requests of 

those neighboring sites that have sent a request to this site, but have not yet been sent 

the token. 

The Algorithm 

Requesting the critical section 

1. When a site wants to enter the CS, it sends a REQUEST message to the node along 

the directed path to the root, provided it does not hold the token and its request 

FIGURE 6.12 
Sites arranged in a tree configuration. 



DISTRIBUTED MUTUAL EXCLUSION 143 

is empty. It then adds its request to its request-q. (Note that a nonempty request-q 

at a site indicates that the site has sent a REQUEST message to the root node for 

the top entry in its request_q.) 

2. When a site on the path receives this message, it places the REQUEST in its 

request-q and sends a REQUEST message along the directed path to the root 

provided it has not sent out a REQUEST message on its outgoing edge (for a 

previously received REQUEST on its request-q). 

3. When the root site receives a REQUEST message, it sends the token to the site 

from which it received the REQUEST message and sets its holder variable to point 

at that site. 

4. When a site receives the token, it deletes the top entry from its request-q, sends 

the token to the site indicated in this entry, and sets its holder variable to point at 

that site. If the request-q is nonempty at this point, then the site sends a REQUEST 

message to the site which is pointed at by holder variable. 

Executing the critical section 

5. A site enters the CS when it receives the token and its own entry is at the top of its 

request-q. In this case, the site deletes the top entry from its request-q and enters 

the CS. 

Releasing the critical section. After a site has finished execution of the CS, it takes 

the following actions: 

6. If its request-q is nonempty, then it deletes the top entry from its request-q, sends 

the token to that site, and sets its holder variable to point at that site. 

7. If the request-q is nonempty at this point, then the site sends a REQUEST message 

to the site which is pointed at by the holder variable. 

CORRECTNESS. The algorithm is free from deadlocks because the acyclic nature of 

tree configuration eliminates the possibility of circular wait among requesting sites. We 

next show that the algorithm is free from starvation. 

Theorem 6.7. A requesting site enters the CS in finite time. 

Proof: A formal correctness proof is long and complex. Thus, an informal correctness 
proof is provided. For a formal proof, readers are referred to the original paper [14]. 

The essence of proof is based on the following two facts: (1) a site serves 
requests in its request-q in the FCFS order and (2) every site has a path leading to 
the site that has the token. Due to the latter fact and Step 2 of the algorithm, when a 
site Si is making a request, there exists a chain of requests from site Si to site Sh, 
which holds the token. Let the chain be denoted by Si, Sn, Si2, ..., Sik-i, Sik, Sh- 
When Sh receives a REQUEST message from Sik, it sends the token to Sik- There 
are two possibilities: Sik—i’s request is at the top of Sik s request-q or it is not at 
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the top. In the first case, Sik sends the token to site Sik-1- In the second case, Sik 
sends the token to the site, say Sj, at the top of its request-q and also sends it a 
REQUEST message (see Step 4 of the algorithm). This extends the chain of requests 
to Si, Sii, Si2, ..., Sik-1, Sik, Sj, ..., Si, where site Si executes the CS next. Note 
that due to fact (1) above, all the sites in the chain Sj, ..., Si will execute the CS at 
most once before the token is returned to site Sik■ Thus, site Sik sends the token to 
Sik-1 in finite time. Likewise, Sik-i sends the token to Sik-2 in finite time and so 
on. Eventually, Si 1 sends the token to Si. Consequently, a requesting site eventually 
receives the token. □ 

Example 6.4. In Fig. 6.13, site S5 sends a REQUEST message to S2, which propa¬ 
gates it to the root S\. Root Si sends the token to S2 which in turn sends the token 
to S5 (Fig. 6.14). The token travels along the same path traveled by the REQUEST 
message (but in the opposite direction) and it also reverses the direction of the edges 
on the path. Consequently, the site that executes the CS last becomes the new root. 
(See Fig. 6.15.) 

S 1 

S 
4 J S6 

FIGURE 6.13 
Site S5 is requesting the token. 

S1 

S 
4 5 

FIGURE 6.14 
The token is in transit to S5. 
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s V C s FIGURE 6.15 
4 j 6 7 State after S$ has received the token. 

PERFORMANCE. The average message complexity of Raymond’s algorithm is 0(log 

N) because the average distance between any two nodes in a tree with N nodes is 0(log 

N). Synchronization delay in this algorithm is (T log N)/2 because the average distance 

between two sites to successively execute the CS is (log N)/2. 
Raymond’s algorithm can use greedy strategy, where a site receiving the token 

executes the CS even though its request is not at the top of its request.q. It is important 

to note that in heavy loads, the synchronization delay in this case becomes T because 

a site executes the CS every time the token is transferred. Needless to say, the greedy 

strategy has an adverse effect on the fairness of the algorithm and can cause starvation. 

6.14 A COMPARATIVE PERFORMANCE ANALYSIS 

In this section, we present a performance comparison among various mutual exclusion 

algorithms. Table 6.1 summarizes the response time, the number of messages required, 

and synchronization delay for mutual exclusion algorithms discussed in this chapter. 

6.14.1 Response Time 

At low loads, there is hardly any contention among requests for the CS. Therefore, the 

response time under low load conditions for many algorithms is simply a round trip 

message delay (= 2T) to acquire permission or token plus the time to execute the CS 

(= E). In Raymond’s algorithm, the average distance between a requesting site and the 

site holding the token is (log N)/2. Thus, the average round trip delay to acquire the 

token is T(log N). 
As the load is increased, response time increases in all mutual exclusion algorithms 

because contention for access to the CS increases. Different algorithms see different 

increases in response time with respect to load. A closed form expression of response 

time as a function of load is not known for these algorithms. The response time under 

heavy load conitions is discussed in Sec. 6.14.4 (see Table 6.2 under “Maximum average 

response time”). 
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TABLE 6.1 

A comparison of performance (ll = light load, hi = heavy load) 

NON-TOKEN Resp. time (ll) Sync Delay Messages (ll) Messages (hi) 

Lamport 2 T+E T 3 (N - 1) 3 (TV - 1) 

Ricart-Agrawala 2 T+E T 2(TV - 1) 2(TV - 1) 

Maekawa 2 T+E 2 T 3 y/N 5 y/N 

TOKEN Resp. time (ll) Sync Delay Messages (ll) Messages (hi) 

Suzuki and Kasami 2 T+E T N N 

Singhal’s Heuristic 2 T+E T N/2 N 

Raymond T(log N)+E T log(iV)/2 log (N) 4 

6.14.2 Synchronization Delay 

Recall from Sec. 6.3.2 that the synchronization delay is the delay due to the sequential 

message exchanges required after a site leaves the CS and before the next site enters 

the CS. In many of algorithms, a site exiting the CS directly sends a REPLY message 

or the token to the next site to enter the CS, resulting in a synchronization delay of 

T. Maekawa’s algorithm has a synchronization delay of 2T because a site exiting the 

CS unlocks an arbiter site (by sending it a RELEASE message) and then the arbiter 

site sends a GRANT message to the next site to enter the CS (thus, subject to two 

serial message delays). In Raymond’s algorithm, two sites that consecutively execute 

the CS can be located at any position in the tree. The token propagates serially along 

the edges in the tree to the site to enter the CS next. Since the average distance between 

two nodes in a typical tree with N nodes is (log N)/2, the synchronization delay in 

this algorithm is T(log N)/2. However, when structure-based token algorithms (such as 

Raymond [14]) use a greedy strategy, synchronization delay in heavy loads becomes T. 

6.14.3 Message Traffic 

The Lamport’s, Ricart-Agrawala, and Suzuki-Kasami algorithms respectively require 

3*(N - 1), 2*{N - 1), and N messages per CS execution, irrespective of the load. 

In other algorithms, the number of messages needed depends upon the load and is 
discussed below: 

Light Load. Raymond’s algorithm requires log N messages per CS execution. 

This is because a request for a token must travel along the edges of the tree from the 

requester node to the root node and the token must travel back from the root node to the 

requester node. Note that the average distance between the root and a node in a typical 

tree with N nodes is (log N)/2. Singhal’s heuristic algorithm requires N/2 message per 
CS execution under light load conditions. 

Heavy Load. In Raymond’s algorithm, message traffic decreases as load increases 

due to the sharing of request messages at high loads—when a site receives a request 
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message from another site, it does not forward it if it has already sent a request mes¬ 

sage. Under heavy load conditions, message traffic in Singhal’s heuristic algorithm 

degenerates to that in the Suzuki-Kasami algorithm and requires N messages per CS 
execution. 

LOAD NONUNIFORMLY DISTRIBUTED OVER SITES. When the rate of CS re¬ 

quests is nonuniformly distributed over sites, Singhal’s heuristic algorithm [20] has the 

potential to substantially reduce the message traffic by adapting to the prevailing system 

state. Likewise, piggybacking and greedy strategies can substantially reduce message 

traffic in Raymond’s algorithm [14] provided requests for the CS are localized to a few 

neighboring sites. For example, with these strategies, the message traffic in Raymond’s 

algorithm under heavy load conditions is four messages per CS execution. 

6.14.4 Universal Performance Bounds 

Due to their idiosyncrasies, different mutual exclusion algorithms have widely vary¬ 

ing performance characteristics. Nevertheless, we can determine universal performance 

bounds for mutual exclusion algorithms. These bounds depend upon system character¬ 

istics, not upon any particular mutual exclusion algorithm. In Table 6.2, we summarize 

these bounds. 

6.15 SUMMARY 

The problem of distributed mutual exclusion has received considerable attention over 

the last decade. In this chapter, a common framework has been provided with which to 

TABLE 6.2 

Universal performance bounds 

Metrics Bound Explanation 

Minimum synchronization 
delay 

T At least one message has to be 
transferred before the next site 
can receive the notification of 
permission to enter the CS. 

Maximum throughput 1/(T+E) The minimum time interval between 
two successive CS execution is T+E. 

Minimum response time 2 T+E One round trip message delay 
to acquire permission or the token 
plus time to execute the CS. 

Maximum average 
response time 

N(T+E) This occurs at heavy loads (when all 
sites always have pending requests). 
Note that system executes requests at 
a rate r = 1 /(T+E). From Little’s Law, 
response time = N/r = N(T+E). 
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analyze several significant distributed mutual exclusion algorithms. These algorithms 

have been summarized and their features and performance compared. 
Token-based mutual exclusion algorithms are in general more message-efficient 

than non-token-based mutual exclusion algorithms—a single token message is returned 

instead of individual reply messages from a number of sites. Thus, the token can be 

viewed as all the reply messages lumped together. While a general theory exists to 

unify all non-token-based mutual exclusion algorithms, no such unifying theme exists 

for token-based mutual exclusion algorithms. It has been found that, in general, al¬ 

gorithms that make decisions based on the current state of the system (e.g., [20]) are 

more efficient. Universal performance bounds (due to physical limitations of the system 

parameters) for mutual exclusion algorithms have been discussed. 

In general, there is a tradeoff between speed and message complexity in mutual 

exclusion algorithms. There is no single algorithm that can optimize both speed and 

message complexity. Future research on the design of efficient mutual exclusion algo¬ 

rithms should focus on hybrid mutual exclusion algorithms that combine the advantages 

of two mutual exclusion algorithms to provide improved performance in both speed and 

message complexity. 

6.16 FURTHER READING 

In recent years, there has been burgeoning growth in the literature on distributed mutual 

exclusion. Taxonomy on distributed mutual exclusion can be found in [15] and [18]. A 

large number of structure-based token algorithms have appeared in the last several years. 

Distinct examples are mutual exclusion algorithms by Bemabeu-Auban and Ahamad 

[2], Helary et al. [7], Naimi and Trehel [11], and Neilsen and Mizuno [12]. Nishio et 

al. [13] present a technique for the generation of a unique token in case of a token loss. 

A dynamic information structure mutual exclusion algorithm is given by Singhal [19]. 

Van-de-Snepscheut [22] extends tree-based algorithms to handle a connected network of 

any topology (i.e., graphs). Due to network topology, such an algorithm is fault-tolerant 

to site and link failures. Goscinski [6] has presented two mutual exclusion algorithms 

for real-time distributed systems. 

Coterie based mutual exclusion algorithms, which are a generalization of Maeka- 

wa’s VTV algorithm, have attracted considerable attention of late. Barbara and Garcia- 

Molina [5] and Ibaraki and Kameda [8] have discussed theoretical aspects of coteries. 

Agrawal and El Abbadi [1] presented a coterie algorithm for mutual exclusion that 

generates coteries from a tree configuration of sites. 

PROBLEMS 

6.1. In Lamport’s algorithm, condition LI can hold concurrently at several sites. Why then 
is LI needed to guarantee mutual exclusion? 

6.2. Show that in Lamport’s algorithm if a site Si is executing the critical section, then 
S'i’s request need not be at the top of the request-queue at another site Sj. Is this 
still true when there are no messages in transit? 
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6.3. Maekawa’s mutual exclusion algorithm gives the impression that message complexity 

of a distributed mutual exclusion can be 0{VN) instead of O(N), as in many other 
mutual exclusion algorithms. Discuss how Maekawa’s algorithm fundamentally differs 
from other algorithms and what problems it poses. 

6.4. What is the purpose of a REPLY message in Lamport’s algorithm? Note that a site 
need not necessarily return a REPLY message in response to a REQUEST message. 
State the condition under which a site does not have to return a REPLY message. 
Also, give the new message complexity per critical section execution in this case. 

6.5. Show that in the Ricart-Agrawala algorithm, the critical section is accessed accord¬ 
ing to the increasing order of timestamps. Does the same hold true in Maekawa’s 
algorithm? 

6.6. Mutual exclusion can be achieved in the following simple way in a distributed sys¬ 
tem (called the centralized mutual exclusion algorithm): Every site, when it receives 
a request to access the shared resource from users, sends the request to the site which 
contains the resource. This site executes the requests using any classical method for 
mutual exclusion (e.g., semaphores). Discuss what prompted Lamport’s mutual exclu¬ 
sion algorithm even though it requires many more messages (3(iV — 1) as compared 
to only 3). 

6.7. Show that in Lamport’s algorithm the critical section is accessed according to the 
increasing order of timestamps. 
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CHAPTER 

7 
DISTRIBUTED 

DEADLOCK 
DETECTION 

7.1 INTRODUCTION 

A distributed system is a network of sites that exchange information with each other 

by message passing. A site consists of computing and storage facilities and interface 

to local users and a communication network. In distributed systems, a process can 

request and release resources (local or remote) in any order, which may not be known 

a priori and a process can request some resources while holding others. If the sequence 

of the allocation of resources to processes is not controlled in such environments, 

deadlocks can occur. In this chapter, we study deadlock handling strategies in distributed 

systems. Several deadlock detection techniques based on various control organizations 

are described. Pros and cons of these techniques are discussed and their performance 

is compared. 

7.2 PRELIMINARIES 

7.2.1 The System Model 

In Chap. 3, the problem of deadlocks in centralized systems under a very general system 

model was discussed. Conditions for deadlocks and methods to handle deadlocks in 

various special cases were discussed. The problem of deadlocks has been generally 

studied in distributed systems under the following model: 

151 
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• The systems have only reusable resources. 

• Processes are allowed only exclusive access to resources. 

• There is only one copy of each resource. 

A process can be in two states: running or blocked. In the running state (also 

called the active state), a process has all the needed resources and is either executing 

or is ready for execution. In the blocked state, a process is waiting to acquire some 

resources. 

7.2.2 Resource vs. Communication Deadlocks 

Two types of deadlocks have been discussed in the literature: resource deadlock and 

communication deadlock. In resource deadlocks, processes can simultaneously wait for 

several resources and cannot proceed until they have acquired all those resources. A set 

of processes is resource-deadlocked if each process in the set requests resources held 

by another process in the set and it must receive all of the requested resources before 

it can become unblocked. 
In communication deadlocks [5], processes wait to communicate with other proce- 

ses among a set of processes. A waiting process can unblock on receiving a communica¬ 

tion from any one of these processes. A set of processes is communication-deadlocked 

if each process in the set is waiting to communicate with another process in the set 

and no process in the set ever initiates any further communication until it receives 

the communication for which it is waiting. Note that a “wait to communicate” can be 

viewed as a “wait to acquire a resource”. Thus, the communication model is the same 

as the OR request model discussed in Chap. 3. 

7.2.3 A Graph-Theoretic Model 

As in Chap. 3, the state of process-resource interaction in distributed systems can be 

modeled by a bi-partite directed graph called a resource allocation graph. The nodes of 

this graph are processes and resources of a system, and the edges of the graph depict 

assignments or pending requests. A pending request is represented by a request edge 

directed from the node of a requesting process to the node of the requested resource. 

A resource assignment is represented by an assignment edge directed from the node of 

an assigned resource to the node of the assigned process. A system is deadlocked if 

its resource allocation graph contains a directed cycle or a knot. (A knot is defined in 
Chap. 3.) 

Wait-For Graphs 

In distributed systems, the system state can be modeled or represented by a directed 

graph, called a wait-for graph (WFG). In a WFG, nodes are processes and there is a 

directed edge from node P\ to node P2 if Pi is blocked and is waiting for P2 to release 

some resource. A system is deadlocked if and only if there is a directed cycle or knot 

(depending upon the underlying model) in the WFG. 
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In distributed database systems (DDBS), users access the data objects of the 

database by executing transactions. A transaction can be viewed as a process that 

performs a sequence of reads and writes on the data objects. The data objects of a 

database can be viewed as resources that are acquired (through locking) and released 

(through unlocking) by transactions. In DDBS literature, a wait-for graph is referred 

to as a transaction-wait-for graph (TWF graph) [22]. In a TWF graph, nodes are 

transactions and there is a directed edge from node T\ to node T2 if T\ is blocked and 

is waiting for X? to release some resource. A system is deadlocked if and only if there 

is a directed cycle or a knot in its TWF graph. 

7.3 DEADLOCK HANDLING STRATEGIES IN 
DISTRIBUTED SYSTEMS 

Recall from Chap. 3 that there are three strategies to handle deadlocks, viz., deadlock 

prevention, deadlock avoidance, and deadlock detection. Note that deadlock handling 

is complicated to implement in distributed systems because no one site has accurate 

knowledge of the current state of the system and because every intersite communication 

involves a finite and unpredictable delay. An examination of the relative complexity and 

practicality of these three deadlock handling strategies in distributed systems follows. 

7.3.1 Deadlock Prevention 

Deadlock prevention is commonly achieved by either having a process acquire all the 

needed resources simultaneously before it begins execution or by preempting a process 

that holds the needed resource. In the former method, a process requests (or releases) a 

remote resource by sending a request message (or release message) to the site where the 

resource is located. This method has a number of drawbacks. First, it is inefficient as it 

decreases the system concurrency. Second, a set of processes can become deadlocked in 

the resource acquiring phase. For example, suppose process P\ at site S\ and process Pj 

at site S2 simultaneously request two resources P3 and R4, located at sites S3 and S4, 

respectively. It may happen that S3 grants P3 to Pi and S4 grants P4 to P2, resulting 

in a deadlock. This problem can be handled by forcing processes to acquire needed 

resources one by one; however, this approach is highly inefficient and impractical. 

Third, in many systems, future resource requirements are unpredictable (i.e., not known 

a priori). 

7.3.2 Deadlock Avoidance 

In the deadlock avoidance approach to distributed systems, a resource is granted to a 

process if the resulting global system state is safe (note that a global state includes all the 

processes and resources of the distributed system). Because of the following problems, 

deadlock avoidance can be seen as impractical in distributed systems: (1) Every site has 

to maintain information on the global state of the system, which translates into huge 

storage requirements and extensive communication costs (as every change in the global 

state has to be communicated to every site). (2) The process of checking for a safe 
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global state must be mutually exclusive, because if several sites concurrently perform 

checks for a safe global state (each site for a different resource request), they may all 

find the state safe but the net global state may not be safe. This restriction will severely 

limit the concurrency and throughput of the system. (3) Due to the large number of 

processes and resources, it will be computationally expensive to check for a safe state. 

7.3.3 Deadlock Detection 

Deadlock detection requires an examination of the status of process-resource interactions 

for the presence of cyclical wait. Deadlock detection in distributed systems has two 

favorable conditions: (1) Once a cycle is formed in the WFG, it persists until it is 

detected and broken and (2) cycle detection can proceed concurrently with the normal 

activities of a system (and therefore it does not have a negative effect on system 

throughput). Because of this, the literature on deadlock handling in distributed systems 

is highly focused toward deadlock detection methods. In this chapter, the discussion is 

limited to deadlock detection techniques in distributed systems. 

7.4 ISSUES IN DEADLOCK DETECTION AND 
RESOLUTION 

Deadlock detection and resolution entails addressing two basic issues: First, detection 

of existing deadlocks and second resolution of detected deadlocks. 

Detection 

The detection of deadlocks involves two issues: maintenance of the WFG and search 

of the WFG for the presence of cycles (or knots). In distributed systems, a cycle may 

involve several sites, so the search for cycles greatly depends upon how the WFG of the 

system is represented across the system. Depending upon the manner in which WFG 

information is maintained and the search for cycles is carried out, there are centralized, 

distributed, and hierarchical algorithms for deadlock detection in distributed systems 

[27]. We discuss these control organizations in detail in the next section. 

A correct deadlock detection algorithm must satisfy the following two conditions: 

Progress—No undetected deadlocks. The algorithm must detect all existing 

deadlocks in finite time. Once a deadlock has occurred, the deadlock detection ac¬ 

tivity should continuously progress until the deadlock is detected. In other words, after 

all wait-for dependencies for a deadlock have formed, the algorithm should not wait 

for any more wait-for dependencies to form to detect the deadlock. 

Safety—No false deadlocks. The algorithm should not report deadlocks which are 

non-existent (called phantom deadlocks). In distributed systems where there is no global 

memory and communication occurs solely by messages, it is difficult to design a correct 

deadlock detection algorithm because sites may obtain out of date and inconsistent 

WFGs of the system. As a result, sites may detect a cycle that doesn’t exist, but whose 

different segments were existing in the system at different times. This is the primary 

reason why many deadlock detection algorithms reported in the literature are incorrect. 
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Resolution 

Deadlock resolution involves breaking existing wait-for dependencies in the system 

WFG to resolve the deadlock. It involves rolling back one or more processes that are 

deadlocked and assigning their resources to blocked processes in the deadlock so that 

they can resume execution. Note that several deadlock detection algorithms propagate 

information regarding wait-for dependencies along the edges of the wait-for graph. 

Therefore, when a wait-for dependency is broken, the corresponding information should 

be immediately cleaned from the system. If this information is not cleaned appropriately 

in a timely manner, it may result in detection of phantom deadlocks. 

7.5 CONTROL ORGANIZATIONS FOR DISTRIBUTED 
DEADLOCK DETECTION 

7.5.1 Centralized Control 

In centralized deadlock detection algorithms, a designated site (often called a control 

site) has the responsibility of constructing the global WFG and searching it for cycles. 

The control site may maintain the global WFG constantly or it may build it whenever 

a deadlock detection is to be carried out by soliciting the local WFG from every 

site. Centralized deadlock detection algorithms are conceptually simple and are easy 

to implement. Deadlock resolution is simple in these algorithms—the control site has 

complete information about the deadlock cycle and it can thus optimally resolve the 

deadlock. 
However, centralized deadlock-detection algorithms have a single point of failure. 

Communication links near the control site are likely to be congested because the control 

site receives WFG information from all other sites. Also, the message traffic generated 

due to deadlock detection activity is independent of the rate of deadlock formation and 

the structure of deadlock cycles. 

7.5.2 Distributed Control 

In distributed deadlock detection algorithms, the responsibility for detecting a global 

deadlock is shared equally among all sites. The global state graph is spread over many 

sites and several sites participate in the detection of a global cycle. Unlike centralized 

control, distributed control is not vulnerable to a single point of failure and no site is 

swamped with deadlock detection activity. Also, a deadlock detection is initiated only 

when a waiting process is suspected to be a part of a deadlock cycle. 
Distributed deadlock detection algorithms are difficult to design due to the lack 

of globally shared memory—sites may collectively report the existence of a global 

cycle after seeing its segments at different instants (though all the segments never 

existed simultaneously). Unlike centralized control, several sites in distributed control 

may initiate deadlock detection for the same deadlock. Also, the proof of correctness is 

difficult for these algorithms. In addition, deadlock resolution is often cumbersome in 

distributed deadlock detection algorithms, as several sites can detect the same deadlock 

and not be aware of the other sites or processes involved in the deadlock. 
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7.5.3 Hierarchical Control 

In hierarchical deadlock detection algorithms, sites are arranged in a hierarchical fash¬ 

ion, and a site detects deadlocks involving only its descendant sites. Hierarchical algo¬ 

rithms exploit access patterns local to a cluster of sites to efficiently detect deadlocks. 

They tend to get the best of both the centralized and the distributed control organiza¬ 

tions in that there is no single point of failure (as in centralized control) and a site is 

not bogged down by deadlock detection activities with which it is not concerned (as 

sometimes happens in distributed control). However, hierarchical deadlock detection 

algorithms require special care while arranging the sites in a hierarchy. For efficiency, 

most deadlocks should be localized to as few clusters as possible—the objective of 

hierarchical control is defeated if most deadlocks span several clusters. 

A description of deadlock detection algorithms, based on the centralized, dis¬ 

tributed, and hierarchical control organizations follows. For these algorithms, we de¬ 

scribe the basic ideas behind their operation, compare them with each other, and discuss 

their pros and cons. We also summarize the performance of these algorithms in terms of 

message traffic, message size, and delay in detecting a deadlock. Due to the following 

reasons, it is not possible to enumerate these performance measures with high accuracy 

for many deadlock detection algorithms: the statistical nature of the topology of TWF 

graph, the invocation of deadlock detection activities despite the absence of a dead¬ 

lock, the initiation of detection of a deadlock by several processes in a deadlock cycle, 

etc. Therefore, for most algorithms performance bounds (e.g., the maximum number of 

messages transferred to detect a global cycle) rather than exact numbers are used as a 

means of comparison and performance analysis. 

7.6 CENTRALIZED DEADLOCK-DETECTION 
ALGORITHMS 

7.6.1 The Completely Centralized Algorithm 

The completely centralized algorithm is the simplest centralized deadlock detection 

algorithm, wherein a designated site called the control site, maintains the WFG of 

the entire system and checks it for the existence of deadlock cycles. All sites request 

and release resources (even local resources) by sending request resource and release 

resource messages to the control site, respectively. When the control site receives a 

request resource or a release resource message, it correspondingly updates its WFG. 

The control site checks the WFG for deadlocks whenever a request edge is added to 
the WFG. 

This algorithm is conceptually simple and easy to implement. Unfortunately, it 

is also highly inefficient because all resource acquisition and release requests must go 

through the control site, even when the resource is local. This results in large delays 

in responding to user requests, large communication overhead, and the congestion of 

communication links near the control site. Moreover, reliability is poor because if the 

control site fails, the entire system comes to a halt because all the status information 
resides at the control site. 
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Several problems of this algorithm (such as large response time and the congestion 

of communication links near the control site) can be mitigated by having each site 

maintain its resource status (WFG) locally and by having each site send its resource 

status to a designated site periodically for construction of the global WFG and the 

detection of deadlocks [11]. However, due to inherent communication delays and the 

lack of perfectly synchronized clocks, the designated site may get an inconsistent view 

of the system and detect false deadlocks [14]. 

For example, suppose two resources R\ and R2 are stored at sites S\ and S2, 

respectively. Suppose the following two transactions T\ and 7"2 are started almost si¬ 

multaneously at sites S3 and S4, respectively: 

Ti T2 
lock R\ lock R\ 

unlock R\ unlock R\ 

lock i?2 lock i?2 

unlock i?2 unlock S2 

Suppose that the lock(i?i) request of T\ arrives at Si and locks R\ followed by 

the lock(i?i) request of T2, which waits at Si. At this point Si reports its status, T2 —> 
T\ to a designated site. Thereafter, 7) unlocks R\, T2 locks R\, T\ makes a lock(S2) 

request to S2, T2 unlocks R\ and makes a lock(S2) request to S2. Now suppose that 

the lock(i?2) request of T2 arrives at S2 and locks R2 followed by the lock(S2) request 

of Ti which waits at S2. At this point S2 reports its status, 7) —> T2 to the designated 

site, which after constructing the global WFG, reports a false deadlock T\ —>• T2 —> T\. 

7.6.2 The Ho-Ramamoorthy Algorithms 

Ho and Ramamoorthy gave two centralized deadlock detection algorithms, called two- 

phase and one-phase algorithms [14], to fix the problem of the above algorithm. These 

algorithms, respectively, collect two consecutive status reports or keep two status tables 

at each site to ensure that the control site gets a consistent view of the system. 

THE TWO-PHASE ALGORITHM. In the two-phase algorithm, every site maintains 

a status table that contains the status of all the processes initiated at that site. The 

status of a process includes all resources locked and all resources being waited upon. 

Periodically, a designated site requests the status table from all sites, constructs a WFG 

from the information received, and searches it for cycles. If there is no cycle, then the 

system is free from deadlocks, otherwise, the designated site again requests status tables 

from all the sites and again constructs a WFG using only those transactions which are 

common to both reports. If the same cycle is detected again, the system is declared 

deadlocked. 
It was claimed that by selecting only the common transactions found in two 

consecutive reports, the algorithm gets a consistent view of the system. (A view is 

consistent if it reflects a correct state of the system.) If a deadlock exists, it was argued, 
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the same wait-for condition must exist in both reports. However, this claim proved to 

be incorrect (i.e., a cycle in the wait-for conditions of the transactions common in two 

consecutive reports does not imply a deadlock) and two-phase algorithm may indeed 

report false deadlocks. By getting two consecutive reports, the designated site reduces 

the probability of getting an inconsistent view, but does not eliminate such a possibility. 

THE ONE-PHASE ALGORITHM. The one-phase algorithm requires only one status 

report from each site; however, each site maintains two status tables: a resource status 

table and a process status table. The resource status table at a site keeps track of the 

transactions that have locked or are waiting for resources stored at that site. The process 

status table at a site keeps track of the resources locked by or waited for by all the 

transactions at that site. Periodically, a designated site requests both the tables from 

every site, constructs a WFG using only those transactions for which the entry in the 

resource table matches the corresponding entry in the process table, and searches the 

WFG for cycles. If no cycle is found, then the system is not deadlocked, otherwise a 

deadlock is detected. 

The one-phase algorithm does not detect false deadlocks because it eliminates the 

inconsistency in state information by using only the information that is common to both 

tables. This eliminates inconsistencies introduced by unpredictable message delays. For 

example, if the resource table at site Si indicates that resource R\ is waited upon by a 

process P2 (i.e., R\ <— Pj) and the process table at site S2 indicates that process P2 is 

waiting for resource R\ (i.e., P2 —> R\), then edge P2 —»• R\ in the constructed WFG 

reflects the correct system state. If either of these entries is missing from the resource 

or the process table, then a request message or a release message from S2 to Si is in 

transit and P2 —»■ f?i cannot be ascertained. 

The one-phase algorithm is faster and requires fewer messages as compared to the 

two-phase algorithm. However, it requires more storage because every site maintains 

two status tables and exchanges bigger messages because a message contains two tables 
instead of one. 

7.7 DISTRIBUTED DEADLOCK DETECTION 
ALGORITHMS 

In distributed deadlock detection algorithms, all sites collectively cooperate to detect a 

cycle in the state graph that is likely to be distributed over several sites of the system. A 

distributed deadlock detection algorithm can be initiated whenever a process is forced 

to wait, and it can be initiated either by the local site of the process or by the site where 
the process waits. 

Distributed deadlock detection algorithms can be divided into four classes [18]: 

path-pushing, edge-chasing, diffusion computation, and global state detection. 

In path-pushing algorithms, the wait-for dependency information of the global 

WFG is disseminated in the form of paths (i.e., a sequence of wait-for dependency 

edges). Classic examples of such algorithms are Menasce-Muntz [22] and Obermarck 
[24] algorithms. 
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In edge-chasing algorithms, special messages called probes are circulated along 

the edges of the WFG to detect a cycle. When a blocked process receives a probe, 

it propagates the probe along its outgoing edges in the WFG. A process declares a 

deadlock when it receives a probe initiated by it. An interesting feature of edge-chasing 

algorithms is that probes are of a fixed size (normally very short). Examples of these 

algorithms include Chandy et al. [5] and Sinha-Natarajan [28J algorithms. 

Diffusion computation type algorithms make use of echo algorithms to detect 

deadlocks [6]. To detect a deadlock, a process sends out query messages along all 

the outgoing edges in the WFG. These queries are successively propagated through 

the edges of the WFG. (As the name implies, these queries are diffused through the 

WFG.) Queries are discarded by a running process and are echoed back by blocked 

processes in the following way: When a blocked process receives first query message 

for a particular deadlock detection initiation, it does not send a reply message until it 

has received a reply message for every query it sent (to its successors in the WFG). 

For all subsequent queries for this deadlock detection initiation, it immediately sends 

back a reply message. The initiator of a deadlock detection detects a deadlock when 

it receives a reply for every query it sent. Some examples of these types of deadlock 

detection algorithms are Chandy-Misra-Haas algorithm for the OR request model [5] 

and Chandy-Herman algorithm [13]. 

Global state detection based deadlock detection algorithms exploit the following 

facts: 

• A consistent snapshot of a distributed system can be obtained without freezing the 

underlying computation. 

• A consistent snapshot may not represent the system state at any moment in time, but 

if a stable property holds in the system before the snapshot collection is initiated, 

this property will still hold in the snapshot. 

Therefore, distributed deadlocks can be detected by taking a snapshot of the system 

and examining it for the condition of a deadlock. Examples of these types of algorithms 

include Bracha-Toueg [2], Wang et al. [30], and Kshemkalyani-Singhal [20] algorithms. 

7.7.1 A Path-Pushing Algorithm 

In path-pushing deadlock detection algorithms, information about the wait-for depen¬ 

dencies is propagated in the form of paths. Obermarck’s algorithm [24] is chosen to 

illustrate a path-pushing deadlock detection algorithm because it is implemented on the 

distributed database system R* of the IBM Corporation. 
Obermarck’s algorithm [24] was designed for distributed database systems; there¬ 

fore, processes are referred to as transactions which are denoted by Tu T2, ..., Tn. A 

transaction may consist of several subtransactions that normally execute at different 

sites. Obermarck’s model assumes that at most one subtransaction within a given trans¬ 

action can be executing at a time. Execution sequentially passes from subtransaction to 

subtransaction. The subtransactions communicate synchronously by passing messages. 
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Obermarck’s algorithm has two interesting features: 

• The nonlocal portion of the global TWF graph at a site is abstracted by a distin¬ 

guished node (called External or Ex) which helps in determining potential multisite 

deadlocks without requiring a huge global TWE graph to be stored at each site. 

• Transactions are totally ordered, which reduces the number of messages and con¬ 

sequently decreases deadlock detection overhead. It also ensures that exactly one 

transaction in each cycle detects the deadlock. 

THE ALGORITHM. Deadlock detection at a site follows the following iterative 

process: 

1. The site waits for deadlock-related information (produced in Step 3 of the pre¬ 

vious deadlock detection iteration) from other sites. (Note that deadlock-related 

information is passed by sites in the form of paths.) 

2. The site combines the received information with its local TWF graph to build an 

updated TWF graph. It then detects all cycles and breaks only those cycles which 

do not contain the node ‘Ex’. Note that these cycles are local to this site. All other 

cycles have the potential to be a part of global cycles. 

3. For all cycles ‘Ex -4 T\ -* T2 —>■ Ex’ which contain the node ‘Ex’ (these cycles 

are potential candidates for global deadlocks), the site transmits them in string form 

‘Ex, T\, T2, Ex’ to all other sites where a subtransaction of T2 is waiting to receive a 

message from the subtransaction of T2 at this site. The algorithm reduces message 

traffic by lexically ordering transactions and sending the string ‘Ex, T), T2, T3, 

Ex’ to other sites only if T\ is higher than T3 in the lexical ordering. Also, for a 

deadlock, the highest priority transaction detects the deadlock. 

Obermarck gave an informal correctness proof of the algorithm [24], However, 

the algorithm is incorrect because it detects phantom deadlocks. The main reason for 

this is that the portions of TWF graphs that are propagated to other sites may not 

represent a consistent view of the global TWF graph. This is because each site takes 

its snapshot asynchronously at Step 2. Consequently, when a site sends out portions of 

its TWF graph as paths to other sites in Step 3, the global dependency represented by 

this path may change without this site knowing about it. 

This algorithm sends n(n - l)/2 messages to detect a deadlock involving n sites. 

Size of a message is 0(n). The delay in detecting the deadlock is 0(?r). 

7.7.2 An Edge-Chasing Algorithm 

We discuss Chandy-Misra-Haas’s distributed deadlock detection algorithm [5] for the 

AND request model to illustrate deadlock detection using edge-chasing. 

Chandy et al.’s algorithm [5] uses a special message called a probe. A probe is 

a triplet (i, j, k) denoting that it belongs to a deadlock detection initiated for process 

Pi and it is being sent by the home site of process Pj to the home site of process Pfe. 
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A probe message travels along the edges of the global TWF graph, and a deadlock is 

detected when a probe message returns to its initiating process. 

We now define terms and data structures used in the algorithm. A process Pj is 

said to be dependent on another process Pk if there exists a sequence of processes Pj, 

Pn, P{2, ..., Pim, Pk such that each process except Pk in the sequence is blocked and 

each process, except the first one (Pj), holds a resource for which the previous process 

in the sequence is waiting. Process Pj is locally dependent upon process Pk if Pj is 

dependent upon Pk and both the processes are at the same site. The system maintains 

a boolean array, dependenti, for each process Pi, where dependent^) is true only if 

Pi knows that Pj is dependent on it. Initially, dependenti(j) is false for all i and j. 

THE ALGORITHM. To determine if a blocked process is deadlocked, the system 

executes the following algorithm: 

if Pi is locally dependent on itself 

then declare a deadlock 

else for all Pj and Pk such that 

(a) Pi is locally dependent upon Pj, and 

(b) Pj is waiting on Pk, and 

(c) Pj and Pk are on different sites, 

send probe (i, j, k) to the home site of Pk 

On the receipt of probe (i, j, k), the site takes the following actions: 

if 
(d) Pk is blocked, and 

(e) dependentk(i) is false, and 
(f) Pk has not replied to all requests of Pj, 

then 

begin 

dependent k(i) = true; 
if k = i 

then declare that Pi is deadlocked 

else for all Pm and Pn such that 

(a’) Pk is locally dependent upon Pm, and 

(b’) Pm is waiting on Pn, and 

(c’) Pm and Pn are on different sites, 

send probe (i, m, n) to the home site of Pn 

end. 

Thus, a probe message is successively propagated along the edges of the global 

TWF graph and a deadlock is detected when a probe message returns to its initiating 

process. 

Example 7.1. As an example, consider the system shown in Fig. 7.1. If process P\ 
initiates deadlock detection, it sends probe (1, 3, 4) to ST Since P6 is waiting for P8 
and P7 is waiting for Pio, S2 sends probes (1, 6, 8) and (1, 7, 10) to S3 which in 
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FIGURE 7.1 
An example of Chandy et al.’s edge-chasing algorithm. 

turn sends probe (1, 9, 1) to Si. On receiving probe (1, 9, 1), Si declares that P\ is 
deadlocked. 

Chandy et al.’s algorithm sends one probe message (per deadlock detection ini¬ 

tiation) on each edge of the WFG, which spans two sites. Thus, the algorithm at most 

exchanges m(n — l)/2 messages to detect a deadlock that involves m processes and 

spans over n sites. The size of messages exchanged is fixed and very small (only 3 

integer words). The delay in detecting the deadlock is 0(n). 

OTHER EDGE-CHASING ALGORITHMS 

The Mitchell-Merritt Algorithm. In the deadlock detection algorithm of Mitchell and 

Merritt [23], each node of the TWF graph has two labels: private and public. The private 

label of each node is unique to that node, and initially both labels at a node have the 

same value. The algorithm detects a deadlock by propagating the public label of nodes 

in the backward direction in the TWF graph. When a transaction is blocked, the public 

and private label of its node in the TWF graph are changed to a value greater than their 

previous values and greater than the public label of the blocking transaction. A blocked 

transaction periodically reads the public label of the blocking transaction and replaces 

its own public label with it, provided the blocking transaction’s public label is larger 

than its own. A deadlock is detected when a transaction receives its own public label. 

In essence, the largest public label propagates in the backward direction in a deadlock 

cycle. Deadlock resolution is simple in this algorithm because only one process detects 

a deadlock and that process can resolve the deadlock by simply aborting itself. 
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Sinha-Natarajan Algorithm. In the Sinha-Natarajan algorithm [28], transactions are 

assigned unique priorities, and an antagonistic conflict is said to occur when a transac¬ 

tion waits for a data object that is locked by a lower priority transaction. The algorithm 

initiates deadlock detection only when an antagonistic conflict occurs. 

The algorithm detects a deadlock by circulating a probe message through a cycle 

in the global TWF graph. A probe message is a 2-tuple (i, j) where T* is the transaction 

that initiated the deadlock detection and Tj is the transaction whose priority is the lowest 

among all the transactions (i.e., nodes of the TWF graph) the probe has traversed so 

far. When a waiting transaction receives a probe that was initiated by a lower priority 

transaction, the probe is discarded. 

An interesting property of this algorithm is that a deadlock is detected when the 

probe issued by the highest priority transaction in the cycle returns to it. (There is only 

one detector of every deadlock.) Deadlock resolution is simple because the detector of 

a deadlock can resolve the deadlock by aborting the lowest priority transaction of the 

cycle. This was the first algorithm to comprehensively treat deadlock resolution. 

Choudhary et al. showed that the Sinha-Natarajan algorithm detects false dead¬ 

locks and fails to report all deadlocks because it overlooks the possibility of a transaction 

waiting transitively on a deadlock cycle and because the probes of aborted transactions 

are not cleaned properly [7], Choudhary et al. proposed a corrected version of the Sinha- 

Natarajan algorithm, but it has been shown that Choudhary et al.’s corrected algorithm 

still detects false deadlocks and fails to report all deadlocks [19]. 

7.7.3 A Diffusion Computation Based Algorithm 

In diffusion computation based distributed deadlock detection algorithms, deadlock de¬ 

tection computation is diffused through the WFG of the system. Chandy et al.’s dis¬ 

tributed deadlock detection algorithm for the OR request model [5] is discussed to 

illustrate the technique of diffusion computation based algorithms. 

A process determines if it is deadlocked by initiating a diffusion computation. 

The messages used in diffusion computation take the form of a query(i,j,k) and a 

reply(z, j, k), denoting that they belong to a diffusion computation initiated by a process 

Pi and are being sent from process Pj to process Pk■ A process can be in two states: 

active or blocked. In the active state, a process is executing and in the blocked state, a 

process is waiting to acquire a resource. A blocked process initiates deadlock detection 

by sending query messages to all the processes from whom it is waiting to receive a 

message (these processes are called the dependent set of the process). 

If an active process receives a query or reply message, it discards it. When a 

blocked process Pk receives a query(i, j, k) message, it takes the following actions: 

• If this is the first query message received by Pk for the deadlock detection initiated 

by Pi (called the engaging query), then it propagates the query to all the processes in 

its dependent set and sets a local variable numk(i) to the number of query messages 

sent. 

• If this is not an engaging query, then Pk returns a reply message to it immediately, 

provided Pk has been continuously blocked since it received the corresponding en¬ 

gaging query'. Otherwise, it discards the query. 
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A local boolean variable waitkii) at process Pk denotes the fact that it has been 

continuously blocked since it received the last engaging query from process Pi. When 

a blocked process Pk receives a reply(i, j, k) message, it decrements numkii) provided 

waitkii) holds. A process sends a reply message in response to an engaging query only 

after it has received a reply to every query message it sent out for this engaging query; 

i.e., num(i) = 0 at it. 
An initiator detects a deadlock when it receives reply messages to all the query 

messages it had sent out. 

THE ALGORITHM. We now describe the Chandy et al.’s diffusion computation based 

deadlock detection algorithm in pseudocode for the OR request model [5], [18]: 

Initiate a diffusion computation for a blocked process Pl: 

send query(i, z, j) to all processes P3 in the dependent set DS{ of Pf, 

numi(i):= \DSi |; waiti(i):= true; 

When a blocked process Pk receives a query(z, j, k): 

if this is the engaging query for process Pk 

then send query(z, k, to) to all Pm in its dependent set DSk', 

numkii):- \DSk\‘, waitk(i)'.= true 
else if waitkii) then send a replyii, k, j) to Pj. 

When a process Pk receives a reply(z, j, k) 

if waitkii) 
then begin 

numkii)'-- numkii) — 1; 

if numkii) = 0 
then if i = k then declare a deadlock 
else send reply(z, k, m) to the process Pm, 

which sent the engaging query. 

In the above description of the algorithm, we assumed that only one diffusion 

computation is initiated for a process. In practice, several diffusion computations may 

be initiated for a process (A diffusion computation is initiated every time the process 

is blocked). However, note that at any time only one diffusion computation is current 

for any process. All others are outdated. The current diffusion computation can be 

distinguished from outdated ones by using sequence numbers (see [5]). 

7.7.4 A Global State Detection Based Algorithm 

There are three deadlock detection algorithms to detect generalized distributed deadlocks 

using global state detection approach. The algorithm by Bracha and Toueg [2] consists 
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of two phases. In the first phase, the algorithm records a snapshot of a distributed WFG 

and in the second phase, the algorithm simulates the granting of requests to check for 

generalized deadlocks. The second phase is nested within the first phase. Therefore, the 

first phase terminates after the second phase has terminated. The algorithm by Wang et 

al. [30] also consists of two phases. In the first phase, the algorithm records a snapshot 

of the distributed WFG. In the second phase, the static WFG recorded in the first phase 

is reduced to detect any deadlocks. Both the phases occur serially. 

The Kshemkalyani-Singhal algorithm [20] has a single phase, which consists of 

a fan-out sweep of messages outwards from an initiator process and a fan-in sweep of 

messages inwards to the initiator process. A sweep of a WFG is a traversal of the WFG 

in which all messages are sent in the direction of the WFG edges (an outward sweep) 

or all messages are sent against the direction of the WFG edges (an inward sweep). 

Both the outward and the inward sweeps are done concurrently in the algorithm. In the 

outward sweep, the algorithm records a snapshot of a distributed WFG. In the inward 

sweep, the recorded distributed WFG is reduced to determine whether the initiator is 

deadlocked. This algorithm deals with the complications introduced because the two 

sweeps can overlap in time at any process, i.e., the reduction of the WFG at a process 

can begin before all the WFG edges incident at that process have been recorded. 

SYSTEM MODEL. The system has n nodes, with every node connected to every 

other node by a logical channel. An event in a computation can be an internal event, 

a message send event, or a message receive event. Events are assigned timestamps as 

per Lamport’s clock scheme [21], The timestamp of an event that occurs at time t on 

node i is denoted tp 
The computation messages can either be REQUEST, REPLY or CANCEL mes¬ 

sages. A node i sends qi REQUESTS to qi other nodes when it blocks (goes from an 

active to a blocked state) on a pi-out-of-g* request. When node i blocks on node j 

node j becomes a successor of node i and node i becomes a predecessor of node j 

in the WFG. A REPLY message denotes the granting of a request. A node i unblocks 

when pi out of its qt requests are granted. When the node unblocks, it sends CANCEL 

messages to withdraw the remaining % - pi requests it had sent. 
The sending and receiving of REQUEST, REPLY, and CANCEL messages are 

computation events. The sending and receiving of deadlock detection algorithm mes¬ 

sages are algorithm events. 

A node i has the following local variables to record its state: 

waitp. boolean (:= false); /^records the current status.*/ 

tp integer (:= 0); /*current time.*/ 

in(i): set of nodes whose requests are outstanding at i 

out{i): set of nodes on which i is waiting. 
pp integer (:= 0); /*the number of replies required for unblocking.*/ 

wp real (:= 1.0); /*weight to detect termination of deadlock detection 

algorithm.*/ 
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REQUESTSENDp). 

/*Executed by node i when it blocks on a pi-out-of-gi request.*/ 

For every node j on which i is blocked do 

out{i) <— out(i) 1J {j}] 
send REQUEST(i) to j; 

set pi to the number of replies needed; 

waiti <— true; 

REQUESTRECEIVEO). 

/*Executed by node i when it receives a request made by j */ 

in(i) <- in(i) (J {j}- 

REPLY _SEND(j). 

/*Executed by node i when it replies to a request by j.*l 

in(i) <— in(i) — {j}; 

send REPLY//) to j. 

REPLY RECEIVER). 

/*Executed by node i when it receives a reply from j to its request.*/ 

if valid reply for the current request 

then begin 

outii) <— out{i) — {j} ; 

Pi <- Pi ~ 1; 

Pi = 0 ^ 

{waiti false; 

V k E out(i), send CANCEL//) to fc; 

out(i) 0.} 
end 

CANCELRECEIVEO). 

/*Executed by node i when it receives a cancel from j.*/ 

if j G /n(/) then zn(i) in(i) — {j}. 

When a node init blocks on a P-out-of-Q request, it initiates the deadlock de¬ 

tection algorithm. The algorithm records part of the WFG that is reachable from init 

(henceforth, referred to as init's WFG) in a distributed snapshot [4]; such a distributed 

snapshot includes only those dependency edges and nodes that form init's WFG. When 

multiple nodes block concurrently, they may each initiate the deadlock detection al¬ 

gorithm concurrently. Each invocation of the deadlock detection algorithm is treated 

independently and is identified by the initiator’s identity and initiator’s timestamp when 

it is blocked. Every node maintains a local snapshot for the latest deadlock detection 

algorithm initiated by every other node. We will describe only a single instance of the 
deadlock detection algorithm. 
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AN INFORMAL DESCRIPTION OF THE ALGORITHM. The distributed WFG is 

recorded using FLOOD messages in the outward sweep and is examined for deadlocks 

using ECHO messages in the inward sweep. To detect a deadlock, the initiator init 

records its local state and sends FLOOD messages along its outward dependencies 

when it blocks. When node i receives the first FLOOD message along an existing 

inward dependency, it records its local state. If node i is blocked at this time, it sends 

out LLOOD messages along its outward dependencies to continue the recording of the 

WLG in the outward sweep. If node i is active at this time, (i.e., it does not have any 

outward dependencies and is a leaf node in the WLG), then it initiates reduction of the 

WLG by returning an ECHO message along the incoming dependency even before the 

states of all incoming dependencies have been recorded in the WLG snapshot at the 

leaf node. 
ECHO messages perform the reduction of the recorded WLG by simulating the 

granting of requests in the inward sweep. A node i in the WFG is reduced if it receives 

ECHOs along pi out of its qi outgoing edges indicating that pi of its requests can be 

granted. An edge is reduced if an ECHO is received on the edge indicating that the 

request it represents can be granted. After a local snapshot has been recorded at node 

i, any transition made by i from an idle to an active state is captured in the process of 

reduction. The nodes that can be reduced do not form a deadlock whereas the nodes 

that cannot be reduced are deadlocked. The order in which the reduction of the nodes 

and edges of the WLG is performed does not alter the final result. Node init detects 

the deadlock if it is not reduced when the deadlock detection algorithm terminates. 

In general, WLG reduction can begin at a nonleaf node before the recording of 

the WLG has been completed at that node. This happens when an ECHO message 

arrives and begins reduction at a nonleaf node before all the LLOODs have arrived and 

recorded the complete local WLG at that node. Thus, the activities of recording and 

reducing the WLG snapshot are done concurrently in a single phase and no serialization 

is imposed between the two activities as is done in [30]. Since a reduction is done 

on an incompletely recorded WLG at the nodes, the local snapshot at each node has to 

be carefully manipulated so as to give the effect that WLG reduction is initiated after 

WLG recording has been completed. 

TERMINATION DETECTION. A termination detection technique based on weights 

[16] detects the termination of the algorithm using SHORT messages (in addition to 

LLOODs and ECHOs). A weight of 1.0 at the initiator node, when the algorithm is 

initiated, is distributed among all LLOOD messages sent out by the initiator. When 

the first LLOOD is received at a nonleaf node, the weight of the received LLOOD is 

distributed among the LLOODs sent out along outward edges at that node to expand the 

WLG further. Since any subsequent LLOOD arriving at a nonleaf node does not expand 

the WLG further, its weight is returned to the initiator through a SHORT message. When 

a LLOOD is received at a leaf node, its weight is transferred to the ECHO sent by the 

leaf node to reduce the WLG. When an ECHO that arrives at a node unblocks the node, 

the weight of the ECHO is distributed among the ECHOs that are sent by that node along 

the incoming edges in its WLG snapshot. When an ECHO arriving at a node does not 

unblock the node, its weight is sent directly to the initiator through a SHORT message. 
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The algorithm maintains the invariant such that the sum of the weights in FLOOD, 

ECHO, and SHORT messages plus the weight at the initiator (received in SHORT and 

ECHO messages) is always one. The algorithm terminates when the weight at the 

initiator becomes 1.0, signifying that all WFG recording and reduction activity has 

completed. 

THE ALGORITHM. FLOOD, ECHO, and SHORT control messages use weights 

(introduced in [16]) for termination detection. The weight w is a real number in the 

range [0,1]. 
A node i stores the local snapshot for snapshots initiated by every other node to 

detect deadlock in a data structure LS, which is an array of records. 

LS: array [1..N] of record; 

A record has several fields to record snapshot related information and is defined 

below for initiator init: 

LS[init\.out: set of integers (:= 0); /* nodes on which i is waiting in the 
snapshot. */ 

LS [init].in: set of integers (:= 0); /* nodes waiting on i in the snapshot */ 
LS[init\.t: integer (:= 0); /* time when init initiated snapshot. */ 

LS[init].s: boolean (:= false)', /* local blocked state as seen by snapshot. */ 
LS[init].p: integer; /* value of pi as seen in snapshot. */ 

The deadlock detection algorithm is defined by the following procedures. 

SNAPSHOT INITIATE. 

/* Executed by node i to detect whether it is deadlocked. */ 

init <— r, 
Wi <— 0; 

LS[init\.t a- ti\ 
LS[init].out <— out(i)\ 
LS[init].s true-, 
LS[init].in <— 0; 
LS[init].p pi; 
send FLOODii, i, ti, \/\out{i)\) to each j in out{i). /* \/\out(i)\ is 

the fraction of weight sent in a FLOOD message. */ 

FLOODRECEIVEO, init, tJnit, w). 

/* Executed by node i on receiving a FLOOD message from j. */ 

[ 
LS[init].t < tJnit /\ j e in(i) —► /* Valid FLOOD for a */ 

LS[init\.out <— out(i)-, /* new snapshot. */ 

LS [init].in <— {j}; 

LS[init].t <— tJnit-, 

LS[init].s <— waitp. 
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waiti = true —> 

LS[init].p pp, 

send FLOOD{i, init, tjinit, u>/|ou£(i)|) to each A; G out(i); 
waiti = false —>■ 

-L5[mz£].p <— 0 
send ECHO( i, init, tjinit, w) to j; 

-L<S'[zmt].t < tjinit f\ j in(i) —» /* Invalid FLOOD for a new */ 

send ECHO (i, init, tjinit, w) to j. /* snapshot. */ 

□ 
= t-init f\ j in(i) —► /* Invalid FLOOD for a current */ 

send ECHO (i. init, t-init, id) to j. /* snapshot.*/ 

□ 
LS,[m*£].£ = t-init f\ j G m(i) —>■ /* Valid FLOOD for a current */ 

L(S[imt].s = false -a /* snapshot.*/ 

send ECHO(i, init, t-init, w) to j; 

LS[init].s = true —> 

LS[init].in (J {j}; 

send SHORTfinit, t-init, w) to imt. 

□ 
LS'fzmf]./: > t-init -a discard the FLOOD message. /*Out-dated FLOOD. */ 

1 

ECHO_RECEIVE(j, init, t-init, w). 

/*Executed by node i on receiving an ECHO from j. */ 

[ 
/*Echo for out-dated snapshot. */ 

LS[init\.t > t-init —» discard the ECHO message. 

□ 
LS[init].t < t-init -a cannot happen. /*ECHO for unseen snapshot. */ 

□ 
LS[init].t = t-init —> /*ECHO for current snapshot. */ 

LS'[imt].owt — {j}; 

LS'[/mf].s = false —> send SHORT (init, t-init, w) to imt. 

L/S,[m/t].s = /rue ■—> 

Lgf/m/J.p LS’finifj.p — 1; 
LS[init].p = 0 —> /* getting reduced */ 

LS'fmztJ.s false; 

init — i —> declare not deadlocked; exit, 

send ECHO(i, init, t-init, w/\LS[init].in\) 

to all k G LS[init].in; 

LS[init].p ^ 0 —> 
send SHORT{init, t -init, w) to init. 

] 
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SHORT_RECEIVE(mit, t Jnit, w) 

/*Executed by node i (which is always init) on receiving a SHORT. */ 

[ 
/*SHORT for out-dated snapshot. */ 

t-init < tJblocki —> discard the message. 

□ 
/*SHORT for uninitiated snapshot. */ 

t-init > tJblocki not possible. 

□ 
/*SHORT for currently initiated snapshot. */ 

t-init = tJblocki f\ LS[init].s — false —> discard. 

t-init = t-blocki f\ LS[init].s — true —> 

U>i <— W{ T w\ 

Wi — 1 —> declare deadlock and abort 

] 

The algorithm has a message complexity of 4e — 2n + 2l and a time complexity of 

2d hops, where e is the number of edges, n the number of nodes, l the number of leaf 

nodes, and d the diameter of the WFG. This is better than the two-phase algorithms of 

Bracha and Toueg [2] and Wang et al. [30] and gives the best time complexity of any 

algorithm that reduces a distributed WFG to detect generalized distributed deadlocks. 

7.8 HIERARCHICAL DEADLOCK DETECTION 
ALGORITHMS 

In hierarchical algorithms, sites are (logically) arranged in hierarchical fashion, and 

a site is responsible for detecting deadlocks involving only its children sites. These 

algorithms take advantage of access patterns that are localized to a cluster of sites to 

optimize performance. 

7.8.1 The Menasce-Muntz Algorithm 

In the hierarchical deadlock detection algorithm of Menasce and Muntz [22], all the 

controllers are arranged in tree fashion. (A controller manages a resource or is re¬ 

sponsible for deadlock detection.) The controllers at the bottom-most level (called leaf 

controllers) manage resources and others (called nonleaf controllers) are responsible 

for deadlock detection. A leaf controller maintains a part of the global TWF graph 

concerned with the allocation of the resources at that leaf controller. A nonleaf con¬ 

troller maintains all TWF graphs spanning its children controllers and is responsible for 

detecting all deadlocks involving all of its leaf controllers. 

Whenever a change occurs in a controller’s TWF graph due to a resource allo¬ 

cation, wait, or release, it is propagated to its parent controller. The parent controller 

makes changes in its TWF graph, searches for cycles, and propagates the changes 

upward, if necessary. A nonleaf controller can receive up-to-date information concern¬ 

ing the TWF graph of its children continuously (i.e., whenever a change occurs) or 
periodically. 
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FIGURE 7.2 
Hierarchical organization in the Ho-Ramamoorthy algorithm. 

7.8.2 The Ho-Ramamoorthy Algorithm 

In the hierarchical algorithm of Ho and Ramamoorthy [14], sites are grouped into 

several disjoint clusters. Periodically, a site is chosen as a central control site, which 

dynamically chooses a control site for each cluster (Fig. 7.2). The central control site 

requests from every control site their intercluster transaction status information and 

wait-for relations. 
As a result, a control site collects status tables from all the sites in its cluster and 

applies the one-phase deadlock detection algorithm to detect all deadlocks involving 

only intracluster transactions. Then, it sends intercluster transaction status information 

and wait-for relations (derived from the information thus collected) to the central control 

site. The central site splices the intercluster information it receives, constructs a system 

WFG, and searches it for cycles. Thus, a control site detects all deadlocks located in 

its cluster, and the central control site detects all intercluster deadlocks. 

7.9 PERSPECTIVE 

We now discuss issues related to deadlock detection in distributed systems that require 

further research. 

Theory of Correctness of Algorithms 

There is a great dearth of formal methods to prove the correctness of deadlock detection 

algorithms for distributed systems. Researchers have often used informal or intuitive 
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arguments to show the correctness of their algorithms. However, intuition has proved 

to be highly unreliable as more than half the algorithms have been found incorrect. A 

formal proof of the correctness of deadlock detection algorithms becomes nontrivial due 

to the following factors: (1) TWF graph and deadlock cycles can form in innumerable 

ways and it is difficult to imagine, let alone exhaustively study, every conceivable 

situation, (2) deadlock is very sensitive to the timing of requests, and (3) in distributed 

systems, message delays are unpredictable and there is no global memory. There is a 

tremendous need for more sophisticated methods to prove the correctness of deadlock 

detection algorithms. 

Performance of the Algorithms 

Although a large number of deadlock detection algorithms have been proposed for 

distributed systems, their performance analysis has not received sufficient attention. 

Most authors (e.g., Obermarck [24] and Sinha-Natarajan [28]) have evaluated their 

algorithms on the basis of the number of messages exchanged to detect an existing 

cycle in the TWF graph. This performance criterion is deceptive because deadlock 

detection algorithms also exchange messages during normal conditions (when there is 

no deadlock). The number of messages exchanged may not be the true indicator of the 

communication overhead because some algorithms (e.g., [12, 17, 24]) may exchange 

large messages as opposed to other algorithms (e.g., [5], [22]) which exchange small 

messages. Therefore, we require a different criterion for computing the communication 

overhead, which should take into account the number as well as the size of messages 

exchanged, not only in deadlocked conditions but also in normal conditions. 

The persistence of deadlocks results in the wasteful utilization of resources and 

increased response delay to user requests. Therefore, an important performance measure 

of deadlock detection algorithms is the average time a deadlock persists; we term 

this deadlock persistence time. There is often a tradeoff between message traffic, and 

deadlock persistence time. For example, the on-line deadlock detection algorithm of 

Isloor and Marsland [17] detects a deadlock at the earliest instant but it has high 

message traffic. On the other hand, the algorithm of Obermarck [24] has less message 

traffic, but the deadlock persistence time in it is proportional to the size of the cycle. 

Besides communication overhead and deadlock persistence time, any evaluation 

of deadlock detection algorithms should also consider measures such as storage over¬ 

head to store deadlock detection information, processing overhead to search for cycles, 

and additional processing required to optimally resolve a deadlock. The factors that 

influence these measures are the techniques used for deadlock detection, the data ac¬ 

cess behavior of processes, the request-release pattern of processes, resource holding 

time, etc. How these factors influence the performance of different deadlock detection 

algorithms, and how the performance of different deadlock detection algorithms com¬ 

pare with each other, are not well understood and are still open issues. A complete 

performance study of deadlock detection algorithms calls for the development of per¬ 

formance models, the determination of the aforementioned performance metrics using 

analytic or simulation techniques, and a comparison of the performance of existing 
deadlock detection algorithms. 
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Deadlock Resolution 

The persistence of a deadlock has two major undesirable effects: first, the resources 

held by deadlocked processes are not available to any other process, and second, the 

deadlock persistence time is added to the response time of each process involved in 

the deadlock. Therefore, the problem of promptly and efficiently resolving a detected 

deadlock is as important as the problem of deadlock detection itself. Unfortunately, 

many deadlock detection algorithms for distributed systems do not address the problem 

of deadlock resolution. 

A deadlock is resolved by aborting at least one process involved in the deadlock 

and granting the released resources to other processes involved in the deadlock. The 

efficient resolution of a deadlock requires knowledge of all the processes involved in 

the deadlock and all resources held by these processes. When a deadlock is detected, the 

quickness of its resolution depends in great measure on how much information about it 

is available, which in turn depends on how much information is circulated during the 

deadlock detection phase. In many distributed deadlock detection algorithms, deadlock 

resolution is complicated by at least one of the following problems: 

• A process that detects a deadlock does not know all the processes (and resources 

held by them) involved in the deadlock, e.g., Chandy et al. [5] and Menasce-Muntz 

[22], ' 

• Two or more processes may independently detect the same deadlock, e.g., Chandy 

et al. [5] and Goldman [10]. If every process that detects a deadlock resolves it, then 

deadlock resolution will be inefficient as several processes will be aborted to resolve 

a deadlock (different processes may choose to abort different processes). Therefore, 

we require some post-detection processing to select a process that is responsible for 

resolving the deadlock. 

After the idea of assigning unique priorities to transactions/processes was intro¬ 

duced by Obermarck [24], it has been successfully used in attacking the above problems 

in the following manner: 

• Each deadlock is detected only by the highest priority process in the deadlock 

(deadlock detections initiated by all other deadlocked processes are suppressed). 

• When the highest priority process detects a deadlock, it knows the lowest priority 

processes in the deadlock cycle, which can be aborted to resolve the deadlock. 

The Sinha-Natarajan algorithm [28] is an excellent example of the above tech¬ 

niques. It should be noted that the lowest priority process that is selected for abortion 

(called the victim) may not necessarily result in an optimal resolution of the deadlock 

in the classical sense. 
Even after the above two problems are solved, the resolution of a deadlock in¬ 

volves the following nontrivial steps: 
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1. The victim must be aborted, all the resources held by it must be released, the state of 
all the released resources must be restored to their previous states, and the released 
resources must be granted to deadlocked processes. 

2. All the deadlock detection information concerning the victim must be cleaned at 
all the sites. 

The execution of Step 1 is complicated in environments where a process can 
simultaneously wait for multiple resources, because a deadlock can be caused by the 
allocation of a released resource to another process. The execution of Step 2 is even 
more critical because if the information about the victim is not cleaned quickly, it may 
be counted in several other (false) cycles causing detection of false deadlocks. As has 
been pointed out in Choudhary et al. [7], the lack of proper cleaning of probe messages 
in Sinha-Natarajan [28] causes the detection of false deadlocks. To be safe, during 
the execution of Step 1 and Step 2, the deadlock detection activity (at least in those 
potential deadlocks that include the victim) must be halted to avoid the detection of false 
deadlocks. In Sugihara et al. [29], a control token is used to serialize the resolution of 
global deadlocks. This simplifies the elimination of side effects of deadlock resolution 
on the deadlock detection activity. 

False Deadlocks. In environments where a process can simultaneously wait for multi¬ 
ple resources, deadlock resolution becomes nontrivial. This is because an edge may be 
shared by two or more cycles and the deletion of that edge will break all those dead¬ 
locks. However, since the search for each cycle is carried out independently, deadlock 
detection initiated for some cycles may not be aware of the deleted edge, resulting in 
the detection of false or phantom deadlocks [27], 

Deadlock detection involves detecting a static condition because once a deadlock 
cycle is formed, it persists until it is detected and broken. On the other hand, deadlock 
resolution is a dynamic activity because it changes the WFG by deleting its edges 
and nodes. There are two forces working in opposite directions: the wait for resources 
adds edges/nodes to the WFG, while deadlock resolution removes edges/nodes from 
the WFG. Therefore, if deadlock resolution is not carefully incorporated into deadlock 
detection, false deadlocks are likely to be detected. 

7.10 SUMMARY 

Of the three approaches to handle deadlocks, deadlock detection is the most promising 
for distributed systems. The detection of deadlocks requires performing two tasks: first, 
maintaining (or constructing whenever needed) a WFG; second, searching the WFG for 
cycles. Depending upon the way the WFG is maintained and the way a control to carry 
out the search for cycles is structured, deadlock detection algorithms are classified into 
three categories: centralized, distributed, and hierarchical. 

In centralized deadlock detection algorithms, the control site has the responsibility 
of constructing the global state graph and searching it for cycles. Centralized deadlock 
detection algorithms are conceptually simple and easy to implement. However, central¬ 
ized deadlock detection algorithms have a single point of failure, communication links 
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near the control site are likely to be congested, and the control site may be swamped 

with deadlock detection activity. 

In distributed deadlock detection algorithms, every site maintains a portion of 

the global state graph and every site participates in the detection of a global cycle. 

Distributed algorithms do not have a single point of failure and no site is overloaded by 

deadlock detection activities. However, due to the lack of globally shared memory, the 

design of distributed deadlock detection algorithms is difficult because sites may report 

the existence of a global cycle after seeing segments of the cycle at different instants, 

even though all the segments never existed simultaneously. 

Hierarchical deadlock detection algorithms fall between centralized and distributed 

deadlock detection algorithms and exploit access patterns local to a cluster of sites to 

detect deadlocks efficiently. These algorithms do not have a single point of failure (as 

in centralized algorithms) and a site is not bogged down by the deadlock detection 

activities which it is not much concerned with (as in some distributed algorithms). 

Of the three control organizations to detect global deadlocks, distributed control 

is the most widely studied. In distributed deadlock detection algorithms, all sites collec¬ 

tively cooperate to detect a cycle in the state graph which is distributed over several sites 

of the system. All distributed deadlock detection algorithms have a common goal—to 

detect cycles which span several sites in distributed manner—yet they differ from each 

other in the way they achieve this goal. 
Distributed deadlock detection algorithms can be divided into four classes: path¬ 

pushing, edge-chasing, diffusion computation, and global state detection. In path-pushing 

algorithms, wait-for dependency information of the global WFG is disseminated in the 

form of paths (i.e., a sequence of wait-for dependency edges). In edge-chasing algo¬ 

rithms, special messages called probes are circulated along the edges of the WFG to 

detect a cycle. When a blocked process receives a probe, it propagates the probe along 

its outgoing edges in the WFG. A process declares a deadlock when it receives a probe 

initiated by it. Diffusion computation type algorithms make use of echo algorithms to 

detect deadlocks. Deadlock detection messages are successively propagated (i.e, “dif¬ 

fused”) through the edges of the WFG. Global state detection based algorithms detect 

deadlocks by taking a snapshot of the system and by examining it for the condition of 

a deadlock. 

7.11 FURTHER READING 

Two up-to-date survey articles on distributed deadlock detection can be found in papers 

by Knapp [18] and Singhal [27]. Badal [1] discusses a distributed deadlock detection 

algorithm that optimizes performance by first detecting a deadlock using a simple al¬ 

gorithm and then successively using more complex algorithms if a deadlock remains 

undetected. Other path-pushing distributed deadlock detection algorithms can be found 

in papers by Gligor and Shattuck [9], Goldman [10], and Menasce and Muntz [22]. 

Other edge-chasing distributed deadlock detection algorithms can be found in papers 

by Choudary et al. [7], Roesler and Burkhard [25], and Kshemkalyani and Singhal [19]. 

Herman and Chandy [13] discuss detection of deadlocks in the AND/OR request model. 
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Sanders and Heuberger [26] synthesize an edge-chasing distributed deadlock de¬ 

tection algorithm from the first principles. Distributed deadlock detection in CSP-like 

environments are discussed in Elmagarmid et al. [8] and Huang [15]. Two rigorous 

correctness proof of distributed deadlock detection algorithms appear in Roesler and 

Burkhard [25] and Kshemkalyani and Singhal [19]. 

PROBLEMS 

7.1. Distributed deadlock detection algorithms normally have substantial message over¬ 
head, even when there is no deadlock. Instead of using a deadlock detection algo¬ 
rithm, we can handle deadlocks in distributed systems simply by using “timeouts” 
where a process that has waited for a specified period for a resource declares that it 
is deadlocked (and aborts to resolve the deadlock). What are the risks in using this 
method? 

7.2. Discuss the impact of a message loss on the various deadlock detection algorithms 
discussed in this chapter. 

7.3. Suppose all the processes in the system are assigned priorities that can be used to 
totally order the processes. Modify Chandy et al.’s algorithm in Sec. 7.7.2 so that when 
a process detects a deadlock, it also knows the lowest priority deadlocked process. 

7.4. Give an example to show that in the AND request model, false deadlocks can occur 
due to deadlock resolution in distributed systems [26], Can something be done about 
it or they are bound to happen? 

7.5. Consider the following scheme to reduce message traffic in distributed deadlock de¬ 
tection [28]: Transactions are assigned unique priorities, and an antagonistic conflict 
occurs when a transaction waits for a data object that is locked by a lower priority 
transaction. A deadlock detection is initiated only when an antagonistic conflict oc¬ 
curs. When a waiting transaction receives a probe that is initiated by a lower priority 
transaction, the probe is discarded. 

{a) Determine the number of messages exchanged to detect a deadlock in the “best” 
case. 

(b) Determine the number of messages exchanged to detect a deadlock in the “worst” 
case. 

(c) Determine the number of messages exchanged to detect a deadlock in an “average” 
case. 

id) Determine the saving (as a percentage) in the average number of messages ex¬ 
changed under this message traffic reduction scheme, as compared to when no 
such scheme is used. 
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CHAPTER 

8 
AGREEMENT 
PROTOCOLS 

8.1 INTRODUCTION 

In distributed systems, where sites (or processors) often compete as well as cooperate 

to achieve a common goal, it is often required that sites reach mutual agreement. For 

example, in distributed database systems, data managers at sites must agree on whether 

to commit or to abort a transaction [11], Reaching an agreement typically requires 

that sites have knowledge about the values of other sites. For example, in distributed 

commit, a site should know the outcome of local commit at each site. 

When the system is free from failures, an agreement can easily be reached among 

the processors (or sites). For example, processors can reach an agreement by commu¬ 

nicating their values to each other and then by taking a majority vote or a minimum, 

maximum, mean, etc. of those values. However, when the system is prone to failure, 

this method does not work. This is because faulty processors can send conflicting values 

to other processors preventing them from reaching an agreement. In the presence of 

faults, processors must exchange their values with other processors and relay the values 

received from other processors several times to isolate the effects of faulty processors. 

A processor refines its value as it learns of the values of other processors (This entire 
process of reaching an agreement is called an agreement protocol). 

In this chapter, we study agreement protocols for distributed systems under proces¬ 

sor failures. A very general model of faults is assumed. For example, a faulty processor 

may send spurious messages to other processors, may lie, may not respond to received 
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messages correctly, etc. Also, nonfaulty processors do not know which processors are 
faulty. 

In agreement problems, nonfaulty processors in a distributed system should be able 

to reach a common agreement, even if certain components in the system are faulty. The 

agreement is achieved through an agreement protocol that involves several rounds of 
message exchange among the processors. 

8.2 THE SYSTEM MODEL 

Agreement problems have been studied under the following system model: 

• There are n processors in the system and at most m of the processors can be faulty. 

• The processors can directly communicate with other processors by message passing. 
Thus, the system is logically fully connected. 

• A receiver processor always knows the identity of the sender processor of the mes¬ 
sage. 

• The communication medium is reliable (i.e., it delivers all messages without intro¬ 

ducing any errors) and only processors are prone to failures. 

For simplicity, we assume that agreement is to be reached between only two 

values, 0 and 1. Results can easily be extended to multivalue agreement [23]. 

Early solutions to agreement problems assumed that only processors could be 

faulty and that communication links did not fail. Limiting faults solely to the processors 

simplifies the solution to agreement problems. Recently, agreement problems have been 

studied under the failure of communication links only [24] and under the failure of 

both processors and communication links [25] In this chapter, we limit the treatment 

of agreement problems solely to processor failures. 

8.2.1 Synchronous vs. Asynchronous Computations 

In a synchronous computation, processes in the system run in lock step manner, where 

in each step, a process receives messages (sent to it in the previous step), performs a 

computation, and sends messages to other processes (received in the next step). A step of 

a synchronous computation is also referred to as a round. In synchronous computation, 

a process knows all the messages it expects to receive in a round. A message delay or 

a slow process can slow down the entire system or computation. 

In an asynchronous computation, on the other hand, the computation at processes 

does not proceed in lock steps. A process can send and receive messages and perform 

computation at any time. 
In this chapter, synchronous models of computation are assumed. The assumption 

of synchronous computation is critical to agreement protocols. In fact, the agreement 

problem is not solvable in an asynchronous system, even for a single processor fail¬ 

ure [10], 
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8.2.2 Model of Processor Failures 

In agreement problems, we consider a very general model of processor failures. A pro¬ 

cessor can fail in three modes: crash fault, omission fault, and malicious fault. In a crash 

fault, a processor stops functioning and never resumes operation. In an omission fault, 

a processor “omits” to send messages to some processors. (These are the messages that 

the processor should have sent according to the protocol or algorithm it is executing.) 

For example, a processor is supposed to broadcast a message to all other processors, 

but it sends the message to only a few processors. In a malicious fault, a processor be¬ 

haves randomly and arbitrarily. For example, a processor may send fictitious messages 

to other processors to confuse them. Malicious faults are very broad in nature and thus 

most other conceivable faults can be treated as malicious faults. Malicious faults are 

also referred to as Byzantine faults. 
Since a faulty processor can refuse to send a message, a nonfaulty processor may 

never receive an expected message from a faulty processor. In such a situation, we 

assume that the nonfaulty processor simply chooses an arbitrary value and acts as if the 

expected message has been received [16]. Of course, we assume that such situations, 

where a processor refuses to send a message, can be detected by the respective receiver 

processors. In synchronous systems, if the duration of each round is known, then this 

detection is simple—all the expected messages not received by the end of a round were 

not sent. 

8.2.3 Authenticated vs. Non-Authenticated Messages 

Note that to reach an agreement, processors have to exchange their values and relay the 

received values to other processors several times. The capability of faulty processors 

to distort what they receive from other processors greatly depends upon the type of 

underlying messages. 

There are two types of messages: authenticated and non-authenticated. In an 

authenticated message system, a (faulty) processor cannot forge a message or change 

the contents of a received message (before it relays the message to other processors). A 

processor can verify the authenticity of a received message. An authenticated message 

is also called a signed message [14], 

In a non-authenticated message system, a (faulty) processor can forge a message 

and claim to have received it from another processor or change the contents of a received 

message before it relays the message to other processors. A processor has no way of 

verifying the authenticity of a received message. A non-authenticated message is also 

called an oral message [14]. It is easier to reach agreement in an authenticated message 

system because faulty processors are capable of doing less damage. 

8.2.4 Performance Aspects 

The performance (or the computational complexity) of agreement protocols is generally 

determined by the following three metrics: time, message traffic, and storage overhead. 

Time refers to the time taken to reach an agreement under a protocol. The time is usually 

expressed as the number of rounds needed to reach an agreement. Message traffic is 
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measured by the number of messages exchanged to reach an agreement. Sometimes, 

the message traffic is also measured by the total number of bits exchanged to reach an 

agreement [5]. Storage overhead measures the amount of information that needs to be 
stored at processors during the execution of a protocol. 

Next, we discuss three agreement problems for non-authenticated messages under 
processor failures. 

8.3 A CLASSIFICATION OF AGREEMENT PROBLEMS 

There are three well known agreement problems in distributed systems: the Byzantine 

agreement problem, the consensus problem, and the interactive consistency problem. In 

the Byzantine agreement problem, a single value, which is to be agreed on, is initialized 

by an arbitrary processor and all nonfaulty processors have to agree on that value. In the 

consensus problem, every processor has its own initial value and all nonfaulty processors 

must agree on a single common value. In the interactive consistency problem, every 

processor has its own initial value and all nonfaulty processors must agree on a set of 

common values. 

In all three problems, all nonfaulty processors must reach a common agreement. 

In the Byzantine agreement and the consensus problems, the agreement is about a single 

value. Whereas in the interactive consistency problem, the agreement is about a set of 

common values. In the Byzantine agreement problem, only one processor initializes the 

initial value. Whereas in the consensus and the interactive consistency problems, every 

processor has its own initial value. Table 8.1 summarizes the starting values and final 

outcomes of the three problems. 

Next, we define these three agreement problems in a precise manner. 

8.3.1 The Byzantine Agreement Problem 

In the Byzantine agreement problem, an arbitrarily chosen processor, called the source 

processor, broadcasts its initial value to all other processors. A solution to the Byzantine 

agreement problem should meet the following two objectives: 

Agreement. All nonfaulty processors agree on the same value. 

Validity. If the source processor is nonfaulty, then the common agreed upon value 

by all nonfaulty processors should be the initial value of the source. 

TABLE 8.1 
The three agreement problems 

Problem —* Byzantine Consensus Interactive 

Agreement Consistency 

Who initiates 
the value 

One processor All processors All processors 

Final agreement Single value Single value A vector of values 
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Two points should be noted: (1) If the source processor is faulty, then all non- 

faulty processors can agree on any common value. (2) It is irrelevant what value faulty 

processors agree on or whether they agree on a value at all. 

8.3.2 The Consensus Problem 

In the consensus problem, every processor broadcasts its initial value to all other proces¬ 

sors. Initial values of the processors may be different. A protocol for reaching consensus 

should meet the following conditions: 

Agreement All nonfaulty processors agree on the same single value. 

Validity If the initial value of every nonfaulty processor is v, then the agreed 

upon common value by all nonfaulty processors must be v. 

Note that if the initial values of nonfaulty processors are different, then all non¬ 

faulty processors can agree on any common value. Again, we don’t care what value 

faulty processors agree on. 

8.3.3 The Interactive Consistency Problem 

In the interactive consistency problem, every processor broadcasts its initial value to 

all other processors. The initial values of the processors may be different. A protocol 

for the interactive consistency problem should meet the following conditions: 

Agreement. All nonfaulty processors agree on the same vector, (ui, V2, ..., vn). 

Validity. If the zth processor is nonfaulty and its initial value is Vi, then the ith 

value to be agreed on by all nonfaulty processors must be Vi. 

Note that if the jth processor is faulty, then all nonfaulty processors can agree on 

any common value for Vj. It is irrelevant what value faulty processors agree on. 

8.3.4 Relations Among the Agreement Problems 

All three agreement problems are closely related [7], For example, the Byzantine agree¬ 

ment problem is a special case of the interactive consistency problem, in which the 

initial value of only one processor is of interest. Conversely, if each of the n processors 

runs a copy of the Byzantine agreement protocol, the interactive consistency problem 

is solved. Likewise, the consensus problem can be solved using the solution of the 

interactive consistency problem. This is because all nonfaulty processors can compute 

the value that is to be agreed upon by taking the majority value of the common vector 

that is computed by an interactive consistency protocol, or by choosing a default value 

if a majority does not exist. 

Thus, solutions to the interactive consistency and consensus problems can be 

derived from the solutions to the Byzantine agreement problem. In other words, the 

Byzantine agreement problem is primitive to the other two agreement problems. For 

this reason, we will focus solely on the Byzantine agreement problem for the rest of 
the chapter. 



AGREEMENT PROTOCOLS 183 

However, it should by no means be concluded that the Byzantine agreement prob¬ 

lem is weaker than the interactive consistency problem or that the interactive consistency 

problem is weaker than the consensus problem. In fact, there is no linear ordering of this 

sort among these agreement problems. For example, the Byzantine agreement problem 

can be solved using a solution to the consensus problem in the following manner [7]: 

1. The source processor sends its value to all other processors, including itself. 

2. All the processors, including the source, run an algorithm for the consensus problem 

using the values received in the first step as their initial values. 

The above two steps solve the Byzantine agreement problem because (1) if the 

source processor is nonfaulty, then all the processors will receive the same value in 

the first step and all nonfaulty processors will agree on that value as a result of the 

consensus algorithm in the second step, and (2) if the source processor is faulty, then 

the other processors may not receive the same value in the first step; However, all 

nonfaulty processors will agree on the same value in the second step as a result of the 

consensus algorithm. Thus, the Byzantine agreement is reached in both cases. However, 

the n — 1 extra messages are sent at the first step. 

8.4 SOLUTIONS TO THE BYZANTINE AGREEMENT 
PROBLEM 

The Byzantine agreement problem was first defined and solved (under processor fail¬ 

ures) by Lamport et al. [14, 16], Recall that in this problem, an arbitrarily chosen 

processor (called the source processor) broadcasts its initial value to all other pro¬ 

cessors. A protocol for the Byzantine agreement should guarantee that all nonfaulty 

processors agree on the same value and if the source processor is nonfaulty, then the 

common agreed upon value by all nonfaulty processors should be the initial value of 

the source. 
It is obvious that all the processors must exchange the values through messages to 

reach a consensus. Processors send their values to other processors and relay received 

values to other processors [16], During the execution of the protocol, faulty processors 

may confuse other processors by sending them conflicting values or by relaying to them 

fictitious values. 
The Byzantine agreement problem is also referred to as the Byzantine generals 

problem ([4, 14]) because the problem resembles a situation where a team of generals 

in an army is trying to reach agreement on an attack plan. The generals are located at 

geographically distant positions and communicate only through messengers. Some of 

the generals are traitors (equivalent to faulty processers) and try to prevent loyal generals 

from reaching an agreement by deliberately transmitting erroneous information. 

8.4.1 The Upper Bound on the Number of Faulty Processors 

In order to reach an agreement on a common value, nonfaulty processors need to be 

free from the influence of faulty processors. If faulty processors dominate in number, 
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they can prevent nonfaulty processors from reaching a consensus. Thus, the number of 

faulty processors should not exceed a certain limit if a consensus is to be reached. 

Pease et al. [16] showed that in a fully connected network, it is impossible to 

reach a consensus if the number of faulty processors, to, exceeds [(n — 1)/3J. Lamport 

et al. [14] were the first to give a protocol to reach Byzantine agreement that requires 

to+ 1 rounds of message exchanges (m is the maximum number of faulty processors). 

Fischer et al. [8] showed that to + 1 is the lower bound on the number of rounds of 

message exchanges to reach a Byzantine agreement in a fully connected network where 

only processors can fail. 

However, if authenticated messages are used, this bound is relaxed and a consensus 

can be reached for any number of faulty processors. 

8.4.2 An Impossibility Result 

We now show that a Byzantine agreement cannot be reached among three processors, 

where one processor is faulty [14], For a rigorous treatment of this impossibility result 

for a higher number of processors, readers are referred to [9] and [16]. 

Consider a system with three processors, po, pi, and p2. For simplicity, we assume 

that there are only two values, 0 and 1, on which processors agree and processor po 

initiates the initial value. There are two possibilities: (1), po is not faulty or (2) po is 

faulty. 

Case I: po is not faulty. Assume p2 is faulty. Suppose that po broadcasts an initial 

value of 1 to both p\ and p2. Processor p2 acts maliciously and communicates a value of 

0 to processor p\. Thus, p\ receives conflicting values from po and p2. (This scenario is 

shown in Fig. 8.1. A faulty processor is depicted by an oval and a nonfaulty processor 

is denoted by a circle.) Iiowever, since po is nonfaulty, processor p\ must accept 1 as 

the agreed upon value if condition 2 (of Sec. 8.3.1) is to be satisfied. 

Case II: po is faulty. Suppose that processor p0 sends an initial value of 1 to p\ and 

0 to p2- Processor p2 will communicate the value 0 to p\. (This scenario is shown in 

Fig. 8.2). As far as p\ is concerned, this case will look identical to Case I. So any 

agreement protocol which works for three processors cannot distinguish between the 

two cases and must force p\ to accept 1 as the agreed upon value whenever p\ is faced 

with such situations (to satisfy condition 2). However, in Case II, this will work only 

if p2 is also made to accept 1 as the agreed upon value. 

Using a similar argument, we can show that if p2 receives an initial value of 0 

from po, then it must take 0 as the agreed upon value, even if p\ communicates a value 

o 
FIGURE 8.1 
Processor po is Non-Faulty. 
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FIGURE 8.2 
Processor po is Faulty. 

of 1. However, if this is followed in Case II, p\ will agree on a value of 1 and p2 will 

agree on a value of 0, which will violate condition 1 (Sec. 8.3.1) of the solution. 

Therefore, no solution exists for the Byzantine agreement problem for three pro¬ 

cessors, which can work under single processor failure. 

8.4.3 Lamport-Shostak-Pease Algorithm 

Lamport et al.’s algorithm [14], referred to as the Oral Message algorithm OM(m), m 

> 0, solves the Byzantine agreement problem for 3m + 1 or more processors in the 

presence of at most m faulty processors. Let n denote the total number of processors 

(clearly, n > 3m + 1). The algorithm is recursively defined as follows: 

Algorithm OM(O). 

1. The source processor sends its value to every processor. 

2. Each processor uses the value it receives from the source. (If it receives no value, 

then it uses a default value of 0.) 

Algorithm OM(m), m > 0. 

1. The source processor sends its value to every processor. 

2. For each i, let Vi be the value processor i receives from the source. (If it receives 

no value, then it uses a default value of 0.). Processor i acts as the new source and 

initiates Algorithm OM(m-l) wherein it sends the value Vi to each of the n - 2 

other processors. 

