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ARTICLE INFO ABSTRACT

Editor: DR B Gyampoh A review of the literature on nanoparticles indicates that the use of nanofluids in hematological
treatments is growing. This effort presents a theoretical investigation of the non-linear behavior of
Keywords: blood flow mixed with suspensions of gold nanoparticles (Au-NP’s) in the presence of a force field
Flow resistivity (FR) and water is used as base fluid in an angled arterial section with overlying stenosis. An elastic
IGOII‘_i nznoﬁamdes cylindrical tube with a moving wall is used to represent the artery, and a viscous liquid is used to
nelinec artery simulate the blood flowing through it. The geometry of an overlying segment of a stenosed artery

Magnetic field

Overlying stenosis
Wall shear stress (WSS)
JEL classification:
76Z05

92C10

can be quantitatively represented by a valid geometric expression. The coupled partial differential
equations are used to formulate blood rheology theoretically. The current analytical method can
compute the wall shear stress (WSS), flow resistivity (FR), temperature, and velocity profiles with
mild stenosis assumption by applying the boundary conditions. Numerical calculations of the
desired quantities are carried out systematically. The results are graphically presented in the

discussion section. They provide an overview of how the degree of stenosis with gold nano-
particles and the malleability of the artery wall influence blood flow abnormalities. This shows
that gold-NPs can enhance hemodynamic performance and improve blood flow in stenosed blood
arteries. Together with an increase in the proclivity angle, the surface shear stress and the re-
sistivity to flow both rise with the height of stenosis. The results obtained from this study may
help medical practitioners to predict the flow behavior in diseased arteries.

Introduction

One of the disorders influencing our human cardiovascular system is blood arterial constriction brought on by aberrant tissue
growth. Lifeblood flow may be reduced or impeded as a result, potentially leading to serious cardiovascular disorders. One of the main
causes of death in affluent nations nowadays is cardiac illness. The cardiovascular disease framework, which is collectively made up of
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Nomenclature
L length of the tube (m)
Lo length of stenosis (m)

d Beginning of the stenosis region

5 maximum height of stenosis (m)

w Velocity of fluid (m/s)

z axial coordinate (m)

r radial coordinate (m)

0 angle of proclivity (radian)

R(2) radius of the artery (m)

Ry the radius of the normal artery (m)
pressure across the region (kg /ms*)
length of the geometry of overlapping stenosed artery wall (m)
resistance to the flow (kg /m*s)

AN

N s
2

wall shear stress (N /m?)

temperature (Kelvin (K))

blood viscosity (kg /ms)

Forced field or magnetic field (tesla (T))
Qo Heat-generating or absorbing element (J)

E‘;
jos]
S

g acceleration due to gravity (m /s?)

C Average velocity over the radius R, of the tube (m/s)
B Hear absorbing constraint

G, Grashof number

Hng Dynamic viscosity of nano-fluid (kg /ms)

- density nano-fluid (kg /m®)

g thermal diffusivity nano-fluid (m? /s)

ks thermal conductivity nano-fluid (W /mK)

(/’Cp)nf heat capacitance nano-fluid (J /K)

q volume flow rate (kW /m?)

p the density of the fluid (kg /m®)

c electrical conductivity

(w,v) Velocity components in (r, z) direction respectively (m /s)

blood vessels and the heart, allows blood to circulate through them. The way blood flows can be dramatically altered by vascular
disorders. Nowadays, lifeblood vessels and heart diseases, including heart attacks and strokes, pose major health risks and account for a
large percentage of deaths. These disorders are closely linked to the features of lifeblood flow and vascular behavior. The primary cause
of these deaths is stenosis. The construction of an artery due to the formation of arteriosclerotic lesions or another type of aberrant
tissue growth is referred to as “stenosis”. Although the precise reasons for stenosis are still unknown, it has been proposed that deposits
of cellular waste products, saturated fat, and fatty material on the artery wall are the culprits. Blood flow is reduced when stenosis
develops in an artery. When stenosis occurs in an artery, it can cause damage that affects the circulatory system’s normal function. In
particular, it may result in heart attacks. Restricting blood flow can damage the wall’s inner cells and accelerate the development of
stenosis. Because one influences the other, there is a connection between the artery’s lifeblood flow and the development of stenosis.
The impression of stenosis on the continuous flow of lifeblood via a conduit was initially examined by Young [1]. Azuma-Fukushima
[2] developed simulations of patterns of circulation in stenosed blood vessel walls. Vascular stenosis’s impact on constant flow was
observed by MacDonald [3]. The flow features of lifeblood in a pipe with minor contraction were then examined in a variety of
research using lifeblood under different circumstances, such as non-Newtonian or Newtonian fluids (see [4-12]).

