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Preface

Soft Computing refers to a consortium of computational methodologies.

Some of its principal components include Fuzzy Logic (FL), Neural
Networks (NN), and Genetic Algorithms (GA), all having their roots in
Artificial Intelligence (Al).

In today’s highly integrated world, when solutions to problems are cross-
disciplinary in nature, soft computing promises to become a powerful means
for obtaining solutions to problems quickly, yet accurately and acceptably.

Also, a combination of one or more of the methodologies mentioned—
termed hybrid systems—has resulted in the emergence of a new class of
systems such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. Their
healthy integration has resulted in extending the capabilities of the
technologies to more effective and efficient problem-solving methodologies
used in the design of intelligent systems.

Considering the plethora of findings and developments that have taken place
during the past few years, it would be a herculean task to present before the
reader the entire gamut of information in the field of intelligent systems.

It was therefore ours objective to keep the presentation ‘narrow and
intensive’ rather than ‘wide and extensive’. This approach is meant to lead a
motivated novice slowly but surely in a chartered area rather than allowing
him/her to feel lost in the labyrinth of voluminous information. Our
endeavour therefore has been to put emphasis on learning the design,
implementation, and application of soft computing methodologies through a
selective set of systems, thereby conveying the tricks of the trade to the
reader.



In fact the purpose is considered served, if this book could kindle amongst
the readers not just an understanding of the subject but a sustaining interest
and a desire to contribute. It therefore discusses every architecture and
concept in detail with applications and examples to illustrate the same.

Algorithms have been presented in pseudo-code and wherever possible
implementation details have been elaborately presented. The companion CD-
ROM contains several programs that facilitate learning and reinforcing the

textual concepts. Numerous simulations and examples are also presented to
give students a hands-on experience in problem solving.

ORGANIZATION

Chapter 1

Introduction to Artificial Intelligence
Systems

‘Artificial Intelligence (Al) is an area of computer science concerned with
designing intelligent computer systems’ that is, systems that exhibit the
characteristics we associate with intelligence in human behaviour’ (Avron
Barr and Feigenbaum, 1981). ‘Al is a branch of computer science that is

concerned with the automation of intelligent behaviour’ (Luger and
Stubblefield, 1993).

However, the term intelligence is not very well defined and therefore has
been less understood. Consequently, tasks associated with intelligence such
as learning, intuition, creativity, and inference all seem to have been partially
understood.

Al in its quest to comprehend, model and implement theories of intelligence,
in other words, in its quest to design intelligent systems, has not just
registered modest success in developing techniques and methods for
intelligent problem solving, but in its relentless pursuit, has fanned out to
encompass a number of technologies in its fold. Some of the technologies



include but are not limited to expert systems, neural networks, fuzzy logic,
cellular automata, and probabilistic reasoning. Of these technologies, neural
networks, fuzzy logic, and probabilistic reasoning

are predominantly known as soft computing. The term ‘soft computing’ was
introduced by

Lotfi A. Zadeh of the University of California, Berkley, U.S.A. Probabilistic
reasoning subsumes genetic algorithms, chaos, and parts of learning theory.

According to Zadeh, soft computing differs from hard computing (
conventional computing) in its tolerance to imprecision, uncertainty and
partial truth. In effect, the role model is the human mind. Hard computing
methods are predominantly based on mathematical approaches and therefore
demand a high degree of precision and accuracy in their requirements. But in
most engineering problems, the input parameters cannot be determined with
a high degree of precision and therefore, the best estimates of the parameters
are used for obtaining solution to problems. This has restricted the use of

Artificial Intelligence Systems
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i f,-f"___”"x\
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mathematical approaches for the solution of inverse problems when
compared to forward problems.

On the other hand, soft computing techniques, which have drawn their
inherent characteristics from biological systems, present effective methods
for the solution of even difficult inverse problems. The guiding principle of
soft computing is exploit the tolerance for imprecision, uncertainty, and
partial truth to achieve tractability, robustness, and low cost solution... .

Also, ... employment of soft computing for the solution of machine learning
problems has led to high MIQ (Machine Intelligence Quotient).

Hybrid intelligence systems deal with the synergistic integration of two or
more of the technologies. The combined use of technologies has resulted in
effective problem solving in comparison with each technology used
individually and exclusively.

In this book, we focus on three technologies, namely Neural Networks (NN),
Fuzzy Logic (FL) and Genetic Algorithms (GA) and their hybrid
combinations. As illustrated in Fig. 1.1, each of these technologies
individually and in combination can be employed to solve problems. The
combinations include neuro-fuzzy, GA-fuzzy, neuro-GA, and neuro-fuzzy-GA
technologies.

Fig. 1.1 Integration of neural networks, fuzzy logic, and genetic algorithm
technologies.

We now briefly introduce the three technologies—NN, FL, and GA, viewing
them in isolation. Chapter 10 discusses the promises and problems of the
integration of these technologies into hybrid systems.

1.1 NEURAL NETWORKS

Neural networks are simplified models of the biological nervous system and
therefore have drawn their motivation from the kind of computing performed
by a human brain.



An NN, in general, is a highly interconnected network of a large number of
processing elements called neurons in an architecture inspired by the brain.

An NN can be massively parallel and therefore is said to exhibit parallel
distributed processing.

Neural networks exhibit characteristics such as mapping capabilities or
pattern association, generalization, robustness, fault tolerance, and parallel
and high speed information processing.

Neural networks learn by examples. They can therefore be trained with
known examples of a problem to ‘acquire’ knowledge about it. Once
appropriately trained, the network can be put to effective use in solving

‘unknown’ or ‘untrained’ instances of the problem.

Neural networks adopt various learning mechanisms of which supervised
learning and unsupervised learning methods have turned out to be very
popular. In supervised learning, a ‘teacher’ is assumed to be present during
the learning process, i.e. the network aims to minimize the error between the
target (desired) output presented by the ‘teacher’ and the computed output, to
achieve better performance. However, in unsupervised learning, there is no
teacher present to hand over the desired output and the network therefore
tries to learn by itself, organizing the input instances of the problem.

Though NN architectures have been broadly classified as single layer
feedforward networks, multilayer feedforward networks, and recurrent
networks, over the years several other NN architectures have evolved. Some
of the well-known NN systems include backpropagation network,
perceptron, ADALINE ( Adaptive Linear Element), associative memory,
Boltzmann machine, adaptive resonance theory, self-organizing feature map,
and Hopfield network.

Neural networks have been successfully applied to problems in the fields of
pattern recognition, image processing, data compression, forecasting, and
optimization to quote a few.



1.2 FUZZY LOGIC

Fuzzy set theory proposed in 1965 by Lotfi A. Zadeh (1965) is a
generalization of classical set theory. Fuzzy Logic representations founded
on Fuzzy set theory try to capture the way humans represent and reason with
real-world knowledge in the face of uncertainty. Uncertainty could arise due
to generality, vagueness, ambiguity, chance, or incomplete knowledge.

A fuzzy set can be defined mathematically by assigning to each possible
individual in the universe of discourse, a value representing its grade of
membership in the fuzzy set. This grade corresponds to the degree to which
that individual is similar or compatible with the concept represented by the
fuzzy set. In other words, fuzzy sets support a flexible sense of membership
of elements to a set.

In classical set theory, an element either belongs to or does not belong to a
set and hence, such sets are termed crisp sets. But in a fuzzy set, many
degrees of membership (between 0 and 1) are allowed. Thus, a membership
function nA( x) s associated with a fuzzy set A such that the function maps
every element of the universe of discourse X to the interval [0, 1].

For example, for a set of students in a class (the universe of discourse), the
fuzzy set “tall” (fuzzy set A) has as its members students who are tall with a
degree of membership equal to 1(uA( x) = 1), students who are of medium
height with a degree of membership equal to 0.75 (uA( x) = 0.75) and those
who are dwarfs with a degree of membership equal to 0 (uA( x) = 0), to cite
a few cases. In this way, every student of the class could be graded to hold
membership values between 0 and 1 in the fuzzy set A, depending on their
height.

The capability of fuzzy sets to express gradual transitions from membership

(0 < pA(x) < 1) to non-membership (LA( x) = 0) and vice versa has a broad
utility. It not only provides for a meaningful and powerful representation of
measurement of uncertainties, but also provides for a meaningful
representation of vague concepts expressed in natural language.



Operations such as union, intersection, subsethood, product, equality,
difference, and disjunction are also defined on fuzzy sets. Fuzzy relations

associate crisp sets to varying degree of membership and support operations
such as union, intersection, subsethood, and composition of relations.

Just as crisp set theory has influenced symbolic logic, fuzzy set theory has
given rise to fuzzy logic. While in symbolic logic, truth values True or False
alone are accorded to propositions, in fuzzy logic multivalued truth values
such as true, absolutely true, fairly true, false, absolutely false, partly false,
and so forth are supported. Fuzzy inference rules (which are computational
procedures used for evaluating linguistic descriptions) and fuzzy rule based
systems (which are a set of fuzzy IF-THEN rules) have found wide
applications in real-world problems.

Fuzzy logic has found extensive patronage in consumer products especially
promoted by the Japanese companies and have found wide use in control
systems, pattern recognition applications, and decision making, to name a
few.

1.3 GENETIC ALGORITHMS

Genetic Algorithms initiated and developed in the early 1970s by John
Holland (1973; 1975) are unorthodox search and optimization algorithms,
which mimic some of the processes of natural evolution. GAs perform
directed random searches through a given set of alternatives with the aim of
finding the best alternative with respect to the given criteria of goodness.

These criteria are required to be expressed in terms of an objective function
which is usually referred to as a fitness function.

Fitness 1s defined as a figure of merit, which is to be either maximized or
minimized. It is further required that the alternatives be coded in some
specific finite length which consists of symbols from some finite alphabet.

These strings are called chromosomes and the symbols that form the
chromosomes are known as genes. In the case of binary alphabet (0, 1) the



chromosomes are binary strings and in the case of real alphabet (0-9) the
chromosomes are decimal strings.

Starting with an initial population of chromosomes, one or more of the
genetic inheritance operators are applied to generate offspring that competes
for survival to make up the next generation of population. The genetic
inheritance operators are reproduction, cross over, mutation, inversion,
dominance, deletion, duplication, translocation, segregation, speciation,
migration, sharing, and mating.

However, for most common applications, reproduction, mating (cross over),
and mutation are chosen as the genetic inheritance operators.

Successive generations of chromosomes improve in quality provided that the
criteria used for survival is appropriate. This process is referred to as
Darwinian natural selection or survival of the fittest.

Reproduction which is usually the first operator applied on a population
selects good chromosomes in a population to form the mating pool. A
number of reproduction operators exist in the literature (Goldberg and Deb,
1991). Cross over is the next operator applied. Here too, a number of cross
over operators have been defined (Spears and De Jong, 1990). But in almost
all cross over operators, two strings are picked from the mating pool at
random and some segments of the strings are exchanged between the strings.

Single point cross over, two point cross over, matrix cross over are some of

the commonly used cross over operators. It is intuitive from the construction
that good substrings from either parent can be combined to form better
offspring strings.

Mutation operator when compared to cross over is used sparingly. The
operator changes a

1 to a 0 and vice versa with a small probability P m. The need for the
operator is to keep the diversity of the population.



Though most GA simulations are performed by using a binary coding of the
problem parameters, real coding of the parameters has also been propounded
and applied (Rawlins, 1990). GAs have been theoretically and empirically
proven to provide robust search in complex space and have found wide
applicability in scientific and engineering areas including function
optimization, machine learning, scheduling, and others (Davis L., 1991;
Buckles and Petry, 1992).

1.4 STRUCTURE OF THIS BOOK
This book is divided into four parts.

PART I, entitled “Neural Networks”, introduces the fundamentals of neural
networks and explores three major architectures, namely:

Backpropagation Network— a multilayer feedforward network which
exhibits gradient descent learning

Associative Memory—a single layer feedforward or recurrent network
architecture with Hebbian learning

Adaptive Resonance Theory Networks— a recurrent architecture with
competitive learning

Various applications of the above mentioned NN architectures have also been
detailed. The chapters included are:

Chapter 2: Fundamentals of Neural Networks
Chapter 3: Backpropagation Networks
Chapter 4: Associative Memory

Chapter 5: Adaptive Resonance Theory

PART II, entitled “Fuzzy Logic”, discusses the basic concepts of the fuzzy
set theory as much as is essential to understand the hybrid architectures
discussed in the book. Also, Fuzzy Logic and Fuzzy Inference have been



discussed in brief. Crisp set theory, a ‘predecessor’ to fuzzy set theory has
also been detailed wherever appropriate.

The chapters included are:
Chapter 6: Fuzzy Set theory
Chapter 7: Fuzzy Systems

PART III, entitled “Genetic Algorithms”, elaborates the basic concepts of
GA, the genetic inheritance operators, the performance of the algorithm, and
applications.

The chapters included are:
Chapter 8: Fundamentals of Genetic Algorithms
Chapter 9: Genetic Modeling

PART 1V, entitled “Hybrid Systems”, discusses the integration of the three
technologies, namely NN, FL, and GA. As an illustration, the following five
hybrid architectures are discussed:

Genetic Algorithm based

Backpropagation Networks — 1illustrating a neuro-genetic hybrid
system

Fuzzy Backpropagation Networks

Simplified Fuzzy ARTMAP

Fuzzy Associative Memories — 1llustrating neuro-fuzzy hybrid
systems

Fuzzy Logic Controlled Genetic — 1illustrating a fuzzy-genetic hybrid

system.



Algorithms

The neural network system playing host in each of the three neuro-fuzzy
hybrids is representative of the three different classes of NN architectures,
namely single layer feedforward, multilayer feedforward, and recurrent
networks. The applications of the hybrid systems to various problems have
also been elaborated.

The chapters included are:

Chapter 10: Integration of Neural Networks, Fuzzy Logic, and Genetic
Algorithms

Chapter 11: Genetic Algorithm based Backpropagation Networks
Chapter 12: Fuzzy Backpropagation Networks

Chapter 13: Simplified Fuzzy ARTMAP

Chapter 14: Fuzzy Associative Memories

Chapter 15: Fuzzy Logic Controlled Genetic Algorithms
SUMMARY

Artificial Intelligence is a branch of computer science concerned with the
design of intelligent computer systems. In pursuit of this goal, Al spans a
broad spectrum of areas of which Neutral Networks, Fuzzy Logic and
Genetic Algorithms have been chosen as the subject of discussion in this
book.

Neural Networks are massively parallel, highly interconnected networks of
processing elements called neurons.

Fuzzy Logic is an excellent mathematical tool to model uncertainty in
systems.



Genetic Algorithms are unorthodox search and optimization algorithms
inspired by the biological evolution process.

NN, FL and GA technologies have been individually and integratedly applied
to solve various problems in the real world.
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PART 1

NEURAL NETWORKS

* Fundamentals of Neural Networks

» Backpropagation Networks

* Associative Memory

» Adaptive Resonance Theory

Chapter 2

Fundamentals of Neural Networks

In this chapter, we introduce the fundamental concepts of Neural Networks
(NN). The biological neuron system, which has been the chief source of
inspiration in much of the research work in Neural Networks and the model
of an artificial neuron, are first elaborated. Neural Network architectures,
their characteristics and learning methods are next discussed. A brief history
of Neural Network research and some of the early NN architectures are
presented. Finally, some of the application domains where NN architectures
have made an impact are listed.

2.1 BASIC CONCEPTS OF NEURAL NETWORKS

Neural Networks, which are simplified models of the biological neuron
system, 1s a massively parallel distributed processing system made up of



highly interconnected neural computing elements that have the ability to
learn and thereby acquire knowledge and make it available for use.

Various learning mechanisms exist to enable the NN acquire knowledge.

NN architectures have been classified into various types based on their
learning mechanisms and other features. Some classes of NN refer to this
learning process as training and the ability to solve a problem using the
knowledge acquired as inference.

NNs are simplified imitations of the central nervous system, and obviously
therefore, have been motivated by the kind of computing performed by the
human brain. The structural constituents of a human brain termed neurons
are the entities, which perform computations such as cognition, logical
inference, pattern recognition and so on. Hence the technology, which has
been built on a simplified imitation of computing by neurons of a brain, has
been termed Artificial Neural Systems (ANS) technology or Artificial Neural
Networks (ANN) or simply Neural Networks. In the literature, this
technology is also referred to as Connectionist Networks, Neuro-Computers,
Parallel Distributed Processors etc. Also neurons are referred to as neurodes,
Processing Elements (PEs), and nodes. In this book, we shall use the terms
Neural Networks or Artificial Neural Networks and neurons.

A human brain develops with time and this, in common parlance is known as
experience. Technically, this involves the ‘development’ of neurons to adapt
themselves to their surrounding environment, thus, rendering the brain
plastic in its information processing capability. On similar lines, the property
of plasticity is also discussed with respect to NN architectures. Further, we
are also interested in the stability of an NN system; i.e. the adaptive
capability of an NN in the face of changing environments. Thus, the stability

—plasticity issue is of great importance to NN architectures. This is so since
NN systems essentially being learning systems need to preserve the
information previously learnt but at the same time, need to be receptive to
learning new information. The NN needs to remain ‘plastic’ to significant or
useful information but remain ‘stable’ when presented with irrelevant



information. This is known as stability—plasticity dilemma (Carpenter and
Grossberg, 1987, 1988).

Cerebellum
Brain stem

Spinal cord

2.2 HUMAN BRAIN

The human brain is one of the most complicated things which, on the whole,
has been poorly understood. However, the concept of neurons as the
fundamental constituent of the brain, attributed to Ramoén Y. Cajal (1911),
has made the study of its functioning comparatively easier. Figure 2.1

illustrates the physical structure of the human brain.
Fig. 2.1 Physical structure of the human brain—cross-sectional view.

Brain contains about 1010 basic units called neurons. Each neuron in turn, is
connected to about 104 other neurons. A neuron is a small cell that receives
electro-chemical signals from its various sources and in turn responds by



transmitting electrical impulses to other neurons. An average brain weighs
about 1.5 kg and an average neuron has a weight of 1.5 x 10-9 gms. While
some of the neurons perform input and output operations (referred to as
afferent and efferent cells respectively), the remaining form a part of an
interconnected network of neurons which are responsible for signal
transformation and storage of information. However, despite their different
activities, all neurons share common characteristics.

A neuron is composed of a nucleus—a cell body known as soma (refer Fig.

2.2). Attached to the soma are long irregularly shaped filaments called
dendrites. The dendrites behave as input channels, (i.e.) all inputs from other
neurons arrive through the dendrites. Dendrites look like branches of a tree
during winter. Another type of link attached to the soma is the Axon. Unlike
the Dendritic links, the axon is electrically active and serves as an output
channel. Axons, which mainly appear on output cells are non-linear threshold
devices which produce a voltage pulse called Action Potential or Spike that
lasts for about a millisecond. If the cumulative inputs received by the soma
raise the internal electric potential of the cell known as Membrane Potential,
then the neuron ‘fires’ by propagating the action potential down the axon to
excite or inhibit other neurons. The axon terminates in a specialised contact
called synapse or synaptic junction that connects the axon with the dendritic
links of another neuron. The synaptic junction, which is a very minute gap at
the end of the dendritic link contains a neuro-transmitter fluid. It is this fluid
which is responsible for accelerating or retarding the electric charges to the
soma. Each dendritic link can have many synapses acting on it thus bringing
about massive interconnectivity. In general, a single neuron can have many
synaptic inputs and synaptic outputs. The size of the synapses are believed to
be related to learning. Thus, synapses with larger area are thought to be
excitatory while those with smaller area are believed to be inhibitory. Again,
it 1s the increased neuronal activity which is thought to be responsible for
learning and memory. Infact, this was what motivated Donald Hebb (1949)
to suggest “when an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth process or
metabolic changes take place in one or both cells such that A’s efficiency as



one of the cells firing B is increased.” These observations branded as
Hebbian learning has influenced many learning models in NN over the years.

Infact, the neuronal activity can be quite complex but viewing the activity as
a simple summation of the inputs they receive, has turned out to be a
reasonable approximation.

2 Synapse Dendrites

o

PC"‘:’“ Cell body (soma)

Fig. 2.2 Structure of a neuron.
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2.3 MODEL OF AN ARTIFICIAL NEURON



As mentioned earlier, the human brain no doubt is a highly complex structure
viewed as a massive, highly interconnected network of simple processing
elements called neurons. However, the behaviour of a neuron can be captured
by a simple model as shown in Fig. 2.3. Every component of the model bears
a direct analogy to the actual constituents of a biological neuron and hence is
termed as artificial neuron. It is this model which forms the basis of
Artificial Neural Networks.

Fig. 2.3 Simple model of an artificial neuron.

Here, x 1, x 2, x 3, ..., xn are the n inputs to the artificial neuron. w 1, w 2, ...,
wn are the weights attached to the input links.

Recollect that a biological neuron receives all inputs through the dendrites,
sums them and produces an output if the sum is greater than a threshold
value. The input signals are passed on to the cell body through the synapse
which may accelerate or retard an arriving signal.

It is this acceleration or retardation of the input signals that is modelled by
the weights. An effective synapse which transmits a stronger signal will have
a correspondingly larger weight while a weak synapse will have smaller
weights. Thus, weights here are multiplicative factors of the inputs to account
for the strength of the synapse. Hence, the total input / received by the soma
of the artificial neuron is
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Figure 2.4 illustrates the Thresholding function. This is convenient in the
sense that the output signal is either 1 or O resulting in the neuron being on or
off.

Fig. 2.4 Thresholding function.



The other choices for Activation function besides Thresholding function are
as given below:

Signum function

Also known as the Quantizer function, the function ¢ is defined as
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Figure 2.5 illustrates the Signum function.
Fig. 2.5 Signum function.
Sigmoidal function

This function is a continuous function that varies gradually between the
asymptotic values 0 and 1 or —1 and +1 and is given by

where, a is the slope parameter, which adjusts the abruptness of the function
as it changes between the two asymptotic values. Sigmoidal functions are



differentiable, which is an important feature of NN theory. Figure 2.6

illustrates the sigmoidal function.
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Fig. 2.6 Sigmoidal function.
Hyperbolic tangent function

The function is given by

¢( ) = tanh (1) 2.7)

and can produce negative output values.

The first mathematical model of a biological neuron was presented by
McCulloch and Pitts (1943). The model, known as McCulloch-Pitts model
does not exhibit any learning but just serves as a basic building block which
has inspired further significant work in NN research. The model makes use
of a bias term whose weight is w 0 but with a fixed input of x 0 = 1. This is
besides the other inputs xi and weights wi. The bias is an external parameter
for the artificial neuron but serves the purpose of increasing or decreasing the



net input of the activation function depending on whether it is positive or
negative. Other modelling schemes for the neuron have also been proposed
(Macgregor, 1987).
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2.4 NEURAL NETWORK ARCHITECTURES

An Artificial Neural Network is defined as a data processing system
consisting of a large number of simple highly interconnected processing
elements (artificial neurons) in an architecture inspired by the structure of the
cerebral cortex of the brain (Tsoukalas and Uhrig, 1997). Generally, an ANN

structure can be represented using a directed graph. A graph G is an ordered
2-tuple (V, E) consisting of a set V of vertices and a set E of edges. When
each edge is assigned an orientation, the graph is directed and is called a
directed graph or a digraph. Figure 2.7 illustrates a digraph. Digraphs
assume significance in Neural Network theory since signals in NN systems
are restricted to flow in specific directions.

The vertices of the graph may represent neurons (input/output) and the
edges, the synaptic links. The edges are labelled by the weights attached to
the synaptic links.

Fig. 2.7 An example digraph.

There are several classes of NN, classified according to their learning
mechanisms. However, we identify three fundamentally different classes of



Networks. All the three classes employ the digraph structure for their
representation.

2.4.1 Single Layer Feedforward Network

This type of network comprises of two layers, namely the input layer and the
output layer. The input layer neurons receive the input signals and the output
layer neurons receive the output signals. The synaptic links carrying the
weights connect every input neuron to the output neuron but not vice-versa.

Such a network is said to be feedforward in type or acyclic in nature. Despite

x;. Input neurons
y;: Output neurons
wj;: Weights

Input neurons Qutput neurons

the two layers, the network is termed single layer since it is the output layer,
alone which performs computation. The input layer merely transmits the
signals to the output layer. Hence, the name single layer feedforward
network. Figure 2.8 illustrates an example network.

Fig. 2.8 Single layer feedforward network.

2.4.2 Multilayer Feedforward Network

This network, as its name indicates is made up of multiple layers. Thus,
architectures of this class besides possessing an input and an output layer



also have one or more intermediary layers called hidden layers. The
computational units of the hidden layer are known as the hidden neurons or
hidden units. The hidden layer aids in performing useful intermediary
computations before directing the input to the output layer. The input layer
neurons are linked to the hidden layer neurons and the weights on these links
are referred to as input-hidden layer weights. Again, the hidden layer neurons
are linked to the output layer neurons and the corresponding weights are
referred to as hidden-output layer weights. A multilayer feedforward network
with / input neurons, m 1 neurons in the first hidden layer, m 2 neurons in the
second hidden layer and n output neurons in the output layer is written as 1 —

ml-m?2-n.

Figure 2.9 illustrates a multilayer feedforward network with a configuration 1
—m—n.

4

Zq |

X; . Input neurons
y; : Hidden neurons
z, - Output neurons
vij - Input hidden
layer weights

wi - Output hidden
layer weights

Input layer Hidden layer QOutput layer

Fig. 2.9 A multilayer feedforward network ( [ — m — n configuration).
2.4.3 Recurrent Networks

These networks differ from feedforward network architectures in the sense
that there is atleast one feedback loop. Thus, in these networks, for example,



there could exist one layer with feedback connections as shown in Fig. 2.10.

There could also be neurons with self-feedback links, i.e. the output of a
neuron is fed back into itself as input.

2.5 CHARACTERISTICS OF NEURAL NETWORKS

(1) The NNs exhibit mapping capabilities, that is, they can map input patterns
to their associated output patterns.

(i) The NNs learn by examples. Thus, NN architectures can be ‘trained’
with known examples of a problem before they are tested for their

‘inference’ capability on unknown instances of the problem. They can,
therefore, identify new objects previously untrained.

(111) The NN possess the capability to generalize. Thus, they can predict new
outcomes from past trends.

(iv) The NN are robust systems and are fault tolerant. They can, therefore,
recall full patterns from incomplete, partial or noisy patterns.

(v) The NNs can process information in parallel, at high speed, and in a
distributed manner.

W= z.lr', ¥ (2.8)
=1

2.6 LEARNING METHODS

Learning methods in Neural Networks can be broadly classified into three
basic types: supervised, unsupervised, and reinforced.

Supervised learning

In this, every input pattern that is used to train the network is associated with
an output pattern, which is the target or the desired pattern. A teacher is



assumed to be present during the learning process, when a comparison is
made between the network’s computed output and the correct expected
output, to determine the error. The error can then be used to change network
parameters, which result in an improvement in performance.

Unsupervised learning

In this learning method, the target output is not presented to the network. It is
as if there is no teacher to present the desired patterns and hence, the system
learns of its own by discovering and adapting to structural features in the
input patterns.

Reinforced learning

In this method, a teacher though available, does not present the expected
answer but only indicates if the computed output is correct or incorrect. The
information provided helps the network in its learning process. A reward is
given for a correct answer computed and a penalty for a wrong answer. But,
reinforced learning is not one of the popular forms of learning.

Supervised and unsupervised learning methods, which are most popular
forms of learning, have found expression through various rules. Some of the
widely used rules have been presented below:

Hebbian learning

This rule was proposed by Hebb (1949) and is based on correlative weight
adjustment. This is the oldest learning mechanism inspired by biology.

In this, the input—output pattern pairs ( Xi, Yi) are associated by the weight
matrix W, known as the correlation matrix. It is computed as

: JE
o,

Here, YT



i 1s the transpose of the associated output vector Yi. Numerous variants of the
rule have been proposed (Anderson, 1983; Kosko, 1985; Lippman, 1987;
Linsker, 1988).

Gradient descent learning

This is based on the minimization of error E defined in terms of weights and
the activation function of the network. Also, it is required that the activation
function employed by the network is differentiable, as the weight update is
dependent on the gradient of the error E.

Thus, if A Wij is the weight update of the link connecting the i th and j th
neuron of the two neighbouring layers, then A Wij is defined as A Wij =

(2.9)

where, 1 is the learning rate parameter and d E/d Wij is the error gradient
with reference to the weight Wij.

The Widrow and Hofts Delta rule and Backpropagation learning rule are all
examples of this type of learning mechanism.

Competitive learning

In this method, those neurons which respond strongly to input stimuli have
their weights updated. When an input pattern is presented, all neurons in the
layer compete and the winning neuron undergoes weight adjustment. Hence,
it is a “winner-takes-all” strategy.

Stochastic learning

In this method, weights are adjusted in a probabilistic fashion. An example is
evident in simulated annealing—the learning mechanism employed by
Boltzmann and Cauchy machines, which are a kind of NN systems.

Figure 2.11 illustrates the classification of learning algorithms.
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Fig. 2.11 Classification of learning algorithms.
2.7

TAXONOMY

OF

NEURAL

NETWORK

ARCHITECTURES

Over the years, several NN systems have evolved. The following are some of
the systems that have acquired significance.

ADALINE (Adaptive Linear Neural Element)
ART (Adaptive Resonance Theory)

AM (Associative Memory)

BAM (Bidirectional Associative Memory)

Boltzmann Machine



BSB (Brain-State-in-a-Box)

CCN (Cascade Correlation)

Cauchy Machine

CPN (Counter Propagation Network)
Hamming Network

Hopfield Network

LVQ (Learning Vector Quantization)
MADALINE (Many ADALINE)
MLFF (Multilayer Feedforward Network)
Neocognitron

Perceptron

RBF (Radial Basis Function)

RNN (Recurrent Neural Network)
SOFM (Self-organizing Feature Map)

Table 2.1 shows the classification of the NN systems listed above, according
to their learning methods and architectural types.

Table 2.1 The classification of some NN systems with respect to learning
methods and architecture type LEARNING METHOD

Gradient

Hebbian

Competitive



Stochastic
descent
ADALINE
Single-layer
AM

LVQ
feedforward
Hopfield
Hopfield

SOFM

Perceptron
CCN
TYPE OF
Multilayer
MLFF

Neocognitron

ARCHITECTURE



feedforward
RBF
Boltzmann
Recurrent
BAM
machine
neural
RNN

BSB

ART
Cauchy
network
Hopfield
machine

2.8 HISTORY OF NEURAL NETWORK RESEARCH

The pioneering work of McCulloch and Pitts (1943) was the foundation
stone for the growth of NN architectures. In their paper, McCulloch and Pitts
suggested the unification of neuro- physiology with mathematical logic,
which paved way for some significant results in NN research. Infact, the
McCulloch-Pitts model even influenced Von Neumann to try new design
technology in the construction of EDVAC (Electronic Discrete Variable
Automatic Computer).



The next significant development arose out of Hebb’s book ‘The
organization of behaviour’. In this, Hebb proposed a learning rule derived
from a model based on synaptic connections between nerve cells responsible
for biological associative memory.

The Hebbian rule was later refined by Rosenblatt in 1958, in the Perceptron
model (Rosenblatt, 1958). However, a critical assessment of the Perceptron
model by Minsky in 1969 (Minsky and Papert, 1969) stalled further research
in NN. It was much later in the 1980s that there was a resurgence of interest
in NN and many major contributions in the theory and application of NN

were made.

The only important contribution made in the 1970’s was the Self Organizing
Map Architecture based on Competitive learning (Will Shaw and Von der
Malsburg, 1976). Some of the well known architectures which turned out to
be milestones in NN research have been listed in Table 2.2.

Table 2.2 Some milestones in NN research
Year

Name of the

Developer

(development

Remarks

neural network

and growth)

Adaptive



The networks employ a new principle of self organization called Resonance
Carpenter,
1980 and

Adaptive Resonance Theory based on Competitive learning. The Theory
(ART)

Gross-berg

onwards

general complexity of the network structures is a limitation.
and others

networks

Rumelhart,

1985

The Backpropagation learning rule is applicable on any
Backpropagation

e Hinton,

feedforward network architecture. Slow rate of convergence and networks
Williams

1974



local minima problem are its weaknesses.
* Werbos

1985

* Parker

Bidirectional

Bart

These are two—layer recurrent, hetero associative networks that 1988
Associative

Kosko

can store pattern pairs and retrieve them. They behave as content addressable
memories.

Memory (BAM)
e Hinton,

1983, 1985
Boltzmann and

Sejnowski

These are stochastic networks whose states are governed by the Cauchy

* Szu H.,



Boltzmann
distribution/Cauchy
distribution.

The

heavy

1986

machines

computational load is a drawback.

E.
1987
Hartley

Brain-state-in-a-

James

A recurrent auto associative network which makes use of 1977
box

Anderson

Hebbian/Gradient descent learning.

The network belongs to the category of self-organization networks Counter



Robert

and functions as statistically optimal self-programming look up propaga-
Hecht

1987

table. The weight adjustments between the layers follow
tion network

Nielsen

Kohonen’s unsupervised learning rule and Grossberg’s supervised learning
rule.

Hopfield

John

Single layer recurrent network which makes use of Hebbian 1982

network

Hopfield

learning or Gradient Descent learning.

It is created by a combination of ADALINE networks spread MADALINE
* Bernard

1960

across multiple layers with adjustable weights. The network network



* Widrow

1988

employs a supervised learning rule called MADALINE adaptation
Rule (MR) based on ‘minimal disturbance principle’.

A hybrid hierarchical multilayer feedback/forward network which
 Kunihiko

Neocognitron

1982

closely models a human vision system, the network employs either
Fukushima

supervised or unsupervised learning rules.

A single layer or multilayer feedforward network best understood

Frank

Perceptron

1958

and extensively studied. However, the network is able to obtain Rosenblatt
weights, only for linearly separable tasks.

Self-organizing

The network 1s a simplified model of the feature-to-localized-Feature Map



» Kohonen
1982
region mapping of a brain. It is a self-organizing network networks

employing competitive learning.
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2.9 EARLY NEURAL NETWORK ARCHITECTURES
2.9.1 Rosenblatt’s Perceptron

The perceptron is a computational model of the retina of the eye and hence,
is named ‘perceptron’. The network comprises three units, the Sensory unit
S, Association unit A, and Response unit R (refer Fig. 2.12).

Fig. 2.12 Rosenblatt’s original perceptron model.

The S unit comprising 400 photodetectors receives input images and provides
a 0/1 electric signal as output. If the input signals exceed a threshold, then
the photodetector outputs 1 else 0. The photodetectors are randomly
connected to the Association unit A. The A unit comprises feature demons or
predicates. The predicates examine the output of the S unit for specific
features of the image. The third unit R comprises pattern recognizers or
perceptrons, which receives the results of the predicate, also in binary form.
While the weights of the S and A units are fixed, those of R are adjustable.



The output of the R unit could be such that if the weighted sum of its inputs
is less than or equal to 0, then the output is O otherwise it is the weighted
sum itself. It could also be determined by a step function with binary values

(0/1) or bipolar values (—1/1). Thus, in the case of a step function yielding
0/1

output values, it is defined as

¥—=fFinet) =1, ifmet; =0

=1, othorwise

where net, = Z Xy wy (2.0

Weightz

Inputs Cutputs In;uts Intemmediary layer Outputs

Fig. 213 A simple parceptron model. Fig. 214 A multilayer feedforward
percepiron model
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Here, xi is the input, wij is the weight on the connection leading to the output

units ( R unit), and yj is the output.

The training algorithm of the perceptron is a supervised learning algorithm
where weights are adjusted to minimize error whenever the computed output
does not match the target output. Figure 2.13 illustrates a simple perceptron
network. A more general multilayer feedforward perceptron is shown in Fig.

2.14.

A basic learning algorithm for training the perceptron is as follows:
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the learning rate parameter. Also, small o leads to slow learning and large a

to fast learning. However, large a also runs the risk of allowing weights to

oscillate about values which



would result in the correct outputs. For a constant a, the learning algorithm is
termed fixed increment algorithm. Algorithm 2.1 illustrates the same for a 2-
classification problem.

Many variations have been proposed to the perceptron model. The
Perceptron Convergence Theorem has been one of the important
achievements due to Rosenblatt. However, the observations on the limitations
of perceptron by Minsky and Papert (1969), stalled further research on
perceptrons until much later, Minsky and Papert pointed out that perceptron
would be successful only on problems with a linearly separable solution
space and cited the XOR

problem as an illustration.
Perceptron and linearly separable tasks

Perceptron cannot handle, in particular, tasks which are not linearly
separable.

Sets of points in two dimensional spaces are linearly separable if the sets can
be separated by a straight line.

Generalizing, a set of points in n-dimensional space are linearly separable if
there is a hyperplane of ( n — 1) dimensions that separates the sets. Figure
2.15 illustrates linearly separable patterns and non-linearly separable
patterns.

Table 2.3 XOR truth table

[nputs Inputs Output
0 0 0 T ;
| > Even parity
1 1 0 #2)
0 1 L s
"‘-—.._i z
Odd parity
1 0 1 7




N

(0.1)

(0,0) 1.0 > X

Fig. 2.15 Linearly separable patterns and non-linearly separable patterns.

The perceptron cannot find weights for classification type of problems that
are not linearly separable. An example is the XOR (eXclusive OR) problem.

XOR Problem

XOR is a logical operation as described by its truth table presented in Table
2.3.

The problem for the ANN is to classify the inputs as odd parity or even
parity. Here, odd parity means odd number of 1 bits in the inputs and even
parity refers to even number of 1 bits in the inputs.

This is impossible, since as is evident from Fig. 2.16, the perceptron is
unable to find a line separating even parity input patterns from the odd parity
input patterns.

Fig. 2.16 The non-linear separable patterns of the XOR problem.

Why is the perceptron unable to find weights for non-linearly separable
classification problems? This can be explained by means of a simple



k. Class C;

0| Class C, \.

instance.
Consider a perceptron network with two inputs x 1 and x 2 and bias x 0 =1
(refer Fig. 2.17). The weighted sum of the inputs.

net=wO+wlxl+w2x2 (2.14) represents the equation of a
straight line.

The straight line acts as a decision boundary separating the points into
classes C 1 and C 2, above and below the line respectively (refer Fig. 2.18).

Fig. 2.18 A straight line as a decision boundary for a 2-classification
problem.

This is what the perceptron aims to do for a problem when it is able to obtain
their weights.

Algorithm 2.1

Fixed increment perceptron learning algorithm for a classification
problem with n input features ( x1, x2, ..., xn) and two output classes
0/1)
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2.9.2 ADALINE Network

The Adaptive Linear Neural Element Network framed by Bernard Widrow of
Stanford University, makes use of supervised learning. Figure 2.19

illustrates a simple ADALINE network. Here, there is only one output
neuron and the output values are bipolar (-1 or +1). However, the inputs xi
could be binary, bipolar or real valued. The bias weight is w 0 with an input

link of x O

= +1. If the weighted sum of the inputs is greater than or equal to O then the

output is 1 otherwise it is —1.

The supervised learning algorithm adopted by the network is similar to the
perceptron learning algorithm. Devised by Widrow-Hoff (1960), the learning
algorithm is also known as the Least Mean Square (LMS) or Delta rule. The

rule is given by



(2.15)

where, a is the learning coefficient, ¢ is the target output, y is the computed
output, and xi is the input.

Output
y > >

Thresholding

function
Inputs A
= Qutputs
T * A |—
1 A f‘f/_v
— A T >\ .
A A [
A R

A | : ADALINE network

Fig. 2.19 A simple ADALINE network.

ADALINE network has had the most successful applications because it is
used virtually in all high speed modems and telephone switching systems to
cancel the echo in long distance communication circuits.

2.9.3 MADALINE Network



A MADALINE (Many ADALINE) network is created by combining a
number of ADALINES. The network of ADALINES can span many layers.

Figure 2.20 illustrates a simple MADALINE network. The use of multiple
ADALINES helps counter the problem of non-linear separability.

Fig. 2.20 MADALINE network.

For example, the MADALINE network with two units exhibits the capability
to solve the XOR problem (refer Fig. 2.21). In this, each ADALINE unit
receives the input bits x 1, x 2 and the bias input x 0 = 1 as its inputs. The
weighted sum of the inputs is calculated and passed on to the bipolar
threshold units. The logical ‘and’ing (bipolar) of the two threshold outputs
are computed to obtain the final output. Here, if the threshold outputs are

Weighted sum

of inputs Threshold unit
Xo = 1 |
0%)
X o W'E > ¥
w2
X /
z!
Inputs 1" Qutput
ADALINE UNIT - AND
v
Xp = 1 "
> , “AND’
w— Y (BIPOLAR)
w3 LOGIC UNIT
X2

A A
| |
Weighted sum  Threshold unit
of inputs



B (-1, +1) A (+1, +1)

Positive outputs

Negative

outputs A, C : Even parity inputs

CEt 1) | D) B, D : Odd parity inputs

both +1 or —1 then the final output is +1. If the threshold outputs are
different, (i.e.) (+1, —1) then the final output is —1. Inputs which are of even
parity produce positive outputs and inputs of odd parity produce negative
outputs.

Figure 2.22 shows the decision boundaries for the XOR problem while trying
to classify the even parity inputs (positive outputs) from the odd parity inputs
(negative outputs).

Fig. 2.21 A MADALINE network to solve the XOR problem.

Fig. 2.22 Decision boundaries for the XOR problem.

The learning rule adopted by MADALINE network is termed as
‘MADALINE Adaptation Rule’ (MR) and is a form of supervised learning.

In this method, the objective is to adjust the weights such that the error is
minimum for the current training pattern, but with as little damage to the
learning acquired through previous training patterns.

MADALINE networks have been subject to enhancements over the years.

2.10 SOME APPLICATION DOMAINS



Neural networks have been successfully applied for the solution of a variety
of problems. However, some of the common application domains have been
listed below:

Pattern recognition (PR)/image processing

Neural networks have shown remarkable progress in the recognition of visual
images, handwritten characters, printed characters, speech and other PR

based tasks.
Optimization/constraint satisfaction

This comprises problems which need to satisfy constraints and obtain
optimal solutions. Examples of such problems include manufacturing
scheduling, finding the shortest possible tour given a set of cities, etc. Several
problems of this nature arising out of industrial and manufacturing fields
have found acceptable solutions using NNs.

