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Abstract
Crop protection aims to develop an agriculture system that is resilient to common agricultural threats like diseases, pests, 
and weeds that result in sub-optimal growth of crops in terms of quality and quantity. Therefore, timely disease detection and 
identification is a crucial concern for farmers across the globe. At present, crop diseases are identified by farmers manually, 
which is time-consuming, subjective, and also error-prone due to human involvement. The early disease identification and 
detection would help the farmers reduce the use of pesticides, minimizing the environmental footprint while increasing the 
profits by reducing the losses. To precisely identify the crop diseases at the initial stages, the machine learning (ML) algo-
rithms or, in more precise, deep learning (DL) algorithms are very helpful. The research aims to develop a deep convolutional 
neural network (DCNN) model to identify and classify grape diseases based on the RGB leaf images. The proposed model 
uses an image dataset of grape crops from the Plant Village dataset publicly available for researchers and engineers. The 
specialty of the developed model is that the CNN classification model is built from scratch that provides accuracy close to or 
even more significant than the accuracy obtained for some pre-trained models using transfer learning. The model achieved 
an accuracy of 99.34% and equal values for precision, recall, and an F1 score of 0.9934. These results indicate models’ 
capability to accurately identify and classify grapes’ common diseases based on the RGB leaf images. The trained model 
is converted and saved in TensorFlow tflite format, and it can be readily deployed to mobile devices to provide real-time 
disease identification in precision agriculture (PA) application.
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Introduction

Precision agriculture aims to provide a sustainable solu-
tion to the farmers who heavily rely on agriculture for their 
only livelihood. This sustainability is brought about by 

strategically managing the agricultural resources to bring 
down the agricultural losses while enhancing profit by 
improved quantity and quality of yields. One of the criti-
cal factors that can bring sustainability in the agricultural 
domain is adopting suitable crop management schemes.

Crop management strategies, particularly crop protection 
against diseases, play a vital role in the PA system’s suc-
cessful implementation. Crop protection against diseases 
involves identifying and detecting crop diseases when they 
are first sited on the crops. Thus, early disease detection 
can help farmers control the spread of the disease, thereby 
avoiding crop loss.

One of the reasons why farming in countries like India 
is considered risky is that most of the farmers’ losses are 
natural calamities like floods and drought (due to poor 
monsoons). Even if everything goes in favour of farmer 
(sufficient water for irrigation), normally invisible disease-
causing organisms such as fungi, nematodes, bacteria, and 
viruses might attack the crops (either in the early stage or 
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at the harvesting stage), resulting in the loss of the total 
yield or its majority. Commonly, infestation by pathogenic 
microbes visually appears on the crop or plant. Ensuring 
precise crop protection from diseases requires a precise dis-
ease detection system. The state-of-the-art technologies are 
precise enough to detect the diseases at the inception, reduc-
ing the requirements of many pesticides or herbicides at later 
stages. The availability of high-resolution field images of 
crops (leaves and fruits) to the researchers has led to the 
successful implementations using the Convolutional Neural 
Networks (CNNs) (Bhatia et al. 2020; Trivedi et al. 2020), 
where disease detection is possible over a click on a mobile 
phone. The implementations can be obtained by developing 
the DL models starting from scratch or using the transfer 
learning approach where a pre-trained model is trained on 
the new dataset to avoid significant training times and high 
computational resource requirements.

Deep learning models find versatile usage due to their 
ability to handle vast amounts of data, especially when 
working with image data corresponding to the crops. Com-
puter-vision is another technology that has gained momen-
tum in real-time crop disease detection and diagnosis utiliz-
ing smartphones and computers (Thangaraj et al. 2021; Tian 
et al. 2020).

Crop diseases have always been the enemy of farmers 
ever since the inception of farming practices. Globally, 
farmers lose nearly 40% of their crops to pests and diseases. 
Researchers involved in Precision Agriculture systems are 
continuously striving to develop state-of-the-art systems 
capable of improving protection against crop diseases while 
reducing the environmental footprint. Crops mainly develop 
diseases due to either biotic or abiotic factors (Ahmad et al. 
2019). Abiotic factors consist of living organisms (patho-
gens) of fungi, bacteria, viruses, and nematodes. While the 
abiotic factors essentially consist of non-living things such 
as temperature, humidity, wind drought, nutrient imbalance, 
under irrigation, over-irrigation.

In conventional agriculture, crop disease detection and 
identification were very challenging for the farmers as they 
relied on the manual methods of visually inspecting every 
crop to identify the diseases. This manual disease detec-
tion method was time-consuming, where the farms are 
widespread. It was also prone to gross errors due to human 
intervention. To avoid losses due to crop diseases, farm-
ers started using pesticides and fertilizers in excess quanti-
ties. This excessive usage of pesticides soon started to pose 
another problem for the farmers, a problem where the soil 
started to degrade and the environment (Rahman and Zhang 
2018), which adversely impacted the yields.