3. For each i and each j (/ i), let Vj be the value processor i received from processor 

j in Step 2. using Algorithm OM(m-l). (If it receives no value, then it uses a 

default value of 0.). Processor i uses the value majority(vV2, ..., 

This algorithm is evidently quite complex. The processors are successively divided 

into smaller and smaller groups and the Byzantine agreement is recursively achieved 

within each group of processors (Step 2 of “Algorithm OM(m- 1)”)- Step 3 is executed 

during the folding phase of the recursion, where a majority function is applied to select 

the majority value out of the values received in a round of message exchange (Step 2). 

The function majority (v\, v2, ..., vn-\) computes a majority value of the values v\, v2, 

..., un_i if it exists (otherwise, it returns the default value 0). 
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The execution of the algorithm OM(m) invokes n — 1 separate executions of 

the algorithm OM(m-l), each of which invokes n — 2 executions of the algorithm 

OM(m-2), and so on. Therefore, there are (n — 1 )(n — 2)(n — 3) ... (n — m + 1) separate 

executions of the algorithm OM(k), k = n — 1, n — 2, n — 3, ..., n — m+\. The message 

complexity of the algorithm is 0(nm). 

Example 8.1. Consider a system with four processors, po, p\, p2, and p3. For sim¬ 
plicity, we assume that there are only two values 0 and 1, furthermore, we assure that 
processor po initiates the initial value and that processor p2 is faulty. 

To initiate the agreement, processor p0 executes algorithm OM(l) wherein it 
sends its value 1 to all other processors (Fig. 8.3). At Step 2 of the algorithm OM(l), 
after having received the value 1 from the source processor po, processors p\, po, and 
po execute the algorithm OM(O). These executions are shown in Fig. 8.4. Processors p\ 

and po, are nonfaulty and send value 1 to processors {p2, po} and {p\, po}. respectively. 
Faulty processor p2 sends value 1 to p\ and a value 0 to p3 (see Fig. 8.4). 

After having received all the messages, processors p\, p2, and p3 execute Step 
3 of the algorithm OM(l) to decide on the majority value. Processor p\ has received 
values (1, 1, 1), whose majority value is 1, processor p2 has received values (1, 1, 
1), whose majority value is 1, and processor po has received values (1, 1, 0), whose 
majority value is 1. Thus, both conditions of the Byzantine agreement are satisfied. 

Example 8.2. Figure 8.5 shows a situation where processor po is faulty and sends 
conflicting values to the other three processors. These three processors, under Step 1 
of OM(O), send the received values to the other two processors. 

After having received all the messages, processors p\, p2, and po execute Step 3 
of the algorithm OM(l) to decide on the majority value. Note that all three processors 
have received values (1, 0, 1), whose majority value is 1, Thus, all three nonfaulty 
processors agree on the same value and the required conditions of the Byzantine 
agreement are satisfied. 

FIGURE 8.3 
Processor po executes the algorithm OM(l) 

FIGURE 8.4 

Processors p\, p2, and p3 execute the algorithm OM(O) 
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8.4.4 Dolev et al.’s Algorithm 

Dolev et al. have given a polynomial algorithm for reaching Byzantine agreement [5]. 

The algorithm is polynomial in message complexity. However, the algorithm requires 

up to 2m + 3 rounds to reach an agreement (more than what is needed in the Lamport- 

Shostak-Pease algorithm). Thus, there is a trade off between message complexity and 

time delay (rounds). 

DATA STRUCTURES. The algorithm uses two thresholds: LOW and HIGH, where 

LOW:= m + 1 and HIGH:= 2m + 1. The basic idea is that any subset of processors of 

size LOW will have at least one nonfaulty processor. Therefore, we can prevent faulty 

processors from introducing erroneous values by confirming an assertion from at least 

LOW number of processors. Note that if an assertion is supported by LOW number 

of processors, then it must be supported by at least one nonfaulty processor. Also, any 

subset of processors of size HIGH includes a majority of processors, that is, m + 1, 

that are nonfaulty. Therefore, an assertion must be confirmed by at least HIGH number 

of processors before assuming an agreement on that assertion. 
The algorithm uses two types of messages: a message and a message consisting 

of the name of a processor. The “*” denotes the fact that the sender of the message is 

sending a value of 1 and the name in a message denotes the fact that the sender of the 

message received a “*” from the named processor. (Note that every message contains 

the name of its sender processor.) 
A processor keeps a record of all the messages it has received. Let W* be the 

set of processors that have sent message x to processor i. (Note that x is either a 

or a processor name.) Thus, each process maintains n + 1 number of W sets. We 

refer to Wij. as the set of witnesses to message x for processor i. A processor j is a 

direct supporter for a processor k if j directly receives from k. When a nonfaulty 

processor j directly receives “*” from processor k, it sends message “k” to all other 

processors. When processor i receives the message “fc” from processor j, it adds j 

into Wl because j is a witness to message “fc”. Process j is an indirect supporter for 

processor k if \W3k\ > LOW; That is, processor j has received message “fc” from at 

least LOW number of processors. A processor j confirms processor k if \ W3k \ > HIGH; 

That is, at least HIGH number of processors told processor j that they received the 

value of a 1 from processor k. A process % maintains a set, C*, of confirmed processors. 
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THE ALGORITHM. In the first round, the source processor sends a message to 

all processors (including itself) if its value is 1. If its value is 0, it sends nothing in 

the first round. (The default value is 0.) If the processors finally agree on then the 

agreed upon value is 1. Otherwise, the agreed upon value is 0. 

In subsequent rounds, a processor sends its messages to all other processors, 

receives messages from other processors, and then decides what messages to send in 

the next round. Recall that when a nonfaulty processor j receives a message from 

processor k, it sends message “h” to all other processors in the next round indicating that 

it is a direct supporter of processor “fc”. Next, we introduce the initiation operation, 

which is tantamount to sending a message to all other processors. A processor 

initiates under the following conditions: 

• It initiates in the second round if it receives a from the source in round 1. 

• It initiates in the K + 1st round if at the end of A'th round the cardinality of the 

set of the confirmed processors (not including the source) is at least LOW+ max(0, 

[K/2\— 2) (referred to as the condition of initiation). 

The following four rules describe the operation of the Dolev et al.’s algorithm [5]: 

1. In the first round, the source broadcasts its value to all other processors. 

2. In a round k > 1, a processor broadcasts the names of all processes for which it is 

either a direct or indirect supporter and which it has not previously broadcast. If the 

condition of initiation was true at the end of the previous round, it also broadcasts 

the message unless it has previously done so. 

3. If a processor confirms HIGH number of processors, it commits to a value of 1. 

4. After round 2m+3, if the value 1 is committed, the processors agree on 1; otherwise, 
they agree on 0. 

DISCUSSION. The algorithm has two interesting features: initiation and committing. 

A processor commits if it confirms HIGH number of processors; That is, each of these 

HIGH confirmed processors has been witnessed to have sent a by HIGH number of 

processors. Since there are at least ra-fi 1 nonfaulty processors in any HIGH number of 

processors, a processor commits if it determines that at least m+ 1 nonfaulty processors 

have witnessed that at least m+1 nonfaulty confirmed processors sent a This means 

to + 1 nonfaulty processors have indeed initiated (i.e., have broadcast a 

The initiation is a very interesting concept as it causes a chain reaction of the 

initiation operation to make nonfaulty processors eventually dominate the faulty pro¬ 

cessors. A processor initiates in the second round if it receives a from the source 

in the first round. A processor can initiate after the first round, only if it has confirmed 

sufficiently many processors. This number is LOW for the first four rounds and after 

that it increases by one for every two rounds. The algorithm and the condition for initi¬ 

ation are so designed that if LOW number of nonfaulty processors initiate, an avalanche 

of initiation begins, causing all nonfaulty processors to initiate and commit. 
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Example 8.3. Consider a situation with 3m +1 processors out of which to processors 
are faulty. Suppose the source is nonfaulty and broadcasts a in the first round. 
In the second round, 2to nonfaulty processors will initiate (i.e., broadcast In 
the third round, 2to + 1 nonfaulty processors (including the source) will broadcast 
messages containing the name of the processors (direct supporter messages) informing 
that they have witnessed a from 2to other nonfaulty processors. Thus, in the fourth 
round, the witness set of all 2to + 1 nonfaulty processors will contain all 2m + 1 
nonfaulty processors and they all will commit to a value of 1 in the fourth round. 
Thus, if the source is nonfaulty, an agreement is reached in four rounds [5]. 

If the source is faulty, it may send a to only a few processors. In this case, at 

least all the nonfaulty processors which received a in the first round will initiate in 

the second round. Note that until LOW number of nonfaulty processors initiate, there 

is no guarantee that the confirmed set at a processor will reach size LOW, triggering an 

initiation at some other nonfaulty processor. Some faulty processors can always behave 

like nonfaulty processors that receive from the source and collaborate with nonfaulty 

processors to help them trigger initiation at other nonfaulty processors. However, there 

is no guarantee of this. On the other hand, if a faulty source sends a to at least 

LOW number of nonfaulty processors in the first round, then an avalanche of initiation 

at nonfaulty processors occurs, resulting in the commit of all nonfaulty processors. 

EXTENSION TO CASE N > 3M + 1. So far, it has been assumed that out of n - 

3to + 1 processors, exactly to processors are faulty. Now we extend the result for the 

case where n > 3to + 1; that is, the number of nonfaulty processors is more than the 

lower bound. 
When the number of processors n is greater than 3m + 1, the application of 

the above algorithm will exchange more messages than necessary. To reduce the total 

number of messages exchanged to reach a consensus, 3to + 1 processors are designated 

as active processors (including the source) and the rest of the processors are called 

passive processors. The passive processors do not send any messages and a processor 

ignores a message about or from a passive processor. (Note that some faulty processors 

can forge messages.) 
All active processors follow the above described algorithm. They send mes¬ 

sages to all processors (active as well as passive), but send all other messages containing 

names only to all other active processors. A passive processor agrees on 1 if it receives 

a “*” from HIGH number of active processors; Otherwise, it agrees on 0. All the active 

processors will reach the Byzantine agreement after 2to + 3 rounds. It is shown in [5] 

that both active and passive processors together reach the Byzantine agreement as a 

result of the above algorithm. 

8.5 APPLICATIONS OF AGREEMENT ALGORITHMS 

Algorithms for agreement problems find applications in problems where processors 

should reach an agreement regarding their values in the presence of malicious failures. 

We next discuss two such applications, viz., clock synchronization in distributed systems 

and atomic commit in distributed databases. 
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8.5.1 Fault-Tolerant Clock Synchronization 

In distributed systems, it is often necessary that sites (or processes) maintain physical 

clocks that are synchronized with one another. Since physical clocks have a drift prob¬ 

lem, they must be periodically resynchronized. Such periodic synchronization becomes 

extremely difficult if the Byzantine failures are allowed. This is because a faulty pro¬ 

cess can report different clock values to different processes. The description of clock 

synchronization in this section is based on the work of Lamport and Melliar-Smith [13]. 

We make the following assumptions regarding the system: 

Al: All clocks are initially synchronized to approximately the same values. 

A2: A nonfaulty process’s clock runs at approximately the correct rate. (The 

correct rate means one second of clock time per second of real time. No assumption is 

made about a faulty clock.) 

A3: A nonfaulty process can read the clock value of another nonfaulty process 

with at most a small error e. 

A clock synchronization algorithm should satisfy the following two conditions: 

• At any time, the values of the clocks of all nonfaulty processes must be approxi¬ 

mately equal. 

• There is a small bound on the amount by which the clock of a nonfaulty process is 

changed during each resynchronization. 

The latter condition implies that resynchronization does not cause a clock value 

to jump arbitrarily far, thereby preventing the clock rate from being too far from the 

real time. 

We discuss two clock synchronization algorithms, namely, the interactive conver¬ 

gence algorithm and the interactive consistency algorithm, which are fault-tolerant to 

the Byzantine failures. The former gets its name because it causes the nonfaulty clocks 

to converge and the latter gets its name because all nonfaulty processes obtain mutually 

consistent views of all the clocks. Both the algorithms can tolerate up to m process 

failures in a network of at least 3m + 1 processes. 

The Interactive Convergence Algorithm 

The interactive convergence algorithm assumes that the clocks are initially synchro¬ 

nized and that they are resynchronized often enough so that two nonfaulty clocks never 
differ by more than <5. The algorithm works as follows: 

The Algorithm. Each process reads the value of all other processes’ clocks and sets 

its clock value to the average of these values. However, if a clock value differs from 

its own clock value by more than <5, it replaces that value by its own clock value when 
taking the average. 

Clearly, the algorithm is conceptually very simple. It does not safeguard against the 

problem of two-faced clocks wherein a faulty clock reports different values to different 
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processes. We next show that, nonetheless, the algorithm brings the clocks of nonfaulty 

processes closer. Let two processes p and q, respectively, use cpr and cqr as the clock 

values of a third process r when computing their averages. If r is nonfaulty, then cpr 

= cqr. If r is faulty, then \cpr — cqr\ < 36 (because the difference in the clock values 

of any two processes is bounded by 8). When p and q compute their averages for the n 

clocks values, they both use identical values for the clocks of n — m nonfaulty processes 

and the difference in the clock values of m faulty processes they use is bounded by 38. 

Consequently, the averages computed by p and q differ by at most (3m/n)8. Since n 

> 3m, clearly (3m/n)8 < 8. Thus, each resynchronization brings the clocks closer by 

a factor of (3m/n). This implies that we can keep the clocks synchronized within any 

desired degree by resynchronizing them often enough using the algorithm. 

In the above discussion of this algorithm, two assumptions have been made: 

• All processes execute the algorithm instantaneously at exactly the same time. 

• The error in reading another process’s clock is zero. 

Since a process may not execute the algorithm instantaneously, it may read other 

processes’ clocks at different time instants. This problem can be circumvented by hav¬ 

ing a process compute the average of the difference in clock values (rather than using 

absolute clock values) and incrementing its clock by the average increment. (Clock 

differences larger than 8 are replaced by 0.) However, this requires the following as¬ 

sumption: 

A3': A nonfaulty process can read the difference between the clock value of 

another nonfaulty process and its own with at most a small error e. 

If the clock-reading error is e, then the difference in the clock values read by a 

process can be as large as 8 + e. Therefore, only clock differences larger than <5 + e are 

replaced by 0 while computing the average increment. 

The Interactive Consistency Algorithm 

The interactive consistency algorithm adds two improvements: first, it takes the median 

of the clock values rather than the mean. The median provides a good estimate of the 

clock value, as the number of bad clocks will be low. Second, it avoids the problem of 

two-faced clocks (which report different values to different processes) by using a more 

sophisticated technique to obtain clock values of the processes. 
Two processes will compute approximately the same median if they obtain ap¬ 

proximately the same set of clock values for other processes. Therefore, the following 

conditions apply: 

Cl: Any two processes obtain approximately the same value for a process p’s 

clock (even if p is faulty). 

Not only should all processes compute the same value, but their values should be 

close to the clock values of nonfaulty processes. Therefore, the following condition: 
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C2: If q is a nonfaulty process, then every nonfaulty process obtains approximately 

the correct value for process q's clock. 

Thus, if a majority of the processes are nonfaulty, the median of all the clock 

values is either approximately equal to a good clock’s value or it lies between the 

values of two good clocks. 
Note that conditions Cl and C2 are very similar to the Agreement and Validity 

conditions of the interactive consistency problem of Sec. 8.3.3. Therefore, the interactive 

consistency algorithm for clock synchronization works in the following manner: first, 

all the processes execute an algorithm for the interactive consistency problem to collect 

the values of the clocks of other processes, which satisfy conditions Cl and C2. Second, 

every process uses the median of the collected values to compute its new clock value. 

The first step can be executed by having every process independently run an instance of 

the oral message protocol, OM(ra), for the Byzantine problem, where a process sends 

a copy of its clock to every process as its initial value. When the algorithm OM(m) 

has stopped at every process, every process has clock values for all other processes, 

which satisfy conditions Cl and C2. At this point, every process computes the median 

of these values and sets its clock to the median. 

8.5.2 Atomic Commit in DDBS 

In the problem of atomic commit, sites of a DDBS must agree whether to commit or 

abort a transaction. In the first phase of the atomic commit, sites execute their part of a 

distributed transaction and broadcast their decisions (commit or abort) to all other sites. 

In the second phase, each site, based on what it received from other sites in the first 

phase, decides whether to commit or abort its part of the distributed transaction. 

Since every site receives an identical response from all other sites, they will 

reach the same decision. However, if some sites behave maliciously, they can send a 

conflicting response to other sites, causing them to make conflicting decisions. 

In these situations, we can use algorithms for the Byzantine agreement to insure 

that all nonfaulty processors reach a common decision about a distributed transaction. 

It works as follows: In the first phase, after a site has made a decision, it starts the 

Byzantine agreement. In the second phase, processors determine a common decision 
based on the agreed vector of values. 

8.6 SUMMARY 

In distributed systems, it is often required that sites (or processors) reach a mutual 

agreement. However, when Byzantine faults are permitted, solutions to the agreement 

problem are nontrivial because faulty processors may behave maliciously, preventing 

other processors from reaching a common agreement. In Byzantine failures, a faulty 

processor may send spurious messages to other processors, may lie, may not respond 
to received messages correctly, etc. 

In this chapter, we studied agreement problems under a synchronous model of 

computation, where processors run in a lock step manner. The agreement problem is 
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not solvable in an asynchronous system even for a single processor failure. In an asyn¬ 

chronous computation, computation at processors does not proceed in lock steps. There 

are two types of messages: authenticated vs. non-authenticated. In the authenticated 

message system, a faulty processor cannot forge a message or change the contents of a 

received message before it relays the message to other processors. In a non-authenticated 

message system, a faulty processor can forge a message and claim to have received 

it from another processor or change the contents of a received message before it re¬ 

lays the message to other processors. This chapter discussed agreement problems for 

non-authenticated messages under processor failures. 

The agreement problems can be classified into three classes, namely, the Byzantine 

agreement problem, the consensus problem, and the interactive consistency problem. In 

the Byzantine agreement problem, a source processor initializes a value and all nonfaulty 

processors must agree on that value (if the source is non-faulty). In the consensus 

problem, every processor has its own initial value and all nonfaulty processors must 

agree on a common single value. In the interactive consistency problem, every processor 

has its own initial value and all non-faulty processors must agree on a set of common 

values. 
In all three problems, all nonfaulty processors must reach a common agreement. 

In the Byzantine agreement and consensus problems, the agreement concerns a single 

value. Whereas in the interactive consistency problem, the agreement concerns a set of 

common values. In the Byzantine agreement problem, only one processor can initialize 

the initial value. Whereas in the consensus and the interactive consistency problems, 

every processor has its own initial value. The three agreement problems are related and 

the Byzantine agreement problem is primitive to the other two agreement problems. 

An algorithm for Byzantine agreement must guarantee that all nonfaulty proces¬ 

sors agree on the same value and if the source processor is nonfaulty, the common 

agreed upon value by all nonfaulty processors should be the initial value of the source. 

Obviously, all the processors must exchange values through messages to reach a con¬ 

sensus. Processors send their values to other processors and relay received values to 

other processors. A major problem is that during the execution of the protocol, faulty 

processors may confuse other processors by sending them conflicting values or may not 

relay the correct value. 
In order to reach an agreement on a common value, nonfaulty processors should be 

free from the influence of faulty processors. If faulty processors dominate in number, 

they can prevent nonfaulty processors from reaching a consensus. Thus, the number 

of faulty processors should not exceed a limit if a consensus is to be reached. It is 

impossible to reach a consensus if the number of faulty processors, m, exceeds | (n - 

1)/3J. (If authenticated messages are used, this bound is less rigid and a consensus 

can be reached for any number of faulty processors.) It has been shown that m + 1 is 

the lower bound on the number of rounds of message exchanges to reach a Byzantine 

agreement in a fully connected network where only processors can fail. 
Lamport et al. [14] were the first to present an algorithm to solve the Byzantine 

agreement problem for 3m + 1 or more processors in the presence of at most m 

faulty processors. In the algorithm, processors are recursively divided into smaller and 

smaller groups and the Byzantine agreement is recursively achieved within each group 
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of processors. The message complexity of this algorithm is 0(nm) and it requires m+1 

rounds to reach the consensus. Dolev et al. gave a polynomial algorithm for reaching 

the Byzantine agreement [5]. Their algorithm is polynomial in message complexity, but 

it requires up to 2m + 3 rounds to reach an agreement (which is more than double 

the rounds needed in the Lamport et al.’s algorithm). Thus, there is a tradeoff between 

message complexity and time delay (rounds). 

Algorithms for agreement problems find applications in problems where proces¬ 

sors should reach an agreement in the presence of malicious failures. Example of these 

applications include clock synchronization, atomic commit in DDBS, and fault toler¬ 

ance. 

8.7 FURTHER READING 

Two surveys on the Byzantine agreement problem appear in papers by Fischer [7] and 

Strong-Dolev [21], For the extension of binary-value Byzantine agreement to multivalue 

agreement, readers should see a paper by Turpin and Coan [23]. Yan et al. [24, 25], 

have extended the agreement protocols to Byzantine link failures. Chor and Coan [2] 

and Rabin [17] discuss the problem of randomized Byzantine generals. Turek and 

Shasha [22] present an up-to-date survey of the consensus problem. 

The problem of fault-tolerant clock synchronization in distributed systems has 

been widely studied. Ramanathan and Shin [18] give a comprehensive survey of clock 

synchronization techniques in distributed systems. Techniques for fault-tolerant clock 

synchronization appear in papers by Cristian [3], Halpem et al. [12], Ramanathan et 

al. [19], and Srikanth and Toueg [20]. Consensus-based fault-tolerant distributed sys¬ 

tems have been studied by Babaoglu [1], Application of the Byzantine agreement in 

distributed transaction commit can be found in papers by Dolev and Strong [6] and 
Mohan et. al. [15]. 

PROBLEMS 

8.1. Show that Byzantine agreement cannot always be reached among four processors if 
two processors are faulty. 

8.2. Show how a solution to the consensus problem can be used to solve the interactive 
consistency problem. 

8.3. Prove that in Dolev et al.’s algorithm for case n > 3m + 1, if the active processors 
agree on the value 1, then the passive processors will also agree on the value of 1. 
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CHAPTER 

9 
DISTRIBUTED 

FILE SYSTEMS 

9.1 INTRODUCTION 

A distributed file system is a resource management component of a distributed operating 
system. It implements a common file system that can be shared by all the autonomous 
computers in the system. Two important goals of distributed file systems follow. 

Network transparency: The primary goal of a distributed file system is to provide 
the same functional capabilities to access files distributed over a network as the file 
system of a timesharing mainframe system does to access files residing at one location. 
Ideally, users do not have to be aware of the location of files to access them. This 
property of a distributed file system is known as network transparency. 

High availability: Another major goal of distributed file systems is to provide 
high availability. Users should have the same easy access to files, irrespective of their 
physical location. System failures or regularly scheduled activities such as backups or 
maintenance should not result in the unavailability of files. 

In recent years, several distributed file systems have been developed. In this 
chapter, we discuss the common mechanisms and design aspects shared by today’s 
distributed file systems. Section 9.5 discusses the implementation of these distributed 
file systems. First, we describe the architecture of a typical distributed file system. 
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9.2 ARCHITECTURE 

Ideally, in a distributed file system, files can be stored at any machine (or computer) and 

the computation can be performed at any machine (i.e., the machines are peers). When a 

machine needs to access a file stored on a remote machine, the remote machine performs 

the necessary file access operations and returns data if a read operation is performed. 

However, for higher performance, several machines, referred to as file servers, are 

dedicated to storing files and performing storage and retrieval operations. The rest 

of the machines in the system can be used solely for computational purposes. These 

machines are referred to as clients and they access the files stored on servers (see 

Fig. 9.1). Some client machines may also be equipped with a local disk storage that 

can be used for caching remote files, as a swap area, or as a storage area. 

The two most important services present in a distributed file system are the name 

server and cache manager. A name server is a process that maps names specified by 

clients to stored objects such as files and directories. The mapping (also referred to as 

name resolution) occurs when a process references a file or directory for the first time. 

A cache manager is a process that implements file caching. In file caching, a copy of 

data stored at a remote file server is brought to the client’s machine when referenced by 

the client. Subsequent accesses to the data are performed locally at the client, thereby 

reducing the access delays due to network latency. Cache managers can be present at 

both clients and file servers. Cache managers at the servers cache files in the main 

memory to reduce delays due to disk latency. If multiple lients are allowed to cache 

a file and modify it, the copies can become inconsistent. To avoid this inconsistency 

problem, cache managers at both servers and clients coordinate to perform data storage 

FIGURE 9.1 
Architecture of a distributed file system. 
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FIGURE 9.2 
Typical data access actions in distributed file systems. 

and retrieval operations. Typically, data access in a distributed file system proceeds as 

shown in Fig. 9.2. 

A request by a process to access a data block is presented to the local cache 

(client cache) of the machine (client) on which the process is running (see Fig. 9.1). If 

the block is not in the cache, then the local disk, if present, is checked for the presence 

of the data block. If the block is present, then the request is satisfied and the block is 

loaded into the client cache. If the block is not stored locally, then the request is passed 

on to the appropriate file server (as determined by the name server). The server checks 

its own cache for the presence of the data block before issuing a disk FO request. The 

data block is transferred to the client cache in any case and loaded to the server cache 

if it was missing in the server cache. 

9.3 MECHANISMS FOR BUILDING DISTRIBUTED FILE 
SYSTEMS 

In tins section, the basic mechanisms underlying the majority of the distributed file 

systems operating today are presented [33J. These mechanisms take advantage of the 

observations made in previous studies on file systems. We cite these observations along 

with the mechanisms that exploit them. A crucial point to note here is that these ob- 
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servations were made in timesharing systems operating in academic environments, and 

are assumed to hold in distributed systems as well. 

9.3.1 Mounting 

A mount mechanism allows the binding together of different filename spaces (see 

Sec. 9.4.1) to form a single hierarchically structured name space. Even though mounting 

is UNIX’*' specific, it is worthwhile to study this mechanism as most of the existing 

distributed file systems are based on UNIX [33]. A name space (or a collection of files) 

can be bounded to or mounted at an internal node or a leaf node of a name space tree. 

Figure 9.3 illustrates a name space tree. A node onto which a name space is mounted is 

known as a mount point. In Fig. 9.3, nodes a and i are mount points at which directories 

stored at server Y and server Z are mounted, respectively. Note that a and i are internal 

nodes in the name space tree. The kernel maintains a structure called the mount table, 

which maps mount points to appropriate storage devices. 
In the case of distributed file systems, file systems maintained by remote servers 

are mounted at the clients. There are two approaches to maintain the mount informa¬ 

tion [33]: (1) Mount information can be maintained at clients, in which case each client 

has to individually mount every required file system. This approach is employed in the 

Sun network file system [32], Since each client can mount a file system at any node in 

the name space tree, every client need not necessarily see an identical filename space. 

(2) Mount information can be maintained at servers, in which case it is possible that 

every client sees an identical filename space (see remote links in the Sprite file system. 

Sec. 9.5.2.). If files are moved to a different server, then mount information need only be 

updated at the servers. In the first approach, every client needs to update its mount table. 

Server X 

FIGURE 9.3 
Name space hierarchy. 

^UNIX is a trademark of Novell, Inc. 
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9.3.2 Caching 

Caching is commonly employed in distributed file systems to reduce delays in the 

accessing of data. In file caching, a copy of data stored at a remote hie server is brought 

to the client when referenced by the client. Subsequent access to the data is performed 

locally at the client, thereby reducing access delays due to network latency. Caching 

exploits the temporal locality of reference exhibited by programs. The temporal locality 

of reference refers to the fact that a hie recently accessed is likely to be accessed again 

in the near future. Data can either be cached in the main memory or on the local disk 

of the clients. Also, data is cached in the main memory (server cache) at the servers 

to reduce disk access latency. These data include blocks swapped out at clients and 

data blocks that are contiguous to blocks previously requested by clients, as these data 

are more likely to be accessed soon. The hie system performance can be improved by 

caching since accessing remote disks is much slower than accessing local memory or 

local disks. In addition, caching reduces the frequency of access to the hie servers and 

the communication network, thereby improving the scalability of a hie system. 

9.3.3 Hints 

Caching improves hie system performance by reducing the delay in accessing data. 

However, when multiple clients cache and modify shared data, the problem of cache 

consistency arises. Specifically, it must be guaranteed that the cached data is valid (up- 

to-date) and that a copy of the data—recently updated in some other client cache or in 

the hie server—does not exist. Guaranteeing consistency is expensive in distributed hie 

systems as it requires elaborate cooperation between hie servers and clients. 

An alternative approach is to treat the cached data as hints [16, 42], In this 

case, cached data are not expected to be completely accurate. However, valid cache 

entries improve performance substantially without incurring the cost of maintaining 

cache consistency. The class of applications that can utilize hints are those which can 

recover after discovering that the cached data are invalid. For example, after the name 

of a hie or a directory is mapped to the physical object, the address of the object can be 

stored as a hint in the cache. If the address fails to map to the object in the following 

attempt, the cached address is purged from the cache. The hie server consults the name 

server to determine the actual location of the hie or directory and updates the cache. 

9.3.4 Bulk Data Transfer 

The bulk of the delay in transferring data over a network is due to the high cost of 

executing communication protocols (such as the assembly and disassembly of packets, 

the copying of buffers between layers of the communication protocols, etc.). In fact, 

actual transit time across a local area network can be insignihcant. Transferring data in 

bulk reduces the protocol processing overhead at both servers and clients [33k In bulk 

data transfer, multiple consecutive data blocks are transferred from servers to clients 

instead of just the block referenced by clients. 
While caching amortizes the high cost of accessing remote servers over several 

local references to the same information, bulk transfer amortizes the protocol processing 
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overhead and disk seek time over many consecutive blocks of a file. Bulk transfers 

reduce file access overhead through obtaining a multiple number of blocks with a 

single seek; by formatting and transmitting a multiple number of large packets in a 

single context switch; and by reducing the number of acknowledgments that need to be 

sent. Bulk transfers exploit the fact that most files are accessed in their entirety [33]. 

9.3.5 Encryption 

Encryption is used for enforcing security in distributed systems [33]. The work of 

Needham and Schroeder [23] is the basis for most of the current security mechanisms in 

distributed systems (see Sec. 15.8). In their scheme, two entities wishing to communicate 

with each other establish a key for conversation with the help of an authentication server. 

It is important to note that the conversation key is determined by the authentication 

server, but is never sent in plain (unencrypted) text to either of the entities. 

9.4 DESIGN ISSUES 

We now discuss various issues that must be addressed in the design and implementation 

of distributed file systems. By studying these design issues, one can better understand 

the intricacies of a distributed file system. 

9.4.1 Naming and Name Resolution 

A name in file systems is associated with an object (such as a file or a directory). 

Name resolution refers to the process of mapping a name to an object or, in the case 

of replication, to multiple objects. A name space is a collection of names which may 

or may not share an identical resolution mechanism. 

Traditionally, there have been three approaches to name files in a distributed 

environment [29]. The simplest scheme is to concatenate the host name to the names of 

files that are stored on that host. While this approach guarantees that a filename is unique 

systemwide, it conflicts with the goal of network transparency. Another serious problem 

with this approach is that moving a file from one host to another requires changes in 

the filename and in the applications accessing that file. That is, this naming scheme is 

not location-independent. (If a naming scheme is location-independent, the name of a 

file need not be changed when the file’s physical storage location changes [18].) The 

main advantage of this scheme, however, is that name resolution is very simple as a 

file can be located without consulting any other host in the system. 

The second approach is to mount remote directories onto local directories. (See 

Sec. 9.3.1 for details.) Mounting a remote directory requires that the host of the directory 

be known. Once a remote directory is mounted, its files can be referenced in a location- 

transparent manner. (A naming scheme is said to be location-transparent if the name 

of a file does not reveal any hint as to its physical storage location [18].) This approach 
can also resolve a filename without consulting any host. 

The third approach is to have a single global directory where all the files in the 

system belong to a single name space. Variations of this scheme are found in the Sprite 
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and Apollo systems (see Sec. 9.5). This approach does not have the disadvantages of 

the above two naming schemes. The main disadvantage of this scheme, however, is 

that it is mostly limited to one computing facility or to a few cooperating computing 

facilities. This limitation is due to the requirement of systemwide unique filenames, 

which requires that all the computing facilities involved cooperate [6]. Thus, this scheme 

is impractical for distributed systems that encompass heterogeneous environments and 

wide geographical areas, where a naming scheme suitable for one computing facility 

may be unsuitable for another. 

THE CONCEPT OF CONTEXTS. To overcome the difficulties associated with sys¬ 

temwide unique names, the notion of context has been used to partition a name space. A 

context identifies the name space in which to resolve a given name. Contexts can parti¬ 

tion a name space along the following: geographical boundary, organizational boundary, 

specific to hosts, a file system type, etc. In a context based scheme, a filename can be 

thought of as composed of a context and a name local to that context. Resolving a name 

involves interpreting the name with respect to the given context. The interpretation may 

be complete within the given context or may lead to yet another context, in which case 

the above process is repeated. If all files share a common initial context, then unique 

systemwide global names result. 

The x-Kernel logical file system (see Sec. 9.5.5) is a file system that makes use 

of contexts. In this file system, a user defines his own file space hierarchy. The internal 

nodes in this hierarchy correspond to the contexts. 

The Tilde naming scheme is another variant of the naming scheme using con¬ 

texts [6]. In the Tilde naming scheme, the name space is partitioned (based on projects 

which people are associated with) into a set of logically independent directory trees 

called tilde trees. Each process running in the system has a set of tilde trees associ¬ 

ated with it that constitute the process’s tilde environment. When a process tries to 

open or manipulate a file, the filename is interpreted with respect to the process’s tilde 

environment. 

NAME SERVER. In a centralized system, name resolution can be accomplished by 

maintaining a table that maps names to objects. In distributed systems, name servers are 

responsible for name resolution. A name server is a process that maps names specified by 

clients to stored objects such as files and directories. The easiest approach to name reso¬ 

lution in distributed systems is for all clients to send their queries to a single name server 

which maps names to objects. This approach has the following serious drawbacks: first, 

if the name server crashes, the entire system is drastically affected. Second, the name 

server may become a bottleneck and seriously degrade the performance of the system. 

The second approach involves having several name servers (on different hosts) 

wherein each server is responsible for mapping objects stored in different domains. 

This approach is commonly used in the distributed file systems operating today. When 

a name (usually with many components such as “a/b/c”) is to be mapped to an object, 

the local name server (such as a table maintained in the kernel) is queried. The local 

name server may point to a remote name server for further mapping of the name. 

For example, querying /a/b/c may require a remote server mapping the /b/c part of 
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the filename. This procedure is repeated until the name is completely resolved. By 

replicating the tables used by name servers, one can achieve fault tolerance and higher 

performance. 

9.4.2 Caches on Disk or Main Memory 

The benefits obtained by employing file caches at clients were discussed in Sec. 9.3.2. 

This section is concerned with the question of whether the data cached by a client should 

be in the main memory at the client or on a local disk at the client. The advantages of 

having the cache in the main memory are as follows [24]: 

• Diskless workstations can also take advantage of caching. (Note that diskless work¬ 

stations are cheaper.) 

• Accessing a cache in main memory is much faster than accessing a cache on local 

disk. 

• The server-cache is in the main memory at the server, and hence a single design for 

a caching mechanism is applicable to both clients and servers. 

The main disadvantage of having client-cache in main memory is that it competes 

with the virtual memory system for physical memory space. Thus, a scheme to deal 

with the memory contention between cache and virtual memory system is necessary. 

This scheme should also prevent data blocks from being present in both the virtual 

memory and the cache. A consequence of this fact is a more complex cache manager 

and memory management system. A limitation of caching in main memory is that large 

files cannot be cached completely in main memory, thus requiring the caching to be 

block-oriented. Block-oriented caching is more complex and imposes more load at the 

file servers (see Bulk Data Transfer) relative to entire file caching. 

The advantages of caching on a local disk are: large files can be cached without 

affecting a workstation’s performance; the virtual memory management is simple; and 

it facilitates the incorporation of portable workstations into a distributed system (see 

Coda, Section 9.5.4). A workstation, before being disconnected from the network for 

portable use, will cache all the required files onto its local disk. 

9.4.3 Writing Policy 

The writing policy decides when a modified cache block at a client should be transferred 

to the server. The simplest policy is write-through. In write-through, all writes requested 

by the applications at clients are also earned out at the servers immediately. The main 

advantage of write-through is reliability. In the event of a client crash, little information 

is lost. A write-through policy, however, does not take advantage of the cache. 

An alternate writing policy, delayed writing policy, delays the writing at the 

server [24]. In this case, modifications due to a write are reflected at the server after 

some delay. This approach can potentially take advantage of the cache by performing 

many writes on a block present locally in the cache. Another motivation for delaying 

the writes is that some of the data (for example, intermediate results) could be deleted 
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in a short time, in which case data need not be written at the server at all. In fact, 

it has been reported that twenty to thirty percent of new data is deleted within thirty 

seconds [26], One factor that needs to be taken into account when deciding the length 

of the delay period is the likelihood of a block not being modified after a given period. 

While the delayed writing policy takes advantage of the cache at a client, it introduces 

the reliability problem. In the event of a client crash, a significant amount of data can 
be lost. 

Another writing policy delays the updating of the files at the server until the hie 

is closed at the client. In this policy, the traffic at the server depends on the average 

period that hies are open. If the average period for which hies are open is short, then 

this policy does not greatly beneht from delaying the updates. On the other hand, if the 

average period for which hies are open is long, this policy is also susceptible to losing 

data in the event of a client crash. Note that it has been reported that a majority of the 

hies are open for a very short time [26], 

9.4.4 Cache Consistency 

The problem with cache consistency was introduced in Sec. 9.3.3. This section is 

concerned with the schemes that can guarantee consistency of the data cached at clients. 

There are two approaches to guarantee that the data returned to the clients is valid [42], 

• In the server-initiated approach, servers inform cache managers whenever the data 

in the client caches become stale. Cache managers at clients can then retrieve the 

new data or invalidate the blocks containing the old data in their cache. 

• In the client-initiated approach, it is the responsibility of the cache managers at the 

clients to validate data with the server before returning it to the clients. 

Both of these approaches are expensive and unattractive as they require elaborate 

cooperation between servers and cache managers. In both approaches, communication 

costs are high. The server-initiated approach requires the server to maintain reliable 

records on what data blocks are cached by which cache managers. The client-initiated 

approach simply negates the benefit of having a cache by checking the server to validate 

data on every access. It also does not scale well, as the load at the server caused by 

client checking increases with the increase in the number of clients. 

A third approach for cache consistency is simply not to allow file caching when 

concurrent-write sharing occurs. In concurrent-write sharing, a file is open at multiple 

clients and at least one client has it open for writing [24], In this approach, the file 

server has to keep track of the clients sharing a hie. When concurrent-write sharing 

occurs for a hie, the hie server informs all the clients to purge their cached data items 

belonging to that hie. Alternatively, concurrent-write sharing can be avoided by locking 

hies (see the Apollo hie system, Sec. 9.5.3). 
Another issue that a cache consistency scheme needs to address is sequential-write 

sharing, which occurs when a client opens a hie that has recently been modihed and 

closed by another client [24], Two potential problems with sequential-write sharing are: 

(1) when a client opens a hie, it may have outdated blocks of the hie in its cache, and 
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(2) when a client opens a file, the current data blocks may still be in another client’s 

cache waiting to be flushed. This can happen when the delayed writing policy is used. 

To handle the first problem, files usually have timestamps associated with them. 

When data blocks of a file are cached, the timestamp associated with the file is also 

cached. An inconsistency can be detected by comparing the timestamp of the cached 

data block with the timestamp of the file at the server. 

To handle the second problem, the server must require that clients flush the mod¬ 

ified blocks of a file from their cache whenever a new client opens the file for writing. 

9.4.5 Availability 

Availability is one of the important issues in the design of distributed file systems. The 

failure of servers or the communication network can severely affect the availability of 

files. Replication is the primary mechanism used for enhancing the availability of files 
in distributed file systems. 

REPLICATION. Under replication, many copies or replicas of files are maintained 

at different servers. Replication is inherently expensive because of the extra storage 

space required to store the replicas and the overhead incurred in maintaining all the 

replicas up to date. The most serious problems with replication are (1) how to keep the 

replicas of a file consistent and (2) how to detect inconsistencies among replicas of a 

file and subsequently recover from these inconsistencies. Some typical situations that 

cause inconsistency among replicas are (a) a replica is not updated due to the failure of 

the server storing the replica and (b) all the file servers storing the replicas of a file are 

not reachable from all the clients due to network partition, and the replicas of a file in 

different partitions are updated differently. Ironically, potential inconsistency problems 

may preclude file updates, thereby decreasing the availability as the level of replication 
is increased. 

UNIT OF REPLICATION. A fundamental design issue in replication is the unit of 

replication. The most basic unit is a file. File is the most commonly used replication unit 

and has been used in the Roe [9], Sprite [25], and Cedar [40] file systems. While this unit 

allows the replication of only those files that need to have higher availability, it makes 

overall replica management harder. For example, the protection rights associated with a 

directory have to be individually stored with each replica; replicas of files belonging to 

a common directory may not have common file servers and hence require extra name 

resolutions to locate the replicas in the case of modifications to the directory or the file. 

Alternatively, the replication unit can be a group of all the files of a single user or 

the files that are in a server, etc. The group of files is referred to as a volume [38], This 

scheme is used in Coda (see Sec. 9.5.4). The main advantage of volume replication 

is that replica management is easier. Protection rights can be associated with the vol¬ 

ume instead of with each individual file replica. However, volume replication may be 

wasteful as a user typically needs higher availability for only a few files in the volume. 

A compromise between volume replication and single file replication, used in 

Locus [43], captures the advantages of the above two schemes. In this scheme, all the 
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files of a user constitute a filegroup called a primary pack. A replica of a primary pack, 

called a pack, is allowed to contain a subset of the files in the primary pack. With this 

arrangement, a different degree of replication for each file in the primary pack can be 

obtained by creating one or more packs of the primary pack. 

REPLICA MANAGEMENT. Replica management is concerned with the maintenance 

of replicas and in making use of them to provide increased availability. Replica manage¬ 

ment depends on whether consistency is guaranteed by the distributed file system. Here 

we are concerned with the consistency among replicas only (which is also known as 

mutual consistency), and not with the consistency within a file. The consistency within 

a file was discussed in Secs. 9.3.3 and 9.4.4. 

To ensure mutual consistency among replicas, a weighted voting scheme can be 

used. We explain this scheme only briefly here as it is discussed in detail in Sec. 13.6. 

In this scheme, some number of votes and a timestamp are associated with each replica. 

A certain number of votes r or w must be obtained before a read or write, respectively, 

can be performed. Only votes from current (i.e., up-to-date) copies are valid. Reads can 

be from any current copy and writes update all the current copies. Timestamps of all the 

participating replicas (i.e., only current copies) are updated when a copy is updated. By 

keeping w > r and r + w > ‘total number of votes’ of all the replicas, it is possible 

to maintain at least one current copy. An important point to observe is that it is not 

necessary to keep all replicas up-to-date as long as sufficient votes can be obtained to 

perform reads and writes. This key feature provides for increased availability and fault 

tolerance during system failures. Voting is used in the Roe file system [9] to maintain 

mutual consistency. 
Another scheme to maintain consistency among replicas is to designate one or 

more processes as agents for controlling the access to replicas of files. This approach 

has been used in Locus [43], In Locus, each filegroup has a designated site that enforces 

the global synchronization policy. This designated site is referred to as the current 

synchronization site (CSS). The file open and file close requests are routed through the 

CSS to a storage site which has the copy of the requested file. A disadvantage of this 

approach is that the agent processes can potentially become bottlenecks; hence it has 

poor scalability. 
In the Harp file system [19], the designated site (server) for controlling the access 

to replicas is referred to as primary, and the other sites (servers) are referred to as 

backups. The primary enforces the global synchronization policy to maintain consistency 

in consultation with the backups. 
In the Coda file system, mutual consistency among replicas is not assured. For 

details on its replica management, see Sec. 9.5.4. 

9.4.6 Scalability 

The issue of scalability deals with the suitability of the design of a system to cater to 

the demands of a growing system. Currently, client-server organization is a commonly 

used approach to structure distributed file systems (see Case Studies, Sec. 9.5). Caching, 

which reduces network latency and server-load, is the primary technique used in client- 
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server organization to improve the client response time. Caching, however, introduces 

the cache consistency problem, as many clients can cache a file. 

Server-initiated cache invalidation is the most commonly used approach to main¬ 

tain cache consistency. In this scheme, a server keeps track of all the clients sharing 

files stored on the server. This information forms a part of the server state. As the 

system grows larger, both the size of the server state and the load due to invalidations 

increase. 

The server state and the server load can be reduced by exploiting knowledge about 

the usage of files [4, 34], An important observation in this regard is that many widely 

used and shared files are accessed in read-only mode. Note that there is no need to 

check the validity (stale or up-to-date) of these files or to maintain the list of clients at 

servers for invalidation purposes. 

Another observation is that the data required by a client is often found in another 

client’s cache [4], Since clients have more free cycles compared to servers [34], a client 

can obtain required data from another client rather than from a server. This of course 

raises the question of how to find the client which has cached the required data. 

Blaze and Alonso [3] have proposed a scheme wherein a server serves (providing 

data and invalidating in case of updates) only A number of clients for a file at any 

time. New clients after the first A clients are informed of the A clients from whom 

they can obtain data. These A clients will also serve A number of clients, after which 

the new clients are informed of the identity of the A clients they served, and so on. 

The hierarchy of who is serving who forms a tree of maximum degree A. Cache misses 

and invalidation messages propagate up-and-down in this hierarchy where each internal 

node serves as a mini-file server for its children. 

The structure of the server process also plays a major role in deciding how many 

clients a server can support. If the server is designed with a single process, then many 

clients have to wait for a long time whenever a disk I/O is initiated. These waits can be 

avoided if a separate process is assigned to each client. In this case, however, significant 

overhead due to the frequent context switches to handle requests from different clients 

can slow down the server. Lightweight processes (threads) have been proposed to reduce 

the context switch overhead. Threads are discussed in greater detail in Sec. 17.4. 

9.4.7 Semantics 

The semantics of a file system characterizes the effects of accesses on files. The basic 

semantics easily understood and easy to handle by programmers is that a read operation 
will return the data (stored) due to the latest write operation. 

Guaranteeing the above semantics in distributed file systems, which employ caching, 

is difficult and expensive. Consider a file system employing server-initiated cache in¬ 

validation for the guarantee of cache consistency. In such a system, because of commu¬ 

nication delays, invalidations may not occur immediately after updates and before reads 

occur at clients. To guarantee the above semantics, all the reads and writes from various 

clients will have to go through the server, or sharing will have to be disallowed either 

by the server, or by the use of locks by applications. Observe that in the first approach, 

the server can potentially become a bottleneck and the overheads are high because of 
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high traffic between the server and the clients. In the latter approach, however, the file 
is not available for certain clients. 

9.5 CASE STUDIES 

In the following sections, we describe several file systems currently in operation. It 

is difficult to compare the performance of these file systems as they are based on 

different operating systems. However, to give readers a feeling for the performance of 

distributed file systems, we have included the performance figures for the Sprite file 
system (discussed in Sec. 9.5.2). 

9.5.1 The Sun Network File System 

The Sun network file system (NFS) was developed by Sun Microsystems, Inc. [32] in 

1985 and has been widely used in both industry and academia. A major goal of the NFS 

is to keep the file system independent of the underlying hardware and the operating 
system. 

ARCHITECTURE. The architecture of the NFS is shown in Fig. 9.4. The NFS uses 

the remote procedure call (RPC) mechanism for remote file operations. An external data 

representation (XDR) specification is used to describe RPC protocols in a machine- and 

system-independent way. The RPC mechanism is independent of the transport protocols 

and new transport protocols can be used without affecting the higher level functions of 

the RPC mechanism. A file system interface separates the file system operations from 

Client 

FIGURE 9.4 
Architecture of the Sun NFS. 
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file system specific implementations. Although the original version of NFS is based 

on UNIX, the above design features have helped the NFS to be ported to non-UNIX 

operating systems such as PC-DOS. 
A file system interface called the virtual file system (VFS) interface defines the 

procedures that operate on the file system as a whole. By supporting different VFS inter¬ 

faces, the NFS can support different file systems. VFS interface is based on a structure 

called a vnode (virtual mode) [ 15]. There is a vnode for every object (file or directory) in 

the file system. A pointer to a vnode is similar to a reference to the object represented by 

the vnode. Vnodes are networkwide unique, and are a reimplementation of inodes, which 

uniquely identify objects on a single machine under the UNIX file system. Each vnode 

is complemented by a mount table that provides a pointer to its parent file system and to 

the file system over which it is mounted. This allows any node in the file system to be a 

mount point. By using the mount tables associated with the mounted file systems, VFS 

interface can distinguish between local and remote file systems. The requests for oper¬ 

ations on remote files are routed to the NFS layer by the VFS interface. Using the RPC 

mechanism, requests are further propagated to the VFS interface at the remote server. 

The VFS interface at the remote server initiates appropriate file system operation locally. 

NAMING AND LOCATION. In the NFS, all workstations are treated as peers. How¬ 

ever, it is a common practice to dedicate some workstations as file servers. These file 

servers export their file systems. In the NFS, a client can define its own private file 

system (or root file system) by mounting any subdirectory of a remote file system on 

its local file system or on another remote file system already mounted in its local file 

system. Since each client can configure its own file system, there is no guarantee that 

all the clients see the same name space. To alleviate this problem, the installations or 

a group of collaborating users usually define their file system such that all the clients 

see the same filename space. Each client maintains a table which maps the remote file 

directories to servers. (Note that this table has to be updated manually whenever new 

servers are added or files are moved from one server to another.) 

A filename is mapped to an object it represents when a client references the 

file for the first time. We explain the name resolution procedure with the help of an 

example. The look up of a file given by the filename /a/b/c, where directory component 

“a” corresponds to vnode 1, proceeds as follows: a look-up on vnode 1/b might return 

vnode2 for component “b”, where vnode2 might indicate that the object is on server X. 

Then the next level look-up vnode2/c will be directed to server X by the client. When 

the last component of a filename is mapped to an object, a file handle is returned to the 

client by the server storing that file. The file handle is used in all subsequent operations 

on that file by the client. Thus, name resolution in the NFS is a slow iterative process 

which involves looking up successive components of the filename until the filename 

is completely resolved. The actual mapping of a component to a vnode is done at the 

server. If servers are to completely resolve a given name—because any component 

of the filename may be a mount point for a remote file system—they will then have 

to maintain information about the mount points of all their clients as each client can 

configure its own name space. Maintaining information about the name space at servers 

would violate the principle of the stateless server (see stateless server). 
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CACHING. The NFS maintains three different caches in the main memory of clients 

to cache file blocks, translations of filenames to vnodes, and attributes of files and 

directories. In the NFS, file blocks are cached on demand. The NFS employs read- 

ahead and large block sizes (8 Kbytes) for data transfers to improve the sequential 

read performance. Files are cached in their entirety if their size falls under a certain 

threshold. When file blocks are cached, the timestamp of the file, which indicates when 

the file was last modified on the server, is also cached. Cached blocks are assumed to 

be valid for a certain period of time, after which reference to a block requires validation 

from the server. The validation of a cached file block is performed by comparing its 

cached timestamp with the timestamp of the file at the server. If the timestamp at the 

server is more recent than the cached timestamp, then all the cached blocks of that file 

are invalidated. These blocks are refetched on demand. In addition, the validation of 

the cached blocks is done at the file open time and on a cache miss. 

The writing policy used is the delayed writing policy, where modified blocks are 

flushed to the server after some unspecified delay. This writing policy is used when the 

file is accessed in conflicting modes (read and write) by different clients. Therefore, 

the basic semantics is not supported by the NFS. In addition, a modified file is flushed 

when the file is closed. Because of this policy the sequential-write sharing problem 
does not occur in the NFS. 

The directory name lookup cache holds the vnodes for remote directory names. 

This helps in resolving filenames sharing a common pathname quickly by avoiding the 

iterative lookup procedure described earlier. The entries in the cache are updated when 

a lookup fails and when a new vnode information is obtained. 

File and directory attributes are cached in the NFS since the NFS designers found 

that attribute inquiries accounted for ninety percent of the calls made to the server. 

While the cache entries are updated every time new attributes are received from the 

server, the file attributes are discarded after three seconds and the directory attributes are 

discarded after thirty seconds. Changes to a directory, however, are performed directly 

at the server. 

STATELESS SERVER. To simplify crash recovery, NFS servers are designed to be 

stateless. That is, file servers do not maintain any record of past requests (such as 

whether a file is open, the position of the file pointer, etc.). Instead, file access requests 

from clients contain all the information necessary to complete the request. When a client 

does not receive a response to its request, it simply resends the request. Therefore, in 

the NFS a client sees no difference between a server that has crashed and a server that 

is slow. Because a client can resend requests, the requests need to be idempotent (i.e., 

the effect of a file operation request sent several times should be identical to the effect 

of file operation executed only once). 

A stateless server, to recover after crashing, will simply restart. It does not need 

to restore its previous main memory image or any other information regarding which 

clients it was interacting with before crashing. It does not need to negotiate with clients 

over the status of the files that were being accessed before the crash. The stateless server 

design can also lead to inefficiency. The messages from clients to servers are larger as 

they contain all the information necessary to perform an operation and therefore they 
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impose extra overhead. Designing a server cache is difficult. Since a stateless server 

has no information regarding which files are open and which files are closed, cache 

management is difficult. In addition, when a file is shared, the server is no position to 

detect conflicting accesses. 
A stateful server, on the other hand, maintains information regarding what files 

are currently open, by which client, and in which mode (read/write). This state infor¬ 

mation makes it possible to implement a server-initiated cache consistency guarantee 

scheme as well as an efficient server cache mechanism. This state information, however, 

complicates server crash recovery. A recovering server will have to restore the state 

before restoring service. In addition, appropriate action needs to be taken on the files 

that were open before the server crashed. 

9.5.2 The Sprite File System 

Sprite is an experimental distributed operating system developed for a network of work¬ 

stations at the University of California at Berkeley [25]. Its major design goals are (1) 

to hide the distributed nature of a networking environment by providing efficient data 

sharing and communication, (2) to provide improved performance by using the large 

physical memories available in today’s workstations for file caching, and (3) To support 

UNIX file system semantics. 

NAMING AND LOCATION. In the Sprite file system (SFS), the entire filename space 

appears as a single hierarchy (a tree); however, it is a collection of domains spread across 

many servers. Domains are similar to file systems in UNIX. A server may store one or 

more domains, and each domain contains a subtree of the overall hierarchy. The file 

system traverses the domains to look up a file. 

Figure 9.5 illustrates an example of a file system hierarchy having four domains. 

Servers Y and Z each store one domain, and server X stores two domains (D\ and Dfi). 

The circled nodes (a, i, and j) in the figure are called mount points where subdomains 

have been mounted on their parents. 

In the SFS, each client uses a prefix table to keep track of domain structures and 

to look up files [44]. Each entry in a prefix table corresponds to a domain; it gives the 

full name of the topmost directory in the domain (called the prefix for the domain), the 

name of the server (address) on which that domain is stored, and a token used by the 

server to identify the domain. The tokens in a prefix table are known as prefix tokens. 

For example, in Table 9.1, the third entry corresponds to domain Dt, which is stored 

on server Z and /c/i/ is the topmost directory in domain D^. 

Locating a file. To look up a file when an absolute pathname is given, say /a/d, the 

client matches the name against the prefixes in its prefix table and selects the entry 

with the longest matching prefix. Note that in this case the second entry in Table 9.1 is 

selected. Then the client sends the remainder of the pathname (i.e., “/d”) and the prefix 

token D2 (given by the prefix table entry) to the server selected (in this case, X). The 

server looks up the file in the directory identified by the prefix token. On locating the 

file, the server replies to the client with a file token for the file. The client issues the 

file token in all the subsequent read, write, and close operations on the file. 
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Server X 
Domain Dj 

FIGURE 9.5 
File system hierarchy in SFS. 

TABLE 9.1 

A prefix table for the 
domain structure 
shown in Fig. 9.5 

Prefix Server Token 

/ X Di 

/a/ X d2 

/c/i/ z d3 

/c/i/j Y d4 

The SFS avoids repetitive searching through the prefix table every time a file 

relative to the current working directory is to be located. When a process specifies a 

new working directory, the prefix mechanism is used to look up the directory. Both the 

token and the server address corresponding to the working directory are stored as a part 

of the process’s state. To open a file relative to the working directory, the client sends 

the working directory token and the filename to the server without going through the 

prefix mechanism. 
When a filename crosses the domain boundaries, a server may not be able to com¬ 

plete a filename lookup. The domain crossovers are indicated when a lookup encounters 

a remote link. A remote link is a special file that contains an absolute filename for a 
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different domain. When a remote link is encountered, the server returns the absolute 

name of the hie stored in the link instead of a hie token. The client uses this new 

name to look up in the prehx table and sends its query to the new server indicated by 

the prehx table. This continues until the name is completely resolved. Note that the 

remote links simply indicate the presence of a domain and do not store any network 

address information. The absence of actual addresses enables the system to adapt to 

conhguration changes easily. For example, consider a lookup for hie /i/j/l/m with /c 

as the current working directory (see Fig. 9.5). The name is initially sent to server X. 

When server X encounters a domain crossover at /i/j, it returns the prehx name ld\l) 

(stored in the remote link) to the client. The client will then select server Z using /c/i/j 

for prehx match (see Table 9.1) and continues the lookup. 

Other examples of domain crossing that can be similarly resolved are: (1) A 

hlename containing may require ascending higher than the root directory into a 

different domain. In such cases, the server returns a name that is a prehx for the 

complete hlename. This prehx is appended with the hlename given by the client to 

make an absolute pathname. (2) When a hlename refers to a symbolic link. A symbolic 

link is a hie whose content is just a pathname that can be absolute or relative. When 

a lookup encounters a symbolic link storing an absolute pathname (e.g., symbolic link 

/a/f in Fig. 9.5), the server will return the new name (/c/i/j) for the client for further 

lookup. This case is similar to encountering a remote link. When a lookup encounters 

a symbolic link storing a relative pathname (e.g., symbolic link Idh in Fig. 9.5, the 

server continues with the lookup from the working directory containing the symbolic 

link. In this case, /i/j will be looked up from the working directory /c. 

Managing prefix tables. Initially the prefix table at a client is empty. A new entry 

gets added to a client’s prefix table as follows: The client broadcasts the filename when 

its lookup in the prefix table fails. A server with the matching domain replies with its 

address, the prefix token, and the prefix name corresponding to the topmost directory 

in the domain. The client uses the server’s response to update its prefix table. 

A nice feature of prefix tables is that their entries get created dynamically and are 

maintained as hints. When a hint happens to be invalid, it is invalidated and the client 

will follow the broadcast protocol for adding a new entry. Using prefix table entries, 

file lookups can bypass inquiring intermediate servers when the complete pathname is 
specified. 

If an open file operation fails, the prefix table entry for that file is invalidated. The 

broadcast protocol succeeds in updating the prefix table when the server storing that 

file becomes available. If a read or write operation on an open file fails due to server 

failure, then it is treated as a hard disk error and an error is returned to the user. 

CACHE. The client-cache in the SFS is maintained in the main memory [24], The 

cache stores recently accessed file blocks and is virtually addressed using the file token 

provided by the server at the time of look-up and the block number within the file. The 

virtual addressing of the cache has two advantages over using physical disk addresses: 

(1) It allows clients to create new cache blocks without having to contact the server 

first to find out their physical disk addresses. (2) Cache blocks can be accessed without 
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first traversing the file’s disk map to obtain their disk addresses. The cache block size 

is 4 kilobytes [251. In addition to having the caches at clients, the file servers also have 

caches in the SFS. Directories are not cached at clients to avoid inconsistency [2], 

When a process at a client tries to read access a file block, the data are returned 

from the client-cache if the block is present. Otherwise, the block is read from the local 

disk (if the file is on the local disk) and loaded to the client-cache, or the read request 

is forwarded to the remote server. On receiving the request, the server checks its own 

cache for the presence of the block before issuing a disk I/O. In any case the data block 

is transferred to the client cache and loaded to the server cache (if the block was not 

present in the server cache). Sprite does not prefetch data blocks [2], 

SFS designers chose the delayed writing policy for a number of reasons: From 

analysis of the BSD UNIX file system [26], they found that about 20 to 30 percent 

of new data is deleted within 30 seconds, about 75 percent of the files are open for 

less than 0.5 seconds, and 90 percent of the files are open for less than 10 seconds. In 

other words, by not carrying out the file updates at servers immediately after the file 

closures (since the majority of the files are open for a short time) and by not updating 

the files at the servers immediately after caches are updated (since a significant portion 

of data is deleted within a short time), the traffic between servers and clients can be 

reduced. In a recent study at the University of California at Berkeley, measurements 

show that between 65 percent and 80 percent of all files are open for less than 30 

seconds, and between 4 percent and 27 percent of new data is deleted or overwritten 

within 30 seconds [2], 

The delayed writing policy of the SFS works as follows: every 5 seconds, a 

daemon process checks the client cache for blocks that have not been modified in the 

last 30 seconds. These blocks are written back to the server’s cache. Therefore, a dirty 

(modified) block is not written through to the server’s cache or the disk until it is ejected 

from the cache (the replacement policy will be described shortly) or until 30 seconds 

have elapsed since the block was last modified. The transfer from the server’s cache to 

the disk takes place in 30 to 60 additional seconds [2, 24], 

The cache block replacement policy is the least recently used policy. About 80 

percent of the time, the replacement occurs to make room for other file blocks. About 

20 percent of the time, blocks are ejected to free the page for allocating it to the virtual 

memory (see “Virtual Memory and File Systems,” discussed later in this section). On 

average, cache blocks have not been referenced for almost an hour before they get 

replaced [2], 

Impact of caching. It was found that cache miss occurred for about 40 percent of the 

read requests and 1 percent of the write requests, and required a block to be fetched 

from the server. Most of the misses on read requests are attributed to the use of very 

large files. 
In Table 9.2, the time taken to perform common file operations are given. In 

Table 9.3, throughput achieved in the Sprite file system is given. 

Cache consistency. The cache consistency scheme employed in the SFS is the server- 

initiated approach. The concurrent-write sharing problem is avoided by disabling the 
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TABLE 9.2 

Time elapsed to perform common file operations 
(adapted from [24]) 

Operation Local disk 

Diskless 

Elapsed time Server CPU time 

Open/Close 2.17 ms 8.11 ms 3.75 ms 
Failed Open 1.48 ms 4.13 ms 2.01 ms 
Get Attributes 1.28 ms 4.47 ms 2.12 ms 

TABLE 9.3 

Read and write throughput in Kbytes/second 
(adapted from [24]) 

Local cache Server cache Local disk Server disk 

Read 3269 475 224 212 
Write 2893 380 197 176 

caching of those files open concurrently for reads and writes. When concurrent-write 

sharing is about to occur for a file (during an open operation), the server informs the 

client that has the file open for writing to write back the modified blocks (if any) to the 

server. Note that there can be at most one such client. Then the server reports that the 

file is no longer cacheable to all the clients which have the file open. This causes the 

clients to remove all of the file’s blocks from their caches. After the above actions, all 

the reads and writes go through the server, which serializes the accesses to its cache. 

The file will not become cacheable until all clients close the file. Only 1 percent of 

the overall traffic between servers and clients was found to be due to the uncaching of 
shared files [2], 

To solve the sequential-write sharing problem, the SFS associates a version number 

with a file. Each client keeps the version numbers of all the files whose data blocks are 

in its cache. Servers increment the version number of a file each time it is opened for 

writing. By comparing the version number at the client and at the server, the outdated 

blocks in the client cache can be detected. Also, the server keeps track of the last writer 

for each file. When a request for a file open is received at the server from a client other 

than from the file’s last writer, the server instructs the client of the last writer to flush 

all the modified blocks in its cache if there are any. This way a server is prevented 
from sending stale data to a client. 

VIRTUAL MEMORY AND FILE SYSTEM. Since the client cache in the SFS is in 

the client’s main memory, the virtual memory system and the cache compete for the 

physical memory. In the SFS, a client cache’s size dynamically adapts to the changing 

demands on the machine’s virtual memory system and the file system. This is accom- 
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plished by having the hie system and the virtual memory modules negotiate for the 
physical memory usage. 

The two modules maintain separate pools of memory pages and keep the time 

of last access for each page or block. Whenever a module needs additional memory, 

the module with the oldest page gives up. (Virtual memory is given preference by 

disallowing the conversion of a page used for virtual memory to a hie cache page unless 

it has been unreferenced for at least 20 minutes [2].) With this approach, double caching 

is a potential problem where pages or blocks are present in both the hie cache and the 

virtual memory page pool. This can happen because the virtual memory is also a user 

of the hie system. For example, when a program is to be executed, its executable code 

will be copied on demand to the virtual memory page pool. (In the SFS, a program’s 

executable code needs to be in the main memory in order to execute the program.) 

But the executable code may already be in the cache due to the recompilation of the 

program. Note that when a program is compiled, the executable code generated goes to 

the hie cache and will be stored as a hie at the server. In such cases, the SFS marks the 

pages in the hie cache with an infinite age so that they will be replaced before anything 

else in the memory. 

Measurements have shown that hie cache size can vary signihcantly both among 

clients and at different times on the same client (see Table 9.4). The variation in hie 

cache size indicates that the negotiation mechanism (between caching and virtual mem¬ 

ory system) is used frequently. Each client in the Sprite system has 24 Mbytes of 

physical memory. 

Backing storage. Backing storage in the SFS refers to the disk area at the server used 

as swap space. Sprite stores the swapped-out memory pages (including the process state 

and data segments) as ordinary hies referred to as the backing files. The backing hies are 

also managed by the SFS, which allows any workstation to access any backing hie in 

the hie system. This signihcantly simplihes process migration in Sprite (see Sec. 11.11). 

When backing hies are read from the servers, it is possible that some pages may end 

up both in the hie cache and the virtual memory page pool. To avoid double caching, 

the SFS bypasses the hie cache at clients when reading and writing backing hies. 

TABLE 9.4 

Client file cache sizes (adapted from [2]) 

Cache size changes 

Cache size 

Over 15-minute 
intervals 

Over 60-minute 
intervals 

Minimum 195 Kbytes — - 

Average 7110 Kbytes 493 Kbytes 1049 Kbytes 

Maximum 23820 Kbytes 21904 Kbytes 22924 Kbytes 

Std Deviation 5556 Kbytes (over 
a 15-min interval) 

1037 Kbytes 1716 Kbytes 
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9.5.3 Apollo DOMAIN Distributed File System 

The Apollo DOMAIN distributed file system was developed at Apollo Computer, 

Inc. [17], The primary design consideration for this system was to provide a means 

for efficient information sharing among co-workers. 

NAMING AND LOCATION. All the objects contained in or controlled by the file 

system (such as files, directories, interprocess communication facilities, communication 

ports, etc.) are managed by the object storage system (OSS). 

In contrast to the hierarchical name space of Sprite File System, the OSS provides 

a completely flat name space of location independent objects. All objects are identified 

by unique identifiers (UIDs). Each UID has two parts. The first part is the unique ID of 

the node/Apollo machine (given at the time of manufacturing) that creates the object. 

The second part is the time, obtained from a monotonically increasing hardware clock, 

at which the object was created. While a node ID helps in guaranteeing uniqueness, it 

does not compromise the goal of location transparency. 

To locate an object, the OSS employs a hint manager which provides a list of 

likely locations of the object. The hint manager categorizes UIDs by the node at which 

they were created [17]. These categories are then mapped by the hint manager to a 

list of locations at which UIDs of that category have been found before. The fact that 

the objects created at a node are frequently located together has been successfully used 

as a heuristic for mapping by the hint managers. A hint manager updates its hints by 

location information obtained through many DOMAIN system software components, 
such as a naming server. 

A distributed naming server maps human-readable text string names (logical 

names) for objects to the UIDs. The naming server provides a hierarchical naming 

tree, similar to UNIX, with directories at the nodes and files at the leaves. A directory 

simply maps a component of a logical name to an UID. To locate a file, the naming 

server iterates through all the components of a name, mapping every component to 

a UID. The final UID obtained is the UID of the named file (In Fig. 9.6, file /a/c/g 

maps to /uid 0/uid 2/uid 6.). The networkwide rooted directory of the name space is 

implemented as a replicated distributed data base. An instance of the name server runs 
at each site of the root directory replica. 

CACHING AND CONCURRENCY CONTROL. Caching is provided by the OSS for 

both file attributes and data that were recently used. The entire physical memory at a 

node serves as the cache area. An OSS client’s request to access a file system object is 

translated into the client’s address space by a set of mechanisms and primitives known 

as the single-level-store (SLS). Once an object is mapped into the address space, virtual 

memory demand paging is used to actually fetch the data from and return the data 

to the OSS. To improve the sequential access performance, the SLS uses read-ahead, 

which minimizes the costs due to accessing disk and network and invoking the OSS 

repeatedly. The writing policy used is delayed write back. The OSS periodically writes 

back the modified cache blocks to their appropriate home nodes. Like the Sprite file 

system, the OSS uses version numbers to solve the sequential-write sharing problem. A 
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version number is a timestamp at which the object was last modified and it is maintained 
at the node where the object was created. 

Cache management is integrated with the concurrency control mechanism, re¬ 

ferred to as the lock manager. An instance of the lock manager runs at each node and 

synchronizes the accesses to objects local to that node. The lock manager supports two 

locking modes: (1) many readers or a single writer; in this mode, any number of read¬ 

ers or only one writer can access a hie, and (2) co-writers (co-located writers); in this 

mode, any number of readers and writers are allowed to access a hie with the restric¬ 

tion that all processes be co-located on a single node. The co-writers mode allows for 

shared memory semantics among processes located on the same node. Lock requests 

are either granted immediately or refused without any queuing. Application software 

is responsible for requesting proper locks. The lock managers are involved in ensuring 

the validity of caches as follows: at the time of locking an object, the lock manager 

and the OSS at the client node collaborate to check the validity of data in the client’s 

cache using the version numbers. At the time of unlock, the lock manager demands the 

local OSS to write back all the modihed cached blocks to their home node. 

SECURITY. Security in DOMAIN depends on the integrity of workstations and the 

kernels running on them. The communication network is assumed to be secure. A special 

field in every packet indicates whether the originator of the packet is an application 

program or the kernel itself. This prevents a user-level program from masquerading as 

a trusted system software [33]. 

The domain system supports a replicated user registry. The registry maps a login 

name to a password. At login time, the registry is consulted to validate the login request. 

If a login is successful, then the user is associated with an identifier, called a PPON. 

The PPON is composed of four parts: the user’s identification (an UID), the project 

(an UID), the organization that the user belongs to (an UID), and the ID of the node 

at which user has logged in. The first three pieces of information are obtained from 

the registry. Nodes cache the recently used registry information to enhance availability. 

The PPON will represent the user in all subsequent authentication transactions. 

(uid 0) a b (uid 1) 

(uid 2) c (uid 3) d e (uid 4) f (uid 5) 

(uid 6) g h (uid?) 

FIGURE 9.6 
File system hierarchy in Apollo. 
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Each file system object is associated with an access control list (ACL). These 

lists specify the access rights that can be granted to a PPON. Wild-card matching of 

PPON’s components with ACL entries is supported to allow the granting of specific 

rights to a group of like users. By using UIDs as components of a PPON, DOMAIN 

prevents a user from accessing objects by creating his or her own registry. UIDs created 

by a malicious user will necessarily differ from the ones in the original registry. Hence, 

ACLs that grant access to PPONs in the original registry will not grant access to the 

new PPONs. 

9.5.4 Coda 

The Coda (constant data availability) file system [36] is a descendant of the Andrew 

file system (APS) [22, 35] and was developed at Carnegie Mellon University. Coda’s 

design has the following major goals: 

• Scalability. 

• Constant data availability. 

• Graceful integration of the use of the file system with portable computers. 

Scalability. As a distributed system grows larger, file servers become bottlenecks. 

To maximize the client-server ratio (the number of clients a server can support), much of 

the load is borne by the clients in Coda. Caching is another feature that helps scalability 
in Coda. 

Constant data availability. Coda enhances data availability by providing the 

following two features which are complementary to each other: (1) the replication of 

files across servers protects against individual server failures and some network failures, 

and (2) the ability of a client to operate entirely out of its cache, when no server can be 

contacted. In Coda, a client’s local disk is treated merely as a cache. A client is said to 

be operating disconnected when no server can be contacted. A client resumes normal 

operation when it can contact a server. Note that a portable client, when isolated from 
the network, is effectively operating disconnected. 

NAMING AND LOCATION. The name space in Coda is hierarchically structured as 

in UNIX and is partitioned into disjoint volumes. A volume consists of a set of files 

and directories located on one server, and is the unit of replication in Coda. Each file 

and directory is identified by a 92-bit-long unique file identifier (LID). Replicas of an 
object have the same LID. 

An LID has three components [13]: (1) a 32-bit volume number that identifies the 

volume, (2) a 32-bit vnode number that is used as an index into an array containing 

file storage information for files in a volume, and (3) a 32-bit uniquifier that guarantees 
that no LID is ever used twice. 

Note that an LID does not contain any explicit file location information. Pile 

location information is stored in a volume location database, replicated on each server. 
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To locate a file, each component of a file’s pathname is mapped to an FID and the 

mapping information is cached at the clients to enhance performance. 

CACHING AND REPLICATION. When a volume is created, the number of replicas 

required and the servers that will store these replicas are specified. This information is 

stored in the volume replication database, replicated at every server. The set of servers 

storing the replicas of a volume constitutes its volume storage group (VSG). The set 

of servers that are accessible to a client (they can be different for different clients) 

for every volume the client has cached is called the accessible volume storage group 

(AVSG). The AVSG for every volume cached is kept track of by Venus (the client cache 
manager). 

On demand, the files are cached in their entirety on the local disks of clients. 

In the event of a cache miss, a client obtains data from a preferred seri’er (one of the 

AVSG). A preferred server can either be chosen randomly or on the basis of performance 

criteria (such as physical proximity, server load, or server CPU power). The client also 

verifies with the other servers of AVSG that the preferred server does indeed have the 

latest copy of the data. If this is not the case, the data are refetched from the server 

having the latest copy and that server is made the preferred server, and the AVSG is 

notified that some of its members have stale data. Also, a callback is established at 

the preferred server. The callback mechanism is a server-initiated approach to maintain 

cache consistency. A callback is a promise by the server that it will notify the client 

if the file is modified by some other client. Once this notification occurs, a client 

must invalidate the cached data and reestablish the callback upon refetching the data. 

Due to network failure, a notification attempt may not succeed and such an event is 

referred to as a lost callback. Note here that by allowing modification to occur in all 

partitions, Coda uses an optimistic strategy for updates [8]. Coda designers adopted 

an optimistic strategy for three reasons: to increase availability, to support portable 

workstations, and the fact that write-sharing is infrequent among users in an academic 

UNIX environment [36]. 

When a cached file is modified, it is transferred in parallel to all members of the 

AVSG. This approach minimizes the server CPU load and in turn improves scalability. 

For parallel data transfer, Coda uses hardware multicast [37], 

CACHE COHERENCE. In addition to caching valid data on demand, the cache man¬ 

ager (Venus) at a client has to continuously monitor the validity of the cached data 

because of data replication and unrestricted data modifiability. In particular, Venus has 

to be aware of the following events. 

Enlargement of the AVSG: Recall that Venus maintains the AVSG for every 

volume it has cached. Venus should know if a previously inaccessible server for a 

volume replica is currently accessible (i.e., the server becomes a member of the AVSG, 

thus enlarging it) since cached data may no longer be the latest copy in the newly 

enlarged AVSG. In such a case, Venus cancels previously established callbacks on the 

cached objects belonging to the volume. The next reference to any of these objects will 

cause fresh data to be fetched from the appropriate server and the reestablishment of 

callbacks. 
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Shrinking of the AVSG: Venus should know if a previously accessible server is 
currently inaccessible. If the shrinking is caused by the inaccessibility of the preferred 
server, then callbacks are canceled, otherwise they remain valid. Venus detects the 
enlargement and shrinking of the AVSG by probing the members of VSG every 10 
minutes in the current implementation [36]. 

Lost Callbacks: Venus must detect lost callbacks, as lost callbacks indicate that 
the preferred server has missed updates. In Coda, callbacks are established only at 
the preferred server (see Problem 9.4). Since the preferred server of one client need 
not be in the AVSG of another client, updates by the second client may not result 
in callbacks on the first client. To detect updates missed by its preferred server, each 
probe by Venus requests a volume coda version vector (VCVV) for every volume from 
which it has cached data. The VCVV summarizes the update information on the entire 
volume, and is updated at every modification of the volume. Lost updates are indicated 
by a mismatch in VCVVs at the client and at the server, in which case Venus cancels 
callbacks on the cached data objects belonging to that volume. 

DISCONNECTED OPERATION. A client is said to be operating disconnected when 
it cannot contact any server. Coda achieves resiliency to failures and supports portable 
workstations through caching on a local disk. To make sure that the files most likely to 
be used are in the cache, Coda allows users to prioritize the files and directories that 
they would like to cache. Coda also allows a user to bracket a sequence of actions so 
that Venus can cache all the data referenced by these actions. This feature is useful if 
it is not known beforehand what files will be accessed by various actions. 

When the disconnected operation ends, Venus updates all the servers of the AVSG 
with the modified cached data. In case of inconsistencies that Coda cannot resolve, the 
data in question is stored in a temporary file on the servers. The user is expected to 
resolve the inconsistency using a repair tool, which lets user edit inconsistent objects 
in read-only form. In Coda, only directory conflicts are automatically resolved by a 
compensating sequence of create and delete operations. However, directory conflicts 
due to network partitions are not resolved automatically. 

REPLICA MANAGEMENT. Coda’s replica management deals with updating the 
replicas and detecting inconsistencies among them. In Coda, a replica is updated only 
if it is a latest copy, or the requested updated operation will make the replica mutually 
consistent with the other replicas. In order to ensure that an update operation will leave 
a replica in a consistent state, the server has to maintain the history of past updates. In 
Coda, the update histories are maintained and used in the following manner. 

Each modification at a server is tagged with a unique storeid, supplied by the 
client performing the operation. A storeid is composed of the IP address of the client’s 
workstation and a monotonically increasing logical timestamp. A chronological se¬ 
quence of storeids associated with an object constitutes the update history of that object 
at the server. Since maintaining the entire update history of a replica is impractical, 
Coda maintains an approximation of the history. The approximation consists of the 
current length of the update history and the latest storeid (LSID). Every replication 
site maintains an estimate of the approximate update history of every other replica. A 
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combination of all these histories is known as a coda version vector (CVV). Next, we 

discuss how operations that change the state of a replica are handled. 

Update. Update is the most frequently occurring operation (for example, file store, 

which occurs on file closure; creation and deletion of hies and directories; protection 

change; and link creation). The update of existing objects involves two phases with the 

client acting as the initiator and the coordinator. In the first phase, each server in the 

AVSG checks the LSID and the CVV presented by the client (LSIDc and CVVc, 
respectively) by comparing them with the LSID and CVV at the server (LSIDs and 

CVVs, respectively). 

The check succeeds if either of the following conditions holds: 

• LSIDc is identical to LSIDs, and CVVc is identical to CVVs- 

• LSIDc is different from LSIDs and every element of CVVc is greater than or 

equal to the corresponding element of CVVs- (This check is not used for directory 

updates.) In this case, the cached copy at the client is said to dominate the replica at 

the server and the server replica is submissive to the client replica. In other words, 

both the client copy and the server copy have received a common update at some 

point in the past, but the server copy has not received updates thereafter. 

An unsuccessful check requires conflict resolution (described under disconnected oper¬ 

ation). 

If the check succeeds, the server performs the requested operation and replaces 

LSIDs and CVVs with LSIDc and CVVc, respectively. Then, in the second phase, 
the CVVs at each server belonging to the AVSG is updated to reflect the client’s view 

of which servers executed the first phase successfully. Creating new objects involves 

the above two phases, preceded by the allocation of a new file identifier (FID) by the 

preferred server. 

Force. The Force operation logically replays those updates made to a dominant site 

that are missing from a submissive one. Force is a server-to-server operation. It can be 

initiated by any of the following events. 

• The notification of inequality of CVVs by Venus to its AVSG at the time of file 

fetch. (See caching and replication.) 

• When the system determines that a directory conflict can be resolved by the use of 

the force operation. 

• On server crash recovery. 

The force of a file simply involves atomically copying data and status from a domi¬ 

nant replica to a submissive replica. For the directories, each directory is locked and 

atomically updated one at a time, as locking a whole subtree for the duration of force 

is impractical. 
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9.5.5 The x-Kernel Logical File System 

x-Kernel is an experimental distributed operating system which allows uniform access 

to resources on a nationwide internet [28]. The x-Kemel logical file system provides a 

uniform interface with which to access heterogeneous physical file systems (such as the 

Sun network file system, the Andrew file system, etc.). The file system is logical in the 

sense that it provides only directory service and relies entirely on an existing physical 

file system for the storage protocols. The logical file system simply maps a filename 

to the location where it can be found. Note that even to access a file stored on a local 

disk, a physical file system is necessary as the logical file system serves only to locate 

files. 
The file system has two unique features: first, each user defines his or her own 

private file system out of the existing physical file systems. Figure 9.7 shows a pri¬ 

vate file system of a user where each dotted block is associated with a physical file 

system. A user constructs a file system by using the logical make directory operation 

Lmkdir(<name>, <physical file directory>) to mount a file system (which can be a 

private file system of another user) into the directory. If the second argument is left 

out in a Lmkdir operation, the resulting logical directory is simply bound to NULL. 

This feature can be used to hide the underlying physical file directories (in Fig. 9.9, 

/usr/data/junk is hidden by the logical directory /text/junk). Note that the mounting of 

a file system requires that the location of the file system be known. Once a file system 

is mounted, it is accessed in a location transparent way. The logical read directory 

operation Lreaddir allows the reading of what systems (including the hidden entries) 

are mounted in the logical file system. Apart from the above two special operations, a 

user’s private file system behaves like a UNIX file system. 

text 

■' memos let doc 

FIGURE 9.7 
A private file system in the x-Kernel. 
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The separation of directory functions from the storage functions is achieved 

through the use of two protocols. The private name space protocol (PNS) implements 

the directory function. The uniform file access protocol (UFA) implements the storage 

function. The logical file system (LFS) is also treated as a protocol in the x-Kemel. 

Figure 9.8 shows the hierarchy of the above protocols. 

The UFA translates the file system operations such as read, write, etc., into ap¬ 

propriate low-level commands used by the underlying physical file system. The UFA 

also handles caching. If a particular physical file system is not supported by the UFA, 

the UFA invokes the file transfer protocol (FTP) to retrieve the entire file. The UFA 

then caches the retrieved file as a temporary file in one of the supported file systems. 

Subsequent operations on this file are appropriately translated. On closing the file, the 

FTP updates the remote copy of the file if the file was modified. 

Since the file hierarchy of a file system is maintained by the physical file system 

it belongs to, the PNS can only superimpose a logical hierarchy over a collection 

of existing file hierarchies. Hence, the PNS is said to maintain a skeleton directory. 

Figure 9.9 shows a skeleton directory for the file system of Fig. 9.7. A directory entry 

is composed of three parts 

• The first part gives a portion of a logical filename which corresponds to a logical 

file directory or a logical filename. 

• The second part associates the logical directory with a physical directory, identifies 

the type of the physical file system, and identifies the server (host) maintaining the 

physical directory. 

• The third part is a pointer to a private directory. 

To locate a file, the longest possible pathname is first resolved by the PNS and the 

rest is passed on to the underlying physical file system to resolve further. For example, 

/text/doc/joumal/paper/1 is resolved by the PNS traversing the directory structure to the 

journal entry. The PNS then invokes the NFS at server 3 to resolve /paper/1. 

While the x-Kemel logical file system is conceptually simple, there are some subtle 

issues that should be noted. First, the file systems are unaware of the fact that they might 

FIGURE 9.8 
File protocol hierarchy. 
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FIGURE 9.9 
Skeleton directory. 

be participating in some other user’s private file system. Second, the pathnames of the 

logical file system can take precedence over the pathnames of the physical file system. 

For example, the PNS would not recognize /usr/data/doc because it is hidden by the 
private directory /text/doc. 

9.6 LOG-STRUCTURED FILE SYSTEMS 

From the previous case studies, it is clear that caching plays an important role in the 

building of efficient file systems. By caching frequently accessed data, file systems can 

satisfy most read requests without communicating with disk subsystems. (Note that even 

file servers employ caches.) Caches also serve as buffers where a number of modified 

blocks can be collected before writing them to disk. The modified blocks are eventually 

transferred to disk. In this type of file system, disk traffic due to accessing a block is 

typically comprised of the initial read request, and one or more write requests. In other 

words, a large fraction of disk traffic is comprised of write requests. 

In recent years, improvements have been made in the disk transfer bandwidth and 

storage capacity. (See [27] for details on disk arrays and parallel-head disks.) However, 

there have been no major improvements in access time, as this depends on mechanical 

motions, which are hard to improve upon. In other words, access time (which includes 

a seek operation) is not likely to significantly decrease in the near future [31]. 

Two design aspects of existing file systems make it hard to improve file system 

performance in view of the write dominated disk traffic and the improbability of much 

improvement in access time [31]. First, the existing file systems physically spread 

files belonging to the same directory on disk sectors. The attributes of files are stored 

separately from files. This arrangement requires many seek operations be performed 

before a file can be created or modified. Note that seek is a time consuming operation 

when compared to raw data transfer operation. The second problem with numerous 

existing file systems is that they tend to write synchronously; the application must wait 

for the write operation to finish before it can proceed, rather than continuing while 
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the write is handled in the background. While many existing hie systems perform 

data transfers asynchronously, they perform synchronous writes for directories and hie 
attributes. 

In view of the above, an application that performs a series of small disk transfers 

separated by many seeks is not likely to experience speed up in the near future. This 

is despite an increase in processor speed and the use of buffered writes, which transfer 

large chunks of data in a single write operation to the disk subsystem. 

Log-structured hie systems have been proposed to deal with the technological and 

workload changes in recent years. The fundamental idea behind the log-structured hie 

system is as follows [31]: The hies are cached in the main memory. The hie updates are 

carried out in the main memory. The updates are eventually, that is, asynchronously, 

written to the disk in a sequential structure called the log in a single write operation, 

thereby avoiding many seek operations. The information written to disk includes data 

blocks, directories, attributes, and other information (such as block addresses, hle-type, 

owner, permission, etc.) required to manage a hie system. 

To locate data efficiently on the disk, structures that store disk addresses of hies 

are stored at a hxed location on disk, and they are cached as well. This precludes the 

necessity to sequentially search a log to retrieve a hie. For example, in the Sprite log- 

structured hie system [31], inodes (which include hie attributes such as type, owner, 

permission, etc., along with disk addresses of the hrst ten blocks and one or more 

addresses of indirect blocks) are written to the log. However, an inode map, which 

maintains the current location of each inode, is written at a hxed location on the disk. 

The inode map is compact enough to be cached in the main memory. 

Crash recovery is also simple in log-structured hie systems. To restore the consis¬ 

tency of hies, only the most recent portion of the log need be examined. In conventional 

hie systems, the entire disk must be searched to restore the consistency of hies as hies, 

are physically spread out on the disk. 

9.6.1 Disk Space Management 

In order for a log-structured hie system to work efficiently, large extents of free disk 

space must always be available to write new data. Free disk space typically becomes 

fragmented over time, as hies are deleted or overwritten. There are two choices for 

reclaiming the free space [31]: threading and copying. In threading, live data is left in 

its place and the log is spread across free spaces (see Fig. 9.10). In this approach, disk 

space eventually becomes severely fragmented, and this requires many disk seeks to 

write a log. Thus, with threading, the performance of a log-structured hie system is no 

faster than traditional hie systems. 
In the copying technique, live data is copied out of logs into a compact form 

(see Fig. 9.11), thus freeing up large extents of contiguous disk space. The major 

disadvantage of this approach is the cost of copying. Note that long-lived hies can be 

copied over and over again. Other questions that need to be addressed are: when should 

copying begin, how much disk space should be freed up at a time, and which blocks 

are selected for copying data out. 
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FIGURE 9.10 
Threaded log (adapted from [31].) 

FIGURE 9.11 
Copy and compact log (adapted from [31]). 

The Sprite log-structured file system [31 ] uses a technique that makes use of both 

copying and threading. Disk space is divided into large segments, such that reading 

and writing a segment is much more expensive than a seek to the beginning of a 

segment. Logs are threaded through segments. Segments are written contiguously from 

the beginning to the end, and before a segment can be rewritten, all the live data must 
be copied out of the segment. 

