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ABSTRACT

Introduction: The research aims to analyst the impact of the ratio of relaxation time, slip velocity and the relative 
height of stenosis towards the blood velocity and solute dispersion in the Jeffrey blood flow within a stenosed artery. 
Methods: Generalized Dispersion Model (GDM) is applied into the convective diffusion equation which is then 
solved to obtain solute concentration and dispersion function. Results and Discussion: When the relative stenosis 
height increases, there is a slight reduction in blood flow velocity. As time increases, the unsteady dispersion func-
tion contracts at the center and expands along the arterial wall. With an increases in the ratio of relaxation time, the 
dispersion function expands along the arterial wall and contracts at the center. Conclusion: The presence of the ratio 
of relaxation time in a stenosed artery can disrupt both blood velocity and the dispersion function. This research 
has the potential to predict drug delivery to specific stenosed regions, thereby enabling more precise and targeted 
medical treatment.
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INTRODUCTION

Cardiovascular diseases (CVDs) are one of the most dis-
ease that had received much attention throughout the 
year and the leading cause of death globally. Medica-
tions are administered into the bloodstream to address 
these issues including the treatment of stenosis. The nar-
rowing of blood vessels, known as stenosis, is typically 
caused by the buildup of plaque or the thickening of the 
arterial walls. This condition can significantly impede 
blood flow, leading to various cardiovascular complica-
tions. Improving the treatment of CVD is vital for tackling 
this problem, as inaccuracies in treatment administra-
tion can disrupt the effectiveness of the drug. Therefore, 
mathematical modeling, specifically in the field of fluid 
mechanics, is crucial to study and understand the ef-
fectiveness of medications in the bloodstream. Most re-
searchers studied on the solute dispersion in blood flow 
is essential to enhance the effectiveness of CVD treat-
ments and ultimately reduce the impact of these diseas-
es on global health. The goal of the previous studies was 

to ensure that medications are administered accurately 
to maximize their effectiveness in treating CVD includ-
ing stenosis.

The study of Non-Newtonian fluids is a key area in sci-
ence and engineering for understanding how blood be-
haves. Understanding the non-Newtonian behavior of 
blood is crucial for studying hemodynamics, which is 
the science of blood flow through the circulatory sys-
tem. Non-Newtonian fluid model is essential for design-
ing and optimizing medical devices such as artificial 
hearts, blood pumps, and stents. These devices must 
operate effectively within the dynamic, non-Newtonian 
flow environment of the bloodstream. Accurate mod-
eling of blood behavior ensures that these devices are 
safe and efficient. It allows researchers and medical pro-
fessionals to understand the complex dynamics of blood 
flow, leading to advancements in diagnosing and treat-
ing cardiovascular diseases and creating more effective 
medical interventions and devices. 

Among the various non-Newtonian fluid models, the 
Jeffrey fluid model has garnered significant attention 
from researchers due to its suitability for representing 
physiological fluids. The Jeffrey’s fluid model is char-
acterized as a non-Newtonian fluid that possessing the 
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characteristics of shear thinning, where the fluid’s vis-
cosity decreases with an increasing shear stress rate (1). 
Other than that, the Jeffrey fluid model can capture the 
stress relaxation behavior of non-Newtonian fluids, a 
feature that the conventional viscous fluid model cannot 
describe (2). The ratio of relaxation time, often known as 
Jeffrey fluid parameter is a parameter that use in rheol-
ogy to examine the behavior of viscoelastic. In terms of 
viscoelasticity, this material expresses both elastic (sol-
id-like) and viscous (liquid-like) properties, and their re-
action to an applied stress depending on the time scale 
of the alteration and the relaxation of internal stresses. 
The relaxation time is a measure of how long it takes for 
a substance to relax and return to its original state after 
being subjected to an external force or change. Then, 
the ratio of relaxation time also refers to the propor-
tion between the longest and shortest relaxation times 
in a viscoelastic material. The Jeffrey fluid model is ac-
knowledged as a more general form of the commonly 
used models of non-Newtonian fluids, as its constitutive 
equation can be transformed into the Newtonian mod-
el’s equation in specific conditions.

The research by Khan et al. (3) focused on the peristal-
tic movement of a Jeffrey fluid within an asymmetric 
channel with the changing viscosity in a porous mode. 
Priyadharshini and Ponalagusamy (4) examined an un-
steady stenosed tapered artery stenosis for two-blood 
flow fluid model, by considering variable viscosity 
with the effect of a  magnetic field. This study consid-
ered plasma in the outer layer acts as a Newtonian fluid 
while the blood in the central region pursues the Jeffrey 
fluid model. Chauhan and Tiwari researched the effects 
of variable viscosity and the Jeffrey fluid model on sol-
ute dispersion within microvessels, such as arterioles, 
venules, and capilaries, incorporating wall absorption.