Chakraborty-Mandal [13,14] examined the blood flow in overlaying stenosis with body spurt using a mathematical model. The
impact of the 2-layered non-Newtonian stream and overlying stenosis on arterial flow has been studied by Srivastava et al. [15,16].
Riahi et al. [17] looked at the arterial stream in the setting of overlying stenosis. The mathematical representation of irregular blood
circulation in viscoelastic tapering arteries with overlaying stenosis was examined by Haghighi et al. [18]. Subsequent research
examined the impact of overlapping stenosis on blood flow via different arterial configurations (see to [19-23]).

A uniform blend of nanoparticles (NPs) derived from a base fluid is recognized as a nanofluid (NF). Carbides, oxides, metals, and
carbon nanotubes make up the nanoparticles. Ethylene glycol, water, and oil make up a base fluid. Chio [24] was the first to suggest the
nanofluid. The thermophysical properties of nanofluids may be superior to those of traditional fluids. Nanofluids are used in a wide
range of heat-transfer-related industries, namely fuel-cell technology, microelectronics, hybrid power engines, medications, refrig-
eration equipment, home fridges, nuclear reactor coolants, and space technologies. Several researchers [25-35] discussed the mixed
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Table 1

Thermophysical characteristics of blood, water, and gold nanoparticles (Au) (Pak and Cho [52]).
Physical properties Gold Blood Fluid phase
p (kg /m"3) 19,320 1063 997.1
c.p (J /kgK) 128.8 3594 4179
K(W/mK) 314.4 0.492 0.613
yx107° (K1) 1.4 x 1075 0.18 21.0

Gold nanoparticles

Magnetic field

Fig. 1. Design of overlying stenosis.

blood flow of nanoparticles and showed that this approach allows us to predict such issues and get the right results.

Vajravelu et al. [36] focused on Ag-water and Cu-water nanofluids (NFs) and examined convective thermal transfer in a nanofluid
(NF) stream that terminates in an elongating surface. They examined the properties of the NPs capacity element on the stream in
addition to the high-temperature uniqueness under the infection-dependent generation of internal heat or integration and thermal
resilience capabilities. The effects of thermal energy generation and flow in the peristalsis with tiny particles contacting H20+Cu were
thoroughly elucidated by Akbar et al. [37].

They contrasted the outcomes for copper-water (Cu-water) with the pure-water foundation model. Akbar [38] looked into how
endoscopes affected the peristaltic stream of a Cu-water nanofluid (NF). In a work by Akbar et al. [39], the effects of copper tiny fluids
on wall characteristics and a curve-shaped conduit with peristalsis were investigated. Elnageen et al. [40] investigated the Cu-blood
stream model using a catheterized mild stenotic artery with thrombosis. Along with copper and silver nanoparticles, researchers
Zaman et al. [41] examined the impact of slip-on unstable blood flow over a curved stenosed channel. In a separate study, Zaman et al.
[42] examined the volatile scattering of nanoparticles in blood. The paper describes the non-Newtonian features of blood using the
Carreau liquid model. Elnaqeeb et al. [43] inspected the hemodynamic features of a stream of blood including gold nanoparticles in a
shortened artery through flexible viscosity. The combined investigation by Mekheimer et al. [44] investigated the effects of magnetic
forces and metallic nanoparticles on a micropolar fluid passing through an overlying stenotic artery. Studies on further applications of
nanoparticles (NPS) in blood physiology carried out by different researchers are included in the references [45-50].

Arterial stenosis can lead to serious issues and interfere with the heart’s and lungs’ regular functions. In particular, it may lead to: a
spike in flow resistance that may cause a substantial decrease in blood flow; an increased risk of complete occlusion; and abnormal
growth of cells in the stenotic area. However, several researchers have used suspended nanoparticles to study the effects of various
types of stenosis on arterial blood flow [51-60]. Table 1 displays the thermophysical characteristics of gold nanoparticles (NPs), water,
and blood.