In Sprite, the copy operation to free up disk space begins when the number of 

available segments drops below a threshold value (typically, a few tens of segments). 

The copy operation stops when the number of free segments exceeds another thresh¬ 

old value (typically 50-100 segments). When the copy operation begins, a number of 

selected segments for freeing space are read into memory. The live blocks are sorted 

by their age before writing them out, and this tends to separate cold blocks (blocks 

accessed infrequently) from hot blocks (blocks accessed frequently). Since hot blocks 

are accessed and/or modified frequently, the hot segments contain very little live data 

as new versions of hot blocks are created repeatedly. In other words, free space ac¬ 

cumulates quickly in hot segments. On the other hand, cold segments tend to contain 

a relatively large fraction of live data, and thus very little benefit can be obtained 

from copying cold blocks out of cold segments. To take advantage of this observa¬ 

tion, Sprite selects a segment for freeing up space as follows: a cold segment when 
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its utilization reaches 75 percent, and a hot segment when its utilization reaches 15 
percent. 

9.7 SUMMARY 

A distributed file system is a component of a distributed operating system. Its primary 

goal is to provide physically dispersed users a common file system that hides the hetero¬ 

geneity of the underlying physical system while preserving the network transparency. 

As distributed systems are being accepted widely as an alternative to centralized 

systems, availability, scalability, and heterogeneity are becoming issues of increasing 
importance. 

The current approach to improve availability is through replication. Caching is the 

backbone that supports scalability. However, consistency, availability, and performance 

tend to be contradictory forces in a distributed file system (see Problem 9.6). Infrequent 

write-sharing of data has made the design strategies of Sprite (in which a write-shared 

file is noncacheable) and Coda (which allows unrestricted modifications) tolerable. 

A significant impact of caching on the disk system is that the disk traffic is 

dominated by write requests. This has encouraged research concerned with the question 

of how to organize data on disks to minimize costly disk seek operations that are 

required to access stored data. The log-structured file system is an example of one such 

effort. In log-structured file systems, files are cached in main memory, file updates are 

buffered in main memory and are eventually written to disk sequentially in a structure 

called a log. 

Virtually all the distributed file systems operating today are designed with local 

area networks in mind. Extending distributed file systems over wide area networks is 

another aspect of scalability. The x-Kemel logical file system tries to address this issue. 

Heterogeneity is another important factor to be considered as distributed systems 

grow larger. Both the Sun NFS and the x-Kernel logical file systems try to provide 

uniform access to heterogeneous file systems. The HCS file system is another example 

of a distributed file system operating in a heterogeneous distributed system [29]. 

Finally, security will be a primary concern as the size of distributed systems grows 

beyond tens of hundred of nodes and encompasses wide geographical areas. 

9.8 FURTHER READINGS 

A formal model of a naming scheme is presented by Comer and Peterson [7]. They 

define many of the concepts and terminology involved in naming, and present the 

underlying concepts in naming and name resolution. In addition, they present a survey 

of naming mechanisms in several distributed systems. 

In [41], Terry proposes a structure free name management scheme for distributed 

systems. In this scheme, the information in the name service needed to locate data 

associated with a name can be independently reconfigured to improve performance or 

meet changing demands. 
In file systems that employ a mounting mechanism to create file space, files may 

be unavailable to users if the required file system is not mounted. In [5], Callaghan and 
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Lyon have proposed an automounter. The automounter detects accesses to remote file 

systems and mounts them on demand, transparent to users and programs. Automounted 

file systems are automatically unmounted after a period of inactivity. This feature helps 

scalability, because in large systems it is neither practical nor desirable to mount every 

exported file system from every server. 

On the other hand, Multifile [10] is a file system designed specifically for meeting 

response, availability, and stability requirements for a small group of workstations used 

in a real-time environment. 

Availability is another important goal of distributed file systems. Improving avail¬ 

ability requires that individual computers have greater autonomy. In [1], Alonso, Cova, 

and Barbara present a scheme based on stashing (keeping local copies of key informa¬ 

tion) combined with quasi-copies (replicas of data items that are allowed to diverge from 

the primary data in a controlled, application-dependent manner) to improve autonomy. 

Good performance is an important goal of file systems. Renesse, Tanenbaum, and 

Wilschut propose a design for a high performance file server in [30]. Their design stores 

files in contiguous blocks on disks and in the server’s cache. They also make use of an 

immutable file concept to improve performance. 

Distributed file systems typically make use of caches at both clients and servers. 

In [20], Makaroff and Eager study the effect of client and server cache sizes on file 

system’s performance. Unfortunately, caching introduces the overhead and complexity 

required to ensure consistency. In [12], Gray and Cheriton propose a time-based mech¬ 

anism to provide efficient and consistent access to cached data in distributed systems. 

Stateless servers were employed in the Sun NFS to simplify the crash recovery 

of servers. However, stateless servers require file system operations to be idempotent 

to deal with requests sent repeatedly. Juszczak [14] has proposed a scheme that avoids 

the needless processing of duplicate requests. 

Note that stateless servers cannot maintain locks on files and records as they are not 

allowed to maintain state information. In [11], Gloor and Marty describe a mechanism 

for locking in stateless environment without losing the advantages of stateless servers 
(easy crash recovery). 

Readers can find the performance analysis of a UNIX-based network file system 
by Melamed in [21], 

Interested readers are referred to [18, 33, 39] for a comprehensive list of references 
for distributed and network file systems. 

PROBLEMS 

9.1. Are servers in the SFS stateless? 

9.2. The SFS uses main memory for the file cache. What are the issues to be considered 
in cache management if the virtual memory page can hold a multiple number of file 
blocks. 

9.3. What is the benefit of grouping files into volumes in Coda? 

9.4. Suggest a scheme for the automatic detection of lost callbacks in Coda. Discuss the 
advantages and disadvantages of your scheme. 
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9.5. Why is the x-Kernel system unable to use the simpler prefix table (as in the SFS) 
instead of the more complex skeleton directory scheme. 

9.6. Explain the following sentence. “Consistency, availability, and performance tend to 
be contradictory forces in a distributed file system.” 
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CHAPTER 

10 
DISTRIBUTED 
SHARED MEMORY 

10.1 INTRODUCTION 

Traditionally, distributed computing has been based on the message passing model in 

which processes interact and share data with each other by exchanging data in the form 

of messages. Hoare’s communicating sequential processes (Sec. 2.6.4), the client-server 

model (Sec. 4.5.9), and remote procedure calls (Sec. 4.7.2) are examples of this model. 

Distributed shared memory (DSM) system is a resource management component 

of a distributed operating system that implements the shared memory model in dis¬ 

tributed systems, which have no physically shared memory (Fig. 10.1). The shared 

memory model provides a virtual address space that is shared among all nodes (com¬ 

puters) in a distributed system. 

10.2 ARCHITECTURE AND MOTIVATION 

With DSM, programs access data in the shared address space just as they access data in 

traditional virtual memory. In systems that support DSM, data moves between secondary 

memory and main memory as well as between main memories of different nodes. Each 

node can own^ data stored in the shared address space, and the ownership can change 

^Typically, the node which creates a data object owns the data object initially. 

236 
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FIGURE 10.1 
Distributed shared memory (adapted 
from [28]). 

when data moves from one node to another. When a process accesses data in the shared 

address space, a mapping manager maps the shared memory address to the physical 

memory (which can be local or remote). The mapping manager is a layer of software 

implemented either in the operating system kernel or as a runtime library routine. To 

reduce delays due to communication latency, DSM may move data at the shared memory 

address from a remote node to the node that is accessing data (when the shared memory 

address maps to a physical memory location on a remote node). In such cases, DSM 

makes use of the communication services of the underlying communication system. 

Advantages of Distributed Shared Memory are: 

1. In the message passing model, programs make shared data available through explicit 

message passing. In other words, programmers need to be conscious of the data 

movement between processes. Programmers have to explicitly use communication 

primitives (such as SEND and RECEIVE), a task that places a significant burden 

on them. In contrast, DSM systems hide this explicit data movement and provide a 

simpler abstraction for sharing data that programmers are already well versed with. 

Hence, it is easier to design and write parallel algorithms using DSM rather than 

through explicit message passing. 

2. In the message passing model, data moves between two different address spaces. 

This makes it difficult to pass complex data structures between two processes. More¬ 

over, passing data by reference and passing data structures containing pointers is 

generally difficult and expensive. In contrast, DSM systems allow complex struc¬ 

tures to be passed by reference, thus simplifying the development of algorithms for 

distributed applications. 

3. By moving the entire block or page containing the data referenced to the site of 

reference instead of moving only the specific piece of data referenced, DSM takes 

advantage of the locality of reference exhibited by programs and thereby cuts down 

on the overhead of communicating over the network. 

4. DSM systems are cheaper to build than tightly coupled multiprocessor systems. 

This is because DSM systems can be built using off-the-shelf hardware and do not 

require complex interfaces to connect the shared memory to the processors. 
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5. The physical memory available at all the nodes of a DSM system combined to¬ 

gether is enormous. This large memory can be used to efficiently run programs that 

require large memory without incurring disk latency due to swapping in traditional 

distributed systems. This fact is also favored by anticipated increases in processor 

speed relative to memory speed and the advent of very fast networks. 

6. In tightly coupled multiprocessor systems with a single shared memory, main mem¬ 

ory is accessed via a common bus—a serialization point—that limits the size of 

the multiprocessor system to a few tens of processors. DSM systems do not suffer 

from this drawback and can easily be scaled upwards. 

7. Programs written for shared memory multiprocessors can in principle be run on 

DSM systems without any changes. At the least, such programs can easily be 

ported to DSM systems. 

In essence, DSM systems strive to overcome the architectural limitations of shared 

memory machines and to reduce the effort required to write parallel programs in dis¬ 

tributed systems. 

10.3 ALGORITHMS FOR IMPLEMENTING DSM 

The central issues in the implementation of DSM are: (a) how to keep track of the 

location of remote data, (b) how to overcome the communication delays and high over¬ 

head associated with the execution of communication protocols in distributed systems 

when accessing remote data, and (c) how to make shared data concurrently accessible 

at several nodes in order to improve system performance. We now describe four basic 

algorithms to implement DSM systems [31J. 

10.3.1 The Central-Server Algorithm 

In the central-server algorithm [31], a central-server maintains all the shared data. It 

services the read requests from other nodes or clients by returning the data items 

to them (see Fig. 10.2). It updates the data on write requests by clients and returns 

acknowledgment messages. A timeout can be employed to resend the requests in case 

of failed acknowledgments. Duplicate write requests can be detected by associating 

sequence numbers with write requests. A failure condition is returned to the application 

trying to access shared data after several retransmissions without a response. 

While the central-server algorithm is simple to implement, the central-server can 

become a bottleneck. To overcome this problem, shared data can be distributed among 

several servers. In such a case, clients must be able to locate the appropriate server 

for every data access. Multicasting data access requests is undesirable as it does not 

reduce the load at the servers compared to the central-server scheme. A better way to 

distribute data is to partition the shared data by address and use a mapping function to 
locate the appropriate server. 
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Central-Server 

FIGURE 10.2 
The central-server algorithm (adapted from [31]). 

10.3.2 The Migration Algorithm 

In contrast to the central-server algorithm, where every data access request is forwarded 

to the location of data, data in the migration algorithm is shipped to the location of 

the data access request, allowing subsequent accesses to the data to be performed 

locally [31] (see Fig. 10.3). The migration algorithm allows only one node to access a 
shared data at time. 

Typically, the whole page or block containing the data item migrates instead of an 

individual item requested. This algorithm takes advantage of the locality of reference 

exhibited by programs by amortizing the cost of migration over multiple accesses to 

the migrated data. However, this approach is susceptible to thrashing, where pages 

frequently migrate between nodes while servicing only a few requests. 

To reduce thrashing, the Mirage system [18] uses a tunable parameter that de¬ 

termines the duration for which a node can possess a shared data item. This allows a 

node to make a number of accesses to the page before it is migrated to another node. 

The Munin system [5] strives to reduce data movement by employing protocols that 

are appropriate to different data access patterns (see Sec. 10.5.3 for details). 

The migration algorithm provides an opportunity to integrate DSM with the virtual 

memory provided by the operating system running at individual nodes. When the page 

size used by DSM is a multiple of the virtual memory page size, a locally held shared 

memory page can be mapped to an application’s virtual address space and accessed 

using normal machine instructions. On a memory access fault, if the memory address 

Data Access 
Request 

Data block 
migrated 

FIGURE 10.3 
The migration algorithm (adapted from [31]). 
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maps to a remote page, a fault-handler will migrate the page before mapping it to 

the process’s address space. Upon migrating a page, the page is removed from all the 

address spaces it was mapped to at the previous node. Note that several processes can 

share a page at a node. 
To locate a data block, the migration algorithm can make use of a server that 

keeps track of the location of pages, or through hints maintained at nodes. These hints 

direct the search for a page toward the node currently holding the page. Alternatively, 

a query can be broadcasted to locate a page [34]. 

10.3.3 The Read-Replication Algorithm 

In previous approaches, only processes on one node could access a shared data at any 

one moment. The read-replication algorithm [31] extends the migration algorithm by 

replicating data blocks and allowing multiple nodes to have read access or one node to 

have read-write access (the multiple readers-one writer protocol). Read-replication can 

improve system performance by allowing multiple nodes to access data concurrently. 

However, the write operation is expensive as all the copies of a shared block at various 

nodes will either have to be invalidated (see Fig. 10.4) or updated with the current 

value to maintain the consistency of the shared data block. 
In the read-replication algorithm, DSM must keep track of the location of all the 

copies of data blocks. In the IVY system [27], the owner node of a data block keeps 

track of all the nodes that have a copy of the data block. In the PLUS system [8], a 

distributed linked-list is used to keep track of all the nodes that have a copy of the data 

block. 
Nevertheless, read-replication has the potential to reduce the average cost of read 

operations when the ratio of reads to writes is large. Many read-replication algorithms 

implemented in the IVY system are described in Sec. 10.7.1. 

10.3.4 The Full-Replication Algorithm 

The full-replication algorithm [31] is an extension of the read-replication algorithm. It 

allows multiple nodes to have both read and write access to shared data blocks (the 

multiple readers-multiple writers protocol). Because many nodes can write shared data 

concurrently, the access to shared data must be controlled to maintain its consistency. 

Data Access 
Request 

Invalidate 

FIGURE 10.4 
Write operation in the read-replication algorithm 
(adapted from [31]). 
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Sequencer 

FIGURE 10.5 
Write operation in the full-replication algorithm 
(adapted from [31]). 

One simple way to maintain consistency is to use a gap-free sequencer [31]. In 

this scheme, all nodes wishing to modify shared data will send the modifications to a 

sequencer. The sequencer will assign a sequence number and multicast the modification 

with the sequence number to all the nodes that have a copy of the shared data item 

(see Fig. 10.5). Each node processes the modification requests in the sequence number 

order. A gap between the sequence number of a modification request and the expected 

sequence number at a node indicates that one or more modifications have been missed. 

Under such circumstances, the node will ask for the retransmission of the modifications 

it has missed. (This implies that a log of the modifications is kept at some node.) Several 

other protocols to maintain consistency of shared data are discussed in Sec. 10.5. 

10.4 MEMORY COHERENCE 

To improve performance, DSM systems rely on replicating shared data items and al¬ 

lowing concurrent access at many nodes. However, if the concurrent accesses are not 

carefully controlled, memory accesses may be executed in an order different from that 

which the programmer expected. Informally, a memory is coherent if the value returned 

by a read operation is always the value that the programmer expected. For example, it 

is quite natural for a programmer to expect a read operation to return a value stored by 

the most recent write operation. Thus, to maintain the coherence of shared data items, 

a mechanism that controls or synchronizes the accesses is necessary. Also, to write 

correct programs, a programmer needs to understand how the concurrent updates to 

shared memory are carried out. The set of allowable memory access orderings forms 

the memory consistency model [20]. The word consistency is used to refer to a specific 

kind of coherence. The most intuitive semantics for memory coherence is strict con¬ 

sistency, defined as follows: a read returns the most recently written value [9]. Strict 

consistency requires the ability to determine the latest write, which in turn implies a 

total ordering of requests. The total ordering of requests leads to inefficiency due to 

more data movement and synchronization requirements than what a program may really 

call for (readers are encouraged to refer to [4]). To counter this problem, some DSM 

systems attempt to improve the performance by providing relaxed coherence semantics. 

Following are several forms of memory coherence [32], 
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Sequential Consistency. A system is sequentially consistent if the result of any 

execution of the operations of all the processors is the same as if they were executed 

in a sequential order, and the operations of each individual processor appear in this 

sequence in the order specified by its program [25]. 

General Consistency. A system supports general consistency if all the copies of 

a memory location eventually contain the same data when all the writes issued by every 

processor have completed [36]. 

Processor Consistency. Writes issued by a processor are observed in the same 

order in which they were issued. However, the order in which writes from two processes 

occur, as observed by themselves or a third processor, need not be identical. That is, two 

simultaneous reads of the same location from different processors may yield different 

results [21]. 

Weak Consistency. Synchronization accesses (accesses required to perform syn¬ 

chronization operations) are sequentially consistent. Before a synchronization access can 

be performed, all previous regular data accesses must be completed. Before a regular 

data access can be performed, all previous synchronization accesses must be completed. 

This essentially leaves the problem of consistency up to the programmer. The memory 

will only be consistent immediately after a synchronization operation [15]. 

Release Consistency. Release consistency is essentially the same as weak con¬ 

sistency, but synchronization accesses must only be processor consistent with respect 

to each other. Synchronization operations are broken down into acquire and release 

operations. All pending acquires (e.g., a lock operation) must be done before a reg¬ 

ular access is done, and all regular accesses must be done before a release (e.g., an 

unlock operation) is done. Local dependencies within the same processor must still be 

respected. 

Release consistency is a further relaxation of weak consistency without a signifi¬ 

cant loss of coherence [20]. In fact, the release consistency is differentiated from weak 

consistency by the inclusion of the following ordering relaxations. 

1. Regular data accesses need not wait for release operations to complete, since release 

operations signal completion of regular accesses and are not concerned with the 

ordering of accesses following them. 

2. Acquire operations need not wait for the previous regular accesses to complete. 

3. Synchronization operations are only required to be processor consistent, not se¬ 

quential consistent. 

10.5 COHERENCE PROTOCOLS 

To provide concurrent access, DSM systems make use of data replication, where copies 

of data are maintained at all the nodes accessing the data. A fundamental problem with 

data replication is the difficulty in ensuring that all copies have the same information 

and that nodes do not access stale data. In other words, a protocol to keep replicas 

coherent is needed. Two basic protocols to maintain coherence are the write-invalidate 
protocol and the write-update protocol. 
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WRITE-INVALID ATE PROTOCOL. In the write-invalidate method, a write to a 

shared data causes the invalidation of all copies except one before the write can proceed. 

Once invalidated, copies are no longer accessible. A major disadvantage of this scheme 

is that invalidations are sent to all the nodes that have copies, irrespective of whether 

they will use this data or not. This protocol is better suited for applications where several 

updates occur between reads [5], as well as when a program exhibits a high degree of 

per-node locality of reference [16]. On the other hand, this protocol is inefficient if 

many nodes frequently access an object, because an updated object will have to be 

copied back to many nodes immediately after every invalidation. The write-invalidate 

protocol has been used by a majority of DSM systems: IVY [27], which supports strict 

consistency (see coherence protocol in Sec. 10.7.1 for details), Clouds [34], DASH [26], 

which supports release consistency, Memnet [12], Mermaid [41], and Mirage [18]. 

WRITE-UPDATE PROTOCOL. In the write-update method, a write to a shared data 

causes all copies of that data to be updated. This approach is more difficult to implement 

than the previous approach, as a new value has to be sent instead of invalidation 

messages. This protocol can be expected to generate considerable network traffic. 

10.5.1 Cache Coherence in the PLUS System 

The PLUS system employs the write-update protocol and supports general consis¬ 

tency [8]. A memory coherence manager (MCM) running at each node is responsible 

for maintaining the consistency. The unit of replication is a page (4 Kbytes in the cur¬ 

rent implementation), however, the unit of memory access and coherence maintenance 

is one (32-bit) word. 

A virtual page in the PLUS system corresponds to a list of replicas of a page. One 

of the replicas is designated to be the master copy. The MCM on each node is made 

aware of the other replicas of a page through a distributed linked-list called copy-list 

(see Fig. 10.6). The copy-list is constructed by the operating system kernel and it has 

two pointers at each node, the master pointer and the next-copy pointer. The master 

pointer points to the node storing the master copy, and the next-copy pointer points to 

a node containing another replica (if any) of the page along the copy-list. 

READ OPERATION. On a read fault, if the address indicates local memory, the local 

memory is read. Otherwise, the local MCM sends a read request to its counterpart at 

the specified remote node. The data returned by the remote MCM is passed back to the 

requesting processor. 

WRITE OPERATION. To ensure general consistency, writes are always performed 

first on the master copy and are then propagated to the copies linked by the copy-list. On 

a write fault, if the local copy is not the master copy, then the update request is sent to 

the node containing the master copy for updating and then for further propagation. On a 

write fault, if the address indicates a remote node (i.e., no local copy present), the update 

request is sent to the remote node. (In Fig. 10.6, a write request is sent from node 4 to 

node 2.) If the copy on that node is not the master copy, then the update request is sent 
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Distributed Copy-list 

FIGURE 10.6 
PLUS write-update protocol (adapted from [32]). 

to the node containing the master copy for updating and then for further propagation. 

(In Fig. 10.6, node 2, which is not the master of X, forwards the write request to node 

1.) To completely trace the steps of the write-update protocol, see Fig. 10.6. 

The processor issuing the write operation is not blocked while the update operation 

is performed. However, if it initiates a read operation to the location currently being 

updated, it is blocked until the write completes. This is achieved by remembering the 

locations with pending writes. The above protocol guarantees strong ordering within 

a single processor independent of replication (in the absence of concurrent writes by 

other processors), but not with respect to another processor. When strong ordering is 

necessary for the correct synchronization between processors, write-fence operations 

must be explicitly used, wherein MCM waits for all previous writes to complete before 

performing subsequent writes. 

10.5.2 Unifying Synchronization and Data Transfer in Clouds 

Memory coherence and process synchronization are closely intertwined [33]. Read¬ 

ing and writing of shared data by processes is invariably controlled by a synchro¬ 

nization method. For example, in DSM systems using data replication and write - 

invalidate protocol, the reader-writer problem can be implemented using locks as shown 

in Fig. 10.7 [38]. 
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(* Writer process *) Reader process *) 

Loop 

wait (empty); 

writelock (buffer); 

update buffer; 

unlock (buffer); 

signal (full); 

Loop 

wait (full); 

readlock (buffer); 

read buffer; 

unlock (buffer); 

signal (empty); 
Endloop; Endloop; 

FIGURE 10.7 
The reader-writer problem. 

Since the lock operations are separated from the data transfer operations (update 

buffer and read buffer), separate messages must be sent to the node which currently 

owns the data for lock and data access operations. In addition, for a write operation, 
several invalidation messages must be sent. 

The sending of extra messages can be avoided by sending the data segment to the 

process whenever a process performs a lock operation on a data segment [33], Also, 

whenever a lock is released, the corresponding data segment is also returned to the 

owner node of the segment. In the reader-writer problem, when a reader performs an 

unlock operation, the buffer segment is returned to the owner. Therefore, when the last 

reader performs the unlock operation, no reader will have a copy of the buffer segment. 

Now a writer process can update the buffer without sending any invalidation messages. 

(This type of coherence protocol is implemented in the Clouds system. See Sec. 10.7.3.) 

10.5.3 Type-specific Memory Coherence in the Munin System 

The cost of maintaining coherence can be reduced by exploiting application specific 

semantics information [5, 10, 33]. Programmers can aid the system by providing se¬ 

mantics hints about the anticipated access pattern for a program’s shared data objects. 

Making use of these hints, a DSM system can employ different coherence mechanisms, 

each appropriate for a different class of shared data objects. In the Munin system [5], 

a shared data object is classified as one of nine classes based on the access pattern. On 

an access fault, an appropriate fault-handler specific to that object type is invoked to 

service the fault. Following are the type-specific coherence mechanisms in Munin. 

Write-once objects. Write-once objects are written during initialization, but only read 

afterwards. These objects are replicated on demand and are accessed locally at each site. 

For large objects, only selected portions of the object are replicated to avoid inefficient 

memory utilization. 

Private objects. Private objects are accessed by single threads even though they are 

accessible to all the threads of a process. These objects are not managed by the memory 

coherence system. Should there be an attempt to access a private object from a remote 

thread, the object is brought under the purview of the coherence system. 
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Write-many objects. Write-many objects are frequently modified by multiple threads 

between synchronization points. To efficiently support write-many objects, Munin em¬ 

ploys delayed updates. Whenever a node updates a replicated data object, the updates 

are buffered. Only when the thread synchronizes are updates propagated. (Note that the 

shared memory in Munin is weakly consistent.) By delaying updates, Munin allows 

updates to the same object to be combined, therefore reducing data movement. 

Result objects. Result objects are a restricted subset of write-many objects. These 

objects are not read until all parts of them are updated. This means that concurrent 

updates to different parts of a result object will not conflict. Munin efficiently maintains 

these objects through the delayed update mechanism. 

Synchronization objects. Synchronization objects such as distributed locks can be em¬ 

ployed to give threads exclusive access to data objects. Other synchronization objects, 

such as monitors, are built on top of the distributed locks. In Munin, proxy objects, 

one per processor, are used to implement distributed locks. A proxy object represents a 

remote object to all the threads in the local address space [3]. A lock server at each pro¬ 

cessor maintains the local proxy object. A lock operation by a thread on the local proxy 

object causes the local lock server to interact with the other lock servers to acquire the 

global lock associated with the local proxy. Unlock operation is handled similarly. Pro¬ 

cessors exchange lock ownership in Munin. A queue associated with the lock contains 

a list of servers waiting to acquire the lock, thus facilitating ownership exchange. 

Migratory objects. Migratory objects are accessed in phases, where each phase corre¬ 

sponds to a series of accesses by a single thread. Objects accessed in a critical section 

(see Chap. 6) fall under this class. This class of objects is efficiently handled by com¬ 

bining lock requests with data movement, as done in the Clouds system (Secs. 10.5.2 

and 10.7.3). That is, objects migrate to the site requesting the lock. 

Producer-consumer objects. Producer-consumer objects are typically written (pro¬ 

duced) by one thread and read (consumed) by a fixed set of other threads. These types 

of objects are common in scientific programming. Munin handles a producer-consumer 

type of object by moving the object to the site where it will be accessed in advance. 

This is referred to as eager object movement. 

Read-mostly objects. Read-mostly objects are read far more frequently than they are 

written. Munin provides efficient access to these class of objects by updating them 

through broadcasts. Broadcasts do not cause significant overhead as writes are infre¬ 

quent. 

General Read-write objects. General read-write objects do not exhibit particular pat¬ 

tern of access behavior. However, this class of objects is rarely encountered [4], For 

general read-write objects, Munin makes use of the Berkeley ownership protocol, which 

supports strict consistency [23]. Under this protocol, an object at a node can be in one 

of the following states: 
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Invalid: The object does not contain useful data. 

Unowned: The object contains valid data. Other nodes may have copies of the 

object. The object cannot be updated without first acquiring ownership. 

Owned exclusively: The object contains valid data and is unique. The object can 

be updated locally. Upon request, the object must be shared with other nodes. 

Owned nonexclusively: The object contains valid data, but it cannot be updated 
before invalidating other copies. 

Two types of read operations, read-shared and read-for-ownership, are provided 

in the Berkeley protocol. The objects not found locally are located through a broadcast 
query. 

On a read-shared fault, the owner node provides a copy of the object to the 

requesting node and changes the state of the object to “owned nonexclusively.” The 

state of the copy of the object at the receiving node is unowned. 

On a read-for-ownership fault, the owner responds by sending a copy of the object 

and by marking its own copy as invalid. The node that receives a copy of the object 

becomes the new owner and marks the object as “owned exclusively.” 

On a write operation, if the object is available locally and is in the owned exclu¬ 

sively state, the object can be updated without sending out any invalidating messages. 

On the other hand, if the object’s state is “owned nonexclusively,” then invalidation 

messages are sent to other nodes having copies of the object before the object is updated. 

On receiving an invalidation message, a node marks the object as invalid. 

On a write fault, if the object is not available locally, or if the object is available 

locally but its state is unowned, then the object’s ownership must be acquired first by 

issuing a read-for-ownership operation before proceeding with the update. 

Currently, in the Munin system, the programmer provides all the semantic infor¬ 

mation. Once specified, this information remains fixed (see Problem 10.1). The Munin 

system is implemented on an Ethernet network of SUN workstations at Rice Univer¬ 

sity [5]. In [4], readers can find an analysis of six parallel programs for their data access 

patterns that supports the above classification of objects. 

10.6 DESIGN ISSUES 

In this section, we discuss granularity and page replacement, the two important issues to 

be considered in the design of a DSM system. They are important because the efficiency 

of DSM depends on the effectiveness of the size chosen for granularity and the protocol 

used for page replacement. 

10.6.1 Granularity 

Granularity refers to the size of the shared memory unit. A page size that is a multiple of 

the size provided by the underlying hardware or the memory management system allows 

for the integration of DSM and the memory management systems. By integrating DSM 

with the underlying memory management system, a DSM system can take advantage 
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of the built-in protection mechanism to detect incoherent memory references, and use 

built-in fault handlers to prevent and recover from inappropriate references. 
A large page size for the shared memory unit will take advantage of the locality of 

reference exhibited by processes. By transferring large pages, less overhead is incurred 

due to paging activity and processing communication protocols. However, the larger 

the page size, the greater the chance for contention to access a page by many processes. 

Smaller page sizes are less apt to cause contention as they reduce the likelihood of false 

sharing. False sharing of a page occurs when two different data items, not shared but 

accessed by two different processes, are allocated to a single page. 
In the PLUS system, while the unit of replication is a page (4 Kbytes), the unit 

of memory access and coherence maintenance is one word (32-bits) [8]. This approach 

has the advantages of both the smaller and the bigger granularity. In Clouds [34] and 

the Munin [5] system, the unit of shared data structure is the object itself. Hence, the 

granularity size varies with the size of the object, and false sharing does not occur in 

these systems (see Problem 10.5). However in [4], designers of the Munin system study 

several parallel programs and show that coherence protocols move much larger units 

of memory than the program requires, if coherence is maintained on a per-object basis. 

Thus, protocols that adapt to a granularity size that is appropriate to the sharing pattern 

will perform better than those protocols that make use of a static granularity size. 

10.6.2 Page Replacement 

A memory management system has to address the issue of page replacement because 

the size of physical memory is limited. In DSM systems that support data movement, 

traditional methods such as least recently used (LRU) cannot be used directly. Data may 

be accessed in different modes such as shared, private, read-only, writable, etc., in DSM 

systems. To avoid a degradation in the system performance, a page replacement policy 

would have to take the page access modes into consideration. For instance, private 

pages may be replaced before shared pages, as shared pages would have to be moved 

over the network, possibly to their owner [32], Read-only pages can simply be deleted 

as their owners will have a copy. Thus the LRU policy with classes is one possible 

strategy to handle page replacement [38] (see Problem 10.6). 
Once a page is selected for replacement, the DSM system must ensure that the 

page is not lost forever. One option is to swap the page onto disk memory. However, 

if the page is a replica and is not owned by the node, it can be sent to the owner node. 

Both the Mether system [30] and the Memnet system [12, 13, 14, 17] make use of 

reserved memory, wherein each node is responsible for certain portions of the global 

virtual space and reserves memory space for those portions. A page is sent back to its 

reserved memory when selected for replacement elsewhere in the system. 

10.7 CASE STUDIES 

10.7.1 IVY 

IVY (Integrated Shared Virtual Memory at Yale) is implemented in the Apollo DO¬ 

MAIN environment, which has Apollo workstations interconnected by a token ring 
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network [27, 28]. The granularity of access is a page (1 Kbyte), as opposed to an object 

in the DOMAIN environment. In IVY, the address space of a process is divided into two 

parts, shared virtual memory address space and private space. The shared space can be 

accessed by any process through the shared part of its address space. The private space 

is local to a process. The mapping between the local memories of workstations and the 

shared virtual memory space is handled by a mapping manager present at every node. On 

a page fault, the faulting process is blocked and a check is made to see whether the page 

is local. If the page is not local, a remote memory request is made and the page is ac¬ 

quired. The blocked process then resumes execution. Once a page of shared virtual mem¬ 

ory is made available at a node, it becomes accessible to all the processes at that node. 

THE COHERENCE PROTOCOL. The notion of coherence supported in IVY follows 

multiple readers-single writer semantics. A reader always sees the latest value written, 

that is, IVY supports strict consistency. The consistency is maintained through the 

write-invalidation protocol. Pages can be in the read-only, write, or nil (invalidated) 

modes. The write-invalidation protocol maintains consistency by invalidating all the 

read-only copies of a page before allowing a processor to write to that page. We next 

give an overview of the protocol [38], 

Overview. When a processor i has a write fault to a page p: 

• Processor i finds the owner of page p. 

• The owner of page p sends the page and its copyset to i and marks its page table 

entry for page p as nil. The copyset of a page is the set of processors containing 

read-only copy of the page. 

• The faulting processor (i) sends out the invalidation messages to all the processors 

contained in the copyset. 

When a processor i has a read fault to a page p: 

• Processor i finds the owner of page p. 

• The owner of page p sends a copy of page p to i and adds i to the copyset of p. 

Processor i has read-only access to page p. 

• The owner marks its page table entry for page p as read-only. 

The usefulness of copyset lies in the fact that the invalidation messages are sent out 

to only those hosts that have read-only copies of a page rather than broadcasting an 

invalidation message. Three different protocols were implemented in IVY to perform 

the above actions on read and write faults. They differ only in how the owner of a page 

is located, as discussed next. 

1. The Centralized Manager Scheme 
In the centralized manager scheme, the central manager resides on a single 

processor and maintains all data ownership information. A page faulting processor 
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contacts the central manager and requests a copy of the page. The central manager 

forwards the request to the owner of the page, and updates the owner information 

to indicate that the faulting processor is the new owner of the page if the access 

requested was for write. On receiving the request, the owner of the page sends a 

copy of the page (and the page’s copyset if the request is for write) to the faulting 

processor, and adds the faulting processor’s id to the copyset of the page if the 

access request is for read. The centralized manager scheme requires two messages 

to locate the owner of a page. In addition, the writes send a number of invalidation 

messages equal to the size of the copyset. A major problem with the centralized 

manager scheme is that the processor running the central manager can become a 

bottleneck. 

2. The Fixed Distributed Manager Scheme 
The fixed distributed manager scheme distributes the central manager’s role 

to every processor in the system, thereby avoiding a single processor bottleneck 

situation. In this scheme, every processor keeps track of the owners of a prede¬ 

termined set of pages (determined by a mapping function H). When a processor i 

faults on page p, the processor i contacts processor H(jp) for a copy of the page, 

and the protocol proceeds as in the centralized manager scheme. 
In both the centralized and fixed distributed manager schemes, concurrent 

access requests to a page are serialized at the site of the manager. The dynamic 

distributed scheme described next, eliminates the need for manager processes by 

having every host keep track of pages. 

3. The Dynamic Distributed Manager Scheme 
In the dynamic distributed manager scheme, every host keeps track of the 

ownership of the pages that are in its local page table. To accomplish this, every 

page table entry has a field called the probowner (probable owner). The value of the 

probowner field of a page table entry can either be the true owner or the probable 

owner of the page. The value of the probowner field is used as a hint to locate the 

true owner of the page. Initially, the probowner field of every page table entry at 

each processor is set to some default processor considered the owner of all pages. 

This field is modified as pages are requested from various processors. 

When a processor has a page fault, it sends a page request to the processor 

(say i) indicated by the probowner field. If processor i is the true owner of the page, 

then the fault handling proceeds as in the centralized scheme. Otherwise, processor 

i forwards the request to the processor indicated by the probowner field for the 

page in its page table. This continues until the true owner of the page is found. In 

the system configuration shown in Fig. 10.8, a page fault for page 3 at processor 1 

results in the page request being forwarded to processor 2 and then to processor 3. 

The hint in the probowner field is updated whenever a processor receives an 

invalidation request, relinquishes ownership of a page, receives a page, or forwards a 

page fault request. In the first two cases, it is known that the page has a new owner 

and hence the probowner field must be updated. When a processor receives a page as 

a result of a write page fault, it becomes the new owner. Thus, the probowner field 

at both the previous owner and the current owner must be updated. Finally, when a 
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Processor 1 Processor 2 Processor 3 Processor M 

FIGURE 10.8 
Dynamic distributed manager scheme. 

processor forwards a write page fault request, it is obvious that the page will have a 

new owner and again, the probowner held must be updated. 

DISCUSSION. Li and Hudak [28] have shown that the dynamic distributed manager 

algorithm requires at most (N — 1) forwarding request messages to locate the owner of 

a page in a system containing N processors. However, as hints are updated as a side 

effect of the messages, the average number of messages required should be much less. 

In all three schemes, a double fault occurs if a page not available locally is read 

and written successively [24], In a double fault, a page is transferred due to the read 

fault and is transferred again due to the write fault. The second page transfer is wasteful 

as it resends the same page that was first transferred due to the read fault. 

Kessler and Livny [24] proposed a scheme to eliminate the double fault and 

unnecessary page transfers. In their scheme, a sequence number is associated with 

every page. The sequence number of a page is incremented every time it is obtained 

for read-write access. The sequence number is also sent along with the page whenever 

a page transfer is necessary. When a node needs read-write access to a page for which 

it already has read-only access, it sends the sequence number of the page along with a 

read-write access request to the owner of the page. The owner compares the sequence 

number that comes with the request to the sequence number of the copy of the page. If 

they are identical, then read-write access can be granted without transferring the page. 

This method is likely to reduce page transfers due to double faults, as the second (write) 

fault that occurs soon after the first (read) fault is likely to find equivalent sequence 

numbers. 

MEMORY ALLOCATION. IVY implements a single level centralized control for 

memory allocation [27], In this approach, a central manager allocates and deallocates 

memory for the user processes. However, a two-level approach, in which each processor 

has a local manager to locally manage large chunks of memory allocated from the central 



252 ADVANCED CONCEPTS IN OPERATING SYSTEMS 

manager, is expected to be more efficient [38]. When the local controller needs more 

memory, more memory is allocated from the central controller. 

PROCESS SYNCHRONIZATION. In addition to the coherence protocol, a process 

synchronization mechanism is also required to guarantee consistency. Coherence pro¬ 

tocols guarantee consistency among copies of a page. However, to serialize concurrent 

accesses to a page, a process synchronization mechanism is required. 
IVY uses eventcounts as its synchronization mechanism [27]. The synchronization 

mechanism provides four primitive operations. 

• Init(ec)—Initializes an eventcount. 

• Read(ec)—Returns the value of the eventcount. 

• Await(ec, value)—Suspends the calling process until the value of the eventcount 

‘ec’ is not equal to value. 

• Advance(ec)—Increments the value of the eventcount by one and wakes up waiting 

processes. 

The implementation of the above primitives is based on shared virtual memory, 

which provides two advantages: (1) any process can use the eventcount (after its initial¬ 

ization) without knowing its location, and (2) when the page containing the eventcount’s 

data structure is transferred to a processor, the eventcount operations are local to that 

processor (i.e., less overhead is incurred) and any number of processes at the processor 

can perform the eventcount operations. 

Note that the eventcount operations are atomic. The atomic operations are imple¬ 

mented by using test-and-set instructions and by disallowing the transfers of memory 

pages containing the eventcount data structures to another node while an event count 

operation is in progress. 

10.7.2 Mirage 

Mirage is a DSM system developed at the University of California at Los Angeles [18]. 

It is implemented as a part of the kernel of the existing operating system. Mirage extends 

the coherence protocol of the IVY system to control thrashing. (Note that in the IVY 

system, if multiple processors wish to write to a shared page, the page is moved back 

and forth between the processors.) 

In Mirage, when a shared memory page is transferred to a processor, the processor 

is allowed to keep the page for a duration A. If a processor receives an invalidation 

message or has to relinquish the page to some other writer, it checks to see whether A 

has expired. If not, the processor informs the control manager of the amount of time it 

must wait before the processor can honor the request. The control manager waits until 

A expires and then requests the page again. 

In Mirage, A is maintained at both the control manager and the processor, wherein 

a copy of the page resides. Maintaining A at the processor wherein the page resides 

overcomes the imprecision in measuring the elapsed time due to network delays. More¬ 

over, instead of using real-time for A, service-time received by processes accessing the 
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shared page or a combination of service-time and real-time can be used for measuring 
A (see Problem 10.2). 

The main benefits of allowing a processor to keep a page for a duration A are as 
follows [18]: 

• A provides some degree of control over the processor locality, i.e., the number of 

references to a given page a processor will make before another processor is allowed 
to reference that page. 

• Increasing A might decrease the throughput of an individual process. However, other 

processes may benefit because of the decrease in overhead due to thrashing. 

10.7.3 Clouds 

Clouds is an object-based distributed operating system being developed at the Georgia 

Institute of Technology [11]. In Clouds, the virtual address spaces of all objects can 

be viewed as constituting a global distributed shared memory [34], For remote object 

invocation there are two choices: (1) the RPC mechanism and (2) the DSM mechanism, 

which transfers the required segments to the invoking host. In the rest of this section, 
we concentrate on the DSM aspects of Clouds. 

THE RA KERNEL. Ra is the kernel of the Clouds operating system [34]. The Ra 

kernel runs on machines that provide support for virtual memory. The objects in Clouds 

are composed of segments. The Ra kernel maps segments into virtual memory using 

memory management hardware provided by the underlying architecture. The size of a 

segment is a multiple of the physical page size. 

Segments are maintained by system objects called partitions. System objects are 

trusted software modules. DSM partitions are responsible for the creation, maintenance, 

and storage of segments. DSM partitions provide the following operations on segments: 

create/destroy, page-in/page-out, and activate/deactivate (similar to file open and close 

operations that indicate whether a file will be accessed or not in the near future). A 

segment belongs to the partition that created it. 

On a segment fault, a location system object is consulted to locate the object. 

The location system object returns the location of the segment owner [34], A simple 

location system object broadcasts a query for each locate operation. If the segment is 

owned locally, the disk partition is invoked to initiate the page-in operation. The disk 

partition maintains the segments owned by the local node on the local storage (if any). 

If the segment is not owned locally, the distributed shared memory controller (DSMC) 

handles the data transfer operations. 

DISTRIBUTED SHARED MEMORY CONTROLLER. The distributed shared mem¬ 

ory controller (DSMC), one at each node, provides the data transfer and synchronization 

primitives for supporting the abstraction of global distributed shared memory. The data 

transfer is handled through the get (to obtain the data) and discard (to return the data 

to its owner) operations. The synchronization of processes is supported through P and 

V semaphore operations or through operations that are a combination of get and lock 
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or discard and unlock operations (that is, when a lock is requested, granting the lock 

results in the transfer of data as well, and releasing a lock results in the return of the 

segment to its owner). 
A DSM segment can be acquired through a get operation in one of four modes: 

read-only, read-write, weak-read, or none. In the read-only mode, multiple readers can 

gain access to the segment with the guarantee that the segment will not change until 

all the readers explicitly discard the segment. The read-write mode provides exclusive 

access to a segment to one node until the node discards the segment. On a read-only 

or read-write segment fault, the local DSMC at the node suspends the faulting process 

and requests the owner DSMC to send the segment. The owner DSMC keeps track 

of the number of readers in case of read-only access. On receipt of the segment, the 

suspended process is queued in the ready-queue to continue execution. 

The weak-read mode provides a nonexclusive mode of access with no guarantee 

that the segment will not change. When an owner DSMC receives a weak-read request, 

it immediately sends a copy of the segment to the requesting DSMC. irrespective of 

whether there is a writer present for that segment. The weak-read mode is more suitable 

than the read-write mode for applications such as the reader-writer problem. 

The none mode provides exclusive access as in the read-write mode, but there is 

no guarantee when the segment will be moved to another node. When the owner DSMC 

sends a copy of the segment to a requesting DSMC, the requesting DSMC becomes 

the keeper, and this fact is remembered at the owner DSMC. When an owner DSMC 

receives a request for a segment, it takes one of the following actions: it forwards a 

copy of the segment to the requesting DSMC, if it is also the keeper of the segment: if 

the segment is held in none mode at some other node, it instructs the current keeper of 

the segment to forward the segment to the requesting DSMC; it enqueues the request 

until the segment becomes available (a segment becomes available after it is discarded 

by nodes that are currently accessing it in the read-write or read-only modes). The 

keeper of a segment can return the segment to the owner via the discard operation. 

In Clouds, whenever a process unlocks an object, it is forced to discard the object 

as well. As a result, unlike in IVY, the invalidation messages are no longer required 

when a process requests a write access. A disadvantage with combining unlock and 

discard operations is that, on an invocation, a segment will have to be refetched and 

the lock reacquired. 

One should note that the application of DSM in Clouds is different than the appli¬ 

cation of DSM in IVY [39]. While IVY uses DSM to improve performance in parallel 

processing, Clouds makes use of DSM to support object invocation and relocation. Also, 

it is easy in Clouds to obtain and release locks of an object along with the invocation 

of the objects. 

10.8 SUMMARY 

A distributed shared memory is an implementation of the shared memory concept 

in distributed systems, which have no physically shared memory. In DSM systems, 

programs access data in the shared address space just as they access data in traditional 

virtual memory. The main goals of the DSM system are to overcome the architectural 
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limitations (such as a limited amount of memory) of shared memory machines and to 

reduce the effort required to write parallel programs in distributed systems. 

To overcome the high cost of communication in distributed systems, DSM systems 

move data to the location of access. To allow concurrent accesses, DSM systems may 

replicate a data object (partially or entirely). When data is replicated, DSM systems must 

make use of a coherence protocol to guarantee the consistency of the data. The coherence 

protocols that adapt to the semantics of programs have a potential to outperform the 

protocols that do not take the semantics of the program into consideration. 

Another critical factor that affects performance in DSM systems is the granularity 

of the shared memory unit. The coherence protocols that adapt to a granularity size 

suitable to the sharing pattern will move less data between machines compared to the 

coherence protocols using a static granularity size. 

Finally, page replacement is much more complicated in DSM systems than in 

the traditional virtual memory management. To select a page for replacement, the page 

replacement strategy will have to take into consideration the question of whether a page 

is owned by the local machine or a remote machine, the state of the data in the page 

(valid or invalid), and the type of access allowed to a page (read-only, read-write, etc.). 

10.9 FURTHER READING 

Maintaining copies of data coherent is a fundamental problem and a costly overhead 

associated with DSM systems. In [2], Ahamad, Hutto, and John have proposed causal 

distributed memory. Their system implements a weakly consistent memory in which 

reads are required to return the value of the most recent write based on the causal order¬ 

ing of read and write operations. In [10], Cheriton proposes a problem oriented shared 

memory to provide a specialized form of consistency and consistency maintenance that 

exploits application specific semantics to improve the performance of DSM systems. 

Several researchers have proposed DSM for multiprocessor systems. Bisiani, 

Nowatzyk, and Ravishankar [7] have proposed a cache coherence scheme to main¬ 

tain weak consistency. In [6], Bisiani and Forin propose a shared memory model for 

both tightly-coupled and loosely-coupled architectures. The implementation of shared 

virtual memory in the Mach operating system can be found in [35]. A natural extension 

of DSM systems is Heterogeneous DSM (HDSM), which can exploit memory available 

on multiple types of computers. Mermaid [41], developed by Zhou, Stumm, Li, and 

Wortman is an implementation of HDSM. Forin, Barrera, Young, and Rashid have im¬ 

plemented a DSM server for the Mach operating system which runs on multiple types 

of processors [19]. 
Two widely used approaches to maintain cache coherence in multiprocessor sys¬ 

tems are the snoopy cache and the directory-based scheme. Lenoski, Laudon, and Ghara- 

chorloo [26] have proposed a directory-based cache coherence protocol for the DASH 

multiprocessor. In [1], Agarwal, Simoni, Henessey, and Horowitz present an evalua¬ 

tion of various directory-based schemes for cache coherence. A timestamp-based cache 

coherence scheme is presented in [29]. 
In addition to maintaining the coherence of copies of replicated data, there is a 

need for the synchronization of accesses to shared data. In [22], Hsu and Tam claim 



256 REFERENCES 

that the synchronization requirements of DSM can be understood at the process level 

instead of only at the memory access level and demonstrate their idea in the context of 

transaction synchronization. 
Finally, the question of how to recover or tolerate failures in systems supporting 

DSM is an active research area. Wu and Fuchs have proposed a recoverable distributed 

shared virtual memory in [40]. In [37], Stumm and Zhou propose a fault-tolerant scheme 

to implement distributed shared memory. 

PROBLEMS 

10.1. In your opinion, what is a major shortcoming of Munin’s type-specific memory 
coherence protocol? 

10.2. Assume that the service time received by a process is used as a measure for A in Mi¬ 
rage. Also, assume that CPU scheduling is a round robin policy at each node. Under 
what conditions will the scheme of measuring A not provide fair time allocations 
for a page at all nodes? 

10.3. Explain why the write-invalidate protocol is suitable to maintain coherence if sev¬ 
eral updates occur between reads or when a program exhibits per-node locality of 
reference. 

10.4. Explain why a page is transferred twice when a double fault occurs in IVY's coher¬ 
ence protocol. 

10.5. Explain why false sharing does not occur in object based systems. 

10.6. Explain what is meant by LRU policy with classes in page replacement. 
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CHAPTER 

11 
DISTRIBUTED 
SCHEDULING 

11.1 INTRODUCTION 

Distributed systems offer a tremendous processing capacity. However, in order to real¬ 

ize this tremendous computing capacity, and to take full advantage of it, good resource 

allocation schemes are needed. A distributed scheduler is a resource management com¬ 

ponent of a distributed operating system that focuses on judiciously and transparently 

redistributing the load of the system among the computers such that overall performance 

of the system is maximized. Because wide-area networks have high communication de¬ 

lays, distributed scheduling is more suitable for distributed systems based on local area 

networks. 
In this chapter, we discuss several key issues in load distributing, including the 

motivation for load distributing, tradeoffs between load balancing and load sharing and 

between preemptive and nonpreemptive task transfers, and stability. In addition, we 

describe several load distributing algorithms and compare their performance. Surveys 

of load distributing policies and task migration mechanisms that have been implemented 

are also presented. This chapter is based on [32]. 

11.2 MOTIVATION 

A locally distributed system consists of a collection of autonomous computers, con¬ 

nected by a local area communication network (Fig. 11.1). Users submit tasks at their 

259 
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FIGURE 11.1 
A distributed system without load distributing (adapted from [32]). 

host computers for processing. The need for load distributing arises in such environ¬ 

ments because, due to the random arrival of tasks and their random CPU service time 

requirements, there is a good possibility that several computers are heavily loaded 

(hence suffering from performance degradation), while others are idle or lightly loaded. 

Clearly, if the workload at some computers is typically heavier than that at others, 

or if some processors execute tasks at a slower rate than others, this situation is likely to 

occur often. The usefulness of load distributing is not as obvious in systems in which all 

processors are equally powerful and, over the long term, have equally heavy workloads. 

Livny and Melman [24] have shown that even in such homogeneous distributed systems, 

statistical fluctuations in the arrival of tasks and task service time requirements at 

computers lead to the high probability that at least one computer is idle while a task is 

waiting for service elsewhere. Their analysis, presented next, models a computer in a 
distributed system by an M/M/1 server. 

Consider a system of N identical and independent M/M/1 servers [16]. By 

identical we mean that all servers have the same task arrival and service rates. Let p be 

the utilization of each server. Then PQ = 1 - p is the probability that a server is idle. 

Let P be the probability that the system is in a state in which at least one task is waiting 

for service and at least one server is idle. Then P is given by the expression [24] 
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(11.1) 

where Qi is the probability that a given set of i servers are idle and H^-i is the 

probability that a given set of (N — i) servers are not idle and at one or more of them 

a task is waiting for service. Clearly, from the independence assumption, 

Qi = Plo (11.2) 

Hn-i = {probability that (N — i) systems have at least one task} — {probability that 
all (N — i) systems have exactly one task}. 

Therefore, 

HN-i = (1 - Po)N~l - [(1 - Po)Po] 
1 N-i 
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i= 1 
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(11.3) 

(11.4) 

Figure 11.2 plots the values of P for various values of server utilizations p and 

the number of servers N. For moderate system utilization (where p = 0.5 to 0.8), the 

value of P is high, indicating a good potential for performance improvement through 

load distribution. At high system utilizations, the value of P is low as most servers are 

likely to be busy, which indicates lower potential for load distribution. Similarly, at low 

system utilizations, the value of P is low as most servers are likely to be idle, which 

indicates lower potential for load distribution. Another important observation is that, 

as the number of servers in the system increase, P remains high even at high system 

utilizations. 
Therefore, even in a homogeneous distributed system, system performance can 

potentially be improved by appropriately transferring the load from heavily loaded 

computers (senders) to idle or lightly loaded computers (receivers). This raises the 

following two questions. First, what is meant by performance? One widely used per¬ 

formance metric is the average response time of tasks. The response time of a task is 

the length of the time interval between its origination and completion. Minimizing the 

average response time is often the goal of load distributing. Second, what constitutes a 

proper characterization of load at a node? Defining a proper load index is very important 

as load distributing decisions are based on the load measured at one or more nodes. 

Also, it is crucial that the mechanism used to measure load is efficient and imposes 

minimal overhead. These issues are discussed next. 
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FIGURE 11.2 
P as a function of p and N (adapted 
from [24]). 

11.3 ISSUES IN LOAD DISTRIBUTING 

We now discuss several central issues in load distributing that will help the reader 

understand its intricacies. Note here that the terms computer, machine, host, workstation, 

and node are used interchangeably, depending upon the context. 

11.3.1 Load 

Zhou [41] showed that resource queue lengths and particularly the CPU queue length 

are good indicators of load because they correlate well with the task response time. 

Moreover, measuring the CPU queue length is fairly simple and carries little overhead. 

If a task transfer involves significant delays, however, simply using the current CPU 

queue length as a load indicator can result in a node accepting tasks while other tasks 

it accepted earlier are still in transit. As a result, when all the tasks that the node 

has accepted have arrived, the node can become overloaded and require further task 

transfers to reduce its load. This undesirable situation can be prevented by artificially 

incrementing the CPU queue length at a node whenever the node accepts a remote task. 

To avoid anomalies when task transfers fail, a timeout (set at the time of acceptance) 

can be employed. After the timeout, if the task has not yet arrived, the CPU queue 
length is decremented. 

While the CPU queue length has been extensively used in previous studies as a 

load indicator, it has been reported that little correlation exists between CPU queue 

length and processor utilization [35], particularly in an interactive environment. Hence, 

the designers of V-System used CPU utilization as an indicator of the load at a site. This 

approach requires a background process that monitors CPU utilization continuously and 

imposes more overhead, compared to simply finding the queue length at a node (see 
Sec. 11.10.1). 
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11.3.2 Classification of Load Distributing Algorithms 

The basic function of a load distributing algorithm is to transfer load (tasks) from heav¬ 

ily loaded computers to idle or lightly loaded computers. Load distributing algorithms 

can be broadly characterized as static, dynamic, or adaptive. Dynamic load distributing 

algorithms [3, 10, 11, 18, 20, 24, 31, 34, 40] use system state information (the loads 

at nodes), at least in part, to make load distributing decisions, while static algorithms 

make no use of such information. In static load distributing algorithms, decisions are 

hard-wired in the algorithm using a priori knowledge of the system. Dynamic load dis¬ 

tributing algorithms have the potential to outperform static load distributing algorithms 

because they are able to exploit short term fluctuations in the system state to improve 

performance. However, dynamic load distributing algorithms entail overhead in the 

collection, storage, and analysis of system state information. Adaptive load distributing 

algorithms [20, 31] are a special class of dynamic load distributing algorithms in that 

they adapt their activities by dynamically changing the parameters of the algorithm 

to suit the changing system state. For example, a dynamic algorithm may continue to 

collect the system state irrespective of the system load. An adaptive algorithm, on the 

other hand, may discontinue the collection of the system state if the overall system load 

is high to avoid imposing additional overhead on the system. At such loads, all nodes 

are likely to be busy and attempts to find receivers are unlikely to be successful. 

11.3.3 Load Balancing vs. Load Sharing 

Load distributing algorithms can further be classified as load balancing or load sharing 

algorithms, based on their load distributing principle. Both types of algorithms strive to 

reduce the likelihood of an unshared state (a state in which one computer lies idle while 

at the same time tasks contend for service at another computer [21]) by transferring tasks 

to lightly loaded nodes. Load balancing algorithms [7, 20, 24], however, go a step further 

by attempting to equalize loads at all computers. Because a load balancing algorithm 

transfers tasks at a higher rate than a load sharing algorithm, the higher overhead 

incurred by the load balancing algorithm may outweigh this potential performance 

improvement. 
Task transfers are not instantaneous because of communication delays and delays 

that occur during the collection of task state. Delays in transferring a task increase 

the duration of an unshared state as an idle computer must wait for the arrival of 

the transferred task. To avoid lengthy unshared states, anticipatory task transfers from 

overloaded computers to computers that are likely to become idle shortly can be used. 

Anticipatory transfers increase the task transfer rate of a load sharing algorithm, making 

it less distinguishable from load balancing algorithms. In this sense, load balancing can 

be considered a special case of load sharing, performing a particular level of anticipatory 

task transfers. 

11.3.4 Preemptive vs. Nonpreemptive Transfers 

Preemptive task transfers involve the transfer of a task that is partially executed. This 

transfer is an expensive operation as the collection of a task’s state (which can be quite 
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large and complex) can be difficult. Typically, a task state consists of a virtual memory 

image, a process control block, unread I/O buffers and messages, file pointers, timers 

that have been set, etc. Nonpreemptive task transfers, on the other hand, involve the 

transfer of tasks that have not begun execution and hence do not require the transfer of 

the task’s state. In both types of transfers, information about the environment in which 

the task will execute must be transferred to the receiving node. This information can 

include the user’s current working directory, the privileges inherited by the task, etc. 

Nonpreemptive task transfers are also referred to as task placements. 

11.4 COMPONENTS OF A LOAD DISTRIBUTING 
ALGORITHM 

Typically, a load distributing algorithm has four components: (1) a transfer policy that 

determines whether a node is in a suitable state to participate in a task transfer, (2) a 

selection policy that determines which task should be transferred, (3) a location policy 

that determines to which node a task selected for transfer should be sent, and (4) an 

information policy which is responsible for triggering the collection of system state 

information. A transfer policy typically requires information on the local node’s state 

to make decisions. A location policy, on the other hand, is likely to require information 

on the states of remote nodes to make decisions. 

11.4.1 Transfer Policy 

A large number of the transfer policies that have been proposed are threshold poli¬ 

cies [10, 11, 24, 31]. Thresholds are expressed in units of load. When a new task 

originates at a node, and the load at that node exceeds a threshold T, the transfer policy 

decides that the node is a sender. If the load at a node falls below T, the transfer policy 

decides that the node can be a receiver for a remote task. 

An alternative transfer policy initiates task transfers whenever an imbalance in 

load among nodes is detected because of the actions of the information policy. 

11.4.2 Selection Policy 

A selection policy selects a task for transfer, once the transfer policy decides that the 

node is a sender. Should the selection policy fail to find a suitable task to transfer, the 

node is no longer considered a sender until the transfer policy decides that the node is 
a sender again. 

The simplest approach is to select newly originated tasks that have caused the 

node to become a sender by increasing the load at the node beyond the threshold [11], 

Such tasks are relatively cheap to transfer, as the transfer is nonpreemptive. 

A basic criterion that a task selected for transfer should satisfy is that the overhead 

incurred in the transfer of the task should be compensated for by the reduction in the 

response time realized by the task. In general, long-lived tasks satisfy this criterion [4], 

Also, a task can be selected for remote execution if the estimated average execution 

time for that type of task is greater than some execution time threshold [36], 
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Bryant and Finkel [3] propose another approach based on the reduction in response 

time that can be obtained for a task by transferring it elsewhere. In this method, a task 

is selected for transfer only if its response time will be improved upon transfer. (See [31 
for details on how to estimate response time.) 

There are other factors to consider in the selection of a task. First, the overhead 

incurred by the transfer should be minimal. For example, a task of small size carries less 

overhead. Second, the number of location-dependent system calls made by the selected 

task should be minimal. Location-dependent calls must be executed at the node where 

the task originated because they use resources such as windows, or the mouse, that only 
exist at the node [8, 19]. 

11.4.3 Location Policy 

The responsibility of a location policy is to find suitable nodes (senders or receivers) 

to share load. A widely used method for finding a suitable node is through polling. In 

polling, a node polls another node to find out whether it is a suitable node for load 

sharing [3, 10, 11, 24, 31]. Nodes can be polled either serially or in parallel (e.g., 

multicast). A node can be selected for polling either randomly [3, 10, 11], based on the 

information collected during the previous polls [24, 31], or on a nearest-neighbor basis. 

An alternative to polling is to broadcast a query to find out if any node is available for 
load sharing. 

11.4.4 Information Policy 

The information policy is responsible for deciding when information about the states 

of other nodes in the system should be collected, where it should be collected from, 

and what information should be collected. Most information policies are one of the 

following three types: 

Demand-driven. In this class of policy, a node collects the state of other nodes 

only when it becomes either a sender or a receiver (decided by the transfer and selection 

policies at the node), making it a suitable candidate to initiate load sharing. Note that a 

demand-driven information policy is inherently a dynamic policy, as its actions depend 

on the system state. Demand-driven policies can be sender-initiated, receiver-initiated, 

or symmetrically initiated. In sender-initiated policies, senders look for receivers to 

transfer their load. In receiver-initiated policies, receivers solicit load from senders. A 

symmetrically initiated policy is a combination of both, where load sharing actions are 

triggered by the demand for extra processing power or extra work. 

Periodic. In this class of policy, nodes exchange load information periodically [14, 

40]. Based on the information collected, the transfer policy at a node may decide to 

transfer jobs. Periodic information policies do not adapt their activity to the system 

state. For example, the benefits due to load distributing are minimal at high system 

loads because most of the nodes in the system are busy. Nevertheless, overheads due 

to periodic information collection continue to increase the system load and thus worsen 

the situation. 
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State-change-driven. In this class of policy, nodes disseminate state information 

whenever their state changes by a certain degree [24], A state-change-driven policy 

differs from a demand-driven policy in that it disseminates information about the state 

of a node, rather than collecting information about other nodes. Under centralized state- 

change-driven policies, nodes send state information to a centralized collection point. 

Under decentralized state-change-driven policies, nodes send information to peers [32]. 

11.5 STABILITY 

We now describe two views of stability. 

11.5.1 The Queuing-Theoretic Perspective 

When the long term arrival rate of work to a system is greater than the rate at which 

the system can perform work, the CPU queues grow without bound. Such a system 

is termed unstable. For example, consider a load distributing algorithm performing 

excessive message exchanges to collect state information. The sum of the load due to 

the external work arriving and the load due to the overhead imposed by the algorithm 

can become higher than the service capacity of the system, causing system instability. 

Alternatively, an algorithm can be stable but may still cause a system to perform 

worse than when it is not using the algorithm. Hence, a more restrictive criterion for 

evaluating algorithms is desirable, and we use the effectiveness of an algorithm as the 

evaluating criterion. A load distributing algorithm is said to be effective under a given 

set of conditions if it improves the performance relative to that of a system not using 

load distributing. Note that while an effective algorithm cannot be unstable, a stable 

algorithm can be ineffective. 

11.5.2 The Algorithmic Perspective 

If an algorithm can perform fruitless actions indefinitely with finite probability, the 

algorithm is said to be unstable [3], For example, consider processor thrashing. The 

transfer of a task to a receiver may increase the receiver’s queue length to the point 

of overload, necessitating the transfer of that task to yet another node. This process 

may repeat indefinitely [3], In this case, a task is moved from one node to another in 

search of a lightly loaded node without ever receiving service. Discussions on various 

types of algorithmic instability are beyond the scope of this book and can be found 
in [6]. 

11.6 LOAD DISTRIBUTING ALGORITHMS 

We now describe some load distributing algorithms that have appeared in the literature 
and discuss their performance. 
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11.6.1 Sender-Initiated Algorithms 

In sender-initiated algorithms, load distributing activity is initiated by an overloaded 

node (sender) that attempts to send a task to an underloaded node (receiver). This 

section covers three simple yet effective sender-initiated algorithms studied by Eager, 

Lazowska, and Zohorjan [11]. 

Transfer policy. All three algorithms use the same transfer policy, a threshold policy 

based on CPU queue length. A node is identified as a sender if a new task originating 

at the node makes the queue length exceed a threshold T. A node identifies itself as a 

suitable receiver for a remote task if accepting the task will not cause the node’s queue 

length to exceed T. 

Selection policy. These sender-initiated algorithms consider only newly arrived tasks 

for transfer. 

Location policy. These algorithms differ only in their location policy: 

Random. Random is a simple dynamic location policy that uses no remote state 

information. A task is simply transferred to a node selected at random, with no infor¬ 

mation exchange between the nodes to aid in decision making. A problem with this 

approach is that useless task transfers can occur when a task is transferred to a node 

that is already heavily loaded (i.e., its queue length is above the threshold). An issue 

raised with this policy concerns the question of how a node should treat a transferred 

task. If it is treated as a new arrival, the transferred task can again be transferred to 

another node if the local queue length is above the threshold. Eager et al. [11] have 

shown that if such is the case, then irrespective of the average load of the system, 

the system will eventually enter a state in which the nodes are spending all their time 

transferring tasks and not executing them. A simple solution to this problem is to limit 

the number of times a task can be transferred. A sender-initiated algorithm using the 

random location policy provides substantial performance improvement over no load 

sharing at all [11]. 

Threshold. The problem of useless task transfers under random location policy 

can be avoided by polling a node (selected at random) to determine whether it is a 

receiver (see Fig. 11.3). If so, the task is transferred to the selected node, which must 

execute the task regardless of its state when the task actually arrives. Otherwise, another 

node is selected at random and polled. The number of polls is limited by a parameter 

called Poll Limit to keep the overhead low. Note that while nodes are randomly selected, 

a sender node will not poll any node more than once during one searching session of 

PollLimit polls. If no suitable receiver node is found within the PollLimit polls, then 

the node at which the task originated must execute the task. By avoiding useless task 

transfers, the threshold policy provides substantial performance improvement over the 

random location policy [11]. 

Shortest. The two previous approaches make no effort to choose the best receiver 

for a task. Under the shortest location policy, a number of nodes (= PollLimit) are 
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FIGURE 11.3 
Sender-initiated load sharing with threshold location policy. 

selected at random and are polled to determine their queue length [11]. The node 

with the shortest queue length is selected as the destination for task transfer unless its 

queue length > T. The destination node will execute the task regardless of its queue 

length at the time of arrival of the transferred task. The performance improvement 

obtained by using the shortest location policy over the threshold policy was found to be 

marginal [11], indicating that using more detailed state information does not necessarily 
result in significant improvement in system performance. 

Information policy. When either the shortest or the threshold location policy is used, 

polling activity commences when the transfer policy identifies a node as the sender of a 

task. Hence, the information policy can be considered to be of the demand-driven type. 

Stability. These three approaches for location policy used in sender-initiated algorithms 

cause system instability at high system loads, where no node is likely to be lightly 

loaded, and hence the probability that a sender will succeed in finding a receiver node 

is very low. However, the polling activity in sender-initiated algorithms increases as the 

rate at which work arrives in the system increases, eventually reaching a point where 

the cost of load sharing is greater than the benefit. At this point, most of the available 

CPU cycles are wasted in unsuccessful polls and in responding to these polls. When 

the load due to work arriving and due to the load sharing activity exceeds the system’s 
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serving capacity, instability occurs. Thus, the actions of sender-initiated algorithms are 

not effective at high system loads and cause system instability by failing to adapt to 
the system state. 

11.6.2 Receiver-Initiated Algorithms 

In receiver-initiated algorithms, the load distributing activity is initiated from an under¬ 

loaded node (receiver) that is trying to obtain a task from an overloaded node (sender). 

In this section, we describe the policies of an algorithm [31] that is a variant of the 

algorithm proposed in [10] (see Fig. 11.4). 

Transfer policy. Transfer policy is a threshold policy where the decision is based on 

CPU queue length. The transfer policy is triggered when a task departs. If the local queue 

length falls below the threshold T, the node is identified as a receiver for obtaining a 

task from a node (sender) to be determined by the location policy. A node is identified 

to be a sender if its queue length exceeds the threshold T. 

Selection policy. This algorithm can make use of any of the approaches discussed 

under the selection policy in Sec. 11.4.2. 

Location policy. In this policy, a node selected at random is polled to determine if 

transferring a task from it would place its queue length below the threshold level. If 

FIGURE 11.4 
Receiver-initiated load sharing. 
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not, the polled node transfers a task. Otherwise, another node is selected at random and 

the above procedure is repeated until a node that can transfer a task (i.e., a sender) is 

found, or a static PollLimit number of tries have failed to find a sender. If all polls fail 

to find a sender, the node waits until another task completes or until a predetermined 

period is over before initiating the search for a sender, provided the node is still a 

receiver. Note that if the search does not start after a predetermined period, the extra 

processing power available at a receiver is completely lost to the system until another 

task completes, which may not occur soon. 

Information policy. The information policy is demand-driven because the polling ac¬ 

tivity starts only after a node becomes a receiver. 

Stability. Receiver-initiated algorithms do not cause system instability for the following 

reason. At high system loads there is a high probability that a receiver will find a suitable 

sender to share the load within a few polls. This results in the effective usage of polls 

from receivers and very little wastage of CPU cycles at high system loads. At low 

system loads, there are few senders but more receiver-initiated polls. These polls do 

not cause system instability as spare CPU cycles are available at low system loads. 

A drawback. Under the most widely used CPU scheduling disciplines (such as round- 

robin and its variants), a newly arrived task is quickly provided a quantum of service. 

In receiver-initiated algorithms, the polling starts when a node becomes a receiver. 

However, it is unlikely that these polls will be received at senders when new tasks 

that have arrived at them have not yet begun executing. As a result, a drawback of 

receiver-initiated algorithms is that most transfers are preemptive and therefore expen¬ 

sive. Conversely, sender-initiated algorithms are able to make greater use of nonpre- 

emptive transfers because they can initiate load distributing activity as soon as a new 
task arrives. 

11.6.3 Symmetrically Initiated Algorithms 

Under symmetrically initiated algorithms [21], both senders and receivers search for 

receivers and senders, respectively, for task transfers. These algorithms have the ad¬ 

vantages of both sender- and receiver-initiated algorithms. At low system loads, the 

sender-initiated component is more successful in finding underloaded nodes. At high 

system loads, the receiver-initiated component is more successful in finding overloaded 

nodes. However, these algorithms are not immune from the disadvantages of both 

sender- and receiver-initiated algorithms. As in sender-initiated algorithms, polling at 

high system loads may result in system instability, and as in receiver-initiated algo¬ 
rithms, a preemptive task transfer facility is necessary. 

A simple symmetrically initiated algorithm can be constructed by using both the 

transfer and location policies described in Secs. 11.6.1 and 11.6.2. Another symmetri¬ 

cally initiated algorithm, called the above-average algorithm [20], is described next. 

THE ABOVE-AVERAGE ALGORITHM. The above-average algorithm, proposed by 

Krueger and Finkel [20], tries to maintain the load at each node within an acceptable 
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range of the system average. Striving to maintain the load at a node at the exact system 

average can cause processor thrashing [3], as the transfer of a task may result in a node 

becoming either a sender (load above average) or a receiver (load below average). A 

description of this algorithm follows. 

Transfer policy. The transfer policy is a threshold policy that uses two adaptive thresh¬ 

olds. These thresholds are equidistant from the node’s estimate of the average load 

across all nodes. For example, if a node’s estimate of the average load is 2, then the 

lower threshold = 1 and the upper threshold = 3. A node whose load is less than the 

lower threshold is considered a receiver, while a node whose load is greater than the 

upper threshold is considered a sender. Nodes that have loads between these thresholds 

lie within the acceptable range, so they are neither senders nor receivers. 

Location policy. The location policy has the following two components: 

Sender-initiated component 

• A sender (a node that has a load greater than the acceptable range) broadcasts a 

TooHigh message, sets a TooHigh timeout alarm, and listens for an Accept message 

until the timeout expires. 

• A receiver (a node that has a load less than the acceptable range) that receives a 

TooHigh message cancels its TooLow timeout, sends an Accept message to the source 

of the TooHigh message, increases its load value (taking into account the task to 

be received), and sets an AwaitingTask timeout. Increasing its load value prevents a 

receiver from over-committing itself to accepting remote tasks. If the AwaitingTask 

timeout expires without the arrival of a transferred task, the load value at the receiver 

is decreased. 

• On receiving an Accept message, if the node is still a sender, it chooses the best 

task to transfer and transfers it to the node that responded. 

• On expiration of the TooHigh timeout, if no Accept message has been received, 

the sender infers that its estimate of the average system load is too low (since no 

node has a load much lower). To correct this problem, the sender broadcasts a 

ChangeAverage message to increase the average load estimate at the other nodes. 

Receiver-initiated component 

• A node, on becoming a receiver, broadcasts a TooLow message, sets a TooLow 

timeout alarm, and starts listening for a TooHigh message. 

• If a TooHigh message is received, the receiver performs the same actions that it does 

under sender-initiated negotiation (see above). 

• If the TooLow timeout expires before receiving any TooHigh messages, the receiver 

broadcasts a ChangeAverage message to decrease the average load estimate at the 

other nodes. 

Selection policy. This algorithm can make use of any of the approaches discussed 

under the selection policy in Sec. 11.4.2. 
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Information policy. The information policy is demand-driven. A highlight of this algo¬ 

rithm is that the average system load is determined individually at each node, imposing 

little overhead and without the exchange of many messages. Another key point to 

note is that the acceptable range determines the responsiveness of the algorithm. When 

the communication network is heavily/lightly loaded (indicated by long/short message 

transmission delays, respectively), the acceptable range can be increased/decreased by 

each node individually so that the load balancing actions adapt to the state of the 

communication network as well. 

11.6.4 Adaptive Algorithms 

A STABLE SYMMETRICALLY INITIATED ALGORITHM. The main cause of sys¬ 

tem instability due to load sharing by the previous algorithms is the indiscriminate 

polling by the sender’s negotiation component. The stable symmetrically initiated al¬ 

gorithm [31] utilizes the information gathered during polling (instead of discarding it 

as was done by the previous algorithms) to classify the nodes in the system as either 

Sender/overloaded, Receiver/underloaded, or OK (i.e., nodes having manageable load). 

The knowledge concerning the state of nodes is maintained by a data structure at each 

node, comprised of a senders list, a receivers list, and an OK list. These lists are main¬ 

tained using an efficient scheme in which list manipulative actions, such as moving a 

node from one list to another, or finding the list to which a node belongs, impose a small 

and constant overhead irrespective of the number of nodes in the system. (See [31] for 
more details on the list maintenance scheme.) 

Initially, each node assumes that every other node is a receiver. This state is 

represented at each node by a receivers list that contains all nodes (except itself), an 
empty senders list, and an empty OK list. 

Transfer policy. The transfer policy is a threshold policy where decisions are based 

on CPU queue length. The transfer policy is triggered when a new task originates or 

when a task departs. The transfer policy makes use of two threshold values to classify 

the nodes: a lower threshold (LT) and an upper threshold (UT). A node is said to be a 

sender if its queue length > UT, a receiver if its queue length < LT, and OK if LT < 
node’s queue length < UT. 

Location policy. The location policy has the following two components: 

Sender-initiated Component. The sender-initiated component is triggered at a 

node when it becomes a sender. The sender polls the node at the head of the receivers 

list to determine whether it is still a receiver. The polled node removes the sender node 

ID from the list it is presently in, puts it at the head of its senders list, and informs 

the sender whether it is a receiver, sender, or OK node based on its current status. On 

receipt of this reply, the sender transfers the new task if the polled node has indicated 

that it is a receiver. Otherwise, the polled node’s ID is removed from the receivers list 

and put at the head of the OK list or at the head of senders list based on its reply. Then 
the sender polls the node at the head of the receivers list. 
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The polling process stops if a suitable receiver is found for the newly arrived 

task, if the number of polls reaches a PollLimit (a parameter of the algorithm), or if 

the receivers list at the sender node becomes empty. If polling fails to find a receiver, 

the task is processed locally, though it can later migrate as a result of receiver-initiated 

load sharing. 

Receiver-initiated Component. The goal of the receiver-initiated component is 

to obtain tasks from a sender node. The nodes polled are selected in the following order: 

head to tail in the senders fist (the most up-to-date information is used first); then tail 

to head in the OK list (the most out-of-date information is used first, in the hope that 

the node has become a sender); then tail to head in the receivers list (again the most 

out-of-date information is used first). 

The receiver-initiated component is triggered at a node when the node becomes 

a receiver. The receiver polls the selected node to determine whether it is a sender. On 

receipt of the message, the polled node, if it is a sender, transfers a task to the polling 

node and informs it of its state after the task transfer. If the polled node is not a sender, 

it removes the receiver node ID from the list it is presently in, puts it at the head of its 

receivers list, and informs the receiver whether it (the polled node) is a receiver or OK. 

On receipt of the reply, the receiver node removes the polled node ID from whatever 

list it is presently in and puts it at the head of the appropriate list based on its reply. 

The polling process stops if a sender is found, if the receiver is no longer a 

receiver, or if the number of polls reaches a static PollLimit. 

Selection policy. The sender-initiated component considers only newly arrived tasks 

for transfer. The receiver-initiated component can make use of any of the approaches 

discussed under the selection policy in Sec. 11.4.2. 

Information policy. The information policy is demand-driven, as the polling activity 

starts when a node becomes a sender or a receiver. 

Discussion. At high system loads, the probability of a node being underloaded is neg¬ 

ligible, resulting in unsuccessful polls by the sender-initiated component. Unsuccessful 

polls result in the removal of polled node IDs from receivers lists. Unless receiver- 

initiated polls to these nodes fail to find them as senders, which is unlikely at high 

system loads, the receivers lists remain empty. As a result, future sender-initiated polls 

at high system loads (which are most likely to fail) are prevented. (Note that a sender 

polls only nodes found in its receivers list.) Hence, the sender-initiated component is 

deactivated at high system loads, leaving only receiver-initiated load sharing (which is 

effective at such loads). 
At low system loads, receiver-initiated polling generally fails. These failures do 

not adversely affect performance because extra processing capacity is available at low 

system loads. In addition, these polls have the positive effect of updating the receivers 

lists. With the receivers lists accurately reflecting the system state, future sender-initiated 

load sharing will generally succeed within a few polls. Thus, by using sender-initiated 

load sharing at low system loads, receiver-initiated load sharing at high loads, and 

symmetrically initiated load sharing at moderate loads, the stable symmetrically initiated 
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algorithm achieves improved performance over a wide range of system loads while 
preserving system stability. 

A STABLE SENDER-INITIATED ALGORITHM. This algorithm [31] has two desir¬ 
able properties. First, it does not cause instability. Second, load sharing is due to non- 
preemptive transfers (which are cheaper) only. This algorithm uses the sender-initiated 
load sharing component of the stable symmetrically initiated algorithm as is, but has 
a modified receiver-initiated component to attract the future nonpreemptive task trans¬ 
fers from sender nodes. The stable sender-initiated policy is very similar to the stable 
symmetrically initiated approach, so only the differences will be pointed out. 

In the stable sender-initiated algorithm, the data structure (at each node) of the 
stable symmetrically initiated algorithm is augmented by an array called the statevector. 
The statevector is used by each node to keep track of which list (senders, receivers, or 
OK) it belongs to at all the other nodes in the system. Moreover, the sender-initiated 
load sharing is augmented with the following step: when a sender polls a selected node, 
the sender’s statevector is updated to reflect that the sender now belongs to the senders 
list at the selected node. Likewise, the polled node updates its statevector based on the 
reply it sent to the sender node to reflect which list it will belong to at the sender. 

The receiver-initiated component is replaced by the following protocol: when a 
node becomes a receiver, it informs all the nodes that are misinformed about its current 
state. The misinformed nodes are those nodes whose receivers lists do not contain 
the receiver’s ID. This information is available in the statevector at the receiver. The 
statevector at the receiver is then updated to reflect that it now belongs to the receivers 
list at all those nodes that were informed of its current state. By this technique, this 
algorithm avoids receivers sending broadcast messages to inform other nodes that they 
are receivers. Remember that broadcast messages impose message handling overhead 
at all nodes in the system. This overhead can be high if nodes frequently change their 
state. 

Note that there are no preemptive transfers of partly executed tasks here. The 
sender-initiated load sharing component will perform any load sharing, if possible on 
the arrival of a new task. The stability of this approach is due to the same reasons given 
for the stability of the stable symmetrically initiated algorithm. 

11.7 PERFORMANCE COMPARISON 

This section discusses the general performance trends of some of the example algo¬ 
rithms described in the previous section. Figure 11.5 through Fig. 11.7 plot the average 
response time of tasks vs. the offered system load for several load sharing algorithms 
discussed in Sec. 11.6 [32], The average service demand for tasks is assumed to be 
one time unit, and the task interarrival times and service demands are independently 
exponentially distributed. The system load is assumed to be homogeneous; that is, all 
nodes have the same long-term task arrival rate. The system is assumed to contain 
40 identical nodes. The notations used in the figures correspond to the algorithms as 
follows: 
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M/M/1 

RECV 

RAND 

SEND 

ADSEND 

SYM 

ADSYM 

M/M/K 

A distributed system that performs no load distributing. 

Receiver-initiated algorithm. 

Sender-initiated algorithm with random location policy. 

Sender-initiated algorithm with threshold location policy. 
Stable sender-initiated algorithm. 

Symmetrically initiated algorithm (SEND and RECV combined). 

Stable symmetrically initiated algorithm. 

A distributed system that performs ideal load distributing without 
incurring any overhead. 

A fixed threshold of T = lower threshold = upper threshold = 1 was used for 

these comparisons. However, the value of T should adapt to the system load and the 

task transfer cost because a node is identified as a sender or a receiver by comparing 

its queue length with T [11]. At low system loads, many nodes are likely to be idle— 

a low value of T will result in nodes with small queue lengths being identified as 

senders who can benefit by transferring load. At high system loads, most nodes are 

likely to be busy—a high value of T will result in the identification of only those nodes 

with significant queue lengths as senders, who can benefit the most by transferring 

load. While a scheduling algorithm may adapt to the system load by making use of an 

adaptive T, the adaptive stable algorithms of Sec. 11.6.4 adapt to the system load by 

varying the PollLimit with the help of the lists. Also, low thresholds are desirable for 

low transfer costs as smaller differences in node queue lengths can be exploited; high 

transfer costs demand higher thresholds. 

For these comparisons, a small, fixed PollLimit = 5 was assumed. We can see why 

such a small limit is sufficient by noting that if P is the probability that a particular node 

is below threshold, then (because the nodes are assumed to be independent) the proba¬ 

bility that a node below threshold is first encountered on the ith poll is P(1 — P)l~} [11], 
For large P, this expression decreases rapidly with increasing i\ the probability of suc¬ 

ceeding on the first few polls is high. For small P, the quantity decreases more slowly. 

However, since most nodes are above threshold, the improvement in systemwide re¬ 

sponse time that will result from locating a node below threshold is small; quitting the 

search after the first few polls does not carry a substantial penalty. 

Main result. Comparing M/M/1 with the sender-initiated algorithm that uses the ran¬ 

dom location policy (RAND) in Fig. 11.5, we see that even this simple load distributing 

scheme provides a substantial performance improvement over a system that does not 

use load distributing. Considerable further improvement in performance can be gained 

through simple sender-initiated (SEND) and receiver-initiated (RECV) load sharing 

schemes. M/M/K gives the optimistic lower bound on the performance that can be 

obtained through load distributing, since it assumes no load distributing overhead. 

11.7.1 Receiver-initiated vs. Sender-initiated Load Sharing 

It can be observed from Fig. 11.5 that the sender-initiated algorithm (SEND) performs 

marginally better than the receiver-initiated algorithm (RECV) at light to moderate 
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FIGURE 11.5 
Average response time vs. system load (adapted from [32]). 

system loads, while the receiver-initiated algorithm performs substantially better at 

high system loads . Receiver-initiated load sharing is less effective at low system loads 

because load sharing is not initiated when one of the few nodes becomes a sender, and 

thus load sharing often occurs late. 

Regarding the robustness of these policies, the receiver-initiated policy has an edge 

over the sender-initiated policies. The receiver-initiated policy performs acceptably with 

a single value of the threshold over the entire system load spectrum, whereas the sender- 

initiated policy requires an adaptive location policy to perform acceptably at high loads. 

It can be seen from Fig. 11.5 that at high system loads, the receiver-initiated policy 

maintains system stability because its polls generally find busy nodes, while polls due 

to the sender-initiated policy are generally ineffective and waste resources in efforts to 

find underloaded nodes. 

11.7.2 Symmetrically Initiated Load Sharing 

This policy takes advantage of its sender-initiated load sharing component at low sys¬ 

tem loads, its receiver-initiated component at high system loads, and both of these 

components at moderate system loads. Hence, its performance is better or matches that 

of the sender-initiated policy at all levels of system load, and is better than that of 

receiver-initiated policy at low to moderate system loads [32] (Fig. 11.6). Nevertheless, 

this policy also causes system instability at high system loads because of the ineffective 

polling activity of its sender-initiated component at such loads. 
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FIGURE 11.6 
Average response time vs. system load 
(adapted from [32]). 

11.7.3 Stable Load Sharing Algorithms 

The performance of the stable symmetrically initiated algorithm (ADSYM) approaches 

that of M/M/K (Fig. 11.7), though this optimistic lower bound can never be reached, as 

it assumes no load distributing overhead. The performance of ADSYM matches that of 

the sender-initiated algorithm at low system loads and offers substantial improvements 

at high loads (> 0.85) over all the nonadaptive algorithms [31]. This performance 

improvement is the result of its judicious use of the knowledge gained by polling. 

Furthermore, this algorithm does not cause system instability. 

The stable sender-initiated algorithm (ADSEND) yields a better performance than 

the unstable sender-initiated policy (SEND) for system loads > 0.6 and does not cause 

system instability. While ADSEND is not as effective as ADSYM, it does not require 

expensive preemptive task transfers. 

11.7.4 Performance Under Heterogeneous Workloads 

Heterogeneous workloads have been shown to be common for distributed systems [19]. 

Figure 11.8 plots mean response time against the number of nonload generating nodes 

at a constant offered system load of 0.85. These nodes originate none of the system 

workload, while the remaining nodes originate all of the system workload. From the 

figure, we observe that RECV becomes unstable at a much lower degree of heterogeneity 

than any other algorithm. The instability occurs because, in RECV, the load sharing does 

not start in accordance with the arrivals of tasks at a few (but highly overloaded) sender 

nodes, and random polling by RECV is likely to fail to find a sender when only a small 

subset of nodes are senders. SEND also becomes unstable with increasing heterogeneity. 

As fewer nodes receive all the system load, it is imperative that they quickly transfer 
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FIGURE 11.7 
Average response time vs. system load 
(adapted from [32]). 

tasks. But the senders become overwhelmed, as random polling is ineffective in reducing 

wasteful tries. SYM also becomes unstable at higher levels of heterogeneity because of 

ineffective polling. SYM outperforms RECV and SEND because it can transfer tasks at 

a higher rate than either RECV or SEND alone can. The sender-initiated algorithm with 

the random location policy (RAND) performs better than most algorithms at extreme 

levels of heterogeneity. By simply transferring tasks from the load-generating nodes to 

randomly selected nodes without any regard to their status, it essentially balances the 

load across all nodes in the system, thus avoiding instability. 

Only ADSYM remains stable and performs better with increasing heterogeneity. 

As heterogeneity increases, senders rarely change their state and will generally be in 

senders list at nonload generating nodes. The nonload generating nodes will alternate 

between OK and receiver states and appear in OK or receivers lists at senders. When the 

lists accurately represent the system state, nodes are often successful at finding partners. 

11.8 SELECTING A SUITABLE LOAD SHARING 
ALGORITHM 

Based on the performance trends of load sharing algorithms, one may select a load 

sharing algorithm that is appropriate to the system under consideration as follows: 

1. If the system under consideration never attains high loads, sender-initiated algo¬ 

rithms will give an improved average response time over no load sharing at all. 

