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Preface

Soft Computing refers to a consortium of computational methodologies.

Some of its principal components include Fuzzy Logic (FL), Neural

Networks (NN), and Genetic Algorithms (GA), all having their roots in

Artificial Intelligence (AI).

In today’s highly integrated world, when solutions to problems are cross-

disciplinary in nature, soft computing promises to become a powerful means

for obtaining solutions to problems quickly, yet accurately and acceptably.

Also, a combination of one or more of the methodologies mentioned—

termed hybrid systems—has resulted in the emergence of a new class of

systems such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. Their

healthy integration has resulted in extending the capabilities of the

technologies to more effective and efficient problem-solving methodologies

used in the design of intelligent systems.

Considering the plethora of findings and developments that have taken place

during the past few years, it would be a herculean task to present before the

reader the entire gamut of information in the field of intelligent systems.

It was therefore ours objective to keep the presentation ‘narrow and

intensive’ rather than ‘wide and extensive’. This approach is meant to lead a

motivated novice slowly but surely in a chartered area rather than allowing

him/her to feel lost in the labyrinth of voluminous information. Our

endeavour therefore has been to put emphasis on learning the design,

implementation, and application of soft computing methodologies through a

selective set of systems, thereby conveying the tricks of the trade to the

reader.



In fact the purpose is considered served, if this book could kindle amongst

the readers not just an understanding of the subject but a sustaining interest

and a desire to contribute. It therefore discusses every architecture and

concept in detail with applications and examples to illustrate the same.

Algorithms have been presented in pseudo-code and wherever possible

implementation details have been elaborately presented. The companion CD-

ROM contains several programs that facilitate learning and reinforcing the

textual concepts. Numerous simulations and examples are also presented to

give students a hands-on experience in problem solving.

ORGANIZATION

Chapter 1

Introduction to Artificial Intelligence

Systems

‘Artificial Intelligence (AI) is an area of computer science concerned with

designing intelligent computer systems’ that is, systems that exhibit the

characteristics we associate with intelligence in human behaviour’ (Avron

Barr and Feigenbaum, 1981). ‘AI is a branch of computer science that is

concerned with the automation of intelligent behaviour’ (Luger and

Stubblefield, 1993).

However, the term intelligence is not very well defined and therefore has

been less understood. Consequently, tasks associated with intelligence such

as learning, intuition, creativity, and inference all seem to have been partially

understood.

AI in its quest to comprehend, model and implement theories of intelligence,

in other words, in its quest to design intelligent systems, has not just

registered modest success in developing techniques and methods for

intelligent problem solving, but in its relentless pursuit, has fanned out to

encompass a number of technologies in its fold. Some of the technologies



include but are not limited to expert systems, neural networks, fuzzy logic,

cellular automata, and probabilistic reasoning. Of these technologies, neural

networks, fuzzy logic, and probabilistic reasoning

are predominantly known as soft computing. The term ‘soft computing’ was

introduced by

Lotfi A. Zadeh of the University of California, Berkley, U.S.A. Probabilistic

reasoning subsumes genetic algorithms, chaos, and parts of learning theory.

According to Zadeh, soft computing differs from hard computing (

conventional computing) in its tolerance to imprecision, uncertainty and

partial truth. In effect, the role model is the human mind. Hard computing

methods are predominantly based on mathematical approaches and therefore

demand a high degree of precision and accuracy in their requirements. But in

most engineering problems, the input parameters cannot be determined with

a high degree of precision and therefore, the best estimates of the parameters

are used for obtaining solution to problems. This has restricted the use of



mathematical approaches for the solution of inverse problems when

compared to forward problems.

On the other hand, soft computing techniques, which have drawn their

inherent characteristics from biological systems, present effective methods

for the solution of even difficult inverse problems. The guiding principle of

soft computing is exploit the tolerance for imprecision, uncertainty, and

partial truth to achieve tractability, robustness, and low cost solution… .

Also, … employment of soft computing for the solution of machine learning

problems has led to high MIQ (Machine Intelligence Quotient).

Hybrid intelligence systems deal with the synergistic integration of two or

more of the technologies. The combined use of technologies has resulted in

effective problem solving in comparison with each technology used

individually and exclusively.

In this book, we focus on three technologies, namely Neural Networks (NN),

Fuzzy Logic (FL) and Genetic Algorithms (GA) and their hybrid

combinations. As illustrated in Fig. 1.1, each of these technologies

individually and in combination can be employed to solve problems. The

combinations include neuro-fuzzy, GA-fuzzy, neuro-GA, and neuro-fuzzy-GA

technologies.

Fig. 1.1 Integration of neural networks, fuzzy logic, and genetic algorithm

technologies.

We now briefly introduce the three technologies—NN, FL, and GA, viewing

them in isolation. Chapter 10 discusses the promises and problems of the

integration of these technologies into hybrid systems.

1.1 NEURAL NETWORKS

Neural networks are simplified models of the biological nervous system and

therefore have drawn their motivation from the kind of computing performed

by a human brain.



An NN, in general, is a highly interconnected network of a large number of

processing elements called neurons in an architecture inspired by the brain.

An NN can be massively parallel and therefore is said to exhibit parallel

distributed processing.

Neural networks exhibit characteristics such as mapping capabilities or

pattern association, generalization, robustness, fault tolerance, and parallel

and high speed information processing.

Neural networks learn by examples. They can therefore be trained with

known examples of a problem to ‘acquire’ knowledge about it. Once

appropriately trained, the network can be put to effective use in solving

‘unknown’ or ‘untrained’ instances of the problem.

Neural networks adopt various learning mechanisms of which supervised

learning and unsupervised learning methods have turned out to be very

popular. In supervised learning, a ‘teacher’ is assumed to be present during

the learning process, i.e. the network aims to minimize the error between the

target (desired) output presented by the ‘teacher’ and the computed output, to

achieve better performance. However, in unsupervised learning, there is no

teacher present to hand over the desired output and the network therefore

tries to learn by itself, organizing the input instances of the problem.

Though NN architectures have been broadly classified as single layer

feedforward networks, multilayer feedforward networks, and recurrent

networks, over the years several other NN architectures have evolved. Some

of the well-known NN systems include backpropagation network,

perceptron, ADALINE ( Adaptive Linear Element), associative memory,

Boltzmann machine, adaptive resonance theory, self-organizing feature map,

and Hopfield network.

Neural networks have been successfully applied to problems in the fields of

pattern recognition, image processing, data compression, forecasting, and

optimization to quote a few.



1.2 FUZZY LOGIC

Fuzzy set theory proposed in 1965 by Lotfi A. Zadeh (1965) is a

generalization of classical set theory. Fuzzy Logic representations founded

on Fuzzy set theory try to capture the way humans represent and reason with

real-world knowledge in the face of uncertainty. Uncertainty could arise due

to generality, vagueness, ambiguity, chance, or incomplete knowledge.

A fuzzy set can be defined mathematically by assigning to each possible

individual in the universe of discourse, a value representing its grade of

membership in the fuzzy set. This grade corresponds to the degree to which

that individual is similar or compatible with the concept represented by the

fuzzy set. In other words, fuzzy sets support a flexible sense of membership

of elements to a set.

In classical set theory, an element either belongs to or does not belong to a

set and hence, such sets are termed crisp sets. But in a fuzzy set, many

degrees of membership (between 0 and 1) are allowed. Thus, a membership

function μA( x) is associated with a fuzzy set A such that the function maps

every element of the universe of discourse X to the interval [0, 1].

For example, for a set of students in a class (the universe of discourse), the

fuzzy set “tall” (fuzzy set A) has as its members students who are tall with a

degree of membership equal to 1(μA( x) = 1), students who are of medium

height with a degree of membership equal to 0.75 (μA( x) = 0.75) and those

who are dwarfs with a degree of membership equal to 0 (μA( x) = 0), to cite

a few cases. In this way, every student of the class could be graded to hold

membership values between 0 and 1 in the fuzzy set A, depending on their

height.

The capability of fuzzy sets to express gradual transitions from membership

(0 < μA( x) ≤ 1) to non-membership (μA( x) = 0) and vice versa has a broad

utility. It not only provides for a meaningful and powerful representation of

measurement of uncertainties, but also provides for a meaningful

representation of vague concepts expressed in natural language.



Operations such as union, intersection, subsethood, product, equality,

difference, and disjunction are also defined on fuzzy sets. Fuzzy relations

associate crisp sets to varying degree of membership and support operations

such as union, intersection, subsethood, and composition of relations.

Just as crisp set theory has influenced symbolic logic, fuzzy set theory has

given rise to fuzzy logic. While in symbolic logic, truth values True or False

alone are accorded to propositions, in fuzzy logic multivalued truth values

such as true, absolutely true, fairly true, false, absolutely false, partly false,

and so forth are supported. Fuzzy inference rules (which are computational

procedures used for evaluating linguistic descriptions) and fuzzy rule based

systems (which are a set of fuzzy IF-THEN rules) have found wide

applications in real-world problems.

Fuzzy logic has found extensive patronage in consumer products especially

promoted by the Japanese companies and have found wide use in control

systems, pattern recognition applications, and decision making, to name a

few.

1.3 GENETIC ALGORITHMS

Genetic Algorithms initiated and developed in the early 1970s by John

Holland (1973; 1975) are unorthodox search and optimization algorithms,

which mimic some of the processes of natural evolution. GAs perform

directed random searches through a given set of alternatives with the aim of

finding the best alternative with respect to the given criteria of goodness.

These criteria are required to be expressed in terms of an objective function

which is usually referred to as a fitness function.

Fitness is defined as a figure of merit, which is to be either maximized or

minimized. It is further required that the alternatives be coded in some

specific finite length which consists of symbols from some finite alphabet.

These strings are called chromosomes and the symbols that form the

chromosomes are known as genes. In the case of binary alphabet (0, 1) the



chromosomes are binary strings and in the case of real alphabet (0−9) the

chromosomes are decimal strings.

Starting with an initial population of chromosomes, one or more of the

genetic inheritance operators are applied to generate offspring that competes

for survival to make up the next generation of population. The genetic

inheritance operators are reproduction, cross over, mutation, inversion,

dominance, deletion, duplication, translocation, segregation, speciation,

migration, sharing, and mating.

However, for most common applications, reproduction, mating (cross over),

and mutation are chosen as the genetic inheritance operators.

Successive generations of chromosomes improve in quality provided that the

criteria used for survival is appropriate. This process is referred to as

Darwinian natural selection or survival of the fittest.

Reproduction which is usually the first operator applied on a population

selects good chromosomes in a population to form the mating pool. A

number of reproduction operators exist in the literature (Goldberg and Deb,

1991). Cross over is the next operator applied. Here too, a number of cross

over operators have been defined (Spears and De Jong, 1990). But in almost

all cross over operators, two strings are picked from the mating pool at

random and some segments of the strings are exchanged between the strings.

Single point cross over, two point cross over, matrix cross over are some of

the commonly used cross over operators. It is intuitive from the construction

that good substrings from either parent can be combined to form better

offspring strings.

Mutation operator when compared to cross over is used sparingly. The

operator changes a

1 to a 0 and vice versa with a small probability P m. The need for the

operator is to keep the diversity of the population.



Though most GA simulations are performed by using a binary coding of the

problem parameters, real coding of the parameters has also been propounded

and applied (Rawlins, 1990). GAs have been theoretically and empirically

proven to provide robust search in complex space and have found wide

applicability in scientific and engineering areas including function

optimization, machine learning, scheduling, and others (Davis L., 1991;

Buckles and Petry, 1992).

1.4 STRUCTURE OF THIS BOOK

This book is divided into four parts.

PART I, entitled “Neural Networks”, introduces the fundamentals of neural

networks and explores three major architectures, namely:

Backpropagation Network— a multilayer feedforward network which

exhibits gradient descent learning

Associative Memory—a single layer feedforward or recurrent network

architecture with Hebbian learning

Adaptive Resonance Theory Networks— a recurrent architecture with

competitive learning

Various applications of the above mentioned NN architectures have also been

detailed. The chapters included are:

Chapter 2: Fundamentals of Neural Networks

Chapter 3: Backpropagation Networks

Chapter 4: Associative Memory

Chapter 5: Adaptive Resonance Theory

PART II, entitled “Fuzzy Logic”, discusses the basic concepts of the fuzzy

set theory as much as is essential to understand the hybrid architectures

discussed in the book. Also, Fuzzy Logic and Fuzzy Inference have been



discussed in brief. Crisp set theory, a ‘predecessor’ to fuzzy set theory has

also been detailed wherever appropriate.

The chapters included are:

Chapter 6: Fuzzy Set theory

Chapter 7: Fuzzy Systems

PART III, entitled “Genetic Algorithms”, elaborates the basic concepts of

GA, the genetic inheritance operators, the performance of the algorithm, and

applications.

The chapters included are:

Chapter 8: Fundamentals of Genetic Algorithms

Chapter 9: Genetic Modeling

PART IV, entitled “Hybrid Systems”, discusses the integration of the three

technologies, namely NN, FL, and GA. As an illustration, the following five

hybrid architectures are discussed:

Genetic Algorithm based

Backpropagation Networks     — illustrating a neuro-genetic hybrid

system

Fuzzy Backpropagation Networks

Simplified Fuzzy ARTMAP

Fuzzy Associative Memories    — illustrating neuro-fuzzy hybrid

systems

Fuzzy Logic Controlled Genetic  — illustrating a fuzzy-genetic hybrid

system.



Algorithms

The neural network system playing host in each of the three neuro-fuzzy

hybrids is representative of the three different classes of NN architectures,

namely single layer feedforward, multilayer feedforward, and recurrent

networks. The applications of the hybrid systems to various problems have

also been elaborated.

The chapters included are:

Chapter 10: Integration of Neural Networks, Fuzzy Logic, and Genetic

Algorithms

Chapter 11: Genetic Algorithm based Backpropagation Networks

Chapter 12: Fuzzy Backpropagation Networks

Chapter 13: Simplified Fuzzy ARTMAP

Chapter 14: Fuzzy Associative Memories

Chapter 15: Fuzzy Logic Controlled Genetic Algorithms

SUMMARY

Artificial Intelligence is a branch of computer science concerned with the

design of intelligent computer systems. In pursuit of this goal, AI spans a

broad spectrum of areas of which Neutral Networks, Fuzzy Logic and

Genetic Algorithms have been chosen as the subject of discussion in this

book.

Neural Networks are massively parallel, highly interconnected networks of

processing elements called neurons.

Fuzzy Logic is an excellent mathematical tool to model uncertainty in

systems.



Genetic Algorithms are unorthodox search and optimization algorithms

inspired by the biological evolution process.

NN, FL and GA technologies have been individually and integratedly applied

to solve various problems in the real world.
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PART 1

NEURAL NETWORKS

• Fundamentals of Neural Networks

• Backpropagation Networks

• Associative Memory

• Adaptive Resonance Theory

Chapter 2

Fundamentals of Neural Networks

In this chapter, we introduce the fundamental concepts of Neural Networks

(NN). The biological neuron system, which has been the chief source of

inspiration in much of the research work in Neural Networks and the model

of an artificial neuron, are first elaborated. Neural Network architectures,

their characteristics and learning methods are next discussed. A brief history

of Neural Network research and some of the early NN architectures are

presented. Finally, some of the application domains where NN architectures

have made an impact are listed.

2.1 BASIC CONCEPTS OF NEURAL NETWORKS

Neural Networks, which are simplified models of the biological neuron

system, is a massively parallel distributed processing system made up of



highly interconnected neural computing elements that have the ability to

learn and thereby acquire knowledge and make it available for use.

Various learning mechanisms exist to enable the NN acquire knowledge.

NN architectures have been classified into various types based on their

learning mechanisms and other features. Some classes of NN refer to this

learning process as training and the ability to solve a problem using the

knowledge acquired as inference.

NNs are simplified imitations of the central nervous system, and obviously

therefore, have been motivated by the kind of computing performed by the

human brain. The structural constituents of a human brain termed neurons

are the entities, which perform computations such as cognition, logical

inference, pattern recognition and so on. Hence the technology, which has

been built on a simplified imitation of computing by neurons of a brain, has

been termed Artificial Neural Systems (ANS) technology or Artificial Neural

Networks (ANN) or simply Neural Networks. In the literature, this

technology is also referred to as Connectionist Networks, Neuro-Computers,

Parallel Distributed Processors etc. Also neurons are referred to as neurodes,

Processing Elements (PEs), and nodes. In this book, we shall use the terms

Neural Networks or Artificial Neural Networks and neurons.

A human brain develops with time and this, in common parlance is known as

experience. Technically, this involves the ‘development’ of neurons to adapt

themselves to their surrounding environment, thus, rendering the brain

plastic in its information processing capability. On similar lines, the property

of plasticity is also discussed with respect to NN architectures. Further, we

are also interested in the stability of an NN system; i.e. the adaptive

capability of an NN in the face of changing environments. Thus, the stability

−plasticity issue is of great importance to NN architectures. This is so since

NN systems essentially being learning systems need to preserve the

information previously learnt but at the same time, need to be receptive to

learning new information. The NN needs to remain ‘plastic’ to significant or

useful information but remain ‘stable’ when presented with irrelevant



information. This is known as stability−plasticity dilemma (Carpenter and

Grossberg, 1987, 1988).

2.2 HUMAN BRAIN

The human brain is one of the most complicated things which, on the whole,

has been poorly understood. However, the concept of neurons as the

fundamental constituent of the brain, attributed to Ramón Y. Cajál (1911),

has made the study of its functioning comparatively easier. Figure 2.1

illustrates the physical structure of the human brain.

Fig. 2.1 Physical structure of the human brain—cross-sectional view.

Brain contains about 1010 basic units called neurons. Each neuron in turn, is

connected to about 104 other neurons. A neuron is a small cell that receives

electro-chemical signals from its various sources and in turn responds by



transmitting electrical impulses to other neurons. An average brain weighs

about 1.5 kg and an average neuron has a weight of 1.5 × 10−9 gms. While

some of the neurons perform input and output operations (referred to as

afferent and efferent cells respectively), the remaining form a part of an

interconnected network of neurons which are responsible for signal

transformation and storage of information. However, despite their different

activities, all neurons share common characteristics.

A neuron is composed of a nucleus—a cell body known as soma (refer Fig.

2.2). Attached to the soma are long irregularly shaped filaments called

dendrites. The dendrites behave as input channels, (i.e.) all inputs from other

neurons arrive through the dendrites. Dendrites look like branches of a tree

during winter. Another type of link attached to the soma is the Axon. Unlike

the Dendritic links, the axon is electrically active and serves as an output

channel. Axons, which mainly appear on output cells are non-linear threshold

devices which produce a voltage pulse called Action Potential or Spike that

lasts for about a millisecond. If the cumulative inputs received by the soma

raise the internal electric potential of the cell known as Membrane Potential,

then the neuron ‘fires’ by propagating the action potential down the axon to

excite or inhibit other neurons. The axon terminates in a specialised contact

called synapse or synaptic junction that connects the axon with the dendritic

links of another neuron. The synaptic junction, which is a very minute gap at

the end of the dendritic link contains a neuro-transmitter fluid. It is this fluid

which is responsible for accelerating or retarding the electric charges to the

soma. Each dendritic link can have many synapses acting on it thus bringing

about massive interconnectivity. In general, a single neuron can have many

synaptic inputs and synaptic outputs. The size of the synapses are believed to

be related to learning. Thus, synapses with larger area are thought to be

excitatory while those with smaller area are believed to be inhibitory. Again,

it is the increased neuronal activity which is thought to be responsible for

learning and memory. Infact, this was what motivated Donald Hebb (1949)

to suggest “when an axon of cell A is near enough to excite a cell B and

repeatedly or persistently takes part in firing it, some growth process or

metabolic changes take place in one or both cells such that A’s efficiency as



one of the cells firing B is increased.” These observations branded as

Hebbian learning has influenced many learning models in NN over the years.

Infact, the neuronal activity can be quite complex but viewing the activity as

a simple summation of the inputs they receive, has turned out to be a

reasonable approximation.

Fig. 2.2 Structure of a neuron.

2.3 MODEL OF AN ARTIFICIAL NEURON



As mentioned earlier, the human brain no doubt is a highly complex structure

viewed as a massive, highly interconnected network of simple processing

elements called neurons. However, the behaviour of a neuron can be captured

by a simple model as shown in Fig. 2.3. Every component of the model bears

a direct analogy to the actual constituents of a biological neuron and hence is

termed as artificial neuron. It is this model which forms the basis of

Artificial Neural Networks.

Fig. 2.3 Simple model of an artificial neuron.

Here, x 1, x 2, x 3, ..., xn are the n inputs to the artificial neuron. w 1, w 2, ... ,

wn are the weights attached to the input links.

Recollect that a biological neuron receives all inputs through the dendrites,

sums them and produces an output if the sum is greater than a threshold

value. The input signals are passed on to the cell body through the synapse

which may accelerate or retard an arriving signal.

It is this acceleration or retardation of the input signals that is modelled by

the weights. An effective synapse which transmits a stronger signal will have

a correspondingly larger weight while a weak synapse will have smaller

weights. Thus, weights here are multiplicative factors of the inputs to account

for the strength of the synapse. Hence, the total input I received by the soma

of the artificial neuron is



Figure 2.4 illustrates the Thresholding function. This is convenient in the

sense that the output signal is either 1 or 0 resulting in the neuron being on or

off.

Fig. 2.4 Thresholding function.



The other choices for Activation function besides Thresholding function are

as given below:

Signum function

Also known as the Quantizer function, the function φ is defined as

Figure 2.5 illustrates the Signum function.

Fig. 2.5 Signum function.

Sigmoidal function

This function is a continuous function that varies gradually between the

asymptotic values 0 and 1 or −1 and +1 and is given by

where, α is the slope parameter, which adjusts the abruptness of the function

as it changes between the two asymptotic values. Sigmoidal functions are



differentiable, which is an important feature of NN theory. Figure 2.6

illustrates the sigmoidal function.

Fig. 2.6 Sigmoidal function.

Hyperbolic tangent function

The function is given by

φ( I) = tanh ( I)   (2.7)

and can produce negative output values.

The first mathematical model of a biological neuron was presented by

McCulloch and Pitts (1943). The model, known as McCulloch-Pitts model

does not exhibit any learning but just serves as a basic building block which

has inspired further significant work in NN research. The model makes use

of a bias term whose weight is w 0 but with a fixed input of x 0 = 1. This is

besides the other inputs xi and weights wi. The bias is an external parameter

for the artificial neuron but serves the purpose of increasing or decreasing the



net input of the activation function depending on whether it is positive or

negative. Other modelling schemes for the neuron have also been proposed

(Macgregor, 1987).

2.4 NEURAL NETWORK ARCHITECTURES

An Artificial Neural Network is defined as a data processing system

consisting of a large number of simple highly interconnected processing

elements (artificial neurons) in an architecture inspired by the structure of the

cerebral cortex of the brain (Tsoukalas and Uhrig, 1997). Generally, an ANN

structure can be represented using a directed graph. A graph G is an ordered

2-tuple (V, E) consisting of a set V of vertices and a set E of edges. When

each edge is assigned an orientation, the graph is directed and is called a

directed graph or a digraph. Figure 2.7 illustrates a digraph. Digraphs

assume significance in Neural Network theory since signals in NN systems

are restricted to flow in specific directions.

The vertices of the graph may represent neurons (input/output) and the

edges, the synaptic links. The edges are labelled by the weights attached to

the synaptic links.

Fig. 2.7 An example digraph.

There are several classes of NN, classified according to their learning

mechanisms. However, we identify three fundamentally different classes of



Networks. All the three classes employ the digraph structure for their

representation.

2.4.1 Single Layer Feedforward Network

This type of network comprises of two layers, namely the input layer and the

output layer. The input layer neurons receive the input signals and the output

layer neurons receive the output signals. The synaptic links carrying the

weights connect every input neuron to the output neuron but not vice-versa.

Such a network is said to be feedforward in type or acyclic in nature. Despite

the two layers, the network is termed single layer since it is the output layer,

alone which performs computation. The input layer merely transmits the

signals to the output layer. Hence, the name single layer feedforward

network. Figure 2.8 illustrates an example network.

Fig. 2.8 Single layer feedforward network.

2.4.2 Multilayer Feedforward Network

This network, as its name indicates is made up of multiple layers. Thus,

architectures of this class besides possessing an input and an output layer



also have one or more intermediary layers called hidden layers. The

computational units of the hidden layer are known as the hidden neurons or

hidden units. The hidden layer aids in performing useful intermediary

computations before directing the input to the output layer. The input layer

neurons are linked to the hidden layer neurons and the weights on these links

are referred to as input-hidden layer weights. Again, the hidden layer neurons

are linked to the output layer neurons and the corresponding weights are

referred to as hidden-output layer weights. A multilayer feedforward network

with l input neurons, m 1 neurons in the first hidden layer, m 2 neurons in the

second hidden layer and n output neurons in the output layer is written as l −

m 1 − m 2 − n.

Figure 2.9 illustrates a multilayer feedforward network with a configuration l

− m − n.

Fig. 2.9 A multilayer feedforward network ( l − m − n configuration).

2.4.3 Recurrent Networks

These networks differ from feedforward network architectures in the sense

that there is atleast one feedback loop. Thus, in these networks, for example,



there could exist one layer with feedback connections as shown in Fig. 2.10.

There could also be neurons with self-feedback links, i.e. the output of a

neuron is fed back into itself as input.

2.5 CHARACTERISTICS OF NEURAL NETWORKS

(i) The NNs exhibit mapping capabilities, that is, they can map input patterns

to their associated output patterns.

(ii) The NNs learn by examples. Thus, NN architectures can be ‘trained’

with known examples of a problem before they are tested for their

‘inference’ capability on unknown instances of the problem. They can,

therefore, identify new objects previously untrained.

(iii) The NNs possess the capability to generalize. Thus, they can predict new

outcomes from past trends.

(iv) The NNs are robust systems and are fault tolerant. They can, therefore,

recall full patterns from incomplete, partial or noisy patterns.

(v) The NNs can process information in parallel, at high speed, and in a

distributed manner.

2.6 LEARNING METHODS

Learning methods in Neural Networks can be broadly classified into three

basic types: supervised, unsupervised, and reinforced.

Supervised learning

In this, every input pattern that is used to train the network is associated with

an output pattern, which is the target or the desired pattern. A teacher is



assumed to be present during the learning process, when a comparison is

made between the network’s computed output and the correct expected

output, to determine the error. The error can then be used to change network

parameters, which result in an improvement in performance.

Unsupervised learning

In this learning method, the target output is not presented to the network. It is

as if there is no teacher to present the desired patterns and hence, the system

learns of its own by discovering and adapting to structural features in the

input patterns.

Reinforced learning

In this method, a teacher though available, does not present the expected

answer but only indicates if the computed output is correct or incorrect. The

information provided helps the network in its learning process. A reward is

given for a correct answer computed and a penalty for a wrong answer. But,

reinforced learning is not one of the popular forms of learning.

Supervised and unsupervised learning methods, which are most popular

forms of learning, have found expression through various rules. Some of the

widely used rules have been presented below:

Hebbian learning

This rule was proposed by Hebb (1949) and is based on correlative weight

adjustment. This is the oldest learning mechanism inspired by biology.

In this, the input−output pattern pairs ( Xi, Yi) are associated by the weight

matrix W, known as the correlation matrix. It is computed as

Here, Y T



i is the transpose of the associated output vector Yi. Numerous variants of the

rule have been proposed (Anderson, 1983; Kosko, 1985; Lippman, 1987;

Linsker, 1988).

Gradient descent learning

This is based on the minimization of error E defined in terms of weights and

the activation function of the network. Also, it is required that the activation

function employed by the network is differentiable, as the weight update is

dependent on the gradient of the error E.

Thus, if Δ Wij is the weight update of the link connecting the i th and j th

neuron of the two neighbouring layers, then Δ Wij is defined as Δ Wij =

(2.9)

where, η is the learning rate parameter and ∂ E/∂ Wij is the error gradient

with reference to the weight Wij.

The Widrow and Hoffs Delta rule and Backpropagation learning rule are all

examples of this type of learning mechanism.

Competitive learning

In this method, those neurons which respond strongly to input stimuli have

their weights updated. When an input pattern is presented, all neurons in the

layer compete and the winning neuron undergoes weight adjustment. Hence,

it is a “winner-takes-all” strategy.

Stochastic learning

In this method, weights are adjusted in a probabilistic fashion. An example is

evident in simulated annealing—the learning mechanism employed by

Boltzmann and Cauchy machines, which are a kind of NN systems.

Figure 2.11 illustrates the classification of learning algorithms.



Fig. 2.11 Classification of learning algorithms.

2.7

TAXONOMY

OF

NEURAL

NETWORK

ARCHITECTURES

Over the years, several NN systems have evolved. The following are some of

the systems that have acquired significance.

ADALINE (Adaptive Linear Neural Element)

ART (Adaptive Resonance Theory)

AM (Associative Memory)

BAM (Bidirectional Associative Memory)

Boltzmann Machine



BSB (Brain-State-in-a-Box)

CCN (Cascade Correlation)

Cauchy Machine

CPN (Counter Propagation Network)

Hamming Network

Hopfield Network

LVQ (Learning Vector Quantization)

MADALINE (Many ADALINE)

MLFF (Multilayer Feedforward Network)

Neocognitron

Perceptron

RBF (Radial Basis Function)

RNN (Recurrent Neural Network)

SOFM (Self-organizing Feature Map)

Table 2.1 shows the classification of the NN systems listed above, according

to their learning methods and architectural types.

Table 2.1 The classification of some NN systems with respect to learning

methods and architecture type LEARNING METHOD

Gradient

Hebbian

Competitive



Stochastic

descent

ADALINE

Single-layer

AM

LVQ

feedforward

Hopfield

Hopfield

SOFM

—

Perceptron

CCN

TYPE OF

Multilayer

MLFF

Neocognitron

—

—

ARCHITECTURE



feedforward

RBF

Boltzmann

Recurrent

BAM

machine

neural

RNN

BSB

ART

Cauchy

network

Hopfield

machine

2.8 HISTORY OF NEURAL NETWORK RESEARCH

The pioneering work of McCulloch and Pitts (1943) was the foundation

stone for the growth of NN architectures. In their paper, McCulloch and Pitts

suggested the unification of neuro- physiology with mathematical logic,

which paved way for some significant results in NN research. Infact, the

McCulloch-Pitts model even influenced Von Neumann to try new design

technology in the construction of EDVAC (Electronic Discrete Variable

Automatic Computer).



The next significant development arose out of Hebb’s book ‘The

organization of behaviour’. In this, Hebb proposed a learning rule derived

from a model based on synaptic connections between nerve cells responsible

for biological associative memory.

The Hebbian rule was later refined by Rosenblatt in 1958, in the Perceptron

model (Rosenblatt, 1958). However, a critical assessment of the Perceptron

model by Minsky in 1969 (Minsky and Papert, 1969) stalled further research

in NN. It was much later in the 1980s that there was a resurgence of interest

in NN and many major contributions in the theory and application of NN

were made.

The only important contribution made in the 1970’s was the Self Organizing

Map Architecture based on Competitive learning (Will Shaw and Von der

Malsburg, 1976). Some of the well known architectures which turned out to

be milestones in NN research have been listed in Table 2.2.

Table 2.2 Some milestones in NN research

Year

Name of the

Developer

(development

Remarks

neural network

and growth)

Adaptive

•



The networks employ a new principle of self organization called Resonance

Carpenter,

1980 and

Adaptive Resonance Theory based on Competitive learning. The Theory

(ART)

Gross-berg

onwards

general complexity of the network structures is a limitation.

and others

networks

•

Rumelhart,

1985

The Backpropagation learning rule is applicable on any

Backpropagation

• Hinton,

.

feedforward network architecture. Slow rate of convergence and networks

Williams

1974



local minima problem are its weaknesses.

• Werbos

1985

• Parker

Bidirectional

•

Bart

These are two−layer recurrent, hetero associative networks that 1988

Associative

Kosko

can store pattern pairs and retrieve them. They behave as content addressable

memories.

Memory (BAM)

• Hinton,

1983, 1985

Boltzmann and

Sejnowski

.

These are stochastic networks whose states are governed by the Cauchy

• Szu H.,



Boltzmann

distribution/Cauchy

distribution.

The

heavy

1986

machines

computational load is a drawback.

•

E.

1987

Hartley

Brain-state-in-a-

•

James

A recurrent auto associative network which makes use of 1977

box

Anderson

Hebbian/Gradient descent learning.

The network belongs to the category of self-organization networks Counter



•

Robert

and functions as statistically optimal self-programming look up propaga-

Hecht

1987

table. The weight adjustments between the layers follow

tion network

Nielsen

Kohonen’s unsupervised learning rule and Grossberg’s supervised learning

rule.

Hopfield

•

John

Single layer recurrent network which makes use of Hebbian 1982

network

Hopfield

learning or Gradient Descent learning.

It is created by a combination of ADALINE networks spread MADALINE

• Bernard

1960

across multiple layers with adjustable weights. The network network



• Widrow

1988

employs a supervised learning rule called MADALINE adaptation

Rule (MR) based on ‘minimal disturbance principle’.

A hybrid hierarchical multilayer feedback/forward network which

• Kunihiko

Neocognitron

1982

closely models a human vision system, the network employs either

Fukushima

supervised or unsupervised learning rules.

A single layer or multilayer feedforward network best understood

•

Frank

Perceptron

1958

and extensively studied. However, the network is able to obtain Rosenblatt

weights, only for linearly separable tasks.

Self-organizing

The network is a simplified model of the feature-to-localized-Feature Map



• Kohonen

1982

region mapping of a brain. It is a self-organizing network networks

employing competitive learning.

2.9 EARLY NEURAL NETWORK ARCHITECTURES

2.9.l Rosenblatt’s Perceptron

The perceptron is a computational model of the retina of the eye and hence,

is named ‘perceptron’. The network comprises three units, the Sensory unit

S, Association unit A, and Response unit R (refer Fig. 2.12).

Fig. 2.12 Rosenblatt’s original perceptron model.

The S unit comprising 400 photodetectors receives input images and provides

a 0/1 electric signal as output. If the input signals exceed a threshold, then

the photodetector outputs 1 else 0. The photodetectors are randomly

connected to the Association unit A. The A unit comprises feature demons or

predicates. The predicates examine the output of the S unit for specific

features of the image. The third unit R comprises pattern recognizers or

perceptrons, which receives the results of the predicate, also in binary form.

While the weights of the S and A units are fixed, those of R are adjustable.



The output of the R unit could be such that if the weighted sum of its inputs

is less than or equal to 0, then the output is 0 otherwise it is the weighted

sum itself. It could also be determined by a step function with binary values

(0/1) or bipolar values (−1/1). Thus, in the case of a step function yielding

0/1

output values, it is defined as



Here, xi is the input, wij is the weight on the connection leading to the output

units ( R unit), and yj is the output.

The training algorithm of the perceptron is a supervised learning algorithm

where weights are adjusted to minimize error whenever the computed output

does not match the target output. Figure 2.13 illustrates a simple perceptron

network. A more general multilayer feedforward perceptron is shown in Fig.

2.14.

A basic learning algorithm for training the perceptron is as follows:

Here, W ( k

( k)

ij + 1) is the new adjusted weight, Wij

is the old weight, xi the

input and α is

the learning rate parameter. Also, small α leads to slow learning and large α

to fast learning. However, large α also runs the risk of allowing weights to

oscillate about values which



would result in the correct outputs. For a constant α, the learning algorithm is

termed fixed increment algorithm. Algorithm 2.1 illustrates the same for a 2-

classification problem.

Many variations have been proposed to the perceptron model. The

Perceptron Convergence Theorem has been one of the important

achievements due to Rosenblatt. However, the observations on the limitations

of perceptron by Minsky and Papert (1969), stalled further research on

perceptrons until much later, Minsky and Papert pointed out that perceptron

would be successful only on problems with a linearly separable solution

space and cited the XOR

problem as an illustration.

Perceptron and linearly separable tasks

Perceptron cannot handle, in particular, tasks which are not linearly

separable.

Sets of points in two dimensional spaces are linearly separable if the sets can

be separated by a straight line.

Generalizing, a set of points in n-dimensional space are linearly separable if

there is a hyperplane of ( n − 1) dimensions that separates the sets. Figure

2.15 illustrates linearly separable patterns and non-linearly separable

patterns.



Fig. 2.15 Linearly separable patterns and non-linearly separable patterns.

The perceptron cannot find weights for classification type of problems that

are not linearly separable. An example is the XOR (eXclusive OR) problem.

XOR Problem

XOR is a logical operation as described by its truth table presented in Table

2.3.

The problem for the ANN is to classify the inputs as odd parity or even

parity. Here, odd parity means odd number of 1 bits in the inputs and even

parity refers to even number of 1 bits in the inputs.

This is impossible, since as is evident from Fig. 2.16, the perceptron is

unable to find a line separating even parity input patterns from the odd parity

input patterns.

Fig. 2.16 The non-linear separable patterns of the XOR problem.

Why is the perceptron unable to find weights for non-linearly separable

classification problems? This can be explained by means of a simple



instance.

Consider a perceptron network with two inputs x 1 and x 2 and bias x 0 = 1

(refer Fig. 2.17). The weighted sum of the inputs.

net = w 0 + w 1 x 1 + w 2 x 2   (2.14) represents the equation of a

straight line.

The straight line acts as a decision boundary separating the points into

classes C 1 and C 2, above and below the line respectively (refer Fig. 2.18).

Fig. 2.18 A straight line as a decision boundary for a 2-classification

problem.

This is what the perceptron aims to do for a problem when it is able to obtain

their weights.

Algorithm 2.1

Fixed increment perceptron learning algorithm for a classification

problem with n input features ( x1, x2, ..., xn) and two output classes

(0/1)



2.9.2 ADALINE Network

The Adaptive Linear Neural Element Network framed by Bernard Widrow of

Stanford University, makes use of supervised learning. Figure 2.19

illustrates a simple ADALINE network. Here, there is only one output

neuron and the output values are bipolar (−1 or +1). However, the inputs xi

could be binary, bipolar or real valued. The bias weight is w 0 with an input

link of x 0

= +1. If the weighted sum of the inputs is greater than or equal to 0 then the

output is 1 otherwise it is −1.

The supervised learning algorithm adopted by the network is similar to the

perceptron learning algorithm. Devised by Widrow-Hoff (1960), the learning

algorithm is also known as the Least Mean Square (LMS) or Delta rule. The

rule is given by



(2.15)

where, α is the learning coefficient, t is the target output, y is the computed

output, and xi is the input.

Fig. 2.19 A simple ADALINE network.

ADALINE network has had the most successful applications because it is

used virtually in all high speed modems and telephone switching systems to

cancel the echo in long distance communication circuits.

2.9.3 MADALINE Network



A MADALINE (Many ADALINE) network is created by combining a

number of ADALINES. The network of ADALINES can span many layers.

Figure 2.20 illustrates a simple MADALINE network. The use of multiple

ADALINES helps counter the problem of non-linear separability.

Fig. 2.20 MADALINE network.

For example, the MADALINE network with two units exhibits the capability

to solve the XOR problem (refer Fig. 2.21). In this, each ADALINE unit

receives the input bits x 1, x 2 and the bias input x 0 = 1 as its inputs. The

weighted sum of the inputs is calculated and passed on to the bipolar

threshold units. The logical ‘and’ing (bipolar) of the two threshold outputs

are computed to obtain the final output. Here, if the threshold outputs are



both +1 or −1 then the final output is +1. If the threshold outputs are

different, (i.e.) (+1, −1) then the final output is −1. Inputs which are of even

parity produce positive outputs and inputs of odd parity produce negative

outputs.

Figure 2.22 shows the decision boundaries for the XOR problem while trying

to classify the even parity inputs (positive outputs) from the odd parity inputs

(negative outputs).

Fig. 2.21 A MADALINE network to solve the XOR problem.

Fig. 2.22 Decision boundaries for the XOR problem.

The learning rule adopted by MADALINE network is termed as

‘MADALINE Adaptation Rule’ (MR) and is a form of supervised learning.

In this method, the objective is to adjust the weights such that the error is

minimum for the current training pattern, but with as little damage to the

learning acquired through previous training patterns.

MADALINE networks have been subject to enhancements over the years.

2.10 SOME APPLICATION DOMAINS



Neural networks have been successfully applied for the solution of a variety

of problems. However, some of the common application domains have been

listed below:

Pattern recognition (PR)/image processing

Neural networks have shown remarkable progress in the recognition of visual

images, handwritten characters, printed characters, speech and other PR

based tasks.

Optimization/constraint satisfaction

This comprises problems which need to satisfy constraints and obtain

optimal solutions. Examples of such problems include manufacturing

scheduling, finding the shortest possible tour given a set of cities, etc. Several

problems of this nature arising out of industrial and manufacturing fields

have found acceptable solutions using NNs.

Forecasting and risk assessment

Neural networks have exhibited the capability to predict situations from past

trends. They have, therefore, found ample applications in areas such as

meteorology, stock market, banking, and econometrics with high success

rates.

Control systems

Neural networks have gained commercial ground by finding applications in

control systems. Dozens of computer products, especially, by the Japanese

companies incorporating NN technology, is a standing example. Besides they

have also been used for the control of chemical plants, robots and so on.

SUMMARY

NNs are simplified models of the biological nervous systems. An NN



can be defined as a data processing system, consisting of a large number of

simple, highly interconnected processing elements ( artificial neurons), in an

architecture inspired by the structure of the cerebral cortex of the brain.

The brain is made up of a massive, highly interconnected network of

neurons. Each biological neuron is made up of a cell body— soma, with

dendrites acting as input channels and the axon terminating in a specialized

contact called synapse, as the output channel. The cumulative inputs received

by the soma induce the neuron to ‘fire’

resulting in either the excitation or inhibition of other neurons.

An artificial neuron receives n inputs x 1, x 2, ..., xn with weights w 1, w 2,

..., wn attached to the input links. The weighted sum of the inputs Σ wi· xi is

computed to be passed on to a nonlinear filter φ called activation function to

release the output φ( I). Here, φ could be a step function, signum function,

sigmoidal function or hyperbolic tangent function.

The three fundamental classes of NN architectures are, Single layer

feedforward architecture, Multilayer feedforward architecture, and

Recurrent networks architecture. The learning mechanisms of NNs are

broadly classified as Supervised, Unsupervised, and Reinforced learning

methods. Supervised and unsupervised learning methods have found

expression through rules such as Hebbian learning, Gradient Descent

learning Competitive learning, and Stochastic learning. BAM, Boltzmann

machine, Cauchy machine, Brain-State-in-a-Box, CPN, Hopfield network,

Backpropagation network, ART, Neocognitron, Perceptron, SOFM networks

are some of the well known NNs that have turned out to be milestones in NN

research.

Amongst the early NN architectures, Rosenblatt’s Perceptron has found a

prominent place, though it suffers from the drawback of weight

determination only for linearly separable tasks. However, a Multilayer

perceptron exhibits the capability to overcome this

problem. Bernard Widrow’s ADALINE and its extension to MADALINE

networks have been successful with regard to their applications.



NNs have found wide applications in areas such as pattern recognition,

image processing, optimization, forecasting, and control systems to name a

few.

PROGRAMMING ASSIGNMENT

P2.1 (a) Implement using C/C++, the Fixed Increment Perceptron Learning

algorithm presented in Algorithm 2.1.

(b) The following is a training set for a 2-classification problem.

Iterate the perceptron through the training set and obtain the weights.

Inputs

Classification

X1

X2

0/1

0.25

0.353

0

0.25

0.471

1

0.5

0.353



0

0.5

0.647

1

0.75

0.705

0

0.75

0.882

1

1

0.705

0

1

1

1

P2.2 Attempt solving the XOR problem using the above implementation.

Record the weights. What are your observations?

SUGGESTED FURTHER READING



Plenty of books and journals are available on Neural Networks. Artificial

Neural

Networks−Theory

and

Applications

(Patterson,

1996),

Fundamentals of Neural Networks, Architectures, Algorithms and

Applications (Laurene Fausette, 1994), Fuzzy and Neural Approaches in

Engineering (Tsoukalas and Uhrig, 1997) are comprehensive titles to begin

with.

IEEE Transactions on Neural Networks, Neural Networks, Neuro Computing

and Neural Computation are a few of the well known journals.

AI Expert, IEEE Transactions on Systems, Man and Cybernetics, and IEEE

Transactions on Pattern Analysis and Machine Intelligence are some of the

well known NN related journals.
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Chapter 3

Backpropagation Networks

In Chapter 2, the mathematical details of a neuron at the single cell level and

as a network were described. Although single neurons can perform certain

simple pattern detection functions, the power of neural computation comes

from the neurons connected in a network structure. Larger networks

generally offer greater computational capabilities but the converse is not true.

Arranging neurons in layers or stages is supposed to mimic the layered

structure of certain portions of the brain.

For many years, there was no theoretically sound algorithm for training

multilayer

artificial neural networks. Since single layer networks proved severely limited

in what they

could represent (in what they could learn), the entire field went into virtual

eclipse. The resurgence of interest in artificial neural network began after the

invention of backpropagation algorithm.

Backpropagation is a systematic method of training multilayer artificial

neural networks. It is built on high mathematical foundation and has very

good application potential. Even though it has its own limitations, it is

applied to a wide range of practical problems and has successfully

demonstrated its power.

Rumelhart, Hinton and Wilham (1986) presented a clear and concise

description



of the backpropagation algorithm. Parker (1982) has also shown to have

anticipated

Rumelhart’s work. It was also shown elsewhere that Werbos (1974) had

described the method still earlier.

In this chapter, we describe the most popular Artificial Neural Network

(ANN)

architecture,

the

Multilayer

Feedforward

(MLFF)

network

with

backpropagation (BP) learning. This type of network is sometimes called

multilayer perceptron because of its similarity

to perceptron networks with more than one layer. First, we briefly review the

perceptron

model to show how this is altered to form (MLFF) networks. We derive the

generalized

delta (backpropagation) learning rule and see how it is implemented in

practice. We

will also examine variations in the learning process to improve the efficiency,

and ways to



avoid some potential problems that can arise during training. We will also

discuss

optimal parameters’ settings and discuss various other training methods. We

will also

look at the capabilities and limitations and discuss a number of applications

in various engineering fields.

3.1

ARCHITECTURE

OF

A

BACKPROPAGATION

NETWORK

3.1.1 The Perceptron Model



In Chapter 2 (see Section 2.9.1), Rosenblatts’ perceptron was introduced and

its limitation with regard to the solution of linearly inseparable (or

nonlinearly separable) problems was discussed.

The initial approach to solve such linearly inseparable problems was to have

more than one perceptron, each set up identifying small linearly separable

sections of the inputs. Then, combining their outputs into another perceptron

would produce a final indication of the class to which the input belongs. To

explain this, let us take the example of XOR problem discussed in Chapter 2.

Figure 3.1 illustrates the combination of perceptrons to solve the XOR

problem. Even though, it looks that the arrangement shown in Fig.

3.1 can solve the problem. On examination, it is clear that this arrangement

of perceptrons in layers will be unable to learn. As explained in Chapter 2,

each neuron in the structure takes the weighted sum of inputs, thresholds it

and outputs either a one or zero. For the perceptron in the first layer, the

input comes from the actual inputs of the problem, while for the perceptron

in the second layer the inputs are outputs of the first layer. The perceptrons of

the second layer do not know which of the real inputs from the first layer

were on or off.

Fig. 3.1 Combining perceptrons to solve XOR problem.

It is impossible to strengthen the connections between active inputs and

strengthen the correct parts of the network. The actual inputs are effectively

masked off from the output units by the intermediate layer. The two states of



neuron being on or off (shown in Fig. 3.2) do not give us any indication of

the scale by which we have to adjust the weights. The hard-hitting threshold

functions remove the information that is needed if the network is to

successfully learn. Hence, the network is unable to determine which of the

input weights should be increased and which one should not and so, it is

unable to work to produce a better solution next time. The way to go around

the difficulty using the step function as the thresholding process is to adjust it

slightly and to use a slightly different nonlinearity.

Fig. 3.2 Hard-hitting threshold function.

3.1.2 The Solution

If we smoothen the threshold function so that it more or less turns on or off

as before but has a sloping region in the middle that will give us some

information on the inputs, we will be able to determine when we need to

strengthen or weaken the relevant weights. Now, the network will be able to

learn as required. A couple of possibilities for the new thresholding function

are given in Table 3.1. Some of the functions have already been introduced in

Chapter 2. Even now, the value of the outputs will practically be one if the

input exceeds the value of the threshold a lot and will be practically zero if

the input is far less than the threshold. However, in cases when input and

threshold are almost same, the output of the neuron will have a value

between

zero and one, meaning that the output to the neurons can be related to input

in a more informative way.

As seen in Chapter 2, an artificial neuron is developed to mimic the

characteristics and functions of a biological neuron. Analogous to a

biological neuron, an artificial neuron receives much input representing the

output of the other neurons. Each input is multiplied by the corresponding

weights analogous to synaptic strengths. All of these weighed inputs are then



summed up and passed though an activation function to determine the

neuron output. The artificial neural model (with new notations to suit the

discussion in this chapter) is shown in Fig. 3.3.



Considering threshold θ, the relative input to the neuron is given by The

activation function f( u) is chosen as a nonlinear function to emulate the

nonlinear behaviour of conduction current mechanism in a biological neuron.

However, as the artificial neuron is not intended to be a xerox copy of the

biological neuron, many forms of nonlinear functions have been suggested

and used in various engineering applications. Some of the activation

functions along with their mathematical descriptions given in Table 3.1 are

most commonly used activation functions in multilayered static neural

networks. It is also seen that for sigmoidal functions, the output of a neuron

varies continuously but not linearly with the input. Neurons with sigmoidal

functions bear a greater resemblance to biological neurons than with other



activation functions. Even if the sigmoidal function is differentiated, it gives

continuous values of the output. Hard limiter (see Table 3.1) and radial basis

functions are also equally popular .

3.1.3 Single Layer Artificial Neural Network

In the preceding section, we have seen the mathematical details of a neuron

at a single level. Although a single neuron can perform certain simple pattern

detection problems, we need larger networks to offer greater computational

capabilities. In order to mimic the layered structure of certain portions of the

brain, let us explain the single feedforward neural network as shown in Fig.

3.4(a) and the block diagram is given in Fig. 3.4(b). Consider a single layer

feedforward neural network shown in Fig. 3.4(a) consisting of an input layer

to receive the inputs and an output layer to output the vectors respectively.

The input layer consists of ‘ n’ neurons and the output layer consists of ‘ m’

neurons. Indicate the weight of the synapse connecting i th input neuron to

the j th output neuron as Wij. The inputs of the input layer and the

corresponding outputs of the output layer are given as

Assume, we use linear transfer function for the neurons in the input layer and

the unipolar sigmoidal function for the neurons in the output layer (refer

Table 3.1).



Fig. 3.4(a) Single layer feedforward neural network.

Fig. 3.4(b) Block diagram of a single layer feedforward neural network.

Using the unipolar sigmoidal or squashed-S function as shown in Fig.

3.5(a) and the slope of this function as given in Fig. 3.5(b) for neurons in the

output layer, the output is given by

OOk is evaluated as given in Eq. (3.8a). In Eq. (3.8a), λ is known as

sigmoidal gain. The block diagram representation of Eq. (3.8b) is shown in



Fig. 3.4(b). In Eq. (3.7), [ W] is called weight matrix and is also known as

connection matrix.

Fig. 3.5(a) Squashed-S function for various values of λ .

Fig. 3.5(b) Squashed-S slope.

The nonlinear activation function f[ WI] in Eq. (3.8a) operates component

wise on the activation values ‘ I’ of each neuron. Each activation value is in



turn a scalar product of the input with respect to weight vectors. The

sigmoidal function is given as

3.1.4 Model for Multilayer Perceptron

The adapted perceptrons are arranged in layers and so the model is termed as

multilayer perceptron. This model has three layers; an input layer, and output

layer, and a layer in between not connected directly to the input or the output

and hence, called the hidden layer. For the perceptrons in the input layer, we

use linear transfer function, and for the perceptrons in the hidden layer and

the output layer, we use sigmoidal or squashed-S functions. The input layer

serves to distribute the values they receive to the next layer and so, does not

perform a weighted sum or threshold. Because we have modified the single

layer perceptron by changing the nonlinearity from a step function to a

sigmoidal function and added a hidden layer, we are forced to alter the

learning rules as well. So now, we have a network that should be able to learn

to recognize more complex things. The input−output mapping of multilayer

perceptron is shown in Fig. 3.6(a) and is represented by

O = N 3 [ N 2 [ N 1[ I]]]...........(3.10) In Eq. (3.10), N 1, N 2, and N 3 (see

Fig. 3.6(b)) represent nonlinear mapping provided by input, hidden and

output layers respectively. Multilayer perceptron provides no increase in



computa-tional power over a single layer neural network unless there is a

nonlinear activation function between layers.

Many capabilities of neural networks, such as nonlinear functional

approximation, learning, generalization etc. are in fact due to nonlinear

activation function of each neuron.

The three-layer network shown in Fig. 3.6(a) and the block diagram shown in

Fig. 3.6(b) show that the activity of neurons in the input layers represent the

raw information that is fed into the network. The activity of neurons in the

hidden layer is determined by the activities of the neurons in the input layer

and the connecting weights between input and hidden units. Similarly, the

activity of the output units depends on the activity of neurons in the hidden

layer and the weight between the hidden and output layers. This structure is

interesting because neurons in the hidden layers are free to construct their

own representations of the input.

Fig. 3.6(a) Multilayer perceptron.

Fig. 3.6(b) Block diagram representing three-layer ANN.



3.2 BACKPROPAGATION LEARNING

Consider the network as shown in Fig. 3.7 where the subscripts I, H, O

denote input, hidden and output neurons.

Fig. 3.7 Multilayer feedforward backpropagation network.

Consider a problem in which an “nset” of “l” inputs and the corresponding

“nset” of “n” output data is given as shown in Table 3.2.

Table 3.2 “nset” of input and output data

No.



Input

Output

I 1

I 2

...

Il

O 1

O 2

...

On

1

0.3

0.4

...

0.8

0.1

0.56

...

0.82

2



nset

3.2.1 Input Layer Computation

Consider linear activation function the output of the input layer is input of

input layer (considering g = tan φ = 1). Taking one set of data

{ O} I = { I} I   (3.11)

l × 1..... l × 1

The hidden neurons are connected by synapses to input neurons and (let us

denote) Vij is the weight of the arc between i th Input neuron to j th hidden

neuron. As shown in Eq. (3.1b), the input to the hidden neuron is the

weighted sum of the outputs of the input neurons to get IHp (i.e. Input to the

p th hidden neuron) as

IHp = V 1 pOI 1 + V 2 pOI 2 + ... + V l pOIl   (3.12) ( p = 1, 2, 3, ..., m)

Denoting weight matrix or connectivity matrix between input neurons and

hidden neurons as

, we can get an input to the hidden neuron as

{ I} H = [ V] T { O} I   (3.13) m × 1........... m × l l × 1

3.2.2 Hidden Layer Computation

Considering sigmoidal function or squashed-S function, the output of the p

th hidden neuron is given by



where OHp is the output of the p th hidden neuron, IHp is the input of the p

th hidden neuron, and θ Hp is the threshold of the p th neuron. A non-zero

threshold neuron is computationally equivalent to an input that is always held

at −1 and the non-zero threshold becomes the connecting weight values as

shown in Fig. 3.8.

Fig. 3.8 Treating threshold in hidden layer.

But in our derivations we will not treat threshold as shown in Fig. 3.8 .

Now, output to the hidden neuron is given by

Treating each component of the input of the hidden neuron separately, we get

the outputs of the hidden neuron as given by Eq. (3.15).



As shown in Fig. 3.1(b) the input to the output neurons is the weighted sum

of the outputs of the hidden neurons. To get IOq (i.e. the input to the q th

ouput neuron)

IOq = W 1 qOH 1 + W 2 qOH 2 + ... + WmqOHm   (3.16) ( q = 1, 2,

3,..., n)

Denoting weight matrix or connectivity matrix between hidden neurons and

output neurons as [ W], we can get input to the output neuron as

{ I} O = [ W] T { O} H   (3.17) n × 1... n × m... m × 1

3.2.3 Output Layer Computation



Considering sigmoidal function, the output of the q th output neuron is given

by

where, OOq is the output of the q th output neuron, IOq is the input to the q

th output neuron, and θ Oq is the threshold of the q th neuron. This threshold

may also be tackled again by considering extra O th neuron in the hidden

layer with output of −1 and the threshold value θ Oq becomes the connecting

weight value as shown in Fig. 3.9.

Fig. 3.9 Treating threshold in output layer.

Hence, the outputs of output neurons are given by

3.2.4 Calculation of Error

Considering any r th output neuron and for the training example we have

calculated the output ‘ O’ for which the target output ‘ T’ is given in Table

3.2.

Hence, the error norm in output for the r th output neuron is given by (3.20)

where



= 1/2 second norm of the error in the r th neuron (‘ er’) for the given training

pattern. The square of the error is considered since irrespective of whether

error is positive or negative, we consider only absolute values. The Euclidean

norm of error E 1 for the first training pattern is given by (3.21)

Equation 3.21 gives the error function in one training pattern. If we use the

same technique for all the training patterns, we get

(3.22)

where E is the error function depending on the m (l + n) weights of [ W] and

[ V]. This is a classic type of optimization problem. For such problems, an

objective function or cost function is usually defined to be maximized or

minimized with respect to a set of parameters. In this case, the network

parameters that optimize the error function E over the ‘nset’ of pattern sets

[ I nset, t nset] are synaptic weight values [ V] and [ W] whose sizes are

[ V] and [ W]   (3.23)

l × m........ m × n

3.2.5 Training of Neural Network

The synaptic weighting and aggregation operations performed by the

synapses and soma respectively, provide a ‘similarity measure’ between the

input vector I and the synaptic weights [ V] and [ W] (accumulation

knowledge base). When a new input pattern that is significantly different

from the previously learned pattern is presented to the neural network, the

similarity between this input and the existing knowledge base is small. As

the neural network learns this new pattern, by changing the strengths of

synaptic weights, the distance between the new information and accumulated

knowledge decreases as shown in Fig. 3.10. In other words, the purpose of

learning is to make “W and V” very similar to given pattern I.



Fig. 3.10 Similarity between new information and past knowledge.

Most of the neural network structures undergo ‘learning procedures’ during

which synaptic weights W and V are adjusted. Algorithms for determining

the connection strengths to ensure learning are called ‘learning rules’. The

objective of learning rules depends upon applications. In classification and

functional approximation problems, each cycle of presentation of all cases is

usually referred as ‘learning epoch’ However, there has been no

generalization as to how a neural network can be trained.

As in Chapter 2, neural network learning algorithms have been classified as

Supervised and Unsupervised learning algorithms. The learning algorithms

are shown in Fig. 3.11. Supervised algorithms are also known as ‘error based

learning algorithms’ which employ an external reference signal (teacher) and

generate an error signal by comparing the reference with the obtained

response. Based on error signal, neural network modifies its synaptic

connections to improve the system performance. In this scheme, it is always

assumed that the desired answer is known

“a priori”. In this backpropagation neural network, we use the procedure of

supervised learning of backpropagation. In contrast, as seen in Chapter 2,

unsupervised (output based) learning or competitive learning involve

adjustment of synaptic weights according to the correlation of the response

of two neurons that adjoin it. Error based algorithms need desired responses

or training data labelled with target results. If target results are unknown then

error based algorithms are useless and learning output based learning

algorithm are useful. Figure 3.11 reviews the supervised learning



classification. Let us discuss the supervised learning algorithm for

backpropagation neural network.

Fig. 3.11 Learning algorithms.

3.2.6 Method of Steepest Descent

The error surface is given by



...(3.24)

and is shown in Fig. 3.12. Multilayer feedforward networks with nonlinear

activation functions have mean squared error (MSE) surface above the total

Q-dimensional weight space RQ which is not in general, a smooth parabolic

surface as in the single layer linear activation case. In general, the error

surface is complex and consists of many local and global minima, shown by

McInerney and Dhawan (1989) as illustrated in Fig. 3.13.

Fig. 3.12 Euclidian norm of errors.

Fig. 3.13 Typical error surface for MLFF networks with nonlinear activation

function.

In backpropagation (BP) networks, at any given error value E, including

minima regions, there are many permutations of weights which give rise to

the same value of E. BP is never assured of finding global minimum as in the

simple layer delta rule case. In general, for MLFF network case, the error

surface will have many local minima. Sometimes, one can get stuck during

the learning process on flat or near flat regions of the error surface.



At the start of the training process, gradient descent search begins at a

location with error value E determined by initial weight assignments W(0),

V(0) and the training pattern pair ( Ip, Op) where, (3.25)

During training, the gradient descent (shown in Fig. 3.12) computations

incrementally determine how the weights should be modified at each new

location to move most rapidly in the direction opposite to the direction of

steepest ascent (a steepest descent). After the incremental adjustments to the

weights have been made, the location is shifted to a different E location on

the error-weight surface. This process is repeated for each, training pattern

(or each epoch {( Ip, Op),

p = 1, 2,... , nset), progressively shifting the location to lower level until a

threshold error value is reached or until a limit on the total number of

training cycles is reached.

In moving down the error−weight surface, the path followed is generally not

the ideal path. It depends on the shape of the surface and the learning rate

coefficient η, which is discussed later. In general, error surface contains

many



flat areas and troughs where the weights must be changed many times to

realize perspective drop in error. From experience, it is found that at the

places of steep slopes, larger steps can result in oscillating movements across

the slopes. Because of such anomalies, it is difficult to work with steepest

descent method to choose the current direction to move, thereby making

progress slow and uncertain. It is known that error surface is the summation

of quadratic terms which describes elliptical rather than circular contours and

gradient will not point directly in the direction of the minimum (see Fig.