Researchers could use the variable rate application (VRA) 
on the farm (Kempenaar et al. 2017). With VRA’s intro-
duction, using agricultural tools and machines optimized 
the agricultural inputs (water, fertilizers, pesticides, and 

herbicides) while automation reduced the farmers’ burden. 
Soon, the contributions of cutting-edge technologies such 
as IoT (Dasig 2020), big data analytics (Shastry and Sanjay 
2020), artificial intelligence (AI) (Patrício and Rieder 2018), 
remote sensing and satellite imagery (Yang 2020), and UAV 
(Tsouros et al. 2019) took agriculture altogether to a new 
level. Climate change (Hatfield et al. 2020) is yet another 
serious issue that has a significant impact on the sustain-
ability of agriculture. The biotic factors affecting agricul-
tural productions are controllable, but abiotic factors heav-
ily depend on the climate and are uncontrollable directly. 
As the global population is rising, the agricultural product 
demand will always rise. Thus, the agriculture domain is 
always happening, where the bulk of the research takes 
place, and researchers contribute immensely. Any techno-
logical advancement should make farmers’ lives easy, which 
is otherwise a pity in most countries.

Materials and methods

This section highlights the materials and methods used to 
develop a CNN model that can precisely identify three dis-
ease classes of grape and one healthy. The first sub-section 
provides insights into the dataset, and the second subsec-
tion is concerned with the exploratory data analysis (EDA), 
followed by the third subsection dealing with image pre-
processing and data augmentation. The pre-trained models 
used in research utilizing the transfer learning approach were 
adopted (Keras: The Python Deep Learning API, 2021).

Dataset description

The dataset used to develop the CNN model for grapevine 
leaf-based disease detection and classification is derived 
from the well-known PlantVillage (Mohanty et al. 2016) 
dataset of 54,303 images divided into 38 leaf images com-
prising healthy and diseased leaves. This dataset is viral 
among beginners in machine learning and researchers work-
ing in the agriculture domain. It has pre-processed dimen-
sions 256 × 256 × 3, where 256 corresponds to height and 
width, and 3 indicates the number of channels (RGB). These 
images are pre-processed and are ready to be inputted into 
the machine learning algorithm. Only the images of grape 
leaves were selected, which belonged to four categories: 
black rot, healthy, black measles, and leaf blight. These three 
categories are the major threats to grape cultivation and con-
tribute to most losses due to diseases. Image augmentation 
was adopted to increase the number of images belonging to 
each dataset class.

It is clear from (Table 1) that the dataset is highly imbal-
anced, consisting of images belonging to multiclass with a 
variable number of images corresponding to each class. The 
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dataset has a majority class as Esca (34.0%, 1383 images), 
followed by Black Rot (29.0%, 1180 images), Leaf Blight 
(26.5%, 1076), and Healthy (10.4%, 423 images). The train-
test split is also depicted in (Table 1) with four image classes 
(70% train and 30% test).

Exploratory data analysis

Exploratory data analysis (EDA) is a widely used technique 
that analyses the data and simplifies the model-building 
process. When dealing with images, extracting meaningful 
features that define the image classes when solving classifi-
cation problems is necessary. Thus, it is always required to 
understand the data’s crucial features to help build the model 
that best suits the data’s features. The dataset consists of pre-
processed images having dimensions of 256 × 256 with three 
RGB channels. The colour images form an essential feature 
that helps build feature maps during convolution operation, 
providing accurate class activation.

The proposed model classifies healthy leaves against 
diseased ones. The green channel is more prominent in the 
images corresponding to the healthy leaves than the diseased 
ones. The image class belonging to healthy has a higher 
distribution of green channel values than the other classes.

Image pre‑processing and augmentation

Developing a highly generalizable image classification 
model involving CNN’s requires an enormous image 
dataset and suitable image pre-processing techniques con-
sidering the deployment or production environment and 
real-world image scenarios where the trained model has 
to provide accurate inferences. Some of the pre-processing 
steps typically used in practice are image resizing, rescal-
ing, and colour corrections. Image augmentation artifi-
cially increases the number of images in the dataset using 
some functions on the original dataset images. The Keras 
library helped increase the number of training images in 
the dataset using image augmentation. Apart from expand-
ing the training set images, data augmentation also helps 
build a robust model that avoids under-fitting the model 
due to insufficient images and aids the model to general-
ize well on unseen data. Multiple images are generated by 
image augmentation on images. Some techniques include 
width and height shift, shear, brightness, random zoom, 
horizontal and vertical flips, and random rotations. After 
pre-processing and augmentation, the images are inputted 
to the CNN model as indicated in the architecture (Fig. 1).