Forecasting and risk assessment

Neural networks have exhibited the capability to predict situations from past
trends. They have, therefore, found ample applications in areas such as
meteorology, stock market, banking, and econometrics with high success
rates.

Control systems

Neural networks have gained commercial ground by finding applications in
control systems. Dozens of computer products, especially, by the Japanese
companies incorporating NN technology, is a standing example. Besides they
have also been used for the control of chemical plants, robots and so on.

SUMMARY

NN are simplified models of the biological nervous systems. An NN



can be defined as a data processing system, consisting of a large number of
simple, highly interconnected processing elements ( artificial neurons), in an
architecture inspired by the structure of the cerebral cortex of the brain.

The brain is made up of a massive, highly interconnected network of
neurons. Each biological neuron is made up of a cell body— soma, with
dendrites acting as input channels and the axon terminating in a specialized
contact called synapse, as the output channel. The cumulative inputs received
by the soma induce the neuron to ‘fire’

resulting in either the excitation or inhibition of other neurons.

An artificial neuron receives n inputs x 1, x 2, ..., xn with weights w 1, w 2,
..., wn attached to the input links. The weighted sum of the inputs X wi- xi is
computed to be passed on to a nonlinear filter ¢ called activation function to
release the output @( 7). Here, ¢ could be a step function, signum function,
sigmoidal function or hyperbolic tangent function.

The three fundamental classes of NN architectures are, Single layer
feedforward architecture, Multilayer feedforward architecture, and
Recurrent networks architecture. The learning mechanisms of NNs are
broadly classified as Supervised, Unsupervised, and Reinforced learning
methods. Supervised and unsupervised learning methods have found
expression through rules such as Hebbian learning, Gradient Descent
learning Competitive learning, and Stochastic learning. BAM, Boltzmann
machine, Cauchy machine, Brain-State-in-a-Box, CPN, Hopfield network,
Backpropagation network, ART, Neocognitron, Perceptron, SOFM networks
are some of the well known NNs that have turned out to be milestones in NN
research.

Amongst the early NN architectures, Rosenblatt’s Perceptron has found a
prominent place, though it suffers from the drawback of weight
determination only for linearly separable tasks. However, a Multilayer
perceptron exhibits the capability to overcome this

problem. Bernard Widrow’s ADALINE and its extension to MADALINE
networks have been successful with regard to their applications.



NN have found wide applications in areas such as pattern recognition,
image processing, optimization, forecasting, and control systems to name a
few.

PROGRAMMING ASSIGNMENT

P2.1 (a) Implement using C/C++, the Fixed Increment Perceptron Learning
algorithm presented in Algorithm 2.1.

(b) The following is a training set for a 2-classification problem.
Iterate the perceptron through the training set and obtain the weights.
Inputs

Classification

X1

X2

0/1

0.25

0.353

0.25

0.471

0.5

0.353



0.5

0.647

0.75

0.705

0.75

0.882

1
P2.2 Attempt solving the XOR problem using the above implementation.

Record the weights. What are your observations?

SUGGESTED FURTHER READING



Plenty of books and journals are available on Neural Networks. Artificial
Neural

Networks—Theory
and

Applications
(Patterson,

1996),

Fundamentals of Neural Networks, Architectures, Algorithms and
Applications (Laurene Fausette, 1994), Fuzzy and Neural Approaches in
Engineering (Tsoukalas and Uhrig, 1997) are comprehensive titles to begin
with.

IEEE Transactions on Neural Networks, Neural Networks, Neuro Computing
and Neural Computation are a few of the well known journals.

Al Expert, IEEE Transactions on Systems, Man and Cybernetics, and IEEE

Transactions on Pattern Analysis and Machine Intelligence are some of the
well known NN related journals.
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Chapter 3
Backpropagation Networks

In Chapter 2, the mathematical details of a neuron at the single cell level and
as a network were described. Although single neurons can perform certain
simple pattern detection functions, the power of neural computation comes
from the neurons connected in a network structure. Larger networks
generally offer greater computational capabilities but the converse is not true.

Arranging neurons in layers or stages is supposed to mimic the layered
structure of certain portions of the brain.

For many years, there was no theoretically sound algorithm for training
multilayer

artificial neural networks. Since single layer networks proved severely limited
in what they

could represent (in what they could learn), the entire field went into virtual
eclipse. The resurgence of interest in artificial neural network began after the
invention of backpropagation algorithm.

Backpropagation is a systematic method of training multilayer artificial
neural networks. It is built on high mathematical foundation and has very
good application potential. Even though it has its own limitations, it is
applied to a wide range of practical problems and has successfully
demonstrated its power.

Rumelhart, Hinton and Wilham (1986) presented a clear and concise
description



of the backpropagation algorithm. Parker (1982) has also shown to have
anticipated

Rumelhart’s work. It was also shown elsewhere that Werbos (1974) had
described the method still earlier.

In this chapter, we describe the most popular Artificial Neural Network
(ANN)

architecture,
the
Multilayer
Feedforward
(MLFF)
network
with

backpropagation (BP) learning. This type of network is sometimes called
multilayer perceptron because of its similarity

to perceptron networks with more than one layer. First, we briefly review the
perceptron

model to show how this is altered to form (MLFF) networks. We derive the
generalized

delta (backpropagation) learning rule and see how it is implemented in
practice. We

will also examine variations in the learning process to improve the efficiency,
and ways to



avoid some potential problems that can arise during training. We will also
discuss

optimal parameters’ settings and discuss various other training methods. We
will also

look at the capabilities and limitations and discuss a number of applications
in various engineering fields.

NP w OR
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3.1.1 The Perceptron Model



In Chapter 2 (see Section 2.9.1), Rosenblatts’ perceptron was introduced and
its limitation with regard to the solution of linearly inseparable (or
nonlinearly separable) problems was discussed.

The 1nitial approach to solve such linearly inseparable problems was to have
more than one perceptron, each set up identifying small linearly separable
sections of the inputs. Then, combining their outputs into another perceptron
would produce a final indication of the class to which the input belongs. To
explain this, let us take the example of XOR problem discussed in Chapter 2.
Figure 3.1 illustrates the combination of perceptrons to solve the XOR
problem. Even though, it looks that the arrangement shown in Fig.

3.1 can solve the problem. On examination, it is clear that this arrangement
of perceptrons in layers will be unable to learn. As explained in Chapter 2,
each neuron in the structure takes the weighted sum of inputs, thresholds it
and outputs either a one or zero. For the perceptron in the first layer, the
input comes from the actual inputs of the problem, while for the perceptron
in the second layer the inputs are outputs of the first layer. The perceptrons of
the second layer do not know which of the real inputs from the first layer
were on or off.

L | A
Qutput |[1.0 Qutput
0 i — |nput 0 — input
Threshold at ¢ Threshold at 0

“Step” or “Heaviside” functions

Fig. 3.1 Combining perceptrons to solve XOR problem.
It is impossible to strengthen the connections between active inputs and

strengthen the correct parts of the network. The actual inputs are effectively
masked off from the output units by the intermediate layer. The two states of



neuron being on or oftf (shown in Fig. 3.2) do not give us any indication of
the scale by which we have to adjust the weights. The hard-hitting threshold
functions remove the information that is needed if the network is to
successfully learn. Hence, the network is unable to determine which of the
input weights should be increased and which one should not and so, it is
unable to work to produce a better solution next time. The way to go around
the difficulty using the step function as the thresholding process is to adjust it
slightly and to use a slightly different nonlinearity.

Fig. 3.2 Hard-hitting threshold function.
3.1.2 The Solution

If we smoothen the threshold function so that it more or less turns on or off
as before but has a sloping region in the middle that will give us some
information on the inputs, we will be able to determine when we need to
strengthen or weaken the relevant weights. Now, the network will be able to
learn as required. A couple of possibilities for the new thresholding function
are given in Table 3.1. Some of the functions have already been introduced in
Chapter 2. Even now, the value of the outputs will practically be one if the
input exceeds the value of the threshold a lot and will be practically zero if
the input is far less than the threshold. However, in cases when input and
threshold are almost same, the output of the neuron will have a value
between

) = Wl ) Wl | | BT, {318
or

u = {Will} (3.1b)

zero and one, meaning that the output to the neurons can be related to input
in a more informative way.

As seen in Chapter 2, an artificial neuron is developed to mimic the
characteristics and functions of a biological neuron. Analogous to a
biological neuron, an artificial neuron receives much input representing the
output of the other neurons. Each input is multiplied by the corresponding
weights analogous to synaptic strengths. All of these weighed inputs are then



summed up and passed though an activation function to determine the
neuron output. The artificial neural model (with new notations to suit the
discussion in this chapter) is shown in Fig. 3.3.
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Considering threshold 0, the relative input to the neuron is given by The
activation function f{ u) is chosen as a nonlinear function to emulate the
nonlinear behaviour of conduction current mechanism in a biological neuron.

However, as the artificial neuron is not intended to be a xerox copy of the
biological neuron, many forms of nonlinear functions have been suggested
and used in various engineering applications. Some of the activation
functions along with their mathematical descriptions given in Table 3.1 are
most commonly used activation functions in multilayered static neural
networks. It is also seen that for sigmoidal functions, the output of a neuron
varies continuously but not linearly with the input. Neurons with sigmoidal
functions bear a greater resemblance to biological neurons than with other



activation functions. Even if the sigmoidal function is differentiated, it gives
continuous values of the output. Hard limiter (see Table 3.1) and radial basis
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functions are also equally popular .
3.1.3 Single Layer Artificial Neural Network

In the preceding section, we have seen the mathematical details of a neuron
at a single level. Although a single neuron can perform certain simple pattern
detection problems, we need larger networks to offer greater computational
capabilities. In order to mimic the layered structure of certain portions of the
brain, let us explain the single feedforward neural network as shown in Fig.
3.4(a) and the block diagram is given in Fig. 3.4(b). Consider a single layer
feedforward neural network shown in Fig. 3.4(a) consisting of an input layer
to receive the inputs and an output layer to output the vectors respectively.
The input layer consists of ‘ n’ neurons and the output layer consists of * m’
neurons. Indicate the weight of the synapse connecting i th input neuron to
the j th output neuron as Wij. The inputs of the input layer and the
corresponding outputs of the output layer are given as

Assume, we use linear transfer function for the neurons in the input layer and
the unipolar sigmoidal function for the neurons in the output layer (refer
Table 3.1).
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Fig. 3.4(a) Single layer feedforward neural network.

Fig. 3.4(b) Block diagram of a single layer feedforward neural network.

Using the unipolar sigmoidal or squashed-S function as shown in Fig.

3.5(a) and the slope of this function as given in Fig. 3.5(b) for neurons in the
output layer, the output is given by

OOk is evaluated as given in Eq. (3.8a). In Eq. (3.8a), A is known as
sigmoidal gain. The block diagram representation of Eq. (3.8b) is shown in



Fig. 3.4(b). In Eq. (3.7), [ W] is called weight matrix and is also known as
connection matrix.

0.25

fify= 7
(M+e ™"}

{3.9)
aml Fify= A0 - 1gm 3.9k
Fig. 3.5(a) Squashed-S function for various values of A .

Fig. 3.5(b) Squashed-S slope.

The nonlinear activation function f[ WI] in Eq. (3.8a) operates component
wise on the activation values ‘ I’ of each neuron. Each activation value 1s in



turn a scalar product of the input with respect to weight vectors. The
sigmoidal function is given as

3.1.4 Model for Multilayer Perceptron

The adapted perceptrons are arranged in layers and so the model is termed as
multilayer perceptron. This model has three layers; an input layer, and output
layer, and a layer in between not connected directly to the input or the output
and hence, called the hidden layer. For the perceptrons in the input layer, we
use linear transfer function, and for the perceptrons in the hidden layer and
the output layer, we use sigmoidal or squashed-S functions. The input layer
serves to distribute the values they receive to the next layer and so, does not

Input layer Output layer

perform a weighted sum or threshold. Because we have modified the single
layer perceptron by changing the nonlinearity from a step function to a
sigmoidal function and added a hidden layer, we are forced to alter the
learning rules as well. So now, we have a network that should be able to learn
to recognize more complex things. The input—output mapping of multilayer
perceptron is shown in Fig. 3.6(a) and is represented by

O=N3[N2[NI[1]]...c.c..... (3.10) In Eq. (3.10), N1, N2, and N 3 (see
Fig. 3.6(b)) represent nonlinear mapping provided by input, hidden and
output layers respectively. Multilayer perceptron provides no increase in



computa-tional power over a single layer neural network unless there is a
nonlinear activation function between layers.

Many capabilities of neural networks, such as nonlinear functional
approximation, learning, generalization etc. are in fact due to nonlinear
activation function of each neuron.

The three-layer network shown in Fig. 3.6(a) and the block diagram shown in
Fig. 3.6(b) show that the activity of neurons in the input layers represent the
raw information that is fed into the network. The activity of neurons in the
hidden layer is determined by the activities of the neurons in the input layer
and the connecting weights between input and hidden units. Similarly, the
activity of the output units depends on the activity of neurons in the hidden
layer and the weight between the hidden and output layers. This structure is
interesting because neurons in the hidden layers are free to construct their
own representations of the input.

Fig. 3.6(a) Multilayer perceptron.

J—T[M*—a-h-'z > Ny, |—>0

Input layer Hidden layer Output layer

Fig. 3.6(b) Block diagram representing three-layer ANN.



Input layer Hidden layer Output layer
I-nodes m-nodes n-nodes

3.2 BACKPROPAGATION LEARNING

Consider the network as shown in Fig. 3.7 where the subscripts I, H, O
denote input, hidden and output neurons.

Fig. 3.7 Multilayer feedforward backpropagation network.

Consider a problem in which an “nset” of “I”” inputs and the corresponding
“nset” of “n” output data is given as shown in Table 3.2.

Table 3.2 “nset” of input and output data

No.



Input
Output
I1

12

1l

01

0?2

On

0.3

0.4

0.8

0.1

0.56

0.82



nset
3.2.1 Input Layer Computation

Consider linear activation function the output of the input layer is input of
input layer (considering g = tan @ = 1). Taking one set of data

{oYyI1={1}1 (3.11)
V]
[ % m
1r I i
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[x1..... [x1

The hidden neurons are connected by synapses to input neurons and (let us
denote) Vij is the weight of the arc between i th Input neuron to j th hidden
neuron. As shown in Eq. (3.1b), the input to the hidden neuron is the
weighted sum of the outputs of the input neurons to get /Hp (i.e. Input to the
p th hidden neuron) as

IHp=V1pOI1+V2pOI2+..+VI1pOll (3.12)(p=1,2,3, ... m)

Denoting weight matrix or connectivity matrix between input neurons and
hidden neurons as

, we can get an input to the hidden neuron as
{I}H=[V]IT{O}I B.13)mx 1........... mxIllx1
3.2.2 Hidden Layer Computation

Considering sigmoidal function or squashed-S function, the output of the p
th hidden neuron is given by



where OHp is the output of the p th hidden neuron, /Hp is the input of the p
th hidden neuron, and © Hp is the threshold of the p th neuron. A non-zero
threshold neuron is computationally equivalent to an input that is always held
at —1 and the non-zero threshold becomes the connecting weight values as
shown in Fig. 3.8.

A (3.15)

Fig. 3.8 Treating threshold in hidden layer.
But in our derivations we will not treat threshold as shown in Fig. 3.8 .
Now, output to the hidden neuron is given by

Treating each component of the input of the hidden neuron separately, we get
the outputs of the hidden neuron as given by Eq. (3.15).



As shown in Fig. 3.1(b) the input to the output neurons is the weighted sum
of the outputs of the hidden neurons. To get /Oq (i.e. the input to the ¢ th
ouput neuron)

10g=W1qOH 1+ W?2qOH?2+ ..+ WmgOHm (3.16) (g=1,2,
3,...,n)

Denoting weight matrix or connectivity matrix between hidden neurons and
output neurons as [ W], we can get input to the output neuron as

{1} O=[W]T{O}H Bl17)nx1l.nxm..mx1

3.2.3 Output Layer Computation

o e o, (3.1%)
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Considering sigmoidal function, the output of the g th output neuron is given
by

where, OOq is the output of the g th output neuron, /0gq is the input to the g
th output neuron, and 0 Ogq is the threshold of the g th neuron. This threshold
may also be tackled again by considering extra O th neuron in the hidden
layer with output of —1 and the threshold value 6 Og becomes the connecting
weight value as shown in Fig. 3.9.

Fig. 3.9 Treating threshold in output layer.
Hence, the outputs of output neurons are given by
3.2.4 Calculation of Error

Considering any r th output neuron and for the training example we have
calculated the output * O’ for which the target output * 7” is given in Table
3.2.

Hence, the error norm in output for the r th output neuron is given by (3.20)

E I

i

H

12 s o sun
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1 % >
E'= EZ(T&_ODJH

r=1

where



= 1/2 second norm of the error in the r th neuron (‘ er’) for the given training
pattern. The square of the error is considered since irrespective of whether
error is positive or negative, we consider only absolute values. The Euclidean
norm of error E 1 for the first training pattern is given by (3.21)

Equation 3.21 gives the error function in one training pattern. If we use the
same technique for all the training patterns, we get

(3.22)
where E is the error function depending on the m (1 + n) weights of [ W] and

[ V]. This is a classic type of optimization problem. For such problems, an
objective function or cost function is usually defined to be maximized or
minimized with respect to a set of parameters. In this case, the network
parameters that optimize the error function E over the ‘nset’ of pattern sets

[ I nset, ¢ nset] are synaptic weight values [ V] and [ W] whose sizes are

[ Vland [ W] (3.23)

3.2.5 Training of Neural Network

The synaptic weighting and aggregation operations performed by the
synapses and soma respectively, provide a ‘similarity measure’ between the
input vector / and the synaptic weights [ V] and [ W] (accumulation
knowledge base). When a new input pattern that is significantly different
from the previously learned pattern is presented to the neural network, the
similarity between this input and the existing knowledge base is small. As
the neural network learns this new pattern, by changing the strengths of
synaptic weights, the distance between the new information and accumulated
knowledge decreases as shown in Fig. 3.10. In other words, the purpose of
learning is to make “W and V” very similar to given pattern /.



I (New neural information)

W, V (Accumulated knowledge

X .
> In synapse)

Fig. 3.10 Similarity between new information and past knowledge.

Most of the neural network structures undergo ‘learning procedures’ during
which synaptic weights W and V are adjusted. Algorithms for determining
the connection strengths to ensure learning are called ‘learning rules’. The
objective of learning rules depends upon applications. In classification and
functional approximation problems, each cycle of presentation of all cases is
usually referred as ‘learning epoch’ However, there has been no
generalization as to how a neural network can be trained.

As in Chapter 2, neural network learning algorithms have been classified as
Supervised and Unsupervised learning algorithms. The learning algorithms
are shown in Fig. 3.11. Supervised algorithms are also known as ‘error based
learning algorithms’ which employ an external reference signal (teacher) and
generate an error signal by comparing the reference with the obtained
response. Based on error signal, neural network modifies its synaptic
connections to improve the system performance. In this scheme, it is always
assumed that the desired answer is known

“a priori”. In this backpropagation neural network, we use the procedure of
supervised learning of backpropagation. In contrast, as seen in Chapter 2,
unsupervised (output based) learning or competitive learning involve
adjustment of synaptic weights according to the correlation of the response
of two neurons that adjoin it. Error based algorithms need desired responses
or training data labelled with target results. If target results are unknown then
error based algorithms are useless and learning output based learning
algorithm are useful. Figure 3.11 reviews the supervised learning



classification. Let us discuss the supervised learning algorithm for
backpropagation neural network.

Supervised learning

Error correction Stochastic

Backpropagation Least mean square

nset
E= ) EF(.W.D)
p=1

;

|
|
—> V
|
|
|

W ?J?]nitial weights
o

Best weights Adjusted weights
Fig. 3.11 Learning algorithms.
3.2.6 Method of Steepest Descent

The error surface is given by



..(3.24)

and is shown in Fig. 3.12. Multilayer feedforward networks with nonlinear
activation functions have mean squared error (MSE) surface above the total
(Q-dimensional weight space RQ which is not in general, a smooth parabolic
surface as in the single layer linear activation case. In general, the error
surface 1s complex and consists of many local and global minima, shown by
MclInerney and Dhawan (1989) as illustrated in Fig. 3.13.

Fig. 3.12 Euclidian norm of errors.

A
W
@
=
M
=
@
]
@
G -
o
w
S
L
-
Weight values
nset k
E= o O B = e 3, (O — 04
nset 2 X nset & Ok
p=1 p=1

Fig. 3.13 Typical error surface for MLFF networks with nonlinear activation
function.

In backpropagation (BP) networks, at any given error value E, including
minima regions, there are many permutations of weights which give rise to
the same value of E. BP is never assured of finding global minimum as in the
simple layer delta rule case. In general, for MLFF network case, the error
surface will have many local minima. Sometimes, one can get stuck during
the learning process on flat or near flat regions of the error surface.



At the start of the training process, gradient descent search begins at a
location with error value E determined by initial weight assignments W(0),
V(0) and the training pattern pair ( Ip, Op) where, (3.25)

During training, the gradient descent (shown in Fig. 3.12) computations
incrementally determine how the weights should be modified at each new
location to move most rapidly in the direction opposite to the direction of
steepest ascent (a steepest descent). After the incremental adjustments to the
weights have been made, the location is shifted to a different E location on
the error-weight surface. This process is repeated for each, training pattern
(or each epoch {( Ip, Op),

p=1,2,..., nset), progressively shifting the location to lower level until a
threshold error value is reached or until a limit on the total number of
training cycles is reached.

In moving down the error—weight surface, the path followed is generally not
the ideal path. It depends on the shape of the surface and the learning rate
coefficient n, which is discussed later. In general, error surface contains
many
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flat areas and troughs where the weights must be changed many times to
realize perspective drop in error. From experience, it is found that at the
places of steep slopes, larger steps can result in oscillating movements across
the slopes. Because of such anomalies, it is difficult to work with steepest
descent method to choose the current direction to move, thereby making
progress slow and uncertain. It is known that error surface is the summation
of quadratic terms which describes elliptical rather than circular contours and
gradient will not point directly in the direction of the minimum (see Fig.

G =

3.14).
Fig. 3.14 Direction of descent for two dimensional case.

Since the error surface is steeper along V dimension than W dimension, the
derivative of E with respect to V is greater than the derivative with respect to
W, resulting in a combined vector shifted more in the direction of V

derivative. Hence, combined vector does not point towards the true
minimum. For simplicity, we assume the error surface shown in Fig. 3.12 as
truly spherical. From Fig. 3.12, the vector

1s written as
(3.26)
The gradient is given by

(3.27)



and hence, the unit vector in the direction of the gradient is given by (3.28)

Hence,
AB=q [g—fjﬂ g—ﬁ,j]
L3
G
ar«'--nf%; H’——q% (3.31)
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n =; K is a constant (3.30)
Comparing Eq. (3.26) with Eq. (3.29) we get

where, Tk is the target output of the k th output neuron and Ook is the
computed output of the k th output neuron.

Hence, the derivative of the sigmoidal function is a simple function of
outputs. Let us evaluate

as
fow = WO+ Woplyp + o= WOy (3.33)
us wiven by Ly, (3.17)
dday
=7 136
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where d; is given by the Eq. {339).

Now we compute

by applying the chain rule of differentiation as
Define d *

k as
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where

ely = dey (O (1 — O {3.45)

Combining Ea. (338 and Ego (3447 we pet

[AHE = 1 L0 Ly (3460
=g mx bl =h

[AF] = i () (3.46h)
Il m {x 1]l =xm

nin Eqg. (246) is known as learning cate cocfficient.
3.2.7 Effect of Learning Rate ‘n’

Learning rate coefficient determines the size of the weight adjustments made
at each iteration and hence influences the rate of convergence. Poor choice of
the coefficient can result in a

failure in convergence. We should keep the coefficient constant through all
the iterations for

best results. If the learning rate coefficient is too large, the search path will
oscillate and converges more slowly than a direct descent as shown in Fig.

3.15(a). If the coefficient is too small, the descent will progress in small steps
significantly increasing the time to converge

(see Fig. 3.15(b)). For the example illustrated in this chapter, the learning
coefficient is taken as 0.9 and this seems to be optimistic (see Fig. 3.15(c)).

Jacobs (1988) has suggested the use of adaptive coefficient where the value
of the learning coefficient is the function of error derivative on successive
updates.
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Fig. 3.15 Convergence paths for different learning coefficients.
3.2.8 Adding a Momentum Term

There is another way possible to improve the rate of convergence by adding
some inertial or momentum to the gradient expression. This can be
accomplished by adding a fraction of the previous weight change to the
current weight change. The addition of such a term helps to smooth out the



descent path by preventing extreme changes in the gradients due to local
anomalies. A commonly used update rule introduced by Rumelhart et al.

(1986) includes such a momentum term. The updation equations used by

Rumelhart are defined as
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Similarly, the thresholds may be updated as
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where a is defined as the momentum coefficient. The value of a should be
positive but less than 1. Typical values lie in the range of 0.5—-0.9. But for
some problems, Fahlman (1988) used a value for a = 0 and showed it to be

the best.
Hence, Eq. (3.46) are modified and written as
The weights and thresholds may be updated as

3.2.9 Backpropagation Algorithm



We have already seen the benefit of the middle-hidden layer in an artificial
neural network. We understand that the hidden layer allows ANN to develop
its own internal representation of this mapping. Such a rich and complex
internal representation capability allows the hierarchical network to learn any
mapping and not just linearly separable ones. Let us consider the three-layer
network with input layer having ‘ I’ nodes, hidden layer having ‘ m’ nodes,
and an output layer with ‘ n” nodes. We consider sigmoidal functions for
activation functions for the hidden and output layers and linear activation
function for input layer. The number of neurons in the hidden layer may be
chosen to lie between | and 21. The basic algorithm loop structure is given as

Inibialize the waighls
Eepeat
For each training pattern

rain an that pattern

Erici
Until bhe erroz is accentably low

Step 1 HNormalize the inputs and cutputs with resgpect to their
maximum values. It 1= proved that the neural networks
work oDestter 12 1nput and outputs lisg betwsen [0-1. For
zach training pair, assume there are "W inputs given
& {i.': IoE T R ) ol 3 = Sl
Yy q @nd o' ooutputs .9 in & normalissd form,

tep. 2 azsume the number of neursns In the hidden layer to lie

; : st
nRTWeRn Y Ena AT

Algorithm 3.1 illustrates the step by step procedure of the backpropagation
algorithm.

Algorithm 3.1 (Backpropagation Learning Algorithm)

Algorithm BPN( )
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Once the process converges, the final weights should be stored in a file.

Now, we are ready to test the neural net. Given any other input, we will be
able to get the outputs and this is known as inference session. Hence, it is
seen that training of an artificial neural network involves two passes. In the
forward pass, the input signals propagate from the network input to the
output. In the reverse pass, the calculated error signals propagate backwards
through the network where they are used to adjust the weights. The
calculation of output is carried out layer by layer in the forward direction.

The output of one layer in weighted manner will be the input to the next
layer. In the reverse pass, the weights of the output neuron layer are adjusted
first since the target value of each output neuron is available to guide the
adjustment of associated weights.



Input layer Hidden layer Output layer

3.3 ILLUSTRATION

Consider that for a particular problem there are five training sets as shown in
Table 3.3.

Table 3.3 Training sets
S. no.

Inputs

Output

I1

12

O



0.1

0.6
0.1

0.3

0.2
0.4

0.25

-0.2
0.12

In this problem, there are two inputs and one output and already, the values
lie between

—1 to 1 and hence, there is no need to normalize the values. Assume two
neurons in the hidden layer. The neural network architecture is shown in Fig.



3.16.
With the data of the first training set.

Fig. 3.16 MFNN architecture for the illustration.
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Step 15: With the updated weights [ V] and [ W], error is calculated again
and next training set is taken and the error will be adjusted.



Step 16: Iterations are carried out till we get the error less than the tolerance.
Step 17: Once weights are adjusted the network is ready for inference.

A computer program “NEURONET” is developed for training the data and
inferring the results using backpropagation neural network.

Bearing
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I | . | ) ‘
Guide | | Journal l | Thrust |
| I
Pivot or step | Collar ! Ball . Roller

3.4 APPLICATIONS
3.4.1 Design of Journal Bearing

Whenever the machine elements move, there are bearing surfaces, some of
which are lubricated easily and completely, some which are lubricated
incompletely and with difficulty, and some of which are not lubricated at all.

When the load on the bearing is low and the motion is slow, the bearing is
lubricated with oil poured in an oil hole or applying lubricant with some
other device from time to time. When either the load, or speed or both are
high as in modern high-speed machinery, the lubrication by oil or by other
fluids must be designed according to the conditions of operation. When there
is a relative motion between two machine parts, one of which supporting the




other, then the supporting member is called bearing. The bearings are
classified as shown in

Fig. 3.17(a).
Fig. 3.17(a) Different types of bearings.
Out of the bearings given in Fig. 3.17(a), let us consider journal bearing.

Design of journal bearing depends on the load, speed of the journal,
clearance in the bearing, length and diameter of the bearing, and the kinds of
surface.

The journal bearing is shown in Fig. 3.17(b).
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Fig. 3.17b Journal bearing.

For the design of journal bearing, one has to take into account the end
leakage and for various L/ D ratios performance variables are plotted with



Summerfield number by Raimondi and Boyd (Kulkarni, 1997) and the
results are given in the form of a table (Table 29 of Kulkarni, 1997). The
variables included in the table are

where

L—Ilength of the bearing in mm

h O—minimum film thickness in mm
D—diameter of the Journal bearing in mm
C—diametrical clearance

Cr—radial clearance

e—eccentricity inmm = C/2 - h 0
P—Dbearing pressure on projected area in MPa
P max—maximum pressure in MPa
ns—significant speed in revolutions/s
r—radius of the bearing

e=¢elc



12 Quiput 1 of trained data

0.8 -

064

Values

0.4

0.2~

* » 4 . L | | I
1 2 3 4 5 € 7 8 9 10 11 12 13 14
Number of samples
o Calculated value —m— Actual value

S = ( 1/ ¢)2u N/p—Sommerfeld number p—density of oil in kgf/cu.cm
g—oil flow through the bearing cu.m/s
gs—axial flow of oil in cu.m/s

“NEURONET” is used to train the data and infer the results for test data. A
backpropagation neural network with 8 input neurons, 8 hidden neurons, and
2 output neurons has been used. The learning of 0.6 and momentum factor of
0.9 have been used. Altogether, 5000 iterations have been performed till the
error rate converges to the tolerance. The training data and testing data have
been normalized so that inputs and outputs are within the range of 0—1. The
training data is given in Table 3.4 and the testing data is given in Table 3.5.

Once the network is trained with the given training data the values are
inferred both for training and testing the data . Figures 3.18(a) and 3.18(b)
show the performance of the neural network for both the outputs for training
data and it is seen that the inferred values, by using neural network, are very
close to the actual values. Figures 3.19(a) and 3.19(b) show the performance



of the neural network for both the outputs for test data and it is seen that
there is discrepancy at the boundaries.

Fig. 3.18(a) Comparison of values for output 1 =p ¢ A t o/( P x 200).
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Fig. 3.18(b) Comparison of values for output 2 = P/ P max.

Fig. 3.19(a) Comparison of values for output 1 =p ¢ A t o/( P x 200).
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Fig. 3.19(b) Comparison of values for output 2 = P/ P max.

Table 3.4 Training data (journal bearing problem)

1

2



9

10

Actual Calculated

Actual Calculated

1

0.2

0.8

0.006

0.747

0.0064

0.283

0.057

0.0

0.814

0.81

0.6

0.4

0.0019



0.603

0.003

0.156

0

0.04865

0.0

0.667

0.67

0.9

0.1

0.0005

0.351

0.0018

0.041

0.116

0.0

0.358

0.36



0.1

0.1

0.9

0.065

0.883

0.066

0.337

0.15

0.53

0.53

0.54

0.55

0.1

0.4

0.6

0.013

0.701

0.014

0.399

0.497



0.12

0.12

0.489

0.48

0.1

0.8

0.2

0.002

0.402

0.004

0.462

0.892

0.04

0.01

0.313

0.31

0.1

0.97

0.03

0.0002



0.773

0.0012

0.48

0.973

0.013

0.152

0.15

0.05

0.2

0.8

0.1

0.832

0.102

0.372

0.318

0.52

0.52

0.506

0.50



0.05

0.4

0.6

0.0385

0.682

0.0425

0.429

0.552

0.343

0.34

0.44

0.44

0.05

0.8

0.2

0.0046

0.37

0.0081

0.541

0.874



0.067

0.0800

0.267

0.26

0.05

0.97

0.03

0.0

0.152

0.0015

0.588

0.98

0.0125

0.03

0.0126

0.12

0.025

0.4

0.6

0.14



0.676

0.152

0.437

0.517

0.415

0.47

0.025

0.8

0.2

0.014

0.344

0.022

0.56

0.884

0.17

0.17

0.24

0.24



0.025
0.97
0.3
0.01
0.135
0.0023
0.612
0.984
0.087
0.08
0.108

0.11
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Table 3.5 Test data (journal bearing problem)
1

2



9

10

Actual Calculated

Actual Calculated

1

0.1

0.9

0.012

0.767

0.012

0.303

0.099

0.26



0.84

0.8

0.2

0.001

0.468

0.0024

0.0706

0.0795

0.495

0.50

0.1

0.2

0.6

0.013

0.701

0.014

0.391



0.497

0.125

0.43

0.485

0.46

0.1

0.9

0.03

0.009

0.293

0.0026

0.479

0.919

0.0045

0.247

0.15

0.05

0.1

0.9



0.215

0.906

0.214

0.343

0.173

1.0

0.8

0.523

0.53

0.05

0.6

0.4

0.319

0.534

0.020

0.485

0.73

0.165

0.16

0.365



0.41

0.025

0.2

0.8

0.371

0.834

0.39

0.376

0.33

1.0

0.52

0.489

0.54

0.025

0.6

0.4

0.05

0.519

0.066

0.499



0.746

0.55

0.32

0.334

0.36

3.4.2 Classification of Soil

The objectives of soil exploration and classification are to find the suitability
of the soil for the construction of different structures, embankments, sub-
grades, and wearing surfaces. Soil seldom exists in nature separately as sand,
gravel or any other single component but is usually found as mixture with
varying proportions of particles of different sizes. Sandy clay has most of the
properties of clay but contains significant amount of sand. Many different
classification systems of soil exist, out of which many engineers use Bureau
of Indian Standards system. The soil has to be classified so as to find its
suitability for the construction of dams, roads, highways, and for buildings.

Bureau of Indian Standards system (Reference 8) is based on those
characteristics of the soil which indicates how it will behave as a
construction material. The classification is given

in Fig. 3.20.



Soil

I I

|_C{:E|rseu grain&d_| Fine érained-
| |
Gravely soil | | Sandy soil | Silts and Clay 35<W, <50 | W,>50
] | , _
Well graded | | Poarly graded | Silty gravel I | Clayey gravel
I I I
Well graded | Poorly graded Silty sand Clayey sand

Fig. 3.20 Classification of soil.
The architecture used for grouping the soil is 6-6-1 with 6 input neurons, 6

hidden neurons and 1 output neuron. The six inputs represent colour of the
soil, percentage of gravel, percentage of sand, percentage of fine grained
particles, liquid limit WL, and plastic limit WP. The output represents the IS

classification of the soil. The codes taken for IS classification are 0.1 for
clayey sand (SC), 0.2 for clay with medium compressibility (CI), 0.3 for clay
with low compressibility (CL), and 0.6 for silt with medium compressibility
(MI). The codes taken for colour of the soil are 0.1 for brown, 0.2 for
brownish grey , 0.3 for greyish brown, 0.5 for reddish yellow, and 0.7 for
yellowish red. All the inputs and output values are normalized. Thirty
training sets are taken and the network is trained for 250 iterations with the
learning rate and momentum values as 0.6 and 0.9 respectively. The error
rate at the end of 250th iteration was found to be 0.0121. Tables 3.6 and 3.7
give sample training data and the test data. The rejection rate was found to be
nil for trained set and 8% for untrained set.

Table 3.6 Sample training data for soil classification



(Values in brackets show actual values)
(Fine

(Liquid
(Plastic

Colour of
(Gravel %)
(Sand %)

L.S.

grained

limit %)

limit %)

the soil

18

82
classification
particles %)/84
59

34

0.2

0.111



0.682

0.5

0.508
0.529
0.1(0.1)
0.2

0

0.536
0.666
0.576
0.647
0.292(0.3)
0.1

0

0.329
0.869
0.711
0.735
0.203(0.2)

0.3



0

0.756
0.452
0.491
0.529
0.129(0.1)
0.5

0

0.585
0.619
0.627
0.852
0.608(0.6)
0.2

0

0.524
0.678
0.576
0.676

0.328(0.3)



0.5

0

0.573

0.63

0.61

0.823
0.595(0.6)
0.2

0

0.512
0.69
0.576
0.647
0.296(0.3)
0.1

0

0.341
0.857
0.694

0.705



0.193(0.2)
0.2

0

0.548
0.654
0.576
0.647
0.289(0.3)
0.7

0

0.353
0.845
0.677

1
0.614(0.6)
0.5

0

0.585
0.619

0.61



0.823
0.594(0.6)
0.2

0.222
0.682
0.476
0.508
0.529
0.0842(0.1)
0.1

0

0.317

0.88

0.728
0.764
0.211(0.2)
0.1

0

0.341

0.857



0.711
0.735
0.21(0.2)
0.2
0.166
0.67

0.5
0.525
0.558

0.112(0.1)

Table 3.7 Inference results for soil classification (untrained data) 0.1
0

0.304

0.892

0.728

0.754

0.204(0.2)

0.2

0



0.536
0.666
0.576
0.647
0.292(0.3)
0.5

0

0.597
0.607

0.61

823
0.592(0.6)
0.1

0

0.951

0.261
0.627
0.676
0.0912(0.1)

0.2



0

0.512
0.69

0.593
0.676
0.326(0.3)
0.1

0

0.926
0.285
0.627
0.676
0.0961(0.1)
0.2

0.222
0.658

0.5

0.525
0.529

0.0887(0.1)



0.1

0

0.341

0.857

0.728

0.735

0.206(0.2)

3.4.3 Hot Extrusion of Steel

Hot metal forming has become an attractive process in industry due to its
ability to achieve energy and material savings, quality improvement, and
development of homogeneous properties throughout the component. In spite
of these advantages, the process is rather complicated as it requires careful
control and inspection to verify that the final component has the requisite
mechanical properties. It in turn demands a peruse simulation and analysis of

iy

VN




the process. The effect of various process parameters such as die angle and
velocity of die on factors such as forging head, equivalent stress, and
equivalent strain are simulated with a finite element code for hot extrusion of
CRA45 steel billet. The initial temperature of the billet is 1050 degree
centigrade and it is extruded in dies which are maintained at 100 degree
centigrade. Hansraj and others (1992) have simulated forward hot extrusion
of transmission shaft with various die angles and punch velocities using the
six noded triangular elements (Zienkiewicz, 1992). A solid cylinder at 1050

degree centigrade with dies is kept at 100 degree Centigrade. The geometry
1s axi-symmetric in nature. So, only one half of the part is simulated as
shown in Fig. 3.21.

Fig. 3.21 Finite element idealization.

The variation of forging forces with different die angles and punch velocities
along with the equivalent strain, equivalent stress, and equivalent strain rate
are obtained using finite element analysis and tabulated as shown in Table
3.8. Neural networks are nowadays applied to the simulation of hot extrusion
due to the fact that finite element solutions of hot forging are very complex
and require a lot of computer time. In a factory where decisions need to be
taken quickly, it is advantageous to have a system that can advise an engineer
without resorting to large calculations. Hence, one can explore the potential
of both the finite element simulations and neural network modelling of hot
extrusions so that process decisions can be taken in real time. The neural
network architecture consists of three layers—two input neurons, eight
neurons in a hidden layer, and five output neurons. Both inputs

and outputs are normalized such that values lie between 0 and 1. The
learning rate and momentum factor are taken as 0.6 and 0.8 respectively. The
error rate reaches the tolerance value at 3500 iterations. The inputs are die
angle and punch velocity and the outputs consist of forging load, maximum
equivalent strain, maximum equivalent stress, maximum normal velocity,
and equivalent strain rate. Twenty-four data sets are taken for training and
eighteen data sets are taken for testing. After the neural network is trained, it
is used for inferring. The values obtained using backpropagation neural



network using the program (NEURONET) for the training data are given in
Table 3.8 and for the test data are given in

Table 3.9. The network predictions for one output, that is, for forging load
are shown in Fig. 3.22.