3.14).

Fig. 3.14 Direction of descent for two dimensional case.

Since the error surface is steeper along V dimension than W dimension, the

derivative of E with respect to V is greater than the derivative with respect to

W, resulting in a combined vector shifted more in the direction of V

derivative. Hence, combined vector does not point towards the true

minimum. For simplicity, we assume the error surface shown in Fig. 3.12 as

truly spherical. From Fig. 3.12, the vector

is written as

(3.26)

The gradient is given by

(3.27)



and hence, the unit vector in the direction of the gradient is given by (3.28)

Hence,

...........(3.29)

where,



η = ; K is a constant    (3.30)

Comparing Eq. (3.26) with Eq. (3.29) we get

where, Tk is the target output of the k th output neuron and Ook is the

computed output of the k th output neuron.

Hence, the derivative of the sigmoidal function is a simple function of

outputs. Let us evaluate

as



Now we compute

by applying the chain rule of differentiation as

Define d *

k as



3.2.7 Effect of Learning Rate ‘η’

Learning rate coefficient determines the size of the weight adjustments made

at each iteration and hence influences the rate of convergence. Poor choice of

the coefficient can result in a

failure in convergence. We should keep the coefficient constant through all

the iterations for

best results. If the learning rate coefficient is too large, the search path will

oscillate and converges more slowly than a direct descent as shown in Fig.

3.15(a). If the coefficient is too small, the descent will progress in small steps

significantly increasing the time to converge

(see Fig. 3.15(b)). For the example illustrated in this chapter, the learning

coefficient is taken as 0.9 and this seems to be optimistic (see Fig. 3.15(c)).

Jacobs (1988) has suggested the use of adaptive coefficient where the value

of the learning coefficient is the function of error derivative on successive

updates.



Fig. 3.15 Convergence paths for different learning coefficients.

3.2.8 Adding a Momentum Term

There is another way possible to improve the rate of convergence by adding

some inertial or momentum to the gradient expression. This can be

accomplished by adding a fraction of the previous weight change to the

current weight change. The addition of such a term helps to smooth out the



descent path by preventing extreme changes in the gradients due to local

anomalies. A commonly used update rule introduced by Rumelhart et al.

(1986) includes such a momentum term. The updation equations used by

Rumelhart are defined as

where α is defined as the momentum coefficient. The value of α should be

positive but less than 1. Typical values lie in the range of 0.5−0.9. But for

some problems, Fahlman (1988) used a value for α = 0 and showed it to be

the best.

Hence, Eq. (3.46) are modified and written as

The weights and thresholds may be updated as

3.2.9 Backpropagation Algorithm



We have already seen the benefit of the middle-hidden layer in an artificial

neural network. We understand that the hidden layer allows ANN to develop

its own internal representation of this mapping. Such a rich and complex

internal representation capability allows the hierarchical network to learn any

mapping and not just linearly separable ones. Let us consider the three-layer

network with input layer having ‘ l’ nodes, hidden layer having ‘ m’ nodes,

and an output layer with ‘ n’ nodes. We consider sigmoidal functions for

activation functions for the hidden and output layers and linear activation

function for input layer. The number of neurons in the hidden layer may be

chosen to lie between l and 2l. The basic algorithm loop structure is given as

Algorithm 3.1 illustrates the step by step procedure of the backpropagation

algorithm.

Algorithm 3.1 (Backpropagation Learning Algorithm)

Algorithm BPN( )







Once the process converges, the final weights should be stored in a file.

Now, we are ready to test the neural net. Given any other input, we will be

able to get the outputs and this is known as inference session. Hence, it is

seen that training of an artificial neural network involves two passes. In the

forward pass, the input signals propagate from the network input to the

output. In the reverse pass, the calculated error signals propagate backwards

through the network where they are used to adjust the weights. The

calculation of output is carried out layer by layer in the forward direction.

The output of one layer in weighted manner will be the input to the next

layer. In the reverse pass, the weights of the output neuron layer are adjusted

first since the target value of each output neuron is available to guide the

adjustment of associated weights.



3.3 ILLUSTRATION

Consider that for a particular problem there are five training sets as shown in

Table 3.3.

Table 3.3 Training sets

S. no.

Inputs

Output

I 1

I 2

O

1

0.4

−0.7



0.1

2

0.3

−0.5

0.05

3

0.6

0.1

0.3

4

0.2

0.4

0.25

5

0.1

−0.2

0.12

In this problem, there are two inputs and one output and already, the values

lie between

−1 to 1 and hence, there is no need to normalize the values. Assume two

neurons in the hidden layer. The neural network architecture is shown in Fig.



3.16.

With the data of the first training set.

Fig. 3.16 MFNN architecture for the illustration.



Step 15: With the updated weights [ V] and [ W], error is calculated again

and next training set is taken and the error will be adjusted.



Step 16: Iterations are carried out till we get the error less than the tolerance.

Step 17: Once weights are adjusted the network is ready for inference.

A computer program “NEURONET” is developed for training the data and

inferring the results using backpropagation neural network.

3.4 APPLICATIONS

3.4.1 Design of Journal Bearing

Whenever the machine elements move, there are bearing surfaces, some of

which are lubricated easily and completely, some which are lubricated

incompletely and with difficulty, and some of which are not lubricated at all.

When the load on the bearing is low and the motion is slow, the bearing is

lubricated with oil poured in an oil hole or applying lubricant with some

other device from time to time. When either the load, or speed or both are

high as in modern high-speed machinery, the lubrication by oil or by other

fluids must be designed according to the conditions of operation. When there

is a relative motion between two machine parts, one of which supporting the



other, then the supporting member is called bearing. The bearings are

classified as shown in

Fig. 3.17(a).

Fig. 3.17(a) Different types of bearings.

Out of the bearings given in Fig. 3.17(a), let us consider journal bearing.

Design of journal bearing depends on the load, speed of the journal,

clearance in the bearing, length and diameter of the bearing, and the kinds of

surface.

The journal bearing is shown in Fig. 3.17(b).

Fig. 3.17b Journal bearing.

For the design of journal bearing, one has to take into account the end

leakage and for various L/ D ratios performance variables are plotted with



Summerfield number by Raimondi and Boyd (Kulkarni, 1997) and the

results are given in the form of a table (Table 29 of Kulkarni, 1997). The

variables included in the table are

where

L—length of the bearing in mm

h 0—minimum film thickness in mm

D—diameter of the Journal bearing in mm

C—diametrical clearance

Cr—radial clearance

e—eccentricity in mm = C/2 − h 0

P—bearing pressure on projected area in MPa

P max—maximum pressure in MPa

ns—significant speed in revolutions/s

r—radius of the bearing

ε = e/ c



S = ( r/ c)2μ N/ρ—Sommerfeld number ρ—density of oil in kgf/cu.cm

q—oil flow through the bearing cu.m/s

qs—axial flow of oil in cu.m/s

“NEURONET” is used to train the data and infer the results for test data. A

backpropagation neural network with 8 input neurons, 8 hidden neurons, and

2 output neurons has been used. The learning of 0.6 and momentum factor of

0.9 have been used. Altogether, 5000 iterations have been performed till the

error rate converges to the tolerance. The training data and testing data have

been normalized so that inputs and outputs are within the range of 0−1. The

training data is given in Table 3.4 and the testing data is given in Table 3.5.

Once the network is trained with the given training data the values are

inferred both for training and testing the data . Figures 3.18(a) and 3.18(b)

show the performance of the neural network for both the outputs for training

data and it is seen that the inferred values, by using neural network, are very

close to the actual values. Figures 3.19(a) and 3.19(b) show the performance



of the neural network for both the outputs for test data and it is seen that

there is discrepancy at the boundaries.

Fig. 3.18(a) Comparison of values for output 1 = ρ c Δ t o/( P × 200).



Fig. 3.18(b) Comparison of values for output 2 = P/ P max.

Fig. 3.19(a) Comparison of values for output 1 = ρ c Δ t o/( P × 200).



Fig. 3.19(b) Comparison of values for output 2 = P/ P max.

Table 3.4 Training data (journal bearing problem)

1

2

3

4

5

6

7

8



9

10

Actual Calculated

Actual Calculated

1

0.2

0.8

0.006

0.747

0.0064

0.283

0

0.057

0.0

0.814

0.81

1

0.6

0.4

0.0019



0.603

0.003

0.156

0

0.04865

0.0

0.667

0.67

1

0.9

0.1

0.0005

0.351

0.0018

0.041

0

0.116

0.0

0.358

0.36



0.1

0.1

0.9

0.065

0.883

0.066

0.337

0.15

0.53

0.53

0.54

0.55

0.1

0.4

0.6

0.013

0.701

0.014

0.399

0.497



0.12

0.12

0.489

0.48

0.1

0.8

0.2

0.002

0.402

0.004

0.462

0.892

0.04

0.01

0.313

0.31

0.1

0.97

0.03

0.0002



0.773

0.0012

0.48

0.973

0.013

0

0.152

0.15

0.05

0.2

0.8

0.1

0.832

0.102

0.372

0.318

0.52

0.52

0.506

0.50



0.05

0.4

0.6

0.0385

0.682

0.0425

0.429

0.552

0.343

0.34

0.44

0.44

0.05

0.8

0.2

0.0046

0.37

0.0081

0.541

0.874



0.067

0.0800

0.267

0.26

0.05

0.97

0.03

0.0

0.152

0.0015

0.588

0.98

0.0125

0.03

0.0126

0.12

0.025

0.4

0.6

0.14



0.676

0.152

0.437

0.517

1

1

0.415

0.47

0.025

0.8

0.2

0.014

0.344

0.022

0.56

0.884

0.17

0.17

0.24

0.24



0.025

0.97

0.3

0.01

0.135

0.0023

0.612

0.984

0.087

0.08

0.108

0.11

…

Table 3.5 Test data (journal bearing problem)

1

2

3



4

5

6

7

8

9

10

Actual Calculated

Actual Calculated

1

0.1

0.9

0.012

0.767

0.012

0.303

0

0.099

0

0.26



0.84

1

0.8

0.2

0.001

0.468

0.0024

0.0706

0

0.0795

0

0.495

0.50

0.1

0.2

0.6

0.013

0.701

0.014

0.391



0.497

0.125

0.43

0.485

0.46

0.1

0.9

0.03

0.009

0.293

0.0026

0.479

0.919

0.0045

0

0.247

0.15

0.05

0.1

0.9



0.215

0.906

0.214

0.343

0.173

1.0

0.8

0.523

0.53

0.05

0.6

0.4

0.319

0.534

0.020

0.485

0.73

0.165

0.16

0.365



0.41

0.025

0.2

0.8

0.371

0.834

0.39

0.376

0.33

1.0

0.52

0.489

0.54

0.025

0.6

0.4

0.05

0.519

0.066

0.499



0.746

0.55

0.32

0.334

0.36

3.4.2 Classification of Soil

The objectives of soil exploration and classification are to find the suitability

of the soil for the construction of different structures, embankments, sub-

grades, and wearing surfaces. Soil seldom exists in nature separately as sand,

gravel or any other single component but is usually found as mixture with

varying proportions of particles of different sizes. Sandy clay has most of the

properties of clay but contains significant amount of sand. Many different

classification systems of soil exist, out of which many engineers use Bureau

of Indian Standards system. The soil has to be classified so as to find its

suitability for the construction of dams, roads, highways, and for buildings.

Bureau of Indian Standards system (Reference 8) is based on those

characteristics of the soil which indicates how it will behave as a

construction material. The classification is given

in Fig. 3.20.



Fig. 3.20 Classification of soil.

The architecture used for grouping the soil is 6-6-1 with 6 input neurons, 6

hidden neurons and 1 output neuron. The six inputs represent colour of the

soil, percentage of gravel, percentage of sand, percentage of fine grained

particles, liquid limit WL, and plastic limit WP. The output represents the IS

classification of the soil. The codes taken for IS classification are 0.1 for

clayey sand (SC), 0.2 for clay with medium compressibility (CI), 0.3 for clay

with low compressibility (CL), and 0.6 for silt with medium compressibility

(MI). The codes taken for colour of the soil are 0.1 for brown, 0.2 for

brownish grey , 0.3 for greyish brown, 0.5 for reddish yellow, and 0.7 for

yellowish red. All the inputs and output values are normalized. Thirty

training sets are taken and the network is trained for 250 iterations with the

learning rate and momentum values as 0.6 and 0.9 respectively. The error

rate at the end of 250th iteration was found to be 0.0121. Tables 3.6 and 3.7

give sample training data and the test data. The rejection rate was found to be

nil for trained set and 8% for untrained set.

Table 3.6 Sample training data for soil classification



(Values in brackets show actual values)

(Fine

(Liquid

(Plastic

Colour of

(Gravel %)

(Sand %)

I.S.

grained

limit %)

limit %)

the soil

18

82

classification

particles %)/84

59

34

0.2

0.111



0.682

0.5

0.508

0.529

0.1(0.1)

0.2

0

0.536

0.666

0.576

0.647

0.292(0.3)

0.1

0

0.329

0.869

0.711

0.735

0.203(0.2)

0.3



0

0.756

0.452

0.491

0.529

0.129(0.1)

0.5

0

0.585

0.619

0.627

0.852

0.608(0.6)

0.2

0

0.524

0.678

0.576

0.676

0.328(0.3)



0.5

0

0.573

0.63

0.61

0.823

0.595(0.6)

0.2

0

0.512

0.69

0.576

0.647

0.296(0.3)

0.1

0

0.341

0.857

0.694

0.705



0.193(0.2)

0.2

0

0.548

0.654

0.576

0.647

0.289(0.3)

0.7

0

0.353

0.845

0.677

1

0.614(0.6)

0.5

0

0.585

0.619

0.61



0.823

0.594(0.6)

0.2

0.222

0.682

0.476

0.508

0.529

0.0842(0.1)

0.1

0

0.317

0.88

0.728

0.764

0.211(0.2)

0.1

0

0.341

0.857



0.711

0.735

0.21(0.2)

0.2

0.166

0.67

0.5

0.525

0.558

0.112(0.1)

…

Table 3.7 Inference results for soil classification (untrained data) 0.1

0

0.304

0.892

0.728

0.754

0.204(0.2)

0.2

0



0.536

0.666

0.576

0.647

0.292(0.3)

0.5

0

0.597

0.607

0.61

.823

0.592(0.6)

0.1

0

0.951

0.261

0.627

0.676

0.0912(0.1)

0.2



0

0.512

0.69

0.593

0.676

0.326(0.3)

0.1

0

0.926

0.285

0.627

0.676

0.0961(0.1)

0.2

0.222

0.658

0.5

0.525

0.529

0.0887(0.1)



0.1

0

0.341

0.857

0.728

0.735

0.206(0.2)

3.4.3 Hot Extrusion of Steel

Hot metal forming has become an attractive process in industry due to its

ability to achieve energy and material savings, quality improvement, and

development of homogeneous properties throughout the component. In spite

of these advantages, the process is rather complicated as it requires careful

control and inspection to verify that the final component has the requisite

mechanical properties. It in turn demands a peruse simulation and analysis of



the process. The effect of various process parameters such as die angle and

velocity of die on factors such as forging head, equivalent stress, and

equivalent strain are simulated with a finite element code for hot extrusion of

CR45 steel billet. The initial temperature of the billet is 1050 degree

centigrade and it is extruded in dies which are maintained at 100 degree

centigrade. Hansraj and others (1992) have simulated forward hot extrusion

of transmission shaft with various die angles and punch velocities using the

six noded triangular elements (Zienkiewicz, 1992). A solid cylinder at 1050

degree centigrade with dies is kept at 100 degree Centigrade. The geometry

is axi-symmetric in nature. So, only one half of the part is simulated as

shown in Fig. 3.21.

Fig. 3.21 Finite element idealization.

The variation of forging forces with different die angles and punch velocities

along with the equivalent strain, equivalent stress, and equivalent strain rate

are obtained using finite element analysis and tabulated as shown in Table

3.8. Neural networks are nowadays applied to the simulation of hot extrusion

due to the fact that finite element solutions of hot forging are very complex

and require a lot of computer time. In a factory where decisions need to be

taken quickly, it is advantageous to have a system that can advise an engineer

without resorting to large calculations. Hence, one can explore the potential

of both the finite element simulations and neural network modelling of hot

extrusions so that process decisions can be taken in real time. The neural

network architecture consists of three layers—two input neurons, eight

neurons in a hidden layer, and five output neurons. Both inputs

and outputs are normalized such that values lie between 0 and 1. The

learning rate and momentum factor are taken as 0.6 and 0.8 respectively. The

error rate reaches the tolerance value at 3500 iterations. The inputs are die

angle and punch velocity and the outputs consist of forging load, maximum

equivalent strain, maximum equivalent stress, maximum normal velocity,

and equivalent strain rate. Twenty-four data sets are taken for training and

eighteen data sets are taken for testing. After the neural network is trained, it

is used for inferring. The values obtained using backpropagation neural



network using the program (NEURONET) for the training data are given in

Table 3.8 and for the test data are given in

Table 3.9. The network predictions for one output, that is, for forging load

are shown in Fig. 3.22.

Table 3.8 Trained data (hot extrusion of steel)

Input

Output

Equi max

Max normal

Die

Die vel

Forging

Equivalent

stress

velocity in

ang/90

mm/s/200

load/400

max strain/6

(kg/sq.mm)/0.3

mm/s/5000



actual

calculated

actual

calculated

actual

calculated

actual

calculated

actual

1

0.333

0.875

0.83

0.726

0.74

0.792

0.82

0.683

0.72

0.355



1

0.5

0.6175

0.67

0.843

0.78

0.807

0.76

0.804

0.69

0.486

1

0.66

0.45

0.48

0.76

0.63

0.804

0.89

0.609



0.62

0.66

1

0.83

0.325

0.33

0.252

0.35

0.9

0.95

0.661

0.5

0.925

1

1.0

0.3

0.29

0.5

0.33

0.795



0.72

0.736

0.72

0.359

0.83

0.333

0.837

0.80

0.861

0.72

0.838

0.78

0.7012

0.69

0.442

0.83

0.5

0.55

0.61

0.465



0.63

0.748

0.83

0.514

0.63

0.149

0.83

0.666

0.43

0.42

0.366

0.35

0.881

0.93

0.5536

0.58

0.231

0.83

0.83

0.28



0.32

0.27

0.27

0.78

0.74

0.7528

0.69

0.302

0.83

1.0

0.25

0.26

0.25

0.32

0.07

0.24

0.712

0.79

0.335

0.667



0.667

0.375

0.36

0.363

0.22

0.853

0.77

0.5728

0.65

0.229

0.5

0.333

0.6825

0.7

0.318

0.38

0.789

0.8

0.689

0.6



0.32

0.5

0.5

0.455

0.45

0.24

0.19

0.758

0.79

0.617

0.62

0.2044

0.5

0.66

0.325

0.28

0.148

0.19

0.683

0.59



0.785

0.63

0.175

0.5

0.83

0.195

0.17

0.15

0.18

0.64

0.59

0.5252

0.5

0.1214

0.5

1.0

0.125

0.12

0.128

0.14



0.625

0.59

0.369

0.35

0.1365

0.333

0.333

0.65

0.63

0.271

0.22

0.758

0.76

0.684

0.64

0.247

0.333

0.5

0.275

0.37



0.125

0.18

0.608

0.72

0.4372

0.6

0.0827

0.333

0.66

0.3175

0.22

0.268

0.16

0.751

0.68

0.709

0.48

0.233

0.333

0.83



0.084

0.14

0.113

0.13

0.546

0.62

0.2328

0.36

0.041

0.333

1.0

0.066

0.1

0.108

0.1

0.53

0.56

0.228

0.27

0.0429



0.167

0.333

0.62

0.63

0.275

0.29

0.686

0.71

0.688

0.72

0.134



0.167

0.5

0.43

0.4

0.276

0.26

0.65

0.66

0.605

0..63

0.081

0.167

0.666

0.2925

0.27

0.21

0.23

0.673

0.57

0.613



0.53

0.108

.

Fig. 3.22 Punch velocity versus forging load.

Table 3.9 Testing data (hot extrusion of steel)

Input

Output

Max

Max

Strain

Die

Velocity

Load

Eq.strain

stress

velocity

rate

angle/90

1200

400



6

300

5000

1200

1.0

0.167

0.93

0.63

0.91

0.74

0.36

1.0

0.583

0.57

0.74

0.80

0.66

0.43

1.0

0.916



0.3

0.31

0.91

0.63

0.50

0.83

0.167

0.91

0.64

0.87

0.73

0.33

0.83

0.583

0.5

0.49

0.9

0.59

0.43

0.83



0.916

0.2

0.3

0.43

0.70

0.23

0.667

0.167

0.9

0.64

0.82

0.70

0.28

0.667

0.583

0.44

0.25

0.88

0.59

0.31



0.667

0.916

0.21

0.25

0.38

0.67

0.19

0.5

0.167

0.88

0.59

0.73

0.67

0.20

0.5

0.583

0.36

0.18

0.67

0.64



0.17

0.5

0.986

0.14

0.16

0.59

0.42

0.15

0.333

0.167

0.86

0.47

0.64

0.67

0.14

0.333

0.583

0.28

0.17

0.70



0.55

0.15

0.333

0.916

0.12

0.11

0.58

0.31

0.06

0.167

0.167

0.87

0.45

0.6

0.78

0.14

0.167

0.583

0.33

0.24



0.61

0.57

0.08

0.167

0.916

0.17

0.18

0.48

0.41

0.03

3.5 EFFECT OF TUNING PARAMETERS OF THE

BACKPROPAGATION NEURAL NETWORK

A proper selection of tuning parameters such as momentum factor, learning

coefficient, sigmoidal gain, and threshold value are required for efficient

learning and designing of a stable

network. Weight adjustment is made based on the momentum method. Using

this, the network tends to follow the bottom of narrow gutters in the error

surface (if it exists) rather than

crossing rapidly from side to side. The momentum factor has a significant

role in deciding



the values of learning rate that will produce rapid learning. It determines the

step size of

change in weights or biases. If momentum factor is zero, the smoothening is

minimum

and the entire weight adjustment comes from the newly calculated change. If

momentum factor is one, new adjustment is ignored and the previous one is

repeated. Between 0 and 1 is a region where the weight adjustment is

smoothened by an amount proportional to the momentum factor. Momentum

factor of 0.9 has been found to be suitable for most of the problems. The role

of momentum factor is to increase the speed of learning without leading to

oscillations. The momentum term effectively filters out high frequency

variations of the error surface in the weight space, since it adds the effect of

past weight changes on the current direction of movement in the weight

space.

The choice of learning coefficient is a tricky task in backpropagation

algorithm. The range of learning coefficient that will produce rapid training

depends on the number and types of input patterns. An empirical formula to

select learning coefficient has been suggested by Eaton and Oliver (1992) is

given as

η =

..........(3.66)

where N 1 is the number of patterns of type 1 and m is the number of

different pattern types.

It may be difficult to spot “similar” patterns under such circumstances and

the target output is used to determine a pattern’s type. The use of output

defined types results in small value of learning coefficient which produces

slower but stable training. The largest value of learning coefficient is



obtained if each pattern considered is a separate type. The optimum value

lies between these extremes.

A better selection of learning rate is possible if more information is available

about

the input patterns. This coefficient must be smaller where there are many

input patterns

as compared to when they are few because the step length is controlled by

the learning coefficient. If the learning coefficient is large, that is, greater

than 0.5, the weights are changed drastically but this may cause optimum

combination of weights to be “overshot” resulting in oscillations about the

optimum. If the learning is small, that is, less than 0.2, the weights are

changed in small increments, thus, causing the system to converge more

slowly but with little oscillation. The learning rate has to be chosen as high

as possible to allow fast learning without leading to oscillations. The learning

rate and error rate for soil mechanics problem are shown in Fig. 3.23 and it is

seen that optimum value of learning rate is 0.6.

Sigmoidal gain

If sigmoidal function is selected, the input-output relationship of the neuron

can be set as

O =

..........(3.67)

where λ is a scaling factor known as sigmoidal gain. As shown in Fig. 3.5(a),

as the scaling factor increases, it is seen that the input-output characteristic of

the analog neuron approaches that of the two-state neuron or the activation

function approaches the Sat function.

To get a graded output or a binary output, scaling factor can be varied. The

value of sigmoidal gain also affects backpropagation. Improper combinations

of the scaling factor, learning rate, and momentum factor might lead to over



correction and poor convergence. To get graded output, as the scaling factor

is increased, learning rate and momentum factor have to be decreased in

order to prevent oscillations.

Threshold value

θ in Eq. (3.67) is commonly called as threshold value of a neuron, or the bias

or the noise factor. A neuron fires or generates an output if the weighted sum

of the input exceeds the threshold value. One method is to simply assign a

small value to it and not to change it during training. The other method is to

initially choose some random values and change them during training. It is

hard to say which method is more efficient. For some problems, assigning a

value to the threshold value and holding it constant is preferable. For soil

classification problem, the threshold value is taken as zero. Figures 3.23 to

3.27 show the variation of error rate with respect to learning rate, momentum

factor, number of iterations, number of hidden neurons, and the number of

hidden layers. It is seen that for the soil classification problem, optimum

values for the learning rate and momentum factor are taken as 0.6 and 0.9.



Fig. 3.24 Momentum factor versus error rate.



Fig. 3.25 Iterations versus error rate.

Fig. 3.26 Hidden nodes versus error rate.



Fig. 3.27 Hidden nodes versus error rate.

3.6 SELECTION OF VARIOUS PARAMETERS IN BPN

3.6.1 Number of Hidden Nodes

The problem at hand decides the number of nodes in the first and third

layers.

There is no general criterion about deciding the number of hidden nodes.

The guiding criterion is to select the minimum nodes which would not

impair the network performance so that the memory demand for storing the



weights can be kept minimum. Mirchandani and Cao (1989) have proved that

the number of separable regions in the input space, M, is a function of the

number of hidden nodes H in BPN and H = M − 1. Huang and Huang (1991)

argue that in terms of learning efficiency, the optimal number of hidden

neurons to realize a binary valued function is experimentally found out to be

H = K − 1, where K is the number of elements in the learning set. They have

also proved that this is the least upper bound on the number of hidden

neurons needed to realize an arbitrary real valued function defined by set

with K elements.

When the number of hidden nodes is equal to the number of training

patterns, the learning could be fastest (weight vectors associated with each

input and output pair can be algebraically combined). In such cases, BPN

simply remembers training patterns losing all generalization capabilities.

Hence, as far as generalization is concerned, the number of hidden nodes

should be small compared to the number of training patterns (say 10:1).

There are results available in literature, which relate the dimensionality of

the problems and the network size based on the Vapnik−Chervonenkis

dimension (VCdim) of probability theory. These results also indirectly help

in the selection of number of hidden nodes for a given number of training

patterns. A rough estimate of VCdim for BPN is given by its number of

weights which is equal to l1*l2 + l2*l3, where l1 and l3 denote input and

output nodes and l2

denotes hidden nodes. Assume the training samples T to be greater than

VCdim. Now if we accept the ratio of 10:1

10* T =

..........(3.68a)

l 2 =

..........(3.68b)

which yields the value for l 2.



3.6.2 Momentum Coefficient α

We have already seen that another method of reducing the training time is the

use of momentum factor because it enhances the training process. The

influence of the momentum on weight change is shown in Fig. 3.28 where

Fig. 3.28 Influence of momentum term on weight change.

This process works well for many problems but not so well in others. The

momentum also overcomes the effect of local minima. The use of

momentum term will often carry a weight change process through one or

local minima and get it into global minima. This is perhaps its most

important function.

There is a substantial number of advanced algorithms or other procedures

that have been proposed as a means to speed up the training of

backpropagation networks. Sejnowski and Rosenberg (1987) proposed a

similar momentum method that used exponential smoothening. Parker

(1987) proposed a method called “second order” backpropagation that uses

second derivative to produce more accurate estimation of weight change. The

computational requirements were great and were generally viewed as not

being cost effective compared to other methods. The main drawback of the

BPN is the long and sometimes uncertain training time. This may be due to

poor choice of training coefficients and the initial random distribution of



weights. However, in most cases failure to train BPN is usually due to local

minima or network paralysis where training virtually ceases due to operation

in the flat region of sigmoidal function. Backpropagation should never be

used in situations where inputs are continuously changing because then the

process may never converge.

3.6.3 Sigmoidal Gain λ

In some problems, when the weights become large and force the neuron to

operate in a region where sigmoidal function is very flat, a better method of

coping with network paralysis is to adjust the sigmoidal gain. By decreasing

this scaling factor, we effectively spread out sigmoidal function on wide

range so that training proceeds faster.

3.6.4 Local Minima

Tsoukalas and Uhrig (1997) have recommended a procedure for getting over

the problem of local minima. One of the most practical solutions involves the

introduction of a “shock” which changes all weights by specific or random

amounts. If this fails, then the most practical solution is to rerandomize the

weights and start the training all over.

Second method of backpropagation is used until the process seems to stall.

Simulated annealing is then used to continue training until local minima has

been left behind. After

this, simulated annealing is stopped and BPN continues until global

minimum is reached.

In most of the cases, only a few simulated annealing cycles of this two-stage

process are needed. Usually in such a procedure, the final training step is

BPN to minimize the overall error of the process.

3.6.5 Learning Coefficient η

The learning coefficient cannot be negative because this would cause the

change of weight vector to move away from ideal weight vector position. If



the learning coefficient is zero, no learning takes place and hence, the

learning coefficient must be positive. If learning coefficient is equal to 2 then

the network is unstable and if the learning coefficient is greater than 1, the

weight vector will overshoot from its ideal position and oscillate. Hence, the

learning coefficient must be between zero and one. Larger values for the

learning coefficient are used when input data patterns are close to the ideal

otherwise small values are used. If the nature of the input data patterns is not

known, it is better to use moderate values.

3.7 VARIATIONS OF STANDARD BACKPROPATATION

ALGORITHM

3.7.1 Decremental Iteration Procedure

In conventional steepest descent method, the minimum is achieved by

varying the variable as

when a step reveals no improvement, the value of ‘ k’ is reduced and the

process is continued. Similarly in BPN also, when no improvement is

perceived in decrease of error, the training

can be continued with different set of learning coefficients and momentum

factors, further decreasing the error. Usually the training of the network

reaches a plateau and the error

might increase, leading to overtuning. Training can be dispensed with at this

stage and then continued with previous weights using reduced momentum

factor and learning coefficient. Usually learning coefficient is halved and the

momentum factor is reduced by a small value.



This method is applied to one example and the error rate is given for

different values of learning coefficient in Table 3.10.

Table 3.10 Error rate for different η, α

Iteration

Error

Remark

η

α

1

0.256

0.6

0.9

5

0.085

6

0.290

STOP

0.3

0.9

1



0.085

4

0.009

5

0.056

STOP

0.15

0.9

1

0.009

4

0.001



5

0.006

STOP

0.075

0.9

1

0.001

4

0.0005

STOP

3.7.2 Adaptive Backpropagation (Accelerated Learning)

The use of Adaptive Backpropagation (ABP) is developed by Alexander et al.

(1994) and

Atiya et al. (1992) for the development of a fault detection and identification

system for a process composed of direct current motor, a centrifugal pump,

and the associated piping system. In the ABP learning algorithm, the network

weight update rule is chosen such that the error function is forced to behave



in a certain manner that accelerates convergence. In a standard BPN, the

weight update is given by

The learning function ρ( E) depends on the total error E. Though there are

several choices for the form of ρ( E), the most commonly considered

functions are

ρ( E) =

..........(3.73)

where η and E 0 are constant, non negative numbers representing the

learning rate and the error normalization factors respectively. Since ρ( E) = η

E

seems to provide most acceleration, it is normally used. Hence, the weight

update rule is given by

One can combine decremental method with adaptive backpropagation

procedure since in this procedure, the dependence of the learning functions

is on the instantaneous value of the total error thereby leading to in faster

convergence. Furthermore, the algorithm introduces a number of additional

tuning parameters found in other variants of BPN algorithm and it uses only

the current value of the error gradient term to determine the error gradient

norm. The disadvantage of this algorithm is that it has a jumpy behaviour

when approaching local minima but this indirectly helps to avoid entrapment

near local minima and enhances further learning.

3.7.3 Genetic Algorithm Based Backpropagation



Conventional BPN makes use of a weight updating rule based kind of

gradient descent technique to determine their weights. Genetic algorithm on

the other hand turns out to be robust search and optimization technique

outperforming gradient based techniques in obtaining solutions to problems;

acceptable fairly accurately and quickly. Rajasekaran and Vijayalakshmi Pai

(1996) code the weights with the help of GA following a real coded system.

They made use of the principle of survival of the fittest to create an offspring

by making use of genetic operators such as crossover and mutation. The

reproduction is based on the fitness function and in this case it is the error

function. This technique has been applied to many engineering problems.

3.7.4 Quick Prop Training

Fahlman’s (1988) quick prop training algorithms are one of the most effective

algorithms in overcoming the step size problem in backpropagation.

A second order method related to Newton’s method is used to update the

weights in place of simple gradient descent as

..........

(3.75)

Fahlman reports that quick prop consistently outperforms backpropagation.

Quick prop’s weight update procedure depends on two approximations—1.

small changes in one weight produce relatively little effect on the error

gradient observed at other weights and 2. the error function with respect to

each weight is locally quadratic.

3.7.5 Augmented BP Networks

The architecture is that of a standard backpropagation network with

augmented networks, i.e. logarithmic neurons and exponential neurons added

to neural network’s input and output layers. The principle of augmenting the

network is—



the augmented neurons are highly sensitive in the boundary domain, thereby

facilitating the construction of accurate mapping in the model’s boundary

domain.

the network denotes each input variable with multiple input neurons, thus

allowing a highly interactive functions on hidden neurons to be easily

formed.

Therefore, the hidden neurons can more easily construct an accurate network

output for a high interaction mapping model. The architecture of the

augmented neural network is shown in Fig. 3.29.

Fig. 3.29 Architecture of augmented neural network.



The architecture of the augmented neural network is that of a standard

backpropagation network. However, Fig. 3.29 shows that logarithmic neurons

and exponential neurons are added to the network’s input and output layers.

The logarithmic neuron in the input layer receives a natural logarithm

transformation of the corresponding input value of the training data under the

consideration

Ai = ln (1.175 Xi + 1.543) ..........(3.76)

where Xi is the i th input value of training data and Ai the output of i th

logarithm neuron in the input layer.

The input layer’s exponent neurons receive natural exponent transformation

of the corresponding input value by the training data under the following

formula

Bi = 0.851 exp ( Xi) − 1.313..........(3.77)

where Bi is the output of the i th exponent neuron in the input layer and this

transformation is shown in Fig. 3.30.



Fig. 3.30 Transfer function of augmented neuron or input layer.

The output layers’ logarithm neuron and exponent neuron transform output

as

Cj = ln (1.718 Yj + 1)..........(3.78)

Dj = exp (0.6931 Yj − 1)..........(3.79)

The transformation is shown in Fig. 3.31.

Fig. 3.31 Transfer function of augmented neuron or output layer.

The principle of working of augmented neural network is as follows: The

logarithm neuron is highly sensitive in a small value domain. On the other

hand, the exponent neuron is highly sensitive in a large value domain. This

feature can facilitate the construction of an accurate mapping in the

network’s boundary domain.



In BPN, the output Y can be represented as

Y = Y [ H( X)]..........(3.80)

where H is the output of the hidden neuron and X is the input variable. In the

augmented neural network, the network output can be represented as Y = Y [

f ( X, A, B)]..........(3.81) where A is the logarithm transformation of the input

variable and B is the exponent transformation of the input variable. The

augmented neurons in the output layer, although not directly representing the

values of a network’s reasoning output, can still facilitate the normal output

neurons in constructing an accurate mapping in the model’s boundary

domain by modifying the interconnecting weights between hidden layer and

input layer. In addition to this, learning rate and momentum factor of the

general delta rule decay under the following formulae

Here, r η, and r α are the reduction factors for learning rate and momentum

factor and ηmin, αmin are the minimum bounds for learning rate and

momentum factors respectively.

Cheng Yeh (1998) applied the augmented neural network to a structural

engineering problem and compared network’s performance with other

backpropagation networks in

Table 3.11.

Table 3.11 Performance of various BP networks

Neural networks

RMS

Training set

Testing set

Standard BPN

0.01290



0.01982

Augmented neural network

0.00850

0.01631

BPN with delta bar delta

0.01357

0.02041

Projection NN

0.01343

0.02067

General regression NN

0.02574

0.03534

Radial basis function NN

0.01485

0.02043

Modular NN

0.01322

0.02399



Hence, logarithmic neuron and exponent neuron in the network provide

enhanced network architecture capable of markedly improving the network’s

performance.

3.7.6 Sequential Learning Approach for Single Hidden Layer Neural

Networks

Zhang and Morris (1998) proposed the method of sequential learning

approach for single hidden layer neural networks. In this method, hidden

neurons are added one at a time. The procedure starts with one hidden

neuron and sequentially increases the number of hidden neurons until the

model error is sufficiently small. When adding a neuron, the new information

introduced by this neuron results from that part of its output vector which is

orthogonal to the space spanned by the output vectors of previously added

hidden neurons. The classical Gram-Schmidt orthogonalization method is

used at each step to form a set of orthogonal bases for the space spanned by

output vectors and hidden neurons. Hidden layer weights are found through

optimization while output layer weights are obtained from least square

regression. In this architecture, it is possible to determine the necessary

number of hidden neurons required. An additional advantage of this method

is that it can be used to build and train neural networks with mixed types of

hidden neurons and thus, to develop hybrid models. By using mixed types of

neurons, it is found that more accurate neural networks with a smaller

number of hidden neurons can be developed than those in conventional

networks.

3.8 RESEARCH DIRECTIONS

Research work in the area of backpropagation neural networks may be

grouped under the following sections.

3.8.1 New Topologies

At present, neural networks are classified into static and dynamic nets. Many

investigations have suggested modifications for both the varieties. Among

dynamic sets, recurrent nets have been quite popular. They may be

considered as a sequence of error propagation networks where the input and



output vectors are divided into internal and external portions and this

network operates by concatenating the input and output vectors. There are

also other types of time delay networks, continuous time Hopfield nets,

discrete time Hopfield nets, and so on. Variations of static nets such as radial

basis function networks are also in existence. Many investigators are

experimenting to develop novel topologies with desirable features.

3.8.2 Better Learning Algorithms

It is generally agreed that the backpropagation algorithm is expensive in

computer time and is suboptimal in performance. This has led to many

investigations of developing faster algorithms involving less computation. A

group of methods have been suggested in which instead of weight update on

output error, algorithm based on some random or heuristic variations or

perturbations is obtained. Among these MRIII algorithms based on

derivative estimation by weight perturbation, random optimisation, and

technique based on genetic algorithms are typical. There have also been other

popular approaches such as second order weight adjusting layer by layer

optimization and so on. The size of the network is naturally a prime concern

and some algorithms have been developed to prune the network to minimum

size.

3.8.3 Better Training Strategies

It is necessary to cut down the training time. It is also found that training

time depends on the model in the hidden layer, learning rate, momentum

factors, the distribution of training patterns in the input space, and the

training

algorithm. Many investigators have suggested modular architecture for BPN

which could be used to make training faster. Sometimes fine-tuning is also

necessary.

3.8.4 Hardware Implementation



The concern of this area is designing efficient hardware which exploits the

special features of neural computing such as parallel distributed processing.

Interested readers may consult two special Issues of IEEE Transactions of

Neural Networks of May 1992 and also May 1993 on neural network

hardware.

3.8.5 Conscious Networks

The computing world has lot to gain from neural networks. Their ability to

learn by examples makes them very flexible and powerful. Furthermore,

there is no need to devise an algorithm in order to perform a specific task;

there is no need to understand the internal mechanism of the task. They are

also very well suited for real time systems because of their fast response and

computational time, which are due to their parallel architecture. Neural

networks also contribute to other areas of research such neurology and

psychology. They are regularly used to model parts of living organisms and

to investigate the internal mechanisms of the brain. Perhaps the most exciting

aspect of neural networks is that the possibility that some day “Consious”

networks might be developed which are a realistic possibility.

SUMMARY

Architecture of backpropagation networks is discussed.

Various types of nonlinear activation operators are illustrated.

Model for multilayer perceptron is described.

Backpropagation algorithm is given in matrix form.

Different types of training of artificial neural networks are discussed and

backpropagation algorithm is given in detail.

The effect of various parameters on tuning of the network is illustrated.

A toy problem is taken and BPN algorithm is illustrated step by step.



Three real life examples (1) from Mechanical engineering, (2) Civil

engineering, and

(3) Metallurgy are solved using BPN and the performance is compared.

Variations in backpropagation networks and the effect of various parameters

on training are illustrated.

Many variations of BPN algorithm such as decremental iterative procedure,

adaptive backpropagation, GA based BPN, quick prop training, augmented

BPN, and sequential learning single hidden layer neural network are

discussed.

Research directions in the area of BPN are given for future work.

PROGRAMMING ASSIGNMENT

P3.1 Use “MATLAB” tool box “NEURONET” to solve the following

problem using backpropagation training.

Consider a simply supported plate of sides ‘ a and b’. A concentrated unit

load is applied at ( x, η) as shown in Fig. P3.1. The program ANSYS

(Analysis System) is used to determine maximum moments in X and Y

direction and their locations.



Fig. P3.1 Simply supported plate.

Run the program given in “NEURONET” with 4 neurons as inputs ( a, b, x,

η) and 6 neurons as outputs i.e. ( MX, max, Xmx, Ymx, MY, max, Xmy, Ymy)

(a) Train the neural net with one hidden layer, two hidden layers etc.

and vary the number of neurons in the hidden layer.

(b) Observe the performance with different learning rates, sigmoidal gain,

and momentum factors and draw the curves depicting the error rate vs these

factors and also error rate with iterations for particular problem.

(c) Find the values of maximum moments and their positions for a simply

supported plate of 6m × 8m with a concentrated load acting at the centre.

The data for training is given in the Table P3.1.

Table P3.1 Data for plate problem

Input

Output

Plate DIM

Load POS

M

X

X

x

mx

Ymx



My

my

Ymy

a

b

x

η

max

8

8

max

8

8

8

8

4

4

0.32

0.5

0.5



0.32

0.5

0.5

8

8

6.4

2

0.27

0.77

0.28

0.28

0.77

0.28

8

8

1.6

1.6

0.25

0.22

0.22



0.25

0.22

0.22

7.2

8

1.12

6.4

0.26

0.16

0.57

0.23

0.16

0.57

7.2

8

4.96

1.6

0.26

0.65

0.22



0.26

0.65

0.22

8

6.4

4

3.2

0.31

0.5

0.4

0.33

0.5

0.4

5.6

8

1.12

1.6

0.2

0.11

0.22



0.23

0.11

0.22

5.6

8

2.8

6.0

0.3

0.35

0.33

0.29

0.35

0.73

8

4.8

1.6

0.96

0.22

0.22

0.14



0.25

0.22

0.14

8

4

4

2.0

0.26

0.5

0.25

0.32

0.5

0.25

4

8

1.04

6.4

0.26

0.14

0.77



0.23

0.14

0.77

P3.2 Modify the program “NEURONET” given in CD-ROM by including

logarithmic and exponential input and output neurons and study the

performance for the above problem. After training, infer to get the result for

the following problem whose data is given

in Table P3.2

Table P3.2

Input

Desired output

Plate DIM

Load POS

M

X

X

x

mx

Ymx

My

my



Ymy

max

max

a

b

x

η

8

8

8

8

8

8

6

4

0.3

0.73

0.5

0.29

0.73



0.5

7.2

8

1.76

6.4

0.26

0.25

0.73

0.26

0.25

0.3

4.8

8

4.0

6.0

0.3

0.3

0.73

0.28

0.3



0.73

P3.3 The training data for a particular problem is given in Table P9.3. Use

NEURONET to train the data. Show step by step output to input, hidden,

and output neurons as well as error. How the weights W and V

are modified? Use learning coefficient and momentum factors as 0.6

and 0.9 respectively.

Table P3.3

Input

Output

0.16

0.12

0.08

0.04

0.2

0.12

0.24

0.16

0.08

0.4

0.08

0.16



0.24

0.12

0.6

0.04

0.08

0.12

0.16

0.8

P3.4 Derive the backpropagation training algorithm for the case where the

activation function is an arctan function.

P3.5 Derive the backpropagation training algorithm for the neurons in the

hidden layer using logistic function and the neurons in the output layer using

linear function.

P3.6 In the design of roof trusses, preliminary dimensions are to be assumed

to calculate dead weight of the truss for analysis. A neural network approach

is to be incorporated for the preliminary design of trusses. The input

variables are fixed as span, slope, access provided or not and spacing. For the

Fink Truss shown in Fig. P3.2 the scaled input and output are given in the

form of table shown in Table P3.4.



Fig. P3.2 Fink truss.

Table P3.4

Output of diffterent type of areas

Input

7000

Span

Slope

Spacing

Access

Type 1

Type 2

Type 3

Type 4

40

40

10

0.225

0.6

1

0.4



0.3245

0.3245

0.136

0.136

0.225

0.65

0

0.4

0.3245

0.3245

0.136

0.136

0.4

0.6625

1

0.7

0.4674

0.4674

0.247

0.1934



0.25

0.75

0

0.3

0.3245

0.3245

0.1368

0.1368

0.5

0.45

1

0.5

0.685

0.685

0.193

0.299

0.5

0.6

1

0.6



0.628

0.628

0.299

0.247

0.45

0.75

0

0.5

0.3245

0.3245

0.193

0.1368

0.45

0.6

1

0.4

0.3577

0.3577

0.193

0.164



0.5

0.65

1

0.3

0.3245

0.3245

0.193

0.136

0.4

0.6

0

0.6

0.3245

0.3245

0.164

0.136

Access = 1 means access provided and 0 means no access provided.

Train the network with

the given data and infer to find the areas of the members of a truss of span 32

m with a



slope of 20 degrees and access not provided with a spacing of 3 m (use

“NEURONET”).
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Chapter 4

Associative Memory



Associative Memories, one of the major classes of neural networks, are faint

imitations of the human brain’s ability to associate patterns. An Associative

Memory (AM) which belongs to the class of single layer feedforward or

recurrent network architecture depending on its association capability,

exhibits Hebbian learning.

In this chapter, the association memory network is discussed.

Autocorrelators and heterocorrelators are first introduced. Wang et al’s

multiple training encoding strategy and exponential bidirectional associative

memory are presented next. The AM’s capability to associate real-coded

patterns is elaborated. Finally, the application of AM in character recognition

and fabric defect identification is discussed.

An asssociate memory is a storehouse of associated patterns which are

encoded in some form. When the storehouse is triggered or incited with a

pattern, the associated pattern pair is recalled or output. The input pattern

could be an exact replica of the stored pattern or a distorted or partial

representation of a stored pattern. Figure 4.1 illustrates the working of an

associative memory.

Fig. 4.1 The working of an associative memory.

In the figure, (Δ, ⌈), (7, 4), and (+, Π) are associated pattern pairs. The

associations represented using ‘↔’ symbol are stored in the memory. When

the memory is triggered for instance, with a Δ, the associated pattern ⌈ is
retrieved automatically.



If the associated pattern pairs ( x, y) are different and if the model recalls a y

given an x or vice versa, then it is termed as heteroassociative memory. On

the other hand, if x and y refer to the same pattern, then the model is termed

as autoassociative memory. While heteroassociative memories are useful for

the association of patterns, autoassociative memories are useful for image

refinement, that is, given a distorted or a partial pattern, the whole pattern

stored in its perfect form can be recalled. Autoassociative correlation

memories are known as autocorrelators and heteroassociative correlation

memories are known as heterocorrelators. Figure 4.2 illustrates

heteroassociative and autoassociative memories.

Fig. 4.2 ‘Hetero’ and ‘auto’ correlators.

An associative memory can therefore be thought of as a mapping g between a

pattern space

The operator M has different forms for different memory models. The

algorithm which computes M is known as the recordin g or storage

algorithm.

In most cases, M is computed using the input pattern vectors. Based on the

principle of recall, associative memory models may be classified into static

and dynamic networks. While static networks recall an output given an input

in one feedforward pass, dynamic networks recall through an input/output

feedback mechanism which takes time. Static networks are non-recurrent

and dynamic networks are termed recurrent. Figure 4.3 illustrates static and

dynamic associative memories.



Fig. 4.3 Static and dynamic associative memories.

Observe that in Fig. 4.3(a) for a static model, the associated for the input

pattern is recognized in one feedforward pass whereas for a dynamic

network, as shown in Fig. 4.3(b), the following recursive formulae are put to

work until an equilibrium state is reached.

(4.3)

and

(4.4)



4.1 AUTOCORRELATORS

Autocorrelators, now most easily recognized by the title of Hopfield

Associative Memory (HAM), were introduced as a theoretical notation by

Donald Hebb (1949) and rigorously analyzed by Amari (1972, 1977). Other

researchers who studied their dynamics include Little (1974), Little and

Shaw (1978), and Hopfield (1982).

First order autocorrelators obtain their connection matrix (indicative of the

association of the pattern with itself) by multiplying a pattern’s element with

every other pattern’s elements. A first order autocorrelator stores M bipolar

patterns A 1, A 2,..., Am by summing together m outer products as Example

4.1 (Working of an autocorrelator)

Consider the following patterns

A 1 = (−1, 1, −1, 1)



A 2 = (1, 1, 1, −1)

A 3 = (−1, −1, −1, 1)

which are to be stored as an autocorrelator.

The connection matrix,

Recognition of stored patterns

The autocorrelator is presented a stored pattern A 2 = (1, 1, 1, −1). The

computation of Eq. (4.6) yields,

a new

1

= f(3 + 1 + 3 + 3, 1) = 1

a new

2

= f(6, 1) = 1

a new

3

= f(10, 1) = 1

a new

4



= f(−10, 1) = −1

This is indeed the vector itself. Also, in the retrieval of A 3 = (−1, −1, −1, 1) (

a new

new

new

new

1

, a 2

, a 3

, a 4

) = (−1, −1, −1, 1)

yielding the same vector.

Recognition of noisy patterns

Consider a vector A′ = (1, 1, 1, 1) which is a distorted presentation of one

among the stored patterns.

We proceed to find the proximity of the noisy vector to the stored patterns

using the Hamming distance measure. The Hamming distance ( HD) of a

vector X from Y, given X = ( x 1, x 2, ..., xn) and Y = ( y 1, y 2,..., yn) is given

by, (4.8)

Thus, the HD of A′ from each of the patterns in the stored set is as follows:

HD ( A′, A 1) = 4

HD ( A′, A 2) = 2

HD ( A′, A 3) = 6



It is evident that the vector A′ is closer to A 2 and therefore resembles it, or in

other words, is a noisy version of A 2.

Now, the computations using Eq. (4.6) yield

Hence, in the case of partial vectors, an autocorrelator results in the

refinement of the pattern or removal of noise to retrieve the closest matching

stored pattern.

4.2 HETEROCORRELATORS: KOSKO’S DISCRETE BAM

As Kosko and others (1987a, 1987b), Cruz. Jr. and Stubberud (1987) have

noted, the bidirectional associative memory (BAM) is a two-level nonlinear

neural network based on earlier studies and models of associative memory

(Kohonen 1972; Palm, 1980; Nakano, 1972; Kohonen, 1977; Anderson,

1983; Kohonen and Oja, 1976; Hirai, 1983).

Kosko extended the unidirectional autoassociators to bidirectional processes.

One important performance attribute of discrete BAM is its ability to recall

stored pairs particularly in the presence of noise.

Bidirectional Associative Memory (BAM) introduced by Kosko (1987b) has

the following operations:

1. There are N training pairs {( A 1, B 1), ( A 2, B 2),..., ( Ai, Bi),..., ( An,

Bn)}

where,

Ai = ( ai 1, ai 2,..., ain)



Bi = ( bi 1, bi 2,..., bip)

Here, aij or bij is either in the ON or OFF state.

2. In the binary mode, ON = 1 and OFF = 0 and in the bipolar mode, ON =

1 and

OFF = −1

We frame the correlation matrix

To retrieve the nearest ( Ai, Bi) pair given any pair (α, β), the recall equations

are as follows:

Starting with (α, β) as the initial condition, we determine a finite sequence

(α′, β′), (&alpha;″, β″), ... until an equilibrium point (α F, β F), is reached.

Here,

4.2.1 Addition and Deletion of Pattern Pairs



Given a set of pattern pairs ( Xi, Yi), for i = 1, 2, ..., n and their correlation

matrix M, a pair

( X′, Y′) can be added or an existing pair ( Xj, Yj) can be erased or deleted

from the memory model.

In the case of addition, the new correlation matrix M is The addition and

deletion of information contributes to the functioning of the system as a

typical human memory exhibiting learning and forgetfulness.

4.2.2 Energy Function for BAM

A pair ( A, B) defines the state of a BAM. To store a pattern, the value of the

energy function for that particular pattern has to occupy a minimum point in

the energy landscape. Also, adding new patterns ought not to destroy the

previously stored patterns.

The stability of a BAM can be proved by identifying a Lyapunov or energy

function E with each state ( A, B) . In the autoassociative case, Hopfield

identified an appropriate E (actually, Hopfield defined half this quantity) as

E(A) = − AMAT         (4.17)

However, Kosko proposed an energy function,

E( A, B) = − AMBT           (4.18)

for the bidirectional case and this for a particular case A = B corresponds to

Hopfield’s autoassociative energy function.

Also, when a paired pattern ( A, B) is presented to BAM, the neurons change

states until a



bidirectionally stable state ( Af, Bf) is reached. Kosko proved that such a

stable state is reached for any matrix M which corresponds to the local

minimum of the energy function.

Kosko proved that each cycle of decoding lowers the energy E if the energy

function for any point (α, β) is given by

E = −α M β T,          (4.19)

However, if the energy E evaluated using the coordinates of the pair ( Ai, Bi),

i.e. E = − A

T

iMBi          (4.20)

does not constitute a local minimum, then the point cannot be recalled,

eventhough one starts with α = Ai. In this aspect, Kosko’s encoding method

does not ensure that the stored pairs are at a local minima.

Example 4.2 (Working of Kosko’s BAM)

Suppose one has N = 3 with the pattern pairs given by

Converting these to bipolar forms



Here, β′ is same as Y 3. Hence, (α F, β F) = ( X 3, Y 3) is the desired result.

Example 4.3 (Incorrect recall by Kosko’s BAM)



Consider the pattern pairs,

M =

Suppose one starts with α = X 2, then the calculations for the retrieval of Y 2

yield

α M = (13 −13 −5 1 1 −5 −13 −19 5)

φ(α M) = β′ = (1 −1 −1 1 1 −1 −1 −1 1)

β′ MT = (5 5 11 −11 −11 5 5 11 −11)

φ(β′ MT) = α′ = (1 1 1 −1 −1 1 1 1 −1)

α′ M = (13 −13 −5 1 1 −5 −13 −19 5)

φ(α′ M) = β″ = (1 −1 −1 1 1 −1 −1 −1 1)

Here, β″ = β′

Hence, the cycle terminates with



α F = α = X 2 (−1 1 1 1 −1 −1 1 1 1)

and      

.β F = β′ = (1 −1 −1 1 1 −1 −1 −1 1)

This however, is an incorrect pattern pair to be recalled.

Now, a computation of the energy functions for ( X 2, Y 2) and (α F, β F)

yield E 2 = −71, EF = −75

It could be shown that ( X 2, Y 2) is not at its local minimum by evaluating E

at a point which is one Hamming distance away from Y 2.

Thus, consider Y 2′ = (1 −1 −1 −1 1 −1 −1 −1 1) where the fifth component

−1 of Y 2 has been changed to 1. Now,

E = − X 2 M Y 2′ T

= −73

which is lower than E 2, confirming the hypothesis that ( X 2, Y 2) is not at

its local minimum of E.

Summarizing, BAM cannot guarantee the recall of a particular training pair

or several training pairs since the correlation matrix M used by Kosko does

not guarantee that the energy of a training pair is at its local minimum. A

pair Pi can be recalled if and only if this pair is at a local minimum of the

energy surface (Kosko, 1988).

4.3 WANG ET AL.’S MULTIPLE TRAINING ENCODING

STRATEGY

Wang et al. (1990a, 1990b) proposed the Multiple Training Encoding

Strategy which is an enhancement of the encoding strategy proposed by



Kosko.

To recover a pair ( Ai, Bi) using multiple training of order q, one augments

the matrix M with a matrix P defined as

P = ( q − 1) X T

i Yi   (4.21)

Here, Xi, Yi are the bipolar forms of ( Ai, Bi).

The new value of the energy function E evaluated at Ai, Bi then becomes E′(

A

T

T

T

i, Bi) = − Ai M Bi − ( q − 1) Ai Xi Yi Bi       (4.22) The

augmentation therefore implies adding ( q − 1) more pairs located at ( Ai, Bi)

to the existing correlation matrix. As a result, the energy E′ can be reduced to

an arbitrarily low value by a suitable choice of q. Also, this ensures that the

energy at ( Ai, Bi) does not exceed that at points which are one Hamming

distance away from this location. Algorithm 4.1 illustrates the working of the

model.

Algorithm 4.1 (Wang et al.’s Multiple Training Encoding Strategy)



Example 4.4 (Working of Multiple Training Encoding Strategy) For the

pattern pairs considered in Example 4.3, let the pair to be recalled be ( X

T



2, Y 2). Choosing q = 2, so that P = X 2 Y 2, the augmented correlation

matrix becomes

M = X T

T

T

1 Y 1 + 2 X 2 Y 2 + X 3 Y 3



ie., M =

Now given α = X 2 the corresponding β = Y 2 is correctly recalled. The

computations are as follows:

α M = (22 −22 −14 −8 −8 −14 −22 −28 14)

β′ = φ(α M) = (1 −1 −1 −1 −1 −1 −1 −1 1)

β′ MT = (18 18 16 −16 −16 18 18 16 −16)

α′ = φ(β′ MT) = (1 1 1 −1 −1 1 1 1 −1)

= α

However, it is not possible to recall ( X 1, Y 1) for the same M. This is so,

since choosing

α = X 1,

α M = (−22 22 6 4 4 6 22 24 −6)

β′ = (−1 1 1 1 1 1 1 1 −1)

To tackle this, M needs to be augmented further.

Defining M = 2 X T

T

T

1 Y 1 + 2 X 2 Y 2 + 2 X 3 Y 3, we get M =

We now observe that all three pairs can be correctly recalled.



For α = X 1 = (−1 −1 −1 1 1 1 −1 −1 1)

α M = (−31 31 −3 −5 −5 −3 31 33 3)

φ(α M) = β′ = (−1 1 −1 −1 −1 −1 1 1 1)

= Y 1

For α = X 2 = (1 1 1 −1 −1 1 1 1−1)

α M = (29 −29 −7 −1 −1 −7 −29 −35 7)

φ(α M) = β′ =(1 −1 −1 −1 −1 −1 −1 −1 1)

= Y 2

For α = X 3 = (1 1 −1 1 1 −1 1−1 1)

α M = (1 −1 13 −5 −5 13 −1 1 17 −13)

φ(α M) = β′ = (1 −1 1 −1 −1 1 −1 1 −1)

= Y 3

Thus, the multiple training encoding strategy ensures the correct recall of a

pair for a suitable augmentation of M. Generalizing the correlation matrix,

for a correct recall of all training pairs, we write

where qi’s are positive real numbers. This modified correlation matrix is

called the generalized correlation matrix.



The necessary and sufficient conditions for the weights qi such that all

training pairs will be correctly recalled, has been discussed by Wang et al.

(1991).

Example 4.5 (Generalized correlation matrix for multiple training encoding

strategy)

Consider the pattern pairs

The generalized correlation matrix M for q 1 = 3/2, q 2 = 3/2, q 3 = 2, and q

4 =

3 is given by



M =

The computations for the retrieval of all training pairs yield

α = X 2 = (1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1)

α M = (20 26 16 −23 −22 −16 19 25 20 −19)

β = (1 1 1 −1 −1 −1 1 1 1 −1) = Y 2

α = X 4 = (1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1)

α M = (36 −54 48 −39 42 −48 51 −39 36 −51)

β = (1 −1 1 −1 1 −1 1 −1) = Y 4

α = X 3 = (1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 1 1 1)

α M = (30 48 −30 −15 12 30 −45 −27 30 45)

β = (1 1 −1 −1 1 1 −1 −1 1 1) = Y 3

α = X 1 = (1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1)

α M = (28 34 8 17 −14 −8 −37 −31 28 37)

β = (1 1 1 1 −1 −1 −1 −1 1 1) = Y 1



4.4 EXPONENTIAL BAM

The capacity ( k) of a specific BAM structure is defined to be the maximum

number of training pairs selected from a uniform distribution which can be

recalled with a minimum specified probability P = 1 − k.

Wang and Don (1995) proposed a BAM structure with an exponential form

and it is therefore termed eBAM. eBAM has higher capacity for pattern pair

storage than conventional BAMs. The model takes advantage of the

exponential nonlinearity in the evolution equations causing a significant

increase in the signal-to-noise ratio. The energy, as a result decreases as the

recall process is in progress, ensuring the stability of the system. The

increase in the signal-to-noise ratio also enhances the capacity of BAM.