2. Stable scheduling algorithms are recommended for systems that can reach high 

loads. These algorithms perform better than nonadaptive algorithms for the follow¬ 
ing reasons: 
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FIGURE 11.8 
Average response time vs. number of load generating machines (adapted from [32]). 

• Under sender-initiated algorithms, an overloaded processor must send inquiry 

messages delaying the existing tasks. If an inquiry fails, two overloaded proces¬ 

sors are adversely affected because of unnecessary message handling. Therefore, 

the performance impact of an inquiry is quite severe at high system loads, where 

most inquiries fail. 

• Receiver-initiated algorithms remain effective at high loads but require the use 

of preemptive task transfers. Note that preemptive task transfers are expensive 

compared to nonpreemptive task transfers because they involve saving and com¬ 

municating a far more complicated task state. 

3. For a system that experiences a wide range of load fluctuations, the stable symmet¬ 

rically initiated scheduling algorithm is recommended because it provides improved 

performance and stability over the entire spectrum of system loads. 

4. For a system that experiences wide fluctuations in load and has a high cost for 

the migration of partly executed tasks, stable sender-initiated algorithms are rec¬ 

ommended, as they perform better than unstable sender-initiated algorithms at all 

loads, perform better than receiver-initiated algorithms over most system loads, and 

are stable at high loads. 

5. For a system that experiences heterogeneous work arrival, adaptive stable algo¬ 

rithms are preferable, as they provide substantial performance improvement over 

nonadaptive algorithms. 
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11.9 REQUIREMENTS FOR LOAD DISTRIBUTING 

While improving system performance is the main objective of a load distributing 

scheme, there are other important requirements it must satisfy. 

Scalability. It should work well in large distributed systems. This requires the 

ability to make quick scheduling decisions with minimum overhead. 

Location transparency. A distributed system should hide the location of tasks, 

just as a network hie system hides the location of hies from the user. In addition, the 

remote execution of tasks should not require any special provisions in the programs. 

Determinism. A transferred task must produce the same results it would produce 

if it were not transferred. 

Preemption. While utilizing idle workstations in the owner’s absence improves 

the utilization of resources, a workstation’s owner must not get a degraded performance 

on his return. Guaranteeing the availability of the workstation’s resources to its owner 

requires that remotely executed tasks be preempted and migrated elsewhere on demand. 

Alternatively, these tasks may be executed at a lower priority [19]. 

Heterogeneity. It should be able to distinguish among different architectures, 

processors of different processing capability, servers equipped with special hardware, 

etc. 

11.10 LOAD SHARING POLICIES: CASE STUDIES 

11.10.1 The V-System 

The V-System [35] uses a state-change-driven information policy. Each node broad¬ 

casts (or publishes) its state whenever its state changes significantly. State information 

consists of the expected CPU and memory utilizations and particular’s about the ma¬ 

chine itself, such as its processor type, existence of a floating-point co-processor, etc. 

The broadcast state information is cached by all the nodes. If the distributed system is 

large, each machine can only cache information about the best N nodes (for example, 

only those nodes having unused or underused CPU and memory). 

The selection policy used by the V-System selects only newly arrived tasks for 

transfer. A relative transfer policy is used that defines a node as a receiver if it is one of 

the M most lightly loaded nodes in the system, and as a sender if it is not. The location 

policy is a decentralized policy that locates receivers as follows. When a task arrives at 

a machine, the set containing the M most lightly loaded machines that can satisfy the 

task’s requirements is constructed by consulting the local cache. If the local machine 

is one of the M machines, then the task is scheduled locally. Otherwise, a machine 

is chosen randomly from the set and is polled to verify the correctness of the data in 

the cache. This random selection reduces the chance that multiple machines will select 

the same remote machine for task execution. If the cached data matches the machine’s 

state (within a degree of accuracy), the polled machine is selected for executing the 

task. Otherwise, the entry for the polled machine is updated with the latest information 

and the selection procedure is repeated. In practice, the cache entries have been found 

to be quite accurate, and more than three polls are rarely required [35], 



DISTRIBUTED SCHEDULING 281 

The reason the publishing scheme was chosen instead of the direct queries used 

in the sender-initiated algorithms described in Sec. 11.6.1 is as follows: under the 

publishing scheme, the overhead incurred by the information policy is proportional to 

the number of machines in the system and the rate of change of state. This overhead 

can be controlled by increasing or decreasing the degree of state change that triggers 

the publishing of state information. If queries are used, the overhead due to polls is 

proportional to the number of tasks scheduled, which may limit the number of tasks 

that can be scheduled (Note: This problem can be overcome with adaptive location 

policies, as described in Sec. 11.6.4). 

The load index used by the V-System is the CPU utilization at a node. To measure 

CPU utilization, a background process which periodically increments a counter is run 

at the lowest priority possible. The counter is then polled to see what proportion of the 

CPU has been idle. 

11.10.2 The Sprite System 

The Sprite system [9] is targeted towards a workstation-oriented environment. Sprite 

uses a state-change-driven information policy where each workstation, on becoming 

a receiver, notifies a central coordinator process that it is a receiver. The location 

policy is centralized; to locate a receiver, a workstation contacts the central coordinator 

process. 
Sprite’s selection policy is primarily manual. Tasks must be chosen by users for 

remote execution, and the workstation on which these tasks reside is identified as a 

sender. Because the Sprite system is targeted for an environment in which workstations 

are individually owned, it must guarantee the availability of the workstation’s resources 

to the workstation owner. To do so, it evicts foreign tasks from a workstation when¬ 

ever the owner wishes to use the workstation. During eviction, the selection policy is 

automatic, and it selects only foreign tasks for eviction. The evicted tasks are returned 

to their home workstations. 
In keeping with its selection policy, the transfer policy used in Sprite is in¬ 

complete, coming into play only under the following two conditions: First, work¬ 

stations are identified as receivers only for transfers of tasks chosen by the users. 

In this case, a threshold-based policy decides that a workstation is a receiver when 

the workstation has had no keyboard or mouse input for at least 30 seconds and 

the number of active tasks is less than the number of processors at the worksta¬ 

tion. Second, a workstation is identified as a sender only when foreign tasks exe¬ 

cuting at that workstation must be evicted. For normal transfers, a node is identified 

as a sender manually and implicitly when the transfer is requested. The Sprite system 

designers used semi-automated selection and transfer policies because they felt that 

the benefits of completely automated policies would not outweigh the implementation 

difficulties. 
To promote a fair allocation of computing resources, a foreign process can be 

evicted from a workstation to allow the workstation to be allocated to another foreign 

process under the following conditions: If the central coordinator cannot find an idle 

workstation for a remote execution request and it finds a user that has been allocated 
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more than its fair share of workstations, then one of the heavy user’s processes is 

evicted from a workstation. The freed workstation is then allocated to the process that 

had received less than its fair share. The evicted process can be automatically transferred 

elsewhere if idle workstations become available. 

For a parallelized version of UNIX ‘make’, Sprite designers have observed a 

speed-up factor of 5 for a system containing 12 workstations. 

11.10.3 Condor 

Condor [231 is concerned with scheduling long-running CPU-intensive tasks (back¬ 

ground tasks) only. Condor is designed for a workstation environment in which the 

total availability of a workstation’s resources is guaranteed to the user logged in at the 

console (owner) of the workstation. 

Condor’s selection and transfer policies are similar to Sprite’s in that most transfers 

are manually initiated by users. Unlike Sprite, however, Condor is centralized, with 

a certain workstation designated as the controller. To transfer a task, a user links it 

with a special system-call library and places it in a local queue of background tasks. 

The controller’s duty is to find idle workstations for these tasks. To accomplish this, 

Condor uses a periodic information policy, in which the controller periodically polls 

each workstation at 2 minute intervals to find those workstations that are idle and those 

that have background tasks waiting. A workstation is considered idle only when the 

owner has not been active for at least 12.5 minutes. Information about background 

tasks is queued at the controller. If an idle workstation is found, a background task is 
transferred to that workstation. 

If a foreign background task is being served at a workstation, a local scheduler 

at that workstation checks for local activity from the owner every thirty seconds. If 

the owner has been active since the previous check, the local scheduler preempts the 

foreign task and saves its state. If the workstation owner remains active for 5 minutes or 

more, the foreign task is preemptively transferred back to the workstation from which 

it originated. The task may later be transferred to an idle workstation if one is located 
by the controller. 

A significant feature of Condor’s scheduling scheme is that it provides fair access 

to computing resources to both heavy and light users. Fair allocation is managed by the 

Up-Down algorithm, in which the controller maintains an index for each workstation. 

Periodically, the indices are updated in the following manner. Initially the indices are set 

to zero. Whenever a task submitted by a workstation is assigned to an idle workstation, 

the index of the submitting workstation is increased. If, on the other hand, the task is 

not assigned to an idle workstation, the index is decreased. The controller periodically 

checks to see if any new foreign task is waiting for an idle workstation. If so, but no 

idle workstation is available, and some foreign task from a lowest-priority workstation 

is running (i.e., the workstation with the highest index value), then that foreign task is 

preempted and the freed workstation is assigned to the new foreign task. The preempted 

foreign task is transferred back to the workstation from which it originated. 
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11.10.4 The Stealth Distributed Scheduler 

The Stealth Distributed Scheduler [19] differs from V-System, Sprite, and Condor in the 

degree to which load distributing cooperates with local resource allocation at individual 

nodes. Like Condor and Sprite, Stealth is targeted for workstation environments in 

which the availability of a workstation’s resources must be guaranteed to its owner. 

While Condor and Sprite rely on preemptive transfers to guarantee availability, however, 

Stealth accomplishes this task through preemptive local resource allocation. 

A number of researchers and practitioners have noted that even when workstations 

are under use by their owners, they are often only lightly utilized, leaving large portions 

of their processing capacities unused. The designers of Stealth [19] observed that, over 

a network of workstations, this unused capacity represents a considerable portion of 

the total unused capacity in the system, often well over half. To exploit this capacity. 

Stealth allows foreign tasks to execute at workstations even while those workstations 

are in use by their owners. Owners are insulated from these foreign tasks through prior¬ 

itized local resource allocation. Stealth includes a prioritized CPU scheduler, a unique 

prioritized virtual memory system, and a prioritized hie system cache. Through these 

means, owners are assured that their tasks get the resources they need, while foreign 

tasks receive only the resources that are left over (which are generally substantial). 

In effect. Stealth replaces an expensive global operation (preemptive transfer) with a 

cheap local operation (prioritized allocation). By doing so, Stealth is able to increase 

the accessibility of unused computing capacity (by exploiting underused workstations, 

as well as idle workstations), as well as reduce the overhead of load distributing. 

Task selection is fully automated under Stealth, and takes into account the avail¬ 

ability of the CPU and memory resources, as well as past successes and failures with the 

transfer of similar tasks under similar resource availability conditions. The remainder 

of Stealth’s load distributing policy is identical to the stable sender-initisated adaptive 

policy discussed in Sec. 11.6, because, under Stealth, preemptive transfers are not nec¬ 

essary to assure the availability of workstation resources to their owners, Stealth is 

able to use relatively cheap non-preemptive transfers almost exclusively. Preemptive 

transfers are necessary only to prevent the starvation of foreign tasks. 

11.11 TASK MIGRATION 

The performance comparison of several load sharing algorithms (Sec. 11.7) showed 

that receiver-initiated task transfers can improve system performance at high system 

loads. However, receiver-initiated transfers (see Sec. 11.6.2) require preemptive task 

transfers (i.e., the transfers of partially executed tasks). Even though most systems 

do not operate at high system loads, an occasional occurrence of high system load 

can disrupt service to the users. If such circumstances are frequent, system designers 

should consider a preemptive task transfer facility. Also, some distributed schedulers for 

workstation environments guarantee the workstation to its owner by preempting foreign 

tasks and migrating them to another workstation. Other distributed schedulers for this 

environment require preemptive task transfers to avoid starvation. Another situation 

wherein preemptive transfers are beneficial is when most of the system load originates 
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at a few nodes in the system (heterogeneous workload). In this case, receiver-initiated 

task transfers result in improved system performance. 

In this section, we focus on task migration facilities that allow preemptive trans¬ 

fers. At this time, it is necessary to make a distinction between task placement and task 

migration. Task placement refers to the transfer of a task that is yet to begin execution 

to a new location and start its execution there. Task migration refers to the transfer of 

a task that has already begun execution to a new location and continuing its execution 

there. To migrate a partially executed task to a new location, the task’s state should be 

made available at the new location. 

The general steps involved in task migration are: 

1. State transfer: The transfer of the task’s state to the new machine. The task’s state 

includes such information as the contents of the registers, the task stack, whether 

the task is ready, blocked, etc., virtual memory address space, file descriptors, any 

temporary files the task might have created, and buffered messages. In addition, 

the current working directory, signal masks and handlers, resource usage statistics, 

references to children processes (if any), etc., may be maintained by the kernel as 

a part of the task’s state [9]. The task is suspended (frozen) at some point during 

the transfer so that the state does not change further, and then the transfer of the 

task’s state is completed. 

2. Unfreeze: The task is installed at the new machine and is put in the ready queue 

so that it can continue executing. 

11.12 ISSUES IN TASK MIGRATION 

In the design of a task migration mechanism, several issues play an important role 

in determining the efficiency of the mechanism. These issues include state transfer, 

location transparency, and structure/organization. 

11.12.1 State Transfer 

There are two important issues to be considered in state transfer. (1) The cost to support 

remote execution, which includes delays due to freezing the task, obtaining and transfer¬ 

ring the state, and unfreezing the task. The lengthy freezing of a task during migration 

may result in the abortion of tasks interacting with it, as a result of timeouts. Hence, it 

is desirable that a migrating task be frozen for as little time as possible. (2) Residual 

dependencies, which refer to the amount of resources a former host of a preempted 

or migrated task continues to dedicate to service requests from the migrated task. The 

following are examples of where residual dependency occurs, (a) An implementation 

that does not transfer all the virtual memory address space at the time of migration but 

rather transfers pages to the new host as they are referenced [37]. (b) An implemen¬ 

tation that requires a previous host to redirect messages meant for a migrated task to 

the present host of the migrated task, (c) Location-dependent system calls accessing 

resources that exist only at the home node. These system calls must be forwarded to 
the home node where the task originated [8, 19]. 



DISTRIBUTED SCHEDULING 285 

Residual dependencies are undesirable for three reasons, namely, reliability, per¬ 

formance, and complexity [9]. Residual dependencies reduce reliability as the migrated 

process depends on its previous host(s). If any one of the hosts from which the task 

previously migrated fails, the task might be unable to make progress. Residual depen¬ 

dencies affect the performance of the migrated task. Since a memory access or a system 

call made by a migrated task may have to be redirected to a previous host, the com¬ 

munication delays of these remote operations can slow the task’s progress. Residual 

dependencies also reduce the availability of the previous hosts by increasing their loads, 

due to remote operations initiated by the tasks migrated from them. Finally, residual 

dependencies complicate the system’s operations by distributing a task’s state among 

several nodes [9]. For instance, the checkpointing and recovery of a process become 

much more complex if its state is distributed among many nodes. As another example, 

memory management may become complex (as explained under Accent) because the 

memory management must distinguish between memory segments that belong to a local 

task and to a remote task. The situation might get much worse if a task migrates several 

times. 
We next describe the state transfer mechanisms in task migration facilities of 

several experimental distributed operating systems. 

THE V-SYSTEM. The migration facility in the V-System [37] attempts to reduce the 

freezing time of a migrating task by precopying the state. In this technique, the bulk of 

the task state is copied to the new host before freezing the task, thereby reducing the time 

during which it is frozen. To precopy the state, after the new host for a task is selected, 

the task’s complete address space is copied as an initial copy to the new host. Then, all 

the pages that were modified (dirty pages) during the copy are recopied. This task of 

recopying dirty pages is repeated until the number of dirty pages is relatively small or 

until no significant reduction in the number of dirty pages is achieved. Finally, the task 

is frozen and the remaining dirty pages and the task’s execution state are copied (see 

Fig. 11.9). A key point to note is that successive copying operations will presumably 

take less time than earlier copy operations, thereby allowing fewer modifications to 

occur during their execution time. 
While precopying the task state in this way reduces the time during which a 

migrating task is frozen, it increases the number of messages that must be sent to the 

new host, thus increasing the resource overhead caused by the migration. As a result, 

this method provides an advantage to migrating tasks at a performance cost to those 

tasks left behind at the sending host and those tasks already residing at the receiving 

host. 

SPRITE. Sprite [8] takes a different approach than the V-System in the transfer of 

the virtual address space of a migrating task to its new host. To reduce the time during 

which a task is frozen and to reduce the amount of data transferred to the new host, 

Sprite makes use of the location-transparent file access mechanism provided by its file 

system (see Sec. 9.5.2). All the modified pages of the migrating task are swapped to 

the file server. The page tables and the file descriptors for the corresponding swap 

files are then sent to the new host of the task. The address space of the task is then 
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Different techniques for the transfer of virtual address space (adapted from [8]). 

demand-paged in at the new host (see Fig. 11.9). Note that only pages that have been 

dirtied are swapped out. The file server generally stores the swapped pages in its cache 

to avoid slow disk access during migration. Further reduction in task freezing time can 

be obtained by the repeated swapping-out of dirty pages without freezing the task, until 
relatively few dirty pages are left. 

ACCENT. Task migration in Accent [39] also tries to reduce the time during which a 

migrating task is frozen and the amount of data transferred to the new host. Reduction in 

migration time is achieved by using a feature called copy-on-reference. The motivation 

for this design comes from the observation that tasks use a relatively small part of their 

address space while executing, and hence the entire address space does not need to be 
copied to the new host. 

The migration of a task in Accent involves copying the task’s state (excluding its 

virtual memory address space), copying its memory maps (which provide addressing 

information about the virtual memory address space), and initiating the task at the 

new host. As the task executes at its new host, the modification to memory segments 

not present locally results in the creation of those segments locally. When the task 

references a location that is not present at its new host, the operating system invokes 

the copy-on-reference mechanism, which transfers the necessary page from the previous 
hosts (see Fig. 11.9). 
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By not copying the entire address space, the time required for migration and 

the time during which a process is frozen are reduced. However, if the migrated task 

accesses more than one fourth of its address space, the higher cost of fetching individual 

pages during remote execution outweighs the savings achieved during migration. 

The disadvantages of the Accent migration facility are as follows: 

• Memory management is complex because it must distinguish between the memory 

segments that are present locally and those that are not. If segments are not present 

locally, the memory subsystem must invoke remote procedure calls to a remote 

host to transfer the required memory segments. In addition, previous sites must be 

informed of the demise of memory objects. 

• Previous hosts are burdened with servicing the migrated task’s memory access re¬ 

quests and must commit memory resources for a remote task. Therefore, the cost 

due to residual dependencies in Accent can potentially be much higher than for the 

previous two mechanisms. 

• Reduced fault tolerance. If one of the previous hosts of a migrated task fails, a 

remote task may have to abort because of the unavailability of some of its memory 

segments. 

11.12.2 Location Transparency 

Many distributed systems support the notion of location transparency wherein services 

are provided to user processes irrespective of the location of the processes and services. 

In distributed systems that support task migration, it is essential that location trans¬ 

parency be supported. That is, task migration should hide the locations of tasks, just as 

a distributed file system hides the location of files. In addition, the remote execution of 

tasks should not require any special provisions in the programs. Location transparency 

in principle requires that names (e.g., process names, file names) be independent of 

their locations (i.e., host names). By implementing a uniform name space throughout 

the system, a task can be guaranteed the same access to resources independent of its 

present location of execution. In addition, the migration of tasks should be transparent 

to the rest of the system. In other words, any operation (such as signaling) or commu¬ 

nication that was possible before the migration of a task should also be possible after 

its migration. 
Typically, the mapping of names to physical addresses in distributed systems is 

handled in two ways. First, addresses are maintained as hints. If an access fails, hints can 

be updated either by multicasting a query or through some other means. This method 

poses no serious hindrance to task migration. An effect of a task migration in such 

a system is that hints maintaining the task’s address are no longer correct. Second, 

an object can be accessed with the help of pointers. In such cases, whenever a task 

migrates, pointers may have to be updated to enable continued access to and from the 

new location. If the pointers are maintained by the kernel, then it is relatively easier 

to update the pointers. On the other hand, if the pointers are maintained in the address 

space of tasks, then updating the pointers can become more difficult. 



288 ADVANCED CONCEPTS IN OPERATING SYSTEMS 

Transferring the entire state of a migrating task to the new location also aids in 

achieving location transparency. This allows most kernel calls to be local rather than 

remote. For example, the kernel at the new machine can handle the requests for virtual 

memory management, file I/O, IPC, etc. 

SPRITE. In Sprite [9], location transparency is accomplished through several mech¬ 

anisms: (1) a location-transparent distributed file system provides file service, (2) the 

entire state of a migrating task is made available at the new host, and therefore, any ker¬ 

nel calls made will be local at the new host, and (3) by maintaining location-dependent 

information (such as the current host of a task) at the home machine of a task. The home 

machine of a task is the machine on which the task would have executed if there had 

been no migration of the task at all. To maintain the location-dependent information of 

a task, a copy of its PCB is maintained at the home machine. This information is used 

for forwarding signals automatically. Whenever a task signals another task, the signal 

is sent to the task’s home machine from which it is forwarded to the task’s current 

location. Whenever a task forks off a child process, the task’s home machine provides 

the task ID and updates its own data structure to reflect the existence of a new child 

process and its location. When a process terminates, a similar protocol is used to update 

the data structure at a process’s home machine. Other location-dependent calls such as 

the time of day are also forwarded to a task’s home machine to ensure that the task 

sees monotonically increasing clock values. 

Sprite’s mechanism leaves no residual dependency on any machine except the 

task’s home machine, leaving the task vulnerable to failure of the home machine. 

11.12.3 Structure of a Migration Mechanism 

The first issue in the design of a task migration facility is deciding whether to separate 

the policy-making modules (see Sec. 11.4) from mechanism modules (these include 

modules responsible for collecting, transferring, and reinstating the state of migrating 

tasks). This decision is important, as it has implications for both performance and the 

ease of development. By separating the two, one can easily test different policies without 

having to change the mechanisms, and vice versa. Thus, the separation of policy and 
mechanism modules simplifies the developmental efforts. 

The second issue in the design of a task migration facility is deciding where the 

policy and mechanisms should reside [11. The first step in the migration of a task is to 

collect the task state. Typically, some part of the state (such as file pointers, references to 

child processes) is maintained by the kernel’s data structure. In addition, the migration 

mechanism is closely intertwined with interprocess communication (IPC) mechanisms, 

which are generally inside the kernel. Hence, the migration mechanism may best fit 
inside the kernel [ 11. 

Policy modules decide whether a task transfer should occur. If the process of 

making these decisions is simple, the policy modules can be placed in the kernel. This 

will make the implementation more efficient as both types of modules can interact 

efficiently. If policy modules require large amounts of state information from the kernel 

to make decisions, then it also may be more efficient to place these modules in the 
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kernel. If the policy modules do not impose a heavy overhead on the system due to 

their interactions with the kernel, then they fit best in utility processes. This approach 

is used in Charlotte [1], Sprite [9], and in [25]. 

Third, the interplay between the task migration mechanism and various other 

mechanisms plays an important role in deciding where a module resides. Typically, 

there will be interaction between the task migration mechanism, the memory manage¬ 

ment system, the interprocess communication mechanisms, and the file system. The 

mechanisms can be designed to be independent of one another so that if one mecha¬ 

nism’s protocol changes, the other’s need not [1], Another flexibility provided by this 

principle is that the migration mechanism can be turned off without interfering with 

other mechanisms. On the other hand, the integration of mechanisms can reduce redun¬ 

dancy of mechanisms as well as make use of existing facilities [1], For example. Sprite 

simplified its migration mechanism design by storing the task state as a file and using 

the distributed file system for transferring the state to a new host. One serious disad¬ 

vantage of integrated mechanisms, however, is that if one mechanism breaks down, all 

the other mechanisms that depend on it will also break down. 

11.12.4 Performance 

Comparing the performance of task migration mechanisms implemented in different 

systems is a difficult task, because of the different hardware, operating systems, IPC 

mechanisms, file systems, policy mechanisms, etc., on which the mechanisms are based. 

In this section, we provide the performance figures for two implementations of task 

migration mechanisms. 

SPRITE. The Sprite environment consists of a collection of SPARCSTATION 1 work¬ 

stations connected by a local area network. Each workstation runs the Sprite operating 

system whose kernel-call interface is much like that of 3.4 BSD UNIX [29]. The task 

migration mechanism makes use of a remote procedure call mechanism. A remote pro¬ 

cedure call has a round trip latency of about 1.6 milliseconds and a throughput of 480 to 

660 Kbytes/second when issued on SPARC workstations (10 MIPS) connected through 

a 10 Mbits/second Ethernet [9]. 
Table 11.1 presents the costs associated with task migration. Note that the cost of 

migration depends on the size of the virtual address space and the number of opened 

files. 

The average time for migrating a task in Sprite is about 330 milliseconds. In 

Table 11.1, the time for migration does not include the cost of selecting and releasing a 

host. In Sprite, once a host is selected, many tasks can be migrated to it before releasing 

it so that it can be assigned to another host. Just selecting and releasing a host takes 

36 milliseconds. The Migrate “null” process gives the overhead due solely to migration 

mechanisms. This includes the cost of transferring the environment of the task. The exec 

arguments in the table refer to the command line arguments and environment variables. 

CHARLOTTE. The Charlotte system consists of VAX/11-750 machines connected 

by a Pronet token ring [1]. In this system, it takes 11 milliseconds to send a 2 Kbyte 
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TABLE 11.1 

Costs associated with process migration in Sprite (adapted 
from [9]) 

Action Time/Rate 

Select and release idle host 36 msec 
Migrate “null” process 76 msec 
Transfer details of open files 9.4 msec/file 
Flush modified file blocks to the server 480 Kbytes/sec 
Flush modified pages 660 Kbytes/sec 
Transfer exec arguments 480 Kbytes/sec 
Fork, exec null process with migration, wait for child to exit 81 msec 
Fork, exec null process locally, wait for child to exit 46 msec 

TABLE 11.2 

Costs associated with process migration in Charlotte (adapted 
from [1]) 

Action at sending host 
Time in 

msec Action at receiving host 
Time in 

msec 

Handle an offer 5.0 Handle an offer 5.4 
Prepare 2 Kbyte information 
to transfer 

2.6 Install 2 Kbyte information 1.2 

Marshall context 1.8 Demarshal context 1.2 
Other (mostly kernel 
context switching) 

6.9 Other 4.7 

packet to another machine, 0.4 millisecond to switch contexts between kernel and 

process, 10 milliseconds to transfer a single packet between processes residing on the 

same machine, and 23 milliseconds to transfer a packet between processes residing on 

different machines. The average elapsed time to migrate a small (32 Kbyte) linkless 

process is 242 milliseconds after an idle host has been found and it has agreed to accept 

a remote task. Each additional 2 Kbytes of state information adds 12.2 milliseconds 

to the migration time. The cost of various operations performed during a migration is 
spread as shown in Table 11.2. 

11.13 SUMMARY 

Over the past decade, the mode of computing has shifted from mainframes to net¬ 

works of computers, often engineering workstations. Such networks promise higher 

performance, better reliability, and improved extensibility over mainframe systems. To 

realize its high performance potential, a good load distributing scheme is essential to 
exploit the statistical fluctuations in loads at the individual computers. 

Load distributing algorithms try to improve the performance of distributed systems 

by transferring load from heavily loaded nodes to lightly loaded or idle nodes. If task 

transfers are to be effective in improving the system’s performance, it is important that 
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the metric used to measure the load at nodes characterizes the load properly. The CPU 

queue length has been found to be a good load indicator. 

Load distributing algorithms have been characterized as static, dynamic, or adap¬ 

tive. Static algorithms do not make use of system state information in making decisions 

regarding the transfer of load from one node to another. On the other hand, dynamic 

algorithms do make use of system state information when making decisions. There¬ 

fore, these algorithms have a potential to outperform static algorithms. Adaptive al¬ 

gorithms are a special class of dynamic algorithms in that they adapt their activities, 

by dynamically changing the parameters of the algorithm, to suit the changing system 

state. 
Load distributing algorithms can further be classified as load balancing or load 

sharing algorithms, based on their load distributing principle. Both types of algorithms 

strive to reduce the likelihood of an unshared state. Load balancing algorithms however, 

go a step further by attempting to equalize the loads at all computers. Because a load 

balancing algorithm transfers tasks at a higher rate than a load sharing algorithm, the 

higher overhead incurred by load balancing algorithms may outweigh this potential 

performance improvement. 
Typically, load distributing algorithms have four policy components: (1) a transfer 

policy that determines whether a node is in a suitable state to participate in a task 

transfer, (2) a selection policy that determines which task should be transferred, (3) a 

location policy that determines to which node a task selected for transfer should be 

sent, and (4) an information policy which is responsible for triggering the collection of 

system state information. 
Based on which type of nodes initiate load distributing actions, load distribut¬ 

ing algorithms have been widely referred to as sender-initiated, receiver-initiated, and 

symmetrically initiated algorithms. In sender-initiated algorithms, senders (overloaded 

nodes) look for receivers (underloaded or idle nodes) to transfer their load. In receiver- 

initiated policies, receivers solicit load from senders. A symmetrically initiated policy 

is a combination of both, where load sharing actions are triggered by the demand for 

extra processing power or extra work. 
The task transfers performed for load distributing can be of two types, nonpre- 

emptive and preemptive. In nonpreemptive transfers, tasks that have not yet begun 

execution are transferred. Preemptive transfers involve the transfer of tasks that have 

already begun execution. These transfers are expensive compared to nonpreemptive 

transfers, because the state of the tasks must be transferred to the new location also. 

In this chapter, we described several load sharing algorithms, their performance, 

and policies employed in several implementations of load distributing schemes. In addi¬ 

tion, we discussed how several task migration implementations have tried to minimize 

the delay due to the transfer of state. 

11.14 FURTHER READING 

In [30], Rommel presents a general formula for the probability that any one node in the 

system is underloaded while some other node in the system is overloaded. This proba¬ 

bility can be used to define the likelihood of load sharing success in a distributed system. 
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The availability of idle CPU cycles in a network of workstations is discussed by 

Mutka and Livny in [26] and by Mutka in [27], 
A discussion on the selection of tasks suitable for remote execution can be found 

in [28], Utopia [42] is a load sharing facility for large, heterogeneous distributed sys¬ 

tems. 
In [22], Uin and Keller present a gradient model load balancing method for a 

multiprocessor system. Tilborg and Wittie describe a wave scheduling scheme for a 

network of computers in [38]. In [2], Baumgartner and Wah present a load balancing 

scheme which has been implemented in a network of Sun workstations. 

In [13], Hac discusses an algorithm for improving performance through file repli¬ 

cation, file migration, and process migration. 

In [17], Kremien and Kramer study the performance, efficiency, and stability of 

many load sharing algorithms. 

In [5], Casavant and Kuhl describe a taxonomy of scheduling schemes for dis¬ 

tributed systems. In [12], Eskicioglu presents a bibliography of process migration 

schemes. Smith discusses a survey of process migration schemes in [33]. Jacqmot and 

Milgrom present a survey of load distributing schemes that have been implemented on 

UNIX-based systems in [15], 

PROBLEMS 

11.1. Identify the actions that belong to the transfer policy actions in the load sharing of 
the V-System. 

11.2. Identify the actions that belong to the location policy actions in the load sharing of 
the V-System. 

11.3. Discuss how well the three load sharing implementations of Sec. 11.10 satisfy the 
scalability criterion. 

11.4. Under what condition will process migration in the V-System fail to satisfy the 
stability criterion discussed in Sec. 11.5. 

11.5. Predict the performance of the receiver-initiated load sharing algorithm when the 
entire system workload is generated at only a few nodes in the system instead of 
equally at all the nodes in the system. (Hint: performance depends on how successful 
receivers will be in locating senders.) 

11.6. Identify all the overheads in a load sharing policy. 

11.7. Sender-initiated algorithms cause system instability at high system loads. Predict, 
analytically, at what system load the instability will occur. Assume Probelimit = 5, 
average service requirement of a task = 1 second, overhead incurred by a processor 
to poll or to reply to a poll = 3 milliseconds. 
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CHAPTER 

12 
RECOVERY 

12.1 INTRODUCTION 

Recovery in computer systems refers to restoring a system to its normal operational 

state. Recovery may be as simple as restarting a failed computer or restarting failed 

processes. However, from the following discussion, it will be clear that recovery is 

generally a very complicated process. 
In general, resources are allocated to executing processes in a computer. For 

example, a process has memory allocated to it and a process may have locked shared 

resources, such as files and memory. Under such circumstances, if a process fails, it is 

imperative that the resources allocated to the failed process be reclaimed so that they 

can be allocated to other processes. If a failed process has modified a database, then it 

is important that all the modifications made to the database by the failed process are 

undone. On the other hand, if a process has executed for some time before failing, it 

would be preferable to restart the process from the point of its failure and resume its 

execution. By restarting from the point of failure, the situation of having to reexecute the 

process from the beginning is avoided, which may be a time consuming and expensive 

operation. 
Distributed systems provide enhanced performance and increased availability (see 

Sec. 4.2). One way of realizing enhanced performance is through the concurrent exe¬ 

cution of many processes, which cooperate in performing a task. If one or more of the 

cooperating processes fail, then the effects due to the interactions of the failed processes 

with the other processes must be undone, or every failed process would have to restart 
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from an appropriate state. Increased availability in distributed systems is realized mainly 

through replication (e.g., data, processes, and hardware components can be replicated). 

If a site fails, copies of data stored at that site may miss updates, thus becoming in¬ 

consistent with the rest of the system when it becomes operational. Recovery in such 

cases involves the question of how not to expose the system to data inconsistencies and 

bring back the failed site to an up-to-date state consistent with the rest of the system. 

In this chapter, (1) the basic causes that lead to failures and the types of failures 

that occur in a computer system are introduced. (2) The question of how a process 

can recover from failure when it does not interact with another process is discussed. 

(3) The effects of a process failing on other processes in concurrent systems, and 

techniques to recover cooperating processes without them having to resume execution 

from the beginning, are described. (4) Finally, recovery in distributed database systems 

is discussed. 

12.2 BASIC CONCEPTS 

A system consists of a set of hardware and software components and is designed to 

provide a specified service. The components of a system may themselves be systems 

together with interrelationships [32], Failure of a system occurs when the system does 

not perform its services in the manner specified [32], An erroneous state of the system 

is a state which could lead to a system failure by a sequence of valid state transi¬ 

tions [22], A fault is an anomalous physical condition. The causes of a fault include 

design errors (such as errors in system specification or implementation), manufactur¬ 

ing problems, damage fatigue or other deterioration, and external disturbances (such as 

harsh environmental conditions, electromagnetic interference, unanticipated inputs or 

system misuse) [27]. An error is that part of the system state which differs from its 

intended value [32], 

From the above definitions, it can be seen that an error is a manifestation of a 

fault in a system, which could lead to system failure (Fig. 12.1). Therefore, to recover 

from a system failure, we need to rid the system state of errors. In other words, failure 

recovery is a process that involves restoring an erroneous state to an error-free state. 

12.3 CLASSIFICATION OF FAILURES 

Failures in a computer system can be classified as follows: 

PROCESS FAILURE. In a process failure, the computation results in an incorrect 

outcome, the process causes the system state to deviate from specifications, the process 

may fail to progress, etc. Examples of errors causing processes to fail are deadlocks, 

timeouts, protection violation, wrong input provided by a user, consistency violations 

(which can happen if an optimistic concurrency control technique is employed). De¬ 

pending on the type of the error causing a process to fail, a failed process may be aborted 

or restarted from a prior state. For example, a deadlocked process can be restarted from 

a prior state, where it can try to acquire the resources again. On the other hand, a wrong 

input in the initial stages may require a process to be aborted. In this chapter, we do 
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FIGURE 12.1 
An error is a manifestation of fault and can lead to failure. 

not consider process failures where processes behave maliciously. A discussion on that 
type of process behavior can be found in Chap. 8. 

SYSTEM FAILURE. A system failure occurs when the processor fails to execute. It is 
caused by software errors and hardware problems (such as CPU failure, main memory 
failure, bus failure, power failure, etc.). In the case of a system failure, the system is 
stopped and restarted in a correct state. The correct state may be some predefined state 
or a prior state (checkpoint) of the system saved on nonvolatile storage. In this chapter, 
we assume that systems behave as fail-stop processors [33], These type of systems have 
very simple failure mode operating characteristics. The only visible effects of a failure 
in such a system are: the system stops executing; and the internal state and contents of 
the volatile storage belonging to the system are lost. 

A system failure can further be classified as follows [9]. 

• An amnesia failure occurs when a system restarts in a predefined state that does not 
depend upon the state of the system before its failure. 

• A partial-amnesia failure occurs when a system restarts in a state wherein a part 
of the state is the same as the state before the failure and the rest of the state is 
predefined, i.e., it does not depend upon the state of the system before its failure. 
This type of failure typically occurs in hie servers when a hie server crashes and 
restarts, or when a system is restarted from a checkpoint. 

• A pause failure occurs when a system restarts in the same state it was in before the 

failure. 

• A halting failure occurs when a crashed system never restarts. 
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SECONDARY STORAGE FAILURE. A secondary storage failure is said to have oc¬ 

curred when the stored data (either some parts of it or in its entirety) cannot be accessed. 

This failure is usually caused by parity error, head crash, or dust particles settled on the 

medium. In the case of a secondary storage failure, its contents are corrupted and must 

be reconstructed from an archive version, plus a log of activities since the archive was 

taken. To tolerate secondary storage failures, systems can be configured with mirrored 

disk systems [3]. A mirrored disk system generally has two physically independent 

disks that communicate with the memory and/or the CPU through independent buses 

and controllers. This enables the data stored on each disk to be a mirror image of the 

other. Thus, a system can tolerate failure of one disk subsystem. 

COMMUNICATION MEDIUM FAILURE. A communication medium failure occurs 

when a site cannot communicate with another operational site in the network. It is usu¬ 

ally caused by the failure of the switching nodes and/or the links of the communicating 

system. The failure of a switching node includes system failure and secondary storage 

failure, and a link failure includes physical rupture and noise in the communication 

channels. Note that a communication medium failure (although it depends upon the 

topology and the connectivity) may not cause a total shut down of communication fa¬ 

cilities. For example, a communication medium failure may simply cause a message 

loss, the receipt of a message with some errors, or the partition of a network where a 

subset of sites may be unable to communicate with the sites in another subset, though 

sites within a subset can communicate with each other. 

12.4 BACKWARD AND FORWARD ERROR RECOVERY 

Recall that an error is that part of the state that differs from its intended value and 

can lead to a system failure, and failure recovery is a process that involves restoring 

an erroneous state to an error-free state. There are two approaches for restoring an 
erroneous state to an error-free state [32]: 

• If the nature of errors and damages caused by faults can be completely and accu¬ 

rately assessed, then it is possible to remove those errors in the process's (system's) 

state and enable the process (system) to move forward. This technique is known as 
forward-error recovery. 

• If it is not possible to foresee the nature of faults and to remove all the errors in 

the process’s (system’s) state, then the process’s (system’s) state can be restored 

to a previous error-free state of the process (system). This technique is known as 
backward-error recovery. 

Note that backward-error recovery is simpler than forward-error recovery as it 

is independent of the fault and the errors caused by the fault. Thus, a system can 

recover from an arbitrary fault by restoring to a previous state. This generality enables 

backward-error recovery to be provided as a general recovery mechanism to any type 
of process. 
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The major problems associated with the backward-error recovery approach are: 

• Performance penalty: The overhead to restore a process (system) state to a prior 

state can be quite high. 

• There is no guarantee that faults will not occur again when processing begins from 

a prior state. 

• Some component of the system state may be unrecoverable. For example, cash 

dispensed at an automatic teller machine cannot be recovered. 

The forward-error recovery technique, on the other hand, incurs less overhead 

because only those parts of the state that deviate from the intended value need to be 

corrected. However, this technique can be used only where the damages due to faults 

can be correctly assessed, and hence it is not a concept as general as the backward- 

error recovery and cannot be provided as a general mechanism for error recovery. In 

the forthcoming sections, we focus on backward-error recovery and several techniques 

to implement it in detail. 

12.5 BACKWARD-ERROR RECOVERY: BASIC 

APPROACHES 

In backward-error recovery, a process is restored to a prior state in the hope that the 

prior state is free of errors [32], The points in the execution of a process to which the 

process can later be restored are known as recovery points. A recovery point is said to be 

restored when the current state of a process is replaced by the state of the process at the 

recovery point. The above concepts and the discussion that follow are also applicable 

at the system level. Recovery done at the process level is simply a subset of the actions 

necessary to recover the entire system. In a system recovery, all the user processes 

that were active need to be restored to their respective recovery points and data (in 

secondary storage) modified by the processes need to be restored to a proper state. 

There are two ways to implement backward-error recovery, namely, the operation- 

based approach and the state-based approach [22], These approaches are explained in 

the context of the following system model. 

SYSTEM MODEL. The system is assumed to consist of a single machine. The machine 

is connected to a secondary storage system and a stable storage system (see Fig. 12.2). 

A storage that does not lose information in the event of system failure is referred to 

as a stable storage. Whenever a process accesses a data object stored on the secondary 

storage, the data object is brought into the main memory if it is not already there. If the 

access is a write operation, the copy of the object in the main memory is updated. The 

data object in the secondary storage is eventually updated when the copy of the object 

in the main memory is flushed to the disk by the paging scheme or when the process 

updating the object terminates. The stable storage is used to store the logs (defined later) 

and recovery points. The contents of both the stable storage and secondary storage 

survive system failures. However, the contents of the stable storage are much more 
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FIGURE 12.2 
A system model. 

secure than those of the secondary storage. It is assumed that the data on the secondary 

storage is archived periodically. 

12.5.1 The Operation-based Approach 

In the operation-based approach, all the modifications that are made to the state of a 

process are recorded in sufficient detail so that a previous state of the process can be 

restored by reversing all the changes made to the state. The record of the system activity 

is known as an audit trail or a log [32], 

Consider a transaction based environment where transactions update a database. 

In such an environment, it is desirable to be able to commit or undo updates on a per- 

transaction basis. Commit is an action which indicates that the process or transaction 

updating the object has successfully completed, and therefore the changes done to the 

database can be made permanent. (Commit actions are explained in Chap. 13.) Note 

that even before a transaction commits, its updates may be recorded in the database 

because of the underlying paging scheme. Therefore, if a transaction does not commit, 

its database updates should be undone. Moreover, if a part of the database is lost due 

to a storage media error, it should be possible to reconstruct that part. We next describe 

the updating-in-place scheme proposed in [11], in which the above requirements can 
be satisfied. 

UPDATING-IN-PLACE. Under the updating-in-place scheme, every update (write) 

operation to an object updates the object and results in a log to be recorded in a stable 

storage which has enough information to completely undo and redo the operation. The 

information recorded includes: (1) the name of the object, (2) the old state of the object 

(used for UNDO), and (3) the new state of the object (used for REDO). A recoverable 

update operation can be implemented as a collection of operations as follows: 

•A do operation, which does the action (update) and writes a log record. 

• An undo operation, which, given a log record written by a do operation, undoes the 
action performed by the do operation. 

• A redo operation, which, given a log record written by a do operation, redoes the 
action specified by the do operation. 

• An optional display operation, which displays the log record. 
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When a transaction is not committed or fails, the changes made by the transaction 

to the database can be undone by using undo operations. On the other hand, if a portion 

of the database is to be reconstructed, it can be reconstructed by performing redo 

operations on that previously archived portion of the database. 

The major problem with the updating-in-place is that a do operation cannot be 

undone if the system crashes after an update operation but before the log record is 

stored. This problem is overcome by the write-ahead-log protocol [11]. 

THE WRITE-AHEAD-LOG PROTOCOL. In the write ahead log protocol, a recov¬ 

erable update operation is implemented by the following operations: 

• Update an object only after the undo log is recorded. 

• Before committing the updates, redo and undo logs are recorded. 

On restarting a system after failure (due to hardware failure or any other rea¬ 

son), it may be necessary to undo the changes made by the transactions that were in 

progress at the time of failure. Moreover, on restart, redo operations may have to be 

performed if the objects updated were still in the main memory at the time of the sys¬ 

tem failure. Therefore, both undo and redo actions should work properly, even under 

repetitive failures, whether updating-in-place or write-ahead-log protocol is used. Note 

also that writing a log record on every update operation is expensive in terms of storage 

requirement and CPU overhead incurred, especially if failures are rare. 

12.5.2 State-based Approach 

In the state-based approach for recovery, the complete state of a process is saved when 

a recovery point is established and recovering a process involves reinstating its saved 

state and resuming the execution of the process from that state [8, 32]. The process of 

saving state is also referred to as checkpointing or taking a checkpoint. The recovery 

point at which checkpointing occurs is often referred to as a checkpoint. The process 

of restoring a process to a prior-state is referred to as rolling back the process. Note 

that since rolling back a process and resuming its execution from a prior state incurs 

overhead and delays the completion of the process, it is desirable to rollback a process 

to a state as recent as possible. Therefore, it is customary to take many checkpoints 

over the execution of a process. 

A NOTE. Readers should not construe that the state- and operation-based approaches 

are mutually exclusive. They can be combined together to minimize the amount of 

rollback in the event of a failure. Section 12.9 describes a technique that makes use of 

both approaches. 

SHADOW PAGES. A special case of the state-based recovery approach is the tech¬ 

nique based on shadow pages [21]. Under this technique, only a part of the system 

state is saved to facilitate recovery. Whenever a process wants to modify an object, 

the page containing the object is duplicated and is maintained on stable storage. From 



304 ADVANCED CONCEPTS IN OPERATING SYSTEMS 

that point onwards, only one of the copies undergoes all the modifications done by the 

process. The other unmodified copy is known as the shadow page. If the process fails, 

the modified copy is discarded to restore the database to a proper state. If the process 

successfully commits, then the shadow page is discarded and the modified page is made 

part of the database. 

12.6 RECOVERY IN CONCURRENT SYSTEMS 

In concurrent systems, several processes cooperate by exchanging information to ac¬ 

complish a task. The information exchange can be through a shared memory in the case 

of shared memory machines (e.g., multiprocessor systems) or through messages in the 

case of a distributed system. In such systems, if one of the cooperating processes fails 

and resumes execution from a recovery point, then the effects it has caused at other 

processes due to the information it has exchanged with them after establishing the re¬ 

covery point will have to be undone. To undo the effects caused by a failed process 

at an active process, the active process must also rollback to an earlier state. Thus, in 

concurrent systems, all cooperating processes need to establish recovery points. Rolling 

back processes in concurrent systems is more difficult than in the case of a single pro¬ 

cess. The following discussion illustrates how the rolling back of processes can cause 

further problems. 

12.6.1 Orphan Messages and the Domino Effect 

Consider the system activity illustrated in Fig. 12.3. X, Y, and Z are three processes that 

cooperate by exchanging information (shown by the arrows). Each symbol ‘[’ marks a 

recovery point to which a process can be rolled back in the event of a failure. 

If process X is to be rolled back, it can be rolled back to the recovery point x3 

without affecting any other process. Suppose that Y fails after sending message m and 

is rolled back to t/2- In this case, the receipt of m is recorded in x3, but the sending 

of m is not recorded in y2. Now we have a situation where X has received message 

FIGURE 12.3 
Domino effect. 
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to from Y, but Y has no record of sending it, which corresponds to an inconsistent 

state. Under such circumstances, m is referred to as an orphan message and process X 

must also roll back. X must roll back because Y interacted with X after establishing 

its recovery point 1/2. When Y is rolled back to yj, the event that is responsible for the 

interaction is undone. Therefore, all the effects at X caused by the interaction must also 

be undone. This can be achieved by rolling back X to recovery point X2■ Likewise, it 

can be seen that, if Z is rolled back, all three processes must roll back to their very first 

recovery points, namely, x\, y 1, and z\. This effect, where rolling back one process 

causes one or more other processes to roll back, is known as the domino effect [32], 

and oiphan messages are the cause. 

12.6.2 Lost Messages 

Suppose that checkpoints x\ and y\ (Fig. 12.4) are chosen as the recovery points for 

processes X and Y, respectively. In this case, the event that sent message to is recorded 

in x\, while the event of its receipt at Y is not recorded in y\. If Y fails after receiving 

message to, the system is restored to state {x\,yi}, in which message to is lost as 

process X is past the point where it sends message to. This condition can also arise if 

to is lost in the communication channel and processes X and Y are in state x\ and y\, 

respectively. Both the above conditions are indistinguishable. 

12.6.3 Problem of Livelocks 

In rollback recovery, livelock is a situation in which a single failure can cause an infinite 

number of rollbacks, preventing the system from making progress [19], A livelock 

situation in a distributed system is illustrated in Fig. 12.5. 
Figure 12.5(a) illustrates the activity of two processes X and Y until the failure 

of Y. Process Y fails before receiving message n\, sent by X. When Y rolls back to 

yi, there is no record of sending message m\, hence X must rollback to xi. When 

process Y recovers, it sends out m2 and receives n\ (see Fig. 12.5(b)). Process X, after 

resuming from x\, sends ri2 and receives m2. However, because X rolled back, there is 

no record of sending m and hence Y has to roll back for the second time. This forces 

X to rollback too, as it has received m2, and there is no record of sending m2 at Y. 

This situation can repeat indefinitely, preventing the system from making any progress. 

FIGURE 12.4 
Message loss due to roll back recovery. 

Failure Time 
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Livelock (adapted from [19]). 

In view of these problems, operation-based or state-based recovery techniques are 

not adequate in locating and/or establishing usable recovery points for all the cooperat¬ 

ing processes. There is a need for coordination among the processes, either at the time 

of establishing checkpoints or at the beginning of a recovery. We devote the rest of this 

chapter to the discussion of checkpointing and recovery in distributed systems. 

12.7 CONSISTENT SET OF CHECKPOINTS 

From the previous discussion, it is clear that checkpointing in distributed systems in¬ 

volves taking a checkpoint by all the processes (sites) or at least by a set of processes 

(sites) that interact with one another in performing a distributed computation. Typically, 

in distributed systems, all the sites save their local states, which are known as local 

checkpoints, and the process of saving local states is called local checkpointing. All the 

local checkpoints, one from each site, collectively form a global checkpoint. 

STRONGLY CONSISTENT SET OF CHECKPOINTS. The domino effect is caused 

by orphan messages, which themselves are due to rollbacks. To overcome the domino 

effect, a set of local checkpoints is needed (one for each process in the set) such that no 

information flow takes place (i.e., no orphan messages) between any pair of processes 

in the set, as well as between any process in the set and any process outside the set 

during the interval spanned by the checkpoints. Such a set of checkpoints is known as 
a recovery line or a strongly consistent set of checkpoints [32], 

In Fig. 12.6, the set {x\,y\,z\} is a strongly consistent set of checkpoints and 

the thinly dotted lines delineate the interval spanned by the checkpoints. A strongly 
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FIGURE 12.6 
Consistent set of checkpoints. 

consistent set of checkpoints corresponds to a strongly consistent global state (discussed 

in Sec. 5.6) wherein all messages have been delivered and processed, and no message 

is in transit. Notice that, processes X, Y, and Z can be rolled back to their respective 

checkpoints x\, yand z\ and resume execution in the event of a failure. No further 

rollbacks due to the domino effect would be necessary as no information exchange took 

place in the interval spanned by the set of checkpoints. That is, no local checkpoint 

includes an effect whose cause would be undone due to the rollback of another process. 

CONSISTENT SET OF CHECKPOINTS. Suppose that Y fails after receiving mes¬ 

sage m. If Y restarts from checkpoint yi, message m is lost due to rollback. Note that 

the set {x2, yi, zf\ is not a strongly consistent set of checkpoints, rather it is referred to 
as a consistent set of checkpoints. A consistent set of ckeckpoints is similar to a consis¬ 

tent global state (discussed in Sec. 5.6) in that it requires that each message recorded as 

received in a checkpoint (state) should also be recorded as sent in another checkpoint 

(state). Therefore, systems that do not establish a strongly consistent set of checkpoints 

do not have to deal with lost messages during roll back recovery, they experience de¬ 

lays during the checkpointing process as processes cannot exchange messages while 

checkpointing is in progress. 

12.7.1 A Simple Method for Taking a Consistent Set of 
Checkpoints 

Assume that the action of taking a checkpoint and the action of sending or receiving a 

message are indivisible; that is, they are not interrupted by any other events. (See atomic 

actions in Sec. 13.3). If every process takes a checkpoint after sending every message, 

the set of the most recent checkpoints is always consistent. However, it is not strongly 

consistent [19]. The set of latest checkpoints is consistent because the latest checkpoint 

at every process corresponds to a state where all the messages recorded as received 

in it have already been recorded elsewhere as sent. Therefore, rolling back a process 

to its latest checkpoint would not result in any orphan messages, which would cause 
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the system state to be inconsistent. However, taking a checkpoint after each message 

is sent is expensive, so one may attempt to reduce the overhead in the above method 

by taking a checkpoint after every K (K > 1) messages sent. This method, however, 

suffers from the domino effect (see Problem 12.2). 

12.8 SYNCHRONOUS CHECKPOINTING AND RECOVERY 

We now describe a checkpointing and recovery technique proposed by Koo and 

Toueg [19] that takes a consistent set of checkpoints and avoids livelock problems 

during recovery. The algorithm’s approach is said to be synchronous, as the processes 

involved coordinate their local checkpointing actions such that the set of all recent 

checkpoints in the system is guaranteed to be consistent [17]. 

12.8.1 The Checkpoint Algorithm 

The checkpoint algorithm assumes the following characteristics for the distributed sys¬ 

tem: 

• Processes communicate by exchanging messages through communication channels. 

• Channels are FIFO in nature. End-to-end protocols (such as sliding window proto¬ 

cols [41]) are assumed to cope with message loss due to rollback recovery 

(Fig. 12.4(a)) and communication failure. (Another way to handle message loss 

is to have processes log messages in stable storage before sending them. A process 

encountering message loss due to a rollback can request the retransmission of the 

message. This scheme, however, requires that every process record the identity of 

the last message it has received from each process on stable storage.) 

• Communication failures do not partition the network. 

The checkpoint algorithm takes two kinds of checkpoints on stable storage, per¬ 

manent and tentative. A permanent checkpoint is a local checkpoint at a process and is a 

part of a consistent global checkpoint. A tentative checkpoint is a temporary checkpoint 

that is made a permanent checkpoint on the successful termination of the checkpoint 

algorithm. Processes roll back only to their permanent checkpoint. 

The checkpoint algorithm assumes that a single process invokes the algorithm, 

as opposed to several processes concurrently invoking the algorithm to take permanent 

checkpoints. Furthermore, the algorithm assures that no site in the distributed system 
fails during the execution of the algorithm. 

The algorithm has two phases. 

First Phase. An initiating process Pi takes a tentative checkpoint and requests 

all the processes to take tentative checkpoints. Each process informs Pi whether it suc¬ 

ceeded in taking a tentative checkpoint. A process says “no” to a request if it fails to take 

a checkpoint, which could be due to several reasons, depending upon the underlying 

application. If Pi learns that all the processes have successfully taken tentative check¬ 

points, Pi decides that all tentative checkpoints should be made permanent; otherwise, 
Pi decides that all the tentative checkpoints should be discarded. 
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Second Phase. Pi informs all the processes of the decision it reached at the end 

of the first phase. A process, on receiving the message from Pt, will act accordingly. 

Therefore, either all or none of the processes take permanent checkpoints. 

The algorithm requires that every process, once it has taken a tentative checkpoint, 

not send messages related to the underlying computation until it is informed of Pi s 
decision. 

Correctness. A set of permanent checkpoints taken by this algorithm is consistent 
because: 

• Either all or none of the processes take permanent checkpoints. 

• A set of checkpoints will be inconsistent if there is a record of a message received but 

not of the event sending it. This will not happen as no process sends messages after 

taking a tentative checkpoint until the receipt of the initiating process’s decision, by 

which time all processes would have taken checkpoints. 

OPTIMIZATION. While the above protocol takes a consistent set of checkpoints, it 

may cause a process to take a checkpoint even when it is not necessary (note that taking 

a checkpoint is an expensive operation). 

For example, consider the system activity shown in Fig. 12.7. The set {x\,y\,Z\} 
is a consistent set of checkpoints. Suppose process X decides to initiate the check¬ 

pointing algorithm after receiving message to. It takes a tentative checkpoint x2 and 

sends “take tentative checkpoint messages” to processes Y and Z, causing Y and Z 

to take checkpoints 1/2 and Z2, respectively. Now {X2,1/2, £2} forms a consistent set of 

checkpoints. Note, however, that {X2, V2, } also forms a consistent set of checkpoints. 

(The checkpoint algorithm uses the weaker definition of consistency which requires that 

every message recorded as “received” in a checkpoint should also be recorded as “sent” 

in another checkpoint, and not vice versa [19].) In our example, process Y should take 

Tentative 

FIGURE 12.7 
Checkpoints taken unnecessarily. 
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a checkpoint since X2 records the receipt of message m, and y\ does not record the 

sending of message m. However, there is no need for process Z to take checkpoint X2 

because Z has not sent any message since its last checkpoint. A process can decide 

whether it is necessary to take a checkpoint or not with the help of a labeling scheme 

described below. 
Messages that are sent by the checkpointing or rollback-recovery algorithms (dis¬ 

cussed later) are referred to as control messages. Messages that are sent as a part of 

the underlying computation are referred to as messages. Every outgoing message m 

has a field for a label, denoted by m.l. Each process uses monotonically increasing 

labels in its outgoing messages. The following terminology will be used in describing 

the algorithm: 

J_ = smallest label 

T = largest label. 

For any two processes X and Y, let m be the last message that X received from Y after 

X has taken its last permanent or tentative checkpoint. Then 

Let m be the first message that X sent to Y after X took its last permanent or tentative 

checkpoint. Then 

Whenever X requests Y to take a tentative checkpoint, X sends last Jabeljrcvdx[Y] 

along with its request; Y takes a tentative checkpoint only if 

last label jrcvdx[Y] > firstlabel-senty[X] > _L 

The above condition simply tells Y that the checkpoint at X has recorded the receipt of 

one or more messages sent by Y after Y took its last checkpoint. Therefore, Y should 

take a checkpoint to record the events that send those messages. 

Finally, we define ckpt.cohortx as the set of all processes that should be asked 
to take checkpoints when X decides to take a checkpoint. 

ckpt.cohortx = {Y \ last label jrcvdxiY] > _L} 

This set simply indicates all the processes from which X has received messages after it 

has taken its last checkpoint. If X takes a checkpoint, then those processes should also 
take checkpoints to record the sending of those messages. 
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OUTLINE OF THE ALGORITHM 

Initial state at all processes p: 

for all processes q do first label sentp[q\ _L; 

‘yes” if p is willing to take a checkpoint 

‘no” otherwise 
O K .to.take.ckptp = 

At initiator process Pp. 

for all processes p £ ckpt-cohortpi do 

send Take.a.tentative.ckpt{Pi,last.label.rcvdpi[p]) message; 

if all processes replied “yes” then 

for all processes p £ ckpt-cohortpi do 

send Make.tentative.ckpt.permanent', 

else 

for all processes p £ ckpt .cohort pi do 

send JJndo.tentative.ckpt. 

At all processes p: 
Upon receiving Take.a.tentative.ckpt(q, last.label.rcvdq[p]) message from q do 

begin 

if OK.to.take.ckptp = “yes” AND 

last-label .rcvdq[p] > first .label .sent p[q] > _L then 

begin 

take a tentative checkpoint; 

for all processes r £ ckpt.cohortp do 
send Take-a.tentative-ckpt(p,last.label.rcvdp[r]) message; 

if all processes r £ ckpt.cohortp replied “yes” then 

OK.to.take.ckptp := “yes” 

else 
OK.to.take.ckptp := “no” 

end; 

send (p, OK.to.take.ckptp) to g; 

end; 
Upon receiving Make.tentative.ckpt.permanent message do 

begin 
Make tentative checkpoint permanent; 

For all processes r £ ckpt.cohortp do 
Send Make .tentative.ckpt.permanent message; 

end; 
Upon receiving Undo .tentative.ckpt message do 

begin 
Undo tentative checkpoint; 

For all processes r £ ckpt.cohortp do 
Send Undo.tentative.ckpt message; 

end; 
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12.8.2 The Rollback Recovery Algorithm 

The rollback recovery algorithm assumes that a single process invokes the algorithm, 

as opposed to several processes concurrently invoking it to rollback and recover [19]. 

It also assumes that the checkpoint and the rollback recovery algorithms are not con¬ 

currently invoked. The rollback recovery algorithm has two phases. 

First Phase. An initiating process Pi checks to see if all the processes are willing 

to restart from their previous checkpoints. A process may reply “no” to a restart request 

if it is already participating in a checkpointing or a recovering process initiated by 

some other process. If Pi learns that all the processes are willing to restart from their 

previous checkpoints, P{ decides that all the processes should restart; otherwise, Pt 

decides that all the processes should continue with their normal activities. (Pi may 

attempt a recovery at a later time.) 

Second Phase. Pi propagates its decision to all the processes. On receiving Pi s 

decision, a process will act accordingly. 

The recovery algorithm requires that every process not send messages related to 

the underlying computation while it is waiting for P^s decision. 

Correctness. All cooperating processes restart from an appropriate state because: 

• All processes either restart from their previous checkpoints or continue with their 

normal activities. 

• If processes decide to restart, then they resume execution in a consistent state, as 

the checkpoint algorithm (Sec. 12.8.1) takes a consistent set of checkpoints. 

OPTIMIZATION. While the above protocol causes all the processes to restart from 

a consistent set of checkpoints (taken by the checkpointing algorithm), it causes all 

the processes to roll back irrespective of whether a process needs to roll back or not. 

For example, consider the process activity shown in Fig. 12.8. The above protocol, in 

the event of failure of process X, would require processes X, Y, and Z to restart from 

checkpoints x2,y2, and z2, respectively. Note, however, that process Z need not have 
rolled back as there was no interaction between Z and the other two processes. 

To minimize the number of process rollbacks, the rollback recovery algorithm 

uses the labeling scheme explained in Sec. 12.8.1. In addition to the terminology previ¬ 

ously introduced, the following terminology is used in describing the rollback recovery 

algorithm: For any two processes X and Y, let m be the last message that X sent to Y 
before X takes its latest permanent checkpoint. Then 

When X requests Y to restart from the permanent checkpoint, it sends lastJabeLsentx[Y] 

along with its request. Y will restart from its permanent checkpoint only if 

lastJabeLrcvdylX] > lastJabeLsentx[Y] 
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FIGURE 12.8 
Unnecessary rollback. 

When this condition holds, it indicates that X is rolling back to a state where the sending 

of one or more messages from X to Y is being undone. 

We also define: 

roll-cohortx — {Y \ X can send messages toY} 

OUTLINE OF THE ALGORITHM 

Initial state at all processes p: 

resume-executionp := true; 

for all processes q, do 

last-labeljrcvdp[q\ := T; 

‘yes” if p is willing to roll back 

‘no” otherwise 
willing-to-rollp = 

At initiator process Pi’. 

for all processes p G roll -cohortpi do 
send Prepare-to-rollback{Pi,last-label-sentp7[p\) message; 

if all processes replied “yes” then 

for all processes p G roll-cohort pi do 

send Roll-back message; 

else 
for all processes p G roll -cohortpi do 

send Donot-roll-back message; 

At all processes p: 
Upon receiving Pr epare-to-rollback(q, last -label sent q\p\) 

message from q do 

begin 
if willing-to-rollp AND lastJabeLrcvdp[q\ > last-labelsentq[p] AND 

(resume-executionp) 
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then 

begin 

resume-executiortp := false; 

for all processes r G rolLcohortp do 

send Prepare-to-rollback^, lastJabelsentp[r])message\ 

if all processes r G roll-Cohortv replied “yes” then 

willing-tojrollp := “yes” 

else 

willing-tojrollp “no” 

end; 

Send(p, willing-tojrollp) message to q\ 

end; 

Upon receiving Roll-back message AND if resume-executionp - false do 

begin 

restart from p’s permanent checkpoint; 

for all processes r G rolLcohortp do 

send RolLback message; 
end; 

Upon receiving Donot-roll-back message do 

begin 

resume execution; 

for all processes r 6 rolLcohortp do 

send Donot-roll-back message; 
end; 

12.9 ASYNCHRONOUS CHECKPOINTING AND 
RECOVERY 

While synchronous checkpointing simplifies recovery (because a consistent set of check¬ 

points is readily available), it has the following disadvantages [17]: 

1. Additional messages are exchanged by the checkpoint algorithm when it takes each 
checkpoint. 

2. Synchronization delays are introduced during normal operations. (Note that in the 

synchronous checkpointing algorithm described previously, no computational mes¬ 

sages can be sent while the checkpointing algorithm is in progress.) 

3. If failures rarely occur between successive checkpoints, then the synchronous ap¬ 

proach places unnecessary burden on the system in the form of additional messages, 
delays, and processing overhead. 

Under the asynchronous approach, checkpoints at each processor (or process) are 

taken independently without any synchronization among the processors [17], Because 

of the absence of synchronization, there is no guarantee that a set of local checkpoints 

taken will be a consistent set of checkpoints. Thus, a recovery algorithm has to search 
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FIGURE 12.9 
Asynchronous checkpointing may not result in a consistent set of checkpoints. 

for the most recent consistent set of checkpoints before it can initiate recovery. For 

example, in Fig. 12.9, the latest set of checkpoints {2:3,7/3,22} is not consistent. The 

most recent consistent set of checkpoints in Fig. 12.9 is {2:2, Hi, zi). 
To minimize the amount of computation undone during a roll back, all incoming 

messages are logged (stored on stable storage) at each processor. The messages that 

were received after establishing a recovery point can be processed again in the event 

of a roll back to the recovery point. The messages received can be logged in two 

ways [17]: pessimistic and optimistic. 

• In pessimistic message logging, an incoming message is logged before it is pro¬ 

cessed [7, 29]. A drawback of this approach is that it slows down the underlying 

computation, even when there are no failures. 

• In optimistic message logging, processors continue to perform the computation and 

the messages received are stored in volatile storage, which are logged at certain 

intervals. In case of a system failure, an incoming message may be lost as it may 

not have been logged yet. Therefore, in the event of a rollback, the amount of 

computation redone during recovery is likely to be more in systems that make use 

of optimistic logging than in systems that make use of pessimistic logging. Optimistic 

logging, however, does not slow down the underlying computation during normal 

processing. 

12.9.1 A Scheme for Asynchronous Checkpointing and 

Recovery 

We now describe the algorithm of Juang and Venkatesan [17] for recovery in a system 

that employs asynchronous checkpointing. The algorithm makes the following assump¬ 

tions about the underlying system: 

1. The communication channels are reliable. 

2. The communication channels deliver the messages in the order they were sent. 
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3. The communication channels are assumed to have infinite buffers. 

4. The message transmission delay is arbitrary, but finite. 

5. The underlying computation is assumed to be event-driven, where a processor P 

waits until a message to is received, processes the message to, changes its state, 

(say from s to s') and sends zero or more messages to some of its neighbors. 

(Processors directly connected by a communication channel are called neighbors.) 

The events at each processor are identified by unique monotonically increasing 

numbers (see Fig. 12.10). 

ASYNCHRONOUS CHECKPOINTING. Two types of log storage are assumed to be 

available for logging in the system, namely, volatile log and stable log. Accessing the 

volatile log takes less time than accessing the stable log, but the contents of the volatile 

log are lost if the corresponding processor fails. The contents of the volatile log are 

periodically flushed to the stable storage and cleared. 

Each processor, after an event, records a triplet {s, to, msgssent} in volatile 

storage where s is the state of the processor before the event, to is the message (including 

the identity of the sender) whose arrival caused the event, and msgssent is the set of 

messages that were sent by the processor during the event. Therefore, a local checkpoint 

at each processor consists of the record of an event occurring at the processor and it is 
taken without any synchronization with the other processors. 

Notations and data structure. The following notations and data structure are used by 
the algorithm. 

RCVDi^j(CkPti) represents the number of messages received by processor i 
from processor j, per the information stored in the checkpoint CkPti. 

SENTi^j(CkPti) represents the number of messages sent by processor i to 
processor j, per the information stored in the checkpoint CkPti. 

FIGURE 12.10 
Event driven computation. 
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Basic idea. The fundamental issue in the recovery of a system based on asynchronous 

checkpointing is to find a consistent set of checkpoints to which the system can be 

restored. The basic idea of the recovery algorithm described next is as follows. Each 

processor keeps track of the number of messages it has sent to other processors as 

well as the number of messages it has received from other processors. Whenever a 

processor rolls back, it is necessary for all the other processors to find out whether any 

messages previously sent are now orphan messages. The existence of orphan messages 

is discovered by comparing the number of messages sent and received. If the number of 

messages received at a processor is greater than the number of messages sent (according 

to the state at other processors), it indicates that one or more messages are orphan 

messages and the processor (that has received more messages than that were sent) will 

have to roll back to a state where the number of messages received agrees with the 

number of messages sent. 
For example, in Fig. 12.10, if Y rolls back to a state corresponding to ey\, then 

according to this state Y has sent only one message to X. According to X’s state, 

however, it has received two messages from Y thus far. Therefore, X has to roll back 

to a state preceding eX2 to be consistent with Y’s state. For similar reasons, Z will also 

have to roll back. 

THE ALGORITHM. The algorithm assumes that a processor, upon restarting, will 

broadcast a message that it had failed [17]. (This can be done using only 0(|E|) mes¬ 

sages where |E| is the total number of communication links [30].) The algorithm at 

a processor is initiated when it restarts after a failure or when it learns about another 

processor’s failure. Because of the above broadcast, the algorithm will be initiated at 

all processors. 

At processor i: 
(a) If i is a processor that is recovering after failure then 

CkPti := latest event logged in the stable storage 

else 
CkPti := latest event that took place in i\ 

(* The latest event’s log is either in stable/volatile storage *) 

(b) for k := \ to N do (* N is the number of processors in the system *) 

begin 
for each neighboring processor j do 

send ROLLBACKS, SENTi^j(CkPti)) message; 

wait for ROLLBACK messages from every neighbor. 

(Note that, all the processors are executing the recovery procedure concur¬ 

rently, and they would have sent ROLLBACK messages to their neighbors 

as per step (b).) 
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For every ROLLBACK^, c) message received from a neighbor j, 

i does the following: 

if RCVDi^jiCkPti) > c then 

(* Implies the presence of orphan messages *) 

begin 

find the latest event e such that RCVI)i< j(e) = c; 

CkPti := e; 

end; 

end; (* for k *) 

Note that the procedure has |N| iterations. During the Aith iteration (A; 7^ 1), a 

processor i based on CkPti determined in the (k — l)th iteration, computes SENT^j 

(CkPti)) for each neighbor j and sends the value in a ROLLBACK message to its 

neighbor and i processes ROLLBACK messages sent to it by its neighbors. At the 

end of each iteration, at least one processor will rollback to its final recovery point 

unless the current recovery points are consistent. 

Example 12.1. Figure 12.11 shows the activity of three processors. Suppose that 
processor Y fails and restarts from checkpoint y\. Assuming event ey2 is the lat¬ 
est logged event in the checkpoint, Y will restart from the state corresponding to 
ey2. Because of the broadcast protocol, the recovery algorithm is initiated at pro¬ 
cessors X and Z also. Initially, X, Y, and Z set CkPtx ex3, CkPty ey2, 
and CkPtz ez2, respectively, and X, Y, and Z send the following messages dur¬ 
ing the first iteration. Y sends ROLLBACK(Y, 2) to X and ROLLBACK(Y, 1) 
to Z. X sends ROLLBACK(X, 2) to Y and ROLLBACK(X, 0) to Z. Z sends 
ROLLBACK(Z, 0) to X and ROLLBACK(Z, 1) to Y. 

Since RCV Dx^y(CkPtx) = 3 > 2 (2 is the number received in the ROLL¬ 
BACK message from Y in the first iteration), X will set CkPtx to ex2 satis¬ 
fying RCVDX <—y 0x2) = 1 < 2. (Note that the second message received from 
Y is available in the log and can be processed again at X if ex2 is chosen as 

Time 

FIGURE 12.11 
An example. 
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the recovery point in the end.) Since RCVDz^y(CkPtz) = 2 > 1, Z will set 
CkPtz to ez\ satisfying RCV Dz^y{ezi) = 1 < 1. At Y, RCV Dy ^xiCkPty) 
= 1 < 2 and RCVDy^z{CkPty) = 1 = SENTz^y{CkPtz). Hence, Y need 
not roll back further. In the second iteration, Y sends ROLLBACK(Y,2) to X 
and ROLLBACKS, 1) to Z; Z sends ROLLBACKS, 1) to Y and ROLL - 
BACK(Z, 0) to X; X sends ROLLBACKS, 0) to Z and ROLLBACK^, 1) to 
Y. (Note that according to the state logged for exi, X has sent only one message to Y 
but it can resend the second message to Y as it is available from the log.) The second 
and third iteration will progress in a similar fashion. Notice that the set of recovery 
points chosen at the end of first iteration {eX2, ey2, ez\} is consistent, and no further 
rollbacks occur. 

12.10 CHECKPOINTING FOR DISTRIBUTED DATABASE 
SYSTEMS 

In previous sections of this chapter, we discussed the general concepts and techniques 

for checkpointing and recovering in distributed systems. In this section, we focus on a 

technique for taking checkpoints in a distributed database system (DDBS) where a set 

of data objects is partitioned among several sites. A checkpointing scheme for a DDBS 

should meet the following two basic objectives [37]: 

• As checkpoints are taken during the normal operation of the system, it is highly 

desirable that normal operations be minimally interfered with by checkpointing. 

• Since a process in a DDBS may update many different data objects at many differ¬ 

ent sites during the course of its execution, all sites should take local checkpoints 

recording the state of the local database. For fast recovery, it is desirable that the 

checkpoints taken are consistent. 

THE NOTION OF CONSISTENCY IN A DDBS. The basic unit of user activity in a 

DDBS is a transaction. Therefore, consistency defined in terms of events pertaining to 

sending and receiving messages is not sufficient in a DDBS. In a DDBS, a consistent 

set of checkpoints requires that the updates of a transaction (which may be carried at 

many different sites) are included in all the checkpoints completely or not at all. Thus, 

the notion of consistency in a DDBS is much coarser than our previous definitions in 

the sense that a checkpoint in a DDBS should record all the events pertaining to a 

transaction or none of them. 
Recall that taking a consistent checkpoint involves synchronization among all the 

sites during which sites may not exchange information related to the computation. In 

a DDBS, the exchange of information occurs through the database, where database 

updates of one transaction are read by the others. In other words, to take consistent 

checkpoints in a DDBS, transactions may have to be blocked while checkpointing is 

in progress, thereby interfering with normal operations. Thus, the objectives mentioned 

above conflict with each other. 

ISSUES. In view of the requirements for checkpointing in a DDBS, the issues that 

need to be addressed by a checkpointing scheme for a DDBS are as follows: 
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• How sites decide or agree upon updates of what transactions are to be included in 

their checkpoints. 

• How each site can take a local checkpoint in a noninterfering way. That is, a site 

should not block transactions while global checkpointing is in progress. 

12.10.1 An Algorithm for Checkpointing in a DDES 

We now describe the Son and Agrawala [37] checkpointing algorithm, which is nonin¬ 

terfering and takes globally consistent checkpoints. The checkpointing algorithm makes 

the following assumptions about the underlying system: 

1. The basic unit of user activity is a transaction.1 

2. Transactions follow some concurrency control protocol. * * 

3. Lamport’s logical clocks (see Sec. 5.3) are used to associate each transaction with 

a timestamp. Thus, no two transactions have the same timestamp and only a finite 

number of transactions can have a timestamp less than that of a given transaction. 

4. Site failures are detectable either by network protocols or by timeout mechanisms. 

5. Network partitioning never occurs. (This assumption is reasonable in most local 
area networks.) 

Basic idea. To decide the transactions whose updates are to be included in the check¬ 

point, all the participating sites agree upon a special timestamp known as the global 

checkpoint number (GCPN). The updates of the transactions, which have timestamps < 

GCPN, are included in the checkpoint. These transactions are called before-checkpoint- 

transactions (BCPTs). The updates of the transactions which have timestamps > GCPN 

are not included in the checkpoint. These transactions are called after-checkpoint- 
transactions (ACPTs). 

To avoid interfering with the normal operations while checkpointing is in progress, 

each site maintains multiple versions of data items in volatile storage that are being 

updated by ACPTs. Thus, the state of the database is not disturbed once all the BCPTs 

terminate (at which time the database is consistent) until checkpointing completes. 

However, the ACPTs continue to access the database with the help of versions. 

Data structures. The algorithm requires each site to maintain the following variables: 

• LC: The local clock maintained as per Lamport’s logical clock rules. 

^Informally, a transaction consists of a sequence of read and write operations on the database and is 
the unit of user interaction with the database system. Transaction is a unit of consistency in the sense 
that when a transaction is executed alone in a database system, it maintains database consistency (See 
Sec. 19.2.1.) 

*A database system must ensure that database consistency is maintained, even when several trans¬ 
actions are running concurrently. Concurrency control protocols ensure consistency of the database 
under such conditions. (See Chap. 20.) 
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• Local checkpoint number (LCPN): A number determined locally for the current 
checkpoint. 

THE ALGORITHM. The checkpoint algorithm is initiated by a special process known 

as the checkpoint coordinator (CC). It takes a consistent set of checkpoints with the help 

of processes known as checkpoint subordinates (CS), running at every participating site. 

The CC process does not initiate checkpointing requests concurrently. The algorithm 

has two phases and the details of the steps are as follows. 

Phase 1 

At the checkpoint coordinator (CC) site: 

1. The checkpoint coordinator broadcasts a Checkpoint_Request message with local 

timestamp LCcc- 

2. LCPNcc := LCcc- 

3. CONVERTcc '.= false. (Use of CONVERT will become clear later.) 

4. The checkpoint coordinator waits for replies (obtaining LCPNs) from all the sub¬ 

ordinate sites. 

At all the checkpoint subordinates (CS) sites: 

1. On receiving a Checkpoint-Request message, a site m, updates its local clock as 

follows: 
LCm := MAX(LCm,LCcc + 1) 

2. LCPNm := LCm 

3. Site m informs LCPNm to the checkpoint coordinator. 

4. CONVERTm := false 

5. Site m marks all the transactions with timestamps f LCPNm as BCPT, and marks 

the rest of the transactions as temporary-ACPT. 

Once step 5 is executed at a site, all updates by temporary-ACPTs are stored in the 

buffers of the ACPTs. If a temporary-ACPT commits, the data objects updated by it are 

not flushed to the database, but rather are maintained as committed temporary versions 

(CTVs). If another transaction wishes to read an object for which a CTY exists, the 

data stored in the CTV is returned. Updates to an object that has a CTV creates yet 

another version of the object and the existing CTV is not overwritten. 

Phase 2 

At the checkpoint coordinator site: 

Once all the replies for the Checkpoint-Request messages have been received, the 

coordinator broadcasts GCPN, which is decided as, 

CCPN := MAX(LCPN1,LCPN2,...,LCPNn) 

where n is the number of sites in the system. 
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At all sites: 

1. On receiving GCPN, a site m marks all temporary ACPTs which satisfy the fol¬ 

lowing condition as BCPT. 

LCPNm < transaction’s timestamp < GCPN 

The updates of these transactions, newly converted as BCPTs, are also included in 

the checkpoint. (The updates due to the remaining ACPTs will be flushed to the 

database after the current checkpointing is completed.) 

2. CONV ERTm := true. When CONVERT is true, it indicates that GCPN is 

known and all BCPTs have been identified. 

3. When all the BCPTs terminate and CONVERTm = true, site m takes a local 

checkpoint by saving the state of the data objects. 

4. When the local checkpoint is taken, the database is updated with the committed 

temporary versions and then the committed temporary versions are deleted. 

Note that if a site m receives a new “initiate transaction” message for a new 

transaction whose timestamp is < GCPNm and the site m has already executed steps 

1 and 2 of phase 2, then site m rejects the “initiate transaction” message. 

In the algorithm described above, there are no restrictions on the order in which 

transactions can be executed. Under such conditions, it is possible that the algorithm 

may never terminate. To ensure that the algorithm terminates, a concurrency scheme 

that gives priority to older transactions is necessary. Since there are only a finite number 

of BCPTs when the checkpointing algorithm is initiated, and all of them will terminate 

in finite time, the checkpointing algorithm itself will terminate in finite time [37], 

12.11 RECOVERY IN REPLICATED DISTRIBUTED 
DATABASE SYSTEMS 

To enhance performance and availability, a distributed database system is replicated 

where copies of data objects are stored at different sites. Such a system is known as a 

replicated distributed database system (RDDBS). In RDDBS, transactions are allowed 

to continue despite one or more site failures as long as one copy of the database is 

available. The availability and performance of a database system is enhanced as the 

transactions are not blocked even when one or more sites fail. However, in the above 

scheme, copies of the database at the failed sites may miss some updates while the sites 

are not operational. These copies will be inconsistent with the copies at the operational 

sites. The goal of recovery algorithms in RDDBS is to hide such inconsistencies from 

user transactions, bring the copies at recovering sites up-to-date with respect to the rest 

of the copies, and enable the recovering sites to start processing transactions as soon 
as possible [6]. 

Two approaches have been proposed to recover failed sites. In one approach, 

message spoolers are used to save all the updates directed toward failed sites [13], On 
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recovery, the failed site processes all the missed updates before resuming normal oper¬ 

ations. The other approach employs special transactions known as copier transactions. 

Copier transactions read the up-to-date copies at the operational sites and update the 

copies at recovering sites. Copier transactions run concurrently with user transactions. 

The recovery scheme should guarantee that: (1) the out-of-date replicas are not acces¬ 

sible to user transactions, and (2) once the out-of-date replicas are made up-to-date 

by copier transactions, they are also updated along with the other copies by the user 

transactions. 

12.11.1 An Algorithm for Site Recovery 

We next describe a recovery scheme proposed by Bhargava and Ruan [6], which is based 

on copier transactions. A limitation of this scheme is that it does not handle network 

partitions where sites of the database system are partitioned into different groups, and 

sites in different partitions cannot communicate with each other. 

SYSTEM MODEL. The database is assumed to be manipulated through transactions 

(see Sec. 19.2.1) whose access to the database is controlled by a concurrency control 

algorithm (See Chap. 20). Transactions either run to completion or have no effect on 

the database (see Sec. 13.3). The semantics of read and write operations on the database 

are such that a read operation will read from any available copy and write operation 

updates all the available copies. All the out-of-date copies in the database are assumed 

to be marked “unreadable”. We also assume that the database is fully replicated (i.e., 

every site has a copy of the database). A site may be in any one of the following states: 

Operational/Up. The site is operating normally and user transactions are accepted. 

Recovering. The recovery is still in progress at the site and the site is not ready 

to accept user transactions. 

Down. No RDDBS activity can be performed at the site. 

Non-operational. The site’s state is either recovering or down. 

An operational session of a site is a time period in which the site is up. Each 

operational session of a site is designated with a session number (an integer) which is 

unique in the site’s history, but not necessarily unique systemwide. The session numbers 

are stored on nonvolatile storage so that a recovering site can use an appropriate new 

session number. 

Data structures. Each site k maintains the following two data structures: 

1. The session number of site k is maintained in a variable ASk■ ASk is set to zero 

when site k is nonoperational. 

2. PSk is a vector of size n where n is the number of sites in the system. PSk[i] is 

the session number of site i as known to site k. Since the sites are up and down 

dynamically, a site’s knowledge of the system is not always correct. Thus, PSk 

gives the state of the system as perceived by k. PSk[i] is set to zero whenever k 

learns that site i is down or some other site informs k that site i is down. 
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We next describe how the system functions under normal conditions, failures, and 
during recovery. 

User transactions. Each request that originates at a site % for reading or writing a data 
item at site k carries PSi[k]. If PSi[k] A ASk OR ASk = 0 then the request 
is rejected by site k. Otherwise, there are three possible cases. (1) The data item is 
readable: the request is processed at site k. (2) The data item is marked unreadable and 
the operation is a write operation: the data item is modified and will be marked readable 
when the transaction commits. (3) The data item is marked unreadable and the operation 
is a read operation: a copier transaction is initiated by site k. The copier transaction 
uses the perceived session vector to locate a readable copy. A copy at site j is readable 
for a copier transaction from a site k if PSk[j] = ASj. The copier transaction uses the 
contents of the readable copy to renovate the local copy and removes the unreadable 
mark on the local copy. The user transaction may be blocked while the copier transaction 
is in progress or it can read some other copy. If the copier transaction cannot locate 
any readable copy, that data item is considered failed. A separate protocol is needed to 
resolve this problem, but this issue is beyond the scope of this book. 

Copier transactions. Copier transactions may be initiated for all the data items marked 
unreadable when a site starts recovering. On the other hand, a copier transaction may be 
initiated on a demand basis, that is, whenever a read operation is received for individual 
data items marked unreadable. Copier transactions also follow the concurrency protocol 
used by the RDDBS. 

Control transactions. Control transactions are special transactions that update AS and 
PS at all sites (including any recovering sites). When a recovering site (say k) decides 
that it is ready to change its state from recovering to operational, it initiates a type-1 
control transaction. A type-1 control transaction performs the following operations: 

• It reads PSi from some reachable site i and refreshes PSk- 

• It chooses a new session number, sets PSk[k] to this new session number, and 
writes PSAk] to all -PS)[&;] where PSk[i] A 0 (i.e., at all sites that are perceived 
up by site k). 

When a site discovers that one or more sites are down, it initiates a type-2 control 
transaction. For example, if site k learns that site m and n are down, then it initiates a 
type-2 control transaction which performs the following operations: 

• It sets PSk[m] and PS An] to zero. 

• For all i such that PSk[i] / 0, it sets PS dm] and PSt[n] to zero. 

Control transactions also follow concurrency control and commit protocols (see 
Sec. 13.4) used by the RDDBS to control access to PS vectors. A control transaction 
may be aborted due to conflict with another control transaction or due to a write failure 
caused by another site failure. 
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THE SITE RECOVERY PROCEDURE. When a site k restarts after failure, the re¬ 

covery procedure at site k performs the following steps: 

1. It sets ASk to zero. That is, site k is recovering and is not ready to accept user 

transactions. 

2. It marks all the copies of data items unreadable. 

3. It initiates a type-1 control transaction. 

4. If the control transaction of step 3 successfully terminates, then the site copies the 

new session number from PSk[k] to ASk• (Note that a new session number is set 

in PSk[k] by the type-1 control transaction.) Note that once ASk ^ 0, the site is 

ready to accept user transactions. 

5. If step 3 fails because of discovering that another site has failed, site k initiates a 

type-2 control transaction to exclude the newly failed site and then restarts from 

step 3. 

In step 2, a recovering site will mark all the data items unreadable. However, 

only those data items that missed updates while the site was non-operational need to 

be marked unreadable. 

12.12 SUMMARY 

With the pervasion of computers that perform day-to-day tasks as well as critical tasks, 

it is very important that the work performed is not lost due to failures. It may not 

always be possible to avoid disruptions due to failures. However, it is very important 

that the work lost due to failures is minimal and the time for recovering from failures 

is minimal as well. 
Since failures are caused by errors in the process (system) state (errors are caused 

by faults), failure recovery attempts to remove errors in the state. There are two ap¬ 

proaches to remove errors from a process (system) state, namely, backward-error re¬ 

covery and forward-error recovery. In backward-error recovery, a process (system) is 

restored to its prior state in the hope that it is error free and the execution is resumed 

from the prior state. In forward- error recovery, the errors in the process (system) state 

are removed and the process (system) resumes execution from that point. While the 

cost of recovery in backward-error recovery could be higher, it is a general mechanism 

applicable to any system. On the other hand, forward-error recovery may potentially be 

faster, but it is limited to situations where the nature of error and the extent of damages 

due to errors can be accurately assessed. 
To facilitate quicker recovery in the case of backward-error recovery, a system 

saves its state (referred to as taking checkpoints) often. There are two approaches to 

take checkpoints in concurrent systems, namely, synchronous and asynchronous. In 

synchronous checkpointing, all the sites in the system coordinate in taking checkpoints, 

thereby assuring that the set of checkpoints taken by them will be consistent. To recover, 

the system will simply restart from the consistent state stored in the checkpoint. Delays 

due to coordination in synchronous checkpointing, however, can pose an undue burden 
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on the system if failures are rare. In asynchronous checkpointing, sites take checkpoints 

without consulting each other. There is no guarantee that the set of checkpoints taken is 

consistent, and an attempt to restore the system to a prior state may cause the domino 

effect. Also, recovery has more overhead since a set of consistent checkpoints must be 

found before the system state can be restored to a previous state. 

