
COMPUTER SCIENCE
A Structured Programming Approach Using C

Behrouz A. Forouzan & Richard F. Gilberg

THIRD EDITION—

Pr* AssocExampleDescriptionOperator
amount
3.14159
(a + b)

Identifiers
' Constants
Parenthetical Expressions

N/A 16N

Nary[i]

doIt(x, y)

str.mem
ptr->mem

Array Index
ninction Call
Direct Member Selection
Indirect Member Selection
Postfix Increment •Decrement

[].
Y

Left-Right 16N
N->
Ya++++
YPrefix Increment •Decrement

Size in Bytes
Ones Complement

++a++
Nsizeof(int)sizeof
N-a

15Right-LeftNNot la!
NPlus •Minus

Address
Dereference / Indirection

+a+
N& &a
N* *ptr

Right-Left 14N() Type Cast (int)ptr
13Left-Right* / % Multiply •Divide •Modulus Na * b

12Left-RightAddition •Subtraction Na + b+ -
1 1Bit Shift Left • Bit Shift Right Left-RightNa << 3« »

Comparison 10Left-RightN< <= > >= a < 5

Equal • Not Equal!= 9Left-RightNa == bss

Bitwise And& 8Left-Right
Left-Right

Na & b
A Bitwise Exclusive Or a A b 7N

Bitwise Or 6N Left-Rightba
Logical And&& Left-Right 5Na ScSc b
Logical Or
Conditional

N Left-Right 4ba
? : 3Right-LeftNa ? x *• Y

= + = -=
*= / = % =
>>=
&= A =

a = 5
a %= b
a &= c
a |= d

Assignment 2Y Right-Left<<=

> Comma
* Side Effects (Yes / No)

a, b, c N Left-Right 1 i

Precedence Table

>'H
'. i -t

*+'- - M i | J,
X \/o.U6

f\£ w \/ dUeX .v- AA H

Computer Science:
A Structured Programming
Approach Using C,
Third Edition

DATE DUE

Nov o 5 rm
2o / HLI

1ft
March

a ao\(p/tprt I
2-6 ^63 Z7AA ^ i y

Wt~ 7 IS 7

JW 3 0 2(17
%
<15

im 1 o :Q i8 Clb
BtSDEC 17 fa

2012IAUG 0 ! »7

Australia •Brazil •Japan •Korea •Mexico •Singapore •Spam •United Kingdom •United States

SAN JACIN1U COLLEGE LIBHAHY-SOUTH

Preface to Third Edition

This text has two primary objectives: to teach the basic principles ol program-
outlined in the ACM curriculum for a CS1 class and to teach the

con-ming as _
basic constructs of the C Language. Our text puts these objectives in the

text of good software engineering concepts that we have developed through

more than 30 years of experience in industry and academia.

Major Changes in Third Edition
This is a major change from the second edition. In addition to significant
changes in the presentation and material covered, it also updates the lan-
guage to the ISO/IEC 9899 (1999), or as it is more commonly known, C99.

While we have made major changes, we have held true to our primary
remains a comprehensive introductionobjectives as outlined above. I he text

to computer programming in a software engineering context.
The major changes are outlined in the following sections.

Standard C (1999)
I he following topics, in alphabetical order, are explicitly discussed in the text .

• the Boolean type
• character set extensions (including Unicode and wide-characters)
• complex arithmetic
• extended math library
• for statement declarations
• integer type extensions
• line comments

Extended Chapter Material
In addition to the changes required by the inclusion of the new C99 exten-
sions, several chapters have been revised or reorganized.

A new section in Chapter 4, Inter-Function Communication,” provides a
better understanding of how functions communicate.

IV

Preface to Third Edition v

• The concept of “incremental program development’ is presented through
an example that starts in Chapter 4 and is extended in C hapter 5. A sec-
ond example in Chapter 8 completes the discussion.

• The discussion of text and binary files has been reworked to present the
materials in a more logical, and less redundant, fashion.

• The presentation of structured types is changed to conform to C 99 and
common usage.

• Chapter 14. “Bitwise Operators," has been extended and includes more
examples. In particular, we added several applications related to the
Internet and network programming.