Studying stenosis holds great significance in the realm 
of cardiovascular health. Employing mathematical mod-
eling in fluid mechanics to investigate stenosis offers 
invaluable insights into the intricate hemodynamics 
linked to constricted blood vessels. The Carreau blood 
flow through tapered artery stenosis was investigated 
by Akbar and Nadeem (6). The blood flow model was 
represented through an axially asymmetrical but radi-
ally symmetrical stenosis. Yan et al. (7) examined how 
different cone angles of stenosis affect Sisko non-New-
tonian blood flow, considering the influence of ap-
plied thermal heat flux. Dhange et al. (8) investigated 
the blood flowing through an inclined stenotic blood 
vessel which reduces the arterial side and generates an 
aneurysm, treated the blood as Casson fluid. Munir et 
al. (9) examined the artery affected by stenosis, consid-
ering arterial inclination and the acceleration factor of 
body forces by treating the blood as Herschel-Bulkley. 
Dhange et al. (10) examined the impact of overlapping 
stenosis on Casson fluid flow under mild stenosis con-
ditions. Shukla et al. (11) examined the impact of shear 
stress on the arterial wall in artery and narrowing of the 

artery on blood flow. They approached this by modeling 
the blood as power-law and Casson-model fluids. Their 
study analyzed about how these different fluids models 
behave in the presence of stenosis. Hussain et al. (12) 
explored the steady-state flow of an incompresible fluid, 
specially treated as a Williamson fluid, passing through 
a stenosed region characterized by a cosine constric-
tion The steady two-dimensional flow of a power-law 
fluid through vertically asymmetric and symmetric nar-
rowings was examined by Owasit and Sriyab (13). The 
vertically asymmetric stenosis is defined by a distinctive 
shape that merges features of a bell curve and a cosine 
curve. This shape features a first half that is either a bell 
or cosine curve, with the second half taking on an alter-
native form. 

By using Generalized Dispersion Method, Ratchagar 
and Vijayakumar (14) studied the dispersion of a sol-
ute in a non-Newtonian couple stress fluid flow within 
an inclined channel flanked by porous beds. Singh and 
Murthy (15) investigated the unsteady of solutes dispers 
in pulsatile flows of Newtonian and non-Newtonian K-L 
fluids through a circular tube, utilizing higher-order mo-
ments.  Das et al. (16) studied the dispers of solute in 
a pulsatile non-Newtonian Carreau-Yasude fluid flow 
through a tube with narrow walls, with the impact of 
irreversible and reversible interactions with the wall and 
focusing on both short and long time scales.

It appears that the role of relaxation time and stenosis 
height in solute dispersion within Jeffrey fluid blood-
streams has been largely neglected. Most of previous 
studies have concentrated on solute dispersion in blood 
flow, ignoring the potential effects of relaxation time and 
stenosis. This research formulates the Jeffrey fluid model 
to mathematically explore steady blood flow, consider-
ing the impacts of the relaxation time ratio, the stenosis 
profile relative height, and slip velocity within a nar-
rowed artery. The velocity slip phenomenon arises from 
the varying rheological properties of blood components. 
Slip velocity in blood flow refers to the difference in ve-
locity between the blood and the inner lining of blood 
vessels. The plasma layer, being less viscous compared 
to the blood cells, tends to flow faster along the vessel 
wall. As a result, a velocity gradient is formed across 
the blood flow, with the highest velocity occurring in 
the plasma layer and gradually decreasing towards the 
center of the vessel. To describe the entire dispersion 
process, the General Dispersion Model is employed to 
solve the convective-diffusion equation that introduced 
by Gill and Sankarasubramaniam (17). Jeffrey fluid is 
chosen for this research because it provides a better un-
derstanding for analyzing the ratio of relaxation time. 
Hence, from this research, the medicine can be admin-
istered accurately for the blood that exhibits the charac-
teristic of a Jeffrey fluid.

MATERIALS AND METHODS

Mathematical Formulation
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The treatment of blood as a Jeffrey fluid in a straight 
circular pipe (artery) is addressed in the present study, 
where the geometry is considered to show cylindrical, 
axisymmetric, laminar, and fully developed unidirec-
tional flows of a viscous incompressible fluid in the axial 
direction Shown in Fig. 1 is the geometry of solute dis-
persion in blood flow through a stenosed artery in Jeffrey 
fluid, with the constant radius of the straight artery in the 
non-stenotic region represented by R

0
, the length of ste-

nosis marked by, L
0
 the stenosis location indicated by       	

d, and the maximum height of the stenosis denoted by     	
δ̄h, which is assumed to be much smaller compared to 
the radius of the stenosed artery R

0
. Using a cylindrical 

polar coordinate system (r,θ,z ) the blood flow in an ar-
tery is analyzed, with r as the radius, θ  as the azimuthal 
angle, and z as the axial coordinates. Consideration is 
given to the effects of the relaxation time ratio and the 
relative height of the stenosis profile through a stenosed 
artery.