Table 3.8 Trained data (hot extrusion of steel)
Input

Output

Equi max

Max normal
Die

Die vel
Forging
Equivalent
stress

velocity in
ang/90
mm/s/200
load/400

max strain/6
(kg/sq.mm)/0.3

mm/s/5000



actual

calculated

actual

calculated

actual

calculated

actual

calculated

actual

1

0.333

0.875

0.83

0.726

0.74

0.792

0.82

0.683

0.72

0.355



0.5

0.6175

0.67

0.843

0.78

0.807

0.76

0.804

0.69

0.486

0.66

0.45

0.48

0.76

0.63

0.804

0.89

0.609



0.62

0.66

0.83

0.325

0.33

0.252

0.35

0.9

0.95

0.661

0.5

0.925

1.0

0.3

0.29

0.5

0.33

0.795



0.72

0.736

0.72

0.359

0.83

0.333

0.837

0.80

0.861

0.72

0.838

0.78

0.7012

0.69

0.442

0.83

0.5

0.55

0.61

0.465



0.63

0.748

0.83

0.514

0.63

0.149

0.83

0.666

0.43

0.42

0.366

0.35

0.881

0.93

0.5536

0.58

0.231

0.83

0.83

0.28



0.32

0.27

0.27

0.78

0.74

0.7528

0.69

0.302

0.83

1.0

0.25

0.26

0.25

0.32

0.07

0.24

0.712

0.79

0.335

0.667



0.667

0.375

0.36

0.363

0.22

0.853

0.77

0.5728

0.65

0.229

0.5

0.333

0.6825

0.7

0.318

0.38

0.789

0.8

0.689

0.6



0.32

0.5

0.5

0.455

0.45

0.24

0.19

0.758

0.79

0.617

0.62

0.2044

0.5

0.66

0.325

0.28

0.148

0.19

0.683

0.59



0.785

0.63

0.175

0.5

0.83

0.195

0.17

0.15

0.18

0.64

0.59

0.5252

0.5

0.1214

0.5

1.0

0.125

0.12

0.128

0.14



0.625

0.59

0.369

0.35

0.1365

0.333

0.333

0.65

0.63

0.271

0.22

0.758

0.76

0.684

0.64

0.247

0.333

0.5

0.275

0.37



0.125

0.18

0.608

0.72

0.4372

0.6

0.0827

0.333

0.66

0.3175

0.22

0.268

0.16

0.751

0.68

0.709

0.48

0.233

0.333

0.83



0.084

0.14

0.113

0.13

0.546

0.62

0.2328

0.36

0.041

0.333

1.0

0.066

0.1

0.108

0.1

0.53

0.56

0.228

0.27

0.0429
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0.167

0.333

0.62

0.63

0.275

0.29

0.686

0.71

0.688

0.72

0.134



0.167

0.5

0.43

0.4

0.276

0.26

0.65

0.66

0.605

0..63

0.081

0.167

0.666

0.2925

0.27

0.21

0.23

0.673

0.57

0.613



0.53

0.108

Fig. 3.22 Punch velocity versus forging load.
Table 3.9 Testing data (hot extrusion of steel)
Input

Output

Max

Max

Strain

Die

Velocity

Load

Eq.strain

stress

velocity

rate

angle/90

1200

400



300

5000

1200

1.0

0.167

0.93

0.63

0.91

0.74

0.36

1.0

0.583

0.57

0.74

0.80

0.66

0.43

1.0

0.916



0.3

0.31

0.91

0.63

0.50

0.83

0.167

0.91

0.64

0.87

0.73

0.33

0.83

0.583

0.5

0.49

0.9

0.59

0.43

0.83



0.916

0.2

0.3

0.43

0.70

0.23

0.667

0.167

0.9

0.64

0.82

0.70

0.28

0.667

0.583

0.44

0.25

0.88

0.59

0.31



0.667

0.916

0.21

0.25

0.38

0.67

0.19

0.5

0.167

0.88

0.59

0.73

0.67

0.20

0.5

0.583

0.36

0.18

0.67

0.64



0.17

0.5

0.986

0.14

0.16

0.59

0.42

0.15

0.333

0.167

0.86

0.47

0.64

0.67

0.14

0.333

0.583

0.28

0.17

0.70



0.55

0.15

0.333

0.916

0.12

0.11

0.58

0.31

0.06

0.167

0.167

0.87

0.45

0.6

0.78

0.14

0.167

0.583

0.33

0.24



0.61
0.57
0.08
0.167
0.916
0.17
0.18
0.48
0.41

0.03

(Ni + N7 ++++N2)

3.5 EFFECT OF TUNING PARAMETERS OF THE
BACKPROPAGATION NEURAL NETWORK

A proper selection of tuning parameters such as momentum factor, learning
coefficient, sigmoidal gain, and threshold value are required for efficient
learning and designing of a stable

network. Weight adjustment is made based on the momentum method. Using
this, the network tends to follow the bottom of narrow gutters in the error
surface (if it exists) rather than

crossing rapidly from side to side. The momentum factor has a significant
role in deciding



the values of learning rate that will produce rapid learning. It determines the
step size of

change in weights or biases. If momentum factor is zero, the smoothening is
minimum

and the entire weight adjustment comes from the newly calculated change. If
momentum factor is one, new adjustment is ignored and the previous one is
repeated. Between O and 1 is a region where the weight adjustment is
smoothened by an amount proportional to the momentum factor. Momentum
factor of 0.9 has been found to be suitable for most of the problems. The role
of momentum factor is to increase the speed of learning without leading to
oscillations. The momentum term effectively filters out high frequency
variations of the error surface in the weight space, since it adds the effect of
past weight changes on the current direction of movement in the weight
space.

The choice of learning coefficient is a tricky task in backpropagation
algorithm. The range of learning coefficient that will produce rapid training
depends on the number and types of input patterns. An empirical formula to
select learning coefficient has been suggested by Eaton and Oliver (1992) is
given as

where N 1 is the number of patterns of type 1 and m 1s the number of
different pattern types.

1
—A(T+ E‘})

(1+e

It may be difficult to spot “similar” patterns under such circumstances and
the target output is used to determine a pattern’s type. The use of output
defined types results in small value of learning coefficient which produces
slower but stable training. The largest value of learning coefficient is



obtained if each pattern considered is a separate type. The optimum value
lies between these extremes.

A better selection of learning rate is possible if more information is available
about

the input patterns. This coefficient must be smaller where there are many
input patterns

as compared to when they are few because the step length is controlled by
the learning coefficient. If the learning coefficient is large, that is, greater
than 0.5, the weights are changed drastically but this may cause optimum
combination of weights to be “overshot” resulting in oscillations about the
optimum. If the learning is small, that is, less than 0.2, the weights are
changed in small increments, thus, causing the system to converge more
slowly but with little oscillation. The learning rate has to be chosen as high
as possible to allow fast learning without leading to oscillations. The learning
rate and error rate for soil mechanics problem are shown in Fig. 3.23 and it is
seen that optimum value of learning rate is 0.6.

Sigmoidal gain

If sigmoidal function is selected, the input-output relationship of the neuron
can be set as

where A is a scaling factor known as sigmoidal gain. As shown in Fig. 3.5(a),
as the scaling factor increases, it is seen that the input-output characteristic of
the analog neuron approaches that of the two-state neuron or the activation
function approaches the Sat function.

To get a graded output or a binary output, scaling factor can be varied. The
value of sigmoidal gain also affects backpropagation. Improper combinations
of the scaling factor, learning rate, and momentum factor might lead to over



correction and poor convergence. To get graded output, as the scaling factor
is increased, learning rate and momentum factor have to be decreased in
order to prevent oscillations.
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Threshold value

0 in Eq. (3.67) is commonly called as threshold value of a neuron, or the bias
or the noise factor. A neuron fires or generates an output if the weighted sum
of the input exceeds the threshold value. One method is to simply assign a
small value to it and not to change it during training. The other method is to
initially choose some random values and change them during training. It is
hard to say which method is more efficient. For some problems, assigning a
value to the threshold value and holding it constant is preferable. For soil
classification problem, the threshold value is taken as zero. Figures 3.23 to
3.27 show the variation of error rate with respect to learning rate, momentum
factor, number of iterations, number of hidden neurons, and the number of
hidden layers. It is seen that for the soil classification problem, optimum
values for the learning rate and momentum factor are taken as 0.6 and 0.9.




Fig. 3.24 Momentum factor versus error rate.
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Fig. 3.25 Iterations versus error rate.

Fig. 3.26 Hidden nodes versus error rate.
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Fig. 3.27 Hidden nodes versus error rate.
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3.6 SELECTION OF VARIOUS PARAMETERS IN BPN

3.6.1 Number of Hidden Nodes

The problem at hand decides the number of nodes in the first and third
layers.

There is no general criterion about deciding the number of hidden nodes.
The guiding criterion is to select the minimum nodes which would not
impair the network performance so that the memory demand for storing the



weights can be kept minimum. Mirchandani and Cao (1989) have proved that
the number of separable regions in the input space, M, is a function of the
number of hidden nodes H in BPN and H = M — 1. Huang and Huang (1991)
argue that in terms of learning efficiency, the optimal number of hidden
neurons to realize a binary valued function is experimentally found out to be
H =K — 1, where K is the number of elements in the learning set. They have
also proved that this is the least upper bound on the number of hidden
neurons needed to realize an arbitrary real valued function defined by set
with K elements.

When the number of hidden nodes is equal to the number of training
patterns, the learning could be fastest (weight vectors associated with each
input and output pair can be algebraically combined). In such cases, BPN
simply remembers training patterns losing all generalization capabilities.
Hence, as far as generalization is concerned, the number of hidden nodes
should be small compared to the number of training patterns (say 10:1).
There are results available in literature, which relate the dimensionality of
the problems and the network size based on the Vapnik—Chervonenkis
dimension (VCdim) of probability theory. These results also indirectly help
in the selection of number of hidden nodes for a given number of training
patterns. A rough estimate of VCdim for BPN is given by its number of
weights which is equal to 11*12 + 12*13, where 11 and 13 denote input and
output nodes and 12

denotes hidden nodes. Assume the training samples 7 to be greater than
VCdim. Now if we accept the ratio of 10:1

10* T =

.......... (3.68b)

which yields the value for / 2.
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3.6.2 Momentum Coefficient o

We have already seen that another method of reducing the training time is the
use of momentum factor because it enhances the training process. The
influence of the momentum on weight change is shown in Fig. 3.28 where
Fig. 3.28 Influence of momentum term on weight change.

This process works well for many problems but not so well in others. The
momentum also overcomes the effect of local minima. The use of
momentum term will often carry a weight change process through one or
local minima and get it into global minima. This is perhaps its most
important function.

There is a substantial number of advanced algorithms or other procedures
that have been proposed as a means to speed up the training of
backpropagation networks. Sejnowski and Rosenberg (1987) proposed a
similar momentum method that used exponential smoothening. Parker
(1987) proposed a method called “second order” backpropagation that uses
second derivative to produce more accurate estimation of weight change. The
computational requirements were great and were generally viewed as not
being cost effective compared to other methods. The main drawback of the
BPN is the long and sometimes uncertain training time. This may be due to
poor choice of training coefficients and the initial random distribution of



weights. However, in most cases failure to train BPN is usually due to local
minima or network paralysis where training virtually ceases due to operation
in the flat region of sigmoidal function. Backpropagation should never be
used in situations where inputs are continuously changing because then the
process may never converge.

3.6.3 Sigmoidal Gain A

In some problems, when the weights become large and force the neuron to
operate in a region where sigmoidal function is very flat, a better method of
coping with network paralysis is to adjust the sigmoidal gain. By decreasing
this scaling factor, we effectively spread out sigmoidal function on wide
range so that training proceeds faster.

3.6.4 Local Minima

Tsoukalas and Uhrig (1997) have recommended a procedure for getting over
the problem of local minima. One of the most practical solutions involves the
introduction of a “shock” which changes all weights by specific or random
amounts. If this fails, then the most practical solution is to rerandomize the
weights and start the training all over.

Second method of backpropagation is used until the process seems to stall.

Simulated annealing is then used to continue training until local minima has
been left behind. After

this, simulated annealing is stopped and BPN continues until global
minimum is reached.

In most of the cases, only a few simulated annealing cycles of this two-stage
process are needed. Usually in such a procedure, the final training step is
BPN to minimize the overall error of the process.

3.6.5 Learning Coefficient n

The learning coefficient cannot be negative because this would cause the
change of weight vector to move away from ideal weight vector position. If



the learning coefficient is zero, no learning takes place and hence, the
learning coefficient must be positive. If learning coefficient is equal to 2 then
the network 1is unstable and if the learning coefficient is greater than 1, the
weight vector will overshoot from its ideal position and oscillate. Hence, the
learning coefficient must be between zero and one. Larger values for the
learning coefficient are used when input data patterns are close to the ideal
otherwise small values are used. If the nature of the input data patterns is not
known, it is better to use moderate values.
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3.7 VARIATIONS OF STANDARD BACKPROPATATION
ALGORITHM
3.7.1 Decremental Iteration Procedure

In conventional steepest descent method, the minimum is achieved by
varying the variable as

when a step reveals no improvement, the value of © k’ is reduced and the
process 1s continued. Similarly in BPN also, when no improvement is
perceived in decrease of error, the training

can be continued with different set of learning coefficients and momentum
factors, further decreasing the error. Usually the training of the network
reaches a plateau and the error

might increase, leading to overtuning. Training can be dispensed with at this
stage and then continued with previous weights using reduced momentum
factor and learning coefficient. Usually learning coefficient is halved and the
momentum factor is reduced by a small value.



This method is applied to one example and the error rate is given for
different values of learning coefficient in Table 3.10.

Table 3.10 Error rate for different n, a
Iteration
Error

Remark

0.256
0.6

0.9

0.085

0.290
STOP
0.3

0.9



0.085

0.009

0.056

STOP

0.15

0.9

0.009

0.001
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0.006

STOP

0.075

0.9

0.001

4

0.0005

STOP

3.7.2 Adaptive Backpropagation (Accelerated Learning)

The use of Adaptive Backpropagation (ABP) is developed by Alexander et al.

(1994) and

Atiya et al. (1992) for the development of a fault detection and identification
system for a process composed of direct current motor, a centrifugal pump,
and the associated piping system. In the ABP learning algorithm, the network
weight update rule is chosen such that the error function is forced to behave



in a certain manner that accelerates convergence. In a standard BPN, the
weight update is given by

The learning function p( E) depends on the total error E. Though there are
several choices for the form of p( E), the most commonly considered
functions are

p(E) =

where n and E 0 are constant, non negative numbers representing the
learning rate and the error normalization factors respectively. Since p( E) = n
E

seems to provide most acceleration, it is normally used. Hence, the weight
update rule is given by

T
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One can combine decremental method with adaptive backpropagation
procedure since in this procedure, the dependence of the learning functions
is on the instantaneous value of the total error thereby leading to in faster
convergence. Furthermore, the algorithm introduces a number of additional
tuning parameters found in other variants of BPN algorithm and it uses only
the current value of the error gradient term to determine the error gradient
norm. The disadvantage of this algorithm is that it has a jumpy behaviour
when approaching local minima but this indirectly helps to avoid entrapment
near local minima and enhances further learning.

3.7.3 Genetic Algorithm Based Backpropagation



Conventional BPN makes use of a weight updating rule based kind of
gradient descent technique to determine their weights. Genetic algorithm on
the other hand turns out to be robust search and optimization technique
outperforming gradient based techniques in obtaining solutions to problems;
acceptable fairly accurately and quickly. Rajasekaran and Vijayalakshmi Pai
(1996) code the weights with the help of GA following a real coded system.

They made use of the principle of survival of the fittest to create an offspring
by making use of genetic operators such as crossover and mutation. The
reproduction is based on the fitness function and in this case it is the error
function. This technique has been applied to many engineering problems.

3.7.4 Quick Prop Training

Fahlman’s (1988) quick prop training algorithms are one of the most effective
algorithms in overcoming the step size problem in backpropagation.

A second order method related to Newton’s method is used to update the
weights in place of simple gradient descent as

(3.75)
Fahlman reports that quick prop consistently outperforms backpropagation.
Quick prop’s weight update procedure depends on two approximations—I1.

small changes in one weight produce relatively little effect on the error
gradient observed at other weights and 2. the error function with respect to
each weight is locally quadratic.

3.7.5 Augmented BP Networks

The architecture is that of a standard backpropagation network with
augmented networks, i.e. logarithmic neurons and exponential neurons added
to neural network’s input and output layers. The principle of augmenting the
network is—



the augmented neurons are highly sensitive in the boundary domain, thereby
facilitating the construction of accurate mapping in the model’s boundary
domain.

the network denotes each input variable with multiple input neurons, thus
allowing a highly interactive functions on hidden neurons to be easily
formed.

Therefore, the hidden neurons can more easily construct an accurate network
output for a high interaction mapping model. The architecture of the
augmented neural network is shown in Fig. 3.29.
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Fig. 3.29 Architecture of augmented neural network.



The architecture of the augmented neural network is that of a standard
backpropagation network. However, Fig. 3.29 shows that logarithmic neurons
and exponential neurons are added to the network’s input and output layers.
The logarithmic neuron in the input layer receives a natural logarithm
transformation of the corresponding input value of the training data under the
consideration

Ai=1In (1.175 Xi + 1.543) .......... (3.76)

where Xi is the i th input value of training data and Ai the output of i th
logarithm neuron in the input layer.

The input layer’s exponent neurons receive natural exponent transformation
of the corresponding input value by the training data under the following
formula

Bi=0.851 exp (Xi) - 1.313.......... (3.77)

where Bi is the output of the i th exponent neuron in the input layer and this
transformation is shown in Fig. 3.30.

Eq. (3.76)
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Eq. (3.78)
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Fig. 3.30 Transfer function of augmented neuron or input layer.

The output layers’ logarithm neuron and exponent neuron transform output
as

Ci=In(1.718 Yj + 1).......... (3.78)

Dj=exp (0.6931 Y¥j — 1).......... (3.79)

The transformation is shown in Fig. 3.31.

Fig. 3.31 Transfer function of augmented neuron or output layer.

The principle of working of augmented neural network is as follows: The
logarithm neuron is highly sensitive in a small value domain. On the other
hand, the exponent neuron is highly sensitive in a large value domain. This
feature can facilitate the construction of an accurate mapping in the
network’s boundary domain.
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In BPN, the output Y can be represented as
Y=Y[H(X)]........ (3.80)

where H is the output of the hidden neuron and X is the input variable. In the
augmented neural network, the network output can be represented as Y=Y [
f(X, A, B).......... (3.81) where A is the logarithm transformation of the input
variable and B is the exponent transformation of the input variable. The
augmented neurons in the output layer, although not directly representing the
values of a network’s reasoning output, can still facilitate the normal output
neurons in constructing an accurate mapping in the model’s boundary
domain by modifying the interconnecting weights between hidden layer and
input layer. In addition to this, learning rate and momentum factor of the
general delta rule decay under the following formulae

Here, r n, and r a are the reduction factors for learning rate and momentum
factor and nmin, amin are the minimum bounds for learning rate and
momentum factors respectively.

Cheng Yeh (1998) applied the augmented neural network to a structural
engineering problem and compared network’s performance with other
backpropagation networks in

Table 3.11.

Table 3.11 Performance of various BP networks
Neural networks

RMS

Training set

Testing set

Standard BPN

0.01290



0.01982

Augmented neural network
0.00850

0.01631

BPN with delta bar delta
0.01357

0.02041

Projection NN

0.01343

0.02067

General regression NN
0.02574

0.03534

Radial basis function NN
0.01485

0.02043

Modular NN

0.01322

0.02399



Hence, logarithmic neuron and exponent neuron in the network provide
enhanced network architecture capable of markedly improving the network’s
performance.

3.7.6 Sequential Learning Approach for Single Hidden Layer Neural
Networks

Zhang and Morris (1998) proposed the method of sequential learning
approach for single hidden layer neural networks. In this method, hidden
neurons are added one at a time. The procedure starts with one hidden
neuron and sequentially increases the number of hidden neurons until the
model error is sufficiently small. When adding a neuron, the new information
introduced by this neuron results from that part of its output vector which is
orthogonal to the space spanned by the output vectors of previously added
hidden neurons. The classical Gram-Schmidt orthogonalization method is
used at each step to form a set of orthogonal bases for the space spanned by
output vectors and hidden neurons. Hidden layer weights are found through
optimization while output layer weights are obtained from least square
regression. In this architecture, it is possible to determine the necessary
number of hidden neurons required. An additional advantage of this method
is that it can be used to build and train neural networks with mixed types of
hidden neurons and thus, to develop hybrid models. By using mixed types of
neurons, it 1s found that more accurate neural networks with a smaller
number of hidden neurons can be developed than those in conventional
networks.

3.8 RESEARCH DIRECTIONS

Research work in the area of backpropagation neural networks may be
grouped under the following sections.

3.8.1 New Topologies

At present, neural networks are classified into static and dynamic nets. Many
investigations have suggested modifications for both the varieties. Among
dynamic sets, recurrent nets have been quite popular. They may be
considered as a sequence of error propagation networks where the input and



output vectors are divided into internal and external portions and this
network operates by concatenating the input and output vectors. There are
also other types of time delay networks, continuous time Hopfield nets,
discrete time Hopfield nets, and so on. Variations of static nets such as radial
basis function networks are also in existence. Many investigators are
experimenting to develop novel topologies with desirable features.

3.8.2 Better Learning Algorithms

It is generally agreed that the backpropagation algorithm is expensive in
computer time and is suboptimal in performance. This has led to many
investigations of developing faster algorithms involving less computation. A
group of methods have been suggested in which instead of weight update on
output error, algorithm based on some random or heuristic variations or
perturbations is obtained. Among these MRIII algorithms based on
derivative estimation by weight perturbation, random optimisation, and
technique based on genetic algorithms are typical. There have also been other
popular approaches such as second order weight adjusting layer by layer
optimization and so on. The size of the network is naturally a prime concern
and some algorithms have been developed to prune the network to minimum
size.

3.8.3 Better Training Strategies

It is necessary to cut down the training time. It is also found that training
time depends on the model in the hidden layer, learning rate, momentum
factors, the distribution of training patterns in the input space, and the
training

algorithm. Many investigators have suggested modular architecture for BPN

which could be used to make training faster. Sometimes fine-tuning is also
necessary.

3.8.4 Hardware Implementation



The concern of this area is designing efficient hardware which exploits the
special features of neural computing such as parallel distributed processing.

Interested readers may consult two special Issues of IEEE Transactions of
Neural Networks of May 1992 and also May 1993 on neural network
hardware.

3.8.5 Conscious Networks

The computing world has lot to gain from neural networks. Their ability to
learn by examples makes them very flexible and powerful. Furthermore,
there is no need to devise an algorithm in order to perform a specific task;
there is no need to understand the internal mechanism of the task. They are
also very well suited for real time systems because of their fast response and
computational time, which are due to their parallel architecture. Neural
networks also contribute to other areas of research such neurology and
psychology. They are regularly used to model parts of living organisms and
to investigate the internal mechanisms of the brain. Perhaps the most exciting
aspect of neural networks is that the possibility that some day “Consious”

networks might be developed which are a realistic possibility.
SUMMARY

Architecture of backpropagation networks is discussed.
Various types of nonlinear activation operators are illustrated.
Model for multilayer perceptron is described.
Backpropagation algorithm is given in matrix form.

Different types of training of artificial neural networks are discussed and
backpropagation algorithm is given in detail.

The effect of various parameters on tuning of the network is illustrated.

A toy problem is taken and BPN algorithm is illustrated step by step.



Three real life examples (1) from Mechanical engineering, (2) Civil
engineering, and

(3) Metallurgy are solved using BPN and the performance is compared.

Variations in backpropagation networks and the effect of various parameters
on training are illustrated.

Many variations of BPN algorithm such as decremental iterative procedure,
adaptive backpropagation, GA based BPN, quick prop training, augmented
BPN, and sequential learning single hidden layer neural network are
discussed.

Research directions in the area of BPN are given for future work.

PROGRAMMING ASSIGNMENT

P3.1 Use “MATLAB” tool box “NEURONET"” to solve the following
problem using backpropagation training.

Consider a simply supported plate of sides ‘ a and b’. A concentrated unit
load is applied at ( x, n) as shown in Fig. P3.1. The program ANSYS
(Analysis System) is used to determine maximum moments in X and Y
direction and their locations.



Fig. P3.1 Simply supported plate.

Run the program given in “NEURONET” with 4 neurons as inputs ( a, b, x,
n) and 6 neurons as outputs i.e. ( MX, max, Xmx, Ymx, MY, max, Xmy, Ymy)

(a) Train the neural net with one hidden layer, two hidden layers etc.
and vary the number of neurons in the hidden layer.

(b) Observe the performance with different learning rates, sigmoidal gain,
and momentum factors and draw the curves depicting the error rate vs these
factors and also error rate with iterations for particular problem.

(c) Find the values of maximum moments and their positions for a simply
supported plate of 6m x 8m with a concentrated load acting at the centre.
The data for training is given in the Table P3.1.

Table P3.1 Data for plate problem
Input

Output

Plate DIM

Load POS

M

X

mx

Ymx



my

Ymy

0.32
0.5

0.5



0.32

0.5

0.5

6.4

0.27

0.77

0.28

0.28

0.77

0.28

1.6

1.6

0.25

0.22

0.22



0.25

0.22

0.22

7.2

1.12

6.4

0.26

0.16

0.57

0.23

0.16

0.57

7.2

4.96

1.6

0.26

0.65

0.22



0.26

0.65

0.22

6.4

3.2

0.31

0.5

0.4

0.33

0.5

0.4

5.6

1.12

1.6

0.2

0.11

0.22



0.23

0.11

0.22

5.6

2.8

6.0

0.3

0.35

0.33

0.29

0.35

0.73

4.8

1.6

0.96

0.22

0.22

0.14



0.25

0.22

0.14

2.0

0.26

0.5

0.25

0.32

0.5

0.25

1.04

6.4

0.26

0.14

0.77



0.23
0.14
0.77

P3.2 Modify the program “NEURONET” given in CD-ROM by including
logarithmic and exponential input and output neurons and study the
performance for the above problem. After training, infer to get the result for
the following problem whose data is given

in Table P3.2
Table P3.2
Input

Desired output
Plate DIM
Load POS

M

X

mx

Ymx

my



Ymy
max

max

0.3
0.73
0.5
0.29

0.73



0.5

7.2

1.76

6.4

0.26

0.25

0.73

0.26

0.25

0.3

4.8

4.0

6.0

0.3

0.3

0.73

0.28

0.3



0.73

P3.3 The training data for a particular problem is given in Table P9.3. Use
NEURONET to train the data. Show step by step output to input, hidden,
and output neurons as well as error. How the weights W and V

are modified? Use learning coefficient and momentum factors as 0.6
and 0.9 respectively.
Table P3.3

Input

Output

0.16

0.12

0.08

0.04

0.2

0.12

0.24

0.16

0.08

0.4

0.08

0.16



0.24

0.12

0.6

0.04
0.08
0.12
0.16
0.8

P3.4 Derive the backpropagation training algorithm for the case where the
activation function is an arctan function.

P3.5 Derive the backpropagation training algorithm for the neurons in the
hidden layer using logistic function and the neurons in the output layer using
linear function.

P3.6 In the design of roof trusses, preliminary dimensions are to be assumed
to calculate dead weight of the truss for analysis. A neural network approach
is to be incorporated for the preliminary design of trusses. The input
variables are fixed as span, slope, access provided or not and spacing. For the
Fink Truss shown in Fig. P3.2 the scaled input and output are given in the
form of table shown in Table P3.4.



Fig. P3.2 Fink truss.
Table P3.4

Output of diffterent type of areas
Input

7000

Span

Slope

Spacing

Access

Type 1

Type 2

Type 3

Type 4

40

40

10

0.225

0.6

0.4



0.3245

0.3245

0.136

0.136

0.225

0.65

0.4

0.3245

0.3245

0.136

0.136

0.4

0.6625

0.7

0.4674

0.4674

0.247

0.1934



0.25

0.75

0.3

0.3245

0.3245

0.1368

0.1368

0.5

0.45

0.5

0.685

0.685

0.193

0.299

0.5

0.6

0.6



0.628

0.628

0.299

0.247

0.45

0.75

0.5

0.3245

0.3245

0.193

0.1368

0.45

0.6

0.4

0.3577

0.3577

0.193

0.164



0.5

0.65

0.3

0.3245

0.3245

0.193

0.136

0.4

0.6

0

0.6

0.3245

0.3245

0.164

0.136

Access = 1 means access provided and 0 means no access provided.
Train the network with

the given data and infer to find the areas of the members of a truss of span 32
m with a



slope of 20 degrees and access not provided with a spacing of 3 m (use
“NEURONET”).
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Associative Memories, one of the major classes of neural networks, are faint
imitations of the human brain’s ability to associate patterns. An Associative
Memory (AM) which belongs to the class of single layer feedforward or
recurrent network architecture depending on its association capability,
exhibits Hebbian learning.

In this chapter, the association memory network is discussed.

Autocorrelators and heterocorrelators are first introduced. Wang et al’s
multiple training encoding strategy and exponential bidirectional associative
memory are presented next. The AM’s capability to associate real-coded
patterns is elaborated. Finally, the application of AM in character recognition
and fabric defect identification is discussed.

An asssociate memory is a storehouse of associated patterns which are
encoded in some form. When the storehouse is triggered or incited with a
pattern, the associated pattern pair is recalled or output. The input pattern
could be an exact replica of the stored pattern or a distorted or partial
representation of a stored pattern. Figure 4.1 illustrates the working of an
associative memory.

Fig. 4.1 The working of an associative memory.

In the figure, (A, [), (7, 4), and (+, IT) are associated pattern pairs. The
associations represented using ‘<>’ symbol are stored in the memory. When
the memory is triggered for instance, with a A, the associated pattern [ is
retrieved automatically.
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If the associated pattern pairs ( x, y) are different and if the model recalls a y
given an x or vice versa, then it is termed as heteroassociative memory. On
the other hand, if x and y refer to the same pattern, then the model is termed
as autoassociative memory. While heteroassociative memories are useful for
the association of patterns, autoassociative memories are useful for image
refinement, that is, given a distorted or a partial pattern, the whole pattern
stored in its perfect form can be recalled. Autoassociative correlation
memories are known as autocorrelators and heteroassociative correlation
memories are known as heterocorrelators. Figure 4.2 illustrates
heteroassociative and autoassociative memories.

Fig. 4.2 ‘Hetero’ and ‘auto’ correlators.

An associative memory can therefore be thought of as a mapping g between a
pattern space

The operator M has different forms for different memory models. The
algorithm which computes M is known as the recordin g or storage
algorithm.

In most cases, M is computed using the input pattern vectors. Based on the
principle of recall, associative memory models may be classified into static
and dynamic networks. While static networks recall an output given an input
in one feedforward pass, dynamic networks recall through an input/output
feedback mechanism which takes time. Static networks are non-recurrent
and dynamic networks are termed recurrent. Figure 4.3 illustrates static and
dynamic associative memories.
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Fig. 4.3 Static and dynamic associative memories.

Observe that in Fig. 4.3(a) for a static model, the associated for the input
pattern is recognized in one feedforward pass whereas for a dynamic
network, as shown in Fig. 4.3(b), the following recursive formulae are put to
work until an equilibrium state is reached.

(4.3)
and

(4.4)



m
T= 314714, (4.3)
=1

Here, T = [t;] 15 a {p = p) connection matrix and A4, | 1, 115
The autccorrelator's recall eguation is a vector-matrix  mulliplication  followed by 2
pointwise nonlincar threshold operation. The recall cquation is given by

{7 = fl_’uln'll.-:.'?m] Wi=L% . p (4.6}
where 4; — foy ag., 2,0 and the two parameter bipolar threshold Tunction 1=
| L, it =0
fleg, fir= 1+ B if a=10 4.7%
l_-l, ir e
(8 I 3 =3
3
I 4 1 -1
T=) [4 laxal4lins =
; A‘.r 41411 x4 3 1 3 _3
& =f -4 §
4.1 AUTOCORRELATORS

Autocorrelators, now most easily recognized by the title of Hopfield
Associative Memory (HAM), were introduced as a theoretical notation by
Donald Hebb (1949) and rigorously analyzed by Amari (1972, 1977). Other
researchers who studied their dynamics include Little (1974), Little and
Shaw (1978), and Hopfield (1982).

First order autocorrelators obtain their connection matrix (indicative of the
association of the pattern with itself) by multiplying a pattern’s element with
every other pattern’s elements. A first order autocorrelator stores M bipolar
patterns A 1, A 2.,..., Am by summing together m outer products as Example
4.1 (Working of an autocorrelator)

Consider the following patterns

Al=(-1,1,-1,1)



A2=(,1,1,-1)
A3=(-1,-1,-1,1)
which are to be stored as an autocorrelator.

The connection matrix,

]
HD(x,3) = ) |5, ¥
i=1

Recognition of stored patterns

The autocorrelator is presented a stored pattern A 2 = (1, 1, 1, —1). The
computation of Eq. (4.6) yields,

a new
1
=f3+1+3+3,1)=1
a new

2
=fl6,1)=1
a ncw

3
=£10,1)=1
a new

4



=f(-10, 1) = -1

This is indeed the vector itself. Also, in the retrieval of A 3 = (-1, =1, =1, 1) (
a new

new
new

new

1

,a?2

,a3

,a4d

)=(1,-1,-1,1)

yielding the same vector.
Recognition of noisy patterns

Consider a vector A" = (1, 1, 1, 1) which is a distorted presentation of one
among the stored patterns.

We proceed to find the proximity of the noisy vector to the stored patterns
using the Hamming distance measure. The Hamming distance ( HD) of a
vector X from Y, given X=(x1,x2, .., xn)and Y=(y 1,y 2,..., yn) is given
by, (4.8)

Thus, the HD of A’ from each of the patterns in the stored set is as follows:
HD (A',A1)=4

HD (A, A2)=2

HD (A',A3)=6



It is evident that the vector A’ is closer to A 2 and therefore resembles it, or in
other words, is a noisy version of A 2.

Now, the computations using Eq. (4.6) yield

ol as ey g = O, A1, 14,10, FT=4.10)

At

Hence, in the case of partial vectors, an autocorrelator results in the
refinement of the pattern or removal of noise to retrieve the closest matching
stored pattern.

"
M= z i (4.9)
i=1

4.2 HETEROCORRELATORS: KOSKO’S DISCRETE BAM

As Kosko and others (1987a, 1987b), Cruz. Jr. and Stubberud (1987) have
noted, the bidirectional associative memory (BAM) is a two-level nonlinear
neural network based on earlier studies and models of associative memory
(Kohonen 1972; Palm, 1980; Nakano, 1972; Kohonen, 1977; Anderson,
1983; Kohonen and Oja, 1976; Hirai, 1983).

Kosko extended the unidirectional autoassociators to bidirectional processes.
One important performance attribute of discrete BAM is its ability to recall
stored pairs particularly in the presence of noise.

Bidirectional Associative Memory (BAM) introduced by Kosko (1987b) has
the following operations:

1. There are N training pairs {(A 1, B 1), (A 2, B 2),..., ( Ai, Bi),..., (An,
Bn)}

where,

Ai=(ail,ai?2,.., ain)



Bi=(bil,bi?2,.., bip)

Here, aij or bij is either in the ON or OFF state.

2. In the binary mode, ON = 1 and OFF = 0 and in the bipolar mode, ON =
1 and

OFF = -1

We frame the correlation matrix

To retrieve the nearest ( Ai, Bi) pair given any pair (a, (3), the recall equations
are as follows:

Starting with (a, ) as the initial condition, we determine a finite sequence
(a', B'), (&alpha;”, "), ... until an equilibrium point (a F, B F), is reached.

Here,
3 = Pl M) (4.10)
o= :_fh{ll'i’,#i'"'] 4,11}
(i, gl = I £ O - (4,12}
F= U Fea il (413}
1 ir fo=0
0 (binary)
i~ . Ji % (4.14)
| (bipular)
previous g, f, =40
M= xE e XTI o XTI e xTy! {4.15)
In the case of delehion, we subtract the matnx corresponding to (X, ¥) from the matnx W,
Ic. (New) M =M  (X[F) (4.16)

4.2.1 Addition and Deletion of Pattern Pairs



Given a set of pattern pairs ( Xi, Yi), fori = 1, 2, ..., n and their correlation
matrix M, a pair

(X', Y') can be added or an existing pair ( Xj, Yj) can be erased or deleted
from the memory model.

In the case of addition, the new correlation matrix M is The addition and
deletion of information contributes to the functioning of the system as a
typical human memory exhibiting learning and forgetfulness.

4.2.2 Energy Function for BAM

A pair ( A, B) defines the state of a BAM. To store a pattern, the value of the
energy function for that particular pattern has to occupy a minimum point in
the energy landscape. Also, adding new patterns ought not to destroy the
previously stored patterns.

The stability of a BAM can be proved by identifying a Lyapunov or energy
function E with each state ( A, B) . In the autoassociative case, Hopfield
identified an appropriate E (actually, Hopfield defined half this quantity) as
E(A) = - AMAT (4.17)

However, Kosko proposed an energy function,

Ap= [T fy = (TTIHK) )
Aa = (1 THI0 ) Hy = (T0T1KI)

Aq= (T T fy = (LT 100
E(A, B) = — AMBT (4.18)

for the bidirectional case and this for a particular case A = B corresponds to
Hopfield’s autoassociative energy function.

Also, when a paired pattern ( A, B) is presented to BAM, the neurons change
states until a



bidirectionally stable state ( Af, Bf) is reached. Kosko proved that such a
stable state is reached for any matrix M which corresponds to the local
minimum of the energy function.

Kosko proved that each cycle of decoding lowers the energy E if the energy
function for any point (a, ) is given by

E=-aMBT, (4.19)

However, if the energy E evaluated using the coordinates of the pair ( Ai, Bi),
e, E=-A

T
iMBi (4.20)

does not constitute a local minimum, then the point cannot be recalled,
eventhough one starts with a = Ai. In this aspect, Kosko’s encoding method
does not ensure that the stored pairs are at a local minima.

Example 4.2 (Working of Kosko’s BAM)
Suppose one has N = 3 with the pattern pairs given by

Converting these to bipolar forms



T o [ O G N ST i P R Bt 1)
e o e, M o T 10 1)
.-'rﬁ.'r! _l:-—l.—l |—] l I] ]"_-. il |.—|. | I I—i]

The matrix A s calculaled ax

M= XTY, + XT¥, 4 XTY, -

s
£

=1 30-=1 =1

Lot us supposc we start with o = X5 hoping to retricve the associatcd pair ¥,
gl ==l =1 1 =1 1 1} (W) —[-6666—0)
=@ W)—{-1111-1
M =5 55-373)
S MY~ (-1 -1 1-111)-af

et = (=1, =1, 1 =1, 1 1) M = (-6 6 6 & —6)
Bl M= F"=i=1111-1)
_ﬁ'

A= (000111001 By = (01anont1n
Ay = (1110001 10) By = (100000001 )
A= CHOEIGI0y &y — (10100l 010)
Conversion of these to bipolar forms vield
Ki=1=-1-1-1111-1-11) F=i-I1-=1-1-1-1111;
Ax=iL'F 1 U117 L1} Yo={1-1-1-1+<1-1-1-11)
A=(11-111-11-11) Fo=(1-11-1-11-11-1
The correlation malrix W ois caleulaled as

M= Xﬂ"] t .TEJ—}:E 1 X{h
Here, B’ is same as Y 3. Hence, (o F, p F)) = ( X 3, Y 3) 1s the desired result.

Example 4.3 (Incorrect recall by Kosko’s BAM)



Consider the pattern pairs,

3 =8 I =t =t 1 -3 = =1
5 —F 1 =1 =l 1 =3 —=1 =1
1 e=1 =1 1 1 =1 =1 =3 I
=1, I I =1 = 1 1 & =l
—=1. 4 3 =1 =F 1 1 3 =i
~1. 4 -F§ =1 =1 =5 4 =1 3
3 =8 I -t =t 1 -3 =F i
1 s=1 =1 T 1 =1 1 =3 'l
=1, I I =0 =] 1 T & =i

M=

Suppose one starts with o = X 2, then the calculations for the retrieval of Y 2
yield

aM=(13-13-511-5-13-195)
olaM)=p'=1-1-111-1-1-11)
BMT=(05511-11-115511-11)
oBMD=od=111-1-1111-1)
aM=(13-13-511-5-13-195)

o M)=p"=(1-1-111-1-1-11)

Here, " = p'

Hence, the cycle terminates with



aF=a=X2(-1111-1-1111)

and

BF=p=(1-1-111-1-1-11)

This however, is an incorrect pattern pair to be recalled.

Now, a computation of the energy functions for (X 2, Y2) and (a F, B F)
yield E2 =-71, EF =-75

It could be shown that ( X 2, ¥ 2) is not at its local minimum by evaluating E
at a point which is one Hamming distance away from Y 2.

Thus, consider Y2'=(1 -1 -1-11-1 -1 -1 1) where the fifth component
—1 of Y 2 has been changed to 1. Now,

E=-X2MY?2T

=-73

which is lower than E 2, confirming the hypothesis that ( X 2, Y 2) is not at
its local minimum of E.

Summarizing, BAM cannot guarantee the recall of a particular training pair
or several training pairs since the correlation matrix M used by Kosko does
not guarantee that the energy of a training pair is at its local minimum. A
pair Pi can be recalled if and only if this pair is at a local minimum of the
energy surface (Kosko, 1988).

4.3 WANG ET AL.’S MULTIPLE TRAINING ENCODING
STRATEGY

Wang et al. (1990a, 1990b) proposed the Multiple Training Encoding
Strategy which is an enhancement of the encoding strategy proposed by



Kosko.

To recover a pair ( Ai, Bi) using multiple training of order g, one augments
the matrix M with a matrix P defined as

P=(g-1)XT
1 Yi 4.21)
Here, Xi, Yi are the bipolar forms of ( Ai, Bi).

The new value of the energy function E evaluated at Ai, Bi then becomes E'(
A

T
T
T

I, Biy=—AiMBi—(qg—1)Ai Xi Yi Bi (4.22) The
augmentation therefore implies adding ( g — 1) more pairs located at ( Ai, Bi)
to the existing correlation matrix. As a result, the energy E' can be reduced to
an arbitrarily low value by a suitable choice of g. Also, this ensures that the
energy at ( Ai, Bi) does not exceed that at points which are one Hamming
distance away from this location. Algorithm 4.1 illustrates the working of the
model.

Algorithm 4.1 (Wang et al.’s Multiple Training Encoding Strategy)



AMlgorithm Mul Tr Enced (NX,¥,J)

S N: Mo. of stored patternm msets v/

i X, ¥i the bipolar pattern palrs=/

P E = ':.Ey 'E-El'"-' Eﬂl':' where ':E.'i = {:'I.":J.a H;J.-.-..H"':l g

ol }_'r= |.-|F1.| !I_IE!J-H.. E_rﬂ':l Whers f} — hr—ﬂ':rr-’i'““'fjl:l ot

Ta g 18 the weight weator gy, ..t/

Scep 1: Indltilalize ecorrelation mertrix M ©e null mateix
M &« [0]

Step 2¢: Compute the correlation matrixz M as,

for i « ltoN

M +« M@ [gi * TRANSPOSE (X} @& 5],
el

f* @ Marrix addition.
& Matrixw mulciplication:

* : Spalar Multiplication =/

Step 3: Bead input bipolar pattern A
Sren 4@ Oompute A M where A _ M+ A & M;

Eten h: Applw threshold funetiom ¢ to A M to get B
A — @a_m ;
/% B ig as defimed din A 1I-4.14 ¥/

Slen ®: Qutput B which is the asscclaled pattern palr.