Checkpointing in transaction-oriented distributed database systems is further com¬ 

plicated by the need for transactions to complete quickly and recovery to be quick. We 

described one checkpointing scheme that takes consistent checkpoints, thereby enabling 

quick recovery. This scheme uses temporary versions of database objects to execute 

read and write operations while checkpointing is in progress, thus not interfering with 

the normal operations of user transactions. 

In replicated distributed database systems (RDDBS), recovery is yet further com¬ 

plicated by the fact that copies at recovering sites may be inconsistent with the copies 

at operational sites and users must be protected from such inconsistencies. To recover a 

site in RDDBS, outdated copies at that site can be made up-to-date by refreshing them 

from other up-to-date copies with the help of copier transactions. User transactions at a 

recovering site can either be diverted to another site with up-to-date copy or provided 

with up-to-date data once the outdated copy is refreshed. 

In this chapter, we discussed concepts and techniques for recovering from failures. 

These techniques, however, are only able to minimize disruptions due to failures. In 

the next chapter, we describe important techniques that deal with tolerating failures that 

attempt to prevent disruptions to users all together. 

12.13 FURTHER READINGS 

Koo and Toueg [19] have proposed extensions to the checkpointing and recovery algo¬ 

rithms of Sec. 12.8 to take care of failures during the execution of the algorithms as 

well as concurrent invocations of checkpointing and rollback recovery algorithms. 

Checkpointing is a widely studied topic. Pilarski and Kameda [28] develop a 

general scheme from basics for taking checkpoints for distributed databases. The pro¬ 

posed scheme can be incorporated into most concurrency control protocols. Many ap¬ 

proaches for synchronous checkpointing are proposed by Leu and Bhargava [23], Tamir 

and Se’quin [40], and Venkatesh et al. [42], Also, many approaches for asynchronous 

checkpointing are proposed by Johnson and Zwaenepoel [16], Sistla and Welch [35], 
and Strom and Yemini [38]. 

In most recovery schemes, a failed process is restored to a checkpoint, and the 

process receives messages in the exact same order as it received them before failing. 

To recover messages lost due to failure, logging is the most commonly used technique. 

Jalote [15] shows that the above approach to recover messages is stricter than necessary, 

and proposes a scheme to implement fault-tolerant processes that can handle multiple 
process failures. 

Hammer and Shipman [13] describe a recovery mechanism for distributed data¬ 

bases based on spoolers. Haskin et al. [14] have implemented recovery management 

based on logs in Quicksilver. Adam and Tewari [1] have discussed a scheme to 

dynamically regenerate copies of data objects in response to site failures and net- 
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work partitions. More discussion on recovery approaches for databases can be found 
in [2, 4, 5, 12, 20, 25, 34, 36], 

A checkpointing scheme to take consistent checkpoints and a recovery scheme for 

systems employing distributed shared memory is proposed by Wu and Fuchs in [43], 

Tam and Hsu [39] have also proposed a scheme for recovery in systems with distributed 

shared virtual memory. 

Distributed breakpoints is a concept related to consistent system state. Fowler and 

Zwaenepoel [10] and Miller and Choi [26] have discussed breakpoints for distributed 

systems and proposed algorithms for obtaining breakpoints in distributed systems. 

Techniques for recovery in shared memory machines have been proposed in [18, 

31]. Wu and Fuchs [44] propose a scheme for error recovery in shared memory multipro¬ 

cessor machines with private caches. In [24], Liskov and Scheifler propose a program¬ 

ming language based mechanism for fault tolerance and error recovery in distributed 

systems. 

PROBLEMS 

12.1. Define livelocks. What is the difference between a deadlock and a livelock? 

12.2. Show that when checkpoints are taken after every K (K > 1) messages are sent, the 
recovery mechanism can suffer from the domino effect. Assume that a process takes 
a checkpoint immediately after sending the Kth message but before doing anything 
else. 

12.3. In the synchronous checkpointing algorithm of Sec. 12.8, a process, on receiving a 
Take_.a_tentative_ckpt message, will send Take_a_tentative_ckpt messages to all the 
processes that are in its ckpt.cohort set. Why is this necessary? 

12.4. What is the message complexity of the rollback recovery algorithm described in 

Sec. 12.9? 

12.5. Give an example where the recovery algorithm of Sec. 12.9 will need to execute for 
|N| iterations where |N| is the number of processors in the system. 

12.6. Give an example where the recovery algorithm of Sec. 12.9 can terminate after only 
one iteration. 
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CHAPTER 

13 
FAULT TOLERANCE 

13.1 INTRODUCTION 

In the previous chapter, several techniques to recover from failures were discussed. 

However, the disruptions caused during failures can be especially severe in many cases 

(for example: on-line transaction processing, process control, and computer based com¬ 

munication user communities, etc.) [14], To avoid disruptions due to failures and to 

improve availability, systems are designed to be fault-tolerant. 

A system can be designed to be fault-tolerant in two ways [14]. A system may 

mask failures or a system may exhibit a well defined failure behavior in the event of 

failure. When a system is designed to mask failures, it continues to perform its specified 

function in the event of a failure. A system designed for well defined behavior may 

or may not perform the specified function in the event of a failure, however, it can 

facilitate actions suitable for recovery. An example of well defined behavior during a 

failure is: the changes made to a database by a transaction are made visible to other 

transactions only if the transaction successfully commits; if the transaction fails, the 

changes made to the database by the failed transaction are not made visible to the other 
transactions, thus not affecting those transactions. 

One key approach used to tolerate failures is redundancy. In this approach, a 

system may employ a multiple number of processes, a multiple number of hardware 

components, multiple copies of data, etc., each with independent failure modes (i.e., 

failure of one component does not affect the operation of other components). 

In this chapter, we discuss widely used techniques, such as commit protocols 

and voting protocols, used in the design of fault-tolerant systems. Commit protocols 
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implement well defined behavior in the event of failure, such as the one described in 

the above example. Voting protocols, on the other hand, mask failures in a system. To 

implement a fault-tolerant distributed system, processes in the system should be able 

to tolerate system failures and communicate reliably. We describe two techniques that 

have been used to implement processes that are resilient to system failures. In addition, 

we describe a technique to send messages reliably among processes. Finally, we close 

this chapter by presenting a case study of a fault-tolerant system. 

13.2 ISSUES 

Since a fault-tolerant system must behave in a specified manner in the event of a failure, 

it is important to study the implications of certain types of failures. 

PROCESS DEATHS. When a process dies, it is important that the resources allocated 

to that process are recouped, otherwise they may be permanently lost. Many distributed 

systems are structured along the client-server model in which a client requests a service 

by sending a message to a server. If the server process fails, it is necessary that the client 

machine be informed so that the client process, waiting for a reply can be unblocked 

to take suitable action. Likewise, if a client process dies after sending a request to a 

server, it is imperative that the server be informed that the client process no longer 

exists. This will facilitate the server in reclaiming any resources it has allocated to the 

client process. 

MACHINE FAILURE. In the case of machine failure, all the processes running at 

the machine will die. As far as the behavior of a client process or a server process is 

concerned, there is not much difference in their behavior in the event of a machine 

failure or a process death. The only difference lies in how the failure is detected. In 

the case of a process death, other processes including the kernel remain active. Hence, 

a message stating that the process has died can be sent to an inquiring process. On 

the other hand, an absence of any kind of message indicates either process death or a 

failure due to machine failure. 

NETWORK FAILURE. A communication link failure can partition a network into 

subnets, making it impossible for a machine to communicate with another machine in 

a different subnet. A process cannot really tell the difference between a machine and a 

communication link failure, unless the underlying communication network (such as a 

slotted ring network) can recognize a machine failure. If the communication network 

cannot recognize machine failures and thus cannot return a suitable error code (such as 

Ethernet), a fault-tolerant design will have to assume that a machine may be operating 

and processes on that machine are active. 

13.3 ATOMIC ACTIONS AND COMMITTING 

Typically, system activity is governed by the sequence of primitive or atomic operations 

it is executing. Usually, a machine level instruction, which is indivisible, instantaneous. 
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and cannot be interrupted (unless the system fails) corresponds to an atomic operation. 

However, it is desirable to be able to group such instructions that accomplish a certain 

task and make the group an atomic operation. 

For example, suppose two processes P\ and P2 share a memory location X and 

both modify X as shown in Fig. 13.1. Suppose Pi succeeds in locking X before P2, 
then Pj updates X and releases the lock, making it possible for P2 to access X. If P\ 
fails after P2 has seen the changes made to X by Pi, then P2 will also have to be 

aborted or rolled back. Thus, what is necessary is that P2 should not be able to interact 

with P] through X until it can do so safely. In other words, P\ should be atomic. Its 

effect on X should not be visible to P2 or any other process until P\ is guaranteed to 

finish. In essence, the effect of P\ on the system (even though it executes concurrently 

with P2) should look like an undivided and uninterrupted operation. 

Atomic actions extend the concept of atomicity from one machine instruction 

level to a sequence of instructions or a group of processes that are themselves to be 

executed atomically. Atomic actions are the basic building blocks in constructing fault- 

tolerant operations. They provide a means to a system designer to specify the process 

interactions that are to be prevented to maintain the integrity of the system. Atomic 
actions have the following characteristics [29, 39]. 

• An action is atomic if the process performing it is not aware of the existence of any 

other active processes, and no other process is aware of the activity of the process 
during the time the process performs the action. 

• An action is atomic if the process performing it does not communicate with other 
processes while the action is being performed. 

• An action is atomic if the process performing it can detect no state changes except 

those performed by itself, and if it does not reveal its state changes until the action 
is complete. 

• Actions are atomic if they can be considered, so far as other processes are concerned, 

to be indivisible and instantaneous, such that the effects on the system are as if they 
were interleaved as opposed to concurrent. 

A transaction groups a sequence of actions (for example, on a database) and 

the group is treated as an atomic action to maintain the consistency of a database. 

(The concept of a transaction is discussed in Sec. 19.2.1.) At some point during its 

Process Px Process P2 

Lock(X); 

X := X + Z; 

Unlock(X); 

Lock(X); 

X := X + Y; 

Unlock(X); 

failure FIGURE 13.1 
Process interaction. 
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execution, the transaction decides whether to commit or abort its actions. A commit is 

an unconditional guarantee (even in the case of multiple failures) that the transaction 

will be completed. In other words, the effects of its actions on the database will be 

permanent. An abort is an unconditional guarantee to back out of the transaction, and 

none of the effects of its actions will persist [44], 

A transaction may abort due to any of the following events: deadlocks, timeouts, 

protection violation, wrong input provided by user, or consistency violations (which 

can happen if an optimistic concurrency control technique is employed). To facili¬ 

tate backing out of an aborting transaction, the write-ahead-log protocol (discussed in 

Sec. 12.5.1) or shadow pages (discussed in Sec. 12.5.1) can be employed. 

In distributed systems, several processes may coordinate to perform a task. Their 

actions may have to be atomic with respect to other processes. For example, transaction 

may spawn many processes that are executed at different sites. As another example, in 

distributed database systems, a transaction must be processed at every site or at none of 

the sites to maintain the integrity of the database. This is referred to as global atomicity. 

The protocols that enforce global atomicity are referred to as commit protocols. Given 

that each site has a recovery strategy (e.g., the write-ahead-log protocol or the shadow 

page protocol) at the local level, commit protocols ensure that all the sites either commit 

or abort the transaction unanimously, even in the presence of multiple and repetitive 

failures [44], Note that commit protocols fall into the second class of fault-tolerant 

design techniques in that they help the system behave in a certain way in the presence 

of failures. We next present several commit protocols. 

13.4 COMMIT PROTOCOLS 

The following situation illustrates the difficulties that arise in the design of commit 

protocols [20]. 

THE GENERALS PARADOX. There are two generals of the same army who have 

encamped a short distance apart. Their objective is to capture a hill, which is possible 

only if they attack simultaneously. If only one general attacks, he will be defeated. 

The two generals can communicate only by sending messengers. There is a chance that 

these messengers might lose their way or be captured by the enemy. The challenge is 

to use a protocol that allows the generals to agree on a time to attack, even though 

some messengers do not get through. 
A simple proof shows that there exists no protocol which sends the messengers 

a fixed number of times to solve the above problem. Let P be the shortest protocol. 

Suppose the last messenger in P does not make it to the destination. Then either the 

message carried by the messenger is useless or one of the generals does not get the 

needed message. Since P is the minimal length protocol by our assumption, the message 

that was lost was not a useless message and hence one of the generals will not attack. 

This contradiction proves that there exists no such protocol P of fixed length. 
The situation faced by the generals is very similar to the situation that arises in 

the commit protocols. The goal of commit protocols is to have all the sites (generals) 

agree either to commit (attack) or to abort (do not attack) a transaction. By relaxing the 
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requirement that the number of messages employed by a commit protocol be bounded 

by a fixed number of messages, a commit protocol can be designed. We next describe 

a famous protocol by Gray [20], which has been referred to as the two-phase commit 
protocol. 

13.4.1 The Two-Phase Commit Protocol 

This protocol assumes that one of the cooperating processes acts as a coordinator. Other 

processes are referred to as cohorts. (Cohorts are assumed to be executing at different 

sites.) This protocol assumes that a stable storage is available at each site and the write- 

ahead log protocol is active. At the beginning of the transaction, the coordinator sends 

a start transaction message to every cohort. 

Phase I. At the coordinator: 

1. The coordinator sends a COMMIT-REQUEST message to every cohort requesting 
the cohorts to commit. 

2. The coordinator waits for replies from all the cohorts. 

At cohorts: 

1. On receiving the COMMIT-REQUEST message, a cohort takes the following ac¬ 

tions. If the transaction executing at the cohort is successful, it writes UNDO and 

REDO log on the stable storage and sends an AGREED message to the coordinator. 
Otherwise, it sends an ABORT message to the coordinator. 

Phase II. At the coordinator: 

1. If all the cohorts reply AGREED and the coordinator also agrees, then the coordi¬ 

nator writes a COMMIT record into the log. Then it sends a COMMIT message 

to all the cohorts. Otherwise, the coordinator sends an ABORT message to all the 
cohorts. 

2. The coordinator then waits for acknowledgments from each cohort. 

3. If an acknowledgment is not received from any cohort within a timeout period, the 
coordinator resends the commit/abort message to that cohort. 

4. If all the acknowledgments are received, the coordinator writes a COMPLETE 
record to the log (to indicate the completion of the transaction). 

At cohorts: 

1. On receiving a COMMIT message, a cohort releases all the resources and locks 
held by it for executing the transaction, and sends an acknowledgment. 

2. On receiving an ABORT message, a cohort undoes the transaction using the UNDO 

log record, releases all the resources and locks held by it for performing the trans¬ 
action, and sends an acknowledgment. 



FAULT TOLERANCE 335 

When there are no failures or message losses, it is easy to see that all sites will 

commit only when all the participants (including the coordinator) agree to commit. In 

the case of lost messages (sent from either cohorts or the coordinator), the coordinator 

simply resends messages after the timeout. Now we shall attempt to show that this 

protocol results in all participants either committing or aborting, even in the case of 

site failures. 

SITE FAILURES. For site failures, we look at the following cases: 

• Suppose the coordinator crashes before having written the COMMIT record. On 

recovery, the coordinator broadcasts an ABORT message to all the cohorts. All 

the cohorts who had agreed to commit will simply undo the transaction using the 

UNDO log and abort. Other cohorts will simply abort the transaction. Note that all 

the cohorts are blocked until they receive an ABORT message. 

• Suppose the coordinator crashes after writing the COMMIT record but before writ¬ 

ing the COMPLETE record. On recovery, the coordinator broadcasts a COMMIT 

message to all the cohorts and waits for acknowledgments. In this case also the 

cohorts are blocked until they receive a COMMIT message. 

• Suppose the coordinator crashes after writing the COMPLETE record. On recovery, 

there is nothing to be done for the transaction. 

• If a cohort crashes in Phase I, the coordinator can abort the transaction because it 

did not receive a reply from the crashed cohort. 

• Suppose a cohort crashes in Phase II, that is, after writing its UNDO and REDO 

log. On recovery, the cohort will check with the coordinator whether to abort (i.e., 

perform an undo operation) or to commit the transaction. Note that committing may 

require a redo operation because the cohort may have failed before updating the 

database. 

While the two-phase commit protocol guarantees global atomicity, its biggest 

drawback is that it is a blocking protocol. Whenever the coordinator fails, cohort sites 

will have to wait for its recovery (see Problem 13.1). This is undesirable as these 

sites may be holding locks on the resources. (Note that transactions lock the resources 

to maintain the integrity of resources. See Chap. 20.) In the event of message loss, 

the two-phase protocol will result in the sending of more messages. We next discuss 

nonblocking commit protocols that do not block in the event of site failures. 

13.5 NONBLOCKING COMMIT PROTOCOLS 

If transactions must be resilient to site failures, the commit protocols must not block in 

the event of site failures. To ensure that commit protocols are nonblocking in the event 

1 Progress despite failures. 
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of site failures, operational sites should agree on the outcome of the transaction (while 

guaranteeing global atomicity) by examining their local states. In addition, the failed 

sites, upon recovery must all reach the same conclusion regarding the outcome (abort 

or commit) of the transaction. This decision must be consistent with the final outcome 

at the sites that were operational. If the recovering sites can decide the final outcome of 

the transaction based solely on their local state (without contacting the sites that were 

operational), the recovery is referred to as independent recovery [44], Skeen [43, 44] 

proposed nonblocking commit protocols that tolerate site failures. Before describing a 

nonblocking protocol, it is first necessary to discuss the conditions that cause a commit 

protocol to block and then discuss how a failed site can recover to an appropriate state. 

ASSUMPTIONS. The communication network is assumed to have the following char¬ 
acteristics: 

• The network is reliable and point-to-point communication is possible between any 
two operational sites. 

• The network can detect the failure of a site (for example by a timeout) and report 
it to the site trying to communicate with the failed site. 

DEFINITIONS 

Synchronous protocols. A protocol is said to be synchronous within one state transition 

if one site never leads another site by more than one state transition during the execution 

of the protocol. In other words, Vi,j, \ U - t0 |<1, where 1 < i,j < n,n is the total 

number of sites, and is the total number of state transitions that have occurred thus far 

at site k. A state transition (change in the state) occurs in a process participating in the 

two-phase commit protocol whenever it receives and/or sends messages (see Fig. 13.2). 

With the help of a finite state automaton (FSA), we will see that the two-phase commit 
protocol satisfies the above definition (see Fig. 13.2). 

Whenever the coordinator is in state q, all the cohorts are also in state q. When 

the coordinator is in state w, a cohort can either be in state q, w, or a, which is at most 

one state transition behind or ahead of the coordinator’s state in the FSA. When the 

coordinator is in state a/c, a cohort is in state w or a/c depending on whether it has 
received a message (Abort/Commit) from the coordinator. 

Likewise, whenever a cohort is in state q: some cohorts may be in state w/q if 

they have or have not received the Commit_Request message yet; and some cohorts 

may be in state a depending on whether a cohort has received an Abort message or 

not. Whenever a cohort is in state a/c, other cohorts may be in state a or c, depending 

on whether they have received an Abort or Commit message, respectively; otherwise, 

they are in state w. Note that a site is never in state c when another site is in state q, 

which means that a site never leads another site by two or more state transitions. 

Concurrency set. Let Sj denote the state of site i. The set of all the states of every 

site that may be concurrent with it is known as the concurrency set of st (denoted by 

C(si)). For example, consider a system having two sites. If site 2’s state is w2, then 
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Coordinator 

Cohort i (i = 2, 3,n) 

FIGURE 13.2 
Finite state automata illustrating the 
2-phase commit protocol (adapted 

from [43]). 

C(W2) = Likewise, C(q2) = {q\,w\}- Note that, a\,c\ ^ C(qx) because 

the two-phase commit protocol is synchronous within one state transition. 

Sender set. Let s be an arbitrary state of a site, and let M be the set of all messages 

that are received in state s. The sender set for s, denoted by S(s), is 

{■i | site i sends m and m (E M} 



338 ADVANCED CONCEPTS IN OPERATING SYSTEMS 

13.5.1 Basic Idea 

We first consider the simple case where at most one site fails during a transaction 

execution. We begin by describing the conditions that cause blocking in two-phase 

commit protocols. We then discuss how to overcome them. Next, we explain how a 

decision regarding the final outcome of the transaction is made at a site that is recovering 

after failure. Finally, we describe how operational sites deal with a site failure. 

CONDITIONS THAT CAUSE BLOCKING. We now present some observations that 

lead to the conditions under which the two-phase commit protocol blocks [44], Consider 

a simple case where only one site remains operational and all other sites have failed. 

This site has to proceed based solely on its local state. Let s denote the state of the site 

at this point. If C(s) contains both commit and abort states, then the site cannot decide 

to abort the transaction because some other site may be in the commit state. On the 

other hand, the site cannot decide to commit the transaction because some other site 

may be in the abort state. In other words, the site has to block until all the failed sites 

recover. The above observation leads to the following lemma [44]: 

Lemma 13.1. If a protocol contains a local state of a site with both abort and commit 

states in its concurrency set, then under independent recovery conditions it is not resilient 
to an arbitrary single failure. 

HOW TO ELIMINATE BLOCKING. We now address the question of how to mod¬ 

ify the two-phase commit protocol to make it a nonblocking protocol. Notice that in 

Fig. 13.2, only states Wi (i / 1) have both abort and commit states in their concur¬ 

rency sets. To make the two-phase commit protocol a nonblocking protocol, we need 

to make sure that C(wi) does not contain both abort and commit states. This can be 

done by introducing a buffer state px in the finite state automaton of Fig. 13.2(a). We 

also introduce a buffer state for the cohorts. (The reason for adding pu i / 1 will 

become clear later.) The resulting finite state automata are shown in Fig. 13.3. Now, in 

a system containing only two sites, C(w\) = {q2, w2, a2}, and C(w2) = {a^p^wi}. 

This extended two-phase commit protocol is nonblocking in case of a single site 

failure and a failed site can perform independent recovery. Independent recovery is pos¬ 

sible mainly because a site can make unilateral decisions regarding the global outcome 

of a tiansaction. Also, when a site fails, other sites can make decisions regarding the 
global outcome of the transaction based on their local states. 

FAILURE TRANSITIONS. In order to perform independent recovery at a failed site, 
the failed site should be able to reach a final decision based solely on its local state. 

The decision making process is modeled in the FSA using failure transitions. A failure 

transition occuis at a failed site at the instant it fails (or immediately after it recovers 

from the failure). The local state resulting due to the state change caused by the failure 

transition will initially be occupied by the site upon recovery. The failure transitions 
are performed according to the following rule [44], 
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Coordinator 

FIGURE 13.3 
Finite state automata illustrating 3-phase commit protocol (adapted from Skeen [44]). 
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Rule 1. For every nonfinal state s (i.e., qi,Wi,pi) in the protocol: if C(s) contains a 

commit, then assign a failure transition from s to a commit state in its FSA; otherwise, 

assign a failure transition from s to an abort state in its FSA. 

The intuition behind this rule is straightforward. Note that, pi (i / 1) is the only 

state which has a commit state in its concurrency set. When site i is in state pi, all 

the sites including i have agreed to commit. Thus, if site i fails in state pi (recall our 

assumption that only one site fails during a transaction execution), there is no problem 

if it commits the transaction on recovery. On the other hand, all states other than pi 

have the abort state in their concurrency sets. Flence, if a site fails in any state other 

than pi and Ci, then it is not safe for the failed site to recover and commit the transaction 

unilaterally. Therefore, the failed site on recovery aborts the transaction. 

Figure 13.4 illustrates the FSA resulting from the failure and timeout transitions. 

TIMEOUT TRANSITIONS. We now consider what an operational site does in the 

event of another site’s failure. If site i is waiting for a message from site j (i.e., j G S(iJ) 

and site j has failed, then site i times out. Based on the type of message expected from 

j, we can determine in what state site j failed. Once the state of j is known, we can 

determine the final state of j due to the failure transition at j. This observation leads 

to the timeout transitions in the commit protocol at the operational sites [44]. 

Rule 2. For each nonfinal state s, if site j is in S(s), and site j has a failure transition to 

a commit(abort) state, then assign a timeout transition from state s to a commit (abort) 

state in the FSA. 

The rationale behind this rule is as follows. The failed site makes a transition 

to a commit (abort) state using the failure transition (Rule 1). Therefore, operational 

sites must make the same transition in order to ensure that the final outcome of the 

transaction is identical at all the sites. Figure 13.4 illustrates the FSA resulting from 

the timeout transitions. 

13.5.2 The Nonblocking Commit Protocol for Single Site Failure 

It is assumed that each site uses the write-ahead-log protocol. It is also assumed that, at 

most, one site can fail during the execution of the transaction. The following protocol 

is a modified version of the protocol proposed by Skeen and Stonebraker [44], 

Before the commit protocol begins, all the sites are in state q. If the coordinator 

fails while in state q\, all the cohorts timeout, waiting for the Commit_Request message, 

and they perform the timeout transition, thus aborting the transaction. Upon recovery, 

the coordinator performs the failure transition from state qu also aborting the transaction. 

THE PROTOCOL 

Phase I. The first phase of the nonblocking protocol is identical to that of the two- 

phase commit protocol (see Sec. 13.4.1) except in the event of a site’s failure. During 

the first phase, the coordinator is in state w\, and each cohort is either in state a (in 

which case the site has already sent an Abort message to the coordinator) or w or q 
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Coordinator 

FIGURE 13.4 
Finite state automata illustrating timeout and failure transitions (adapted from Skeen [44]). 
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depending on whether it has received the Commit_Request message or not. If a cohort 

fails, the coordinator times out waiting for the Agreed message from the failed cohort. 

In this case, the coordinator aborts the transaction and sends abort messages to all the 

cohorts. 

Phase II. In the second phase, the coordinator sends a Prepare message to all the cohorts 

if all the cohorts have sent Agreed messages in phase I. Otherwise, the coordinator will 

send an Abort message to all the cohorts. On receiving a Prepare message, a cohort 

sends an acknowledge message to the cohort. If the coordinator fails before sending 

Prepare messages (i.e., in state w\), it aborts the transaction upon recovery, according 

to the failure transition. The cohorts time out waiting for the prepare message, and also 

abort the transaction as per the timeout transition. 

Phase III. In the third phase, on receiving acknowledgments to the Prepare messages 

from all the cohorts, the coordinator sends a Commit message to all the cohorts. A 

cohort, on receiving a Commit message, commits the transaction. If the coordinator 

fails before sending the Commit message (i.e., in state p\), it commits the transaction 

upon recovery, according to the failure transition from state p\. The cohorts time out 

waiting for the Commit message. They commit the transaction according to the timeout 

transition from state pi. However, if a cohort fails before sending an acknowledgment 

message to a Prepare message, the coordinator times out in state p\. The coordinator 

aborts the transaction and sends Abort messages to all the cohorts. The failed co¬ 

hort, upon recovery, will abort the transaction according to the failure transition from 
state Wi. 

Now, to clarify why state pi was added to the FSA of cohorts (see Fig. 13.4), 

consider a system with three sites. Suppose the state p% is not present. Under this case, 

if the coordinator is in state p\ waiting for an acknowledgment message. Let cohort 2 

(in state w2) acknowledge and commit the transaction. Suppose cohort 3 (in state ic3) 

fails, then both the coordinator and cohort 3 (upon recovery as per the failure transition) 

will abort the transaction, thus, causing an inconsistent outcome for the transaction. By 

adding state pi (i f 1), we ensure that no state has both abort and commit states in its 
concurrency set. 

CORRECTNESS 

Theorem 13.1. Rules 1 and 2 are sufficient for designing commit protocols resilient 
to a single site failure during a transaction [44]. 

Proof. The proof is by contradiction. Let P be a protocol that abides by Rules 1 and 
2. Assume that protocol P is not resilient to all single site failures. Also, assume that 
the system has only two sites. Without loss of generality, let site 1 fail in state Si, and 
let site 2 be in state s2 when site 1 fails. Let site 1 make a failure transition to state 
fu and let site 2 make a timeout transition to state f2. Suppose that the global state 
of the system, wherein site 1 is in state fx and site 2 is in state f2, is inconsistent. 
Depending on whether s2 is a final state (abort/commit) or a nonfinal state (all states 
other than abort and commit), we have the following two cases: 
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Case 1. S2 is a final state. This implies that f2 G (7(si). If f2 is a commit(abort) 
state, and f\ is an abort(commit) state, then Rule 1 has been violated. 

Case 2. s2 is a nonfinal state. By the definition of the commit protocol, site 1 
belongs to the sender set S(s2) of site 2. Hence, if f2 is a commit(abort) state, and f\ 
is an abort(commit) state, then Rule 2 has been violated. 

13.5.3 Multiple Site Failures and Network Partitioning 

We now discuss independent recovery under multiple site failures and network parti¬ 

tioning. We state the results by Skeen and Stonebraker [44] without giving the proof. 

Note that a protocol is resilient to a given condition only if it is nonblocking under that 

condition. 

Theorem 13.2. There exists no protocol using independent recovery that is resilient 
to arbitrary failures by two sites. 

Theorem 13.3. There exists no protocol resilient to network partitioning when mes¬ 
sages are lost. 

Theorem 13.4. There exists no protocol resilient to multiple network partitionings. 

13.6 VOTING PROTOCOLS 

A common approach to provide fault tolerance in distributed systems is by replicating 

data at many sites. If a site is not available, the data can still be obtained from copies at 

other sites. Commit protocols can be employed to update multiple copies of data. While 

the nonblocking protocol of the previous section can tolerate single site failures, it is not 

resilient to multiple site failures, communication failures, and network partitioning. In 

commit protocols, when a site is unreachable, the coordinator sends messages repeatedly 

and eventually may decide to abort the transaction, thereby denying access to data. 

However, it is desirable that the sites continue to operate even when other sites have 

crashed, or at least one partition should continue to operate after the system has been 

partitioned. Another well known technique used to manage replicated data is the voting 

mechanism. With the voting mechanism, each replica is assigned some number of 

votes, and a majority of votes must be collected from a process before it can access 

a replica. The voting mechanism is more fault-tolerant than a commit protocol in that 

it allows access to data under network partitions, site failures, and message losses 

without compromising the integrity of the data. We next describe static and dynamic 

voting mechanisms. 

13.6.1 Static Voting 

The static voting scheme is proposed by Gifford [19]. 

System model. The replicas of files are stored at different sites. Every file access 

operation requires that an appropriate lock is obtained. The lock granting rules allow 
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either ‘one writer and no readers’ or ‘multiple readers and no writers’ to access a file 

simultaneously. It is assumed that at every site there is a lock manager that performs 

the lock related operations, and every file is associated with a version number, which 

gives the number of times the file has been updated. The version numbers are stored 

on stable storage, and every successful write operation on a replica updates its version 

number. 

Basic idea. The essence of a voting algorithm which controls access to replicated data 

is as follows. Every replica is assigned a certain number of votes. This information 

is stored on stable storage. A read or write operation is permitted if a certain number 

of votes, read quorum or write quorum, respectively, are collected by the requesting 

process. 

THE VOTING ALGORITHM. When a process executing at site i issues a read or 

write request for a file, the following protocol is initiated. 

1. Site i issues a Lock_Request to its local lock manager. 

2. When the lock request is granted, site i sends a Vote_Request message to all the 
sites. 

3. When a site j receives a Vote-Request message, it issues a Lock-Request to its local 

lock manager. If the lock request is granted, then it returns the version number of 

the replica (VNj) and the number of votes assigned to the replica (Vj) to site i. 

4. Site i decides whether it has the quorum or not, based on the replies received within 

a timeout period as follows (P denotes the set of sites which have replied). 
If the request issued was a read, 

VT = Y, V* 
k G P 

If Vr > r, where r is the read quorum, then site i has succeeded in obtaining the 
read quorum. 

If the request issued was a write, 

v„ = YVk 
k e Q 

where the set of sites Q is determined as follows: 

M = max {VNj : j e P} 

Q = {j E P : VNj = M} 

In other words, the largest version number M denotes the version number of the 

current copy, and only the votes of the current replicas are counted in deciding the 

write quorum. If Vw > w, where w is the write quorum, then site i has succeeded 
in obtaining the write quorum. 
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5. If site % is not successful in obtaining the quorum, then it issues a Release_Lock to 

the local lock manager as well as to all the sites in P from whom it has received 

votes. 

6. If site i is successful in obtaining the quorum, then it checks whether its copy of 

the file is current. A copy is current if its version number is equal to M. If the 

copy is not current, a current copy is obtained from a site that has a current copy. 

Once a current copy is available locally, site i performs the next step. 

7. If the request is a read, site i reads the current copy available locally. If the request 

is a write, site i updates the local copy. Once all the accesses to the copy are 

performed, site i updates VNi, and sends all the updates and VNi to all the sites 

in Q. Note that a write operation updates only current copies. Site i then issues a 

Release_Lock request to its local lock manager as well as to all the sites in P. 

8. All the sites receiving the updates perform the updates on their local copy, and on 

receiving a Release_Lock request, release the locks. 

VOTE ASSIGNMENT. Let v be the total number of votes assigned to all the copies. 

The values for r (read quorum) and w (write quoaim) are selected such that: 

v 
r + w > v ; w > — 

The values selected for r and w combined with the fact that write operations update 

only the current copies guarantee the following: 

• None of the obsolete copies are updated due to a write operation. 

• There is a subset of replicas that are current and whose votes total to w. 

• There is a nonnull intersection between every read quorum and write quorum. Hence, 

in any read quorum gathered, irrespective of the sites that participate in the quorum, 

there will be at least one current copy, which is selected for reading. 

• Write quorum w is high enough to disallow simultaneous writes on two distinct 

subsets of replicas. 

A note. In the above scheme, it is not necessary to count votes from current replicas 

only to obtain a write quorum. In addition, obsolete replicas can be updated whenever a 

write operation is performed. These steps will improve the performance of the system. 

A highlight of the voting scheme is that the performance and reliability charac¬ 

teristics of a system can be altered by judiciously assigning the number of votes to 

each replica and carefully selecting the values for r and w [19]. Consider a system 

having four replicas stored at four different sites. The votes assigned to each replica 

and the disc latency at each replica is shown in Fig. 13.5. For the sake of simplicity, it 

is assumed that the communication delay between sites is negligible. 
Suppose r = 1 and w = 5. Then the read access time is 75 milliseconds and the 

write access time is 750 milliseconds. While read operations perform well with this 

configuration, the inaccessibility of any one site will make the system unavailable for 

writes. 
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© votes = 1 
75 msecs 

© © 
votes = 1 
750 msecs 

votes = 2 
750 msecs 

© 
votes - 1 
100 msecs 

FIGURE 13.5 
An example of vote assignment. 

Suppose that for the configuration shown in Fig. 13.5, the quorums are changed 

to r = 3 and w -3. The read access time is still 75 milliseconds. In addition, the system 

is unavailable for writes only when two sites (site 3 and any one of the other three) or 

any three sites (excluding site 3) are inaccessible simultaneously. Hence, by carefully 

selecting the values for quorums, the configuration has been made much more reliable 
than the previous configuration. 

Suppose that site 4 is known to be more reliable compared to the other three, 

the voting configuration is changed as shown in Fig. 13.6, and the quorums are r = 

3 and w = 3. Now the system is unavailable for writes only when two sites (site 4 

and any one of the other three) or any three sites (excluding site 4) are inaccessible 

simultaneously. Since site 4 is known to be reliable, the system’s fault tolerance is 

much higher compared to the previous two configurations. Therefore, a system’s ability 

to tolerate faults can be increased by assigning a higher number of votes to reliable 
sites. 

The voting scheme described above is referred to as a static scheme because both 

criteria that decide the majority and the number of votes assigned to each replica remain 
unchanged, irrespective of the system state. 

© votes = 1 
75 msecs 

© © 
votes = 1 
750 msecs 

votes = 1 
750 msecs 

© 
votes = 2 
100 msecs 

FIGURE 13.6 
An example of vote assignment. 
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13.7 DYNAMIC VOTING PROTOCOLS 

Suppose that in the system shown in Fig. 13.6, site 4 becomes unreachable from the 

rest of the sites due to its failure or due to a network partition. Sites 1, 2, and 3 can still 

collect a quorum (also referred to as majority) while site 4 (if operating) cannot collect 

a quorum. If another partition or a failure of a site occurs, making any site unavailable, 

the system cannot serve any read or write requests as a quorum cannot be collected in 

any partition. In other words, the system is completely unavailable—a serious problem 

indeed. Dynamic voting protocols solve this problem by adapting the number of votes 

or the set of sites that can form a quorum, to the changing state of the system due to 

site and communication failures. From the previously proposed dynamic protocols, two 

approaches to enhance availability can be identified. 

• Majority based approach—the set of sites that can form a majority to allow access 

to replicated data changes with the changing state of the system. 

• Dynamic vote reassignment—the number of votes assigned to a site changes 

dynamically. 

We next describe two voting protocols that illustrate the above techniques. 

13.8 THE MAJORITY BASED DYNAMIC VOTING 
PROTOCOL 

In the majority based approach, the set of sites that can form a majority is dynamically 

altered to enhance availability in the event of site or communication failure. The set of 

sites that can form a majority are those that were updated when the most recent update 

was performed. A partition graph is used to represent the history of the network s 

failure and recovery. In a partition graph, nodes correspond to partitions and edges 

represent further partitioning of the network or recovery. In case of recovery, two or 

more partitions are merged into single partition. 
In Fig. 13.7, the root node corresponds to a system with five copies stored on five 

sites which form a single partition. This indicates that all the sites are connected and 

that all the replicas are mutually consistent. The initial single partition is fragmented 

into two partitions ABD and CE. Later D is isolated from ABD and B is isolated from 

AB. Finally, partition A and CE merge to from a single partition ACE. In the voting 

protocol of Sec. 13.6.1, only ABCDE, ABD, and ACE partitions allow data access, 

assuming each copy has one vote. 
In the majority based approach, once a system is partitioned, the protocol selects 

one of the partitions where read and write operations can continue. The partition selected 

is the one which could have formed a majority in the configuration that existed before the 

partitioning. Sites that belong to the selected partition will be able to collect quorums, 

whereas sites in the partitions not selected will not be able to collect quorums. Given 

this approach, sites in the partitions ABCDE, ABD, AB, A, and ACE will be able to 

obtain quorums. 
A majority based dynamic voting protocol proposed by Jajodia and Mutchler [23] 

is now described. It is assumed that each replica is stored on a distinct site. The protocol 
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FIGURE 13.7 
A partition graph. 

requires that the replicas are linearly ordered a priori. The ordering is used to break ties 

among partitions. Each replica is associated with three variables: the version number, 
the number of replicas updated, and the distinguished site list. 

Version number. The version number of a replica at a site i is an integer (denoted 

by VNi) that counts the number of successful updates to the replica at i. VNi is initially 
set to zero and is incremented by one at every successful update. 

Number of replicas updated. It is an integer (denoted by RUt at site i) that 

almost always reflects the number of replicas participating in the most recent update. 
RUi is initially equal to the total number of replicas. 

Distinguished sites list. The distinguished sites list at a site i is a variable (denoted 

by DSi) that stores ID’s of one or more sites. The contents of DSi depend on RUt. 

When RUi is even, DSt identifies the replica that is greater (as per the linear ordering) 

than all the other replicas that participated in the most recent update of the replica at 

site i\ When RUi is odd, DSi is nil except when RUi = 3, in which case DSt lists 

the three replicas that participated in the most recent update from which a majority 

is needed to allow access to data. (The reason for this special case will become clear 
later.) 

Before describing the details of the protocol, we give an example that illustrates 
how the protocol works. 

Example 13.1. Suppose there are five replicas of a file stored at sites A, B, C, D, and 
E. The state of the system is represented by the following table, where each replica 
has already been updated three times. V i , RUi = 5 (i.e., all the sites are accessible 
to every site), and the DS values are irrelevant here. 
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A B C D E 

VN 3 3 3 3 3 

RU 5 5 5 5 5 

DS - - - - - 

Suppose B receives an update request and finds that it can communicate only with 
sites A and C. B determines that the latest version of replicas in its partition (i.e., 
ABC) is version 3, and the number of replicas associated with version 3 is 5. Since 
partition ABC has 3 of the 5 copies, site B decides that it belongs to the distinguished 
partition (the partition that has more than half of the current replicas) and processes 
the update. Because three sites participated in the update, RU is changed to 3. Since 
RU = 3, DS lists the IDs of the three sites that participated in the update, namely, 
A, B, and C. The state at this point is as follows: 

A B C D E 

VN 4 4 4 3 3 

RU 3 3 3 5 5 

DS ABC ABC ABC - - 

Suppose C receives an 
discovers that the latest 

update and finds 
version is 4 and 

that it 
since 

can 
RUC 

communicate only with B. It 
= 3, the protocol chooses the 

static voting protocol (see Sec. 13.6.1). The reason for using static voting is that when 
the number of replicas is three, Jajodia and Mutchler [23] found that the static voting 
performs better than dynamic voting. Given DSC = ABC, B and C form a majority 
among ABC and therefore, C processes the update. The state changes to the following: 

A B C D E 

VN 4 5 5 3 3 

RU 3 3 3 5 5 

DS ABC ABC ABC - - 

Note that sites B and C do not change RU or DS as they are using the static voting 
protocol. Suppose D receives an update and discovers that it can communicate with 
B, C, and E. The latest version in the partition BCDE is 5 with RU = 3. So a majority 
from DS = ABC is sought, which is available. Since the partition BCDE has four 
sites, RU is set to 4. Since RU is even, DS is set to B, which has the highest 
order (assuming the lexicographic ordering was used to linearly order the copies). 

The current state is as follows: 

A B C D E 

VN 4 6 6 6 6 

RU 3 4 4 4 4 

DS ABC B B B B 

Suppose C receives an update and discovers that it can communicate only with B. 
Since partition BC contains exactly half the sites in the partition and contains the 
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distinguished site B (DS is used to break the tie), the update is carried out in partition 
BC and the state changes to the following: 

A B C D E 

VN 4 7 7 6 6 
RU 3 2 2 4 4 
DS ABC B B B B 

We now describe the steps of the majority based dynamic voting protocol. 

OUTLINE OF THE PROTOCOL. When site i receives an update, it executes the 
following protocol [23]: 

1. Site i issues a Lock_Request to its local lock manager. 

2. If the lock is granted, i sends a Vote-Request message to all the sites. 

3. When a site j receives the Vote_Request message, it issues a Lock_Request to its 

local lock manager. If the lock is granted, j sends the values of VNj, RUj, and 
DSj to site i. 

4. From all the responses, site i decides whether it belongs to the distinguished parti¬ 
tion, described shortly. 

5. If i does not belong to the distinguished partition, it issues a Release-Lock request 

to its local lock manager and sends Abort messages to all the other sites that 

responded. A site, on receiving a Abort message, issues a Release_Lock request to 
its local lock manager. 

6. If i belongs to the distinguished partition, it performs the update if its local copy 

is current. Otherwise, i obtains a current copy from one of the other sites and then 

performs the update. Note that along with the replica update, VN{, RUi, and DSt 
are also updated (described shortly under update). Site i then sends a Commit 

message to all the participating sites along with the missing updates and values 

of VNi, RUi, and DSi. It then issues a Release-Lock request to the local lock 
manager. 

7. When a site j receives a commit message: it updates its replica, updates the variables 

VNj, RUj, and DSj, and issues a Release_Lock request to its local lock manager. 

Distinguished partition. Note that when this procedure is invoked, the invoking site 

i has collected the responses for its Vote-Request messages. Let P denote the set of 
responding sites. 

1. The site i calculates the following values: 

M = max{UAj : j E P} 
Q = {j € P : VNj = M} 
N = RUj, where j e Q} 
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Note that M gives the most recent version in the partition; Q gives the set of those 

sites containing the version M; N gives the number of sites that participated in the 

latest update indicated by version number M. 

2. If Cardinality(Q) > N/2, then site i is a member of the distinguished partition, 

because it has collected votes from the majority of members that participated in the 

latest updates. 
Otherwise, if Cardinality(Q) = N/2, then the tie needs to be broken. Arbitrar¬ 

ily select a site j e Q\ If DSj E Q, then i belongs to the distinguished partition. 

Note that when N is even, RUj is also even and DSj contains the site with the 

highest order in the linear order (see Update). In other words, site i is in the 

partition containing the distinguished site. 

3. Otherwise, if N = 3, and if P contains two or all three sites indicated by the DS 

variable of the site in Q, then i belongs to the distinguished partition. Note that 

since step 2 did not apply and N = 3, there is only one site in Q. 

4. Otherwise, i does not belong to the distinguished partition. 

Update. Update is invoked when a site is ready to commit. The variables associated 

with the replica at site i are updated as follows: 

VNi = M + 1 
RUi = Cardinality(P) 

DSi is updated as follows when N / 3, since static voting protocol is used when N -3. 

K if RUi is even, where K is the site with the highest order 

P if RUi = 3 

Note that this protocol can deadlock because it employs locks. In case of a deadlock, 

the deadlock must be resolved (see Chap. 7 for deadlock detecting and resolving algo¬ 

rithms). Stochastic analysis of this algorithm can be found in [24], 

13.9 DYNAMIC VOTE REASSIGNMENT PROTOCOLS 

In dynamic vote reassignment protocols, the number of votes assigned to a site changes 

dynamically. We first illustrate this concept with the help of an example. Let both read 

and write quorums be three (i.e., r = w = 3) for the system shown in Fig. 13.8. If 

a network partition separates site 4 from the rest of the system, then sites 1, 2, and 

3 can still collect a quorum (or a majority) while site 4 cannot. If another partition 

occurs and separates site 3 from its group (i.e., we have three partitions consisting of 

sites {1,2}, {3}, and {4}) then no partition will be able to collect a quorum and the 

system cannot execute any read or write request. Note that the above situation can also 

occur if sites 3 and 4 both fail. We can reduce the likelihood of the above situation by 

increasing the number of votes assigned to the group {1,2,3} before the second partition 

or failure occurs. That is, after any failure, the majority group if any (in this example, 

the group {1,2,3}) dynamically reassigns the votes in order to increase its voting power 
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and increase the system’s chances of surviving subsequent failures. For instance, the 

votes assigned to sites 1, 2, and 3 can each be changed to five making the total number 

of votes in the system seventeen. Now after the second failure, the group {1,2} has ten 

votes out of a total of seventeen, and therefore a quorum can still be collected. 

The idea of dynamic vote reassignment was first suggested by Gifford [19]. How¬ 

ever, dynamic vote reassignment was discussed in complete detail by Barbara, Garcia- 

Molina, and Spauster [81 on which the following discussion is based. Barbara et al. 

categorized the dynamic vote reassignment into two types: 

Group Consensus. The sites in the active (majority) group agree upon the new 

vote assignment using either a distributed algorithm or by electing a coordinator to 

perform the task. Sites outside the majority group do not receive any votes. 

Because this method relies on the active group’s participation, the current system 

topology will be known before deciding the vote assignments. By using that infor¬ 

mation, this method can make an intelligent vote assignment that is more resilient to 

future failures. However, deciding the vote assignment and installing it are quite com¬ 

plicated. Moreover, a good vote assignment requires accurate information on the current 
topology. 

Autonomous Reassignment. Each site uses a view of the system to make a 

decision about changing its votes and picking a new vote value without regard to the 

rest of the sites. In this method, a site essentially tries to obtain all or part of the 

votes of a site (or sites) that have been separated from the majority group. Before the 

change is made final, the site must obtain approval for its vote change from a majority to 

ensure that the mutual exclusion provided by the voting mechanism is not compromised. 

Since each site operates on its own, the global vote assignment may not be as effective 

compared to the vote assignment in the group consensus method. However, this method 
is quicker, simpler, and more flexible. 

In the following, only the autonomous method is described. Interested readers 

are referred to [6] for techniques to determine vote assignments for a given topology. 
Algorithms for arriving at a consensus can be found in [17, 18], 

votes = 1 

votes = votes = 1 

FIGURE 13.8 
votes = 2 An example of vote assignment. 
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13.9.1 Autonomous Vote Reassignment 

The autonomous vote reassignment protocol is initiated when a site chooses a new vote 

value. The way in which a site picks a new vote value is a policy decision and is 

discussed later. The protocol allows the increasing as well as the decreasing of the vote 

value assigned to a site. The protocol uses a vote changing protocol to install the new 

vote value. The vote changing protocol invokes a vote collecting protocol to ensure 

that it has approval from a majority. The vote collecting protocol is also used by other 

operations (such as updates) that require majority approval. We next describe the data 

structures used by the protocol. 

DATA STRUCTURES. At each site i, a vector V) is maintained in the stable storage, 

which represents what site i believes to be the global vote assignment. Vx[j], an element 

of Vi, indicates the number of votes of site j according to site i. Another vector 

maintained at each site i is Vi, where Vj[j] indicates the votes of site j as determined 

by site i upon the collection of votes. It will be clear later from the protocols that the 

values of vt\j] and Vi[j] are not necessarily the same. As both the increasing and the 

decreasing of vote values assigned to a site are allowed, it is necessary to keep track 

of the currency of the vote values. This is done by maintaining a version vector N at 

each site. Nz[j\ represents the version number of V) [ j J at site i. 

Vote increasing protocol. When site i wishes to increase its vote value, it takes the 

following steps. 

1. Site i sends Vi and Ni along with the new vote value to the sites with which it can 

communicate. 

2. Site i waits for a majority of the sites to respond with their votes (see the vote 

collecting protocol below). 

3. If a majority of votes were collected (see the vote collecting protocol), then site i 

performs the following: 

Vi[i\ new value ; N{[i] := Ni[i] + 1 

A site j on receiving the message sent in step 1 performs the following actions: 

• Vj[i] := new vote value of site i 

• Nj[i] := NS] + 1 

Vote decreasing protocol. Suppose site i wishes to decrease its vote value. A decrease 

in vote value implies that a site is relinquishing some (or all) of its voting power, which 

does not endanger mutual exclusion [8]. This fact yields a simple protocol where site 

i need not obtain a majority before changing its vote value. Site i takes the following 

steps. 
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1. Set Vi[i\ to the new value. 

2. N, [?,] := Ni[i] + 1 

3. Send the vectors Vi and Nz to the other sites in the system. 

A site j, on receiving the above message, will perform the following actions: 

• Vj[i] := Vdi] 

• Nj[i\ := Ndi] 

Vote collecting protocol. Suppose site i is collecting votes to decide upon an event 

(read, write, vote reassignment). Each voting site j will send V3 and Nj to site i. After 

receiving the responses, the following protocol is followed at i: 

1. For each reply (V3 and Nj) received, site i performs the following actions. 

• vdj] := V3[j] 
• If V3[j] > Vdj] OR (V3[j] < Vi[j] AND Nj[j] > Nt[j]) then 

ViUl := Vj\j\: Ni[j] := N3{j] 

Note that V3[j\ > Vdj] implies that site j has increased its votes since site 

i last determined Vdj] and site i has to update its vector Vi\j] to reflect this fact. 

On the other hand, (V3[j] < Vdj] AND N3[j] > Ni[j]) implies that site 

j has decreased its votes and site i has to update its vector Vdj] to reflect this 
change. 

2. If site i does not receive a reply from some site j, then it performs the following 
actions: 

• Determines k such that k e G and Nk[j] = max{Ap[j] : p <e G}, where G is 

the set of all the sites from which site i has received replies. The site k has the 
latest information on the votes assigned to site j. 

• vdj] := Vk[j] 
Vi[j] := Vk[j] 
Ndj] ■= Nk\j] 

3. Site i decides whether it has the majority of votes or not as follows: Let K denote 

the set of all the sites in the system and G denote the set of the sites that responded. 
The total number of votes in the system is computed as: 

TOT := £ „,[*] 

keK 

The total number of votes received is computed as: 

RCVD := Y, vdk] 
k<=G 

If RCVD > TOT/2, then site i has collected a majority. 
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13.9.2 Vote Increasing Policies 

Vote increasing policies are concerned with how to pick a new vote value for a site in 

a systematic way. Barbara et al. [8] divide vote increasing policies into two strategies, 

namely, the overthrow technique and the alliance technique. 

THE OVERTHROW TECHNIQUE. After a failure (or a number of failures), one 

site in the active group takes on more votes. To decide which site should increase its 

voting power, any election algorithm can be employed. For example, in a token passing 

mechanism the site with the token will increase its votes. Another scheme to select the 

site is to linearly order the sites a priori. In case of a failure, the site with the highest 

order in the majority group will increase its votes. 

Let T be the total number of votes in the system, and assume that it is an odd 

number. Then M = (T + l)/2 is the minimum number of votes required for the 

majority. Let us also assume that site i has failed and the rest of the sites in the system 

are operational. Let j be the site selected for increasing its voting power. If j increases 

its voting power by 2Vj where V) is the voting power of site i, then we have 

T' =T + Vi, and M' = M + V) 

where T' is the total voting power in the new system configuration and M' is the number 

of votes required for the majority. With this voting configuration, all the groups that 

could obtain a majority with site i can still obtain a majority using the votes of site j 
(see Problem 13.2). Note that the increase in the number of votes should be at least 2V) 

and M should be changed to M' to ensure that the mutual exclusion is not compromised 

when site i becomes available again. By increasing the number of votes by 2V), we 

counteract against those votes that site i holds and would have contributed if it were in 

an active group. 

THE ALLIANCE TECHNIQUE. With this technique, if a failure occurs or a number of 

failures occur, all the sites in the active group increase their votes. Again the increase in 

the number of votes should be at least twice the number of votes held by the unavailable 

site(s). There are many possibilities to increase the votes under this technique. Suppose 

site i becomes unavailable: (1) all sites will increase their voting power by \2Vi/N) 

where N is the number of sites in the majority group, or (2) all sites will increase their 

voting power by 2V) votes. 
Irrespective of whether the alliance or the overthrow technique is used to increase 

votes in the system, some disparity in voting power among the sites will result. This 

will of course affect availability, which depends on the availability of sites with higher 

voting power. Also, when the token passing mechanism is used in the overthrow scheme, 

if the token ends up in a site that belongs to a partition that does not form a majority, 

the votes are not increased. This means that no partition will have the majority, thus 

affecting availability. Over a period of time, with many increases in voting power, the 

imbalance in voting power may reach a point where it will be desirable to balance the 

voting power of sites. 
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13.9.3 Balance of Voting Power 

There are two approaches to restore the balance of voting power among the sites [8]: 

• A site that has been out of the active group can “catch up” when it returns to the 

active group, in other words, it increases its votes. For an example of this technique, 
readers are referred to [8], 

• When a site that has been out of the active group returns, the sites that have increased 

their votes can relinquish them, that is, decrease their votes. This technique requires 

that each site remember the number of additional votes it has taken for each site’s 
absence. 

13.10 FAILURE RESILIENT PROCESSES 

The fundamental unit of execution is a process. Flence, in order for any system to 

be fault-tolerant, the processes of that system must be resilient to system failures. A 

process may recover immediately upon recovery of the system and continue execution 

from where it was interrupted due to the failure. We do not call such a process a resilient 

process, because the system may be unavailable for a long duration, thereby disrupting 

the service provided by the process. A process is said to be resilient if it masks failures 

and guarantees progress despite a certain number of system failures. In other words, a 

minimum disruption is caused to the service provided by the process in the event of a 
system failure. 

Two approaches have been proposed to implement resilient processes: backup 
processes and replicated execution. 

13.10.1 Backup Processes 

In the backup processes approach, each resilient process is implemented by a primary 

process and one or more backup processes. The primary process executes while the 

backup processes are inactive. If the primary process terminates because of a failure, 

one of the backup processes becomes active and takes over the functions of the primary 

process. To facilitate this takeover and minimize the computation that has to be redone 

by the backup process, the state of the primary process is stored (checkpointed) at 

appropriate intervals. The checkpointed state is stored in a suitable place such that the 

failure of the primary process’s machine does not affect the checkpoint’s availability. 

Checkpointing is also referred to as the synchronization of the primary and backup 

processes. An attractive feature oi this scheme is that very little system resources are 

consumed by the backup processes as they are inactive. However, the computation 

may be delayed because the checkpointing is done during the normal operation of 

the system. Moreover, there will be a delay before a backup process can take over 

for the failed primary process for the following reasons. (1) The termination of the 

primary process must be detected before a secondary process can begin execution. The 

termination detection in distributed systems typically involves timeouts, which causes 

delays. (2) When a backup process begins execution, it may have to perform some 
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amount of recomputation as the checkpoint does not always reflect the state of the 

primary process at the time of its termination. 

The recomputation by a backup process to catch up with the primary process 

introduces additional complexities. The backup process should take care not to reissue 

IOs and resend messages that are already sent by the primary process. In addition, 

messages that were processed by the primary process since the latest checkpoint must 

to be available for the backup process during the recomputation phase. 

When a primary process fails, the issue of which backup process will take over 

the primary process functions needs to be resolved. This issue can be handled through 

election algorithms in which one of the backup processes is elected as the new primary. 

However, a simpler method has been used, wherein the processes are logically arranged 

as a ring. When the primary process fails, a neighbor process in the ring is chosen to 

be the next primary process [10, 32], 

13.10.2 Replicated Execution 

In the replicated execution approach, several processes execute the same program con¬ 

currently. As long as one of the processes survives failures, the computation or the 

service continues. A significant advantage of replicated execution is that it can be used 

to increase reliability as well as availability. The reliability of a computation can be 

increased by taking a majority consensus among the results generated by all the process. 

This final result can then be used in subsequent computations. If replicated execution 

is used only to increase availability, the output of any one of the processes can be used 

as the final result. The main disadvantage of replicated execution is that a number of 

CPUs must be made available for a single computation. 
If the computation performs nonidempotent operations, problems may arise. (An 

operation is idempotent if the effect of executing it several times on the system state 

is identical to the effect of executing it only once.) For example, if the computation 

uses random number generating routines, then problems arise as each process can use 

a different random number, resulting in different outputs by the processes. Consider 

a distributed computation where several processes cooperate by exchanging messages 

in performing the computation. Suppose these processes are implemented as resilient 

processes through replicated execution. In this case, only one of the replicated processes 

should be allowed to send messages to the other resilient processes. Also note that the 

messages exchanged may arrive in different orders at different processes. Under such 

circumstances, it must be ensured that all the replicas of a resilient process choose the 

same communicant for their next message [31]. 
Similarly, if the computation must communicate to the outside world, only one of 

the messages generated by the replicated processes should be allowed to communicate 

to the outside world. 

13.11 RELIABLE COMMUNICATION 

Consider a system that maintains replicated data. (Replicated data may be maintained 

by a system for higher availability and/or for higher reliability). Assume that at each 
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site, there is a data manager process responsible for maintaining the replica at that 

site. Suppose a process p wishes to update a replicated data item. The following three 

scenarios can occur if p sends the update message and then fails [9]: 

• A data manager receives the update and then learns of the failure of p. 

• A data manager learns of the failure of p before receiving the update. 

• A data manager neither receives the update nor learns of p’s failure. 

Under these circumstances, if a system must be fault-tolerant (i.e., behave in 

a certain way or mask failures), it is necessary that all the data managers behave 

identically. To ensure this, all the data managers are required to have an identical view 

of the events occurring in the system. Note that even under normal operating conditions, 

it is necessary that all the data managers carry out the updates in the same order to 

prevent inconsistencies among the replicas. All the data managers in the system can 

have an identical view if the following conditions are met. (1) The messages received at 

them are identically ordered, (Identical ordering helps to process messages in the same 

order at all data managers.) (2) Each message is either received at every data manager 

or at none of them (i.e., atomic broadcast). We next describe a communication protocol 

proposed by Birman and Joseph [9] that satisfies these conditions. 

13.11.1 Atomic Broadcast 

The protocol has two phases, and it assumes that there is a queue associated with each 
process to store the received messages (see Fig. 13.9). 

Phase I 

1. A process (sender) wishing to send a message to a group of destinations (receivers) 

multicasts the message to the group. (The ids of the receivers are also part of the 
message.) 

2. On receiving the message, a receiver: 

• Assigns a priority (highest among all the buffered messages’ priorities) to the 

message, marks it undeliverable, and buffers the message in the message queue. 

(Note that a local timestamp based on the Lamport’s Clocks can be used as a 
unique priority.) 

• It then informs the sender of the priority assigned to the message. 

Messages 

FIGURE 13.9 
Data structure used by the reliable communication protocol. 
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Phase II 

1. On receiving the responses from all the destinations, the sender: 

• Chooses the highest priority assigned by all the receivers as the final priority for 

the message. 

• It then multicasts the final priority of the message to all the receivers. 

2. On receiving the final priority for a message, a receiver: 

• Assigns the priority to the corresponding message. 

• Marks the message as deliverable. 
• Orders the messages in the message queue based on the increasing order of 

priorities. 

• The message will be delivered when it reaches the head of the queue and has 

been marked as deliverable. 

If a receiver detects that it has a message marked undeliverable, whose sender 

has failed, it performs the following steps as a coordinator to complete the protocol: 

1. It interrogates all the receivers about the status of the message. A receiver may 

respond in one of the following three ways: 

• The message is marked undeliverable and the priority assigned by it to the mes¬ 

sage. 
• The message is marked deliverable and the final priority of the message. 

• It has not received the message. 

2. After collecting all the responses, the coordinator will perform the following steps: 

• If the message was marked deliverable at any of the receivers, the final priority 

assigned to the message is multicasted. On receiving this message, receivers will 

perform the steps of phase II. 
• Otherwise, the coordinator reinitiates the protocol from phase I. 

Note that this protocol requires that receivers retain messages even after they are 

delivered. A scheme to discard delivered messages can be found in [9]. 

13.12 CASE STUDIES 

13.12.1 Targon/32: Fault Tolerance Under UNIX 

Targon/32 is a fault-tolerant version of UNIX for distributed systems developed at 

Nixdorf Computer [10]. Providing fault-tolerance with complete transparency is the 

goal of this system. Targon/32 implements fault-tolerant user processes that employ the 

technique of backup processes. Once a user or the system administrator specifies which 

processes are to be backed up, the rest is completely transparent. Programs need no 

modification in order to be backed up. 

SYSTEM ARCHITECTURE. The system consists of a local area network of two to 

sixteen machines connected via a fast dual bus. Each machine is a shared memory 
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multiprocessor consisting of three processors. Each processor runs an operating system 

kernel that is responsible for the creation and scheduling of processes and for inter¬ 

process communication. One of the three processors is responsible for the creation, 

maintenance, and recovery of backup processes. The other two processors are available 

for executing user processes. 

There is one process server per system. It is responsible for keeping track of 

the current system configuration. There are many page servers in the system whose 

number is configuration dependent. A page server is mainly responsible for backing 

up the virtual memory space of a subset of primary processes in the system. It also 

maintains the virtual memory space as well as checkpoints for the backup processes. 

Other servers in the system are hie servers, TTY servers (that manage communication 

with terminals and related devices), and Raw servers (that manage unrestrained access 
to disk and tape servers). 

Processes communicate through channels which have queues to hold unread mes¬ 

sages. A user process views a channel as just another UNIX-style hie. A channel is 

opened to establish connection, a message is sent by writing into the channel, and a 
message is read by reading the channel. 

FAILURE RESILIENT PROCESSES. Targon/32 employs a backup processes scheme 

to implement failure resilient processes. It uses one inactive process as a backup for 

the primary process. The backup process is maintained on a machine different from 

that of the primary process. The process server (which is also backed up) is responsible 

for deciding on which machines a primary process and its backup will be located. It is 

also possible to specify when and where a new backup process is created after a crash 

occurs. In one scheme, a primary process runs with a backup until a crash occurs, but 

no new backup is created after the crash. In another scheme, a new backup is created 

after a crash only when the machine in which the original primary or backup process 
resided returns to service. 

The state of a primary process is periodically checkpointed with the help of an 

operation referred to as a sync operation. However, messages received by a primary 

process after the most recent sync operation must also be made available to the backup 

in the event of primary process termination. These messages are made available in the 
following manner. 

Whenever a sender sends a message to a receiver, the message is also sent to 

the sender’s backup and the receiver’s backup. For this puipose, a three way atomic 

broadcast is used to ensure that either all three destinations, or none of them, receive the 

message. The messages are saved at the receiver’s backup until the next sync operation. 

A variable called write since sync is used at the sender’s backup process to keep track 
of the number of messages sent by the primary process. 

Whenever the primary process’s machine fails, its backup is activated (see “Crash 

Detection and Handling” and “Process Recovery” later in this section). It demand pages 

the state of the primary and begins execution from that state on. The backup process 

reads the same messages that were read by the primary process, and it avoids resending 

messages by using the write since sync count. Once the backup process catches up with 
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the primary process, the saved messages are discarded and the write since sync count 

is set to zero. 

If a primary process forks off a child process, a birth notice is sent to the backup’s 

machine. On receiving the birth notice, the kernel sets up the necessary data structures 

for the child process’s backup to hold the messages that are sent to it. 

Kernel interaction. Whenever a backup process takes over for its primary process, 

every interaction between the backup and the kernel on its machine must appear to 

the backup as it did to the primary. Therefore, the system should insulate the backup 

process from any differences between the kernel at the backup’s machine and the kernel 

at the primary process. In other words, system calls by a backup process should return 

the same information as they would have returned at the primary process’s location. 

In Targon/32, many types of information (such as the process id, the priority of 

the process, etc.) are directly returned by the local kernel at the primary process. These 

types of information are maintained at the backup process’s kernel also, to ensure that 

they can be returned as replies to system calls by the backup in the event of a primary 

process’s machine failure. 

SYNC OPERATION. The state of the primary process and its backup process are 

made identical by the sync operation. The sync operation is automatically initiated 

by the kernel whenever the number of messages read by the primary process exceeds 

a certain number, or the primary process has executed for a duration longer than a 

threshold since the previous sync operation. Normally, a sync operation is initiated 

immediately before the return from a system call, a page fault, or at the beginning 

of a new time slice. This facilitates the reconstruction of the primary process’s kernel 

stack for the backup process, without relying on the local kernel’s data (e.g., physical 

addresses). If a sync operation must be performed while a system call is in progress (this 

might be necessary while awaiting a response from a slow device such as a terminal), 

the process’s state is saved as though it were just about to enter the system call. This 

also makes the reconstruction of the kernel’s stack straightforward [lOj. 
The sync operation is handled in two stages at the primary process’s machine. In 

the first stage, a normal paging mechanism, is used to send all the dirty pages (via a 

message) to the page server and to the page server’s backup. A dirty page is one that 

has not been sent to the page server since its last modification. The primary process’s 

stack (if it has changed since the last sync operation) is also saved through the paging 

mechanism, as the stack is kept in pages owned by the process rather than in the kernel’s 

space. The page server, upon receiving these pages, adds them to the primary process’s 

page account. 
The second stage of the sync operation constructs a sync message. This message 

contains [10]: 

• All machine independent information about the primary process’s state, such as the 

virtual address of the next instruction to be executed, register values, etc. 

• Information about all the open channels and the number of messages read from each 

channel since the last sync operation. 
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• A small amount of information allowing the construction of the kernel stack on 

recovery so that the process appears to be just entering or just returning from a 

system call. 

Once the sync message is constructed, it is sent to the primary process’s backup, 

the page server, and the page server’s backup, using the atomic message delivery 

mechanism. The primary process resumes normal operation immediately upon queuing 

the sync message. Any messages sent by the primary process will not be delivered 

before the sync message, as the communication channels are FIFO. If the primary 

process crashes before the sync message leaves the machine, the backup process starts 

execution from the state saved by the previous sync operation. 

The page server, upon receiving the sync message, makes the backup process’s 

page account identical to the page account of the primary process and frees up any 
pages that are no longer needed. 

The machine on which the backup process is running, upon receiving the sync 

message, updates the backup’s state and deletes all the messages (previously received 

and already read by the primary) saved since the last sync operation. (Recall that 

any message sent to a primary process is also sent to its backup.) Also, the variable 
writesince^sync is reset to zero. 

DETERMINISTIC EXECUTION IN THE PRESENCE OF SIGNALS. Whenever 

a signal is generated in UNIX (e.g., kill, alarm expiration, or typing certain control 

characters at the terminal), it generates a message to the process server requesting that 

a signal be sent. The signal is sent to both the primary process and its backup. The 

signal is queued at the backup process. Signals are special in the sense they must be 

dealt with—ignored or handled—immediately on their arrival, unlike regular messages 

which can be queued for later consumption. It is generally difficult to inform the backup 

process of the exact point at which the primary process dealt with a signal, especially 

when failures occur. Hence to make sure that the backup deals with the signal at the same 

point as the primary process, Targon/32 designers made the primary machine initiate a 

sync operation just before handling any signal. This guarantees that, on recovery, the 

backup will find the signal pending and will handle it at exactly the same place as the 

primary process did. It is necessary to guarantee that a backup ignores the same signals 

ignored by the primary. Thus, whenever a message is sent by the primary, the count of 

ignored signals since the last message send is piggybacked on the message. This count 

is used in the backup’s machine to remove ignored signals. This ensures that only those 

signals handled by the primary process are available at the backup’s machine. 

CRASH DETECTION AND HANDLING. Crash detection in Targon/32 is based on 

the protocol proposed in [471 The machines are organized as a virtual ring. Each 

machine periodically sends a report that it is alive to the neighbor to its right. Each 

machine expects a report periodically from the neighbor to its left. Should a machine 

fail to report, the neighbor to its right attempts to communicate with it. If its efforts 
fail, it takes the following actions [10]: 
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• It determines whether it can communicate with any other machine in the system. 

If not, it assumes that it must crash, otherwise it assumes that its neighbor to the 

left has crashed. It sends a message that orders its neighbor to the left to crash, in 

case its neighbor can receive messages and is not aware of its problem. This step 

becomes tricky when there are only two machines operating in the system. 

• It broadcasts a machine-dead message that the neighbor to its left has crashed. 

• It locates a new neighbor to its left. 

A machine, on receiving a machine-dead message, will stop trying to communicate 

with the failed machine. It puts the message at the end of the message queue for the 

backup processes located in the machine. Thus, backups are sure to deal with any sync 

messages that have previously arrived but are yet to be handled. 

PROCESS RECOVERY. Once the news of the primary process’s termination (through 

a machine-dead message) reaches its backup process, it must be activated. This is done 

by the kernel as follows [10]: 

• It allocates and initializes the data structures needed for the local kernel state and 

memory mapping. 

• It requests a list of the pages held by the page server so that memory mapping tables 

can be correctly initialized. 

• It sets up the kernel stack from the latest sync information. 

• It puts the backup process on the run queue. 

At this point, the backup process is ready to begin execution. In the user mode, 

the process executes as its primary process would execute. While the backup process 

is catching up with the primary process, a backup process may act differently from its 

primary process (only in the kernel mode) under the following circumstances: 

• When the backup process attempts to send a message, if the kernel finds the 

writes since sync count greater than zero, it decrements the count by one and dis¬ 

cards the message. By using this technique, the backup process avoids resending a 

message that has already been sent by the primary process. 

• When the backup process attempts to fork off a child process, the kernel checks for 

the existence of a birth notice. If one exists, the child process id is retrieved from 

the birth notice and is returned to the backup process. 

• Finally, the backup process is not allowed to sync until it has completely caught up 

with the primary process. 

PERFORMANCE. A Targon/32 system user whose primary process dies experienced 

a delay of five to fifteen seconds. The performance of a fault-tolerant two-machine 

Targon/32 system is 1.6 times that of a standard UNIX running on a single machine. 
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13.13 SUMMARY 

Fault-tolerant computer systems prevent the disruption of services provided to users. A 

system can be designed to be fault-tolerant in two ways: a system may mask failures or 

it may exhibit a well defined failure behavior in the event of a failure. When a system is 

designed to mask failures, it continues to perform its specified function despite failures. 

On the other hand, a system designed to behave in a well defined manner may or may 

not perform the specified function during failures, but it may facilitate actions suitable 
for recovery. 

In this chapter, we discussed commit protocols and voting protocols, two widely 

used techniques in the design of a fault-tolerant system. Commit protocols implement 

a well defined behavior in the event of failures. Voting protocols, on the other hand, 
mask failures in a system in the event of failures. 

Two-phase commit protocols block in the event of site failure. Nonblocking com¬ 

mit protocols under independent recovery conditions are only resilient to single site 

failures. Voting protocols are much more fault resilient than commit protocols. They 

can tolerate multiple site failures and communication failures as long as quorums can 

be obtained. Dynamic voting protocols provide higher availability than static voting 

protocols by adapting the number of votes assigned to sites or the set of sites that can 
form a majority to the changing state of the system. 

To implement a fault-tolerant distributed system, processes in the system should 

be able to tolerate system failures and communicate reliably. Two techniques were de¬ 

scribed that have been used to implement processes that are resilient to system failures. 

In one technique, backup processes stand by to take over the function of a failed process. 

In the second technique, a multiple number of processes execute simultaneously. As 

long as one of the processes survives, the system can tolerate failures. In addition, we 

described a technique based on a two-phase commit protocol to send messages reliably 
among processes. 

13.14 FURTHER READING 

Chang and Gouda [11] provide a theoretical treatment of recovery in distributed systems. 

They discuss the conditions necessary for independent recovery in the case of site 

failures where a site does not coordinate recovery activity with the other sites in the 
system. 

Ramarao [38] derives characterizations of commit protocols that are resilient to a 

prescribed number ol failures (site and link faults not leading to network partition). He 

also investigates the effects ot the architecture of the underlying distributed system on 

the commit protocols. Based on these observations, two nonblocking commit protocols 
are designed. 

In (28], Levy, Korth, and Silberschatz propose an optimistic commit protocol to 

overcome the blocking problem of two-phase commit protocol in the event of failures. 

In this protocol, locks are released as soon as a site agrees to commit a transaction. If 

the transaction must eventually be aborted, its effects are undone using a compensation 
transaction. 
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The static voting of Sec. 13.6.1 requires a minimum of three replicas to be use¬ 

ful, which can be expensive in terms of storage requirement. Paris [34] replaces some 

replicas by mere records of the current state of the data, thus reducing the storage 

requirements but not decreasing the availability of data. The reliability of voting mech¬ 

anisms is discussed by Barbara and Garcia-Molina in [7]. In [46], Tong and Kain 

present different algorithms to assign votes to replicas aimed at maximizing reliability. 

Agrawal and Jalote [2] have proposed an efficient voting protocol that requires only 

OiVN) messages for an operation where N is the number of nodes in the system. 

Agrawal and Bernstein [1] have proposed a nonblocking quorum consensus to reduce 

delays in accessing databases while collecting a quorum. 
Ahamad and Ammar [3] present a multidimensional voting scheme. In this scheme, 

the vote assignment to each replica and the quorums are /c-dimensional vectors of non¬ 

negative integers. Each dimension of the vote and quorum assignment is similar to 

voting, and the quorum requirements in different dimensions can be combined in a 

number of ways. This makes multidimensional voting more powerful than static vot¬ 

ing. Akhil Kumar [27] has presented a randomized algorithm for vote assignment. The 

availability obtained by using this algorithm is shown to be close to those produced by 

optimal assignments. 
A majority based dynamic voting protocol presented in Sec. 13.8 does not keep 

track of network partitions that occur between two successive initiations of the majority 

determination, thus reducing availability under certain conditions. In [45], Tang and 

Natarajan propose a dynamic voting scheme to overcome the above problem. In [16], 

yet another dynamic voting scheme is presented by Davcev. 
In [22], Huang and Li propose a quorum based commit and termination protocol 

to provide improved availability of data in the presence of concurrent site failures, lost 

messages, and network partitioning. 
In [37], Ramarao discusses the necessary and sufficient conditions for the im¬ 

plementation of atomic transactions in the presence of network partitions. He reports 

that protocols to implement atomic actions despite network partitions exist only under 

unrealistically strong conditions. 
Replication is a key method employed to achieve fault tolerance. In [26], Joseph 

and Birman describe how replicated data is maintained in the ISIS system. Oki and 

Liskov present a replication method based on the primary copy technique to achieve 

fault tolerance, that causes little delay to user’s computation [33]. In [30], Misra, Pe¬ 

terson, and Schlichting propose a scheme to implement fault-tolerant replicated ob¬ 

jects using an IPC protocol that explicitly preserves the partial order of messages 

exchanged among processes. On the other hand, Jalote [25] proposes a scheme that 

exploits properties of broadcast networks to implement resilient objects in distributed 

systems. 
Replicated execution provides fault tolerance by having a multiple number of 

processes execute the same program concurrently. However, many processes executing 

the same program introduce consistency problems. In [42], Shi and Belford explain 

why inconsistencies arise and propose algorithms to ensure that computation replicas 

behave consistently. In [31], Natarajan and Tang propose a synchronization scheme to 

prevent inconsistencies among computation replicas. 
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In order to design a fault-tolerant system, it is important to be able to detect 

failures. In [40], Ricciardi and Birman discuss the ‘group membership problem,’ which 

relates to failure detection in distributed systems. 

Delivering messages reliably enhances the fault tolerance capability of distributed 

systems. In [15], Dasser describes an enhanced version of the reliable communication 

protocol described in Sec. 13.11 to cut down the time that expires from the moment a 

site receives a message to the moment it effectively delivers this message to the user. 

There are many other schemes to deliver messages reliably and these can be found 

in [5, 12, 35, 41]. In real-time systems, it is critical that messages are delivered reliably 

and in a timely manner. In [36], Ramanathan and Shin propose a scheme to deliver 

messages before their deadlines and reduce overhead incurred by the system as a result 
of untimely message deliveries. 

Many distributed systems have been designed with fault tolerance as one of their 

goals. Rose [32] is a reliable distributed operating system developed at the University 

of Illinois at Urbana-Champaign. It makes use of both backup processes and replicated 

execution to implement fault-tolerant processes. In [4], Ahamad, Dasgupta, LeBlanc, 

and Wilkes discuss features provided in the Clouds operating systems for fault-tolerant 

computing. A discussion on reliability mechanisms provided in SDD1 (system for dis¬ 
tributed databases) can be found in [21], 

A comprehensive bibliography for fault-tolerant distributed computing can be 
found in [13]. 

PROBLEMS 

13.1. Consider a system with three sites employing two-phase commit protocols. Illustrate 
a situation wherein a site may not be able to arrive at a consistent decision concerning 
the outcome of the transaction in the event of site failures. Assume that a site can 
communicate with any other operating site to check the outcome of a transaction. 

13.2. Consider a system using the dynamic vote reassignment protocol (Sec. 13.9.2) with 
an overthrow technique to increase the voting power of a site. Show that if a site j 
increases its voting power by twice the number of votes of the failed site i, all the 
majority groups that used i can still form a majority group using site j instead. 

13.3. The two-phase commit protocol of Sec. 13.4.1 is a centralized protocol where the 
decision to abort or commit is taken by the coordinator. Design a decentralized 
two-phase commit protocol where no site is designated to be a coordinator. 

13.4. Design a decentralized two-phase commit protocol where no site is designated to be 

a coordinator which uses only O(VN) messages where N is the number of sites in 
the system. (Hint: See Maekawa’s Mutual Exclusion algorithm.) 
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14.1 INTRODUCTION 

Security and protection deal with the control of unauthorized use and the access to 

hardware and software resources of a computer system. Business organizations and 

government agencies heavily use computers to store information to which unauthorized 

access must be prevented. For example, in business organizations, this information in¬ 

cludes financial or personnel records, monetary transactions, legal contracts, payrolls, 

product information, future planning and strategies, etc. With the prevalent use of elec¬ 

tronic fund transfers, the banking industry has become highly susceptible to malicious 

access and use. Examples in government agencies include strategic military informa¬ 

tion, CIA files, FBI files, blueprints of military hardware, information about military 

installations, etc. 
Clearly, an unauthorized use of a company’s confidential information can have 

catastrophic financial consequences and the unauthorized use of secret information of 

a government can have serious implications for the security of that nation. Therefore, 

with the widespread use of computers in business and government organizations, the 

security and protection of computer systems have become extremely important factors. 

371 
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Note that not only should the misuse of secret information be prevented, but the de¬ 

struction of such information should be prevented as well. For example, the destruction 

of information about customer account balances and bank transactions can have serious 

socioeconomic ramifications. 

In this chapter, we study models of protection and techniques to enforce security 

and protection in computer systems. 

14.2 PRELIMINARIES 

14.2.1 Potential Security Violations 

Anderson [2] has classified the potential security violations into three categories: 

Unauthorized information release. This occurs when an unauthorized person is 

able to read and take advantage of the information stored in a computer system. This 

also includes the unauthorized use of a computer program. 

Unauthorized information modification. This occurs when an unauthorized per¬ 

son is able to alter the information stored in a computer. Examples include changing stu¬ 

dent grades in a university database and changing account balances in a bank database. 

Note that an unauthorized person need not read the information before changing it. 
Blind writes can be performed. 

Unauthorized denial of service. An unauthorized person should not succeed in 

preventing an authorized user from accessing the information stored in a computer. Note 

that services can be denied to authorized users by some internal actions (like crashing 

the system by some means, overloading the system, changing the scheduling algorithm) 

and by external actions (such as setting fire or disrupting electrical supply). 

14.2.2 External vs. Internal Security 

Computer systems security can be divided into two parts: external security and internal 

security. External security, also called physical security, deals with regulating access 

to the premises of computer systems, which include the physical machine (hardware, 

disks, tapes, power supply, air conditioning), terminals, computer console, etc. External 

security can be enforced by placing a guard at the door, by giving a key or secret code 
to authorized persons, etc. 

Internal security deals with the access and use of computer hardware and software 

information stored in the computer system. Aside from external and internal securities, 

there is an issue of authentication by which a user “logs into” the computer system to 
access the hardware and the software resources. 

Clearly, issues involved in external security are simple and administrative in na¬ 

ture. In this chapter, we will mainly be concerned with the internal security in computer 
systems, which is more challenging and subtle. 

14.2.3 Policies and Mechanisms 

Recall from Chap. 1 that policies refer to what should be done and mechanisms refer 

to how it should be done. A protection mechanism provides a set of tools that can be 
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used to design or specify a wide array of protection policies, whereas a policy gives 

assignment of the access rights of users to various resources. The separation of policies 

and mechanisms enhances design flexibility. 

Protection in an operating system refers to mechanisms that control user access to 

system resources, whereas policies decide which user can have access to what resources. 

Policies can change with time and applications. Thus, a protection scheme must be 

amenable to a wide variety of policies to enforce security in computer systems. In this 

chapter, we will mainly be concerned with the design of protection mechanisms in 

operating systems. 

PROTECTION VS. SECURITY. Hydra [39] designers make a distinction between 

protection and security. According to them, protection is a mechanism and security is 

a policy. Protection deals with mechanisms to build secure systems and security deals 

with policy issues that use protection mechanisms to build secure systems. 

14.2.4 Protection Domain 

The protection domain of a process specifies the resources that it can access and the 

types of operations that the process can perform on the resources. In a typical computa¬ 

tion, the control moves through a series of processes. To enforce security in the system, 

it is good policy to allow a process to access only those resources that it requires 

to complete its task. This eliminates the possibility of a process breaching security 

maliciously or unintentionally (such as by a software bug) and increases accountability. 

The concept of protection domain of a process enables us to achieve the policy 

of limiting a process’s access to only needed resources. Every process executes in its 

protection domain and protection domain is switched appropriately whenever control 

jumps from a process to another process. 

14.2.5 Design Principles for Secure Systems 

Saltzer and Schroeder [34] gave the following principles for designing a secure computer 

system: 

Economy. A protection mechanism should be economical to develop and use. Its 

inclusion in a system should not result in substantial cost or overhead to the system. One 

easy way to achieve economy is to keep the design as simple and small as possible [34], 

Complete Mediation. The design of a completely secure system requires that 

every request to access an object be checked for the authority to do so. 

Open Design. A protection mechanism should not stake its integrity on the ig¬ 

norance of potential attackers concerning the protection mechanism itself (i.e., the un¬ 

derlying principle used to achieve the security). A protection mechanism should work 

even if its underlying principles are known to an attacker. 

Separation of Privileges. A protection mechanism that requires two keys to un¬ 

lock a lock (or gain access to a protected object) is more robust and flexible than one 
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that allows only a single key to unlock a lock. In computer systems, the presence of 
two keys may mean satisfying two independent conditions before an access is allowed. 

Least Privilege. A subject should be given the bare minimum access rights that 
are sufficient for it to complete its task. If the requirement of a subject changes, the 
subject should acquire it by switching the domain. (Recall that a domain defines access 
rights of a subject to various objects.) 

Least Common Mechanism. According to this principle, the portion of a mech¬ 
anism that is common to more than one user should be minimized, as any coupling 
among users (through shared mechanisms and variables) represents a potential infor¬ 
mation path between users and is thus a potential threat to their security. 

Acceptability. A protection mechanism must be simple to use. A complex and 
obscure protection mechanism will deter users from using it. 

Fail-Safe Defaults. Default case should mean lack of access (because it is safer 
this way). If a design or implementation mistake is responsible for denial of an access, 
it will eventually be discovered and be fixed. However, the opposite is not true. 

14.3 THE ACCESS MATRIX MODEL 

A model of protection abstracts the essential features of a protection system so that 
various properties of it can be proven. A protection system consists of mechanisms to 
control user access to system resources or to control information flow in the system. 
In this section, we study the most fundamental model of protection—the access matrix 
model—in computer systems. Advanced models of protection are covered in Sec. 14.6. 
A survey of models for protection in computer systems can be found in a paper by 
Landwehr [23], 

The access matrix model was first proposed by Lampson [21]. It was further 
enhanced and refined by Graham and Denning [18] and Harrison et al. [19], The de¬ 
scription of the access matrix model in this section is based on the work of Harrison 
et al. [19]. This model consists of the following three components: 

Current Objects. Current objects are a finite set of entities to which access is to 
be controlled. The set is denoted by ‘O’. A typical example of an object is a file. 

Current Subjects. Current subjects are a finite set of entities that access current 
objects. The set is denoted by 'S'. A typical example of a subject is a process. Note 
that SCO. That is, subjects can be treated as objects and can be accessed like an 
object by other subjects. 

Generic Rights. A finite set of generic rights, R = {n, r2, r3, ..., rm}, gives 
various access rights that subjects can have to objects. Typical examples of such rights 
are read, write, execute, own, delete, etc. 

THE PROTECTION STATE OF A SYSTEM. The protection state of a system is 
represented by a triplet (S, O, P), where S is the set of current subjects, O is the set of 
current objects, and P is a matrix, called the access matrix, with a row for every current 
subject and a column for every current object. A schematic diagram of an access matrix 
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Objects - 
o 

FIGURE 14.1 
A schematic of an access matrix. 

is shown in Fig. 14.1. Note that the access matrix P itself is a protected object. Let 

variables s and o denote a subject and an object, respectively. Entry P[s, o] is a subset 

of R, the generic rights, and denotes the access rights which subject s has to object o. 

ENFORCING A SECURITY POLICY. A security policy is enforced by validating 

every user access for appropriate access rights. Every object has a monitor that validates 

all accesses to that object in the following manner. 

1. A subject s requests an access a to object o. 

2. The protection system presents triplet (s, a, o) to the monitor of o. 

3. The monitor looks into the access rights of s to o. If a (E P[s, o], then the access 

is permitted; Else it is denied. 

Example 14.1. Figure 14.2 illustrates an access matrix that represents the protection 
state of a system with three subjects, Si, S2, S3, and five objects, 01, 02, si, S2, S3. In 
this protection state, subject s 1 can read and write object 01, delete 02, send mail to 
S2, and receive mail from S3. Subject S3 owns 01 and can read and write 02. 

The access matrix model of a protection system is very popular because of its sim¬ 

plicity, elegant structure, and amenability to various implementations. We next discuss 

implementations of the access matrix model. 

o\ 02 si S2 S3 

Si read, write own, delete own sendmail recmail 

S2 execute copy recmail own block, wakeup 

S3 own read, write sendmail block, wakeup own 

FIGURE 14.2 
An access matrix representing a protection state. 
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14.4 IMPLEMENTATIONS OF THE ACCESS MATRIX 

Note that the access matrix is likely to be very sparse. Therefore, any direct implemen¬ 

tation of the access matrix for access control is likely to be very storage inefficient. In 

this section, we study three implementations of the access matrix model. 