4.4.1 Evolution Equations

Suppose we are given N training pairs {( A 1 , B 1), ( A 2 , B 2), ..., ( An,

Bn)}

where Ai =

and Bi =



and if Xi, Yi are the bipolar

modes of the training pattern pairs Ai and Bi respectively, given by Xi ∈

{ − 1, 1} n and Yi ∈ { − 1, 1} p.

Then, we use the following equations in the recall process of eBAM.

(4.26)

The reasons for using an exponential scheme are to enlarge the attraction

radius of every stored pattern pair and to augment the desired pattern in the



recall reverberation process.

Example 4.6 (Working of eBAM)

Consider the set of pattern pairs

In the case of noisy patterns, eBAM retrieves the closest pair among the

stored patterns which is associated with the noisy pattern.

Example 4.7 (Recall of noisy vectors by eBAM)

For the set of pattern pairs considered in Example 4.6. Consider the retrieval

of

X = (1 −1 −1 −1 −1 1 1 −1 1 1 −1 1 1 1 −1)

Now the Hamming distance of X from each of X 1, X 2, X 3 is HD ( X, X 1) =

8

HD ( X, X 2) = 4

HD ( X, X 3) = 10

Observe that X is closer to X 2 by way of its distance.

Now, the application of eBAM’s evolution equations results in

⟨ X ⋅ X 1⟩ = 8

⟨ X ⋅ X 2⟩ = 12

⟨ X ⋅ X 3⟩ = 8

Choosing b = 2, the vector retrieved is

Y = (−1 1 −1)

which is Y 2 and is the desired result.



4.5

ASSOCIATIVE

MEMORY

FOR

REAL-CODED

PATTERN PAIRS

Most associative memory architectures insist on binary or bipolar pattern

pairs. Rajasekaran and Pai (1998) proposed an associative memory model

termed simplified Bidirectional Associative Memory (sBAM) which not only

associates patterns represented in bipolar forms but also those that are real-

coded. However, the evolution equations demand the normalization of real-

coded input pattern vectors to vectors of unit length, before their application.

Thus, sBAM proceeds in two steps, namely input normalization and the

application of evolution equations.

4.5.1 Input Normalization

4.5.2 Evolution Equations

Let α be the vector to be submitted to retrieve the associated pair β. Now α



could represent a stored pattern or a noisy or an unknown pattern.

Irrespective of the case, the general system of equations is given as: Frame

the correlation vector



It is to be observed that the computation of Eq. (4.30) is unnecessary since

for some d, when

the corresponding

is the vector to be

retrieved.

Also, in the event of noisy vectors, it is to be noted that there could exist an l,

s ∈ {1, 2,..., N}, l ≠ s such that ml = ms = 1. In such a case, it implies that

the noisy vector α is close to Âl and Âs by the same “distance”. Thus, if d α s

is the Euclidean distance between α and Âs and d α l that between α and Âl,

then d α l = d α s. The system, therefore, could retrieve or depending on

whether matrix M is chosen to be

(4.31)

assuming s < l. Algorithm 4.2 illustrates the working of sBAM.

Algorithm 4.2 (Simplified Bi-directional Associative Memory)



Example 4.8 (Retrieval of stored patterns by sBAM)



Consider the following pattern pairs:

On applying the threshold function φ , the correlation vector M is given by M

= (0, 1, 0) which retrieves B 2, which is the correct pair.

Example 4.9 (Retrieval of an unknown pattern by sBAM)

For the set of pairs considered, let us suppose A′ (an unknown pattern) is to

be presented for retrieval. The system now retrieves the B corresponding to A

among the stored pattern pairs which is close to A′.

Let α = (10.26, −53.80, −81.75, 98.96) be an unknown pattern. It may be

observed that on an inspection α is ‘closer’ to Â 3 among Â 1, Â 2, Â 3.

The normalized α = (0.0735, −0.385, −0.5858, 0.7091)



The recall calculations are

Now, M = (0, 0, 1). Therefore B 3 is retrieved which is again the appropriate

pair. It may also be verified that the system has retrieved that pattern which is

closest to that of the stored pattern pairs, in the case of noisy patterns.

The Euclidean distance measure d between two real vectors X = ( x 1, x 2,...,

xn) and

Y = ( y 1, y 2,..., yn) is given by The Euclidean distance measure di of the

normalized α from Ai, i = 1, 2, 3

respectively, is ( d 1, d 2, d 3) = (1.4599, 1.8105, 0.0098). Choosing the

minimum, we obtain α closer to Â 3 and therefore the system has

appropriately recalled B 3.

4.6 APPLICATIONS

In this section, the applications of associative memories to real world

problems are illustrated. We discuss two applications, namely

Recognition of characters (using bipolar coding)

Fabric defect identification (using real coding)



These applications serve to demonstrate ways in which associative memories

can be used for the solution of problems.

4.6.1 Recognition of Characters

Consider a set of English alphabetical characters such as A, B, C, ... which

are to be recognized. The objective is to allow the associative memory model

identify the characters presented.

The characters are engraved in a 14 × 14 grid as shown in Fig. 4.4. These

characters are to be associated with their ASCII equivalents. Thus, the ( X, Y)

pattern pairs which are to be associated using the associative memory model

are the grid patterns and their ASCII equivalents.

The grid patterns are represented as a bipolar vector of 196 components. If

the pixel in the grid is shaded, the vector component is 1 otherwise it is −1.

Also, the ASCII numbers of the characters have been represented using their

bipolar equivalents. Figure 4.5 shows the bipolar coding of the sample

characters, and their ASCII equivalents.

Fig. 4.4 Characters engraved in a grid.

Making use of Wang et al.’s associative memory model and choosing q 1 =



2, q 2 = 3, and

q 3 = 2, we frame the correlation matrix [M]196 × 7 given by M = 2 X T

T

T

1 Y 1 + 3 X 2 Y 2 + 2 X 3 Y 3

Fig. 4.5 Bipolar equivalent of the pattern pairs.

The recall of X 1, X 2, X 3 yields the following results: X 1 ⋅ M = (332, −332,

−452, −332, −332, −452, 308) φ( X 1 ⋅ M) = (1 −1 −1 −1 −1 −1 1)(on

application of the threshold function φ defined in Eqs. (4.12−4.14)



= Y 1

X 2 ⋅ M = (652, −652, 636, −652, −652, 636, −524) φ( X 2 ⋅ M ) = (1 −1 1 −1

−1 1 −1)

= Y 2

X 3 ⋅ M = (404, −404, 548, −404, −404, 548, 238) φ( X 3 ⋅ M) = (1 −1 1 −1

−1 1 1)

= Y 3

Recall of noisy characters

Consider the set of noisy characters as shown in Fig. 4.6.

Fig. 4.6 Noisy characters.

The recall of the bipolar vectors corresponding to A′, R′ and S′ which are

partially distorted versions of the respective characters A, R and S yields A′ ⋅
M = (356, −356, −332, −356, −356, −332, 284) φ( A′ ⋅ M) = (1 −1 −1 −1 −1

−1 1 1)

= Y 1 (character A)

R′ ⋅ M = (644, −644, 596, −644, 596, −388)

φ( R′ ⋅ M) = (1 −1 1 −1 −1 1 −1)



= Y 2 (character R)

S′ ⋅ M = (324, −324, 404, −324, −324, 404, 252) φ( S′ ⋅ M ) = (1 −1 1 −1 −1

1 1)

= Y 3 (character S)

4.6.2 Fabric Defect Identification

Inspection of fabrics for defects depends on human sight and the results are

greatly dependent on the mental and physical condition of the inspector.

Textile engineers have therefore begun to seek assistance from computers and

in recent years have found neural computing to hold a lot of potential in

handling a wide range of problems in textile engineering.

Thus, for the problem of fabric defect identification, Tsai et al. (1995)

applied conventional multilayer perceptron using the backpropagation

algorithm as a learning strategy. However, an elegant solution has been

suggested by Rajasekaran (1997) by making use of a self-organizing network

namely training free counterpropagation network, which is an improvement



(Rajasekaran and Pai, 1997) over Hecht Nielsen’s counterpropagation

network.

The sBAM scheme offers an elegant solution to the fabric defect

identification problem. The defects to be identified are nep, broken end,

broken pitch, and oil stain. For purposes of classification, the categories are

identified by numbers, namely 1—normal, 2—nep, 3−broken end, 4—broken

pitch, and 5—oil stain. Figure 4.7(a) illustrates a normal fabric and Figs.

4.7(b)−4.7(d) show some kinds of fabric defects.

Fig. 4.7(a) Normal fabric.



Fig. 4.7(b) Nep.

Fig. 4.7(c) Broken end.

Fig. 4.7(d) Oil stain.



Tsai et al. employed a gray level co-occurrence matrix (Sobus et al., 1997) to

obtain the feature parameters f 1, f 2, f 3, f 4, f 5, f 6 for each fabric defect.

Among the feature parameters, f 1, f 2, f 3, and f 4 are the contrast (CON)

measurements of the texture images along 0°, 45o, 90o and 135o, when the

spatial displacement d is equal to 1. Here, f 5, f 6 are the contrast values at d

=

12, θ = 0o and d = 16, θ = 90o respectively. Here, θ is the direction angle.

Tsai et al.’s experimental data has been used for the associative memory

model. Table 4.1 refers to a sample set of input representing some defects and

stored in the associative memory model. Table 4.2 shows the results of the

defects identified by sBAM, when a testing set comprising unknown

instances of the various defects was presented for retrieval. The sBAM model

is able to identify fabric defects with 100% accuracy.

Table 4.1 Sample set of stored patterns presented to sBAM for fabric defect

identification f 1

f2

f 3

f 4

f 5

f 6

Defects

0.3978

0.6433

0.3704



0.4430

0.3484

0.3811

1

0.3920

0.6464

0.3532

0.4221

0.3352

0.3859

1

0.3887

0.6363

0.3601

0.4202

0.3220

0.3257

1

0.3851

0.6228



0.3567

0.4361

0.3496

0.3371

1

0.3529

0.5768

0.3219

0.3865

0.4417

0.4725

2

0.3465

0.584

0.3225

0.3819

0.4740

0.5255

2

0.3467



0.5767

0.3130

0.3782

0.3845

0.4925

2

0.3537

0.5642

0.3182

0.3918

0.4358

0.5035

2

0.3159

0.5158

0.3214

0.3981

0.5433

0.3301

3



0.3354

0.5356

0.3373

0.4095

0.5594

0.3677

3

0.3534

0.5655

0.3275

0.4129

0.5210

0.3301

3

0.3761

0.5795

0.3399

0.4324

0.5290

0.3305



3

0.3765

0.6080

0.3098

0.3824

0.3198

0.3578

4

0.3840

0.5953

0.3123

0.3920

0.3165

0.4022

4

0.3854

0.6023

0.3101

0.3890

0.3154



0.3635

4

0.3873

0.5970

0.3074

0.3944

0.3554

0.3735

4

0.3592

0.4453

0.3000

0.3543

0.4973

0.4100

5

0.4049

0.4874

0.3207

0.3977



0.5187

0.4240

5

….

Table 4.2 Results of the sample testing set (unstored patterns) presented for

fabric defect identification Defect

Actual

f 1

f 2

f 3

f 4

f 5

f 6

identified by sBAM

defect

0.3900

0.6402

0.3584

0.4205

0.3726



0.3434

1

1

0.4026

0.6362

0.3601

0.4320

0.3438

0.3442

1

1

0.3879

0.6161

0.3419

0.4153

0.3228

0.3547

1

1

0.3689



0.6188

0.3483

0.4026

0.4393

0.4813

2

2

0.3789

0.6173

0.3447

0.4042

0.3954

0.4213

2

2

0.3663

0.6173

0.3444

0.4045

0.4439



0.4788

2

2

0.3881

0.6345

0.3569

0.4305

0.4214

0.5121

2

2

0.3509

0.5957

0.3507

0.4079

0.5432

0.3107

3

3

0.3661



0.5915

0.3361

0.4137

0.4808

0.2884

3

3

0.3717

0.5968

0.3237

0.4003

0.4708

0.3376

3

3

0.3723

0.5821

0.2097

0.3695

0.3453



0.3765

4

4

0.3836

0.6022

0.3054

0.3861

0.3383

0.3429

4

4

0.4000

0.4976

0.3254

0.3969

0.5242

0.4233

5

5

0.2626



0.3115

0.2417

0.2633

0.4584

0.3841

5

5

0.4051

0.5158

0.3361

0.4082

0.6228

0.6095

5

5

4.7 RECENT TRENDS

The bidirectional associative memory is a two-layer nonlinear recurrent

network associating pattern pairs

where i = 1, 2,..., N. The model can be



generalized to display multiple association of pattern vectors ( ai, bi, ci,...)

where i = 1, 2,..., N. Such an associative memory model termed multiple

association memory has been proposed by Hagiwara (1990). Most learning

methods for BAM do not consider the basin of attraction seriously which

may restrict the application of a BAM as a CAM ( content addressable

memory). Wang et al. (1994) proposed a learning algorithm for BAM with

optimal stability which guarantees the storage of training patterns with

basins of attraction as large as possible.

An asymmetric BAM with asymmetric feedforward, feedback connections,

pattern nonorthogonality and relatively large capacity has been proposed by

Xu et al. (1994). A BAM model which uses an optimal associative memory

matrix in place of the standard Hebbian or quasicorrelation matrix has been

suggested by Wang (1996). Iku and Makoto (1996) have proposed a complex

associative memory and Lee and Wang (1998), a multivalued bidirectional

associative memory.

SUMMARY

Associative memories are a class of neural network architectures which store

associated patterns in some form and recall them when they are incited with

their associated pairs. The associative mapping is quite often a general

nonlinear matrix type operator. The patterns presented to the network could

be an exact replica of the stored patterns or a noisy version of the same.

The associative memory architectures can be classified into heteroassociative

and autoassociative models, depending on the pattern set processed, and into



static and dynamic models, based on the recall mechanism employed to

retrieve a pattern.

First order autocorrelators obtain their connection matrix by multiplying a

pattern’s element with every other pattern’s element, i.e.

The recall equation is a vector-matrix multiplication followed by a pointwise

nonlinear threshold function.

Kosko extended the unidirectional autoassociators to bidirectional associative

processes. Making use of a correlation matrix computed from the pattern

pairs, the system proceeds to retrieve the nearest pattern pair given any pair

(α, β), with the help of recall equations. However, Kosko’s encoding method

does not ensure that the stored pairs are at a local minimum and hence,

results in incorrect recall.

Wang et al.’s multiple training encoding strategy which is an enhancement of

Kosko’s network ensures correct recall of pattern pairs. The generalized

correlation matrix suggested is

Wang and Don’s eBAM reports higher capacity for pattern pair storage than

conventional BAMs. The exponential nonlinearity in the evolution equations

results in the decrease of energy, thereby ensuring correct recall.

Most BAM architectures employ bipolar/binary encoding of pattern pairs

which are to be associated. Rajasekaran and Pai suggested sBAM

which associates pattern pairs that are not only bipolar coded but also real-

coded. The patterns, however, are to be normalized before application of the

evolution equations.

Finally, two applications, namely recognition of characters and fabric defect

identification have been discussed. The former employs bipolar encoding and

the latter, real encoding of pattern pairs.



PROGRAMMING ASSIGNMENT

P4.1 Fink Truss Design. In the design of roof trusses, the initial areas of

members are essential for the analysis. If the truss configuration is

determinate then the initially assumed areas affect the deflection of the truss

system and if it is indeterminate, it then affects the forces in the members in

addition to deflection. In case, the assumed area deviates much from the

actual area necessary, the system has to be reanalyzed and redesigned and the

process is to be repeated until the area taken for the analysis and design are

the same.

The problem here is to obtain the initial area of truss configuration. For the

Fink Truss shown in Fig. P4.1, span, angle, type of access (‘provided’/‘not

provided’), and the spacing of the trusses are taken as inputs. However, it is

assumed that the access is provided, thereby reducing the number of inputs to

three. The outputs are the areas of the four regions, namely top chord

members, bottom chord members, and the two web members (area 1−area 4).

Table P4.1 illustrates a sample set of data to be recorded by the associative

memory model.

Fig. P4.1 Fink truss.

Table P4.1

Span

Angle

Spacing



Area 1

Area 2

Area 3

Area 4

10

26

4

2275

2275

959

959

10

20

3

2275

2275

1225

959

18

28



4

2275

2275

1456

959

12

22

3

2275

2275

959

959

20

26

3

2275

2275

1351

959

15



26

3

2275

2275

1148

959

16

23

3

2275

2275

1148

959

(i) Normalize the input-output data sets of Table P4.1.

(ii) Implement Algorithm 4.2 for simplified bidirectional associative

memory.

(iii) Test for the outputs retrieved corresponding to the data set given in Table

P4.2 (after normalization).

Table P4.2

Span

Angle



Spacing

Area 1

Area 2

Area 3

Area 4

10

24

4

2275

2275

959

959

16

26.52

7

3269

3269

1729

1351

12



20

3

2275

2275

959

959

18

25

4

2506

2506

1351

959

P4.2 Satellite Image Identification. Wang et al. (1990) applied their

associative memory model to a satellite image identification system.

Here, a set of satellite images are to be identified. A sample set of images and

their associated pairs have been illustrated in Fig. P4.2.



Fig. P4.2 Satellite images and their associated pairs.

(i) Design a graphics user interface to accept these images.

(ii) Convert the images into their bipolar equivalents.



(iii) Implement Wang et al.’s multiple training encoding strategy (Algorithm

4.1).

(iv) Test for the recognition of stored patterns ( X).

(v) Test for the recognition of noisy images ( X′), a sample of which is shown

in

Fig. P4.3.



Fig. P4.3 Noisy satellite images.
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Chapter 5

Adaptive Resonance Theory

5.1 INTRODUCTION

One of the main goals of computer science is to develop an intelligent

machine that can

perform satisfactorily in unaided fashion in a complex environment.

Paradigms such as

Adaptive Resonance Theory (ART) that learn in an unsupervised fashion

represent an attempt to fulfil the goal. ART, the Adaptive Resonance Theory



was introduced by Stephen Grossberg (1988) in 1976. Currently, ART

headquarters are located at The Centre for Adaptive Systems and Deptt. of

Cognitive and Neural Systems, Boston University (http://cns-web.bn.edu).

The term resonance refers to the so called resonant state of the network in

which a category prototype vector matches the current input vector so close

enough that the orienting system will not generate a reset signal in the other

attentional layer. The networks learn only in their resonant states. The

architecture of ART is based on the idea of adaptive resonant feedback

between two layers of nodes as developed by Grossberg (1988). In case of

ART paradigm, autonomous learning and pattern recognition proceed in a

stable fashion in response to an arbitrary sequence of input patterns. In this

paradigm, self-regulatory control structure is embedded into competitive

learning mode. ART is capable of developing stable clustering of arbitrary

sequences of input patterns by self-organization.

5.1.1 Cluster Structure

Patterns can be viewed as points of N-dimensional feature space and we

expect a pattern similar in some respects. On the basis of class membership

or other attribute value, it would be close to each other in the pattern space.

Thus, pattern belonging to class C 1 would cluster more closely to one

another than any pattern belonging to class Ci. Of course, in many practical

applications these clusters overlap.



Many unsupervised learning algorithms try to identify several prototypes of

exemplars that can serve as cluster centres. K-means algorithm, ISODATA

algorithm, and Vector Quantization (VQ) technique (see Pao, 1989 and Tou

and Gonzals, 1974), are examples of decision theoretical approaches for

cluster formation. ART structure is a neural network for cluster formation in

an unsupervised learning domain. In these architectures, the number of

output nodes cannot be accurately determined in advance.

5.1.2 Vector Quantization

It is customary to cluster input vectors based on distance functions within an

Euclidean space. VQ presented in this section and ART presented in the

following sections of this chapter present two distinct approaches to the

dynamic allocation of cluster centres. VQ is non-neural approach whereas

ART is a neural network approach.

To begin with, in VQ, since no cluster has been allocated, the first pattern

will force the creation of cluster to hold it. Whenever a new input pattern is

encoded, the Euclidean distance between it and any allocated cluster is

calculated. If we designate the p th input vector as Xp and j th cluster as Cj

then Euclidean distance d is calculated as

(5.1)

The cluster closest to the input is determined such that

(5.2)



where M is the number of allocated clusters.

Once the closest cluster k has been determined, the distance must

be tested against the threshold distance ρ as

pattern assigned n th cluster

a new cluster is allocated to p    (5.3)

and every time the cluster centre must be updated as

...(5.4)

A program VECQUANT is written in Fortran for cluster formation.

There are two drawbacks of the method, namely

1. Sensitivity to sequence of presentation of input and

2. Arbitrary selection of threshold distance at which new clusters are created.

Example 5.1

Figure 5.1 shows 12 points in a two dimensional Euclidean space. The aim is

to cluster these utilizing VQ. The input patterns, i.e. X and Y coordinates of

12 points are given as (Table 5.1).

Table 5.1 Coordinates of 12 points

Points

X

Y

Points

X



Y

1

2

3

7

6

4

2

3

3

8

7

4

3

2

6

9

2

4

4



3

6

10

3

4

5

6

3

11

2

7

6

7

3

12

3

7

Let us take a threshold distance of 2.0. It is to be noted that there are three

clusters with centres C 1 = (2.5, 3.5); C 2 = (2.5, 6.5); and C 3 = (6.5, 3.5).

The cluster membership list can also be seen as S(1) = {1, 2, 9, 10}, S(2) =

{3, 4, 11, 12}, and S(3) = {5, 6, 7, 8}. The corresponding results are shown



graphically in Fig. 5.1(a). Also note that the clusters identified are very much

what humans might expect from looking at the patterns.



Fig. 5.1(a) Input pattern for VQ. Example 5.1 (Threshold distance 2).

Fig. 5.1(b) Input pattern for VQ. Example 5.1 (Threshold distance 3.5).

The same example is repeated with a threshold distance of 3.5. It is to be

noted that there are two clusters with cluster centres C 1 = {2.5, 5} and C 2 =

(6.5, 3.5). The cluster membership list can now be seen as S(1) = {1, 2, 3, 4,



9, 10, 11, 12} and S(2) = {5, 6, 7, 8}. Again, these results are shown

graphically in Fig. 5.1(b). From this it is clear that choosing very large

threshold distance may easily obscure meaningful categories. Conversely,

choosing too low threshold may lead to the proliferation of many meaningful

categories. If the threshold distance is 4.5, all patterns are grouped into one

category as S(1) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. The results are shown

in Fig. 5.1(c) followed by outputs for all the three cases.

Fig. 5.1(c) Input pattern for VQ. Example 5.1 (Threshold distance 4.5).



FOR THRESHOLD DISTANCE OF 2



FOR THRESHOLD DISTANCE OF 3.5



FOR THRESHOLD DISTANCE OF 4.5





5.1.3 Classical ART Networks

ART networks were developed by Carpenter and Grossberg (1987, 1991).

One form ART1, is designed for clustering binary vectors and the other,

ART2 accepts analog or continuous valued vectors. These nets cluster inputs

by unsupervised learning. One can present input patterns in any order. Each

time when a pattern is presented, an appropriate cluster unit is chosen and

the cluster’s weights are adjusted to let the cluster unit to learn the pattern.

The weights on the cluster unit may be considered to be an exemplar (or code

vector) for the patterns placed on the cluster.

When the net is trained, one can present training pattern several times. A

pattern may be placed on one cluster unit for the first time and then on a

different cluster when it is presented later due to changes in the weights for

the first cluster if it has learned other patterns in the mean time. We find in

ART architecture, a pattern oscillating among different cluster units at

different stages of training, indicating an unstable net.

Stability of the network means that a pattern should not oscillate among

different cluster units at different stages of training. Some nets achieve

stability by gradually reducing the learning rate as the same set of training

set presented many times.

Plasticity While training patterns are presented many times, this does not

allow the net to learn readily a new pattern that is presented for the first time

after a number of training epochs have already taken place.



Plasticity is the ability of the net to respond to learn new pattern equally well

at any stage of learning.

Usually, adaptive resonance theory nets are designed to be both stable and

plastic. This has been described by Stephen Grossberg as Stability-Plasticity

Dilemma. The dilemma poses a series of questions, some of which are as

follows:

1. How can a learning system remain adaptive (plastic) in response to

significant input yet stable in response to irrelevant input?

2. When does the system know to switch between its plastic and stable

modes?

3. What is the method by which the system can retain previously learned

information while learning new things?

ART seeks to provide answers for these questions. It is an extension of

competitive learning scheme. Nodes compete with one another based on

certain criteria and the winner is said to classify the input pattern in the

competitive system.

In order to solve Stability-plasticity dilemma, it is necessary to add a

feedback mechanism between the competitive layer and the input layer of the

network. This feedback mechanism facilitated the learning of new

information without destroying old information and hence, automatic

switching between stable and plastic modes.

This approach results in two neural networks suitable particularly for pattern

classification problems in realistic environment. Also, attention has been

paid to structuring ART nets so that neural process can control the rather

intricate operation of these sets. This requires a number of neurons, in

addition to the input units, cluster units, and units for the comparison of the

input signal with the cluster unit’s weights.

ART1—This is a binary version of ART. It can cluster binary input vectors.



ART2—This is an analogous version of ART. It can cluster real value input

vectors.

ART2A—This network is an ART extension that incorporates a chemical

transmitter to control search process in a hierarchical ART structure.

ARTMAP—This is a supervised version of ART that can learn arbitrary

mapping of binary patterns.

Fuzzy ART—It is a synthesis of ART and fuzzy logic.

Fuzzy ARTMAP—This is a supervised fuzzy art.

Distributed ART and ARTMAP (dart and dartmap)—These models learn

distributed code representation in the F 2 layer. In the case of winner take all

F 2 layers, they are equivalent to fuzzy ART and ARTMAP. Besides the

above, there are many ART adaptations such as ARTMAP1C, GAUSSIAN

ARTMAP and Hierarchical ART models, ARBO ART, CASCADE Fuzzy

ART,

HART-J, HART-S, SMART, LAPART, MART, PROBART, RRMAP, TD-

ART are some of the architectures of hierarchical models.

5.1.4 Simplified ART Architecture

The ART network is an unsupervised vector classifier that accepts input

vectors which are classified according to the stored patterns they mostly

resemble. It also provides for a mechanism allowing adaptive expansion of

the output layer of neurons until an adequate size is reached based on the

number of classes, inherent in the observation. The ART network can

adaptively create a new neuron corresponding to an input pattern if it is

determined to be sufficiently different from existing clusters. This

determination, called a vigilance test, is incorporated into the adaptive

backward network. Thus, the ART architecture allows the user to control the

degree of similarity of patterns placed in the same cluster . Figure 5.2 shows

the simplified configuration of the ART architecture.



Fig. 5.2 Simplified ART architecture.

The basic architecture of ART involves three groups of neurons, an input

processing field ( F 1 layer), the cluster units ( F 2 layer), and a mechanism

to control the degree of similarity of patterns placed on the same cluster (a

reset mechanism). To control the similarity of patterns placed on the same

cluster, there are two sets of connections (each with its own weights) between

each unit of input of F 1 layer and the cluster unit of F 2 layer, and this is

known as bottom-up weights. Similarly, F 2 layer is connected to F 1 layer by

top-down weights.

The F 2 layer is a competitive layer. The cluster unit with the large net input

becomes the candidate to learn the input pattern setting all other F 2 units to



zero. The reset unit makes the decision whether or not the cluster unit is

allowed to learn the input pattern depending on how similar its top-down

weight vector is to the input vector and to this decision. If the cluster unit is

not allowed to learn that it is inhibited, a new cluster unit is selected as the

candidate.

Basically, there are two learning methods fast learning and slow learning.

In fast learning, weight update during resonance occurs rapidly whereas in

slow learning, weight changes occur slowly relative to the duration of a

learning trial. Fast learning is used in ART1 whereas slow learning is

appropriate in ART2.

5.2 ART1

As mentioned in the introduction to this chapter, ART1 network requires

binary input vector, that is, they must have components of the set {0, 1}. This

restriction may appear to limit the utility of the network but there are many

problems having data that can be cast into binary format. Later on, we will

see in one example how real input can be handled in ART1.

5.2.1 Architecture of ART1

The neural network for ART1 model consists of the following:

(a) A layer of neuron called F 1 layer (input layer or comparison layer), (b) A

node for each layer as a gain control unit,

(c) A layer of neurons called F 2 layer (output layer or recognition layer), (d)

Bottom-up connection from F 1 to F 2 layer, (e) Top-down connection from

F 2 to F 1 layer,

(f) Inhibitory connection (negative weights) from F 2 layer to gain control,

(g) Excitatory connection (positive weights) from gain control to a layer, (h)

Inhibitory connection from F 1 layer to reset node, and (i) Excitatory

connection from reset node to F 2 layer.



The ART1 architecture shown in Fig. 5.3 consists of two layers of neurons

called comparison layer and the recognition layer. Usually, the classification

decision is indicated by a single neuron in the recognition layer that fires.

The neurons in the comparison layer respond to input features in the pattern.

The synaptic connections (weights) between these two layers are modifiable

in both the directions. According to learning rules, the recognition layer

neurons have inhibitory connections that allow for competition. These two

layers constitute attentioned system.

The network architecture also consists of three additional modules labelled

Gain1, Gain2, and Reset as shown in Fig. 5.3. In the attentioned subsystem,

if the match of input pattern with any of the prototype stored occurs,

resonance is established. The orienting subsystem is responsible for sending

mismatch between bottom-up and top-down patterns on the recognition layer.

The recognition layer response to an input vector is compared to the original

input





vector through a mechanism called vigilance. When vigilance falls below a

threshold, a new category must be created and the input vector must be stored

into that category. The recognition layer follows the winner take all

paradigm. The recognition layer is shown in Fig. 5.4.

Fig. 5.3 ART1 network.

Fig. 5.4 Recognition layer.

5.2.2 Special Features of ART1 Models



One special feature of an ART1 model is that a two-third rule is necessary to

determine the activity of the neuron in the F 1 layer. There are three input

sources to each neuron in the F 1 layer. They are—the external input, the

output of gain control, and the output of F 2 layer neurons. The gain control

unit and 2/3 rule together ensure proper response from the input layer

neurons. A second feature is that the vigilance parameter is used to

determine the activity of the reset unit, which is activated whenever there is

no match found among existing patterns during classification.

Considering Fig. 5.4

net j =

(5.5)

rj =

where Ci is the output of the i th comparison layer neuron, f is a step

function and thus, rj results in a binary value. M is the number of neurons in

the comparison layer. Figure 5.5 shows the comparison layer.

As shown in Fig. 5.5, each neuron i in the comparison layer receives the

following three inputs:

(a) A component or the input pattern X, Xi

(b) The gain signal G1 is a scalar (binary value), thus, the same value is input

to each neuron

(c) A feedback signal from the recognition layer is a weighted sum of the

recognition layer outputs. Thus,

(5.6)

where rj is the output of the j th recognition layer neuron and N is the

number of neurons in the recognition layer, Tj is the weight vector associated

with the recognition layer neuron j, vector C represents the output of



comparison layer, gain G 1 is one when the R vector is zero and the logical

OR of the components of the input vector X is one as seen from Eq. (5.3) as

(5.7a)

Gain G 2 is one when the logical OR of the components of the input vector

X is one as seen from Eq. (5.4) as.

(5.7b)



The steps of ART1 operations are given in Figs. 5.6−5.9.

Fig. 5.5 ART1 comparison layer.



Fig. 5.6 Step 1. G 1 = 1 The input vector is passed through the comparison

layer to the recognition layer.

Fig. 5.7 Step 2. The best neuron of the recognition layer has been selected as

winner, the winner sends its signal through its top-down weights.





Fig. 5.8 Step 3. The input vector X and P vector in recognition layer

compared. Vigilance failed.

Winning neuron is inhibited.

Fig. 5.9 Step 4. Previous winning neuron is disabled. New winner is selected.

The reader may refer for the mathematics of the dynamics of the system to

the textbook by Freeman and Skapura (Freeman and Skapura, 1991).



5.2.3 ART1 Algorithm

To begin with, we must determine the size of the F 1 and F 2 layers as No. of

units in F 1 = M

No. of units in F 2 = N      (5.8)

Other parameters must be chosen according to the following constraints.

(5.9)

The parameter B must be chosen to satisfy the above constraint to implement

2/3 rule successfully to distinguish between top-down and bottom-up

patterns.

Initialization. Top-down weights must be initialized as

[ td] M × N = top-down weight matrix       (5.10) (5.11)

Bottom-up weights must be initialized as

[ bu] N × M = bottom-up weights      (5.12) 0 <



(5.13)

The activities on F 2 are initialized to zero but according to our chosen

model, F 1 activities are initialized to

(5.14)

All input patterns must be binary Ii ∈ {0, 1}. The norm of the vector is

equal to the sum of the components.

(5.15)



| I| will be equal to number of non zero components of the vector.

Algorithm 5.1 illustrates the steps to be followed.

Algorithm 5.1 (Art1 Algorithm)



5.2.4 Illustration

Example 5.2

To see the algorithm, let us perform a step by step calculation for a small

example problem.

We shall choose the dimension of F 1 and F 2 as M = 5, N = 6 respectively.



Choose the values for the following parameters as

A = 1; B = 1.5; C = 5; D = 0.9; ρ = 0.9

Let us take the first input vector as



Let us initialize top-down weights by adding positive value of 0.2 to ( B −

1)/ D giving

=

= 0.756

[ td] =

Since M = 5 and L = 5, weights on F 2 units are all initialized to slightly less

than the given value (say 0.1) which is obtained as

=

= 0.456

[ bu] =

We can now begin actual processing. We shall start with simple input vector

as

⟨ I 1⟩ T = ⟨0 0 0 1 0⟩ T

Step 1: After the input vector is applied, the F 1 activities become (see step 1

of the algorithm)

⟨ X 1⟩ T = ⟨0 0 0 0.118 0⟩ T



Step 2: The output vector S is written as

⟨ S⟩ T = ⟨0 0 0 1 0⟩ T

Step 3: Propagating this output vector to F 2 the net inputs to all F 2 units

will be identical.

{ T}6 × 1 = [ bu]6 × 5 { S}5 × 1

=

Step 4: Calculate { u} as

⟨ u⟩ T = ⟨1 0 0 0 0 0⟩ T



Since all unit activities are equal, simply take the first unit as winner Step 5.

Calculate { V} as

Step 6: Calculate new activity values on F 1 as

⟨ X⟩ T = ⟨−0.123 −0.123 −0.123 0.023 −0.123⟩ T

Step 7: Only unit 4 has a positive activity and hence new outputs are

⟨S⟩ T = ⟨0 0 0 1 0⟩ T

Step 8: Calculate

Step 9: There is no reset and resonance reached.

Step 10: Update bottom-up weight matrix as



[ bu] =

Step 11: Update top-down weights as

[ td] =

That completes the cycle of the first input pattern. Now, let us apply second

pattern that is orthogonal to I 1 as

⟨ I 2⟩ T = ⟨0 0 1 0 1⟩ T

⟨ T⟩ T = ⟨0 0.911 0.911 0.911 0.911 0.911⟩ T

Unit 1 definitely loses. We select unit 2 as winner.

⟨ u⟩ T = ⟨0 1 0 0 0 0⟩ T

⟨ V⟩ T = [ td]{ u} = ⟨0.756 0.756 0.756 0.756 0.756⟩ T

⟨ X⟩ T = ⟨−0.123 −0.123 0.0234 −0.123 −0.0234⟩ T

The resulting output matches the input vector ⟨0 0 1 0 1⟩ T and hence there is

no reset. Now, the bottom-up matrix is given by

[ bu] =

Now, the top-down matrix is given by



[ td] =

Now, let us apply the third input vector as

⟨ I 3⟩ T = ⟨0 0 0 0 1⟩ T

⟨ u⟩ T = ⟨0 1 0 0 0 0⟩ T

⟨ V⟩ T = ⟨0 0 1 0 1⟩ T

In this case, the equilibrium activities are



⟨ X⟩ T = ⟨−0.25 −0.25 −0.087 −0.25 .0.0506⟩ T

with only one positive activity. The new output pattern is ⟨0 0 0 0 1⟩ which

exactly matches with input pattern. So, no reset occurs.

Even though unit 2 on F 2 had previously encoded an input pattern, it gets

recoded now to match the new input pattern that is a subset of the original

pattern. The new weight matrices are

[ bu] =

[ td] =

If we return to the superset vector ⟨0 0 1 0 1⟩ T, the initial forward

propagation to F 2 yields activities as

X = ⟨−0.25 −0.25 −0.25 0.0506 −0.25⟩

The outputs are ⟨0 0 0 1 0⟩. This time, resonance has reached pattern 1 on

unit 1.

A program ART1 developed in Fortran is given⟩ in CD-ROM (attached with

this book) to classify patterns for the binary input. If we use the program we

get the following output.

resonance has been reached on unit 1 pattern 1

resonance has been reached on unit 2 pattern 2

resonance has been reached on unit 3 pattern 3

network not stable

resonance has been reached on unit 1 pattern 1

reset with pattern 2 on unit 2

resonance has been reached on unit 3 pattern 2



resonance has been reached on unit 3 pattern 3

network not stable

resonance has been reached on unit 1 pattern 1

reset with pattern 2 on unit 3

reset with pattern 2 on unit 2

resonance has been reached on unit 4 pattern 2

resonance has been reached on unit 2 pattern 3

network not stable

resonance has been reached on unit 1 pattern 1

resonance has been reached on unit 4 pattern 2

resonance has been reached on unit 2 pattern 3

network stable

Even if any pattern is repeated, we will be able to recognize the pattern.

ART1 is an elegant theory that addresses stability-plasticity dilemma. The

network relies on resonance. It is a

self-organizing network and does the categorization by associating individual

neuron of the F 2 layer with individual patterns. By employing so called 2/3

rule, it ensures stability in learning process.

5.3 ART2

5.3.1 Architecture of ART2



ART2 networks self organize stable recognition categories in response to

arbitrary sequences of analog (Grey-scale, continuous-valued) input patterns,

as well as binary input patterns. On the surface, it looks that the main

difference between ART1 and ART2 is that ART2 accepts input vectors

whose components can have any real numbers as their value. But in

execution, ART2 network is considerably different from ART1 network. The

capability of recognizing analog patterns represents a significant

enhancement to the system. ART2 also recognizes the underlying similarity

of identical patterns superimposed on constant backgrounds having different

levels. Figure 5.10 shows the ART2 architecture where the comparison layer

of F 1 layer is split into several sublayers. Additionally, the orienting

subsystem has also accommodated real-valued data. ART2 includes the

following:

(a) Allowance for noise suppression,

(b) Normalization, i.e. contrast to enhance the significant parts of the pattern,

(c) Comparison of top-down and bottom-up signals needed to reset the

mechanism, and

(d) Dealing with real-valued data that may be arbitrarily close to one another.

The learning laws of ART2 are much simpler even though network is

complicated.



Fig. 5.10 ART2 architecture.

Carpenter and Grossberg (1987), the developers of ART2 architecture have

been developing various architectures of ART2 and in this chapter, we will

describe one such architecture. The reader may refer to the mathematics of

ART2 architecture in the book by Freeman and Skapura (1991).

5.3.2 ART2 Algorithm



The size of the F 1 and F 2 layers is determined as Number of units in F 1

layer = M

Number of units in F 2 layer = N

The parameters are chosen according to the following constraints a, b > 0

(5.25)

Top-down weights are initialized to zero as [ td] = [0]. The top-down weight

matrix consists of

M rows and N columns.

Bottom-up weights are initialized as

[ bu] =

(5.26)

where

The steps to be followed are illustrated in Algorithum 5.2.

Algorithm 5.2 (ART2 Algorithm)







5.3.3 Illustration

Example 5.3

Let us perform step by step calculation for the following example.

Let us define a set of three input vectors as

Let us initialize the following variables.

We shall assume the dimensions of F 1 and F 2 as M = 5, N = 6 respectively.



Let us choose the first input vector as

⟨ I 1⟩ T = ⟨0.2 0.7 0.1 0.5 0.4⟩ T

The top-down weights are initialized as zero; [ td] = [0].

The bottom-up weights are initialized according to Eq. (5.26) as

[ bu] =

Using ⟨ I 1⟩ T = ⟨0.2 0.7 0.1 0.5 0.4⟩ T as the input vector, before

propagation to F 2 we have

⟨ p⟩ T = ⟨0 1 0 0 0⟩ T.

Propagating the vector forward to F 2 yields a vector of activities across the

F 2 units of

⟨ T⟩ T = ⟨2.236 2.236 2.236 2.236 2.236⟩ T

Because all the activities are the same, the first unit becomes the winner and

the activity vector becomes

⟨ T⟩ T = ⟨2.236 0 0 0 0⟩ T

and the output of the F 2 layer is a vector given by



⟨0.9 0 0 0 0⟩

We must propagate this output vector back to F 1 and cycle through the

layers again. Since the top-down weights are all initialized to zero, there is no

change on the sublayers of F 1. Resonance is established on unit by pattern 1.

The bottom-up weights will be

[ bu] =

and the top-down matrix will be

[ td] =

Notice the expected similarity between the first row of bottom-up matrix and

the first column of the top-down matrix.

By continuing this example further, we get the output as.

resonance established on Unit 1 with pattern 1

resonance established on Unit 1 with pattern 2

resonance established on Unit 2 with pattern 3

A program ART2 in Fortran given in CD-ROM (attached with this book) is

written to recognize analog patterns.

From the above example, we can see that ART2 network varies from ART1

network primarily in the implementation of F 1 layer. Rather than a single



layer structure, unit F 1 layer consists of a number of sublayers that serve to

remove noise to enhance contrast, and to normalize the analog input patterns.

All signals propagating through ART2 network must be modelled as floating

point numbers.

5.4 APPLICATIONS

5.4.1 Character Recognition Using ART1

Let us construct the list of input vectors that correspond to the first six

characters of English language. The letters are five by five pixel

representation and appear in Fig. 5.11. The ART1 implementation is used to

classify the patterns. The inputs used are A = 1, B = 1.5, C = 5, D = 0.9, L =

25, ρ = 0.9. ART1 program given in CD-ROM of this book is able to identify

all the patterns without any difficulty. This network requires a total of 16



resets during encoding process and when L = 3, 22 resets are required to

classify the patterns. It is clear that this parameter changes from 16 to 22.

There are many more such experiments that one can perform to gain

experience with ART1 architecture. We can also construct a noisy version of

these letters to see how the network responds once trained with noise-free

letters.

Fig. 5.11 Binary representation of alphabets.

5.4.2 Classification of Soil (Rajasekaran et al., 2001) The potential of ART1

based pattern recognizer to recognize real data has been studied. The

example classification of soils studied in Chapter 3 is taken here and we will

select only four data from Table 3.6 and identify their IS

classification. The data is given in Table 5.2.

Table 5.2 Soil data

Colour

Gravel %

Sand %

Finegrain %

Liquidlimit

Plasticlimit

IS

of soil

18

82



84

58

34

type

0.2

0.111

0.682

0.5

0.508

0.529

1

0.1

0

0.329

0.869

0.711

0.735

2

0.2

0



0.529

0.670

0.576

0.676

3

0.7

0

0.353

0.845

0.677

1

4

Colour of soil

0.1—Brown

0.2—Brownish grey

0.7—Yellowish red

IS type

1—Clayey sand

2—Clay with medium compressibility

3—Clay with low compressibility



4—Silt with medium compressibility

First the real data is converted to integer and given as inputs to ART1. ART1

is able to identify the soil as 1, 2, 3, 4. The output of the program is as

follows

resonance has been reached on unit 1 pattern 1

reset with pattern 2 on unit 1

resonance has been reached on unit 2 pattern 2

resonance has been reached on unit 3 pattern 3

reset with pattern 4 on unit 3

reset with pattern 4 on unit 1

resonance has been reached on unit 4 pattern 4

network not stable

reset with pattern 1 on unit 4

reset with pattern 1 on unit 3

resonance has been reached on unit 1 pattern 1

reset with pattern 2 on unit 1

resonance has been reached on unit 2 pattern 2

reset with pattern 3 on unit 4

reset with pattern 3 on unit 1

resonance has been reached on unit 3 pattern 3



reset with pattern 4 on unit 1

resonance has been reached on unit 4 pattern 4

network stable

5.4.3 Prediction of Load from Yield Patterns of Elastic-Plastic Clamped

Square Plate

Example 5.4

Whang (1969) has developed finite element displacement method for elastic-

plastic analysis of bilinear strain hardening orthotropic plates and shells

considering elastic unloading also. Figure 5.12 shows the uniformly loaded

isotropic plate with clamped edges with properties—thickness,

t = 1; elastic modulus, E = 30000; Poisson’s ratio = 0.3; plastic modulus, Ep

= 300; normal yield stress = 30; shear yield stress = 17.3.



Fig. 5.12 Yield pattern of isotropic plates (clamped).

Considering the doubly symmetric nature of the pattern, only a quarter of the

image is presented to ART1 for training. For each pattern, using the feature

extractor to be discussed in Chapter 13, seven moment invariants are

extracted and they are real numbers. These numbers are converted to binary



values. In the moment extraction process, various colours in the pattern can

be considered by giving different values for f( x, y) (see Chapter 13). Figure

5.13 shows 1/4th images of the patterns which are trained using ART1. The

output for such a run as well as the moment invariants and the binary input

for the six moment invariants are





Fig. 5.13 One-fourth images of the patterns.

Output of the Example 5.4

********************************

resonance has been reached on unit 1 pattern 1

reset with pattern 2 on unit 1

resonance has been reached on unit 2 pattern 2

reset with pattern 3 on unit 2

reset with pattern 3 on unit 1

resonance has been reached on unit 3 pattern 3

reset with pattern 4 on unit 1

reset with pattern 4 on unit 3

reset with pattern 4 on unit 2

resonance has been reached on unit 4 pattern 4

reset with pattern 5 on unit 4



reset with pattern 5 on unit 1

reset with pattern 5 on unit 3

reset with pattern 5 on unit 2

resonance has been reached on unit 5 pattern 5

resonance has been reached on unit 1 pattern 6

network not stable

resonance has been reached on unit 1 pattern 1

reset with pattern 2 on unit 5

reset with pattern 2 on unit 4

resonance has been reached on unit 2 pattern 2

resonance has been reached on unit 3 pattern 3

resonance has been reached on unit 4 pattern 4

reset with pattern 5 on unit 4

resonance has been reached on unit 5 pattern 5

resonance has been reached on unit 1 pattern 6

network stable



ART1 is able to classify monochrome or color images. Rajasekaran and

Amalraj (2002) have applied ART1 architecture augmented with moment

based feature extractor to recognize patterns colour-noisy and noise-free for

two experimental problems discussed here. The first one is concerned with

the recognition of satellite images and the second one is concerned with

colour images.

5.4.4 Chinese Character Recognition—Some Remarks

Kim et al. (1996) proposed an online Chinese character recognition method

using ART2 architecture. Strokes and primitive components of Chinese

characters are usually warped into a cursive from and classifying them is

very difficult. To deal with such cursive strokes, they considered them as a

recognition unit and automatically classified them using ART2 neural

network. Character recognition is achieved by traversing the Chinese

character database with a sequence of recognized strokes and the positional

relations between the strokes. They tested 1800 basic characters used daily in

Korea and found a good recognition rate of 93.13%.

Gan and Lua (1992) have also applied ART2 architecture to the problem of

character recognition of Chinese characters. ART2 was chosen because they

used a real-valued feature set. The feature set contains 12 geometric features

including intersection, turning points, and horizontal and vertical strokes. In



this application, ART network was not used as the final classifier, but rather

served to divide 3755 Chinese characters into 7 groups in preparation of final

recognition stage. A best case classification accuracy of 97.23% for the

training set and 90.25% for test set was obtained.

5.5 SENSITIVENESS OF ORDERING OF DATA

The ART architecture is sensitive to the order in which the patterns are

presented to the network. Kung (1993) has shown through an experiment that

ART2 yields a different clustering on the same input when the patterns are

presented in the reverse order. Figure 5.14(a) shows the patterns space

containing patterns presented in reverse order and Fig. 5.14(b) when it is

present in actual order. In both cases, the threshold value is kept constant at

1.5.

Fig. 5.14(a) Cluster of patterns (reverse order) (Kung, 1993).



Fig. 5.14(b) Cluster of patterns (in order) (Kung, 1993).

Carpenter and Grossberg (1987b) have applied ART2 architecture to the

problem of categorization of analog patterns which were drawn as a graph of

functions. Fifty input patterns were classified as 34 clusters.

SUMMARY

The advantages of ART over competing pattern recognition technique are as

follows:

ART exhibits stability and is not perturbed by an arbitrary barrage of inputs.

The network adapts to reflect the type of patterns not frequently observed in

the environment by updating the category prototypes adequately.

The ART architecture can easily integrate with other hierarchical theories of

cognition. It is sensitive to the order in which the patterns are presented.



ART models are based on unsupervised learning for adaptive clustering

whereas ARTMAP architecture performs supervised learning, as we will see

in later chapters. By mapping categories of one input space on to categories

of another input space, both the categories are determined as two separate

ART systems.

ART models belong to the class of match-based learning as opposed to error-

based learning of backpropagation networks.

In match-based learning the weights are adjusted only when the external

input matches one of the stored prototypes. Thus, match-based learning tends

to group similar patterns whereas error-based learning tends to discriminate

dissimilar patterns.

In this chapter, vector quantization, and ART1 and ART2 models have been

discussed with algorithms and examples.

PROGRAMMING ASSIGNMENT

P5.1 Cluster all the 5 bit binary vectors except the all zero vector ⟨0 0 0 0

0⟩ T using ART1 algorithm. Study the effect of vigilance parameter on the

resulting clusters.

P5.2 Implement the ART1 simulator. Test it using the example data

presented in Example P5.1. Does simulator generate the same data values

described in the example?

P5.3 Using ART1 simulator, recognize the pattern of alphabets G to L.

P5.4 Convert the real data in Illustration 5.3.3 to binary form and use ART1

simulator to identify the patterns.

P5.5 Implement the ART2 simulator. Test it using the data presented in

Illustration 5.3.3. Describe the activity levels at each sublayer on F 1 at

different periods during the signal propagation process.



P5.6 Run ART2 program using different values of theta and threshold value

and study the results.

P5.7 Using ART2 simulator, describe what happens when all the inputs in a

training pattern are scaled by a small random noise value and are presented

to the network after training. Does ART2 network correctly classify the input

data?

SUGGESTED FURTHER READING
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PART 2

FUZZY LOGIC

• Fuzzy Set Theory

• Fuzzy Systems



Chapter 6

Fuzzy Set Theory

Problems in the real world quite often turn out to be complex owing to an

element of uncertainty either in the parameters which define the problem or

in the situations in which the problem occurs.

Although probability theory has been an age old and effective tool to handle

uncertainty, it can be applied only to situations whose characteristics are

based on random processes, that is, processes in which the occurrence of

events is strictly determined by chance. However, in reality, there turn out to

be problems, a large class of them whose uncertainty is characterized by a

nonrandom process. Here, the uncertainty may arise due to partial

information about the problem, or due to information which is not fully

reliable, or due to inherent imprecision in the language with which the

problem is defined, or due to receipt of information from more than one

source about the problem which is conflicting.

It is in such situations that fuzzy set theory exhibits immense potential for

effective solving of the uncertainty in the problem. Fuzziness means

‘vagueness’. Fuzzy set theory is an excellent mathematical tool to handle the

uncertainty arising due to vagueness. Understanding human speech and

recognizing handwritten characters are some common instances where

fuzziness manifests.

It was Lotfi A. Zadeh who propounded the fuzzy set theory in his seminal

paper (Zadeh, 1965). Since then, a lot of theoretical developments have taken

place in this field. It is however, the Japanese who seem to have fully

exploited the potential of fuzzy sets by commercializing the technology.

More than 2000 patents have been acquired by the Japanese in the

application of the technique and the area spans a wide spectrum, from

consumer products and electronic instruments to automobile and traffic

monitoring systems.



6.1 FUZZY VERSUS CRISP

Consider the query, “Is water colourless?” The answer to this is a definite

Yes/ True, or No/ False, as warranted by the situation. If “yes”/“true” is

accorded a value of 1 and “no”/“false” is accorded a value of 0, this

statement results in a 0/1 type of situation. Such a logic which demands a

binary (0/1) type of handling is termed crisp in the domain of fuzzy set

theory. Thus, statements such as “Temperature is 32°C”, “The running time

of the program is 4 seconds” are examples of crisp situations.

On the other hand, consider the statement, “Is Ram honest?” The answer to

this query need not be a definite “yes” or “no”. Considering the degree to

which one knows Ram, a variety of answers spanning a range, such as

“extremely honest”, “extremely dishonest”, “honest at times”, “very honest”

could be generated. If, for instance, “extremely honest” were to be accorded a

value of 1, at the high end of the spectrum of values, “extremely dishonest” a

value of 0 at the low end of the spectrum, then, “honest at times” and “very

honest” could be assigned values of 0.4 and 0.85 respectively. The situation

is therefore so fluid that it can accept values between 0 and 1, in contrast to

the earlier one which was either a 0 or 1. Such a situation is termed fuzzy.

Figure 6.1 shows a simple diagram to illustrate fuzzy and crisp situations.



Fig. 6.1 Fuzzy versus crisp.

Classical set theory also termed crisp set theory and propounded by George

Cantor is fundamental to the study of fuzzy sets. Just as Boolean logic had

its roots in the theory of crisp sets, fuzzy logic has its roots in the theory of

fuzzy sets (refer Fig. 6.1).

Fig. 6.2 Crisp sets and fuzzy sets.



We now briefly review crisp sets and its operations before a discussion on

fuzzy sets is undertaken.

6.2 CRISP SETS

Universe of discourse

The universe of discourse or universal set is the set which, with reference to

a particular context, contains all possible elements having the same

characteristics and from which sets can be formed. The universal set is

denoted by E.

Example

(i) The universal set of all numbers in Euclidean space.

(ii) The universal set of all students in a university.

Set

A set is a well defined collection of objects. Here, well defined means the

object either belongs to or does not belong to the set (observe the “crispness”

in the definition).

A set in certain contexts may be associated with its universal set from which

it is derived.

Given a set A whose objects are a 1, a 2, a 3,..., an, we write A as A = { a 1,

a 2,... , an}. Here,

a 1, a 2,..., an are called the members of the set. Such a form of representing

a set is known as list form.

Example

A = {Gandhi, Bose, Nehru}



B = {Swan, Peacock, Dove}

A set may also be defined based on the properties the members have to

satisfy. In such a case, a set A is defined as

A = { x | P( x)}     (6.1)

Here, P( x) stands for the property P to be satisfied by the member x. This is

read as ‘ A is the set of all X such that P( x) is satisfied’.

Example

A = { x| x is an odd number}

B = { y| y > 0 and y mod 5 = 0}

Venn diagram

Venn diagrams are pictorial representations to denote a set. Given a set A

defined over a universal set E, the Venn diagram for A and E is as shown in

Fig. 6.3.

Fig. 6.3 Venn diagram of a set A.

Example

In Fig. 6.3, if E represents the set of university students then A may represent

the set of female students.



Membership

An element x is said to be a member of a set A if x belongs to the set A. The

membership is indicated by ‘∈’ and is pronounced “belongs to”. Thus, x ∈

A means x belongs to A and x ∈ A means x does not belong to A.

Example

Given A = {4, 5, 6, 7, 8, 10}, for x = 3 and y = 4, we have x ∈ A and y

∈ A

Here, observe that each element either belongs to or does not belong to a set.

The concept of membership is definite and therefore crisp (1—belongs to, 0

—does not belong to). In contrast, as we shall see later, a fuzzy set

accommodates membership values which are not only 0 or 1 but anything

between 0 and 1.

Cardinality

The number of elements in a set is called its cardinality. Cardinality of a set

A is denoted as n( A) or | A| or #A.

Example

If A = {4, 5, 6, 7} then | A| = 4

Family of sets

A set whose members are sets themselves, is referred to as a family of sets.

Example

A = {{1, 3, 5}, {2, 4, 6}, {5, 10}} is a set whose members are the sets

{1, 3, 5}, {2, 4, 6}, and



{5, 10}.

Null Set/Empty Set

A set is said to be a null set or empty set if it has no members. A null set is

indicated as ∅ or {} and indicates an impossible event. Also, |∅| = 0.

Example

The set of all prime ministers who are below 15 years of age.

Singleton Set

A set with a single element is called a singleton set. A singleton set has

cardinality of 1 .

Example

If A = { a}, then | A| = 1

Subset

Given sets A and B defined over E the universal set, A is said to be a subset of

B if A is fully contained in B, that is, every element of A is in B.

Denoted as A ⊂ B, we say that A is a subset of B, or A is a proper subset of

B. On the other hand, if A is contained in or equivalent to that of B then we

denote the subset relation as A ⊆ B. In such a case, A is called the improper

subset of B.

Superset

Given sets A and B on E the universal set, A is said to be a superset of B if

every element of B is contained in A.

Denoted as A ⊃ B, we say A is a superset of B or A contains B. If A contains

B and is equivalent to B, then we denote it as A B.



Example

Let A = {3, 4} B = {3, 4, 5} and C = {4, 5, 3}

Here, A ⊂ B, and B ⊃ A

C ⊆ B, and B ⊇ C

Power set

A power set of a set A is the set of all possible subsets that are derivable from

A including null set.

A power set is indicated as P( A) and has cardinality of | P( A)| = 2| A|

Example

Let A = {3, 4, 6, 7}

P( A) = {{3}, {4}, {6}, {7}, {3, 4}, {4, 6}, {6, 7}, {3, 7}, {3, 6}, {4, 7}, {3,

4, 6}, {4, 6, 7}, {3, 6, 7}, {3, 4, 7}, {3, 4, 6, 7}, ∅}

Here, | A| = 4 and | P( A)| = 24 = 16.



6.2.1 Operations on Crisp Sets

Union (∪)

The union of two sets A and B ( A ∪ B) is the set of all elements that belong

to A or B or both.

(6.2)

Example

Given A = { a, b, c, 1, 2} and B = {1, 2, 3, a, c}, we get A ∪ B = { a, b, c, 1,

2, 3}

Figure 6.4 illustrates the Venn diagram representation for A ∪ B

Fig. 6.4 Venn diagram for A ∪ B.

Intersection (∩)

The intersection of two sets A and B ( A ∩ B) is the set of all elements that

belong to A and B

(6.3)

Any two sets which have A ∩ B = ∅ are called Disjoint Sets.



Example

Given A = { a, b, c, 1, 2} and B = {1, 2, 3, a, c}, we get A ∩ B = { a, c, 1, 2}

Figure 6.5 illustrates the Venn diagram for A ∩ B

Fig. 6.5 Venn diagram for A ∩ B.

Complement ( c)

The complement of a set

is the set of all elements which are in E but

not in A.

(6.4)

Example

Given X = {1, 2, 3, 4, 5, 6, 7} and A = {5, 4, 3}, we get Ac = {1, 2, 6, 7}

Figure 6.6 illustrates the Venn diagram for Ac.



Fig. 6.6 Venn diagram for Ac.

Difference (−)

The difference of the set A and B is A − B, the set of all elements which are

in A but not in B.

(6.5)

Example

Given A = { a, b, c, d, e} and B = { b, d}, we get A − B = { a, c, e}



Figure 6.7 illustrates the Venn diagram for A − B.

Fig. 6.7 Venn diagram for A − B.

6.2.2 Properties of Crisp Sets

The following properties of sets are important for further manipulation of

sets.

All the properties could be verified by means of Venn diagrams.

Example 6.1

Given three sets A, B, and C. Prove De Morgan’s laws using Venn diagrams.

Solution



To prove De Morgan’s laws, we need to show that

(i) ( A ∪ B ∪ C)c = Ac ∩ Bc ∩ Cc (ii) ( A ∩ B ∩ C) c = Ac ∪ Bc ∪ Cc



Example 6.2

Let the sets A, B, C, and E be given as follows: E = all students enrolled in

the university cricket club.

A = male students, B = bowlers, and C = batsmen.



Draw individual Venn diagrams to illustrate (a) female students (b) bowlers

who are not batsmen (c) female students who can both bowl and bat.

Solution



Example 6.3

In Example 6.2, assume that | E| = 600, | A| = 300, | B| = 225, | C| = 160.

Also, let the number of male students who are bowlers ( A ∩ B) be 100, 25

of whom are batsmen too ( A ∩ B ∩ C), and the total number of male

students who are batsmen ( A ∩ C) be 85.

Determine the number of students who are: (i) Females, (ii) Not bowlers, (iii)

Not batsmen,

(iv) Females and who can bowl but not bat.

Solution



From the given data, the Venn diagram obtained is as follows:

(i) No. of female students | Ac| = | E| − | A| = 600 − 300 = 300

(ii) No. of students who are not bowlers | Bc| = | E| − | B| = 600 − 225 = 375

(iii) No. of students who are not batsmen | Cc| = | E| − | C| = 600 − 160 = 440

(iv) No. of female students who can bowl | Ac ∩ B| = 125 (from the Venn

diagram)

6.2.3 Partition and Covering

Partition

A partition on A is defined to be a set of non-empty subsets Ai, each of

which is pairwise disjoint and whose union yields the original set A.

Partition on A indicated as ∏( A), is therefore

(i)

(6.17)

(ii)

The members Ai of the partition are known as blocks (refer Fig. 6.8).

Fig. 6.8 Partition of set A.