• Chapter 15, "Lists," has also been extended. It now includes an overview
of the basic elements of data structures, including introductory discus-
sions of stack, queues, lists, trees, and graphs.

• Additional flowcharts and structure charts are included throughout the
text to provide better design considerations for some of the more complex
examples.

• Appendix D, "Numbering Systems," provides an expanded presentation of
the material.

• Appendix 1, "Pointers to void and to Functions," has been expanded to
include a discussion of using pointer to void types.

• Appendix k. "Program Development,” is a new discussion of program
development concepts.

• Appendix L, “Understanding Complex Declarations," contains the discus-
sion on reading complex declarations, which has been removed from
Chapter 10.

A C Language Perspective
While C is a complex and professional language, our classroom experience
using the previous editions of this book has shown that beginning students can
easily understand it . We believe that if the language is put into a perspective
that allows the student to understand its design, C is not a difficult language.

There are two aspects of C that separate it from most other languages:
expressions and pointers. The concept of expressions, as used in C, is unique.
The first half of this text builds a firm understanding of expressions. We intro-
duce pointers only to the extent necessary7 to cover passing them to functions
in Chapter 4 and arrays in Chapter 8. Our experiences have shown that with
a firm grasp of the expression concept, much of the mystery of C disappears.

In Chapters 9, we begin to develop the concept of pointers, which are
further developed in Chapter 10. Chapter 1 1 provides a discussion of C’s
approach to strings. Finally, Chapter 14 provides an extensive discussion of
bitwise operators, a subject that is needed to make the book complete.

The last chapter is a simple introduction to data structures. While not
all courses will have time to cover this chapter, those that do will give the

ce to Third Edition

students a head start into data structures. Motivated students will find that
they can "get a leg up” on data structures over the term break.

The appendices at the end of the text comprise

subjects required in the complete C language. These will be of

dents who go on to take other courses in the C language.
a rich set of references to

use to stu-

Features of the Book
Several features of this book make it unique and easy for beginning students
to understand.

Structure and Style
One of our basic tenets is that good habits are formed early. The corollary is

that bad habits are hard to break. Therefore, we consistently emphasize the
principles of structured programming and software engineering. Throughout
each chapter, short code snippets and programs are used to demonstrate
techniques.

Complete programs, generally found in the last section of the chapter,
are written in a well-document consistent style. As programs are analyzed,
style and standards are further explained. While we acknowledge that there
are many good styles, our experience has shown that if students are exposed
to one good style and adopt it , they will be better able to adapt to other
good styles.

Principle Before Practice
Whenever possible, we develop the principle ot a subject before we introduce
the language implementation. For example, in Chapter 5 we first introduce
the concept of logical data and selection and then we introduce the if . . . else
and suitch statements. This approach gives the student
selection before introducing the nuances of the language.

understanding ofan

Visual Approach
A brief scan of the hook will demonstrate that our approach is visual.1here

more than 400 figures, plus more than 70 tables and 180 program
pies. While this amount of material tends to create a large hook, the visual
approach makes it easy for students to follow the material.

are exam-

Examples
While the programming examples vary in complexity, each uses a consistentstyle. Our experience working with productional programs that live for 10 to20 years convinced us that readable and understandablto work with than e programs are easier

programs written in a terse, cryptic manner. For that reason,

Preface to Third Edition vii

and to emphasize the structure of the language, we label the sections in a
function with comments. We consistently follow a style that places only
declaration, definition, or statement on a line.

Ihe source code for these programs is available on the Course Technology
Web site (see ’Web Site Support Materials” later in this Preface). Students are
able to run these programs and to explore related topics through modification
and experimentation.

one

Coding Techniques
Throughout the text we include coding techniques that make programs more
readable and often more efficient. For example, in the analyTsis of Program 5-4
you will find the following discussion:

Where do we check for greater than } The answer is that we
default the greater than condition to the outer else. . . . When cod-
ing a two-way selection statement, try to code the most probable
condition first; with nested selection statements, code the most
probable first and the least probable last.

These techniques are drawn from our extensive industry and classroom
experience.