The efficiency can be improved by decomposing the access matrix into rows and 

assigning the access rights contained in rows to their respective subjects. Note that a 

row denotes access rights that the corresponding subject has to objects. A row can be 

collapsed by deleting null entries for efficiency. This approach is called the capability- 

based method. An orthogonal approach is to decompose the access control matrix 

by columns and assign the columns to their respective objects. Note that a column 

denotes access rights of various subjects to the object. A column can be collapsed by 

deleting null entries for higher efficiency. This technique is called the access control 

list method. The third approach, called the lock-key method, is a combination of the 
first two approaches. 

14.4.1 Capabilities 

The capability based method corresponds to the row-wise decomposition of the access 

matrix. Each subject s is assigned a list of tuples (o, P[-s, o]) for all objects o that it 

is allowed to access. The tuples are referred to as capabilities. If subject s possesses 

a capability (o, P[s, o]), then it is authorized to access object o in manners specified 

in P[s, o]. Possession of a capability by a user is treated as prima facie evidence that 

the user has authority to access the object in the ways specified in the capability. The 

list of capabilities assigned to subject s corresponds to access rights contained in the 

row for subject s in the access matrix. At any time, a subject is authorized to access 

only those objects for which it has capabilities. Clearly, one must not be able to forge 
capabilities. 

A schematic view of a capability is shown in Fig. 14.3. A capability has two fields. 

First, an object descriptor, which is an identifier for the object and second, access rights, 

which indicate the allowed access rights to the object. The object descriptor can very 

well be the address of the corresponding objects and therefore, aside from providing 

protection, capabilities can also be used as an addressing mechanism by the system. 

The main advantage of using a capability as an addressing mechanism is that it provides 

an address that is context independent. That is, it provides an absolute address [14], 

However, when a capability is used as an address mechanism, the system must allow 

the embedding of capabilities in user programs and data structures, as a capability will 
be a part of the address. 

CAPABILITY-BASED ADDRESSING. Capability-based addressing is illustrated in 
Fig. 14.4. A user program issues a request to access a word within an object. The 

Access rights 

read, write, execute, etc. 

Object descriptor 

FIGURE 14.3 
A schematic view of a capability. 
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t 
length 

\ 

Main memory 

FIGURE 14.4 
An illustration of capability-based addressing. 

address of the request contains the capability ID of the object (which tells what object 

in the main memory is to be accessed) and an offset within the object (which gives 

the relative location of the word in the object to be accessed). The system uses the 

capability ID to search the capability list of the user to locate the capability that contains 

the allowed access rights and an object descriptor. The system checks if the requested 

access is permitted by checking the access rights in the capability. The object descriptor 

is used to search the object table to locate the entry for the object. The entry consists 

of the base address of the object in main memory and the length of the object. The 

system adds the base address to the offset in the request to determine the exact memory 

location of the accessed word. 
Capability-based addressing has two salient features, relocatability and sharing. 

An object can be relocated anywhere in the main memory without making any change 

to the capabilities that refer to it. (For every relocation, only the base held of the object 

needs be changed in the object table.) Sharing is made easy as several programs can 

share the same object (program or data) with different names (object descriptors) for 

the object. Note that this type of sharing and relocatability is achieved by introducing a 

level of indirection (via the object table) in addressing the objects—the object descriptor 

in a capability contains the address of the address of the object. 
If there is a separate object table for each process or subject, then the resolution 

of an object descriptor is done in the context of a process. If there is a global object 

table, then the resolution of an object descriptor is done in a single global context. 
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IMPLEMENTATION CONSIDERATIONS. Since a capability is used as an address, a 

typical address in a program consists of a capability and word number (i.e., offset) pair, 

and the capability can be embedded in the user programs and data structures. However, 

to maintain forgery-free capabilities, a user should not be able to access (read, modify, 

or construct) a capability. There are two ways to implement capabilities [14]: the tagged 

approach and the partitioned approach. 

In the tagged approach, one or more bits are attached to each memory location and 

to every processor register. The tag is used to indicate whether the memory word or a 

register contains a capability. Generally, if the tag is ON, the information is a capability; 

otherwise, it is ordinary data (user data or instruction). A user cannot manipulate words 

with their tag bits ON. There are separate sets of instructions to manipulate the words 

with their tag bits ON, which cannot be executed by users. Whenever a user presents the 

system a capability to access the corresponding object, the system checks if the tag bit 

of the capability is ON. Examples of systems with tagged approach are the Burrough’s 
B6700 and the Rice Research Computer [15]. 

In the partitioned approach, capabilities and ordinary data are partitioned, i.e., 

stored separately. Corresponding to every object are two segments, one segment stor¬ 

ing only the ordinary data and the other storing only the capabilities of the object. Also, 

the processor has two sets of registers, one for ordinary data and the other for capa¬ 

bilities. Users cannot manipulate segments and registers storing capabilities. Examples 

of systems with the partitioned approach are the Chicago Magic Number Machine [13] 
and Plessey System 250 [12]. 

ADVANTAGES OF CAPABILITIES. The capability-based protection system has three 

main advantages [34]: efficiency, simplicity, and flexibility. It is efficient because the 

validity of an access can be easily tested; an access by a subject is implicitly valid 

if it has the capability. It is simple due to the natural correspondence between the 

structural properties of capabilities and the semantic properties of addressing variables. 

It is flexible because a capability system allows users to define certain parameters. For 

example, a users can decide which of his addresses contain capabilities. Also, a user 

can define any data structure with an arbitrary pattern of access authorization. 

DRAWBACK OF CAPABILITIES 

Control of propagation. When a subject passes a copy of a capability for an object 

to another subject, the second subject can pass copies of the capability to many other 

subjects without the first subject s knowledge. In some applications, it may be desirable 

(to induce unrestiicted sharing), while in other applications, it may be necessary to 

control the propagation of capabilities for the purpose of accountability as well as 
security. 

The propagation of a capability can be controlled by adding a bit, called the copy 

bit, in a capability that indicates whether the holder of the capability has permission to 

copy (and distribute) the capability. The propagation of a capability can be prevented by 

setting this bit to OFF when providing a copy of the capability to other users. Another 

way to limit the propagation is to use a depth counter [34], A depth counter is attached 

to each capability (whose initial value is one). Every time a copy of a capability is 
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made, the depth counter of the copied capability is one higher than that of the original 

capability. There is a limit on how large the depth counter can grow (say, four). Any 

attempt to generate a copy of a capability whose depth counter has reached the limit 

results into an error, thus, limiting the length of the chain a capability can propagate. 

Review. Another fundamental problem with capabilities is that the determination of all 

subjects who have access to an object (called the review of access) is difficult. This is 

because the determination of who all have access to an object involves searching all the 

programs and data structures for copies of the corresponding capabilities. This requires 

a substantial amount of processing. Note, however, that the review of access becomes 

simpler in the systems with the partitioned approach because now one needs to search 

only the segments that store capabilities (search space may be substantially reduced). 

Revocation of access rights. Revocation of access rights is difficult because once a 

subject X has given a capability for an object to some other subject Y, subject Y can 

store the capability in a place not known to X, or Y itself may make copies of the 

capabilities and pass it to its friends without any knowledge of X. To revoke access 

rights from some subjects, either X must review all the accesses to that object and 

delete the undesired ones or delete the object and create another copy of the object 

and give permissions to only desired subjects. The simplest way to revoke access is to 

destroy the object, which will prevent all the undesired subjects from accessing it. (Of 

course, the accesses by other users will also be denied). 

Garbage collection. When all the capabilities for an object disappear from the system, 

the object is left inaccessible to users and becomes garbage. This is called the garbage 

collection or the lost object problem. One solution to this problem is to have the creator 

of an object or the system keep a count of the number of copies of each capability and 

recover the space taken by an object when its capability count becomes zero. 

14.4.2 The Access Control List Method 

The access control list method corresponds to the column-wise decomposition of the 

access matrix. Each object o is assigned a list of pairs (s, P[s, o]) for all subjects s that 

are allowed to access the object. Note that the set P[s, o] denotes the access rights that 

subject s has to object o. The access list assigned to object o corresponds to all access 

rights contained in the column for object o in the access matrix. A schematic diagram 

of an access control list is shown in Figure 14.5. 
When a subject s requests access a to object o, it is executed in the following 

manner: 

• The system searches the access control list of o to find out if an entry (s, <f>) exists 

for subject s. 

• If an entry (s, <f>) exists for subject s, then the system checks to see if the requested 

access is permitted (i.e., a e <f>). 

• If the requested access is permitted, then the request is executed. Otherwise, an 

appropriate exception is raised. 



380 ADVANCED CONCEPTS IN OPERATING SYSTEMS 

Subjects Access rights 

Smith read, write, execute 

Jones read 

Lee write 

Grant execute 

White read, write FIGURE 14.5 
A schematic of an access control list. 

Clearly, the execution efficiency of the access control list method is poor because an 

access control list must be searched for every access to a protected object. 

Major features of the access control list method include: 

Easy Revocation. Revocation of access rights from a subject is very simple, 
fast, and efficient. It can be achieved by simply removing the subject’s entry from the 
object’s access control list. 

Easy Review ot an Access. It can be easily determined what subjects have access 
rights to an object by directly examining the access control list of that object. However, 
it is difficult to determine what objects a subject has access to. 

IMPLEMENTATION CONSIDERATIONS. There are two main issues in the imple¬ 
mentation of the access control list method: 

Efficiency of execution. Since the access control list need be searched for every 
access to a protected object, it can be very slow. 

Efficiency of storage. Since an access control list contains the names and access 

lights of all the subjects that can access the corresponding protected object, a list can 

require huge amounts of storage. However, note that the aggregate storage requirement 

is about the same as that required for capabilities. In an access control list, the total is 
taken across objects and in capabilities, the total is taken across users. 

The first problem can be solved in the following way. When a subject makes its 

first access to an object, the access rights of the subject are fetched from the access 

conti ol list of the object and stored in a place, called the shadow register, with the 

subject. This fetched information in the shadow register acts like a capability. Conse¬ 

quently, the subject can use that capability for all subsequent accesses to that object 

dispensing with the need to search the access control list for every access. However' 

this method has negative implications for the revocability of access rights in the access 

control list method in that, merely revoking access rights from the access control lists 

will not revoke the access rights loaded in the shadow registers of processes. Of course 

a simple way to get around this problem is to clear all shadow registers whenever an 
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access right is revoked from an access control list. Obviously, this will be followed by 

a large number of access control list searches to rebuild the shadow registers. 

The second problem, large storage requirement, is caused by a large number of 

users as well as the numerous types of access rights. The large storage requirement due 

to a large number of users can be solved using the protection group technique discussed 

below. This technique limits the number of entries in an access control list by lumping 

users into groups. 
Note that each entry in an access control list contains allowed access rights. If 

there are a large number of access rights, their coding and inclusion in an entry will 

be cumbersome. It will require large space and complex memory management. This 

problem can be solved by limiting the access rights to only a small number and assigning 

a bit in a vector for every access type. 

PROTECTION GROUPS. The concept of protection group was introduced to reduce 

the overheads of storing (and searching) lengthy access control lists [34], Subjects 

(users) are divided into protection groups and the access control list consists of the 

names of groups along with their access rights. Thus, the number of entries in an 

access control list is limited by the number of protection groups, and therefore, high 

efficiency is achieved. However, the granularity at which access rights can be assigned 

becomes coarse—all subjects in a protection group have identical access rights to the 

object. To access an object, a subject gives its protection group and requested access 

to the system. 

AUTHORITY TO CHANGE AN ACCESS CONTROL LIST. The authority to change 

the access control list raises the question of who can modify the access control infor¬ 

mation (contained in an access control list). Note that in a capability-based system, this 

issue is rather vague—any process which has a capability may make a copy and give it 

to any other process. The access control list method, however, provides a more precise 

and structured control over the propagation of access rights. 
The access control list method provides two ways to control propagation of access 

rights [34]: self control and hierarchical control. In the self control policy, the owner 

process of an object has a special access right by which it can modify the access control 

list of the object (i.e., can revoke or grant access rights to the object). Generally, the 

owner is the creator process of an object. A drawback of the self control method is that 

the control is centralized to one process. 
In the hierarchical control, when a new object is created, its owner specifies a 

set of other processes which have the right to modify the access control list of the 

new object. Processes are arranged in a hierarchy and a process can modify the access 

control list associated with all the processes below it in the hierarchy. 

14.4.3 The Lock-Key Method 

The lock-key method is a hybrid of the capability-based method and the access control 

list method [7], [25]. This method has features of both these methods. 
In the lock-key method, every subject has a capability list that contains tuples of 

the form (O, k), indicating that the subject can access object O using key k. Every 
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object has an access control list that contains tuples of the form (l, 'I'), called a lock 

entry, indicating that any subject which can open the lock l can access this object in 
modes contained in the set 'k. 

When a subject makes the request to access object o in mode a, the system 
executes it in the following manner: 

• The system locates the tuple (o, k) in the capability list of the subject. If no such 
tuple is found, the access is not permitted. 

• Otherwise, the access is permitted only if there exists a lock entry (l, \k) in the 
access control list of the object o such that k - l and a 6 \k. 

Similar to the access control list, the revocation of access rights is easy. To revoke 

the access rights of a subject to an object, simply delete the lock entry corresponding to 

the key of the subject. There is no major advantage obtained from the use of capabilities 

except that capability-based addressing can be used. The access control list of the 

object must still be searched for every access. For the revocation of access rights of a 

subject to an object, the lock corresponding to the subject must be known. Thus, the 
correspondence between locks and subjects must be known. 

The IBM/360’s storage keys protection method is similar to the lock-key method. 

The ASAP file system uses the lock-key method for protection [6]. Gifford suggested 

the lock-key method for protecting data using encryption [16]. Encrypting a data block 

is similar to placing a lock on it and decrypting a data block is similar to doing an 
unlock operation with the corresponding key. 

14.5 SAFETY IN THE ACCESS MATRIX MODEL 

In this section, we study transitions in the protection state and safety in the access 
matrix model. 

14.5.1 Changing the Protection State 

A finite set of commands, C, is defined in the access matrix model to change the 

protection state. A change in the protection state may be necessitated by a change in 

security policies. The set of commands, C, is defined in terms of the following primitive 
operations: 

enter r into P[s, o] 

delete r from P[s,o] 

create subject s 

create object o 

destroy subject s 

destroy object o 

These primitive operations define changes to be made to the access matrix P. 

For example, the primitive operation delete r from P[s,o] deletes access right r from 

the position P[s, o] in the access matrix. Consequently, access right r of subject s 
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to object o is withdrawn. However, before such a delete operation is performed, it 

should be checked whether the process that is performing this operation has a right 

to perform this operation on the access matrix. (That is, whether that process has a 

right to revoke right r from subject s for object o.) Similarly, to destroy an object, the 

process must have the right to destroy that object and that object must currently exist. 

Therefore, several checks may need to be performed before these primitive operations 

are performed. Thus, a command assumes the following syntax: 

command <command id>(<formal parameters>) 

if <conditions> 

then 

<list of primitive operations> 

end. 

The <conditions> part consists of checks of the form “r in P[s, o]”. A command 

is executed in the following manner. First, all the checks in the condition part are eval¬ 

uated. If all the checks pass, all the primitive operations listed in <list of operations> 

are executed. Note that a command need not have any check. If this is the case, the 

condition part is trivially satisfied. All accesses to objects are validated by a mechanism 

called a reference monitor. The reference monitor rejects accesses that are not currently 

allowed by the access matrix. 
An object need not be owned by a subject. However, an object is usually owned 

by a subject, called the owner of the object. If s is a owner of o, then own G P[s, o\. 

The owner of an object may confer any right to the object to any other subject. 

Example 14.2. The following command creates a file and assigns own and read 

rights to it: 

command create-readfprocess, hie) 
create object hie 
enter own into Pfprocess, hie] 
enter read into Pfprocess, hie] 
end. 

Example 14.3. In the following command, the owner of a hie confers write access 

to a hie to a process: 

command confer-write(owner, process, hie) 
if own G P [owner, hie] 
then 
enter write into P[process, hie] 

end. 

There can be a separate command to confer each access right to other processes or 

there can be just one command and the intended access right is passed as a parameter. 

The effect of the command in Example 14.2 is to create a column in the access matrix 

for object ‘hie’ and fill in an entry in this column. Commands of the type in Example 

14.3 can be used to fill in entries (i.e., access rights) in the matrix. 
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PROTECTION STATE TRANSITIONS. Recall that the protection state of a system 
is denoted by a triplet (S, O, P). Primitive operations change the protection state of the 
system because they change the contents of the access matrix P. For example, creating 
a new object adds a new column to the access matrix and revoking an access right from 
a subject amounts to the deletion of that right from an appropriate matrix entry. Thus, 
the execution of a primitive operation causes a transition in the protection state of a 
system. 

14.5.2 Safety in the Access Matrix Model 

The notion of safety in a protection system was raised and examined for the access 
matrix model by Harrison et al. [19]. The general connotation of a safe protection 
system is that a process cannot acquire an access right to a file without the consent of 
its owner. Since the owner of an object must confer its access rights to other processes 
(to enable sharing, etc.), it is impossible to make a protection system safe and we must 
be satisfied with a weaker condition [19]: “A process should be able to tell whether its 
actions (e.g., conferring an access right) can lead to the leakage of an access right to 
unauthorized subjects.” It turns out that even this property is too strong because given 
an initial access matrix, it is undecidable whether there is a sequence of commands 
that adds a particular access right into a cell in the access matrix where it did not exist 
before [19]. 

Definition 14.1. [19] Given a protection system, we say command c leaks generic 
right r from configuration Q=(S,0,P) if c when run on Q can execute a primi¬ 
tive operation which enters r into a cell of the access matrix that did not initially 
contain r. 

Discussions so far have implied that leaks are bad. A protection system should 
have commands so that a process can confer access rights to other (trusted) processes 
to facilitate sharing. What is undesired, however, is that an untrusted process acquires 
certain access rights to an object. 

Definition 14.2. [19] If the execution of a command a in a protection state Q takes 
the system to a state Q', notationally denoted by Q hQ Q', then 

• If all the conditions of a are not satisfied in state Q, then Q = Q'. 

• Otherwise, state Q' will be reached by a sequential execution of all the primitive 
operations, with actual parameters, of the command a. 

We say Q F Q , i.e., Q can be reached from Q, if there exists a command cx 

such that Q FQ Q'. Notation h* denotes the reflexive and transitive closure of k 

Definition 14.3. [19] Given a protection system and a generic right r, we say that an 
initial configuration Q0 is unsafe for r (or leaks r) if there is a configuration Q and a 
command c such that 
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• Qo E* Q, and 

• c leaks r from Q. 

Qo is safe for r if Qo is not unsafe for r. 

Definition 14.4. [19] A protection system is mono-operational if each command’s 
interpretation is a single primitive operation. 

Thus, commands in a mono-operational protection system contains only one prim¬ 
itive operation. 

Theorem 14.1. [19] There exists an algorithm that decides whether or not a given 
mono-operational protection system and the initial configuration are unsafe for a given 
generic right r. 

Thus, as far as the issue of safety in the access matrix model is concerned, 
there exists no algorithm that can decide the safety of an arbitrary configuration of an 
arbitrary’ protection system [19]. However, the safety issue can be decided for a specific 

system (because all the rules and their consequences are well defined and known). 

14.6 ADVANCED MODELS OF PROTECTION 

14.6.1 The Take-Grant Model 

The take-grant model uses directed graphs to model access control. The take-grant 
model has its roots in the access matrix model because a matrix can be represented as a 
directed graph (values in the matrix can be tagged with the corresponding edges of the 
directed graph). Nevertheless, a directed graph provides an efficient way to implement 
an access matrix that is likely to be highly sparse. The take-grant model was first 
proposed by Jones [20] and has been successively refined by others (e.g., [5], [24]). 

THE MODEL. In the take-grant model, the protection state of a system is described 
by a directed graph. Nodes of the graph are of two types: subjects and objects. An edge 
from node x to node y denotes that the subject or object corresponding to node x has 
some access rights to the subject or object corresponding to node y. Edges are tagged 
with the corresponding access rights. 

Besides read (r), write (w), and execute (e), two special access rights in the 
take-grant model are take (t) and grant (g). The access rights take and grant specify 
how the access rights can be propagated to other nodes. 

Take. If node x has the access right take to node y, then the entity corresponding 
to node x can take access rights of the entity corresponding to y to any other node. 

Grant. If node x has the access right grant to node y, then the entity correspond¬ 
ing to node y can be granted any access right that the entity corresponding to node x 

possesses. 
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FIGURE 14.6 
An example of the take operation. 

Example 14.4. An illustration of the take operation is shown in Fig. 14.6. Node x 
has take access to node y and node y has read and write access to node 2. Thus, 
node x can take access right read from node y and can have this access right for 
object 2. This is done by adding a directed edge labeled r from node x to node 2 in 
the graph. 

Example 14.5. An illustration of the grant operation is shown in Fig. 14.7. Node x 
has grant access to node y and also has read and write access to node 2. Thus, node 
y can take access right read from node x and can have this access right for object 2 

(or node x can grant read access for 2 to node y.) This is done by adding a directed 
edge labeled r from node y to node 2 in the graph. 

STATE AND STATE TRANSITIONS. The protection state of a system is denoted by 
a directed graph. Note that the execution of the take and grant access rights change 
the system state because execution of these access rights change the directed graph. 
Thus, the system undergoes a state transition whenever take or grant operations are 
executed. The following operations also change the directed graph and thus cause a 
system state transition: 

Create. The create operation allows a new node to be added to the graph. 
If a node x creates a new node y, then a node y and a directed edge x y are 

added to the graph. The edge x —> y can initially have any nonempty subset of possible 
access rights. 

Remove. The remove operation allows a node to delete some of its access rights 
to another node. 

SAFETY. The notion of safety in the graph model is as follows [20]: “Given an initial 
protection graph, does there exists a sequence of rule applications which will convert 
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FIGURE 14.7 
An example of the grant operation. 

the initial graph to a graph containing a specific edge.” Note that when the results of 
Harrison et al. [19] are interpreted in the context of graph model, it states that given an 
arbitrary set of application rules and an initial graph, it is undecidable whether there will 
ever be an edge in the graph from a node x to a node y with certain access rights [24], 

Since the safety issue is undecidable when the set of rules is arbitrary and because 
operating systems usually have only one fixed set of protection rules, Lipton and Sny¬ 
der [24] examined safety conditions for a particular take-grant system. They showed 
that node x can acquire access right r to node y if and only if there is an undirected 
path between x and y and there also exists a node 2 which has an edge to node y with 
access right r. For the take-grant model with specific application rules, safety can be 
decided in linear time (proportional to the size of the graph [20]). 

14.6.2 Bell-LaPadula Model 

The previous two models deal with access control, while the Bell-LaPadula model deals 
with the control of information flow. The description of the Bell-LaPadula model in this 

section is based on a paper by Landwehr [23], 

THE MODEL. The Bell-LaPadula model of protection systems consists of the follow¬ 

ing components: 

• Like the access control matrix model, it consists of a set of subjects, a set of objects, 

and an access matrix. 
• It has several ordered security levels. Each subject has a clearance and each object 

has a classification (i.e., belongs to a security level). Each subject also has a cut rent 

clearance level which may not exceed the clearance of the subject. 
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Subjects can have the following accesses to objects: 

Read-only. The subject can only read the object. 

Append. The subject can only write to the object. (No read permitted.) 

Execute. The subject can only execute the object. (No read or write permitted.) 

Read-write. The subject can read as well as write to the object. 

In addition to these accesses, the subject that creates an object has a control 

attribute to that object. A subject can pass any of the above four access rights of any 

object for which it has the control attributes to any other subject. However, the control 

attributes cannot be passed. The controller of an object is the subject that has the control 
attribute to that object. 

The Bell-LaPadula [4] model imposes the following two restrictions on informa¬ 
tion flow and access control: 

1. The simple security property. A subject cannot have a read access to an object 

whose classification is higher than the clearance level of the subject. 

2. The *-property (called the star property). At any time, a subject has append (i.e., 

write) access to only those objects whose classification (i.e., the security level) is 

higher than or equal to the current security clearance level of the subject. It has 

read access to only those objects whose classification is lower than or equal to the 

current security clearance level of the subject. It has read-write access to only those 

objects whose classification is equal to the current security clearance level of the 
subject. 

Figure 14.8 illustrates the allowed accesses of a subject with clearance level i. Note 

that the ^-property subsumes the simple security property because the current clearance 

level of a subject can never exceed its clearance level. These two properties are also 

referred to as reading down and writing up properties, respectively. These properties 

are quite intuitive. The reading down property prevents a subject from getting access to 

the information contained in security levels higher than its clearance level. The writing 

up property prevents a subject from disclosing information to entities in security levels 
below its own level. 

An interesting part of the Bell-LaPadula model is that over and above the access 

matrix, information flow and access to objects are controlled by the above two rules. For 

example, a subject may acquire the read access rights to an object in the access matrix, 

but it may not be able to actually exercise this right because the clearance level of the 

object is higher than the clearance level of the subject. The ^-property supports manda¬ 

tory access controls, whereas the access matrix tends to support discretionary access 

control. For example, give access and rescind access (defined below) are discretionary 
rights, whereas level and compartment restrictions are mandatory. 

STATE TRANSITIONS. The protection state of a system is defined by the access 

matrix and the current security levels of subjects. The Bell-LaPadula model allows the 
following operations (rules) to change the state of a protection system: 
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FIGURE 14.8 
Allowed accesses in Bell-LaPadula model. 

get access. It is used by a subject to initiate access to an object in the requested 

mode (i.e., read, append, execute, or read-write). 

release access. It is used by a subject to terminate an initiated access to an object, 

give access. It allows the controller of an object to grant the designated access 

(to that object) to a subject. 

rescind access. It allows the controller of an object to revoke a designated access 

(to that object) from a subject. 

create object. It allows a subject to activate an inactive object, 

delete object. It allows a subject to deactivate an active object, 

change security level. It allows a subject to change its current security level. 

Before a rule can be applied, a set of conditions must hold. For example, a subject 

must have the control attribute of an object before it can give or rescind an access to 

it. A subject must have the read access to an object and must have its current security 

level higher than or equal to the clearance of the object before the subject can read the 

object. 
Bell and LaPadula modeled the behavior of a protection system as a finite state 

machine. They defined the concept of a secure state and considered the transitions that 

lead the system to only secure states. Bell showed that the above seven operations 

maintain the simple security property and the ^-property of a protection system [3], 

The Bell-LaPadula model has the following drawbacks: the security levels of 

the objects are static and the ^-property may be too restrictive in many applications. 

For example, the ^-property dictates that a subject at one level absolutely does not 

communicate with the subjects at lower levels, even about the matters outside the 

context of the protection system. In a computer system, a process (subject) at level i 

should be able to write some information to processes at a lower level if the information 

does not depend upon the protected objects at level i or higher. 
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We next discuss the lattice model of information flow. 

14.6.3 Lattice Model of Information Flow 

The previously discussed models of protection primarily dealt with regulating access 

to the objects. The lattice model of information flow, on the other hand, deals with 

regulating the flow of information among the objects. In addition to controlling subject’s 

access to objects, the control of information flow among objects is an important issue 
in the security of computer systems. 

Although the concept of information flow was first used in the Bell-LaPadula 

model to secure the access control of objects, it was generalized for controlling the 

flow of information among objects, called the lattice model of information flow, by 

Denning [8]. The treatment of the lattice model in this section is based on the work of 
Denning [8], [9]. 

THE MODEL. The lattice model consists of three entities: a set of objects, a set of 

processes (so-called subjects), and a set of security classes. Notationally, an object x 
belongs to the security class denoted by x. 

An information flow policy is modeled by a partially ordered set (SC, —>) where 

SC is the set of security classes and relation —> specifies the permissible information 

flow between classes [8], For two objects x and y, information flow from x to y 

is permitted provided x —> y. Relation —> is reflexive (that is, information can flow 

between objects in the same class), antisymmetric (i.e., if information can flow from 

class sci to class sc2, then it cannot flow from class sc2 to class sci), and transitive 

(i.e., if information can flow from class scj to class sc2 and from class sc2 to class sc3, 
then it can also flow from class sci to class sc3). 

An information flow policy (SC, -a) forms a lattice if it is a partially ordered 

set and if the least upper bound and greatest lower bound operators exist on the set of 

security classes, SC. Ihe symbol © and <8>, are used to denote the least upper bound 

and greatest lower bound operators of the lattice (SC, -►), respectively. These operators 
are commutative and associative. 

The least upper bound operator is defined in the following manner [7]: (Va)(V6) 

such that a, b e SC there exists a unique class c = a 0 b, c G SC, such that 

• a -i c V I; -> c, and 

• \/d'. d G SC :: (a —> d V b —> d) =>■ c —» d. 

The greatest lower bound operator is defined as follows [7]: (Va)(V6) such that a, 
b e SC there exists a unique class c = a® b, c G SC, such that 

• c —> a V c —> 6, and 

• Yd: d G SC :: (d —* a V d —> b) =>- d —> c. 

Given a lattice (SC, -+), there exists a highest class H that is the least upper 

bound of all classes and there exists a least class L which is the greatest lower bound 
of all classes. 
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FIGURE 14.9 
1-► 2-3 ..► n-1 -► n A linear lattice. 

The lattice model of protection is very powerful because by choosing any ordering 

between security classes, we can model a wide range of information flow policies. In 

the lattice model, a system is secure if the execution of a process does not result in an 

information flow from object x to object y unless x —> y. 

Example 14.6. Figure 14.9 shows perhaps the simplest lattice, a linear lattice, with 
n classes (1, 2, ..., n). This lattice corresponds to the security classification of the 
Bell-LaPadula model. (However, note that in the Bell-LaPadula model, a linear lattice 
is not used to restrict information flow, but rather to control access to objects.) In this 
lattice: 

SC= {1, 2, ..., n} 
x —> y iff x < y 
x © y = max(x, y) 
x 0 y = min(£, y) 
11=n and L = 1. 

Example 14.7. The property lattice in Fig. 14.10 is due to Denning [9]. This is a 
nonlinear lattice because all the nodes (i.e., classes) of the lattice cannot be linearly 
ordered. Each class is defined by a three bit vector whose bits represent three prop¬ 
erties. (A bit =1 means that the class contains the property corresponding to that bit.) 
The lattice is defined such that x -> y iff all the properties of class x are included in 
class y. The operators © and © now correspond to logical OR and AND operations, 
respectively. Note that L = (000) and H = (111). 

MILITARY SECURITY MODEL. In the military security model, objects (i.e., the 

information to be protected) are ranked in four categories, viz., (1) unclassified, (2) 

confidential, (3) secret, and (4) top secret, based on their sensitivity. These categories 

satisfy the following rank order: unclassified < confidential < secret < top secret', that 

is, an unclassified object is the least sensitive and a top secret object is the most sensitive. 

Based on the subject matter, an object is associated with one or more departments, called 

(000) (100) 

FIGURE 14.10 
A property lattice. 
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compartments. The compartments are used to enforce the need-to-know rule—a subject 

can access only the object that is essential to perform its job. Examples of compartments 

are personnel (p) and strategic (s). A subject with access to only personnel compartment 

must not be able to access an object in strategic compartment and vice-versa. 

Definition 14.5. The class of an object is a tuple (r, c) where r is the rank that 
indicates the security level of the object and c is a set of compartments to which the 
object belongs. 

Definition 14.6. The clearance of a subject is a tuple (r, c) where r indicates the 
rank that indicates the clearance level of the subject (i.e., the highest rank object the 
subject is permitted to access) and c is a set of compartments the subject is allowed 
to access. 

Definition 14.7. We define a relation “A”, called dominates, on an object O with 
class (ro, co) and a subject S with clearance (rs, cs) in the following way: 

O A S if and only if 
ro < rs and co Q cs 

A subject S can access an object O only if O A S. Therefore, a subject can access 
an object only if 

• The clearance level of the subject is equal or greater than the security level of the 
object, and 

• The subject has access permissions to all the compartments of the object. 

Note that the A relation defines a partial order on the set of classes (or the set of 

clearances). It defines a lattice on the set of classes. A lattice for the military security 

model with two ranks, viz., unclassified (1) and confidential (2), is shown in Fig. 14.11. 

The largest element of the lattice is the class (2, {p, s}) and the smallest element 
is (1, {}). 

MODES OF INFORMATION FLOW. Information is said to flow from object x 

to object y, denoted by x =A y, whenever information stored in x is used to derive 

information transferred to y. Information flows can be explicit or implicit. In an explicit 

(2,{s}) (2, (p, s}) 

FIGURE 14.11 
A lattice for military security model. 
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flow x =^> y, the value assigned to y directly depends upon the value of x. In explicit 

flow, assignment statements are of the type 

y = f(xl,x2,...,xm) (14.1) 

where information explicitly flows from objects x\, X21 xm to object y. Clearly, 

such flow is permitted only when 

aq © ... © Xm ^ y. (14.2) 

Note that x\_ © ... © Xrn —> y is equivalent to Vz: 1 <i<m :: Xj —» y. 

An implicit flow x =4> y occurs when the value assigned to y is conditioned on the 

value of object x. This is because by testing the results of the execution of a conditional 

statement, we can infer the value of the variables used in the condition of the statement. 

For example, consider the following statements: 

y:=x+1; 

if z=0 then y.-x\ 

In these statements, information implicitly flows from z to y because the value 

of y depends upon the value of 2. One can infer that the value of object z is 0 if the 

value of object y is equal to the value object x. 
Note that an unauthorized (implicit) information flow will occur when an object 

used in the condition part of a conditional statement belongs to a class with higher 

security than the class of one of the objects modified in the then part of the statement. 

14.7 CASE STUDIES 

14.7.1 The UNIX Operating System 

In the UNIX operating system, files (and directories) are the main protected entities 

[33], Every user in UNIX is identified by a userid. A user may also belong to a user 

group identified by groupid. The userid and groupid of a user are available in the process 

descriptor of the process that is executing on behalf of the user. Thus, an access right 

check can easily be performed when a process makes an access to a file. For each UNIX 

file, there is a unique owner (which is generally the user who creates it). A UNIX file 

has two fields: (1) A userid field that contains the userid of its owner and (2) A groupid 

field that contains the groupid of the group to which the file belongs. 
The protection mechanism of the UNIX operating system uses an access control 

list in conjunction with protection groups for efficiency. The protection mechanism in 

UNIX allows one to specify three protection groups, namely, owner, group, and others 

separately for each file. Users in each group can have three access rights, viz., read, 

write, and execute, to a file. Access rights of the three groups to a file are denoted by 

three fields associated with the file. Each field consists of three bits—one bit for each 

access right— denoting the access rights of the corresponding group to the file (see 

Fig. 14.12). Only the owner of a file and the super user have the authority to change 

these bits (for all three groups) for a file. Using chmod command, a user can selectively 
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owner group others 

r i w • x r : w X r W ; X FIGURE 14.12 
Protection fields of a file in UNIX. 

revoke or assign any access right—read, write, and execute—for a file to any of the 

three groups. 

A protection domain is associated with every user. (A protection domain defines 

the access rights of a user with regard to various resources/files.) When a user logs into 

an account, the user starts in a protection domain. Any command issued by the user can 

access all files allowed by the protection domain. To access files in some other domain, 

a user must switch to the corresponding domain using the su (set userid) command. 

Switching to a domain requires the password of the corresponding user. 

14.7.2 The Hydra Kernel 

Hydra is the kernel of a multiprocessor operating system that was developed at Carnegie- 

Mellon University [39], The Hydra Kernel provides a rich set of mechanisms on which 

a wide array of operating systems can be built. The kernel only supports protection 

mechanisms; policy issues are left to higher layers. Hydra supports a capability-based 

protection mechanism on which any security policy can be implemented. Description 

of the Hydra protection mechanism in this section is based on Wulf et al. [39]. 

HYDRA ENVIRONMENT. In Hydra, the unit of protection is an object, which is an 

abstraction of a resource. Procedure is an abstraction of an operation on the objects. 

The protection mechanism of Hydra regulates the invocation of procedures to instances 

of objects (i.e., resources). Each object has a unique name, type, and representation. 

The representation portion of an object consists of data and capability parts. The data 

part can be accessed by programs that have appropriate access rights for the object. 

The capability part of an object may contain capabilities referencing other objects 

and can be directly manipulated only by the kernel. Primary elements of the Hydra 

protection mechanism are objects (abstraction of resources) and capabilities (references 

to objects). A capability includes information about all the operations that its holder 

can perform on the object referenced by the capability. To perform an operation on an 

object, a program/user supplies a capability for that object. The kernel examines the 

access rights in the capability and allows the operation only if the capability contains 
the appropriate rights. 

SALIENT FEATURES 

Auxiliary rights. For every object, the Hydra kernel supports basic access rights (such 

as read, write, execute, copy, etc.) for the controlled manipulation of objects and capa¬ 

bilities. These rights are referred to as kernel rights. A very interesting and powerful 

feature ot the Hydra kernel is that it also supports protection of user defined opera¬ 

tions (called auxiliary rights). When a user defines a new object type and its associated 



RESOURCE SECURITY AND PROTECTION: ACCESS AND FLOW CONTROL 395 

operations, the Hydra kernel automatically treats these operations as the auxiliary ac¬ 

cess rights for the object. If a user wants to perform these operations on an object, its 

capability must contain the corresponding auxiliary rights. The kernel only provides 

mechanisms for enforcing auxiliary rights; it does not interpret those operations. The 

kernel uses a 24-bit mask to encode access rights. Kernel rights have fixed positions in 

the mask and the positions of auxiliary right bits depend upon the objects. The kernel 

checks a capability for certain rights by checking appropriate bits in the 24-bit mask. 

Access right enhancement. In Hydra, a procedure contains a list of capabilities for 

the objects that must be accessed during the execution of the procedure’s code. In 

addition, a procedure may also receive a set of capabilities as actual parameters when 

it is called. The former are called caller-independent capabilities (because a procedure 

always possesses them) and the latter are called caller-dependent capabilities (because 

they may vary from caller to caller). 

A procedure contains parameter templates for capabilities that are expected to be 

received as actual parameters when the procedure is called. When a procedure is called, 

the kernel checks to see if types of the actual and template capabilities match. The kernel 

also checks if the capabilities supplied as actual parameters contain adequate access 

rights. If these checks pass, the kernel constructs a capability for the object (procedure) 

that contains access rights specified by its template, which may be higher than those 

contained in the capability passed as an actual parameter. Therefore, a callee may have 

more access rights to an object than the caller that passed the corresponding capability 

as an actual parameter. However, the caller cannot obtain those access rights because 

additional rights are present only in the callee’s domain. This is called right expansion 

(or enhancement) across protection domains and is a key factor in achieving flexibility 

in Hydra [39]. A simple example of access right enhancement is the invocation of a 

compiler. A compiler has (permanent) access rights to certain files. When a compiler is 

invoked by a user, the compiler’s access rights are enhanced so that it can access the 

file to be compiled and has the right to create an object code file in the user’s directory. 

14.7.3 Amoeba 

Amoeba [27] is a distributed operating system developed by Tanenbaum’s group at 

the Free University and the Center for Mathematics and Computer Science in The 

Netherlands. Amoeba is an object-based system and is based on the client-server model. 

Client processes carry out operations on objects by sending requests to server processes 

via remote procedure calls. Every object is managed by a server process. 

Amoeba uses capabilities to protect objects against unauthorized access. A capa¬ 

bility contains the object identifier and thus also serves as the address of the object. 

The structure of a capability in Amoeba is shown in Fig. 14.13. The server port field 

in a capability gives the identity of the server process that manages the corresponding 

object. The object field is used by the server process to identify the specific object. 

The rights field denotes the operations that the holder of the capability is allowed to 

perform on the object. The check field provides protection against users tampering or 

forging capabilities. Amoeba uses a cryptographic technique to protect a capability from 
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48 bits 24 bits 8 bits 48 bits 

Server Port Object number Rights Check 

FIGURE 14.13 
A capability in amoeba. 

being tempered or forged. (Readers may like to read Public-Key Encryption in the next 

chapter before reading the rest of this subsection.) 

PROTECTING CAPABILITIES. The check held is the key to providing protection 

to capabilities. When an object is created, the object’s server process selects a random 

check held and stores it in the capability of the object as well as in its table. All the 

right bits in this capability are on. This initial capability is called the owner capability 

and is returned to the client that requested creation of the object. When the capability 

is sent back by the client to the server to perform an operation, the check held is 

verified. The crux of the technique here is that the check held is chosen from such a 

huge, sparse address space that it is impossible to correctly guess the check held of an 
object’s capability. 

In a restricted capability, not all access right bits are on. A client creates a restricted 

capability by sending the owner capability and a bit mask for new rights to the server 

process. The server fetches the original check held from the table and performs an 

Ex-OR operation on the check held and the bit mask for new rights and then applies 

a one-way function on the result to obtain the new check held. (A one-way function 

/ is a function such that, given x, it is easy to hnd y, where y = f(x), but given y it 

is practically impossible to hnd x.) The server creates a restricted capability from the 

owner capability by replacing the check held with the result of the one-way function 

and the right held with the bit mask received from the client. It then sends this capability 

to the client process. The client can pass a restricted capability to any other process. 

When a restricted capability is presented to the server along with a request, the 

server fetches the original check held from its table, performs an Ex-OR operation on the 

check held and the right held in the received capability, and applies the same one-way 

function on the result. The received capability is valid only if the result of this one-way 

function matches with the check held in the capability. Clearly, if a process is fabricating 

a restricted capability or is tampering with the right held of a restricted capability, it 

will fail this test. However, capabilities are not protected against eavesdropping—An 

attacker that observes a capability being passed on the network can steal it. 

14.7.4 Andrew 

Andrew is a distributed computing environment that was developed at Carnegie Mellon 

University. Andrew combines powerful workstations and advanced networking technol¬ 

ogy to provide a large distributed time sharing environment. In this section, we discuss 

the protection mechanisms of Andrew. Discussion in this section is based on a paper 
by Satyanarayanan [36], 
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BASIC ARCHITECTURE. Andrew architecture consists of two components (see 

Fig. 14.14). First, a set of workstations known as Virtue. Second, a local area network 

and a collection of file servers, collectively called Vice. The local area network consists 

of Ethernets and IBM Token Rings, interconnected by optic fiber links. The distributed 

file server spans all workstations and provides the primary data sharing mechanism. 

As Vice maintains shared files in Andrew, it is also responsible for enforing protection 

policies. 
The protection domain in Andrew consists of users and groups. Users in this 

context are those who can authenticate themselves to Vice and be held responsible for 

their actions. A group is a collection of other groups and users. The Is.ajnember.of 

relation holds between a user or a group U and a group G if and only if U is a member 

of G. The reflexive and transitive closure of this relation for U defines a subset of the 

protection domain called C/’s Current Protection Subdomain (CPS). Thus, the CPS of 

a user denotes all the groups that he or she is a member of, directly or indirectly. 

The total rights possessed by a user at any time are the union of the rights 

possessed by all the members of his CPS. Therefore, Andrew allows the inheritance of 

membership (and thus inheritance of rights). Inheritance of membership conceptually 

simplifies the maintenance and administration of the protection domain. 

PROTECTION MECHANISM. Andrew uses the access control list mechanism for 

the protection of shared information and this choice was motivated by the following 

factors: 

• The user community in a university demands a protection mechanism that is simple 

to use yet allows complex policies to be expressed. 

• The revocation of access privileges is an important and common operation in a 

university environment. 

In Vice, an entry in an access control list (henceforth, called an access list) maps 

a user or a group into a set of rights, which are bit positions in a 32-bit mask. An access 

list consists of two lists: a list of positive rights and a list of negative rights. An entry 

in a positive right list denotes the possession of rights for the corresponding user. An 

entry in a negative right list denotes the denial of those rights to the corresponding user. 

In the case of a conflict, denial overrides possession. Negative rights are an effective 

FIGURE 14.14 
Basic architecture of Andrew. 
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means to rapidly and selectively revoke user access rights. A user may be a direct or 

indirect member of a large number of groups, so in order to revoke the access of a user 

to an object, the user’s entry from all those groups that bestow rights on that object must 

be deleted. In a large distributed system, the search for such groups and the deletion 

of the user from those groups may take a significant amount of time. Negative rights 

can reduce the vulnerability during the update time because changes to the access list 

are effective immediately. In addition, negative rights provide the capability to grant 

access rights at finer granularity (than the protection group mechanism provides). For 

example, one can specify a protection policy of the following form: “Grant a right r to 
all members of group G except user U 

The following algorithm is executed for the access list check. Suppose C is an 

access list, CPSu is the CPS of U, and M and N are right masks whose bits are 
initially reset. The entries in C and CPSu are sorted. 

1. For each element of CPSu, if there is an entry in the positive right list of C, 
inclusive-OR M with the rights part of the entry. 

2. For each element of CPSu, if there is an entry in the negative right list of C, 
inclusive-OR N with the rights part of the entry. 

3. Bitwise subtract N fron M. 

After the execution of the algorithm is over, M specifies the rights possessed 
by U. 

GRANULARITY OF PROTECTION. The granularity of protection in Vice is a direc¬ 

tory. Vice associates an access list with each directory and the protection enforced by 

that access list uniformly applies to all the files in the directory. The motivations for this 

design decision are conceptual simplicity and reduced storage overhead. Experiences 

with Andrew showed that this is an excellent compromise between fine granularity of 

protection and conceptual simplicity. (However, some other users of the Andrew file sys¬ 

tem have found this tradeoff limiting.) If a file needs to have a protection different from 

othei files in its directory, it can be achieved by placing the file in a separate directory 

(with appropriate protection) and putting a symbolic link to in the original directory. 

14.8 SUMMARY 

Security and protection deal with the control of unauthorized access to the resources 

of a computer system. Potential security violations include unauthorized information 

release, unauthorized information modification, unauthorized denial of service, etc. In 

this chapter, we discussed several models of protection in computer systems. A protec¬ 

tion model extracts essential features of a protection system. A protection system gives 

mechanisms to control user access to the system resources and to control information 
flow in the system. 

The access matrix model of a protection system consists of the following three 

components. (1) Current objects, a finite set of entities to which access is to be con¬ 

trolled, (2) current subjects, a finite set of entities that access the current objects, and 

(3) generic rights, a finite set of generic rights. The state of a protection system is a 
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triplet (S, O, P), where S is the set of current subjects, O is the set of current objects, 
and P is a matrix, called the access matrix, with a row for every current subject and a 
column for every current object. Entry P [s, o] denotes the access rights that subject s 
has to object o. 

Two popular access control techniques were studied, viz., capabilities and the 
access control list, both based on the access matrix model. The capability-based method 
corresponds to the row-wise decomposition of the access matrix. Each subject s is 
assigned a list of tuples (o, P[s, o]) for all objects o that it is allowed to access. The 
tuples are referred to as capabilities. If subject s possesses a capability (o, P[s, o]), 
then it is authorized to access object o in a manner specified in P[s, o\. At any time, a 
subject is authorized to access only those objects for which it has capabilities. The object 
identifier in a capability can be the address of the corresponding objects and therefore, 
besides providing protection, capabilities can also be used as an addressing mechanism 
by the system. There are two ways to implement capabilities, the tagged approach 
and the partitioned approach. The main advantages of a capability-based protection 
system are efficiency, simplicity, and flexibility. The drawbacks of this approach include 
difficult control of the propagation of capabilities, difficult revocation of access rights, 
and difficult garbage collection. 

The access control list method corresponds to the column-wise decomposition of 
the access matrix. Each object o is assigned a list of pairs (s, P[s, o]) for all subjects s 
that are allowed to access the object. Note that the set P[s, o] denotes the access rights 
that subject s has to object o. The access list assigned to object o corresponds to all 
access rights contained in the column for object o in the access matrix. When a subject 
s requests access a to object o, the requested access is executed only if an entry (s, 
<f>) exists for subject s in the access control list of o such that a £ <f>. Major features 
of the access control list method include: the easy revocation of access rights from a 
subject and the easy review of an access. The main issues in the implementation of the 
access control list method are the efficiency of execution and the efficiency of storage. 

Transitions in the protection state and safety in the access matrix model were 
studied in this chapter. A finite set of commands is available in the access matrix 
model to change the protection state. A finite set of commands was defined to change 
the contents of the access matrix. A change in the protection state may be due to a 

change in the security policy. 
In the advanced models, we studied take-grant model, the Bell-LaPadula model, 

and the lattice model. In the take-grant model, the protection state of a system is 
described by a directed graph. Nodes of the graph are of two types, subjects and objects. 
An edge from node x to node y denotes that the subject or object corresponding to 
node x has some access rights to the subject or object corresponding to node y. Edges 
are tagged with the corresponding access rights. Besides read, write, and execute, two 
special access rights in the take-grant model are take and grant. The access rights take 
and grant specify how the access rights can be propagated to other nodes. If node x 
has the access right take to node y, the entity corresponding to node x can take access 
rights of the entity corresponding to y to any other node. If node x has the access right 
grant to node y, the entity corresponding to node y can be granted any access right 

which the entity corresponding to node x has. 
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The Bell-LaPadula model deals with the control of information flow. This model 

consists of several security levels, which are ordered. Each subject has a clearance and 

each object has a classification (i.e., belongs to a security level). Each subject also has a 

current clearance level, which may not exceed the clearance of the subject. In the Bell- 

LaPadula model, a subject has append (i.e., write) access to only those objects whose 

classification (i.e., security level) is higher than or equal to the current security clearance 

level of the subject. It has read access to only those objects whose classification is lower 

than or equal to the current security clearance level of the subject. 

The lattice model of information flow deals with regulating the flow of information 

among the objects. The lattice model consists of three entities: a set of objects, a set of 

processes (so-called subjects), and a set of security classes. An information flow policy 

is modeled by a lattice (SC, —>) where SC is the set of security classes and the relation 

—»• specifies permissible information flow between classes. For two objects x and y, 

information flow from x to y is permitted provided x—>y.(x denotes the security class 

to which an object x belongs.) The lattice model of security is very powerful because 

by choosing any ordering between security classes, a wide range of information flow 
policies can be modeled. 

The protection mechanisms in four real-life systems, namely, UNIX, Hydra, 

Amoeba, and Andrew, were described. Hydra and Amoeba use capabilities for pro¬ 

tection, whereas UNIX and Andrew make use of access control list techniques. 

14.9 FURTHER READING 

Early fundamental papers on protection include Lampson’s papers on the access matrix 

model [21] and the confinement problem [22] and the Graham and Denning paper on 
the access matrix model [18]. 

For a comprehensive reading on the subject, readers are referred to two excellent 

books on the subject, by Denning [7] and by Pfleeger [31]. Popek provides a good survey 

of protection [32], The July 1983 issue of IEEE Computer is devoted to computer 

security technology. Landwehr’s article [23] in the September 1981 issue of ACM 

Computing Surveys provides a good overview of models for protection in computer 

systems. Clifford Neuman [29] reviews protection and security issues in the future 
systems. 

Fabry discusses the use of capability as an addressing mechanism in [14]. Tech¬ 

niques for review and revocation of access rights in capability-based systems can be 

found in a paper by Gligor [17]. Ekanadham and Bernstein have extended the idea 

of capabilities to conditional capabilities where a capability has a set of conditions 
associated with it [11]. 

An article by McLean addresses limitations of the Bell-LaPadula model [26]. A 

recent book edited by Denning [10] contains a comprehensive treatment of the various 

security threats in computer systems and their social, legal, and ethical implications. 

Sandhu [35], Ammann and Sandhu [1] have developed a schematic protection model 

for security in computer systems. The Computer Security Evaluation Center of the U.S. 

Department of Defense has developed a set of criteria [37] to evaluate the degree of 
confidence in the security provided by a computer system. 
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Wong [38] discusses issues in the design of secure distributed operating systems. 

Mullender and Tanenbaum [28] describe the application of capabilities for protection in 

distributed systems. Clifford Neuman [30] discusses an infrastructure for authorization 

and accounting in distributed systems. For more details of the protection mechanism in 

Andrew, reader should refer to Satyanarayanan [36]. 

Readers can also find articles on this topic in the Proceedings of an annual sym¬ 

posium, IEEE Symposium on Security and Privacy. Moreover, the Journal of Computer 

Security is devoted to this topic. 

PROBLEMS 

14.1. A password can be stolen by trial and error (by trying several passwords). Suggest 
a safeguard against such security violations. 

14.2. Consider a protection system where three access rights x, y, and 2 are defined on 
the objects. The objects are divided into 8 classes and the access rights of the classes 
are respectively the 23 elements of the superset of the set {x, y, z}; that is, elements 
of {$}, {x}, {y}, {z}, {x, y, z}. Information flow is permitted from a class 
sci to another class sc 2 if the access rights of class sci are contained in the access 
rights of class SC2. Show that the set of classes and the flow relation form a lattice. 
Draw a schematic diagram for the lattice. 

14.3. Discuss the pros and cons of the tagged and partitioned approaches to implement a 
capability-based protection system. 

14.4. Suppose a routine is shared by many users. The routine accesses a datum via a 
capability. The datum is private to each user. (For example, a routine can be a 
compiler that accesses a user program as the data.) Explain how we can implement 
this using capability-based addressing. Can we implement this when the object table 
is global? Why or why not? 

14.5. Show that the lock-key method of access control is identical to the access list control 
method with protection groups. 
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CHAPTER 

15 
DATA SECURITY: 
CRYPTOGRAPHY 

15.1 INTRODUCTION 

The techniques for security and protection discussed in the previous chapter help to pre¬ 

vent the unauthorized use and access to resources of a computer system. Nevertheless, 

there remains the possibility that an unauthorized user can gain access to confidential 

information. For example, a user can bypass the protection mechanism of a system 

or tap a physical channel (in a communication network) to steal information being 

transmitted over the channel. A user, not authorized to access information is called an 
intruder. Note that intruder is relative to the information. 

To add extra protection to confidential information, techniques are needed to en¬ 

sure that an intruder is unable to understand or make use of any information obtained 

by wrongful access. Cryptography is a technique that provides added protection to the 

system in the event of such unauthorized information disclosures. Cryptography allows 

a piece of information to be converted into a cryptic form before being stored in a com¬ 

puter system or before being transmitted over a physical channel. The cryptic form is 

such that this information is unintelligible unless it is decrypted using secret information 

(such as a key) known only to persons authorized to read and use this information. 

Clearly, cryptography can be used to protect the confidentiality of both stored 

information and information transmitted over a physical channel. For information trans¬ 

mitted over a physical channel, this is the basic form of protection (besides guarding 

the physical channel against illegal taps). For information stored in a computer system, 

404 
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it is an added protection in the event that an intruder succeeds in accessing protected 

information. In addition to the confidentiality of information, cryptography is also used 

for establishing the authenticity of a user to another user or entity. Establishing authen¬ 

ticity requires the use of a mechanism that enables the system to verify the identity of 

a user—to verify whether a user is indeed what he claims to be. 

In this chapter, various cryptographic techniques used to protect the confidentiality 

and the integrity of information and authentication techniques are discussed. 

15.2 A MODEL OF CRYPTOGRAPHY 

15.2.1 Terms and Definitions 

A plaintext (or a cleartext) is an intelligible message that is to be converted into an 

unintelligible (i.e., encrypted) form. A ciphertext is a message in encrypted form. En¬ 

cryption, the process of converting a plaintext to a ciphertext, generally involves a set 

of transformations that uses a set of algorithms and a set of input parameters. Decryp¬ 

tion is the process of converting a ciphertext to a plaintext. This also requires a set 

of algorithms and a set of input parameters. Generally, both encryption and decryption 

require a key parameter whose secrecy is absolutely essential to the functioning of the 

entire process. This parameter is referred to as the key. (Breaking a cryptographic sys¬ 

tem essentially involves acquiring the knowledge of the key.) If the key is the same for 

both encryption and decryption, the system is referred to as the symmetric. Otherwise, 

it is asymmetric. 
A cryptosystem is a system for encryption and decryption of information. Cryptol¬ 

ogy is the science of designing and breaking cryptosystems. Cryptography refers to the 

practice of using cryptosystems to maintain confidentiality of information. The study 

of breaking cryptosystems is referred to as cryptoanalysis. 

15.2.2 A Model of Cryptographic Systems 

The model of a cryptographic system presented in this section is taken from [14], 

Figure 15.1 illustrates the general structure of a cryptographic system. 

Block E performs the intended encryption. It takes plaintext M and an encryption 

key Ke as the input and produces ciphertext C. EKe denotes the functional notation 

for the encryption operation using Ke as the key; that is, C = EjkJM). The ciphertext 

C is transmitted over an insecure channel to a destination where it is deciphered. (An 

insecure channel is one that can be tapped by an intruder.) The decryption operation is 

denoted by a box D, which takes ciphertext C and a decryption key Kd as input and 

produces the original plaintext M as the output. DKd denotes the functional notation 

for the decryption operation using Kd as the key; that is, M=Dxd{C). 
Block CA denotes a cryptoanalyst (i.e., an intruder) whose task is to decipher 

information transmitted over the channel. The cryptoanalyst has full knowledge of the 

encryption (E) and decryption (D) techniques in use. The cryptoanalyst can listen to the 

channel (i.e., knows C) and has access to a variety of side information (SI). Examples 

of side information include language statistics (i.e., the frequency of letters and words), 

the context of the ongoing communication, and some portion of plaintext. However, 
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Ke Kd 

Encryption Key Decryption Key 

FIGURE 15.1 
A schematic of a cryptographic system. 

the cryptoanalyst does not have knowledge of the decryption key Kd. To break the 

system, a cryptoanalyst must find a scheme to determine the decryption key Kd, given 

the information at his disposal. In some cases, it may be possible to decipher portions 
of a ciphertext without having any knowledge of Kd. 

The protection provided by a cryptographic system is measured by the difficulty 
in finding the (value of the) decryption key used in the system. 

POTENTIAL THREATS. A cryptographic system is subject to various kinds of 

threats [14]. The threat depends upon how much and what kind of side information 

(SI) is available to an intruder (i.e., a cryptoanalyst). The threat to a cryptographic 

system increases as the amount of side information increases. Clearly, a system that 

can be broken in the absence of side information (or with only very trivial side infor¬ 

mation) is highly insecure and is therefore useless. To be secure and robust, a system 

should be able to withstand the most severe threat: it should remain secure even if the 

most desired side information (except the key) is available. Next, potential threats to 

cryptographic systems when various degrees of the side information are available to an 
intruder are discussed. 

A threat to a system in which an intruder can have access to only the ciphertext 

is called a ciphertext-only attack. A cryptographic system vulnerable to ciphertext-only 

attacks has very little utility because it is very easy to get hold of ciphertext (for example, 

by tapping an insecure channel). In a ciphertext-only attack, an intruder generally uses 

probabilistic characteristics or the context of the ciphertext to break the cipher. A good 

cryptographic system should be able to withstand ciphertext-only attacks. 

A system in which an intruder can have access to both ciphertext and a con¬ 

siderable amount of corresponding plaintext is said to be subject to a known-plaintext 

attack. Systems that can withstand known-plain text attacks are more secure because an 

intruder could obtain a considerable amount of plaintext corresponding to a ciphertext. 

The threat to a system where an intruder can obtain ciphertext corresponding to plain- 
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text of his choice is referred to as a chosen-plaintext attack. For example, this happens 

when an intruder succeeds in breaking into a system to the extent where the system 

encrypts a plaintext of the intruder’s choice. 

DESIGN PRINCIPLES. There are two basic principles underlying the design of cryp¬ 

tographic systems: First, Shannon’s principles of diffusion and confusion [23] which 

calls for breaking dependencies and introducing as much randomness in the cipher- 

text as possible. Second, the exhaustive search principle, which calls for an exhaustive 

search of a space to determine the key needed to break the system. 

Shannon’s principles. Shannon’s principle of diffusion calls for spreading the 

correlation and dependencies among key-string variables over substrings as much as 

possible so as to maximize the length of plaintext needed to break the system. Shannon’s 

principle of confusion advocates changing a piece of information so that the output has 

no obvious relation to the input. It calls for making the functional dependencies among 

related variables as complex as possible so as to maximize the time required for breaking 

the system. 
Exhaustive search principle. The determination of the key—needed to break a 

cryptographic system—requires an exhaustive search of a space, which is extremely 

computationally intensive and takes a prohibitively long time. Note that given a suffi¬ 

ciently long time, it may be possible to determine the key uniquely. 

Shannon’s principles formed the basis for early methods (i.e., conventional cryp¬ 

tography) while the exhaustive search principle forms the basis for modern 

cryptography. 

15.2.3 A Classification of Cryptographic Systems 

Figure 15.2 depicts a simple classification of cryptographic systems. These systems can 

be roughly divided into conventional and modern systems. 
Conventional systems were used primarily for ciphering a script written in a 

language. The basic principle underlying these systems is the mapping of a letter of 

the alphabet of a language by another letter in the alphabet, derived through a secret 

Cryptographic systems 

Conventional systems Modem systems 

Private key systems Public key systems 

FIGURE 15.2 
A classification of cryptographic systems. 
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mapping procedure. The crux of these systems is the secrecy of the mapping procedure, 

which can be viewed as a key. 

Modern systems, on the other hand, are primarily used for ciphering information 

that is in binary form. These systems follow the principle of open design in the sense 

that underlying encryption and decryption techniques (algorithms) are not kept secret. 

Instead, only the values of some parameters (called keys) used in encryption and de¬ 

cryption are kept secret. Here also, there are two types of systems: private key systems 

and public key systems. In private key systems, keys used for both the encryption and 

decryption are kept secret. In public key systems, on the other hand, the key used for 

encryption is known publicly, but the key used in decryption is still kept secret. The crux 

of the public key system is that even though the procedure to compute the decryption 

key is known, the procedure is so computationally intensive that it takes a prohibitively 

long time to compute the key. Private key systems use Shannon’s principles of diffusion 
and confusion for added security [14]. 

15.3 CONVENTIONAL CRYPTOGRAPHY 

Conventional cryptography is based on substitution ciphers. In a substitution cipher, 

each alphabet in a plaintext is substituted by another alphabet. In this section, we 

present a series of techniques for conventional cryptography such that each technique 

presented is a refinement over the previous one. We will use the English language 

for illustration purposes and we will use the numeral correspondence of the 26 letters 

whenever arithmetic operations are involved. (That is, A 0, B 1, , ... , Z <^> 25.) 

THE CAESAR CIPHER. In the Caesar cipher, a letter is transformed into the third 

letter following it in the alphabetical sequence (with wrap around). Mathematically, it 
corresponds to the following mapping, E (M denotes an alphabet): 

E : M —> (M + 3) modulo 26, where 0 < M <25. 

For example, plaintext “Julius loves Cleopatra” is transformed into “mxolxv oryhv 

fohrsdwudIn the Caesar cipher, the shift is fixed at 3 letters. It can be generalized 

to have any degree of shift (between 1 and 25). The main problems with the Caesar 

cipher are that (1) since the transformation is linear, a search to determine the key is 

very simple and (2) the number of keys (i.e., the number of possible shifts in letters) 
is very small (only 25). 

SIMPLE SUBSTITUTION. In the simple substitution cipher, any permutation of letters 

can be mapped to English letters. Thus, the positional correlation of the Caesar cipher 

has been eliminated. Since each permutation of letters is a key, there are 26! (> 1026) 
keys in this cipher, making an exhaustive search very expensive. 

However, the simple substitution cipher preserves the frequency distribution of the 

lettei s ol an alphabet because the same substitution is performed at all the occurrences 
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of a letter. Therefore, a statistical analysis of the underlying language can be used to 

break the cipher. For example, in the English language, the frequency of different letters 

is highly nonuniform and this knowledge can be used to break the simple substitution 

cipher. 

POLYALPHABETIC CIPHERS. Polyalphabetic ciphers use a periodic sequence of n 

substitution alphabet ciphers. That is, the system switches among n substitution alphabet 

ciphers periodically. A major impact of this is that the statistical characteristics of the 

language can be smoothened out by appropriately choosing the mapping (substitution). 

Also, the effective number of keys is increased to (26!)n. 
A popular version of polyalphabetic ciphers is the vigenere cipher, which employs 

a periodic sequence of Caesar ciphers with different keys. For example, if the periodic 

sequence of integers is 11, 19, 4, 22, 9, 25, then the ciphertext is obtained by adding 

these integers (in “modulo 26” arithmetic) in this sequence repeatedly to the integers of 

the plaintext. (Note that each letter of the text is denoted by an integer between 0 and 

25.) For this periodic sequence, the first, seventh, thirteenth, ..., letters of the plaintext 

are shifted by 11 letters; the second, eighth, fourteenth, ... letters are shifted 19 places; 

the third, ninth, fifteenth, ... letters are shifted 4 places; and so on. 
The vigenere cipher is vulnerable, however, because if the period is known, the 

various shifts in the period can be determined by an exhaustive search. Security can be 

increased by making n —> oo; that is, by making the period as big as the number of 

letters in the message. However, the key, which is now as long as the message, must 

be transmitted securely over the unsecure channel. Such a key is called a one-time pad. 

Substitution ciphers that use a one-time pad are unbreakable because, given a ciphertext, 

it is impossible for an intruder to guess the key. Ciphertext provides no clue about the 

key. Shannon has shown that this scheme is provably secure in the information-theoretic 

sense. 

15.4 MODERN CRYPTOGRAPHY 

Due to the widespread use of digital computers in information processing, storage, and 

transmission, modern cryptographic systems are geared toward ciphering information 

that is in binary form. Plaintext and ciphertext are both in binary form. In modern 

cryptography, underlying encryption and decryption techniques are generally publicly 

known. However, the values of keys needed to decrypt a ciphertext are kept secret. 

Modern cryptographic schemes are based on the principle of exhaustive search—even 

though the procedure to compute the decryption key is known, the procedure is so 

computationally intensive that it takes a prohibitively long time to compute the key. 

We next present two techniques for modern cryptography, namely, private key 

systems and public key systems. Recall that in private key systems, keys used for both 

encryption and decryption are kept secret. Private key systems use the same key for 

encryption as well as decryption, whereas public key systems use different keys for 

encryption and decryption. In public key systems, the key used for encryption is known 

in the public domain, but the key used for decryption is kept secret. 
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15.5 PRIVATE KEY CRYPTOGRAPHY: DATA 
ENCRYPTION STANDARD 

In private key cryptography, the Data Encryption Standard (DES), developed by IBM, 

has been the official standard for use by the U.S. federal government [25], We describe 

the basic technique of the DES and a more detailed description can be found in [25] 
and [6], 

Two basic operations, permutation and substitution, are used in the DES. 

Permutation. A permutation operation permutes the bits of a word. The purpose 

of a permutation operation is to provide diffusion, as this spreads the correlation and 
dependencies among the bits of a word. 

Substitution. A substitution operation replaces an m-bit input by an n-bit output. 

There is no simple relation between input and output. Generally, a substitution operation 

consists of three operations: first, the m-bit input is converted into a decimal form; sec¬ 

ond, the decimal output is permuted (to give another decimal number); and finally, the 

decimal output is converted into n-bit output. The purpose of the substitution operation 
is to provide confusion. 

15.5.1 Data Encryption Standard (DES) 

The DES is a block cipher that crypts 64-bit data blocks using a 56-bit key, key. 

For error detection, the key is expanded to 64-bit by adding 8 parity bits. There are 

three basic steps involved in encryption. First, the plaintext block undergoes an initial 

permutation IP, in which 64 bits of the block are permuted. Second, the permuted block 

undergoes a complex transformation. This transformation uses the key and involves 

16 iterations (explained later). Third, the output of the second step undergoes a final 

permutation, IP~\ which is the inverse of the permutation in the first step. The output 

of the third step is the ciphertext block. The decryption of a ciphertext block requires 
that exactly these three steps are performed with reverse functionality. 

We next discuss the iterative transformation of the second step, which is the 

heart of this technique. The iterative transformation consists of 16 functionally identical 

iterations. Every iteration uses a key for transformation that is derived from key and 
the iteration number. 

Let Li and Rt respectively denote the left and right 32-bit halves of the crypted 
64-bit block after the ith iteration (1< i <16). Inputs to the ith iteration are 1} Rt_u 
and Ki, where is a 48-bit key used in the zth iteration and is derived from key and 

the iteration number i, Ki=$(key, i). For the first iteration, L0 and Rq are respectively 

the left and right 32-bit halves of the 64-bit block after the initial permutation IP. 

A schematic of the operations performed in the ith iteration is shown in Fig. 15.3. 

The transformation done at the zth iteration is given by the following equations: 

Li — Ri— i 

Ri = Li © f(Ri_i,Ki) 

where © denotes the exclusive-OR operation. Function / produces a 32-bit output that 
is computed in the following manner: 
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key 

FIGURE 15.3 
A schematic of the operations 
performed in zth iteration. 

1. The 32-bit Rt-1 is expanded into 48-bit E(Rt-1). (This is done by permuting the 
bits of Ri-1 and also by duplicating some bits of Ri-\.) 

2. The exclusive-OR operation is performed between 48-bit key Kx and E(Ri-1) and 
the 48-bit output is partitioned into eight partitions, Q\, Q2, ... , Qs, of 6 bits each. 

(E(Ri-\) ® Ki - Q1, Q2, ••• , Q&-) 
3. Each Qu 1 < i < 8, is fed into a separate 6-to-4 substitution box. (A 6-to-4 

substitution box transforms 6 bits into 4 bits such that the input-output relationship 

is secret.) 
4. The 32-bit output of the eight substitution boxes is fed to a permutation box whose 

32-bit output is /. 

Details of the initial and the final permutations, the computation of the expanded 
48-bit E(R{-1), the computation of keys Ki, and the eight 6-to-4 substitution boxes 

can be found in [25] and [6]. 

DECRYPTION. The decryption of a crypted block requires the execution of the three 
previously described steps in reverse order, with the reverse function performed at 
each step. The first decryption step will undo the permutation IP-1, performed in the 
last encryption step. The second step will undo the transformation performed in the 
16 iterations. The iterations are executed in reverse order—starting from key Kl6 and 

ending at key K\—using the following formula: 

Ri-1 = Ri 

Li~ 1 = Ri © f(L{, Ki) 

The keys K\, K2,..., K\e used in decryption are the same keys used in encryption. 
The third decryption step undoes the permutation IP performed in the first encryption 

step, yielding the original plaintext block. 
The crux of this method is that the key key is very long (56 bits) and thus 

determining the key requires an exhaustive search over 256 values. Permutation (in the 
first and third steps) and substitution (in the second step) provide extra security by 

adding diffusion and confusion. 
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15.5.2 Cipher Block Chaining 

The mode of DES operation described above is a substitution cipher, where two iden¬ 

tical 64-bit blocks are encrypted into identical 64-bit output blocks. In the cipher block 

chain mode of operation of DES, the result of encryption of a 64-bit block is propa¬ 

gated through the encryption of subsequent blocks. Thus, the encryption procedure has 

memory and is not a simple substitution cipher. Clearly, this is much more difficult to 
break than the DES without cipher block chaining. 

In the cipher block chain mode, a plaintext block is combined using an exclusive- 

OR operation with the ciphertext of the previous block and then the resulting block 

is encrypted using the DES. Thus, an encrypted block influences the encryption of all 

subsequent blocks. For encryption of the first plaintext block, a 64-bit random block is 
used. 

15.6 PUBLIC KEY CRYPTOGRAPHY 

Private key cryptography (as well as conventional cryptographic techniques) requires 

the distribution of secret keys over the insecure communication network before secure 

communication can take place. This is called the key distribution problem. It is a boot¬ 

strap problem: a small secret communication (over an insecure communication network) 

is required before any further secret communication over the network can take place. A 

private courier or a secure communication channel is used for the distribution of keys 
over the network. 

Public key cryptography solves this problem by announcing the encryption proce¬ 

dure E (and the associated key) in the public domain. However, decryption procedure 

D (and the associated key) is still kept secret. The crux of public key cryptography is 

the fact that it is impractical to derive the decryption procedure from the knowledge 

of the encryption procedure. This revolutionary concept was advocated by Diffie and 

Heilman [10]. Encryption procedure E and decryption procedure D must satisfy the 
following properties: 

1. For every message M, D(E(M)) = M. 

2. E and D can be efficiently applied to any message M. 

3. Knowledge of E does not compromise security. In other words, it is impossible to 
derive D from E. 

Public key cryptography allows two users to have a secure communication even 

if these users have not communicated before, because the encryption procedure used to 

encrypt messages for every user is available in the public domain. If a user X wants 

to send a message M to another user Y, X simply uses F’s encryption procedure Ey 

to encrypt the message. When Y receives the encrypted message Ey(M), it decrypts 
it using its decryption procedure Dy. 
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15.6.1 Implementation Issues 

Diffie and Heilman suggested that one way to implement public key cryptography 

systems is to exploit the computational intractability of the inversion of one-way func¬ 

tions [10]. A function / is one-way if it is invertible and easy to compute. However, 

for almost all x in the domain of /, it is computationally infeasible to solve equa¬ 

tion y = f(x) for x. Thus, it is computationally infeasible to derive /-1 even if / is 

known. Note that given / and output y ( = f(x)) of the function, what we want is that 

computation of input x should be impossible. 
Diffie and Heilman introduced the concept of a trapdoor one-way function [10]. A 

function / is referred to as a trapdoor one-way function if /-1 is easy to compute, pro¬ 

vided certain private trapdoor information is available. An example of private trapdoor 

information is the value of decryption key KClearly, a trapdoor one-way function 

/ and its inverse f~l can be used as matching encryption and decryption procedures 

in a public key cryptography. Various implementations of public key cryptography that 

make use of such one-way functions, have been proposed. We next discuss a popular 

implementation by Rivest, Shamir, and Adleman [21]. 

15.6.2 The Rivest-Shamir-Adleman Method 

In the Rivest-Shamir-Adleman (RSA) method, a binary plaintext is divided into blocks 

and a block is represented by an integer between 0 and n — 1. This representation is 

necessary because the RSA method encrypts integers. 
The encryption key is a pair (e, n) where e is a positive integer. A message block 

M (which is between 0 and n - 1) is encrypted by raising it to eth power modulo n. 

That is, the ciphertext C corresponding to a message M is given by 

C = Me modulo n 

Note that ciphertext C is an integer between 0 and n — 1. Thus, encryption does not 

increase the length of a plaintext. 
The decryption key is a pair (d, n) where d is a positive integer. A ciphertext 

block C is decrypted by raising it to dth power modulo n. That is, the plaintext M 

corresponding to a ciphertext C is given by 

M = Cd modulo n 

A user X possesses an encryption key (ex, fix) and a decryption key (dx, n>x), where 
the encryption key is available in public domain, but the decryption key is known only 

to user X. Whenever a user Y wants to send a message M to user X, Y simply uses 

X’s encryption key (ex, tix) to encrypt the message. When X receives the encrypted 

message, it decrypts it using its decryption key (dy, nx)- A schematic of the RSA 

method is shown in Fig. 15.4. 

DETERMINATION OF ENCRYPTION AND DECRYPTION KEYS. Rivest, Shamir, 

and Adleman [21] identify the following method to determine the encryption and de¬ 

cryption keys. First, two large prime numbers, p and q, are chosen and n is defined 

as 
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(e, n) 

Encryption Key for user X 

(d, n) 

Decryption Key for userX 

FIGURE 15.4 
A schematic of the RSA method. 

n = p x q 

Note that p and q are chosen sufficiently large so that even though n is public, it will 

be practically impossible to determine p and q by factoring n. After p and q have been 

decided, a user can choose any large integer as d so long as the chosen d is relatively 
prime to (p — 1 )x(q — 1). That is, d should satisfy the condition 

GCD(d, (p — l)x(<7 — 1)) = 1 

Integer e is computed from p, q, and d such that it is the multiplicative inverse 
of d in modulo (p - l)x(q - 1). That is, 

e x d = 1 (modulo (p - l)x(q — 1)) 

When n, e, and d are computed in this manner, the encryption and decryption 

process in the RSA method work correctly [21]. Note that every user must compute its 
own set of n, e, and d. 

Even though n and e are public, the determination of d requires that n must be 

factored into two primes p and q so that the product (p- l)x(g- 1) is known. (Note that 

this product is needed to compute d.) The main hurdle here is that if n is a sufficiently 

big number, say of 200 digits, the factorization of n will require an enormously long 
time, even on the fastest computers. 

Example 15.1. Assume p = 5 and q = 11. Therefore, n = 55 and (p- 1) x (q- 1) = 
40. We choose d as 23 because 23 and 40 are relatively prime (GCD(23, 40) = 1). 
Now we must choose e satisfying the following equation: 

23 x e (modulo 40) = 1 

Note that e = 7 satisfies this equation. Below we take some integers between 0 and 
54 and show the encryption and decryption process for the RSA method: 

M M1 C = 

M1 mod 55 
C23 M = 

C23 mod 55 

8 2097152 2 8388608 8 
9 4782969 4 70368744177664 9 

51 897410677851 6 789730223053602816 51 
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15.6.3 Signing Messages 

To maintain the confidentiality of a message in public key cryptography, the message 

is encrypted with the public key and later decrypted with the secret key. However, 

in public key cryptography, a message can first be encrypted with the secret key and 

then later be decrypted with the public key. Note that by encrypting a message in this 

manner, a user is creating a signed message because no one else has the capability of 

creating such message. The encryption and decryption operations in such situations are 

referred to as signing and verifying a message, respectively. However, if public key 

cryptography is to be used for signing messages, the following condition must hold: 

(yM)(yDpK)(f/EsK):: M-Dpk(Esk(M)) 

where M is a message and PK and SK are, respectively, the public and secret keys. 

15.7 MULTIPLE ENCRYPTION 

The level of security provided by the DES has been hotly debated. It has even been 

argued that the 56-bit key used in the DES will be too small to escape detection 

in the event of an exhaustive search on the ultra-fast computers that technology is 

expected to provide in the near future [9]. However, the security level of the DES 

can be increased by performing multiple encryption using independent keys [9]. For 

example, if a plaintext is doubly encrypted by first encrypting it with a 56-bit key 

and then again encrypting the resulting ciphertext by an independent 56-bit key, an 

exhaustive search over 2112 keys must be performed to break the cipher. 

Unfortunately, the level of security provided by double encryption is far less than 

it appears at first sight [16], In fact, the level of security provided by double encryption 

is much less than that of a single encryption with a 112-bit key. Diffie and Heilman [9] 

have shown that a double encryption with two independent 56-bit keys can be broken 

under known-plaintext attack with 256 operations and 256 words of memory. Thus, the 

time complexity of breaking a double encryption is the same as that of breaking an 

encryption with a 56-bit key. Although an exorbitant amount of memory is required to 

break a double encryption, this may be feasible in the near future as the cost of main 

memory decreases. 

15.8 AUTHENTICATION IN DISTRIBUTED SYSTEMS 

In this section, we discuss the application of encryption in performing authenticated 

communication between entities (i.e., users, servers, etc.) in distributed systems. In dis¬ 

tributed systems, authentication means verifying the identity of communicating entities 

to each other. The description of authentication protocols in this section is based on the 

seminal work of Needham and Schroeder [18]. 
The distributed system under consideration consists of a collection of computers 

(called machines) that are connected by a network. There is no shared memory and all 

the computers communicate solely by passing messages over the network. The network 

is not secure in the sense that an intruder can copy and play back a message on the 

network. 
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AUTHENTICATION SERVICES. We consider the following three authentication ser¬ 
vices: 

1. Establishing authenticated interactive communication between two entities on dif¬ 

ferent machines. Interactive communication means that two entities synchronously 

converse with one another over the network. This service is discussed in Sec. 15.8.2. 

2. Performing authenticated one-way communication between two entities on different 

machines. A typical example of this type of communication is an electronic mail 

system. This is generally an asynchronous operation because it is impossible to 

have a sender and a receiver available simultaneously. This service is discussed in 
Sec. 15.8.3. 

3. Performing signed communication where the origin and the contents of a message 

can be authenticated to a third party. Digital signature is a means to achieve such 

communication between two entities. This service is discussed in Sec. 15.8.4. 

We assume that two entities trying to set up an authenticated communication have 
not necessarily communicated in the past. 

POTENTIAL THREATS. The discussion now turns to the various potential threats 

to achieving a secure authenticated communication. An intruder can gain access to any 

point in the communication network, and is thereby capable of altering or copying a 

part of a message. The intruder can replay a message transmitted earlier by an entity 

as well as transmit erroneous messages on the network. An intruder cannot understand 

the contents of a message (as they are encrypted), nonetheless, the intruder may have 

knowledge of the authentication protocol used by the entities. The intruder may know 

types of messages used in the protocol and their sequencing and purpose, as well as 

when the protocol has been initiated by an entity. An intruder may not only attempt 

to break into a communication, but may also prevent two entities from setting up an 

authenticated communication and interfere with an ongoing communication. 

The fundamental goal of maintaining the secrecy of the contents of a message, 

transmitted over the communication network, is achieved assuming that computers have 

facilities to encrypt and decrypt messages efficiently. We assume that the keys used in 

the encryption and decryption of messages are practically impossible to obtain by an 

intruder and a user has a secure environment to perform computation (that is, to perform 
encryption, decryption, and message analysis). 

Protocols to support the three previously discussed authentication services can 

use any of the encryption techniques—private key or public key—for encrypting a 

communication between entities. We will discuss protocols for these services for both 
types of encryption techniques. 

15.8.1 Authentication Servers 

Protocols for the three authentication services require the availability of an authoritative 

service that securely distributes secret conversation keys, needed for an authenticated 

communication between two entities. This service is provided by a server called the 
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authentication server, AS. Each user X registers a secret key, denoted by KX, with 

AS, which is known only to X and AS. AS uses this key to securely communicate a 

secret communication key to the user. If the system is small, one authentication server 

is usually sufficient. In large systems, the responsibility can be distributed over many 

authentication servers. 
Since the main database of an authentication server is indexed by user names, 

there is a striking similarity between an authentication server and a name server in a 

distributed system. Therefore, the implementation of authentication servers need not 

have additional overhead as the authentication servers can be merged with the name 

servers in a system [18]. However, merging authentication and naming services is not 

always appropriate because doing so may make it more difficult to analyze and verify 

the correctness of the authentication service. 

15.8.2 Establishing Interactive Connections 

If user A wants to set a secure interactive connection with user B, user A must generate 

a message with the following properties: 

1. The message must be comprehensible only to user B. 

2. It must be evident to B that the message originated at A and is not a replay of an 

earlier message by an intruder. 

We assume that users A and B are in the purview of the same authentication 

server (AS). 

A PROTOCOL FOR PRIVATE KEY SYSTEMS. Private key systems are symmetric— 

the same key is used for both the encryption and decryption of a message. Each user 

has a secret key that is used for the decryption of received messages and is also em¬ 

ployed by other users to encrypt messages destined to this user. We assume that the 

authentication server AS knows the secret keys of all the users in its purview. 

Issues Involved. 

Obtaining a Conversation Key. Every secure communication between two enti¬ 

ties requires a secret key known only to those two entities. Two communicating entities 

cannot use each others secret keys for encrypting messages, as this will require these 

entities to have the knowledge of each others secret key. Thus, a different secret key, 

called a conversation key, is needed for communication between two entities. This 

raises the question: how does A obtain a secret key, which will be used by both A 

and B, for interactive communication? (Note that A and B may have never interacted 

before and it is infeasible to assign a secret key for every pair of users a priori.) 

Communicating the Conversation Key. After A obtains a conversation key for 

secure communication, how does it safely communicate that key to user B l (Note that 

both A and B don’t know the other’s encryption-decryption key.) 
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Obtaining a Conversation Key. A obtains a conversation key from AS in the fol¬ 

lowing manner. A communicates to AS its own identity, the identity of the desired 

correspondent, B, and A’s nonce identifier for this transaction, I a- (The nonce iden¬ 

tifier must be different from others used by A in previous transactions with AS. Its 

significance is discussed later.) This communication is syntactically denoted as: 

A^AS: A, B, IA (15.1) 

Note that the above message is not encrypted. On the receipt of this message, 

AN looks up secret keys KA and KB for A and B, respectively, and computes a new 

key CK, which will be used for interactive communication between A and B. AS 
communicates this new key to A in the following encrypted messaged 

AS A : Eka(IA, B, CK, Ekb(CK, A)) (15.2) 

Since the message from AS is encrypted using A’s key, only A can decrypt it and 

know the conversation key CK. Having decrypted the above message, A checks the 

intended receiver’s name B and identifier I a in the message to verify if the message 

is indeed a reply to A’s current inquiry to AS. If the recipient’s name is left out in the 

message of Eq. 15.2, then an intruder can change the recipient’s name in the message 

of Eq. 15.1 to some other user, say X, before AS receives the message. This will result 

in A unknowingly communicating with X instead of B. If the identifier IA is left out in 

the message of Eq. 15.2, then an intruder can replay a previously recorded message from 

AS to A (with B as the intended recipient) forcing A to reuse a previous conversation 

key. A schematic diagram of the actions needed for A to acquire the conversation key 
is shown in Fig. 15.5. 

Communicating the Conversation Key. Note that the part Ekb(CK,A) in the mes¬ 

sage that A receives from AS is encrypted with the secret key of B. Thus, A can 

securely communicate the conversation key CK to B by simply communicating this 

part of the message of Eq. 15.2 to B without having to know the secret key of B. 

A —> B : Ekb(CK,A) (15.3) 

(A, B, IA ) 

FIGURE 15.5 
Acquisition of the conversation key by A. 

1 Recall that Ek(m) denotes message m encrypted using key k. 
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Only B can decrypt this message. Thus, the conversation key CK and the identity 

of the intended correspondent, A, is securely conveyed to B. 

At this point, A knows that any message it sends with CK encryption can only be 

understood by B, and any message it receives encrypted with CK must have originated 

from B. However, as will be shown, such a claim cannot be made about B. 

A Small Hitch. A problem arises in communication of the conversation key, CK, from 

A to B because an intruder can playback a previously recorded message of Eq. 15.3. 

Unless B keeps a history of all the previously received messages from A (of Eq. 15.3), 

there is no way for B to distinguish a playback from a legitimate communication 

from A. 

To guard against such threats, B generates a nonce identifier, IB, for this trans¬ 

action and sends it to A under CK encryption. 

B-^A: EckCb) 05.4) 

In response to this message, A sends the following message to B: 

A^B: EckCb- 1) (15.5) 

After having received the above message, B is sure that the message in Eq. 15.3 

it received from A is legitimate (i.e., not a playback). This is because A will send 

the message of Eq. 15.5 only when it receives the message of Eq. 15.4 from B that is 

encrypted with the current conversation key. A schematic diagram of the actions needed 

for A to convey the conversation key to B are shown in Fig. 15.6. 

COMPROMISE OF A CONVERSATION KEY. This protocol works as long as secret 

keys or the conversation key has not been compromised by an intruder. Denning and 

Sacco [8] show that the above protocol breaks if an intruder is able to steal the conver¬ 

sation key. A intruder may succeed in stealing a conversation key due to negligence or 

flaw in the system. 
For example, if an intruder C has intercepted and recorded all messages Eqs. 15.3— 

15.5 and has obtained a copy of the conversation key, CK, it can impersonate A and 

start a conversation with B in the following manner: 

C first replays the message of Eq. 15.3 to B: 

C-+B: Ekb(CK,A) (15.6) 

E^CCK.A) 

( A 

f"AS\ FIGURE 15.6 

Communication of the conversation key by A to B. 
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On receipt of this message, B thinks that A is trying to initiate a conversation 

and requests a handshake from A by sending it the message. 

B —> A : Eck(Ib) (15.7) 

C intercepts this message and impersonates As response: 

A —> B : Eck(Ib ~ 1) (15.8) 

Henceforth, C can impersonate A in a conversation with B and can decipher replies 
of B. 

DENNING-SACCO’S REMEDY. Denning and Sacco suggest a remedy to this problem 

by adding a timestamp to the messages of Eqs. 15.2 and 15.3. This also eliminates 

handshaking between A and B (i.e., messages in Eqs. 15.4 and 15.5). 
The new protocol is given below: 

A —5 ■ AS : A, B 

AS - -> A : Eka(B, CK, T, Ekb(CK, T, A)) 
A - -> B : Ekb(CK,T,A) 

T is the timestamp assigned by AS to the conversation. B can verify that its 

messages are not replays by an impostor by checking if the following condition holds: 

|Clock - T\ < At 1 + At2 (15.9) 

where Clock gives the local time, Atl is an interval denoting the maximum discrepancy 

between the server’s clock and the local clock, and At2 is the expected network delay. 

This method protects against replays as long as Atl + At2 is less than the interval 

since the last use of protocol. However, now old conversation keys cannot be cached 

at user sites to reduce the number of steps required to initiate a conversation. 