Example

Given A = {a, b, c, d, e}, A 1 = {a, b}, A 2 = {c, d} and A 3 = {e}, which

gives



A 1 ∩ A 2 = ∅, A 1 ∩ A 3 = ∅, A 2 ∩ A 3 = ∅

Also, A 1 ∪ A 2 ∪ A 3 = A = { a, b, c, d, e}

Hence, { A 1, A 2, A 3}, is a partition on A.

Covering

A covering on A is defined to be a set of non-empty subsets Ai. whose union

yields the original

set A. The non-empty subsets need not be disjoint (Refer Fig. 6.9).

Fig. 6.9 Covering of set A.

Example

Given A = { a, b, c, d, e}, A 1 = { a, b}, A 2 = { b, c, d}, and A 3 = { d, e}.

This gives

A1 ∩ A 2 = { b}

A 1 ∩ A 3 = ∅



A 2 ∩ A 3 = { d}

Also, A 1 ∪ A 2 ∪ A 3 = { a, b, c, d, e} = A Hence, { A 1, A 2, A 3} is a

covering on A.

Rule of Addition

Given a partition on A where Ai, i = 1, 2,..., n are its non-empty subsets then,

.(6.18)

Example

Given A = { a, b, c, d, e}, A 1 = { a, b}, A 2 = { c, d}, A 3 = { e}, | A| = 5,

and

Rule of Inclusion and Exclusion

Rule of addition is not applicable on the covering of set A, especially if the

subsets are not pairwise disjoint. In such a case, the rule of inclusion and

exclusion is applied.

Example

Given A to be a covering of n sets A 1, A 2,..., An, for n = 2,     | A| =

| A 1 ∪ A 2| = | A 1| + |A 2| − | A 1 ∩

A 2|     (6.19)



for n = 3,     | A| = | A 1 ∪ A 2 ∪ A 3| = | A 1| + | A 2| + | A 3|

− | A 1 ∩ A 2| − | A 2 ∩ A 3| − | A 1 ∩ A 3| + | A 1 ∩ A 2 ∩

A 3|     (6.20)

Generalizing,

(6.21)

Example 6.4

Given | E| = 100, where E indicates a set of students who have chosen

subjects from different streams in the computer science discipline, it is found

that 32

study subjects chosen from the Computer Networks (CN) stream, 20 from

the Multimedia Technology (MMT) stream, and 45 from the Systems

Software (SS) stream. Also, 15 study subjects from both CN and SS streams,

7 from both MMT and SS streams, and 30 do not study any subjects chosen

from either of the three streams.

Find the number of students who study subjects belonging to all three

streams.

Solution

Let A, B, C indicate students who study subjects chosen from CN, MMT, and

SS streams respectively. The problem is to find | A ∩ B ∩ C|.

The no. of students who do not study any subject chosen from either of the



three

streams = 30.

Hence, the no. of students who study subjects chosen from all the three

streams is 5.

6.3 FUZZY SETS

Fuzzy sets support a flexible sense of membership of elements to a set.

While in crisp set theory, an element either belongs to or does not belong to a

set, in fuzzy set theory many degrees of membership (between 0 and 1) are

allowed.



Thus, a membership function μ ( x)

A

is associated with a fuzzy set Ã such that

the function maps every element of the universe of discourse X (or the

reference set) to the interval [0, 1].

Formally, the mapping is written as μ Ã( x) : X → [0, 1]

A fuzzy set is defined as follows:

If X is a universe of discourse and x is a particular element of X, then a fuzzy

set A defined on X may be written as a collection of ordered pairs (6.23)

where each pair ( x, μ Ã ( x)) is called a singleton. In crisp sets, μ Ã ( x) is

dropped.

An alternative definition which indicates a fuzzy set as a union of all μ Ã

( x)/ x singletons is given by

A =

in the discrete case     (6.24)

and

A =

in the continuous case     (6.25)

Here, the summation and integration signs indicate the union of all μ Ã ( x)/ x

singletons.

Example

Ã



Let X = { g 1, g 2, g 3, g 4, g 5} be the reference set of students. Let Ã be the

fuzzy set of “smart” students, where “smart” is a fuzzy linguistic term.

Here Ã indicates that the smartness of g 1 is 0.4, g 2 is 0.5 and so on when

graded over a scale of 0−1.

Though fuzzy sets model vagueness, it needs to be realized that the

definition of the sets varies according to the context in which it is used. Thus,

the fuzzy linguistic term “tall” could have one kind of fuzzy set while

referring to the height of a building and another kind of fuzzy set while

referring to the height of human beings.

6.3.1 Membership Function



The membership function values need not always be described by discrete

values. Quite often, these turn out to be as described by a continuous

function.

The fuzzy membership function for the fuzzy linguistic term “cool”

relating to temperature may turn out to be as illustrated in Fig. 6.10.

Fig. 6.10 Continuous membership function for “cool”.

A membership function can also be given mathematically as

The graph is as shown in Fig. 6.11.

Fig. 6.11 Continuous membership function dictated by a mathematical

function.

Different shapes of membership functions exist. The shapes could be

triangular, trapezoidal, curved or their variations as shown in Fig. 6.12.



Fig. 6.12 Different shapes of membership function graphs.

Example

Consider the set of people in the following age groups

0−10

40−50

10−20

50−60

20−30

60−70

30−40

70 and above

The fuzzy sets “young”, “middle-aged”, and “old” are represented by the

membership function graphs as illustrated in Fig. 6.13.

Fig. 6.13 Example of fuzzy sets expressing “young”, “middle-aged”, and

“old”.

6.3.2 Basic Fuzzy Set Operations

Given X to be the universe of discourse and Ã and to be fuzzy sets with μ A(

x) and μ B( x) as their respective membership functions, the basic fuzzy set

operations are as follows:



Union

The union of two fuzzy sets Ã and is a new fuzzy set Ã ∪ also on X with a

membership function defined as

.(6.26)

Example



Let Ã be the fuzzy set of young people and be the fuzzy set of middle-aged

people as illustrated in Fig. 6.13. Now Ã ∪ , the fuzzy set of “young or

middle-aged” will be given by

In its discrete form, for x 1, x 2, x 3

Intersection

The intersection of fuzzy sets Ã and is a new fuzzy set Ã ∩

with

membership function defined as

(6.27)

Example

For Ã and defined as “young” and “middle-aged” as illustrated in previous

examples.



In its discrete form, for x 1, x 2, x 3

Complement

The complement of a fuzzy set Ã is a new fuzzy set Ã with a membership

function

(6.28)

Example

For the fuzzy set Ã defined as “young” the complement “not young” is given

by Ãc. In its discrete form, for x 1, x 2, and x 3



Product of two fuzzy sets

The product of two fuzzy sets Ã and is a new fuzzy set Ã ⋅ whose

membership function is defined as

(6.29)





= 0.4 ⋅ 0.1

= 0.04

Equality

Two fuzzy sets Ã and

are said to be equal ( Ã = ) if

(6.30)

Example

Product of a fuzzy set with a crisp number

Multiplying a fuzzy set Ã by a crisp number a results in a new fuzzy set

product a. Ã with the membership function

(6.31)

Example



Power of a fuzzy set

The a power of a fuzzy set Ã is a new fuzzy set Aa whose membership

function is given by

(6.32)

Raising a fuzzy set to its second power is called Concentration (CON) and

taking the square root is called Dilation (DIL).

Example

Difference

The difference of two fuzzy sets Ã and is a new fuzzy set Ã − defined as



(6.33)

Example

Disjunctive sum

The disjunctive sum of two fuzzy sets Ã and is a new fuzzy set Ã ≈

defined as

(6.34)

Example



6.3.3 Properties of Fuzzy Sets

Fuzzy sets follow some of the properties satisfied by crisp sets. In fact, crisp

sets can be thought of as special instances of fuzzy sets. Any fuzzy set Ã is a

subset of the reference set X. Also, the membership of any element belonging

to the null set ∅ is 0 and the membership of any element belonging to the

reference set is 1.

The properties satisfied by fuzzy sets are



Since fuzzy sets can overlap, the laws of excluded middle do not hold good.

Thus,

Ã ∪ Ãc ≠ X     (6.43)

Ã ∩ Ãc ≠ ∅     (6.44)

Example 6.5

The task is to recognize English alphabetical characters ( F, E, X, Y, I, T) in

an image processing system.

Define two fuzzy sets and to represent the identification of characters I and

F.

= {( F, 0.4), ( E, 0.3), ( X, 0.1), ( Y, 0.1), ( I, 0.9), ( T, 0.8)}

= {( F, 0.99), ( E, 0.8), ( X, 0.1), ( Y, 0.2), ( I, 0.5), ( T, 0.5)}

Find the following.

(a) (i) ∪ (ii)

(iii)

(b) Verify De Morgan’s Law,



Solution

(b) De Morgan’s Law

Example 6.6

Consider the fuzzy sets Ã and defined on the interval X = [0, 5] of real

numbers, by the membership grade functions

Determine the mathematical formulae and graphs of the membership grade

functions of each of the following sets

(a) Ac, Bc

(b) A ∪ B



(c) A ∩ B

(d) ( A ∪ B) c

Solution

.





6.4 CRISP RELATIONS

In this section, we review crisp relations as a prelude to fuzzy relations. The

concept of relations between sets is built on the Cartesian product operator of

sets.

6.4.1 Cartesian Product

The Cartesian product of two sets A and B denoted by A × B is the set of all

ordered pairs such that the first element in the pair belongs to A and the

second element belongs to B.

i.e.

If A ≠ B and A and B are non-empty then A × B ≠ B × A.

The Cartesian product could be extended to n number of sets (6.45)

Observe that     

(6.46)

Example

Given A 1 = { a, b}, A 2 = {1, 2}, A 3 = { a}, 6.4.2 Other Crisp Relations

An n-ary relation denoted as R( X 1, X 2,…, Xn) among crisp sets X 1, X

2,..., Xn is a subset of the Cartesian product

and is indicative of an association or

relation among the tuple elements.

For n = 2, the relation R( X 1, X 2) is termed as a binary relation; for n = 3,

the relation is termed ternary; for n = 4, quarternary; for n = 5, quinary and

so on.



If the universe of discourse or sets are finite, the n- ary relation can be

expressed as an

n-dimensional relation matrix. Thus, for a binary relation R( X, Y) where X =

{ x 1, x 2,..., xn} and

Y = { y 1, y 2,..., ym}, the relation matrix R is a two dimensional matrix

where X represents the rows, Y represents the columns and R ( i, j) = 1 if ( xi,

yj)

.

Example



Given X = {1, 2, 3, 4},

Let the relation R be defined as

R =

R = {(1, 2)(2, 3)(3, 4)}

The relation matrix R is given by

R =

6.4.3 Operations on Relations

Given two relations R and S defined on X × Y and represented by relation

matrices, the following operations are supported by R and S

Union: R ∪ S

(6.47)

Intersection: R ∩ S

(6.48)

Complement:

(6.49)

Composition of relations: R ο S



Given R to be a relation on X, Y and S to be a relation on Y, Z then R ο S is a

composition of relation on X, Z defined as

(6.50)

A common form of the composition relation is the max-min composition.

Max-min composition:

Given the relation matrices of the relation R and S, the max-min composition

is defined as

For T = R ο S

T( x, z) =

(6.51)

Example

Let R, S be defined on the sets {1, 3, 5} × {1, 3, 5}

Let R : {( x, y) | y = x + 2}, S: {( x, y) | x < y}

R = {(1, 3)(3, 5)}, S = {(1, 3)(1, 5) (3, 5)}



The relation matrices are

Using max-min composition

R ο S =

since R ο S (1, 1) = max{min (0, 0), min(1, 0), min(0, 0)}

= max (0, 0, 0) = 0.

R ο S (1, 3) = max{0, 0, 0} = 0

R ο S (1, 5) = max{0, 1, 0} = 1.

Similarly, R ο S (3, 1) = 0.

R ο S (3, 3) = R ο S (3, 5) = R ο S (5, 1) = R ο S (5, 3) = R ο S (5, 5) =

0

R ο S from the relation matrix is {(1, 5)}.

Also, S ο R =



6.5 FUZZY RELATIONS

Fuzzy relation is a fuzzy set defined on the Cartesian product of crisp sets X

1, X 2,..., Xn where the n-tuples ( x 1, x 2,..., xn) may have varying degrees of

membership within the relation. The membership values indicate the strength

of the relation between the tuples.

Example

Let R be the fuzzy relation between two sets X 1 and X 2 where X 1 is the set

of diseases and X 2 is the set of symptoms.

X 1 = {typhoid, viral fever, common cold}

X 2 = {running nose, high temperature, shivering}

The fuzzy relation R may be defined as

Running nose



High temperature

Shivering

Typhoid

0.1

0.9

0.8

Viral fever

0.2

0.9

0.7

Common cold

0.9

0.4

0.6

6.5.1 Fuzzy Cartesian Product

Let be a fuzzy set defined on the universe X and be a fuzzy set defined on the

universe Y, the Cartesian product between the fuzzy sets and

indicated as

and resulting in a fuzzy relation is given by

(6.52)



where has its membership function given by

=

(6.53)

Example

Let = {( x 1, 0.2), ( x 2, 0.7), ( x 3, 0.4)} and = {( y 1, 0.5), ( y 2, 0.6)} be two

fuzzy sets defined on the universes of discourse X = { x 1, x 2, x 3} and Y = {

y 1,



y 2} respectively. Then the fuzzy relation resulting out of the fuzzy Cartesian

product

is given by

since,

6.5.2 Operations on Fuzzy Relations

Let and be fuzzy relations on X × Y.

Union

(6.54)

Intersection

(6.55)



Complement

(6.56)

Composition of relations

The definition is similar to that of crisp relation. Suppose is a fuzzy relation

defined on X × Y, and is a fuzzy relation defined on Y × Z, then is a

fuzzy relation on X × Z. The fuzzy max-min composition is defined as

.     (6.57)

Example

X = { x 1, x 2, x 3} Y = { y 1, y 2} Z = { z 1, z 2, z 3}     (6.58)



Let be a fuzzy relation     

Let be a fuzzy relation     

Then R ο S, by max-min composition yields, Example 6.7

Consider a set P = { P 1, P 2, P 3, P 4} of four varieties of paddy plants, set

D =

{ D 1, D 2, D 3, D 4} of the various diseases affecting the plants and S = { S

1, S 2, S 3, S 4} be the common symptoms of the diseases.



Let be a relation on P × D and be a relation on D × S

For,

Obtain the association of the plants with the different symptoms of the

diseases using max-min composition.

Solution

To obtain the association of the plants with the symptoms, R S which is a

relation on the sets P and S is to be computed.

Using max-min composition,



SUMMARY

Fuzzy set theory is an effective tool to tackle the problem of uncertainty.

In crisp logic, an event can take on only two values, either a 1 or 0

depending on whether its occurrence is true or false respectively.

However, in fuzzy logic, the event may take a range of values between 0 and

1.

Crisp sets are fundamental to the study of fuzzy sets. The basic concepts

include universal set, membership, cardinality of a set, family of sets, Venn

diagrams, null set, singleton set, power set, subset, and super set. The basic

operations on crisp sets are union, intersection, complement, and difference.

A set of properties are satisfied by crisp sets. Also, the concept of partition

and covering result in the two important rules, namely rule of addition and

principle of inclusion and exclusion.

Fuzzy sets support a flexible sense of membership and is defined to be the

pair ( x, μ Ã( x)) where μ Ã( x) could be discrete or could be described by a

continuous function. The membership functions could be triangular,

trapezoidal, curved or its variations.

The basic fuzzy operations used often are,

Fuzzy sets, similar to crisp sets satisfy properties such as commutativity,

associativity, distributivity, De Morgan’s laws and so on.

Crisp relations on sets are subsets of the Cartesian product of the given sets.

A crisp relation associates the tuples by means of a relation. A Cartesian

relation could be represented by a relation matrix.



Fuzzy relations also associate tuples but to a varying degree of membership.

Some of the fuzzy relation operations are,

R ∪ S ( x, y) = max ( R( x, y), S( x, y)) R ∩ S ( x, y) = min ( R( x, y), S( x, y))

Rc( x, y) = 1 − R( x, y) R ο S ( x, y) =

(using the max-min composition)

PROGRAMMING ASSIGNMENT

P6.1 (a) Design and implement a fuzzy library FUZZYLIB.H comprising the

basic fuzzy set operations such as union, intersection, complement etc.

(b) Also provide routines to implement fuzzy relations and their operations,

namely union, intersection, complement, and max-min composition.

Note: Make use of relation matrix representation for the relations.

(c) Define an appropriate fuzzy problem and apply FUZZYLIB.H to solve

the problem.

SUGGESTED FURTHER READING

Fuzzy Logic with Engineering Applications (Ross, 1997) is a lucid treatise on

fuzzy logic. Introduction to the Theory of Fuzzy Subsets, Vol. 1, (Kaufmann,

1975), Fuzzy Sets and Systems: Theory and Applications (Dubois and Prade,

1980), Fuzzy Set Theory and its Applications (Zimmerman, 1987) and Fuzzy

Mathematical Techniques with Applications (Kandel, 1986) are some of the

early literature in this field. Fuzzy Sets and Fuzzy Logic (Klir and Yuan Bo,

1997) provides good material on fuzzy systems and its applications.
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Chapter 7

Fuzzy Systems

Logic is the science of reasoning. Symbolic or mathematical logic has turned

out to be a powerful computational paradigm. Not only does symbolic logic

help in the description of events in the real world but has also turned out to

be an effective tool for inferring or deducing information from a given set of

facts.

Just as mathematical sets have been classified into crisp sets and fuzzy sets

(Refer Chapter 6), logic can also be broadly viewed as crisp logic and fuzzy

logic. Just as crisp sets survive on a 2-state membership (0/1) and fuzzy sets

on a multistate membership [0−1], crisp logic is built on a 2-state truth value

(True/False) and fuzzy logic on a multistate truth value (True/False/very

True/partly False and so on.)

We now briefly discuss crisp logic as a prelude to fuzzy logic.

7.1 CRISP LOGIC

Consider the statements “Water boils at 90oC” and “Sky is blue”. An

agreement or disagreement with these statements is indicated by a “True” or

“False” value accorded to the statements. While the first statement takes on a

value false, the second takes on a value true.

Thus, a statement which is either ‘True’ or ‘False’ but not both is called a

proposition. A proposition is indicated by upper case letters such as P, Q, R

and so on.

Example: P: Water boils at 90°C.

Q: Sky is blue.

are propositions.



A simple proposition is also known as an atom. Propositions alone are

insufficient to represent phenomena in the real world. In order to represent

complex information, one has to build a sequence of propositions linked

using c onnectives or o perators. Propositional logic recognizes five major

operators as shown in Table 7.1.

Table 7.1 Propositional logic connectives

Symbol

Connective

Usage

Description

∧

and

P ∧ Q

P and Q are true.

∨

or

P ∨ Q

Either P or Q is true.

∧ or ~

not

~ P or ∧ P

P is not true.



⇒

implication

P ⇒ Q

P implies Q is true.

=

equality

P = Q

P and Q are equal (in truth values) is true.

Observe that ∧, ∨, ⇒, and = are ‘binary’ operators requiring two

propositions while ~ is a ‘unary’ operator requiring a single proposition. ∧

and ∨ operations are referred to as conjunction and disjunction respectively.

In the case of ⇒ operator, the proposition occurring before the ‘⇒’ symbol is

called as the antecedent and the one occurring after is called as the

consequent.

The semantics or meaning of the logical connectives are explained using a

truth table. A truth table comprises rows known as interpretation s, each of

which evaluates the logical formula for the given set of truth values. Table

7.2 illustrates the truth table for the five connectives.

Table 7.2 Truth table for the connectives ∧, ∨, ~, ⇒ , =

P

Q

P ∧ Q



P ∨ Q

~ P

P ⇒ Q

P = Q

T

T

T

T

F

T

T

T

F

F

T

F

F

F

F

F



F

F

T

T

T

F

T

F

T

T

T

F

T : True, F : False

A logical formula comprising n propositions will have 2n interpretations in

its truth table. A formula which has all its interpretations recording true is

known as a tautology and the one which records false for all its

interpretations is known as contradiction.

Example 7.1

Obtain a truth table for the formula ( P ∨ Q) ⇒ (~ P). Is it a tautology?

Solution

The truth table for the given formula is



P

Q

P ∨ Q

~P

P ∨ Q ⇒ ~P

T

F

T

F

F

F

T

T

T

T

T

T

T

F

F



F

F

F

T

T

No, it is not a tautology since all interpretations do not record ‘True’ in its

last column.

Example 7.2

Is (( P ⇒ Q) ∧ ( Q ⇒ P) = ( P = Q) a tautology?

Solution

A:

B:

P

Q

P ⇒ Q

Q ⇒ P

A = B

(P ⇒ Q) ∧ (Q ⇒ P)

P = Q

T



F

F

T

F

F

T

F

T

T

F

F

F

T

T

T

T

T

T

T

T



F

F

T

T

T

T

T

Yes, the given formula is a tautology.

Example 7.3

Show that ( P ⇒ Q) = (~ P ∨ Q)

Solution

The truth table for the given formula is

P

Q

A: P ⇒ Q

~P

B: ~P ∨ Q

A = B

T

T



T

F

T

T

T

F

F

F

F

T

F

F

T

T

T

T

T

T

T

T



T

T

Since the last column yields ‘True’ for all interpretations, it is a tautology.

The logical formula presented in Example 7.3 is of practical importance

since ( P ⇒ Q) is shown to be equivalent to (~ P ∨ Q), a formula devoid of

‘⇒’ connective. This equivalence can therefore be utilised to eliminate ‘⇒’

in logical formulae.

It is useful to view the ‘⇒’ operator from a set oriented perspective. If X is

the universe of discourse and A, B are sets defined in X, then propositions P

and Q could be defined based on an element x ∈ X belonging to A or B. That

is,

P: x ∈ A

Q: x ∈ B     (7.1)

Here, P, Q are true if x ∈ A and x ∈ B respectively, and ~ P, ~ Q are true if

x ∈ A and x ∈ B respectively. In such a background, P ⇒ Q which is

equivalent to (~ P ∨ Q) could be interpreted as ( P ⇒ Q) : x ∈ A or x ∈

B      (7.2) However, if the ‘⇒’ connective deals with two different

universes of discourse, that is,

A ⊂ X and B ⊂ Y where X and Y are two universes of discourse then the ‘⇒’

connective is represented by the relation R such that

R = ( A × B) ∪ ( × Y)      (7.3) In such a case, P ⇒ Q is

linguistically referred to as IF A THEN B. The compound proposition ( P ⇒



Q) ∨ (~ P ⇒ S) linguistically referred to as IF A THEN B ELSE C is

equivalent to

IF A THEN B ( P ⇒ Q)

IF ~ A THEN C (~ P ⇒ S)      (7.4) where P, Q, and S are defined

by sets A, B, C, A ⊂ X, and B, C ⊂ Y.

7.1.1 Laws of Propositional Logic

Crisp sets as discussed in Section 6.2.2. exhibit properties which help in their

simplification. Similarly, propositional logic also supports the following laws

which can be effectively used for their simplification. Given P, Q, R to be the

propositions,

(i) Commutativity

( P ∨ Q) = ( Q ∨ P)

( P ∧ Q) = ( Q ∧ P)      (7.5)

(ii) Associativity

( P ∨ Q) ∨ R = P ∨ ( Q ∨ R) ( P ∧ Q) ∧ R = P ∧ ( Q ∧

R)      (7.6) (iii) Distributivity

( P ∨ Q) ∧ R = ( P ∧ R ) ∨ ( Q ∧ R) ( P ∧ Q) ∨ R = ( P ∨ R ) ∧ ( Q

∨ R)      (7.7) (iv) Identity

P ∨ false = P

P ∧ True = P

P ∧ False = False

P ∨ True = True      (7.8)

(v) Negation



P ∧ ~ P = False

P ∨ ~ P = True      (7.9)

(vi) Idempotence

P ∨ P = P

P ∧ P = P      (7.10)

(vii) Absorption

P ∧ ( P ∨ Q) = P

P ∨ ( P ∧ Q) = P      (7.11)

(viii) De Morgan’s laws

~( P ∨ Q) = (~ P ∧ ~ Q)

~( P ∧ Q) = (~ P ∨ ~ Q)      (7.12) (ix) Involution

~(~ P) = P      (7.13)

Each of these laws can be tested to be a tautology using truth tables.

Example 7.4

Verify De Morgan’s laws.

(a) ~( P ∨ Q) = (~ P ∧ ~ Q)

(b) ~( P ∧ Q) = (~ P ∨ ~ Q)

Solution

P

Q



P ∨ Q

A: ~( P ∨ Q)

~ P

~ Q

B: ~ P ∧ ~ Q

A = B

T

T

T

F

F

F

F

T

T

F

T

F

F

T



F

T

F

T

T

F

T

F

F

T

F

F

F

T

T

T

T

T

Therefore, ~( P ∨ Q) = (~ P ∧ ~ Q) P

Q



P ∧ Q

A: ~( P ∧ Q)

~ P

~ Q

B: ~ P ∨ ~ Q

A = B

T

T

T

F

F

F

F

T

T

F

F

T

F

T



T

T

F

T

F

T

T

T

T

T

F

F

F

T

T

F

T

T

Therefore ~( P ∧ Q) = (~ P ∨ ~ Q)

Example 7.5



Simplify (~( P ∧ Q) ⇒ R) ∧ P ∧ Q

Solution

Consider    (~( P ∧ Q) ⇒ R) ∧ P ∧ Q

= (~ ~( P ∧ Q) ∨ R) ∧ P ∧ Q

(by eliminating ‘⇒’ using ( P ⇒ Q) = (~ P ∨ Q))

= (( P ∧ Q) ∨ R) ∧ P ∧ Q (by the law of involution)

= ( P ∧ Q) (by the law of absorption)

7.1.2 Inference in Propositional Logic

Inference is a technique by which, given a set of facts or postulates or axioms

or premises F 1,

F 2, ..., Fn, a goal G is to be derived. For example, from the facts “Where

there is smoke there is fire”, and “There is smoke in the hill”, the statement

“Then the hill is on fire” can be easily deduced.

In propositional logic, three rules are widely used for inferring facts, namely

(i) Modus Ponens

(ii) Modus Tollens, and

(iii) Chain rule

Modus ponens (mod pons)



Given P ⇒ Q and P to be true, Q is true.

(7.14)

Here, the formulae above the line are the premises and the one below is the

goal which can be inferred from the premises.

Modus tollens

Given P ⇒ Q and ~ Q to be true, ~ P is true.

(7.15)

Chain rule

Given P ⇒ Q and Q ⇒ R to be true, P ⇒ R is true.

(7.16)

Note that the chain rule is a representation of the transitivity relation with

respect to the ‘⇒’ connective.



Example 7.6

Given

(i) C ∨ D

(ii) ~ H ⇒ ( A ∧ ~ B)

(iii) ( C ∨ D) ⇒ ~ H

(iv) ( A ∧ ~ B) ⇒ ( R ∨ S)

Can ( R ∨ S) be inferred from the above?

Solution

From (i) and (iii) using the rule of Modus Ponens , ~ H can be inferred.

From (ii) and (iv) using the chain rule, ~ H ⇒ ( R ∨ S) can be inferred.

From (v) and (vi) using the rule of Modus Ponens ( R ∨ S) can be inferred.

Hence, the result.

7.2 PREDICATE LOGIC

In propositional logic, events are symbolised as propositions which acquire

either ‘True/False’ values. However, there are situations in the real world



where propositional logic falls short of its expectation. For example, consider

the following statements:

P : All men are mortal.

Q : Socrates is a man.

From the given statements it is possible to infer that Socrates is mortal.

However, from the propositions P, Q which symbolise these statements

nothing can be made out. The reason being, propositional logic lacks the

ability to symbolise quantification. Thus, in this example, the quantifier “All”

which represents the entire class of men encompasses Socrates as well, who

is declared to be a man, in proposition Q. Therefore, by virtue of the first

proposition P, Socrates who is a man also becomes a mortal, giving rise to

the deduction Socrates is mortal. However, the deduction is not directly

perceivable owing to the shortcomings in propositional logic. Therefore,

propositional logic needs to be augmented with more tools to enhance its

logical abilities.

Predicate logic comprises the following apart from the connectives and

propositions recognized by propositional logic.

(i) Constants

(ii) Variables

(ii) Predicates

(iv) Quantifiers

(v) Functions

Constants represent objects that do not change values.

Example Pencil, Ram, Shaft, 100°C.



Variables are symbols which represent values acquired by the objects as

qualified by the quantifier with which they are associated with.

Example x, y, z.

Predicates are representative of associations between objects that are

constants or variables and acquire truth values ‘True’ or ‘False’. A predicate

carries a name representing the association followed by its arguments

representing the objects it is to associate.

Example

likes (Ram, tea)………(Ram likes tea)

plays (Sita, x)………(Sita plays anything)

Here, likes and plays are predicate names and Ram, tea and Sita, x are the

associated objects. Also, the predicates acquire truth values. If Ram disliked

tea, likes (Ram, tea) acquires the value false and if Sita played any sport,

plays (Sita, x) would acquire the value true provided x is suitably qualified by

a quantifier.

Quantifiers are symbols which indicate the two types of quantification,

namely, All (∀) and Some (∃). ‘∀’ is termed universal quantifier and ‘∃’

is termed existential quantifier.

Example Let,

man ( x)   :  x is a man.

mortal ( x)  :  x is mortal.

mushroom ( x).:  x is a mushroom.

poisonous ( x)..:  x is poisonous.



Then, the statements

All men are mortal.

Some mushrooms are poisonous.

are represented as

∀ x (man ( x) ⇒ mortal ( x))

∃ x (mushroom ( x) ∧ poisonous ( x))

Here, a useful rule to follow is that a universal quantifier goes with

implication and an existential quantifier with conjunction. Also, it is possible

for logical formula to be quantified by multiple quantifiers.

Example Every ship has a captain.

∀ x ∃ y (ship ( x) ⇒ captain ( x, y)) where, ship ( x) : x is a ship

captain ( x, y) : y is the captain of x.

Functions are similar to predicates in form and in their representation of

association between objects but unlike predicates which acquire truth values

alone, functions acquire values other than truth values. Thus, functions only

serve as object descriptors.

Example

plus (2, 3)     (2 plus 3 which is 5)

mother (Krishna) (Krishna’s mother)

Observe that plus () and mother () indirectly describe “5” and “Krishna’s

mother” respectively.

Example 7.7

Write predicate logic statements for



(i) Ram likes all kinds of food.

(ii) Sita likes anything which Ram likes.

(iii) Raj likes those which Sita and Ram both like.

(iv) Ali likes some of which Ram likes.

Solution

Let food ( x) : x is food.

likes ( x, y) : x likes y

Then the above statements are translated as

(i) ∀ x food ( x) ⇒ likes (Ram, x))

(ii) ∀ x (likes (Ram, x) ⇒ likes (Sita, x)) (iii) ∀ x (likes (Sita, x) ∧ likes

(Ram, x)) ⇒ likes (Raj, x)) (iv) ∃ x (likes (Ram, x) ∧ likes (Ali, x)) The

application of the rule of universal quantifier and rule of existential quantifier

can be observed in the translations given above.

7.2.1 Interpretations of Predicate Logic Formula

For a formula in propositional logic, depending on the truth values acquired

by the propositions, the truth table interprets the formula. But in the case of

predicate logic, depending on the truth values acquired by the predicates, the

nature of the quantifiers, and the values taken by the constants and functions

over a domain D, the formula is interpreted.

Example

Interpret the formulae

(i) ∀ x p( x)

(ii) ∃ x p( x)



where the domain D = {1, 2} and

p(1)       p(2)

True    False

Solution

(i) ∀ x p( x) is true only if p( x) is true for all values of x in the domain D,

otherwise it is false.

Here, for x = 1 and x = 2, the two possible values for x chosen from D,

namely p(1) = true and p(2) = false respectively, yields (i) to be false since p(

x) is not true for x = 2. Hence, ∀ x p( x) is false.

(ii) ∃ x p( x) is true only if there is atleast one value of x for which p( x) is

true.

Here, for x = 1, p( x) is true resulting in (ii) to be true. Hence, ∃ x p( x) is

true.

Example 7.8

Interpret ∀ x ∃ y P( x, y) for D = {1, 2} and P(1, 1)

P(1, 2)

P(2, 1)

P(2 ,2)

True

False

False

True



Solution

For x = 1, there exists a y, ( y = 1) for which P( x, y), i.e. ( P(1,1)) is true.

For x = 2, there exists a y, ( y = 2) for which P( x, y) ( P(2, 2)) is true.

Thus, for all values of x there exists a y for which P( x, y) is true.

Hence, ∀ x ∃ y P( x, y) is true.

7.2.2 Inference in Predicate Logic

The rules of inference such as Modus Ponens, Modus Tollens and Chain

rule, and the laws of propositional logic are applicable for inferring predicate

logic but not before the quantifiers have been appropriately eliminated (refer

Chang & Lee, 1973).

Example

Given (i) All men are mortal.

(ii) Confucius is a man.

Prove: Confucius is mortal.

Translating the above into predicate logic statements

(i) x (man ( x) ⇒ mortal ( x))

(ii) man (Confucius)

(iii) mortal (Confucius)

Since (i) is a tautology qualified by the universal quantifier for x = Confucius,

the statement is true, i.e.

man (Confucius) ⇒ mortal (Confucius)

⇒. ~man (Confucius) ∨ mortal (Confucius)



But from (ii), man (Confucius) is true.

Hence (iv) simplifies to

False ∨ mortal (Confucius)

= mortal (Confucius)

Hence, Confucius is mortal has been proved.

Example 7.9

Given (i) Every soldier is strong-willed.

(ii) All who are strong-willed and sincere will succeed in their career.

(iii) Indira is a soldier.

(iv) Indira is sincere.

Prove: Will Indira succeed in her career?

Solution

Let

soldier ( x) : x is a soldier.

strong-willed ( x) : x is a strong-willed.

sincere ( x) : x is sincere.

succeed_career ( x) : x succeeds in career.

Now (i) to (iv) are translated as

∀ x (soldier ( x) ⇒ strong-willed ( x))………(i)

∀ x ((strong-willed ( x) ∧ sincere ( x)) ⇒ succeed_career ( x))………



(ii)

soldier (Indira)………(iii)

sincere (Indira)………(iv)

To show whether Indira will succeed in her career, we need to show

succeed_career(Indira) is true.………(v)

Since (i) and (ii) are quantified by ∀, they should be true for x = Indira.

Substituting x = Indira in (i) results in (soldier (Indira) ⇒ strong-willed

(Indira),

i.e. .~soldier (Indira) ∨ strong-willed (Indira)………(vi)

Since from (iii) soldier (Indira) is true, (vi) simplifies to

strong-willed (Indira)………(vii)

Substituting x = Indira in (ii),

(strong-willed (Indira) ∧ sincere (Indira)) ⇒ succeed_career (Indira) i.e. ~

(strong-willed (Indira) ∧ sincere (Indira)) ∨ succeed_career (Indira)

(∵ P ⇒ Q = ~P ∨ Q))

i.e. ~(strong-willed (Indira) ∨ ~sincere (Indira)) ∨ succeed_career (Indira)

(De Morgan’s law) (viii)

From (vii), strong-willed (Indira) is true and from (iv) sincere (Indira) is true.

Substituting these in (viii),

False ∨ False ∨ succeed_career (Indira)

i.e. succeed_career (Indira) (using law of identity)



Hence, Indira will succeed in her career is true.

7.3 FUZZY LOGIC

In crisp logic, the truth values acquired by propositions or predicates are 2-

valued, namely True, False which may be treated numerically equivalent to



(0, 1). However, in fuzzy logic, truth values are multivalued such as

absolutely true, partly true, absolutely false, very true, and so on and are

numerically equivalent to (0−1).

Fuzzy propositions

A fuzzy proposition is a statement which acquires a fuzzy truth value. Thus,

given to be a fuzzy proposition, T( ) represents the truth value (0−1) attached

to . In its simplest form, fuzzy propositions are associated with fuzzy sets.

The fuzzy membership value associated with the fuzzy set Ã for is treated as

the fuzzy truth value T( ).

i.e.

………(7.17)

Example

: Ram is honest.

T( ) = 0.8, if is partly true.

T( ) = 1, if is absolutely true.

Fuzzy connectives

Fuzzy logic similar to crisp logic supports the following connectives: (i)

Negation : −

(ii) Disjunction : ∨

(iii) Conjunction : ∧

(iv) Implication : ⇒

Table 7.3 illustrates the definition of the connectives. Here , are fuzzy

propositions and T( ), T( ), are their truth values.





and related by the ‘⇒’ operator are known as antecedent and consequent

respectively. Also, just as in crisp logic, here too, ‘⇒’ represents the IF-

THEN statement as

IF x is THEN y is , and is equivalent to



………(7.18)

The membership function of is given by

………(7.19)

Also, for the compound implication IF x is Ã THEN y is ELSE y is the

relation R is equivalent to

………(7.20)

The membership function of is given by

………(7.21)

Example

: Mary is efficient, T( ) = 0.8

: Ram is efficient, T( ) = 0.65

(i) : Mary is not efficient.

T( ) = 1 − T( ) = 1 − 0.8 = 0.2

(ii)

: Mary is efficient and so is Ram.

= min ( T( ), T( ))

= min (0.8 , 0.65)

= 0.65

(iii)

: Either Mary or Ram is efficient.



= max ( T( ), T( ))

= max (0.8, 0.65)



= 0.8

(iv)

: If Mary is efficient then so is Ram.

= max (1 - T( ), T( ))

= max (0.2, 0.65)

= 0.65

Example 7.10

Let X = { a, b, c, d} Y = {1, 2, 3, 4}

and  

Ã = {( a, 0)( b, 0.8)( c, 0.6)( d, 1)}



= {(1, 0.2)(2, 1)(3, 0.8)(4, 0)}

= {(1, 0)(2, 0.4)(3, 1)(4, 0.8)}

Determine the implication relations

(i) IF x is Ã THEN y is .

(ii) IF x is Ã THEN y is ELSE y is .

Solution

To determine (i) compute

=

where

=

=

=

Here, Y the universe of discourse could be viewed as {(1, 1) (2, 1) (3, 1) (4,

1)} a fuzzy set all of whose elements x have μ( x) = 1.

Therefore,





=

which represents IF x is Ã THEN y is .

To determine (ii) compute

=

where

=

=

=

Therefore,

= max

gives



=

The above represents IF x is Ã THEN y is ELSE y is .

7.3.1 Fuzzy Quantifiers

Just as in crisp logic where predicates are quantified by quantifiers, fuzzy

logic propositions are also quantified by fuzzy quantifiers. There are two

classes of fuzzy quantifiers such as

(i) Absolute quantifiers and

(ii) Relative quantifiers



While absolute quantifiers are defined over R, relative quantifiers are defined

over [0−1].

Example

Absolute quantifier

Relative quantifier

round about 250

almost

much greater than 6

about

some where around 20

most

7.3.2 Fuzzy Inference

Fuzzy inference also referred to as approximate reasoning refers to

computational procedures used for evaluating linguistic descriptions. The

two important inferring procedures are

(i) Generalized Modus Ponens (GMP)

(ii) Generalized Modus Tollens (GMT)

GMP is formally stated as

Ã



Here, Ã, ,

and

are fuzzy terms. Every fuzzy linguistic statement

above the line is analytically known and what is below is analytically

unknown.

To compute the membership function of

, the max-min composition of

fuzzy set A′ with ( x, y) which is the known implication relation (IF-THEN

relation) is used. That is,

(7.23)

In terms of membership function,

(7.24)

where

is the membership function of

,

is the membership

function of the implication relation and

is the membership function of

.





On the other hand, GMT has the form

The membership of

is computed on similar lines as

In terms of membership function,

………(7.25)

Example

Apply the fuzzy Modus Ponens rule to deduce Rotation is quite slow given

(i) If the temperature is high then the rotation is slow.

(ii) The temperature is very high.

Let (High),



(Very High), (Slow) and

(Quite Slow) indicate the

associated fuzzy sets as follows:

For X = {30, 40, 50, 60, 70, 80, 90, 100}, the set of temperatures and Y =

{10, 20, 30, 40, 50, 60}, the set of rotations per minute,

= {(70, 1) (80, 1) (90, 0.3)}

= {(90, 0.9) (100, 1)}

= {(10, 1) (20, 0.8)}

= {(30, 0.8) (40, 1) (50, 0.6)}

To derive

( x, y) representing the implication relation (i), we need to compute

( x, y) =

=





=

=

To deduce Rotation is quite slow we make use of the composition rule

=

= [0 0 0 0 0 0 0.9 1] ×

= [1 1 1 1 1 1 ]

7.4 FUZZY RULE BASED SYSTEM



Fuzzy linguistic descriptions are formal representations of systems made

through fuzzy IF-THEN rules. They encode knowledge about a system in

statements of the form—

IF (a set of conditions) are satisfied THEN (a set of consequents) can be

inferred.

Fuzzy IF-THEN rules are coded in the form—

IF

THEN

.

where linguistic variables xi, yj take the values of fuzzy sets Ai and Bj

respectively.

Example

If there is heavy rain and strong winds

then there must be severe flood warning.

Here, heavy, strong, and severe are fuzzy sets qualifying the variables rain,

wind, and flood warning respectively.

A collection of rules referring to a particular system is known as a fuzzy rule

base. If the conclusion C to be drawn from a rule base R is the conjunction of

all the individual consequents Ci of each rule, then C = C 1 ∩ C 2 ∩ … ∩

Cn       (7.26) where

=

(7.27)

where Y is the universe of discourse.



On the other hand, if the conclusion C to be drawn from a rule base R is the

disjunction of the individual consequents of each rule, then

C = C 1 ∪ C 2 ∪ C 3 ... ∪ Cn      (7.28) where

(7.29)

7.5 DEFUZZIFICATION

In many situations, for a system whose output is fuzzy, it is easier to take a

crisp decision if the output is represented as a single scalar quantity. This

conversion of a fuzzy set to single crisp value is called defuzzification and is

the reverse process of fuzzification.

Several methods are available in the literature (Hellendoorn and Thomas,

1993) of which we illustrate a few of the widely used methods, namely

centroid method, centre of sums, and mean of maxima.



Centroid method

Also known as the centre of gravity or the centre of area method, it obtains

the centre of area (x*) occupied by the fuzzy set. It is given by the expression

x* =

(7.30)

for a continuous membership function, and

x* =

(7.31)

for a discrete membership function.

Here, n represents the number of elements in the sample , xi’s are the

elements, and μ (xi) is its membership function.

Centre of sums (COS) method

In the centroid method, the overlapping area is counted once whereas in

centre of sums, the overlapping area is counted twice. COS builds the

resultant membership function by taking the algebraic sum of outputs from

each of the contributing fuzzy sets Ã 1 , Ã 2 , ..., etc. The defuzzified value

x* is given by

x* =

(7.32)

COS is actually the most commonly used defuzzification method. It can be

implemented easily and leads to rather fast inference cycles.



Mean of maxima (MOM) defuzzification

One simple way of defuzzifying the output is to take the crisp value with the

highest degree of membership. In cases with more than one element having

the maximum value, the mean value of the maxima is taken. The equation of

the defuzzified value x* is given by

x* =

(7.33)

where M = { xi |μ( xi) is equal to the height of fuzzy set}

| M| is the cardinality of the set M. In the continuous case, M could be

defined as

M = { x ∈ [− c, c] |μ( x) is equal to the height of the fuzzy

set}      (7.34)

In such a case, the mean of maxima is the arithmetic average of mean values

of all intervals contained in M including zero length intervals.

The height of a fuzzy set A, i.e. h(A) is the largest membership grade

obtained by any element in that set.

Example

Ã 1 , Ã 2 , and Ã 3 are three fuzzy sets as shown in Fig. 7.1(a), (b), and (c).

Figure 7.2 illustrates the aggregate of the fuzzy sets.

The defuzzification using (i) centroid method, (ii) centre of sums method,

and (iii) mean of maxima method is illustrated as follows.

Centroid method

To compute x*, the centroid, we view the aggregated fuzzy sets as shown in

Figs. 7.2 and 7.3. Note that in Fig. 7.3 the aggregated output has been divided



into areas for better understanding.



Fig. 7.1 Fuzzy sets Ã 1, Ã 2, Ã 3.



Fig. 7.2 Aggregated fuzzy set of Ã 1, Ã 2, and Ã 3.

Fig. 7.3 Aggregated fuzzy set of Ã 1, Ã 2, and Ã 3 viewed as area segments.

Table 7.4 illustrates the computations for obtaining x*.





In Table 7.4, Area ( A) shows the area of the segments of the aggregated

fuzzy set and shows the corresponding centroid. Now,

x* =

i.e. x* = 18.353/3.695

= 4.9

Centre of sums method

Here, unlike centroid method the overlapping area is counted not once but

twice. Making use of the aggregated fuzzy set shown in Fig.7.2, the centre of

sums, x* is given by

Here, the areas covered by the fuzzy sets Ã 1, Ã 2, Ã 3 (Refer Figs. 7.1(a),

(b), and (c)) are given by

, and

respectively.

Mean of maxima method

Since the aggregated fuzzy set shown in Fig. 7.2 is a continuous set, x* the



mean of maxima is computed as x* = 6.5.

Here, M = { X ∈ [6, 7] | μ ( x) = 1} and the height of the aggregated fuzzy

set is 1.

Figure 7.4 shows the defuzzified outputs using the above three methods.

Fig. 7.4 Defuzzified outputs of the aggregate of Ã 1, Ã 2, and Ã 3.

7.6 APPLICATIONS

In this section we illustrate two examples of Fuzzy systems, namely (i) Greg

Viot’s (Greg Viot, 1993) Fuzzy Cruise Control System (ii) Yamakawa’s

(Yamakawa, 1993) Air Conditioner Controller 7.6.1 Greg Viot’s Fuzzy

Cruise Controller



This controller is used to maintain a vehicle at a desired speed. The system

consists of two fuzzy inputs, namely speed difference and acceleration, and

one fuzzy output, namely throttle control as illustrated in Fig. 7.5.

Fig. 7.5 Fuzzy cruise controller.

Fuzzy rule base

A sample fuzzy rule base R governing the cruise control is as given in Table

7.5.

Table 7.5 Sample cruise control rule base

Rule 1

If (speed difference is NL) and (acceleration is ZE) then (throttle control is

PL).

Rule 2

If (speed difference is ZE) and (acceleration is NL) then (throttle control is

PL).

Rule 3

If (speed difference is NM) and (acceleration is ZE) then (throttle control is

PM).

Rule 4

If (speed difference is NS) and (acceleration is PS) then (throttle control is

PS).

Rule 5

If (speed difference is PS) and (acceleration is NS) then (throttle control is

NS).



Rule 6

If (speed difference is PL) and (acceleration is ZE) then (throttle control is

NL).

Rule 7

If (speed difference is ZE) and (acceleration is NS) then (throttle control is

PS).

Rule 8

If (speed difference is ZE) and (acceleration is NM) then (throttle control is

PM).

Key

NL − Negative Large       PM − Positive Medium

ZE − Zero             NS − Negative Small

PL − Positive Large         PS − Positive Small

NM − Negative Medium



Fuzzy sets

The fuzzy sets which characterize the inputs and output are as given in Fig.

7.6.

Fig. 7.6 Fuzzy sets characterising fuzzy cruise control.

Fuzzification of inputs



For the fuzzification of inputs, that is, to compute the membership for the

antecedents, the formula illustrated in Fig. 7.7 is used.

Fig. 7.7 Computation of fuzzy membership value.

Here, x which is the system input has its membership function values

computed for all fuzzy sets. For example, the system input speed difference

deals with 7 fuzzy sets, namely NL, NM, NS, ZE, PS, PM, and PL. For a

measured value of the speed difference x′, the membership function of x′ in

each of the seven sets is computed using the formula shown in Fig. 7.7. Let

μ1′, μ2′,..., μ7′ be the seven membership values. Then, all these values are

recorded for the input x′ in an appropriate data structure.

Similarly, for each of the other system inputs (acceleration in this case), the

fuzzy membership function values are recorded.

Example

Let the measured normalized speed difference be 100 and the normalized

acceleration be 70, then the fuzzified inputs after computation of the fuzzy

membership values are shown in Fig. 7.8.





Fig. 7.8 Fuzzy membership values for speed difference = 100 and

acceleration = 70.

The computations of the fuzzy membership values for the given inputs have

been shown in

Fig. 7.9.

Fig. 7.9 Fuzzification of speed difference = 100.

For speed difference ( x = 100), the qualifying fuzzy sets are as shown in



Fig. 7.9.

Fuzzy membership function of x for NS where

Delta 1 = 100 − 63 = 37

Delta 2 = 127 − 100 = 27

Slope 1 = 1/32 = 0.03125

Slope 2 = 1/32 = 0.03125

Degree of membership function

μ NS( x) = min

= 0.8438

Fuzzy membership function of x for ZE where

Delta 1 = 100 − 95 = 5

Delta 2 = 159 − 100 = 59

Slope 1 = = 0.03125

Slope 2 = 0.03125

Degree of membership function



μ ZE( x) = min

= 0.1563

The membership function of x with the remaining fuzzy sets, namely NL,

NM, PS, PM, PL is zero.

Similarly for acceleration ( x = 70), the qualifying fuzzy sets are as shown in

Fig. 7.10.

Fig. 7.10 Fuzzification of acceleration = 70.

The fuzzy membership function of x = 70 for NM is μ NM( x) = 0.7813 and

for NS is

μ NS( x) = 0.2188.

Rule strength computation

The rule strengths are obtained by computing the minimum of the

membership functions of the antecedents.

Example

For the sample rule base R given in Table 7.5, the rule strengths using the

fuzzy membership values illustrated in Fig. 7.8 are

Rule 1: min (0, 0) = 0

Rule 2: min (0.1563, 0) = 0

Rule 3: min (0, 0) = 0

Rule 4: min (0.8438, 0) = 0

Rule 5: min (0, 0.2188) = 0

Rule 6: min (0,0) = 0



Rule 7: min (0.1563, 0.2188) = 0.1563

Rule 8: min (0.1563, 0.7813) = 0.1563

Fuzzy output

The fuzzy output of the system is the ‘fuzzy OR’ of all the fuzzy outputs of

the rules with

non-zero rule strengths. In the event of more than one rule qualifying for the

same fuzzy output, the stronger among them is chosen.

Example

In the given rule base R, the competing fuzzy outputs are those of Rules 7

and 8 with strengths of 0.1563 each.

However, the fuzzy outputs computed here do not aid a clear-cut decision on

the throttle control. Hence, the need for defuzzification arises.

Defuzzification

The centre of gravity method is applied to defuzzify the output. Initially, the

centroids are computed for each of the competing output membership

functions. Then, the new output membership areas are determined by



shortening the height of the membership value on the Y axis as dictated by

the rule strength value. Finally, the Centre of Gravity (CG) is computed

using the weighted average of the X-axis centroid points with the newly

computed output areas, the latter serving as weights.

Example

Figure 7.11 illustrates the computation of CG for the two competing outputs

of rules 7 and 8 with strength of 0.1563 each.

Fig. 7.11 Computation of CG for fuzzy cruise control system.

For the fuzzy set PS,

X-axis centroid point = 159

Rule strength applied to determine output area = 0.1563

Shaded area =

=



= 9.99

For the fuzzy set PM,

X-axis centroid point = 191

Rule strength applied to determine output area = 0.1563

Shaded area =

=

= 9.99

Therefore,

Weighted average, ( CG) =

= 175



In crisp terms, the throttle control (normalized) is to be set as 175.

7.6.2 Air Conditioner Controller

The system as illustrated in Fig. 7.12 comprises a dial to control the flow of

warm/hot or cool/cold air and a thermometer to measure the room

temperature ( T oC). When the dial is turned positive, warm/hot air is

supplied from the air conditioner and if it is turned negative, cool/cold air is

supplied.

If set to zero, no air is supplied.

Fig. 7.12 Air conditioner control system.

A person now notices the difference in temperature (Δ T° C) between the

room temperature ( T° C) as measured by the thermometer and the desired

temperature ( T o

0 C) at which the room is desired to be kept (set-point). The problem now is

to determine to what extent the dial should be turned so that the appropriate

supply of air (hot/warm/cool/cold) will nullify the change in temperature.

For the above problem the rule base is as shown in Table 7.6.



The fuzzy sets for the system inputs, namely Δ T and

, and the system

output, namely turn of the dial are as shown in Fig. 7.13.



Fig. 7.13 Fuzzy sets for the air conditioner control system.

Consider the system inputs, Δ T = 2.5oC and

= −1oC/min. Here the

fuzzification of system inputs has been directly done by noting the

membership value corresponding to the system inputs as shown in Fig. 7.14.



Fig. 7.14 Fuzzification of inputs Δ T = 2.5°C, d Δ T/ dt = −1°C/min.

The rule strengths of rules 1, 2, 3 choosing the minimum of the fuzzy

membership value of the antecedents are 0, 0.1 and 0.6 respectively. The

fuzzy output is as shown in Fig 7.15.



Fig. 7.15 Defuzzification of fuzzy outputs for z (turn of the dial).

The defuzzification of the fuzzy output yields Z = −0.2 for Δ T = 2.5°C and y

= −1°C/min.

Hence, the dial needs to be turned in the negative direction, i.e. −0.2 to

achieve the desired temperature effect in the room.

SUMMARY



Crisp logic is classified into propositional logic and predicate logic.

Propositions are statements which are either true or false but not both.

Propositional logic supports the five major connectives ∧, ∨, ~, ⇒,

=.

Truth tables describe the semantics of these connectives.

The laws of propositional logic help in the simplification of formulae.

Modus Ponens ( P ⇒ Q and P, infers Q), Modus Tollens ( P ⇒ Q and

~ Q, infers ~ P), and Chain rule ( P ⇒ Q and Q ⇒ R infers P ⇒ R) are useful

rules of inference in propositional logic.

Propositional logic is handicapped owing to its inability to quantify.

Hence, the need for predicate logic arises. Besides propositions and

connectives, predicate logic supports predicates, functions, variables,

constants and quantifiers ( , ∃). The interpre-tation of predicate logic formula

is done over a domain D. The three rules of inference of propositional logic

are applicable here as well.

Fuzzy logic on the other hand accords multivalued truth values such as

absolutely true, partly true, partly false etc. to fuzzy propositions.

While crisp logic is two valued, fuzzy logic is multivalued [0−1].

Fuzzy logic also supports fuzzy quantifiers classified as relative and absolute

quantifiers and the Fuzzy rules of inference Generalized Modus Ponens

(GMP) and Generalized Modus Tollens (GMT).

A set of fuzzy if-then rules known as a fuzzy rule base describes a fuzzy rule

based system. However, for effective decision making, defuzzification

techniques such as center of gravity method are employed which render the

fuzzy outputs of a system in crisp terms.



Fuzzy systems have been illustrated using two examples, namely Greg Viot’s

fuzzy cruise control system and Yamakawa’s air conditioner control system.

PROGRAMMING ASSIGNMENT

P7.1 Solve the Air conditioner controller problem (Sec. 7.6.2) using

MATLAB®’s fuzzy logic tool box.

(a) Make use of the FIS (Fuzzy Inference System) editor to frame the rule

base and infer from it. Employ the centroid method of defuzzification.

(b) Download Robert Babuska’s fuzzy logic tool box.

(http://lcewww.et.tudelft.nl/~babuska/) and implement the same problem.

SUGGESTED FURTHER READING

Fuzzy logic concepts are discussed in A First Course in Fuzzy Logic (Nguyen

and Walker, 1999). The design and properties of fuzzy systems and fuzzy

control systems could be found in A Course in Fuzzy Systems and Control

(Wang, 1997). Several fuzzy system case studies have been discussed in The

Fuzzy Systems Handbook (Earl Cox, 1998). The book is also supplemented

by a CD-ROM containing Windows 95 fuzzy logic library with code to

generate 32 bit DLLs for Visual BASIC and Visual C++. The applications of

fuzzy systems for neural networks, knowledge engineering and chaos are

discussed in Foundations of Neural Networks, Fuzzy Systems and Knowledge

Engineering (Kasabov, 1996).
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PART 3

GENETIC ALGORITHMS

• Fundamentals of Genetic Algorithms

• Genetic Modelling

Chapter 8

Fundamentals of Genetic Algorithms

Decision-making features occur in all fields of human activities such as

scientific and technological and affect every sphere of our life. Engineering

design, which entails sizing, dimensioning, and detailed element planning is

also not exempt from its influence.

For example an aircraft wing can be made from aluminium or steel and once

material and shape are chosen, there are many methods of devising the



required internal structure. In civil engineering also, designing a roof to cover

large area devoid of intermediate columns requires optimal designing.

The aim is to make objective function a maximum or minimum, that is, it is

required to find an element X 0 in A if it exists such that F( X 0) ≤ F( X) for

minimization

F( X) ≤ F( X 0) for maximization………(8.1) The following major

questions arise in this process

Does an optimal solution exist?

Is it unique?

What is the procedure?

How sensitive the optimal solution is?

How the solution behaves for small changes in parameters?

Since 1940, several optimization problems have not been tackled by classical

procedures including:

1. Linear programming

2. Transportation

3. Assignment

4. Nonlinear programming

5. Dynamic programming

6. Inventory

7. Queuing

8. Replacement



9. Scheduling

The classification of optimization techniques is shown in Fig. 8.1.

Basically, we have been following traditional search technique for solving

nonlinear equations. Figure 8.2 shows the classes of both traditional and

nontraditional search techniques. Normally, any engineering problem will

have a large number of solutions out of which some are feasible and some

are infeasible. The designer’s task is to get the best solution out of the

feasible solutions. The complete set of feasible solutions constitutes feasible

design space and the progress towards the optimal design involves some kind

of search within the space (combinatorial optimization). The search is of two

kinds, namely deterministic and stochastic.

Fig. 8.1 Classification of optimization techniques.



In the case of deterministic search, algorithm methods such as steepest

gradient methods are employed (using gradient concept), whereas in

stochastic approach, random variables are introduced. Whether the search is

deterministic or stochastic, it is possible to improve the reliability of the

results where reliability means getting the result near optimum. A transition

rule must be used to improve the reliability. Algorithms vary according to the

transition rule used to improve the result.

Nontraditional search and optimization methods have become popular in



engineering optimization problems in recent past. These algorithms include:

1. Simulated annealing (Kirkpatrik, et al. 1983)

2. Ant colony optimization (Dorigo and Caro, 1999)

3. Random cost (Kost and Baumann, 1999)



4. Evolution strategy (Kost, 1995)

5. Genetic algorithms (Holland, 1975)

6. Cellular automata (Wolfram, 1994)

Fig. 8.2 Classes of search techniques.

Simulated annealing mimics the cooling phenomenon of molten metals to

constitute a search procedure. Genetic algorithm and evolutionary strategies

mimic the principle of natural genetics and natural selection to construct

search and optimization procedures. The collective behaviour that emerges

from a group of social insects such as ants, bees, wasps, and termites has

been dubbed as Swarm intelligence. The foraging of ants has led to a novel

algorithm called Ant colony optimization for rerouting network traffic in busy

telecommunication systems. This method was originally developed by

Deneubourg and extended by Dorigo (1999) of Brussels. Random cost

method is a stochastic algorithm which moves as enthusiastically uphill as

down-hill. The method has no severe problems in escaping from a dead end

and is able to find the optima. In this chapter, we discuss the fundamentals of

genetic algorithms.

8.1 GENETIC ALGORITHMS: HISTORY

The idea of evolutionary computing was introduced in 1960 by I.

Rechenberg in his work Evolutionary strategies. Genetic algorithms are

computerized search and optimization algorithms based on the mechanics of

natural genetics and natural selection. Prof. Holland of University of

Michigan, Ann Arbor, envisaged the concept of these algorithms in the mid-

sixties and published his seminal work (Holland, 1975). Thereafter, a

number of students and other researchers have contributed to the

development of this field.

To date, most of the GA studies are available through some books by Davis

(1991), Goldberg (1989), Holland (1975), Michalewicz (1992) and Deb

(1995) and through a number of conference proceedings. The first



application towards structural engineering was carried by Goldberg and

Samtani (1986).

They applied genetic algorithm to the optimization of a

ten-member plane truss. Jenkins (1991) applied genetic algorithm to a

trussed beam structure.

Deb (1991) and Rajeev and Krishnamoorthy (1992) have also applied GA to

structural engineering problems. Apart from structural engineering there are

many other fields in which GAs have been applied successfully. It includes

biology, computer science, image processing and pattern recognition,

physical science, social sciences and neural networks. In this chapter, we will

discuss the basic concepts, representatives of chromosomes, fitness

functions, and genetic inheritance operators with example. In Chapter 9,

genetic modelling for real life problems will be discussed.

8.2 BASIC CONCEPTS

Genetic algorithms are good at taking larger, potentially huge, search spaces

and navigating them looking for optimal combinations of things and

solutions which we might not find in a life time.

Genetic algorithms are very different from most of the traditional

optimization methods. Genetic algorithms need design space to be converted

into genetic space. So, genetic algorithms work with a coding of variables.

The advantage of working with a coding of variable space is that coding

discretizes the search space even though the function may be continuous. A

more striking difference between genetic algorithms and most of the

traditional optimization methods is that GA uses a population of points at

one time in contrast to the single point approach by traditional optimization

methods. This means that GA processes a number of designs at the same

time. As we have seen earlier, to improve the search direction in traditional

optimization methods, transition rules are used and they are deterministic in

nature but GA uses randomized operators. Random operators improve the

search space in an adaptive manner.



Three most important aspects of using GA are:

1. definition of objective function

2. definition and implementation of genetic representation

3. definition and implementation of genetic operators.