(6)

(13)

Fig 1:  The geometry of dispersion of solute in blood flow through 
stenosed artery in Jeffrey fluid.
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is finite at

at

the constitutive equation of Jeffrey fluid is given by (5) 

where τ is the shear stress, u is the velocity, μJ is the 

constant viscosity coefficient and λ is the ratio of 
relaxation to retardation times (Jeffrey fluid parameter). 
The velocity of blood can be obtained by solving Eq.(1) 
with the boundary conditions given as follows: 
	
                 	  

where R(z) is the artery radius at the stenosed location 
given as (18)                        
	   
                                                                                 
                                                                           

where δ̄h 
, d , and L

0
 are the stenosis height, stenosis 

location and solute length. Then, the momentum 
equation in this study is given by (5) and it is defined as 
follows:

where p  is the fluid pressure. The applied pressure 
gradient along the axial direction given by (5) is 
defined as follows: 

where ps refers to the non-dimensional steady state 
pressure gradient, while q

0
 corresponds to the negative 

pressure gradient within the normal artery region. 
The two-dimensional unsteady convective-diffusion 
equation is subsequently given by (17):   

where C  represents the concentration of solute, t  denotes 
the time, D

m
 is the molecular diffusion, z*  indicates the 

axial direction for solute concentration and

                                                   

Based on the Eq. (7), the initial boundary condition is 
respectively given by (17) 

with C
0
 representing the reference concentration and   

z
s
 denoting the solute length. The boundary condition 

of the Eq. (7) in the context of axial distribution is also 
given by (17)

	  	

The symmetry boundary condition of the Eq. (7) at the 
center of the circular pipe center  r  = 0 is expressed as
	

 	

and the boundary condition of the Eq. (7) at the wall,   
r =  R(z)  is given by

Non-dimensional Variables
Take into account the following non-dimensional 
variables: 

	  

          

(8)

(10)

(11)

(12)

(7)

(9)
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is finite at

at

(15)

(16)

(17)

(18)

(19)

(21)

(20)

(22)

(23)

(24)

(25)

(26)

(14)

where τ, r, R(z), u, us, C, t, z*, Pe, δh, d, L0 and z are the 
shear stress, artery radius, artery radius at the stenosed 
location, velocity, slip velocity, concentration of solute, 
time, axial distance for solute concentration, Peclet 
number, stenosis height, stenosis location, solute length 
and axial distance for blood flow in non-dimensional 
form.

Method of Solution
By using non-dimensional variables Eq.(13) in Eqs.(1)-
(5), the equations become

 

Substituting Eq. (13) into Eq. (7) yields

where

and Pe is given by (15) as follows:

Solving Eq.(18) to obtain the shear stress τ, substituting 

into Eq.(14) and solving Eq.(14) using the boundary 

conditions in Eq.(15) and Eq.(16), the velocity of blood 

flow is obtained as

The mean velocity of Jeffrey fluid in a stenosed artery is 

obtained as

A new coordinate system (r, z1, t) is introduced, with the 

new axial coordinate z1 corresponding to the convection 

of solute across a plane moving with the mean velocity 

of the fluid, where the axis itself moves with the fluid’s 

mean velocity

Applying the approach from (17), the solution of Eq.(19) 

is expressed as a derivative series expansion as follows:

where

denotes the mean solute concentration over the 

geometry’s cross-sectional area.

Generalized Dispersion Model
The entire dispersion process can be described by the 

Generalized dispersion model (GDM). This is including 

the dispersion coefficient and how the dispersion 

process changes depending on time. By applying Eq.(26) 

and multiplying Eq.(19) by 2r before integrating with the 

respect  to r, the Generalized Dispersion Model for 

Cm (z1,t) is expressed by

where Ki(t) denotes the transport coefficient specified by

with representing the longitudinal convection coefficient    

is Ki(t) and the longitudinal diffusion coefficient is K2(t)   
represents the coefficient the effective axial diffusivity 

in the overall dispersion process for a simple diffusion 

scenario. For Newtonian fluids, the value of  K3(t) is 

negligibly small, K3(t→ ∞)= - 1/23040 so the terms 

involving K3(t), K4(t), K5(t) and similar coefficients 

are disregarded. To evaluate         and grouping the 

coefficient of                      together to obtain, it yields

By equating the coefficient of        to zero for i=1,2,3   

in Eq.(29), the following of infinite system of partial 

differential equation is given by

and

(27)

(28)

(29)

(30)

(31)
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(32)

