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Video summarization plays an important role in multiple applications by compressing lengthy video content into
compressed representation. The purpose is to present a fine-tuned deep model for lecture audio video summa-
rization. Initially, the input lecture audio-visual video is taken from the dataset. Then, the video shot segmen-
tation (slide segmentation) is done using the YCbCr space colour model. From each video shot, the audio and
video within the video shot are segmented using the Honey Badger-based Bald Eagle Algorithm (HBBEA). The

HBBEA is obtained by combining the Bald Eagle Search (BES) and Honey Badger Algorithm (HBA). The DRN
training is executed by HBBEA to select the finest DRN weights. The relevant video frames are merged with the
audio. The proposed HBBEA-based DRN outperformed with a better F1-Score of 91.9 %, Negative predictive
value (NPV) of 89.6 %, Positive predictive value (PPV) of 90.7 %, Accuracy of 91.8 %, precision of 91 %, and

recall of 92.8 %.

1. Introduction

In today’s era, with the advancement in camera, internet, storage
and display technologies, video plays a vital role in everyday life and
finds many applications that use video as a communication medium. The
raw original records of the video are generally affected by various noises
and unwanted audio and/or video frames. Sports analysts, medical
professionals, and researchers also employ video summarization for
focused analysis in their respective domains Furthermore, entertain-
ment, traffic management, crisis response, and environmental moni-
toring all leverage video summarization to extract crucial insights from
extensive video datasets [39], thereby optimizing decision-making and
enhancing user experiences across diverse fields. In the field of educa-
tion, video summarization can play a key role in enhancing the learning
process [15]. Most of the time, we’re exposed to raw education videos
with different things that affect the learning process. These videos
haven’t been changed in any way, so they are called “raw education
videos.”.

Video summarization has attracted significant interest due to its
valuable ability to enhance video browsing [40]. Video summarization
is making shorter, more interesting versions of long video lessons, which
makes it easier for students to understand difficult ideas and quickly
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review important points. This not only saves time and storage space,
because they can find short summaries that fit their needs [17]. The
quality of education on an e-learning platform can be improved by
making better summaries from long videos. So, summarizing helps
students learn better, save time, and understand complex topics more
easily [18]. CPSP [32] refines audio-visual features, making them
distinguishable from negatives enhancing the features benefit of AVE
[33] classification.

There’s a growing need for automated methods to create summaries
of educational lecture videos. In our work, we’re also looking at the
audio part of the videos. In educational videos, it’s crucial to sync the
images with the audio [16,38] to find the important parts and create a
summarized version of the lecture video. In online classes, the lecture
videos are stored on servers, and students can watch them at their place.
Static summarization makes a sequence of pictures that show the most
important moments in a video. It’s precise but doesn’t use sound, just
the pictures [19]. Dynamic summarization, on the other hand, creates
short videos that give you a quick idea of what the video is about. It uses
both the video and its sound. To make these summaries, we use different
methods like breaking the video into smaller parts, understanding
what’s happening in the video, and how things move [20 21]. Classical
techniques for video summarization work by analyzing short parts of
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videos to find the most important parts with the least repetition. They
use things like visual characteristics and how often something appears to
figure this out. Some methods even use high-level features like objects
and people, but creating detectors for all these things can be hard, which
is why we use video summarization techniques [22].

1.1. Motivation

The explosion of video content has made it challenging to review and
analyse all that video data. Especially when dealing with long lecture
videos, using computer vision methods to detect and classify events can
become slow and demanding because they have to process every single
frame of the video. To tackle this problem, we need new ways to sum-
marize videos effectively. These methods should be able to quickly
capture the most important parts of videos, especially when dealing with
educational or lecture videos. So, we’re looking for ways to make video
summarization work well for all kinds of videos, including those used for
teaching and learning. Essentially, summarizing lecture videos aims to
simplify the learning process and make educational content more
digestible.

The main contributions of this work are:

e Proposed Honey Badger-based bald eagle algorithm based Deep
Residual Network (HBBEA_DRN): The important audio and video
segments are selected using Deep Residual Network (DRN) with
Honey Badger-based bald eagle algorithm (HBBEA) training. Here,
the HBBEA is developed by integrating both the Bald Eagle Search
(BES) and Honey Badger Algorithm (HBA). From each video shot, the
audio and video within the video shot are segmented using the
HBBEA.

2. Literature survey

Davila et al. [1] introduced a technique to extract and condense
handwritten content from videos. They used a fully convolutional
network called FCN-LectureNet, treating videos as binary images. This
network mined the handwritten content to create a summarized version
with the relevant segments. However, this method didn’t consider
additional factors to improve how content flows over time. To enhance
temporal segmentation, Urala Kota et al. [2] proposed a model to mine
and simplify lecture videos. They employed a deep learning pipeline to
detect handwritten text for indexing video collections. However, this
approach struggled to accumulate and annotate a broader range of
lecture data. Yuan et al. [3] developed CRSum, a neural network for
video summarization. It combined feature extraction, temporal model-
ling, and summary creation, introducing a new loss function, the
Sobolev loss. Yet, this method had limitations in handling complex tasks.
For intricate tasks, Mussel Cirne, M.V., and Pedrini, H [4] introduced a
video summarization approach named VISCOM, utilizing colour co-
occurrence matrices. However, this method incurred significant
computational time. Gharbi et al. [5] proposed an effective keyframe
mining technique based on local interest points and repeatability graph
clustering. This method, though successful, didn’t involve the concept of
avisual query. Basavarajaiah, M., and Sharma, P. [6] presented GVSUM,
a generic video summarization method. It produced a summary by
selecting keyframes during main scene changes. However, this approach
didn’t incorporate audio and metadata. To include audio and metadata,
Jin, H et al. [7] developed super pixel segmentation based on image
similarity, adapting it to summarize videos and mine keyframes while
reducing redundancy. Rafiq et al. [8] introduced a novel technique that
classifies video scenes using a summarization model. Creating concise
video summaries is complex, requiring substantial manual effort and
extensive computational resources. Nevertheless, frames that don’t
neatly belong to any specific class may be incorrectly classified into the
closest suitable class. Zhao., et al [30] introduced the Audio Visual
Recurrent Network (AVRN) to exploit the audio and visual information
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for the video summarization task. This method manipulates both audio
and visual information to improve understanding of video content and
structure. However high-quality audio and visual data are essential for
effective performance. This classification challenge can be enhanced
through the optimization techniques commonly employed across
various domains. Optimization techniques [41 42 43] include meta-
heuristic optimization techniques, such as Genetic Algorithms (GAs),
Particle Swarm Optimization (PSO), Simulated Annealing (SA), Ant
Colony Optimization (ACO), and others, which are widely employed
across diverse domains. These techniques find applications in engi-
neering design, scheduling problems, financial modelling, bioinformat-
ics, network design, evolutionary robotics, function optimization, image
processing, neural network [31 36] training, and various combinatorial
optimization problems. Their versatility allows researchers and practi-
tioners to adapt these algorithms to address complex optimization
challenges in fields ranging from logistics and telecommunications to
structural design and machine learning [35 37 10].