Once these three have been defined, the GA should work fairy well beyond

doubt. We can, by different variations, improve the performance, find

multiple optima (species if they exist) or parallelize the algorithms.

8.2.1 Biological Background

All living organisms consist of cells. In each cell, there is a set of

chromosomes which are strings of DNA and serve as a model for the whole

organism. A chromosome consists of genes on blocks of DNA as shown in

Fig. 8.3. Each gene encodes a particular pattern. Basically, it can be said that

each gene encodes a trait, e.g. colour of eyes. Possible settings of traits

(bluish brown eyes) are called alleles. Each gene has its own position in the

chromosome search space. This position is called locus. Complete set of

genetic material is called genome and a particular set of genes in genome is

called genotype. The genotype is based on organism’s phenotype

(development after birth), its physical and mental characteristics such as eye

colour, intelligence and so on.



Fig. 8.3 Genome consisting of chromosomes.

8.3 CREATION OF OFFSPRINGS

During the creation of offspring, recombination occurs (due to cross over)

and in that process genes from parents form a whole new chromosome in

some way. The new created offspring can then be mutated. Mutation means

that the element of DNA is modified. These changes are mainly caused by

errors in copying genes from parents. The fitness of an organism is measured

by means of success of organism in life.

8.3.1 Search Space

If we are solving some problems, we work towards some solution which is

the best among others. The space for all possible feasible solutions is called

search space. Each solution can be marked by its value of the fitness of the

problem. ‘Looking for a solution’ means looking for extrema (either

maximum or minimum) in search space. The search space can be known by

the time of solving a problem and we generate other points as the process of

finding the solution continues (shown in Fig. 8.4).

Fig. 8.4 Examples of search space.

The problem is that, search space is complicated and one does not know

where to look for the solution or where to start from and this is where

genetic algorithm is useful. GAs are inspired by Darwinian theory of the



survival of the fittest. Algorithm is started with a set of solutions (represented

by chromosomes) called populations. Solutions for one population are taken

and used to form a new population. This is motivated by a hope that new

population will be better than the old one. Solutions, which are selected to

form new population (offspring), are selected according to their fitness. The

more suitable they are, the more chances they have to reproduce. This is

repeated until some conditions (number of populations) for improvement of

best solution are satisfied.

8.4 WORKING PRINCIPLE

To illustrate the working principle of GA, we first consider unconstrained

optimization problem. Later, we shall discuss how GA can be used to solve a

constrained optimization problem. Let us consider the following

maximization problem.

maximize f( X)      (8.2)

If we want to minimize f( X), for f( X) > 0, then we can write the objective

function as

maximize

(8.3)

If f( X) < 0 instead of minimizing f( X), maximize {− f( X)}. Hence, both

maximization and minimiza-tion problems can be handled by GA.

If the same problem is solved by multiple regression analysis, given k

independent variables, for regressing the dependent variable 2( k + 1) − 1



including the intercept which are given in Table 8.1.

Table 8.1 Subsets for regression analysis

Variable

Subsets

2

7

3

15

−

−

−

−

9

1023

−

−

19

10,48,578

On the other hand, in GA the variables are coded.

8.5 ENCODING



There are many ways of representing individual genes. Holland (1975)

worked mainly with string bits but we can use arrays, trees, lists or any other

object. Here, we consider only bit strings.

8.5.1 Binary Encoding

Example Problem (Knapsack Problem)

There are things with given values and size. The knapsack has a given

capacity. Select things to minimize their value in knapsack not exceeding the

capacity of the knapsack.

Encoding

Each bit says if the thing is in knapsack or not. Binary coding is the most

commonly used in GA as shown in Table 8.2.

Table 8.2 Chromosomes

Chromosome A

101101100011

Chromosome B

010011001100

Binary encoding gives many possible chromosomes even with small number

of alleles. On the other hand, this encoding is often not natural for many

problems and sometimes corrections must be made after genetic operator

corrections.

In order to use GA to solve the maximization or minimization problem,

unknown variables Xi are first coded in some string structures. It is important

to mention that coding of the variable is not absolutely necessary. There exist

some studies where GAs are directly used on the variables themselves, but

here we shall ignore the exceptions and discuss the encoding for simple

genetic algorithm. Binary-coded strings having 1s and 0s are mostly used.



The length of the string is usually determined according to the desired

solution accuracy. For example, 4-bit binary string can be used to represent

16 numbers as shown in Table 8.3.

Table 8.3 Four-bit string

4-bit

Numeric

4-bit

Numeric

4-bit



Numeric

string

value

string

value

string

value

0000

0

0110

6

1100

12

0001

1

0111

7

1101

13

0010



2

1000

8

1110

14

0011

3

1001

9

1111

15

0100

4

1010

10

0101

5

1011

11



To convert any integer to a binary string, go on dividing the integer by 2 as

shown in

Fig. 8.5. We get equivalent integer for the binary code by decoding it as

shown in Fig. 8.6.

Fig. 8.5 Binary coding.

Fig. 8.6 Equivalent integer for a binary code.

For example, if we want to code a two variable function assuming four bits

are used for each variable, we represent the two variables X 1, X 2 as (1011

0110). As given in Eq. (8.2), every variable will have both upper and lower

limits as

(8.4)

As shown in Table 8.3 a four-bit string can represent the integers from 0 to

15 (16 elements) and hence, (0000 0000) and (1111 1111) represent the

points for X 1, X 2 as

respectively because the substrings



(0000) and (1111) have the minimum and the maximum decoded values.

Hence, an n-bit string can represent integers from 0 to 2 n − 1, i.e. 2 n

integers.

Assume that Xi is coded as a substring Si of length ni. The decoded value of

a binary substring Si is calculated as shown in Fig. 8.6 as (8.5)

where si can be either zero or 1 and the string S is represented as sn− 1 … s

3 s 2 s 1 s 0      (8.6) For example, a four-bit string (0111) has a

decoded value equal to 23 × 0 + 22 × 1 + 21 × 1 + 20 × 1 = 7

Knowing

and

corresponding to (0000) and (1111), the equivalent

value for any

4-bit string can be obtained as

Xi =

× (decoded value of string)      (8.7)

Assume for a variable Xi, = 2, and



= 17, to find what value of 4-bit

string of Xi = (1010) would represent. First we get the decoded value for Si as

Si = 1010 = 23 × 1 + 22 × 0 + 21 × 1 + 20 × 0 =

10      (8.8a)

Xi =

= 12      (8.8b)

Hence, the accuracy that can be obtained with a four-bit code is 1/16th of

search space. But as the string length is increased by one, the obtained

accuracy increases exponentially to 1/32th of the search space. It is not

necessary to code all variables in equal substring length. The length of

substring representing a variable depends on the desired accuracy in that

variable. Generalizing the concept, we may say that with ni bit-length coding

for a variable, the obtainable accuracy in that variable approximation is

. Once the coding of the variables is done, the corresponding point ( X 1 …

Xn) T can be found out using Eq. (8.7). For continuous design variable,

if ε is the precision representation required then string length ‘ S’ should be

equal to

S =

(8.9)

In some cases, Xi need not be equally distributed so as to apply the linear

mapping rule. Hence, Xi can be given in the form of a table as shown in

Table 8.4.

Table 8.4 Binary representation of fibre angles



S.No.

Binary coding

Decoded value

Fibre angle

1

0000

0

0

2

0001

1

10

3

0010

2

20

4

0011

3

30



5

0100

4

45

6

0101

5

60

7

0110

6

70

8

0111

7

80

9

1000

8

90



10

1001

9

−10

11

1010

10

−20

12

1011

11

−30

13

1100

12

−45

14

1101

13

−60



15

1110

14

−70

16

1111

15

−80

Hence, when the values are not uniformly distributed, tabulated values can

be used to find the corresponding point X = ( X 1, X 2,..., Xn) T. Thereafter,

the function value at that point X can also be calculated by substituting X in

the given objective function.

8.5.2 Octal Encoding (0 to 7)

To convert any integer to an octal string, go on diving the integer by 8 as



shown in Fig. 8.7. For example, 542 is given in octal form as 1036.

Fig. 8.7 Octal encoding.

For the octal code, we can get the equivalent integer by decoding it as shown

in Fig. 8.8. The integer value for the octal code 1036 is 542.

Fig. 8.8 Equivalent integer for an octal code.

A four-bit octal string can represent the integers from 0 to 4095 and hence,

(0000 0000) and (7777 7777) would represent the points for X 1 and X 2 as

respectively. The decoded value of a binary substring Si is calculated as

(8.10)

and hence, the obtainable accuracy in that variable approximation is



.

8.5.3 Hexadecimal Encoding (0123456789ABCDEF)

To convert any number to hexadecimal form, we go on dividing the number

by 16 as shown in Fig. 8.9. The hexadecimal code for 67897 is shown to be

10939. We get equivalent integer for the hexadecimal code by decoding it as

shown in Fig. 8.10. The decoded value for the hexadecimal number BO79E6

is 11565542.



Fig. 8.9 Hexadecimal coding.

Fig. 8.10 Equivalent integer for hexadecimal code.

A four-bit hexadecimal can represent the integers from 0 to 65535 and hence,

(0000 0000) and

(FFFF FFFF) would represent the points for X 1 and X 2 as respectively. The

decoded value of a hexadecimal string Si is calculated as (8.11)

And hence, the obtainable accuracy in that variable approximation is

. From the above discussion it is clear that encoding can be given to any base

‘b’, bits of ni length can represent the integers from 0 to ( bni − 1) and hence

(0000 0000), and (( b − 1)( b − 1)( b − 1)( b − 1), and ( b − 1)( b − 1)( b

− 1)( b − 1)) would represent the points X 1 and X 2 as respectively. The

decoded value of ‘b’ bit-string Si is calculated as (8.12a)



And hence, obtainable accuracy in that variable approximation is (8.12b)

8.5.4 Permutation Encoding

This can be used in ordering problems such as travelling salesman or task

ordering. In a permutation encoding, every chromosome is a string of

numbers which represents the number in the sequence as shown in Table 8.5.

Table 8.5 Permuation encoding

Chromosome- A

1

5

3

2

4

7

9

8

6

Chromosome- B

8

5

6

7



2

3

1

4

9

Even for ordering problems after applying for sometimes, the genetic

operators corrections must be made to leave the chromosome consistent.

Example Problem Travelling Salesman Problem

The problem: There are cities and given distances between them. Travelling

salesman has to visit all of them. Find the sequence of cities to minimize the

travelling distance.

Encoding

Chromosome illustrates the order of cities in which the salesman would visit

them.

8.5.5 Value Encoding

In this, every chromosome is a string of some values and the values can be

any thing connected to the problem. From numbers, real numbers

characterize some complicated objects as shown in Table 8.6.

Table 8.6 Value encoding

Chromosome− A

1.234

5.3243

0.4556



2.0253

Chromosome− B

abdjetijdhj…

Chromosome− C

(Back),

(Right),

(Forward),

(Left)

Value encoding is very good for some special problems. On the other hand,

this encoding is often necessary to develop new genetic operators specific to

the problem.

Example Find the weights of neural network.

The problem: To find the weights of synapses connecting input to hidden

layer and hidden layer to output layer.



Encoding

Each value in chromosome represents the corresponding weights.

8.5.6 Tree Encoding

This is mainly used for evolving program expressions for genetic

programming. In a tree encoding, every chromosome is a tree of some

objects such as functions and commands, in a programming language as

shown in Fig. 8.11. Tree encoding is good for evolving programs in a

programming language. LISP is often used because programs in it are

represented in this form and can easily be parsed as a tree so that functions

and genetic operators can be applied rather easily.

Fig. 8.11 Tree encoding.

Example Find the function for a given value.

Problem: Some input and output values are given. The task is to find the

function which will give the best relation to satisfy all values.

Encoding

Chromosomes are functions represented in a tree.

8.6 FITNESS FUNCTION

As pointed out earlier GAs mimic the Darwinian theory of survival of the

fittest and principle of nature to make a search process. Therefore, GAs are

usually suitable for solving maximization problems. Minimization problems

are usually transformed into maximization problems by some suitable

transformation. In general, fitness function F( X) is first derived from the

objective function and used in successive genetic operations.

Certain genetic operators require that fitness function be non-negative,

although certain operators do not have this requirement. Consider the

following transformations



F( X) = f(X) for maximization problem

F( X) = 1/ f( X) for minimization problem, if f( X) ≠ 0

F( X)

=

1/(1

+

f( X)),

if

f( X)

=

0              (8.13)

A number of such transformations are possible. The fitness function value of

the string is known as string’s fitness.

Example 8.1

Two uniform bars are connected by pins at A and B and supported at A. A

horizontal force P acts at C. Knowing the force, length of bars and its weight

determine the equilibrium configuration of the system if friction at all joints

are neglected (see Fig. 8.12).



Fig. 8.12 Two bar pendulum.



The total potential for the two bar pendulum is written as

∏ =

(8.14)

Substituting the values for P, W 1, W 2, and for the lengths as 2 we get,

∏(θ1,

θ2)

=

−4sinθ1

−

6cosθ1

−

4sinθ2

−

2cosθ2      (8.15a)

0 ≤ θ1, θ2 ≤ 90………(8.15b)

Equilibrium configuration is the one which makes ∏ a minimum.

Theoretical solution

Δ ∏ = 0, for ∏ to be maximum or minimum

Δ ∏ =

= 0      (8.16)



Δθ1, Δθ2 are arbitrary. Therefore we get,

= 4cosθ1 − 6sinθ1 = 0      (8.17a)

= 4cosθ2 − 2sinθ2 = 0      (8.17b)

From Eq. (8.17(a)) and (b) we get,

tanθ1 = , θ1 = 33.7° (0.558 radians)

tanθ2 = 2, θ2 = 63.43° (1.107 radians)      (8.18)

For which ∏ = −11.68

Since there are two unknowns θ1 and θ2 in this problem, we will use 4-bit

binary string for each unknown.

Accuracy =

(8.19)

Hence, the binary coding and the corresponding angles are given as Xi =

(8.20)

where Si is the decoded value of the i th chromosome. The binary coding and

the corresponding angles are given in Table 8.7.

Table 8.7 Binary coding and the corresponding angles

S. no.



Binary coding

Angle

S. no.

Binary coding

Angle

1

0000

0

9

1000

48

2

0001

6

10

1001

54

3

0010

12



11

1010

60

4

0011

18

12

1011

66

5

0100

24

13

1100

72

6

0101

30

14

1101



78

7

0110

36

15

1110

84

8

0111

42

16

1111

90

The objective function of the problem is given in Eq. (8.15). The contours of

the objective function as well as the 3D plot are shown in Figs. 8.13(a) and

(b) respectively.





Fig. 8.13(a) Contours of equal objective functions.

Fig. 8.13(b) Three-dimensional plot of the objective function.

Since the objective function is negative, instead of minimizing the function

‘ f’ let us maximize

− f = f′. The maximum value of f = 8 when θ1, θ2 are zero. Hence, the fitness

function F is given as

F = f′ − 7 = − f − 7      (8.21)

First randomly generate eight populations with 8-bit strings as shown in

Table 8.8.

Table 8.8 Computation of fitness function

Angles

Population

Population

No.

θ1

θ2

F = − f − 7

1

0000 0000

0



0

1

2

0010 0001

12

6

2.1

3

0001 0101

6

30

3.11

4

0010 1000

12

48

4.01

5

0110 1010

36



60

4.66

6

1110 1000

84

48

1.91

7

1110 1101

84

78

1.93

8

0111 1100

42

72

4.55

As shown in Table 8.8 and Fig. 8.13(c), GA begins with a population of

random strings representing design or decision variables. Thereafter, each

string is evaluated to find the fitness value. The population is then operated

by three main operators, namely reproduction, cross over, and mutation, to

create a new population of points. The new population is further evaluated



and tested for termination. If the termination criteria are not met, the

population is iteratively operated by the three operators and evaluated until

the termination criteria are met. One cycle of these operations and the

subsequent evaluation procedure is known as a generation in GA

terminology.

Fig. 8.13(c) ‘ F’ for various population.



8.7 REPRODUCTION

Reproduction is usually the first operator applied on population.

Chromosomes are selected from the population to be parents to cross over

and produce offspring. According to Darwin’s evolution theory of survival of

the fittest, the best ones should survive and create new offspring. That is why

reproduction operator is sometimes known as the selection operator. There

exists a number of reproduction operators in GA literature but the essential

idea in all of them is that the above average strings are picked from the

current population and their multiple copies are inserted in the mating pool

in a probabilistic manner. The various methods of selecting chromosomes for

parents to cross over are:

1. Roulette-wheel selection

2. Boltzmann selection

3. Tournament selection

4. Rank selection

5. Steady-state selection

8.7.1 Roulette-wheel Selection

The commonly used reproduction operator is the proportionate reproductive

operator where a string is selected from the mating pool with a probability

proportional to the fitness. Thus, i th string in the population is selected with

a probability proportional to Fi where Fi is the fitness value for that string.



Since the population size is usually kept fixed in a simple GA, the sum of the

probabilities of each string being selected for the mating pool must be one.

The probability of the i th selected string is

pi =

(8.22)

where ‘ n’ is the population size. For the example problem discussed in

Example 8.1 the probability values of each string are given in Table 8.9.

Table 8.9 Probability of an individual string

Population No.

Population

F = − f − 7

β i



1

0000 0000

1

0.0429

2

0010 0001

2.1

0.090

3



0001 0101

3.11

0.1336

4

0010 1000

4.01

0.1723

5

0110 1010

4.66

0.200

6

1110 1000

1.91

0.082

7

1110 1101

1.93

0.0829

8



0111 1100

4.55

0.1955

= 2.908

One way to implement this selection scheme is to imagine a Roulette-wheel

with its circumference for each string marked proportionate to string’s fitness

(see Fig. 8.14). The fitness of the population is calculated as Roulette-wheel

is spun ‘ n’ times (in this example eight times), each time selecting an

instance of the string chosen by the Roulette-wheel pointer. Since the

circumference of the wheel is marked according to a string’s fitness, the

Roulette-wheel mechanism is expected to make Fi/ copies of the i th string of

the mating pool.

Fig. 8.14 Roulette-wheel marked for eight individuals according to fitness.

The average fitness

=

(8.23)

Figure 8.14 shows a Roulette-wheel for eight individuals having different

fitness values. Since the fifth individual has a higher fitness than any other, it

is expected that the Roulette-wheel selection will choose the fifth individual

more than any other individual.

This Roulette-wheel selection scheme can be simulated easily. Using the

fitness value Fi of all strings, the probability of selecting a string pi can be



calculated. Thereafter, cumulative probability Pi of each string being copied,

can be calculated by adding the individual probabilities from the top of the

list. Thus, the bottom most string in the population should have a cumulative

probability of P 8 = 1. The Roulette-wheel concept can be simulated by

realizing that the i th string in the population represents the cumulative

probability from Pi − 1 to Pi. Thus, the first string represents the cumulative

values from 0 to P 1.

Hence, cumulative probability of any string lies between 0−1. In order to

choose n strings, n random numbers between zero and one are created at

random. Thus, the string that represents the chosen random number in the

cumulative probability range (calculated from fitness value) for the string, is

copied to the matting pool. This way, the string with a higher fitness value

will represent a larger range in the cumulative probability values and

therefore, has a higher probability of being copied into the mating pool. On

the other hand, a string with a smaller fitness value represents a smaller

range in cumulative probability values and has a smaller probability of being

copied into the mating pool. Now, we illustrate the working of Roulette-

wheel simulation for an example.

Referring to Table 8.10, once probability of the individual strings are known

we can find the expected count of each string as

Expected count = ( n = 8) × pi        (8.24)

These values are calculated and shown in column A of Table 8.10. From the

probability pi, the cumulative probability can be computed. For example, P 5

is given by

P 5 = 0.0429 + 0.090 + 0.1336 + 0.1723 + 0.2 =

0.6388        (8.25)

These distributions are shown in column B of Table 8.10. In order to form

the mating pool, we create random numbers between zero and one (given in

column C) and identify the particular string which is specified by each of

these random numbers. For example, if a random number of 0.428 is created,



the fourth string gets a copy in the mating pool because the string occupies

the interval 0.266−0.438, as shown in column B. Column D refers to the

selected string. Similarly, other strings are selected according to random

numbers shown in column C. After this selection procedure is repeated n = 8

times, where ‘ n’ is the population size, the number of selected copies for

each string is counted. This number is shown in column E. For example, the

strings 4 and 5 get 2 copies, 6 and 7 get no copies, and the remaining strings

get one copy each. Comparing to column A, the expected counts are that

strings 5 and 8 get 2 copies, 1 and 6 get no copies, and the remaining get one

copy. Column A and E reveal that the theoretical expected count and the true

count of each string more or less agree with each other.

Table 8.10 Roulette-wheel selection

Population

β

Population

Population

i

A

B

C

D

E

No.

= p



θ

i

1

θ2

θ1

θ2

1

0000

0000

0.0429

0.33

0.0429

0.259

3

1

0000

0000

2

0010

0001



0.090

0.72

0.1329

0.038

1

1

0010

0001

3

0001

0101

0.1336

1.064

0.266

0.486

5

1

0001

0101

4



0010

1000

0.1723

1.368

0.438

0.428

4

2

0010

1000

5

0110

1010

0.200

1.6

0.638

0.095

2

2

0010



1000

6

1110

1000

0.082

0.656

0.720

0.3

4

0

0110

1010

7

1110

1101

0.0829

0.664

0.809

0.616

5



0

0110

1010

8

0111

1100

0.1955

1.56

1.0

0.897

8

1

0111

1100

PI = Probability

D = String number

A = Expected count

E = The count in the mating pool



B = Cumulative probability

C = Random number between 0−1

Figure 8.13(a) shows the initial random population and the mating pool after

reproduction. The points marked with enclosed box are the points in the

mating pool and the points marked with a filled box show the population left

out in the pool. The action of the reproduction operator is clear from this

point. The inferior points have been probabilistically eliminated from further

consideration. It should also be noted that not all selected points are better

than rejected points. For example, first individual is selected whereas the

sixth individual is not selected. Although the above Roulette-wheel selection

is easier to implement, it is noisy. A better stable version of the selection

operator is sometimes used. After the expected count for each individual

string is calculated, the strings are first assigned value exactly equal to the

mantissa of the expected count. Thereafter, the regular Roulette-wheel

selection is implemented using decimal part of the expected count of the

probability distribution. This selection method is less noisy and is known as

stochastic remainder selection.

8.7.2 Boltzmann Selection

Simulated annealing is a method of functional minimization or

maximization.

This method simulates the process of slow cooling of molten metal to

achieve the minimum function value in a minimization problem. The cooling

phenomenon is simulated by controlling a temperature like parameter

introduced with the concept of Boltzmann probability distribution so that a

system in thermal equilibrium at a temperature T has its energy distributed

probabilistically according to

P( E) = exp

(8.26)



where ‘ k’ is Boltzmann constant. This expression suggests that a system at a

high temperature has almost uniform probability of being at any energy state,

but at a low temperature it has a small probability of being at a high energy

state. Therefore, by controlling the temperature T and assuming search

process follows Boltzmann probability distribution, the convergence of the

algorithm is controlled. This is beyond the scope of this book and the reader

is advised to refer to the book by Deb (1995).

8.7.3 Tournament Selection

GA uses a strategy to select the individuals from population and insert them

into a mating pool. Individuals from the mating pool are used to generate

new offspring, which are the basis for the next generation. As the individuals

in the mating pool are the ones whose genes will be inherited by the next

generation, it is desirable that the mating pool consists of good individuals. A

selection strategy in GA is simply a process that favours the selection of

better individuals in the population for the mating pool.

There are two important issues in the evolution process of genetic search,

population diversity and selective pressure, as given by Whitley (1989).

Population diversity means that the genes from the already discovered good

individuals are exploited while promising the new areas of the search space

continue to be explored.

Selective pressure is the degree to which the better individuals are favoured.

The higher the selective pressure the more, the better individuals are

favoured. The selective pressure drives GA to improve population fitness over

succeeding generations. The convergence rate of GA is largely determined by

the selective pressure and population diversity. In general, higher selective

pressure results in higher convergence rates. However, if the selective

pressure is too high, there is an increased chance of GA prematurely

converging to local optimal solution because the population diversity of the

search space to be exploited is lost.



If the selective pressure is too low, the convergence rate will be slow and the

GA will take unnecessarily long time to find the optimal solution because

more genes are explored in the search. An ideal selection strategy should be

such that it is able to adjust its selective pressure and population diversity so

as to fine-tune GA search performance.

Whitley (1989) pointed out that the fitness proportional selection (e.g.

Roulette-wheel selection) is likely to lead to two problems, namely

Stagnation of search because it lacks selection pressure, and

Premature convergence of the search because it causes the search to narrow

down too quickly.

Unlike the Roulette-wheel selection, the tournament selection strategy

provides selective pressure by holding a tournament competition among NU

individuals (Frequency of NU = 2) (Goldberg and Deb, 1991).

The best individual (the winner) from the tournament is the one with highest

fitness φ which is the winner of NU. Tournament competitors and the winner

are then inserted into the mating pool. The tournament competition is

repeated until the mating pool for generating new offspring is filled. The

mating pool comprising of tournament winner has higher average population

fitness. The fitness difference provides the selection pressure, which drives

GA to improve the fitness of succeeding genes. The following steps illustrate

the tournament selection strategy (see

Table 8.11) and the fitness values are taken from Table 8.8.

Table 8.11 Fitness values for individuals

Individuals

1

2



3

4

5

6

7

8

Fitness

1

2.10

3.11

4.01

4.66

1.91

1.93

4.55

Step 1: First select individuals 2 and 4 at random.

φ2    φ4

2.10    4.01

4 is the winner and hence, select the string as 0010 1000.

Step 2: Select individuals 3 and 8 at random.



φ3     φ8

3.11     4.55

8 is the winner and hence, select the string as 0111 1100.

Step 3: Next select 1 and 3.

φ1    φ3

1.0    3.11

3 is the winner and thus, select the third string as 0001 0101.

Similarly, other populations are selected from the mating pool as Individuals

Selected

4 and 5

5

1 and 6

6

1 and 2

2

4 and 2

4

8 and 3

8



From the above, it is clear that 2, 3, 5 and 6 are chosen only once 4, 8 are

chosen twice, and 1 and 7 are not chosen at all . Table 8.12 gives the new

mating pool.

Table 8.12 Population for mating pool

Population no.

Population

1

0010

1000

2

0111

1100

3

0001

0101

4

0110

1010

5

1110

1000



6

0010

0001

7

0010

1000

8

0111

1100

Roulette-wheel selection omitted populations 6 and 7, two copies of 4 and 5,

and single copy for the others whereas tournament selection omitted 1 and 7,

two copies for 4 and 8, and single copy for the others.

During the early genetic evolution process, there are a large number of

individuals or chromosomes that almost satisfy all constraints except one or

two. A change in one or two design variable (strings) may produce a solution

with a higher fitness value. This means throwing out these solutions may

result in a loss of some important information which might eventually lead to

optimal solution.

8.7.4 Rank Selection

The Roulette-wheel will have problem when the fitness values differ very

much. For example, if the best chromosome fitness is 90%, its circumference

occupies 90% of Roulette-wheel, then other chromosomes will have very few



chances to be selected. Rank selection first ranks the population and taken

every chromosome, receives fitness from the ranking. The worst will have

fitness 1, the next 2, ..., and the best will have fitness N ( N is the number of

chromosomes in the population). The Roulette-wheel selection is applied to

the modified wheel as shown in Figs. 8.15 and 8.16. Figure 8.15 is according

to fitness and Fig. 8.16 is according to rank. The method can lead to slow

convergence because the best chromosome does not differ so much from the

other.



Fig. 8.15 Roulette-wheel according to fitness.

Fig. 8.16 Roulette-wheel according to rank.

8.7.5 Steady-state Selection

This is not a particular method of selecting the parents. The main idea of the

selection is that bigger part of chromosome should survive to next

generation.

Here, GA works in the following way. In every generation are selected, a few

(good individuals with high fitness for maximization problem) chromosomes,

for creating new off springs. Then, some (bad with low fitness) chromosomes

are removed and new offspring is placed in that place. The rest of population

survives a new generation.

8.7.6 Elitism

In this method, first the best chromosome or few best chromosomes are

copied to new population. The rest is done in a classical way. Elitism can

very rapidly increase the performance of GA because it prevents loosing the

best-found solutions. From practical consideration point of view, if F fitness

functions are positive and for minimization problem, Goldberg (1989),

suggest that the fitness of any i th individual must be subtracted from a large

constant, so that all fitness values are non-negative and individuals get fitness

values according to their actual merit.

Now, the new expression for fitness becomes

φ i = ( F max − F min) − Fi( X)     (8.27) for minimization problem.

If Fi are positive for maximization problem then φ i = Fi. For the example

problem it is shown in Table. 8.13.



Table 8.13 Mating pool as per rank selection

( = 2.908)

Population no.

Population

F = φ

F/

Count

Mating pool

1

0000 0000

1

0.38

0

0010 0001

2

0010 0001

2.1

0.812

1

0001 0101



3

0001 0101

3.11

1.203

1

0010 1000

4

0010 1000

4.01

1.55

1

0110 1010

5

0110 1010

4.66

1.802

2

0110 1010

6

1110 1000



1.91

0.738

0

1110 1101

7

1110 1101

1.93

0.746

1

0111 1100

8

0111 1100

4.55

1.760

2

0111 1100

The reproduction operator selects fit individuals from the current population

and places them in a mating pool. Highly fit individuals get more copies in

the mating pool, whereas the less fit ones get fewer copies. As the



number of individuals in the next generation is also same, the worst fit

individuals die off. The reproduction operator can be implemented in the

following manner.

The factor φ i/ for all individuals is calculated, where is the average fitness.

This factor is the expected count of individuals in the mating pool, and

shown in column 4 of Table 8.13. It is then converted to an actual count by

appropriately rounding off so that individuals get copies in the mating pool

proportional to their fitness, as shown in Column 5 of Table 8.13. A mating

pool is created where individuals 1 and 6 die off. This process of

reproduction confirms the Darwinian principle of survival of the fittest.

Figure 8.17 explains how the mating pool is created.

Fig. 8.17 Population for the mating pool.

8.7.7 Generation Gap and Steady-state Replacement

The generation gap is defined as the proportion of individuals in the

population, which are replaced in each generation. So far, we have been

doing reproduction with a generation gap of 1, i.e. population is replaced in

each generation. However, a more recent trend has favoured steady-state

replacement which is given by Whitley (1987, 1989). This operates at the

other extreme and in each generation only a few (typically two) individuals

are replaced. This may be a better model of what happens in nature. In



shortlived species including some insects, parents lay eggs and then die

before their offsprings hatch. But in longer-lived species including mammal’s,

offspring and parents live concurrently. This allows parents to nurture and

teach their offspring but also gives rise to competition among them.

Generation gap can be classified as

Gp =     (8.28)

where Np is the population size and p is the number of individuals that will

be replaced. Several schemes are possible. Some of which are:

Selection of parents according to fitness and selection of replacement at

random,

Selection of parents at random and selection of replacement by inverse

fitness,

Selection of both parents and replacements according to fitness/inverse

fitness.

Generation gap can be gradually increased as the evolution takes place to

widen exploration space and may lead to better results.

SUMMARY

In this chapter, we have seen that genetic algorithm comprises a set of

individuals, elements (the populations) and a set of biologically inspired

operators defining the population itself. According to evolutionary theory,

only the most suited element in a population is likely to survive and generate

offspring, thus transmitting the biological heredity to the new generation. In

computing, GA maps problem on to a set of (typically binary) strings, each

string representing a potential solution. Table 8.14 gives the comparison

between biological terms and the corresponding terms in GA.



Table 8.14 Comparison of biological terms with GA terms

Biological term

GA term

Chromosome

Coded design vector

Substring

Coded design variable

Gene

Every bit

Population

A number of coded design variable

Generation

Population of design vector which are

obtained after one computation

In the next chapter we will discuss inheritance operators, their performance,

and the application of GA to real life problems.

Various optimization techniques are illustrated.

Non-traditional search and optimization methods are discussed.

Encoding of variables in GA are given.

Evaluation of fitness functions for an example of two bar pendulum bar is

described.



Various selection methods such as Roulette-wheel selection, Boltzmann

selection, Tournament selection, Rank selection, Steady-state selection are

discussed.

PROGRAMMING ASSIGNMENT

P8.1 In a three variable problem the following variable bounds are specified.

−6 < x < 12

0.002 ≤ y ≤ 0.004

104 ≤ z ≤ 105

What should be the minimum string length of any point ( x, y, z) coded in

binary string to achieve the following accuracy in the solution 1. two

significant digits.

2. three significant digits.

P8.2 Repeat the above problem when ternary strings (with three alleles 0, 1,

2) are used instead of binary string.

P8.3 We want to use GA to solve the following nonlinear programming

problem.

minimize ( x 1 − 2.5)2 + ( x 2 − 5)2

subject to

5.5 x

2

1 + 2 x 2 − 18 ≤ 0

0 ≤ x 1, x 2 ≤ 5



We decide to give three and two decimal places of accuracy to variables x 1,

x 2 respectively.

1. How many bits are required for coding the variables?

2. Write down the fitness function which you would be using in reproduction.

P8.4 Consider the following population of binary strings for a maximization

problem.

String

Fitness

01101

5

11000

2

10110

1

00111

10

10101

3

00010

100



Find out the expected number of copies of the best string in the above

population of the mating pool under

1. Roulette wheel selection.

2. Tournament selection.

If only the reproduction operator is used, how many generations are required

before the best individual occupies the complete population under each

selection operator.

P8.5 Write a program in “C” or in FORTRAN for creating initial population

(for n variables) with n-bits string for each variable. The values of each

variable can be selected from a table of data. Assume an objective function,

find fitness value, and get the offspring using Roulette-wheel selection.
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Chapter 9

Genetic Modelling

In the last Chapter, we discussed how variables in GA are encoded and how

fitness function is calculated. Various selection methods such as Roulette-

wheel selection, Boltzmann selection, tournament selection, and steady-state

selection have been used to produce the population of the mating pool i.e. in

reproduction, good strings in a population are probabilistically assigned a

large number of copies and a mating pool is formed. It is important to note

that no new strings are formed in the reproduction phase. There are many

inheritance operators applied to the mating pool with a hope that it would

create a better string. The aim of inheritance operators is to search the

parameter space. In addition, search is to be in a way that the information

stored in the present strings are maximally preserved, because these parent

strings are instances of good strings selected using the reproduction operator.

9.1 INHERITANCE OPERATORS

As already seen, genetic algorithm makes use of the Darwinian survival of

the fittest procedure. Genetic algorithms are search procedures based on

mechanics of natural genetics and natural selection.

Genetic algorithm derives power from the genetic operators listed here.

Low-level operators, namely

1. Inversion

2. Dominance

3. Deletion



4. Intrachromosomal duplication

5. Translocation

6. Segregation

7. Speciation

8. Migration

9. Sharing

10. Mating

A simple genetic algorithm largely uses three basic operators which are 1.

Reproduction

2. Cross over

3. Mutation

First we will discuss the basic operators and then the low-level operators.

9.2 CROSS OVER

After the reproduction phase is over, the population is enriched with better

individuals. Reproduction makes clones of good strings, but does not create

new ones. Cross over operator is applied to the mating pool with a hope that

it would create a better string. The aim of the cross over operator is to search

the parameter space. In addition, search is to be made in a way that the

information stored in the present string is maximally preserved because these

parent strings are instances of good strings selected during reproduction.

Cross over is a recombination operator, which proceeds in three steps.

First, the reproduction operator selects at random a pair of two individual

strings for mating, then a cross-site is selected at random along the string



length and the position values are swapped between two strings following the

cross site. For instance, let the two selected strings in a mating pair be A =

11111 and B = 00000. If the random selection of a cross-site is two, then the

new strings following cross over would be A* = 11000 and B* = 00111. This

is a single-site cross over. Though these operators look very simple, their

combined action is responsible for much of GA’s power. From a computer

implementation point of view, they involve only random number of

generations, string copying, and partial string swapping. There exist many

types of cross over operations in genetic algorithm which are discussed in the

following sections.

9.2.1 Single-site Cross Over

In a single-site cross over, a cross-site is selected randomly along the length

of the mated strings and bits next to the cross-sites are exchanged as shown

in Fig. 9.1. If an appropriate site is chosen, better children can be obtained by

combining good substances of parents. Since the knowledge of the

appropriate site is not known and it is selected randomly, this random

selection of cross-sites may produce enhanced children if the selected site is

appropriate. If not, it may severely hamper the string quality. Anyway,

because of the crossing of parents better children are produced and that will

continue in the next generation also. But if good strings are not created by

cross over, they will not survive beyond next generation because reproduction

will not select those strings for the next mating pool.



Fig. 9.1 Single-site cross over.

9.2.2 Two-point Cross Over



In a two-point cross over operator, two random sites are chosen and the

contents bracketted by these sites are exchanged between two mated parents.

If the cross-site 1 is three and cross-site 2 is six, the strings between three

and six are exchanged as shown in Fig. 9.2.

Fig. 9.2 Two-point cross over.

9.2.3 Multi-point Cross Over

In a multi-point cross over, again there are two cases. One is even number of

cross-sites and second one is the odd number of cross-sites. In case of even

numbered cross-sites, the string is treated as a ring with no beginning or end.

The cross-sites are selected around the circle uniformly at random. Now the

information between alternate pairs of sites is interchanged as shown in Fig.

9.3. If the number of cross-sites is odd, then a different cross-point is always



assumed at the string beginning. The information (genes) between alternate

pairs is exchanged as shown

in Fig. 9.4.

Fig. 9.3 Multi-point cross over with even number of cross-sites.

Fig. 9.4 Multi-point cross over with odd number of cross-sites.

9.2.4 Uniform Cross Over

An extreme of multi-point cross over is the uniform cross over operator. In a

uniform cross over operator, each bit from either parent is selected with a

probability of 0.5 and then interchanged as shown in Fig. 9.5(a). It is seen

that uniform cross over is radically different from one-point cross over.

Sometimes gene in the offspring is created by copying the corresponding

gene from one or the other parent chosen according to a randomly generated

cross over mask. When there is 1 in the mask, the gene is copied from the

first parent and when there is 0, the gene is copied from second parent as

shown in Fig. 9.5(b). The process is repeated with the parents exchanged to





produce the second offspring. A new cross over mask is randomly generated

for each pair of parents. Offspring therefore contains a mixture of genes from

each parent. The number of effective crossing points is not fixed but averages

to L/2 (where L is chromosome length).

Fig. 9.5(a) Uniform cross over.

Fig. 9.5(b) Uniform cross over using mask.

9.2.5 Matrix Cross Over (Two-dimensional Cross Over)



Normally, the strings are represented as a single dimensional array as shown

in Fig. 9.6. In the above case, two strings of length 4 are concatenated to

form an individual. So, the cross-sites selected for this case are obviously

single-dimensional whereas in the case of two-dimensional cross over, each

individual is represented as a two-dimensional array of vector to facilitate the

process. The process of two-dimensional cross over is depicted in Fig. 9.7.

Fig. 9.6 Single-dimensional strings.

Fig. 9.7 Matrix cross over.

Two random sites along row and column are chosen, then the string is

divided into utmost nonoverlapping rectangular regions. Two cross-sites,

both row- and column-wise, will decide each individual into utmost nine

overlapping rectangular regions. Two cross-sites, both row- and column-wise

will decide each individual into three layers horizontally and vertically.

Select any region in each layer, either vertically or horizontally and then

exchange the information in that region between the mated populations. The

selection of cross over operators is made such that the search in genetic space

is proper. In case of a single-point cross over operator, the search is not

extensive but maximum information is preserved between parents and



children. Some studies have been made to find an optimal cross over

operator. According to Deb (1995), it is difficult to generalize the optimal

cross over operator selection. So, it is left to personal interest to select the

cross over operator.

9.2.6 Cross Over Rate

In GA literature, the term cross over rate is usually denoted as PC, the

probability of cross over. The probability varies from 0 to 1. This is

calculated in GA by finding out the ratio of the number of pairs to be crossed

to some fixed population. Typically for a population size of 30 to 200, cross

over rates are ranged from 0.5 to 1.

We have seen that with random cross-sites, the children strings produced

may not have a combination of good substrings from parent strings

depending on whether or not the crossing site falls in the appropriate place.

But we do not worry about this too much because if good strings are created

by cross over, there will be more copies of them in the next mating pool

generated by the reproduction operator. But if good strings are not created by

cross over, they will not survive too long, because reproduction will select

against those strings in subsequent generations. It is clear from this

discussion that the effect of cross over may either be detrimental or

beneficial. Thus, in order to preserve some of good strings that are already

present in the mating pool, not all strings in the mating pool are used in cross

over.

When a cross over probability of PC is used only 100 PC percent strings in

the population are used in the cross over operation and 100(1− PC)

percentage of the population remains as it is in the current population. Even

though the best 100(1− PC)% of the current population can be copied

deterministically to the new population, this is usually preferred at random.

A cross over operation is mainly responsible for the search of new strings.



9.3 INVERSION AND DELETION

9.3.1 Inversion

A string from the population is selected and the bits between two random

sites are inverted as shown in Fig. 9.8.

Fig. 9.8 Inversion.

Linear+end-inversion

Linear+end-inversion performs linear inversion with a specified probability

of 0.75. If linear inversion was not performed, the end inversion would be

performed with equal probability of 0.125 at either the left or right end of the

string. Under end inversion, the left or right end of the string was picked as

one inversion-point and a second inversion-point was picked uniformly at

random from the point no farther away than one half of the string length.

Linear+end-inversion minimizes the tendency of linear inversion to disrupt

bits located near the centre of the string disproportionately to those bits

located near the ends.

Continuous inversion

In continuous inversion, inversion was applied with specified inversion

probability Pr to each new individual when it is created.



Mass inversion

No inversion takes place until a new population is created and thereafter,

one-half of the population undergoes identical inversion (using the same two

inverting points).

9.3.2 Deletion and Duplication

Any two or three bits at random in order are selected and the previous bits

are duplicated and it is shown in Fig. 9.9.

Fig. 9.9 Deletion and duplication.



9.3.3 Deletion and Regeneration

Genes between two cross-sites are deleted and regenerated randomly as

shown in Fig. 9.10.

Fig. 9.10 Deletion and regeneration.

9.3.4 Segregation

The bits of the parents are segregated and then crossed over to produce

offspring as shown in

Fig. 9.11.



Fig. 9.11 Segregation.

9.3.5 Cross Over and Inversion

Cross over and inversion operator is the combination of both cross over and

inversion operators. In this, two random sites are chosen, the contents

bracketted by these sites are exchanged between two mated parents and, the

end points of these exchanged contents switch place. For example, if the

cross-sites in parents shown in Fig. 9.12 are 2 and 7, the cross over and

inversion operation is performed in the way shown in Fig. 9.12.

Fig. 9.12 Cross over and inversion.



9.4 MUTATION OPERATOR

9.4.1 Mutation

After cross over, the strings are subjected to mutation. Mutation of a bit

involves flipping it, changing 0 to 1 and vice versa with a small mutation

probability Pm. The bit-wise mutation is performed bit-by-bit by flipping a

coin with a probability of Pm. Flipping a coin with a probability of Pm is

simulated as follows.

A number between 0 to 1 is chosen at random. If the random number is

smaller than Pm then the outcome of coin flipping is true, otherwise the

outcome is false. If at any bit, the outcome is true then the bit is altered,

otherwise the bit is kept unchanged. The bits of the strings are independently

muted, that is, the mutation of a bit does not affect the probability of

mutation of other bits. A simple genetic algorithm treats the mutation only as

a secondary operator with the role of restoring lost genetic materials.

Suppose, for example, all the strings in a population have conveyed to a zero

at a given position and the optimal solution has a one at that position, then

cross over cannot regenerate a one at that position while a mutation could.

The mutation is simply an insurance policy against the irreversible loss of

genetic material.

The mutation operator introduces new genetic structures in the population by

randomly modifying some of its building blocks. It helps the search

algorithm to escape from local minima’s traps since the modification is not

related to any previous genetic structure of the population. It creates different

structure representing other sections of the search space. The mutation is also

used to maintain diversity in the population. For example, consider the

following population having four eight-bit strings.

0110 1011

0011 1101

0001 0110



0111 1100

Notice that all four strings have a zero in the leftmost bit position. If the true

optimum solution requires a one in that position, then neither

reproduction nor cross over operator described above will be able to create

one in that position. The inclusion of mutation introduces some probability (

Npm) of turning zero to one as

0110 1011

0011 1101

0001 0110

1111 1100

Mutation for real numbers can be done as

Before (1.38 −69.4 326.44 0.1)

After (1.38 −67.5 326.44 0.1)

Hence, mutation causes movement in the search space (local or global) and

restores lost information to the population.

9.4.2 Mutation Rate Pm

Mutation rate is the probability of mutation which is used to calculate

number of bits to be muted. The mutation operator preserves the diversity

among the population which is also very important for the search. Mutation

probabilities are smaller in natural populations leading us to conclude that

mutation is appropriately considered a secondary mechanism of genetic

algorithm adoption. Typically, the simple genetic algorithm uses the

population size of 30 to 200 with the mutation rates varying from 0.001 to

0.5.



9.5 BIT-WISE OPERATORS

Usually, binary coding is used more extensively in the coding mechanism to

generate algorithm structure. This involves the coding of real variables to

binary strings and genetic operators work on these coded strings. In the

present work, genetic algorithm program as written in “C” language with the

help of built in operators in “C” (the bit-wise operators), we can directly

manipulate the individual bits within a word of memory. These operators can

be carried out easily and efficiently. These can operate on integers and

characters but not on floats and doubles. Byron S. Gotfried (1990)

categorizes bit-wise operators into three, namely, 1. The one’s complement

operator,

2. The logical bit-wise operator, and 3. The shift operator.

9.5.1 One’s Complement Operator

The one’s complement operator (~) is an unary operator that causes the bits

of its operand to be inverted (i.e. reversed), so that 1 becomes zero and zero

becomes 1. This operator always precedes its operand.

Consider the example problem 8.1, where two variables θ1, θ2, are four-bit

strings each respectively and hence, the total string length is eight.

9.5.2 Logical Bit-wise Operators

There are three logical bit-wise operators, namely, 1. Bit-wise AND, 2. Bit-

wise Exclusive-OR, and 3. Bit-wise OR.

Each of these operators require two integer-type operands and hence, can be

used instead of cross over. While operating upon two operands, they are



compared on bit by bit basis. The truth table is shown in Table 9.1.

Bit-wise AND (&) operator

A bit-wise AND (&) expression returns 1 if both the bits have a value 1,

otherwise it returns a

value 0.

Parent 1a = 1010 1010 → 10   10

Parent 2b = 1100 0011 → 12   3

Child a&b = 1000 0010 → 8   2

Table 9.1 Truth table

AND ‘&’

Exclusive OR

OR ‘|’

a

b

operator

‘∧’ operator

operator

a&b

a ∧ b

a | b



0

0

0

0

0

0

1

0

1

1

1

0

0

1

1

1

1

1

0

1



Bit-wise exclusive-OR (∧) operator

A bit-wise exclusive-OR (∧) expression returns a 1 if one of the bits have a

value of 1 and the other has a value of 0 otherwise it returns a value 0.

Parent 1a = 1010 1010 → 10  10

Parent 2b = 1100 0011 → 12  3

Child a&b = 0110 1001 → 6  9

Bit-wise OR (|) operator

A bit-wise OR (|) expression returns a 1 if one or more bits have a value of 1

otherwise it returns a value 0.

Parent 1a = 1010 1010 → 10  10

Parent 2b = 1100 0011 → 12  3

Child a&b = 1110 1011 → 13  11

The three bit-wise operators are summarized in Table 9.1. In this Table, A

and B represent the corresponding bits within the first and second operands

respectively.

9.5.3 Shift Operators

Two bit-wise shift operators are, shift left (<<) and shift right (>>) operators.

Each operator operates on a single variable but requires two operands. The

first operand is an integer type operand that represents the bit pattern to be

shifted and the second is an unsigned integer that indicates the number of

displacements (i.e. whether the bits in the first operand will be shifted by 1

bit position, 2 bit position and so on). This value cannot exceed the number

of bits associated with the word size of the first operand.



Shift left operator (<<)

The shift left operator causes all the bits in the first operand to be shifted to

the left by the number of positions indicated by the second operand. The

leftmost bits (i.e. the overflow bits) in the original bit pattern is lost. The

rightmost bit positions that become vacant are to be filled with zeroes.

a = 1010 0110 →  10  6

a << 2 = 1001 1000 →  9  8

Shift right operator (>>)

The shift right operator causes all the bits in the first operand to be shifted to

the right by the number of positions indicated by the second operand. The

right most bits (i.e. the underflow bits) in the original bit pattern are lost. The

left most bit positions that become vacant are then filled with zeroes.

a = 1010 0110 →    10   6

a >> 2 = 0010 1001 →   2   9

Masking

Masking is a process in which a given bit pattern is transformed into another

bit pattern by means of logical bit-wise operation. The original bit pattern is

one of the operands in the bit-wise operation. The second operand called

mask, is a specially selected bit pattern that brings about the desired

transformation.

There are several different kinds of masking operations. For example, a

portion of a given bit pattern can be copied to a new word, while the

remainder of the new word is filled with 0. Thus, part of the original bit

pattern will be “masked off” from the final result.

9.6 BIT-WISE OPERATORS USED IN GA



Logical bit-wise operators are used in different combinations. Each operator

operates on two individuals and generates one resultant so as to keep the

number of individuals in the population constant. Two different operators are

used in GA process.

Populations are selected randomly for mating and on each pair bit-wise AND

and bit-wise OR operators are performed. Similarly, AND and exclusive-OR

or OR and exclusive-OR operations can be performed to produce children or

population for the next generation.

9.7 GENERATIONAL CYCLE

Table 9.2 shows a generational cycle of the genetic algorithm with a

population of four (P1 = 4) strings with 10 bits each. In this example, the

objective functions which can assume values in the string 0 to 10, give the

number of 1s in the decimal place. The fitness function performs “divide by

10” operation to normalize the objective function in the range of 0 to 1. The

four strings thus have fitness values of 0.3, 0.6, 0.6, and 0.9. Ideally, the

proportional selection scheme should allocate 0.5(0.3/0.6), 1.0(0.6/0.6),

1.0(0.6/0.6), and 1.5(0.9/0.6) values for selection to be offspring (since

f(average) = (0.3 + 0.6 + 0.6 + 0.9)/4 = 0.6) to the strings. However,

according to Darwinian theory of survival of the fittest, the strongest

individual will have two copies, the weakest individual dies, and average

individuals will have one copy each. Hence, the string with fitness value of

0.5 will have 0 copy with 1.5 has two copies and others 1 copy. In Table 9.2,

the population P2 represents this selected set of strings. Next, the four strings

are paired randomly for cross over. Strings 1 and 4 forms one pair, and 2 and

3 forms the other pair. At a cross over probability rate of 0.5, only the pair 2

and 3 is left intact. The cross over point falls between 1 and 5 and hence,

portion of the strings between 1 and 5 are swapped.

The action of mutation on population P3 can be seen in population P4 on the

sixth bit of string 2 and the first bit of string 4. Only two bits out of 40

have muted representing an effective mutation probability rate of 0.05.



Population P4 represents the next generation. In effect, P1 and P4 are the

populations while P2 and P3 represent the intermediate stages in the

generational cycle.

The parameters, namely the population size, mutation rate, and cross over

rate are together referred to as the control parameters of the simple genetic

algorithm and must be specified before its execution.

To terminate the execution of simple genetic algorithm, we must specify a

stopping criterion. It could be terminated after a fixed number of generations,

after a string with a certain high fitness value is located or after all the strings

in the populations have attained a degree of homogeneity (a large number of

strings have identical bits at most positions).





Example Problem

Consider Example 8.1 (Two bar pendulum) using cross over and mutation.

We have seen various selection procedures of obtaining the populations for

the mating pool as given in Table 8.13 and as given in Table 9.3). One

procedure is described here.

Table 9.3 Generation of population ( F = 3.95)

Population

Population

Random

Population

Pop.

Mate

F

Actual

Population

CS1

CS2

after cross

bits for

for next



i

Fi/

no.

with

= φ

count

2

4

5

over

mutation

generation

1

3

6

7

8

9

10

11



1

0010 0001

5

2

6

0010 1001

0010 1001

4.11

1.04

1

0010 1001

2

0001 0101

6

1

5

0110 1101

0110 1101

4.53

1.14



2

0110 1101

3

0010 1000

7

4

8

0010 1100

21

0010 0100

3.15

0.796

0

0110 1101

4

0110 1010

8

4

6

0110 1110



0110 1110

4.40

1.11

1

0110 1110

5

0110 1010

1

2

6

0110 0010

0110 0010

3.00

0.759

0

0111 1100

6

1110 1101

2

1



5

1001 0101

1001 0101

3.49

0.883

1

1001 0101

7

0111 1100

3

4

8

0111 1000

0111 1000

4.44

1.12

1

0111 1000

8

0111 1100



4

4

6

0111 1000

62

0111 1100

4.55

1.15

2

0111 1100

Step 1: Randomly select eight populations of eight-bit strings and decode the

population for angles, and substituting in the potential expression find the

fitness function.

Step 2: Use any of the selection methods discussed in Chapter 8 to get the

population for the mating pool.

(The above two steps have been performed in Chapter 8 and the column 8

of Table 8.13 gives the populations for the mating pool.)

Step 3: Randomly select the parents for the mating pool such as 1 with 5, 2

with 6, 3 with 7, and 4 with 8.

Step 4: Two-point cross over is selected such that bits between strings 2−6 of

the population parents 1 and 5, are swapped. The population after cross over

is shown in Table 9.3 in the sixth column. We used the cross over probability

of 100% in all the parent pairs that are crossed .



Figure 9.13 shows how points cross over and form new points. The points

marked with small boxes are the points in the mating pool and the points

marked with small circles are children points created after cross over

operation. The complete population at the end of cross over operation is

shown as last column in Table 9.3. Figure 9.13 shows that some good points

and some not-so-good points are created after cross over. In some cases,

points far away from the parent points are created and in some cases, points

close to the parent points are created.

Fig. 9.13 Populations after cross over. (Two-point cross over for all

populations) Step 5: The next step is to perform mutation on strings in the

intermediate population. For bit-wise mutation, we flip a coin with a

probability of Pm =



3% for every bit. If the outcome is true, we alter the bit to 1 or 0 depending

the bit value with a probability of Pm = 0.03 and for a population size of 8

and a string length of 8, we can expect to alter a total of about 0.03 × 8 × 8 =

1.92 or two bits in the population. These two bits are selected at random as

21 and 62. The 21st bit which is 1, is flipped to 0 and 62nd bit which is zero,

is flipped to zero as shown in Table 9.3. Figure 9.14 shows the effect of

mutation on the intermediate population. In some cases, the mutation

operator changes a point locally and in others it can bring a large change. The

points marked with a circle are the points of intermediate population and the

points marked with a small box constitute new population (obtained after

reproduction, cross over, and mutation). It is interesting to note that if only

one bit is muted in a string, the point is moved along a particular variable

only. Similar to the cross over operator, the mutation operator has created

some points worse than the original points. This flexibility enables GA

operators to explore the search space properly before converging to a region

prematurely. Although this requires extra computation, this flexibility is

essential to solve global optimization



problems.

Step 6: The resulting population becomes a new population as shown in

column 8 of Table 9.3. We now evaluate each string as before by first

identifying substrings for each variable and mapping the decoded values of

the substrings in the chosen intervals. This completes one iteration of genetic

algorithm. We increment the generation counter to t = 1 and proceed to step

2

for next generation. The new population after one iteration of GA is shown in

Fig. 9.14 (marked with empty boxes). The figure shows that in one iteration,

some good points have been found. Table 9.3 also shows the fitness values

and objective function value of the new population number.



Fig. 9.14 Population after mutation operation. (Average fitness value

increased from 3 to 3.95) The average fitness of the new population is

calculated to be 3.95

(compared to 3 to start with), a remarkable improvement from that in the

initial population. The best point in the population is found to have fitness

value equal to 4.67. This process continues until the maximum allowable

generation is reached or some other criterion is met. The population after 5

iterations, the best point is found to be (35°, 66°) with a function value of

11.67. In our process the total number of function evaluations required to

obtain this solution is 8 × 5 = 40 (including the evaluation of the initial

population).

Computer program

A computer program (GAOPT) for optimization of a function subjected to

constraints by GA is developed and is given in CD-ROM attached with this

book.

Table 9.4 Generation of population ( F = 3.15)

Applying

Population

Population

Population

Pop.

Mate

right shift

F



Actual

for next

Population

after cross

for next

i =

Fi/

no.

with

operator to

φ

count

mating

2

over

generation

8

1

3

5



7

9

pool

4

6

5

10

1

0010 0001

5 &

0010 0000

0010 0000

0010 0000

1.7

0.539

0

0110 1000

2

0001 0101

6 &



0000 0101

0000 0101

0000 0101

2.73

0.866

1

0000 0101

3

0010 1000

7 &

0010 1000

0010 1000

0010 1000

4.01

1.27

1

0010 1000

4

0110 1010

8 &



0110 1000

0110 1000

0110 1000

4.51

1.438

2

0110 1000

5

0110 1010

1 ∧

0100 1011

0010 0101

0010 0101

3.43

1.088

1

0010 0101

6

1110 1101

2 ∧



1111 1000

1111 1000

1111 1000

1.31

0.415

0

0101 0110

7

0111 1100

3 ∧

0101 0110

0101 0110

0101 0110

4.16

1.32

2

0101 0110

8

0111 1100

4 ∧



0001 0110

0001 0110

0001 0110

3.35

1.06

1

0001 0110

Example Problem Using Bit-wise Operators

Let us start with the populations obtained in Chapter 8 for the mating pool.

First two steps are the same as previous example.

Step 3: Randomly select the parents from the mating pool such as 1 with 5, 2

with 6, 3 with 7, and 4 with 8.

Step 4: All the populations are selected for mating since the cross over

probability is 100. Since there are eight individuals, there are four pairs.

The operator which is responsible for search in the genetic space bit-wise

AND (&) and exclusive-OR (∧) is carried out as follows:



Compared to genetic operators, bit-wise operators do not carry genetic

information all through generations and hence, it takes longer time to

converge.

9.8 CONVERGENCE OF GENETIC ALGORITHM

The situation of good strings in a population set and random information

exchange among good strings are simple and straightforward. No

mathematical proof is available for convergence of GA. According to Rajeev

and Krishnamoorthy (1992), one criterion for convergence may be such that

when a fixed percentage of columns and rows in population matrix becomes

the same, it can be assumed that convergence is attained. The fixed

percentage may be 80% or 85%.

In genetic algorithms as we proceed with more generations, there may not be

much improvement in the population fitness and the best individual may not

change for subsequent populations. As the generation progresses, the

population gets filled with more fit individuals with only slight deviation

from the fitness of best individuals so far found, and the average fitness

comes very close to the fitness of the best individuals. We can specify some

fixed number of generations after getting the optimum point to confirm that

there is no change in the optimum in the subsequent generations.

The convergence criteria can be explained from schema point of view in the

lines of Goldberg (1989). A schema is a similarity template describing a

subset of strings with similarities at certain positions. In other words, a

schema represents a subset of all possible strings that have the same bits at

certain string positions. As an example, consider a string with five bits. A

schema **000 represents the strings 00000, 01000, 10000, and 11000.

Similarly a schema 1*00* represents the strings 10000, 10001, 11000, and

11001. Each string represented by a schema is called an instance of the

schema. The symbol * signifies that a 0 or 1 could occur at the string

position. Thus, the schema ***** represents all possible strings of five bits.

The fixed positions of a schema are the string positions that have 0 or 1 (In



**000, the third, fourth and fifth positions). The number of fixed positions in

a schema is its order (**000 is of order 3). The defining length of schema

1*00* is 3. Any specific string is simultaneously an instance of 2 p schemata

( p is the string length).

Since schema represents a robust of strings, we can associate a fitness value

with a schema, i.e. the average fitness of the schema. Hence, a schema’s

average fitness value varies with the population’s composition from

one generation to another.

One can visualize GA’s search for the optimal strings as a simultaneous

competition among schemata increases the number of their instances in the

population. If we describe the optimal string as just a position of schemata

with short defining lengths and high average fitness values, then the winners

of individual schema competitions could potentially form the optimal string.

Such schemata with high fitness values and small defining lengths are

appropriately called building blocks. While genetic operators are applied on

a population of strings, a number of such building blocks in various parts

along the string get emphasized. Individual processing shows that the worst



schema will die. But there is every danger that the cross over operator may

destroy good schemata. So, selection of good appropriate cross over operator

plays a vital role here. If the cross-site cuts the well defined position in the

schema, this may not be preserved in the next generation unless otherwise.

Second parent also will have the same schema in that position. In case of

single-point cross over, falling of cross-sites within the defined positions has

less probability while in the case of uniform cross over, disturbance of good

schema takes place with a higher probability. As far as GA to engineering

field is concerned single- and two-point cross over are common. The

meaning of search in the genetic space is the development of building blocks.

Building blocks are combined together due to combined action of genetic

operators to form bigger and better building blocks and finally converge to

the optimal solution. The GA cycle is shown in Fig. 9.15.

Fig. 9.15 The GA cycle.

9.9 APPLICATIONS

9.9.1 Composite Laminates

Composite laminates are used for various applications. They are ideal for

structural applications where high strength to weight ratio is required.