From Eq.(25), C(r,z1,t) is expressed in term of Cm(z1,t)        
,so Cm(z1,t) can be chosen to satisfy the initial boundary 

of  C(r,z1,t) and it is implied that ƒ
1 
following the initial 

boundary conditions must be satisfied by

respectively. Using Eq.(27), it yields

Comparing both sides in Eq.(36), it shows that the term 

of       on the left hand side is zero and thus solvability 

condition is obtained as (18)

By performing the multiplication of Eq.(32) by r and 

integrating the resulting equation between zero and 

one with respect to r, and then applying Eq.(37), the 

longitudinal convection coefficient is obtained in the 

form of

Following the procedure outlined in Eq.(31) and Eq.(32), 

the corresponding transport coefficients are defined as 

and

Solution of Dispersion 
The coefficient function, known as the dispersion 

function ƒ
i
(r,t) is essential for quantifying the deviation 

of the local concentration C(r ,z1 ,t) from the mean con-

centration C
m
(z1 ,t). The solution of Eq.(30), which 

satisfies the boundary conditions from Eqs.(33)-(35), can 

be expressed into two parts (18) as shown in

    

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

                                                                               

where ƒ1s(r) represents the dispersion function in the 

steady state, and   ƒ1t(r, t) represents the dispersion func 

-tion in the unsteady state, capturing the time-dependent 

nature of solute dispersion. Applying Eq.(38) and Eq.(41) 

in Eq.(30) yield

                                                                                       

After combining the ƒ1s(r) and ƒ1t(r, t) terms together 

and equating each to zero, the simplified differential 

equation for ƒ1s(r) and ƒ1t(r, t) are obtained. In the case of 

steady dispersion, the         term equal zero, resulting in 

the equations shown as

                                                                                                                  

and

                                                                                                                             

The initial condition of ƒ1t(r, t) is given by

                                                                                                               

and the boundary conditions of ƒ1s(r) and ƒ1t(r, t) are 

given by

                                                                                                      

and         

                    

                                                                                                   

Equating the solvability of ƒ1s(r) and ƒ1t(r, t) and the 

following solvability conditions for ƒ1s(r) and ƒ1t(r, t) are 

as follow [(5) & (19)]

                                                                                                                          

and

                                                                                                       

By applying the boundary conditions in Eq.(46), the 

differential equation of dispersion function at the steady 

state in Eq.(43) becomes

	

 	

where

	  

Applying the method of variable separation and Bessel 

functions, the unsteady equation can be solved, yielding 

to the general solution, ƒ
1t
(r, t) presented in 

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)
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where λ 
m
's are the roots of the equation J1 (λ 

m
) = 0           

where J1 denotes the Bessel’s functions of the first kind 

of order one and as defined as

                      

Since that the value of K3(t) for Newtonian fluid is 

extremely small K3(t→∞)= - 1/23040 the terms K
3
(t),

K4(t), K5(t) and similar ones are omitted by ignoring the 

coefficients involving them. Thus, Eq.(27) simplifies to 

	  	

By using Inverse Fourier Transform (IFT), the solution of 

mean concentration of solute Cm(z1,t) in Eq.(54) is acq-

uired as follows:

	  	

RESULTS

The ratio of relaxation time, slip velocity and the relative 

height of stenosis on the blood velocity and unsteady 

dispersion function of solute through a stenosed artery 

are some of the characteristics who investigate in this 

study. The impacts of the relative height of stenosis 

and the ratio of relaxation time on the blood velocity 

and unsteady dispersion function of solute through a 

stenosed artery are indicates in Figures 2 - 7. 

The parameter ranges outlined in this analysis are as 

follows: values of the radius of artery are r = -1 to 1, the 

slip velocity are us = 0. to 0.6, the time are t = 0 to 0.1, 

the relative height of stenosis are         to 0.1 and the 

ratio of relaxation time are  λ = 0 and 1.2. These results 

concentrated on the presence of Jeffrey fluid parameter 

within a stenosed artery.

Velocity of Blood Flow
The velocity of Jeffrey fluid with the effect of stenosis is 

illustrated in Figure 2 and the result has been validated 

with (18). Figures 3 and 4 shows the variation of velocity, 

u for different values of slip velocity, us in the blood flow 

through stenosed artery without and with the presence of 

the ratio of relaxation time, λ. In the presence of the ratio 

of relaxation time in Figure 4, it enhances the velocity of 

(52)

(53)

(54)

(55)

blood flow compared to the velocity in Figure 3. 

Fig 2: Validation of present velocity with Sharma et al. (15).