END Mul Tr Encod

Example 4.4 (Working of Multiple Training Encoding Strategy) For the
pattern pairs considered in Example 4.3, let the pair to be recalled be ( X

T



X 2 Y 2, the augmented correlation

2, so that P

2, Y 2). Choosing g
matrix becomes

XT

1YTI+2X2Y2+X3Y3

2
-2
4

2 0 -4
2 0
-3

—2
2
0

0
0
=3

-4
4 -4

2

4
-2

0

—2

2 -4
=,

=2
—2
0

0 -4

4
2

0

0 -4 -2
4

=2

0
=2

=<2

0

2

0 -4 -2
0 &
=3 4

—2
—2

—2
s

0
0
=3

-4
4 -4

2

4
.,

0

0

—2

0 -4 2 -2 -4
2 2

4
5

0

0 -4 -2
4

=2

0
2

=2

0

0

2




e, M=

Now given a = X 2 the corresponding § = Y 2 is correctly recalled. The
computations are as follows:

aM=22-22-14 -8 -8 -14 =22 -28 14)
B'=paM)=(1-1-1-1-1-1-1-11)
B'MT=(181816-16-1618 18 16 —16)
A= MN=111-1-1111-1)

=

However, it is not possible to recall ( X 1, Y 1) for the same M. This is so,
since choosing

a=X1,

aM=(-222264462224-6)
B=(-11111111-1)

To tackle this, M needs to be augmented further.
Defining M =2XT

T

T

1Y1+2X2Y2+2X3Y3, wegetM=

We now observe that all three pairs can be correctly recalled.

M E%L% (4.23)



Fora=X1=(-1-1-1111-1-11)
aM=(-3131-3-5-5-331333)
plaM)=p'=(-11-1-1-1-1111)
=Y1
Fora=X2=(111-1-1111-1)
aM=(29-29-7-1-1-7-29-357)
elaM)=p=(1-1-1-1-1-1-1-11)
=Y2
Fora=X3=(11-111-11-11)
aM=(1-113-5-513-1117-13)
elaM)=p'=(1-11-1-11-11-1)

=Y3

Thus, the multiple training encoding strategy ensures the correct recall of a
pair for a suitable augmentation of M. Generalizing the correlation matrix,
for a correct recall of all training pairs, we write

where gi’s are positive real numbers. This modified correlation matrix is

called the generalized correlation matrix.



The necessary and sufficient conditions for the weights gi such that all
training pairs will be correctly recalled, has been discussed by Wang et al.

(1991).

Example 4.5 (Generalized correlation matrix for multiple training encoding
strategy)

Consider the pattern pairs

8§ 2 4 =5 2 -4 L -5 & =l
3 =1 -8 35 =1 4 -2 35 -4
3 = 1 =3 5 =] =h+«K 3 3
=R 2 =1 4 =3 ¥ ] =T =3
-2 4 2 =g =2 = =2 1
~% i =i ~5 1 2. & =5 =2
—E 5 =5 -1 5 =8 2 =1 8
-4 2 -8 8 -5 1 -4 5
8 2 4 -5 =g 1 =5 B ==

—1 5 =8 4 A F =B 2 =1 §

The generalized correlation matrix M forg 1 =3/2,92=3/2,q3 =2, and g
4 =

3 is given by



M =

The computations for the retrieval of all training pairs yield
a=X2=11-1-111-1-111-1-111-1)
aM=(202616-23-22-16 19 25 20 -19)
B=(111-1-1-1111-1)=Y2
a=X4=1111-1-1-1-11111-1-1-1)
aM=36-5448 -39 42 -48 51 -39 36 -51)
B=(1-11-11-11-1)=Y4
a=X3=111-1-1-1111-1-1-1111)
aM = (3048 =30 —-15 12 30 —45 =27 30 45)
p=11-1-111-1-111)=Y3
a=X1=1-11-11-11-11-11-1-11-11)
aM=(2834817-14 -8 =37 =31 28 37)

p=1111-1-1-1-111)=Y1
(a;.a;.....a; )

(b, .b, .....b )

1‘-1, 3'2,1.1.1., !.



s
Loif 3y 65FE0
=]

= : (4.24)

Lof ¥ oy o520

W

1l Y n iz

I = (4.25]

-1 Y et <o
i=1

Here, &5 o pesiive pumber, &> 1 oamd =" represents (e mner product opemlor of 4 and A,
voundd ¥

]

e for X o= (o xs, o onghand X = (XX 000

4.4 EXPONENTIAL BAM

The capacity ( k) of a specific BAM structure is defined to be the maximum
number of training pairs selected from a uniform distribution which can be
recalled with a minimum specified probability P =1 — k.

Wang and Don (1995) proposed a BAM structure with an exponential form
and it is therefore termed eBAM. eBAM has higher capacity for pattern pair
storage than conventional BAMs. The model takes advantage of the
exponential nonlinearity in the evolution equations causing a significant
increase in the signal-to-noise ratio. The energy, as a result decreases as the
recall process is in progress, ensuring the stability of the system. The
increase in the signal-to-noise ratio also enhances the capacity of BAM.

4.4.1 Evolution Equations

Suppose we are given N training pairs {(A 1, B 1),(A2, B2),..., (An,
Bn)}

where Ai =

and Bi =



and if Xi, Yi are the bipolar

modes of the training pattern pairs Ai and Bi respectively, given by Xi €
{-1,1}nand Yi € { -1, 1} p.

Then, we use the following equations in the recall process of eBAM.

n

(X-Ji}}zZ‘:Ju:"i,-::rf‘r
j=
Pyl B [ ) N e e R L, L, N (R (O 1 B o T 2 s (el i |
A= A= =0V =1 =] =1 1=1=1"1"T=011 1§ Fe=i=1 =1}
 EE 5 iy ey e ey R (I N e 0 O 3 I - s
Tor redrieve ¥ correspomding 1o XS
4 Az Xy = 12
(X G = b
(- Xy = 12

Choosing H = 2,

X -
BB gy =103

— (409, 65536, 4096)

Computing ¥ using (4.24) vields

[ 496 { 4006 {4094
¥=|{1=-1=1) ﬁ.‘in.":-.MJ:[—l 1-1) | 65536 |, (=1—=1 1} | 63534
| 4096 | 41106 AN

— (—05F336, 37344, —655340)
-1 1 =1
— ¥

(4.26)

The reasons for using an exponential scheme are to enlarge the attraction
radius of every stored pattern pair and to augment the desired pattern in the



recall reverberation process.
Example 4.6 (Working of eBAM)
Consider the set of pattern pairs

In the case of noisy patterns, e BAM retrieves the closest pair among the
stored patterns which is associated with the noisy pattern.

Example 4.7 (Recall of noisy vectors by eBAM)

For the set of pattern pairs considered in Example 4.6. Consider the retrieval
of

X=(1-1-1-1-111-111-1111-1)

Now the Hamming distance of X fromeachof X 1, X2, X3is HD (X, X 1) =
8

HD (X,X2)=4
HD (X,X3)=10
Observe that X is closer to X 2 by way of its distance.

Now, the application of e BAM’s evolution equations results in

(X-X1)=8
(X-X2)=12
(X-X3)=8

Choosing b = 2, the vector retrieved is
Y=(-11-1)

which is Y 2 and is the desired result.



Given a set of & training pairs (4, B ¢ = L2 o0 W owhere A, - (ot oo il ) apsd B, =

c-‘-,-l.h;_..... i bod by M, the normalized input pattem l:i,-}m aiven by

where,

|.|I

| 4= 1I|:§:“;m,}-ﬁ (4.27)
Neadless to say, (4,)¢=1, 2..... n arc veetars of unit length,
4.5
ASSOCIATIVE
MEMORY
FOR
REAL-CODED
PATTERN PAIRS

Most associative memory architectures insist on binary or bipolar pattern
pairs. Rajasekaran and Pai (1998) proposed an associative memory model
termed simplified Bidirectional Associative Memory (sSBAM) which not only
associates patterns represented in bipolar forms but also those that are real-
coded. However, the evolution equations demand the normalization of real-
coded input pattern vectors to vectors of unit length, before their application.

Thus, SBAM proceeds in two steps, namely input normalization and the
application of evolution equations.

4.5.1 Input Normalization
4.5.2 Evolution Equations

Let a be the vector to be submitted to retrieve the associated pair . Now a



could represent a stored pattern or a noisy or an unknown pattern.

Irrespective of the case, the general system of equations is given as: Frame
the correlation vector

My . — [n)] piven by

mp=fe - Ady J=1,2.08 [4.28)
wherz,

I, it xr=max (e ,:E_,-:!‘J

e [4.24)

U, iherw i=e

Mow 005 refrieved as
5
Be= 3 (e my), k=1,2,..p (4.311)
=1

where 5, is the kth compenent of the vector J and &, is the &th compenent of A,

mg = o((a-4z) =1,

B,

B,

IsSF



ny = 0 = ()

m, =10 . =0

i el | M=l

m; =10 ;=0

My =10 My =0

It is to be observed that the computation of Eq. (4.30) is unnecessary since
for some d, when

the corresponding
1s the vector to be
retrieved.

Also, in the event of noisy vectors, it is to be noted that there could exist an /,
s € {1,2,...,N},l # ssuch that ml = ms = 1. In such a case, it implies that
the noisy vector a is close to Al and As by the same “distance”. Thus, if d a s
is the Euclidean distance between o and As and d o [ that between o and Al,
then d o [ = d a s. The system, therefore, could retrieve or depending on
whether matrix M is chosen to be

(4.31)
assuming s < [. Algorithm 4.2 illustrates the working of SBAM.

Algorithm 4.2 (Simplified Bi-directional Associative Memory)



Algorithm sBARM (M, X Y
b N i= the nurker oi pattern seks *f
e [X, ¥} 1 are the pattern palr sete where

S e A, I

St=o 1:
St=n 2

Step 3
Slop 43

.,x,,.:' and ¥ = :vl;."rzs---rvﬂ] *l'll
=7 I:xlhr;{:lgr . ’E!n] a:ld iTj = [_rt':_.;.IJ :[rj?g i ...'!'r_.h.l..] ".l.'

Yormalize (X, ¥}

for 3 &~ 1 to N
_R-J.I:-:I:n'l - :.z ;
7|
]?,.I:m;lr'“: lr:',' "
' izl
&5l
Input A the pattern wvecdtor whoss associsated pair is
to ke recalled, Obfain itz nermalized ecuivalent

TiAaorm) A

- =T
]
Campute the innsr product of AP™™ with
b Al [ W T
for J «— 1 to N
5 = .ﬁ'”‘”“'-a\.’;'m“],ﬁ Here, "+"iz +the inprer oproduoct
operator -
end
Let 3 = ¥&) 3="12_ . /N
Apply Cthreshold fupcticn @ eon 2 Lo obtaln
cozrrelaticn wector M,
Moo= B = A, R e Mgl
i* & ds es defined 1In Bguation 4.28 +F
Output "_-Tk where k 12 =such that m = MmAXL {mmy bz
1=3,%..5

Example 4.8 (Retrieval of stored patterns by sBAM)



1 (18,82
1. (5653
4:: (1126

26,22, 1140, 6280 By (30, 30, 40
2481, SRAT, —16.84) Oy (20, 40, 30)
SATH, —HAHG, 100.96) M (T4, 30, 20)

The normalized waming pairs A, are given by

A (L1436, 02008, 0423, 0.4TUL)

Ap (0LAN0R, 02110, B.E3NY, —1.1432)
Ay (00786, —03824, —0.5024, 0,704

Retreval of veclor ¢ = (04808, 0.21760, 08380, —00 14227 (which is the slored pailern 45) vields

the following calculations:

(a-4)=—0.0657
(a-4,) = —0.6390

{tx-ﬁ:,,)

—0.9999

(e 4 = 0.6647
{odyh = 1
P Ayl = —0.640Y

Consider the following pattern pairs:

On applying the threshold function ¢, the correlation vector M is given by M
= (0, 1, 0) which retrieves B 2, which is the correct pair.

Example 4.9 (Retrieval of an unknown pattern by sBAM)

For the set of pairs considered, let us suppose A’ (an unknown pattern) is to
be presented for retrieval. The system now retrieves the B corresponding to A
among the stored pattern pairs which is close to A"

Let a=(10.26, —53.80, —81.75, 98.96) be an unknown pattern. It may be
observed that on an inspection o is ‘closer’ to A 3 among A 1, A 2, A 3.

The normalized o = (0

0735, -0.385, -0.5858, 0.7091)



The recall calculations are

Now, M = (0, 0, 1). Therefore B 3 is retrieved which is again the appropriate
pair. It may also be verified that the system has retrieved that pattern which is
closest to that of the stored pattern pairs, in the case of noisy patterns.

d = Zl(x,-—y,-)z

The Euclidean distance measure d between two real vectors X =(x 1, x 2,...,
xn) and

Y=(y1,y2,...,yn)is given by The Euclidean distance measure di of the
normalized o from Ai, i=1, 2,3

respectively, is (d 1,d 2, d 3) = (1.4599, 1.81035, 0.0098). Choosing the
minimum, we obtain « closer to A 3 and therefore the system has
appropriately recalled B 3.

4.6 APPLICATIONS

In this section, the applications of associative memories to real world
problems are illustrated. We discuss two applications, namely

Recognition of characters (using bipolar coding)

Fabric defect identification (using real coding)



These applications serve to demonstrate ways in which associative memories
can be used for the solution of problems.

4.6.1 Recognition of Characters

Consider a set of English alphabetical characters such as A, B, C, ... which
are to be recognized. The objective is to allow the associative memory model
identify the characters presented.

The characters are engraved in a 14 x 14 grid as shown in Fig. 4.4. These
characters are to be associated with their ASCII equivalents. Thus, the ( X, Y)
pattern pairs which are to be associated using the associative memory model
are the grid patterns and their ASCII equivalents.

The grid patterns are represented as a bipolar vector of 196 components. If
the pixel in the grid is shaded, the vector component is 1 otherwise it is —1.

Also, the ASCII numbers of the characters have been represented using their
bipolar equivalents. Figure 4.5 shows the bipolar coding of the sample
characters, and their ASCII equivalents.

Fig. 4.4 Characters engraved in a grid.

Making use of Wang et al.’s associative memory model and choosing g 1 =
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Fig. 4.5 Bipolar equivalent of the pattern pairs.

The recall of X 1, X 2, X 3 yields the following results: X 1 - M = (332, —332,
-452,-332,-332,-452,308) p( X1 -M)=(1-1-1-1-1-11)(on
application of the threshold function ¢ defined in Eqgs. (4.12-4.14)



=Yl

X2+M=(652,-652, 636,652, —652, 636, -524) p( X2 -M)=(1-11-1
-11-1)

[ 111

R = Distorted R ) 5" = Distorted 5 A’ = Distorted A
=Y2

X 3 - M= (404, —404, 548, —404, —404, 548,238) (X 3 - M) = (1 -1 1 -1
111

=Y3

Recall of noisy characters

Consider the set of noisy characters as shown in Fig. 4.6.
Fig. 4.6 Noisy characters.

The recall of the bipolar vectors corresponding to A’, R' and S’ which are
partially distorted versions of the respective characters A, R and S yields A"
M = (356, -356, —332, —-356, —356, —332,284) p(A' - M)=(1 -1 -1 -1 -1
-111)

=Y 1 (character A)

R' - M = (644, -644, 596, —644, 596, —388)

(R -M)y=(1-11-1-11-1)



= Y 2 (character R)

S'+ M = (324, -324, 404, —324, 324, 404, 252) (S’ * M )= (1 -1 1 -1 -1
11)

= Y 3 (character S)
4.6.2 Fabric Defect Identification

Inspection of fabrics for defects depends on human sight and the results are
greatly dependent on the mental and physical condition of the inspector.

Textile engineers have therefore begun to seek assistance from computers and
in recent years have found neural computing to hold a lot of potential in
handling a wide range of problems in textile engineering.

Thus, for the problem of fabric defect identification, Tsai et al. (1995)
applied conventional multilayer perceptron using the backpropagation
algorithm as a learning strategy. However, an elegant solution has been
suggested by Rajasekaran (1997) by making use of a self-organizing network
namely training free counterpropagation network, which is an improvement



(Rajasekaran and Pai, 1997) over Hecht Nielsen’s counterpropagation
network.

The sBAM scheme offers an elegant solution to the fabric defect
identification problem. The defects to be identified are nep, broken end,
broken pitch, and oil stain. For purposes of classification, the categories are
identified by numbers, namely 1—normal, 2—nep, 3—broken end, 4—broken
pitch, and 5—oil stain. Figure 4.7(a) illustrates a normal fabric and Figs.

4.7(b)—4.7(d) show some kinds of fabric defects.

Fig. 4.7(a) Normal fabric.




Fig. 4.7(b) Nep.
Fig. 4.7(c) Broken end.

Fig. 4.7(d) Oil stain.



Tsai et al. employed a gray level co-occurrence matrix (Sobus et al., 1997) to
obtain the feature parameters f 1, f 2, f3, f 4, f 5, f 6 for each fabric defect.

Among the feature parameters, f 1, f 2, f 3, and f 4 are the contrast (CON)
measurements of the texture images along 0°, 450, 900 and 1350, when the
spatial displacement d is equal to 1. Here, 5, f 6 are the contrast values at d

12,0 =00 and d = 16, 0 = 900 respectively. Here, 0 is the direction angle.

Tsai et al.’s experimental data has been used for the associative memory
model. Table 4.1 refers to a sample set of input representing some defects and
stored in the associative memory model. Table 4.2 shows the results of the
defects identified by SBAM, when a testing set comprising unknown
instances of the various defects was presented for retrieval. The SBAM model
is able to identify fabric defects with 100% accuracy.

Table 4.1 Sample set of stored patterns presented to SBAM for fabric defect
identification f 1

2

f3

f4a

f5

f6
Defects
0.3978
0.6433

0.3704



0.4430

0.3484

0.3811

0.3920

0.6464

0.3532

0.4221

0.3352

0.3859

0.3887

0.6363

0.3601

0.4202

0.3220

0.3257

0.3851

0.6228



0.3567

0.4361

0.3496

0.3371

0.3529

0.5768

0.3219

0.3865

0.4417

0.4725

0.3465

0.584

0.3225

0.3819

0.4740

0.5255

0.3467



0.5767

0.3130

0.3782

0.3845

0.4925

0.3537

0.5642

0.3182

0.3918

0.4358

0.5035

0.3159

0.5158

0.3214

0.3981

0.5433

0.3301



0.3354

0.5356

0.3373

0.4095

0.5594

0.3677

0.3534

0.5655

0.3275

0.4129

0.5210

0.3301

0.3761

0.5795

0.3399

0.4324

0.5290

0.3305



0.3765

0.6080

0.3098

0.3824

0.3198

0.3578

0.3840

0.5953

0.3123

0.3920

0.3165

0.4022

0.3854

0.6023

0.3101

0.3890

0.3154



0.3635

0.3873

0.5970

0.3074

0.3944

0.3554

0.3735

0.3592

0.4453

0.3000

0.3543

0.4973

0.4100

0.4049

0.4874

0.3207

0.3977



0.5187

0.4240

Table 4.2 Results of the sample testing set (unstored patterns) presented for
fabric defect identification Defect

Actual
f1

12

f3

f4

f5

f6
identified by sSBAM
defect
0.3900
0.6402
0.3584
0.4205

0.3726



0.3434

0.4026

0.6362

0.3601

0.4320

0.3438

0.3442

0.3879

0.6161

0.3419

0.4153

0.3228

0.3547

0.3689



0.6188

0.3483

0.4026

0.4393

0.4813

0.3789

0.6173

0.3447

0.4042

0.3954

0.4213

0.3663

0.6173

0.3444

0.4045

0.4439



0.4788

0.3881

0.6345

0.3569

0.4305

0.4214

0.5121

0.3509

0.5957

0.3507

0.4079

0.5432

0.3107

0.3661



0.5915

0.3361

0.4137

0.4808

0.2884

0.3717

0.5968

0.3237

0.4003

0.4708

0.3376

0.3723

0.5821

0.2097

0.3695

0.3453



0.3765

0.3836

0.6022

0.3054

0.3861

0.3383

0.3429

0.4000

0.4976

0.3254

0.3969

0.5242

0.4233

0.2626



0.3115
0.2417
0.2633
0.4584

0.3841

0.4051

0.5158

0.3361

0.4082

0.6228

0.6095

5

5

@.0;)

4.7 RECENT TRENDS

The bidirectional associative memory is a two-layer nonlinear recurrent
network associating pattern pairs

where i = 1, 2,..., N. The model can be



generalized to display multiple association of pattern vectors ( ai, bi, ci,...)
where i = 1, 2,..., N. Such an associative memory model termed multiple
association memory has been proposed by Hagiwara (1990). Most learning
methods for BAM do not consider the basin of attraction seriously which
may restrict the application of a BAM as a CAM ( content addressable
memory). Wang et al. (1994) proposed a learning algorithm for BAM with
optimal stability which guarantees the storage of training patterns with
basins of attraction as large as possible.

An asymmetric BAM with asymmetric feedforward, feedback connections,
pattern nonorthogonality and relatively large capacity has been proposed by
Xu et al. (1994). A BAM model which uses an optimal associative memory
matrix in place of the standard Hebbian or quasicorrelation matrix has been
suggested by Wang (1996). Iku and Makoto (1996) have proposed a complex
associative memory and Lee and Wang (1998), a multivalued bidirectional
associative memory.

M=XgX %
SUMMARY

Associative memories are a class of neural network architectures which store
associated patterns in some form and recall them when they are incited with
their associated pairs. The associative mapping is quite often a general
nonlinear matrix type operator. The patterns presented to the network could
be an exact replica of the stored patterns or a noisy version of the same.

The associative memory architectures can be classified into heteroassociative
and autoassociative models, depending on the pattern set processed, and into



static and dynamic models, based on the recall mechanism employed to
retrieve a pattern.

First order autocorrelators obtain their connection matrix by multiplying a
pattern’s element with every other pattern’s element, 1.e.

The recall equation is a vector-matrix multiplication followed by a pointwise
nonlinear threshold function.

Kosko extended the unidirectional autoassociators to bidirectional associative
processes. Making use of a correlation matrix computed from the pattern
pairs, the system proceeds to retrieve the nearest pattern pair given any pair
(a, B), with the help of recall equations. However, Kosko’s encoding method
does not ensure that the stored pairs are at a local minimum and hence,
results in incorrect recall.

Wang et al.’s multiple training encoding strategy which is an enhancement of
Kosko’s network ensures correct recall of pattern pairs. The generalized
correlation matrix suggested is

Wang and Don’s eBAM reports higher capacity for pattern pair storage than
conventional BAMs. The exponential nonlinearity in the evolution equations
results in the decrease of energy, thereby ensuring correct recall.

Most BAM architectures employ bipolar/binary encoding of pattern pairs
which are to be associated. Rajasekaran and Pai suggested sSBAM

which associates pattern pairs that are not only bipolar coded but also real-
coded. The patterns, however, are to be normalized before application of the
evolution equations.

Finally, two applications, namely recognition of characters and fabric defect
identification have been discussed. The former employs bipolar encoding and
the latter, real encoding of pattern pairs.



PROGRAMMING ASSIGNMENT

P4.1 Fink Truss Design. In the design of roof trusses, the initial areas of
members are essential for the analysis. If the truss configuration is
determinate then the initially assumed areas affect the deflection of the truss
system and if it is indeterminate, it then affects the forces in the members in
addition to deflection. In case, the assumed area deviates much from the
actual area necessary, the system has to be reanalyzed and redesigned and the
process is to be repeated until the area taken for the analysis and design are
the same.

The problem here is to obtain the initial area of truss configuration. For the
Fink Truss shown in Fig. P4.1, span, angle, type of access (‘provided’/‘not
provided’), and the spacing of the trusses are taken as inputs. However, it is
assumed that the access is provided, thereby reducing the number of inputs to
three. The outputs are the areas of the four regions, namely top chord
members, bottom chord members, and the two web members (area 1—area 4).
Table P4.1 illustrates a sample set of data to be recorded by the associative
memory model.

Fig. P4.1 Fink truss.
Table P4.1

Span

Angle

Spacing



Area 1

Area 2

Area 3

Area 4

10

26

2275

2275

959

959

10

20

2275

2275

1225

959

18

28



2275

2275

1456

959

12

22

2275

2275

959

959

20

26

2275

2275

1351

959

15



26

2275
2275
1148
959
16
23

3
2275
2275
1148
959
(1) Normalize the input-output data sets of Table P4.1.

(i1) Implement Algorithm 4.2 for simplified bidirectional associative
memory.

(111) Test for the outputs retrieved corresponding to the data set given in Table
P4.2 (after normalization).

Table P4.2
Span

Angle



Spacing
Area 1
Area 2
Area 3
Area 4
10

24

4

2275
2275
959
959
16

26.52

3269
3269
1729
1351

12



20

2275
2275
959
959
18
25

4
2506
2506
1351
959

P4.2 Satellite Image Identification. Wang et al. (1990) applied their
associative memory model to a satellite image identification system.

Here, a set of satellite images are to be identified. A sample set of images and
their associated pairs have been illustrated in Fig. P4.2.
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Fig. P4.2 Satellite images and their associated pairs.
(1) Design a graphics user interface to accept these images.

(1) Convert the images into their bipolar equivalents.



(1i1) Implement Wang et al.’s multiple training encoding strategy (Algorithm
4.1).

(iv) Test for the recognition of stored patterns ( X).

(v) Test for the recognition of noisy images ( X'), a sample of which is shown
in

Fig. P4.3.



Fig. P4.3 Noisy satellite images.
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Chapter 5
Adaptive Resonance Theory
5.1 INTRODUCTION

One of the main goals of computer science is to develop an intelligent
machine that can

perform satisfactorily in unaided fashion in a complex environment.
Paradigms such as

Adaptive Resonance Theory (ART) that learn in an unsupervised fashion
represent an attempt to fulfil the goal. ART, the Adaptive Resonance Theory



was introduced by Stephen Grossberg (1988) in 1976. Currently, ART

headquarters are located at The Centre for Adaptive Systems and Deptt. of
Cognitive and Neural Systems, Boston University (http://cns-web.bn.edu).

The term resonance refers to the so called resonant state of the network in
which a category prototype vector matches the current input vector so close
enough that the orienting system will not generate a reset signal in the other
attentional layer. The networks learn only in their resonant states. The
architecture of ART is based on the idea of adaptive resonant feedback
between two layers of nodes as developed by Grossberg (1988). In case of
ART paradigm, autonomous learning and pattern recognition proceed in a
stable fashion in response to an arbitrary sequence of input patterns. In this
paradigm, self-regulatory control structure is embedded into competitive
learning mode. ART is capable of developing stable clustering of arbitrary
sequences of input patterns by self-organization.

5.1.1 Cluster Structure

Patterns can be viewed as points of N-dimensional feature space and we
expect a pattern similar in some respects. On the basis of class membership
or other attribute value, it would be close to each other in the pattern space.

Thus, pattern belonging to class C 1 would cluster more closely to one
another than any pattern belonging to class Ci. Of course, in many practical
applications these clusters overlap.
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Many unsupervised learning algorithms try to identify several prototypes of
exemplars that can serve as cluster centres. K-means algorithm, ISODATA
algorithm, and Vector Quantization (VQ) technique (see Pao, 1989 and Tou
and Gonzals, 1974), are examples of decision theoretical approaches for
cluster formation. ART structure is a neural network for cluster formation in
an unsupervised learning domain. In these architectures, the number of
output nodes cannot be accurately determined in advance.

5.1.2 Vector Quantization

It is customary to cluster input vectors based on distance functions within an
Euclidean space. VQ presented in this section and ART presented in the
following sections of this chapter present two distinct approaches to the
dynamic allocation of cluster centres. VQ is non-neural approach whereas
ART is a neural network approach.

To begin with, in VQ, since no cluster has been allocated, the first pattern
will force the creation of cluster to hold it. Whenever a new input pattern is
encoded, the Euclidean distance between it and any allocated cluster is
calculated. If we designate the p th input vector as Xp and j th cluster as Cj
then Euclidean distance d is calculated as

(5.1)
The cluster closest to the input is determined such that

(5.2)



where M is the number of allocated clusters.

Once the closest cluster k£ has been determined, the distance must
be tested against the threshold distance p as

pattern assigned # th cluster

a new cluster is allocated to p (5.3)

and every time the cluster centre must be updated as

..5.4)

A program VECQUANT is written in Fortran for cluster formation.
There are two drawbacks of the method, namely

1. Sensitivity to sequence of presentation of input and

2. Arbitrary selection of threshold distance at which new clusters are created.
Example 5.1

Figure 5.1 shows 12 points in a two dimensional Euclidean space. The aim is
to cluster these utilizing VQ. The input patterns, i.e. X and Y coordinates of
12 points are given as (Table 5.1).

Table 5.1 Coordinates of 12 points
Points

X

Y

Points

X






3
7

Let us take a threshold distance of 2.0. It is to be noted that there are three

clusters with centres C 1 =(2.5,3.5); C2=(2.5,6.5);and C 3 =(6.5, 3.5).
The cluster membership list can also be seen as S(1) = {1, 2,9, 10}, S2) =
{3,4,11, 12}, and S(3) = {5, 6, 7, 8}. The corresponding results are shown



graphically in Fig. 5.1(a). Also note that the clusters identified are very much
what humans might expect from looking at the patterns.

—_—




—

Fig. 5.1(a) Input pattern for VQ. Example 5.1 (Threshold distance 2).
Fig. 5.1(b) Input pattern for VQ. Example 5.1 (Threshold distance 3.5).

The same example is repeated with a threshold distance of 3.5. It is to be
noted that there are two clusters with cluster centres C 1 = {2.5,5} and C 2 =

(6.5, 3.5). The cluster membership list can now be seen as S(1) = {1, 2, 3, 4,



,.,_}

9,10, 11, 12} and S(2) = {5, 6, 7, 8}. Again, these results are shown
graphically in Fig. 5.1(b). From this it is clear that choosing very large
threshold distance may easily obscure meaningful categories. Conversely,
choosing too low threshold may lead to the proliferation of many meaningful
categories. If the threshold distance is 4.5, all patterns are grouped into one
category as S(1)={1,2,3,4,5,6,7,8,9, 10, 11, 12}. The results are shown
in Fig. 5.1(c) followed by outputs for all the three cases.

Fig. 5.1(c¢) Input pattern for VQ. Example 5.1 (Threshold distance 4.5).
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pattem of 1
assigned to cluster 1
the new cluster centres are

cluster 1 2.000000 3000000
cluster 1 1
pattern 2
balongs to the cluster 1
distance 1.000000
cluster cenire 2800000 3000000
s sy o o o e e e
pattern 3
belongs fo the cluster 2
distance 3.041381
cluster centre 2000000  B.000000
pattern 4
belongs o the cluster 2
distance 1.000000
cluster cenire 2800000  B.000000
sy e e s ey gy o e i i
pattarn 5
belongs o the clusier 2
distance 3 500000
cluster centre 5.000000  3.000000
pattern &
belongs to the cluster 3
distance 1.000000
cluster centre 6500000  3.000000
R e w s
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distance 1.118034
cluster cantre 8333333 3333333
pattern 8
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distance 9. 42R090E-01
cluster centre 5.900000  3.500000
e iy i v e iy g ol o s oy e
pattarn g
belongs to the clusier 1
distanca 1.118034

3333333

clusisr cantpe 2333333

FOR THRESHOLD DISTANCE OF 2



patiem 10

belongs to the cluster 1
distance 8.428082E-01
cluster centre 2500000 3500000
patiem 1
belongs to the cluster 2
distance 1.118034
cluster centre 2333333 56333333
pattem 12

belongs o the cluster 2
distance 0 428090E =01
cluster canire 2E00000 8500000
B i oy R R A A A e A

pattern of 1

assignad o cluster 1
the new cluster centres are

cluster 1 2000000 3000000
clustar 1 1
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patiem 2

belongs to the cluster 1
distance 1.000000

cluster cenire 2500000 3.000000
it iy ek sk e deindcinib ke

pattem ]

belongs to the cluster 1
distance 3.041381

cluster cenire 2333333 4.000000
patiem 4

belongs to the cluster 1
distance 2108185

cluster cenire 2500000  4.500000
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patiemn 3
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distance SJ.B0FB3rF

cluster cenire B.000000  3.000000
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FOR THRESHOLD DISTANCE OF 3.5
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belongs to the cluster 2
distance 1.000000

cluster centre 6.500000 3000000
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pattern T
b=longs to the cluster 2
diztance 1. 118034

cluster centre 6333333 3333333
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pattern &

belongs to the cluster 2
distance 9.428080E<01
cluster centre 6.500000 3500000
pattern 2]

belongs to the cluster 1
distance 7.07T1068E-01
cluster centre 2400000 4400000
pattern 10

belongs to the cluster 1
distance T.21M102E-01
cluster centre 2.500000 4333333
ik dr Sk ink driek ink deicinininieiei ik deirininib k denk

pattern ik

balongs to the cluster 1
distance 2713137

cluster cantre 2428671 4714286
pattern 12

b=longs to the cluster 1
distance 2. 356080

cluster centra 2.500000 5000000
pattern of 1

assigned to cluster 1

the new cluster centres are

cluster 1 2000000 2.000000
cluster 1 1
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FOR THRESHOLD DISTANCE OF 4.5



pattemn 2
belongs to the cluster

distance 1.000000
cluster centre 2 500000
pattemn 3
belongs to the cluster
distance 3.041381
cluster centre 2333333
pattem 4
belongs to the cluster
diztance 2108185
cluster centre 2.500000
pattern ]
belongs to the cluster
dizstance 3.807887
cduster centre 3200000
pattern =]
belongs to the cluster
dizstance 3.984972
cluster centre 3833333
pattem 7
belongs to the cluster
dizstance 2 16e6e6ET
cluster cantre 4 142857
o e o o R A R AL R A ek
pattem i
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distance 2B5T143
cluster centre 4 500000
sy ol it sl ol oy ol e s o e o o
pattem a
balongs to the cluster
distance 2.500000

cluster centre 4222222

shrofe =i ol i i o i ol il el il

pattemn 10
balongs to the cluster
distance 1222222
cluster centre 4100000
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pattem i

belongs to the duster 1
distance 3.681967

cluster centre 3.000001 4272727
pattem 12

belongs to the cluster 1
distance 2874798

cluster centre 3833333 4.500000

sk ik el sk il s e b il dnk i

5.1.3 Classical ART Networks
ART networks were developed by Carpenter and Grossberg (1987, 1991).

One form ARTI, is designed for clustering binary vectors and the other,
ART?2 accepts analog or continuous valued vectors. These nets cluster inputs
by unsupervised learning. One can present input patterns in any order. Each
time when a pattern is presented, an appropriate cluster unit is chosen and
the cluster’s weights are adjusted to let the cluster unit to learn the pattern.
The weights on the cluster unit may be considered to be an exemplar (or code
vector) for the patterns placed on the cluster.

When the net is trained, one can present training pattern several times. A
pattern may be placed on one cluster unit for the first time and then on a
different cluster when it is presented later due to changes in the weights for
the first cluster if it has learned other patterns in the mean time. We find in
ART architecture, a pattern oscillating among different cluster units at
different stages of training, indicating an unstable net.

Stability of the network means that a pattern should not oscillate among
different cluster units at different stages of training. Some nets achieve
stability by gradually reducing the learning rate as the same set of training
set presented many times.

Plasticity While training patterns are presented many times, this does not
allow the net to learn readily a new pattern that is presented for the first time
after a number of training epochs have already taken place.



Plasticity is the ability of the net to respond to learn new pattern equally well
at any stage of learning.

Usually, adaptive resonance theory nets are designed to be both stable and

plastic. This has been described by Stephen Grossberg as Stability-Plasticity
Dilemma. The dilemma poses a series of questions, some of which are as
follows:

1. How can a learning system remain adaptive (plastic) in response to
significant input yet stable in response to irrelevant input?

2. When does the system know to switch between its plastic and stable
modes?

3. What is the method by which the system can retain previously learned
information while learning new things?

ART seeks to provide answers for these questions. It is an extension of
competitive learning scheme. Nodes compete with one another based on
certain criteria and the winner is said to classify the input pattern in the
competitive system.

In order to solve Stability-plasticity dilemma, it 1s necessary to add a
feedback mechanism between the competitive layer and the input layer of the
network. This feedback mechanism facilitated the learning of new
information without destroying old information and hence, automatic
switching between stable and plastic modes.

This approach results in two neural networks suitable particularly for pattern
classification problems in realistic environment. Also, attention has been
paid to structuring ART nets so that neural process can control the rather
intricate operation of these sets. This requires a number of neurons, in
addition to the input units, cluster units, and units for the comparison of the
input signal with the cluster unit’s weights.

ART1—This is a binary version of ART. It can cluster binary input vectors.



ART2—This is an analogous version of ART. It can cluster real value input
vectors.

ART2A—This network is an ART extension that incorporates a chemical
transmitter to control search process in a hierarchical ART structure.

ARTMAP—This is a supervised version of ART that can learn arbitrary
mapping of binary patterns.

Fuzzy ART—It is a synthesis of ART and fuzzy logic.
Fuzzy ARTMAP—This is a supervised fuzzy art.

Distributed ART and ARTMAP (dart and dartmap)—These models learn
distributed code representation in the F' 2 layer. In the case of winner take all
F 2 layers, they are equivalent to fuzzy ART and ARTMAP. Besides the
above, there are many ART adaptations such as ARTMAP1C, GAUSSTIAN

ARTMAP and Hierarchical ART models, ARBO ART, CASCADE Fuzzy
ART,

HART-J, HART-S, SMART, LAPART, MART, PROBART, RRMAP, TD-
ART are some of the architectures of hierarchical models.
5.1.4 Simplified ART Architecture

The ART network is an unsupervised vector classifier that accepts input
vectors which are classified according to the stored patterns they mostly
resemble. It also provides for a mechanism allowing adaptive expansion of
the output layer of neurons until an adequate size is reached based on the
number of classes, inherent in the observation. The ART network can
adaptively create a new neuron corresponding to an input pattern if it is
determined to be sufficiently different from existing clusters. This
determination, called a vigilance test, is incorporated into the adaptive
backward network. Thus, the ART architecture allows the user to control the
degree of similarity of patterns placed in the same cluster . Figure 5.2 shows
the simplified configuration of the ART architecture.
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Fig. 5.2 Simplified ART architecture.

The basic architecture of ART involves three groups of neurons, an input
processing field ( F' 1 layer), the cluster units ( /' 2 layer), and a mechanism
to control the degree of similarity of patterns placed on the same cluster (a
reset mechanism). To control the similarity of patterns placed on the same
cluster, there are two sets of connections (each with its own weights) between
each unit of input of F 1 layer and the cluster unit of F 2 layer, and this is
known as bottom-up weights. Similarly, F' 2 layer is connected to F' 1 layer by
top-down weights.

The F 2 layer is a competitive layer. The cluster unit with the large net input
becomes the candidate to learn the input pattern setting all other F' 2 units to



zero. The reset unit makes the decision whether or not the cluster unit is
allowed to learn the input pattern depending on how similar its top-down
weight vector is to the input vector and to this decision. If the cluster unit is
not allowed to learn that it is inhibited, a new cluster unit is selected as the
candidate.

Basically, there are two learning methods fast learning and slow learning.
In fast learning, weight update during resonance occurs rapidly whereas in

slow learning, weight changes occur slowly relative to the duration of a
learning trial. Fast learning is used in ART1 whereas slow learning is
appropriate in ART?2.

5.2 ART1

As mentioned in the introduction to this chapter, ART1 network requires
binary input vector, that is, they must have components of the set {0, 1}. This
restriction may appear to limit the utility of the network but there are many
problems having data that can be cast into binary format. Later on, we will
see in one example how real input can be handled in ART1.

5.2.1 Architecture of ART1
The neural network for ART1 model consists of the following:

(a) A layer of neuron called F 1 layer (input layer or comparison layer), (b) A
node for each layer as a gain control unit,

(c) A layer of neurons called F' 2 layer (output layer or recognition layer), (d)
Bottom-up connection from F 1 to F 2 layer, (e¢) Top-down connection from
F 2 to F1 layer,

(f) Inhibitory connection (negative weights) from F 2 layer to gain control,
(g) Excitatory connection (positive weights) from gain control to a layer, (h)
Inhibitory connection from F' 1 layer to reset node, and (i) Excitatory
connection from reset node to F 2 layer.



The ARTT architecture shown in Fig. 5.3 consists of two layers of neurons
called comparison layer and the recognition layer. Usually, the classification
decision is indicated by a single neuron in the recognition layer that fires.
The neurons in the comparison layer respond to input features in the pattern.
The synaptic connections (weights) between these two layers are modifiable
in both the directions. According to learning rules, the recognition layer
neurons have inhibitory connections that allow for competition. These two
layers constitute attentioned system.

The network architecture also consists of three additional modules labelled
Gainl, Gain2, and Reset as shown in Fig. 5.3. In the attentioned subsystem,
if the match of input pattern with any of the prototype stored occurs,
resonance is established. The orienting subsystem is responsible for sending
mismatch between bottom-up and top-down patterns on the recognition layer.
The recognition layer response to an input vector is compared to the original
input
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vector through a mechanism called vigilance. When vigilance falls below a
threshold, a new category must be created and the input vector must be stored
into that category. The recognition layer follows the winner take all
paradigm. The recognition layer is shown in Fig. 5.4.

Fig. 5.3 ART1 network.
Fig. 5.4 Recognition layer.

N

¥.5.6

i=1

1 for net; > net,, foralli+j

flnet,) = {

0 otherwise

N
= Zrﬁ’} fori=1,....M

F=k

5.2.2 Special Features of ART1 Models



One special feature of an ART1 model is that a two-third rule is necessary to
determine the activity of the neuron in the F' 1 layer. There are three input
sources to each neuron in the F' 1 layer. They are—the external input, the
output of gain control, and the output of F' 2 layer neurons. The gain control
unit and 2/3 rule together ensure proper response from the input layer
neurons. A second feature is that the vigilance parameter is used to
determine the activity of the reset unit, which is activated whenever there is
no match found among existing patterns during classification.