Aircraft and other space vehicles are typical weight sensitive structures in

which composite materials such as Boron/Epoxy, Carbon/Epoxy,

Graphite/Epoxy has resulted in the use of laminated fibre composites and

shells. Laminated composites are made by binding together number of layers

of at least two different materials. By lamination one can achieve two aspects

of constituent layers in order to improve the material quality. Fibre-reinforced

composites can be tailored to achieve the required stiffness and strength in a

structure by a laminate. This is because the mechanical properties of each ply

constituting the laminate can be altered by varying its fibre orientation. A

composite offers a weight saving of

24−40% as compared to metallic material if used efficiently.



In a symmetric-angle ply laminate, the fibres are oriented, as shown in Fig.

9.16, symmetrically with respect to the middle layer whereas in an

antisymmetric-angle ply laminate, the fibres are oriented as shown in Fig.

9.16. Antisymmetric-angle ply laminate can have only even number of layers

whereas symmetric-angle ply laminate can have both odd and even number

of layers.

Fig. 9.16 Layered composite plate.

Vibration problem is a predominant problem in aerospace structures where

minimum weight design is an important criterion. The frequency of a

composite laminate varies with the orientation of fibres in the laminates. The

basic design problem of a composite structure is to find the optimum

orientation of fibres for maximum frequency. Fibre angles, in case of even



number of layers including the middle surface, are taken as design variable

for GA. The bottom half of layers for symmetric orientation (the same

number of layers as the top half) and for antisymmetric orientation, the

layers in the top half with negative sign are used. Only one half of the layers

orientations are used in the coding of GA alongwith the well known

operations such as reproductions and mutations.

In this subsection, working of GA is explained with reference to a three-

layered symmetric orientation of a thin composite square plate with

carbon/epoxy subjected to free vibrations. The assumed data for square plate

is—side of square plate = 40 mm, thickness = 0.8 mm.

In this example design variable for the three-layered plate is 2. Since the

plate has a symmetric orientation, only half of the layers above the middle

layer including the middle are considered. The orientation of fibres can be

varied as discrete values from +90 to −80. A four-bit substring is used to

code each variable and in this case, a variable can take 16 discrete values

(since the angle varies form 90 to −80, it is divided as −80, −75, −60, −45,

−30, −20,

−10, 0, 10, 20, 30, 45, 60, 75, 80, 90, i.e. sixteen angles to select a four-bit

binary string) as shown in Table 9.5. Here, eight concatenated strings are

adopted to represent two design variables.

The number of populations depends on the importance of the problem and

the complexity involved. The number should be even to facilitate mating. In

this example, number of populations is limited to eight for the purpose of

illustration.

Table 9.5 Binary representation of angles

S.no.

Binary coding

Decoding angle



Fibre angle

1

0000

0

0

2

0001

1

10

3

0010

2

20

4

0011

3

30

5

0100

4



45

6

0101

5

60

7

0110

6

75

8

0111

7

80

9

1000

8

90

10

1001

9



−10

11

1010

10

−20

12

1011

11

−30

13

1100

12

−45

14

1101

13

−60

15

1110

14



−75

16

1111

15

−80

The string representing individuals in the population is generated randomly

as shown in column 2 of Table 9.6. In the third column, first value shows the

design variable corresponding to layer 1. This is obtained by decoding the

first substring of length four of column 2 and getting the corresponding angle

from Table 9.5. For example, the substring corresponding to layer 1 from the

first string is 1000. The decimal equivalent of the binary number is 8 and the

corresponding angle is 90 degrees. The fibre orientation of second layer is

1001, i.e. binary number is 9 and the angle is −10 degrees. Similarly, other

strings are also decoded and the corresponding angles from the list are

obtained. After knowing the angles, they are repeated for the second half,

which is the mirror image of first half being symmetric. For the above angles

in fibres, the frequency is calculated using FEAST-C (1997) for each

population. Column 4 shows the frequency for each population.

Table 9.6 Details of computations

Population

Decoded

Mating

Angles

Mating

S.no.



Population

Frequency

Count

Mate

CS1

CS2

after cross

Frequency

Count

angles

pool

decoded

pool

1

2

4

5

7

8

9



over

12

13

3

6

11

14

10

−45,

90, −10,

1000

1100

1

1000 1001

.000535

1

3

1

4

1100 1001



−10,

.000646

1

90

1001

1001

−45

−20,

−20,

1010

1010

2

1010 1100

−45,

.000571

1

6

2

4

1010 1100



−45,

.000571

1

1100

1100

−20

−20

45, −10,

0100

0, −10,

1100

3

0100 1001

.000662

1

1

1

4

0000 1001

.000534



0

45

1001

0

0101

−45, 60,

1100

−45, 60,

1100

4

1100 0101

.000685

2

7

2

4

1100 0101

.000685

1

−45



0101

−45

0101

10, 20,

0001

75, 20,

0110

5

0001 0010

.000542

1

8

1

4

0110 0010

.000553

1

10

0010

75



0010

75, 60,

0110

75, 60,

0110

6

0110 0101

.000555

1

2

2

4

0110 0101

.000555

1

75

0101

75

0101

90, 80,



1100

−45, 60,

1100

7

1000 0111

.000534

0

4

2

4

1100 0101

.000685

2

90

0101

−45

0101

−75,

1110

−10, 80,



1001

8

1110 1111

−80,

.000551

1

5

1

4

1001 1111

.000541

1

1111

−10

1111

−75

Having obtained the fitness values for all the populations, the next step is to

generate the population for the next generation which are the offsprings of

the current generation. The genetic operators, namely reproduction and cross

over are used to generate population for the next generation. The

reproduction operator selects the best individuals from the current population

and places them in the mating pool. The reproduction process is carried out

in



the following manner. The population, which gives the highest frequency,

gets two copies and the population which gives the lowest dies off. The other

populations get single copy in the mating pool. This process of reproduction

confirms the Darwinian principle of survival of the fittest. The mating pool is

shown in column 6 of Table 9.6.

The operator responsible for search in genetic space called cross over, is

carried now. The cross over rate is selected as 1, that is, all the populations in

the mating pool are to be mated. Before selecting the cross-sites, the

individuals in the mating pool are matched. Since there are eight individuals

there are eight matching pairs. The pairs are selected randomly are shown in

column 7 of Table 9.6. Two cross-sites are chosen randomly along the length

of the string for each pair as shown in column 8 and 9. Column 10 shows the

population after cross over, which is the population set for Generation 2.

Now the same process is repeated for Generation 2 and the details are shown

in Table 9.6.

It can be observed from the Table 9.6 that the average frequency is more than

the previous generation. It clearly shows the improvement among the set of

populations. As one proceeds with more generations, there may not be much

improvement in the populations and the best individual may progress.

The population gets filled by more fit individuals with only slight deviation

from the fitness of the best individual so far found and the average fitness

comes very close to the fitness of the best individual. Number of generations

is left to the personal interest. If a satisfactory result is obtained, iterations

can be stopped or it can be stopped when there is no significant improvement

in the performance from generation to generation for a particular number of

generations. In the present study, the convergence of 80% to 85% of the

population matrix becomes the same when compared to the previous

generation and the iteration has been stopped. Table 9.7 shows the optimum

orientation of fibres for maximum frequency for various layers.

Table 9.7 Optimum fibre orientation for max frequency

Symmetric



Antisymmetric

No. of layers

Fibre angle

Max freq

Fibre angle

Max freq

2

45, 45

0.000646

90, −90

0.000533

3

−45, 30, −45

0.000686

4

−45, 45, 45, −45

0.000782

45, −45, 45, −45

0.000808



5

−45, 45, 30, 45, −45

0.000846

6

−45, 45, 45, 45, 45, −45

0.000888

−45, 45, 45, −45, −45, 45

0.000920

7

45, −45, −45, 60,



−45, −45, 45

0.000907

8

−45, 45, 45, 45, 45,

0.000921

−45, 45, 45, −45, 45,

0.000927

45, 45, −45

−45, −45, 45

9

−45, 45, 30, 45, −60,

0.000914

45, 30, 45, −45

The convergence history, in number of iterations vs frequency for

antisymmetric orientation of fibres for 8 layers is shown in Fig. 9.17.

Fig. 9.17 Convergence history (frequency versus no. of iterations).

9.9.2 Constrained Optimization

Application from structural engineering

Consider a three bar truss shown in Fig. 9.18. The data assumed is E = 200.8

GPa, Density



ρ = 7850 kg/cu m (78.5 kN/cu m), maximum stress, σmax = 147.15 MPa,

and

maximum displacement, u max = 5 mm. The truss is symmetric.

Fig. 9.18 Three bar truss.

It is necessary to find out the optimum cross-sectional areas of members 1, 2,

and 3 for the given loading conditions. The mathematical programming

formulation of this problem can be written as follows.

minimize f( X) subject to

gj( X) ≤ 0; j = 1, 2,..., m      (9.1) where m is the number of

constraints.

Since the objective function is to minimise the weight f( X), three bar truss

problem can be written as



(9.2)

where Ai is the cross sectional area of i th member, Li is the length of the i th

member, and ρ is the weight density of the material. The constrained

equations are written as

gi( X)

σ j ≤ σ a j = 1, 2, 3

u 1 ≤ ua; v 1 ≤ ua      (9.3)

where σ j is the stress in j th member and σ a is the allowable stress, u 1 and

v 1 are the horizontal and vertical displacements of node 1 and ua is the

allowable displacement.

Here, all the constraints cannot be directly described in terms of design

variables hence, they are implicit and their evaluation requires analyzing a

truss. Assume, for this purpose, a program is available for analyzing the truss

to give the stresses in various members as well as displacements at the nodes.

We have seen that GAs are ideally suited to unconstrained optimization

problems. As the present problem is a constrained optimization problem, it is



necessary to transform it to an unconstrained optimization problem to be able

to solve it using GA. Transformation methods achieve this either by using

exterior or interior penalty functions. Such transformations are ideally suited

for sequential searches. GA performs the search in parallel using populations

of points in search space. Hence, traditional transformations using penalty or

barrier functions are not appropriate for genetic algorithm. A formulation

based on the violation of normalized constraints is generally adopted. It is

found to work very well for the class of problems. The constraint in

normalized form is given by

≤ 0

≤ 0

≤ 0      (9.4)

A violation coefficient C is computed in the following manner Ci = gi(

X),    if g( X) > 0

Ci = 0,      if g( X) ≤ 0      (9.5)

C =

(9.6)

where m is the number of constraints.

Now the modified objective function φ( X) is written as

φ( X) = f( X) {1 + KC}        (9.7) where parameter K has to be

judiciously selected depending on the required influence of a violation

individual in the next generation. A value of 10 was found to be suitable for

most of the problems. Now the genetic algorithm is used to carry out

unconstrained optimization of φ( X) as seen for two bar pendulum.



Similar to the approach discussed above for converting constrained

optimization to unconstrained optimization, many approaches are studied by

Michalewicz (1995). Amongst them, the one proposed by Joines and Houck

uses a dynamic penalty with respect to generation

count ‘ t’ as

(9.8)

In Eq. (9.8), gj is the j th constraint function, which is zero in case of no

violation, and is positive otherwise. The (γ0 × t)α component of the penalty

term is the penalty multiplier, whereas γ0 stands for the penalty coefficient.

For γ0, α, and β the values of 0.5, 2, and 2 are recommended respectively

(Erbatur et al., 2000).

Modifying the Eq. (9.8) as

(9.9)

Hasancebi and Erbatur (1999) suggested for φ( X) as

(9.10)

where ‘ C’ is the control parameter and ‘ p’ is the penalty parameter.

Let us use the approach given by Rajeev and Krishnamoorthy (1992).

Going back to truss shown in Fig. 9.18, the objective function is taken as φ(

X) = f( X) (1 + 10 C)      (9.11) Because the design variables are



discrete it is necessary to supply a list of values that the design variables can

take. The available sections assumed for assigning the value for design

variables are given in the list S as S = {1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6,

2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.4}

sq.cm which are given in Table 9.8.

Table 9.8 The available sections for truss members

S.no.

Bit

Decoded value

Area

S.no.

Bit

Decoded value

Area

1

0000

0

1.2

9

1000

8



2.8

2

0001

1

1.4

10

1001

9

3.0

3

0010

2

1.6

11



1010

10

3.2

4

0011

3

1.8

12

1011

11

3.4

5

0100

4

2.0

13

1100

12

3.6

6



0101

5

2.2

14

1101

13

3.8

7

0110

6

2.4

15

1110

14

4.0

8

0111

7

2.6

16



1111

15

4.4

It is to be noted that the areas are not incremented uniformly. From 1 to 15,

increment is 0.2 and from 15 to 16, the increment is 0.4. If the increment is

uniform we can write as

X inc =

(9.12)

where ‘ n’ is the number of digits and

Xi = XL + (Decoded value) × X inc      (9.13) A four-bit string can

define sixteen different values. The design variables are the areas of two

members. Since the truss is symmetric, the area of third member is the same

as the first member and hence, there are only two design variables for the

optimization problem corresponding to two groups. A binary string of length

four is capable of representing 16 different values, and since there are two

groups, the total length of the string becomes eight with two substrings of

length four each as shown in Fig. 9.19.

Fig. 9.19 Individual string of length 8.

In this problem the fitness function can be calculated as

Fi = [φ( X)max + φ( X)min] − φ i( X)      (9.14) The procedure is

exactly same as two bar pendulum except that GA will call analysis program

for the analysis of three bar truss to get the stresses in all the members and

the displacements. The details of computations for three generations are

given in Tables 9.9, 9.10, and 9.11, respectively.



…

…

.

Table 9.11 Details of computations—Generation 2

S.no.

A 1

A 2

f( X)

σ1

σ2



σ3

u 1

u 2

c

φ( x)

1

2

3

4

5

6

7

8

9

10

11

1

2.2

4.4

14.88



146

56.8

135.1

1.03

−1.35

0.0

14.88

2

2.8

4.4

17.1

126.6

56.5

122.0

0.81

−1.22

0.0

17.06

3

3.0



3.4

16.21

133.6

68.1

134.5

0.75

−1.34

0.0

16.21

4

3.4

3.0

17.03

128.1

70.3

132.2

0.66

−1.32

0.0

17.03



5

4.0

2.6

18.58

118.9

69.8

125.8

0.56

−1.25

0.0

18.58

6

3.0

3.0

15.58

139.4

73.9

142.2

0.75

−1.42



0.0

15.58

7

3.4

1.8

15.15

147.2

89.5

157.8

0.66

−1.57

0.072

26.13

8

2.4

3.8

14.67

147.3

65.5

141.8



0.94

−1.41

0.0007

14.78



The flow chart of the genetic algorithm to solve the truss problem is shown

in Fig. 9.20.

Fig. 9.20 Flowchart for truss optimization by GA.

reduces from 53.48 in first generation to 17.53 in the third generation.

From

Table 9.11, we can accept φ( X) = 14.778 with slight violation, C = 0.00074

and hence

the minimum weight of the truss is 14.667 kg (0.14 kN) with the area of

inclined member as

2.4 sq cm and the vertical member as 3.8 sq cm.

9.10 MULTI-LEVEL OPTIMIZATION

A drawback of GA

Optimization of any system comprising numerous design variables is a

challenging problem due to its huge size of search space. In fact, it is not easy

for any optimization algorithm to carry out an effective exploration without

locating local optimum. The dimensions of the search space grow

exponentially either with the addition of extra design variables or with the

enlargement of profile lists. The tests performed show that GA is generally

quite successful in locating the regions of the search space containing the

global optimum, but not the true optimum itself.

Here, multi-level optimization approach as given by Erbatur et al. (2000), is

implemented and proved to eliminate the effect of such a major drawback.

The approach rests on reducing the size of the search space for individual

design variables in each successive level of the optimization process. In this

approach an initial optimization, named the first level optimization, is carried

out with an original profile list (discrete set) used by all the design variables.



An original discrete set must be arranged in such a manner that the ready

sections are placed in increasing order of the cross-sectional areas. In other

words, the first entry of the discrete set is the smallest section and the last

entry is the largest section. Following the first level of optimization, the

algorithm automatically divides the original discrete set into several subsets

(sub-profile lists with smaller sized search space, to be employed in the

second level optimization).

The procedure used to create these subsets is as follows.

1. The best design obtained in the first level optimization is taken as the

reference design.

2. The original discrete set is equally divided into prescribed number of

subsets.

3. Individual design variables are directed to appropriate subsets according to

the values obtained in reference design.

4. The enlargement of subset is performed.

Such a treatment of subsets avoids the risk of locating local optimum. In

the second level optimization, the design variables use smaller sized subsets.

Hence, the second level optimization is performed on more restricted regions

of the search space. The process continues in a similar fashion by dividing

the subsets into new subsets and directing the design variables to the most

appropriate search space.

The characteristics of multi-level optimization are:

1. Firstly, it encourages the optimization process to investigate better

solutions in more restricted favourable regions of the search space.

Therefore, each optimization level may be interpreted as one step of climbing

up a hill towards the summit. Also, it performs well in each search space

which is occupied by closely placed optima.



2. Secondly, since the capacity of a discrete set is kept constant, any subset

formed by dividing a discrete set must contain fewer ready sections than its

capacity. That means, excess slots are produced in the subsets. For

continuous optimization problems, these slots can be utilized to obtain better

approximation to the continuous solution.

It is observed from experience that two to three levels of optimization are

adequate for the convergence to true optimum for discrete and continuous

optimizations respectively.

9.11 REAL LIFE PROBLEM

Figure 9.21 shows the 112 bar steel dome that has been previously discussed

by Saka (1990) and Erbatur et al. (2000). When applying GA to 112 bar

dome, it is not practical to find the areas of 112 members individually.

Consider a 4-bit string in each unknown, each population will consist of 112

× 4 = 448 bits. Even during construction, the dome is assembled using 10 or

15 types of members instead of 112 types of members. In the present study,

the members are linked into 10 groups and string length of 4 × 10 = 40 bits

is assumed such that the length of the substring corresponding to each design

variable is four. The design variable for the problem is to find the optimal

area of these ten types of members so that we achieve minimum weight



design subjected to the constraints. The design data for 112 bar dome is

shown in Table 9.12.

Fig. 9.21 Dimensions and member groups of the 112 bar dome.

Table 9.12 Loading and properties data set

Force in

Force in

Force in

Case no.

Joint no.

X dirn

Y dirn

Z dirn

1

0

0

−500 kg (−5 kN)

17, 23, 29, 35

0

0

−40 kg (−0.4 kN)



1

16, 18, 22, 24

0

0

−120 kg (−1.2 kN)

28, 30, 31, 32

0

0

−120 kg (−1.2 kN)



Rest

0

0

−200 kg (−2 kN)

Modulus of elasticity

210 GPa

Displacement <

0.5 m in any direction

Allowable tensile stress <

1650 kg/sq cm (165 MPa)

Allowable compressive stress<

400 kg/sq cm (40 MPa)

Density of steel

7850 kg/cu m (78.5 kN/cu m)



The objective function is to minimize the weight of the dome and is given by

f =

(9.15)

Constraints for tensile stress are given as

(9.16)

Constraints for compressive stress are given as

(9.17)

Constraints for displacements in X, Y and Z directions are

(9.18)

Hence, the violation coefficient is given as

C =

(9.19)

The objective function for constrained problem is

φ( X) = φ(1 + KC)      (9.20)

and the value of K can be taken as 10.

Along with genetic algorithm program, the analysis program FEAST

(FEAST, 1997) is combined to analyze the 112 bar dome to get the

displacements of various nodes and stresses in various members.

Since we do not have any idea of the areas of members, the lowest areas of

all groups of members may be assumed to be 400 sq mm and the upper

bound for the areas of all groups of members may be assumed to be 1300 sq

mm.



After two generations, we get areas for the ten groups and the objective

function is given as 3850 (i.e. the weight of the dome

= 0.3850 kg (38.5 kN)). The areas of ten groups are given in Table 9.13. In

the second level optimization, we assume the lower bound for areas of first

six groups to be 500 sq mm and for the next three groups to be 900 sq mm,

and the upper bounds for the above two as 800 sq mm, and 1300 sq. mm

respectively. The objective function is given as 3390 kg (33.90 kN) and the

areas for the ten groups are shown in Table 9.13. In the third level sub-

optimization, the lower bound and the upper bounds for areas of ten groups

are shown in Table 9.13. Since we are narrowing down the genetic space, we

are able to direct the path towards the minimum. The obtained areas are also

shown in the table. Similarly, further level sub-optimization is performed.

The minimum weight of the 112 bar dome is obtained as 3300 kg (33 kN)

and the corresponding areas are also shown in Table 9.13. The values

obtained by present analysis are compared with earlier investigators.

Table 9.13 Multi-level optimization (112 bar dome)

Weight in kg

Level

Details

A 1

A 2

A 3

A 4

A 5

A 6



A 7

A 8

A 9

A 10

(kN)

1

min

400

400

400

400

400

400

400

400

400

400

max

1300 1300 1300 1300 1300 1300 1300 1300 1300 1300

4881 kg (48.81



First itn

obtained

1010

913

1130 1130 1350

400

1060 1130

913

1060 kN)

3850 kg (38.5

Second itn

obtained

693

1130 1130 1130 1350 1210

840

913

1350

620

kN)

min



500

500

500

500

500

500

900

900

900

900

max

800

800

800

800

800

800

1300 1300 1300 1300

3390 kg (33.90

obtained



640

640

780

600

520

540

1030

980

1100 1060 kN)

min

600

600

700

580

500

500

1000

450

1000 1000

max



700

700

800

650

650

650

1100 1100 1100 1100

3300 kg (33.0

obtained

600

625

720

580

540

580

1030

970

1050 1000 kN)

3468 kg (34.68

Saka (1990)



714

778

−

−

−

−

−

−

−

−

Other

kN)

investigators Erbatur

3390 kg (33.90

707

557

667

707

707

523



1120

−

−

−

(2000)

kN)

It is seen from the real life problem that GA does not need any gradient or

either supplementary problem information. This, in fact makes the

optimization process easy with respect to more conventional techniques and

explains why GA is applied to a wide range of problems. We can also

conclude that GA is one of the most robust and promising strategies among

discrete optimization techniques and the multi-level optimization approach

makes it possible for the GA to compete with continuous optimization

techniques.

9.12 DIFFERENCES AND SIMILARITIES BETWEEN GA

AND OTHER TRADITIONAL METHODS

As seen from the working principle of GA, GAs are radically different from

most of the traditional optimization methods. Genetic algorithms work with

a string coding of variables instead of the variables. The advantages of

working with a coding of variable is that coding discretizes the search space



even though the function may be continuous. On the other hand, since GA

requires only function values at discrete points, a discrete or discontinuous

function can be handled with no extra cost. This allows GA to be applied to a

wide variety of problems. Genetic algorithm operators exploit the similarities

in string structure to make an effective search. Genetic algorithm works with

a population of points instead of a single point. In GA, previously found

good information is emphasized using reproduction operator and propagated

adaptively through cross over and mutation operators. Genetic algorithm is a

population based search algorithm and multiple optimal solutions can be

captured as shown in Fig. 9.22, thereby reducing the effort to use the

algorithm many times.

Fig. 9.22 Multi-modal functions.

Even though GAs, are different than most traditional search algorithms, there

are some similarities. In traditional search methods, where a search direction

is used to find a new point, at least two points are either implicitly or

explicitly used to define the search direction. In the cross over operator,

(which is mainly responsible for GA search) two points are used to create

new points. Thus, cross over operator is similar to a directional search

method with an exception that the search direction is not fixed for all points

in the population and that no effort is made to find the optimal point in any

particular direction. Since two points used in cross over operator are chosen

at random, many search directions are possible. Among them, some may lead

to global basin and some may not. The reproduction operator has an indirect

effect of filtering the good search direction and helps to guide the search. The

purpose of mutation operator is to create a point in the vicinity of the current

point. The search in the mutation operator is similar to a local search method

such as exploratory search used in Hooke-Jeeves method.

9.13 ADVANCES IN GA



Recently, new and efficient cross over operators have been designed so that

search along variables is also possible. Let us consider X ( j) ( k)

i

, Xi values of

design variables Xi in two-parent string j and k. The cross over between these

two values may produce the new value as

(9.21)

Here, the parameter λ is a random number between 0 and 1.

The above equation calculates new value bracketting the above two-parent

values. This calculation is performed for each variable in the string. This

cross over has uniform probability of creating a point inside the region

bounded by two parents. An extension of the cross over to create points

outside the range is bounded by the parents.

GA with memory

A local improvement procedure for GA is described in this section. The

binary tree data structure given by Kernighan and Ritchie (1988) provides a

way to store previous designs which permit efficient search of duplicate

designs. The binary tree structure is used to store all the data pertinent to the

design of the encoded design string. Figure 9.23 shows the pseudo code for

the calculation of the objective function using binary tree. After a new

generation of design strings is created, the binary tree is searched for the new

design. If the design is found, the objective function value is obtained from

the tree without analysis, otherwise the tree is searched for design with

identical parameters. New designs and their relevant data are then inserted

into the binary tree. This algorithm is given in Fig. 9.23.



Fig. 9.23 Finding objective function using binary tree.

Multi-modal Optimization

Many real world problems contain multiple solutions that are optimal or near

optimal. The knowledge of multiple optimal solutions in a problem provides

flexibility in choosing alternate yet good solutions as and when required. The

idea of a number of optimal solutions coexisting in a population requires

some change in the simple genetic algorithm described in the previous

section. In nature, for example, we recognize that multiple niches (humans

and animals) exist by sharing available resources. A similar sharing concept

is introduced artificially in GA population in sharing functions as given by

Deb (1989) which calculate the extent of sharing that needs to be done

between two strings. If dij is the distance between i th and j th string. Then

(9.22)



Here, the parameter σ is the maximum distance between two strings for them

to be shared and is fixed beforehand. Shared fitness ( Sh) is calculated and

this is used for reproduction. Using with this sharing strategy, GAs have

solved a number of multi-modal optimization problems having more than

five million local optima, of which 32 are global optima as given by

Goldberg, et al. (1992).

Searching for optimal schedule

Job shop scheduling, time tabling, and travelling salesman problems are

solved using GA. A solution in these problems is a permutation of N objects

(names of machines or cities). Although reproduction operator is based on

fitness function which is nothing but the distance travelled by salesman, the

cross over and mutation operators are different. The operators are designed to

produce offsprings which are valid and yet have certain properties of both

parents as suggested by Goldberg (1989).

Non-stationary function optimization

Diploid and dominance concepts can be implemented in GA to solve non-

stationary optimization problem. Information about earlier good solutions

can be stored in recessive alleles and when needed, can be expressed by

suitable genetic operators.

Multi-objective optimization

There are many objective functions in multi-objective optimization. The

usual practice is to convert multiple objectives into one objective function as

φ = W 1 f 1 + W 2 f 2 + ... + Wnfn      (9.23) where W 1, W 2 are

the weights and f 1, f 2, ..., fn are multi-objective functions. Equation (9.23)

is one way of converting multi-objective function into single-objective

optimization problem. The solution of multi-objective optimization problem

can be considered as a collection of optimal solutions obtained by solving

different single-objective functions formed using different weight vectors.

These solutions are known as Paretooptimal solutions. This can be solved



using the concept of non-dominated sorting of population members. For

details one may refer to Srinivas and Deb (1995).

Issues for GA practitioners

The following issues are important while applying GA to practical problems,

namely

1. Choosing basic implementation issues such as

(a) Representation,

(b) Population size and mutation rate,

(c) Selection, deletion policies, and

(d) Cross over and mutation operators.

2. Termination criterion

3. Performance and scalability

4. Solution is only as good as the evaluation functions (often a difficult task).

Benefits of GA

The concept of genetic algorithms is

1. easy to understand,

2. modular, separate from application,

3. supports multi-objective optimization,

4. good for noisy environment,

5. we always get an answer and the answer gets better with time, 6. inherently

parallel and easily distributed,



7. there are many ways to speed up and improve a GA’s basic applications as

knowledge about the problem domain is general,

8. easy to exploit for previous or alternate solutions,

9. flexible in forming building blocks for hybrid applications, and 10. has

substantial history and range of use.

When to use GA

Genetic algorithm should be used in case,

1. alternate solutions are too slow or overly complicated,

2. need an exploratory tool to examine new approaches,

3. problem is similar to one that has already been successfully solved by

using GA,

4. we want to hybridize with an existing solution, or

5. benefits of GA technology meet key problem requirements.

Table 9.14 gives the fields where GA is successfully applied.

Table 9.14 GA applications

Domains

Application types

Control

Gas pipe line, pole balancing, missile evasion, pursuit

Semi conductor layout, aircraft design, keyboard configuration,

communication Design

networks



Scheduling

Manufacturing, facility scheduling, resource allocation

Robotics

Trajectory planning

Machine learning

Designing neural networks, classification algorithms

Signal processing

Filter design

Game playing

Poker, checker, prisoner’s dilemma

Combinatorial

Set covering, travelling salesman, routing, bin packing, graph colouring and

optimization

partitioning

Research directions

During the course of a run, the optima value for each operator probability

may vary. When the population converges, the cross over rate is reduced to

give more opportunity to mutation to find new variations. In the past, much

research has been empirical, but gradually theoretical insights are being

gained. In many cases, it is still too early to say which techniques are robust

or general purpose and which are special purpose. The most promising ideas

are steady-state replacement, fitness ranking, two-point cross over and are

often good methods to use. Knowledge-based operators and dynamic



probabilities are help to solve real world problems. If the fitness function has

many local maxima, no search technique is ever going to perform will on it.

Better methods for designing fitness functions are needed which can avoid

such pitfalls. There is no doubt that research into GA will be a very active

area for some time to come. Genetic algorithms can perform multi-modal

optimization technique which is beyond the scope of this book. Besides, a

plethora of other applications including non-stationary function,

optimization job scheduling problems, routing problem, travelling salesman

problems have been tried. The growing list of successful applications of GA

to different engineering problems confirms robustness of GAs and shows

promise of GA in solving engineering design problems. According to

Goldberg “Genetic Algorithms are rich-rich in applications across a large

and growing number of disciplines”.

SUMMARY

In this chapter,

The cross over and mutation operators are discussed.

Bit-wise operators are illustrated.

Examples of unconstrained optimization are solved.

GA to constrained optimization is described.

GA is applied to real life problems and the results are compared.

Advances in GA are also illustrated.

PROGRAMMING ASSIGNMENT

P9.1 Solve the nonlinear optimization problem

Minimize

( X 1 − 1.5)2 + ( X 2 − 4)2



subject to

4.5 X

2

1 + X 2 − 18 ≤ 0

2 X 1 − X 2 − 1 ≥ 0

0 ≤ X 1, X 2 ≥ 4

Show calculations for three generations. Use cross over probability as 80%

and a mutation probability of 3%.

P9.2 Use the Program “GAOPT” given in CD-ROM to solve the Problem

9.1.

(a) Use 4 bits for each variable.

(b) Use 5 bits for each variable. Use multilevel optimization technique.

P9.3 Minimize the function

f( X

2

1, X 2) = ( X 1 + X 2 − 1)2 + ( X 1 + X 22 − 7) in the interval 0 ≤ X 1, X 2 ≤

6. Use bit-wise operators and show atleast two generations.

P9.4 Use the program “GAOPT” given in CD-ROM to solve the Problem

P9.3.

P9.5 Modify the program by including a program to solve a truss and hence

find the optimal design for the truss shown in Fig. 9.18.
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PART 4

HYBRID SYSTEMS

• Integration of Neural Networks, Fuzzy Logic, and

Genetic Algorithms

• Genetic Algorithm based Backpropagation Networks

• Fuzzy Backpropagation Networks

• Simplified Fuzzy ARTMAP

• Fuzzy Associative Memories

• Fuzzy Logic Controlled Genetic Algorithms

Chapter 10

Integration of Neural Networks,

Fuzzy Logic, and Genetic Algorithms

Neural networks, fuzzy logic, and genetic algorithms are soft computing

methods which have been inspired by biological computational processes and

nature’s problem solving strategies.

Neural networks (NNs) are highly simplified models of the human nervous

system which mimic our ability to adapt to circumstances and learn from

past experience. Part I of the book discusses three NN systems each

representing the three major classes of NN architectures, namely single layer

feedforward, multilayer feedforward, and recurrent network architectures.

The NN systems presented are the backpropagation network, associative



memories, and adaptive resonance theory. Backpropagation network is a

multilayer feedforward network architecture with gradient descent learning.

Associative memories are single layer feedforward or recurrent network

architectures adopting Hebbian learning. ART networks are recurrent

network architectures with a kind of competitive learning termed adaptive

resonance theory.

Fuzzy logic systems address the imprecision or vagueness in input output

descriptions of systems using fuzzy sets. Fuzzy sets have no crisp boundaries

and provide a gradual transition between membership and non-membership

of elements in a set. Part II of the book discusses the fundamental concepts

of fuzzy logic and its applications.

Genetic algorithms (GAs) inspired by the process of biological evolution, are

adaptive search and optimization algorithms. Part III of the book discusses

the basic concepts, namely the genetic inheritance operators and applications

of GA.

Each of the technologies, in their own right and merit, have provided efficient

solutions to a wide range of problems belonging to different domains. At the

same time, as mentioned in Chapter 1, various attempts have been

successfully made to synergize the three different technologies in whole or in

part, to solve problems for which these technologies could not find solutions

individually. The objective of the synergy or hybridization has been

to overcome the weaknesses in one technology during its application, with

the strengths of the other by appropriately integrating them. More often, the

complexity surrounding a problem has called for a judicious combination of

the technologies, when a technology individually applied has failed to obtain

an efficient solution.

However, hybridization of technologies can have its pitfalls and therefore

needs to be done with care. If a technology can solve a problem then a hybrid

technology ought to be used only if its application results in a better solution

or provides a better method to arrive at the solution or at worst, finds an

alternative method to arrive at the solution. Hybridization should only be



performed for the purpose of investigating better methods of problem

solving.

Hence, though hybrid systems have a tremendous potential to solve

problems, an inappropriate use of the technology can backfire. For, it is

improper to expect that if the individual technologies are good then

hybridization of technologies should turn out to be even better. In fact, it is

not unlikely for a hybrid technology to exhibit most of the weaknesses of the

participating technologies and less of their strengths.

10.1 HYBRID SYSTEMS

Hybrid systems are those for which more than one technology is employed to

solve the problem. Hybrid systems have been classified as (Refer Gray and

Kilgour, 1997) 1. Sequential Hybrids,

2. Auxiliary Hybrids, and 3. Embedded Hybrids.

10.1.1 Sequential Hybrid Systems

As the name indicates, sequential hybrid systems make use of technologies

in a pipeline-like fashion. Thus, one technology’s output becomes another’s



input and so on. Figure 10.1 illustrates the schema for a sequential hybrid.

Fig. 10.1 A sequential hybrid system.

This is one of the weakest forms of hybridization since an integrated

combination of the technologies is not present.

An example is a GA preprocessor which obtains the optimal parameters for

different instances of a problem and hands over the ‘preprocessed’ data set to

an NN for further processing.

10.1.2 Auxiliary Hybrid Systems

In this, one technology calls the other as a “subroutine” to process or

manipulate information needed by it. The second technology processes the

information provided by the first and hands it over for further use. Figure



10.2 illustrates an auxiliary hybrid system. This type of hybridization though

better than sequential hybrids, is considered to be of intermediary level only.

An example is a neuro-genetic system in which an NN employs a GA to

optimize its structural parameters, i.e. parameters which defines its

architecture.

Fig. 10.2 An auxiliary hybrid system.

10.1.3 Embedded Hybrid Systems

In Embedded hybrid systems, the technologies participating are integrated in

such a manner that they appear intertwined. The fusion is so complete that it

would appear that no technology can be used without the others for solving

the problem. Figure 10.3 illustrates the schema for an embedded hybrid

system. Here, the hybridization is absolute.

Fig. 10.3 An embedded system.

For example, an NN-FL hybrid system may have an NN which receives

fuzzy inputs, processes it and extracts fuzzy outputs as well.



10.2

NEURAL

NETWORKS,

FUZZY

LOGIC,

AND

GENETIC

ALGORITHMS HYBRIDS

In this book, we confine ourselves to hybridization of the three technologies,

namely neural networks, fuzzy logic, and genetic algorithms. Neural

networks, fuzzy logic, and genetic algorithms are three distinct

methodologies each with its own advantages and disadvantages. It is

therefore appropriate that a hybridization of the technologies is attempted to

overcome the weaknesses of one with the strengths of the other.

10.2.1 Neuro-Fuzzy Hybrids

This is one of the most researched forms of hybrid systems and has resulted

in a stupendous quantity of publications and research results.

Neural networks and fuzzy logic represent two distinct methodologies to deal

with uncertainty. Each of them has its own merits and demerits. Neural

networks can model complex nonlinear relationships and are appropriately

suited for classification phenomenon into predetermined classes. On the

other hand, the precision of outputs is quite often limited and does not admit

zero error but only minimization of least squares errors. Besides, the training

time required for an NN can be substantially large. Also, the training data has

to be chosen carefully to cover the entire range over which the different

variables are expected to change.



Fuzzy logic systems address the imprecision of inputs and outputs directly by

defining them using fuzzy sets and allow for a greater flexibility in

formulating system descriptions at the appropriate level of detail.

Neural networks and fuzzy logic though different technologies, can be used

to accomplish the specification of mathematical relationships among

numerous variables in a complex dynamic process, perform mappings with

some degree of imprecision, in different ways, and can be used to control

nonlinear systems to an extent not possible with conventional linear control

systems.

Neuro-Fuzzy systems which are an integration of NN and FL have

demonstrated the potential to extend the capabilities of systems beyond either

of these technologies when applied individually (Haykin, 1994;

Kartalapoulos, 1996).

There are two ways of looking at this hybridization. One is to endow NNs

with fuzzy capabilities, thereby increasing the network’s expressiveness and

flexibility to adapt to uncertain environments. The second aspect is to apply

neuronal learning capabilities to fuzzy systems to make the fuzzy systems

more adaptive to changing environments. This approach is also known, in the

literature, as NN driven fuzzy reasoning (Takagi and Hayashi, 1991).

10.2.2 Neuro-Genetic Hybrids

Neural networks can learn various tasks from training examples, classify

phenomena, and model nonlinear relationships. However, the primary

features that are of concern in the design of the network are problem specific.

Despite the availability of some guidelines, it would be helpful to have a

computational procedure in this aspect, especially for the optimum design of

an NN. Genetic algorithms have offered themselves as potential candidates

for the optimization of parameters of NN (Harp et al., 1989, 1990). The

integration of GAs with NNs has turned out to be useful (Schaffer et al.,

1992). Genetically evolved nets have reported comparable results against

their conventional counterparts (Kitano, 1990; Whitley and Hanson, 1989).



While gradient descent learning algorithms have reported difficulties in

learning the topology of the networks whose weights they optimize, GA

based algorithms have provided encouraging results especially with regard to

face recognition, animation control, and other problems.

Genetic algorithms encode the parameters of NNs as a string of the

properties of the network, that is, chromosomes. A large population of

chromosomes representing the many possible parameter sets for the given

NN is generated. Combined GA-NN technology also known as ‘GANN’

have the ability to locate the neighbourhood of an optimal solution quicker

than other conventional search strategies. But once in the neighbourhood of

the optimal solution GANN strategies tend to converge slower than the

conventional ones. Drawbacks of GANN algorithms are:

The large amount of memory required to handle and manipulate

chromosomes for a given network, and

The question whether this problem scales as the size of the networks

becomes large.

Parallel versions of the GA computational paradigm have also been applied

on NN (Maniezzo, 1994).

10.2.3 Fuzzy-Genetic Hybrids

Fuzzy systems have been integrated with GAs. Kosko (1992) has shown that

fuzzy systems like NNs (feedforward) are universal approximators in the fact

that they exhibit the capability to approximate general nonlinear functions to

any desired degree of accuracy. The adjustment of system parameters that is

called for in the process, so that the system output matches the training data,

has been tackled using GAs. Several parameters which a fuzzy system is

involved with, namely input/output variables and the membership functions

that define the fuzzy systems, have been optimized using GAs. Nomura et al.

(1994) proposed a genetic approach to the problem of fuzzy system

adaptation.



10.3 PREVIEW OF THE HYBRID SYSTEMS TO BE

DISCUSSED

In this section, we present a preview of the hybrid systems to be discussed in

Part IV of the book.

The systems discussed are:

1. Genetic algorithm based backpropagation network ( Neuro Genetic

Hybrid).

2. Fuzzy backpropagation network ( Neuro−Fuzzy Hybrid with Multilayer

Feedforward Network as the host architecture).

3. Simplified fuzzy ARTMAP ( Neuro-Fuzzy Hybrid with Recurrent Network

as the host architecture).

4. Fuzzy associative memory ( Neuro-Fuzzy Hybrid with Single layer

Feedforward or Recurrent Network as its host architecture).

5. Fuzzy logic controlled genetic algorithms ( Fuzzy-Genetic Hybrid).

We now briefly review each of these hybrid systems.

10.3.1 Genetic Algorithm based Backpropagation Network

This is a Neuro-Genetic hybrid which makes use of GAs to determine the

weights of a multilayer feedforward network with backpropagation learning.

Conventional backpropagation networks make use of gradient descent

learning to obtain their weights. However, there remains the problem of the

network getting stuck in local minimum. On the other hand, the GA based

backpropagation though not guaranteed to obtain global optimum solution,

has been found to obtain ‘acceptably good’ solutions ‘acceptably quickly’.

Though several successful propositions regarding the GA-backpropagation

integration have been implemented, the network discussed is a



backpropagation network architecture in which the GA makes use of real-

coded chromosomes, instead of the conventional binary chromosomes to

determine its weights.

The hybrid system has been demonstrated on two problems, namely k-factor

design and electrical load forecasting.

10.3.2 Fuzzy-Backpropagation Network

This is a Neuro-Fuzzy hybrid system in which the host is a multilayer

feedforward network. Proposed by Lee and Liu (1994), the network maps

fuzzy input vectors to crisp outputs making use of backpropagation like

learning.

The architecture has been applied to the problems of knowledge-based

evaluation and earthquake damage evaluation.

10.3.3 Simplified Fuzzy ARTMAP

Fuzzy ARTMAP (Carpenter et al., 1992) is a neuro-fuzzy hybrid in which

the host is a recurrent network with a kind of competitive learning termed

adaptive resonance theory by its authors (Carpenter and Grossberg, 1988).

Proposed by Kasuba (1992), simplified fuzzy ARTMAP is a vast

simplification of fuzzy ARTMAP. It classifies inputs by its fuzzy set of

features and unlike its predecessor has reduced computational overhead and

architectural redundancy.

The application of simplified fuzzy ARTMAP to image recognition under

noisy and noise-free conditions is elaborated.

10.3.4 Fuzzy Associative Memories

Fuzzy Associative Memory (FAM) is a neuro-fuzzy system with the host

architecture as a recurrent or a single layer network. FAMs map fuzzy sets

and can encode fuzzy rules. It is on account of this mapping capability that

they behave like associative memories.



Fuzzy associative memories make use of graphical method of inference and

correlation matrix encoding schemes for inference.

The application of FAM has been demonstrated on two problems, namely

balancing an inverted pendulum and fuzzy truck backer-upper system.

10.3.5 Fuzzy Logic Controlled Genetic Algorithms

This is a Fuzzy-Genetic hybrid system applicable on fuzzy optimization

problems. The system obtains optimal solution to problems with fuzzy

constraints and fuzzy variables.

The hybrid system has been demonstrated on the problems of optimization

of structures (civil/machine tool) and obtaining the optimal mix for high

performance concrete.

SUMMARY

Hybrid systems are those which employ integrated technologies to effectively

solve problems. Hybrid systems are classified as sequential, auxiliary and

embedded hybrids.

The soft computing techniques of neural networks, fuzzy logic, and genetic

algorithms have offered themselves as candidates for a healthy integration or

hybridization of technologies for effective problem solving.

The synergy of the three technologies has led to neuro-fuzzy, neuro-genetic,

and fuzzy-genetic hybrids. In this book, five hybrid systems, namely genetic

algorithm based back-propagation network ( Neuro-Genetic hybrid), fuzzy

backpropagation network, simplified fuzzy ARTMAP and fuzzy associative

memories ( Neuro-Fuzzy hybrid s) and fuzzy logic based genetic algorithms (

Fuzzy-Genetic hybrid), are presented.
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Chapter 11

Genetic Algorithm Based

Backpropagation Networks

Neural networks solve problems by self-learning and self-organization. The

backpropagation network (BPN) is probably the most well known and widely

used among the currently available neural network systems. Backpropagation

network has been applied to classification problems, speech synthesis from



text, adaptive robotics control, system modelling, and various problems in

engineering.

The learning algorithm behind BPN (Rumelhart et al., 1986) is a kind of

gradient descent technique with backward error (gradient) propagation.

However, ‘while the network can recognize patterns similar to those they

have learnt, they do not have the ability to recognize new patterns’ (Fu,

1994). Also, while the network must be sufficiently trained to extract a

sufficient set of general features applicable to both seen and unseen

instances, overtraining the network may lead to undesired effects.

Backpropagation (BP) searches on the error surface by means of the gradient

descent technique in order to minimize the error criterion E =

(11.1)

where Tj is the target output and Oj is the output calculated by the network.

It is therefore likely to get stuck in a local minimum.

On the other hand, there exist genetic algorithms (GAs) which are adaptive

search and optimization algorithms that mimic the principles of natural

genetics. Genetic algorithms are quite different from traditional search and

optimization techniques used in engineering design problems but at the same

time exhibit simplicity, ease of operation, minimal requirements, and global

perspective.

Conventionally, a BPN determines its weights based on a gradient search

technique and therefore runs the risk of encountering the local minimum

problem. GAs on the other hand, though not guaranteed to find global

optimum solution to problems, have been found to be good at finding

“acceptably good” solutions to problems “acceptably quickly” (less number

of iterations).

The idea to hybridize the two approaches, namely GA and BPN follows

naturally. Whitley and co-workers (Whitley and Bogart, 1989, 1990; Whitley



and Hanson, 1989; Whitley and Starkwerther, 1990) used GAs to guide

backpropagation network in finding the necessary connections instead of full

connections in order to enhance the speed of training. Though Kitano

(Kitano, 1990) proposed some empirical evidence to show that GA/BP

mating does not provide any advantage over a randomly initialized multiple

application of Quickprop (a fast variant of BP) alone, atleast for shallow

networks and easy fitness functions, successful reports have been reported

with a hybrid approach. Harp, Samad and Guha (1989) proposed a combined

genetic/backpropagation learning algorithm and encoded BP parameters in

the individuals together with the network structure.

In this chapter, a GA based technique for the determination of weights in a

BPN (GA/BPN) (Rajasekaran and Pai, 1996) is discussed. However, the

network unlike its predecessors employs real-coded chromosomes to

determine its weights while employing a two-point cross over operator

(TCO).

11.1 GA BASED WEIGHT DETERMINATION

Genetic algorithms which use a direct analogy of natural behaviour, work

with a population of individual strings, each representing a possible solution

to the problem considered. Each individual string is assigned a fitness value

which is an assessment of how good a solution is, to a problem. The high-fit

individuals participate in “reproduction” by cross-breeding with other

individuals in the population. This yields new individual strings as offspring

which share some features with each parent. The least-fit individuals are kept

out from reproduction and so “die out”. A whole new population of possible

solutions to the problem is generated by selecting the best (high fit)

individuals from the current generation. This new generation contains

characteristics which are better than their ancestors.

Progressing in this way, after many generations, owing to mixing and

exchange of good characteristics, the entire population inherits the best

characteristics and therefore turns out to be fit solutions to the problem. If the

GA has been designed well, then most promising areas of search space are



explored, resulting in the population converging to an optimal solution to the

problem.

Before a GA is executed, a suitable coding for the problem needs to be

devised. The fitness function, which assigns merit to each of the individuals

in the population, has to be formulated. During the run, parents must be

selected for reproduction and crossed over to generate offspring. These

aspects of the GA for the weight determination of the BPN are described in

the following sections:

11.1.1 Coding

The parameters which represent a potential solution to the problem, genes,

are joined together to form a string of values referred to as a chromosome.

Most conventional GAs code these chromosomes into binary alphabet.

However, in this work, binary coding has been dispensed with and a real

(decimal) coding system adopted.

Assume a BPN whose network configuration is l-m-n ( l input neurons, m

hidden neurons, and n output neurons). The number of weights that are to be

determined are ( l + n) m. With each weight (gene) being a real number and



assuming the number of digits ( gene length) in the weight to be d, a string S

of decimal values representing the ( l + n) m weights and therefore having a

string length L = ( l + n) md is randomly generated. The string S represents

the weight matrices of the input-hidden and hidden-output layers, in a linear

form, arranged according to row-major or column-major order as selected by

the designer. An initial population of p chromosomes is randomly generated

where p is referred to as the population size.

Example

Consider a BPN network with a configuration 2-2-2 ( l = 2 input neurons, m

=

2 hidden neurons, and n = 2 output neurons) as shown in Fig. 11.1. The

number of weights that are to be determined are (2 × 2) + (2 × 2) = 8.

With each weight being a real number and assuming the number of digits d

to be randomly generated for representing a weight value as 5, the string S

representing the chromosome of weights is 8 × 5 = 40, in length.

Fig. 11.1 A BPN with a 2-2-2 configuration.

Some sample chromosomes, randomly generated, are shown in Fig. 11.2.

Observe that a chromosome is made up of 8 genes representing 8 weights.



Fig. 11.2 Sample chromosomes randomly generated for the BPN weights.

Choosing a population size of p = 40, an initial population of 40

chromosomes is randomly generated.

11.1.2 Weight Extraction

To determine the fitness values for each of the chromosomes, we extract

weights from each of chromosomes.

Let x 1, x 2, ... , xd, ... , xL represent a chromosome and xkd + 1, xkd + 2, ...,

x( k + 1) d represent the k th gene ( k ≥ 0) in the chromosome. The actual

weight wk is given by

wk



=

(11.2)

Example

For the chromosome given in Fig. 11.2, we have the weights extracted from

the 8 genes as

Gene 0: 84321 We have k = 0, d = 5, and xkd + 1 which is x 1, is such that 5

≤ x 1 = 8 ≤ 9

Hence, the weight extracted is

w 0 =

= 4.321

Gene 1: 46234 We have k = 1, d = 5, and xkd + 1 which is x 6, is such that 0

≤ x 6 = 4 < 5

Hence, the weight extracted is



w 1 =

= −6.234.

Similarly,

Gene 2: 78901 yields w 2 = +8.901

Gene 3: 32104 yields w 3 = −2.104

Gene 4: 42689 yields w 4 = −2.689

Gene 5: 63421 yields w 5 = +3.421

Gene 6: 46421 yields w 6 = −6.421 and,

Gene 7: 87640 yields w 7 = +7.640

11.1.3 Fitness Function

The fitness function must be devised for each problem to be solved.

Algorithm FITGEN ( ) illustrates the procedure.

Example

Let

represent a set of input-output pairs for a problem P to be solved by the BPN

illustrated in Fig. 11.1.

We first randomly generate the initial population P 0 of size p = 40. Let C 0

0

0

1 , C 2 , ..., C 40 represent the 40 chromosomes of P 0. Also, let be the

weight sets extracted from each of C 0



i , i = 1, 2, ..., 40

using Eq. (11.2).

For a fixed weight set

, the BPN is trained for all the input instances

given, i.e. the three input-output pairs given.

Let

be the calculated outputs of the BPN.

Compute

E 1 = ( T 11 − O 11)2 + ( T 21 − O 21)2



E 2 = ( T 12 − O 12)2 + ( T 22 − O 22)2

E 3 = ( T 13 − O 13)2 + ( T 23 − O 23)2

The root mean square of the error is

The fitness F

0

1 for the chromosome C 1 is given by

Similarly, the next weight set



is extracted from the next chromosome

C 0

2 . The BPN as before is trained using the extracted weights, for all the given

input instances. The root mean square of the errors E is computed and the

fitness value of the chromosome C 0

2 is given by F 2 = 1/ E. Proceeding in

this way, the fitness values for all other chromosomes in the initial population

are computed. Since the population size is p = 40, for the initial population

Fi, i = 1, 2, ..., 40 are computed. Figure 11.3 illustrates the computation of

fitness values for the (initial) population.

Fig. 11.3 Fitness function computation for the (initial) population.

11.1.4 Reproduction

In this phase, the mating pool is first formed, before the parent chromosomes

reproduce to deliver offspring with better fitness. For the given problem, the

mating pool is first formed by excluding that chromosome Cl with the least

fitness F min and replacing it with a duplicate copy of the chromosome Ck

reporting the highest fitness F max. That is, the best fit individuals have

multiple copies while worst fit individuals die off.

Having formed the mating pool, the parents are selected in pairs at random.



The chromosomes of the respective pairs are recombined using the two-point

cross over operator of a standard GA. Recollect that in two-point cross over,

the exchange of gene segments by the parent pair requires selection of cross-

sites (cut-points). If Pa and Pb are two parent chromosomes, the off-springs

Oa and Ob are produced as a result of executing the two-point cross over

operator. This is illustrated in Fig. 11.4.

Fig. 11.4 Two-point cross over operator.

The offsprings which now form the current population again have their

fitness calculated as illustrated by algorithm FITGEN().

Example

Consider the initial population of chromosomes P 0 generated earlier, with

Fi, where i = 1, 2, ..., 40, as their fitness values.

Let F max = Fk and F min = Fl, (for 1≤ l, k ≤ 40 where l ≠ k) be the

maximum and minimum fitness values. We remove all chromosomes with a

fitness value F min and replace it with copies of chromosomes whose fitness

value is F max .

Figure 11.5 illustrates the formation of the mating pool.





Fig. 11.5 Formation of the mating pool.

Now the reproduction of the offspring is done. Figure 11.6 illustrates a

sample selection of parents for the application of the two-point cross over

operator to produce offspring chromosomes. Here, the parents are selected in

pairs at random. The cross-sites of the chromosome parent pairs are

randomly determined for each pair as shown as Fig. 11.7. The genes are

exchanged as shown in Fig. 11.8.

Fig. 11.6 Random selection of parent chromosomes.

Fig. 11.7 Selection of cross-sites for the parent chromosome pairs.

Fig. 11.8 The new population P 1 after application of two-point cross over

operator.

We call the new population P 1. P 1 comprises 40 chromosomes which are

the offsprings of the earlier population generation P 0.

11.1.5 Convergence

For any problem, if the GA is correctly implemented, the population evolves

over successive generations with the fitness value increasing towards the



global optimum. Convergence is the progression towards increasing

uniformity. A population is said to have converged when 95% of the

individuals constituting the population share the same fitness value.

The population P 1 now undergoes the process of selection, reproduction,

and cross over. The fitness values for the chromosomes in P 1 are computed,

the best individuals replicated and reproduction carried out using two-point

cross over operator to form the next generation P 2 of chromosomes. The

process of generation proceeds until at one stage 95% of the chromosomes in

the population Pi converge to the same fitness value. At that stage, the

weights extracted from the population Pi are the final weights to be used by

the BPN.

The algorithm for the GA based weight determination can be summarized as

illustrated in Algorithm GA−NN−WT().



Illustration

The problem is to determine the weights for a BPN with a configuration 2-2-

1 using GA, for the following input-output set of data.

S. no.

Input

Output

1

(0.33, 0.66)

0.5

2

(0.33, 1)

0.67



3

(0.33, 0.33)

0.33

4

(0.66, 0.66)

0.67

5

(0.66, 1)

0.83

6

(1, 0.66)

0.83

7

(0.66, 0.33)

0.5

8

(1, 0.33)

0.67

9

(1, 1)



1

The number of weights to be determined are 6 and choosing d = 5, the

chromosome length is 30. We first generate the initial population P 0 of 30

randomly generated chromosomes.

Figure 11.9 illustrates a sample P 0. The input-hidden layer weights and the

hidden-output layer weights extracted from Pi are shown in Fig. 11.10.





Fig. 11.9 P 0—the initial population of chromosomes.

Fig. 11.10 Weights extracted from P 0.



The fitness values computed for the chromosomes in population P 0 are as

shown in

Fig. 11.11. The mating pool after duplicating worst-fit chromosomes in P 0

with best-fit chromosomes is shown in Fig. 11.12.

Fig. 11.11 Fitness values of chromosomes in P 0.



Fig. 11.12 Mating pool after duplicating worst-fit chromosomes with best-fit

chromosomes.

The random selection of parent pairs and their cross-sites is shown in Fig.

11.13.

Fig. 11.13 Selection of parent pairs and their cross-sites.

After reproduction using a two-point cross over operator, the new population

P 1 is as shown in Fig. 11.14.





Fig. 11.14 The new population P 1 after two-point cross over.

The next set of weights extracted from P 1 to determine the fitness values of

chromosomes in P 1 is shown in Fig. 11.15.



Fig. 11.15 Extraction of weights from P 1

We now proceed to demonstrate the computation of fitness values on the

chromosomes of population P 1 illustrated in Fig. 11.14.

Computation of fitness values

Consider the first chromosome of population P 1. The aim is to compute its

fitness value.

The weights extracted from the first chromosome are (Refer Fig. 11.14 and

Fig. 11.15)

Input-hidden layer weight matrix

[ IH] =

Hidden-output layer weight matrix



[ HO] =

(11.6)

We now begin a series of computations to obtain the cumulative error E of

training the BPN for the weight set given in Eq. (11.6), for all the input

instances of the problem.

For the first input instance, I 1 = (0.33, 0.66) with a target output T 1 = 0.5.

The input to the hidden layer neurons are

(11.7)

Applying sigmoidal function, i.e., f( x) = 1/(1 + e− x) to [ H in], the output of

the hidden layer neurons is

[ H out] =

(11.8)

The input to the output layer neurons are

(11.9)

Applying sigmoidal function to [ O in] the calculated output of the BPN

[ O out] = 0.712332    (11.10)

The error is

( T 1 − [ O out])2 = (0.5 − 0.712332)2 = 0.045085     (11.11) A

similar set of computations are repeated for the same weight set but for the

other input instances. Table 11.1 illustrates the computations.



The fitness value for the first chromosome is given by

Table 11.2 illustrates the computations using the second weight set extracted

from the second chromosome of population P 1 to arrive at its fitness value.

The fitness value is given by 1.40564. Thus, the computations of the fitness

values for all other chromosomes in the population are done.

The generations progress and for this problem 95% convergence was attained

in less than 150 generations.



11.2 APPLICATIONS

11.2.1 K-factor Determination in Columns

This problem chosen from structural engineering is to determine the K-factor

for columns given their relative stiffness ratios ψ A and ψ B at the two ends A

and B of a column.

Conventional methods call for the solving of equations, thereby demanding

heavy computer analysis. Making use of a BPN for the problem requires

training the BPN for a set of input instances before the network can

determine the K-factor for a given (ψ A,ψ B) pair of values.



Here, the BPN has a 2-3-1 configuration. The two neurons in the input layer

represent the intake of ψ A and ψ B as the network inputs and one neuron in

the output layer represents the output of K-factor.

Table 11.3 illustrates a sample set of (ψ A, ψ B)values and their

corresponding K-factor values all of which have been normalized to lie

between 0 and 1.

Table 11.3 Sample (ψ A, ψ B) and K-factor values A

B

K

0

0

0.5

0.08

0.08

0.841615

0.8

0.8

0.986750

0.16

0.04

0.832753

1.0



0.2

0.968245

0.2

0.04

0.841905

0.8

0.2

0.965504

0.12

0.4

0.933234

0.2

0.4

0.952807

0.04

0

0.628571

Table 11.4 illustrates the weight determined by the GA based BPN after

about 140 generations. Table 11.5 shows the calculated K-factor values by

the GA based BPN and the expected values for the data set also shown in



Table 11.3.

…….

Table 11.5 Expected value and calculated K-factor values by the GA based

BPN

K-factor value

Expected

Calculated

0.5

0.604679

0.841615

0.797861

0.986750

0.977954

0.832753

0.823423



0.968245

0.975865

0.841905

0.849938

0.965504

0.973354

0.933224

0.949219

0.952807

0.957605

0.628571

0.656611

11.2.2 Electrical Load Forecasting

This application discussed by Montgomery and Askin, (Montgomery and

Askin, 1981) investigates the factors which influence the load or demand for

electricity by residential customers. The factors identified were: x 1—the size

of the customers’ house, x 2 — the annual family income, x 3—tons of the

air conditioning capacity, x 4—the appliance index for the house, and x 5—

the number of residents in the house on a weekday.

However, in this problem we have only considered the influence of x 1, x 3

and x 4 on the load y. The GA based BPN has a configuration 3-2-1 since the

three inputs are x 1, x 3 and x 4 and the output is y.



Table 11.6 illustrates a sample set of x 1, x 3, x 4 and the corresponding y

values which have been normalized to lie between 0 and 1. The weight-

matrix determined by the BPN after about 500 generations is given in Table

11.7. The testing data set, the expected, and computed values by the GA

based BPN are illustrated in Table 11.8.