Inspired by the previous research, the current work uses water as the basic fluid and gold nanoparticles to examine the special
effects of a force field on lifeblood flow. This liquid appears to travel through a sloping, overlying stenosed artery (Fig. 1). We analyze
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the pressure droplet, flow resistance, and shear stress at the wall, and the figures show the distinct effects of several important lim-
itations. Section 2 provides a detailed explanation of the mathematical and physical models. The results obtained are then discussed in
Section 3.

Formulation of the problem and its solution

Examine the movement of a sticky incompressible liquid via a tube that has an angled axisymmetric overlap and a uniform cross-
section. In the axial direction, the stenosis should grow symmetrically and be mild. The surface shape is shown in Fig. 1.
The mathematical equation is (Chakraborty-Mandal [13], Srivastava et al. [15]) for the stenosed surface.
36 11 3 272 3 47 .
- 7 [11(z — d)Ly — 47(z — d)’L} + 72(z — d)’Lo — 36(z — d)"] : d <2 < d + Lo
R(z) _ 2RoL, 1)

h=

1 : otherwise .

In this case, the artery’s normal segment radius is Ry, the tube’s radius at the stenotic area is R(z), the stenotic area begins at
position d, and the tube’s length is L. The proclivity angle is 6, and the length of the stenotic region is measured by L,. The length of
overlapping stenosis is h, and the maximum height of the stenosis, as measured from the origin, is §atz =d+ Lo /6,2 =d + 5L, /6,
and the critical height at z = d+ % is ¥,

Leading mathematical formula

This understanding states that lifeblood is a non-Newtonian, consistent, and incompressible liquid. A variety of non-Newtonian
liquid prototypes, such as the power-law, micropolar, Herschel-Bulkley, and other liquid structures, can be used to characterize its
viscosity. We adopted the viscous liquid paradigmatic to describe the physical stuff of blood in our work because, in comparison to
other viscidness prototypes, it accurately depicts the viscosity characteristic of physiological blood in everyday life (Pratumwal et al.
[55D.

The following is a crucial articulation of the flow for the current situation, as per Akbar-Butt [48]:

Prf (v%+ w%) = 7% —+ unfg (2 %) + ynf% (2%+(Z—t}> — Prs§ €OSO, 3)

Pay (v%w + w‘;—';’) = —% + unfa% <2 ‘;—2’) + ’% a% {r (;_a: + %)] — 89w a(T — To) — 6Byw + p,gsine, )

(VB_T+W0_T) _ Ky (ﬁ 1or 02_T) L@ ©)
o "oz) (pey), N0t roor 0z2)  (pcy),

Theoretical solution and borderline conditions (BC)

In order to calculate the solutions to mimicked physical problems, boundary restrictions are crucial. It may be deduced that the
axial speed (w) of the lifeblood components on the surface corresponds to a one-dimensional stream and is the same as the rapidness of
arterial membrane stuff since lifeblood elements adhere to the interior surface of the artery piece under consideration.

The stenosed element of this can be quantitatively described as follows:

ow JT
= =0 5 =0ar=0, (6)
w=0, T=0atr=h )

The hotness of the fluid is denoted by T, the heat-generating or heat-absorbing element by Qo, and the rapidity components in the
(r, 2) directions by (w, v) respectively.

The following are the specified values for the nanofluids’ active dynamic viscosity (,unf), active density (/’nf)» active thermal

conductivity (kns), thermal diffusivity (ans), and heat capacitance (pcp)nf, respectively (see [36,43]):

ks+2kf—2(/1(kf—k5)}

Hy
= = (1-— kn = k,
Hng ( 350 Por = (L= @)ps + 905, ki f{ ks + 2k + 20 (k; — k)

1-¢)
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®

_ QR3
kf To

In this case, c is the average velocity over the radius R, of the tube section.
After removing the dashes, we obtain the following when we apply the aforementioned scaling variables of Eq. (8) in Egs. (2)—(5)

and moderate stenosis (% < 1) condition ¢ = f" =o(1).

o _ _cost
oo F
dp 1 10 /[ ow sinf
E* (1 (p)2'5r6r<rg> MW+G®+T

10/ 00
L) o(s) o

9

10

(11)

The following are the required temperature and velocity boundary circumstances for the artery wall using scaling variables:

w 00

=0 ar—Oatr—O

w=0, 06=0atr=nh.

12)

13)

where O is the temperature, M is the forced field constraint, § is the amount of heat absorbing constraint, and G, is the Grashof

number.