Considering Fig. 5.4
netj =

(5.5)

rj =

where Ci is the output of the i th comparison layer neuron, fis a step
function and thus, rj results in a binary value. M is the number of neurons in
the comparison layer. Figure 5.5 shows the comparison layer.

As shown in Fig. 5.5, each neuron i in the comparison layer receives the
following three inputs:

(a) A component or the input pattern X, Xi

(b) The gain signal G1 is a scalar (binary value), thus, the same value is input
to each neuron

(c) A feedback signal from the recognition layer is a weighted sum of the
recognition layer outputs. Thus,

(5.6)

where 7j is the output of the j th recognition layer neuron and N is the
number of neurons in the recognition layer, 7j is the weight vector associated
with the recognition layer neuron j, vector C represents the output of



comparison layer, gain G 1 is one when the R vector is zero and the logical
OR of the components of the input vector X is one as seen from Eq. (5.3) as

G = AR ... 15) (K] X X5 ... | Xyy)

lr;: = I:'Yl .]'L;j

|.1{m}

(5.7a)

Gain G 2 is one when the logical OR of the components of the input vector

X 1s one as seen from Eq. (5.4) as.

(5.7b)



The steps of ART1 operations are given in Figs. 5.6-5.9.

Fig. 5.5 ART1 comparison layer.
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Fig. 5.6 Step 1. G 1 =1 The input vector is passed through the comparison
layer to the recognition layer.

Fig. 5.7 Step 2. The best neuron of the recognition layer has been selected as
winner, the winner sends its signal through its top-down weights.
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Fig. 5.8 Step 3. The input vector X and P vector in recognition layer
compared. Vigilance failed.

Winning neuron is inhibited.
Fig. 5.9 Step 4. Previous winning neuron is disabled. New winner is selected.

The reader may refer for the mathematics of the dynamics of the system to
the textbook by Freeman and Skapura (Freeman and Skapura, 1991).
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5.2.3 ART1 Algorithm

To begin with, we must determine the size of the F' 1 and F 2 layers as No. of
units in F 1 =M

No. of unitsin F2=N (5.8)
Other parameters must be chosen according to the following constraints.
(5.9)

The parameter B must be chosen to satisfy the above constraint to implement
2/3 rule successfully to distinguish between top-down and bottom-up
patterns.

Initialization. Top-down weights must be initialized as
[ td] M x N = top-down weight matrix (5.10) (5.11)
Bottom-up weights must be initialized as

[ bu] N x M = bottom-up weights (5.12)0<



(5.13)

The activities on F 2 are initialized to zero but according to our chosen
model, F 1 activities are initialized to

(5.14)

All input patterns must be binary /i € {0, 1}. The norm of the vector is
equal to the sum of the components.

(5.15)
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Algorithm 5.1 illustrates the steps to be followed.

Algorithm 5.1 (Artl Algorithm)
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5.2.4 Illustration

Example 5.2

To see the algorithm, let us perform a step by step calculation for a small
example problem.

We shall choose the dimension of F' 1 and F' 2 as M =5, N = 6 respectively.



Choose the values for the following parameters as

A=1;B=15;C=5;D=09;p=0.9

Let us take the first input vector as

Y

{11}:*

o = o O O

e E

02+(B-1)
D

0.240.5
0.9

( L

(L -1+M)

o

[0.756 0.756 0.756
0.756 0.756 0.756
0.756 0.756 0.756
0.756 0.756 0.756
10.756 0.756 0.756

J-01

0.756
0.756
0.756
0.756
0.756

0.756
0.756
0.756
0.756
0.756

0.756 |

0.756
0.756
0.756
0.756

5x06



[0.456 0.456 0.456 0.456 0.456]
0.456 0.456 0.456 0.456 0.456
0.456 0.456 0.456 0.456 0.456
0.456 0.456 0.456 0.456 0.456
0.456 0.456 0.456 0.456 0.456
0.456 0.456 0.456 0.456 0.456 |

65
Let us initialize top-down weights by adding positive value of 0.2 to ( B —
1)/ D giving

=0.756
[ 7d] =

Since M =5 and L =5, weights on F 2 units are all initialized to slightly less
than the given value (say 0.1) which is obtained as

=(0.456
[ bu] =

We can now begin actual processing. We shall start with simple input vector
as

(11)T=(00010) T
Step 1: After the input vector is applied, the F' 1 activities become (see step 1
of the algorithm)

(X1)T=(0000.1180) T



Step 2: The output vector S is written as

(0.455]
0.455
0.455
10.455(
0.455
(0.455]
(0.756]
0.756
Vsx1 = [td]sytlsx1 = 10.756 ¢
0.756
(0756 ...
ﬂ:l:r:-,ar =09
7] |

(SYT=(00010)T

Step 3: Propagating this output vector to F 2 the net inputs to all ' 2 units
will be identical.

{T)6x1=[bul6x5{S}5x1

Step 4: Calculate { u} as

(u) T=(100000) T



Since all unit activities are equal, simply take the first unit as winner Step 5.
Calculate { V} as

Step 6: Calculate new activity values on F' 1 as

(X) T=(-0.123 =0.123 —=0.123 0.023 -0.123) T

Step 7: Only unit 4 has a positive activity and hence new outputs are
(S)T=(00010) T

Step 8: Calculate

Step 9: There is no reset and resonance reached.

Step 10: Update bottom-up weight matrix as

0 0 0 1 0

0.456 0.456 0.456 0.456 0.456
0.456 0.456 0.456 0.456 0.456
0.456 0.456 0.456 0.456 0.456
0.456 0.456 0.456 0.456 0.456
0.456 0.456 0.456 0.456 0.456

6x5

0 0.756 0.756 0.756 0.756 0.756]
0 0.756 0.756 0.756 0.756 0.756
0 0.756 0.756 0.756 0.756 0.756
1 0956 0.756 0.756 0.756 0.756
0 0.756 0.756 0.756 0.756 0.756]

S5x6



0 0 0 1 0

0 0 0.833 0 0.833
0.456 0.456 0.456 0.456 0.456
0.456 0.456 0.456 0.456 0.456
0.456 0.456 0.456 0.456 0.456
0.456 0.456 0.456 0.456 0.456 |

6X5
[ bu] =

Step 11: Update top-down weights as

[ 7d] =

That completes the cycle of the first input pattern. Now, let us apply second
pattern that is orthogonal to 7 1 as

(12)T=(00101)T

(1) T=(009110911091109110911) T

Unit 1 definitely loses. We select unit 2 as winner.
(u)T=(010000)T

(V) T=[td]{ u} =(0.756 0.756 0.756 0.756 0.756) T
(X) T=(-0.123 -0.123 0.0234 -0.123 -0.0234) T

The resulting output matches the input vector (0 0 1 0 1) 7 and hence there is
no reset. Now, the bottom-up matrix is given by

[ bu] =

Now, the top-down matrix is given by



0.756 0.756 0.756 0.756]
0.736 0.756 0736 0.756
0.756 0.756 0.756 0.756
0.756 0.756 0.756 0.756
0.756 0.756 0.756 0.756 |

o = o o o
L = S e s [ |

%6

0 0 0 1 0

0 0 0 0 1

0.456 0.456 0.456 0.456 0.456

0.456 0.456 0.456 0.456 0.456

0.456 0.456 0.456 0.456 0.456
10.456 0.456 0.456 0.456 0.456

Gx5

0.756 0.756 0.756 0.756]
0.750 0:750 0736 0.756
0.756 0.756 0.756 0.756
0.756 0.756 0.756 0.756
0.756 0.756 0.756 0.756 |

o s B == R == R =
-_a o o O

5%6
[ 1d] =

Now, let us apply the third input vector as
(13)T=(00001)T

(u) T=(010000) T

(vyt=(00101)T

In this case, the equilibrium activities are



(X) T=(-0.25-0.25-0.087 —-0.25 .0.0506) T

with only one positive activity. The new output pattern is (0 0 0 0 1) which
exactly matches with input pattern. So, no reset occurs.

Even though unit 2 on F' 2 had previously encoded an input pattern, it gets
recoded now to match the new input pattern that is a subset of the original
pattern. The new weight matrices are

[ bu] =
[ td] =

If we return to the superset vector {0 0 1 0 1) 7, the initial forward
propagation to F 2 yields activities as

X =(-0.25 -0.25 —-0.25 0.0506 —0.25)

The outputs are {0 0 0 1 0). This time, resonance has reached pattern 1 on
unit 1.

A program ART1 developed in Fortran is given) in CD-ROM (attached with
this book) to classify patterns for the binary input. If we use the program we
get the following output.

resonance has been reached on unit 1 pattern 1
resonance has been reached on unit 2 pattern 2
resonance has been reached on unit 3 pattern 3
network not stable

resonance has been reached on unit 1 pattern 1
reset with pattern 2 on unit 2

resonance has been reached on unit 3 pattern 2



resonance has been reached on unit 3 pattern 3
network not stable

resonance has been reached on unit 1 pattern 1
reset with pattern 2 on unit 3

reset with pattern 2 on unit 2

resonance has been reached on unit 4 pattern 2
resonance has been reached on unit 2 pattern 3
network not stable

resonance has been reached on unit 1 pattern 1
resonance has been reached on unit 4 pattern 2
resonance has been reached on unit 2 pattern 3
network stable

Even if any pattern is repeated, we will be able to recognize the pattern.

ARTT is an elegant theory that addresses stability-plasticity dilemma. The
network relies on resonance. It is a

self-organizing network and does the categorization by associating individual
neuron of the F 2 layer with individual patterns. By employing so called 2/3

rule, it ensures stability in learning process.
5.3 ART2

5.3.1 Architecture of ART2



ART?2 networks self organize stable recognition categories in response to
arbitrary sequences of analog (Grey-scale, continuous-valued) input patterns,
as well as binary input patterns. On the surface, it looks that the main
difference between ART1 and ART?2 is that ART2 accepts input vectors
whose components can have any real numbers as their value. But in
execution, ART?2 network is considerably different from ART1 network. The
capability of recognizing analog patterns represents a significant
enhancement to the system. ART?2 also recognizes the underlying similarity
of identical patterns superimposed on constant backgrounds having different
levels. Figure 5.10 shows the ART?2 architecture where the comparison layer
of F' 1 layer is split into several sublayers. Additionally, the orienting
subsystem has also accommodated real-valued data. ART2 includes the
following:

(a) Allowance for noise suppression,
(b) Normalization, i.e. contrast to enhance the significant parts of the pattern,

(c) Comparison of top-down and bottom-up signals needed to reset the
mechanism, and

(d) Dealing with real-valued data that may be arbitrarily close to one another.

The learning laws of ART?2 are much simpler even though network is
complicated.
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Fig. 5.10 ART?2 architecture.

Carpenter and Grossberg (1987), the developers of ART?2 architecture have
been developing various architectures of ART2 and in this chapter, we will
describe one such architecture. The reader may refer to the mathematics of
ART?2 architecture in the book by Freeman and Skapura (1991).

5.3.2 ART2 Algorithm



The size of the F' 1 and F 2 layers is determined as Number of units in F' 1
layer =M

Number of units in F' 2 layer = N

0<d<l;cd/(1-d)<1; 0s0<1; 0<p<] e<<l

o o o
a o o
ax o o

0.5
<

B {(1 —d) JM}
The parameters are chosen according to the following constraints a, b > 0

(5.25)

Top-down weights are initialized to zero as [ td] = [0]. The top-down weight
matrix consists of

M rows and N columns.

Bottom-up weights are initialized as

[ bu] =

(5.26)

where

The steps to be followed are illustrated in Algorithum 5.2.

Algorithm 5.2 (ART?2 Algorithm)
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5.3.3 llustration

Example 5.3

Let us perform step by step calculation for the following example.
Let us define a set of three input vectors as

Let us initialize the following variables.

We shall assume the dimensions of F' 1 and F'2 as M =5, N = 6 respectively.



Let us choose the first input vector as
(11)T=(0.20.70.10504) T

The top-down weights are initialized as zero; [ td] = [0].

The bottom-up weights are initialized according to Eq. (5.26) as
[ bu] =

Using ( 71) T=(0.20.7 0.1 0.5 0.4) T as the input vector, before
propagation to F' 2 we have

(p)T=(01000)T.

Propagating the vector forward to F 2 yields a vector of activities across the
F 2 units of

(T) T=(2.2362.2362.236 2.236 2.236) T

Because all the activities are the same, the first unit becomes the winner and
the activity vector becomes

(1) T=(22360000)T

and the output of the F 2 layer is a vector given by

0 9.998 0 0 0

2236 2236 2.236 2.236 2.236
2236 2236 2.236 2.236 2.236
2236 2236 2.236 2.236 2.236
2236 2236 2.236 2.236 2.236
2.236 2.236 2.236 2.236 2.236

65



0 000 0 0
998 0 0 0 0 0

0 000 00

0O 000 00

0 0 0 0 0 0],
(0.90000)

We must propagate this output vector back to F' 1 and cycle through the
layers again. Since the top-down weights are all initialized to zero, there is no
change on the sublayers of F 1. Resonance is established on unit by pattern 1.

The bottom-up weights will be

[ bu] =

and the top-down matrix will be
[ 1d] =

Notice the expected similarity between the first row of bottom-up matrix and
the first column of the top-down matrix.

By continuing this example further, we get the output as.
resonance established on Unit 1 with pattern 1
resonance established on Unit 1 with pattern 2
resonance established on Unit 2 with pattern 3

A program ART?2 in Fortran given in CD-ROM (attached with this book) is
written to recognize analog patterns.

From the above example, we can see that ART2 network varies from ART1
network primarily in the implementation of F' 1 layer. Rather than a single



layer structure, unit F' 1 layer consists of a number of sublayers that serve to
remove noise to enhance contrast, and to normalize the analog input patterns.
All signals propagating through ART2 network must be modelled as floating
point numbers.
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5.4 APPLICATIONS

5.4.1 Character Recognition Using ART1

Let us construct the list of input vectors that correspond to the first six
characters of English language. The letters are five by five pixel
representation and appear in Fig. 5.11. The ART1 implementation is used to
classify the patterns. The inputs usedare A=1,8=1.5,C=5,D=09, L=

25, p=0.9. ART1 program given in CD-ROM of this book is able to identify
all the patterns without any difficulty. This network requires a total of 16



resets during encoding process and when L = 3, 22 resets are required to
classify the patterns. It is clear that this parameter changes from 16 to 22.

There are many more such experiments that one can perform to gain
experience with ART1 architecture. We can also construct a noisy version of
these letters to see how the network responds once trained with noise-free
letters.

Fig. 5.11 Binary representation of alphabets.

5.4.2 Classification of Soil (Rajasekaran et al., 2001) The potential of ART1
based pattern recognizer to recognize real data has been studied. The
example classification of soils studied in Chapter 3 is taken here and we will
select only four data from Table 3.6 and identify their IS

classification. The data is given in Table 5.2.
Table 5.2 Soil data
Colour

Gravel %

Sand %

Finegrain %
Liquidlimit
Plasticlimit

IS

of soil

18

82



84

58

34
type
0.2
0.111
0.682
0.5
0.508

0.529

0.1

0.329

0.869

0.711

0.735

0.2



0.529
0.670
0.576

0.676

0.7

0.353

0.845

0.677

1

4

Colour of soil
0.1—Brown
0.2—Brownish grey
0.7—Yellowish red
IS type

—Clayey sand
2—Clay with medium compressibility

3—Clay with low compressibility



4—Silt with medium compressibility
First the real data is converted to integer and given as inputs to ART1. ART1

is able to identify the soil as 1, 2, 3, 4. The output of the program is as
follows

resonance has been reached on unit 1 pattern 1
reset with pattern 2 on unit 1

resonance has been reached on unit 2 pattern 2
resonance has been reached on unit 3 pattern 3
reset with pattern 4 on unit 3

reset with pattern 4 on unit 1

resonance has been reached on unit 4 pattern 4
network not stable

reset with pattern 1 on unit 4

reset with pattern 1 on unit 3

resonance has been reached on unit 1 pattern 1
reset with pattern 2 on unit 1

resonance has been reached on unit 2 pattern 2
reset with pattern 3 on unit 4

reset with pattern 3 on unit 1

resonance has been reached on unit 3 pattern 3



reset with pattern 4 on unit 1
resonance has been reached on unit 4 pattern 4
network stable

5.4.3 Prediction of Load from Yield Patterns of Elastic-Plastic Clamped
Square Plate

Example 5.4

Whang (1969) has developed finite element displacement method for elastic-
plastic analysis of bilinear strain hardening orthotropic plates and shells
considering elastic unloading also. Figure 5.12 shows the uniformly loaded
isotropic plate with clamped edges with properties—thickness,

t = 1; elastic modulus, E = 30000; Poisson’s ratio = 0.3; plastic modulus, Ep

= 300; normal yield stress = 30; shear yield stress = 17.3.
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Fig. 5.12 Yield pattern of isotropic plates (clamped).

Considering the doubly symmetric nature of the pattern, only a quarter of the
image is presented to ART1 for training. For each pattern, using the feature
extractor to be discussed in Chapter 13, seven moment invariants are
extracted and they are real numbers. These numbers are converted to binary



values. In the moment extraction process, various colours in the pattern can
be considered by giving different values for f{ x, y) (see Chapter 13). Figure
5.13 shows 1/4th images of the patterns which are trained using ART1. The
output for such a run as well as the moment invariants and the binary input
for the six moment invariants are



Pattern 1 Pattern 2

Pattern 3 Pattern 4

Pattern 5



Fig. 5.13 One-fourth images of the patterns.

Output of the Example 5.4

s sk st ok sk s st sk sk s sk sk st sk sk sk sk s st sk sk s sk stk sk sk sk koo

resonance has been reached on unit 1 pattern 1

reset with pattern 2 on unit 1

resonance has been reached on unit 2 pattern 2

dni

ik

+ e

SIX MOMENT INVARIANTS FOR THE 5 PATTERNS WHERE 6TH PATTERN IS THE COPY
OF PATTERN 1 (7TH MOMENT INVARIANT |5 EQUAL TO ZERD)

s sy drcis o o s o ik s s il ol ik o s gl s vl sl bl ol sl i o sl sl sl sl i o ke o sk sl el o el el ol ie i deindeiese @ dnk

234T043E +0H0,
T064392E+040,
JGTE1413E+04D,
H954885E +M,
BGea0G6E+00,
(234 TO4SE +0MD,

A712145E+00,
AE52542E + 0,
B35TEAZE-02,
Ja46487E=01,
B18946TE-01,
B712145E+00,

AE5AE0TE-O1T.
B7TS361E+Q0,
3384 21E+00,
BZ2B885E-01,
JHESS0T4E-DZ,
365450T7E-D1,

reset with pattern 3 on unit 2

reset with pattern 3 on unit 1

ADGOSEIE-0Z, - BET7405E-03,

= T42054E-01

a6TZ835E-01, 5848809E-01, -.5931095E-01

JZEE3IBATE-DZ, - 2047V404E-D3, — 41570E3E-03
TES4ETEE=DZ, = 612350939E={,
ZTEOTHIAE-02, — 5542211 E-D5,

BT14T13E=03
A92BRAEE-D3
4060563E-02, — B374085E-03, — 1742054E-1

resonance has been reached on unit 3 pattern 3

reset with pattern 4 on unit 1

reset with pattern 4 on unit 3

reset with pattern 4 on unit 2

resonance has been reached on unit 4 pattern 4

reset with pattern 5 on unit 4



reset with pattern 5 on unit 1

reset with pattern 5 on unit 3

reset with pattern 5 on unit 2

resonance has been reached on unit 5 pattern 5
resonance has been reached on unit 1 pattern 6
network not stable

resonance has been reached on unit 1 pattern 1
reset with pattern 2 on unit 5

reset with pattern 2 on unit 4

resonance has been reached on unit 2 pattern 2
resonance has been reached on unit 3 pattern 3
resonance has been reached on unit 4 pattern 4
reset with pattern 5 on unit 4

resonance has been reached on unit 5 pattern 5
resonance has been reached on unit 1 pattern 6

network stable
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INPUT DATA TO ART1 PROGRAM—BINARY EQUIVALENT OF MOMENT INVARIANTS
(6 X 12 = 72 BITS)

s A el ik Lo g L

0001111000080111110001 01000001 0010100000000012001000C0G00G011000007 00011
0131101301100001010100100131011010110000 1011000100000 11110011 00001111001
01010110111000000001 001103101110111110000000001011 000000000001 00030000000
0111111111000030000111 010000011013 1100303004 11111000 00000030 0000300000001
01111111100100001 0100 11100000001 031410000000001011000000000 0000000000001
001111 0000G0111110001 010000010010100000000010001000G00000011000C01 00011
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PARAMETERS TO BE READ FOR THE PROGRAM
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1, 1.5, 5, 0.8, 1000, .99, 50

e a=1b=158 c=5 d=089 L=1000, rho =099, ite = &0
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ART1 is able to classify monochrome or color images. Rajasekaran and
Amalraj (2002) have applied ART1 architecture augmented with moment
based feature extractor to recognize patterns colour-noisy and noise-free for
two experimental problems discussed here. The first one is concerned with
the recognition of satellite images and the second one is concerned with
colour images.

5.4.4 Chinese Character Recognition—Some Remarks

Kim et al. (1996) proposed an online Chinese character recognition method
using ART?2 architecture. Strokes and primitive components of Chinese
characters are usually warped into a cursive from and classifying them is
very difficult. To deal with such cursive strokes, they considered them as a
recognition unit and automatically classified them using ART2 neural
network. Character recognition is achieved by traversing the Chinese
character database with a sequence of recognized strokes and the positional
relations between the strokes. They tested 1800 basic characters used daily in
Korea and found a good recognition rate of 93.13%.

Gan and Lua (1992) have also applied ART?2 architecture to the problem of
character recognition of Chinese characters. ART2 was chosen because they
used a real-valued feature set. The feature set contains 12 geometric features
including intersection, turning points, and horizontal and vertical strokes. In



this application, ART network was not used as the final classifier, but rather
served to divide 3755 Chinese characters into 7 groups in preparation of final

recognition stage. A best case classification accuracy of 97.23% for the
training set and 90.25% for test set was obtained.

5.5 SENSITIVENESS OF ORDERING OF DATA

The ART architecture is sensitive to the order in which the patterns are
presented to the network. Kung (1993) has shown through an experiment that
ART?2 yields a different clustering on the same input when the patterns are
presented in the reverse order. Figure 5.14(a) shows the patterns space
containing patterns presented in reverse order and Fig. 5.14(b) when it is
present in actual order. In both cases, the threshold value is kept constant at
L.5.

Fig. 5.14(a) Cluster of patterns (reverse order) (Kung, 1993).



Fig. 5.14(b) Cluster of patterns (in order) (Kung, 1993).

Carpenter and Grossberg (1987b) have applied ART?2 architecture to the
problem of categorization of analog patterns which were drawn as a graph of
functions. Fifty input patterns were classified as 34 clusters.

SUMMARY

The advantages of ART over competing pattern recognition technique are as
follows:

ART exhibits stability and is not perturbed by an arbitrary barrage of inputs.

The network adapts to reflect the type of patterns not frequently observed in
the environment by updating the category prototypes adequately.

The ART architecture can easily integrate with other hierarchical theories of
cognition. It is sensitive to the order in which the patterns are presented.



ART models are based on unsupervised learning for adaptive clustering
whereas ARTMAP architecture performs supervised learning, as we will see
in later chapters. By mapping categories of one input space on to categories
of another input space, both the categories are determined as two separate
ART systems.

ART models belong to the class of match-based learning as opposed to error-
based learning of backpropagation networks.

In match-based learning the weights are adjusted only when the external
input matches one of the stored prototypes. Thus, match-based learning tends
to group similar patterns whereas error-based learning tends to discriminate
dissimilar patterns.

In this chapter, vector quantization, and ART1 and ART2 models have been
discussed with algorithms and examples.

PROGRAMMING ASSIGNMENT
P5.1 Cluster all the 5 bit binary vectors except the all zero vector {0 0 0 0

0) T using ART1 algorithm. Study the effect of vigilance parameter on the
resulting clusters.

P5.2 Implement the ART1 simulator. Test it using the example data
presented in Example P5.1. Does simulator generate the same data values
described in the example?

P5.3 Using ART1 simulator, recognize the pattern of alphabets G to L.

P5.4 Convert the real data in Illustration 5.3.3 to binary form and use ART1
simulator to identify the patterns.

P5.5 Implement the ART?2 simulator. Test it using the data presented in
Ilustration 5.3.3. Describe the activity levels at each sublayer on F' 1 at
different periods during the signal propagation process.



P5.6 Run ART?2 program using different values of theta and threshold value
and study the results.

P5.7 Using ART2 simulator, describe what happens when all the inputs in a
training pattern are scaled by a small random noise value and are presented
to the network after training. Does ART?2 network correctly classify the input
data?
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Chapter 6
Fuzzy Set Theory

Problems in the real world quite often turn out to be complex owing to an
element of uncertainty either in the parameters which define the problem or
in the situations in which the problem occurs.

Although probability theory has been an age old and effective tool to handle
uncertainty, it can be applied only to situations whose characteristics are
based on random processes, that is, processes in which the occurrence of
events is strictly determined by chance. However, in reality, there turn out to
be problems, a large class of them whose uncertainty is characterized by a
nonrandom process. Here, the uncertainty may arise due to partial
information about the problem, or due to information which is not fully
reliable, or due to inherent imprecision in the language with which the
problem is defined, or due to receipt of information from more than one
source about the problem which is conflicting.

It is in such situations that fuzzy set theory exhibits immense potential for
effective solving of the uncertainty in the problem. Fuzziness means

‘vagueness’. Fuzzy set theory is an excellent mathematical tool to handle the
uncertainty arising due to vagueness. Understanding human speech and
recognizing handwritten characters are some common instances where
fuzziness manifests.

It was Lotfi A. Zadeh who propounded the fuzzy set theory in his seminal
paper (Zadeh, 1965). Since then, a lot of theoretical developments have taken
place in this field. It is however, the Japanese who seem to have fully
exploited the potential of fuzzy sets by commercializing the technology.

More than 2000 patents have been acquired by the Japanese in the
application of the technique and the area spans a wide spectrum, from
consumer products and electronic instruments to automobile and traffic
monitoring systems.



6.1 FUZZY VERSUS CRISP

Consider the query, “Is water colourless?”” The answer to this is a definite
Yes/ True, or No/ False, as warranted by the situation. If “yes”/“true” is
accorded a value of 1 and “no”/““false” 1s accorded a value of 0O, this
statement results in a 0/1 type of situation. Such a logic which demands a
binary (0/1) type of handling is termed crisp in the domain of fuzzy set
theory. Thus, statements such as “Temperature is 32°C”, “The running time
of the program is 4 seconds” are examples of crisp situations.

On the other hand, consider the statement, “Is Ram honest?”” The answer to
this query need not be a definite “yes” or “no”. Considering the degree to
which one knows Ram, a variety of answers spanning a range, such as

29 ¢ 29 &6

“extremely honest”, “extremely dishonest”, “honest at times”, “very honest”

could be generated. If, for instance, “extremely honest” were to be accorded a
value of 1, at the high end of the spectrum of values, “extremely dishonest” a
value of O at the low end of the spectrum, then, “honest at times” and “very
honest” could be assigned values of 0.4 and 0.85 respectively. The situation
is therefore so fluid that it can accept values between 0 and 1, in contrast to
the earlier one which was either a O or 1. Such a situation is termed fuzzy.

Figure 6.1 shows a simple diagram to illustrate fuzzy and crisp situations.
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Fig. 6.1 Fuzzy versus crisp.

Classical set theory also termed crisp set theory and propounded by George
Cantor 1s fundamental to the study of fuzzy sets. Just as Boolean logic had
its roots in the theory of crisp sets, fuzzy logic has its roots in the theory of
fuzzy sets (refer Fig. 6.1).

Fig. 6.2 Crisp sets and fuzzy sets.



We now briefly review crisp sets and its operations before a discussion on
fuzzy sets is undertaken.

6.2 CRISP SETS
Universe of discourse

The universe of discourse or universal set is the set which, with reference to
a particular context, contains all possible elements having the same
characteristics and from which sets can be formed. The universal set is
denoted by E.

Example

(1) The universal set of all numbers in Euclidean space.
(i1) The universal set of all students in a university.

Set

A set is a well defined collection of objects. Here, well defined means the
object either belongs to or does not belong to the set (observe the “crispness”

in the definition).

A set in certain contexts may be associated with its universal set from which
it is derived.

Given a set A whose objects are a 1, a 2, a 3,..., an, we writteAasA={a l,
a?2,...,an}. Here,

al,a?2,.. an are called the members of the set. Such a form of representing
a set is known as [list form.

Example

A = {Gandhi, Bose, Nehru}



B = {Swan, Peacock, Dove}

A set may also be defined based on the properties the members have to
satisfy. In such a case, a set A is defined as

A={ x| P(x) (6.1)

Here, P( x) stands for the property P to be satisfied by the member x. This is
read as © A is the set of all X such that P( x) is satisfied’.

Example
A = { x| x is an odd number}

B={yly>0andymod5=0}

Venn diagram

Venn diagrams are pictorial representations to denote a set. Given a set A
defined over a universal set E, the Venn diagram for A and E is as shown in
Fig. 6.3.

Fig. 6.3 Venn diagram of a set A.
Example

In Fig. 6.3, if E represents the set of university students then A may represent
the set of female students.



Membership

An element x is said to be a member of a set A if x belongs to the set A. The
membership is indicated by ‘ €’ and is pronounced “belongs to”. Thus, x €

A means x belongs to A and x € A means x does not belong to A.

Example

GivenA =1{4,5,6,7,8,10},forx=3and y=4,wehavex € Aandy

EA

Here, observe that each element either belongs to or does not belong to a set.
The concept of membership is definite and therefore crisp (1—belongs to, 0

—does not belong to). In contrast, as we shall see later, a fuzzy set
accommodates membership values which are not only 0 or 1 but anything
between 0 and 1.

Cardinality

The number of elements in a set is called its cardinality. Cardinality of a set
A is denoted as n( A) or | A| or #A.

Example

IfA=1{4,56,7}then|A|=4

Family of sets

A set whose members are sets themselves, is referred to as a family of sets.
Example

A={{1,3,5}, {2,4,6}, {5, 10} } is a set whose members are the sets

{1,3,5},{2,4, 6}, and



{5, 10}.
Null Set/Empty Set

A set is said to be a null set or empty set if it has no members. A null set is
indicated as & or {} and indicates an impossible event. Also, || = 0.

Example
The set of all prime ministers who are below 15 years of age.
Singleton Set

A set with a single element is called a singleton set. A singleton set has
cardinality of 1.

Example
If A= {a}, then|A|=1
Subset

Given sets A and B defined over E the universal set, A is said to be a subset of
B if A is fully contained in B, that is, every element of A is in B.

Denoted as A C B, we say that A is a subset of B, or A is a proper subset of
B. On the other hand, if A is contained in or equivalent to that of B then we
denote the subset relation as A € B. In such a case, A is called the improper
subset of B.

Superset

Given sets A and B on E the universal set, A is said to be a superset of B if
every element of B is contained in A.

Denoted as A D B, we say A is a superset of B or A contains B. If A contains
B and is equivalent to B, then we denote it as A B.



Example

LetA={3,4} B={3,4,5}and C= {4, 5, 3}
Here,A c B,and B D A

CCcCB,andB 2 C

AUB = {x/xed or xeB}

ANB = {x/xe A and x € B}
Power set

A power set of a set A is the set of all possible subsets that are derivable from
A including null set.

A power set is indicated as P( A) and has cardinality of | P( A)| = 2| A|
Example
LetA=({3,4,6,7}

P(A) = {{3}, {4}, {6}, {7}, {3, 4}, {4,6}, {6, 7}, {3, 7}, {3, 6}, {4, 7}, {3,
4,6},{4,6,7},{3,6,7},{3,4,7},{3,4,6,7}, I}

Here, | A| =4 and | P(A)| =24 = 16.



6.2.1 Operations on Crisp Sets
Union (U)

The union of two sets A and B (A U B) is the set of all elements that belong
to A or B or both.

(6.2)
Example

GivenA={a,b,c,1,2} and B={1,2,3,a,c},wegetA U B={a,b,c, 1,
2,3}

Figure 6.4 illustrates the Venn diagram representation forA U B
Fig. 6.4 Venn diagram for A U B.
Intersection (N)

The intersection of two sets A and B (A N B) is the set of all elements that
belong to A and B

(6.3)

Any two sets which have A N B = & are called Disjoint Sets.

E

7
A / B

A(A] A%



A°={x/xe A, xc E}

/// 7

A—B ={x|xeAd and x¢B}

G

Example

GivenA={a,b,c,1,2} and B={1,2,3,a,c},wegetA n B={a,c, 1,2}
Figure 6.5 illustrates the Venn diagram for A N B

Fig. 6.5 Venn diagram for A n B.

Complement ( ¢)

The complement of a set

is the set of all elements which are in E but

not in A.

(6.4)

Example

Given X=1{1,2,3,4,5,6,7} and A= {5,4, 3}, we get Ac={1, 2,6, 7}

Figure 6.6 illustrates the Venn diagram for Ac.



Fig. 6.6 Venn diagram for Ac.
Difference (-)

The difference of the set A and B is A — B, the set of all elements which are
in A but not in B.

(6.5)
Example

GivenA={a,b,c,d,e}and B={b,d},wegetA-B={a,c,e}

E




Commetal vl

Al — Mg 4

Ardf — dy A {G0)
Assootativing A Bl =408 D)
fA e B O Ay (8 O {67}
DMsteihidivity: AUIBNCl=Ad U Bnid 0
AnBull=sdnfwidnC) {6.8)
felenmiprafenoe: A Ad=4d
Arvd=4 {6.9)
Taen it A B — 4
Arvk=4
A 0=
AU E=F in 10
Levw of Ahwerpiion: Auid =4
Armid . Bi=4 e N
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Law of Contradiction: A A= (6, 15)
e Mopran'y loes: (AL = 45y HF
A8 =4 B 14, 06

Figure 6.7 illustrates the Venn diagram for A — B.

Fig. 6.7 Venn diagram for A — B.

6.2.2 Properties of Crisp Sets

The following properties of sets are important for further manipulation of

sets.

All the properties could be verified by means of Venn diagrams.

Example 6.1

Given three sets A, B, and C. Prove De Morgan’s laws using Venn diagrams.

Solution
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Example 6.2

Let the sets A, B, C, and E be given as follows: E = all students enrolled in
the university cricket club.

A = male students, B = bowlers, and C = batsmen.
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(a) Female students

C

(b) Bowlers who are not batsmen

C

(c) Female students who can both bowl and bat

Draw individual Venn diagrams to illustrate (a) female students (b) bowlers
who are not batsmen (c) female students who can both bowl and bat.

Solution



Example 6.3

In Example 6.2, assume that | E| = 600, | A| = 300, | B| = 225, | C| = 160.
Also, let the number of male students who are bowlers (A N B) be 100, 25
of whom are batsmen too (A N B n (), and the total number of male
students who are batsmen (A N C) be 85.

Determine the number of students who are: (i) Females, (i1) Not bowlers, (ii1)
Not batsmen,

(iv) Females and who can bowl but not bat.

Solution

E = 600

(ko)
NP

4,4, = © for each parr (i,/)el, i#j




From the given data, the Venn diagram obtained is as follows:

(i) No. of female students | Ac| = | E| — | A| = 600 — 300 = 300

(ii) No. of students who are not bowlers | Bc| = | E| — | B| = 600 — 225 = 375
(iii) No. of students who are not batsmen | Cc| = | E| — | C| = 600 — 160 = 440

(iv) No. of female students who can bowl | Ac N B| = 125 (from the Venn
diagram)

6.2.3 Partition and Covering
Partition

A partition on A is defined to be a set of non-empty subsets Ai, each of
which is pairwise disjoint and whose union yields the original set A.

Partition on A indicated as [[( A), is therefore

(1)

(6.17)

(ii)

The members Ai of the partition are known as blocks (refer Fig. 6.8).
Fig. 6.8 Partition of set A.

Example

GivenA ={a,b,c,d,e},A1={a,b},A2={c,d} and A 3 = {e}, which
gives



i n
41 =1 J41= Y4
i=1 i=1

> 4] =2+2+1=35

Al NA2=8, A1 NA3=J,A2NA3=0
Also,A1 UA2 U A3=A={a,b,c,d,e}
Hence, { A1, A 2, A 3}, is a partition on A.
Covering

A covering on A is defined to be a set of non-empty subsets Ai. whose union
yields the original

set A. The non-empty subsets need not be disjoint (Refer Fig. 6.9).
Fig. 6.9 Covering of set A.
Example

GivenA={a,b,c,d,e},Al={a,b},A2={b,c,d},andA3={d,e}.
This gives

Al N A2={b)

Al NA3=0



A2 N A3={d)

Also,A1 UA2UA3={a,b,c,d,e}=AHence, {A1,A2,A3}isa
covering on A.

Rule of Addition

Given a partition on A where Ai, i = 1, 2,..., n are its non-empty subsets then,
(6.18)

Example

GivenA={a,b,c,d,e},Al={a,b},A2={c,d},A3={e},|A|=
and

4] = IUA,I Zlﬁ:l Z ZIA N 4]

i=1 j=1
izJ

4] = IUA,I Zlﬁ:l 2 ZIA N 4]

i=1 j=1
i#j

Rule of Inclusion and Exclusion

Rule of addition is not applicable on the covering of set A, especially if the
subsets are not pairwise disjoint. In such a case, the rule of inclusion and
exclusion is applied.

Example

Given A to be a covering of nsets A 1, A 2,..., An, forn = 2, |A| =
|A1 UA2=|A1|+|A2|-|A1 n

A2 (6.19)



forn =3, |A|=|A1 UA2UA3|=|A1|+|A2]+]|A3|
—|A1T NA2-|A2NnA3|-|AT NnA3[+|A1l NA2n

A3 (6.20)

Generalizing,

(6.21)

Example 6.4

Given | E| = 100, where E indicates a set of students who have chosen
subjects from different streams in the computer science discipline, it is found
that 32

study subjects chosen from the Computer Networks (CN) stream, 20 from
the Multimedia Technology (MMT) stream, and 45 from the Systems
Software (SS) stream. Also, 15 study subjects from both CN and SS streams,
7 from both MMT and SS streams, and 30 do not study any subjects chosen
from either of the three streams.

Find the number of students who study subjects belonging to all three
streams.

Solution

Let A, B, C indicate students who study subjects chosen from CN, MMT, and
SS streams respectively. The problemisto find |[A n B n (.

The no. of students who do not study any subject chosen from either of the



(=N |-f|'. o i {.I'l =3l

= (4w B D= 30 {using De Morgan's laws)
= B! — 4w B O =30
=% Ave B €)= K| -30

= 104l = 30 = 70

From the principle of inclusion and exclusion,
M BuCl=A|+|B|+ Cl-AmB Bl -d4dnQ-|[dnEFnC
= ArHENO= A Bl -4 =8 -+ A8 —|Brd+ |4
=T =32 -2 -45 - 15+ 7 + 1

—
three
streams = 30.

Hence, the no. of students who study subjects chosen from all the three
streams 1s 5.

4= {(x. py(). xeX)

Y na(x)ix;

reX

_[ 1 (x)/x
X

A = {(£,,0.4)(£,,0.5) (g3,1) (g4 0.9) (g5,0.8)}
6.3 FUZZY SETS

Fuzzy sets support a flexible sense of membership of elements to a set.
While in crisp set theory, an element either belongs to or does not belong to a
set, in fuzzy set theory many degrees of membership (between O and 1) are
allowed.



Thus, a membership function p ( x)
A
is associated with a fuzzy set A such that

the function maps every element of the universe of discourse X (or the
reference set) to the interval [0, 1].

Formally, the mapping is written as u A( x) : X = [0, 1]
A fuzzy set 1s defined as follows:

If X is a universe of discourse and x is a particular element of X, then a fuzzy
set A defined on X may be written as a collection of ordered pairs (6.23)

where each pair (x, u A (x)) is called a singleton. In crisp sets, u A ( x) is
dropped.

An alternative definition which indicates a fuzzy set as a union of all y A

( x)/ x singletons is given by

A=

in the discrete case (6.24)
and

A=

in the continuous case (6.25)

Here, the summation and integration signs indicate the union of all u A ( x)/ x
singletons.

Example



LetX={gl,g2, g3,g4, g5} be the reference set of students. Let A be the
fuzzy set of “smart” students, where “smart” is a fuzzy linguistic term.

Here A indicates that the smartness of g 1 is 0.4, g 2 is 0.5 and so on when
graded over a scale of 0—1.

Though fuzzy sets model vagueness, it needs to be realized that the
definition of the sets varies according to the context in which it is used. Thus,

cool

ol 5 10 15 20 25 30 35 40

Temperature
1
Bi(X) = ——
- (1+ x)2
1
3 2 1 0 1 2 3
—X X

the fuzzy linguistic term “tall” could have one kind of fuzzy set while
referring to the height of a building and another kind of fuzzy set while
referring to the height of human beings.

6.3.1 Membership Function



The membership function values need not always be described by discrete
values. Quite often, these turn out to be as described by a continuous
function.

The fuzzy membership function for the fuzzy linguistic term “cool”

relating to temperature may turn out to be as illustrated in Fig. 6.10.

Fig. 6.10 Continuous membership function for “cool”.

A membership function can also be given mathematically as

The graph is as shown in Fig. 6.11.

Fig. 6.11 Continuous membership function dictated by a mathematical
function.

Different shapes of membership functions exist. The shapes could be
triangular, trapezoidal, curved or their variations as shown in Fig. 6.12.

£e () \ uix) 1K) / N
X . X | X
4 young middle aged old
ol 10 20 30 40 50 60 70 80 90
3




B

My, p(x) = max(u (x), Hz(x))

Fig. 6.12 Different shapes of membership function graphs.
Example

Consider the set of people in the following age groups
0-10

40-50

10-20

50-60

20-30

60-70

30-40

70 and above

99 ¢¢

The fuzzy sets “young”, “middle-aged”, and “old” are represented by the
membership function graphs as illustrated in Fig. 6.13.