Table 11.6 Sample training set for the electrical load forecasting problem x 1

x 3

x 4

y

0.7791

1

0.8273

1

0.4750

0.2143

0.5577

0.4761

0.6434

0.9286

0.6718

0.7861

0.5755



0.5714

0.6089

0.6371

0.6789

0.5714

0.6602

0.6647

0.3443

0.1423

0.3306

0.2982

0.8289

0.7143

1

0.9879

0.5856

0.4286

0.6524

0.6030

0.7094



0.5

0.8178

0.7968

0.5166

0.3571

0.5547

0.5455

0.2901

0

0.2735

0.2241

0.5811

0.5714

0.5880

0.6065

0.5506

0.3571

0.6594

0.6195

0.4361



0.1429

0.5537

0.4191

0.4561

0.1429

0.4949

0.3959

0.4489

0.2143

0.4730

0.3814

0.3886

0.0714

0.4225

0.3541

0.5213

0.3571

0.6624

0.5803

0.5053



0.2143

0.5196

0.3979

0.4223

0.2143

0.4206

0.3679

0.5745

0.7143

0.5351

0.7080

0.7109

0.7857

0.8301

0.8716

0.4856

0.2857

0.4707

0.4969

0.7107



0.8571

0.7476

0.9040

0.4615

0.4283

0.5581

0.5980

0.3467

0.2143

0.3151

0.3766

0.6220

0.6423

0.6884



0.7309

0.6947

0.7857

0.7737

0.8853

0.3270

0.0714

0.3879

0.3125

0.7033

0.8571

0.7633

0.9077

0.5474

0.7143

0.6336

0.7122

0.6129

0.8571

0.7288



0.7718

0.6045

0.4286

0.6380

0.6371

0.6698

0.7857

0.7132

0.8357

0.5420

0.1429

0.5975

0.4522

0.6634

0.7143

0.7381

0.8091

0.6048

0.5

0.6525



0.7635

0.4363

0.2857

0.5166

0.4787

0.5548

0.7143

0.5284

0.6664

0.5905

0.3571

0.7379

0.6152

….

Table 11.8 Sample testing set, the expected, and calculated y values by the

GA based BPN

y

x 1

x 3

x 4



Computed by

Expected

GA based BPN

0.4750

0.2143

0.5577

0.4761

0.46705

0.5014

0.3571

0.5928

0.5265

0.59559

0.6434

0.9286

0.6718

0.7861

0.79923

0.4149

0.1429



0.3905

0.3472

0.34498

0.5856

0.4286

0.6524

0.6030

0.64507

0.5629

0.4286

0.5555

0.6325

0.62272

0.5166

0.3571

0.5547

0.5455

0.58065

0.3723

0.1429



0.4061

0.3519

0.35984

0.5506

0.3571

0.6594

0.6195

0.60631

0.5531

0.2857

0.6320

0.5692

0.54105

0.4361

0.1429

0.5537

0.4191

0.40459

0.5713

0.4286



0.5926

0.6261

0.63159

0.4561

0.1429

0.4949

0.3959

0.37690

0.5605

0.4286

0.6493

0.6040

0.64859

0.4910

0.2857

0.5646

0.5176

0.53111

0.4856

0.2857



0.4707

0.4969

0.49761

0.6220

0.6423

0.6884

0.7309

0.74319

0.3270

0.0714

0.3879

0.3125

0.29251

0.4767

0.1429

0.4786

0.3891

0.36598

0.6129

0.8571



0.7288

0.7718

0.79333

0.6045

0.4286

0.6380

0.6371

0.63761

0.5905

0.3571

0.7379

0.6152

0.62157

SUMMARY

GA based backpropagation network is a hybrid architecture in which a BPN

employs genetic algorithms for the determination of its weights.

For a BPN with a configuration l- m- n, the number of weights that are to be

determined are ( l + n) m. Selecting a gene length of d, the length of the

chromosome string S comprising ( l + n) m genes is ( l + n) md.

Initially a population P 0 of Chromosomes of size N is randomly generated.

The weight sets for the BPN are extracted from P 0. For each weight set, the

BPN is trained for all the input instances of the given problem. The error in



the training is utilized to compute the fitness value for each of the

chromosomes.

In the next phase, the worst-fit chromosomes are terminated and replaced by

best-fit chromosomes. The parent chromosomes are randomly selected in

pairs and a two-point cross over operator is applied to produce offspring. The

new population P 1 again has its fitness values computed after extraction of

weights and computation of error. The generations progress until the

population converges to the same fitness values.

The weights extracted from the ‘converged’ population are the final weights

of the BPN.

The application of GA based BPN has been demonstrated on two problems,

namely

1. K-factor design and

2. Electrical load forecasting.

PROGRAMMING ASSIGNMENT

P11.1 Compare the performance of a conventional BPN with that of the GA

based BPN for the Electrical load forecasting problem discussed in Sec.

11.2.2.

(a) Make use of MATLAB’s neural network tool box to implement the

conventional BPN algorithm.

(b) Make use of the data set in Table 11.6 to train the BPN.

(c) Obtain the results for the testing set in Table 11.8 and compare it with the

computed output of the GA based BPN.

P11.2 Implement a GA based BPN using C/C++. Compare its performance

with that of a conventional BPN with regard to the number of training

iterations/generations.



P11.3 Modify the GA based BPN algorithm to handle binary chromosomes.

(a) Design a procedure to extract weights from the binary chromosomes

(b) Make use of algorithm FITGEN() and the procedure designed in P11.3(a)

to compute the fitness values of the chromosomes.

(c) Employ multi-point cross over technique for the reproduction.

SUGGESTED FURTHER READING

Montana and Davis (Montana & Davis, 1989) discuss the use of some

domain specific GA operators to train the BPN instead of the conventional

learning rule. Maniezzo (Maniezzo, 1994) discusses a hybrid system

involving the application of GA for neural network design. Schiffman et al.

(Schiffman et al. , 1992, 1993) propose approaches for automatic topology

optimization of a BPN.
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Chapter 12

Fuzzy Backpropagation Networks

In Chapter 3, we discussed in detail, the backpropagation network (BPN)

architecture and its applications. Various attempts have been initiated to

hybridize BPN by incorporating fuzzy logic (Tsoukalas and Uhrig, 1997;

Adeli and Hung, 1995). In this chapter, we elaborate on such an NN-FL

hybrid architecture, namely Lee and Lu’s Fuzzy BP network (Lee and Lu,

1994). Fuzzy BP is a hybrid architecture which maps fuzzy inputs to crisp

outputs. The fuzzy neurons in the model make use of LR-type fuzzy

numbers. Besides, triangular type of LR-type fuzzy numbers have been used

for simplification of architecture and reduction of computational load.



The LR-type fuzzy numbers and their operations required by the fuzzy BP

architecture are first presented. The structure of a fuzzy neuron, the

architecture of fuzzy BP, its learning mechanism, and algorithms are

elaborated next. Finally, the application of Fuzzy BP to the problems of

knowledge base evaluation and Earthquake damage evaluation are discussed.

12.1 LR-TYPE FUZZY NUMBERS



The LR-type fuzzy numbers are special type of representations for fuzzy

numbers, proposed by Dubois and Prade (1979). They introduced functions

called L (and R) which map R+ → [0, 1] and are decreasing shape functions

if

L(0) = 1,

L( x) < 0, ∀ x < 1,               (12.1) L(1) = 0 or [ L(

x) > 0 ∀ x, and L(∞) = 0]

Definition

A fuzzy number

is of LR-type if there exist reference functions L (for left), R (for right) and

scalars, α > 0, β > 0 with

(12.2)

Here, m, called the mean value of

, is a real number and α and β are

called the left and right spreads, respectively.

Here,

is the membership function of fuzzy number

. An LR-type

fuzzy number M can be expressed as ( m, α, β) LR (Refer Fig. 12.1). If α and

β

are both zero, the LR-type function indicates a crisp value.

Fig. 12.1 Symmetric triangular LR-type fuzzy number.



For L( z), different functions may be chosen. Dubois and Prade (Dubois and

Prade, 1988) mention L( x) = max (0, 1 − xp) p > 0, L( x) = exp(− x), L( x) =



exp(− x 2) to list a few, thus suggestive of a wide scope of L( z). However, the

choice of the L and R functions is specific to the problem in hand.

In the case of trapezoidal fuzzy numbers (Refer Fig. 12.2) the LR-type flat

fuzzy numbers defined below are made use of

(12.3)

Fig. 12.2 Trapezoidal LR-type flat fuzzy number.

Briefly, the above equation is represented by the quadruple ( m 1, m 2, α, β)

LR. A triangular

LR-type fuzzy number can also be represented by the quadruple ( m, m, α,

β).

12.1.1 Operations on LR-type Fuzzy Numbers

Let

and be two LR-type fuzzy numbers given by

= ( m, α, β) and =

( n, γ, δ).

The basic operations are

Addition

(12.4)

Subtraction

(12.5)

Multiplication



(12.6)

Scalar Multiplication

(12.7)



12.2 FUZZY NEURON

The fuzzy neuron is the basic element of the fuzzy BP model. Figure 12.3

illustrates the architecture of the fuzzy neuron. Given the input vector and

weight vector

, the fuzzy neuron computes

the crisp output O given by

(12.8)



where, = (1, 0, 0) is the bias. Here, the fuzzy weighted summation Fig. 12.3

Fuzzy neuron architecture of fuzzy BP model.

is first computed and

is computed next. The function CE is

the centroid of the triangular fuzzy number and can be treated as a

defuzzification operation which maps fuzzy weighted summation value to a

crisp value. Thus, if

is the fuzzy weighted summation

then the function CE is given by

(12.9)

The function f is the sigmoidal function which performs nonlinear mapping

between the input and output. f is defined as

(12.10)



This is the final computation to obtain the crisp output value O.

In the fuzzy neuron, both input vector

and weight vector

are

represented by triangular LR-type fuzzy numbers. Thus, for the input

component vector is represented by the LR-type fuzzy number ( Imi, I α i, I β

i). Similarly, for

, the weight vector component

is represented as

.



12.3 FUZZY BP ARCHITECTURE

Fuzzy BP is a three layered feedforward architecture. The three layers

areÑinput layer, hidden layer, and output layer. As in BPN, the functioning of

fuzzy BP proceeds in two stages, namely

1. Learning or Training, and

2. Inference.

Learning is detailed in Sec.12.4 and inference in Sec. 12.5.

Consider a configuration of l-m-n ( l input neurons, m hidden neurons, and n

output neurons) for the fuzzy BP model. Figure 12.4 illustrates the

architecture of fuzzy BP.

Fig. 12.4 Architecture of fuzzy BP.

Let

be the p th pattern among N input patterns

that fuzzy BP needs to be trained, with = (1, 0, 0) as the bias.



Here,

indicates the i th input component of the input pattern p and is an LR-type

triangular fuzzy number, i.e.

. Let

be the output

value of the i th input neuron, O′ pj and O″ pk are the j th and k th crisp

defuzzification outputs of the hidden and output layer neurons respectively.

and

are the LR-type fuzzy connection weights between the i th input neuron and

the j th hidden neuron, and the j th hidden neuron and k th output neuron

respectively. In addition, CE and f are the sigmoidal and centroid functions as

explained in

Eqs. (12.9) and (12.10).



The computations carried out by each layer are:

Input neurons

(12.11)

Hidden neurons

(12.12)

Output neurons

(12.13)



12.4 LEARNING IN FUZZY BP

The learning procedure of fuzzy BP follows the gradient descent method of

minimizing error due to the learning. Here, the mean square error function

for pattern p is defined as

(12.14)

where Dpi is the desired (target) output value of the i th output neuron and

O″ pi is the computed value of the i th output neuron.

The overall error of the training pattern

During the learning phase, the weights are adjusted so as to minimize E.

The weight change at time t is given by

(12.15)

where η is the learning rate and α is a constant value.

is the

momentum term to be added for speeding up convergence.

The term ∇ Ep( t) is given by



(12.16)

where

( t) = ( Wm( t), W α( t), W β( t)).

Also, recollect that

and

are the fuzzy

connection weights between the input-hidden and hidden-output layer

neurons.

We now begin the derivations to obtain ∂ Ep/∂ W′ m, ∂ Ep/∂ W′α, and ∂ Ep/∂

W

′β. Consider the hidden-output layer. Applying chain rule,

(12.17)



Hence,

(12.18)

Again

(12.19)



Hence,

(12.20)

Similarly,

(12.21)

Thus, Eqs. (12.18), (12.20), and (12.21) give the

terms for the hidden-

output layer.

Now consider the input-hidden layer. Let us define the error values δ pmk, δ

p α k, and δ p β k as,

(12.22)

(12.23)

(12.24)

To obtain,





(12.25)

(12.26a)

Therefore,

(12.26b)

Again,

(12.27)

(12.28a)

Therefore,

(12.28b)

Similarly,

(12.29)

Thus, Eqs. (12.26), (12.28), and (12.29) give the ∇ Ep( t) term for the input-

hidden layer weights.

Now, the change in weights

for the input-hidden and hidden-output

layer weights can be obtained using Eq. (12.15).

The updated weights at time t are given by

=



( t

−

1)

+

Δ ( t),

for

the

hidden-output



layer     (12.30)

= ( t − 1) + Δ ( t), for the input-hidden layer     (12.31) Algorithm

12.1 illustrates the training of fuzzy BP.









12.5 INFERENCE BY FUZZY BP

Once the fuzzy BP model has been trained for a given set of input-output

patterns a definite number of times, it is ready for inference.

Given a set of patterns

to be inferred, where



and

is

an

LR-type fuzzy number given by

. The aim is to obtain

Op, the output corresponding to .

Op is computed in one pass by allowing to pass through the series of

computations illustrated in Eqs. (12.11)−(12.13). The

, computed by the

output neurons, is the output corresponding to

.

Algorithm 12.2 illustrates the inference of fuzzy BP.

Algorithm 12.2

Procedure Fuzzy_BP_INFERENCE()

{

/* Let

, p = 1,2,…, N′ be the patterns whose output values are to be inferred.

Let and be the weight sets obtained after training fuzzy BP */

Step 1 : p = 1;

Step 2 : Get next pattern ;



Step 3 : Compute

=

= (1,0,0);

for the input neurons.

Step 4 : Compute

Where...

for the hidden neurons.

Step 5 : Compute



where   

for the output neurons.

Step 6 : Output the associated output

k = 0,1,2,…, n - 1

Step 7 : p = p + 1;

If ( P ≤ N′) goto Step 2;

}

end FUZZY_BP_INFERENCE.

Illustration

In this section, we demonstrate the learning method of fuzzy BP on an

illustrative toy problem.

Consider a fuzzy BP model with a 2-2-1 configuration (Refer Fig. 12.5).

Fig. 12.5 A 2-2-1 fuzzy BP configuration.

Table 12.1 gives the input patterns that fuzzy BP needs to be trained with.

The input patterns have been normalized to lie between 0 and 1. Table

12.2(a) and (b) show the initial set of weight vectors that have been randomly

generated.



The computations performed by fuzzy BP in the first iteration are: Iteration

1 Input pattern 1 ( , D 1)

= ((1, 0, 0), (1, 0.2, 0.3), (0, 0.1, 0.4))

D 1 = 0.8

The output of the input neurons

= = ((1, 0, 0), (1, 0.2, 0.3), (0, 0.1, 0.4))



The input to the hidden neurons are

net 10 = nil

net 11 = (1, 0, 0) (0.62, 0.505, 0.405) + (1, 0.2, 0.3) (0.894, 0.634, 0.101) +

(0, 0.1, 0.4) (0.66, 0.567, 0.64)

= (1.5140, 1.3838, 1.0382)

net 12 = (1, 0, 0) (−0.235, 0.329, 0.498) + (1, 0.2, 0.3) (−0.723, 0.71, 0.855)

+

(0, 0.1, 0.4) (0.134, 0.719, 0.153)



= (−0.9580, 1.5108, 1.3087)

From the calculations above,

NET 10: Nil

NET 11: CE (1.514, 1.3838, 1.0382)

= 1.514 + 1/3(1.0382 + 1.3838)

= 1.3988

NET 12: CE(−0.9580, 1.5108, 1.3087)

= −1.0254

The outputs of the hidden neurons are

The output of the output neuron is

We now proceed to compute the change of weights

given by Eq.

(12.15) for the input-hidden and hidden-output layers.



Initially set

( t − 1) = 0. Choose η = 0.9 and α = 0.1.

Now,



Similarly,

Also,

The updated weights for the hidden-output layer are

Now the change in weights for the input-hidden layer are as follows:

Therefore,





Similarly,

The change in weights are given by

The updated weights for the input-hidden layer are



Thus, the first set of updated weights have been obtained at the end of

training the network for the first pattern set. Now proceeding on similar lines

for the second input pattern set, the computations are as follows: Iteration 1

Input Pattern 2 ( , D 2) The output of hidden layer neurons are

The output of the output layer neurons

O″20 = 0.6909

Also,

The change in weights Δ W′( t) for the hidden-output layer neurons is given

as The updated weights for the hidden-output layer are





For the input-hidden layer neurons,

Change in weights

for the input-hidden layer is given by

The updated weights of the Input-Hidden layer are:



Summing up, at the end of the first iteration after training the fuzzy BP

model with the two input patterns, the updated weight sets are as shown in

Table 12.3. The iterations are repeated for a definite number of times before

the training is deemed to have come to an end.

12.6 APPLICATIONS

In this section, we discuss two applications of the fuzzy BP model, namely

Knowledge base evaluation and

Earthquake damage evaluation.

12.6.1 Knowledge Base Evaluation

In their paper, Lee and Lu have illustrated the working of fuzzy BP on a

Knowledge Base Evaluation (KBE) system. KBE is an expert system to

evaluate how suitable an expert system is with regard to its application in a

specific domain. KBE is governed by 18 instances as shown in Table 12.4. It

comprises six input attributes/features, namely worth, employee acceptance,

solution available, easier solution, teachability, and risk. Figure 12.6



illustrates the fuzzy linguistic terms associated with the attributes. The

output is the suitability of the expert system and is given by one of the two

crisp output values, namely Good (1) or Poor (0). For the ‘don’t care’ terms

marked by ‘*’ in Table 12.4, each possible fuzzy linguistic term associated

with that feature is generated. Thus, the 18 instances give rise to 340

instances.

Fig. 12.6 Fuzzy linguistic terms associated with the input attributes of KBE.

Table 12.4 The instances of knowledge base evaluation



Feature

Employee

Solution

Easier

Output

Worth

Teachability

Risk

acceptance

available

solution

(suitability)

Instances

1

High

Positive

None

None

Frequent

Low



Good

2

Negative

*

*

*

*

*

Poor

3

Low

*

*

*

*

High

Poor

4

Moderate

Neutral



Adequate

Complete

Difficult

High

Poor

5

Low

Negative

None

Partial

Frequent

Low

Poor

6

High

Negative

Partial



None

Difficult

Moderate

Good

7

High

Positive

Partial

Complete

Frequent

High

Poor

8

High

Positive

Partial

Partial

Possible

Low

Poor



9

Low

Positive

Adequate

None

Frequent

Low

Good

10

High

Negative

Partial

None

Frequent

High

Good

11

Low

Positive

None



Complete

Difficult

Moderate

Poor

12

Low

Neutral

Adequate

Complete

Frequent

Low

Good

13

Low

Neutral

None

None

Difficult

Low

Good



14

Moderate

Positive

Adequate

None

Difficult

High

Poor

15

High

Negative

Adequate

Partial

Frequent

High

Poor

16

High

Negative

Partial



Complete

Possible

Low

Good

17

Moderate

Negative

None

Partial

Difficult

High

Good

18

Moderate

Neutral

Adequate

Partial

Difficult

Low

Poor



Of these, Lee and Lu have used 290 randomly selected instances as training

instances and the remaining as testing instances. A three layered fuzzy BP

with a configuration 6-6-1 has been employed and the values of η and α are

chosen as α = 0.1 and η = 0.9. The interpretation of the output values

computed by the output neuron is as follows:

If computed output value ≥ 0.5 suitability is good.

If computed output value < 0.5 suitability is poor.

We now detail a method of presenting the input attributes listed in Table 12.4

for computation by the fuzzy BP model. Consider an instance (instance no.

1) of Table 12.4, which reads

We need to convert each of the fuzzy linguistic terms associated with the

attribute into their equivalent LR-type fuzzy numbers. For the attribute

“Worth”, the LR-type fuzzy number equivalent for its associated attribute

values as gathered from Fig. 12.6 is

Fuzzy linguistic term

LR-type fuzzy number equivalents

Negative

(0, 0.0001, 4)

Low

(5, 2, 2)

Moderate

(7, 2, 2)

High



(10, 2, 0.0001)

Note here that since α, β the left and right spreads need to be such that α, β

> 0, we have chosen a small quantity 0.0001 to indicate the zero spreads.

Also, the LR-type fuzzy number equivalents could be normalized to lie

between 0 and 1, thereby giving rise to the following:

Negative : (0, 0.0001, 0.4)

Low : (0.5, 0.2, 0.2)

Moderate : (0.7, 0.2, 0.2)

High : (1, 0.2, 0.0001)

Thus, the normalized LR-type fuzzy number equivalent for the instance 1

of Table 12.4 becomes

Feature

Employee

Solution

Easier

Worth

Teachability

Risk

Output

Instances



acceptance

availability

solution

(1, 0.2,

(1, 0.4,

(0, 0.0001,

(0, 0.0001,

(1, 0.4,

(0, 0.0001,

1

1

0.0001)

0.0001)

0.4)

0.4)

0.0001)

0.4)

Similarly, the LR-type fuzzy number equivalents of the other instances are

obtained.

Table 12.5 illustrates a sample set of input patterns that the fuzzy BP model

was trained with. The weights obtained after a training session of 450



iterations is shown in Table 12.6. The output values inferred by fuzzy BP for

a set of instances is shown in Table 12.7.

Table 12.5 Sample training set for the KBE system

Employee

Solution

Easier

S. no.

Worth

Teachability

Risk

Output

acceptance

available

solution

(1, 0.2,

(1, 0.4,

(0, 0.0001,

(0, 0.0001,

(1, 0.4,

(0, 0.0001,



1

1

0.0001)

0.0001)

0.4)

0.4)

0.0001)

0.4)

2

(0, 0.0001,

(0, 0.0001,

(0, 0.0001,

(0, 0.0001,

(0, 0.0001,

(0, 0.0001,

0

0.4)

0.4)

0.4)

0.4)



0.4)

0.4)

(0, 0.0001,

(0.5, 0.2,

(0.5, 0.2,

(0.5, 0.2,

(0.5, 0.2,

(0.5, 0.2,

3

0

0.4)

0.2)

0.2)

0.2)

0.2)

0.2)

(0, 0.0001,

(1, 0.4,

(1, 0.4,

(1, 0.4,



(1, 0.4,

(1, 0.4,

4

0

0.4)

0.0001)

0.0001)

0.0001)

0.0001)

0.0001)

(0.5, 0.2,

(0, 0.0001,

(0, 0.0001,

(0, 0.0001,

(0, 0.0001,

(0, 0.0001,

5

0

0.2)

0.4)



0.4)

0.4)

0.4)

0.4)

(1, 0.2,

(0, 0.0001,

(0.5, 0.2,

(0, 0.0001,

(0, 0.0001,

(0.5, 0.2,

6

1

0.0001)

0.4)

0.2)

0.4)

0.4)

0.2)

(1, 0.2,

(1, 0.4,



(0.5, 0.2,

(1, 0.4,

(1, 0.4,

(1, 0.4,

7

0

0.0001)

0.0001)

0.2)

0.0001)

0.0001)

0.0001)

(0.5, 0.2,

(1, 0.4,

(0, 0.0001,

(1, 0.4,

(0, 0.0001,

(0.5, 0.2,

8

1



0.2)

0.0001)

0.4)

0.0001)

0.4)

0.2)

(1, 0.2,

(0, 0.0001,

(0.5, 0.2,

(0, 0.0001,

(1, 0.4,

(1, 0.4,

9

1

0.0001)

0.4)

0.2)

0.4)

0.0001)

0.0001)



(0.5, 0.2,

(1, 0.4,

(0, 0.0001,

(1, 0.4,

(0, 0.0001,

(0.5, 0.2,

10

0

0.2)

0.0001)

0.4)

0.0001)

0.4)

0.2)

.…

Table 12.6 Weight sets obtained after training, for the KBE problem Input-

hidden layer weights

W 10

−1.253724

0.781000



0.579000

W 20

0.130494

0.988000

0.869000

W 30

−0.624522

0.799000

0.750000

W 40

−0.979520

0.645000

0.070000

W 50

0.121162

0.752000

0.168000

W 60

−0.125892

0.481000



0.409000

W 11

0.088709

0.575159

0.542470

W 21

6.221473

0.625117

0.233425

W 31

−5.355558

0.511356

0.319630

W 41

−1.196219

0.188272

0.947940

W 51

0.743903

0.943636



0.116286

W 61

1.205110

0.516413

0.110785

1.283483

0.757850

0.793306

W 12

W 22

−3.239704

0.286386

0.747749

W 32

1.565447

0.055406

0.138882

W 42

1.400189

0.412950



0.554903

W 52

4.461302

0.154162

0.607884

W 62

−3.491205

0.551971

0.071648

W 13

−0.017605

0.025093

0.562666

W 23

−4.533030

0.765363

0.196448

W 33

3.892954

0.700272



0.182422

W 43

−1.764890

0.746978

0.404761

W 53

−2.888355

0.329722

0.434618

W 63

−0.680463

0.320811

0.583909

W 14

−5.898080

0.333336

0.661306

W 24

−1.739380

0.505145



0.091717

W 34

−2.283170

0.669047

1.025956

W 44

1.141670

0.198082

0.078835

W 54

0.032954

0.063104

0.550654

W 64

−2.851645

0.751487

0.645628

W 15

1.379645

0.340031



0.872655

W 25

−3.077025

0.287930

0.553491

W 35

−4.642153

0.721427

0.555672

W 45

0.639301

0.113205

0.131933

W 55

0.410148

0.413361

0.927472

W 65

1.663710

0.465324



0.221375

W 16

−2.016176

0.732965

0.411935

W 26

−0.400687

0.884901

0.717908

W 36

3.493105

0.521547

0.435450

W 46

−1.445656

0.044423

0.681075

W 56

−1.904217

0.016407



0.922307

W 66

1.385423

0.279829

0.218603

Hidden-output layer weights

W′00

1.871553

−0.793852

1.153852

W′10

6.002691

−1.598233

2.992223

W′20

6.858886

−1.872296

2.578299

W′30

−7.659173



3.063065

−2.219060

W′40

−1.587710

0.773236

−0.301237

W′50

−4.652789

2.412276

−1.444268

W′60

−4.662981

2.096997

−0.763998

….

Table 12.7 Sample inference results by fuzzy BP for the KBE problem

Output

S.

Solution

Easier



Teachabity

Expected

Worth

Employee

Risk

computed

No.

acceptance

available

solution

output

by fuzzy BP

(0.5,

(0,

(0,

(0.5, 0.2,

(0, 0.0001,

(0, 0.0001,

1

0.2,



0.0001,

0.0001,

0.956

1

0.2)

0.4)

0.4)

0.2)

0.4)

0.4)

(0.5,

(0.5,

(1, 0.4,

(0, 0.0001,

(1, 0.4,

(0, 0.0001,

2

0.2,

0.2,

0.011



0

0.0001)

0.4)

0.0001)

0.4)

0.2)

0.2)

(0,

(0,

(1, 0.2,

(0.5, 0.2,

(1, 0.4,

(1, 0.4,

3

0.0001,

0.0001,

0.961

1

0.0001)

0.2)



0.0001)

0.0001)

0.4)

0.4)

(0.5,

(0,

(0,

(1, 0.4,

(1, 0.4,

(1, 0.4,

4

0.2,

0.0001,

0.0001,

0.951

1

0.0001)

0.0001)

0.0001)

0.2)



0.4)

0.4)

(0,

(1, 0.2,

(1, 0.4,

(0.5, 0.2,

(0.5, 0.2,

(0.5, 0.2,

5

0.0001,

0.073

0

0.0001)

0.0001)

0.2)

0.2)

0.2)

0.4)

(1, 0.2,

(1, 0.4,



(0.5, 0.2,

(1, 0.4,

(1, 0.4,

(1, 0.4,

6

0.093

0

0.0001)

0.0001)

0.2)

0.0001)

0.0001)

0.0001)

(0,

(0,

(0.5,

(1, 0.2,

(0.5, 0.2,

(0, 0.0001,

7



0.0001,

0.0001,

0.2,

0.993

1

0.0001)

0.2)

0.4)

0.4)

0.4)

0.2)

12.6.2 Earthquake Damage Evaluation

Evaluation of earthquake damage involves manipulation of vague concepts.

Song et al. (1996) have evaluated the damage characteristics of a few kinds

of



structures situated at different distances from the damage centres for a few

earthquakes that occurred in Japan. We make use of the inputs presented in

the paper to demonstrate the application of fuzzy BP model for earthquake

damage evaluation.



The inputs to fuzzy BP are earthquake magnitude, epicentral distance, and

the ratio of peak ground acceleration and spectrum intensity. The fuzzy

linguistic values associated with the above three inputs have been given in

Fig. 12.7. The output to be determined is the damage membership value.

Fig. 12.7 Fuzzy sets associated with the input attributes for the earthquake

damage evaluation

problem.

Table 12.8 illustrates the LR-type fuzzy number equivalents of the fuzzy

terms. Table 12.9 presents a sample training set. The damage membership

value obtained by fuzzy BP for a testing set and the same obtained by Song

et al. has been shown in Table 12.10.

Table 12.8 LR-type fuzzy number equivalents for the fuzzy sets associated

with earthquake damage evaluation Earthquake magnitude

Epicentral distance

Peak ground acceleration/spectrum intensity

LR-type

LR-type

LR-type

Fuzzy set

Fuzzy set

Fuzzy set

fuzzy no.

fuzzy no.



fuzzy no.

Low

(5, 5, 1.7)

Very close

(3.6, 3.6, 1.4)

Low

(5.58, 5.58, 0.2)

Nearly medium

(6.7, 1.2, 0.7)

Close

(6.2, 2.6, 3.8)

Medium

(6.39, 0.5, 4.11)

Very near

(11, 4.8, 44)

Medium

(7.4, 0.6, 0.3)

Fairly near

(55, 45, 52)

Nearly high



(10.5, 4.1, 10.7)

Near

(107, 52, 23)

Nearly High

(7.7, 0.3, 0.2)

Far

(130, 23, 46)

High

(21.2, 10.7, 11.4)

Very high

(7.9, 0.2, 0.2)

Very far

(176, 46, 0.0001)

Very high

(32.6, 11.4, 0.0001)

….

Table 12.9 A sample training set for fuzzy BP for the earthquake damage

evaluation problem (normalised data) Peak ground

Damage

Earthquake



Epicentral

S.no.

acceleration/spectrum

membership

magnitude

distance

intensity

value

1

(0.633, 0.633, 0.215)

(0.021, 0.021, 0.008)

(1, 0.35, 0.00003)

0.035

2

(1, 0.025, 0.025)

(1, 0.261, 0.000005)

(0.196, 0.015, 0.126)

0.24

3

(0.937, 0.076, 0.038)



(0.739, 0.131, 0.261)

(0.171, 0.171, 0.006)

0.6

4

(0.975, 0.038, 0.025)

(0.608, 0.295, 0.131)

(0.196, 0.015, 0.126)

0.181

5

(0.848, 0.152, 0.089)

(0.313, 0.256, 0.296)

(0.65, 0.33, 0.35)

0.1

6

(0.633, 0.633, 0.215)

(0.035, 0.015, 0.022)

(0.171, 0.171, 0.006)

0.41

7

(0.937, 0.076, 0.038)



(0.035, 0.015, 0.022)

(0.32, 0.13, 0.33)

1

…

Table 12.10 Sample results inferred by fuzzy BP for the earthquake damage

evaluation problem Peak ground

Expected

Damage

Earthquake

Epicentral

acceleration/

damage

membership

Earthquake

magnitude

distance

spectral

membership

value computed

intensity



value

by fuzzy BP

Tokiachi-oki (1968)

79

176

5.96

0.23

0.227

Chiba-ken-toho-oki (1987)

6.7

55

21.2

0.1

0.111



SUMMARY

In this Chapter, a neuro-fuzzy hybrid system fuzzy BP proposed by Lee and

Lu has been discussed. The network maps fuzzy input vectors to crisp

outputs. A backpropagation like learning algorithm is used by fuzzy BP for

its training.

The network is three layered and of feedforward type. The fuzzy inputs

presented to fuzzy BP need to be LR-type fuzzy numbers.

The input neurons compute their output as

The hidden neurons compute their output as

where

The output neurons compute their output as

where

During the learning session the weight changes in the input-hidden and

hidden-output layers are computed as



The updated weights are given by

The model has been applied to two problems, namely knowledge base

evaluation and earthquake damage evaluation.

PROGRAMMING ASSIGNMENT

P12.1 Implement the fuzzy BP algorithms shown in Algorithms 12.1 and

12.2.

P12.2 Wind pressure prediction Wind pressure load is of major concern in

the design of industrial as well as tall structures. The load exerted by wind on

the structure is proportional to the wind pressure. Wind pressure varies with

height of the structure and the zone in which the structure is loaded. The

fuzzy representation of height of the structure and zones are shown in Fig.

P12.1. The corresponding wind pressures (kgf/m2) are given in Table P12.1.



Fig. P12.1 Fuzzy representation of inputs for wind pressure prediction.

(a) Obtain the LR-type fuzzy number equivalents for the input attributes

shown in

Fig. P12.1.

(b) Normalize the inputs obtained in (a).

(c) From among the 44 instances that can be obtained using Table

P12.1, train the fuzzy BP model for 25 randomly selected instances.

(d) Infer the remaining 9 instances using the weight sets obtained from (c).
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Chapter 13

Simplified Fuzzy ARTMAP

Adaptive resonance architectures are neural networks which in response to

arbitrary sequences of input patterns, self-organize stable recognition codes

in real time. Grossberg (1976) introduced the basic principles of Adaptive

Resonance Theory (ART).

A class of ART architectures specified as systems of differential equations

have been evolved by Carpenter and Grossberg (1987a, 1987b). Termed

ART1 and ART2, ART1 architecture self-organizes recognition categories

for arbitrary sequence of binary input patterns and ART2 does the same for

either binary or analog inputs. The third class of architecture termed ART3

(Carpenter and Grossberg, 1990) based on ART2, includes a model of the

chemical synapse that solves the memory search problem of ART systems

embedded in network hierarchies, where there can be in general, either fast

or slow learning and distributed or compressed code representations. ART2A

(Carpenter et al., 1991) models the essential dynamics of ART2 architectures

and runs two to three orders of magnitude faster than ART2.

ARTMAP is a class of neural network architectures that performs

incremental supervised learning of recognition categories and

multidimensional maps in response to input vectors presented in arbitrary

order.

The first ARTMAP system (Carpenter et al., 1991) was used to classify

inputs by the set of features they possess, that is, by an ordered n- tuple of

binary values representing the presence or absence of each possible feature.



A more general ARTMAP system termed fuzzy ARTMAP (Carpenter et al.,

1992) learns to classify inputs by a fuzzy set of features or a pattern of fuzzy

membership values between 0 and 1, indicating the extent to which each

feature is presented.

The architecture of fuzzy ARTMAP is briefly reviewed in the following

section.



13.1 FUZZY ARTMAP: A BRIEF INTRODUCTION

Fuzzy ARTMAP is an architecture which synthesizes fuzzy logic with

adaptive resonance theory neural networks. Figure 13.1 illustrates the

architecture of fuzzy ARTMAP. The architecture comprises two ART

modules, ART a and ART b that create stable recognition categories in

response to arbitrary sequence of input patterns. During supervised learning,

given a set of input patterns

ART a receives a stream

of input

patterns and ART b a stream of

. These modules are linked by an

associative learning network and an internal controller that ensures

autonomous system operation in real time. Fab which is the inter-art module

that links together ART a and ART b modules and known as the map field

gets triggered whenever one of the ART a or ART b categories is active.

Fig. 13.1 Architecture of fuzzy ARTMAP.

The complement coding processor in ART a and ART b transforms the input

patterns and into complement coded input pairs A =

and B =

respectively. F a



b

1 and F 1 receive A and B as inputs.

When a prediction made by ART a module is disconfirmed at ART b,

inhibition of the map field activation induces the match tracking process.

Match tracking raises the ART

a

a

a vigilance ρ a to just above F 1 to F 0 match ratio. This triggers an ART a

search which results in the activation of either an ART a category that

predicts b correctly or to a previously uncommitted ART a category node.

13.2 SIMPLIFIED FUZZY ARTMAP

Kasuba’s Simplified Fuzzy ARTMAP (Kasuba, 1993) which is a vast

simplification of Carpenter and Grossberg’s fuzzy ARTMAP has reduced

computational overhead and architectural redundancy when compared to its



predecessor. Also, the model employs simple learning equations with a single

user selectable parameter and can learn every single training pattern within a

small number of training iterations.

Simplified fuzzy ARTMAP is essentially a two-layer net containing an input

and an output layer. Figure 13.2 illustrates the architecture of simplified

fuzzy ARTMAP.

Fig. 13.2 Simplified fuzzy ARTMAP.

The input to the network flows through the complement coder where the

input string is stretched to double the size by adding its complement also.

The complement coded input then flows into the input layer and remains

there.

Weights (W) from each of the output category nodes flow down to the input

layer. The category layer merely holds the names of the M number of

categories that the network has to learn. Vigilance parameter and match

tracking are mechanisms of the network architecture which are primarily

employed for network training.

ρ which is the vigilance parameter can range from 0 to 1. It controls the

granularity of the output node encoding. Thus, while high vigilance values

makes the output node much fussier during pattern encoding, low vigilance



renders the output node to be liberal during the encoding of patterns.

The match tracking mechanism of the network is responsible for the

adjustment of vigilance values. Thus, when an error occurs in the training

phase during the classification of patterns, i.e. when the selected output node

does not represent the same output category corresponding to the input

pattern presented, match tracking is evoked. Depending on the situation,

match tracking may result in the network adjusting its learning parameters

and the network opening new output nodes.

13.2.1 Input Normalization

Complement coding is used for input normalization and it represents the

presence of a particular feature in the input pattern and its absence. For

example, if a is the given input pattern vector of d features, i.e. = ( a 1, a 2,

..., ad) the complement coded vector

represents the absence of each

feature, where

is defined as



= (1 − a 1, 1 − a 2, ..., 1 − ad)     (13.1) The normalization process is

essential since simplified fuzzy ARTMAP

needs all its input values to lie between 0 to 1. Therefore, the complement

coded input vector I obtained by concatenating c with is given by the vector

I = ( , c) = ( a 1, a 2,..., ad, 1 − a 1, 1 − a 2,..., 1 − ad)    (13.2) The

learning equations of the architecture call for the computation of | I |.

Here, ‘| |’ is the norm of a vector defined as

(13.3)

Observe that for a complement coded vector I, | I| results in the automatic

normalization of input vectors, i.e.

(13.4)

13.2.2 Output Node Activation

When the simplified fuzzy ARTMAP is presented the complement coded

forms of input patterns, all output nodes become active to varying degrees.

This output activation, denoted by Tj and referred to as the activation

function for the j th output node, where Wj is the corresponding top-down

weight, is given by

(13.5)



Here, α is kept as a small value close to 0 usually about 0.0000001. That

node which registers the highest activation function is deemed winner, i.e.

Winner = max( Tj)    (13.6)

In the event of more than one node emerging as the winner, owing to the

same activation function value, some mechanism such as choosing a node

with the smallest index may be devised to break the tie. The category

associated with the winner is the one to which the given input pattern

belongs to, as classified by the network.

The match function which helps to determine whether the network must

adjust its learning parameters is given by

(13.7)

As mentioned earlier, the match function in association with the vigilance

parameter decides on whether a particular output node is good enough to

encode a given input pattern or whether a new output node should be opened

to encode the same. The network is said to be in a state of resonance if the

match function value exceeds vigilance parameter. However, for a node to

exhibit resonance, it is essential that it not only encodes the given input

pattern but should also represent the same category as that of the input

pattern.

On the other hand, the network is said to be in a state of mismatch reset if the

vigilance parameter exceeds match function. Such a state only means that the

particular output node is not fit enough to learn the given input pattern and

thereby cannot update its weights even though the category of the output

node may be the same as that of the input pattern. This is so, since the output

node has fallen short of the expected encoding granularity indicated by the

vigilance parameter.

The weight updating equation of an output node j when it proceeds to learn



the given input pattern I is given by

//////(13.8)

where, 0 < β ≤ 1

Once the network has been trained, the inference of patterns, known or

unknown, i.e. the categories to which the patterns belong, may be easily

computed. This is accomplished by passing the input pattern into the

complement coder and then to the input layer. All the output nodes compute

the activation functions with respect to the input. The winner, which is the

node with the highest activation function, is chosen. The category to which

the winning output node belongs is the one to which the given input pattern

is classified by the network.

Algorithms 13.1 and 13.2 illustrate the training and inference phases of

simplified fuzzy ARTMAP.











13.3 WORKING OF SIMPLIFIED FUZZY ARTMAP

Illustration— Simulation of Circle in Square

The circle in the square problem requires a system to identify which pockets

of a square lie inside and which lie outside a circle whose area equals half

that of the square (refer Fig. 13.3).

Fig. 13.3 Circle in the square.

The problem, specified as a benchmark problem for system performance

evaluation in the DARPA Artificial Neural Network Technology (ANNT)

program, has been used to illustrate the working of simplified fuzzy

ARTMAP (Kasuba, 1993). In this, the network is trained with a set of points

for a definite number of training epochs. The inputs during training are the

points ( x, y) and the category to which they belong, namely inside the circle

(IN) or outside the circle (OUT). The training of the network has been

illustrated in the following examples.

Training

Example 13.1 ( Learning the input (0.7, 0.7) ( IN)) Consider the point (0.7,

0.7) as input I and whose category is IN.

Complement of I = (0.3, 0.3)

Augmented input I = (0.7, 0.7, 0.3, 0.3)



Since I is the first input seen by the network in the IN category, the top-down

weights

W

c

c

i = ( Wx, Wy, Wx , Wy ) are set to the augmented input values and is therefore

given by W 1 = (0.7, 0.7, 0.3, 0.3). The activation function value



T 1( I) of the top-down weight node W 1 for the input I seen, is set to null,

and is set to point the category IN in the category layer. Figure 13.4

illustrates the sequence for handling the input (0.7, 0.7).

Fig. 13.4 Training simplified fuzzy ARTMAP—learning the input (0.7, 0.7).

Example 13.2 ( Learning the input (0.3, 0.8) ( IN)) Here, we choose the

vigilance parameter ρ to be 0.5. Now MF( I) is greater than ρ and since the

category of I is the same as that pointed by W 1, W 1 is fit enough to learn

the current input I. This is accomplished by updating the weights of W 1 as

illustrated in Eq. (13.8).

Choosing β = 1,

W new

1

= (0.3, 0.7, 0.3, 0.2)



Figure 13.5 illustrates the sequence for processing the input (0.3, 0.8).

Fig. 13.5 Training of simplified fuzzy ARTMAP—learning the input (0.3,

0.8).



Example 13.3 ( Learning the input (0.9, 0.9) ( OUT)) Consider I = (0.9, 0.9)

and category = OUT.

Since this is a new category, repeating the computations illustrated in

Example 13.1, the new top-down weight node W 2, which points to the

category OUT, is given by

W 2 = (0.9, 0.9, 0.1, 0.1) and

T 2( I) = Null

Figure 13.6 illustrates the sequence for handling the input (0.9, 0.9).

Fig. 13.6 Training of simplified fuzzy ARTMAP—learning the input (0.9,

0.9).

Example 13.4 ( Learning the input (0.7, 0.9) ( OUT)) Consider I = (0.7, 0.9)

and category = OUT.

The augmented input I = (0.7, 0.9, 0.3, 0.1)

Since there are two weight nodes, to decide which node is fit enough to learn

the new input I, the activation function values of the two nodes are

computed, i.e.

T 1( I) = 0.9333

T 2( I) = 0.8999

The node with the highest activation function value W 1 in this case is

chosen to learn the new input. Also, the match function of I with W 1 is

greater than the vigilance parameter, i.e.

( MF( I) = 0.7) > (ρ = 0.5)

However, there is a category mismatch since the category pointed to by W

1(IN) and that represented by I (OUT) are different. In such a case, W 1 is

not fit to learn the input and hence, the next node is to be considered. Before



proceeding to the next node, match tracking is done by updating the vigilance

parameter to the match function value MF( I) and incrementing it by a small

quantity, i.e.

ρ = 0.701

The next node W 2 gives

MF( I) = 0.9

Since MF( I) > ρ and the categories are also the same, learning occurs in W

2, given by the updating of W 2 as

W new

2

= (0.7, 0.9, 0.1, 0.1)

Figure 13.7 illustrates the sequence for handling the input (0.7, 0.9).



Fig. 13.7 Training of simplified fuzzy ARTMAP—learning the input (0.7,

0.9).

Example 13.5 ( Learning the input (0.1, 0.3) ( IN)) Consider the input I =

(0.1, 0.3) and category = IN.

The augmented input I = (0.1, 0.3, 0.9, 0.7)

The activation function values of W 1 and W 2 are T 1( I) = 0.5999

T 2( I) = 0.33

Choosing the highest, namely W 1, the match function yields MF( I) = 0.45

which is less than ρ, rendering the node to be misfit to learn the pattern I.

The choice of W 2 also results in a similar case with ( MF( I) = 0.3) < (ρ =

0.701).

In such a case a new top-down weight node W 3 pointing to IN is created

with W 3 = (0.1, 0.3, 0.9, 0.7).

Figure 13.8 illustrates the handling of input (0.1, 0.3) by the network.



Fig. 13.8 Training of simplified fuzzy ARTMAP—learning the input (0.1,

0.3).

Inference

During inference, the architecture is presented points ( x, y) alone, to

determine the category. In this case, that top-down weight node which

reports the highest activation function value for the given ( x, y) is the winner

and the category pointed to by the node is the category to which ( x, y)

belongs.

Example 13.6 ( Inferring the category of (0.2, 0.5)) Consider the network

evolved out of training as illustrated in Examples (13.1)−(13.5). The weight

nodes are W 1 = (0.3, 0.7, 0.3, 0.2), W 2 = (0.7, 0.9, 0.1, 0.1), and W 3 = (0.1,

0.3, 0.9, 0.7).

Consider I′ = (0.2, 0.5) whose category is IN. The objective now, is to test

whether the given input is correctly categorized by the network belonging to

IN. The activation functions for the input I′ corresponding to the three weight

nodes are

Choosing a weight node with the highest activation function, we select W 3



which is attached to the category IN. Thus, the input given is inferred to

belong to the category IN.

Figure 13.9 illustrates the inference of (0.2, 0.5).

Fig. 13.9 Inference by simplified fuzzy ARTMAP—Inferring (0.2, 0.5).

Example 13.7 ( Inferring the category of (0.9, 0.75) For the input I″ = (0.9,

0.75) which belongs to the category OUT, inference by the architecture

assumed in Example 13.6 yields the following activation function

computations.

T 1( I″) = 0.8667

T 2( I″) = 0.9167

T 3( I″) = 0.3749

Choosing W 2 which yields the highest activation function value, yields the

category OUT which is indeed the correct result. Figure 13.10 illustrates the

inference of (0.9, 0.75).



Fig. 13.10 Inference by simplified fuzzy ARTMAP—inferring (0.9, 0.75).

13.4 APPLICATION: IMAGE RECOGNITION

The simplified fuzzy ARTMAP can be applied to the solution of pattern

classification/recognition problems. The input vectors to be presented to the

network for training as well for inference should comprise components which

lie between 0 and 1. The outputs to be associated are the categories/classes to

which the inputs belong.

In this section, we discuss the application of the network for the recognition

of patterns (images). Rajasekaran and Pai (1999) have experimented with the

potential of the simplified fuzzy ARTMAP network to recognize graphical

images, both coloured and monochrome.

Table 13.1 illustrates a set of images and the classes to which they belong.

Here, the images have been engraved on a (40 × 40) grid to facilitate the

representation of the image as a

gray level matrix. Thus, for monochrome image as shown in Fig. 13.11(a),

the matrix representation would be as in Fig. 13.11(b). Here, a black square



is represented as 1 while a white square is represented as 0, in the image

matrix.

In this application, the possibility of a partially shaded square is ruled out for

simplicity. In the case of coloured images, a weight value between 0 and 1 is

assigned to different colours. Thus, for a coloured pattern (colours

represented by different shades) as shown in Fig. 13.2(a), the equivalent

image matrix is as shown in

Fig. 13.12(b).





Fig. 13.11 Monochrome image and its matrix representation.

Fig. 13.12 Coloured image and its matrix representation.

Having transformed the images into their equivalent matrix representations,

the simplified fuzzy ARTMAP architecture could now be extended to work

on input matrices whose elements lie between 0 and 1, using the same

governing equations of the architecture [Eqs. (13.1)−(13.8)]. The ‘fuzzy ∧’

operating on input vectors is now interpreted as the ‘fuzzy ∧’ on matrices

and the norm (| |) of the vector is treated as the norm of a matrix, i.e.



(13.9)

where A = [ aij]

For a direct application of the network to the image recognition problem, the

architecture is trained using the matrix equivalents of the training images set.

Once the training is over and the top-down weight matrices (in this case)

have been obtained, the inference could be carried out by presenting the

matrix equivalents of the inference image set. The expected output as before,

would be the category to which the image belonged.

However, observations (Rajasekaran et al., 1997) have shown that though the

predictions made by the simplified fuzzy ARTMAP architecture are

acceptably good for the recognition of patterns which are perfect or exact

reproductions of the training set, the architecture is unable to make correct

predictions

in

the

case

of

patterns

that

are

perturbed

(e.g.

rotated/scaled/translated or their combinations) or noisy. A solution to this

problem is to augment the architecture with a feature extractor to enable the



model exhibit maximum pattern recognition capability. The feature extractor

extracts feature vectors from the patterns before making their presentation to

simplified fuzzy ARTMAP as preprocessed inputs. Digital approximations of

moment invariants which have been used to accomplish the extraction of

invariant features, has been elaborated in the next section.

13.4.1 Feature Extraction—Moment Based Invariants

The classification of two-dimensional objects from visual image data is an

important pattern recognition (PR) task. This task exemplifies many aspects

of a typical PR problem, including feature selection, dimensionality

reduction, and the use of qualitative descriptors.

Moments are the extracted features derived from raw measurements. In

practical imagery, various geometric distortions or pattern perturbations may

be observed in the pattern to be classified. Figure 13.13 illustrates some

example pattern perturbations. It is therefore essential that features that are

invariant to orientations, be used for the classification purpose. For two-

dimensional images, moments have been used to achieve Rotation (R),

Scaling (S), and Translation (T) invariants.



Fig. 13.13 Pattern perturbations.

Properties of invariance to R, S, T transformations may be derived using

function of moments.

The moment transformation of an image function f ( x, y) is given by (13.10)

However, in the case of a spatially discretized MXN image denoted by f( i, j),

Eq. (13.10) is approximated as

(13.11)

Here, the image function f( i, j) is either 0 or 1 depending on whether the ( i,

j)th pixel or its representation is bright or dark for monochrome images.

On the other hand, the intensity is represented by various shades, i.e. 0 ≤

f( i, j) ≤ 1 indicating that the intensity lies anywhere between the ends of a

spectrum for colour images. However, f( i, j) is constant over any pixel

region.

The so called central moments are given by

μ pq =



(13.12)

where

(13.13)

The central moments are still sensitive to R and S transformation. The

scaling invariant may be obtained by further normalizing μ pq as (13.14)

From Eq. (13.14) constraining p, q for p, q ≤ 3, and using the tools of

invariant algebra, a set of seven RST invariant features (as shown in Table

13.2) may be derived (Schalkoff, 1992).

However, though the set of invariant moments shown in Table 13.2 are

invariant to Translation, in spite of them being computed discretely, the

moments cannot be expected to be strictly invariant under rotation and

scaling changes (Schalkoff, 1989).

Table 13.2 Moment based RST invariant features

φ1 = η20 + η02

2

2

φ2 = (η20 + η02) + 4η11

2

2

φ3 = (&eta;30 − 3η12) + (3η21 − η03)

2

2

φ4 = (η30 + η12) + (η21 + η03)



2

2

2

φ5 = (η30 − 3η12) (η30 + η12) ((η30 + η12) − 3(η21 + η03) ) + (3η21 −

η03) (η21 + η03) (3(η30 + η12) −

2

(η21 + η03) )

2

2

φ6 = (η20 − η02) (η30 + η12) − (η21 + η03) ) + 4η11(η30 + η12) (η21 +

η03) 2

2

2

φ7 = (3η21 − η03) (η30 + η12) (η30 + η12) − 3(η21 + η03) − (η30 − 3η12)

(η21 + η03) (3(η30 + η12) − (η21

2

+ η03) )



Investigations (Rajasekaran and Pai, 1999) reveal that in the definition of μ

pq, the contribution made by a pixel has been overlooked. The modified

central moments are presented in Table 13.3. The moments listed in the table

have been derived for an image engraved on an

( N × N) grid, without loss of generality. Also, ( xi, yj) defined in the table is

given by

where , are the centres of mass given by

The moments are still sensitive to R and S transformations. Note that the

scaling invariance may be obtained by further normalizing μ pq as given in

Eq. (13.14). From Table 13.3, it may be observed that μ20 and μ02 are

different from their conventional definition of central moments. In the

conventional definition of μ20, for example, the term

has

been neglected. This omission has resulted in a cascading effect rendering

η20 and η02 and the functions φ1, φ2, and φ6 incorrectly defined, leading to

the misclassification of images with RST orientations. Using the normalized

central moments and tools of invariant algebra, a set of seven RST invariant

features same as that shown in Table 13.3 may be derived.



13.4.2 Computation of Invariants

In this section, we demonstrate the computation of invariant functions on the

three patterns shown in Figs. 13.14(a), (b), and (c). Figure 13.14(a) illustrates

a simple nominal pattern engraved on an (8 × 8) grid. The shaded regions are

representative of different colours whose weight values have been provided.

For our computations these weight values are treated as f( i, j).



Fig. 13.14 Nominal and perturbed patterns.

It needs to be observed that the pattern engraved in the grid is made up of

squared regions of different colours. Each squared region may be made up of

a group of pixels as dictated by the grid dimensions. We therefore, for

simplicity, discretize the image in such a way that each squared region is

represented by the pixel ( i, j) which is its centroid (refer Fig. 13.15(a)).

The pixel ( i, j), which is the centroid, represents the square region and we

assume f( i, j) as a constant over the region. For the (8 × 8) pattern

considered, as shown in Fig. 13.15(b) the index i and j denoting the pixels

run from 0.5 to 7.5 in steps of 1.



Fig. 13.15 Shift in the coordinate system of a pattern.

Figure 13.14(b) shows a translated and scaled version of the above

mentioned nominal pattern of Fig. 13.14(a) and Fig. 13.14(c) represents the

rotated, scaled, and translated version of the same. The objective is not only

to illustrate the computation of invariant functions of perturbed patterns, but

also to show that the invariant functions of the perturbed patterns are the

same as that of their nominal versions.

Example 13.8 ( Computation of invariants for pattern A (Fig. 13.14(a)) We

first compute m 00, m 01 and m 10 as illustrated by Eq. (13.11).



Similarly,

= (0.5 × 0.6) + (0.5 × 0.8) + (1.5 × 0.2) + (1.5 × 0.4)

= 1.6

The computation of and , the centroids, yields



Now we proceed to compute μ pq which are the central moments. Here, xi =

i

− and yj = j − .

Thus,





The computation of η pq using Eq. (13.14) yields

η21 = −0.00141

η12 = 0.0282

η30 = 0.0169

η03 = 0.0296

The invariant function φ1−φ7 as illustrated in Table 13.2 yield φ1 = 0.3084

φ2 = 0.0006

φ3 = 0.0114

φ4 = 0.0009

φ5 = 0

φ6 = 0

φ7 = 0

Example 13.9 ( Computation of invariants for pattern B (Fig. 13.14(b))

Here, we compute the invariant functions for the pattern illustrated in Fig.

13.14(b).



For the pattern m 00 = 8, m 01 = 36.8 and m 10 = 41.6

The centroids , are = 5.2, = 4.6

The central moments are given by

μ00 = 8, μ01 = 0, μ02 = 9.387, μ03 = 5.376

μ10 = 0, μ11 = 0.64, μ12 = 0.512, μ20 = 10.34

μ21 = −0.256 and μ30 = −3.072

The normalized moments η pq yield

η11 = 0.01, η02 = 0.1467, η03 = 0.0296

η20 = 0.1617, η12 = 0.00282

η30 = −0.01697, η21 = −0.00141

The invariant functions are given by

φ1 = 0.3084

φ2 = 0.0006

φ3 = 0.0114

φ4 = 0.0009

φ5 = 0

φ6 = 0

φ7 = 0

Example 13.10 ( Computation of invariants for pattern C (Fig. 13.14(c)) On

similar lines as illustrated in Examples 13.8 and 13.9, the invariant functions

for the patterns in Fig. 13.14(c) yield



φ1 = 0.3084

φ2 = 0.0006

φ3 = 0.0114

φ4 = 0.0009

φ5 = 0

φ6 = 0

φ7 = 0

The above three examples suggest that for a pattern and its perturbed

versions (rotated, scaled, translated, and their combinations), the invariant

functions are the same. This property is what is exploited by a pattern

recognizer in general and simplified fuzzy ARTMAP in particular in this

application. Though the network receives graphical patterns as input, it

actually processes only the invariant functions vector (φ1, φ2, φ3, φ4, φ5,

φ6, φ7) which is normalized to lie between

0 and 1. The structure of the simplified fuzzy ARTMAP based pattern

recognizer is discussed in the following section.

13.4.3 Structure of the Simplified Fuzzy ARTMAP based

Pattern Recognizer

The overall structure of the pattern recognizer is illustrated in Fig. 13.16. The



images (patterns), whether monochrome or coloured, are input through the

image processor. In this application, as mentioned earlier, the images are

engraved on a (40 × 40) grid. Also, images can have their colours selected

from a fixed palette.

Fig. 13.16 Structure of the simplified fuzzy ARTMAP based pattern

recognizer.

The feature extractor obtains the RST invariant features for each image, be it

for training or inference. The SFAM (simplified fuzzy ARTMAP) activator

functions as two modules, namely the training module and the inference

module. The feature vectors of the training patterns and the categories to

which they belong are presented to the SFAM’s training module. The only

user selectable parameter for the training session is the vigilance parameter

ρ, where 0 < ρ < 1. Once the training is complete, the top-down weight

vectors represent the patterns learnt. Next, the feature vectors of the images

that are to be recognized/classified are presented to the inference module.

The SFAM

now begins its classification of images by associating the feature vectors with

the top-down weight vectors.



The system can handle both symmetric and asymmetric patterns. However,

in the case of symmetric patterns, it is essential that only distinct portions of

the images be trained. Figure 13.17 illustrates a sample set of doubly

symmetric images and their presentation to simplified fuzzy ARTMAP. This

is so, since in the case of doubly symmetric or in general, multisymmetric

patterns, their RST invariant feature vectors φ4−φ7 acquire values very close

to 0 and φ1 tends

to 1. This consequently results in feature vectors, which are almost similar,

leading to misclassification of patterns. Hence, in the case of multisymmetric

patterns, it is sufficient to consider (1/2 n)th portion of the image.

Fig. 13.17 Symmetric patterns and their presentation to simplified fuzzy

ARTMAP.

13.4.4 Experimental Study



The simplified fuzzy ARTMAP was trained with nominal patterns of the

kind illustrated in

Table 13.1. The performance of the network was observed for varying

vigilance parameter values,

0.5 ≤ ρ < 1. The number of training epochs was kept fixed to a paltry 3. The

experiments performed are categorized as

Image

Training set

Testing set

Nominal (noisy) patterns

Coloured

Nominal patterns

Rotated/Scaled/Translated (noise-free)

patterns and their combinations.



Rotated/Scaled/Translated (noisy)

patterns and their combinations.

Figure 13.18 illustrates a set of noise-free patterns but subjected to

perturbations—rotation, scaling, translation, and their combinations. Table

13.4 illustrates the results of the experiment.

Fig. 13.18 Noise-free perturbed patterns.

Table 13.4 Recognition of noise free colour images



No. of

Vigilance

training

Training set

Testing set

Nature of the testing set

Recognition rate

parameter

epochs

4 Exemplars

(one exemplar

25

Rotated/Scaled/

3

0.5 ≤ ρ < 1

100%

from four

patterns

Translated/Combination

different categories)



In the case of noisy patterns, a sample of which is illustrated in Fig. 13.19,

the performance of the model for varying noise levels was observed. The

activation value of the top-down vectors during the inference of the noisy

image and the recognition capability (0—image unrecognized, 1—image

recognized) of the model for the varying noise levels of a given pattern was

kept track of. Figure 13.20 illustrates the performance when a sample

coloured pattern which is perturbed (Rotated, Scaled and Translated) and

subjected to noise, was presented for inference.

Fig. 13.19 Noisy patterns.



Fig. 13.20 Performance of simplified fuzzy ARTMAP during the recognition

of noisy and a perturbed pattern.

13.5 RECENT TRENDS

A variation of simplified fuzzy ARTMAP termed probabilistic simplified

fuzzy ARTMAP has been proposed (Jervis et al., 1999). Simplified fuzzy

ARTMAP has also been used for the classification of lithofacies using

wireline log data (Wong et al., 1995).

SUMMARY

Adaptive Resonance Theory (ART) architectures are neural networks, which,

in response to arbitrary input sequences, self-organize stable recognition

codes in real time.

A class of ART architectures such as ART1, ART2, ART3, ART2a have

been evolved.

ARTMAP is a class of neural network architectures that performs

incremental supervised learning of recognition categories and

multidimensional maps in response to input vectors presented in arbitrary

order. A general ARTMAP architecture termed fuzzy ARTMAP

classifies inputs by a fuzzy set of features combining fuzzy logic with ART.