In the previous discussion of the literature survey, we noticed that
Bald Eagle Optimization (BEO) and Honey Badger Optimization (HBO)
techniques are metaheuristic optimization algorithms inspired by the
characteristics and behaviours of bald eagles and honey badgers,
respectively. BEO is applied to solve optimization problems across
diverse domains, including engineering design, scheduling, and bioin-
formatics. Its inspiration from the hunting behaviour of bald eagles
makes it particularly suitable for problems requiring adaptability and
efficient exploration of search spaces. On the other hand, HBO, inspired
by the tenacity and fearless nature of honey badgers, is utilized in
optimization tasks such as feature selection, image segmentation, and
parameter tuning in machine learning. Both techniques leverage the
unique traits of these animals to enhance their search mechanisms and
find high-quality solutions in various application domains [11 34].

As per the literature survey performed previously, there isn’t specific
information available on the direct application of BEO or HBO tech-
niques to video summarization tasks. These optimization algorithms are
relatively new, and their applications may vary across different do-
mains. The choice of optimization technique for such tasks often de-
pends on the specific characteristics of the problem and the objectives of
the summarization.

However, it’s important to note that research in the field of optimi-
zation techniques and their applications is continually evolving [14].
Researchers are exploring and adapting these algorithms for video
summarization. There are some challenges mentioned in section 2.1 as
per the rigorous survey carried out in the previous section.

2.1. Challenges

Here are some Challenges that have been addressed by lecture video
summarization methods:

Complexity of Deep Models: One method called FCN-LectureNet
tried to classify lecture videos, but it showed that using deep models
to directly figure out which frames are important can be risky. It’s still
challenging to accurately classify different types of content like text,
graphics, and math within the video.

Content Overlapping: Some methods used detailed pixel masks of
the lecturer’s writing to piece together the handwritten content. How-
ever, this approach sometimes causes the content to overlap or get
jumbled up [2].

Complex Analysis for Similarities: Another method, VISCOM, used
colour co-occurrence matrices to define video frames. However, it
required a deep analysis of distance functions to determine how similar
pairs of frames were, which made it more complex [4].

Inaccurate Segmentation: Super pixel-based video summarization
methods didn’t always give precise results, especially when the video
content changed quickly or shifted regularly. This led to issues with the
similarity of keyframes [7].

Lack of Search Engine Indexing: Lecture videos are valuable for
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Fig. 1. Preview of lecture audio video summarization model using HBBEA-based DRN.

students and educators worldwide, but they often aren’t searchable on
search engines. Creating annotations (labels or descriptions) for these
videos manually is a difficult and time-consuming task.

The aim here is to make a smart way of summarizing raw lecture
videos. We start by breaking the video into different parts based on
colours, and we use something called the YCbCr color model for this.
Then, we separate the audio (sound) and video (pictures) parts of the
videos using an algorithm called HBBEA. After that, we look at the in-
formation in the sound and the pictures separately, put it all together,
and feed it into a model called DRN. DRN helps us figure out which parts
of the video and audio are important. To make DRN work well, we use
HBBEA to adjust its settings and weights. So, in simple terms, we’'re
using a combination of colour, frame and sound to pick out the impor-
tant bits from raw lecture videos.

3. Proposed Honey Badger-based bald eagle algorithm (HBBEA)-
based Deep Residual Network (DRN) for lecture audio video
summarization model

The purpose is to present a fine-tuned deep model for lecture audio
video summarization. Initially, the input lecture audio-visual video is
taken from the dataset. Then, the video shot segmentation (slide

segmentation) is done using the YCbCr space colour model [9]. From
each video shot, the audio and video within the video shot are
segmented using the HBBEA. The Honey Badger-based Bald Eager Al-
gorithm (HBBEA) is obtained by combining BES [10] and HBA [11].
After that, feature extraction for each segmented audio and video frame
is done. Here, the audio features, like BFCC [12], MFCC [12], zero
crossing, spectral flux [24], spectral centroid [13], and spectral band-
width, whereas video features, such as SLBT [25], LTP [26], HLoG [27],
LOOP [23], and LVP [29] are extracted. Once the segmented audio and
video frames are extracted, the important audio and video segments are
selected using DRN [14]. The DRN training is executed with HBBEA to
tune the finest DRN weights. Finally, the relevant video frames are
merged with the audio. Thus, the HBBEA-based DRN are utilized for
lecture audio video summarization. Fig. 1 shows a preview of the lecture
audio video summarization model using HBBEA-based DRN.

3.1. Congregate lecture audio-visual video

Audiovisual (AV) represents the processing of electronic media,
which includes both visual and sound units, like films, and slide-tape
presentations. Digital video is considered to be an emerging storage
and exchange interface through the quick design in high-speed net-
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Fig. 2. Solution model.

works. There exist recordings of audiovisual content, which are utilized
more frequently in e-learning. Consider a dataset F, which comprises
input lecture audio-visual video content, and is represented by,

F={Ki,Kp, K, K} @

where, articulates total videos and K; is I , lecture video.