Fig 3: Variation of velocity, u for different values of slip velocity, 
us   in the blood flow through a stenosed artery without the ratio of 

relaxation time,  λ 

Fig 4: Variation of velocity, u for different values of slip velocity, us   
in the blood flow through a stenosed artery with the presence of the 

ratio of relaxation time, λ

A longer relaxation time means the blood resists 

deformation for longer period after shear stress applied, 

leading to a more uniform velocity (20). In high relaxation 

time, the shear strain remains significant and the blood 
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more elastically to maintain its deformation as the 

velocity gradient reduces (21). The relaxation behavior 

of viscoelastic fluid can be influenced by an increase in 

slip velocity. The relaxation time and slip velocity are 

combined to create a dynamic system, balancing elastic 

recoil with viscous dissipation. Higher relaxation time 

and enhanced slip velocity influence how blood cells 

carriers are transported and adhere to vessels walls. This 

can be leveraged in designing therapies for cancer or 

localized drug delivery.

Unsteady Solute Dispersion Function
Figure 5 shows the variation of unsteady dispersion 

function, ƒ1t for different values of time, t   in the blood 

flow through stenosed artery without the presence of 

the ratio of relaxation time, λ . Based on the figure, the 

unsteady dispersion function, ƒ1t  decreases at the center 

of artery and the dispersion are increases at the wall 

as the time are increases. It also shows that at time, t  
= 0  the unsteady dispersion function,  ƒ1t exhibits the 

optimum outcome and when time, t increases until the 

value of t = 0.1, the unsteady dispersion function, ƒ1t  
decreases at the center. While at the wall of arteries, 

the unsteady dispersion function,    increase as the time,   

increases. 

Figure 6 shows the variation of unsteady dispersion 

function, ƒ1t for different values of time, t  in the blood 

flow through stenosed artery with the presence of the 

ratio of relaxation time, λ  Based on the figure, the 

unsteady dispersion function, ƒ1t significant decreases at 

the center of artery and the dispersion are increases at 

the wall as the time are increases. It also shows that at 

time t = 0  , the unsteady dispersion function, ƒ1t  exhibits 

the optimum outcome and when time, t   increases until 

the value of t = 0.1 , the unsteady dispersion function,   

decreases at the center. While at the wall of arteries, 

the unsteady dispersion function, ƒ1t increase as the 

time, t  increases. The presence of the ratio of relaxation 

time, λ affects the dispersion function significantly.

While, in the presence of the ratio of relaxation time in 

Figure 6, it enhances the unsteady dispersion function 

compared to the unsteady dispersion function in Figure 

5. The presence of the ratio of relaxation time affects 

the unsteady dispersion function especially at the 

center and at the wall of the artery. The presence of 

the ratio of relaxation time enhanced time-dependent 

effects, delaying or oscillating particle to spread in the 

artery. Copley et al. (22) noted that blood with a longer 

relaxation period tends to flow more uniformly in steady 

flow, resulting in fewer velocity gradients. This behavior 

Fig 5: Variation of unsteady dispersion function, ƒ1t for different 
value of time, t  in the blood flow through stenosed artery without 

the ratio of relaxation time, λ

Fig 6: Variation of unsteady dispersion function, ƒ1t for different 
value of time, t   in the blood flow through stenosed artery with the 

ratio of relaxation time, λ  

may have consequences for solute dispersion in arterial 

systems (5). Longer relaxation times delay the drug’s 

uniform distribution, requiring tailored delivery methods 

to ensure effective dispersion. 

Figure 7 illustrates the unsteady dispersion function, ƒ1t   

varies with different relative heights of stenosis profile,   

      in the blood flow through a stenosed artery, 

considering presence of the ratio of relaxation time, λ.

According to the figure, as the relative height of the 

stenosis profile increases, the unsteady dispersion 

function, ƒ1t significantly decreases at the center of the 

artery and increases at the wall. The inclusion of the 

relaxation time ratio, λ greatly influences the dispersion 

Fig 7: Variation of unsteady dispersion function, ƒ1t for different 
value of the relative height of stenosis profile, t in the blood flow 

through stenosed artery with the ratio of relaxation time, λ .
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function by causing a substantial rise in the unsteady 

dispersion function.

DISCUSSION

The goal of this study is to explore the impacts of 

various parameters, such as the relative height of 

stenosis profile, slip velocity and the ratio of relaxation 

time on the velocity of blood flow and the unsteady 

dispersion function within a stenosed artery. This study 

intends to investigate the impact of various factors on 

blood flow behavior via simulations and to contrast the 

results with the findings of current research. The focus 

of the discussion is on the variations in velocity and the 

unsteady dispersion function across various conditions, 

highlighting the significant role of the relaxation time 

ratio in determining blood flow velocity and its notable 

effect on the dispersion function. The findings observed 

that factors such as ratio of relaxation time, slip velocity 

and the relative height of stenosis play crucial roles in 

shaping the flow characteristics within the artery, with 

implications for understanding blood flow dynamics in 

stenosed arteries.