However, the architecture is complex.

A simplified fuzzy ARTMAP architecture with reduced computational

overhead and architectural redundancy has been proposed by Tom Kasuba.

Simplified fuzzy ARTMAP is a two-layer network containing an input and

output layer. The input flows through a complement coder. The category

layer remembers the various categories that the network has to learn. The

vigilance parameter, which is user selectable and match tracking function

which adjusts the vigilance parameter, is responsible for network learning.

The activation function records the degree of activation of each output node.



When the network learns a category, the corresponding node updates its

weights.

Inference is just a feedforward pass where the input which flows through the

complement coder associates with the top-down weight nodes to decide the

winning node with the highest activation function.

The category associated with that node is the one to which the output

belongs.

The working of the simplified fuzzy ARTMAP architecture has been

illustrated on the circle-in-the-square problem.

The application of the simplified fuzzy ARTMAP network has been

demonstrated on an image recognition problem. The direct application of the

network for the problem does not produce acceptable results,

especially when the patterns tested for inference are noisy or perturbed

versions of the training set. This handicap could be rectified by augmenting

the network with a moment based feature extractor. The conventional

invariant functions overlook the contribution made by a pixel and therefore

result in incorrect predictions. Rajasekaran and Pai have proposed a modified

set of central moments which result in accurate predictions for perturbed

patterns.

The structure of the simplified fuzzy ARTMAP based pattern recognizer has

been presented. The experimental study carried out on the classification of a

set of coloured patterns using the augmented architecture has been discussed.

PROGRAMMING ASSIGNMENT

P13.1 Classification of tiles. A collection of geometrical patterns engraved

in a grid of unit length and breadth are to be classified into patterns labelled

A, B, C, D, and E depending on the number of square tiles covered wholly by

the pattern, as illustrated in Table P13.1. Thus, pattern (a) of Fig. P13.1

which covers four whole square tiles is to be classified as Class B and so on.



Table P13.1 Pattern classification

Number of square tiles covered ( X)

Classification label

X ≤ 2

A

3 ≤ X ≤ 5

B

6 ≤ X ≤ 8

C

9 ≤ X ≤ 11

D

X ≥ 12

E

.



Fig. P13.1 Sample patterns for pattern classification.

A set of pattern PI of various shapes engraved in the grid of the stated size

and the corresponding number of tiles subsumed are presented as input to the

simplified fuzzy ARTMAP model.

Each of the geometrical pattern is numerically represented as a vector ( x 1, x

2, x 3, x 4),



0 ≤ xi ≤ 1 where xi represents the corners of the quadrilateral, as the

distance from the origin of the appropriate side of the grid. (Refer Fig.

P13.2). Table P13.2 illustrates a sample set of inputs.

Another set of patterns, PU, unknown to the model and some of which are

distorted (noisy) versions of the patterns belonging to PI are presented for

retrieval.

Fig. P13.2 Vector presentation of a geometrical pattern.

Table P13.2 Sample inputs for presentation to simplified fuzzy ARTMAP

Pattern

Actual tiles present in the pattern

Classification

(0.5, 0.8, 0.2, 0.3)

2.000

A



(0.35, 0.45, 0.7, 0.8)

3.000

B

(1.0, 0.2, 0.6, 0.25)

0

A

(0.67, 0.67, 0.45, 0.45)

3.000

B

(0.35, 0.5, 0.58, 0.3)

2.000

A

(0.2, 0.45, 0.45, 0.5)

2.000

A

(0.68, 0.8, 0.5, 0.75)

3.000

B

(0.9, 0.9, 0.9, 0.75)

4.000



B

(0.25, 0.2, 0, 0.6)

4.000

B

(1.0, 1.0, 1.0, 0.4)

9.000

D

(0.1, 0, 0, 0.9)

6.000

C

(1.0, 1.0, 0.9, 0.3)

7.000

C

(0.8, 0.95, 0.25, 0.65)

3.000

B

(1.0, 0.9, 0.75, 0.9)

7.000

C

(0.8, 1.0, 0.9, 0.9)



6.000

C

(1.0, 1.0, 0.85, 0.1)

12.000

E

(a) Implement simplified fuzzy ARTMAP architecture.

(b) Prepare a set PI of training pairs comprising pattern vectors and their

classifications, and a set PU as a combination of pattern vectors which are

both known and unknown to the network.

(c) Observe the behaviour of the network while inferring known patterns

and unknown or noisy versions of the pattern vectors. Comment on the

inference capability of simplified fuzzy ARTMAP while processing noisy

pattern vectors.
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Chapter 14

Fuzzy Associative Memories

In Chapter 7, we introduced fuzzy rule based systems as a means to encode

knowledge of a system in statements of the form,

If ⟨a set of conditions⟩ then ⟨a set of consequents⟩

In other words, to infer a set of consequents, a set of conditions known as

antecedents should be satisfied. Also in Chapter 4, we elaborated on

associative memories which are a storehouse of associated patterns. When



the storehouse is incited by an input pattern, the associated pattern pair is

recalled.

In this chapter, we discuss fuzzy associative memories (FAMs) which

roughly refers to a storehouse of fuzzy associations each of which encodes a

fuzzy rule. A FAM, in its elementary form, maps a fuzzy set A to a fuzzy set

B and the association is encoded by a fuzzy rule of the form

If X is A then Y is B

where X and Y are fuzzy variables.

A FAM can also map compound associations between fuzzy sets. We first

discuss introductory concepts regarding a FAM. Next, the single association

FAM, its graphical method of inference, fuzzy Hebb FAMs, and the FAM

system architecture for a rule base are presented. FAM systems for rules with

multiple antecedents/consequents and its graphical method of inference are

elaborated. Finally, the inference capability of FAMs is demonstrated on two

classical problems, namely

1. Balancing an inverted pendulum and

2. Truck backer-upper system.

14.1 FAM—AN INTRODUCTION

A fuzzy system maps fuzzy sets to fuzzy sets. Thus, a fuzzy system S is a

transformation

S: In → Ip, where In is the domain space of all fuzzy subsets defined over a

universe of discourse X = { x 1, x 2, ..., xn} and Ip is the range space of fuzzy

subsets defined over a universe of discourse Y = { y 1, y 2, ..., yp}.

In general, a fuzzy system S maps families of fuzzy sets to families of fuzzy

sets, i.e.



S : In 1 × In 2 × … × Inr → Ip 1 × Ip 2 × … × Ipk It is on account of this

mapping between fuzzy sets to fuzzy sets that fuzzy systems behave like

associative memories. Hence, fuzzy systems are referred to as Fuzzy

Associative Memories (FAMs).

A FAM unlike conventional neural networks, which acquire knowledge

through training, directly encodes structured knowledge of the form: If X is A

then Y is B

where A and B are n-dimensional and p-dimensional fuzzy sets respectively

and X, Y are fuzzy variables.

Thus in its simplest form, a FAM encodes a FAM rule/fuzzy rule which

associates A with B. Such a FAM is termed a Single Association FAM and we

represent the association as ( A, B).

A FAM can also represent compound associations encoded by rules of the

form

If X is A and Y is B then Z is C

or

If X is A or Y is B then Z is C

or

If X is A then Y is B and Z is C

or

If X is A then Y is B or Z is C

Thus, FAM can represent rules with multiple antecedents/consequents.

A FAM association is also represented using a single linguistic entry matrix

termed FAM bank linguistic matrix. However, in the case of a single



antecedent and consequent, the association is represented using a one-

dimensional table.

Example 14.1

Consider the following FAM rules:

R 1 : If the room temperature is moderately low then turn on the room heater

to fairly high.

R 2 : If the pressure is fairly high and temperature very low then adjust the

throttle to fairly wide.

Here, R 1 is a single association FAM rule associating the fuzzy sets,

‘moderately low’ and ‘fairly high’. On the other hand, R 2 is a compound

association FAM rule associating ‘fairly high’ and ‘very low’ with ‘fairly

wide’.

14.2 SINGLE ASSOCIATION FAM

A single association FAM associates a single antecedent Ai with a single

consequent Bj encoded in a fuzzy rule. In general, a single association FAM

system encodes and processes in parallel, a FAM bank of m rules ( A 1, B 1),

( A 2, B 2), ..., ( Am, Bm).

Example 14.2

Consider the FAM bank comprising the rules

R 1 : If the room temperature is moderately low then turn on the room heater

to fairly high

R 2 : If the room temperature is high then turn off the room heater to low.

Here, R 1 represents the association (moderately low, fairly high) and R 2



represents the association (high, low).

Figure 14.1 represents the fuzzy sets associated with R 1 and R 2. Here we

choose the two discrete sets X = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

and Y = {−5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5} as the universes of discourse for

the fuzzy sets defined over temperature and heater regulator scale

respectively. For simplicity, X is restricted to lie between 10oC and 20oC and

Y represents the scale over which the heater regulator can be moved, namely

−5 to 5. We assume that when the regulator is positioned over the positive

scale, the room temperature rises and when it is positioned over the negative

scale, the room temperature falls.

The fuzzy sets, ‘moderately low’ ( A 1), ‘fairly high’ ( B 1) of R 1 and ‘high’

( A 2), ‘low’ ( B 2) of R 2 can be written in their enumerated form as A 1 =

{(10, 0), (11, 0), (12, 0), (13, 0.3), (14, 0.6), (15, 1), (16, 1), (17, 1), (18, 1),

(19, 0.5), (20, 0)}

B 1 = {(−5, 0), (−4, 0), (−3, 0), (−2, 0), (−1, 0), (0, 0), (1, 0), (2, 0.7), (3,

0.7), (4, 0)}

A 2 = {(10, 0), (11, 0), (12, 0), (13, 0), (14, 0), (15, 0), (16, 0), (17, 0), (18,

0), (19, 0.5), (20, 1)}



B 2 = {(−5, 1), (−4, 1), (−3, 0.45), (−2, 0), (−1, 0), (0, 0), (1, 0), (2, 0), (3, 0),

(4, 0), (5, 0)}

Recollect that a fuzzy set A could be defined as {( x, μ A( x)), x ∈ X} where

X

is the universe of discourse and μ A( x) is the membership value of x in the

fuzzy set A. A one-dimensional table representing the FAM bank is shown in



Table 14.1.

Table 14.1 A single association FAM bank

Ai

Moderately low

High

Bi

Fairly high

Low

.

Fig. 14.1 Fuzzy sets defined over temperature and room heater regulator

scale.

14.2.1 Graphical Method of Inference

In a FAM system, inference means that given an input A, the system should

output the corresponding consequent B as determined by the FAM rule base.

In this, an input A presented to the FAM system activates each of the FAM

rules to varying degrees. Let Bi′ be the partially activated versions of Bi for

each of the FAM rule. Then the final output B could be taken to be the

weighted average of the partially activated set Bi′.

i.e. B = W 1 B 1′ + W 2 B 2′ + ... + WmBm

′       (14.1)

Where Wi indicates the strength of the fuzzy association ( Ai, Bi). The more

A resembles Ai, the more Bi′ resembles Bi . In practice, we prefer to



defuzzify the output B by computing the fuzzy centroid of B with respect to

Y, the universe of discourse of the fuzzy set Bi.

In practical applications, the strength of the association Wi is determined

using the membership value of the antecedent(s) in the fuzzy rule. The

summation in Eq. (14.1) is implemented as ‘fuzzy OR’.

We now illustrate the inference procedure of single association FAM using

the FAM system presented in Example 14.2.

Example 14.3

For the FAM system discussed in Example 14.2, let us suppose the input is

the current room temperature 19°C. The aim is to infer the turn of the

regulator knob over the scale (−5 to 5).

The FAM system has been shown in Table 14.1 and the fuzzy sets involved

have been illustrated in Fig. 14.1. Figure 14.2(a) shows the application of the

graphical inference procedure to determine the output action. For the input

19°C, rules R 1 and R 2 are both fired with membership values of 0.5 each.

Figure 14.2(b) shows the aggregate of the outputs of the two rules fired.

Now, defuzzification using centroid method yields the output value of −1.4.

This implies that the output action, to be performed when the room

temperature is 19°C, is to turn the regulator knob over the negative scale

positioning it at −1.4.



Fig. 14.2 Graphical inference method for single association FAM.

14.2.2 Correlation Matrix Encoding

Let ( A, B) be the fuzzy set pair associated by the FAM. Let X = { x 1, x 2, ...,

xn} and

Y = { y 1, y 2, ..., yp} be the universes of discourse of A and B respectively.

We could represent A and B by the numerical fit vectors A = ( a 1, a 2, ..., an



) and B = ( b 1, b 2, ..., bp) where ai = μ A( xi) and bj = μ B( yj). Here, μ A

and μ B are

the membership values of xi and yj with reference to the fuzzy sets A and B.

Example

The fuzzy sets ‘Moderately low’, ‘High’, ‘Fairly High’ and ‘Low’ in Example

14.2 have been represented using their fit vectors.

‘Moderately low’ : {(10, 0), (11, 0), (12, 0), (13, 0.3), (14, 0.6), (15, 1), (16,

1), (17, 1), (18,1), (19, 0.5), (20, 0)}

‘High’ : {(10, 0), (11, 0), (12, 0), (13, 0), (14, 0), (15, 0), (16, 0), (17, 0), (18,

0),

(19, 0.5), (20, 1)}

‘Fairly high’ : {(−5, 0), (−4, 0), (−3, 0), (−2, 0), (−1, 0), (0, 0), (1, 0), (2, 0.7),

(3, 0.7),

(4, 0)}

‘Low’ : {(−5, 1), (−4, 1), (−3, 0.45), (−2, 0), (−1, 0), (0, 0), (1, 0), (2, 0), (3,

0),

(4, 0), (5, 0)}



If we are able to frame the correlation association matrix [ M] n × p between

the fuzzy sets in a suitable manner, then given A the fit vector of the input

pattern, it is possible to recall B the associated output vector using A ο M =

B         (14.2)

Here, ‘�’ is the max-min composition relation given by

(14.3)

Example 14.4

If the fit vector for A and the correlation matrix M were given by A = (0.2,

0.3, 0.7, 1)

and

Then the recalled fit vector B given component-wise is

Hence, the recalled B vector is (0.7, 0.3, 0.4).



If it were possible somehow to encode the association ( A, B) in M then the

FAM system could exhibit perfect recall in the forward direction.

14.3 FUZZY HEBB FAMS

Most fuzzy systems adopted by applications make use of fuzzy Hebb FAMs.

Recall that (Chapter 4) for a given pair of bipolar row vectors ( X, Y), the

associative memory neural networks employ the correlation matrix as the

outer product of X and Y, i.e.

M = XT Y         (14.4)

In the case of fuzzy Hebbian matrix, we employ correlation minimum

encoding. In matrix form, the fuzzy outer product is given by M = AT B

where

mij = min ( ai, bj)       (14.5)



An autoassociative fuzzy Hebb FAM matrix would encode the pair ( A, A)

with the fuzzy auto- correlation matrix

M = AT A       (14.6)

Example 14.5

In Example 14.4, we chose an arbitrary M to demonstrate the recall of B =

(0.7, 0.3, 0.4), given

A = (0.2, 0.3, 0.7, 1). Now employing Eq. (14.5) for framing M, Now

presenting A to recall B′, we obtain



But in the reverse direction while attempting to recall A given B, the output is

The fuzzy Hebb matrix M illustrates two properties:

Property 1 The i th row of M equals the pairwise minimum of ai, with the

output pattern B. Also, the j th column of M equals the pairwise minimum of

bj with the input pattern A.

It can be seen that if A and B are such that for some k, l, ak = 1 or bl = 1

then the k th row of M is equal to B and the l th column of M equals A. In

general if ak and bl are at least as large as that of every bj or ai respectively

then the k th row of matrix M equals B and the l th column of M equals A.

Property 2 If there is any row of M which resembles B then the recall is

successful in the forward direction



i.e.

A M = B       (14.9a)

Also, if there is any column of M which resembles A then the recall is

successful in the backward direction

i.e.

B MT = A       (14.9b)

Example 14.6



Consider the fuzzy sets

A = (0.2, 0.3, 0.5, 0.6) and B = (0.1, 0.4, 0.5) Using Eq. (14.5), M = AT B

In the forward direction when A is presented, B is correctly recalled.

However, in the reverse direction when B is presented to recall A, Note, that

property 2 is violated in this example. While there is a row in M

which resembles B, there is no column in M which resembles A. Hence, the

recall is successful in the forward direction but not in the reverse direction.

Example 14.7

Consider the fuzzy sets

A = (0.3, 0.4, 0.5, 0.6) and B = (0.6, 0.2, 0.1) The correlation matrix M

Forward recall yields

A M = (0.6, 0.2, 0.1)



= B

Reverse recall yields

B MT = (0.3, 0.4, 0.5, 0.6)

= A.

Here, with property 2 being completely satisfied, successful recalls are made

in both directions.

The accuracy of recall in fuzzy Hebb FAMs using correlation minimum

encoding depends on the heights of A and B, i.e. h( A), h( B). The height h(

A) of a fuzzy set A is the maximum fit value or membership value of A, i.e.

(14.10)

Also, a fuzzy set is normal if h( A) = 1.       (14.11) i.e. there is

atleast one ai with h( ai) = 1.

If the fuzzy sets A and B are normal, i.e. h( A) = h( B) = 1 then a perfect

recall is ensured.

Also, if A M = B′ ≠ B then it holds that B′ ≠ B. Similarly if B MT = A′ ≠ A

then A′ ≠ A

i.e. if A′ ≠ A where A′ = ( a′1, a′2, ..., a′ n) and A = ( a 1, a 2, ..., an) then ai′

≤

ai for each i and



a′ k < ak for atleast one k.

Example 14.8

For the fuzzy sets A = (0.3, 0.4, 0.5, 0.6) and B = (0.2, 0.5, 0.1), h( A) = 0.6

and h( B) = 1. Therefore, B alone is a normal fuzzy set.

Computing M yields

Attempting to recall B is unsuccessful since

A M = (0.2, 0.5, 0.6)

= B′ ≠ B

This is so since h( A) ≠ h( B). Also observe that B′ ≠ B.

Example 14.9



For the two normal fuzzy sets A = (0.3, 1, 0.8, 0.7) and B = (0.4, 1, 0.6) since

h( A) = h( B) = 1, we must have successful recalls in both directions. Here, M

= AT B =

Recalling B results in

A M = (0.4, 1, 0.6) = B

and recalling A results in

B AT = (0.3, 1, 0.8, 0.7) = A.

The results of the correlation minimum bidirectional FAM theorem are: If M

= AT B then

(i) A M = B iff h( A) ≥ h( B) (ii) B MT = A iff h( B) ≥ h( A) (iii) A′ M ≠ B

for any A′

(iv) B′ MT ≠ B for any B′      (14.12) Correlation product

encoding provides an alternative fuzzy Hebbian



encoding scheme. In this scheme, we frame M the correlation matrix as

Example 14.10

Let A = (0.2, 0.3, 0.7, 1) and B = (0.7, 0.3, 0.4), then the matrix M encoding

the FAM rule ( A, B) using correlation product encoding is given by The

following results are supported by the correlation product bidirectional FAM

theorem

If M = ATB and A, B are non null fit vectors then,



14.4 FAM INVOLVING A RULE BASE

Let us suppose there are N FAM rules ( A 1, B 1), ( A 2, B 2), ..., ( AN, BN),

in other words, a rule base. Making use of the fuzzy Hebb encoding scheme

mentioned in Eq. (14.5) we obtain N FAM matrices Mi, i = 1, 2, ..., N. Now

if we were to frame a single correlation matrix M by superimposing N

different matrices using the scheme

M =

(14.15)

the superimposition fails to recall the vectors correctly since M is the matrix

AT � B where A, B are the pointwise maximum of the respective N fit vectors

Ak, Bk.

Example 14.11

Consider the three FAM rules ( Ai, Bi), i = 1, 2, 3 as Computing M 1, M 2, M

3 using the Eq. (14.5) results in Let us submit A 1, A 3 to recall B 1, B 3

A 1 ο M = (0.3, 0.3) ≠ B 1

A 3 ο M = (0.5, 0.4) ≠ B 3



The fuzzy solution approach is therefore to associate the input vector A with

each of the N FAM matrices Mi and additively superimpose the N

recalled vectors B′ i, i = 1, 2, ..., N. Thus, here the recalled vectors are

superimposed rather than the N matrices Mi. The input vector A activates N

different rules in parallel but to varying degrees. Thus, in the case of A

partially activating Ai, the output Bi, will also only partially resemble Bi.

The recalled vector B equals the weighted sum of the individual recalled

vectors B′ k. i.e.

B =



(14.16)

where the weights wk indicate the credibility or the strength of the k th FAM

rule ( Ak, Bk). In most practical applications we choose w 1 = w 2 = …

wN = 1. The recalled vector B is the normalized sum of the fit vectors B′ k.

Now we defuzzify the output B to result in a single crisp value of the output

universe of discourse Y = { y 1, y 2, ..., yp}. Any of the defuzzification

schemes could be employed. Recollect that Example 14.3 demonstrated this

procedure for a rule base with two FAM rules. A general FAM system

architecture for a rule base is illustrated in Fig. 14.3.

Fig. 14.3 FAM system architecture for a rule base.

14.5

FAM

RULES

WITH

MULTIPLE

ANTECEDENTS/CONSEQUENTS



FAM systems which encode single associations can be extended to encode

rules with multiple antecedents and consequents.

Thus, rules of the type

and so on, can be encoded in a FAM.

For instance, consider the rule if X 1 is A 1 and X 2 is A 2 then Y is B. This

rule denotes an association ( A 1, A 2; B) where A 1, A 2 are the antecedent

fuzzy sets and B is the consequent fuzzy set. The universes of discourse for

the fuzzy variables Xi and Y are defined beforehand. Infact, each of the

universes of discourse could comprise a group of fuzzy set values A 1, A 2, A

3, ..., Ak.

Similarly, a different group of fuzzy set values could define the universe of

discourse of the output fuzzy set.

Example 14.12

Consider the following multi-antecedent FAM rule.

If the earthquake magnitude is very low and the epicentral distance is very

close and the peak ground acceleration/spectral intensity is very high then

the damage magnitude is low.

Here, earthquake magnitude ( X 1), epicentral distance ( X 2), peak ground

acceleration/spectral intensity ( X 3) and damage membership ( Y) are the

fuzzy set variables. The fuzzy sets defined are illustrated in Fig. 14.4.





Fig. 14.4 Fuzzy sets for the rule defined in Example 14.12.

Observe that the respective universes of discourse for the fuzzy variable X 1,

X 2, X 3 and Y comprise the library of fuzzy sets as follows: Earthquake

magnitude

{Very low, low, nearly medium, medium, nearly high, high, very high}

Epicentral distance

{Very close, little close, close, very near, fairly near, near, far, very far}

Peak ground acceleration/spectral intensity

{Very low, low, nearly low, medium, nearly high, high, very high}



Damage membership

{Low, medium, high}

A FAM rule base with two antecedents and a single consequent is defined

here as:

If X is Ai and Y is Bj then Z is Ck i = 1, 2, ..., p; j = 1, 2, ..., q; k = 1, 2, ..., r

This can be represented conveniently using a matrix representation as shown

in Fig. 14.5.

Fig. 14.5 FAM matrix representation.

In the case of multiantecedent rules, Mamdani (1977) and other investigators

have suggested using multidimensional matrices for the FAM

representation. But for most practical applications multidimensional matrices

are inconvenient. Instead, technologists find the graphical inference method

elegant in usage. However in this case, it is necessary that compound

associations of the FAM rule base are decomposed into simpler associations.

14.5.1 Decomposition Rules

The decomposition of compound associations in FAM rules involving

multiple antecedents/consequents, into its simpler constituents is enumerated



as:

(a) Compound rule

If X is A then Z is C or W is D

Decomposed rule

If X is A then Z is C

If X is A then W is D

(b) Compound rule

If X is A then Z is C and W is D

Decomposed Rule

If X is A then Z is C

If X is A then W is D

(c) Compound rule

If X is A or Y is B then Z is C

Decomposed rule

If X is A then Z is C

If Y is B then Z is C

(d) Compound rule

If X is A and Y is B then Z is C

Decomposition of the rule in this case is not possible.



It may be verified that the rules of decomposition are based on the laws of

propositional calculus (refer Chapter 7).

Example 14.13

Consider the FAM rule base

R 1 : If X is A 1 and Y is B 1 then Z is C 1

R 2 : If X is A 2 and Y is B 2 then Z is C 2 or Z is C 3

R 3 : If X is A 3 or Y is B 3 then Z is C 3

We proceed to demonstrate the applications of the graphical inference

method on the above rule base. Decomposing the rule base, we get R′1 : If X

is A 1 and Y is B 1 then Z is C 1

R′2 : If X is A 2 and Y is B 2 then Z is C 2

R′3 : If X is A 2 and Y is B 2 then Z is C 3

R′4 : If X is A 3 then Z is C 3

R′5 : If Y is B3 then Z is C 3

Let a, b be the inputs to the FAM rule base. Figure 14.6(a) illustrates the

propagation of membership functions when a, b are presented. Note that

inputs a, b fire rules R′

2

1, R′2 and R′3 to a degree min ( m 11, m 12), min( m 1 , m 2

3

3

2 ) and min( m 1 , m 2 ) respectively. The aggregate of the outputs and the

subsequent defuzzification using centroid method have been shown in Fig.



14.6(b). The final crisp output is shown as z.

Fig. 14.6 Graphical inference method on multiantecedent FAM rules.



14.6 APPLICATIONS

In the section, we discuss two classical problems to demonstrate the

application of FAM and its graphical method of inference.

14.6.1 Balancing an Inverted Pendulum

The problem of Inverted Pendulum is a classical fuzzy control problem.

Here, the problem is to adjust a motor to balance the inverted pendulum in

two dimensions. The problem comprises two fuzzy state variables, namely

angle θ (fuzzy state variable x 1) which the pendulum shaft makes with the

vertical and the angular velocity Δθ (fuzzy state variable x 2). Here, if θ = 0

then the shaft is in the vertical position. θ is positive if the shaft is to the

right of the vertical and negative if it is to the left. The instantaneous angular

velocity Δθ

is approximated as the difference between the present angle measurement θ t

and the previous measurement θ t − 1.

The control fuzzy variable is u( t) which is the torque applied to the pole

located at the tip point of the pendulum in the anticlockwise direction. The

control action can be positive or negative depending on whether the

pendulum falls to the left or right of the vertical respectively. If the pendulum



staff is vertical then the control action should be zero. Figure 14.7 illustrates

a model of the inverted pendulum.

Fig. 14.7 Model of an inverted pendulum.

The linearized discrete time state space equations for the inverted pendulum

problem represented as matrix difference equations are



We restrict the universes of discourse to small intervals, namely [−3, 3]

degrees for the angle θ, [−7, 7] degrees per second for the angular velocity

Δθ



and [−28, 28] for the output action u. Since the two fuzzy state variables and

the output variable move over a positive, zero and negative scale, we quantize

their universes of discourse into overlapping fuzzy sets as given in Fig. 14.8.

Fig. 14.8 Fuzzy set descriptions for the inverted pendulum problem.

The fuzzy rules associated with the problem are shown in the FAM table

presented in Fig. 14.9. We have chosen a restricted FAM representation.

Fig. 14.9 FAM matrix representation for the inverted pendulum problem.

We now begin a simulation of the control problem using the graphical

method of inference. Let us start with the initial conditions θ = 0.5°, Δθ =

−1.5 degrees per second. We demonstrate the simulation for three cycles, k =

0, 1, and 2. In the first cycle for k = 0, the initial conditions fire the following

rules:

R 1 : If θ is Z and Δθ is Z then u is Z.

R 2 : If θ is Z and Δθ is NM then u is NM.

R 3 : If θ is PM and Δθ is NM then u is Z.

Figure 14.10(a) illustrates the membership propagation for the inputs x 0

1 = θ

= 0.5 and x 0



2 = Δθ

= −1.5 degrees/second. Observe that x 0

1 triggers the fuzzy sets Z and PM

while x 0

2 triggers NM and Z. Figure 14.10(b) shows the union of the truncated fuzzy

consequents and the defuzzified output using the centroid method. Here the

output at the end of the simulation cycle ( k = 0) is u(0) = −4.



Fig. 14.10 Inverted pendulum problem: results at the end of simulation cycle

k = 0.

We substitute the values obtained in the k = 0th cycle in Eq. (14.17) to obtain

the initial conditions for the next cycle ( k =1).

The only rule fired is



If θ is NM and Δθ is PM then u is Z.

Figure 14.11(a) shows the membership propagation and Fig. 14.11(b) the

defuzzified output value. The output obtained is u(1) = 0.

Fig. 14.11 Inverted pendulum problem: results at the end of the simulation

cycle k = 1.



We substitute x (1)

(1)

1

, x 2

and u(1) in Eq. (14.17) to obtain the initial

conditions for the next simulation cycle ( k = 2).

We get

x (2)

1

= 2,



x (2)

2

= 2

The rules fired are

If θ is P and Δθ is PM then u is PM.

If θ is P and Δθ is Z then u is PB.

Figure 14.12(a) shows the membership propagation and Fig. 14.12(b) the

defuzzified output,

u(2) = 8. Thus, each simulation cycle beginning from k = 0 proceeds using

the x 1, x 2, values obtained in the previous cycle. We conclude the

simulation cycles here. But in reality, the cycles may have to be repeated

many number of times.

Fig. 14.12 Inverted pendulum problem: results at the end of the simulation

cycle k = 2.

14.6.2 Fuzzy Truck Backer-upper System

In this section we demonstrate the application of FAM inference procedure

for the problem of Fuzzy Truck Backer-upper system (Nguyen and Widrow,

1989) as discussed by Seong-Gon Kong and Kosko (1994).

Figure 14.13 shows the truck and the loading area. Here, the three state

variables φ, x, and y determine the position of the truck. φ is the angle of the



truck with the horizontal and the coordinate pair ( x, y) specifies the position

of the rear center of the truck.

The objective is to make the truck arrive at the loading dock at a right angle,

i.e. θ f = 90o and in such a way that the rear center ( x, y) is aligned with ( xf ,

yf), the position of the loading dock. Here, only backing up motion of the

truck is considered. The truck moves backward every stage by a certain

distance. The loading zone and the loading dock are marked as shown in the

figure.

Fig. 14.13 Fuzzy truck backer-upper system.

The output to be computed is the steering angle θ that will back up the truck

to the loading dock from any given position and from any angle in which it is

currently positioned in the loading zone. The input variables have been

reduced to φ—the angle of the truck and x—the



x coordinate of its position. The y coordinate has been ignored assuming

enough clearance between the truck and the loading dock.

The fuzzy set values of the input output variables and their ranges have been

presented in Table 14.2.

Table 14.2 Fuzzy set values and ranges of input-output variables of the fuzzy

truck backer-upper system Input/output variable

Fuzzy set values

Range

RB : Right below

LB : Left below

RU : right upper

φ

RV : Right vertical

−90 ≤ φ ≤ 270

VE : Vertical



LV : Left vertical

LU : Left upper

LE : Left

RI : Right

x

LC : Left centre

0 ≤ x ≤ 100

CE : Center

RC : Right centre

NB : Negative big

NM : Negative medium

NS : Negative small

θ

ZE : Zero

−30 ≤ θ ≤ 30

PS : Positive small

PM : Positive medium

PB : Positive big

Figure 14.14 illustrates the fuzzy sets of the input/output variables. The FAM

bank associated with the truck backer-upper system is shown in Fig.



14.15. There are 35 FAM rules associated.



Fig. 14.14 Fuzzy membership functions for the fuzzy truck backer-upper

system.

Fig. 14.15 FAM table of the fuzzy truck backer-upper system.

Making use of the graphical inference procedure and centroid method of

defuzzification, the approximate contour of the plot of the truck backing for

an initial condition ( x, φ) = (20, 30) is as shown in Fig. 14.16.

Fig. 14.16 Truck trajectories (approximate contour) for an initial position ( x,

φ) = (20, 30).

SUMMARY

Fuzzy associative memories (FAMs) are fuzzy systems which map fuzzy sets

to fuzzy sets and behave like associative memories.

A FAM encodes fuzzy rules with single associative or compound

associations e.g.



If X is A then Y is B.

If X 1 is A 1 and X 2 is A 2 … and Xn is An then Y 1 is B 1 and Y 2 is B 2 …

and Yp is BP.

The graphical method of inference is an elegant method to infer an output B

given an input A for a single association FAM system comprising a bank of

M rules. Correlation matrix encoding could be employed for inference in

fuzzy Hebb FAMs. But the accuracy of recall depends on the heights of the

fuzzy sets A, B involved in the association, i.e. h( A) should be equal to h( B).

Besides, this method is not suitable for application on a FAM bank of M

rules.

In the case of a FAM system with multiple antecedents/consequents, the

graphical method of inference can be successfully employed after the rules

have been simplified using the rules of decomposition.

The application of FAM is demonstrated on two classical problems, namely

balancing an inverted pendulum and fuzzy truck backer-upper system.

PROGRAMMING ASSIGNMENT

P14.1 Aircraft landing control problem (Timothy Ross, 1997) The

problem deals with the simulation of the final descent and landing approach

of

an aircraft. The two input state space variables are the height h of the aircraft

above

the ground and the vertical velocity v of the aircraft. The output variable is

the control force f.

The control equations for this problem are

vi + 1 = vi + fi

hi + 1 = hi + vi       (i)



where vi, hi and fi are the values acquired in the previous simulation cycle

and vi + 1 , hi + 1 are the new values.

Tables P14.1(a), (b), (c) show the membership values for the fuzzy sets of

height, vertical velocity, and output force.

Table P14.1(a) Membership values for height

0

100

200

300

400

500

600

700

800

900

1000

Large (L)

0

0

0

0



0

0

0.2

0.4

0.6

0.8

1

Medium (M)

0

0

0

0

0.2

0.4

0.6

0.8

1

0.8

0.6

Small (S)



0.4

0.6

0.8

1

0.8

0.6

0.4

0.2

0

0

0

Near zero (NZ)

1

0.8

0.6

0.4

0.2

0

0

0



0

0

0

…

Table P14.1(b) Membership values for velocity

−30

−25

−20

−15

−10

−5

0

5

10

15

20

25

30

Up large (UL)

0



0

0

0

0

0

0

0

0

0.5

1

1

1

Up small (US)

0

0

0

0

0

0

0.5



1

0.5

0

0

0

Zero (Z)

0

0

0

0

0

0.5

1

0.5

0

0

0

0

0



Down small (DS)

0

0

0

0.5

1

0.5

0

0

0

0

0

0

0



Down large (DL)

1

1

1

0.5

0

0

0

0

0

0

0

0

0

…

Table P14.1(c) Membership values for control force

−30

−25

−20

−15



−10

−5

0

5

10

15

20

25

30

Up large (UL)

0

0

0

0

0

0

0

0

0

0.5



1

1

1

Up small (US)

0

0

0

0

0

0

0

0.5

1

0.5

0

0

0

Zero (Z)

0

0



0

0

0

0.5

1

0.5

0

0

0

0

0

Down small (DS)

0

0

0

0.5

1

0.5

0

0



0

0

0

0

0

Down large (DL)

1

1

1

0.5

0

0

0

0

0

0

0

0

0

The FAM table is shown in Table P14.1(d).



.

Assume the initial conditions to be

Height h 0 = 900 ft

Velocity v 0 = −18 ft/sec

(a) Trace the simulation cycles for five steps.

(b) Write the program to compute the control force starting from the stated

initial conditions for N number of simulations cycles. Choose N to be a large

number. Repeat the simulation for different initial conditions.

(c) For the values of h and v acquired in the simulation experiment, plot h vs

v to get the profile of the descent.

SUGGESTED FURTHER READING

Adaptive FAM (AFAM) (Kosko, 1994) is a time varying FAM which

provides a mapping between fuzzy sets that vary with time. Fu-lai Chung and

Tong Lee (1994) have proposed a high capacity FAM model called FRM

(Fuzzy Relational Memory). Timothy Ross (1997) discusses interesting

applications of FAM especially using the graphical method of inference.
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Chapter15

Fuzzy Logic Controlled Genetic

Algorithms

Almost all the computing, including computational machines and finite

element analysis are considered as hard computing. They are based on

mathematical approaches to problem solving and they imbibe their basic

characteristics from mathematics. On the other hand, soft computing

methods are based on biological approaches to problem solving, where

mathematics does not play as central a role as it does in engineering problem

solving methods. Hard computing software considers both input and output

to be precise to within round off. In fact, there may not be much use for high

degree of precision in most engineering problems since for example, material

parameters cannot be determined with a high degree of precision whereas

soft computing methods have inherited imprecision tolerance and non

universality from biological systems. An added attraction of soft computing

is due to the imprecision tolerance and random initial state of the soft

computing tools.

This introduces a random variability in the model of the mathematical

systems, very similar to random variability, which exists in the real systems.

15.1 SOFT COMPUTING TOOLS

15.1.1 Fuzzy Logic as a Soft Computing Tool



The realization of uncertainty, vagueness and ambiguity in the world has led

to the concept of fuzziness. In the last three decades, significant progress has

been made in the development of fuzzy sets, fuzzy logic theory, and their use

in engineering applications. The successful application of fuzzy sets and

fuzzy logic can be attributed to the fact that fuzzy theory reflects the true

situation in the real world, where human thinking is dominated by

approximate reasoning logic. This is suited for applications where the ability

to model real-world problems in precise mathematical forms is difficult. The

foundation of fuzzy logic is fuzzy set theory, first proposed by Bellman and

Zadeh (1970), Wang and Wang (1985a, b), Soh and Yang (1996), Yang and

Soh (2000) and Rao (1987), applied fuzzy optimization techniques. In a

traditional optimization techniques, the constraints must strictly be satisfied.

However, it is not reasonable to discard those designs that slightly violate one

or more constraints during the early design stage. These complexities and

uncertainties encountered in the optimization and design of real structures

provide the main motivation for the fuzzy integrated system. Hence, fuzzy

logic can be considered as a soft computing tool.

15.1.2 Genetic Algorithm as a Soft Computing Tool

As seen in Chapters 8 and 9, genetic algorithm is a computational model

based on natural evolution (Holland, 1975). A system to be optimized is

represented by a binary string which encodes the parameters of the system. A

population of strings with initial random parameters is used. A number of

generations are simulated with operators representing the major elements of

evolution such as competition, fitness based selection, recombination, and

mutation. The whole process is highly random. However, the evolutionary

process lead to filter individuals in the population closer to satisfying the

objective function of the optimization problem. Genetic algorithms have all

the characteristics of soft computing. The methodology is highly robust and

imprecision tolerant. If a unique optimum exists, the procedure approaches it

through gradual improvement of the fitness and if the optimum is not unique,

the method will approach one of the optimum solutions.



15.2 PROBLEM DESCRIPTION OF OPTIMUM DESIGN

In case of civil engineering or machine tool structure, the process of

simultaneous sizing, geometry, and topology can be stated as follows.

Find the particular set of sizing variables A, geometric variables R, and

topological variable T such that the structural weight W( R, A, T) W( R, A, T)

→ min (15.1)

subject to

(15.2)

i = 1, 2, ..., nj j = 1, 2, ..., n

in which A and R are vectors of member cross-sectional area and joint

coordinates respectively

(as discussed in Chapter 9). T represents the set of existing members, L and

U

superscripts denote the lower and upper bounds respectively, Cij( R, A, T)

specify the constraints that limit the relevant design variable domains, nc are

total number of constraint types, and nj are total number of constraints of j th

constraint type.

The constraint types may include the constraints of

1. member cross-sectional areas,

2. joint coordinates,

3. member allowable stresses,

4. joint allowable displacements,



5. member buckling strength,

6. member length, and

7. member slenderness ( L/ r).

The optimum design problem described here refers to the problem of finding

an optimal structure within a predefined design domain, satisfying the design

constraints and loading and support conditions. The general design is shown

in Fig. 15.1 . The structure can be evolved within the design domain or inside

the design domain. The structure can have any number of nodes and any

number of elements. Some nodes may be fixed to satisfy the

requirements of loading and supporting, and the others can occupy any

position within the design domain. The objective of the optimum design is to

minimize the weight of the structure. The formulation for this problem can

be expressed in terms of Eqs. (15.1) and (15.2).

Fig. 15.1 General design domain.



15.3 FUZZY CONSTRAINTS

The classical or crisp set and mathematical logic divide the world into “yes”

or “no”, “white” or “black”, and “true” or “false” as discussed in crisp logic.

On the other hand, fuzzy sets deal with the objects that are a matter of degree

with all possible grades of truth between “yes” or “no” and the various

shades of colours between “white” and “black”. Fuzzy set and fuzzy logic

has been discussed in detail in Chapters 6 and 7. Herein, we will discuss the

relevance of fuzzy set to structural optimization.

The fuzzy set theory (Zadeh, 1987) has a function that admits a degree of

membership in the set from complete exclusion (0) to absolute inclusion (1).

Such a function is called a membership function μ i( y) of the object ‘ y’ in

the fuzzy set Ã: μ i( y): Rn → [0, 1]. The membership represents a certain

degree of belonging of the object in the fuzzy sets. The transition from not

belonging to belonging is gradual, which gives one or some means of

handling vagueness. Fuzzy sets thus, overcome a major weakness of crisp

sets. Fuzzy sets do not have an arbitrarily established boundary to separate

the members form non-members.

An inequality constraint Cij in Eq. (15.2) for optimum design problems can

be defined to a fuzzy constraint

with an α membership degree as shown in



Fig. 15.2(a) . In Fig. 15.2(a),

and

are respectively the lower and upper

bounds of the corresponding object Cij and

and

are zero. This fuzzy

constraint becomes a “hard constraint” or a crisp set as shown in Fig.

15.2(b). At the same time, the value α also gives us a description about how

the constraint is satisfied. If α = 1, the constraint is fully satisfied and if zero,

the Cij is not satisfied. Furthermore, its value between 0 and 1 implies that

the constraint is satisfied to the relevant degree. Hence, on the fuzzy set

theory introduced above, Eqs. (15.1) and (15.2) can be transformed into the

following fuzzy optimization problem as

W( R, A, T) → min     (15.3)

subject to

(15.4)



In order to understand the principles, let us discuss an optimization problem

with fuzzy hard constraint or crisp set.

Fig. 15.2(a) Fuzzy constraint



with a membership degree.

Fig. 15.2(b) Fuzzy hard constraint.

15.4 ILLUSTRATIONS

15.4.1 Optimization of the Weight of A Beam

Consider a beam of span l = 200 cm carrying a load of P = 100 N/unit length

with E = 2 ×

106 N/cm2. It is proposed to optimize the weight to meet deflection limit of

0.2 cm and stress of 800 N/cm2. The beam is of rectangular cross-section

with dimensions b × d (see Fig. 15.3) .

Fig. 15.3 Simply supported beam.

Solution

P = load/unit length = 100; l = 200;



Weight of the beam, W = ρ Lbd

Since ρ, l are constants

min → W( b, d) = bd

C 1 = stress = λ ≤ 800 N/cm2

C 2 = deflection = δ ≤ 0.2 cm

C 1 = σ =

≤ 800, or bd 2 ≤ 3750, or d =

The d vs b curve is shown as d 1 curve in Fig. 15.4.

The d versus b curve is shown as d 2 curve in Fig. 15.4 . The optimum value

is at the point A where b = 13.6 cm and d = 16 cm and gives W = bd =

225.76.



Fig. 15.4 Fuzzy optimization.

If imprecise information, i.e. fuzzy is available with respect to deflection or

stress limits, it is necessary to find out how optimum solution changes for

any variation of constraints. Assuming that the stress limits and deflection

limits are raised by 20%, i.e. σ* = 960; δ* = 0.24 for the new problem, d =

(3125/ b)1/2 for stress limit denoted by d 3 curve and d = (52083.33/ b)1/3

for deflection limit denoted by d 4 curve can be drawn as shown in Fig. 15.4.

The optimum value is at B for which b = 11.3; d = 16.6 giving W = bd =

187.58.

The cost function curve for bd = 180 is also shown in Fig. 15.4 . Now it is

very clear if the limits of stress and deflection are imprecise to within 20%, a

new optimization solution is obtained as b = 11.3; and d = 16.6 . Here, it

may be noted that both constraints control the design and the end result

indicates how far the weight objective function sets increase due to fuzzy

constraints.

Even though in the above example “crisp set” or fuzzy “hard” constraint is

considered, nevertheless this example explains the method of treating fuzzy

constraints in an optimization problem.

15.4.2 Optimal Mix Design for High Performance Concrete

High performance concrete (HPC) is cement concrete in which each

ingredient performs effectively to combine towards fresh concrete as well as

hardened concrete properties. HPC consists of all ingredients of conventional

concrete with chemical admixtures as super plasticizers and admixtures like

fly ash and silica fume. The following materials are used in HPC: 1. Cement

—43 grade (ordinary Portland cement)



2. Fine aggregate—naturally available sand

3. Coarse aggregate—locally available blue granite

4. Mineral admixtures—silica fume imported from Australia

5. Chemical admixtures—super plasticizer (Conplast SP 337)

A general discrete sizing structural optimization problem is posed as W = F(

x)      (15.5)

subject to

gj( x) ≤ 0 for j = 1, 2, ..., NC      (15.6) satisfying      (

Xi)min ≤ Xi ≤ ( Xi)max for i = 1, 2, ..., mg      (15.7)

Here, NC and mg represent the number of constraints and the number of

independent design variables and W = F( X) is the objective function. gj is

the j th constraint and the inequalities in

Eq. (15.7) are known as side constraints on the design variables.

In case of high performance concrete, W is the cost of the mix per unit

weight and is called cost function given by

(15.8)

It is necessary to design HPC mix for the strength of 120 MPa and for a

slump of 120 mm. Considering ±10% tolerance, the constraint equation is

written as

108 ≤ f ≤ 132      (15.9a)

108 ≤ s ≤ 132      (15.9b)

where f is the strength and s the slump given by (obtained by training 23

data using single hidden neural network with single hidden neuron)



= −0.7388 X 1 − 0.6813 X 2 + 3.330 X 3

+ 0.00429 X 4 + 0.3616 X 5 + 0.4141          (15.10a)

= 0.863 X 1 + 0.686 X 2 − 2.3558 X 3

+

0.00862 X 4

+

0.19856 X 5

−

3.039           (15.10b)

The constraint equation for strength is written as

C 1 = 0       if 108 < f < 132

C 1 = (1 − f/108)  if f < 108



C 1 = ( f/132 − 1)   if f > 132

Similarly, the constraint equation for slump is written as

C 2 = 0      if 108 < s < 132

C 2 = (1 − s/108)   if s < 108

C 2 = ( s/132 − 1)   if s > 132

For GA (genetic algorithm), the constrained problem is transformed into

unconstrained problem as explained in Chapters 8 and 9 as

Φ( X) = F( X) {1 + pC}

where

C =

where p can be taken as 10 for all practical purposes.

Assume, we represent the constituents by 5-bit strings. ( Xi)min is

represented by 00000 and ( Xi)max is represented by 11111. The increment (

Xi)inc in the design variable is calculated as

where nb is the number of bits and here nb = 5. To get the corresponding

proportion of the constituent of bit string of 10110, the decoded value is 1 ×

24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20 = 22

and the proportion of the constituents corresponding to 10110 is given by Xi

= ( Xi)min + 22( Xi)inc

To start the algorithm, the initial population is created randomly. If the mix

consists of five constituents and any individual in the population represents

five bits, each constituent contains 25 bits. The objective function and

constraints are calculated for every individual and genetic algorithm is

applied as explained in Chapter 9 and the optimal mix is arrived at as

Cement = 1



Sand = 1.36

Coarse aggregate = 2.95

Water cement ratio = 0.4190

Silica fume = 21.3%

Superplasticizer = 4.03

The above mix gives the strength of 129 MPa and a slump of 125 mm and

the cost of concrete mix/unit volume is given as Rs 3.50.

15.5 GA IN FUZZY LOGIC CONTROLLER DESIGN

For optimal control problems, fuzzy logic techniques are primarily applied

since quick control strategy is needed and imprecise and qualitative

definition of action plans are available. While designing an optimal fuzzy

controller, one has to look for two primary activities.

1. Find optimal membership functions for control and action variable.

2. Find an optimal set of rules between control and action variable.

In the above two cases, GAs have been suitably used. Figure 15.5 shows

typical membership functions for a variable (control or action) having three

choices low, medium, and high. Since the maximum membership function

value of these choices is always one, the abscissae marked by Xi are usually

chosen by the user. These abscissae can be treated as variables in GA and an



optimization problem can be posed to find these variables for minimizing or

maximizing a control strategy such as time of variable operation, product

quality, and others. Consider an example given by Deb (1999) to illustrate

how GA can be uniquely applied to the above problem. Let us assume that

there are two control variables (temperature and humidity) and there are

three operations for each, low, medium, and high. There is one action

variable (water jet flow rate) which also takes three choices low, medium,

and high.

Considering individual effect of each control variable separately, there are

total of 4 × 4 − 1 = 15 combinations of control variables possible as shown

in Table 15.1.

Fig. 15.5 Fuzzy membership function and typical variables used for optimal

design.

Table 15.1 Action variable for a string representing a fuzzy rule base

Humidity

Temperature

Low

Medium

High

No action

Low

High

Medium

−



Medium

Medium

Low

−

Medium

Medium

High

Medium

High

−

−

No action

−

−

High

−

Thus, finding an optimal rule base is equivalent to finding the four operations

(fourth operation—not known) or the action variable for each combination of

the control variables. A GA with a string length of 15 and with a ternary

coding can be used to represent the rule base for this problem.

Considering real values 1 to 4 for representation as 1—Low, 2—Medium, 3



—High,

4—No action, thereby signifying the absence of the corresponding

combination of action variables in the rule base. Table 15.1 shows the rule

base and this can be represented by the following string.

3 1 2 4 2 4 3 4 4 2 4 3 2 2 4

Although this rule base may not be the optimal one, GA can process a

population of such rule bases and finally find the optimal rule base. Once the

rows present in the rule base are determined from the string user, defined

fixed membership functions can be used to simulate the underlying process.

The objective function can be evaluated and the usual single point cross over

and a mutation operator (one allele mutating to one of three other alleles) can

be used with this coding. GA can find the optimal number of rules to solve

the problem. If one wants to use binary strings instead of ternary strings and

two bits are used to represent each of four operations, a total of 30 bits is

necessary to represent a rule base. This kind of technique has been used to

design fuzzy logic controller for mobile robot navigation among dynamic

obstacles (Deb et al., 1998). Both optimum membership function

determination and optimal rule base tasks can be achieved simultaneously by

using a concatenation of two codings mentioned above. A part of the overall

string will represent the abscissae of the control variables and the rest of the

string will represent the rules present in the rule base. Fitness is calculated as

explained above.

15.6 FUZZY LOGIC CONTROLLER



Soh and Yang (1996), Yang and Soh (2000) have investigated fuzzy based

structural optimization using GA. Using the approach of Soh and Yang as

seen in Section 15.4, a fuzzy logic controller (FLC) a rule based system

incorporating the flexibility of human decision making is used for fuzzy

structural optimization. The fuzzy functions are intended to represent a

human expert’s conception of the linguistic terms, thus giving an

approximation of the confidence with which precise numeric value is

described by a linguistic label.

15.6.1 Components of Fuzzy Logic Controller (FLC)

As shown in Fig. 15.6, fuzzy logic controller process is divided into three

stages.

(a) Fuzzificataion—To calculate fuzzy input (i.e. to evaluate the input

variables with respect to corresponding linguistic terms in the condition

side).

(b) Fuzzy inference—To calculate fuzzy output (i.e. to evaluate the activation

strength of every rule base and combine their action sides).

(c) Defuzzification—To calculate the actual output (i.e. to convert the fuzzy

output into precise numerical value).

Fig. 15.6 Framework of fuzzy logic controller (FLC).

15.6.2 Fuzzy IF-THEN Rules

Fuzzy rules take the form IF (conditions) and THEN (actions), where



conditions and actions are linguistic variables, respectively. An example of

Fuzzy IF-THEN rule is given below.

Increase interest rates slightly if unemployment is low and inflation is

moderate.

Increase interest rates sharply if unemployment is low and inflation is

moderate but rising sharply.

Decrease interest rates slightly if unemployment is low but increasing and

inflation rate is low and stable.

The primary format of IF-THEN rules is given in Fig. 15.7

Fig. 15.7 Format of IF-THEN rule.



Fig. 15.8 Fuzzy constraint for stress.

Example

Volume is small if pressure is high.

Usually in civil engineering, most of these specifications in codes and the

functional requirements set by the users must be given in natural language to

describe the expert’s knowledge of design modifications.

In usual structural optimization, the stress constraint written as

(15.11)

is a member stress constraint, where σ i is the stress in member ‘ i’ and and

are the lower and upper bounds of the allowable stress. But in case of fuzzy

optimization, the Eq. (15.11) is replaced as

(15.12)

with relevant α membership degree similar to Fig. 15.2 as in Fig. 15.8.

Here, the symbol means fuzzy variable operator and α represents a series of

linguistic variables that means “very very small”, “small”, “medium”,



“large”, “very large”, and “very very large” and so forth. According to Zadeh

(1987), the following seven fuzzy variables are usually in the study of

structural optimization as negative large (NL), negative medium (NM),

negative small (NS), zero (ZE), positive small (PS), positive medium (PM),

and positive large (PL). They are defined by the membership functions as

shown in Fig. 15.9 . For the convergence of implementation, seven fuzzy

variables are assigned seven integer reference numbers, namely

−3, −2, −1, 0, 1, 2, 3 respectively.

If the allowable stress is 140 MPa and the tolerance for each unit is 5Mpa, X

axis is also given in terms of stress values. Similarly, one can define seven

fuzzy membership functions for displacements as well as for any other

variable.

As explained before, heuristic fuzzy rules can be written as

Rule 1: IF the maximum of violated member stress constraints is PS and all

the displacement constraints are inactive

THEN the change of the corresponding member cross sectional area is PS.

Rule 2: IF all constraints are inactive and the minimum of member stress

constraints is NL

THEN the change of the corresponding member cross-sectional area is NS.

As an input, the constraint Cij is usually classified as 1. active for ZE,

2. inactive for NL, NM, and NS, and

3. violated for PS, PM, and PL.

On the other hand for the output, the modification of the member cross-

sectional areas has the possibilities, NL, NM, NS, ZE, PS, PM, and PL.

Fuzzy controller inputs are usually crisp numbers. Fuzzy inputs may also



be considered in the case of uncertain or noisy measurements and crisp

numbers may be defuzzified. Figure 15.10 shows the application of Rule 1.

The degree of fulfilment (DOF) of Rule 1 is 0.4. The total fuzzy output μout

is the union of the two outputs shown in Fig. 15.9 . At this point we need to

defuzzify and obtain the crisp value for Δ A* representative of μout as

explained in Chapters 6 and 7.



Fig. 15.9 Membership function for fuzzy variable.

Fig. 15.10 Evaluation of the Rule 1.

15.7 FLC-GA BASED STRUCTURAL OPTIMIZATION

First, coding scheme is to be defined and the initial population is produced.

The computation with genetic operators is used to evaluate fitness function

with respect to the objective function. Figure 15.11 shows the FLC-GA based

optimization procedure. Using FLC we can get the expert’s experience in



fuzzy rule base of FLC. Hence, the search can react optimum solution

quickly. As a result, computing time is very much reduced. The predefined

probability and fuzzy representation of design constraints causes FLC to

reduce the risk of premature problem solution caused by improper rule.

Fig. 15.11 Flow chart of FLC GA based optimization.

15.8 APPLICATIONS

15.8.1 Optimum Truss

Yang and Soh (2000) have found out the optimum truss structure within the

given design domain as shown in Fig. 15.12 . All the truss members are

selected from a set of 30 standard sections

(i.e. W 14 × 22 through W14 × 426). E = 201 GPa, fy = 248.8 MPa, and ρ =

78.51 kN/cu m, allowable tensile stress < 0.6 fy, allowable slenderness ratio

L/ r is 300 for tension members

and 200 for compression members, the length of the members 5 m < L < 35

m, the deflection

δ < L/1000 (i.e 70 mm), and the allowable buckling stress must be

determined from buckling consideration. Coordinates of the joints must be

randomly selected with a step of 0.5 m. Soh and Yang (1996) used a

population size of 2000, maximum generation of runs 100, and the

probabilities of reproduction, cross over and mutation 0.1, 0.8 and 0.1

respectively. The solutions obtained by the authors are given in Table 15.2.

Table 15.2 Optimal results

Member

Section



Member

Section

Position

Value

1−2

W14 × 74

2−5

W14 × 61

X5

3.5

2−3

W14 × 109

2−6

W14 × 61

Y5

6.0

3−4

W14 × 132

3−6

W14 × 74



X6

12.5

4−9

W14 × 211

4−7

W14 × 82

Y6

9.0

1−5

W14 × 132

4−8

W14 × 61

X7

23.5

5−6

W14 × 132

W

451.63 kN

Y7

10.0



6−7

W14 × 176

Popl size

2000

X8

35.0

7−8

W14 × 211

Generation

50

Y8

10.0

Iteration

100,000

.



Fig. 15.12 Optimal truss configuration.

15.8.2 112 Bar Dome Space Truss

Soh and Yang (1996) have analysed 112 bar space truss dome shown in Fig.

15.13. For clarity, the joint members are circled and the members of the

dome have been categorised into two groups. The structure has been

subjected to a vertical loading at each unsupported joint. The detailed data

are 5 kN at node 1, 0.4 kN at nodes 17, 23, 29, and 35, 1.2 kN at nodes 16,

18, 22, 24, 28, 30, 34 and 36 and 2 kN for other joints. All loads are acting

downwards. All the joints were allowed to move vertically within the limit

defined by fundamental requirements. Thus, there are total of five design

variables, which include two sizing variables and three independent

coordinate variables ( Z 1, Z 2, Z 3) as shown in Fig. 15.13 . The objective is

to minimize the weight of the structure subjected to constraints in stress,



displacement, and buckling. The properties and allowable values are given in

Table 15.3.

Fig. 15.13 Bar dome.

Table 15.3 Data for example—112 bar dome space truss

Young’s modulus

210 GPa

Allowable stress



165 MPa

Density

100 kN/cu m

Allowable deflection

± 20 mm at joints

1, 17, 23, 29, 35

Lower and upper area size

150−1000 sq mm

The buckling stress constraint σ bi if member ‘ i’ is computed as: For λ i >

C, i.e. elastic buckling

(15.13a)

For λ i < C, i.e. plastic buckling

(15.13b)

where λ i = Li/ ri; r = 0.4993 A 0.6777 for tubular sections; σ y is the yield

stress given as

An optimum shape design having minimum steel weight of 33.278 kN as

shown in



Table 15.4 was obtained after 41 generations than compared with the steel

weight of 34.51 kN using pure GA approach. With 72 generations, the fuzzy-

GA hybrid approach given by Soh and Yang (1996) has resulted in 43%

reduction in required number of iterations and 3.57% reduction in weight.

Table 15.4 Optimum results for 112 bar dome

Design variable

Results obtained by Yang and Soh (1996)

A1

597.8

A2

538.33

Z1

2.85 m

Z2

6.11 m

Z3

7.45 m

W

33.27 kN

Reduction in weight compared with ordinary GA

3.57%



SUMMARY

The hybrid fuzzy-GA approach produces the least weight design of structures

with an optimal shape, not by intuition but by the automated GA based

simulation procedure coupled with expert knowledge and experience.

The imprecise and vague information in structural design process, especially

design constraints, are dealt with using fuzzy set theory.

The hybrid approach is able to integrate expert knowledge and experience

with the GA search procedure by using an FLC.

GA search procedure can be guided in a more intelligent way by the artificial

intelligence based simulation and hence this has potential in shape

optimization.

Illustrative examples show that the proposed method can reduce the required

computational time and enhance the search efficiency of pure GA.



PROGRAMMING ASSIGNMENT

P15.1 Consider Fig. P15.1. The fuzzy control system uses inputs of e, Δ e,

and output variable u. Determine output u for e = 100% and Δ e = −2%.

Use fuzzy IF-THEN rules as given in

Table P15.1.

Fig. P15.1

TABLE P15.1 IF-THEN RULE

e



Δ e

THEN U

N

N

P

N

P

P

IF

Z

N

Z

Z

P

Z

P

N

N

P

P



N

Consider a three bar truss shown in Fig. P15.2 . The data assumed is E =

200 GPa, maximum stress 147.15 MPa, and the maximum displacement 5

mm. The truss is subjected to vertical load of 10 kN at node 4 downwards.

Perform fuzzy genetic optimization to find out the areas of inclined member

and vertical member (the structure is symmetric). The minimum and

maximum areas to be used are 120 sq mm and 400 sq mm respectively. The

deflection at the node 4 due to vertical load can be taken as

Fig. P15.2.

Tolerance for each stress unit can be taken as 5 MPa and for displacement as

0.5 mm.



The following rules can be used.

Rule 1: IF the maximum violated member stress constraint is PS and all the

displacement constraints are inactive

THEN the change of the corresponding member cross sectional area is PS.

Rule 2: IF all displacement constraints are inactive and the minimum of

member constraint is NL

THEN the change of the corresponding cross sectional area is NS.

Each unit of increase in cross-sectional area can be assumed as 10 sq mm.

Write a program of FLC-GA and get the optimal design.

(Assume for input: ZE—active; NL, NM, NS—inactive; PS, PM, PL—

violated, and for output all possibilities—NL, NM, NS, PS, PM, PL, ZE)
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BAM energy function, 92
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