29 ¢¢

Fig. 6.13 Example of fuzzy sets expressing “young”, “middle-aged”, and
“Old’,.

6.3.2 Basic Fuzzy Set Operations

Given X to be the universe of discourse and A and to be fuzzy sets with u A(
x) and u B( x) as their respective membership functions, the basic fuzzy set
operations are as follows:



Union

The union of two fuzzy sets A and is a new fuzzy set A U also on X with a
membership function defined as

.(6.26)
Example
B
B
A u B young or middie-aged
it A =[x, 008, (2. 007, (2,00 and B W 08, (% 020, (3 1)
AUB — {(x,,0.8), (x,, 0.7, (x,, )}
singe, pry  glap ) = maxiggin ), felx )
= max (0.5, E)
- (1.2
-”_i.,-ﬁ';xﬂ = max{yix ), dglx:)) = max{.2,0.7) = 0.7
My glxsd = max(pesin,), iz, ) = max(0,1) = |
B

]



B 5(x) = min(uy(x), uz(x))

o

B

Let A be the fuzzy set of young people and be the fuzzy set of middle-aged
people as illustrated in Fig. 6.13. Now A U , the fuzzy set of “young or
middle-aged” will be given by

In its discrete form, for x 1, x 2, x 3

Intersection

The intersection of fuzzy sets A and is a new fuzzy set A n
with

membership function defined as

(6.27)

Example

For A and defined as “young” and “middle-aged” as illustrated in previous
examples.

A n B: ‘young and middle-aged’

age —



if A= Wx 005 6, 0.7 0x,00 and 8 = {ix, 0.8, (6. 0.20, (1, 1))

An B~ ix,0.5), (x,,0.2],(x, 00

sinee, By alan ) = min (g i) gt )

= min (L5, O8]

=05
By gl ) = minier iy Hgi¥a))

= i (T, 022

= 1]

B glXed = miniggixg), pgixg))

= min {i,1]

=1

Hy(x) = 1—py(x)
In its discrete form, forx 1, x 2, x 3
Complement

The complement of a fuzzy set A is a new fuzzy set A with a membership
function

(6.28)
Example

For the fuzzy set A defined as “young” the complement “not young” is given
by Ac. In its discrete form, for x 1, x 2, and x 3



AF ‘not young”

M 3

if A= f{x;, 0.5) (x3, 0.7) (x5, ]
then, A= Bxp (.50 (3, 0.3) (x5, 1))
since, Maelx) ) = 1= Ua(x)

=1 -5

= 0.5

Regrfxzd = 1= tig(¥%y)
=107
=03

Harlxad = 1= Hilxy)
=1 =0

=
Oiiher operations are,

B

B
Hy5(0)=p4(x) ug(x)
Product of two fuzzy sets

The product of two fuzzy sets A and is a new fuzzy set A - whose
membership function is defined as

(6.29)

g0



Example
A = Ly, 0,20 (xa, 0U8), (s 00403

B = {(x,, 10.8) {xa, 0, (x5, 0010
i B

= {iry, D08 (e, 0 (g, D04)

since s %) = pgix e piix;)

=002« [hd = 1hils

My plxa) = pyixad-pgixg)

=08 =10
Hy.5(x3) = Hy(x3) py(x3)
B
B
Hi(x) = pg(x)
A= {(3,0.2)(x,,0.8)}
B = {(x,,0.6)(x,,0.8)}
C = {(x,0.2)(x,,0.8)}
A# B
£ice pytxy # pglx) although
fizlxz) — Ui%;)
bul i-C
SINce palx ) = dafn) =02
and Hilxy) = falag) =0E

M, ;(x) = a-py(x)



=04-0.1

=0.04

Equality

Two fuzzy sets A and

are said to be equal (A =) if

(6.30)

Example

Product of a fuzzy set with a crisp number

Multiplying a fuzzy set A by a crisp number a results in a new fuzzy set
product a. A with the membership function

(6.31)
Example
A= $ixg 04, (x5, 006}, (13,08}
Far a =03
@A = 1(x.0012), (x5 0.18), (x7.0.24)

sInes, Hoalx) = @ ng0x)

- 0304

=112

Mo alms) = apiglny)
= {3+ [LE
= {1

i) = a-fis0xg)
=43 - I8
= {1.24



e () = ()"

A= {{x;,0.4), (x,,0.2), (x;,0.7)

For = 2
BTy = [_u_;.{‘r_zn“b2
Hence, (A = 1000160, (20, 0.04), (14,0.49)]
iRy Hplx) = I:.r_l_-,{.'l.'.ljl-'-': = ((14) = 016
Haly) = (uyix)F = (0.2F = 0.04

Hpdrs) = (0¥ = (0,77 = 0.49

B

B

Power of a fuzzy set

The a power of a fuzzy set A is a new fuzzy set Aa whose membership
function is given by

(6.32)

Raising a fuzzy set to its second power is called Concentration (CON) and
taking the square root is called Dilation (DIL).

Example
Difference

The difference of two fuzzy sets A and is a new fuzzy set A — defined as

A—-B=(4Nn B9



A= {ix 020, (x5, 0050 (x, 00600 B = {(x,,0.1), (x5 0.4),(x;.0.5)]

B = {ix,,0.9), (x,,0.6), (x,,0.5)
A-B - AnkF
= 020055, 050X, 0.5)
2
2
A®B = (A°NB)u(ANBY)
A= 10, 0400 08y 06T
B = {ix, 02000, 0.6)(x,, 09!
Now, AT = g, 0 AL 2D (xy 14)
BY = {(x 0.8)x, 0.4)0%,,0.10}
A = [0, 0.200x,, 0.2 x,, 0.4) )
A = o A (g D T 1)
ABE — [(x,0.40x,0.4Hx;,0.4) )
(6.33)
Example

Disjunctive sum

The disjunctive sum of two fuzzy sets A and is a new fuzzy set A =
defined as

(6.34)

Example



6.3.3 Properties of Fuzzy Sets

Fuzzy sets follow some of the properties satisfied by crisp sets. In fact, crisp
sets can be thought of as special instances of fuzzy sets. Any fuzzy set A is a
subset of the reference set X. Also, the membership of any element belonging
to the null set & i1s 0 and the membership of any element belonging to the
reference set is 1.

The properties satisfied by fuzzy sets are

P i P

T

Conemitaiiviny.; AR = Bod
Amf# - Bnd
Associativiry: duiBudi=duBul

Ar(BnCi=drn By C

Dhistributiviig: AviBAaci={du Byndu &)
i (BuCi=drn Byuidn C)
tdempatenae; A d=d
Amd-4
Identity: A @B =4
fuX-4d
ArB =
{0 X—X
Teansitivity: FAg Bg Cothendg €
Frevalution: (¥ =4
e Morgan 'y lavey; (4 By = (50 B9

fdw By = (4~ BE)

[£1.35)

(0,36}

(G.37)
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(6,30
[0y
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/

E
(I = F)
FUF

FUEY = FNE°

Since fuzzy sets can overlap, the laws of excluded middle do not hold good.

Thus,

AUAdczX (6.43)
AnAc# @ (6.44)
Example 6.5

The task is to recognize English alphabetical characters ( F, E, X, Y, I, T) in
an image processing system.

Define two fuzzy sets and to represent the identification of characters I and
F.

= {(F,04),(E,03),(X,0.1),(Y,0.1),(1,09),(T,0.8)}
= {(F, 0.99), (E,0.8), (X, 0.1),(Y,02),(1,0.5), (T,0.5)}
Find the following.

(a) () U (1)

(iii)

(b) Veritfy De Morgan’s Law,



(a) (i) T F o= 4009, (E0.8), (00, 0F,0.2), (1,09, (T.0.8)}
(i) - F = {0
- HF.0.00E020 (A0 D, (F0. 10, (1,05, (T.0.5)}

i) Fud BT = 3,099, (EL0.8, (X 0D, (008, (1.0.5), (7,058

(T BY= JE AP
FuF o= {F.0.99, (E 08 (X010, (Y.0.2), (0,09, (T.0.8)

(FOFY = {F,0.00,(E.0.2) (X, 0.9, (Y,0.8), (1.0.1), (T.0.2)}
Jo= {F,0.6),(E,0.7), (X.0.9,(¥,0.9, (10.1),(T,0.21}

FF = F,0.00), (£,0.2), (X,0.9), (¥, 0.8), (1,0.5), (T,0.5)]

and
I = {(F,0.00), (£,0.2), (X,0.9), (¥,0.8), (1.0.1),(7,0.2)]

Mence, (Do FY = Iy F"
2
() = ——., py(x) = 2°*

AN SR
Solution
(b) De Morgan’s Law
Example 6.6

Consider the fuzzy sets A and defined on the interval X = [0, 5] of real
numbers, by the membership grade functions

Determine the mathematical formulae and graphs of the membership grade
functions of each of the following sets

(a) Ac, Bc

(b)A U B



(c)ANnB

(d(A U B)c
Solution
fa)  pgeix) = 1—pix) = .

MgedX) =

X+l

| = pgix)
= Tk

2" =1

(Bl gy, gl — maxii,(x), Lgix]))

Hix)
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X 4| =TI |4
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6.4 CRISP RELATIONS

In this section, we review crisp relations as a prelude to fuzzy relations. The
concept of relations between sets is built on the Cartesian product operator of
sets.

6.4.1 Cartesian Product

The Cartesian product of two sets A and B denoted by A x B is the set of all
ordered pairs such that the first element in the pair belongs to A and the
second element belongs to B.

1.e.

IfA # B and A and B are non-empty then A x B # B x A.

The Cartesian product could be extended to n number of sets (6.45)
Observe that

(6.46)

Example

GivenA 1={a,b},A2={1,2},A3={a}, 6.4.2 Other Crisp Relations

An n-ary relation denoted as R( X 1, X 2,..., Xn) among crisp sets X 1, X
2,..., Xn 1s a subset of the Cartesian product

and 1s indicative of an association or
relation among the tuple elements.

For n =2, the relation R( X 1, X 2) is termed as a binary relation; for n = 3,
the relation is termed ternary; for n = 4, quarternary; for n = 5, quinary and
SO on.

eR and R(@.j) =0 if (x,y;)¢R



A WX =

(LD(L,2)(1,3)(1,4)(2,1)(2,2)(2.3)(2.4)
(3.1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4.4)

{x»/y =x+1, x,yeX}

4
0
0
1
0

o S O O
= R =
S O = W

1
2
3
4

RuU S(x,y)=max (R(x,y), S(x,v))

RN S(x,y)=min (R(x.¥), S(x.y))

R
R(x,y)=1-R(x,y)

If the universe of discourse or sets are finite, the n- ary relation can be
expressed as an

n-dimensional relation matrix. Thus, for a binary relation R( X, Y) where X =
{x1,x2,..,xn}and

Y={yl1,y2,..,ym}, the relation matrix R is a two dimensional matrix
where X represents the rows, Y represents the columns and R ( i, j) = 1 if ( xi,

V)

Example



Given X = {1, 2, 3, 4},

Let the relation R be defined as
R =

R={(1,2)2,3)3, 4}

The relation matrix R is given by
R =

6.4.3 Operations on Relations

Given two relations R and S defined on X X Y and represented by relation
matrices, the following operations are supported by R and §

Union: R U §
(6.47)
Intersection: R n S
(6.48)
Complement:
(6.49)

Composition of relations: R o S
RoS = {(x.2)/(x,2)eXxZ, 3 yeY such that (x,y)eR and (y,z)eS}

max (min(R(x, ), S(1.2)))
yvel¥



Ij0 1 0 110 1 1
R: 30 0 1] .8:316 0 1

- e R
o R - B = T
N

1
3
5
Given R to be a relation on X, Y and S to be arelationon Y, Zthen Ro Sis a
composition of relation on X, Z defined as

(6.50)

A common form of the composition relation is the max-min composition.

Max-min composition:

Given the relation matrices of the relation R and S, the max-min composition
is defined as

ForT=Ro S

T(x,z2)=

(6.51)

Example

Let R, S be defined on the sets {1, 3,5} x {1, 3,5}
LetR: {(x,y)|y=x+2}, 8 {(x,y) [x <y}

R=1{(1,3)3,5)},5={(1,3)1,5) 3, 5)}



The relation matrices are

Using max-min composition

RoS=

since R o S (1, 1) = max{min (0, 0), min(1, 0), min(0, 0)}

=max (0,0, 0)=0.

RoS(1,3)=max{0,0,0} =0

RoS (1,5 =max{0,1,0} =1.

Similarly, R o § (3, 1) =0.
RoS§SB3,3)=RoSB3,5)=RoSG,1)=R0oS(5,3)=RoS(5,5) =
0

R o S from the relation matrix is {(1, 5)}.

o g
& D e b
oo S o R e
S © =

Also, So R =



Ax B

R

R=AxBcXxY
R

Hp(x.y) =, 5(x,¥)

min (4 5(x), uz(»))

A

B
6.5 FUZZY RELATIONS

Fuzzy relation is a fuzzy set defined on the Cartesian product of crisp sets X
1, X 2,..., Xn where the n-tuples ( x 1, x 2,..., xn) may have varying degrees of
membership within the relation. The membership values indicate the strength

of the relation between the tuples.

Example

Let R be the fuzzy relation between two sets X 1 and X 2 where X 1 is the set
of diseases and X 2 is the set of symptoms.

X 1 = {typhoid, viral fever, common cold}
X 2 = {running nose, high temperature, shivering}
The fuzzy relation R may be defined as

Running nose



High temperature
Shivering
Typhoid

0.1

0.9

0.8

Viral fever

0.2

0.9

0.7

Common cold
0.9

0.4

0.6

6.5.1 Fuzzy Cartesian Product

Let be a fuzzy set defined on the universe X and be a fuzzy set defined on the
universe Y, the Cartesian product between the fuzzy sets and

indicated as
and resulting in a fuzzy relation is given by

(6.52)



where has its membership function given by

(6.53)
Example

Let={(x1,0.2),(x2,0.7),(x3,04)}and={(y 1,0.5),(y2,0.6)} be two
fuzzy sets defined on the universes of discourse X ={ x 1, x2,x3} and ¥ = {

y 1,

R
AXB

¥, Y2

x |02 02

R=4AxB=x,|05 0.6

x;|04 0.4

R(xy,3) =min ((x,). g (3;)) = min(0.2,0.5)= 0.2
R(xy,y,)=min(0.2,0.6)=0.2
R(x,.y;)=min(0.7.0.5)=0.5
R(x5,7,)=min(0.7.0.6)=0.6
R(x3,)=min(0.4,0.5)=0.4
R(x3.v,) =min(0.4,0.6) = 0.4

R

st



Hz :(x,y) = max (ug(x,y), Hz(x,))
”Rﬁ,ﬁf(x?y) i min(luﬁ(x?y): #S‘(Try)>
.IHR"(X:.F) = l_ﬂR(x:'V)

R

ot

=i

S

Hz.5(x,2) = iy (min (Uz(x.y). Hz(¥.2)))

y 2} respectively. Then the fuzzy relation resulting out of the fuzzy Cartesian
product

is given by

since,

6.5.2 Operations on Fuzzy Relations
Let and be fuzzy relations on X x Y.
Union

(6.54)

Intersection

(6.55)



Complement
(6.56)
Composition of relations

The definition is similar to that of crisp relation. Suppose is a fuzzy relation
defined on X x Y, and is a fuzzy relation defined on Y x Z, then is a

fuzzy relation on X x Z. The fuzzy max-min composition is defined as

(6.57)

Example
X={x1,x2,x3}Y={yl,y2}Z={z1,22,z3} (6.58)
R

TR
x10.5 0.1
x,10.2 0.9
x310.8 0.6
S



L I n
|05 04 05
#oa .'-:.'=x?|i.i.5 0.8 0.9

!
06 06 0.7

Epxt®: 8 ) — max (min (0.5, 0.6), min (0.1, 0.5))
= max (3, 1.1
= L5

Ho el X).2y) = max {mim (0.5, 0.4), mm (0.1, 0.8))

= s (e, 0.1

= {4
Simularly,
MeplX223) = max (0.5, 0.1} =115

Mg s(%.2) — max (0.2, 0.5) = 0.5

Lgpl¥,2) —max (0.2, 0.8] = (L8

HpplXa,24) = max (L LY = 1LY

Mg o(¥3.2)) = max (0.6, 0.5) = 0.6

Mg :[73.2,) = max (0.4, 0.6] = (LG

Mg p(¥p.Zy) = Tax (0.7, 0.6 = 0.7
Let be a fuzzy relation
Let be a fuzzy relation
Then R o S, by max-min composition yields, Example 6.7

Consideraset P={ P 1, P2, P 3, P 4} of four varieties of paddy plants, set
D=

{D1,D?2,D 3, D4} of the various diseases affecting the plants and S={ §
1,S52,83,S54} be the common symptoms of the diseases.

R



st

D, D, D, D,

P06
R=P|0.1
B 0.9
P, 0.9

0.6
0.2
0.3
0.8

Sl
0.8

0.8

0.8

0.8

0.9
0.9
0.4
0.1

S’Z
0.8
0.8
0.8
0.8

0.8]

0.8
0.8
0.2

SE

0.8
0.8
0.8
0.7

Sy
0.9]
0.9
0.9

0.9

0.7
0.4
0.5
0.8

Let be a relation on P x D and be a relation on D X §

For,

Obtain the association of the plants with the different symptoms of the

diseases using max-min composition.

Solution

To obtain the association of the plants with the symptoms, R S which is a
relation on the sets P and S is to be computed.

Using max-min composition,

S4
0.9]
0.6
0.9
0.2




AUB

max (1 5(x), pg(x))

AN B=min(uy(x), pz(x))
A =1-pz(x)
SUMMARY

Fuzzy set theory is an effective tool to tackle the problem of uncertainty.
In crisp logic, an event can take on only two values, either a 1 or O
depending on whether its occurrence is true or false respectively.

However, in fuzzy logic, the event may take a range of values between 0 and
1.

Crisp sets are fundamental to the study of fuzzy sets. The basic concepts
include universal set, membership, cardinality of a set, family of sets, Venn
diagrams, null set, singleton set, power set, subset, and super set. The basic
operations on crisp sets are union, intersection, complement, and difference.
A set of properties are satisfied by crisp sets. Also, the concept of partition
and covering result in the two important rules, namely rule of addition and
principle of inclusion and exclusion.

Fuzzy sets support a flexible sense of membership and is defined to be the
pair (x, u A( x)) where u A( x) could be discrete or could be described by a
continuous function. The membership functions could be triangular,
trapezoidal, curved or its variations.

The basic fuzzy operations used often are,

Fuzzy sets, similar to crisp sets satisfy properties such as commutativity,
associativity, distributivity, De Morgan’s laws and so on.

Crisp relations on sets are subsets of the Cartesian product of the given sets.
A crisp relation associates the tuples by means of a relation. A Cartesian
relation could be represented by a relation matrix.



Fuzzy relations also associate tuples but to a varying degree of membership.
Some of the fuzzy relation operations are,

max (min (R(x,y), S(1.2)))
yel¥

RUS(x,y)y=max (R(x,y),S(x,y) R n S(x,y)=min ( R(x,y), S(x,V))
Re(x,y)=1-R(x,y)RoS(x,y)=

(using the max-min composition)
PROGRAMMING ASSIGNMENT

P6.1 (a) Design and implement a fuzzy library FUZZYLIB.H comprising the
basic fuzzy set operations such as union, intersection, complement etc.

(b) Also provide routines to implement fuzzy relations and their operations,
namely union, intersection, complement, and max-min composition.

Note: Make use of relation matrix representation for the relations.

(c) Define an appropriate fuzzy problem and apply FUZZYLIB.H to solve
the problem.

SUGGESTED FURTHER READING

Fuzzy Logic with Engineering Applications (Ross, 1997) is a lucid treatise on
fuzzy logic. Introduction to the Theory of Fuzzy Subsets, Vol. 1, (Kaufmann,
1975), Fuzzy Sets and Systems: Theory and Applications (Dubois and Prade,
1980), Fuzzy Set Theory and its Applications (Zimmerman, 1987) and Fuzzy
Mathematical Techniques with Applications (Kandel, 1986) are some of the
early literature in this field. Fuzzy Sets and Fuzzy Logic (Klir and Yuan Bo,
1997) provides good material on fuzzy systems and its applications.

REFERENCE

Zadeh, Lotfi A. (1965), Fuzzy Sets, Inf. Control, Vol. 8, pp. 338—353.



Chapter 7
Fuzzy Systems

Logic is the science of reasoning. Symbolic or mathematical logic has turned
out to be a powerful computational paradigm. Not only does symbolic logic
help in the description of events in the real world but has also turned out to
be an effective tool for inferring or deducing information from a given set of
facts.

Just as mathematical sets have been classified into crisp sets and fuzzy sets
(Refer Chapter 6), logic can also be broadly viewed as crisp logic and fuzzy
logic. Just as crisp sets survive on a 2-state membership (0/1) and fuzzy sets
on a multistate membership [0—1], crisp logic is built on a 2-state truth value
(True/False) and fuzzy logic on a multistate truth value (True/False/very
True/partly False and so on.)

We now briefly discuss crisp logic as a prelude to fuzzy logic.
7.1 CRISP LOGIC

Consider the statements “Water boils at 900C” and “Sky is blue”. An
agreement or disagreement with these statements is indicated by a “True” or

“False” value accorded to the statements. While the first statement takes on a
value false, the second takes on a value true.

Thus, a statement which 1s either “True’ or ‘False’ but not both is called a
proposition. A proposition is indicated by upper case letters such as P, Q, R

and so on.
Example: P: Water boils at 90°C.
Q: Sky is blue.

are propositions.



A simple proposition is also known as an atom. Propositions alone are
insufficient to represent phenomena in the real world. In order to represent
complex information, one has to build a sequence of propositions linked
using ¢ onnectives or o perators. Propositional logic recognizes five major
operators as shown in Table 7.1.

Table 7.1 Propositional logic connectives
Symbol

Connective

Usage

Description

A

and

P AQ

P and Q are true.

v

or

Pv Q

Either P or Q is true.
A or ~

not

~Por AP

P 1s not true.



=
implication
P=0

P implies Q is true.

equality
P=0
P and Q are equal (in truth values) is true.

Observe that A, v, =, and = are ‘binary’ operators requiring two
propositions while ~ is a ‘unary’ operator requiring a single proposition. A

and Vv operations are referred to as conjunction and disjunction respectively.

In the case of = operator, the proposition occurring before the ‘=’ symbol is
called as the antecedent and the one occurring after is called as the
consequent.

The semantics or meaning of the logical connectives are explained using a
truth table. A truth table comprises rows known as interpretation s, each of

which evaluates the logical formula for the given set of truth values. Table
7.2 illustrates the truth table for the five connectives.

Table 7.2 Truth table for the connectives A, V,~, =, =
P

Q

P AQ






T
F
T : True, F : False

A logical formula comprising n propositions will have 2n interpretations in
its truth table. A formula which has all its interpretations recording true is
known as a tfautology and the one which records false for all its
interpretations is known as contradiction.

Example 7.1
Obtain a truth table for the formula ( P v Q)= (~ P). Is it a tautology?
Solution

The truth table for the given formula is



Pv Q

Pv O=-~P



T
T

No, it is not a tautology since all interpretations do not record “True’ in its
last column.

Example 7.2

Is((P=0Q0) A (Q=P)=(P = Q) atautology?

Solution
A:

B:

P

Q
P=Q
O=P
A=B

(P=Q) A (Q=P)
P=Q
T






T

T

Yes, the given formula is a tautology.
Example 7.3

Show that (P=>Q)=(~P Vv Q)
Solution

The truth table for the given formula is
P

Q

A: P=0Q

B:~P v Q

A=B






T
T
Since the last column yields “True’ for all interpretations, it is a tautology.

The logical formula presented in Example 7.3 is of practical importance
since ( P = Q) is shown to be equivalent to (~ P v (), a formula devoid of

‘=’ connective. This equivalence can therefore be utilised to eliminate ‘=’
in logical formulae.

It is useful to view the ‘=’ operator from a set oriented perspective. If X is
the universe of discourse and A, B are sets defined in X, then propositions P

and Q could be defined based on an element x € X belonging to A or B. That
18,

P:xe A

Q:xeB (7.1)

Here, P, Q are true if x € A and x € B respectively, and ~ P, ~ Q are true if
p

x € A and x € B respectively. In such a background, P = Q which is
equivalent to (~ P v Q) could be interpretedas (P=Q):x € Aorx €

B (7.2) However, if the ‘=’ connective deals with two different
universes of discourse, that is,

A c Xand B c Y where X and Y are two universes of discourse then the ‘=’
connective is represented by the relation R such that

R=(AXxB) U (xY) (7.3) In such a case, P= Q is
linguistically referred to as IF A THEN B. The compound proposition ( P =



Q) VvV (~ P=9) linguistically referred to as IFA THEN B ELSE C is
equivalent to

IFATHEN B (P= Q)

IF~ATHEN C(~P=YS) (7.4) where P, Q, and § are defined
bysetsA,B,C,A c X,and B,C C Y.

7.1.1 Laws of Propositional Logic

Crisp sets as discussed in Section 6.2.2. exhibit properties which help in their
simplification. Similarly, propositional logic also supports the following laws
which can be effectively used for their simplification. Given P, Q, R to be the
propositions,

(1) Commutativity

(PV QO)=(Q VP

(PANQ=(Q AP) (7.5)
(ii) Associativity

(PVQOQ)VR=PV(QOVR(PANQOQ) AR=PA(QOA
R) (7.6) (i11) Distributivity

(PVO AR=(PAR)V(OARY(PANAQ)VR=(PVR)AN(OQ
V R) (7.7) (iv) Identity

P v false=P

P A True=P

P A False = False

P v True = True (7.8)

(v) Negation



P A ~ P=False

P v ~P="True (7.9)

(vi) Idempotence

Pv P=P

PAP=P (7.10)

(vil) Absorption

PA(PvV Q=P

PV (PAQ=P (7.11)

(viil) De Morgan’s laws

~(PV Q)=(~P A ~Q)

~(PANQ=(+-PvVv~0) (7.12) (ix) Involution
~(~P)=P (7.13)

Each of these laws can be tested to be a tautology using truth tables.
Example 7.4

Verify De Morgan’s laws.

@~(PVv Q=P A~0)

b)) ~(PANQ)=(~PV ~0Q)

Solution

P

Q






T
T
Therefore, ~(P v Q)=(~P A ~Q)P

Q






T
T
Therefore ~(P A Q)=(~P v ~Q)

Example 7.5



Simplify (~(P A Q)=R) A P A Q

Solution

Consider (~(PANQ=>R)APAQ
=(~~(PANQ)VR)YANPANQ

(by eliminating ‘=’ using (P=> Q) =(~P Vv Q))
=((P AN Q) V R AP A Q (by the law of involution)
= (P A Q) (by the law of absorption)

7.1.2 Inference in Propositional Logic

Inference 1s a technique by which, given a set of facts or postulates or axioms
or premises F' 1,

F2, ..., Fn,a goal G is to be derived. For example, from the facts “Where
there is smoke there is fire”, and “There is smoke in the hill”, the statement

“Then the hill is on fire” can be easily deduced.

In propositional logic, three rules are widely used for inferring facts, namely
(1) Modus Ponens

(i) Modus Tollens, and

(ii1) Chain rule

Modus ponens (mod pons)

P=0
P

&,




~0
~pP
P= 0
0= R
P=s R
{1} C v
[LELD (U L) = ~H

=i Qv
Given P = Q and P to be true, Q is true.
(7.14)

Here, the formulae above the line are the premises and the one below is the
goal which can be inferred from the premises.

Modus tollens

Given P = Q and ~ Q to be true, ~ P is true.
(7.15)

Chain rule

Given P = Q and Q = R to be true, P = R is true.
(7.16)

Note that the chain rule is a representation of the transitivity relation with
respect to the ‘=’ connective.



Example 7.6

Given

OCv D

i) ~H=(A AN ~B)

) (C v D)y=»~H

iv) (AAN~B)=(R VY

Can (R v S) be inferred from the above?

Solution

From (i) and (ii1) using the rule of Modus Ponens , ~ H can be inferred.

From (i1) and (iv) using the chain rule, ~ H= ( R v S) can be inferred.

(i Il = {4 ~ =B

(v} (da~Bi=(HwvX)

- = AR v 5 (v

b ~H = (R w5
b el
o 5

From (v) and (vi) using the rule of Modus Ponens ( R Vv S) can be inferred.
Hence, the result.

7.2 PREDICATE LOGIC

In propositional logic, events are symbolised as propositions which acquire
either ‘True/False’ values. However, there are situations in the real world



where propositional logic falls short of its expectation. For example, consider
the following statements:

P : All men are mortal.
QO : Socrates is a man.
From the given statements it is possible to infer that Socrates is mortal.

However, from the propositions P, Q which symbolise these statements
nothing can be made out. The reason being, propositional logic lacks the
ability to symbolise quantification. Thus, in this example, the quantifier “All”

which represents the entire class of men encompasses Socrates as well, who
is declared to be a man, in proposition Q. Therefore, by virtue of the first
proposition P, Socrates who 1s a man also becomes a mortal, giving rise to
the deduction Socrates is mortal. However, the deduction is not directly
perceivable owing to the shortcomings in propositional logic. Therefore,
propositional logic needs to be augmented with more tools to enhance its
logical abilities.

Predicate logic comprises the following apart from the connectives and
propositions recognized by propositional logic.

(1) Constants

(11) Variables

(11) Predicates

(1iv) Quantifiers

(v) Functions

Constants represent objects that do not change values.

Example Pencil, Ram, Shaft, 100°C.



Variables are symbols which represent values acquired by the objects as
qualified by the quantifier with which they are associated with.

Example x, y, z.

Predicates are representative of associations between objects that are
constants or variables and acquire truth values ‘True’ or ‘False’. A predicate

carries a name representing the association followed by its arguments
representing the objects it is to associate.

Example
likes (Ram, tea)......... (Ram likes tea)
plays (Sita, x)......... (Sita plays anything)

Here, likes and plays are predicate names and Ram, tea and Sita, x are the
associated objects. Also, the predicates acquire truth values. If Ram disliked
tea, likes (Ram, tea) acquires the value false and if Sita played any sport,
plays (Sita, x) would acquire the value true provided x is suitably qualified by
a quantifier.

Quantifiers are symbols which indicate the two types of quantification,
namely, All (V) and Some (3). ‘V’ is termed universal quantifier and ‘T’

is termed existential quantifier.

Example Let,
man ( x) : X 1S a man.
mortal (x) : x1is mortal.

mushroom ( x).:  xis a mushroom.

poisonous ( x)... X is poisonous.



Then, the statements

All men are mortal.

Some mushrooms are poisonous.

are represented as

V x (man ( x) = mortal ( x))

3 x (mushroom ( x) A poisonous ( x))

Here, a useful rule to follow is that a universal quantifier goes with
implication and an existential quantifier with conjunction. Also, it is possible
for logical formula to be quantified by multiple quantifiers.

Example Every ship has a captain.
V x 3y (ship ( x) = captain ( x, y)) where, ship ( x) : x is a ship
captain ( x, y) : y is the captain of x.

Functions are similar to predicates in form and in their representation of
association between objects but unlike predicates which acquire truth values
alone, functions acquire values other than truth values. Thus, functions only
serve as object descriptors.

Example
plus (2, 3) (2 plus 3 which is 5)
mother (Krishna) (Krishna’s mother)

Observe that plus () and mother () indirectly describe “5” and “Krishna’s
mother” respectively.

Example 7.7

Write predicate logic statements for



(1) Ram likes all kinds of food.

(11) Sita likes anything which Ram likes.

(1i1) Raj likes those which Sita and Ram both like.

(iv) Ali likes some of which Ram likes.

Solution

Let food ( x) : x is food.

likes ( x, y) : x likes y

Then the above statements are translated as

(1) V x food ( x) = likes (Ram, x))

(1) V x (likes (Ram, x) = likes (Sita, x)) (i11) V x (likes (Sita, x) A likes
(Ram, x)) = likes (Raj, x)) (iv) 3 x (likes (Ram, x) A likes (Ali, x)) The

application of the rule of universal quantifier and rule of existential quantifier
can be observed in the translations given above.

7.2.1 Interpretations of Predicate Logic Formula

For a formula in propositional logic, depending on the truth values acquired

by the propositions, the truth table interprets the formula. But in the case of

predicate logic, depending on the truth values acquired by the predicates, the
nature of the quantifiers, and the values taken by the constants and functions
over a domain D, the formula is interpreted.

Example
Interpret the formulae
(1) V x p(x)

(ii) 3 x p(x)



where the domain D = {1, 2} and

p(l) p(2)
True False
Solution

(1) V x p( x) 1s true only if p( x) is true for all values of x in the domain D,
otherwise it is false.

Here, for x = 1 and x = 2, the two possible values for x chosen from D,
namely p(1) = true and p(2) = false respectively, yields (1) to be false since p(
x) is not true for x = 2. Hence, V x p( x) is false.

(i1) 3 x p( x) is true only if there is atleast one value of x for which p( x) is
true.

Here, for x = 1, p( x) is true resulting in (i1) to be true. Hence, 3 x p( x) is
true.

Example 7.8

Interpret V x3y P(x,y) for D={1,2} and P(1, 1)
P(1,2)

P2, 1)

P2 .2)

True

False

False

True



Solution

For x = 1, there exists a y, ( y = 1) for which P( x, y), i.e. ( P(1,1)) is true.
For x = 2, there exists a y, ( y = 2) for which P( x, y) ( P(2, 2)) is true.
Thus, for all values of x there exists a y for which P( x, y) is true.

Hence, V x 3y P( x, y) is true.

7.2.2 Inference in Predicate Logic

The rules of inference such as Modus Ponens, Modus Tollens and Chain
rule, and the laws of propositional logic are applicable for inferring predicate

logic but not before the quantifiers have been appropriately eliminated (refer
Chang & Lee, 1973).

Example

Given (1) All men are mortal.

(1) Confucius 1s a man.

Prove: Confucius is mortal.

Translating the above into predicate logic statements
(1) x (man ( x) = mortal ( x))

(i1) man (Confucius)

(ii1) mortal (Confucius)

Since (i) is a tautology qualified by the universal quantifier for x = Confucius,
the statement is true, 1.e.

man (Confucius) = mortal (Confucius)

=. ~man (Confucius) v mortal (Confucius)



But from (i1), man (Confucius) is true.
Hence (iv) simplifies to

False v mortal (Confucius)

= mortal (Confucius)

Hence, Confucius is mortal has been proved.
Example 7.9

Given (1) Every soldier is strong-willed.

(i1) All who are strong-willed and sincere will succeed in their career.

(1i1) Indira is a soldier.

(iv) Indira is sincere.

Prove: Will Indira succeed in her career?
Solution

Let

soldier ( x) : x 1s a soldier.

strong-willed ( x) : x is a strong-willed.
sincere ( x) : x 1S sincere.

succeed_career ( x) : x succeeds in career.
Now (1) to (iv) are translated as

V x (soldier ( x) = strong-willed ( x))......... (1)

V x ((strong-willed ( x) A sincere ( x)) = succeed_career ( x))



(i1)
soldier (Indira)......... (111)
sincere (Indira)......... @1v)

To show whether Indira will succeed in her career, we need to show
succeed_career(Indira) is true.......... (V)

Since (i) and (i1) are quantified by V, they should be true for x = Indira.

Substituting x = Indira in (i) results in (soldier (Indira) = strong-willed
(Indira),

i.e. .~soldier (Indira) v strong-willed (Indira)......... (vi)
Since from (iii) soldier (Indira) is true, (vi) simplifies to
strong-willed (Indira)......... (vii)

Substituting x = Indira in (i),

(strong-willed (Indira) A sincere (Indira)) = succeed_career (Indira) i.e. ~
(strong-willed (Indira) A sincere (Indira)) Vv succeed_career (Indira)

(P=Q0=~PV Q)

i.e. ~(strong-willed (Indira) v ~sincere (Indira)) v succeed_career (Indira)
(De Morgan’s law) (viii)

From (vii), strong-willed (Indira) is true and from (iv) sincere (Indira) is true.
Substituting these in (viii),

False v False v succeed_career (Indira)

i.e. succeed_career (Indira) (using law of identity)



Hence, Indira will succeed in her career is true.
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7.3 FUZZY LOGIC

In crisp logic, the truth values acquired by propositions or predicates are 2-
valued, namely True, False which may be treated numerically equivalent to



(0, 1). However, in fuzzy logic, truth values are multivalued such as
absolutely true, partly true, absolutely false, very true, and so on and are
numerically equivalent to (0—1).

Fuzzy propositions

A fuzzy proposition is a statement which acquires a fuzzy truth value. Thus,
given to be a fuzzy proposition, 7( ) represents the truth value (0—1) attached
to . In its simplest form, fuzzy propositions are associated with fuzzy sets.
The fuzzy membership value associated with the fuzzy set A for is treated as
the fuzzy truth value 7().

1.€.

Example

: Ram is honest.

T() = 0.8, if 1s partly true.
T() =1, if is absolutely true.
Fuzzy connectives

Fuzzy logic similar to crisp logic supports the following connectives: (1)
Negation : —

(11) Disjunction : V
(111) Conjunction : A
(iv) Implication : =

Table 7.3 illustrates the definition of the connectives. Here , are fuzzy
propositions and 7( ), 7( ), are their truth values.



IFable 7.3 Fuzzv comnectives

Swvmbol Conneclive Llsiagre [efinilion
= Megation F L —T(F)
v THsjunction Fo (b max (T(P). T(0))
A Conjunclion Fab min ({4, TEON
= Implication =y = Eo (= max (1 - T8, Todn
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R=(AxB)udxT)
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Hgz(x.y) = max(min(py(x), tz(y), 1 -5 (x))

B

¢
R=(AxB)u(AxC)

R

Hz(x.y) = max (min (4 3(x). Hg(¥)), min (1 - u5(x). 4e (1))

P



0
and related by the ‘=’ operator are known as antecedent and consequent

respectively. Also, just as in crisp logic, here too, ‘=’ represents the IF-
THEN statement as

IF x is THEN y is, and is equivalent to



Also, for the compound implication IF x is A THEN y is ELSE y is the
relation R is equivalent to

Example

: Mary is efficient, 7( ) = 0.8
: Ram is efficient, 7( ) = 0.65
(1) : Mary is not efficient.
T()=1-T()=1-0.8=0.2
(ii)

: Mary is efficient and so is Ram.
=min ( 7(), 7())

=min (0.8, 0.65)

=0.65

(iii)

: Either Mary or Ram is efficient.



=max (7(), T())

=max (0.8, 0.65)

(AxB)U(AXY)
.IuR(x?y)
max (min (p£;(x). #5(»)). 1 - f5(x))

AXB
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cl0.2 06 06 0
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d | O () () ()

=0.8

(iv)

: If Mary is efficient then so is Ram.
=max (1 - 70), 7())

=max (0.2, 0.65)

=0.65

Example 7.10

LetX={a,b,c,d} Y=1{1,2, 3,4}
and

A={(a,0)(b,0.8)c,0.6)(d 1)}



={(1, 0.2)(2, 1)(3, 0.8)(4, 0)}
={(1, 0)(2,0.4)(3, 1)(4,0.8)}
Determine the implication relations
(i) IF x is A THEN y is .

(ii) IF x is A THEN y is ELSE y is .
Solution

To determine (i) compute

Here, Y the universe of discourse could be viewed as {(1, 1) (2, 1) (3, 1) (4,
1)} a fuzzy set all of whose elements x have u( x) = 1.

Therefore,

R

I 2 3 4

all 1 1 1]
hlO2 0.8 08 0.2
cl04 0.6 0.6 04
d10.2 0.1 0.8 0
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1 2 3 4
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R
B
&

which represents IF x is A THEN y is .

To determine (i1) compute

Therefore,
= max

gives



The above represents IF x is A THEN y is ELSE y is .
7.3.1 Fuzzy Quantifiers

Just as in crisp logic where predicates are quantified by quantifiers, fuzzy
logic propositions are also quantified by fuzzy quantifiers. There are two
classes of fuzzy quantifiers such as

(1) Absolute quantifiers and

(1) Relative quantifiers

IF xis A THEN 115 B

r- L
|

vis H

Rl

=l

E! = &’Dﬁ(xuy)
Mgz (v) = max (min (U3 (x), Uz(x,1)))
L (X)

A’



He(x,))
B.r

While absolute quantifiers are defined over R, relative quantifiers are defined
over [0-1].

Example

Absolute quantifier
Relative quantifier
round about 250
almost

much greater than 6
about

some where around 20
most

7.3.2 Fuzzy Inference

Fuzzy inference also referred to as approximate reasoning refers to
computational procedures used for evaluating linguistic descriptions. The
two important inferring procedures are

(1) Generalized Modus Ponens (GMP)
(i1) Generalized Modus Tollens (GMT)

GMP is formally stated as



Here, A, ,
and
are fuzzy terms. Every fuzzy linguistic statement

above the line is analytically known and what is below is analytically
unknown.

To compute the membership function of
, the max-min composition of

fuzzy set A" with ( x, y) which is the known implication relation (IF-THEN
relation) is used. That is,

(7.23)

In terms of membership function,

(7.24)

where

is the membership function of

is the membership

function of the implication relation and

is the membership function of
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On the other hand, GMT has the form
The membership of
1s computed on similar lines as

In terms of membership function,

Example

Apply the fuzzy Modus Ponens rule to deduce Rotation is quite slow given
(1) If the temperature is high then the rotation is slow.

(11) The temperature is very high.