A PROTOCOL FOR PUBLIC KEY SYSTEMS. Public key systems are asymmetric 

in that different keys are used for encryption and decryption. Each user has a public 

key that other users employ to encrypt messages to be sent to this user and each user 

has a secret key that it uses lor decryption. Let SKX and PKX, respectively, denote 

the secret and public keys of user X. We assume that the authentication server AS 
knows the public keys of all users in its purview. 

The main issue here is not to acquire a secret key for communication. This is 

because two communicating entities can use each other’s encryption keys (which are 

publicly known) to encrypt messages. The main issue now is to perform a handshake 

between two communicating entities so that they can confirm each other’s identity 

(authentication) and start an interactive communication (synchronization). Initially, we 

discuss a protocol under the assumption that both A and B know the public key of one 

another. Later we discuss how public keys can be obtained from the AS. 



DATA SECURITY: CRYPTOGRAPHY 421 

Performing a Handshake. To perform a handshake, A sends the following message 

to B. The message is encrypted with B’s public key. 

A^B: Epkb(Ia,A) (15.10) 

IA is a nonce identifier of A for this transaction and A’s identity is included so 

that B can identify the correspondent. Clearly, this message can only be understood 

by B. After having decrypted this message, B concludes that A wishes to establish 

an interactive communication with it. Note that such a message can also be fabricated 

by an intruder (who can also replay a previously recorded message of this type). To 

ensure that it is indeed A who sent this message, B sends the following message to A 
in response: (IB is nonce identifier for B.) 

B —► A : Epka(Ia,Ib) (15.11) 

When A decrypts this message, it knows that B is trying to confirm the initiation 

of an interactive communication initiated by it. In response to this message, A sends 

the following message to B: 

A —>■ B : Epkb(Ib) (15.12) 

After having decrypted the above message, B can be assured that it is indeed A 
who is trying to set up an interactive communication with it. A schematic diagram of 

the handshake between A and B is shown in Fig. 15.7. 
This is not the end of problems. Note that since public keys are not secret, an 

intruder can simply encrypt spurious messages with the public keys of the recipients 

and inject them into the network. To guard against such situations, A and B can include 

some secret identifier in messages they send to each other. These identifiers can very 

well be their nonce identifiers, I a and IB. 

Obtaining a Public Key. If A does not have the public key of B, it can obtain the 

key from AS by sending the following message to AS: 

A —y AS: (A,B) (15.13) 

AS responds to this message by sending A the following message that is encrypted by 

the private key of AS: 

AS —> A : Eskas(PKB,B) (15.14) 

A knows the public key of AS and can decrypt the above message to find out the 

public key of B. The encryption of a message of Eq. 15.14 is needed to insure integrity, 

FIGURE 15.7 

Handshake between A and B to set up an interactive 

communication. 
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not to insure privacy of the contents. Note that the message of Eq. 15.14 is a signed 

message and only AS can create a message of this type. (Clearly, we require that for 

any message m, DpKAs(EsKAs(m)) — m.) Thus, no intruder can fabricate a reply 
for a message of Eq. 15.13 and send a bogus public key in the reply to A. The name 

of the intended recipient B is included in the message of Eq. 15.14 so that A knows 

that the name of the intended correspondent was correctly communicated to AS. 

If B does not have the public key of A, it can obtain the key from AS in the 
same way. 

15.8.3 Performing One-Way Communication 

In one-way communication, authentication cannot depend upon the simultaneous avail¬ 

ability of sender and receiver. The main issue in one-way communication is to ensure 

that a receiver is able to check the authenticity of a received communication, even if the 

sender is not available when the receiver gets the communication. An intruder should 

not be able to impersonate a user. As a mail system is a typical example of one-way 

communication, we will discuss private key and public key protocols in this context. 

A PROTOCOL FOR PRIVATE KEY SYSTEMS. 

Issues Involved. 

Obtaining a Secret Key. The sender of the mail message cannot encrypt the mes¬ 

sage with the receiver’s key because this will require the sender to have the knowledge 

of the receiver’s secret key. A secret key is needed for securely communicating the 

mail. So, now an issue is how a sender A obtains a secret key that can be used to 
encrypt a mail message for B. 

Communicating the Secret Key. After A obtains a secret key for encrypting the 
mail message, it must be able to communicate that key to receiver B. 

Authenticating the Sender. When B receives the message, it should have suffi¬ 

cient information to check the authenticity of the sender of a received mail message. 
An intruder should not be able to impersonate a user. 

A obtains a common secret key from AS in the same way as for setting up an 

interactive communication between two entities in a private key system. That is, A 
sends the following message to AS: 

A AS: A,B,Ia (15.15) 

On receipt of this message, AS returns the following encrypted message to A: (CK is 
the secret key that will be used for communication from A to B.) 

AS -> A : Eka(Ia,B,CK,Ekb{CK,A)) (15.16) 

After receiving the above message, A knows the secret key, CK, and also has template 

Ekb(CK,A), encrypted with B’s secret key, which A can use to convey to B the 
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secret key used to encrypt the mail message. Note that template Ekb(CK, A) has been 

used (through the message of Eq. 15.3) to authenticate the identity of an initiator to a 

correspondent in setting up an interactive communication in a private key system. 

Thus, if this template is put at the head of a mail message, M, which is encrypted 

with CK, the entire message “Ekb(CK, A); Eqk(M)” is self-authenticating to re¬ 

ceiver B as well as sender A, even though B did not play any role in sending the mail. 

This is because only A can send a message containing template Ekb(CK, A). Thus, 

a mail message from A to B has the format 

A^B: Ekb(CK,A)-Eck{M) (15.17) 

However, a problem is that an intruder can playback a previous mail message from A to 

B. This presents a problem similar to that of duplicate or outdated message suppression. 

Techniques to safeguard against playbacks of previous mail messages are suggested by 

Needham and Schroeder [18]. 

A PROTOCOL FOR PUBLIC KEY SYSTEMS. We assume that public keys of A and 

B are known to each other. If not, these keys can be obtained from AS by exchanging 

the messages of Eqs. 15.13 and 15.14 with AS. 
The protocol for one-way communication proceeds as follows. A sends the fol¬ 

lowing header message to B to identify itself to B: 

A —> B : Epkb(A, I, Eska(B)) (15.18) 

In this message, A denotes the sender and Eska(B) enables B to authenticate the 

identity of the sender. Note that an intruder can pretend to be A and send such a message 

to B. However, this possibility is eliminated because only A can create Eska(B). Note 

that this part of the message is signed by A. (Clearly, it is required that for any message 

77i, DpKA{EsKA{rn)) = TTi.) / is a nonce identifier that is used to connect the header 

with the corresponding mail message that is encrypted with PKB. 

15.8.4 Digital Signatures 

With the ever increasing use of electronic mail, automated teller machines, and other 

electronic business and financial transactions, the concept of digital signature has gained 

great importance. Digital signature is a way to code an electronic message such that the 

recipient of the message can certify which sender actually sent the message. A scheme 

for digital signature must satisfy the following properties: 

• A user must not be able to forge the signature of any other user and a digital signature 

must be unique to a user. 

• The sender of a signed message should not be able to deny the validity of his 

signature on the message. That is, a user should not be able to provably deny 

sending a message which contains his signature. 

• A recipient of a signed message must not be able to modify the signature contained 

in the message. 
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• A user must not be able to (electronically) cut and paste the signature from one 
message to another message. 

DIGITAL SIGNATURE IN PRIVATE KEY SYSTEMS. To prevent the cut and paste 
of a signature to any message, the signature should be a (unique) characteristic of 
the message. Thus, a characteristic function of a plaintext message, which provides a 
unique characteristic value for every plaintext message, is required. We assume that 
such a characteristic function of a plaintext message can be computed. 

When A wants to send a signed message to B, A first computes the characteristic 
value, CS, of the message and then requests a signature block from AS by sending it 
the message: 

A -a AS : A,Eka(CS) (15.19) 

AS responds to A's message by sending it a signature block in the message: 

AS —> A : EKas(A CS) (15.20) 

The signature block Ekas(A, CS), contained in the above message, is created by 
a collaboration between A and AS. Its value CS is supplied by A, but it is encrypted 
with the secret key of AS. A includes this signature block along with message text 
to be sent to B. Since A can include any signature block with a message text, B 
must confirm the validity of the signature in a received signed message. That is, B 
must confirm that the characteristic value of the message text is the same as the one 
contained in the signature block. To do this, B decrypts a received signed message and 
extracts the message text from it, computes the characteristic value CS' of the message 
text, and sends the signature block in the signed message to AS for deciphering. 

B —> AS: B,Ekas(A,CS) (15.21) 

AS decrypts the signature block and returns it to B in the message: 

AS —> B : Ekb(A,CS) (15.22) 

B checks if CS1 matches CS'. If they do match, the signature on the signed message 
is valid and the user named in the message of Eq. 15.22 is the sender of the signed 
message. 

If B wishes to retain evidence that the received text was signed by A, all B 
must do is save the signature block along with the text. At any time, B can assert the 
authenticity of a received signed message to a third party by supplying it with the text 
and the corresponding signature block. The third party can check the authenticity of the 
signed message by taking the steps indicated in Eqs. 15.21 and 15.22. 

Note that a signature block is encrypted with the secret key of the authentication 
server, AS. This has two advantages. First, the receiver of a signed message, B, cannot 
forge the sender’s signature in a received signed message. Second, a receiver of a 
signed message can confirm the validity of the signature by having the signature block 
deciphered by an independent trusted server, AS. A repudiation by a sender of a signed 
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message is impossible because (1) there is a unique correspondence between message 

text and the characteristic value in the signature and (2) a signature block contains 

the identifier of the sender. (Note that only A can send a signature block of type 

Eras(A, CS)). The cut-and-paste of a signature by a receiver is prevented as a unique 

correspondence exists between message text and its characteristic value. 

DIGITAL SIGNATURE IN PUBLIC KEY SYSTEMS. Public key cryptography can 

be used to implement digital signatures in the following way. Let A and B be two users 

with their public and secret keys as PKA, PKB and SKA, SI\B, respectively. A 
sends a signed message M to B in the following manner. A first encrypts the message 

M using its secret key, SKA: 

S = Eska(M) 

where S is referred to as the signature of message M. (Recall that in public key 

cryptography, a message can be encrypted with the secret key and then can be decrypted 

with the public key. This is done when a user wants to sign a message.) Then A encrypts 

the signature S using B's public key, PKB: 

C = Epkb(S) 

and sends the crypted message C to user B. When B receives this message, it decrypts 

the message using its secret key, SKB: 

S = Dskb(C) 

to obtain the message in the signature form S. Now B obtains the plaintext message 

M by encrypting S with A’s public key, PKA, which is publicly available. Note 

that a recipient of a signed message must know the identity of the sender so that the 

appropriate encryption procedure can be applied. This can be achieved by having a 

sender attach its identifier in plaintext to S before producing the corresponding C. 
However, it is required that, 

(\/M)(s/DpKa)(VEska)''- M = Dpka(Eska(M)) 

Note that tuple (M, S) acts like a signed message sent from A to B. User B can 

always prove that this message is sent by user A because no one else knows the secret 

key SKA of A and thus, nobody else can create S (=Eska(M)). User A cannot deny 

that it sent this message to B. 

15.9 CASE STUDY: THE KERBEROS SYSTEM 

Kerberos [24] is an authentication system implemented on Project Athena at MIT. 

Project Athena [5] provides an open network computing environment where users have 

complete control of their workstations and a workstation cannot be trusted to identify 

its users correctly to the network services. Therefore, a third-party authentication must 

be used, which provides a user with an authenticated means to prove his identity to 
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various network services and vice-versa. Kerberos provides this third-party authentica¬ 

tion service to Athena and is based in part on the authentication model of Needham 

and Schroeder. 

Kerberos is based on private key encryption and uses the Data Encryption Standard 

(DES). Every user has a private key that is also known to Kerberos. Kerberos maintains a 

database of its users and their private keys. For a user U, U's private key can be obtained 

by applying a one-way function / to t/’s password, password, e.g., Ku-f {password). 
Kerberos uses the private key of a user to create encrypted messages for the user that 

can convince the user of the Kerberos’ authenticity. If a user receives a message that is 

encrypted using that user’s private key, the message must be from Kerberos, because 

aside from the user itself, only Kerberos knows the user’s private key. Kerberos also 

creates temporary private keys, called session keys, which can be used for a private 

encrypted conversation between two parties (i.e, a user and a server). 

Kerberos requires the computers of the network to have loosely synchronized 

clocks. A timestamp, which is the current clock value of the sender, is added to the 

information exchanged between two parties to aid in the detection of message replay. 

(A message replay occurs when an intruder copies a message from the network and 

replays it later.) The receiver of a message checks for its timeliness by comparing its 

own clock value to that of the message timestamp. A message is timely if the message 

timestamp is approximately equal to the receiver’s clock value. 

The term client refers to a program that runs on the host computer of the user 

and requests remote services on behalf of the user. In Kerberos, a client must present 

both a ticket and an authenticator to a server to request a service. A ticket proves 

the authenticity of the client to the server. A client requests a ticket from a Kerberos 

authentication server (or a ticket-granting server). A ticket securely passes the identity 

of the client to whom it was issued from the Kerberos authentication server to the end 

server. A ticket contains the name of the server, the name of the client, a timestamp, 

a session key, etc. and is encrypted using the key of the server from which the client 

will subsequently request service. The session key is used for a private encrypted 
conversation between the user and the server. 

To request a service, a user goes through three phases of authentication through 
Kerberos: 

1. In the first phase, referred to as “getting the initial ticket,” the user obtains creden¬ 

tials, i.e., a ticket, from the Kerberos authentication server. This ticket is later used 
to request other tickets for various services in the network. 

2. In the second phase, referred to as “getting the server ticket,” the user requests 

authentication, i.e., a ticket, from the ticket-granting server for a specific service. 

3. In the third phase, referred to as “requesting the service," the user presents the 
ticket to the server for service. 

A schematic of these three phases is shown in Fig. 15.8. The ticket-granting server, 

tgs, and the Kerberos server, K, are usually co-located and implemented as a single 

Keibeios servei. Message 6 is optional and is needed only if the client requires mutual 
authentication. 
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1. Request for tgs ticket 

2. Ticket for tgs 

3. Request for server ticket 

4. Ticket for Server 

5. Request for service 

6. Response from Server 

FIGURE 15.8 
A schematic of the Kerberos authentication protocol. 

Kerberos achieves these three phases of authentication with the help of two authen¬ 

tication protocols. (1) The user-authentication protocol, which verifies the authenticity of 

a user and obtains a session key and an initial ticket for the user. This protocol makes 

up the first phase of a service request. (2) The client-server authentication protocol, 

which achieves mutual authentication of a client and a server. The mutual authentica¬ 

tion means that the client and the server should be able to verify the authenticity of 

each other. This protocol makes up the last two phases of a service request. 

15.9.1 Phase I: Getting the Initial Ticket 

To log into a workstation, a user supplies his userid U to the client C: 

U^C: U (15.23) 

The client then sends the userid and the name of a special service known as the ticket 
granting service, tgs, to the Kerberos server, K: 

C^K: U, tgs (15.24) 

On receipt of this information, the Kerberos server retrieves user key Kv and tgs key 

Ktgs from the database and generates a session key, Ku,tgs, to be used between the user 

and the ticket granting server. It then creates a ticket, TUttgs = E]Ktgs{U’> ^s, KUitgs, 
timestamp, life}, which consists of the userid, the name of the ticket granting server, 

the current time, lifetime of the ticket, and the session key just created. (The lifetime 
of a ticket gives the duration for which the ticket is valid.) The ticket is encrypted in a 
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key, Ktgs, known only to Kerberos and the ticket-granting server. Kerberos then sends 

the ticket, the session key, and some other information to the client. This response is 
encrypted in the user’s private key, Kjj: 

K —> C : Eku {Tjj^tgs, KUitgs, tgs, timestamp, lif e} (15.25) 

On receipt of this response, the client asks the user for his password. It then generates 

the user’s private key, Kf from the password by applying a one-way function /, 

K'u=f (password) and decrypts the response using this key. User authentication fails 

if the decryption fails. Otherwise, the authentication is successful and the ticket, the 

session key, and the other information in the response are stored at the client for future 
use. 

This completes the user-authentication phase and the client now possesses infor¬ 

mation that it can use to prove the identity of the user for the lifetime of the ticket. 

The ticket Tuttgs can be used to request a ticket for any server from the ticket-granting 

server. Therefore, this ticket will henceforth be referred to as the ticket-granting ticket. 

15.9.2 Phase II: Getting Server Tickets 

A user must obtain a ticket for each service that he wants to use. After a user has 

obtained a ticket from Kerberos (Phase I), the user can use this ticket to obtain a ticket 

for any service from the ticket-granting server in the following way. The client sends 

a request to the ticket-granting server. The request contains the name of the server, 

S, for which the ticket is requested, the ticket-granting ticket, and an authenticator 

Au=EKu>tgs{C, timestamp}. Since a ticket-granting ticket is susceptible to copying 

and replay, it does not constitute sufficient proof that the client presenting it is the same 

client to which the ticket was issued by Kerberos. The authenticator serves this purpose 

because the construction of the authenticator requires the knowledge of the session key, 

Eu,tgs- 

C—>TGS: S,Tu,tgs,Au (15.26) 

On receipt of this information, the ticket-granting server decrypts the ticket TUjgs, 
obtains the session key Ku^tgs from it, and then decrypts the authenticator using the 

session key. If the decryption is successful and the authenticator is timely, the ticket¬ 

granting server creates a new session key, Iic,Si to be used between the client and the 

intended servers. It then builds a ticket, Tc,s—Eks{C, S, Kc,s> timestamp, life} 

that is encrypted with the server key K$. The ticket-granting server then sends the 

ticket, the new session key, and other information to the client. This information is 

encrypted in the session key Ku,tgs that was a part of the ticket-granting ticket. 

TGS -r C : EKu,tgs {Tc,Si Kc,s, S, timestamp, life} (15.27) 

On receipt of this response, the client decrypts it and obtains the new session key Kc s 
and the ticket Tc,s, which can be used to request service from the server. 
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15.9.3 Phase III: Requesting the Service 

After having obtained a new session key Kc,s and a ticket Tc\s for a server S, client 
C can request the service from the server in the following manner. 

The client builds an authenticator Ac=Ekcs{C’ timestamp} and sends it along 

with the ticket to the server. 

C^S: Tc,s,Ac (15.28) 

On receipt of this request, the server decrypts the ticket Tc,s- (Note that the ticket Tc,s 

is encrypted using server S’s private key.) The server then uses the session key in the 

ticket to decrypt the authenticator. If the decryption is successful and the authenticator 

is timely, the requested service is performed. 
If the client wants the server to prove its identity as well, the server adds one 

to the timestamp received from the client, encrypts it with the session key Kc,s> and 

sends it to the client. 

S —* C : EkC'S{timestamp + 1} (15.29) 

This last step corresponds to message 6 in Fig. 15.8 and is optional. It is only used if 

the client requires mutual authentication. The timestamp is incremented in the response 

to C to guard against replays of previous responses. 

15.10 SUMMARY 

Cryptography deals with the maintenance of the confidentiality of data rather than with 

access control to data. The confidentiality of a text is achieved by converting the text into 

a cryptic form before it is stored into a computer system or before it is transmitted over 

a communication channel. The cryptic form is such that the information is unintelligible 

unless it is decrypted using some secret key known only to persons authorized to read 

and use the information. 
In this chapter, we studied various techniques for cryptography. Cryptography 

systems are roughly divided into the conventional and the modem systems. The con¬ 

ventional systems were primarily used for ciphering a script written in a language. The 

basic principle underlying these systems is the mapping of a letter of an alphabet of 

a language by another letter in the alphabet, derived through a secret procedure. The 

cmx of these systems is the secrecy of the mapping procedure. 
Modem systems are primarily used for ciphering binary information. These sys¬ 

tems usually follow the principle of open design in the sense that the underlying encryp¬ 

tion and decryption techniques (algorithms) are not kept secret. Instead, the values of 

some of the parameters (called keys) used in encryption and decryption are kept secret. 

There are two types of modem cryptography systems, private key systems and public 

key systems. In private key systems, keys used for both encryption and decryption are 

kept secret. In the public key systems, on the other hand, the key used for encryption 

is known in the public domain, but the key used for decryption is kept secret. The cmx 

of the public key systems is that even though the procedure to compute the decryption 
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key is known, the procedure is so computationally intensive that it takes a prohibitively 

long time to compute the key. In private key cryptography, we discussed the Data 

Encryption Standard (DES), developed by IBM, which is the official standard used by 

the U.S. federal government. In public key cryptography, the Rivest-Shamir-Adleman 
(RSA) method was discussed. 

As a case study, we discussed the Kerberos system, a third-party authentication 

service implemented in MIT’s Project Athena. Since Project Athena provides an open 

network computing environment, a third-party authentication must be used to prove the 

users’ identity to various network services. Kerberos is in part based on the authenti¬ 

cation model of Needham and Schroeder. It makes use of private key encryption and 
uses the Data Encryption Standard (DES). 

15.11 FURTHER READINGS 

For a comprehensive reading on the subject, readers are referred to several excellent text 

books on cryptography and data security, namely, Denning [6], Meyer and Matyas [17], 

Seberry and Pieprzyk [22], Pfleeger [19], and Hsiao et al. [13], The December 1979 issue 

of ACM Computing Surveys is completely devoted to data security. Lempel’s article in 

the December 1979 issue of ACM Computing Surx’eys provides a good overview of 

conventional and modem cryptographic techniques [14], Readers can refer to an article 

by Denning and Denning [7] for a good overview on data security. The February 1983 

issue of IEEE Computer magazine is devoted to “data security in computer networks,” 

which includes a survey article on digital signatures by Akl [1]. A landmark article by 

Diffie and Heilman [10] provides a development of public key systems. Goldwasser 

and Micali [12] propose the idea of probabilistic encryption. Feige et al. [11] propose 

a 0-knowledge protocol for verification of identities (i.e., for authentication). 

The application of cryptography in the design of secure computer networks and 

more details on digital signatures can be found in a paper by Popek and Kline [20], 

Anderson et al. [2] present a protocol for end-to-end secure communication in very 

large distributed systems by providing authentication at the level of a host-to-host 

datagram. Burrows et al. discuss [4] a logic of authenication. An up-to-date discussion 

of authentication in distributed systems can be found in a paper by Woo and Lam [26], 

A comprehensive overview of cryptography and cryptoanalysis can be found in a paper 

by Massey [17], A survey of cryptoanalysis can be found in a paper bv Brickell and 
Odlyzko [3]. 

The Journal of Cryptology is devoted to articles on this topic. Readers can also 

find articles on this topic in the Proceedings of an annual symposium, IEEE Symposium 
on Security and Privacy. 

PROBLEMS 

15.1. Compute the number of different keys in a vigenere cipher with a period of n. 

15.2. Discuss how a public key scheme can be used to solve the key distribution problem 
in a private key cryptographic scheme. 

15.3. Show that in the RSA method to implement the public key cryptography, when p = 5 
and q — 7, both e and d are 11, and this is the only possible value for e and d. 
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16.1 INTRODUCTION 

Historically, higher computing power was achieved by employing faster processors that 

used high-speed semiconductor technology. With hardware technology approaching its 

physical limit, multiprocessor systems have emerged as a viable alternative to achieve 

higher computing power and speed. Typically, a multiprocessor system consists of 

several processors that share a common physical memory. All the processors operate 

under the control of a single operating system. Users of a multiprocessor system see 

a single powerful computer system. Multiplicity of the processors in a multiprocessor 

system and the way processors act in a concerted manner to perform a computation are 

transparent to the users. This chapter discusses various architectures of multiprocessor 

systems and serves as a background to the next chapter on multiprocessor operating 

systems. 

16.2 MOTIVATIONS FOR MULTIPROCESSOR SYSTEMS 

The main motivations for a multiprocessor system are to achieve enhanced performance 

and fault tolerance. 

Enhanced Performance. Multiprocessor systems increase system performance in 

two ways. First, concurrent execution of several tasks by different processors increases 
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the system throughput—the number of tasks completing per time unit—without speed¬ 

ing up the execution of individual tasks. Second, a multiprocessor system can speed up 

the execution of a single task in the following way: if parallelism exists in a task, it 

can be divided into many subtasks and these subtasks can be executed in parallel on 

different processors. 

Fault tolerance. A multiprocessor system exhibits graceful performance degra¬ 

dation to processor failures because of the availability of multiple processors. 

16.3 BASIC MULTIPROCESSOR SYSTEM 
ARCHITECTURES 

According to the classification of Flynn [6], in MIMD (multiple instruction multiple 

data) architectures, multiple instruction streams operate on different data streams. In 

the broadest sense, an MIMD architecture qualifies as a full-fledged multiprocessor 

system. Thus, a multiprocessor system consists of multiple processors, which execute 

different programs (or different segments of a program) concurrently. The main memory 

is typically shared by all the processors. Based on whether a memory location can be 

directly accessed by a processor or not, there are two types of multiprocessor systems: 

tightly coupled and loosely coupled [7], 

16.3.1 Tightly Coupled vs. Loosely Coupled Systems 

In tightly coupled systems, all processors share the same memory address space and all 

processors can directly access a global main memory. Examples of commercially avail¬ 

able tightly coupled systems are Multimax of Encore Corporation, Flex/32 of Flexible 
Corporation, and FX of Sequent Computers. 

In loosely coupled systems, not only is the main memory partitioned and attached 

to processors, but each processor has its own address space. Therefore, a processor 

cannot directly access the memory attached to other processors. One example of a 
loosely coupled system is Intel’s Hypercube. 

Tightly coupled systems can use the main memory for interprocessor communi¬ 

cation and synchronization (see Chap.2). Loosely coupled systems, on the other hand, 

use only message passing for interprocessor communication and synchronization (see 
Chap. 4). 

We limit our discussion to tightly coupled multiprocessor systems. Figure 16.1 

illustrates the schematic diagram of a typical tightly coupled multiprocessor system. 

A number of processors are connected to the shared memory by an interconnection 

network. The shared memory is normally divided into several modules and multiple 

modules can be accessed concurrently by different processors. A memory contention 

occurs when two or more processors simultaneously try to access the same memory 

module. In case of a memory contention, the request of only one of the requesting 

processors can be met. The requests of other processors can be queued up for later 
processing. 
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Memory Modules 

FIGURE 16.1 
A tightly coupled multiprocessor 
system. 

16.3.2 UMA vs. NUMA vs. NORMA Architectures 

Based on the vicinity and accessibility of the main memory to the processors, there 

are three types of multiprocessor system architectures: UMA (uniform memory access), 

NUMA (nonuniform memory access), and NORMA (no remote memory access). 

In UMA architectures, the main memory is located at a central location such that it 

is equidistant from all the processors in terms of access time (in the absence of conflicts). 

That is, all the processors have the same access time to the main memory. In addition 

to this centralized shared memory, processors may also have private memories, where 

they can cache data for higher performance. Some examples of UMA architectures 

are Multimax of Encore Corporation, Balance of Sequent, and VAX 8800 of Digital 
Equipment. 

In NUMA architectures, main memory is physically partitioned and the partitions 

are attached to the processors. All the processors, however, share the same memory 

address space. A processor can directly access the memory attached to any other pro¬ 

cessor, but the time to access the memory attached to other processors is much higher 

than the time to access its own memory partition. Examples of NUMA architectures 

are Cm* of CMU and Butterfly machine of BBN Laboratories. 

In NORMA architectures, main memory is physically partitioned and the parti¬ 

tions are attached to the processors. However, a processor cannot directly access the 

memory of any other processor. The processors must send messages over the inter¬ 

connection network to exchange information. An example of NORMA architecture is 

Intel’s Hypercube. 

16.4 INTERCONNECTION NETWORKS FOR 
MULTIPROCESSOR SYSTEMS 

The interconnection network in multiprocessor systems provides data transfer facility 

between processors and memory modules for memory access [5], The design of the 

interconnection network is the most crucial hardware issue in the design of multipro¬ 

cessor systems. Generally, circuit switching is used to establish a connection between 



438 ADVANCED CONCEPTS IN OPERATING SYSTEMS 

processors and memory modules. Thus, during a data transfer, a dedicated path ex¬ 

ists between the processor and the memory module. Various types of interconnection 

networks include: 

• Bus 

• Cross-bar Switch 

• Multistage Interconnection Network 

16.4.1 Bus 

In bus-based multiprocessor systems, processors are connected to memory modules via 

a bus (Fig. 16.2). Conceptually, this is the simplest multiprocessor system architecture. 

It is also easy to implement and is relatively inexpensive. However, aside from the 

shared memory, the bus is also a source of contention because the bus can support 

only one processor-memory communication at any time. Moreover, this architecture 

can support only a limited number of processors because of the limited bandwidth of 

the bus. These problems can be mitigated by using multiple buses to connect processors 

and memories. In a b bus system, up to b processor-memory data transfers can take 

place concurrently. CMU’s Cm* and Encore Corporation’s Multimax are examples of 
bus-based multiprocessor systems. 

16.4.2 Cross-bar Switch 

A cross-bar switch is a matrix (or grid structure) that has a switch at every cross-point. 

Figure 16.3 shows a multiprocessor system with n processors and m memory modules. 

A cross-bar is capable of providing an exclusive connection between any processor- 

memory pair. Thus, all n processors can concurrently access memory modules provided 

that each processor is accessing a different memory module (and n < m). A cross-bar 

switch does not face contention at the interconnection network level. A contention can 
occur only at the memory module level. 

FIGURE 16.2 
Processors A multiprocessor system with a bus. 
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Memory Modules 

FIGURE 16.3 
A multiprocessor system with a 
cross-bar. 

Cross-bar based multiprocessor systems are relatively expensive and have limited 

scalability because of the quadratic growth of the number of switches with the system 

size (nxn if there are n processors and n memory modules). Alliant FX/8 is an example 

of a commercially available cross-bar architecture. 

16.4.3 Multistage Interconnection Network 

A multistage interconnection network is a compromise between a bus and a cross-bar 

switch. A multistage interconnection network permits simultaneous connections between 

several processor-memory pairs and is more cost-effective than a cross-bar. A typical 

multistage interconnection network consists of several stages of switches. Each stage 

consists of an equal number of cross-bar switches of the same size (such as 2x2 or 

4x4). The outputs of the switches in a stage is connected to the inputs of the switches in 

the next stage. These connections are made in such a way that any input to the network 

can be connected to any output of the network (by making the appropriate connections 

in the switches at each stage). Depending upon how output-input connections between 

adjacent stages are made, there are numerous types of interconnection networks [5], The 

routing path between a processor and a memory module pair is given by a binary string 

that is derived from the binary addresses of the processor and the memory module. The 

Ah bit of this binary string determines to which output the input should be connected 

at the switch at stage i. 
An N x N multistage interconnection network can connect N processors to N 

memory modules. \f N = 2k, it will consist of k ( = log2 N) stages of 2x2 switches 

with N/2 switches in each stage. Thus, m N x N multistage interconnection network 

requires only (N/2) x log9 N switches as compared to N2 switches in an N x N 

cross-bar. 

Example 16.1. Figure 16.4 shows an 8x8 Omega multistage interconnection network 
that is constructed from 2x2 cross-bar switches. Note that there exists a unique path 
between a processor-memory pair. In this case, the routing through various stages is 
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completely determined by the binary address of the destination memory module. If 
the ith bit of the destination address is 0, then at the switch at the ith stage, input 
should be connected to the upper output. If the ith bit of the destinatin address is one, 
input should be connected to the lower output. For example, any processor can access 
memory module Mg (with address 111) by simply connecting the input to the lower 
output at every stage. The thick path in Fig. 16.4 shows the connections needed for 
communication between processor P2 and memory module M\. 

Note that a contention can arise at a switch in a switching stage even when two 

processors are trying to access different memory modules. In the previous example, 

a contention at a switch in the first stage arises when P2 is trying to access M\ and 

P(t is trying to access M4 concurrently. In case of a contention at a switch, only one 

request succeeds and rest of the requests are dropped and subsequently retried by their 

respective processors. The wastage of multistage interconnection network bandwidth 

due to the retry of requests can be avoided by providing buffers at each switch and 

buffering the requests, which cannot be forwarded due to contention at that switch, 

for later transmission. Clearly such multistage interconnection networks fall under the 

category of store-and-forward networks. The BBN Butterfly machine is an example of 

a commercially available multiprocessor system that uses multistage interconnection 
network. 

16.5 CACHING 

Multiprocessor systems commonly use caching to reduce memory access time. Under 

caching, every processor has a private memory, called a cache, in addition to the shared 

global memory. When a processor needs to fetch a word from a data block in the global 

memory, it fetches the entire block and saves it in its cache for future use. A global 

memory access through the interconnection network is much slower compared to the 

cache access time. Also, the global memory access time may not be constant due 

to contention at the interconnection network. If the locality of data reference is high. 

FIGURE 16.4 
An 8x8 Omega multistage interconnection network. 
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caching will substantially reduce the effective memory access time. The cost of fetching 

the entire data block from the global memory is amortized over several accesses to that 
block when it is in the cache. 

Caching has two other advantages. First, the traffic over the interconnection net¬ 

work is reduced (because most memory accesses can be satisfied by the cache.) Second, 

contention at memory modules is reduced (because different blocks of a memory mod¬ 

ule can be fetched by several processors and can be accessed concurrently from their 
respective caches). 

16.5.1 The Cache Coherence Problem 

Caching poses a problem when a processor modifies a cached block that is also cached 

by some other processors currently. Modifying a cached block by a processor inval¬ 

idates the copies of this block in the cache of other processors because these copies 

have an outdated value. This is called the cache coherence problem in multiprocessor 
systems [3], 

Two basic approaches that address the cache coherence problem are the write- 

update and write-invalidate approaches. In the write-update method, a process that is 

modifying a block also modifies the copies of this block in the cache of other processors. 

In the write-invalidate method, a process that is modifying a block invalidates the 

copies of this block in the cache of other processors. There are several variations of 

both these approaches and their implementation requires hardware support and depends 

upon the type of interconnection network employed. Readers are referred to Chap. 10 

for a discussion of the cache coherence problem in greater detail. In distributed shared 

memory systems, the cache coherence problem arises at the software level. 

16.6 HYPERCUBE ARCHITECTURES 

Hypercube based architectures have recently emerged as a viable alternative in the 

design of multiprocessor systems with a large number of processors. In an ?r-degree 

hypercube (called an n-cube), 2n nodes are arranged in an n-dimensional cube, where 

each node is connected to n other nodes. In hypercube based architectures, the proces¬ 

sors are the nodes of a hypercube and a hypercube edge corresponds to a bidirectional 

communication link between two processors. Each of the 2n nodes of an n-cube are 

assigned a unique n-bit address ranging from 0 to 2n — 1 such that the addresses as¬ 

signed to two adjacent nodes differ only in 1 bit position. The address of a node in the 

ith dimension of a node differs from that node’s address only in ith bit. The maximum 

distance between any two nodes in an n-cube is n hops. Thus, the delay characteristics 

of hypercube architectures grow logarithmically with the number of nodes and these 

architectures are highly scalable. Figure 16.5 shows a 3-cube. 
Generally, in hypercube based architectures, data transfer from one processor to 

another processor goes through several other intermediate processors. Consequently, 

hypercube based architectures are mostly used for store-and-forward communication 

between processors and are used in loosely coupled multiprocessor systems. The Con¬ 

nection Machine CM-2 of the Thinking Machines Corporation, Intel’s iPSC/2, and 

Ncube’s Ncube/10 are examples of commercially available systems in this class. 
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110 111 

FIGURE 16.5 
A 3-cube. 

16.7 SUMMARY 

Multiprocessor systems have emerged as a viable architecture to provide higher com¬ 

puting power and speed. A multiprocessor system consists of multiple processors that 

share a main memory. Multiprocessor systems increase system performance by con¬ 

currently executing several tasks on different processors or by executing a single task 

in parallel on different processors. In tightly coupled systems, all processors can di¬ 

rectly access a global memory. In loosely coupled systems, each processor has a local 

memory and a processor cannot directly access the local memory of other processes. In 

UMA architectures, the main memory is located at a central location such that all the 

processors have the same access time to the main memory. In NUMA architectures, 

all the processors share the same memory address space, however, the time it takes 
processors to access different memory locations varies. 

The design of the interconnection network, which provides paths between pro¬ 

cessors and memory modules, is the most crucial hardware issue in the design of 

multiprocessor systems. Typical interconnection networks include the bus, the cross-bar 

switch, and the multistage interconnection network. Bus-based systems can support only 

a limited number of processors because the bandwidth of the bus is limited. A cross-bar 

switch does not have contention at the interconnection network level. However, cross¬ 

bar based multiprocessor systems are relatively expensive and have limited scalability 

because of the quadratic growth of the number of switches relative to system size. 

Multistage interconnection networks are a compromise between a bus and a cross-bar 

switch. They permit simultaneous connections between several processor-memory pairs 
and are more cost-effective than a cross-bar. 

Multiprocessor systems commonly employ caching to reduce memory access time. 

In caching, data blocks are fetched from the main memory and saved into their cache 

memories by the processors for future use. Caching reduces both the traffic on the 

interconnection network and contention at the memory modules. Caching, however, 

poses the cache coherence problem, which occurs when a processor modifies a cached 

block that currently exists in the cache memory of other processors. Modifying a cached 

block by a processor invalidates the copies of this block in the cache of other processors 

because these copies now have an outdated value. Two basic methods that address the 

cache coherence problem are write-update and write-invalidate. In the write-update 

method, a process that modifies a block also modifies the copies of this block in the 



REFERENCES 443 

cache of other processors. In the write-invalidate method, a process that modifies a 

block invalidates the copies of this block in the cache of other processors. 

In hypercube based architectures, the processors are the nodes of a hypercube and 

a hypercube edge corresponds to a bidirectional communication link between two pro¬ 

cessors. The communication diameter of hypercube architectures grows logarithmically 

with the number of nodes and thus, these architectures are highly scalable and offer a 

viable alternative to connect a large number of processors. 

16.8 FURTHER READING 

There are several excellent books that cover parallel architectures and multiprocessors 

systems; e.g., Hwang and Briggs [7], Stone [9] and Almasi and Gottlieb [1], Dun¬ 

can [4] provides a comprehensive taxonomy and tutorial review of parallel architectures. 

Feng [5] provides a survey of interconnection networks. The June 1990 issue of IEEE 

Computer [3] is devoted to the problem of cache coherence in multiprocessor systems. 

Seitz [8] proposes the idea of hypercube architectures. Bhuyan and Agrawal [2] discuss 

generalized hypercube structures. 
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CHAPTER 

17 
MULTIPROCESSOR 
OPERATING 
SYSTEMS 

17.1 INTRODUCTION 

Multiprocessor operating systems are similar to multiprogrammed uniprocessor operat¬ 

ing systems in many respects and they perform resource management and hide unpleas¬ 

ant idiosyncracies of the hardware to provide a high-level machine abstraction to the 

users. However, multiprocessor operating systems are more complex because multiple 

processors execute tasks concurrently (with physical as opposed to virtual concurrency 

in multiprogrammed uniprocessors.) Thus, a multiprocessor operating system must be 

able to support the concurrent execution of multiple tasks and must prudently exploit 
the power of multiple processors to increase performance. 

17.2 STRUCTURES OF MULTIPROCESSOR OPERATING 
SYSTEMS 

Based upon the nature of the control structure and its organization, there are three 

basic classes of multiprocessor operating systems: separate supervisor, master-slave, 
and symmetric [13]. 

THE SEPARATE SUPERVISOR CONFIGURATION. In the separate supervisor con¬ 
figuration, all piocessors have their own copy of the kernel, supervisor, and data struc¬ 

tures. Theie are some common data structures for the interaction among processors, 

444 
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the access to which is protected by using some synchronization mechanism (such as 

semaphores). Each processor has its own EO devices and hie system. There is very 

little coupling among processors and each processor acts as an autonomous, indepen¬ 

dent system. Therefore, it is difficult to perform parallel execution of a single task (that 

is, to break up a task and schedule the subtasks on multiple processors concurrently). 

Also, this configuration is inefficient because the supervisor/kernel/data structure code 

is replicated for each processor. This configuration, however, degrades gracefully in the 

face of processor failures because there is very little coupling among processors. 

THE MASTER-SLAVE CONFIGURATION. In the master-slave configuration, one 

processor, called the master, monitors the status and assigns work to all other processors, 

the slaves. Slaves are treated as a schedulable pool of resources by the master. Such 

an operating system is simple because it runs only on the master processor. (The slave 

processors essentially execute application programs.) Since the operating system is 

executed by a single processor, it is efficient and its implementation (synchronization 

of access to shared variables, etc.) is easy. The master-slave configuration permits the 

parallel execution of a single task, where a task can be broken into several subtasks 

and the subtasks can be scheduled on multiple processors concurrently. 

However, an operating system based on the master-slave configuration is highly 

susceptible to the failure of the master processor. Also, the master can become a bot¬ 

tleneck and will consequently fail to fully utilize slave processors. Examples of such 

operating systems are Cyber 170 and DEC-10. 

THE SYMMETRIC CONFIGURATION. In the symmetric configuration, all proces¬ 

sors are autonomous and are treated equally. There is one copy of the supervisor or 

kernel that can be executed by all processors concurrently. However, concurrent ac¬ 

cess to the shared data structures of the supervisor needs to be controlled in order to 

maintain their integrity. The simplest way to achieve this is to treat the entire operat¬ 

ing system as a critical section and allow only one processor to execute the operating 

system at one time. This method is called the floating master method because it can be 

viewed as a master-slave configuration where the master “floats” from one processor 

to another. Note that the execution of the operating system by processors can become 

a bottleneck in this method. This problem can be mitigated by dividing the operating 

system into segments that normally have very little interaction (i.e., the sharing of vari¬ 

ables, communication, etc.) such that the segments can be executed concurrently by the 

processors (although each segment is still executed serially). This method requires a 

serialization mechanism that controls concurrent access to the shared data structures of 

the supervisor. 
The symmetric configuration is the most flexible and versatile of all the configu¬ 

rations. It permits the parallel execution of a single task. It degrades gracefully under 

failures and makes very efficient use of resources. However, it is the most difficult 

configuration to design and implement. Examples of such an operating system include 

Hydra on C.mmp. 
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17.3 OPERATING SYSTEM DESIGN ISSUES 

A multiprocessor operating system encompasses all the functional capabilities of the 

operating system of a multiprogrammed uniprocessor system. However, the design of 

a multiprocessor operating system is complicated because it must fulfill the following 

requirements. A multiprocessor operating system must be able to support concurrent task 

execution, it should be able to exploit the power of multiple processors, it should fail 

gracefully, and it should work correctly despite physical concurrency in the execution 

of processes. The design of multiprocessor operating systems involves the following 
major issues: 

Threads. The effectiveness of parallel computing depends greatly on the per¬ 

formance of the primitives that are used to express and control parallelism within an 

application. It has been recognized that traditional processes impose too much over¬ 

head for context switching. In light of this, threads have been widely utilized in recent 

systems to run applications concurrently on many processors. 

Process Synchronization. In a multiprocessor operating system, disabling inter¬ 

rupts is not sufficient to synchronize concurrent access to shared data. A more elaborate 

mechanism that is based on shared variables is needed. Moreover, a synchronization 

mechanism must be carefully designed so that it is efficient, otherwise, it could result 
in significant performance penalty. 

Processor Scheduling. To ensure the efficient use of its hardware, a multiproces¬ 

sor operating system must be able to utilize the processors effectively in executing the 

tasks. A multiprocessor operating system, in cooperation with the compiler, should be 
able to detect and exploit the parallelism in the tasks being executed. 

Memory Management. The design of virtual memory is complicated because 

the main memory is shared by many processors. The operating system must maintain 

a separate map table for each processor for address translation. When several proces¬ 

sors share a page or segment, the operating system must enforce the consistency of 

their entiies in respective map tables. Moreover, efficient page replacement becomes a 
complex issue. 

Reliability and Fault Tolerance. The performance of a multiprocessor system 

must be able to degrade gracefully in the event of failures. Thus, a multiprocessor 

operating system must provide reconfiguration schemes to restructure the system in the 
face of failures to ensure graceful degradation. 

Next, these issues in the design of multiprocessor operating systems are discussed 

in detail. Other issues include protection and interprocess communication. Protection 

deals with the design of mechanisms that prevent unauthorized access to resources. 

Interprocess communication in an operating system calls for a support of a variety of 
models for communication between processes. 

17.4 THREADS 

Traditionally, a process has a single address space and a single thread of control to 

execute a program within that address space. To execute a program, a process has to 
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initialize and maintain state information. The state information typically comprises page 

tables, swap images, file descriptors, outstanding I/O requests, saved register values, etc. 

This information is maintained on a per program basis, and thus, a per process basis. The 

volume of this state information makes it expensive to create and maintain processes 
as well as switch between them. 

With the advent of shared memory multiprocessor machines, it became imperative 

to create and switch between processes to take advantage of the concurrency available in 

many programs. The effectiveness of parallel computing depends to a great extent on the 

performance of the primitives that are used to express and control the parallelism within 

the program [2], In networking systems, servers provide various services to machines 

connected to the network. For instance, file servers provide file system services to the 

machines in the network (see Chap. 9). These servers (typically uniprocessor machines) 

cater to different requests from different users. The design of servers may be simplified 

if separate processes are maintained at the server to cater to each active user. To provide 

service to different users, it becomes necessary to switch between processes efficiently. 

To handle the situations where creating, maintaining, and switching between pro¬ 

cesses occur frequently, threads or lightweight processes have been proposed. 

A thread separates the notion of execution from the rest of the definition of a 

process [3]. A single thread executes a portion of a program, cooperating with other 

threads concurrently executing within the same address space. Each thread makes use 

of a separate program counter, a stack of activation records (which describe the state 

of the execution), and a control block. The control block contains the state information 

necessary for thread management such as putting a thread into a ready list and syn¬ 

chronizing with other threads. Most of the information that is part of a process is also 

common to all the threads executing within a single address space and hence can be 

maintained in common to all the threads. By sharing common information, the overhead 

incurred in creating and maintaining the information, and the amount of information 

that needs to be saved when switching between threads of the same program, is reduced 

significantly. 
Threads can be supported either at the user-level or at the kernel-level. We next dis¬ 

cuss the advantages, disadvantages, and performance implications of supporting threads 

at these levels. 

17.4.1 User-Level Threads 

In user-level threads, a run-time library package provides the routines necessary for 

thread management operations. These routines are linked at runtime to applications. 

Kernel intervention is not required for the management of threads. The libraries mul¬ 

tiplex a potentially large number of user-defined threads on top of a single kernel- 

implemented process. Typically, the cost of a user-level thread operation is within an 

order of magnitude of the cost of a procedure call. Because of their low cost, user- 

level threads can provide excellent performance compared to kernel-level threads. In 

addition, user-level threads have the following advantages. 

• No modifications in the existing operating system kernel are required to support 

user-level threads. 
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• They are flexible. They can be customized to suit the language or needs of the users 

and libraries can be used to implement different thread packages that are customized 

differently for various users. Thus, overhead due to providing all the capabilities or 

facilities in one package can be avoided. An example of customizing is where one 

set of library routines can provide preemptive priority scheduling, while another set 

can provide the simpler first-in-first-out scheduling. 

While user-level threads have their advantages, they have the following 

disadvantages. 

• The generally excellent performance of user-level threads may be limited to appli¬ 

cations such as parallel programs that require little kernel involvement. User-level 

threads operate within the context of traditional processes. Thread systems treat a 

process as a virtual processor, and consider it a physical processor executing un¬ 

der its control. In reality, however, the physical processors are controlled by the 

operating system kernel. The kernel might assign a different physical processor to 

a virtual processor during each timeslice. In addition, other factors such as I/O, 

multiprogramming, and page faults can distort the equivalence between the virtual 

processor and the physical processor assumed by the thread system. In other words, 

there is a lack of coordination between scheduling and synchronization. For exam¬ 

ple, a thread executing in a critical section may be preempted by the kernel, making 

other threads wait longer. Another example is that of an application that assumes 

that all its runnable threads are served in a finite time. However, timeslicing across 

a fixed number of kernel threads by the kernel across many applications may make 

this assumption untrue. Note that when a thread blocks, the underlying kernel pro¬ 

cess also blocks. Eventually, the application may run out of kernel threads to serve 

its execution contexts, even when there are runnable threads. This situation may lead 
to a deadlock [2], 

• User-level threads require that system calls be nonblocking. If a thread blocks be¬ 

cause of a system call, it will prevent other runnable threads from executing. Note 

that many frequently performed system calls—file open, file close, read, and write— 
block under UNIX [16]. 

17.4.2 Kernel-Level Threads 

In kernel-level threads, the kernel directly supports multiple threads per address space [7], 

[26], [27]. The kernel also provides the operations for thread management. The kernel- 
level threads have the following advantages. 

• Coordination between the synchronization and scheduling of threads is easy to 

achieve, since the kernel has all the information concerning the status of all the 
threads. 

• They are suitable for multithreaded applications, such as server processes, where 

interactions with the kernel are frequent due to IPC, page faults, exceptions, etc. [9], 

• They incur less overhead compared to traditional processes. 
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The disadvantages of kernel-level threads are as follows. 

• Thread management operations incur higher overhead relative to user-level threads. 
Every operation involves a kernel trap, even when the processor is multiplexed 
between the threads in the same address space. On every thread operation, there is 
overhead due to copying and checking of parameters being passed to the kernel to 
ensure safety [2], 

• Since the kernel is the sole provider of thread managing operations, it has to provide 
any feature needed by any reasonable application. This generality means that even 
applications not using a particular feature still have to incur overhead due to unused 
features provided in the kernel. 

In summary: (1) kernel-level threads are too costly to use, and (2) user-level 
threads can provide excellent performance, but problems such as a lack of coordina¬ 
tion between synchronization and scheduling, and blocking system calls, pose serious 
obstacles to the realization of performance potential. 

System developers have favored user-level threads, despite their disadvantages, 
because of their potential for excellent performance. The cause of the problems with 
user-level threads are traced to the following facts. 

• User-level threads are not recognized or supported by the kernel [16]. 

• Kernel events, such as processor preemption and I/O blocking and resumption, are 
handled by the kernel in a manner invisible to the user-level [2], 

• Kernel threads are obliviously scheduled with respect to the user-level thread state [2], 

The above problems have been addressed in at least two different ways: (1) by 
granting user-level threads a first-class status so that they can be used as traditional pro¬ 
cesses, while leaving the details of the implementations to the user-level code [16], and 
(2) through the explicit vectoring of kernel events to the user-level threads scheduler [2], 
We next describe two thread mechanisms based on the above approaches. 

17.4.3 First-Class Threads 

First-class threads [16] were developed as a part of the Psyche parallel operating sys¬ 
tem [21], Kernel processes are used to implement the virtual processor that execute 
user-level threads. Creating many virtual processors in the same address space and 
assigning them to different physical processors provides parallelism. 

In Psyche, a thread package creates and maintains the state of the threads in user- 
space. Most of the thread operations, such as creation, destruction, synchronization, 
and the context switching of threads, are handled by the thread package. However, 
coarse-grain resource allocation and protection (such as preemptive scheduling) is in 

the domain of the kernel. 
Under first-class threads, to overcome the problems associated with the user-level 

threads, three mechanisms are provided to communicate (in both directions) between 
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the kernel and the thread package. These communications occur without any kernel 

traps. Descriptions of these mechanisms follow. 

1. The kernel and the thread package share important data structures. The kernel 

managed data is made available to the thread package through read-only access. 

For example, thread package can obtain the current processor ID and process ID 

without making a system call. In the opposite direction, through the shared data 

structure, the thread package can communicate with the kernel. For instance, the 

thread package can specify what actions are to be taken when the kernel detects 
events such as a timer expiration. 

2. The kernel provides the thread package with software interrupts (signals, upcalls) 

whenever a scheduling decision is required. Essentially, on interruption, a user-level 

interrupt handler is activated. The interrupt handler then takes care of the schedul¬ 

ing decision. Following are instances when the software interrupts are employed. 

When a thread blocks or resumes after blocking because of a system call, the ker¬ 

nel delivers an interrupt that allows the thread package to schedule an appropriate 

thread. Timer interrupts support the timeslicing of threads. Warnings prior to immi¬ 

nent preemption allow the thread package to coordinate synchronization with the 

kernel resource allocation. For example, the thread package may decide to postpone 

obtaining locks if it is faced with imminent preemption. 

3. Scheduler interfaces are provided to enable the sharing of data abstractions between 

dissimilar thread packages. The interfacing occurs through the thread scheduling 

routines available in the thread package. These routines are listed in the thread 

data structure shared between the kernel and the thread package. The typical usage 

of these interfaces is to block and unblock threads at the user-level. Consider for 

example, the producer-consumer problem where producer and consumer threads are 

from different thread packages. When the consumer thread tries to read a buffer and 

finds it empty, the identity of the thread unblocking routines (available in the thread 

data structure) can be stored in the shared buffer before blocking the consumer. The 

producer, on storing data in the buffer, will find the address of the saved routines 
and can unblock the consumer thread. 

17.4.4 Scheduler Activations 

A scheme based on scheduler activations to overcome the disadvantages of user-level 
threads has been developed at the University of Washington [2], 

Under this scheme, communication between the kernel and a user-level thread 

package is structured in terms of scheduler activations. A scheduler activation has three 

roles. (1) It serves as an execution context for running user-level threads. (2) It notifies 

the user-level thread system of kernel events. (3) It provides space in the kernel for 

saving the processor context of the activation’s current user-level thread when the thread 
is stopped by the kernel. 

When a program starts, the kernel creates a scheduler activation, assigns it to a 

processor, and upcalls into the program’s address space at a fixed entry point. Once 

the thread system receives the upcall, it uses the activation’s context to initialize itself 
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and then runs a program’s thread. This thread may create additional threads and request 

additional processors. For each processor request, the kernel will create a scheduler 

activation and assigns a processor to it, and then upcall into the thread system’s user- 

space. Note that once an upcall is started, the activation is similar to a thread. It can 

be used to run a user-level thread, process an event, or make system calls (which can 
block). 

NOTIFYING KERNEL-LEVEL EVENTS TO THE USER-LEVEL THREAD SYS¬ 

TEM. To notify the thread system of kernel-level events, the kernel creates a new 

scheduler activation, assigns it to a processor, and then upcalls into the user-space. We 

next describe how several common kernel events are handled. 

When a user-level thread blocks in the kernel space, the kernel creates a new 

scheduler activation to inform the thread system that the thread has blocked. The thread 

system then saves the state of the blocked thread, frees the activation used by the 

blocked thread, and informs the kernel that the activation is free for reuse. Then the 

thread system decides which thread to run next using the new activation. Note that 

the number of scheduler activations assigned to an application is always equal to the 

number of processors assigned to the application. 

When a user-level thread that was stopped in the kernel resumes, it may have to 

continue in the kernel space. In such a case, the kernel resumes the thread temporarily 

until it reblocks or is at a point where it will exit the kernel space. In the latter case, 

the thread system is informed of the unblocking of the thread through an activation. 

Sometimes, when the kernel wishes to inform the thread system of an event, a 

processor may not be available to assign to an activation. In such a case, the kernel 

stops a thread belonging to the application to which the event has to be informed, uses 

that processor to upcall into the thread system, and informs the thread system of the 

event and that a thread has been stopped. Now the thread system is free to handle the 

event and schedule an appropriate thread. 

If the kernel decides to take a processor away from an application, the kernel stops 

two threads belonging to that application, thus freeing two processors. One processor 

is assigned to an activation meant for a different address space. The second processor 

is assigned to a new activation, using which the kernel informs the thread system that 

two threads of the application are stopped. Now the thread system is free to schedule 

any one of the threads that it deems appropriate. 
Whenever the thread system learns that a thread is preempted, it checks to see 

whether the thread was executing a critical section. If so, the thread system assigns a 

processor to the thread through a user-level context switch. Once the thread is out of 

the critical section, the thread is put back into the ready queue. 

It is important to note that under no circumstance does the kernel deal with the 

scheduling of threads. It is always the thread system that handles this. 

NOTIFYING USER-LEVEL EVENTS TO THE KERNEL. The thread system notifies 

the kernel whenever the thread system enters a state wherein it has more processors than 

runnable threads or has more runnable threads than the number of assigned processors. 
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17.5 PROCESS SYNCHRONIZATION 

The execution of a concurrent program on a multiprocessor system may require the 

processors to access shared data structures and thus may cause the processors to con¬ 

currently access a location in the shared memory. Clearly, a mechanism is needed to 

serialize this access to shared data structures to guarantee its correctness. This is the 

classic mutual exclusion problem. The mechanism should make accesses to a shared 

data structure appear atomic with respect to each other. 

17.5.1 Issues in Process Synchronization 

Although numerous solutions exist for process synchronization in uniprocessor systems, 

these solutions are not suitable for a multiprocessor system. This is because busy-waiting 

by processors can cause excessive traffic on the interconnection network, thereby de¬ 

grading system performance. For example, software solutions to the mutual exclusion 

problem (such as Dekker’s solution or, Peterson’s method [22]) are impractical for mul¬ 

tiprocessor systems because they do busy-waiting and are likely to consume substantial 

bandwidth of the interconnection network. To overcome this problem, multiprocessor 

systems provide instructions to atomically read and write a single memory location (in 

the main memory). If the operation on shared data is very elementary (such as an integer 

increment), it can be embedded in a single atomic machine language instruction. Thus, 

mutual exclusion can be implemented completely in hardware provided the operation 
on the shared data is elementary. 

However, if an access to a shared data constitutes several instructions (which is, 

the critical section consists of several instructions), then primitives such as lock and 

unlock (or P and V operations) are needed to ensure mutual exclusion. In such cases, 

the acquisition of a lock itself entails performing an elementary operation on a shared 

variable (which indicates the status of the lock). Atomic machine language instructions 

can be used to implement the lock operation, which automatically serialize concurrent 

attempts to acquire a lock. Next, we discuss several such atomic hardware instructions 

and describe how they can be used to implement P and V operations [8], [10]. 

17.5.2 The Test-and-Set Instruction 

The test-and-set instruction atomically reads and modifies the contents of a memory 

location in one memory cycle. It is defined as follows (variable m is a memory location): 

function Test-and-Set(var m: boolean): boolean; 
begin 

Test-and-Set:=m; 
m:=true 

end; 

The test-and-set instruction returns the current value of variable m and sets it 

to true. This instruction can be used to implement P and V operations on a binary 

semaphore, S, in the following way (S is implemented as a memory location): 
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P(S): while Test-and-Set(S') do nothing; 

V(S): S:= false; 

Initially, S is set to false. When a P(5') operation is executed for the first time, 

Test-and-Set(S') returns a false value (and sets S to true) and the “while” loop of the 

P(S) operation terminates. All subsequent executions of PCS') keep looping because S 
is true until a V(S) operation is executed. 

17.5.3 The Swap Instruction 

The swap instruction atomically exchanges the contents of two variables (e.g., memory 
locations). It is defined as follows (x and y are two variables): 

procedure swapfvar x, y: boolean); 

var temp: boolean; 

begin 

temp:= x; 

x:= y; 
y:- temp 

end; 

P and V operations can be implemented using the swap instruction in the following 

way (p is a variable private to the processor and S is a memory location): 

P(S): p=true; 

repeat swap(S, p) until p=false; 

V(S): S:= false; 

Clearly, the above two implementations of the P operation employ busy-waiting 

and therefore increase the traffic on the interconnection network. Another problem with 

test-and-set and swap instructions is that if n processors execute any of these operations 

on the same memory location, the main memory will perform n such operations on 

the location even though only one of these operations will succeed. Next, we discuss a 

fetch-and-add instruction that eliminates this overhead from the memory. 

17.5.4 The Fetch-and-Add Instruction of the Ultracomputer 

The fetch-and-add instruction of the NYU Ultracomputer [12] is a multiple operation 

memory access instruction that atomically adds a constant to a memory location and 

returns the previous contents of the memory location. This instruction is defined as 

follows (m is a memory location and c is the constant to be added). 

Function Fetch-and-Add(m: integer; c: integer); 

var temp: integer; 

begin 

temp:= m\ 

m:= m + c; 

return (temp) 

end; 



454 ADVANCED CONCEPTS IN OPERATING SYSTEMS 

An interesting property of this instruction is that it is executed by the hardware 

placed in the interconnection network (not by the hardware present in the memory 

modules). When several processors concurrently execute a fetch-and-add instruction 

on the same memory location, these instructions are combined in the network and are 

executed by the network in the following way. A single increment, which is the sum of 

the increments of all these instructions, is added to the memory location. A single value 

is returned by the network to each of the processors, which is an arbitrary serialization 

of the execution of the individual instructions. If a number of processors simultaneously 

perform fetch-and-add instructions on the same memory location, the net result is as if 

these instructions were executed serially in some unpredictable order. 

The fetch-and-add instruction is powerful and it allows the implementation of P 

and V operations on a general semaphore, S, in the following manner: 

PCS'): while (Fetch-and-Add(S, — 1) < 0) do 
begin 

Fetch-and-Add(S, 1); 
while (S < 0) do nothing; 

end; 

The outer “while-do” statement ensures that only one processor succeeds in decre¬ 

menting S to 0 when multiple processors try to decrement variable S. All the unsuc¬ 

cessful processors add 1 back to S and again try to decrement it. The second “while-do” 

statement forces an unsuccessful processor to wait (before retrying) until S is greater 
than 0. 

V(S): Fetch-and-Add(S, 1) 

17.5.5 SLIC Chip of the Sequent 

The Sequent Balance/21000 multiprocessor system supports a low-level mutual exclu¬ 

sion in hardware using a technique that is totally different from the previously discussed 

techniques, which use atomic multi-operation machine language instructions. The main 

component of a Balance/21000 is a SLIC (system link and interrupt controller) chip 

that supports many other functions in addition to low-level mutual exclusion. 

A SLIC chip contains 64 single-bit registers and supports the operations necessary 

for process synchronization. Each processor has a SLIC chip and all the SLIC chips are 

connected by a separate SLIC bus. Each bit in the SLIC chip, called a gate, acts as a 

separate lock and stores the status of the corresponding lock. Balance/21000 replicates 

these 64 status bits over all the processors instead of keeping them at a central place, e.g., 

the shared main memory (as in the previous techniques). Thus, this method substantially 

reduces traffic on the network that connects memory modules to the processors and it 
also expedites lock access time. 

To lock a gate in the SLIC chip, a processor executes a lock-gate instruction. A 

lock-gate instruction is executed in the following manner. If the local copy (i.e., the bit 

in its SLIC chip) indicates that the gate is closed, the instruction fails. Otherwise, the 

local SLIC of the processor attempts to close the gate by sending messages to other 
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SLIC chips over the SLIC bus. If multiple SLIC chips attempt to close the same gate 

concurrently, only one of them succeeds and the rest of them fail. When the status of 

a gate changes because of the successful execution of a lock-gate or an unlock-gate 

instruction, an appropriate message is sent over the SLIC bus, which causes every SLIC 
chip to update its copy of the gate. 

The following code implements P and V operations on a semaphore S: 

P(S): while (lock-gate(S') = failed) do nothing; 

V(S'): unlock-gate^); 

Since busy-waiting is performed by checking the local SLIC, the SLIC bus is not 

overloaded due to busy-waiting. However, processors still waste CPU cycles because 

they continuously check the status of their SLIC chips. 

17.5.6 Implementation of Process Wait 

In all the implementations of a P operation discussed thus far, several processors may 

wait for the semaphore to open by executing the respective atomic machine language 

instructions concurrently. This wait can be implemented in three ways: 

Busy Waiting. In busy-waiting, processors continuously execute the atomic in¬ 

struction to check for the status of the shared variable. Busy-waiting (also called spin 

lock) wastes processor cycles and consumes the bandwidth of the network connecting 

memory modules to the processors. Increased traffic on the network due to busy-waiting 

can interfere with the normal memory accesses and degrade the system performance 

due to the increased memory access time. 

Sleep-Lock. In sleep-lock, instead of continuously spinning the lock, a process is 

suspended when it fails to obtain the lock and a suspended process relies on interrupts 

to become reactivated when the lock is freed. When a process fails to obtain a lock, it 

is suspended. In this suspended state, a process does not relinquish its processor and 

all interrupts except interprocessor interrupts are disabled. When a process frees the 

lock, it sends interprocessor interrupts to all the suspended processors. This method 

substantially reduces network traffic due to busy-waiting, but it still wastes processor 

cycles. 

Queueing. In queueing, a process waiting for a semaphore to open is placed in 

a global queue. A waiting process is dequeued and activated by a V operation on the 

semaphore. Although queueing eliminates network traffic and the wastage of processor 

cycles due to busy-waiting, it introduces other processing overhead because the enqueue 

and the dequeue operations require the execution of several instructions. Also, the queue 

forms a shared data structure and must be protected against concurrent access. 

17.5.7 The Compare-and-Swap Instruction 

The compare-and-swap instruction of IBM 370 is used in the optimistic synchronization 

of concurrent updates to a memory location. This instruction is defined as follows (rl 

and rl are two registers of a processor and m is a memory location): 
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Compare-and-Swap(var r 1, r2, to: integer); 

var temp: integer; 

begin 

temp:= to; 

if temp - r 1 then {m:~ r2; z:-1} 

else {r 1:= temp; z:= 0} 

end; 

If the contents of rl and m are identical, this instruction assigns the contents of 

r2 to to and sets z to ]. Otherwise, it assigns the contents of m to rl and sets z to 

0. Variable z is a flag that indicates the success of the execution of the instruction. An 

execution of the instruction is successful if z = 1 after the execution. The intuitive 

meaning of “successful” should become clear from the example in the next paragraph. 

The compare-and-swap instruction can be used to synchronize concurrent access to 

a shared variable, say to, in the following manner. A processor first reads the value 

of to into a register rl. It then computes a new value, which is x plus the original 

value, to be stored in to and stores it in register r2. The processor then performs a 

compare-and-swap(rl, r2, to) operation (see Fig. 17.1). If z = 1 after this instruction 

has been executed, no other process has modified location to since it was read by this 

processor. Thus, mutually exclusive access to to is maintained. If z = 0, then some 

other processor has modified to since this processor read it. In this case, the new value 

of to is automatically stored in rl by the compare-and-swap instruction so that this 
processor can retry its update in a loop. 

17.6 PROCESSOR SCHEDULING 

A parallel program is a task force consisting of several tasks. In processor scheduling, 

ready tasks are assigned to the processors so that performance is maximized. These 

tasks may belong to a single program or they may come from different programs. 

Since tasks often cooperate and communicate through shared variables or message 

passing, processor scheduling in multiprocessor systems is a difficult problem. Processor 

scheduling is very critical to the performance of multiprocessor systems because a naive 
scheduler can degrade performance substantially [28], 

17.6.1 Issues in Processor Scheduling 

The following are three major causes of performance degradation in multiprocessor 

systems [28]. These should be given consideration during the design of a processor 
scheduling scheme. 

Preemption inside Spinlock-controlled Critical Sections. This situation occurs 

when a task is preempted inside a critical section when there are other tasks spinning 

r 1 := to 

label: r2:= rl+x 

compare-and-swap(rl, r2, to) 

if z=0 then go to label 

FIGURE 17.1 
An illustration of the compare-and-swap 
instruction. 
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the lock to enter the same critical section. These tasks waste CPU cycles because 

they continue to spin locks until the preempted task is rescheduled and completes the 

execution of the critical section. Although the probability that a task is preempted while 

it is inside a critical section is very small (as critical sections are normally small), the 

time a task waits for a preempted process to be rescheduled is likely to be very long. 

Thus, the expected wait can be significant. This problem can be serious when a few 

large critical sections are entered frequently. 

Cache Corruption. If tasks executed successively by a processor come from dif¬ 

ferent applications, it is very likely that on every task switch, a big chunk of data needed 

by the previous tasks must be purged from the cache and new data must be brought 

into the cache. Initially, this will manifest itself as a very high miss ratio whenever a 

processor switches to another task. (Tasks from different applications are likely to have 

different working sets.) This problem, called cache corruption, can seriously degrade 

performance as overhead to handle cache misses can be significant. 

Context Switching Overheads. Context switching entails the execution of a large 

number of instructions to save and store the registers, to initialize the registers, to switch 

address space, etc. This is a pure overhead as it does not contribute toward the progress 

of application tasks. (In addition, note that a context switch causes the problem of cache 

corruption.) 

Next, several multiprocessor scheduling strategies that address the above issues 

in various ways are discussed. 

17.6.2 Co-Scheduling of the Medusa OS 

Co-scheduling was proposed by Ousterhout [19] for the Medusa operating system for 

Cm*. In co-scheduling, all runnable tasks of an application are scheduled on the pro¬ 

cessors simultaneously. Whenever a task of an application needs to be preempted, all 

the tasks of that application are preempted. Effectively, co-scheduling does context 

switching between applications rather than between tasks of several different applica¬ 

tions. That is, all the tasks in an application are run for a timeslice, then all the tasks 

in another application are run for a timeslice, and so on. 

Co-scheduling alleviates the problem of tasks wasting resources in lock-spinning 

while they wait for a preempted task to release the critical section. However, it does 

not alleviate the overhead due to context switching nor performance degradation due 

to cache corruption. The cache corruption problem may even be aggravated by co¬ 

scheduling; by the time an application is rescheduled, it is very likely that its working 

set has been flushed out of all the caches. Note that the designers of the Medusa 

operating system did not face this problem because the Cm* multiprocessor did not 

employ caches. 

17.6.3 Smart Scheduling 

Smart scheduling was proposed by Zahorjan et al. [29]. The smart scheduler has two 

nice features. First, it avoids preempting a task when the task is inside its critical section. 
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Second, it avoids the rescheduling of tasks that were busy-waiting at the time of their 

preemption until the task that is executing the corresponding critical section releases it. 

When a task enters a critical section, it sets a flag. The scheduler does not preempt a 

task if its flag is set. On exit from a critical section, a task resets the flag. 

The smart scheduler eliminates the resource waste due to a processor spinning a 

lock that is held by a task preempted inside its critical section. However, it does not 

make any attempt to reduce the overhead due to context switching nor to reduce the 

performance degradation due to cache corruption. 

17.6.4 Scheduling in the NYU Ultracomputer 

Scheduling in the NYU Ultracomputer was proposed by Edler et al. [11] and it combines 

the strategies of the previous two scheduling techniques. In this technique, tasks can be 

formed into groups and the tasks in a group can be scheduled in any of the following 

ways: 

• A task can be scheduled or preempted in the normal manner. 

• All the tasks in a group are scheduled or preempted simultaneously (as in co¬ 
scheduling). 

• Tasks in a group are never preempted. 

In addition, a task can prevent its preemption irrespective of the scheduling policy 

(one of the above three) of its group. This provision can be used to efficiently implement 
a spin-lock (as in the smart scheduler). 

This scheduling technique is flexible because it allows the selection of a variety 

of scheduling policies and a different scheduling technique can be used for different 

task groups. However, this scheduling technique does not reduce the overhead due to 

context switching nor the performance degradation due to cache corruption. 

17.6.5 Affinity Based Scheduling 

Affinity based scheduling, proposed by Lazowska and Squillante [15], is the first 

scheduling policy to address the problem of cache corruption. In this policy, a task 

is scheduled on the processor where it last executed. This policy alleviates the prob¬ 

lem of cache corruption because it is likely that a significant portion of the working 

set of that task is present in the cache of that processor when the task is rescheduled. 

Lazowska and Squillante show that in affinity based scheduling, a task can save a 

significant amount of time that is normally spent in reloading its working set in the 

cache of its processor. Affinity based scheduling also decreases bus traffic due to cache 
reloading. 

Affinity based scheduling, however, restricts load balancing among processors 

because a task cannot be scheduled on any processor. (Tasks are tied to specific proces¬ 

sors.) Since tasks are always executed on processors for which they have an affinity, 

the system suffers from load imbalance because a task may wait at a busy processor 
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while other processors are idle. Squillante proposes and mathematically analyzes sev¬ 

eral threshold-based scheduling policies for task migration for load balancing in systems 

with affinity based task scheduling [23], 

17.6.6 Scheduling in the Mach Operating System 

In the Mach operating system,, an application or a task consists of several threads. A 

thread is the smallest independent unit of execution and scheduling in Mach. In the 

Mach operating system, all the processors of a multiprocessor are grouped in disjoint 

sets, called processors sets. The processors in a processor set are assigned a subset of 

threads for execution. These processors use priority scheduling to execute the threads 

assigned to their processor set. Threads can have priority ranging from 0 to 31, where 0 

and 31 are the highest and the lowest priorities, respectively. Each processor set has an 

array of 32 ready queues—one queue to store the ready threads of each priority. When a 

thread with priority i becomes ready, it is appended to the ith queue. In addition, every 

processor has a local ready queue that consists of the threads that must be executed 

only by that processor. Clearly, it is two-level priority scheduling: all the threads in a 

local queue have priority over all the threads in the global queue and there are also 

priorities inside each of these two queues. 
When a processor becomes idle, it selects a thread for execution in the following 

manner. If the local ready queue of the processor is nonempty, it selects the highest 

priority thread for execution. Otherwise, it selects the highest priority thread from the 

global ready queues for execution. If both the queues (local and global) are empty, the 

processor executes a special idle thread until a thread becomes ready. When a thread 

runs out of its timeslice at a processor, it is preempted only if an equal or higher 

priority ready thread is present. Otherwise, the thread receives another timeslice at the 

processor. The length of the timeslice is variable and depends upon the number of ready 

threads. The higher the number of ready threads, the shorter the timeslice. 

HINTS IN THE MACH OPERATING SYSTEM. The scheduler in the Mach operating 

system uses the concept of a hint to effectively schedule tasks that are believed to 

communicate with each other [6]. A user may have application-specific information 

that may help the operating system make intelligent scheduling decisions. A hint is 

the information in coded form, which is supplied by the user at the time of a task 

submission to the system. Hints essentially help modulate (elevate as well as suppress) 

priority and determine the timing of the execution of threads such that communication 

and synchronization are efficiently made between the threads. Scheduling information 

specific to an application (such as the senders and receivers of messages, processes 

synchronizing through a rendezvous, etc.) can be advantageously used to effectively 

carry out communication and synchronization among threads. Sometimes a hint can be 

a mere guess and sometimes it can be known accurately, depending on the deterministic 

nature of the application. 
The Mach operating system supports the following two classes of hints: 

Discouragement Hints. A discouragement hint allows the scheduler to delay 

execution of a task. It indicates that the current thread should not be run at present. 
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Discouragement hints can be mild, strong, or absolute. A mild hint suggests that the 

thread should relinquish the processor to some other thread if possible. A strong hint 

suggests that the thread should not only relinquish the processor, but that it should also 

suppress its priority temporarily. An absolute hint blocks a thread for a specific period. 

Discouragement hints can be effectively used to schedule threads in an applica¬ 

tion. For example, discouragement hints can be used to optimize the performance of 

applications that perform synchronization through shared variables. When one thread 

holds the lock on a shared variable, other threads that are competing for the same lock 

can reduce the wastage of resources by delaying their execution using discouragement 

hints. 

Handsoff Hints. Handsoff scheduling indicates that a specific thread should be 

run instead of the currently executing thread. A handsoff hint “hands off’ the processor 

to the specified thread, bypassing the scheduler. Handsoff scheduling may designate a 

thread within the same task or within a different task (on the same host) that should 
run next. 

One excellent application of handsoff hints is the priority inversion problem, where 

a low priority thread holds a resource that is needed by high priority threads. In such 

situations, a high priority thread can hand the processor off to the low priority thread. 

For example, a thread that is waiting for a semaphore to open should hand off the 
processor to the thread that holds the semaphore. 

17.7 MEMORY MANAGEMENT: THE MACH OPERATING 
SYSTEM 

In this section, we explain memory management in multiprocessor operating systems 

by studying the virtual memory management of the Mach operating system, developed 

at Carnegie Mellon University. We discuss issues in the design of memory management 

and describe how the Mach operating system addresses these issues. The discussion of 

the Mach virtual memory system in this section is based on the work of Tevanian [25], 

17.7.1 Design Issues 

Portability. Portability implies the ability of an operating system to run on several 

machines with different architectures. The virtual memory system is a component of the 

operating system that heavily relies on the idiosyncracies of the underlying architecture 

and can thus be an impediment to the portability of the operating system. For wide 

spread applicability of an operating system, architecture-independence should be an 
important consideration in the design of a virtual memory system. 

Data Sharing. In multiprocessor systems, an application is typically executed as a 

collection of processes that run on different processors. These processes generally share 

data for communication and synchronization. A virtual memory system must provide a 

facility for flexible data sharing to support the execution of parallel programs. 

Protection. When memory is shared among several processes, memory protection 

becomes an important requirement. The operating system must support mechanisms that 
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a virtual memory system can employ to protect memory objects against unauthorized 

access. 

Efficiency. A virtual memory system can become a bottleneck and limit the per¬ 

formance of the multiprocessor operating system. A virtual memory system must be 

efficient in performing address transactions, page table lookups, page replacements, etc. 

Moreover, it should run in parallel to take advantage of multiple processors. 

The Mach operating system is designed for parallel and distributed environments. 

It can run on multiprocessor systems and support the execution of parallel applications. 

In fact, the Mach operating system itself is designed to run in parallel—all algorithms are 

designed to run in parallel and all the data structures are designed to allow highly parallel 

access. The implementation of the virtual memory system is fully parallel in Mach to 

exploit the parallelism in multiprocessor systems. The Mach virtual memory system 

provides flexible data sharing and protection primitives to support high performance 

parallel applications. 

17.7.2 The Mach Kernel 

A key component of the Mach operating system is the Mach kernel, which provides 

only the basic primitives necessary for building parallel and distributed applications. It 

provides primitives for process management, memory management, interprocess com¬ 

munication, and I/O services. Other operating system services, which are useful to 

developers or end users, are built on top of the Mach kernel (Fig. 17.2). Since the 

Mach kernel provides only a small number of simple services and because only a few 

decisions are made within the Mach kernel, it is readily adaptable and portable to a 

wide array of architectures. A number of operating systems can be built on the Mach 

kernel as user programs. 
The Mach kernel supports five abstractions: threads, tasks, ports, messages, and 

memory objects. 

Kernel 
space FIGURE 17.2 

Mach operating system. 
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Tasks and Threads. A thread is the smallest independent unit of execution in 

Mach. A thread has a program counter and a set of registers. A task is an execution 

environment that may consist of many threads. A task includes a paged virtual address 

space and protected access to the system resources. A task is the basic unit of resource 

allocation. 

Messages and Ports. A message is a typed collection of data used by threads 

for communication. Messages may be of an arbitrary size and can contain pointers and 

capabilities. A port is a unidirectional channel associated with an object (e.g., task, 

thread) that queues up messages for that object. A port can be viewed as a queue of 

messages. Tasks and threads communicate with other tasks and threads by performing 

send and receive operations on their ports. A port is protected in the kernel to ensure 

that only authorized tasks or threads can read or write to a port. 

Memory Objects. A memory object is a contiguous repository of data, indexed 

by byte, upon which various operations, such as read and write, can be performed. 

Memory objects act as a secondary storage in the Mach operating system. Mach allows 

several primitives to map a virtual memory object into an address space of a task. Data 

in a memory object become available for direct access in an address space after the 

object or its part has been mapped into the address space. In Mach, every task has a 

separate address space. An address space consists of a collection of memory objects 

that are mapped into it. The kernel acts as a cache manager for memory objects where 

the physical memory is treated as the cache memory. A reference to data in a memory 

object that is not present in the physical memory causes a page fault and is translated 
into a page request. 

17.7.3 Task Address Space 

In the Mach operating system, each task is assigned a single paged-address space. The 

size of the address space is limited by the addressing capabilities of the underlying 

hardware (e.g., the size of memory address register of the processor). Mach treats an 

address space as a sequence of pages. The Mach page size need not be the same as the 

underlying hardware page size; it can be a multiple of the hardware page size. 

A page in a task address space is either allocated or unallocated. An unallocated 

page may not be addressed by the threads of a task while an allocated page can be di¬ 

rectly accessed. Allocated pages do not necessarily consume system resources because 

pages in the physical memory (i.e., the main memory) are not allocated until the cor¬ 

responding virtual addresses are referenced. Even the pages that have been referenced 

need not be present in the main memory. They can be stored on a secondary storage 
and are brought into the main memory on demand. 

The Mach virtual memory system allocates and deallocates virtual address space 

in contiguous chunks of virtual addresses, called regions. A region in a virtual address 

space is specihed by a base address and a size. A virtual address issued by a task is 

valid only if it falls in an allocated region in that task’s virtual address space. 

A typical memory management hardware supports a 32-bit (4.3 Gbytes) address 

space. However, due to operating system restrictions, few applications are able to make 

use of the entire 4.3 Gbytes of address space. Clearly, not many applications are big 
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enough to use the entire address space. Nonetheless, there are applications that benefit 

from using a large address space sparsely; that is, they have a large address space at 

their disposal but use only a small fraction of it. For example, the extensive use of a 

mapped hie may fragment the address space, creating large holes when a hie is deleted. 

The Mach virtual memory system supports such large, sparse address spaces. 

The Mach virtual memory system supports several operations that are often needed 

in advanced applications. For example, a thread can normally access only the address 

space of the task in which it executes. Flowever, it is sometimes necessary for a task 

to read or write the address space of other tasks. For example, a debugger needs to 

examine and modify the address space of the task being debugged. The Mach virtual 

memory system provides primitives to perform these operations. In addition, it pro¬ 

vides several other primitives, such as primitives to efficiently copy a region within an 

address space, primitives to query current virtual memory statistics maintained by the 

kernel, etc. 

17.7.4 Memory Protection 

Virtual memory protection is enforced at the page level. Each allocated page has the 

following two protection codes associated with it. (1) The current protection code, which 

corresponds to the protection associated with a page for memory references and (2) the 

maximum protection code, which limits the value of the current protection. A page’s 

protection consists of a combination of read, write, and execute permissions. Each type 

of permission is mutually exclusive. Mach provides primitives that set the current or 

maximum protection. The current protection can only include the permissions specified 

in the maximum protection. The maximum protection can only be lowered. That is, 

permissions specified in the maximum protection can be deleted, but new permissions 

cannot be added. 

17.7.5 Machine Independence 

To support portability across a wide range of architectures, a machine-independent 

virtual memory system is the paramount goal of the Mach virtual memory system. 

Mach achieves this goal by splitting the implementation into two parts, namely, a 

machine-independent part and a machine-dependent part. This split is based on the 

assumption that there exists a paged memory management unit (MMU) with minimal 

functionality. No assumption is made about the type of data structure (such as a page 

table) that is directly manipulated by an MMU. 
The machine-independent part is responsible for maintaining high level machine- 

independent data structures. These data structures represent the state of the virtual 

memory systemwide. In case of a page fault, entire mapping information can be con¬ 

structed from the machine-independent data structures. The pmap module is the only 

machine-dependent part in the Mach virtual memory system implementation, and it is 

responsible for the management of the physical address space. This module consists of 

a machine-dependent memory mapping data structure, called the pmap structure, which 

is a hardware defined physical map that translates a virtual address to a physical address. 
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A pmap structure corresponds to a page table. All machine-dependent mapping is per¬ 

formed in the pmap module. The pmap module executes in the kernel and implements 

page level operations on pmap structures. It ensures that the correct hardware map is in 

place whenever a context switch takes place. It is reponsible for managing the MMU 

and setting up hardware page tables. Clearly, the pmap module depends upon MMU 

architecture and must be recoded for a new multiprocessor system architecture. 

The interface of the pmap module assumes the existence of a simple, paged MMU 

architecture and it has been designed to support a wide variety of MMUs. The pmap 

module also deals with any discrepancy between operating system page size and the 

underlying hardware page size. The implementation of pmap module need not know 

any details of the machine-independent implementation and data structures. The pmap 

module provides an interface (i.e., a set of primitives) to the machine-independent 

part that are used by the machine-independent part to notify the machine-dependent 

part of any changes in the mapping, creation and destruction of address spaces, etc. 

This information is used by the pmap module to appropriately set up hardware page 

table registers and other machine specific hardware registers that are related to memory 
management. 

In addition, the Mach virtual memory system provides two types of independence 

to higher layers: operating system independence and paging-store independence. 

OS Independence. The Mach virtual memory system is implemented such that it 

is almost completely decoupled from the rest of the system. It makes few assumptions 

about other kernel functions and is easily adaptable to different systems. Also, the 

virtual memory system implementation has clean interfaces to the rest of the system. 

Paging-Store Independence. The Mach virtual memory system assumes no knowl¬ 

edge of secondary storage systems for paging puiposes. Instead, the Mach virtual mem¬ 

ory implementation defines a simple pager interface to which any client may conform. 

An external pager is responsible for managing the secondary storage. It keeps track of 

which pages in the virtual address space are in the main memory and where the pages 
in the virtual address space are located on the secondary storage. 

17.7.6 Memory Sharing 

The ability to share memory among several tasks is very important for the efficient 

execution of parallel applications. These applications can use shared memory for ef¬ 

ficient process synchronization and interprocess communication. Without these facili¬ 

ties, parallel applications must use expensive synchronization primitives that have high 
overhead. 

In Mach, all the threads of a task automatically share all the memory objects that 

reside in the address space of the task. Different tasks can share a page (or a memory 

object) by installing that page in their virtual address spaces and by initializing entries 

in their page tables so that all references to a virtual address in the shared page are 

coriectly tianslated into a reference to a physical page. Although a shared page may be 

mapped at different locations in the virtual address space of the tasks, only one copy 
of the page is present in the main memory. 
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The Mach virtual memory system allows the sharing of memory via the inheri¬ 

tance mechanism. In Mach, a new address space is created when a task is created. The 

new address space can either be empty or it can be based on an existing address space. 

When a new address space (child) is based on an existing address space (parent), a 

page in the new address space is based on the value of the inheritance attribute of the 

corresponding page in the existing address space. The inheritance attribute of a page can 

take three values: none, copy, and share. If a page is in the none inheritance mode, the 

child task does not inherit that page. If a page is in the copy mode, the child receives a 

copy of the page and subsequent modifications to that page only affect the task making 

the modifications. If a page is in the share mode, the same copy of the page is shared 

between the parent and the child tasks. Consequently, all subsequent modifications to 

that page are seen by both the tasks. 
In addition to supporting shared memory via the inheritance mechanism, if in¬ 

terfaces provided by a host export primitives that permit more unrestricted memory 

sharing, Mach will allow this form of memory sharing. Thus, unrestricted memory 

sharing can be supported within a Mach host. 

17.7.7 Efficiency Considerations 

The Mach virtual memory system uses the following techniques to increase efficiency: 

Parallel Implementation. The implementation of the Mach virtual memory sys¬ 

tem is fully parallel to exploit the parallelism in multiprocessor systems—all algorithms 

are designed to run in parallel and all data structures are designed to allow highly par¬ 

allel access. 

Simplicity. The underlying Mach philosophy is to use simple algorithms and data 

structures because complex algorithms and data structures are likely to waste CPU 

cycles without much performance improvement. 

Lazy Evaluation. In lazy evaluation, the evaluation of a function is postponed 

as long as possible in the hope that the evaluation will never be needed. The Mach 

virtual memory system makes extensive use of lazy evaluation to increase time and 

space efficiency. For example, virtual to physical mapping of a page is postponed until 

it is actually needed (i.e., a page reference occurs). The Mach virtual memory system 

does not even allocate space to page tables until they are needed. Thus, Mach postpones 

the creation of page tables and the lookup of disk addresses until needed. 

THE COPY-ON-WRITE OPERATION. Copy-on-write is a succint example of lazy 

evaluation in Mach that optimizes memory space and CPU cycles. The copy-on-write 

operation postpones the actual copying of a data page until the copied page is written. 

When two tasks, A and B want to share a page, the system allows them to share the 

same copy of the physical page, but each process has read-only access to the page (See 

Fig. 17.3). When task B attempts to write into the page, a protection fault is generated 

and the page is copied into a new physical page and a new virtual mapping is set up 

for the newly created page. Now B has a separate physical copy of the page. 
Copy-on-write optimization improves efficiency in a variety of ways. It reduces 

memory overhead because several pages that are copied may never be written. No CPU 



466 ADVANCED CONCEPTS IN OPERATING SYSTEMS 

(c) 

FIGURE 17.3 
Illustration of the copy-on-write 
operation. 

time is wasted in copying pages that are never written. If copied pages are never ac¬ 

cessed, these pages do not incur mapping overhead because mapping is lazily evaluated. 