3.2. Video shot segmentation using YCbCr space colour model

Here, K] is subjected to segmentation of video shots. Here, the seg-
mentation of video shots is done using the YCbCr space colour model
[9]. It is modelled to YCbCr space colour in which the three colour
values Y, Cb and Cr are considered. Here, the Y, Cb and Cr indicate the
Luminance component, blue-difference and red-difference chroma
components. Each channel of colour in a frame evaluates the moments.
Thus, each video frame is adapted as nine moments wherein the three
moments for each 3 color channel are considered. These colour moments
include mean, standard deviation and skewness, which is devised next to
this. The mean represents the value of the average colour in a frame. The
square root using the distribution of variance is termed standard devi-
ation. The skewness indicates the degree of asymmetry in a distribution.
The mean, standard deviation and skewness are explicated in equations
(2), (3) and (4). These three colour moments are described in the form of
pixels. Each pixel in a frame is modelled as G4, which represents the

pixel of d™ the colour channel of e the frame.

1 e—1
=52 Gae (@)
D

|

Bi=, <%Z;l (Gae — Ed)3> 4

Ol =

e—1
ZGu4%> ©)
D

where, E4, C4 and By articulates mean, standard deviation and skewness
of d® colour channel. Enumerate the addition of weighted differences
amidst the moments of two distributions considering expression (5),
which is utilized for getting the dissimilarity amidst the colour distri-
butions of two frames in a video. Thus, the inputted video is segmented
into the number of frames based on the dissimilarity between the two
frames. The segments are notated as,

R={Ry,Ry, Ry} 5)
where, g refers to total segments.
3.3. Segment audio and video

Here, the audio and video segments are obtained separately
considering the data present in memory. The audio segmentation tech-

nique discovers the correlations amidst the audio features while the
video segmentation discovers the correlations amidst the keyframes.
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Here, the audio and video segmentation is performed with HBBEA. The
solution model, fitness and HBBEA steps are defined below.

3.3.1. Solution encoding

The representation of the solution considering different videos is
revealed in Fig. 2. Here, the segments of audio and video are separately
obtained. Consider slide 1, which is divided into two, three and two
segments as represented below.

3.3.2. Derive fitness function
The fitness is modelled as,

Fit_f (ki}hjzu L] > <i||

|fv—N’;||) ©

where T is the average of frames in k™ ,. segment, N is the average of
signals in k™ 4. segment, Jj is the total number of frames in k?* segment
and N is the total number of signals in k% segment,g represents total
segments.

3.3.3. Steps of HBBEA

The HBBEA is produced by the alliance of BES and HBA. BES [10] is
motivated by the mimicking behaviours of bald eagles throughout the
hunting to illustrate the consequences of each hunting phase. It is
plotted into three parts, named selection of search space, search selected
search space, and swooping. It improved its effectiveness by improving
its efficacy and incorporating powerful operators. To produce a global
best solution, HBA [11] is incorporated. HBA is motivated by the in-
tellectual foraging strategy of honey badger to devise an effective search
phase to solve the optimization issues having complicated search spaces.
It is effective in balancing exploration—exploitation and is best in solving
unsupervised and supervised issues. Thus, the alliance of BES and HBA
provided the finest competence. The HBBEA steps are illustrated below.

Step 1) Initialization

The fundamental step is to define the populace that contains the
production of bald eagles notated by,

T:{T17T2~,"'!TM7"'~,T-9} (7)

where, 9 is total bald eagles, T, signifies 4 bald eagles.

Step 2) Enumerate the fitness function

The fitness is previously inspected in section 3.3.2.

Step 3) Choose the stage.

According to BEO [10], the select phase comprises bald eagles that
determine and select the best area in the selected search space wherein it
hunts prey and is provided by,

N(Thnean — T(a)) (€©))

wherein, y stands for attribute, which manages change of position, n
signifies arbitrary number amongst 0-1,T;.: symbolizes optimum posi-
tion, Tpeq Signifies eagles which used up all the data with previous
search, and T(a) symbolizes the present position of the bald eagle, and
T(a+1) refers to subsequent bald eagle location.

y*n*T(a) 9

For escaping with local optimal, the HBA [11] is being utilized. From
the HBA algorithm, the update expression is modelled by,

T(a+1) = Thest +7*

T(a + 1) = Thest +7*N* Tinean —

T(a+1) = Tprey + H*p7*1*qa 10
qa = Tprey — T(a) 1D
T(a+ 1) = Tprey + H*p7*n* (Tprey — T(a)) 12)
T(a+ 1) = Tyrey + H*p7*n* Tprey — H*p7*n*T(a) 13)
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Table 1
Pseudo-code of HBBEA.

Input: Population T
Output: Finest solution Tpes
Begin
Randomly initiate point T, for ¢ point.
Enumerate fitness
While (termination criterion not met)
//Select stage
For (each point ¢ in population)
Update with expression (21)
If f(Tnew) < f(Tc)
Te = Thew
IF £(Tnew) < f(Tpest)
Thest = Thew
End if
End if
End for
// Search in phase
For (each point ¢ in population)
Update with expression (22)
If f(Tnew) < f(Tc)
Te = Thew
If f(Tnew) < f(Thest)
Toest = Thew
End if
End if
End for
// Swoop phase
For (each point c in population)
Update with expression (29)
If f(Tnew) < f(Tc)
Te = Thew
If f(Thew) < f(Test)
Toest = Thew
End if
End if
End for
Fixa =a +1
End while
End

H*p7 0 T(a) = Tyrey +H*P7*11* Tyrey — T(@+ 1) (14)

Torey(1 + H*py*n) — T(a+1)

T(@) = =y (1s)