Let (High),



(Very High), (Slow) and

(Quite Slow) indicate the

associated fuzzy sets as follows:

For X = {30, 40, 50, 60, 70, 80, 90, 100}, the set of temperatures and Y =
{10, 20, 30, 40, 50, 60}, the set of rotations per minute,

= {(70, 1) (80, 1) (90, 0.3)}

={(90, 0.9) (100, 1)}

= {(10, 1) (20, 0.8)}

= {(30, 0.8) (40, 1) (50, 0.6)}

To derive

( x, y) representing the implication relation (i), we need to compute

(x,y)=

HxY
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To deduce Rotation is quite slow we make use of the composition rule

=[00000009 1] x

=[111111]

(1) 18 ;-1'1‘_1{: 13 I_ET 13 ziu )

(vi 1 Bi.ys is Bo,.oy vy 18 By)

be(»)

min (Ue (). He, V), Be, (V). Vv eY

.lu(_':' (}‘1) = max (.Iu(_':‘l (y): .Iu(':'1 (y)! s ﬂﬂ‘n (J”))? 1?’"1’" = Y

7.4 FUZZY RULE BASED SYSTEM



Fuzzy linguistic descriptions are formal representations of systems made
through fuzzy IF-THEN rules. They encode knowledge about a system in
statements of the form—

IF (a set of conditions) are satisfied THEN (a set of consequents) can be
inferred.

Fuzzy IF-THEN rules are coded in the form—
IF

THEN

where linguistic variables xi, yj take the values of fuzzy sets Ai and Bj
respectively.

Example
If there is heavy rain and strong winds
then there must be severe flood warning.

Here, heavy, strong, and severe are fuzzy sets qualifying the variables rain,
wind, and flood warning respectively.

A collection of rules referring to a particular system is known as a fuzzy rule
base. If the conclusion C to be drawn from a rule base R is the conjunction of
all the individual consequents Ci of each rule,then C=C1 n C2 n ... N
Cn (7.26) where

(7.277)

where Y is the universe of discourse.



On the other hand, if the conclusion C to be drawn from a rule base R is the
disjunction of the individual consequents of each rule, then

C=ClucC2uC3..UCn (7.28) where

(7.29)

_{,u(x)xdx
_[,u(x)dx

7.5 DEFUZZIFICATION

In many situations, for a system whose output is fuzzy, it is easier to take a
crisp decision if the output is represented as a single scalar quantity. This
conversion of a fuzzy set to single crisp value is called defuzzification and is
the reverse process of fuzzification.

Several methods are available in the literature (Hellendoorn and Thomas,
1993) of which we illustrate a few of the widely used methods, namely
centroid method, centre of sums, and mean of maxima.



Centroid method

Also known as the centre of gravity or the centre of area method, it obtains

the centre of area (x*) occupied by the fuzzy set. It is given by the expression
x* =

(7.30)

for a continuous membership function, and
x* =

(7.31)

for a discrete membership function.

Here, n represents the number of elements in the sample , xi’s are the
elements, and p (xi) is its membership function.

Centre of sums (COS) method

In the centroid method, the overlapping area is counted once whereas in
centre of sums, the overlapping area is counted twice. COS builds the
resultant membership function by taking the algebraic sum of outputs from
each of the contributing fuzzy sets A 1, A 2, ..., etc. The defuzzified value
x*1s given by

re M
| M |

COS is actually the most commonly used defuzzification method. It can be
implemented easily and leads to rather fast inference cycles.



Mean of maxima (MOM) defuzzification

One simple way of defuzzifying the output is to take the crisp value with the
highest degree of membership. In cases with more than one element having
the maximum value, the mean value of the maxima is taken. The equation of
the defuzzified value x* is given by

x* =
(7.33)
where M = { xi |u( xi) is equal to the height of fuzzy set}

| M| is the cardinality of the set M. In the continuous case, M could be
defined as

M={x € [-c,c]|u(x) is equal to the height of the fuzzy
set} (7.34)

In such a case, the mean of maxima is the arithmetic average of mean values
of all intervals contained in M including zero length intervals.

The height of a fuzzy set A, i.e. h(A) is the largest membership grade
obtained by any element in that set.

Example
A1,A2,andA 3 are three fuzzy sets as shown in Fig. 7.1(a), (b), and (c).
Figure 7.2 illustrates the aggregate of the fuzzy sets.

The defuzzification using (i) centroid method, (i1) centre of sums method,
and (i11) mean of maxima method is illustrated as follows.

Centroid method

To compute x* the centroid, we view the aggregated fuzzy sets as shown in
Figs. 7.2 and 7.3. Note that in Fig. 7.3 the aggregated output has been divided



into areas for better understanding.
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Fig. 7.1 Fuzzy sets A 1, A 2, A 3.
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Fig. 7.2 Aggregated fuzzy set of A 1, A 2, and A 3.
Fig. 7.3 Aggregated fuzzy set of A 1, A 2, and A 3 viewed as area segments.

Table 7.4 illustrates the computations for obtaining x*.
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In Table 7.4, Area ( A) shows the area of the segments of the aggregated
fuzzy set and shows the corresponding centroid. Now,

x* =

i.e. x* = 18.353/3.695
=4.9

Centre of sums method

Here, unlike centroid method the overlapping area is counted not once but
twice. Making use of the aggregated fuzzy set shown in Fig.7.2, the centre of
sums, x* 1s given by

Here, the areas covered by the fuzzy sets A 1, A 2, A 3 (Refer Figs. 7.1(a),
(b), and (c)) are given by

, and
respectively.
Mean of maxima method

Since the aggregated fuzzy set shown in Fig. 7.2 1s a continuous set, x* the



0.5+

03T

0 1 2y 3 4 5 6y 7 8
x*=23 x*=49 x*=6.5 (Mean of maxima method)

(Centre of sums (Centroid method)
method)

mean of maxima is computed as x* = 6.5.

Here, M = { X € [6, 7] | u (x) = 1} and the height of the aggregated fuzzy
setis 1.

Figure 7.4 shows the defuzzified outputs using the above three methods.

Fig. 7.4 Defuzzified outputs of the aggregate of A 1, A 2, and A 3.

Speed difference —— _
Fuzzy cruise

|—— Throftle control
controller =

Acceleration —»

7.6 APPLICATIONS

In this section we illustrate two examples of Fuzzy systems, namely (i) Greg
Viot’s (Greg Viot, 1993) Fuzzy Cruise Control System (i1) Yamakawa’s
(Yamakawa, 1993) Air Conditioner Controller 7.6.1 Greg Viot’s Fuzzy
Cruise Controller



This controller is used to maintain a vehicle at a desired speed. The system
consists of two fuzzy inputs, namely speed difference and acceleration, and
one fuzzy output, namely throttle control as illustrated in Fig. 7.5.

Fig. 7.5 Fuzzy cruise controller.
Fuzzy rule base

A sample fuzzy rule base R governing the cruise control is as given in Table
7.5.

Table 7.5 Sample cruise control rule base
Rule 1

If (speed difference is NL) and (acceleration is ZE) then (throttle control is
PL).

Rule 2

If (speed difference is ZE) and (acceleration is NL) then (throttle control is
PL).

Rule 3

If (speed difference is NM) and (acceleration is ZE) then (throttle control is
PM).

Rule 4

If (speed difference is NS) and (acceleration is PS) then (throttle control is
PS).

Rule 5

If (speed difference is PS) and (acceleration is NS) then (throttle control is
NS).



Rule 6

If (speed difference is PL) and (acceleration is ZE) then (throttle control is
NL).

Rule 7

If (speed difference is ZE) and (acceleration is NS) then (throttle control is
PS).

Rule &

If (speed difference is ZE) and (acceleration is NM) then (throttle control is
PM).

Key

NL — Negative Large PM - Positive Medium
ZE — Zero NS — Negative Small
PL — Positive Large PS — Positive Small

NM - Negative Medium



NL NM NS ZE PS PM PL

Degree of
membership

g 31 @63 95 127 159 191 223 2565
(a) Speed difference (normalized)

1_NL NM NS ZE PS PM PL
Degree of
membership
0
0 31 63 95 127 159 191 223 255
(b) Acceleration (normalized)
1I'*«lL NM NS ZE PS PM PL
Degree of
membership
0
31 63 95 127 159 191 223 255
(c) Throttle control (normalized)
Fuzzy sets

The fuzzy sets which characterize the inputs and output are as given in Fig.
7.6.
Fig. 7.6 Fuzzy sets characterising fuzzy cruise control.

Fuzzification of inputs



For the fuzzification of inputs, that is, to compute the membership for the
antecedents, the formula illustrated in Fig. 7.7 is used.

Degree of membership

A
e Compute Delta 1 = x — paoint 1
T P : i Dalta 2 = Paint 2 — x
! « If (Delta 1 2 ) or (Delta 2 < 0)
Degree ﬂf P - Lot \\ 1) then Degree of membership = 0
membership f:ll_'f I }ﬁ} else Degree of membership
.'I Lt 'l,—-"
&/ S s Delta 1+ Slope 1
L. v yoom = min| Della 2 - Slope 2
Paint 1 l..: Delta 1 oz __'_J Pagint 2 ll".'lax
Delta 2 )

Fig. 7.7 Computation of fuzzy membership value.

Here, x which is the system input has its membership function values
computed for all fuzzy sets. For example, the system input speed difference
deals with 7 fuzzy sets, namely NL, NM, NS, ZE, PS, PM, and PL. For a
measured value of the speed difference x’, the membership function of x’ in
each of the seven sets is computed using the formula shown in Fig. 7.7. Let
ul’, u2',..., u7' be the seven membership values. Then, all these values are
recorded for the input x' in an appropriate data structure.

Similarly, for each of the other system inputs (acceleration in this case), the
fuzzy membership function values are recorded.

Example

Let the measured normalized speed difference be 100 and the normalized
acceleration be 70, then the fuzzified inputs after computation of the fuzzy
membership values are shown in Fig. 7.8.
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Degree of
membership

|
63 95 127 159
x =100

Speed difference

Fig. 7.8 Fuzzy membership values for speed difference = 100 and
acceleration = 70.

The computations of the fuzzy membership values for the given inputs have
been shown in

Fig. 7.9.

Fig. 7.9 Fuzzification of speed difference = 100.

For speed difference ( x = 100), the qualifying fuzzy sets are as shown in
37x0.03125

27x0.03125
1

I

32

5x0.03125
59x0.03125
1



Degree of
membership

31 63 y 95 127 Acceleration

Fig. 7.9.

Fuzzy membership function of x for NS where
Delta 1 =100 — 63 = 37

Delta 2 =127 - 100 =27

Slope 1 =1/32=0.03125

Slope 2 =1/32 =0.03125

Degree of membership function

u NS( x) = min

=(.8438

Fuzzy membership function of x for ZE where
Deltal1=100-95=5

Delta 2 =159 — 100 = 59

Slope 1 ==0.03125

Slope 2 = 0.03125

Degree of membership function



u ZE( x) = min
=0.1563

The membership function of x with the remaining fuzzy sets, namely NL,
NM, PS, PM, PL is zero.

Similarly for acceleration ( x = 70), the qualifying fuzzy sets are as shown in
Fig. 7.10.

Fig. 7.10 Fuzzification of acceleration = 70.

The fuzzy membership function of x = 70 for NM is y NM( x) = 0.7813 and
for NS is

u NS(x)=0.2188.
Rule strength computation

The rule strengths are obtained by computing the minimum of the
membership functions of the antecedents.

Example

For the sample rule base R given in Table 7.5, the rule strengths using the
fuzzy membership values illustrated in Fig. 7.8 are

Rule 1: min (0, 0) =0
Rule 2: min (0.1563,0) =0
Rule 3: min (0, 0) =0
Rule 4: min (0.8438,0) =0
Rule 5: min (0, 0.2188) =0

Rule 6: min (0,0) =0



Rule 7: min (0.1563, 0.2188) = 0.1563
Rule 8: min (0.1563, 0.7813) = 0.1563
Fuzzy output

The fuzzy output of the system is the ‘fuzzy OR’ of all the fuzzy outputs of
the rules with

non-zero rule strengths. In the event of more than one rule qualifying for the
same fuzzy output, the stronger among them is chosen.

Example
In the given rule base R, the competing fuzzy outputs are those of Rules 7
and 8 with strengths of 0.1563 each.

However, the fuzzy outputs computed here do not aid a clear-cut decision on
the throttle control. Hence, the need for defuzzification arises.

Defuzzification

The centre of gravity method is applied to defuzzify the output. Initially, the
centroids are computed for each of the competing output membership
functions. Then, the new output membership areas are determined by

Degree of
membership b,
e P e
01563y Al[[[JEEEE—
127 159 191 223
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1
> h-(a+b)
%(0.1563)(64+63.82)
1

(@ +by)

%(0.1563)(64 +63.82)

999 %1594 9.99x191
19.98

shortening the height of the membership value on the Y axis as dictated by
the rule strength value. Finally, the Centre of Gravity (CG) is computed
using the weighted average of the X-axis centroid points with the newly
computed output areas, the latter serving as weights.

Example

Figure 7.11 illustrates the computation of CG for the two competing outputs
of rules 7 and 8 with strength of 0.1563 each.

Fig. 7.11 Computation of CG for fuzzy cruise control system.
For the fuzzy set PS,

X-axis centroid point = 159

Rule strength applied to determine output area = 0.1563

Shaded area =



=9.99

For the fuzzy set PM,

X-axis centroid point = 191

Rule strength applied to determine output area = 0.1563

Shaded area =

=9.99
Therefore,
Weighted average, ( CG) =

=175

Air conditioner

o ﬂT=T—T.|:|

|
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In crisp terms, the throttle control (normalized) is to be set as 175.
7.6.2 Air Conditioner Controller

The system as illustrated in Fig. 7.12 comprises a dial to control the flow of
warm/hot or cool/cold air and a thermometer to measure the room
temperature ( 7 0C). When the dial is turned positive, warm/hot air is
supplied from the air conditioner and if it is turned negative, cool/cold air is
supplied.

If set to zero, no air is supplied.
Fig. 7.12 Air conditioner control system.

A person now notices the difference in temperature (A 7° C) between the
room temperature ( 7° C) as measured by the thermometer and the desired
temperature ( T o

0 C) at which the room is desired to be kept (set-point). The problem now is
to determine to what extent the dial should be turned so that the appropriate
supply of air (hot/warm/cool/cold) will nullify the change in temperature.

For the above problem the rule base is as shown in Table 7.6.
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The fuzzy sets for the system inputs, namely A 7 and
, and the system

output, namely turn of the dial are as shown in Fig. 7.13.
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Fig. 7.13 Fuzzy sets for the air conditioner control system.
Consider the system inputs, A 7= 2.50C and
= —10C/min. Here the

fuzzification of system inputs has been directly done by noting the
membership value corresponding to the system inputs as shown in Fig. 7.14.



-5°C

— o — — — —_— o m— m— — —

— AT
5°C

PL

+ AT

5°C

—3°C/mm

dAT

—3°C/mm

| 1

3°C/mm 4t

dAT

-3°C/mm

3°C/mm 9

—-1°C/mm

Fig. 7.14 Fuzzification of inputs A T=2.5°C, d A T/ dt = —1°C/min.

The rule strengths of rules 1, 2, 3 choosing the minimum of the fuzzy
membership value of the antecedents are 0, 0.1 and 0.6 respectively. The
fuzzy output is as shown in Fig 7.15.
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Defuzzifi-| Decision: ‘cool
cation a little’

Fig. 7.15 Defuzzification of fuzzy outputs for z (turn of the dial).

The defuzzification of the fuzzy output yields Z=-0.2 for AT=2.5°C and y
= —1°C/min.

Hence, the dial needs to be turned in the negative direction, i.e. —0.2 to
achieve the desired temperature effect in the room.

W
SUMMARY



Crisp logic is classified into propositional logic and predicate logic.
Propositions are statements which are either true or false but not both.

Propositional logic supports the five major connectives A, V , ~, =,

Truth tables describe the semantics of these connectives.
The laws of propositional logic help in the simplification of formulae.
Modus Ponens ( P = Q and P, infers Q), Modus Tollens ( P = Q and

~ Q, infers ~ P), and Chain rule ( P= Q and Q = R infers P = R) are useful
rules of inference in propositional logic.

Propositional logic is handicapped owing to its inability to quantify.

Hence, the need for predicate logic arises. Besides propositions and
connectives, predicate logic supports predicates, functions, variables,
constants and quantifiers ( , 3). The interpre-tation of predicate logic formula
is done over a domain D. The three rules of inference of propositional logic
are applicable here as well.

Fuzzy logic on the other hand accords multivalued truth values such as
absolutely true, partly true, partly false etc. to fuzzy propositions.

While crisp logic is two valued, fuzzy logic 1s multivalued [0-1].

Fuzzy logic also supports fuzzy quantifiers classified as relative and absolute
quantifiers and the Fuzzy rules of inference Generalized Modus Ponens
(GMP) and Generalized Modus Tollens (GMT).

A set of fuzzy if-then rules known as a fuzzy rule base describes a fuzzy rule
based system. However, for effective decision making, defuzzification
techniques such as center of gravity method are employed which render the
fuzzy outputs of a system in crisp terms.



Fuzzy systems have been illustrated using two examples, namely Greg Viot’s
fuzzy cruise control system and Yamakawa’s air conditioner control system.

PROGRAMMING ASSIGNMENT

P7.1 Solve the Air conditioner controller problem (Sec. 7.6.2) using
MATLAB®’s fuzzy logic tool box.

(a) Make use of the FIS (Fuzzy Inference System) editor to frame the rule
base and infer from it. Employ the centroid method of defuzzification.

(b) Download Robert Babuska’s fuzzy logic tool box.
(http://Icewww.et.tudelft.nl/~babuska/) and implement the same problem.

SUGGESTED FURTHER READING

Fuzzy logic concepts are discussed in A First Course in Fuzzy Logic (Nguyen
and Walker, 1999). The design and properties of fuzzy systems and fuzzy
control systems could be found in A Course in Fuzzy Systems and Control
(Wang, 1997). Several fuzzy system case studies have been discussed in The
Fuzzy Systems Handbook (Earl Cox, 1998). The book is also supplemented
by a CD-ROM containing Windows 95 fuzzy logic library with code to
generate 32 bit DLLs for Visual BASIC and Visual C++. The applications of
fuzzy systems for neural networks, knowledge engineering and chaos are
discussed in Foundations of Neural Networks, Fuzzy Systems and Knowledge
Engineering (Kasabov, 1996).
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PART 3

GENETIC ALGORITHMS

* Fundamentals of Genetic Algorithms
* Genetic Modelling

Chapter 8

Fundamentals of Genetic Algorithms

Decision-making features occur in all fields of human activities such as
scientific and technological and affect every sphere of our life. Engineering
design, which entails sizing, dimensioning, and detailed element planning is
also not exempt from its influence.

For example an aircraft wing can be made from aluminium or steel and once
material and shape are chosen, there are many methods of devising the



required internal structure. In civil engineering also, designing a roof to cover
large area devoid of intermediate columns requires optimal designing.

The aim is to make objective function a maximum or minimum, that is, it is
required to find an element X 0 in A if it exists such that F( X 0) < F( X) for
minimization

F(X) < F(X0) for maximization......... (8.1) The following major
questions arise in this process

Does an optimal solution exist?

Is it unique?

What is the procedure?

How sensitive the optimal solution is?

How the solution behaves for small changes in parameters?

Since 1940, several optimization problems have not been tackled by classical
procedures including:

1. Linear programming

2. Transportation

3. Assignment

4. Nonlinear programming
5. Dynamic programming
6. Inventory

7. Queuing

8. Replacement
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The classification of optimization techniques is shown in Fig. 8.1.

Basically, we have been following traditional search technique for solving
nonlinear equations. Figure 8.2 shows the classes of both traditional and
nontraditional search techniques. Normally, any engineering problem will
have a large number of solutions out of which some are feasible and some
are infeasible. The designer’s task is to get the best solution out of the
feasible solutions. The complete set of feasible solutions constitutes feasible
design space and the progress towards the optimal design involves some kind
of search within the space (combinatorial optimization). The search is of two
kinds, namely deterministic and stochastic.

Fig. 8.1 Classification of optimization techniques.



In the case of deterministic search, algorithm methods such as steepest
gradient methods are employed (using gradient concept), whereas in
stochastic approach, random variables are introduced. Whether the search is
deterministic or stochastic, it is possible to improve the reliability of the
results where reliability means getting the result near optimum. A transition
rule must be used to improve the reliability. Algorithms vary according to the
transition rule used to improve the result.

Nontraditional search and optimization methods have become popular in
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engineering optimization problems in recent past. These algorithms include:
1. Simulated annealing (Kirkpatrik, et al. 1983)

2. Ant colony optimization (Dorigo and Caro, 1999)

3. Random cost (Kost and Baumann, 1999)




4. Evolution strategy (Kost, 1995)

5. Genetic algorithms (Holland, 1975)
6. Cellular automata (Wolfram, 1994)
Fig. 8.2 Classes of search techniques.

Simulated annealing mimics the cooling phenomenon of molten metals to
constitute a search procedure. Genetic algorithm and evolutionary strategies
mimic the principle of natural genetics and natural selection to construct
search and optimization procedures. The collective behaviour that emerges

from a group of social insects such as ants, bees, wasps, and termites has
been dubbed as Swarm intelligence. The foraging of ants has led to a novel
algorithm called Ant colony optimization for rerouting network traffic in busy
telecommunication systems. This method was originally developed by
Deneubourg and extended by Dorigo (1999) of Brussels. Random cost
method is a stochastic algorithm which moves as enthusiastically uphill as
down-hill. The method has no severe problems in escaping from a dead end
and is able to find the optima. In this chapter, we discuss the fundamentals of
genetic algorithms.

8.1 GENETIC ALGORITHMS: HISTORY

The idea of evolutionary computing was introduced in 1960 by I.
Rechenberg in his work Evolutionary strategies. Genetic algorithms are
computerized search and optimization algorithms based on the mechanics of
natural genetics and natural selection. Prof. Holland of University of
Michigan, Ann Arbor, envisaged the concept of these algorithms in the mid-
sixties and published his seminal work (Holland, 1975). Thereafter, a
number of students and other researchers have contributed to the
development of this field.

To date, most of the GA studies are available through some books by Davis
(1991), Goldberg (1989), Holland (1975), Michalewicz (1992) and Deb
(1995) and through a number of conference proceedings. The first



application towards structural engineering was carried by Goldberg and
Samtani (1986).

They applied genetic algorithm to the optimization of a

ten-member plane truss. Jenkins (1991) applied genetic algorithm to a
trussed beam structure.

Deb (1991) and Rajeev and Krishnamoorthy (1992) have also applied GA to
structural engineering problems. Apart from structural engineering there are
many other fields in which GAs have been applied successfully. It includes
biology, computer science, image processing and pattern recognition,
physical science, social sciences and neural networks. In this chapter, we will
discuss the basic concepts, representatives of chromosomes, fitness
functions, and genetic inheritance operators with example. In Chapter 9,
genetic modelling for real life problems will be discussed.

8.2 BASIC CONCEPTS

Genetic algorithms are good at taking larger, potentially huge, search spaces
and navigating them looking for optimal combinations of things and
solutions which we might not find in a life time.

Genetic algorithms are very different from most of the traditional
optimization methods. Genetic algorithms need design space to be converted
into genetic space. So, genetic algorithms work with a coding of variables.

The advantage of working with a coding of variable space is that coding
discretizes the search space even though the function may be continuous. A
more striking difference between genetic algorithms and most of the
traditional optimization methods is that GA uses a population of points at
one time in contrast to the single point approach by traditional optimization
methods. This means that GA processes a number of designs at the same
time. As we have seen earlier, to improve the search direction in traditional
optimization methods, transition rules are used and they are deterministic in
nature but GA uses randomized operators. Random operators improve the
search space in an adaptive manner.



Three most important aspects of using GA are:

1. definition of objective function

2. definition and implementation of genetic representation
3. definition and implementation of genetic operators.

Once these three have been defined, the GA should work fairy well beyond
doubt. We can, by different variations, improve the performance, find
multiple optima (species if they exist) or parallelize the algorithms.

8.2.1 Biological Background

All living organisms consist of cells. In each cell, there is a set of
chromosomes which are strings of DNA and serve as a model for the whole
organism. A chromosome consists of genes on blocks of DNA as shown in
Fig. 8.3. Each gene encodes a particular pattern. Basically, it can be said that
each gene encodes a trait, e.g. colour of eyes. Possible settings of traits
(bluish brown eyes) are called alleles. Each gene has its own position in the
chromosome search space. This position is called locus. Complete set of

genetic material is called genome and a particular set of genes in genome is
called genotype. The genotype is based on organism’s phenotype
(development after birth), its physical and mental characteristics such as eye
colour, intelligence and so on.



Fig. 8.3 Genome consisting of chromosomes.
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8.3 CREATION OF OFFSPRINGS

During the creation of offspring, recombination occurs (due to cross over)
and in that process genes from parents form a whole new chromosome in
some way. The new created offspring can then be mutated. Mutation means
that the element of DNA is modified. These changes are mainly caused by
errors in copying genes from parents. The fitness of an organism is measured
by means of success of organism in life.

8.3.1 Search Space

If we are solving some problems, we work towards some solution which is
the best among others. The space for all possible feasible solutions is called
search space. Each solution can be marked by its value of the fitness of the
problem. ‘Looking for a solution’ means looking for extrema (either
maximum or minimum) in search space. The search space can be known by
the time of solving a problem and we generate other points as the process of
finding the solution continues (shown in Fig. 8.4).

Fig. 8.4 Examples of search space.

The problem is that, search space is complicated and one does not know
where to look for the solution or where to start from and this is where
genetic algorithm is useful. GAs are inspired by Darwinian theory of the



survival of the fittest. Algorithm is started with a set of solutions (represented
by chromosomes) called populations. Solutions for one population are taken
and used to form a new population. This is motivated by a hope that new
population will be better than the old one. Solutions, which are selected to
form new population (offspring), are selected according to their fitness. The

more suitable they are, the more chances they have to reproduce. This is
repeated until some conditions (number of populations) for improvement of
best solution are satisfied.

XP<x<xPfori=12,.,N

|
I+ f(X)
8.4 WORKING PRINCIPLE

To illustrate the working principle of GA, we first consider unconstrained
optimization problem. Later, we shall discuss how GA can be used to solve a
constrained optimization problem. Let us consider the following
maximization problem.

maximize f{ X) (8.2)

If we want to minimize f{ X), for f{ X) > 0, then we can write the objective
function as

maximize
(8.3)

If f{ X) < 0 instead of minimizing f{ X), maximize {— f{ X)}. Hence, both
maximization and minimiza-tion problems can be handled by GA.

If the same problem is solved by multiple regression analysis, given k
independent variables, for regressing the dependent variable 2( k+ 1) — 1



including the intercept which are given in Table 8.1.
Table 8.1 Subsets for regression analysis

Variable

Subsets

2

7

3

15

19
10,48,578
On the other hand, in GA the variables are coded.

8.5 ENCODING



There are many ways of representing individual genes. Holland (1975)
worked mainly with string bits but we can use arrays, trees, lists or any other
object. Here, we consider only bit strings.

8.5.1 Binary Encoding
Example Problem (Knapsack Problem)

There are things with given values and size. The knapsack has a given
capacity. Select things to minimize their value in knapsack not exceeding the
capacity of the knapsack.

Encoding

Each bit says if the thing is in knapsack or not. Binary coding is the most
commonly used in GA as shown in Table 8.2.

Table 8.2 Chromosomes
Chromosome A
101101100011
Chromosome B

010011001100

Binary encoding gives many possible chromosomes even with small number
of alleles. On the other hand, this encoding is often not natural for many
problems and sometimes corrections must be made after genetic operator
corrections.

In order to use GA to solve the maximization or minimization problem,
unknown variables Xi are first coded in some string structures. It is important
to mention that coding of the variable is not absolutely necessary. There exist
some studies where GAs are directly used on the variables themselves, but
here we shall ignore the exceptions and discuss the encoding for simple
genetic algorithm. Binary-coded strings having 1s and Os are mostly used.



The length of the string is usually determined according to the desired
solution accuracy. For example, 4-bit binary string can be used to represent
16 numbers as shown in Table 8.3.

Table 8.3 Four-bit string

2|9 \L_ Remainder

2|41 Binary equivalent of 9 = 1001
2| 2—0
1—0
1 0 0 1
L 1x29=1
o0x2'=0
0x22=0
1x2%=8
9
X <X X/
(X X5
(X .X5)
4-bit
Numeric
4-bit
Numeric

4-bit



Numeric
string
value
string
value
string
value
0000

0

0110

1100
12

0001

0111

1101

13

0010



1000

1110

14

0011

1001

1111

15

0100

1010

10

0101

1011

11



To convert any integer to a binary string, go on dividing the integer by 2 as
shown in

Fig. 8.5. We get equivalent integer for the binary code by decoding it as
shown in Fig. 8.6.

Fig. 8.5 Binary coding.
Fig. 8.6 Equivalent integer for a binary code.

For example, if we want to code a two variable function assuming four bits
are used for each variable, we represent the two variables X 1, X 2 as (1011

0110). As given in Eq. (8.2), every variable will have both upper and lower
limits as

(8.4)

As shown in Table 8.3 a four-bit string can represent the integers from 0O to

15 (16 elements) and hence, (0000 0000) and (1111 1111) represent the
points for X 1, X 2 as

respectively because the substrings

k=n—1
k
Z 2 Sk
k=0
.‘i”l
X
i, & =X
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(2%-1)
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(0000) and (1111) have the minimum and the maximum decoded values.

Hence, an n-bit string can represent integers fromOto2n—1,1.e.2n
integers.

Assume that Xi is coded as a substring Si of length ni. The decoded value of
a binary substring Si is calculated as shown in Fig. 8.6 as (8.5)

where si can be either zero or 1 and the string § is represented as sn—1 ... s
3525150 (8.6) For example, a four-bit string (0111) has a
decoded value equal to 23 x 0 +22 x 1 +21 x1+20x1=7

Knowing

and

corresponding to (0000) and (1111), the equivalent
value for any

4-bit string can be obtained as

Xi=

x (decoded value of string) (8.7)

Assume for a variable Xi, = 2, and



= 17, to find what value of 4-bit

string of Xi = (1010) would represent. First we get the decoded value for Si as
Si=1010=23x1+22x0+21x1+20%x0=

10 (8.8a)
Xi=
=12 (8.8b)

Hence, the accuracy that can be obtained with a four-bit code is 1/16th of
search space. But as the string length is increased by one, the obtained
accuracy increases exponentially to 1/32th of the search space. It is not
necessary to code all variables in equal substring length. The length of
substring representing a variable depends on the desired accuracy in that
variable. Generalizing the concept, we may say that with ni bit-length coding
for a variable, the obtainable accuracy in that variable approximation is

. Once the coding of the variables is done, the corresponding point ( X 1 ...
Xn) T can be found out using Eq. (8.7). For continuous design variable,

['Xb'_x-ﬂ ]
logy| —%—

if € is the precision representation required then string length * S” should be
equal to

S =
(8.9)

In some cases, Xi need not be equally distributed so as to apply the linear
mapping rule. Hence, Xi can be given in the form of a table as shown in
Table 8.4.

Table 8.4 Binary representation of fibre angles



S.No.

Binary coding
Decoded value
Fibre angle

1

0000

0001

10

0010

20

0011

30



0100

45

0101

60

0110

70

0111

80

1000

90



10

1001

-10

11

1010

10

12

1011

11

13

1100

12

14

1101

13



15
1110

14

16
1111
15
-80

Hence, when the values are not uniformly distributed, tabulated values can
be used to find the corresponding point X = ( X 1, X 2,..., Xn) T. Thereafter,
the function value at that point X can also be calculated by substituting X in
the given objective function.

8.5.2 Octal Encoding (0 to 7)

To convert any integer to an octal string, go on diving the integer by 8 as

8| 542 ‘L—Remainder
8| 67—6
8| 8—3
1—0

Octal equivalent of 542 = 1036




1 0 3 6
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3x8= 24

0 x 82 = 0

1 % 8% =+512
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shown in Fig. 8.7. For example, 542 is given in octal form as 1036.
Fig. 8.7 Octal encoding.

For the octal code, we can get the equivalent integer by decoding it as shown
in Fig. 8.8. The integer value for the octal code 1036 is 542.

Fig. 8.8 Equivalent integer for an octal code.

A four-bit octal string can represent the integers from 0 to 4095 and hence,
(0000 0000) and (7777 7777) would represent the points for X 1 and X 2 as
respectively. The decoded value of a binary substring Si is calculated as

(8.10)

and hence, the obtainable accuracy in that variable approximation is



8.5.3 Hexadecimal Encoding (0123456789ABCDEF)

To convert any number to hexadecimal form, we go on dividing the number
by 16 as shown in Fig. 8.9. The hexadecimal code for 67897 is shown to be
10939. We get equivalent integer for the hexadecimal code by decoding it as
shown in Fig. 8.10. The decoded value for the hexadecimal number BO79E6

1s 11565542.

16/6 789 7 h Remainder

16| 42 43—9 i
16 26 5—3 Hexadecimal code for 67897 is 10939.
16 16—9

1—0

B O Z 9 E B

L 6 x 16° = 6
14 x 161 = 24

9 x 16° = 2304

7% 16° = 28672

0x 164 = 0

11 x 165 = +11534336
11565542
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(A7, X))



{Xﬁq/‘(f‘ ):
P ey

k 1

= nl_ £
Z bkﬁr k
k=0
(X - X;")/b"

Fig. 8.9 Hexadecimal coding.

Fig. 8.10 Equivalent integer for hexadecimal code.

A four-bit hexadecimal can represent the integers from 0 to 65535 and hence,
(0000 0000) and

(FFFF FFFF) would represent the points for X 1 and X 2 as respectively. The
decoded value of a hexadecimal string Si is calculated as (8.11)

And hence, the obtainable accuracy in that variable approximation is

. From the above discussion it is clear that encoding can be given to any base
‘b’, bits of ni length can represent the integers from O to ( bni — 1) and hence
(0000 0000), and ((b—1)(b—-1)(b—-1)(b—1),and (b—-1)(b—-1)(b

— 1)( b — 1)) would represent the points X 1 and X 2 as respectively. The
decoded value of ‘b’ bit-string Si is calculated as (8.12a)



And hence, obtainable accuracy in that variable approximation is (8.12b)
8.5.4 Permutation Encoding

This can be used in ordering problems such as travelling salesman or task
ordering. In a permutation encoding, every chromosome is a string of
numbers which represents the number in the sequence as shown in Table 8.5.

Table 8.5 Permuation encoding
Chromosome- A

1

Chromosome- B



4
9

Even for ordering problems after applying for sometimes, the genetic
operators corrections must be made to leave the chromosome consistent.

Example Problem Travelling Salesman Problem

The problem: There are cities and given distances between them. Travelling
salesman has to visit all of them. Find the sequence of cities to minimize the
travelling distance.

Encoding

Chromosome illustrates the order of cities in which the salesman would visit
them.

8.5.5 Value Encoding

In this, every chromosome is a string of some values and the values can be
any thing connected to the problem. From numbers, real numbers
characterize some complicated objects as shown in Table 8.6.

Table 8.6 Value encoding
Chromosome— A

1.234

5.3243

0.4556



2.0253
Chromosome— B
abdjetijdhj...
Chromosome— C
(Back),

(Right),
(Forward),

(Left)

Value encoding is very good for some special problems. On the other hand,
this encoding is often necessary to develop new genetic operators specific to
the problem.

Example Find the weights of neural network.

The problem: To find the weights of synapses connecting input to hidden
layer and hidden layer to output layer.

Chromosome-A Chromosome-B

.*/T\‘ Do until

Z i) Stop/ \Wall
X

ll/d_ 1 -
> &_ Do until stop wall
y)




Encoding
Each value in chromosome represents the corresponding weights.

8.5.6 Tree Encoding

This is mainly used for evolving program expressions for genetic
programming. In a tree encoding, every chromosome is a tree of some
objects such as functions and commands, in a programming language as
shown in Fig. 8.11. Tree encoding is good for evolving programs in a
programming language. LISP is often used because programs in it are
represented in this form and can easily be parsed as a tree so that functions
and genetic operators can be applied rather easily.

Fig. 8.11 Tree encoding.
Example Find the function for a given value.

Problem: Some input and output values are given. The task is to find the
function which will give the best relation to satisfy all values.

Encoding
Chromosomes are functions represented in a tree.

8.6 FITNESS FUNCTION

As pointed out earlier GAs mimic the Darwinian theory of survival of the
fittest and principle of nature to make a search process. Therefore, GAs are
usually suitable for solving maximization problems. Minimization problems
are usually transformed into maximization problems by some suitable
transformation. In general, fitness function F( X) is first derived from the
objective function and used in successive genetic operations.

Certain genetic operators require that fitness function be non-negative,
although certain operators do not have this requirement. Consider the
following transformations



F( X) = f(X) for maximization problem
F(X) =1/ f{ X) for minimization problem, if f{ X) # 0

F(X)

1/(1

(X)),
if

AX)

0 (8.13)

A number of such transformations are possible. The fitness function value of
the string is known as string’s fitness.

Example 8.1

Two uniform bars are connected by pins at A and B and supported at A. A
horizontal force P acts at C. Knowing the force, length of bars and its weight
determine the equilibrium configuration of the system if friction at all joints
are neglected (see Fig. 8.12).
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Fig. 8.12 Two bar pendulum.



The total potential for the two bar pendulum is written as

Il=

(8.14)

Substituting the values for P, W 1, W 2, and for the lengths as 2 we get,
[1¢61,

02)

—4s1n01

6¢c0s01

4s1n02

2c0s02 (8.15a)

0 <01,02 <90......... (8.15b)

Equilibrium configuration is the one which makes [] a minimum.
Theoretical solution

A [] =0, for [] to be maximum or minimum

Al =

=0 (8.16)



AO1, AO2 are arbitrary. Therefore we get,
=4co0s01 — 6sin01 =0 (8.17a)
= 4c0s02 — 2sin62 =0 (8.17b)
From Eq. (8.17(a)) and (b) we get,

tan01 =, 01 = 33.7° (0.558 radians)

xXU-x* 90 -
gh-y &8
P gl 5
L
tan02 = 2, 02 = 63.43° (1.107 radians) (8.18)

For which [[ =-11.68

Since there are two unknowns 01 and 02 in this problem, we will use 4-bit
binary string for each unknown.

Accuracy =

(8.19)

Hence, the binary coding and the corresponding angles are given as Xi =
(8.20)

where Si 1s the decoded value of the i th chromosome. The binary coding and
the corresponding angles are given in Table 8.7.

Table 8.7 Binary coding and the corresponding angles

S. no.



Binary coding
Angle

S. no.

Binary coding
Angle

1

0000

1000

48

0001

10

1001

54

0010

12



11

1010

60

0011

18

12

1011

66

0100

24

13

1100

72

0101

30

14

1101



78

0110
36
15
1110

84

0111
42
16
1111
90

The objective function of the problem is given in Eq. (8.15). The contours of
the objective function as well as the 3D plot are shown in Figs. 8.13(a) and
(b) respectively.
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Fig. 8.13(a) Contours of equal objective functions.

Fig. 8.13(b) Three-dimensional plot of the objective function.

Since the objective function is negative, instead of minimizing the function
‘£ let us maximize

— f=/f. The maximum value of f= 8 when 01, 02 are zero. Hence, the fitness
function F is given as

F=f-T=-f-17 (8.21)

First randomly generate eight populations with 8-bit strings as shown in
Table 8.8.

Table 8.8 Computation of fitness function

Angles
Population
Population
No.

01

02
F=-f-17
1

0000 0000

0



1

2

0010 0001

12

6

2.1

3

0001 0101

6

30

3.11

4

0010 1000

12

48

4.01

5

0110 1010

36



60
4.66

6

1110 1000
84

48

1.91

7

1110 1101
84

78

1.93

8

0111 1100
42

72

4.55

As shown in Table 8.8 and Fig. 8.13(c), GA begins with a population of
random strings representing design or decision variables. Thereafter, each
string is evaluated to find the fitness value. The population is then operated
by three main operators, namely reproduction, cross over, and mutation, to
create a new population of points. The new population is further evaluated



and tested for termination. If the termination criteria are not met, the
population is iteratively operated by the three operators and evaluated until
the termination criteria are met. One cycle of these operations and the
subsequent evaluation procedure is known as a generation in GA
terminology.

Population F Fopulation F

A

1 460
210 1.81

o

| o
| B4®
e

a1 1.83
4.0 455

Fig. 8.13(c) * F’ for various population.
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8.7 REPRODUCTION

Reproduction is usually the first operator applied on population.

Chromosomes are selected from the population to be parents to cross over
and produce offspring. According to Darwin’s evolution theory of survival of
the fittest, the best ones should survive and create new oftspring. That is why
reproduction operator is sometimes known as the selection operator. There
exists a number of reproduction operators in GA literature but the essential
idea in all of them is that the above average strings are picked from the
current population and their multiple copies are inserted in the mating pool
in a probabilistic manner. The various methods of selecting chromosomes for
parents to Cross over are:

1. Roulette-wheel selection

2. Boltzmann selection

3. Tournament selection

4. Rank selection

5. Steady-state selection

8.7.1 Roulette-wheel Selection

The commonly used reproduction operator is the proportionate reproductive
operator where a string is selected from the mating pool with a probability
proportional to the fitness. Thus, i th string in the population is selected with
a probability proportional to Fi where Fi is the fitness value for that string.



Since the population size is usually kept fixed in a simple GA, the sum of the
probabilities of each string being selected for the mating pool must be one.

The probability of the i th selected string is
pi=
(8.22)

where ¢ n’ is the population size. For the example problem discussed in
Example 8.1 the probability values of each string are given in Table 8.9.

Table 8.9 Probability of an individual string
Population No.

Population

F=-f-17

Bi

F

F
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1

0000 0000

1

0.0429

2

0010 0001

2.1

0.090




0001 0101

3.11

0.1336

4

0010 1000

4.01

0.1723

5

0110 1010

4.66

0.200

6

1110 1000

1.91

0.082

7

1110 1101

1.93

0.0829

8



0111 1100
4.55
0.1955
=2.908

One way to implement this selection scheme is to imagine a Roulette-wheel
with its circumference for each string marked proportionate to string’s fitness
(see Fig. 8.14). The fitness of the population is calculated as Roulette-wheel
is spun ‘ n’ times (in this example eight times), each time selecting an
instance of the string chosen by the Roulette-wheel pointer. Since the
circumference of the wheel is marked according to a string’s fitness, the
Roulette-wheel mechanism is expected to make Fi/ copies of the i th string of
the mating pool.