Table 1   Grape image dataset 
with training and testing split of 
70% and 30%, respectively

Sl. no. Class Training set
(70%)

Testing set
(30%)

Total images per class/
(%)

1 Black Rot 826 354 1180 (29.0%)
2 ESCA (Black Measles) 968 415 1383 (34.0%)
3 Healthy 296 127 423 (10.4%)
4 Leaf Blight 753 323 1076 (26.5%)

Total images 2843 1219 4062

Fig. 1   Architecture of the proposed CNN model indicating various layers involved
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Architecture of the proposed model

The architecture of the proposed CNN model is as shown in 
(Fig. 1). The architecture resembles a standard CNN archi-
tecture in which the Global Average Pooling (GAP) layer 
replaces the flattening layer. The activation function used 
throughout is rectified linear unit (ReLU), which adds a non-
linearity as the images are highly non-linear.

Apart from activation function at each layer, the architec-
ture consists of convolutional layers (for generating feature 
maps), max-pooling layers (for reducing the image dimen-
sion, also known as down sampling), global average pooling 
layer (for dimensionality reduction), and dense layers (for 
classifying image into a label).

The convolutional layer forms the core functionality of 
any CNN model. The convolutional layer is responsible for 
building feature maps using the convolutional filters. The 
filters also referred to as kernels, help extract some abstract 
information from the images. The first convolutional layer 
filters extract features such as edges, colours, and lines. As 
the CNN’s depth increases, the convolutional layer filters 
can extract very complex features from the images neces-
sary in classifying them into respective classes. The convo-
lutional filter size is usually selected as odd size 3 × 3, 5 × 5, 
7 × 7, or 11 × 11. The choice of the filter depends on the 
input image dimensions. The depth of the filter is selected 
to be the same as that of the image depth (Channels). As the 
filter size increases, the classification accuracy will improve 
at the cost of higher computational time. The implementa-
tion here uses eight convolutional layers for extracting low, 
medium, and high-level features corresponding to the four 
image classes.

Normally, the performance of any deep learning model 
increases with the increase in the number of images in the 
dataset and improves upon the classification and generaliza-
tion capability. With the increase in the number of images, 
the training time and computational power requirement 
shoot up. The convolutional layers responsible for generat-
ing feature maps tend to increase in number with an increas-
ing number of filters, resulting in higher training time and 
becoming computationally intensive. To reduce the number 
of computations and training time, the dimensions of images 
are down sampled using pooling layers. A max-pooling layer 
always follows a convolutional layer that acts like a down 
sampler where the input image dimensions are reduced to 
meet these requirements. For example, if the image dimen-
sion is 4 × 4 after convolution, the max-pooling layer output 
will result in an image dimension of 2 × 2 that drastically 
reduces the model training time. Other available pooling 
options include min-pooling and average pooling. The pro-
posed system uses four max-pooling layers to reduce the 
image dimensions while retaining the critical features neces-
sary for accurate classification.

Dropout is essentially a technique used to provide regu-
larization when building deep learning models. The dropout 
layer in the deep learning model serves two critical pur-
poses. Firstly, it avoids overfitting during model training by 
randomly dropping out a few neurons during the forward 
pass, and weights are not updated during the backward pass. 
Secondly, it enhances the generalization capability of the 
model. The proposed model uses four dropout layers with a 
dropout value set to 0.2 (20%) throughout the CNN model.

The global average pooling (GAP) layer is usually a 
substitute for the flatten and FC layer in the CNN model. 
The flatten layer transforms the input tensor of any shape 
to a 1-D vector, while the GAP layer is capable of reducing 
the spatial dimension to 1. Since the proposed model uses 
GAP layer instead of flatten layer, the model has high pos-
sibility of avoiding overfitting and reducing spatial image 
dimensions that speed up the training and inference pro-
cesses. In the absence of GAP layer, a flatten layer would 
have resulted in 8 × 8 × 256 = 16,384 vectors which means 
that the first layer in FC layer would require 16,384 neurons 
to process the input. This would have not only drastically 
increased the parameters, but also would have resulted in 
increased training time of the model. Thus, with GAP layer, 
the resulted vector is 1 × 1 × 256 = 256, which shows a sig-
nificant improvement in training and processing speeds.

A fully connected (FC) layer, also known as a dense layer, 
usually follows a flatten layer where each neuron in the FC 
layer connects to every neuron in the previous layer. The 
FC layer’s output goes to the output layer with the SoftMax 
activation function that produces a multi-class probability 
distribution corresponding to the number of classes. The 
class that gets the highest probability will have the label cor-
responding to that class. The output layer uses four neurons 
corresponding to the grape leaves’ four classes.