Substitute expression (15) in expression (9),

1o %n)
Tyrey(1 + H 117 'l) T(a+ 1)) 16)
H*p7*n

T(a -+ l) = Tbest + Y*n*Tmean - 7/*“<

. T(a+1 (T 1+ H*p;*
T(a+l):Tbext‘i’ywn"Tmean* n ( + )* "n( prey( b7 f’]))

4 H“"'pf"r] H*p7*'7
a7)
o Ta+1) . s, (Torey (1 + H*p7)
@+ 1470 ) = ot 10 Ty — o L)
(18)
r*n . ((Torey(1 + H*pr*n)
Ta+1) {1 +H*pf*ﬂ] = Thea 7 Tnean = n(%
19
H*py*n + y*n o [Ty (1 + H*py*
T(a + 1) |: 1;177*;77*';/ ] = Thest + 7" N* Thean — 7"n<‘ prey(H*p7 #:',Ip7 ]1) )
(20)
The final update expression of HBBEA is provided as,
T(a i ]) _ (Tbest + Y*H*Tmean)(H*p7*rl) - V*H(Tprey(l + H*P7*’7) ) (21)

Hi:p77':'7 + },Jh—n
Step 4) Search stage
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In the search stage, the updated position of bald eagles is modelled
as,

Tc,new = Tc +A(C)*(Tc - Tc+1) +I(C)*(TC - Tmean) (22)

Here, Al(c)refers to the present location of ¢ bald eagle in the x-axis,
I(c) signifies the present location of ¢ bald eagle in the y-axis, T.
symbolizes ¢ bald eagle’s location and T.,; is (c 4+ 1)" bald eagle’s
location.

The current location of ¢ bald eagle in the x-axis is provided by,

Al(c)

Ac) = max(|AI]) (23)

The present location of ¢ bald eagle in the y-axis is modelled by,

_ Qo)
I(c) = max(|Ql]) 24
Al(c) = I(c)*sin(0(c) ) (25)
QI(c) = I(c)*cos(6(c) ) (26)

The angle provided with a bald eagle while updating the location is
noted by,

0(c) = f*n*rand 27)
I(c) = 0(c) + O x rand (28)

where f refers to attribute with value 5-10, O signifies a random num-
ber, which relies on value amidst 0.5 to 2 and aids to identify search
cycles count, rand is arbitrary, 6(c) denote angle.

Step 5) Swooping stage.

In the swooping stage, the updated position of bald eagles is
modelled as,

T new = rand* Tes + AI(C)* (Te — i1*Thmean) + QI(C)*(Te — 2 X These)  (29)
Here,il,i2 € [1,2].
The present location of ¢ bald eagle in the x-axis is modelled by,

Al(c)

AllC) = (AT

(30)

The present location of w bald eagle in the y-axis is modelled by,
Qi(c)

QlI(c) = max(Q) (€X0)]
Al(c) = I(c)*sinh(6(c) ) (32)
QI(c) = I(c)*cosh(6(c)) (33)

The angle attained by the bald eagle while updating the location is
modelled by,

6(c) = f*z*rand (34)
I(c) = 0(c) (35)

Step 6) Re-enumeration of fitness

Considering each population, fitness is re-enumerated to define the
best solution.

Step 7) Termination

Imitate aforesaid steps until the crucial factor of termination is ac-
quired. Table 1 explores the pseudo-code of HBBEA.

3.4. Acquisition features from segmented video

The features obtained through the segmented videos are briefly
described below.
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a) SLBT The magnitude (m) and orientation (7)of gradients (§,0) considering
each pixel are evaluated as,
SLBT feature [25] unifies both shape and texture data and it is similar

to Active Appearance Model (AAM). Consider a 3 x 3 window having a i, ¢) = 1/Q + Q:‘;) and (2, ¢) = arctan <&> (43)
centre pixel (U, V;) intensity value represented as W, wherein W, (r = Q
1,2, 3,...,7) equal to the grey metric of eight adjoining pixels. These wherein, Q; and Q, signify horizontal and vertical gradient approx-
pixels are thresholds using the centre metric W, as y (X (Wo — W;), ....., imations. The HoG output generated through feature mining is notated
X (W7 — W,)) an operation of X (Y) is notated by, as Ej.
1, 2>0
X(Y) = { 0. 2<0 (36) d) LOOP
7 The Local Binary Pattern (LBP) and Local Directional Pattern (LDP)
LBP (U,, V,) = Z X (W, — W) 2" 37) are unified considering a non-linear way to offer this feature. The
r=0 equation of LOOP [23] value using pixel is provided as;
Also, texture modelling is executed with PCA and it is described by, 7
LOOP(aa,.,bb..) = ee;r — eeq )2 44
th . (y 7y) (38) ( cc cc) ;gg( ff cc) ( )
The unified texture and shape attribute vector is evaluated with the
below equation. As values of shape and texture are in assorted units, dd(hh) = { 1 :If hh Z_ 0 (45)
then it is imperative to discover the weights of the diagonal matrix z;. 0 ; Otherwise
The unified feature vector is explicated as, wherein, ee; and ee,. symbolize the intensity of the image in 3 x 3 e
2 W, neighbourhood, a signify the pixel’s exponential weight, and is discov-
We = ( W, > (39) ered using rank and magnitude of Kirsch masks, which is determined
using its eight pixels and noise-free image’s centre pixel is expressed
v = xy (W — W) (40) using coordinate aa,,bb... The LOOP feature is denoted as E,..
The generated SLBT feature is notated by E;. e) LVP
b) LTP The LVP [29] characteristic is modelled by,
Several segmented areas are more consistent and genuine to examine Feelle,) = (J(Lae) = J(Le,)) (46)
if the feature robustness is enhanced in the areas. LTP [26] is less Where in, @ symbolizes the count of neighbourhood pixels using
responsive and more dominant to noise in consistent segmented areas. targeted pixels L, from the radius.