Software Engineering
A discussion of software engineering principles concludes each chapter. Our
intent is not to replace a separate course in software engineering. Rather, we
firmly believe that by incorporating basic software engineering principles
early in their studies, students will be better prepared for a formal treatment
of the subject. Even more important, by writing well-engineered programs
from the beginning, students will not be forced to unlearn and relearn. Ihey
will better understand software discussions in their subsequent classes.

While the software engineering sections are found at the end of each
chapter, they are most successfully taught by introducing them as the chapter
unfolds. Then, a short review at the end of the chapter summarizes the prin-
ciples that have been demonstrated during the lectures.

These sections are visually distinguishable from the rest of the chapter.
They have been set apart for several reasons. First, they are in reality a small
book within a book. While these sections contain important material, the book
stands on its own without them. You may, therefore, decide to cover the soft-
ware engineering sections as formal lecture topics or informally while the
chapter material is being covered. You may decide to assign them to the stu-
dent as additional reading, or, you may decide to exclude them entirely from
the course.

In general, software engineering sections directly or indirectly pertain to

the chapter material. Where they don’t, they discuss general software engi-
neering subjects, such as cohesion, coupling, and quality.

vjjj Preface to Third Edition

Pedagogical Material
End chapter material meets two pedagogical objectives: first , it helps the stu-
dents to review or summarize what they have learned , and second , it tests the
students’ mastery of the chapter material.

Review Material
• Tips and Common Programming Errors points out helpful hints and

possible problem areas.
• Key Terms provides a list of the important terms introduced in the chapter.
• Summary contains a concise overview of the key points for students to

understand in the chapter.

Practice Sets
• Review Questions contain several multiple choice questions that are

similar to the questions found in the examination database. The answers
to the odd-numbered questions are included in the solutions on the
Course Technology web site.

• Exercises are short questions covering the material in the chapter. The
answers to the odd-numbered exercises are also included in the solutions
on the Course Technology web site.

• Problems are short coding problems, generally intended to be run on a
computer. They can usually be developed in two to three hours. Once
again , odd -numbered solutions are found on the web site.

• Projects are longer, major assignments that may take the average student
six to nine hours to develop.

Appendices and Cover Material
Ilu appendices are intended to provide quick reference material, such as the
Unicode Character Set, or to provide a review of material, such as numbering
systems, usually covered in a general computer class.

I he inside covers contain two important references that are used con-tinually throughout the course—the Precedence Table and the FormattedI /O Codes.

Web Site Support Materials
twn f '1 <~

|

Hl"St lechn°logy Web site (http://www.course.com) aresets of materials, one for the professor and one for the student.

1
Preface to Third Edition ix

Professor Materials
The professors materials include the solutions to all review questions, exer-
cises, and problems. Because the projects are more complex assignments lor
which there is no standard answer, we do not provide solutions for them.

In addition to the end-material solutions, there are three other sets ol
support materials: (1) Copies of all programs in the text. The programs have
been extensively tested on at least two different computers with different
operating systems. All of them conform to the C99 Standard.

(2) PowerPoint materials covering objectives, figures, programs, impor-
tant points, and chapter summaries. The PowerPoint materials can be used as

is or edited to suit individual class needs. This flexibility allows professors to

argument the text materials with their own. It also allows them to rearrange
the materials to suit their individual needs and style.

(3) New with the third edition is the availability of ExamView®. This
objective-based test generator lets the professor create paper, LAN, or Web-
based tests from testhanks designed specifically for this text. Using the
QuickTest Wizard, they can easily and quickly create true/false and multiple-
choice tests. It is also possible to add questions that cover supplemental
material provided by the professor.

Student Materials
I he student materials include the solutions to the odd- numbered review
questions, exercises, and problems. They also have access to the copies of the
programs used in the text

Acknowledgments
No book of this scope can he developed without the support ol many people.

Reviewers
To anyone who has not been through the process, the value ol peer reviews
cannot he appreciated enough. Writing a text rapidly becomes a myopic pro-
cess. The important guidance of reviewers who can stand hack and review the
text as a whole cannot be measured. We would especially like to acknowledge
the contributions of the reviewers of all three editions.