Experimental environment and setup

The process of model building, training, and evaluation uses 
the open-source framework Keras, which runs on Tensor-
Flow 2.4.0. The entire process of developing the CNN model 
makes use of Google Colaboratory (Bisong 2019), Google’s 
free cloud service that provides free GPUs to the research-
ers and developers for developing ML or DL based models. 
Apart from providing free GPU, Google Colaboratory comes 
with pre-installed popular libraries such as TensorFlow, 
PyTorch, Keras, and OpenCV.

Model performance and evaluation metrics

After successful model training and validation process, 
suitable metrics were identified to evaluate trained model’s 
performance. Since the dataset used for building the model 
is highly imbalanced, merely having high accuracy is not 
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enough to evaluate the developed model’s performance. 
Apart from accuracy, important metrics considered for 
model evaluation are Precision, Recall, F1-score, Receiver 
Operating Characteristics (ROC) curve, and Area under 
the Curve (AUC). Before diving more in-depth to under-
stand these metrics, a prerequisite is to know the confu-
sion matrix. Here, as the model deals with the imbalanced 
multi-classes, knowledge of the confusion matrix will 
simplify understanding other dependent metrics. If all the 
entries occupy only the diagonal elements and non-diag-
onal elements have zero entries in a confusion matrix, the 
model has an accuracy of 100%. The off-diagonal (image 
numbers) indicate the classifier’s incapability in classify-
ing images correctly.

1)	 Accuracy: overall model accuracy for a multi-class 
image classification problem is defined as the number 
of correctly classified images in the dataset to the total 
number of images, given by Eq. (1)

In terms of True Positive (TP), True Negative (TN), 
False Positive (FP) and False Negative (FN), the accu-
racy for n classes can be defined in Eq. (2):

2)	 Precision: precision for multi-class imbalanced data-
set is defined as the ratio of sum of TP (all classes) to 
the sum of TP and FP (all classes) as is represented in 
Eq. (3)

3)	 Recall: recall for the multi-class imbalanced dataset is 
defined as the ratio of the sum of TP (all classes) to the 
sum of TP and FN (all classes) and denoted as in Eq. (4)

4)	 F1 score: F1 score for the multi-class imbalanced data-
set is defined as twice the ratio of Precision and Recall’s 
product to the sum of Precision and Recall represented 
as in Eq. (5):

Or by Eq. (6):
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(5)F1 Score =
2 × Precision × Recall
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3)	 Receiver Operating Characteristics (ROC) curve: ROC 
curve is an evaluation metric that evaluates a binary 
classifier’s performance. For multi-class classification, 
the ROC curve uses the One-verses-All (OvA) scheme 
that involves a plot of True Positive Rate (TPR) against 
False Positive Rate (FPR) at various threshold levels.

6)	 Area Under the Curve (AUC) The AUC conveys a clas-
sifier’s ability to distinguish between classes and serves 
as a summary of the ROC curve.

Results

After successful training of the model, the results were eval-
uated to validate the performance of the model. The results 
obtained are represented in terms of classification results 
(training and testing performance visualization, confusion 
matrix, top predictions, worst predictions, ROC and AUC 
plots) and CNN visualization.

Training and testing performance visualization

During training, Keras Callback API was used to provide 
three functionalities to ease the model training process that 
includes early stopping (in case if validation loss does not 
improve), Check pointer (saving model to drive), and reduce 
LR (learning Rate) (reducing learning rate if no improve-
ments are observed). The model learning was configured 
with the optimizer as Adam, with a loss function of cat-
egorical cross-entropy, training metric as accuracy, and the 
learning rate set to a value of 0.001. The model training was 
set for 300 epochs, but the training stopped after 154 epochs 
due to early stopping.

Model training and validation accuracy plots are rep-
resented in (Fig.  2a), while model losses are shown in 
(Fig. 2b), respectively. During model training, the model 
reached the highest validation accuracy of 99.34% at the 
end of the 154th epoch. Similarly, the validation loss reaches 
around 0.0914 after reaching 154 epochs. The plots indicate 
no sign of overfitting as the validation accuracy closely fol-
lows the training accuracy throughout.

Confusion matrix

The confusion matrix shown in (Fig. 3) helps in visual-
izing the overall model’s performance. The entries in the 
confusion matrix might belong to any one of the categories 
(TP, TN, FP, and FN). The diagonal entries of the matrix 

(6)F1 Score =
2
∑n
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2TP
i
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i
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correspond to the TP’s (correctly predicted) for each class. 
For example, the TP for class 0 is 352, for class 1, it is 412, 
while for class 2, the TP value is 322, and finally, for class 
3, it has a value of 125. The observation reveals that the 
model’s best performance in terms of accuracy resulted for 
class 2 (leaf blight), where out of the total 323 total test 
images, 322 were correctly classified, giving an accuracy 
of 99.69%. Also, for class 3 (healthy), the model’s accu-
racy was lowest at 98.42%, while class 0 (black rot) and 
class 1 (black measles) obtained an accuracy of 99.43% 
and 99.27%, respectively. The overall validation accuracy 
for the combined classes was 99.34%.