17.7.8 Implementation: Data Structures and Algorithms 

Data Structures 

The Mach virtual memory system uses four basic data structures: memory objects, 

pmap structures, resident page tables, and address maps. Recall that a memory object 

is a repository of data that can be mapped into the address space of a task and a 

pmap structure is a hardware defined physical map that translates a virtual address to a 
physical address. Below we discuss resident page tables and address maps. 

Resident Page Tables. The Mach operating system treats the physical memory as a 

cache for virtual memory objects. Information about physical pages (e.g., whether they 

are modified, referenced, etc.) is maintained in a page table (called a resident page 

table) whose entries are indexed by physical page number. A page entry in the page 

table may be linked into the following lists. (1) Memory object list: all page entries 

associated with an object are linked together as a memory object to speed up object 

deallocation and virtual copy operations. (2) Memory allocation queues', queues are 

maintained for free, reclaimable, and allocated pages and are used by the Mach pager 
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to determine a tree page in the case of page fault. (3) Object/offset hash bucket: Fast 

lookup of a physical page associated with an object/offset, at the time of a page fault, 

is done using a bucket hash table (keyed by the memory object and byte offset). Byte 

offsets in memory objects are used to avoid binding the implementation to a particular 
physical page size. 

Address Maps. An address map is a data structure that maps contiguous chunks of 

virtual addresses (i.e., memory regions) in the address space of a task to memory 

objects. An address map is a doubly linked list of address map entries, each of which 

maps a contiguous range of virtual addresses in the address space of a task onto a 

contiguous area of a memory object. Each address map entry contains byte offsets 

of the beginning and end of the region represented by it. The linked list is sorted in 

the ascending order of virtual addresses. Each address map entry contains information 

about the inheritance and protection attributes of the memory region it defines. Thus, 

all addresses (pages) within a memory region mapped by a map entry have the same 

attributes. The address map data structure permits the efficient implementation of the 

most frequently performed operations on the address space of a task, namely, page 

fault lookups, copy/protection operations on a memory region, and the allocation and 

deallocation of memory regions. An address map allows us to perform operations on 

memory regions simply and quickly. Also, an address map allows for the efficient 

maintenance of sparse address spaces. 

Algorithms 

The Page Replacement Algorithm. A page replacement algorithm decides which page 

in the physical memory to replace in the event of a page fault. Mach philosophy is to 

use a simple page replacement algorithm because a complex algorithm is likely to waste 

CPEf cycles without vastly improving performance. The replacement algorithm in Mach 

is a modified-FIFO algorithm that keeps all the physical memory pages in one of the 

following three FIFO queues: 

The free list. This contains pages that are free to use. These pages are not currently 

allocated to any task and can be allocated to any task. 

The active list. This contains all pages that are actively in use by tasks. When a 

page is allocated, it is removed from the free list and placed at the end of the active 

list. 

The inactive list. This contains pages that are not in use in any address space, but 

were recently in use. These are the pages that will be freed if they are not referenced 

soon. 

A special kernel thread called a pageout daemon performs page replacement and 

management of these lists. In the event of a page fault, the daemon performs page 

replacement by taking a page from the inactive list and placing it in the free list. (The 

same action is taken when the page count is low in the free list.) The pageout daemon 

always maintains a small number of pages in the inactive list by moving pages from 
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the active list to the inactive list (and then removing mapping to those pages). The 

page replacement algorithm is a FIFO algorithm except that a page in the inactive list 

is activated if a task makes a reference to it. Thus, the inactive list serves as a second 

chance for pages targeted for replacement. 

The Page Fault Handler. The page fault handler is invoked when a page is referenced 

for which there is either an invalid mapping or a protection violation. The page fault 

handler has the following responsibilities. (1) Validity and protection: it determines if 

the faulting thread has the desired access to the address by performing a lookup in its 

task’s address space. (2) Page lookup: it attempts to find an entry for a cached page 

in the virtual to physical hash table. If the page is not present, the kernel requests the 

data from the pager. (3) Hardware vcdidation: It informs the hardware physical map 

(i.e., the pmap module) of the new virtual to physical mapping. 

Locking Protocols. All algorithms and data structures used in virtual memory im¬ 

plementation are designed to run in a multiprocessor environment and are thus fully 

parallel. The synchronization of accesses to shared data structures is achieved by the 

following locks. (1) Map locks: map locks provide exclusive access to address map 

data structures. (2) Object locks: object locks guarantee exclusive access to physical 

memory resources cached within an object. (3) Hash table bucket locks: these locks 

provide proper access to the object/resident page table hash table on a per bucket basis. 

(4) Busy page locks: these locks are used to indicate that some operation is pending on 

a given physical page. To prevent deadlocks, all algorithms acquire locks in the same 

order, i.e., map locks, object locks, and then either bucket or busy page locks. 

17.7.9 Sharing of Memory Objects 

Mach supports copy-on-write operations, which allow the sharing of the same copy of 

a memory object by several tasks as long as all the tasks only read the memory object. 

When a task performs a copy-on-write operation on a memory object, its address map 

starts pointing at the original copy of the memory object; that is, it shares the same 
copy with the original owner of the memory object. 

If one of the tasks writes data in a copied memory object using the copy-on-write 

operation, a new page for that data is allocated, which is accessible only to the writing 

task. This new page contains the modifications by the writing task. Note that a separate 

copy is created only for the pages of a memory object that have been modified. Mach 

maintains special objects, called shadow objects, to hold pages of a memory object that 

have been modified. A shadow object collects and remembers all the modified pages 

of a memory object copied/shared using the copy-on-write operation. A shadow object 

typically does not contain all the pages of the region it defines. It relies on the original 

object for unmodified pages. A shadow object can itself be shadowed on subsequent 
copy-on-write operations, thus creating a chain of shadows. 

Note that if the address maps of all the tasks that share a memory object us¬ 

ing copy-on-write directly point to the shared memory object, then the mapping and 

remapping of the shared memory objects will require the manipulation of all the address 
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maps. Yet, many tasks may share the same region of memory in read/write mode and 

may simultaneously share the same region with other tasks in copy-on-write mode. To 

circumvent these problems, a level of indirection is introduced when accessing shared 

memory objects. An address map, called a sharing map, points to a shared object, which 

in turn is pointed to by the address map entries of all the tasks sharing that memory 
object. 

17.8 RELIABILITY/FAULT TOLERANCE: THE SEQUOIA 
SYSTEM 

A multiprocessor system has inherent redundancy in processors for reliability and fault 

tolerance. However, a multiprocessor operating system must provide reconfiguration 

schemes to restructure the system in the face of failures to ensure graceful degradation. 

In this section, we first discuss issues in the design of fault-tolerance multiprocessor 

operating systems and then study fault-tolerant features and techniques of the Sequoia 

System [5], a loosely-coupled multiprocessor system. This system attains a high level 

of fault tolerance by performing fault detection in hardware and fault recovery in the 
operating system. 

17.8.1 Design Issues 

Fault Detection and Isolation. A multiprocessor operating system must promptly 

detect a fault and take measures to isolate and contain it. Loosely-coupled multiprocessor 

systems have the benefit of fault isolation in the event of processor failure, because the 

failure of a processor does not influence other processors. This is, however, untrue 

for tightly-coupled multiprocessor systems because the failure of a component (e.g., 

processor, main memory, etc.) can corrupt the shared memory, causing all processors 

to fail. 

Fault Recovery. After the failure of a system component has been detected, the 

operating system must be able to recover the processes affected by the failure. The 

system must be able to restore the states of these processes to consistent states so that 

these processes can resume processing. 

Efficiency. Fault detection and fault recovery mechanisms should have low over¬ 

head. A number of functions should be delegated to the hardware and the hardware 

architecture and the operating system should work together to achieve high performance. 

17.8.2 The Sequoia Architecture 

The Sequoia architecture consists of processor elements (PEs), memory elements (MEs), 

and I/O elements (IOEs), which are connected by a system bus (Fig. 17.4). 

The system bus consists of two 40-bit 10 Mhz buses that operate independently. 

The system bus is divided into three segments: processor local segments that connect the 

PEs; memory local segments that connect the MEs and the IOEs; and global segments 

that connect the processor and the memory local segments through master interfaces 
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FIGURE 17.4 
The Sequoia architecture. 

(Mis) and slave interfaces (Sis), respectively. A processor local segment can consist 

of up to eight PEs and a local memory segment can consists of up to eight elements. 

An MI arbitrates access to the buses. Up to eight processor local segments and sixteen 
memory local segments can be connected by global segments. 

A PE consists of dual 20 Mhz MC 68020 processors that operate in a lock-step 

manner with comparators that test for identical operation on each clock cycle. For 

fault tolerance, each PE has its own clock. Each ME consists of 8 or 16 Mbytes of 

4-way interleaved RAM. It also consists of 1024 test-and-set locks that can be used for 
mutually exclusively access to shared data structures. 

17.8.3 Fault Detection 

The Sequoia system makes extensive use of hardware fault detection mechanisms to 

detect faults in different system components. It makes use of three fault detection 

mechanisms: error-detecting codes, comparison of duplicated operations, and protocol 
monitoring. 

Error Detecting Codes. All data—whether stored in main memory, a processor 

cache, or being transferred on a bus—are protected by error-detecting codes. The main 

memory uses an extended Hamming code and all other components use byte parity for 

error detection. The hardware that implements all data storage and buses is partitioned 

so that a single component failure can produce only a single error in any byte and 
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all such errors are detectable. In addition, half of each 4-byte address or data word 

is protected by odd parity and the other half by even parity. Therefore, the faults that 

leave data paths in a quiescent state—typically all zeros or all ones—produce detectable 

eiTors. Thus, extreme attention has been paid to insure that all single component failures 

are detectable. 

Comparison of Duplicated Operations. The cost of logic hardware for the gen¬ 

eration and detection of error-detecting codes for some system components may be 

considerably higher than the cost of the component itself. (In the Sequoia system, ex¬ 

amples of such components are microprocessors, address generation units, and cache 

managers.) For these components, it is cheaper to use hardware duplication and compar¬ 

ison to detect failures. Each component is duplicated and is augmented with a compara¬ 

tor. Both components independently execute all operations and compare their outputs 

with a comparator to detect any discrepancy. 

Protocol Monitoring. Error-detection codes and hardware duplication and com¬ 

parison together are not adequate to detect all hardware faults, especially when timing 

is involved. For example, if a PE addresses an ME and the ME cannot respond due 

to some fault, then the PE (possibly along with the connecting bus) could be waiting 

for a response that never arrives. Protocol monitoring is used to detect such errors, 

which works by detecting violations in the sequence and timing of the communication 

between two components. 

These faults detection techniques detect all single errors resulting from hardware 

failures, except those resulting from the faults in the error detection circuitry itself. The 

Sequoia operating system periodically tests each fault detection circuitry to verify that 

it can detect and report all the errors it is designed for. 

PEs observe hardware faults in various ways. When an ME or IOE experiences 

a fault, it enters into an error state and does not respond to normal requests until the 

error is cleared. A PE detects such errors through a watchdog timing error. A fault in 

a PE is detected using polling. Each PE has a 128-byte status block in main memory 

and updates that block every 100 milliseconds. A designated PE periodically polls these 

status blocks to determine if a PE has failed. All other PEs periodically check if the 

designated PE has failed. When a PE observes a hardware fault, it notifies it to all other 

PEs using a high-priority interrupt. 
When a fault is detected in a component, the component immediately disables 

its outputs to prevent the fault from affecting other components. The operating system 

is notified of the faulty component, which takes over and initiates a fault recovery, 

discussed next. 

17.8.4 Fault Recovery 

In this section, we discuss the support the Sequoia system provides for recovery from 

processor, main memory, and IOE failures. For recovery from the failure of these 

components, it should be possible, irrespective of when and where a fault occurs, to 

reconstruct a consistent process state of all the processes that are affected by the fault 

so that they can resume execution. 
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RECOVERY FROM PROCESSOR FAILURES. A processor can fail when it is flush¬ 

ing a block of its cache to the main memory or can fail when it is not. If a processor fails 

when it is not flushing its cache, the memory images of its cache blocks are consistent 

even though they are old (they reflect the state when they were last flushed). To ensure 

that the complete state of a process is available, the contents of the internal registers of 

a processor and all dirty blocks in the cache are also flushed along with every cache 

flush. Thus, in this situation a consistent state of a failed processor exists in the main 

memory and recovery from a processor failure can be done by simply assigning the 

process that was running on the failed processor to another processor. 

However, if a processor fails while flushing its cache, it may leave the memory 

image of a process state being flushed in an inconsistent state because a cache flush 

operation is not atomic. That is, some part of the memory image has the process state 

before the flush and the other part has the process state after the flush. This problem 

is handled by having a backup copy (called a shadow) of every writable block/page. 

Every writable block is stored on two different MEs. When a processor flushes a cache 

block, it flushes it to both copies in the main memory, one by one. Keeping two copies 

of all blocks guarantees that at least one copy of every block will be consistent even if 
a processor fails when it is flushing its cache. 

RECOVERY FROM MAIN MEMORY FAILURES. The sequoia system handles main 

memory failures by using hardware redundancy. There is a backup main memory for 

all writable data blocks/pages. Two MEs are paired as shadows under the kernel control 

and a writable page is stored on both the MEs. All executable and read-only data pages 

are backed up on a disk. Thus, if an ME fails, a backup for every page stored in that ME 

exists in the system. When a main memory element containing a shadowed block fails, 

it can be recovered from its shadow block. When a main memory element containing 

an unshadowed page fails, the page tables are updated to reflect that those pages are no 

longer in the main memory. The next access to these pages causes a page fault, which 

fetches these pages from the disk and loads them into main memory. 

RECOVERY FROM I/O FAILURES. Disk failures are handled using dual-ported 

mirrored disks on different IOEs. A write is performed to both the disks of a mirrored 

pair. Reads are load balanced by sending half to each of the mirrored disks. If a disk 

fails, the other disk in the mirrored pair is used and the failed disk is recovered online. 

If a disk controller or an IOE fails, an alternative path to the disk is used. If no such 

path is operational, then the other disk in the mirrored pair is used. 

17.9 SUMMARY 

The design of multiprocessor operating systems is difficult because such systems must 

be able to support the parallel execution of multiple tasks to harness the power of 

multiple processors. A multiprocessor operating system must effectively schedule tasks 

to various processors, its performance must degrade gracefully in case of failures, and 

it must be able to run an application in parallel. In addition, it must support primitives 

for process synchronization and virtual memory management. There are three basic 
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configurations of multiprocessor operating systems: separate supervisor, master-slave, 

and symmetric. 

Software solutions to the critical section problem are impractical for multipro¬ 

cessor systems because they consume a substantial bandwidth of the communication 

network. Multiprocessor systems generally provide machine language instructions to 

atomically read and write a single memory location. Such atomic machine language 

instructions can be used to implement a lock operation (like a P and V operation) that 

can be used to enforce mutual exclusion. 

Threads are widely used primitives to effectively express, implement, and control 

parallelism available in parallel applications. User-level threads promise excellent per¬ 

formance potential relative to to kernel-level threads. However, to realize their perfor¬ 

mance potential, efficient mechanisms to exchange information between the underlying 

kernel and the thread system must be provided. 

In processor scheduling, runnable tasks are assigned to the processors so that 

system performance is maximized. A scheduler should address three issues. First, it 

should not preempt a task inside a critical section if some other tasks are spinning the 

lock to enter the critical section. Likewise, a task should not be scheduled if it is going 

to spin the lock next. Secondly, when a task is rescheduled after an interruption, it 

should be scheduled to the process where it last executed. This is because it is quite 

likely that the processor still has a good amount of data needed by this task in its 

cache. If it is scheduled to another processor, it is bound to generate a large number 

of page faults. Third, context switching overhead should be kept small. A variety of 

schedulers have been developed at several universities and research labs that address 

these issues. 
Memory management in the Mach operating system is a typical example of vir¬ 

tual memory system design in multiprocessor operating systems. The Mach virtual 

memory system provides flexible data sharing and protection primitives to support 

high performance parallel applications. Flexible data sharing permits the efficient im¬ 

plementation of process synchronization and interprocess communication. To support 

portability across a wide range of architectures, machine-independent virtual memory 

system was a major goal of the Mach virtual memory system. Mach achieved this 

goal by splitting the implementation in two parts: a machine-independent part and a 

machine-dependent part. The Mach virtual memory system makes extensive use of lazy 

evaluation to increase time and space efficiency. For example, the virtual to physical 

mapping of a page can be postponed until it is actually needed (i.e., when a page 

reference occurs). 
Inherent redundancy in processors in a multiprocessor system provides the basic 

ingredients for higher reliability and fault tolerance. A multiprocessor operating system, 

however, must be able to restructure itself in the face of failures for graceful degradation. 

The Sequoia multiprocessor system attains a high degree of fault tolerance, which 

performs fault detection in hardware and fault recovery in the operating system. The 

Sequoia system makes extensive use of hardware fault detection mechanisms (such as 

error-detecting codes, comparison of duplicated operations, and protocol monitoring) to 

detect faults in different system components. It uses hardware/software redundancy to 

achieve fault tolerance and to perform failure recovery. 
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17.10 FURTHER READING 

The literature on multiprocessor system operating systems is scanty. The following 

books deal with the design of multiprocessor operating systems to a limited extent: 

Hwang and Briggs [13], Stone [24], and Milenkovic [18], Papers by Dinning [8] and 

Dubois et al. [10] describe process synchronization in multiprocessor systems. Case 

studies on two prototype multiprocessor operating systems can be found in Jones et 

al. [14] and Scott et al. [21]. 

Anderson, Lazowska, and Levy [3] present a detailed discussion on thread man¬ 

agement in multiprocessor systems. A discussion by Draves et al., on how storage 

requirements for threads have been reduced in the Mach kernel, can be found in [9]. 

The implementation of threads in the Synthesis kernel is described by Massalin and 

Pu [17]. 

There are several papers on the Mach operating system. Rashid [20] describes the 

history and evolution of the Mach Operating System. Accetta et al. [1] give a detailed 

description of the Mach Kernel. Black [6] discusses the scheduling algorithm in Mach 

and the Ph.D. dissertation of Tevanian [25] contains a detailed description on memory 
management in Mach. 

For more details on the fault-tolerant features of the Sequoia operating system, 

readers are referred to the original paper [5]. Barlett [4] discusses the kernel of a 
commercial, fault-tolerant multiprocessor system. 

PROBLEMS 

17.1. Can the performance of a multiprocessor system with two identical processors be 
worse than the performance of a uniprocessor (with an identical CPU)? Explain your 
answer. 

17.2. A task consists of several subtasks. If these subtasks communicate (synchronously) 
with each other frequently, which scheduling policy would you recommend and 
why? 

17.3. If the subtasks of a task have large critical sections, which scheduling policy is most 
desirable? Explain. 

17.4. If nothing about the subtasks of a task is known, which scheduling policy would 
you recommend and why? 

17.5. If several processors try to execute an atomic hardware instruction on the same 
memory location simultaneously, only one processor succeeds and the rest fail and 
retry. This is analogous to many sites trying to transmit packets on a shared medium 
(e.g., Ethernet). Discuss the similarities and differences between the two systems. 
Decide whether or not the techniques used in Ethernet can be used in multiprocessor 
systems to increase performance (i.e., to reduce overhead due to wasteful execution 
of the atomic hardware instruction). 

17.6. Compare the process synchronization techniques discussed in Sec. 17.5 with respect 
to various overheads (e.g., communication overhead, processing overhead). 

17.7. Do you think the page replacement algorithm for multiprocessor systems should be 
different from that of a uniprocessor system? Explain your answer. 
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17.8. Compare the overhead of various “wait” methods discussed in Sec. 17.5.6. Which 
method is preferred if the contention to access a memory location is short lived (that 
is, there are no hot spots). 
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18.1 INTRODUCTION 

Traditionally, database systems have been implemented as an application on top of gen¬ 

eral purpose operating systems. However, such configurations generally do not yield 

the best performance because a host operating system may not provide sufficient func¬ 

tionalities needed to implement a database system. Since the requirements of a database 

system are different from those of a general purpose computer system, the functionality 

of a general purpose operating system may have to be greatly enhanced to build an 

efficient database system on top of it (see Fig. 18.1(a)). Moreover, a general purpose 

operating system may support features to maintain generality—they are all things to all 

people at a much higher overhead. These features may not be required in a database 

system or sometimes these features can be specialized for a database system such that 

they deliver better performance. Sometimes, existing operating system features may not 

be appropriate and some new features may have to be implemented in the user space. 

Another approach is to write a new operating system that efficiently supports only 

the functions needed by database systems (see Fig. 18.1(b)). Such database systems will 

have high performance. However, the development of the entire operating system from 

scratch is very expensive. In addition, the operating system must be modified whenever 

the interface to the database system changes. 
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FIGURE 18.1 
Two approaches to database systems 
design. 

18.2 WHAT IS DIFFERENT? 

General purpose operating systems are designed to provide the users with facilities for 

general purpose software development, testing and execution, and file manipulation. 

They support the concepts of a process (by providing mechanisms for process creation, 

deletion, synchronization, scheduling, and interprocess communication), a virtual mem¬ 

ory system (by providing mechanisms for address translation, buffer management, page 

replacement, etc.), a file system (by providing mechanisms for file storage, manipu¬ 

lation, and protection), and general purpose library routines. CPU scheduling, buffer 

management, memory management, I/O services, protection, file system management, 

etc. are all designed to provide a general purpose computing environment. 

In a general purpose operating system, data output or data that a program manip¬ 

ulates are generally shortlived. General purpose operating systems support persistent 

(i.e., long lived) data in the form of files that have very simple structure (a stream of 

bytes). Also, in these operating systems, there is little sharing at the data level among 

the users. In addition, data size is typically much smaller than the user program size in 
general purpose operating system environments. 

We now discuss some typical services provided by a general purpose operating 

system and explain why they are inadequate for supporting database systems. All op¬ 

erating systems use main memory as a buffer pool to cache the files stored on the 

secondary storage. To increase the cache hit-ratio, the operating systems generally use 

the least-recently-used (LRU) page replacement policy and perform prefetching of pages 

whenever a sequential file access is detected. The URU policy and the prefetching of 

pages may not be suitable for database systems. In some cases, they may adversely 

affect performance [4]. In addition, for the purpose of crash recovery, database systems 

require that certain pages are flushed from the main memory to disk in a specific order 

(called the selected force out). This service is generally not provided by the operat¬ 

ing systems. Database systems have circumvented these deficiencies by maintaining a 

buffer pool, for caching files, in the user space. This buffer pool is managed by the 

database system and thus the database system can use any page replacement policy and 
can perform selected force out. 
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Operating systems support an abstraction of files, which are variable size arrays of 

characters. This abstraction is suitable for language processors, text processors, editors, 

etc., but it is not suitable for database systems. If a database system requires objects 

with rich, complex structures, it has to build them on top of the file abstraction. Instead, 

for database systems, it is desirable that the operating system support complex objects 

on which the database system can create structured hies. The operating system should 

support primitives for creation, manipulation, and navigation through complex objects. 

Finally, most operating systems provide support for locking hies. However, data¬ 

base systems require support for locking at a hner granularity, such as a page, a record 

or a byte. Finer, variable size locks are essential in database systems for efficiency 
reasons (to increase execution concurrency). 

18.3 REQUIREMENTS OF A DATABASE OPERATING 
SYSTEM 

We now discuss the requirements that a database system places on an operating system 

to meet its goals. These requirements primarily arise due to the following features of 

database systems. (1) A database system must support the concept of a transaction, 

which is the unit of consistency and reliability [1], (2) Database systems are character¬ 

ized by the existence of huge, persistent, complex data that are shared among its users. 

(3) Nontrivial integrity constraints must be satished by the shared data of the database 

system. A database system is consistent if its data satisfy a set of integrity constraints. 

We next discuss the requirements of a database system. 

TRANSACTION MANAGEMENT. A user accesses a database system by executing 

a program, called a transaction. Informally, a transaction consists of a sequence of 

read and write operations on the database and is the unit of user interaction with 

the database system. Transaction is a unit of consistency in the sense that when a 

transaction is executed alone in a database system, it maintains database consistency. A 

database system must ensure that database consistency is maintained even when several 

transactions are running concurrently (called the problem of concurrency control). The 

database system should also ensure that a transaction is either executed completely 

or is not executed at all (called transaction atomicity). Note that a partially executed 

transaction may leave the database in an inconsistent state. In addition, in the face 

of a system failure, the database system must guarantee that either the actions of all 

partially executed transactions are undone or all partially executed transactions are run 

to completion (called failure recovery). 

In database systems, a user runs a transaction by indicating its beginning and 

end to the system, thereby ignoring the problems associated with concurrent transac¬ 

tion execution and system failures. It is the responsibility of the database system to 

maintain database system consistency and transaction atomicity in the presence of con¬ 

current transaction execution and system failures. The operating system should support 

mechanisms to facilitate the implementation of the following properties in transactions: 

concurrency control, atomic commit, and failure recovery. 
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Under database operating systems, henceforth, we will study the problem of con¬ 

currency control. This is the issue in database systems that has received the most 

attention and has been widely studied. The issues of atomic commit, failure recovery, 

and fault tolerance are studied in Chaps. 12 and 13. 

SUPPORT FOR COMPLEX, PERSISTENT DATA. Database systems manage a large 

volume of complex, persistent data. Traditional operating systems support persistent data 

in the form of hies. As discussed before, hies are not suitable for the direct creation 
and manipulation of complex data. 

Database operating systems must support dehnition, efficient manipulation, and 

efficient storage on secondary devices of hies with complex structures. In database 

systems, a hie is a collection of structured records. An environment to build database 

systems must provide facilities to dehne and manipulate hies of records of any arbitrary 

structures. Database systems are dominated by heavy I/O accesses and I/O traffic is 

usually a bottleneck. I/O efficiency can be improved by judiciously structuring blocks 

of a hie on a disk so that disk-head movement is reduced while accessing blocks of a 

file. Thus, an operating system should organize a hie on secondary storage such that 

neighboring pages of a hie are stored next to each other on the disk. 

BUFFER MANAGEMENT. Data of a database system are stored on a secondary 

storage (e.g., disks) and database systems maintain buffers in the main memory to 

cache the needed data. Data on secondary storage and the buffer in main memory are 

divided into equal size pages and data pages are brought into the buffer as and when 

needed for computation. When a transaction accesses a data page, the database system 

looks into the buffer to check if the page is present in it. If not, a page fault occurs and 

the page is brought from the secondary storage into the buffer. If the buffer is full, a 
page in the buffer must be swapped out to secondary storage. 

Therefore, a database system requires mechanisms to perform the following op¬ 

erations efficiently: search the buffer to see if a page is present; select a page for 

replacement (that optimizes the cache hit ratio); and locate and retrieve the needed data 

page from secondary storage. In addition, for higher reliability, a database system must 

be able to flush a selected set of pages in the buffer to secondary storage (stable stor¬ 

age). These pages constitute the “log” [2] of a transaction execution or an “intentions 
list” and “flags” [3] for recovery purposes. 

18.4 FURTHER READING 

There are two classical papers on database operating systems: Gray [2] and Stone- 

braker [4]. Gray primarily concentrates on operating system support for locking and 

recovery in database systems. Stonebraker examines the applicability of several major 

operating system services to database systems and suggests alternative services at the 

operating system level that can provide better support to database systems. 
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CHAPTER 

19 
CONCURRENCY CONTROL: 
THEORETICAL ASPECTS 

19.1 INTRODUCTION 

In database systems, users concurrently access data objects by executing transactions. 

The concurrent actions of transactions can interfere in unexpected ways to produce 

undesired results. Concurrency control is the process of controlling concurrent access to 

a database to ensure that the correctness of the database is maintained. In this chapter, 

we discuss the theoretical aspects of concurrency control. We introduce terms and 

definitions, discuss the problem of concurrency control, and describe the correctness 
criterion for concurrency control algorithms. 

19.2 DATABASE SYSTEMS 

A database system consists of a set of shared data objects that can be accessed 

by users. A data object can be a page, a file, a segment or a record. For the pur¬ 

pose of concurrency control, we will view a database as a collection of data objects 

(d\, d,2,..., dM)• Each data object takes values from a specified domain. The state of 

a database is given by the values of its data objects. In a database, certain semantic 

relationships, called consistency assertions or integrity constraints [8] must hold among 

its data objects. A database is said to be consistent if the values of its data objects 
satisfy all of its consistency assertions. 

484 
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19.2.1 Transactions 

A user interacts with a database by performing read and write actions on the data 

objects. The actions of a user are normally grouped together (as a program) to form 

a single logical unit of interaction, termed a transaction. A transaction consists of a 

sequence of read, compute, and write statements that refer to the data objects of a 
database. We assume the following properties about a transaction: 

• A transaction preserves the consistency of a database. 

• A transaction terminates in finite time. 

A transaction that does not modify any data object but just reads some of them is 

referred to as a read-only transaction, or a query. A transaction that modifies at least 

one data object is known as an update transaction, or an update. The term transaction 
is used in a general sense to stand for either a query or an update. 

Note that a transaction I) can be viewed as a partially ordered set (Si, <*) where 

Si is the set of read and write actions of the transaction and <i dictates the order 

in which these actions must be executed. For the purpose of concurrency control, a 

transaction T can be considered as a sequence {ai(dj), a2(d2),..., an(dn)} of n steps, 

where is the action at step i and the di is the data object acted upon at step i. 

Examples of such actions are read and write. 

For a transaction, the set of data objects that are read by it are referred to as its 

readset and the set of data objects that are written by it are referred to as its writeset. 

Henceforth, we will denote the readset and the writeset of a transaction T by RS(T) 
and WS(T), respectively. 

19.2.2 Conflicts 

Transactions conflict if they access the same data objects. For two transactions 7j and 

T2, T\ is said to have r-w, w-r, or w-w conflict with T2 if, RS(7j) fl WS(T2) fl <f>, 

WS(Ti) n RS(T2) fl <f>, or WS(Ti) fl WS(T2) fl <F, respectively. Also, transactions T\ 

and T2 are said to conflict if at least one of these conflicts exists between them. 

Example 19.1. For three transactions 7j, T2, and T3, shown in Fig. 19.1, T\ has w-w 
conflict with T2 because both modify data object de\ T2 has all r-w, w-r, and w-w 
conflicts with T3; while T\ and T3 have no conflict. 

19.2.3 Transaction Processing 

A transaction is executed by executing its actions one by one from the beginning to 

the end. A read action of a transaction is executed by reading the data object in the 

workspace of the transaction. (The workspace of a transaction is the area, (i.e., pages), 

in the main memory that is allocated to it.) A write action of a transaction modifies a 

data object in the workspace and eventually writes it to the database. We assume that 

a transaction reads a data object (from the database to its workspace) and writes a data 
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T\\ RS(T"i )={c/i ,«^3,cZ5} 

T2: RS(T2)={d2,d4,d5} 

T3' RS(T3)={d\,d2,d4} 

WS(T1)={d3 ,de} 

WS(T2)={d2,d4,d6} 

WS (T3)={d2,d4} 

FIGURE 19.1 
Three transactions with their readsets and writesets. 

object (from its workspace to the database) only once. Note that a transaction can be 

considered as a function whose inputs are the values of the data objects in its readset 

and the outputs are the values of the data objects in its writeset. 

T9.3 A CONCURRENCY CONTROL MODEL OF 
DATABASE SYSTEMS 

For the purpose of concurrency control, we can view a database system as consisting 

of three software modules: a transaction manager (TM), a data manager (DM), and a 
scheduler (Fig. 19.2). 

The transaction manager supervises the execution of a transaction. It intercepts 

and executes all the submitted transactions. A TM interacts with the DM to carry out 

the execution of a transaction. It is the responsibility of the TM to assign a timestamp 

to a transaction or issue requests to lock and unlock data objects on behalf of a user. 
Thus, TM is an interface between users and the database system. 

The scheduler is responsible for enforcing concurrency control. It grants or releases 

locks on data objects as requested by a transaction. The data manager (DM) manages 

the database. It carries out the read-write requests issued by the TM on behalf of a 

transaction by operating them on the database. Thus, DM is an interface between the 

scheduler and the database. A DM is responsible for chores such as failure recovery. 

A TM executes a transaction by executing all its actions sequentially from the 

beginning to the end. In order to execute an action, the TM sends an appropriate request 

to the DM via the scheduler. Hence, the execution of a transaction at the TM results 

in the execution of its actions at the DM. So, in general, the DM executes a stream 

of transaction actions, directed toward it by the TM. Note that to perform concurrency 

control, the scheduler modifies the stream of actions directed toward the DM. 

transactions 

FIGURE 19.2 
A model of a database system. 

Database 
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19.4 THE PROBLEM OF CONCURRENCY CONTROL 

Typically, in a database system, several transactions are under execution simultaneously. 

Since a transaction preserves database consistency, a database system can guarantee 

consistency by executing transactions serially, i.e., one at a time. However, such a serial 

execution of transactions is inefficient as: it results in poor response to user requests 

and poor utilization of system resources. Efficiency can be improved by executing 

transactions concurrently, that is, by executing read and write actions from several 

transactions in an interleaved manner. Because the actions of concurrently running 

transactions may access the same data objects, several anomalous situations may arise 

if the interleaving of actions is not controlled in some orderly way. Such situations are 
described next. 

19.4.1 Inconsistent Retrieval 

Inconsistent retrieval occurs when a transaction reads some data objects of a database 

before another transaction has completed with its modification of those data objects. In 

such situations, the former transaction faces the risk of retrieving incorrect values of 
the data objects. 

Example 19.2. Suppose customer ci transfers $500 from savings account S to check¬ 
ing account C, and teller ti concurrently reads both the accounts to compute the total 
balance. A possible trace of the execution of these transactions is as follows (suppose 
initially, S = 1000 and C = 500): ci reads S into its workspace, subtracts 500 from it, 
and writes it back to S; 0 reads S (=500) and C (=500) into its workspace; ci reads C 
(=500) into its workspace, adds 500 to it, and writes it back to C (=1000); fi outputs 
1000 as the balance. Here, 0 reads S after ci has modified it and reads C before ci 
has modified it, resulting in the incorrect retrieval of the total balance. 

19.4.2 Inconsistent Update 

Inconsistent update occurs when many transactions read and write onto a common set 

of data objects of a database, leaving the database in an inconsistent state. 

Example 19.3. Suppose two data objects A and B, which satisfy the consistency 
assertion “(A = 0) or (B = 0)”, are concurrently modified by the following transac¬ 
tions [17]: 

“Ti :ifA = 0 then B : = B + \" 

“T2 :ifB = 0 then A:— A + \". 

A possible execution trace is as follows (initially A = 0 and B = 0): Ti reads 
A ( = 0) and B ( = 0) in its workspace; T2 reads A ( = 0) and B ( = 0) in its 
workspace; since A = 0 in the workspace of Ti, it increments B by 1 and writes it in 
the database (B = 1); since B = 0 in the workspace of T2, it increments A by 1 and 
writes it in the database (A = 1); the final database state “(A = 1) and (B = 1)” is 
inconsistent. 
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Thus, if the interleaving of the actions of transactions is not controlled, some 

transactions may see an inconsistent state of the database and the database may be 

left in an inconsistent state. This fundamental problem is referred to as the concurrency 

control problem. In a database system, this problem is handled by a concurrency control 

mechanism that controls the relative order (or interleaving) of conflicting^ actions, such 

that every transaction sees a consistent state of the database and, when all transactions 

are over, the database is in a consistent state. Nevertheless, the concurrency control 

mechanism exploits the underlying concurrency. 

It is clear that the concurrent execution of transactions must be controlled to ensure 

database consistency. However, a question arises as to what degree the concurrency 

must be controlled to ensure database consistency is maintained (obviously, it is too 

restrictive to execute transactions serially). We answer this question next and we state 

restrictions on the concurrency by characterizing the interleavings of transaction actions 

that produce correct results. 

19.5 SERIALIZABILITY THEORY 

In this section, we describe the theory of serializability, which gives precise rules and 

conditions under which a concurrent execution of a set of transactions is correct [4, 

7, 15, 16]. A concurrency control algorithm is correct if all of its possible executions 

are correct. Since the execution of transactions is modeled by a log and the correctness 

condition is stated in terms of logs, we next introduce the concept of log. 

19.5.1 Logs 

The serializability theory models executions of a concurrency control algorithm by 

a history variable called the log [7] (also called the schedule in [8] and the history 

in [16]). A log captures the chronological order in which read and write actions of 

transactions are executed under a concurrency control algorithm. Let T - {To,Xi,...,Tn} 

be a transaction system. A log over T models an interleaved execution of To, T\,...,Tn 
and is a partial order set L = (S, <) where, 

L S = \JUSit and 

2. < 3 U7=0 <i 

Condition (1) states that the database system executes all the actions submitted 

only by T0, T\,...,Tn and condition (2) states that the database system executes the 
actions in the order expected by each transaction. 

Example 19.4. Figure 19.3 shows three transactions T\, T), and T) and two logs LI 
and L2 over these transactions. Notations used are as follows: ri[x] and wi[x]”, respec¬ 

t Recall that two actions conflict if they operate on the same data object, and at least one of them is 
a write action. 
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Xj = rl[x] rl[z] wl[x] 

T2 = r2[y] r2[z] w2[y] 

T3 = w3[x] r3 [y] w3[z] 

LI = w3[x] rl[x] r3[y] r2[y] w3[z] r2[z] rl[z] w2[y] wl[xj 

L2 = w3[x] r3[y] w3[z] r2[y] r2[z] w2[y] rl[x] rl[z] wl[x] 

FIGURE 19.3 
Examples of logs. 

tively, denote the read and the write operation of transaction T% on data 
object x. 

19.5.2 Serial Logs 

In a database system, if transactions are executed strictly serially, that is, all the actions 

of each transaction must complete before any action of the next transaction can start, 

then the resulting log is termed a serial log [7]. A serial log represents an execution of 

transactions where actions from different transactions are not interleaved. For example, 

for a set of transactions Xj, X2,..., Tn, a serial log is of the form Tn X^2 Tjn, where i\, 

in, is a permutation of 1, 2,..., n. 

Example 19.5. Log L2 of Fig. 19.3 is an example of a serial log because actions 
from different transactions have not been interleaved. 

Since each transaction individually maintains the database consistency, it follows 

by induction that a serial log maintains the database consistency. 

19.5.3 Log Equivalence 

Two logs are equivalent if all the transactions in both the logs see the same state of the 

database and leave the database in the same state after all the transactions are finished. 

Let L be a log over a transaction system T = {To,Tj,...,Tn} and on a database system 

D = (x, y, z,...). If k^[x] and r?- [x] are two operations in L, then we say rj[x] reads from 

Wi[x\ iff, 

1. Wi[x] < r3[xj and 

2. There is no Wk[x] such that Wi[x]<Wk[x]<rj[x], 

Example 19.6. In log LI of Fig. 19.3, action rl[x] reads x from action w3[x] and 
action r2[z] reads z from action w3[z]. 

We call u;t[x] a final write, if there is no u>fc[x] such that Wi[x]<Wk[x]. 
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Example 19.7. In log LI of Fig. 19.3, w3[z], w2[y] and wl[x] are the final writes. 

Two logs over a transaction system are equivalent iff 

1. Every read operation reads from the same write operation in both the logs, and 

2. Both the logs have the same final writes. 

Condition (1) ensures that every transaction reads the same value from the database 

in both the logs and condition (2) ensures that the final state of the database is same in 

both the logs. 

Example 19.8. In Fig. 19.3, log L2 is equivalent to log LI. 

19.5.4 Serializable Logs 

Note that serial logs are correct because each transaction sees a consistent state of the 

database and when all the transactions terminate, the database is in a consistent state. 

However, serial logs result in poor performance. Therefore, there has been a motivation 

to find out if a log obtained by interleaving actions from several transactions produces 

the same effect as a serial log. Such logs are called serializable logs. Formally, a log 

obtained by interleaving actions of transactions T\,T2,...,Tn is serializable if it produces 

the same output and has the same effect on the database as the serial execution of a 

permutation of T\, T2,..., Tn. Thus, a serializable log is equivalent to a serial log and 
represents a correct execution. 

Example 19.9. In Fig. 19.3, log LI is equivalent to serial log L2, hence, it represents 
a correct execution. 

19.5.5 The Serializability Theorem 

It is natural to ask what conditions an interleaved execution (log) should satisfy in order 

to be serializable. Several researchers (e.g., [15, 16, 18]) have investigated this problem 

and have stated the condition in terms of a graph, called a serialization graph, which 

is constructed from a log. In this section, we present the results as a theorem (called 

the serializability theorem), which states the required conditions for serializability. 

Suppose L is a log over a set of transactions {T0, Tu..., Tn}. The serialization 

graph for L, SG(L), is a directed graph whose nodes are T0, T),..., Tn and which has 

all the possible edges satisfying the following condition: There is an edge from 7) to 

Tj provided for some x, either r^x] < w,-[x], or w,:[x] < rj[x], or m,[x] < ^[x]. 

Note that an edge T, —► T2 in a serialization graph, SG(L), denotes that an action of 
Ti precedes a conflicting action of T2 in log L. 

Example 19.10. The serialization graph for log LI of Fig. 19.3 is shown in Fig. 19.4. 

THE SERIALIZABILITY THEOREM. 

Theorem 19.1. A log L is serializable iff SG(L) is acyclic. 
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FIGURE 19.4 
The serialization graph of LI. 

Proof of this theorem is beyond the scope of this book (interested readers should 

refer to [5] for details). Given an acyclic SG(L), we can determine a serial log corre¬ 

sponding to log L by topologically sorting the SG(L). 

Example 19.11. The serialization graph of LI, SG(L1), in Fig. 19.4 is acyclic; there¬ 
fore, LI is serializable (which we have already confirmed by showing that it is equiv¬ 
alent to a serial log L2). 

19.6 DISTRIBUTED DATABASE SYSTEMS 

In a distributed database system (DDBS), data objects are spread over a collection of 

autonomous sites, say Sj, £2,..., £jv, which are connected by a communication network 
such that any site can exchange information with any other site [13]. Database at site 

Si is denoted by Dj = (di \i £ [1...M]). Note that Di n Dj = $ for every i and j, 
i 7^ j and D\ U D2 ... U - (d\, d2,...,d,M). Every data object is stored exactly at 

one site. Such a database is referred to as partitioned DDBS. 

There is no globally shared memory and all sites communicate solely via message 

exchanges. The communication network delivers all messages correctly with a finite 

delay. For any pair of sites Si and Sj, the communication network always delivers 

messages to Sj in the order they were sent by Sj. Sites and the communication network 

are prone to failures. Communication network failure may result in the partitioning of 

the system and/or message loss. 
The concurrency control model of a DDBS is shown in Fig. 19.5. Each site in a 

DDBS has three software modules; a transaction manager (TM), a data manager (DM), 

and a scheduler. Functions of these modules are the same as in a single-site database 

system. The transaction manager at a site intercepts and processes all the submitted 

transactions. The TM may have to interact with the appropriate DMs (by sending them 

requests) to carry out the execution of a transaction. The data manager (DM) at a 

site manages the database stored at that site. It carries out the requests from TM’s 

by operating them on the database. A DM may communicate with other DM’s and is 

responsible for chores such as deadlock detection. 

MOTIVATIONS. A distributed database offers several advantages over a centralized 

database system [11] such as 

Sharing. Program, data, and load can be shared among the sites. 

Higher system availability (reliability). The failure of a component does not 

bring the entire system to a halt. 
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FIGURE 19.5 
The model of a distributed database system. 

Improved performance. Since a transaction can be decomposed into several 

subtransactions and these subtransactions can be executed in parallel at different sites, 
the system can have higher throughput and smaller response time. 

Easy expandability. The system can be expanded without disrupting the normal 
processing. 

Large databases. Multiple sites can support a larger database and a higher number 
of users than a single-site database. 

19.6.1 Transaction Processing Model 

In a DDBS, a transaction may access the data objects spread over many sites. Thus, 

a transaction X) can be viewed to consist of several subtransactions, Tt[, Ttl_, ..., T) 

where subtransaction Tik represents the processing required by Tt at site Sk. If Tlk is 
null, then transaction T) does not require any processing at site Sk. 

A TM executes a transaction by executing all its actions sequentially from the 

beginning to the end. To execute an action, the TM sends an appropriate request to the 

DM that manages the data object acted upon by that action. Hence, the execution of a 

transaction at a TM results in the execution of its actions at appropriate DMs. So, in 
general, a DM executes a stream of actions, directed toward it by many TMs. 

19.6.2 Serializability Condition in DDBS 

In distributed database systems, transaction execution is represented by multiple logs 

(one for each site). The serialization condition in DDBS is given by the following 
theorem [2]: 
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Theorem 19.2. Let T={Ti,T2, Tn} be a set of transactions, and E be an 

execution of these transactions modeled by logs {L\,L2, Lm}. E is serializable if 

there exists a total ordering of T such that for each pair of conflicting actions aq and 

cij from distinct transactions Ti and Tj, respectively, a, precedes a,j in any log iff T) 

precedes Tj in the total ordering. 

Thus, an execution is serial if there is a total order of transactions such that if Tj 

precedes Tj in the total order, then all of Ti s actions precedes all of Tj’s actions in 

all the logs where they both appear. 

19.6.3 Data Replication 

In the partitioned DDBS described above, if a site is down, its database is inaccessible 

to other sites, i.e., all transactions that access (read-write) those data objects are blocked 

until the site recovers. This problem can be remedied (i.e., system availability can be 

increased) by storing data objects at two sites. Since the probability of two sites being 

down simultaneously is very low, all data objects will be available most of the time. If 

availability of a data object is very critical, its copies can be stored at several sites. In 

general, a different number of copies can be stored for different data objects. 

In addition, multiple copies of data objects reduce the access time for some read 

operations because data objects can be read locally without exchanging messages. A 

simple strategy is to store a data object where it is likely to be accessed most frequently. 

19.6.4 Complications due to Data Replication 

Although data replication enhances system availability and expedites reads, it intro¬ 

duces an additional problem—a system must not only guarantee that each copy is self 

consistent (called internal consistency), but also that all copies of a data object have 

the same value (called mutual consistency) [21]. 

19.6.5 Fully-Replicated Database Systems 

A fully-replicated database is a special case of data replication where every data object 

is replicated at every site, i.e., if dik denotes the copy of data object dk at site Si, then 

Di = (dn, di2, •••, diM'), for i 1,2,3,..., N. 
Full data replication has overhead due to extra storage and requires complicated 

synchronization to maintain mutual consistency. Nevertheless, it has several attractive 

features: 

Enhanced reliability. A site can access a data object even if some sites have 

failed or the network has partitioned. 

Improved responsiveness. A query' can be executed quickly without any com¬ 

munication. 

No directory management. The overhead of managing a directory and a resource 

locator service is absent. 
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Easier load balancing. A computation can be readily transferred without moving 
a data object. 

Because of these features, several commercial efforts have been made in this 

direction, e.g., SDD-1 [6] and distributed INGRES [19], 

Since all data objects are available at a site in fully-replicated database systems, a 

transaction can be completely executed at any site. The following three-step method for 

executing a transaction Ti has been widely used in fully-replicated database systems: 

1. Values of the data objects in RS(Ti) are read; 

2. Computation is performed to obtain the values of data objects in WS(Ti); and 

3. The computed values are written onto the data objects in WS(T*) of the database. 

Note that the last step must be performed on every copy of the database so that 
all the copies are mutually consistent. 

19.7 SUMMARY 

In database systems, concurrent actions of transactions can interfere in unexpected ways 

to produce undesired results. Examples of such results include inconsistent retrieval and 

inconsistent update. Inconsistent retrieval occurs when a transaction reads some data 

objects of a database before another transaction has completed its modification of those 

data objects, thereby leaving the former transaction with a risk of retrieving incorrect 

values of the data objects. Inconsistent update occurs when many transactions read and 

write onto a common set of data objects of a database, leaving the database in an 
inconsistent state. 

Concurrency control deals with the control of concurrent access to database sys¬ 

tems to ensure that the correctness of the database is maintained. In this chapter, we 

discussed theoretical aspects of concurrency control and discussed correctness criterion 

for concurrency control algorithms. Correctness of concurrency control algorithms is 

addressed by the theory of serializability, which gives precise conditions under which 

a concurrent execution of a set of transactions is correct. The execution of transactions 

is modeled by a log and the correctness condition is stated in terms of logs. A log 

captures the chronological order in which read and write actions of transactions are 

executed under a concurrency control algorithm. A concurrent transaction execution 

is correct if its log has the same effect as a serial log. A precise result is given by 

the serializability theorem, which states that a log represents correct execution iff its 

serialization graph is acyclic. Clearly, a concurrency control algorithm is correct if all 
of its possible executions are correct. 

19.8 FURTHER READING 

Books by Bernstein et al. [5] and Papadimitriou [14] give a comprehensive discus¬ 

sion on the theory of concurrency control. Serializability theory was first formalized 

by Papadimitriou in [15], Rung and Papadimitriou present an optimality theory of con¬ 

currency control in [10], Bernstein and Goodman [3] discuss a theory of multiversion 
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concurrency control in database systems. Hua and Bhargava [9] discuss classes of se¬ 

rializable histories in distributed databases. 

PROBLEMS 

19.1. Show that the log of Examples 19.2 and 19.3 are not serializable. 

19.2. Show that if two logs are equivalent, their serialization graphs are identical [5]. 

19.3. Show that if there is at most one conflict between any two transactions, then any 
interleaved execution will be serializable. 

19.4. What is the serializability condition for a fully-replicated database system? 

19.5. Is serializability the only correctness criterion for concurrent transaction execution? 
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CHAPTER 

20 
CONCURRENCY 

CONTROL 
ALGORITHMS 

20.1 INTRODUCTION 

A concurrency control algorithm controls the interleaving of conflicting actions of trans¬ 

actions so that the integrity of a database is maintained, i.e., their net effect is a serial 

execution. In this chapter, we discuss several popular concurrency control algorithms. 

We begin by describing the basic synchronization primitives used by these algorithms. 

20.2 BASIC SYNCHRONIZATION PRIMITIVES 

20.2.1 Locks 

In lock based techniques, each data object has a lock associated with it [8], A transaction 

can request, hold, or release the lock on a data object. When a transaction holds a lock, 

the transaction is said to have locked the corresponding data object. A transaction can 

lock a data object in two modes: exclusive and shared. If a transaction has locked a data 

object in exclusive mode, no other transaction can concurrently lock it in any mode. If a 

transaction has locked a data object in shared mode, other transactions can concurrently 

lock it but only in shared mode. Basically, by locking data objects, a transaction ensures 

that the locked data objects are inaccessible to other transactions, while temporarily in 

inconsistent states. 

497 
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20.2.2 Timestamps 

A timestamp is a unique number that is assigned to a transaction or a data object and is 

chosen from a monotonically increasing sequence. Timestamps are commonly generated 

according to Lamport’s scheme [17]. Every site Si has a logical clock C\, which takes 

monotonically nondecreasing integer values. When a transaction T is submitted at a 

site Si, Si increments Ci by one and then assigns a 2-tuple (C*, i) to T. The 2-tuple 

is referred to as the timestamp of T and is denoted by TS(T). Every message contains 

the current clock value of its sender site, and when a site Sj receives a message with 

clock value t, it sets Cj to max(t + 1, Cj). For any two timestamps ts\ = (t\, if) and 

ts2 = (t2, i2), tsi < ts2, if either (t\ < t2), or (t\ = t2 and i\ < i2). 

Timestamps have two properties: (1) uniqueness (i.e., they are unique systemwide) 

because timestamps generated by different sites differ in their site id part and timestamps 

generated by the same site differ in their clock value part and (2) monotonicity (i.e., 

the value of timestamps increases with time) because a site generates timestamps in 
increasing order. 

Timestamps allow us to place a total ordering on the transactions of a distributed 

database system by simply ordering the transactions by their timestamps. In concur¬ 

rency control algorithms for distributed database systems, whenever two concurrent 

transactions conflict, all sites must agree on a common order of serialization. This can 

be achieved by assigning timestamps to transactions in the manner described above and 

then having every site serialize conflicting transactions by their timestamps. 

20.3 LOCK BASED ALGORITHMS 

In lock based concurrency control algorithms, a transaction must lock a data object 

before accessing it [8], In a locking environment, a transaction T is a sequence {afdf, 

a2(d2), ... ,an(dn)} of n actions, where is the operation performed in the zth action 

and the di is the data object acted upon in ith action. In addition to read and write, 

lock and unlock are also permissible actions in locking algorithms. A transaction can 

lock a data object di with a “lock(cZ;)” action and can relinquish the lock on dt by an 

“unlock^)” action. A log that results from an execution where a transaction attempting 

to lock an already locked data object waits, is referred to as a legal log [8], 
A transaction is well-formed [8] if it 

• Locks a data object before accessing it, 

• Does not lock a data object more than once, and 

• Unlocks all the locked data objects before it completes. 

It is important to note that just being well-formed is not sufficient for correctness 

(that is, to guarantee serializability). Additional constraints, as to when a lock can be 

acquited and released, are needed. These constraints are expressed as locking algorithms. 
Next, locking algorithms are described. 
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20.3.1 Static Locking 

In static locking, a transaction acquires locks on all the data objects it needs before 
executing any action on the data objects. Static locking requires a transaction to pre¬ 
declare all the data objects it needs for execution. A transaction unlocks all the locked 
data objects only after it has executed all of its actions. 

Static locking is conceptually very simple. However, it seriously limits concur¬ 
rency because any two transactions that have a conflict must execute serially. This may 
significantly limit the performance of the underlying database system. Another draw¬ 
back of static locking is that it requires a priori knowledge of the data objects to be 
accessed by transactions. This may be impractical in applications where the next data 
object to be locked depends upon the value of another data object. 

20.3.2 Two-Phase Locking (2PL) 

Two-phase locking is a dynamic locking scheme in which a transaction requests a lock 
on a data object when it needs the data object. However, database consistency is not 
guaranteed if a transaction unlocks a locked data object immediately after it is done 
with it. 

Two-phase locking imposes a constraint on lock acquisition and the lock release 
actions of a transaction to guarantee consistency [8]. In two-phase locking, a transaction 
cannot request a lock on any data object after it has unlocked a data object. Thus, a 
transaction must have acquired locks on all the needed data objects before unlocking a 
data object. 

Thus, as the name suggests, two-phase locking has two phases: a growing phase 
during which a transaction requests locks (without releasing any lock); and, a shrinking 
phase, which starts with the first unlock action, during which a transaction releases locks 
(without requesting any more locks). The stage of a transaction when the transaction 
holds locks on all the needed data objects is referred to as its lock point. A schematic 
diagram of the execution of a two-phase transaction is shown in Fig. 20.1. 

1 lock point 

Number 
of locks 

first lock first lock 

FIGURE 20.1 
A schematic diagram of a two-phased transaction. 



500 ADVANCED CONCEPTS IN OPERATING SYSTEMS 

T\ T2 
lock A lock B 

A + 100 - 4 A B + 50 -> B 

lock B lock A 

unlock A >
 

1 en
 

0
 

>
 

B - 100 - -> B unlock B FIGURE 20.2 
unlock B unlock A Well-formed, two-phased transactions 

Example 20.1. Figure 20.2 shows two well-formed, two-phased transactions T\ and 
T2. Transaction T\ transfers $100 from account B to account A, and transaction 2$ 
transfers $50 from account A to account B. In Fig. 20.3, we show a legal schedule of 
T\ and T2, which is serializable. 

Eswaran et al. [8] shows that if a set of transactions are well-formed and follow 

the two-phase structure for requesting and releasing data objects, then all legal logs 

(legal schedules) are serializable. Minoura [20] shows that if no semantic information 

on transactions and the database system are available, then two-phase locking is a 

necessary condition for database consistency. 

Two-phase locking increases concurrency over static locking because locks are 

held for a shorter period. With the help of an example, we next show how 2PL results 
in higher concurrency. 

Example 20.2. Suppose two transactions Ti and T2 have the following readsets and 
writesets: 

RS(Ti) = {d2, d3}, WS(T{) = {d3}, 
RS(T2) = {dud2,d3},WS(T2)= {dud2,d3}. 

Transaction Action Comments 
T\ lock A Ti locks A 
T\ A+100 - ► A Ti adds 100 to A 
T\ lock B T\ locks B 
t2 lock B t2 tries to lock B, waits. 
Ti unlock A T\ unlocks A 
Ti B-100 - 4 B Ti subtracts 100 from B 
T\ unlock B T\ unlocks B 

t2 gets lock on B 

t2 B+50 ->• B t2 adds 50 to B 
t2 lock A t2 locks A 
t2 A—50 -»• A t2 subtracts 50 from A 
t2 unlock A t2 unlocks A 
t2 unlock B t2 unlocks B 

FIGURE 20.3 

A legal and serializable schedule of T\ and T2 
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requests and gets 
lock on dj 

T, 

K K 
requests and gets 
lock on d2 

unlocks c?2 unlocks dj 

time 

/ 
requests and gets 

lock on dj 
gets lock 

on ^2 

requests and gets 
lock on dj 

requests lock on 
<^2 and blocks 

unlocks dj, 
<^2. and dj 

FIGURE 20.4 
Concurrent execution of T\ and T2. 

One possible execution of these transaction is shown in Fig. 20.4. T\ begins execution 
first and places a read lock on d2. T2 begins by placing a write lock on d\, performs 
some computation, and is blocked when it tries to lock d2. Tj locks ds and can now 
unlock di since it has locked all data items it will need. This allows T2 to lock d2 
for write and T2 can continue computation. After T\ has unlocked d$, T2 can lock 
di and complete. Thus, T\ and T2 can concurrently execute in two-phase locking. In 
static locking, however, T2 would not have been able to begin until T\ had finished. 
Consequently, 2PL allows more concurrency in transaction execution and has better 
performance than static locking. 

20.3.3 Problems with 2PL: Price for Higher Concurrency 

Two-phase locking suffers from the problems of deadlock and cascaded aborts. These 

problems are not specific to 2PL; in general, any dynamic locking policy will have 

these problems. 

DEADLOCKS. Two-phase locking is prone to deadlocks because a transaction can 

request a lock on a data object while holding locks on other data objects. A set of 

transactions are deadlocked if they are involved in a circular wait. 

Example 20.3. Suppose a transaction Tj holds lock on data object d\ and requests 
lock on data object d2 and is blocked because d2 is already locked by transaction T2. 
Later, if transaction T2, while holding a lock on d2 requests a lock on d\, a deadlock 
will arise between 2j and T2. 
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Example 20.4. In Fig. 20.3, if T\ locks data object A at step 1 and 7~2 locks data 
object B before 7j reaches its step 3, a deadlock will arise between Tj and T2. 

A deadlock may involve more than two transactions. A deadlock persists until it 

is resolved. A deadlock is resolved by aborting a deadlocked transaction, restoring all 

the data objects modified by it to their original states, releasing all the locks held by 

it, and withdrawing its pending lock requests. Deadlocks can be prevented by having 

each transaction acquire all the needed data objects in the beginning, but this limits 

concurrency. Deadlocks can also be prevented in 2PL by assigning unique priorities 

to transactions and having a transaction only wait for higher priority transactions (this 
scheme is discussed later). 

CASCADED ROLL-BACKS. When a transaction is rolled back (for any reason—a 

user kills it, the system crashes, or it becomes deadlocked), all the data objects modified 

by it are restored to their original states. In this case, all transactions that have read 

the backed up data objects must also be rolled back and the data objects modified 

by them must also be restored and so on. This phenomenon is called the cascaded 
roll-back. Two-phase locking suffers from the problem of cascaded roll-back because a 

transaction may be rolled back after it has released the locks on some data objects and 

other transactions have read those modified data objects. 

Example 20.5. In Example 20.2, if Tj were to abort after it released the lock on d2 

and after T2 had read di, then T2 would need to be aborted too, because now 73 has 
read a value of cfe that was never committed (Tj did not complete). 

STRICT 2PL. Cascaded roll-backs can be avoided by making all transactions strict 

two-phased. In strict two-phase locking, a transaction holds all its locks until it com¬ 

pletes and releases them in a single atomic action, often called a commit. Strict 2PL 

eliminates cascaded aborts because transactions can read data objects modified by a 

transaction only after the transaction has completed. However, strict 2PL reduces con¬ 

currency as a transaction holds locks for a longer period than required for consistency. 

Clearly, the problems of deadlock and cascaded aborts are created by the two 

phases of 2PL, the growing and shrinking phases, respectively. To eliminate these 

problems, it is necessary to avoid these two phases, and consequently return to static 

locking. Thus, the price of higher concurrency in 2PL are these two problems. 

20.3.4 2PL in DDES 

The concurrency control problem is aggravated in a distributed database system be¬ 
cause [18], 

• Users access data objects stored in several geographically distant sites. 

• A site may not have instantaneous knowledge of the state of other sites. 

Two-phase locking can be implemented in a distributed database system in the 

following way. A DM (data manager) at a site controls the locks associated with objects 
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stored at that site. A TM (transaction manager) communicates with the appropriate DM 

to lock or unlock a data object. If a request for lock cannot be granted, the DM puts 

it on the waiting queue of the object. When a lock on an object is released, one of 

the waiting requests for the lock on that object is granted. If all the transactions are 

two-phased or a TM acquires locks for a transaction in the two-phased manner, then it 

implements two-phase locking in a distributed database system. 

20.3.5 Timestamp-Based Locking 

Rosenkratz et al. [22] propose two locking based algorithms for concurrency control 

in a distributed database system that avoid deadlocks by using timestamps. When a 

transaction is submitted, it is assigned a unique timestamp. The timestamps of trans¬ 

actions specify a total order on the transactions and can be used to resolve conflicts 

between transactions. When a transaction conflicts with another transaction, the con¬ 

currency control algorithm makes a decision based on the result of the comparison of 

their timestamps. The use of timestamps in resolving conflicts is primarily to prevent 

deadlocks. Conflicts are resolved uniformly at all sites because conflicting transactions 

have the same timestamps systemwide. 

Recall that a conflict occurs when (1) a transaction makes a read request for a data 

object, for which another transaction currently has a write access or (2) a transaction 

makes a write request for a data object, for which another transaction currently has a 

write or read access. 

CONFLICT RESOLUTION. A conflict is resolved by taking one of the following 

actions. 

Wait. The requesting transaction is made to wait until the conflicting transaction 

either completes or aborts. 

Restart. Either the requesting transaction or the transaction it conflicts with is 

aborted (all data objects modified by the aborted transaction are restored to their ini¬ 

tial states) and started afresh. Restarting is achieved by using one of the following 

primitives: 

Die. The requesting transaction aborts and starts afresh. 

Wound. The transaction in conflict with the requesting transaction is tagged as 

wounded and a message “wounded” is sent to all sites that the wounded transaction 

has visited. If the message is received before the wounded transaction has committed at 

a site, the concurrency control algorithm at that site initiates an abort of the wounded 

transaction, otherwise the message is ignored. If a wounded transaction is aborted, 

it is started again. The requesting transaction proceeds after the wounded transaction 

completes or aborts. 

WAIT-DIE ALGORITHM. The WAIT-DIE algorithm is a nonpreemptive algorithm 

because a requesting transaction never forces the transaction holding the requested data 

object to abort. The algorithm works as follows. Suppose requesting transaction T\ is 
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in conflict with a transaction X?. If T\ is older (i.e., has a smaller timestamp), then T\ 
waits, otherwise T\ dies (and starts afresh). 

WOUND-WAIT ALGORITHM. The WOUND-WAIT algorithm is a preemptive al¬ 

gorithm and works as follows. Suppose a requesting transaction T\ is in conflict with 

a transaction X?. If T\ is older, it wounds X2, otherwise it waits. 

Both these algorithms produce serializable logs and guarantee that no transaction 
waits forever to prevent deadlocks. 

COMPARISON BETWEEN THE ALGORITHMS 

Waiting Time. In the WAIT-DIE algorithm, an older transaction is made to wait for 

younger ones. Hence, the older a transaction becomes, the higher the number of younger 

transactions it waits for and the more it tends to slow down. 

In the WOUND-WAIT algorithm, an older transaction never waits for younger 

ones and wounds all the younger transactions that conflict with it. Hence, the older a 
transaction becomes, the less it tends to slow down. 

Number of Restarts. In the WAIT-DIE algorithm, the younger requester dies and 

is restarted. If this younger transaction is restarted with the same timestamp, it might 

again conflict with the older transaction (if still running) and again die. Thus, a younger 

transaction may die and restart several times before it completes. 

In the WOUND-WAIT algorithm, if the requester is younger, it waits rather than 
continuously dying and restarting. 

20.3.6 Non-Two-Phase Locking 

When the data objects of a database system are hierarchically organized (i.e., hierarchi¬ 

cal database systems [29]), a non-two-phase locking protocol can ensure serializability 

and freedom from deadlock [24], In non-two-phase locking, a transaction can request a 

lock on a data object even after releasing locks on some data objects. However, a data 
object cannot be locked more than once by the same transaction. 

In order to access a data object, a transaction must first lock it. If a transaction 

attempts to lock a data object that is already locked, the transaction is blocked. When 

a transaction unlocks a data object, one of the transactions waiting for it gets a lock on 

it and resumes. When a transaction Tt starts, it selects a data object (denoted by E(X^)) 

in the database tree for locking and can subsequently lock the data objects only in the 

subtree with root node E(Xi). Moreover, a transaction can lock a data object only if its 
immediate ancestor is also currently locked by it. 

Example 20.6. Figure 20.5 shows a hierarchical database system and Fig. 20.6 shows 
two non-two-phased transactions Tx and X2. Transaction X must lock the node B first 
so that it can lock all the required data objects (D, G, and I). Likewise, X2 must lock 
node A before accessing any other node. Before X2 can lock node H, it must first lock 
node C. 
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FIGURE 20.5 
A hierarchical database system. 

THE LOCKING PROTOCOL 

1. Ti can lock data object R ^ E(Ti) iff Ti is holding a lock on R’s ancestor. 

2. After unlocking a data object, X) cannot lock it again. 

3. Ti can only access those data objects for which it is holding a lock. 

Silberschatz and Kedem [24] show that the non-two-phase locking protocol guar¬ 

antees serializability and is deadlock free. Intuitively, serializability is achieved because 

data objects are locked in ascending order (i.e., from the root to leaves) in a tree that is 

acyclic. Deadlocks are avoided because the tree structure puts an order on data objects 

and the first rule of the protocol guarantees that data objects are requested (locked) in 

ascending order. 

ADVANTAGES. Non-two-phase locking has two advantages over two-phase locking. 

First, it is free from deadlocks and hence, no transaction is aborted to resolve deadlocks. 

Second, a lock can be released when it is no longer needed (rather than waiting for 

a moment when all the required locks are set). Hence, the availability of data objects 

to other transactions is higher. However, the database must be organized as a tree and 

T\ 

lock D 

D+100 -> D 

lock I 

1-50 -> I 

unlock D 

lock G 

G*2 -a G 

unlock I 

unlock G 

T2 

lock H 

H+200 -»• H 

unlock H 

lock D 

D-100 -> D 

unlock D 

FIGURE 20.6 
Non-two-phased transactions T\ and T2. 
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a super set of all the data objects to be accessed by a transaction must be known in 

advance. Singhal and Joergensen [14] have qualitatively compared the performance of 

2PL and N2PL algorithms. 

20.4 TIMESTAMP BASED ALGORITHMS 

In timestamp based concurrency control algorithms, every site maintains a logical clock 

that is incremented when a transaction is submitted at that site and updated whenever 

the site receives a message with a higher clock value (every message contains the 

current clock value of its sender site). Each transaction is assigned a unique timestamp 

and conflicting actions are executed in the order of the timestamp of their transactions. 

Recall that a timestamp is generated by appending the local clock time with the site 
identifier [17], 

Timestamps can be used in two ways. First, they can be used to determine the 

currency or outdatedness of a request with respect to the data object it is operating 

on. Second, they can be used to order events (read-write requests) with respect to one 

another. In timestamp based concurrency control algorithms, the serialization order of 

transactions is selected a priori (decided by their timestamps) and transactions are forced 
to follow this order. 

We next describe a series of timestamp based concurrency control algorithms 

[4], We assume that the TM attaches an appropriate timestamp to all read and write 

operations. All DMs process conflicting operations in timestamp order. The timestamp 

order execution of conflicting operations results in their serialization. 

20.4.1 Basic Timestamp Ordering Algorithm 

In the basic timestamp ordering algorithm (BTO), the scheduler at each DM keeps 

track of the largest timestamp of any read and write processed thus far for each data 

object. Let us denote these timestamps by R-ts(object) and W-ts(object), respectively. 

Let read(x, TS) and write(x, v, TS) denote a read and a write request with timestamp 

TS on a data object x. (In a write operation, v is the value to be assigned to x.) 

A read(x, TS) request is handled in the following manner: If TS < W-ts(x), then 

the read request is rejected and the corresponding transaction is aborted, otherwise it is 

executed and R-ts(x) is set to max{R-ts(x), TS}. A write(x, v, TS) request is handled 

in the following manner: If TS < R-ts(x) or TS < W-ts(x), then the write request is 
rejected, otherwise it is executed and W-ts(x) is set to TS. 

If a transaction is aborted, it is restarted with a new timestamp. This method 

of restart can result in a cyclic restart where a transaction can repeatedly restart and 

abort without ever completing. This algorithm has storage overhead for maintaining 

timestamps (note that two timestamps must be kept for every data object). 

20.4.2 Thomas Write Rule (TWR) 

The Thomas write rule (TWR) is suitable only for the execution of write actions [28], 

For a write(x, v, TS), if TS < W-ts(x), then TWR says that instead of rejecting the write! 
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simply ignore it. This is sufficient to enforce synchronization among writes because the 

effect of ignoring an obsolete write request is the same as executing all writes in their 

timestamp order. However, an additional mechanism is needed for synchronization 

between reads and writes because TWR takes care of only write-write synchronization. 

Note that TWR is an improvement over the BTO algorithm because it reduces the 

number of transaction aborts. 

20.4.3 Multiversion Timestamp Ordering Algorithm 

In the multiversion timestamp ordering (MTO) algorithm, a history of a set of R-ts’s and 

< W-ts, value > pairs (called versions) is kept for each data object at the respective 

DM’s. The R-ts’s of a data object keep track of the timestamps of all the executed 

read operations, and the versions keep track of the timestamp and the value of all 

the executed write operations. Read and write actions are executed in the following 

manner: 

• A read(x, TS) request is executed by reading the version of x with the largest 

timestamp less than TS and adding TS to the x’s set of R-ts’s. A read request is 

never rejected. 

Example 20.7. In Fig. 20.7(a), a readfx, 18) is executed by reading the version <12, 
V2> and the resulting history is shown in Fig. 20.7(b). 

• A write(x, v, TS) request is executed in the following way: If there exists a R-ts(x) 

in the interval from TS to the smallest W-ts(x) that is larger than TS, then the write 

is rejected, otherwise it is accepted and a new version of x is created with time- 

stamp TS. 

<W-ts, value > <7, Vl> <12, V2> 

R-ts 4 9 

(a) 
read(x, 18) 

21 time 

<W-ts, value > <7, Vl> <12, V2> 

R-ts 4 9 

(b) 

FIGURE 20.7 
An example of MTO. 

write(x, V, 15) 

18 21 time 
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Example 20.8. In Figure 20.7(b), write(x, V, 15) is rejected because a read with 
timestamp 18 has already been executed. However, a write(x, V, 22) is accepted and 
is executed by creating a version <22, V> in the history. 

It can be shown that the MTO algorithm is correct; i.e., every execution is equiv¬ 

alent to a serial execution in timestamp order. The MTO algorithm reduces the number 

of transaction aborts over the BTO and TWR algorithms. It does, however, require a 

huge amount of storage, as a set of R-ts’s and multiple versions of data objects are 

kept for data objects. It is not practical to keep all versions of data objects—techniques 
exist to delete old versions. 

20.4.4 Conservative Timestamp Ordering Algorithm 

The conservative timestamp ordering algorithm (CTO) altogether eliminates aborts and 

restarts of transactions by executing the requests in strict timestamp order at all DM’s. 

A scheduler processes a request when it is sure that there is no other request with a 
smaller (older) timestamp in the system. 

Each scheduler maintains two queues—a R-queue and a W-queue—per TM. These 

queues, respectively, hold read and write requests. A TM sends requests to schedulers 

in timestamp order and the communication medium is order preserving. A scheduler 

puts a new read or write request in the corresponding queue in timestamp order. This 
algorithm executes read and write actions in the following way: 

1. A read(x, TS) request is executed in the following way. If every W-queue is 

nonempty and the first write on each W-queue has a timestamp greater than TS, then 

the read is executed, otherwise the read(x, TS) request is buffered in the R-queue. 

2. A write(x, v, TS) request with timestamp TS is executed in the following manner. If 

all R-queues and all W-queues are nonempty and the first read on each R-queue has 

a timestamp greater than TS and the first write on each W-queue has a timestamp 

greater than TS. then the write is executed, otherwise the write(x, v, TS) request is 
buffered in the W-queue. 

3. When any read or write request is buffered or executed, buffered requests are tested 

to see if any of them can be executed. That is, if any of the requests in R-queue or 
W-queue satisfies condition 1 or 2. 

PROBLEMS WITH CTO. Conservative timestamp ordering technique has two major 
problems. 

• Termination is not guaranteed. This is because if some TM never sends a request 

to some scheduler, the scheduler will wait forever due to an empty queue and will 

never execute any request. This problem can be eliminated if all TMs communicate 
with all schedulers regularly. 

• The algorithm is overly conservative; That is, not only conflicting actions but all 
actions are executed in timestamp order. 

These problems have been addressed in [4] in detail. 
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20.5 OPTIMISTIC ALGORITHMS 

Optimistic concurrency control algorithms are based on the assumption that conflicts 

among transactions are rare. In optimistic algorithms, no synchronization is performed 

when a transaction is executed, but at the end of the transaction’s execution, a check 

is performed to determine if the transaction has conflicted with any other concurrently 

running transaction. In case of a conflict, the transaction is aborted, otherwise it is 

committed. When conflicts among transactions are rare, very few transactions need to 

be rolled back. Thus, transaction roll-backs can be effectively used as a concurrency 

control mechanism rather than locking. 

20.5.1 Kung-Robinson Algorithm 

Kung and Robinson were the first to propose an optimistic method for concurrency 

control [16]. In their technique, a transaction always executes (tentatively) concurrently 

with other transactions without any synchronization check, but before its writes are 

written in the database (and become accessible to other transactions), it is validated. In 

the validation phase, it is determined whether actions of the transaction have conflicted 

with those of any other transaction. If found in conflict, then the tentative writes of 

the transaction are discarded and the transaction is restarted. The basic algorithm is as 

follows: 

THE ALGORITHM. The execution of a transaction is divided into three phases: read 

phase, validation phase, and write phase. In the read phase, appropriate data objects 

are read, the intended computation of the transaction is done, and writes are made on 

a temporary storage. In the validation phase, it is checked if the writes made by the 

transaction violate the consistency of the database. If the check passes, then in the write 

phase, all the writes of the transaction are made to the database. A typical transaction 

execution in the optimistic approach is shown in Fig. 20.8. 

THE VALIDATION PHASE. In the validation phase of a transaction T, it is checked 

if a transaction exists that has its write phase after the beginning of the read phase of 

T, but before the validation phase of T, and which has its writeset intersected by the 

readset of T. If there exists such a transaction, a conflict occurs and T is restarted. 

Formally, each transaction is assigned a unique (monotonically increasing) sequence 

number after it passes the validation check and before its write phase starts. Let ts be 

transaction 
execution 
starts 

................i- 
read phase validation phase write phase 

FIGURE 20.8 
Transaction execution in the optimistic approach. 

time 
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the highest sequence number at the start of T and tf be the highest sequence number 

at the beginning of its validation phase. After the read phase of transaction T, the 

following algorithm is executed [16] (which consists of the validation phase and a 
possible write phase of T): 

Cvalid: = true; 

for t:= ts + 1 to tf do 

if (writesetft] n readset[T] f <J>) then 
valid: = false; 

if valid then {write phase; increment counter, 

assign T a sequence number} > 

A read-only transaction does not have a write phase, but it still has to be vali¬ 

dated using the above validation algorithm. The optimistic approach is suitable only in 

environments where conflicts are unlikely to occur, as in a query dominant system. 

Schlageter proposed an improvement to the Kung-Robinson method wherein a 

read transaction always proceeds without validation check and thus without the risk of 

restarts [23], In the Kung-Robinson method, read transactions are treated in the same 

way as update transactions, and thus, are subject to a validation check with the risk of 
restart [16]. 

20.6 CONCURRENCY CONTROL ALGORITHMS: DATA 
REPLICATION 

In this section, we discuss concurrency control algorithms for fully-replicated database 
systems. That is, data objects are replicated at all sites. 

20.6.1 Completely Centralized Algorithm 

In the completely centralized algorithm (CCA) [10], a site is designated as the “central” 

site, which executes all update transactions. When a transaction arrives at a site, it is 

forwarded to the central site for execution. (All transactions are assumed to be updates.) 

The central site either queues the requests and executes them sequentially, or executes 

them in parallel using some local concurrency control, ensuring that the net effect is as 

if they were executed serially. If it is acceptable for read-only transactions to access data 

which may not be current, it is possible for queries to be executed locally at other sites. 

After executing an update, the central site assigns it a sequence number and 

broadcasts the new values for the data objects to all other sites in a perform update 
message (which contains the sequence number). Sites apply new values in the order in 

which they were produced by the central site. That is, when a site receives a perform 

update message, it does not apply its updates to its local database copy until it has 
processed all perform update messages with lower sequence numbers. 

An advantage of this scheme is its simplicity. The assumption of atomic reads and 

writes eliminates the possibility of deadlock. Only local concurrency control is required 

at the central site. There are, however, several disadvantages to this scheme. First, it has 

poor reliability because if the central site crashes, no further updates can be processed. 
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This problem can be mitigated by including a protocol to elect a new central site if the 

current central site crashes [11]. Second, the central site can become a bottleneck. The 

capacity of the system is limited by the capacity of the central site. 

20.6.2 Centralized Locking Algorithm 

The centralized locking algorithm (CLA) strives to eliminate the bottleneck created in 

the CCA by allowing transactions to be processed in distributed manner (at their home 

sites). However, the lock management is centralized [10]. 

Before a site executes an update transaction, it requests locks from the central 

site via a lock request message for the data objects it accesses. If all the locks can 

be granted, the central site responds with a lock grant message, including a sequence 

number. Otherwise, the request is queued and a lock grant message is sent when the 

transaction can be granted all its locks. There is a queue for each data object and a 

request waits in only one queue at a time. To prevent deadlock, all transactions request 

locks in a predefined order. 
A site executes a transaction when it has received its lock grant message by reading 

data objects from its local database and computing update values. It then broadcasts a 

perform update message to all other sites. When the central site receives the perform 

update message, it releases all the locks set by the corresponding transaction. Sites 

process perform update messages in the order of their sequence numbers. 

OPTIMIZATIONS. Several optimizations are possible to minimize unnecessary waits, 

which can be caused by a more recent transaction (i.e., higher sequence number) having 

to wait for a perform update from an older transaction that does not conflict with it [10]. 

One possibility is for the central node to keep track, for each data object, of the last 

transaction that locked it. In this manner, the central node can inform a transaction of 

the last earlier transaction it must wait for. This wait for list can be appended to each 

lock grant message. 
Alternatively, the central site can prepare a don’t wait for list by keeping track 

of all transactions holding concurrent locks [10] (and therefore not conflicting). This 

data is more easily accessible at the central node and therefore requires less overhead 

to implement, although it does not eliminate all of the unnecessary delays. Still another 

method would require the central site to keep locks on a site-wise basis. This would 

permit concurrent execution of nonconflicting transactions, although it would require 

more messages. 
All of the algorithms presented so far in this section are not crash resistant. 

However, it is possible to make all of the algorithms crash-resilient, and the cost of 

doing so is roughly the same for all of the algorithms. 

20.6.3 INGRES’ Primary-Site Locking Algorithm 

Concurrency control in distributed INGRES is based on the primary site method [27]. 

In an effort to eliminate the bottleneck caused by the central site in the previously 

discussed algorithms, lock management here is distributed among all sites. For each 
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object of the database, irrespective of its number of copies, a single site is designated 

as its primary site. All updates for an object are first directed to its primary site. 

A transaction consists of a series of actions (RETRIEVES and SENDs) that might 

take place at different sites. For a query, a series of RETRIEVE and SEND requests 

are directed to either the local copy (with some possible loss of consistency) or to the 

primary copy. For an update, the data access requests must be directed to the primary 

copy of each data object. This activity is coordinated by a master INGRES process at 

the site, where the transaction originated. 

Local RETRIEVES and SENDs are performed by slave processes created by the 

master. A local concurrency controller runs at each site, which views a transaction as 

consisting of a collection of local actions, received one at a time from the master. The 

lock tables created and used by each concurrency controller are local to its site. 

When an update is processed it generates a deferred update list, which is sent to 

the primary site for the data objects that are to be updated. Each site at which a copy 

of a data object to be updated resides, receives a deferred update list from the slave 

process that prepared it. At the local site, the update is performed (either by the slave 

process or by a special copy process created for that purpose) when the transaction is 

committed. INGRES uses a two-phase commit protocol. 

A deadlock is possible in this system. Local deadlocks are handled by the local 

concurrency control mechanism. If, however, more than one machine is involved in 

a deadlock, the master for the deadlocked transaction is notified and it handles the 

deadlock by rolling back the entire transaction. In addition, INGRES includes facilities 

to maintain consistency in the face of site crashes and communication failures, including 
network partitions. 

20.6.4 Two-Phase Locking Algorithm 

Recall that two-phase locking has two phases—a growing phase in which a transaction 

acquires locks and a shrinking phase during which a transaction releases locks. Two- 

phase locking allows for greater concurrency than static locking, which locks all data 
objects that will ever be needed in the beginning. 

Two-phase locking can be applied for concurrency control in replicated database 

systems by locking (in exclusive mode) all copies of a data object to be modified, and 

by locking (in shared mode) any one copy of a data object to be read [5], 

Since two-phase locking is prone to deadlocks, some mechanism must be used to 

detect and resolve them (this is not a simple task in a distributed environment [26]). 

Since the algorithm requires that data objects in the writeset of an update be locked at 

every site, it requires a large number of messages and causes an additional delay for 

each write lock since it must wait for a reply from each site. There is also a potential 
for cascaded roll-backs. 

Site failure is also a problem. If a transaction has a read lock on a data object dt at 

site Sj (recall that a read lock needs to be placed only on one site) and site S3 crashes, 

another transaction can put a write lock on d* since all available sites do not have a lock 

on d{. Consequently, a transaction has a read lock and another transaction has a write 

lock on di, leading to inconsistency. However, Bernstein and Goodman [5] proposed 
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an algorithm that is effective in the presence of site failures and crash recovery. The 

basic idea behind this algorithm is that when a transaction reaches the point at which 

it has all of its locks, it checks to make sure that all the data objects it read are still 

available and locked. If a site at which it holds a read lock has gone down, then the 

data object is considered unavailable and the transaction aborts. If the data object is 

available, it unlocks the data object. 

20.7 SUMMARY 

In this chapter, three types of concurrency control algorithms were discussed, viz., 

locking, timestamping, and optimistic. In static locking, a transaction acquires locks 

on all the needed data objects before it starts execution and unlocks them only after 

it has completely executed. Thus, it requires a transaction to predeclare all the data 

objects needed for execution. It may limit the performance of the underlying database 

system because any two transactions that have a conflict must execute serially. Two- 

phase locking handles this problem by allowing transactions to acquire data objects on 

demand. However, a transaction is not allowed to request a lock on any data object 

after it has unlocked a data object—a transaction must have acquired locks on all the 

needed data objects before unlocking a data object. Two-phase locking has two phases. 

First, a growing phase, during which a transaction requests locks (without releasing 

any lock). Second, a shrinking phase, that starts with the first unlock action, during 

which a transaction releases locks (without requesting any more locks). The price of 

higher concurrency in 2PL are the problems of deadlocks and cascaded roll-backs. The 

problem of deadlock is introduced by the growing phase and the problem of cascaded 

roll-backs is created by the shrinking phase. 
In hierarchical database systems, a non-two-phase locking protocol can ensure 

serializability and freedom from deadlock. In non-two-phase locking, a transaction need 

not have two phases. When a transaction starts, it selects a data object (say d) in the 

database tree for locking and can subsequently lock any data object in the subtree with 

root node d. A transaction can lock a data object only if its direct ancestor is also 

currently locked by it. 
In timestamp based concurrency control algorithms, a transaction is assigned a 

unique timestamp and conflicting transaction actions are executed in the order of the 

timestamp of their transactions. We discussed four timestamp based concurrency control 

algorithms. In the basic timestamp ordering algorithm, a read(x, TS) request is accepted 

for execution only if no transaction with timestamp greater than TS has written x; A 

write(x, v, TS) request is accepted only if no transaction with timestamp greater than TS 

has read or written x. The Thomas write rule (TWR) is suitable only for the execution of 

write actions and states that execute a write(x, v, TS) request by simply ignoring it if a 

transaction with timestamp greater than TS has written x. The multiversion timestamp 

ordering algorithm reduces the rejection of requests by keeping multiple versions of 

data objects. The conservative timestamp ordering algorithm altogether eliminates the 

rejection of requests by executing the requests in strict timestamp order. 
The Kung-Robinson optimistic concurrency control algorithm was discussed, 

wherein the execution of a transaction is divided into three phases: read phase, val- 
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idation phase, and write phase. In the read phase, appropriate data objects are read, the 

intended computation of the transaction is done, and writes are made on a temporary 

storage. (The read phase is executed without any synchronization against concurrent 

transactions.) In the validation phase, a check is performed to see if the writes made 

by the transaction violate the consistency of the database. If the check passes, then in 

the write phase, all the writes of the transaction are made to the database. 

20.8 FURTHER READING 

Two survey articles by Bernstein and Goodman [3] and Kohler [15] provide an ex¬ 

cellent overview of concurrency control algorithms for database systems. A book by 

Bernstein et al. [6] contains a comphrensive discussion on locking and timestamp based 

concurrency control algorithms for database systems. Treatment of concurrency control 

problem in distributed database systems is given by Ozsu and Valduriez [21]. 

Badal [2] discusses the degree of concurrency provided by locking based algo¬ 

rithms. Two papers by Yannakakis [30, 31] discuss the theory of deadlock-free locking 

policies. Silberschatz and Kedem [25] have generalized non-two-phase locking algo¬ 

rithm for database systems, where data objects are organized as a directed acyclic graph. 

Leu and Bhargava [19] extend timestamping algorithms to multidimensional timestamp 

algorithms where timestamp is a vector of several elements. Farrag and Ozsu [9] pro¬ 

posed a generalized concurrency control algorithm such that locking and timestamping 
algorithms are two special cases of it. 

Gifford [13] proposed a weighted voting algorithm for concurrency control in 

replicated database systems. Recently, this idea has been taken to quorum, votes, and 

logical structures to increase efficiency as well as fault tolerance [1, 7, 12]. 

PROBLEMS 

20.1. What is the difference between concurrency control and mutual exclusion? 

20.2. Show that only being “well-formed” does not guarantee serializability. 

20.3. Two-phase locking increases concurrency in transaction execution relative to static 
locking. However, what problems are associated with two-phase locking? 

20.4. Show that in 2PL, a serialization order of a set of transactions is the same as the 
order of their lock-points in a log. 

20.5. Show by an illustration that two-phased locking can have cascaded aborts. Prove 
that if deadlock resolution is the only reason to abort a two-phased transaction, there 
will not be any cascaded aborts. 

20.6. Why are timestamp-based concurrency control algorithms free from deadlock? List 
basic, multiversion, and conservative timestamp ordering algorithms in increasing 
order of transaction aborts. 

20.7. Consider two concurrent transactions Tx and T2, which write the same data object X 
and perform concurrency control using two-phase locking. Show that if 7j wrote X 
before T2 wrote it, then the lock-point of Tj must precede the lock-point of T2. (The 
lock-point of a transaction is the stage at which it has acquired all needed locks.) 

20.8. Show that N2PL algorithm is deadlock free. 
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20.9. Show how the use of timestamps in locking algorithms (i.e., WAIT-DIE and WOUND- 
WAIT) prevent deadlocks. 

20.10. Does the N2PL algorithm have the problem of cascaded aborts? Provide an example. 

20.11. Discuss how static locking can be implemented in DDBS. Is it deadlock free? If 
message delays are high (as compared to the computation time of an action), show 
that static locking can outperform 2PL in DDBS. 

20.12. Give an example of “cyclic restart” in the BTO algorithm. 

20.13. Discuss a scheme to discard obsolete data versions in the MTO algorithm. 
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