Velocity of Blood Flow
This section examines the way of velocity changes in 

response to variation in relaxation time ratio and the 

relative height of stenosis within stenosed artery. Figure 2 

shows a good agreement with (18). The results obtained 

are consistent with those in references (18) when the 

radius of the artery in the stenosed core region is set 

to zero. In (18), the study discussed about two-layered 

Jeffrey-fluid model with mild stenosis in narrow tubes 

while the present study examines about single-layered 

Jeffrey-fluid by evaluate the consequences of the ratio 

of relaxation time, slip velocity and the relative height 

of stenosis within a stenosed artery towards the blood 

velocity and solute dispersion. Depending on the study's 

focus, both the two-layer and single Jeffrey fluid models 

have special advantages and are appropriate for various 

applications.

The single Jeffrey fluid model is effective for investigating 

small-scale flows, micro vessels, or low-hematocrit 

situations because it captures the viscoelastic 

characteristic of blood and produces smooth velocity 

profiles. It focuses on simpler velocity changes and is 

computationally simpler.

The variation in velocity, u for different slip velocities, us   

in blood flow through a stenosed artery as depicted in 

Figures 3 and 4, showing scenarios with and without the 

relaxation time ratio, λ. The existence of the relaxation 

time ratio, λ  when λ =1.2 rise the velocity of blood flow 

in Figure 4 compared to Figure 3 when λ =0. Furthermore, 

an increase in slip velocity, increase the velocity. Thus, 

when blood has a higher relaxation time, it implies 

a slower relaxation response to changes in velocity 

gradients. This slower relaxation response may lead to 

enhanced slip at the wall and resulting in a larger slip 

velocity. 

Unsteady Solute Dispersion Function
This section examines the way unsteady dispersion 

changes in response to variation in relaxation time 

ratio and the relative height of stenosis within stenosed 

artery. In present study, the study examined the process 

of the drug are dispersed in Jeffrey blood flow within 

time-dependent compared to (18) which did not address 

the dispersion of solutes within the flow. The study of 

unsteady solute dispersion is conducted to understand 

and analyze the drug molecules, disperse in blood 

flow under time dependent. The variation of unsteady 

dispersion function, ƒ1t for different values of time, t   in 

the blood flow through a stenosed artery is depicted in 

Figures 5 and 6, highlighting conditions both with and 

without the relaxation time ratio, λ. According to the 

figure, the unsteady dispersion function, ƒ1t   reduces at 

the artery’s center and grows at the wall with increasing 

time. In the presence of the ratio of relaxation time, λ    

presence when  λ = 1.2  the unsteady dispersion function, 

ƒ1t  shown in Figure 6 is much larger compared to that in 

Figure 5 when λ = 0. It also indicates that at time, t = 0   

the unsteady dispersion function,   achieve its optimal 

result, and as time, t  increases until the value of  t = 0 

, the value unsteady dispersion function, ƒ1t   decreases at 

the center. Meanwhile, at the arterial wall, the unsteady 

dispersion function, ƒ1t rise as time progresses. This 

study of unsteady dispersion can be applied to evaluate 

the effectiveness of drug delivery in blood flow. When 

the drug (medicine) is injected into blood vessels, the 

particles of drug are dispersed in the artery within time 

dependent. In the present of the ratio of relaxation time, 

the drug (medicine) takes time to disperse in the artery 

and balance between elastic and viscous behaviors (5). 

According to Figure 7, as the relative height of the 

stenosis profile increases, the unsteady dispersion of the 

drug (medicine) in the blood flow significantly decreases 

at the center because of the blood vessels lumen become 

narrow due to stenosis. The drug (medicine) dispersed 

slowly to pass through a blood vessel with the stenosis at 

the center and the time taken becomes longer because 
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of the ratio of relaxation time and creates a higher 

concentration upstream of the stenosis (23). 

Additionally, there are also real-world practical 

applications for the findings. For instance, optimizing 

medication delivery systems for targeted treatments, 

like stent-based drug release, can be improved by the 

understanding of solute dispersion in stenosed arteries. 

Moreover, the findings could impact the development of 

diagnostic techniques like contrast substance dispersion 

imaging that depend on solute transport data.

This study could be further upon in the future by 

examining deeper and relevant cases. For example, 

a deeper understanding of solute transport in curved 

or branching arteries could potentially be possible 

by extending the model to three-dimensional (3D) 

geometries. Analysis of artery wall resistance and 

its impact on solute dispersion would be possible 

with the inclusion of fluid-structure interaction (FSI). 

The applications of fluid-structure interaction (FSI) 

in mechanical and biological engineering have 

drawn a lot of interest from scientists and researchers 

(24). Additionally, simulating the accumulation and 

development of low-density lipoprotein (LDL) in 

stenosed areas may provide important information 

about the atherosclerosis development.