LTP grey levels are quantized for zero in a zone width of +j around t,, and
a 3-valued operation is utilized for replacing the indicator b(o) and is LVPxya(Le,) = {qs(Fue(L1, Y), Faras o (L1, Y), Foe(Le, ) Farase o(Ley)),

modelled as, qs(Foe(L2, Y), Foyase (L2, V), Foe(Le, ) Farase o (Le)), oo
Q5 (Fae(Liy), Foyase o (Liy), Fae(Le, ) Foyase o (Ley)) His1 2. syt
1 ;0>t,+j 47)
Es = bo,tu]) = 0 ot < 1)
-10<t,—j

. Foia5 o(Le
qs(Foe (L1~Y)7Fa+45” £ (Ll-, Y), _ 1, lfF(z+45" ,r(Ll.Y) - (;-%T()l) X Fa.é‘(LLY))

Fuell) Fross o(Le) |~ =0 “®
0, else

Thus, the user-based threshold is explicated j which builds codes of
LTP to be more defiant to noise and invariant to grey-level alteration,t, wherein,F, (L, ) symbolize the direction vector at the targeted pixel,
represent the central pixel and o is notated by adjoining pixel. The LTP and ¢ symbolize separation amidst the pixel in question and its neigh-
feature is notated as E,. bours, and the ratio of transformation is provided as gs(.,.). The LVP

feature is notated by Es..

¢) HoG Thus, the feature vector obtained with segmented video features is

explicated as,
HOG [27] is executed on the Scale-Invariant Features Transform

(SIFT) descriptor and is enumerated by first, vertical L, and horizontal x1 = {Ex, By, B3, By, Es} (49)
gradients L, to filter an image with subsequent kernels.

-1 3.5. Acquisition features from segmented audio
Ly=(-1,0,1)andL, = | 0 (42)

1 The features obtained through the segmented audio are briefly

described below.
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Fig. 3. Preview of DRN.

a. BFCC

BFCC [12] is a model utilized to mine audio segments and is
described using logarithmic illustration. The BFCC is enumerated as,
Bark(0) = 13jtan(0.760/100) + 3.5 (50)
where, d tends to frequency. The BFCC feature is denoted by T;.
b. MFCC

MFCC [12] represents a technique utilized to excavate the features
using the obtained audio segments and is enumerated considering dis-
similarities amidst speaker voice and nearby platforms. Thus, the MFCC
feature is indicated by P3.

Mel(d) = 2595 x log(1 + d/700) (51)
where, 0 tends to frequency. The MFCC feature is denoted by T,.

c. Zero-crossing

It represents a point wherein the sign of mathematical function alters
in a signal. It helps to evaluate speech frequency. The zero-crossing

L‘ﬁ
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32 x32 x16

Average
pooling
layer

Output layer Flatten layer

(Dense layer)

features are denoted by Ts.
d. Spectral flux

The term spectral flux [28 24] is denoted as a 2-norm of frame-to-
frame spectral amplitude variance vector and is notated by T4.

e. Spectral centroid

Spectral centroid [28 13] is utilized to evaluate the brightness of the
audio segment, and is expressed by,

T5_< Z Kkl / i 11m>

mm=nn; mm=nn;

(52)

where kkn, signifies the frequency of bin mm, I, represents a spectral
value of bin mm and nn; nny exposed band edges, and Ts is the spectral
centroid.

f. Spectral bandwidth

This feature is used to compute the smallest bandwidth voice using
the higher frequency voice and is notated by Te.
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Thus, the feature vector obtained with segmented audio features is
explicated as,

kg = {T1,Ts, T3, T4, Ts, T} (53)

Hence, the final feature vector fed to DRN is denoted as x, which
represents the alliance of segmented video features x; and segmented
audio features «,.

3.6. Select important audio and video segments by DRN

The important audio and video segments are selected using the
proposed HBBEA-based DRN. The DRN preview and steps of HBBEA are
discussed below.

3.6.1. DRN model preview

The DRN [14] includes various layers, like residual blocks, linear
classifier, pooling and convolutional layer. The DRN model acquires
enhanced training and learning efficiency with a limited amount of
training instances. Thus, DRN is utilized for selecting imperative audio
and video segments. The feature vector « is attained as DRN input and
the structure is displayed in Fig. 3.

i. Convolutional layer

The conv layer expression is modelled by,

n—1 n-1

Ris) =Y viaes(T+£)(Y+A) (54)
=0 A=0
0-1

R.(s) = Z Ou*s (55)
=0

Here, s explicates the 2-dimensional outcome generated through the
prior layer, v is # x n kernel matrix, and learnable attribute T and Y is
adapted for accumulating coordinates #, A is the index of location in 2-
dimensional kernel matrix, vy explicates kernel size of X neuron, and *
stands for cross-correlation operator.

ii. Pooling layer

The Pool layer is linked with the convolutional layer, is adapted to
reduce the spatial size of the feature map, and smoothly manages
overfitting.

m— R
Cou = % +1 (56)

A — N
Ao = TA +1 (57)

Here, ¢;,Ai, express width and height of input 2-dimensional matrix,
N, represent the height of kernel, ¥; is kernel width, ¢, and A,,, endows
width and height of 2-dimensional matrix output.

iii. Activation function

The ReLU is notated as,

0, s<0
ReLU(s) = { S o (58)

Here, s signify the input feature.
iv. Batch normalization
The set of training instances is divided into disparate diminutive sets,

known as mini-batches in the batch normalization process and these
mini-batches are adapted to train the process.
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v. Residual blocks

The blocks of residual allocate a correlation substitute amongst the
convolutional layers. It involves shortcut correlation through input to
output in contrast to CNN. In addition, the input is linked directly to the
output layer that is modelled by,

Sin=x(s) +s (59)
Furthermore, the element matching factor is notated by,
Eour = X(S) + €15 (60)

where, s and ¢;,¢,,, refers to residual blocks input and output, ¢ signifies
mapping relation amongst output and input layer, er signifies weight
matrix.

vi. Linear classifier

The linear classifier is modelled by,

C=¢er+o0 (61)
where o refers to bias and DRN output is modelled by 0doy.