Stephen Allen, Utah State University
Mary Astone, / roy State University
Ali Behforooz, Towson State University
George Berrv, Wentworth Institute oj technology
Ernest Carey, Utah Valley State College
Ping Chu Chu, Fayetteville State University

Preface tojhird Edition r
Constance Conner, City College of San Francisco

John S. DaPonte, Southern Connecticut State University

Maurice L. Eggen, Trinity University/

Peter Gabrovsky, CSU Northridge
Robert Gann, Hartwick College
Henry Gordon, Kutztown University
Rick Graziani, Cabrillo College
Barbara Guillott, Louisiana State University

Jerzy Jaromczyk, University of Kentucky

John Kinio, Humber College
Roberta Klibaner, College of Staten Island
Joseph A. Konstan, University of Minnesota
Krishna Kulkarni, Rust College
John Lowther, Michigan Technological University
Mike Michaelson, Palomar College
Kara Nance, University of Alaska—Fairbanks
Ali Nikzad, Huston-Tillotson College
Jo .Ann Parikh, Southern Connecticut State University
Mark Parker, Shoreline Community College
Savitha Pinnepalli, Louisiana State University
Oskar Reiksts, Kutztown University
Jim Roberts, Carnegie Mellon University
Ali Salenia, South Dakota State University
Larry Sells, Oklahoma City University
Shashi Shekhar, University of Minnesota
Robert Signorile, Boston College
Brenda Sonderegger, Montana State University
Deborah Sturm, College of Staten Island
Venkat Subramanian. University of Houston
John B. Iappen, University of Southern Colorado
Marc Thomasm, California State University, Bakersfield
John Irono, St . Michael's College
K C. Wong, Fayetteville State University

Course Technology Staff
Our thanks to editors, Alyssa Pratt, Senior Product Manager, and Mary
hranz, Senior Acquisitions Editor, for helping us produce the book. We are
also indebted to the Quality Assurance staff who diligently double-checked
each c^aP^er anc^ program. Our thanks to Burt LaFountain, Serge Palladino,
and Chris Sc ’ *

•
W<?U^ a ^ S° to diank the staff at GEX Publishing Services, espe-

cially Sandra Mitchell, who ably guided the book through production.

our

river.

BehrouzA. Forouzan
Richard F. Gilberg

1

Chapter 1 Introduction to Computers 1
1.1 Computer Systems 2

Computer Hardware 2
Computer Software 3

1.2 Computing Environments 5
Personal Computing Environment 5
Time-Sharing Environment 5
Client/Server Environment 6
Distributed Computing 7

1.3 Computer Languages 7
Machine Languages 8
Symbolic Languages 9
High-Level Languages 10

1.4 Creating and Running Programs 11
Writing and Editing Programs 12
Compiling Programs 12
Linking Programs 12
Executing Programs 13

1.5 System Development 13
System Development Life Cycle 13
Program Development 14

1.6 Software Engineering 22
1.7 Tips and Common Errors 24
1.8 Key Terms 24
1.9 Summary 25

1.10 Practice Sets 26
Review Questions 26
Exercises 28
Problems 28

Chapter 2 Introduction to the C Language 29

2.1 Background 30

2.2 C Programs 31
Structure of o C Program 31
Your First C Program 32
Comments 34
The Greeting Program 35

2.3 Identifiers 36
2.4 Types 38

Void Type 38
Integral Type 38
Floating-Point Types 41
Type Summary 42

2.5 Variables 42
Variable Declaration 43
Variable Initialization 44

2.6 Constants 4/
Constant Representation 47
Coding Constants 51

2.7 Input/Output 53
Streams 53
Formatting Input/Output 54

2.8 Programming Examples 68
2.9 Software Engineering 77

Program Documentation 77
Data Names 78
Data Hiding 79

2.10 Tips and Common Programming Errors 81
2.11 Key Terms 82
2.12 Summary 82
2.13 Practice Sets 84

Review Questions 84
Exercises 86
Problems 89
Projects 90

Chapter 3 Structure of a C Program 93
3.1 Expressions 94

Primary Expressions 95
Postfix Expressions 95
Prefix Expressions 97

1
Contents xiii

Unary Expressions 99
Binary Expressions 101

3.2 Precedence and Associativity 106
Precedence 107
Associativity 108

3.3 Side Effects 110
3.4 Evaluating Expressions 111

Expressions without Side Effects 111
Expressions with Side Effects 112
Warning 113