The fluid’s velocity is computed as follows by taking into consideration the constraint for moderate stenosis and handling Eq. (10)

and Eq. (11) inside the boundary limitation Eqs. (12) and (13):

1.dp_ G (k_f) _ 1 sing

M2 dz o M\ ky | MEOF G.p (ks 1d Gp(k 1 Sin@
w= I(Mry/(1—¢)*°) — (—) (FP-h)—— =+ <—> - 14

I (Mh (1- (ﬂ)z.s) ( ) 4M? \kys M2 dz M2 \ky M2 F
= 2
0= 4 (knf) (rz h ) (15)
The flow rate q is as follows (see [48,54]):

h

q= 2/rwdr. (16)

0

This provides us with:

q,GrﬂhA kff G [ ke +G,,7/}h K Il(Mh (1— {/,25)
16M2 \ Ky | — 202 k"f M2 k (/07 ) Va0

SRSy

a7
S Il(Mh <1 —0%%)
T (Mny/1=97% ) Va=0?®
The pressure decreases across a single wavelength, p(0) — p(4), is given by the following formula:
[
- 1
/ dz (18)
0

The following is a description of the impedance, denoted by A:
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0.30 0.32 0.24 0.36 0.38 0.40

Fig. 2. Design of 1 for f through = 7/6, ¢ = 1.0, G =3.0,M =25,d =0.2, Ly =04, F =08, L = 1.

— .
0.320 0.32 0.24 0.36 0.38 0.40

Fig. 3. Design of 1 for G, through @ = z/6, ¢ =1.0, = 6.0, M =20,d =0.2, Ly =04, F=0.8, L = 1.
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Fig. 4. Design of 1 for M through = z/6, ¢ = 1.0, § =6.0, G, =3.0,d =02, Lo =04, F =08, L = 1.

A= & 19)
q

Since stricture is absent (h = 1), the following deliberate pressure reduction is carried out:

1
Ap, = | — / % dz (20)
0 h=1.

The flow resistivity quickly influences the bloodstream rate and has a direct effect on the bloodstream. The subsequent method can
be used to determine the impedance in a normal artery:
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Fig. 6. Design of 1 for q through M = 2.0, § = z/6, f = 12,0, G, =3.0,d =0.2, Ly =04, F =0.8, L = 1.
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Jy =P
q
A stream’s normalized resistance is expressed as follows:
i= &
An
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(21)

(22)

One of the physical elements that significantly affects the fluid flow at the blood artery wall is the shear stress in the wall. The wall

shear stress can be computed using the formula below:

Y

2dz

(23)
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=08,6=003 L =1.

Fig. 9. Design of 7, for M through ¢ = z/6, ¢ = 1.0, § =6.0, G- =3.0,d =02, Lo =04,5 =0.03, F=08,L =1.
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Fig. 10. Design of 7y, for 6 through 6 = 0.03, M =2.0,q =1.0, # = 6.0, G- =3.0,d = 0.2,

Computational results and discussion

Lo =04, F=08L=1.

In this research, appropriate numerical computation has been presented to test the validity of the analytical expressions Eqgs. (14,
15, 22, 23). The effects of various constraints were examined using MATHEMATICA software. Figs. 2-19 display the entire set of
findings. In figures, the color blue (¢ # 0) represents Au-blood, whereas the color red (¢ = 0) represents pure blood.

Figs. 2-6 illustrate the relationship between flow resistance(FR) and stenosis height for different values of the heat absorption
constant (), Grashof number (G;), force field constraint (M), angle of proclivity (), and flow rate (q). It is clear that the FR rises in

tandem with the stenosis height (§) for all constraints. However, according to Fig. 2, it decreases wi

th the heat absorption constant ().

It is important to note the physical basis for this observation. For a brief time, the fluid increases flow resistance in the pre-stenotic zone
before reaching its minimum in the post-stenotic region because the obstructed fluid in the constriction region swiftly travels towards

the main flow region. Moreover, it is seen that while flow impedance increases with an increase i

n volume flow rate (see Fig. 6), FR
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Fig. 13. Design of w for g through ¢ = z/6, M = 1.5, G, =3.0,d =02, Lo =04, 2 =05,56 =0.03, F =08, L =1.

reduces with increases in the Grashof number (G;), force field constraint (M), flow rate (q), and angle of proclivity (0) (see Figs. 3-6).
Blood can flow through arteries with ease when there is a drop in flow resistance due to a rise in fluid velocity caused by an increase in
volume flow rate, angle of inclination, and high buoyancy forces. Further, it is found that Au-blood has more reluctance to flow than
pure blood. This is because gold makes arteries more flexible. These results concur with those of Elnageeb [54].