3.6.2. Training using HBBEA
The steps of HBBEA are the same as in section 3.3.3. Here, the fitness
considered is a mean square error which is modelled by,

1< )
R = v ; (A, — Ooue] (62)

where, N articulates fitness function, £ states total samples such that
1 <v </, term A, reveals target output, and d,,; denotes DRN output.

4. Results and discussion

The propensity of HBBEA-DRN is examined by changing the training
percentage in the x-axis. The proposed HBBEA-DRN is scripted in
Python.

4.1. Dataset description

The lecture video dataset is employed for the analysis. Here, five
types of lecture videos are considered. Each video comprises 1561
frames which provide visual content, audio content and data. Here, the
audio feature size is (1561, 135). Here, the video feature size is (1561,
160). Here, the audio and video feature size is (1561, 295).

4.2. Experimental results

The experimental resultants of HBBEA-DRN are expressed in Figs. 4,
4a) specifies the Input video frames with the timeline, 4b) indicates
summarized video frame with timeline, 4c) implies SLBT image, 4d)
indicates HoG image and 4e) signifies LOOP image. Notably, in Fig. 4,
one can observe the removal of undesired frames from the 00:03:07
timeline by HBBEA-DRN. The initial duration of the input lecture video
is 10 min, and through the summarization process, the duration of the
resulting video is reduced to 6.44 min. This indicates a successful
reduction of 3.56 min in the summarized video duration, demonstrating
the efficiency of the HBBEA-DRN approach in achieving more concise
and focused lecture video summaries. The outcomes are obtained using
five sets of videos which have 1561 frames. Some of the frames are
described in the below figures.

4.3. Metrics used

Metrics like Accuracy, NPV, Precision, Recall and F-measure are the
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a) Input video frames with the timeline
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00:00:00-00:01:13 00:01:13-00:04:29 00:04:29-00:06:44

00:00:00

summarized_videol

b) Summarised video frames with the timeline

Fig. 4. Experimental input and outcomes of HBBEA-DRN for lecture video summarization.
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Fig. 4. (continued).

metrics which is used by HBBEA-DRN for audio-video summarization.
The ability of HBBEA-DRN is inspected with different metrics and is
examined below.

(a) Accuracy

It measures the correctness of representing the video’s key aspects. It
exposes the probability that underwent the correct outcome and is
expressed as,

o+Y

TO+E+T+Y 63)

where, O refers to truly positive, Y is truly negative, E states falsely
positive, and T articulates falsely negative.

(b) NPV

NPV is a metric used to assess the ability of a summarization method
to exclude irrelevant or redundant content. It explicates probability that
overcomes negative test outcome in which each will truly not contain
that precise result and is represented as,

Y

NPV —

Y+T 64

(c) Precision

Precision measures the proportion of relevant content in the sum-
mary. It displays the closeness of various data instances amidst each
other to model summarization and is represented as,

10

(65)

(d) Recall

Recall evaluates the ability of the summarization method to include
all relevant content from the original video. It provides computation of
positive set classifications number, and is notated as,

(0}

N=—+—

O+T (66)

(e) F-measure

The F-measure combines precision and recall into a single metric and
is modelled as,

2 % L gl

PR 67)

y=

wherein, p and N is precision and recall.

4.4. Comparative analysis

The analysis is implemented with video, audio and video-audio data
using different metrics.

Certain previously developed schemes adapted for assessment
involve FCN-LectureNet [1], DL [2], CRSum [3], VISCOM [4] and pro-
posed HBBEA_DRN.

4.4.1. Video data evaluation
Fig. 5 explicates the video data evaluation using different measures
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by changing the training percentage. The F1-Score-assisted evaluation is
presented in Fig. 5a). Attaining 50 % training data, the F1-measure
enumerated by FCN-Lecture Net, DL, CRSum, VISCOM and proposed
HBBEA DRN are 0.699, 0.730, 0.775, 0.789, and 0.826. Besides
attaining 90 % training data, the Fl-measure enumerated by FCN-
Lecture Net, DL, CRSum, VISCOM and HBBEA_DRN are 0.806, 0.817,
0.840, 0.869, and 0.909. The evaluation of existing HBBEA_DRN using
Fl-measure is 11.331 %, 10.121 %, 7.590 %, and 4.400 %. The NPV-

E VISCOM
B Proposed HBBEA_DRN

(e)

Fig. 5. Video data evaluation using a) F1-measure b) NPV ¢) Accuracy d) Precision e) Recall.
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assisted evaluation is presented in Fig. 5b). Attaining 50 % training
data, the NPV enumerated by FCN-Lecture Net, DL, CRSum, VISCOM
and HBBEA_DRN are 0.705, 0.725, 0.760, 0.799, and 0.816. Besides
attaining 90 % training data, the NPV enumerated by FCN-Lecture Net,
DL, CRSum, VISCOM and HBBEA_DRN are 0.827, 0.860, 0.870, 0.875,
and 0.897. The evaluation of existing HBBEA_DRN using NPV is 7.803
%, 4.124 %, 3.010 %, and 2.452 %. The Accuracy-assisted evaluation is
presented in Fig. 5c). Attaining 50 % training data, the Accuracy



P. Chandan Kaur and Dr.L. Ragha

F1_measure

1 0.4

0.2 4

60 70

Training data(%)

B FCN-LectureNet
N DL
== CRSum

B VISCOM
BN Proposed HBBEA_DRN

Accuracy

Training data(%)

I FCN-LectureNet
[ DL
=3 CRSum

I VISCOM
BN Proposed HBBEA_DRN

©

Journal of Visual Communication and Image Representation 104 (2024) 104309

0.8 1

0.6 1

NPV

0.4 1

0.2 4

0.0 -

50 60 70

Training data(%)

B FCN-LectureNet
N DL
== CRSum

m VISCOM
B Proposed HBBEA_DRN

(b)

Precision

Training data(%)