3.5 Type Conversion 114
Implicit Type Conversion 114
Explicit Type Conversion (Cast) 118

3.6 Statements 120
Statement Type 120
The Role of the Semicolon 124
Statements and Defined Constants 124

3.7 Sample Programs 125
3.8 Software Engineering 135

KISS 135
Parentheses 135
User Communication 136

3.9 Tips and Common Errors 138
3.10 Key Terms 138
3.11 Summary 139
3.12 Practice Sets 140

Review Questions 140
Exercises 142
Problems 144
Projects 146

Chapter 4 Functions 149
4.1 Designing Structured Programs 150
4.2 Functions in C 151
4.3 User-Defined functions 155

Basic Function Designs 156
Function Definition 162
Function Declaration 164
The Function Call 165
Function Examples 166

*

'
Contents xv

5.3 Multiway Selection 254
The switch Statement 255
The else-if 261

5.4 More Standard Functions 264
Standard Characters Functions 264
A Classification Program 266
Handling Major Errors 268

5.5 Incremental Development Part II 268
Calculator Design 269
Calculator Incremental Design 269

5.6 Software Engineering 280
Dependent Statements 280
Negative Logic 281
Rules for Selection Statements 282
Selection in Structure Charts 283

5.7 Tips and Common Programming Errors 285
5.8 Key Terms 286
5.9 Summary 286

5.10 Practice Sets 287
Review Questions 287
Exercises 289
Programs 294
Projects 295

Chapter 6 Repetition 303
6.1 Concept of a loop 304
6.2 Pretest and Post-test Loops 304
6.3 Initialization and Updating 306

Loop Initialization 306
Loop Update 306

6.4 Event- and Counter-Controlled Loops 308
Event-Controlled Loops 308
Counter-Controlled Loops 308
Loop Comparison 309

6.5 Loops in C 309
The while Loop 310
The for Loop 315
The do...while Loop 319
The Comma Expression 323

6.6 Loop Examples 325
for Loops 325

Contents xvii

7.3 Standard Library Input/Output Functions 397
File Open and Close 398

7.4 Formatting Input/Output Functions 403
Stream Pointer 404
Format Control Strings 404
Input Formatting (scantand fsconf) 406
Output Formatting (printf and fprintf) 418
File Sample Programs 425

7.5 Character Input/Output Functions 432
Terminal Character I/O 433
Terminal and File Character I/O 434
Character Input/Output Examples 436

7.6 Software Engineering 442
Testing Files 442
Data Terminology 445

7.7 Tips and Common Programming Errors 447
7.8 Key Terms 448
7.9 Summary 448

7.10 Practice Sets 449
Review Questions 449
Exercises 451
Problems 453
Projects 455

Chapter 8 Arrays 459
Concepts 460

8.2 Using Arrays in C 463
Declaration and Definition 463
Accessing Elements in Arrays 464
Storing Values in Arrays 465
Precedence of Array References 469
Index Range Checking 470

8.3 Inter-Function Communication 473
Passing Individual Elements 473
Passing the Whole Array 475

8.4 Array Applications 481
Frequency Arrays 481
Histograms 482
Random Number Permutations 487

8.5 Sorting 490
Selection Sort 491
Bubble Sort 493
Insertion Sort 496

8.1

Testing Sorts 499
Sorts Compared 500
Sort Conclusions 500

8.6 Searching 501
Sequential Search 501
Binary Search 505

8.7 Two-Dimensional Arrays 509
Declaration 510
Passing a Two-Dimensional Array 516

8.8 Multidimensional Arrays 519
Declaring Multidimensional Arrays 520

8.9 Programming Example-Calculate Averages 522
First Increment:main 523
Second Increment: Get Data 524
Third Increment: Calculate Row Averages 526
Fourth Increment:Calculate Column Averages 528
Fifth Increment:Print Tables 528

8.10 Software Engineering 532
Testing Sorts 532
Testing Searches 532
Analyzing Sort Algorithms 533
Analyzing Search Algorithms 535