Top predictions

The models’ best five predictions are shown in (Fig. 4), 
which illustrates the model’s predicted label and the true 
labels. The values in brackets indicate the class probability 
obtained using the SoftMax function at the output layer of 
the CNN model.

Worst predictions (false classification)

The confusion matrix of (Fig. 3) provides the per-class 
accuracy attained by the model in classifying images and 
indicates its misclassification where the model failed to 
identify and differentiate between the classes. The off-
diagonal entries indicate the model’s inability to classify 
the images into correct classes (FN and FP). The off-diag-
onal column entries correspond to FPs, while the off-diag-
onal row entries indicate the FNs. For example, for class 
0 (column 1), the column entries 3 and 1 indicate that the 
3 images belonging to class 1 and 1 image belonging to 
class 2 were falsely predicted to be belonging to class 0. 
Hence, the total FPs for class 0 is (3 + 1 + 0 = 4). Similarly, 
for class 1 (column 2), entry 2 is an FP which shows that 
2 images belonging to class 0 were mis-predicted to be of 
class 1. Hence, total FPs for class 1 are (2 + 0 + 0 = 2)., for 
class 2 (column 3), entry 2 is an FP that indicates that 2 
images belonging to class 2 were mis-predicted to be of 
class 3. Hence, the total FPs for class 2 is (0 + 0 + 2 = 2), 
and for class 3 (column 4), there are no entries, indicating 
no FPs for class 3. To obtain FNs for class 0, consider first 
row entries. Here entry 2 means that 2 images belong-
ing to class 0 were predicted to be belonging to class 1. 

Fig. 2   Model training and validation plots trained for 154 epochs with Keras Callback API with a learning rate of 0.001 shows the increase in 
accuracy and decrease in loss per epoch a accuracy plot b loss plot

Fig. 3   A 4 × 4 Confusion Matrix indicative of model performance in 
classifying images into four classes
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Therefore, class 0 has 2 FNs. Likewise, for classes 1, 2, 
and 3, the FNs are 3, 1, and 2, respectively. As a result, 
the total FNs for class 0 is (2 + 0 + 0 = 2), for class 1 is 
(3 + 0 + 0 = 3), for class 2 is (1 + 0 + 0 = 1), and for class 3, 
it is (0 + 0 + 2 = 2). The sum of all the off-diagonal entries 
is equal to 8 (2 + 3 + 1 + 2). Hence, a total of eight pre-
dictions went wrong, as indicated in (Fig. 5). The model 
wrongly predicted two black rot images to be black mea-
sles with a probability of 0.58 and 0.97 (FPs), respectively. 
Similarly, three black measles images were misclassified 
and predicted as black rot with probabilities of 0.87, 0.76, 
and 1.00 (FPs), respectively. One image of leaf blight was 
wrongly predicted as black rot with a probability of 1.00 
(FP), and two images of the healthy class were predicted 
to be leaf blight with probabilities as 0.78 and 0.85 (FPs).

Receiver Operating Characteristics (ROC) and Area 
Under the Curve (AUC)

The last performance metric evaluated for the model is 
ROC curves and AUC as shown in (Fig. 6). The ROC curve 
resemble the ideal ROC curve for the combined classes. The 
AUC score of 1 indicates the best possible results that an 
image classifier model can obtain.

The developed CNN model was not only trained and 
evaluated as an individual custom model. Transfer learning 
with pre-trained models yielded new models with base layers 
intact, and the output layer was replaced with a dense layer 
having four neurons.

Since accuracy alone cannot justify the model’s perfor-
mance when dealing with imbalanced classes, the evalua-
tion includes precision, recall, and F1 score. The precision, 

Fig. 4   Top five predictions by the proposed model with class probabilities indicated in brackets

Fig. 5   Worst predictions by the model in terms of False Positives (FP) and False Negatives (FN)
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recall, and F1 score for the model were the same, with a 
value of 0.9934.