B FCN-LectureNet
@ DL
= CRSum

B VISCOM
BN Proposed HBBEA_DRN

(d)

0.8

0.6 1

Recall

0.4 1

0.2 1

Training data(%)

B FCN-LectureNet
N DL
=3 CRSum

N VISCOM
BN Proposed HBBEA_DRN

(e)

Fig. 6. Audio data evaluation using a) F1-Score b) NPV c¢) Accuracy d) Precision e) Recall.

enumerated by FCN-Lecture Net, DL, CRSum, VISCOM and proposed
HBBEA DRN are 0.683, 0.748, 0.779, 0.815, and 0.844. Besides
attaining 90 % training data, the Accuracy enumerated by FCN-Lecture
Net, DL, CRSum, VISCOM and proposed HBBEA_DRN are 0.806, 0.846,
0.850, 0.888, and 0.913. The precision-assisted evaluation is presented
in Fig. 5d). Attaining 50 % training data, the precision enumerated by
FCN-Lecture Net, DL, CRSum, VISCOM and proposed HBBEA_DRN are
0.649, 0.730, 0.780, 0.817, and 0.847. Besides attaining 90 % training
data, the precision enumerated by FCN-Lecture Net, DL, CRSum, VIS-
COM and proposed HBBEA DRN are 0.818, 0.826, 0.850, 0.890, and
0.915. The evaluation of existing HBBEA_DRN using precision is 10.601
%, 9.726 %, 7.103 %, and 2.732 %. The recall-assisted evaluation is
presented in Fig. 5e). Attaining 50 % training data, the recall enumer-
ated by FCN-Lecture Net, DL, CRSum, VISCOM and proposed
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HBBEA DRN are 0.677, 0.750, 0.819, 0.850, and 0.867. Besides
attaining 90 % training data, the recall enumerated by FCN-Lecture Net,
DL, CRSum, VISCOM and proposed HBBEA DRN are 0.817, 0.840,
0.857, 0.897, and 0.926. The evaluation of existing HBBEA_DRN using
recall is 11.771 %, 9.287 %, 7.451 %, and 3.131 %.

4.4.2. Audio data evaluation

Fig. 6 endows the audio data evaluation with different metrics by
altering the training percentage. The F1-Score-based evaluation is pre-
sented in Fig. 6a). Acquiring 50 % training data, the Fl-measure
enumerated by FCN-Lecture Net, DL, CRSum, and VISCOM are 0.696,
0.759, 0.807, 0.817, whereas for HBBEA_DRN is 0.840. Besides
acquiring 90 % training data, the Fl-measure enumerated by FCN-
Lecture Net, DL, CRSum, and VISCOM are 0.819, 0.839, 0.855, 0.887,
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Fig. 7. Video-Audio data evaluation using a) F1-Score b) NPV ¢) Accuracy d) Precision e) Recall.

whereas for HBBEA DRN is 0.907. The evaluation of existing
HBBEA_DRN using F1-measure is 9.702 %, 7.497 %, 5.733 %, and 2.205
%. The NPV-assisted evaluation is presented in Fig. 6b). Acquiring 50 %
training data, the NPV enumerated by FCN-Lecture Net, DL, CRSum, and
VISCOM are 0.707, 0.719, 0.726, 0.765, whereas for HBBEA_DRN is
0.807. Besides acquiring 90 % training data, the NPV enumerated by
FCN-Lecture Net, DL, CRSum, and VISCOM are 0.739, 0.769, 0.797,
0.880, whereas for HBBEA DRN is 0.896. The evaluation of existing
HBBEA_DRN using NPV is 17.522 %, 14.174 %, 11.049 %, and 1.785 %.
The Accuracy-assisted evaluation is presented in Fig. 6¢). Acquiring 50
% training data, the Accuracy enumerated by FCN-Lecture Net, DL,
CRSum, and VISCOM are 0.729, 0.794, 0.810, 0.831, whereas for
HBBEA DRN is 0.860. Besides acquiring 90 % training data, the Accu-
racy enumerated by FCN-Lecture Net, DL, CRSum, and VISCOM are
0.828, 0.852, 0.869, 0.903, whereas for HBBEA_DRN is 0.918. The
precision-assisted evaluation is presented in Fig. 6d). Acquiring 50 %
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training data, the precision enumerated by FCN- Lecture Net, DL,
CRSum, and VISCOM are 0.727, 0.769, 0.817, 0.834, whereas
HBBEA _DRN is 0.860. Besides acquiring 90 % training data, the preci-
sion enumerated by FCN-Lecture Net, DL, CRSum, and VISCOM are
0.825, 0.847, 0.876, 0.905, whereas for HBBEA_DRN is 0.918. The
evaluation of existing HBBEA DRN using precision is 10.130 %, 7.734
%, 4.575 %, and 1.416 %. The recall-assisted evaluation is presented in
Fig. 6e). Acquiring 50 % training data, the recall enumerated by FCN-
Lecture Net, DL, CRSum and VISCOM are 0.737, 0.760, 0.797, 0.820,
whereas for HBBEA_DRN is 0.847. Besides acquiring 90 % training data,
the recall enumerated by FCN-Lecture Net, DL, CRSum and VISCOM are
0.800, 0.817, 0.835, 0.889, whereas for HBBEA DRN is 0.920. The
evaluation of existing HBBEA DRN using recall is 13.043 %, 11.195 %,
9.239 %, and 3.369 %.
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Table 2
Comparative analysis.
Variation Metrics FCN-Lecture Net DL CRSum VISCOM HBBEA_DRN
Video data F1-Score (%) 80.6 81.7 84.0 86.9 90.9
NPV (%) 82.7 86.0 87.0 87.5 89.7
Accuracy (%) 80.6 84.6 85.0 88.8 91.3
Precision (%) 81.8 82.6 85.0 89.0 91.5
Recall (%) 81.7 84.0 85.7 89.7 92.6
Audio data F1-Score (%) 81.9 83.9 85.5 88.7 90.7
NPV (%) 73.9 76.9 79.7 88.0 89.6
Accuracy (%) 82.8 85.2 86.9 90.3 91.8
Precision (%) 82.5 84.7 87.6 90.5 91.8
Recall (%) 80 81.7 83.5 88.9 92
Video-Audio F1-Score(%) 80 80.7 84.9 89.7 91.9
NPV(%) 80 83.7 86.7 89 89.6
Accuracy (%) 80.7 81.5 82.2 85.0 90.5
Precision(%) 77.6 80 82.0 85 91
Recall(%) 81.7 83.7 85.7 88.7 92.8