8.11 Tips ond Common Programming Errors 537
8.12 Key Terms 538
8.13 Summory 538
8.14 Practice Sets 540

Review Questions 540
Exercises 542
Problems 545
Projects 550

Chapter 9 Pointers 557
9.1 Introduction 558

Pointer Constants 558
Pointer Values 559
Pointer Variables 561
Accessing Variables Through Pointers 562
Pointer Declaration and Definition 563
Declaration versus Redirection S65
Initialization of Pointer Variables 566

9.2 Pointers for Inter-Function Communication 573
Passing Addresses 573
Functions Returning Pointers 575

Contents xix

9.3 Pointers to Pointers 576
9.4 Compatibility 578

Pointer Size Compatibility 579
Dereference Type Compatibility 580
Dereference Level Compatibility 583

9.5 Lvalue and Rvalue 583
Pointer Examples 585

9.6 Software Engineering 593
Quality Defined 593
Quality Factors 594
The Quality Circle 597
Conclusion 598

9.7 Tips and Common Programming Errors 599
9.8 Key Terms 600
9.9 Summary 600

9.10 Practice Sets 601
Review Questions 601
Exercises 604
Problems 607
Projects 608

Chapter 10 Pointer Applications 611
10.1 Arrays and Pointers 612
10.2 Pointer Arithmetic and Arrays 614

Pointers and One-Dimensional Arrays 614
Arithmetic Operations on Pointers 617
Using Pointer Arithmetic 618
Pointers and Two-Dimensional Arrays 621

10.3 Passing an Array to a Function 623
10.4 Memory Allocation Functions 627

Memory Usage 627
Static Memory Allocation 628
Dynamic Memory Allocation 628
Memory Allocation Functions 628
Reallocation Of Memory (realloc) 631
Releasing Memory (fee) 631

10.5 Array of Pointers 633
10.6 Programming Applications 634

Selection Sort Revisited 634
Dynamic Array 639

1Contents xxi

String to Number 704
String Examples 707

11.6 String/Data Conversion 712
String to Data Conversion 713
Data to String Conversion 714

11.7 A Programming Example — Morse Code 718
11.8 Software Engineering 728

Program Design Concepts 728
Information Hiding 728
Cohesion 728
Summary 732

11.9 Tips and Common Programming Errors 733
11.10 Key Terms 734
11.11 Summary 734
11.12 Practice Sets 735

Review Questions 735
Exercises 737
Problems 740
Projects 742

Chapter 12 Enumerated, Structure, and Union Types 745
12.1 The Type Definition (lypedef) 746
12.2 Enumerated Types 746

Declaring an Enumerated Type 747
Operations on Enumerated Types 748
Enumeration Type Conversion 749
Initializing Enumerated Constants 749
Anonymous Enumeration: Constants 750
Input/Output Operations 752

12.3 Structure 752
Structure Type Declaration 753
Initialization 755
Accessing Structures 756
Operations on Structures 759
Complex Structures 764
Structures and Functions 774
Sending the Whole Structure 7 75
Passing Structures Through Pointers 7 7 8

12.4 Unions 782
Referencing Unions 782
Initializers 782

Contents xxiii

13.7 Key Terms 867
13.8 Summary 867
13.9 Practice Sets 868

Review Questions 868
Exercises 870
Problems 876
Projects 877

Chapter 14 Bitwise Operators 881
14.1 Exact Size Integer Types 882
14.2 Logical Bitwise Operators 882

Bitwise and Operator 882
Bitwise Inclusive or Operator 884
Bitwise Exclusive or Operator 885
One's Complement Operator 886

14.3 Shift Operators 889
Rotation 894

14.4 Masks 896
Creating Masks 896
Using Masks 898

14.5 Software Engineering 907
Payroll Case Study 907
Program Design Steps 908
Structure Chart Design 908

14.6 Tips and Common Programming Errors 914

14.7 Key Terms 915
14.8 Summary 915
14.9 Practice Sets 916

Review Questions 916
Exercises 917
Problems 920
Projects 921

Chapter 15 Lists 927
15.1 List Implementations 928

Array Implementation 928
Linked List Implementation 928

15.2 General Linear Lists 930
Insert a Node 930
Delete a Node 935
Locating Data in Linear Lists 938

Traversing linear Lists 941
Building a linear List 943
Build List 944
Remove a Node 945
Linear List Test Driver 946