Two important concepts in developing disease detection 
CNN model were explored. In the first concept, the CNN 
model was built from scratch, which would be beneficial if 
the model has to be trained on custom datasets, where pre-
trained models are not available. On the other hand, model 
building from scratch would require more time training and 
also computational power, but once trained, can provide 
good performance in terms of accuracy and generalization. 
As indicated in the (Table 2), a custom CNN model trained 
from scratch provides results comparable to the results 
obtained from other state of the art models trained using 

transfer learning. Some of the existing pre-trained models 
are InceptionV3, ResNet50, VGG16, VGG19 and Xcep-
tion. All these models are pre-trained on ImageNet and 
were trained for 50 epochs for evaluation and comparison. 
Table 2 highlights a class-wise comparison of all the pre-
trained models with custom CNN. The comparison is based 
on four performance metrics accuracy, precision, recall and 
F1 score. The best results were obtained for class 2 (Leaf 
Blight) both for transfer learning and custom CNN models. 
The accuracy obtained for pre-trained models was 100%, 
while the custom model yielded an accuracy of 99.69%, 
very close to the accuracy obtained from transfer learn-
ing (100%). In the evaluation of transfer learning models, 
for class 0 (Black Rot), the highest value of accuracy was 
obtained by VGG19 (0.9972), while the lowest value was 
obtained by ResNet50 (0.9859). The custom CNN model 
yielded an accuracy value of 0.9943, close to the highest 
value of 0.9972. Likewise, the metrics values of precision, 
recall, and F1 score for other classes are indicated in detail 
using (Table 2).

It can be observed that the transfer learning models are 
capable of performing better when compared to the cus-
tom CNN model, but a stringent requirement for using a 
pre-trained model is that the image dataset used to train the 
model should exactly match with the dataset on which the 
pre-trained model is trained. If the datasets do not match, 
it might result in negative transfer degrading the model’s 
model performance. Another issue that might arise while 
using the transfer learning model is that the model may 
overfit the limited dataset to which the model is trained. 
These limitations of transfer learning might be avoided using 

Fig. 6   Combined ROC curve plots for the four classes of grape RGB 
leaves under different threshold values

Table 2   Class-wise metric evaluation for pretrained and custom CNN models

Classes Performance metrics Pretrained models (transfer learning) Proposed 
CNN model

Support

InceptionV3 ResNet50 VGG16 VGG19 Xception

Black Rot
(0)

Accuracy 0.9943 0.9859 0.9661 0.9972 0.9943 0.9943 354
Precision 1.0000 1.0000 0.9913 0.9916 0.9972 0.9888
Recall 0.9943 0.9859 0.9661 0.9972 0.9943 0.9943
F1 score 0.9972 0.9929 0.9785 0.9944 0.9957 0.9915

ESCA (Black Measles)
(1)

Accuracy 1.0000 1.0000 0.9904 0.9928 0.9976 0.9927 415
Precision 0.9952 0.9904 0.9880 0.9976 0.9952 0.9952
Recall 1.0000 1.0000 0.9904 0.9928 0.9976 0.9928
F1 score 0.9976 0.9952 0.9892 0.9952 0.9964 0.9940

Leaf Blight
(2)

Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000 0.9969 323
Precision 1.0000 1.0000 0.9844 1.0000 1.0000 0.9938
Recall 1.0000 1.0000 0.9921 1.0000 1.0000 0.9969
F1 score 1.0000 1.0000 0.9893 1.0000 1.0000 0.9954

Healthy
(3)

Accuracy 0.9984 0.9959 0.9921 1.0000 1.0000 0.9842 127
Precision 1.0000 0.9922 0.9844 1.0000 1.0000 1.0000
Recall 1.0000 1.0000 0.9921 1.0000 1.0000 0.9842
F1 score 1.0000 0.9961 0.9893 1.0000 1.0000 0.9921
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custom training of the CNN model from scratch. The overall 
performance of the custom CNN model with the pre-trained 
models is as indicated in Table 3. The macro averaged val-
ues of Precision, Recall, and F1 score is indicated in which 
all classes (0 through 3) are considered to contribute to the 
final average of the metric equally. In the weighted averaged 
scenario, the contribution of each class to the average is 
weighted by each class’s size. It is evident from the com-
parison that the overall performance of the custom model is 
close to that obtained from transfer learning while improving 
the generalizable capability of the model without overfitting 
the data.

CNN filter visualizations

No doubt, machine learning (ML) and deep learning (DL) 
models can simplify the complicated problems involving 
object detection, localization, identification, and classifi-
cation. However, can we understand how the models can 
do this? It is not easy to understand how a particular func-
tion gets modelled while training the Deep Neural Net-
work (DNN) model. ML and DL model’s complex nature 
has given them the name “black boxes”. In other words, 
the models are complicated to interpret as the number of 
features grows. Various techniques are in use to understand 
what exactly happens during model training. One technique 
widely used to visualize and interpret CNNs is filter or ker-
nel visualization. This visualization helps to understand 
how the image information passes from one layer to another 
and how basic features get converted into classes at CNN’s 
output.

Figure 7 shows the filter visualization only for the first 
eight filters corresponding to each layer for simplicity.