4.4.3. Video-audio data evaluation

Fig. 7 explicates the audio data evaluation using different measures
by shifting training percentages. The F1-Score-assisted valuation is
presented in Fig. 7a). Acquiring 50 % training data, the F1l-measure
explicated by FCN-Lecture Net, DL, CRSum, VISCOM and HBBEA_DRN
are 0.688, 0.720, 0.780, 0.799, and 0.816. Besides acquiring 90 %
training data, the Fl-measure explicated by FCN-Lecture Net, DL,
CRSum, VISCOM and HBBEA_DRN are 0.800, 0.807, 0.849, 0.897, and
0.919. The evaluation of existing HBBEA_DRN using Accuracy is 12.948
%, 12.187 %, 7.616 %, and 2.393 %. The NPV-assisted evaluation is
presented in Fig. 7b). Acquiring 50 % training data, the NPV explicated
by FCN-Lecture Net, DL, CRSum, VISCOM and HBBEA DRN are 0.690,
0.707, 0.744, 0.786, and 0.807. Besides acquiring 90 % training data,
the NPV explicated by FCN-Lecture Net, DL, CRSum, VISCOM and
HBBEA_DRN are 0.800, 0.837, 0.867, 0.890, and 0.896. The evaluation
of existing with HBBEA_DRN using NPV is 10.714 %, 6.584 %, 3.236 %,
0.669 %. The Accuracy-assisted evaluation is presented in Fig. 7c).
Acquiring 50 % training data, the Accuracy explicated by FCN-Lecture
Net, DL, CRSum, VISCOM and HBBEA _DRN are 0.697, 0.712, 0.731,
0.790, and 0.825. Besides acquiring 90 % training data, the Accuracy
explicated by FCN-Lecture Net, DL, CRSum, VISCOM and HBBEA_DRN
are 0.807, 0.815, 0.822, 0.850, and 0.905. The evaluation of existing
HBBEA _DRN using ACCURACY is 11.135 %, 8.820 %, 5.402 %, and
0.882 %. The precision-assisted evaluation is presented in Fig. 7d).
Acquiring 50 % training data, the precision explicated by FCN-Lecture
Net, DL, CRSum, VISCOM and HBBEA_DRN are 0.666, 0.699, 0.730,
0.790, and 0.820. Besides acquiring 90 % training data, the precision
explicated by FCN-Lecture Net, DL, CRSum, VISCOM and HBBEA_DRN
are 0.776, 0.800, 0.820, 0.850, and 0.910. The evaluation of existing
HBBEA_DRN using precision is 14.725 %, 12.087 %, 9.890 %, and 6.593
%. The recall-assisted evaluation is presented in Fig. 7e). Acquiring 50 %
training data, the recall explicated by FCN-Lecture Net, DL, CRSum,
VISCOM and HBBEA DRN are 0.715, 0.737, 0.797, 0.817, and 0.837.
Besides acquiring 90 % training data, the recall explicated by FCN-
Lecture Net, DL, CRSum, VISCOM and HBBEA_DRN are 0.817, 0.837,
0.857, 0.887, and 0.928. The evaluation of existing HBBEA DRN using
recall is 11.961 %, 9.806 %, 7.650 % and 4.418 %.

4.5. Comparative discussion

Table 2 explores techniques evaluation with video, audio and video-
audio data with definite metrics. Using video data, the highest F1-score
of 90.9 %, NPV of 89.7 %, Accuracy of 91.3 %, precision of 91.5 % and
recall of 92.6 % is produced by HBBEA DRN. Using audio data, the
highest F1-score of 90.7 %, NPV of 89.6 %, Accuracy of 91.8 %, preci-
sion of 91.8 % and recall of 92 % is produced by HBBEA DRN. Using
video-audio data, the highest F1-score of 91.9 %, NPV of 89.6 %, Ac-
curacy of 90.5 %, precision of 91 % and recall of 92.8 % is produced by
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HBBEA DRN. The highest precision is due to DRN which helps to
segment the audio precisely by taking imperative features. The highest
recall is due to the proposed optimization algorithm whose combined
benefits led to better recall. The highest F1 score is due to elevated
precision and recall values. Better Accuracy and NPV are attained due to
combined usage of DRN and optimization algorithms which helps to
detect the positive predicted values and negative predicted values.

5. Conclusion

The goal is to create an optimized deep-learning model for summa-
rizing lecture audio and video content. We start by using a dataset and
segmenting the lecture video into shots using the YCbCr color model.
Each video shot is then divided into audio and video segments using
HBBEA. Next, we extract features from each segmented audio and video
frame. For audio, we consider features like BFCC, MFCC, zero crossing,
spectral flux, spectral centroid, and spectral bandwidth. Video features
include SLBT, LTP, HoG, LOOP, and LVP. After extracting these features,
we use a method called DRN to select the most important audio and
video segments. We train DRN using HBBEA to fine-tune its weights for
optimal performance. Finally, the selected video frames are combined
with the audio. The proposed HBBEA-based DRN has demonstrated
superior performance, achieving a high F1-Score of 91.9 %, NPV of 89.6
%, Accuracy of 91.8 %, precision of 91 %, and recall of 92.8 %. This
approach outperforms others in efficiently summarizing lecture videos.
Future work will involve testing the model on additional databases to
validate its effectiveness. In conclusion, the HBBEA-DRN combination
has proven to be the most effective method for summarizing lecture
videos.
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