Figs. 7-12 demonstrate the wall shear stress(WSS) (7,,) against the axial distance (z) for various values of the Grashof number (G;),
stenosis height (6), heat absorption constant (j), angle of proclivity (6), force field constraint (M), and flow rate (q). It is found that the
Grashof number (G;), the force field constraint (M), and the heat absorption constant all raise the WSS(7,,). Compared to pure blood,
this fluctuation is more pronounced when Au particles are present in the blood. Additionally, it is examined that. 7, rises as the flow
rate (q) and angle of proclivity (6) grow. The WSS is observed to grow from z = 0.1 to 0.25, then fall to z = 0.4, then climb once more to
z = 0.53, before progressively declining and approaching 0.7. This illustrates that the WSS is greatest at the throats and lowest at the
critical height of the stenosis. These results align with the findings of [45,54].
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Figs. 13-17 show the speed variation across the radial axis for various values of the Grashof number (G, ), force field constraint (M),
stenosis height (), heat absorption constant (f), and angle of proclivity (6). Fig. 13 shows that speed rises with an increase in the heat
absorption constant (f). As the heat absorption constant rises, the blood becomes thinner than it was before and travels through ar-
teries more quickly, increasing the velocity. Fluid speed rises as the Grashof number (G;) increases whereas it falls as the force constant
(M) Increases (see Figs. 14, 15). Blood can move slowly in arteries when the velocity field is reduced by strong buoyancy and elec-
tromagnetic forces relative to viscous forces. Fig. 16 illustrates how increasing the proclivity angle (6) reduces the fluid’s speed. As
stenosis height increases, blood flows through arteries more slowly, which lowers speed (Fig. 17). It is also observed that pure blood

has a higher velocity than Au-blood because gold causes arteries to become more flexible, which reduces the flow rate. These results
coincide with those of Elnaqeeb [54] and Elnaqeeb et al. [43].

Here, Figs. 18, 19 show how temperature (®) changes with radial distance (r) for varying values of stenosis height () and a heat

10
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Fig. 17. Design of w for § through M = 1.5, G, = 3.0, § =120,d =0.2, Lo =04, F =0.8,2=05,L =1.

0.0 0.5

Fig. 19. Design of © for 5 throughz = 0.5, § =12.0.d = 0.2, Lo =04, F =08, L =1.

source or sink constraint (). When the heat absorption constant increases, the temperature rises; however, when the stenosis height
increases, the temperature falls. Another finding is that pure blood exhibits a faster temperature change than Au-blood. These findings
support Akabar’s findings [51].

Concluding observations

The goal of the current mathematical model is to investigate how a forced field affects blood flow through an overlying stenosed
passage using water as the base liquid and gold NPs. The results are represented graphically for varied radial distance, inclination

angle, stenosis altitude, and expansion following stenosis values. The main conclusions are as follows:
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1. As the volume flow rate (q) grows, the flow resistance rises, but as the heat absorption constraint (j), proclivity angle (9), Grashof
number (G;), and force field constraint (M) upturn, the flow resistance falls.

2. The flow resistance of Au-blood is higher than that of pure blood because gold increases the elasticity of arteries.

3. The stenosis height, angle of proclivity, volume flow rate, Grashof number, heat absorption constraint, and force field constraint all
cause an increase in the wall shear stress.

4. A higher absorption constraint and Grashof number cause the fluid’s velocity to increase, whereas a higher stenosis height, forced
field constraint, and angle of proclivity for it to decrease.

5. Compared to Au-blood, the fluid’s velocity is higher for all limitations in the case of pure blood.

. High buoyancy and electromagnetic forces relative to viscous forces cause the fluid’s speed to decrease.

7. The fluid’s temperature rises when the heat absorption constraint is increased, but it falls when the stenosis height grows. The
tube’s center has the highest temperature, while the areas closest to the walls have the lowest.

=)

The results obtained from this study may help medical practitioners to predict the flow behavior in diseased arteries. It also helps
control, monitor, and regulate critical blood flow constraints with suitable treatment modalities. There is a scope to discuss the in-
fluence of the height of multiple stenoses on resistive impedance, wall shear stress, and in the region between the multiple stenoses.
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