The CNN model consists of four blocks, out of which the 
first three blocks have a repeating sequence of two convo-
lution layers followed by the max- pooling and finally, the 
dropout layers. Block 1 filters are responsible for providing 
clear visualizations that are highly interpretable without any 

noisy patterns. Like filters 3 and 7 of the first convolution 
layer, some filters indicate that the filters are not activated. 
The first convolutional layer filters almost retain the input 
image (as the grape leaf image is visible).

The other filters in the first convolutional layer try to find 
the edges and colours in the image. The max-pooling layer 
reduces the image dimension by 2, resulting in a signifi-
cant decrease in the computation time due to a reduction in 
the image dimension. The third layer is the dropout layer, 
which randomly drops a few neurons while training to avoid 

Table 3   Custom model 
performance comparison with 
pre-trained (transfer learning) 
models

Performance metrics Pretrained models (transfer learning) Proposed 
CNN model

InceptionV3 ResNet50 VGG16 VGG19 Xception

Accuracy 0.9983 0.9959 0.9860 0.9967 0.9975 0.9934
Precision
 Macro 0.9988 0.9957 0.9856 0.9973 0.9981 0.9944
 Weighted 0.9984 0.9959 0.9861 0.9967 0.9975 0.9934

Recall
 Macro 0.9986 0.9965 0.9871 0.9975 0.9980 0.9921
 Weighted 0.9983 0.9959 0.9860 0.9967 0.9975 0.9934

F1 score
 Macro 0.9987 0.9960 0.9863 0.9974 0.9980 0.9932
 Weighted 0.9983 0.9959 0.9860 0.9967 0.9975 0.9934

Fig. 7   Visualizations of first eight filters of CNN model correspond-
ing to four blocks: Block 1 through Block 4
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overfitting. A close observation shows that when the convo-
lutional layers go deeper from block 2 to block 4, the promi-
nent activations visible in Block 1 become very abstract, and 
image visualization is impossible.

The visualization complexity shows up because the filters 
tend to look for high-level features such as corners, borders, 
and angles when going more in-depth.

These high-level features help classify the images into the 
corresponding classes or labels rather than looking for low-
level features as Block 1 filters do. The output layer uses the 
SoftMax activation function with four neurons correspond-
ing to four classes of grape leaves.

Discussion

After evaluation of the trained CNN model, it showed some 
outstanding results corresponding to the evaluation metrics. 
Similar research on deep learning models showed model 
evaluation based on a limited set of metrics of which accu-
racy is one. When dealing with balanced datasets (each class 
has an equal number of images), accuracy can be considered 
for evaluating model performance. Hence, in building robust 
models, the metrics like precision, recall, and F1 score is 
essential. The CNN model for grape disease identification 
and detection used two approaches, one with transfer learn-
ing, and the other approach showed how the CNN model 
could be built starting from scratch.

In literature, similar implementations for crop disease 
detection use either a transfer learning approach or build 
a model from scratch. Both these approaches come with 
their advantages and limitations. This research describes 
an implementation of both these approaches and provides 
a detailed comparison between them in terms of model 
performance, considering metrics that genuinely define 
the model performance. The dataset greatly influences the 
model selection for the disease classification. Some of the 
state-of-the-art implementations use public image datasets 
like PlantVillage Dataset. Most of the research either uses 
an entire dataset or part of it, depending upon the problem.

A transfer learning approach based on the RestNet50 
pre-trained model (Mukti and Biswas 2019) was developed 
utilizing all the 38 classes of the PlantVillage dataset to clas-
sify leaf images into healthy or diseased classes and obtained 
an accuracy of 99.80%. The research (Rao et al. 2021) used 
a subset of the PlantVillage dataset to detect diseases cor-
responding to the mango and gapes. They built the CNN 
model using a pre-trained AlexNet model and obtained 99% 
and 89% accuracy for grapes and mango leaves, respectively. 
Similarly Sagar and Dheeba (2020) used the same dataset 
with 19 classes of diseased and healthy leaves to develop 
a disease classification system based on pre-trained mod-
els like VGG16, ResNet50, InceptionV3, InceptionResNet, 