CONCLUSION

A mathematical model has been created and employed 

to investigate the concept of dispersion solute, focusing 

on unsteady solute dispersion in Jeffrey fluid. In this 

study, the influence of both the relaxation time ratio 

and the relative height of the stenosis profile on solute 

dispersion in a stenosed artery’s blood flow is analyzed 

by using the Jeffrey fluid model.

According to the results, increasing the ratio of relaxation 

time leads to higher flow velocity. Regarding the unsteady 

dispersion function, it decrease at the center of the 

artery while increasing at the wall as time goes on. The 

presence of the relaxation time ratio causes a significant 

rise in unsteady dispersion at the artery’s center and a 

marked decrease at the wall. An increase in the relative 

height of the stenosis profile leads to a decrease in the 

unsteady dispersion function With the inclusion of the 

relaxation time ratio, the unsteady dispersion function 

significantly rises at the artery’s center and decreases 

markedly at the wall, as the relative height of the stenosis 

profile is adjusted.

The findings of this study are advantageous for 

researchers seeking a deeper understanding of how 

the ratio of relaxation time and the relative height of 

stenosis influence blood flow and solute dispersion. 

Hence, the present findings in this study provide a 

clear understanding into the issues of arteries and drug 

dispersion with stenosis and improve the treatment of 

CVD. The insights gained from the study of Jeffrey fluid, 

in relation to the ratio of relaxation time and the relative 

height of stenosis, are advantageous for predicting 

drug delivery to particular stenosed regions affected by 

abnormal plaque, enabling more precise and targeted 

therapeutic approaches. By determining the dispersion 

function, healthcare professionals can tailor treatment 

strategies to the unique characteristics of each stenosed 

area. This optimization leads to more effective and 

efficient treatment outcomes. 

To advance practical understanding, future investigations 

should explore solute dispersion in arterial blood flow. 

Additionally, it is advisable for future research on Jeffrey 

fluid to examine how different viscosities affect the ratio 

of retardation time. 

ACKNOWLEDGEMENT

This research was supported by Ministry of Education 

(MOE) Malaysia through Fundamental Research Grant 

Scheme (FRGS) (FRGS/1/2020/STG06/UTM/02/15) 

and Universiti Teknologi Malaysia, UTMFR, 

PY/2024/01517/Q.J130000.3854.23H98.

REFERENCES

1.	 Ellahi, R., Rahman, S. U., & Nadeem, S. (2014). 

Blood flow of Jeffrey fluid in a catherized tapered 

artery with the suspension of nanoparticles. Physics 

Letters, Section A: General, Atomic and Solid 

State Physics, 378(40), 2973–2980. https://doi.

org/10.1016/j.physleta.2014.08.002

2.	 Kahshan, M., Lu, D., & Siddiqui, A. M. (2019). A 

Jeffrey Fluid Model for a Porous-walled Channel: 

Application to Flat Plate Dialyzer. Scientific Reports, 

9(1). https://doi.org/10.1038/s41598-019-52346-8

3.	 Afsar Khan, A., Ellahi, R., & Vafai, K. (2012). 

Peristaltic transport of a Jeffrey fluid with variable 

viscosity through a porous medium in an asymmetric 

channel. Advances in Mathematical Physics. https://

doi.org/10.1155/2012/169642 

4.	 Priyadharshini, S., & Ponalagusamy, R. (2017). 



Mal J Med Health Sci 21(SUPP2) 98-107, May 2025107

Malaysian Journal of Medicine and Health Sciences (eISSN 2636-9346)

Computational model on pulsatile flow of blood 

through a tapered arterial stenosis with radially 

variable viscosity and magnetic field. Sadhana 

Academy Proceedings in Engineering Sciences, 

42(11), 1901–1913. https://doi.org/10.1007/

s12046-017-0734-5

5.	 Chauhan, S. S., & Tiwari, A. (2022). Solute dispersion 

in non-Newtonian fluids flow through small blood 

vessels: A varying viscosity approach. European 

Journal of Mechanics, B/Fluids, 94, 200–211. https://

doi.org/10.1016/j.euromechflu.2022.02.009

6.	 Akbar, N. S., & Nadeem, S. (2014). Carreau fluid 

model for blood flow through a tapered artery with a 

stenosis. Ain Shams Engineering Journal, 5(4), 1307–

1316. https://doi.org/10.1016/j.asej.2014.05.010

7.	 Yan, S. R., Zarringhalam, M., Toghraie, D., Foong, 

L. K., & Talebizadehsardari, P. (2020). Numerical 

investigation of non-Newtonian blood flow within 

an artery with cone shape of stenosis in various 

stenosis angles. Computer Methods and Programs 

in Biomedicine, 192. https://doi.org/10.1016/j.

cmpb.2020.105434

8.	 Dhange, M., Sankad, G., Safdar, R., Jamshed, W., 

Eid, M. R., Bhujakkanavar, U., Gouadria, S. & 

Chouikh, R. (2022). A mathematical model of blood 

flow in a stenosed artery with post-stenotic dilatation 

and a forced field. Plos one, 17(7), e0266727.