Fig. 8.14 Roulette-wheel marked for eight individuals according to fitness.

The average fitness

F

i
E F.in
- -II. ]

(8.23)

Figure 8.14 shows a Roulette-wheel for eight individuals having different
fitness values. Since the fifth individual has a higher fitness than any other, it
1s expected that the Roulette-wheel selection will choose the fifth individual
more than any other individual.

This Roulette-wheel selection scheme can be simulated easily. Using the
fitness value Fi of all strings, the probability of selecting a string pi can be



calculated. Thereafter, cuamulative probability Pi of each string being copied,
can be calculated by adding the individual probabilities from the top of the
list. Thus, the bottom most string in the population should have a cumulative
probability of P 8 = 1. The Roulette-wheel concept can be simulated by
realizing that the i th string in the population represents the cumulative
probability from Pi — 1 to Pi. Thus, the first string represents the cumulative
values from O to P 1.

Hence, cumulative probability of any string lies between O—1. In order to
choose 7 strings, n random numbers between zero and one are created at
random. Thus, the string that represents the chosen random number in the
cumulative probability range (calculated from fitness value) for the string, is
copied to the matting pool. This way, the string with a higher fitness value
will represent a larger range in the cumulative probability values and
therefore, has a higher probability of being copied into the mating pool. On
the other hand, a string with a smaller fitness value represents a smaller
range in cumulative probability values and has a smaller probability of being
copied into the mating pool. Now, we illustrate the working of Roulette-
wheel simulation for an example.

Referring to Table 8.10, once probability of the individual strings are known
we can find the expected count of each string as

Expected count = ( n = 8) X pi (8.24)

These values are calculated and shown in column A of Table 8.10. From the
probability pi, the cumulative probability can be computed. For example, P 5
is given by

P5=0.0429 + 0.090 + 0.1336 + 0.1723 + 0.2 =
0.6388 (8.25)

These distributions are shown in column B of Table 8.10. In order to form
the mating pool, we create random numbers between zero and one (given in
column C) and identify the particular string which is specified by each of
these random numbers. For example, if a random number of 0.428 is created,



the fourth string gets a copy in the mating pool because the string occupies
the interval 0.266—0.438, as shown in column B. Column D refers to the
selected string. Similarly, other strings are selected according to random
numbers shown in column C. After this selection procedure is repeated n = 8

times, where ‘ n’ is the population size, the number of selected copies for
each string is counted. This number is shown in column E. For example, the
strings 4 and 5 get 2 copies, 6 and 7 get no copies, and the remaining strings
get one copy each. Comparing to column A, the expected counts are that
strings 5 and 8 get 2 copies, 1 and 6 get no copies, and the remaining get one
copy. Column A and E reveal that the theoretical expected count and the true
count of each string more or less agree with each other.

Table 8.10 Roulette-wheel selection
Population

p

Population

Population

i

N O O = >

Il
=



02

01

02

0000

0000

0.0429

0.33

0.0429

0.259

0000

0000

0010

0001



0.090

0.72

0.1329

0.038

0010

0001

0001

0101

0.1336

1.064

0.266

0.486

0001

0101



0010

1000

0.1723

1.368

0.438

0.428

0010

1000

0110

1010

0.200

1.6

0.638

0.095

0010



1000

1110

1000

0.082

0.656

0.720

0.3

0110

1010

1110

1101

0.0829

0.664

0.809

0.616



0110

1010

0111
1100
0.1955
1.56
1.0
0.897
8

1

0111
1100
PI = Probability

D = String number

 E )
| a -":.T .J.I'

*

A = Expected count

E = The count in the mating pool



B = Cumulative probability
C = Random number between 0—1

Figure 8.13(a) shows the initial random population and the mating pool after
reproduction. The points marked with enclosed box are the points in the
mating pool and the points marked with a filled box show the population left
out in the pool. The action of the reproduction operator is clear from this
point. The inferior points have been probabilistically eliminated from further
consideration. It should also be noted that not all selected points are better
than rejected points. For example, first individual is selected whereas the
sixth individual is not selected. Although the above Roulette-wheel selection
1s easier to implement, it is noisy. A better stable version of the selection
operator is sometimes used. After the expected count for each individual
string is calculated, the strings are first assigned value exactly equal to the
mantissa of the expected count. Thereafter, the regular Roulette-wheel
selection is implemented using decimal part of the expected count of the
probability distribution. This selection method is less noisy and is known as
stochastic remainder selection.

8.7.2 Boltzmann Selection

Simulated annealing is a method of functional minimization or
maximization.

This method simulates the process of slow cooling of molten metal to
achieve the minimum function value in a minimization problem. The cooling
phenomenon is simulated by controlling a temperature like parameter
introduced with the concept of Boltzmann probability distribution so that a
system in thermal equilibrium at a temperature 7 has its energy distributed
probabilistically according to

P(E)=exp

(8.26)



where ¢ k£’ is Boltzmann constant. This expression suggests that a system at a
high temperature has almost uniform probability of being at any energy state,
but at a low temperature it has a small probability of being at a high energy
state. Therefore, by controlling the temperature 7 and assuming search
process follows Boltzmann probability distribution, the convergence of the

algorithm is controlled. This is beyond the scope of this book and the reader
is advised to refer to the book by Deb (1995).

8.7.3 Tournament Selection

GA uses a strategy to select the individuals from population and insert them
into a mating pool. Individuals from the mating pool are used to generate
new offspring, which are the basis for the next generation. As the individuals
in the mating pool are the ones whose genes will be inherited by the next
generation, it is desirable that the mating pool consists of good individuals. A
selection strategy in GA is simply a process that favours the selection of
better individuals in the population for the mating pool.

There are two important issues in the evolution process of genetic search,
population diversity and selective pressure, as given by Whitley (1989).

Population diversity means that the genes from the already discovered good
individuals are exploited while promising the new areas of the search space
continue to be explored.

Selective pressure is the degree to which the better individuals are favoured.

The higher the selective pressure the more, the better individuals are
favoured. The selective pressure drives GA to improve population fitness over
succeeding generations. The convergence rate of GA is largely determined by
the selective pressure and population diversity. In general, higher selective
pressure results in higher convergence rates. However, if the selective
pressure is too high, there is an increased chance of GA prematurely
converging to local optimal solution because the population diversity of the
search space to be exploited is lost.



If the selective pressure is too low, the convergence rate will be slow and the
GA will take unnecessarily long time to find the optimal solution because
more genes are explored in the search. An ideal selection strategy should be
such that it 1s able to adjust its selective pressure and population diversity so
as to fine-tune GA search performance.

Whitley (1989) pointed out that the fitness proportional selection (e.g.

Roulette-wheel selection) is likely to lead to two problems, namely
Stagnation of search because it lacks selection pressure, and

Premature convergence of the search because it causes the search to narrow
down too quickly.

Unlike the Roulette-wheel selection, the tournament selection strategy
provides selective pressure by holding a tournament competition among NU

individuals (Frequency of NU = 2) (Goldberg and Deb, 1991).

The best individual (the winner) from the tournament is the one with highest
fitness ¢ which is the winner of NU. Tournament competitors and the winner
are then inserted into the mating pool. The tournament competition is
repeated until the mating pool for generating new offspring is filled. The
mating pool comprising of tournament winner has higher average population
fitness. The fitness difference provides the selection pressure, which drives
GA to improve the fitness of succeeding genes. The following steps illustrate
the tournament selection strategy (see

Table 8.11) and the fitness values are taken from Table 8.8.
Table 8.11 Fitness values for individuals

Individuals

1

2



Fitness

1

2.10

3.11

4.01

4.66

1.91

1.93

4.55

Step 1: First select individuals 2 and 4 at random.
P2 ¢4

2.10 4.01

4 1s the winner and hence, select the string as 0010 1000.

Step 2: Select individuals 3 and 8 at random.



¢3 ¢8

3.11 4.55

8 1s the winner and hence, select the string as 0111 1100.
Step 3: Next select 1 and 3.

ol 03

1.0 3.11

3 is the winner and thus, select the third string as 0001 0101.
Similarly, other populations are selected from the mating pool as Individuals
Selected

4 and 5

5

1 and 6

1 and 2

4 and 2

8 and 3



From the above, it is clear that 2, 3, 5 and 6 are chosen only once 4, 8 are
chosen twice, and 1 and 7 are not chosen at all . Table 8.12 gives the new
mating pool.

Table 8.12 Population for mating pool
Population no.

Population

1

0010

1000

0111

1100

0001

0101

0110

1010

1110

1000



0010

0001

0010
1000
8

0111
1100

Roulette-wheel selection omitted populations 6 and 7, two copies of 4 and 3,
and single copy for the others whereas tournament selection omitted 1 and 7,
two copies for 4 and 8, and single copy for the others.

During the early genetic evolution process, there are a large number of
individuals or chromosomes that almost satisfy all constraints except one or
two. A change in one or two design variable (strings) may produce a solution
with a higher fitness value. This means throwing out these solutions may
result in a loss of some important information which might eventually lead to
optimal solution.

8.7.4 Rank Selection

The Roulette-wheel will have problem when the fitness values differ very
much. For example, if the best chromosome fitness is 90%, its circumference
occupies 90% of Roulette-wheel, then other chromosomes will have very few



4
27%

chances to be selected. Rank selection first ranks the population and taken
every chromosome, receives fitness from the ranking. The worst will have
fitness 1, the next 2, ..., and the best will have fitness N ( N is the number of
chromosomes in the population). The Roulette-wheel selection is applied to
the modified wheel as shown in Figs. 8.15 and 8.16. Figure 8.15 is according
to fitness and Fig. 8.16 is according to rank. The method can lead to slow
convergence because the best chromosome does not differ so much from the
other.



Fig. 8.15 Roulette-wheel according to fitness.
Fig. 8.16 Roulette-wheel according to rank.
8.7.5 Steady-state Selection

This is not a particular method of selecting the parents. The main idea of the
selection is that bigger part of chromosome should survive to next
generation.

Here, GA works in the following way. In every generation are selected, a few
F
F

(good individuals with high fitness for maximization problem) chromosomes,
for creating new off springs. Then, some (bad with low fitness) chromosomes
are removed and new offspring is placed in that place. The rest of population
survives a new generation.

8.7.6 Elitism

In this method, first the best chromosome or few best chromosomes are
copied to new population. The rest is done in a classical way. Elitism can
very rapidly increase the performance of GA because it prevents loosing the
best-found solutions. From practical consideration point of view, if F fitness
functions are positive and for minimization problem, Goldberg (1989),
suggest that the fitness of any i th individual must be subtracted from a large
constant, so that all fitness values are non-negative and individuals get fitness
values according to their actual merit.

Now, the new expression for fitness becomes
¢ i = ( Fmax — F min) — Fi( X) (8.27) for minimization problem.

If Fi are positive for maximization problem then ¢ i = Fi. For the example
problem it is shown in Table. 8.13.



Table 8.13 Mating pool as per rank selection
(=2.908)
Population no.
Population
F=¢

F/

Count

Mating pool

1

0000 0000

1

0.38

0

0010 0001

2

0010 0001

2.1

0.812

1

0001 0101



3

0001 0101

3.11

1.203

1

0010 1000

4

0010 1000

4.01

1.55

1

0110 1010

5

0110 1010

4.66

1.802

2

0110 1010

6

1110 1000



1.91
0.738

0

1110 1101
7

1110 1101
1.93
0.746

1

0111 1100
8

0111 1100
4.55
1.760

2

0111 1100

The reproduction operator selects fit individuals from the current population
and places them in a mating pool. Highly fit individuals get more copies in
the mating pool, whereas the less fit ones get fewer copies. As the

0]



Ganetic inhartance opearator Genelic ﬁpe-ratu::-rs Offspring

Initial population Maling pool
chromosomes

number of individuals in the next generation is also same, the worst fit
individuals die off. The reproduction operator can be implemented in the
following manner.

The factor ¢ i/ for all individuals is calculated, where is the average fitness.
This factor is the expected count of individuals in the mating pool, and
shown in column 4 of Table 8.13. It is then converted to an actual count by
appropriately rounding off so that individuals get copies in the mating pool
proportional to their fitness, as shown in Column 5 of Table 8.13. A mating
pool is created where individuals 1 and 6 die off. This process of
reproduction confirms the Darwinian principle of survival of the fittest.

Figure 8.17 explains how the mating pool is created.
Fig. 8.17 Population for the mating pool.
8.7.7 Generation Gap and Steady-state Replacement

The generation gap is defined as the proportion of individuals in the
population, which are replaced in each generation. So far, we have been
doing reproduction with a generation gap of 1, i.e. population is replaced in
each generation. However, a more recent trend has favoured steady-state
replacement which is given by Whitley (1987, 1989). This operates at the
other extreme and in each generation only a few (typically two) individuals
are replaced. This may be a better model of what happens in nature. In



shortlived species including some insects, parents lay eggs and then die
before their offsprings hatch. But in longer-lived species including mammal’s,
offspring and parents live concurrently. This allows parents to nurture and
teach their offspring but also gives rise to competition among them.
Generation gap can be classified as

Fa
N

1

Gp = (8.28)

where Np is the population size and p is the number of individuals that will
be replaced. Several schemes are possible. Some of which are:

Selection of parents according to fitness and selection of replacement at
random,

Selection of parents at random and selection of replacement by inverse
fitness,

Selection of both parents and replacements according to fitness/inverse
fitness.

Generation gap can be gradually increased as the evolution takes place to
widen exploration space and may lead to better results.

SUMMARY

In this chapter, we have seen that genetic algorithm comprises a set of
individuals, elements (the populations) and a set of biologically inspired
operators defining the population itself. According to evolutionary theory,
only the most suited element in a population is likely to survive and generate
offspring, thus transmitting the biological heredity to the new generation. In
computing, GA maps problem on to a set of (typically binary) strings, each
string representing a potential solution. Table 8.14 gives the comparison
between biological terms and the corresponding terms in GA.



Table 8.14 Comparison of biological terms with GA terms
Biological term

GA term

Chromosome

Coded design vector

Substring

Coded design variable

Gene

Every bit

Population

A number of coded design variable
Generation

Population of design vector which are
obtained after one computation

In the next chapter we will discuss inheritance operators, their performance,
and the application of GA to real life problems.

Various optimization techniques are illustrated.
Non-traditional search and optimization methods are discussed.
Encoding of variables in GA are given.

Evaluation of fitness functions for an example of two bar pendulum bar is
described.



Various selection methods such as Roulette-wheel selection, Boltzmann
selection, Tournament selection, Rank selection, Steady-state selection are
discussed.

PROGRAMMING ASSIGNMENT

P8.1 In a three variable problem the following variable bounds are specified.
—6<x<12

0.002 < y < 0.004

104 < z < 105

What should be the minimum string length of any point ( x, y, z) coded in
binary string to achieve the following accuracy in the solution 1. two
significant digits.

2. three significant digits.

P8.2 Repeat the above problem when ternary strings (with three alleles O, 1,
2) are used instead of binary string.

P8.3 We want to use GA to solve the following nonlinear programming
problem.

minimize (x 1 —2.5)2+(x2-15)2
subject to

55x

2

1+2x2-18 <0

0<x1,x2<5



We decide to give three and two decimal places of accuracy to variables x 1,
x 2 respectively.

1. How many bits are required for coding the variables?
2. Write down the fitness function which you would be using in reproduction.

P8.4 Consider the following population of binary strings for a maximization
problem.

String
Fitness
01101
5

11000

10110

00111

10

10101

00010

100



Find out the expected number of copies of the best string in the above
population of the mating pool under

1. Roulette wheel selection.
2. Tournament selection.

If only the reproduction operator is used, how many generations are required
before the best individual occupies the complete population under each
selection operator.

P8.5 Write a program in “C” or in FORTRAN for creating initial population
(for n variables) with n-bits string for each variable. The values of each
variable can be selected from a table of data. Assume an objective function,
find fitness value, and get the offspring using Roulette-wheel selection.
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Chapter 9
Genetic Modelling

In the last Chapter, we discussed how variables in GA are encoded and how
fitness function is calculated. Various selection methods such as Roulette-
wheel selection, Boltzmann selection, tournament selection, and steady-state
selection have been used to produce the population of the mating pool i.e. in
reproduction, good strings in a population are probabilistically assigned a
large number of copies and a mating pool is formed. It is important to note
that no new strings are formed in the reproduction phase. There are many
inheritance operators applied to the mating pool with a hope that it would
create a better string. The aim of inheritance operators is to search the
parameter space. In addition, search is to be in a way that the information
stored in the present strings are maximally preserved, because these parent
strings are instances of good strings selected using the reproduction operator.

9.1 INHERITANCE OPERATORS

As already seen, genetic algorithm makes use of the Darwinian survival of
the fittest procedure. Genetic algorithms are search procedures based on
mechanics of natural genetics and natural selection.

Genetic algorithm derives power from the genetic operators listed here.
Low-level operators, namely

1. Inversion

2. Dominance

3. Deletion



4. Intrachromosomal duplication
5. Translocation

6. Segregation

7. Speciation

8. Migration

9. Sharing

10. Mating

A simple genetic algorithm largely uses three basic operators which are 1.
Reproduction

2. Cross over
3. Mutation

First we will discuss the basic operators and then the low-level operators.
9.2 CROSS OVER

After the reproduction phase is over, the population is enriched with better
individuals. Reproduction makes clones of good strings, but does not create
new ones. Cross over operator is applied to the mating pool with a hope that
it would create a better string. The aim of the cross over operator is to search
the parameter space. In addition, search is to be made in a way that the
information stored in the present string is maximally preserved because these
parent strings are instances of good strings selected during reproduction.

Cross over is a recombination operator, which proceeds in three steps.

First, the reproduction operator selects at random a pair of two individual
strings for mating, then a cross-site is selected at random along the string



length and the position values are swapped between two strings following the
cross site. For instance, let the two selected strings in a mating pair be A =

11111 and B = 00000. If the random selection of a cross-site is two, then the
new strings following cross over would be A* = 11000 and B* = 00111. This
is a single-site cross over. Though these operators look very simple, their
combined action 1s responsible for much of GA’s power. From a computer
implementation point of view, they involve only random number of
generations, string copying, and partial string swapping. There exist many
types of cross over operations in genetic algorithm which are discussed in the
following sections.

9.2.1 Single-site Cross Over

In a single-site cross over, a cross-site is selected randomly along the length
of the mated strings and bits next to the cross-sites are exchanged as shown
in Fig. 9.1. If an appropriate site is chosen, better children can be obtained by
combining good substances of parents. Since the knowledge of the
appropriate site is not known and it is selected randomly, this random
selection of cross-sites may produce enhanced children if the selected site is
appropriate. If not, it may severely hamper the string quality. Anyway,
because of the crossing of parents better children are produced and that will
continue in the next generation also. But if good strings are not created by
cross over, they will not survive beyond next generation because reproduction
will not select those strings for the next mating pool.
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Fig. 9.1 Single-site cross over.

9.2.2 Two-point Cross Over



In a two-point cross over operator, two random sites are chosen and the
contents bracketted by these sites are exchanged between two mated parents.

If the cross-site 1 is three and cross-site 2 is six, the strings between three
and six are exchanged as shown in Fig. 9.2.

Fig. 9.2 Two-point cross over.
9.2.3 Multi-point Cross Over

In a multi-point cross over, again there are two cases. One is even number of
cross-sites and second one is the odd number of cross-sites. In case of even
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numbered cross-sites, the string is treated as a ring with no beginning or end.

The cross-sites are selected around the circle uniformly at random. Now the
information between alternate pairs of sites is interchanged as shown in Fig.
9.3. If the number of cross-sites is odd, then a different cross-point is always



assumed at the string beginning. The information (genes) between alternate
pairs is exchanged as shown

in Fig. 9.4.

Fig. 9.3 Multi-point cross over with even number of cross-sites.
Fig. 9.4 Multi-point cross over with odd number of cross-sites.
9.2.4 Uniform Cross Over

An extreme of multi-point cross over is the uniform cross over operator. In a
uniform cross over operator, each bit from either parent is selected with a
probability of 0.5 and then interchanged as shown in Fig. 9.5(a). It is seen
that uniform cross over is radically different from one-point cross over.

Sometimes gene in the offspring is created by copying the corresponding
gene from one or the other parent chosen according to a randomly generated
cross over mask. When there is 1 in the mask, the gene is copied from the
first parent and when there is 0, the gene is copied from second parent as
shown in Fig. 9.5(b). The process is repeated with the parents exchanged to



QOO W@ @ reer—
OJOJOX 1 JOX JORL. .

Before crossing

cJololol Jol Joks
ofol L JoJol X L

Interchange Interchange Interchange

Cross over mask

Parent—1

Off spring—1

Parent—2

Off spring—2

Parent—1

1 0 0 1 1 1 o 0 1

@@@@@@@@@@@

QOLOOOOOOOO®O®

OOOOOOCOO®O O

OO VA CROXONOROXOXOXO,

UOX JOROJOX X X' JOX




produce the second offspring. A new cross over mask is randomly generated
for each pair of parents. Offspring therefore contains a mixture of genes from
each parent. The number of effective crossing points is not fixed but averages
to L/2 (where L is chromosome length).

Fig. 9.5(a) Uniform cross over.
Fig. 9.5(b) Uniform cross over using mask.

9.2.5 Matrix Cross Over (Two-dimensional Cross Over)

String—1 1 0 1 1 1 0 0 1
String—2 0o 1 0 1, 11 1 0
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Normally, the strings are represented as a single dimensional array as shown
in Fig. 9.6. In the above case, two strings of length 4 are concatenated to
form an individual. So, the cross-sites selected for this case are obviously
single-dimensional whereas in the case of two-dimensional cross over, each
individual is represented as a two-dimensional array of vector to facilitate the
process. The process of two-dimensional cross over is depicted in Fig. 9.7.

Fig. 9.6 Single-dimensional strings.
Fig. 9.7 Matrix cross over.

Two random sites along row and column are chosen, then the string is
divided into utmost nonoverlapping rectangular regions. Two cross-sites,

both row- and column-wise, will decide each individual into utmost nine
overlapping rectangular regions. Two cross-sites, both row- and column-wise
will decide each individual into three layers horizontally and vertically.

Select any region in each layer, either vertically or horizontally and then
exchange the information in that region between the mated populations. The
selection of cross over operators is made such that the search in genetic space
is proper. In case of a single-point cross over operator, the search is not
extensive but maximum information is preserved between parents and



children. Some studies have been made to find an optimal cross over
operator. According to Deb (1995), it is difficult to generalize the optimal
cross over operator selection. So, it is left to personal interest to select the
Cross over operator.

9.2.6 Cross Over Rate

In GA literature, the term cross over rate is usually denoted as PC, the
probability of cross over. The probability varies from O to 1. This is
calculated in GA by finding out the ratio of the number of pairs to be crossed
to some fixed population. Typically for a population size of 30 to 200, cross
over rates are ranged from 0.5 to 1.

We have seen that with random cross-sites, the children strings produced
may not have a combination of good substrings from parent strings
depending on whether or not the crossing site falls in the appropriate place.

But we do not worry about this too much because if good strings are created
by cross over, there will be more copies of them in the next mating pool
generated by the reproduction operator. But if good strings are not created by
cross over, they will not survive too long, because reproduction will select
against those strings in subsequent generations. It is clear from this
discussion that the effect of cross over may either be detrimental or
beneficial. Thus, in order to preserve some of good strings that are already
present in the mating pool, not all strings in the mating pool are used in cross
OVer.

When a cross over probability of PC is used only 100 PC percent strings in
the population are used in the cross over operation and 100(1- PC)
percentage of the population remains as it is in the current population. Even

though the best 100(1- PC)% of the current population can be copied
deterministically to the new population, this is usually preferred at random.
A cross over operation is mainly responsible for the search of new strings.
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9.3 INVERSION AND DELETION
9.3.1 Inversion

A string from the population is selected and the bits between two random
sites are inverted as shown in Fig. 9.8.

Fig. 9.8 Inversion.
Linear+end-inversion

Linear+end-inversion performs linear inversion with a specified probability
of 0.75. If linear inversion was not performed, the end inversion would be
performed with equal probability of 0.125 at either the left or right end of the
string. Under end inversion, the left or right end of the string was picked as
one inversion-point and a second inversion-point was picked uniformly at
random from the point no farther away than one half of the string length.

Linear+end-inversion minimizes the tendency of linear inversion to disrupt
bits located near the centre of the string disproportionately to those bits
located near the ends.

Continuous inversion

In continuous inversion, inversion was applied with specified inversion
probability Pr to each new individual when it is created.



Mass inversion

No inversion takes place until a new population is created and thereafter,
one-half of the population undergoes identical inversion (using the same two
inverting points).

9.3.2 Deletion and Duplication
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Any two or three bits at random in order are selected and the previous bits
are duplicated and it is shown in Fig. 9.9.

Fig. 9.9 Deletion and duplication.



9.3.3 Deletion and Regeneration

Genes between two cross-sites are deleted and regenerated randomly as
shown in Fig. 9.10.

Fig. 9.10 Deletion and regeneration.
9.3.4 Segregation

The bits of the parents are segregated and then crossed over to produce
offspring as shown in

Fig. 9.11.
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Fig. 9.11 Segregation.
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9.3.5 Cross Over and Inversion

Cross over and inversion operator is the combination of both cross over and
inversion operators. In this, two random sites are chosen, the contents
bracketted by these sites are exchanged between two mated parents and, the
end points of these exchanged contents switch place. For example, if the
cross-sites in parents shown in Fig. 9.12 are 2 and 7, the cross over and
inversion operation is performed in the way shown in Fig. 9.12.

Fig. 9.12 Cross over and inversion.



9.4 MUTATION OPERATOR
9.4.1 Mutation

After cross over, the strings are subjected to mutation. Mutation of a bit
involves flipping it, changing O to 1 and vice versa with a small mutation
probability Pm. The bit-wise mutation is performed bit-by-bit by flipping a
coin with a probability of Pm. Flipping a coin with a probability of Pm is
simulated as follows.

A number between 0 to 1 is chosen at random. If the random number is
smaller than Pm then the outcome of coin flipping is true, otherwise the
outcome is false. If at any bit, the outcome is true then the bit is altered,
otherwise the bit is kept unchanged. The bits of the strings are independently
muted, that is, the mutation of a bit does not affect the probability of
mutation of other bits. A simple genetic algorithm treats the mutation only as
a secondary operator with the role of restoring lost genetic materials.
Suppose, for example, all the strings in a population have conveyed to a zero
at a given position and the optimal solution has a one at that position, then
Cross over cannot regenerate a one at that position while a mutation could.
The mutation is simply an insurance policy against the irreversible loss of
genetic material.

The mutation operator introduces new genetic structures in the population by
randomly modifying some of its building blocks. It helps the search
algorithm to escape from local minima’s traps since the modification is not
related to any previous genetic structure of the population. It creates different
structure representing other sections of the search space. The mutation is also
used to maintain diversity in the population. For example, consider the
following population having four eight-bit strings.

0110 1011
0011 1101

0001 0110



0111 1100

Notice that all four strings have a zero in the leftmost bit position. If the true
optimum solution requires a one in that position, then neither

reproduction nor cross over operator described above will be able to create
one in that position. The inclusion of mutation introduces some probability (
Npm) of turning zero to one as

0110 1011

0011 1101

0001 0110

1111 1100

Mutation for real numbers can be done as
Before (1.38 —69.4 326.44 0.1)

After (1.38 —67.5 326.44 0.1)

Hence, mutation causes movement in the search space (local or global) and
restores lost information to the population.

9.4.2 Mutation Rate Pm

Mutation rate is the probability of mutation which is used to calculate
number of bits to be muted. The mutation operator preserves the diversity
among the population which is also very important for the search. Mutation
probabilities are smaller in natural populations leading us to conclude that
mutation is appropriately considered a secondary mechanism of genetic
algorithm adoption. Typically, the simple genetic algorithm uses the
population size of 30 to 200 with the mutation rates varying from 0.001 to
0.5.
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9.5 BIT-WISE OPERATORS

Usually, binary coding is used more extensively in the coding mechanism to
generate algorithm structure. This involves the coding of real variables to
binary strings and genetic operators work on these coded strings. In the
present work, genetic algorithm program as written in “C” language with the
help of built in operators in “C” (the bit-wise operators), we can directly
manipulate the individual bits within a word of memory. These operators can
be carried out easily and efficiently. These can operate on integers and
characters but not on floats and doubles. Byron S. Gotfried (1990)
categorizes bit-wise operators into three, namely, 1. The one’s complement
operator,

2. The logical bit-wise operator, and 3. The shift operator.
9.5.1 One’s Complement Operator

The one’s complement operator (~) is an unary operator that causes the bits
of its operand to be inverted (i.e. reversed), so that 1 becomes zero and zero
becomes 1. This operator always precedes its operand.

Consider the example problem 8.1, where two variables 01, 02, are four-bit
strings each respectively and hence, the total string length is eight.

9.5.2 Logical Bit-wise Operators

There are three logical bit-wise operators, namely, 1. Bit-wise AND, 2. Bit-
wise Exclusive-OR, and 3. Bit-wise OR.

Each of these operators require two integer-type operands and hence, can be
used instead of cross over. While operating upon two operands, they are



compared on bit by bit basis. The truth table is shown in Table 9.1.
Bit-wise AND (&) operator

A bit-wise AND (&) expression returns 1 if both the bits have a value 1,
otherwise it returns a

value 0.

Parent 1a= 1010 1010 =10 10

Parent 2b = 1100 0011 —= 12 3

Child a&b = 1000 0010 = 8 2

Table 9.1 Truth table

AND ‘&’

Exclusive OR

K

OR °

a
b

operator
‘A’ operator
operator
a&b

aAb

alb






Bit-wise exclusive-OR ( A ) operator

A bit-wise exclusive-OR ( A ) expression returns a 1 if one of the bits have a
value of 1 and the other has a value of 0 otherwise it returns a value O.

Parent 1a = 1010 1010 = 10 10

Parent 2b = 1100 0011 = 12 3

Child a&b =0110 1001 = 6 9

Bit-wise OR (|) operator

A bit-wise OR (]) expression returns a 1 if one or more bits have a value of 1
otherwise it returns a value O.

Parent 1a= 1010 1010 = 10 10

Parent 2b = 1100 0011 = 12 3

Child a&b =1110 1011 = 13 11

The three bit-wise operators are summarized in Table 9.1. In this Table, A
and B represent the corresponding bits within the first and second operands
respectively.

9.5.3 Shift Operators
Two bit-wise shift operators are, shift left (<<) and shift right (>>) operators.

Each operator operates on a single variable but requires two operands. The
first operand is an integer type operand that represents the bit pattern to be
shifted and the second is an unsigned integer that indicates the number of

displacements (i.e. whether the bits in the first operand will be shifted by 1

bit position, 2 bit position and so on). This value cannot exceed the number
of bits associated with the word size of the first operand.



Shift left operator (<<)

The shift left operator causes all the bits in the first operand to be shifted to
the left by the number of positions indicated by the second operand. The
leftmost bits (i.e. the overflow bits) in the original bit pattern is lost. The
rightmost bit positions that become vacant are to be filled with zeroes.

a=10100110— 10 6
a <<2=1001 1000 = 9 8
Shift right operator (>>)

The shift right operator causes all the bits in the first operand to be shifted to
the right by the number of positions indicated by the second operand. The
right most bits (i.e. the underflow bits) in the original bit pattern are lost. The
left most bit positions that become vacant are then filled with zeroes.

a=10100110— 10 6
a>>2=00101001 = 2 9
Masking

Masking 1s a process in which a given bit pattern is transformed into another
bit pattern by means of logical bit-wise operation. The original bit pattern is
one of the operands in the bit-wise operation. The second operand called
mask, 1s a specially selected bit pattern that brings about the desired
transformation.

There are several different kinds of masking operations. For example, a
portion of a given bit pattern can be copied to a new word, while the
remainder of the new word is filled with 0. Thus, part of the original bit
pattern will be “masked oft”” from the final result.

9.6 BIT-WISE OPERATORS USED IN GA



Logical bit-wise operators are used in different combinations. Each operator
operates on two individuals and generates one resultant so as to keep the
number of individuals in the population constant. Two different operators are
used in GA process.

Populations are selected randomly for mating and on each pair bit-wise AND
and bit-wise OR operators are performed. Similarly, AND and exclusive-OR
or OR and exclusive-OR operations can be performed to produce children or
population for the next generation.

9.7 GENERATIONAL CYCLE

Table 9.2 shows a generational cycle of the genetic algorithm with a
population of four (P1 = 4) strings with 10 bits each. In this example, the
objective functions which can assume values in the string O to 10, give the
number of 1s in the decimal place. The fitness function performs “divide by
10” operation to normalize the objective function in the range of O to 1. The
four strings thus have fitness values of 0.3, 0.6, 0.6, and 0.9. Ideally, the
proportional selection scheme should allocate 0.5(0.3/0.6), 1.0(0.6/0.6),
1.0(0.6/0.6), and 1.5(0.9/0.6) values for selection to be oftfspring (since
flaverage) = (0.3 + 0.6 + 0.6 + 0.9)/4 = 0.6) to the strings. However,
according to Darwinian theory of survival of the fittest, the strongest
individual will have two copies, the weakest individual dies, and average
individuals will have one copy each. Hence, the string with fitness value of
0.5 will have 0 copy with 1.5 has two copies and others 1 copy. In Table 9.2,
the population P2 represents this selected set of strings. Next, the four strings
are paired randomly for cross over. Strings 1 and 4 forms one pair, and 2 and
3 forms the other pair. At a cross over probability rate of 0.5, only the pair 2

and 3 is left intact. The cross over point falls between 1 and 5 and hence,
portion of the strings between 1 and 5 are swapped.

The action of mutation on population P3 can be seen in population P4 on the
sixth bit of string 2 and the first bit of string 4. Only two bits out of 40

have muted representing an effective mutation probability rate of 0.05.



Population P4 represents the next generation. In effect, P1 and P4 are the
populations while P2 and P3 represent the intermediate stages in the
generational cycle.

The parameters, namely the population size, mutation rate, and cross over
rate are together referred to as the control parameters of the simple genetic
algorithm and must be specified before its execution.

To terminate the execution of simple genetic algorithm, we must specify a
stopping criterion. It could be terminated after a fixed number of generations,
after a string with a certain high fitness value is located or after all the strings
in the populations have attained a degree of homogeneity (a large number of
strings have identical bits at most positions).



Table 9.2 A generational cycle of the simple genetic algorithm

Population P1

String f = Fitness fiflav) Copy
00000 11100 0.3 0.5 0
10000 11111 0.6 1.0 1
01101 01011 0.6 1.0 1
11111 11011 0.9 it 2

Population P2  after reproduction

String f = Fitness  Cross over CS1 C52
10000 11111 0.6 4 1 %
01101 01011 0.6 —

1111 11611 0.9 —
11111 11011 0.9 1 1 5

Population P3

after cross over

String

f = Fitness

VA0 00 O
01101 01011
FE1dT1.101d
10000 11011

1.0
0.6
0.9
0.5

Population P4 after mutation

String

f = Fitness

400 0 B W |
01101 11011
N0
10000 11011

0.9
0.7
0.9
0.5




Example Problem
Consider Example 8.1 (Two bar pendulum) using cross over and mutation.

We have seen various selection procedures of obtaining the populations for
the mating pool as given in Table 8.13 and as given in Table 9.3). One
procedure is described here.

Table 9.3 Generation of population ( F = 3.95)
Population
Population
Random
Population
Pop.

Mate

F

Actual
Population
CS1

CS2

after cross
bits for

for next
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generation
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3

10

11



1

0010 0001

5

2

6

0010 1001

0010 1001

4.11

1.04

1

0010 1001

2

0001 0101

6

1

5

01101101

01101101

4.53

1.14



2

0110 1101

3

0010 1000

7

4

8

0010 1100

21

0010 0100

3.15

0.796

0

01101101

4

0110 1010

8

4

6

0110 1110



01101110

4.40

1.11

1

0110 1110

5

0110 1010

1

2

6

0110 0010

0110 0010

3.00

0.759

0

0111 1100

6

1110 1101

2

1



5

1001 0101

1001 0101

3.49

0.883

1

1001 0101

7

0111 1100

3

4

8

0111 1000

0111 1000

4.44

1.12

1

0111 1000

8

0111 1100



4
6

0111 1000
62

0111 1100
4.55

1.15

2

0111 1100

Step 1: Randomly select eight populations of eight-bit strings and decode the
population for angles, and substituting in the potential expression find the
fitness function.

Step 2: Use any of the selection methods discussed in Chapter 8 to get the
population for the mating pool.

(The above two steps have been performed in Chapter 8 and the column 8
of Table 8.13 gives the populations for the mating pool.)

Step 3: Randomly select the parents for the mating pool such as 1 with 5, 2
with 6, 3 with 7, and 4 with 8.

Step 4: Two-point cross over is selected such that bits between strings 2—6 of
the population parents 1 and 5, are swapped. The population after cross over
is shown in Table 9.3 in the sixth column. We used the cross over probability
of 100% 1in all the parent pairs that are crossed .



Figure 9.13 shows how points cross over and form new points. The points
marked with small boxes are the points in the mating pool and the points
marked with small circles are children points created after cross over
operation. The complete population at the end of cross over operation is
shown as last column in Table 9.3. Figure 9.13 shows that some good points
and some not-so-good points are created after cross over. In some cases,
points far away from the parent points are created and in some cases, points
close to the parent points are created.

G2
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Fig. 9.13 Populations after cross over. (Two-point cross over for all
populations) Step 5: The next step is to perform mutation on strings in the
intermediate population. For bit-wise mutation, we flip a coin with a
probability of Pm =



3% for every bit. If the outcome is true, we alter the bit to 1 or 0 depending
the bit value with a probability of Pm = 0.03 and for a population size of 8

and a string length of 8, we can expect to alter a total of about 0.03 x 8 x 8§ =
1.92 or two bits in the population. These two bits are selected at random as
21 and 62. The 21st bit which is 1, is flipped to 0 and 62nd bit which is zero,
is flipped to zero as shown in Table 9.3. Figure 9.14 shows the effect of
mutation on the intermediate population. In some cases, the mutation
operator changes a point locally and in others it can bring a large change. The
points marked with a circle are the points of intermediate population and the
points marked with a small box constitute new population (obtained after
reproduction, cross over, and mutation). It is interesting to note that if only
one bit is muted in a string, the point is moved along a particular variable
only. Similar to the cross over operator, the mutation operator has created
some points worse than the original points. This flexibility enables GA
operators to explore the search space properly before converging to a region
prematurely. Although this requires extra computation, this flexibility is
essential to solve global optimization
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problems.

Step 6: The resulting population becomes a new population as shown in
column 8 of Table 9.3. We now evaluate each string as before by first
identifying substrings for each variable and mapping the decoded values of
the substrings in the chosen intervals. This completes one iteration of genetic

algorithm. We increment the generation counter to ¢ = 1 and proceed to step
2

for next generation. The new population after one iteration of GA is shown in
Fig. 9.14 (marked with empty boxes). The figure shows that in one iteration,
some good points have been found. Table 9.3 also shows the fitness values
and objective function value of the new population number.



Fig. 9.14 Population after mutation operation. (Average fitness value
increased from 3 to 3.95) The average fitness of the new population is
calculated to be 3.95

(compared to 3 to start with), a remarkable improvement from that in the
initial population. The best point in the population is found to have fitness
value equal to 4.67. This process continues until the maximum allowable
generation is reached or some other criterion is met. The population after 5

iterations, the best point is found to be (35°, 66°) with a function value of
11.67. In our process the total number of function evaluations required to
obtain this solution is 8 x 5 = 40 (including the evaluation of the initial

population).
Computer program

A computer program (GAOPT) for optimization of a function subjected to
constraints by GA is developed and is given in CD-ROM attached with this
book.

Table 9.4 Generation of population ( F'= 3.15)
Applying

Population

Population

Population

Pop.

Mate

right shift

F



Actual

for next
Population
after cross
for next
1=

Fil

no.

with
operator to
¢

count
mating

2

over

generation

8



10

1

0010 0001

5&

0010 0000

0010 0000

0010 0000

1.7

0.539

0

0110 1000

2

0001 0101

6 &



0000 0101

0000 0101

0000 0101

2.73

0.866

1

0000 0101

3

0010 1000

T&

0010 1000

0010 1000

0010 1000

4.01

1.27

1

0010 1000

4

0110 1010

8 &



0110 1000

0110 1000

0110 1000

4.51

1.438

2

0110 1000

5

0110 1010

1 A

0100 1011

0010 0101

0010 0101

3.43

1.088

1

0010 0101

6

1110 1101

2 A



1111 1000

1111 1000

1111 1000

1.31

0.415

0

0101 0110

7

0111 1100

3A

0101 0110

0101 0110

0101 0110

4.16

1.32

2

0101 0110

8

0111 1100

4 A



0001 0110

0001 0110

0001 0110

3.35

1.06

1

0001 0110

Example Problem Using Bit-wise Operators

Let us start with the populations obtained in Chapter 8 for the mating pool.
First two steps are the same as previous example.

Step 3: Randomly select the parents from the mating pool such as 1 with 5, 2
with 6, 3 with 7, and 4 with 8.

Step 4: All the populations are selected for mating since the cross over
probability is 100. Since there are eight individuals, there are four pairs.

The operator which is responsible for search in the genetic space bit-wise
AND (&) and exclusive-OR ( A) is carried out as follows:

| = 0010 gool 2 1

S—= 0TI & 10
[ & 5= 0000 QD0 2 0
| w5 0100 1001 4 11

Stmilar L mufahicn, we can also apply =hill cperators. Assumming probubilily s 10%, we can apply
o one sering say tandom 5 as
g —s 0000 1011
e =1 — 0010 0141



Compared to genetic operators, bit-wise operators do not carry genetic
information all through generations and hence, it takes longer time to
converge.

9.8 CONVERGENCE OF GENETIC ALGORITHM

The situation of good strings in a population set and random information
exchange among good strings are simple and straightforward. No
mathematical proof is available for convergence of GA. According to Rajeev
and Krishnamoorthy (1992), one criterion for convergence may be such that
when a fixed percentage of columns and row