and DenseNet16. The results obtained with four metrics 
were accuracy of 98.20%, the precision of 0.94, recall of 
0.94, and F1 score of 0.94. Another research utilizing the 
PlantVillage dataset with four classes of grape leaves (Ji 
et al. 2020) obtained 99.17%, 0.9905, 0.9888, and 0.9896, 
corresponding to accuracy, precision, recall, and F1 score 
for a United Model, respectively. A custom CNN model by 
Trivedi et al. (2020) used an entire PlantVillage dataset hav-
ing 54,305 images corresponding to 38 different classes of 
diseased and healthy leaves and obtained an accuracy of 
95.81%. The experimentation by Hassan et al. (2021) used 
the entire PlantVillage dataset in three different forms col-
oured images, segmented images, and grayscale images. 
Trained InceptionV3, InceptionResNetV2, MobileNetV2, 
and EfficientNetB0 pre-trained models to achieve accura-
cies of 98.42%, 99.11%, 97.02%, and 99.56%, respectively. 
Research of Islam et al. (2019) used 3 classes of potatoes (2 
diseased and 1 healthy) from the PlantVillage dataset to train 
two models, one based on sequential CNN model and the 
other using a transfer learning approach. The CNN model 
obtained an accuracy of 86.31% for the test set, while the 
transfer learning model achieved an accuracy of 99.43% on 
the testing set. A custom CNN model (Militante et al. 2019) 
used 32 classes from the PlantVillage dataset for disease 
detection and obtained an accuracy as high as 96.5%. A fruit 
classification and disease grading system (Nikhitha et al. 
2019) using a transfer learning approach (using InceptionV3 
model) was proposed using Fruits 360 (fruit classification 
dataset).

Some implementations developed disease classifica-
tion models by developing their custom datasets. A trans-
fer learning approach was developed to classify diseases 
into five classes by combining DenseNet and Xception 
pre-trained models (Chao et al. 2020) on a custom dataset 
consisting of Apple images. The model achieved an overall 
classification accuracy of 98.82%. The research work (Kus-
rini et al. 2020) developed a deep learning model (modified 
VGG16) to detect diseases caused by pests on some part of 
the mango tree, including leaf, stem, root, or fruit pertaining 
to16 classes. The model obtained 73% and 76% accuracy on 
validation and testing sets, respectively. A hybrid approach 
(Singh et al. 2019) (using PlantVillage dataset + Custom 
dataset) was utilized to develop a model based on AlexNet 
pre-trained model to classify mango (custom) and other 
diseases of leaves (PlantVillage). The model achieved an 
accuracy of 97.13%, corresponding to four classes of leaves. 
Another similar hybrid approach was proposed by Arya and 
Singh (2019) to detect diseases corresponding to mango and 
potato leaves. The mango leaves were obtained from a field 
located at Pantnagar. Two models were developed and com-
pared, the first custom CNN model and the other based on 
AlexNet pre-trained model. The CNN-based custom model 
achieved an overall accuracy of 90.85%, while the AlexNet 
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model obtained 98.33%. An SVM (Support Vector Machine) 
based approach (Mia et al. 2020) developed a model for 
mango leaf disease detection that could detect mango leaf 
diseases corresponding to five classes (including healthy 
leaves). This approach achieved an average classification 
accuracy of 80%. Another CNN model (Jadhav et al. 2021) 
based on AlexNet and GoogleNet pre-trained models was 
developed to identify and classify disease of soybean leaves 
into four classes including healthy leaves. The custom data-
set was obtained from soybean fields in Kolhapur district. 
The models were able to achieve an accuracy of 98.75% and 
96.25% for AlexNet and GoogleNet models, respectively.

Referring to the aforementioned state-of-the-art imple-
mentations, it is evident that the proposed approach of train-
ing a custom CNN model from scratch obtained results that 
outperform some of the models implemented to classify dis-
eases of crops using the transfer learning approach. Also, the 
performance metrics used to test the developed model were 
based on the imbalanced nature of the dataset. These metrics 
provide critical analysis of the model and ease fine-tuning 
before the model is deployed in real-time situations like the 
agricultural field. Thus, the developed custom CNN model 
provides the performance that can typically be obtained only 
by transfer learning approach, but at the same time uses less 
number of trainable parameters that improve inference time 
drastically in real-time situations.

Conclusion and future scope

The developed CCN model for early detection of diseases 
of the grapes uses the self-feature extracting property inher-
ent in CNNs, circumventing using a classifier that follows a 
DNN stage, simplifying the design requirements and com-
plexity. The proposed method develops a highly general-
izable CNN model for disease detection and classification 
and introduces the concept of transfer learning by training 
five models (Inception V3, ResNet50, VGG16, VGG19, 
and Xception) and thereby comparing them with the cus-
tom model.

The key concepts such as data pre-processing, data aug-
mentation, feature visualization, performance metrics selec-
tion, and hyper parameter tuning lay the foundation in build-
ing models with high generalization capability. The model 
evaluation’s performance parameters are based on the data-
set’s imbalanced nature (multi-class with varying number 
of images in each class) as in the real-time dataset. Also, 
the model’s conversion to TensorFlow light version Tensor-
Flow tflite format makes the model readily deployable on to 
mobile devices to provide real-time disease identification.

The knowledge gained can further be applied in under-
standing how the concept of transfer learning in pre-trained 
models can help develop classifiers capable of providing 

very high classification accuracy while using low computa-
tional resources. The future work would incorporate a few 
more classes corresponding to other crops like potato and 
pepper with possible model deployment to provide a real-
time solution to the farmers right from the agricultural field.
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