9.	 Munir, I. D., Jaafar, N. A., & Shafie, S. (2024). 

Solute dispersion in hemodynamic within a stenotic 

artery experiencing arterial inclination and body 

acceleration. In AIP Conference Proceedings (Vol. 

3189, No. 1). AIP Publishing.

10.	Dhange, M., Sankad, G., Bhujakkanavar, U., 

Das, K. K., & Misra, J. C. (2024). Hemodynamic 

characteristics of blood flow in an inclined 

overlapped stenosed arterial section. Partial 

Differential Equations in Applied Mathematics, 11, 

100829.

11.	 Shukla, J. B., Parihar, R. S., & Rao, B. R. P. (1980). 

Effects of stenosis on non-Newtonian flow of the 

blood in an artery. Bulletin of mathematical biology, 

42, 283-294.

12.	Hussain, A., Sarwar, L., Akbar, S., & Malik, M. Y. 

(2022). Mathematical analysis of mass and heat 

transfer through arterial stenosis. Journal of Power 

Technologies, 102(3), 88-95.

13.	Owasit, P., & Sriyab, S. (2021). Mathematical 

modeling of non-Newtonian fluid in arterial 

blood flow through various stenoses. Advances 

in Difference Equations, 2021(1). https://doi.

org/10.1186/s13662-021-03492-9

14.	Ratchagar, N. P., & Vijayakumar, R. (2020). 

Dispersion of a solute in a couple stress fluid with 

chemical reaction using generalized dispersion 

model. Advances in Mathematics: Scientific 

Journal, 9(4), 2233–2247. https://doi.org/10.37418/

amsj.9.4.85

15.	 Singh, S., & Murthy, P. V. S. N. (2022). Unsteady 

solute dispersion in pulsatile Luo and Kuang blood 

flow (K - L Model) in a tube with wall absorption. 

Journal of Non-Newtonian Fluid Mechanics, 104928. 

https://doi.org/10.1016/j.jnnfm.2022.104928

16.	Das, P., Sarifuddin, Rana, J., & Kumar Mandal, P. 

(2022). Unsteady solute dispersion in the presence 

of reversible and irreversible reactions. Proceedings 

of the Royal Society A: Mathematical, Physical 

and Engineering Sciences, 478(2264). https://doi.

org/10.1098/rspa.2022.0127

17.	Gill, W. N., & Sankarasubramanian, R. (1970). 

Exact analysis of unsteady convective diffusion. 

Proceedings of the Royal Society of London. A. 

Mathematical and Physical Sciences, 316(1526), 

341-350.

18.	 Sharma, B. D., Yadav, P. K., & Filippov, A. (2017). 

A Jeffrey-fluid model of blood flow in tubes with 

stenosis. Colloid Journal, 79(6), 849–856. https://

doi.org/10.1134/S1061933X1706014X

19.	 Jaafar, N. A., ZainulAbidin, S. N. A. M., Ismail, Z., 

& Mohamad, A. Q. (2021). Mathematical Analysis 

of Unsteady Solute Dispersion with Chemical 

Reaction Through a Stenosed Artery. Journal of 

Advanced Research in Fluid Mechanics and Thermal 

Sciences, 86(2), 56–73. https://doi.org/10.37934/

arfmts.86.2.5673

20.	Thurston, G. B. (1972). Viscoelasticity of human 

blood. Biophysical journal, 12(9), 1205-1217.

21.	Bird, R.B., Armstrong, R.C., & Hassager, O. (1987). 

Dynamics of Polymeric Liquids, Vol. 1: Fluid 

Mechanics. 2nd ed. Wiley-Interscience.

22.	Copley, A. L., King, R.G., Chien, S. , Usami, S., 

Skalak R. & Huang, C.R. (1975). Microscopic 

observations of viscoelasticity of human blood in 

steady and oscillatory flow, Biorheology 12, 257–

263.

23.	Mazumdar, J. (1999). An introduction to 

mathematical physiology and biology. Cambridge 

University Press, Pp13-18.

24.	 Shahzad, H., Wang, X., Ghaffari, A., Iqbal, K., 

Hafeez, M. B., Krawczuk, M., & Wojnicz, W. (2022). 

Fluid structure interaction study of non-Newtonian 

Casson fluid in a bifurcated channel having stenosis 

with elastic walls. Scientific Reports, 12(1), 12219.