15.3 Stacks 949
Stack Structures 950
Stack Algorithms 951
Stack Demonstration 954

15.4 Queues 958
Queue Operations 958
Queue Linked List Design 960
Queue Functions 961
Queue Demonstration 964

15.5 Trees 96/
Basic Tree Concepts 96/
Terminology 968
Binary Trees 969
Binary Search Trees 9/ 5
Binary Tree Example 9/8

15.6 Graphs 981
Graph Traversal 983

15./ Software Engineering 986
Atomic and Composite Data 986
Data Structure 98/
Abstract Data Type 987
A Model for an Abstract Data Type 989
ADT Data Structure 990

15.7 Tips and Common Programming Errors 991
15.8 Key Terms 992
15.9 Summary 992

15.10 Practice Set 994
Review Questions 994
Exercises 996
Problems 1000
Projects 1002

Appendix A Character Sets 1005
A.l Unicode 1006

Planes 1006
A.2 ASCII 1009

Some Properties of ASCII 1014
A.3 Universal Encoding in C 1015

Contents xxv

Appendix B Keywords 1017

Appendix C Flowcharting 1019
C.l Auxiliary Symbols 1019

Flow Lines 1020
Connectors 1021

C.2 Primary Symbols 1021
Sequence 1022
Selection Statements 1024
Looping Statements 1026

Appendix D Numbering Systems 1033
Computer Numbering System 1033
Decimal Numbers (Base 10) 1034
Binary Numbers (Base 2) 1034
Hexadecimal Numbers (Base 16) 1036
Base 256 1037
A Comparison 1038
Other Conversions 1039

D.2 Storing Integers 1040
Unsigned Integers 1040
Signed Integers 1041
Overflow 1047

D.3 Storing Real Numbers 1049
Normalization 1049
Sign,Exponent, and Mantissa 1051
IEEE Standards 1051
Storing and Retrieving Algorithm 1051

D.l

Appendix E Integer and Float Libraries 1055
E . l l imits . h 1055
E .2 f loat .h 1056

Appendix F Function Libraries 1059
F.l Function Index 1059
F.2 Type Library 1062
F.3 Math Library 1063
F.4 Standard 1/0 Library 1065

General 1/0 1066
Formatted 1/0 1066

xxvi Contents

Character I/O 1066
File I/O 1067
StringI/O 1067
System File Control 1067

F.5 Standard Library 1067
Math Functions 1067
Memory Functions 1068
Program Control 1068
System Communication 1068
Conversion Functions 1068

F.6 String Library 1068
Memory Functions 1068
String Functions 1069

F.7 Time Library 1069

Appendix G Preprocessor Commands 1071
G.l File Inclusion 1072
G.2 Macro Definition 1072

Coding Defined Constants 1073
Macros that Simulate Functions 1074
Nested Macros 1077
Undefining Macros 1078
Predefined Macros 1078
Operators Related to Macros 1079

G.3 Conditional Compilation 1080
Two-Way Commands 1081
Multi-Way Commands 1085
Summary of Conditional Commands 1086

G.4 Other Commands 1087
Line Command 1087
Error Command 1088
Pragma Command 1089
Null Command 1089

Appendix H Command-Line Arguments 1091
H.l Defining Command-Line Arguments 1091
H.2 Using Command-Line Arguments 1093

Appendix I Pointers to Void ond to Functions 1095
1.1 Pointer to void 1095
1.2 Pointer to Function 1097

Contents xxvii

Appendix J Storage Classes and Type Qualifiers 1103
J.l Storage Classes 1103

Object Storage Attributes 1103
Storage Class Specifiers 1105

J.2 Type Qualifiers 1111
Constants 1112
Volatile 1113
Restricted 1114

Appendix K Program Development 1115
Process 1115
First Case: A Simple File 1115
Second Case: Two Functions 1117
Third Case: Two Source Files 1118
Case 4: Separate Compilation of Function 1120

K.2 Coding 1121
UNIX 1121
Other Platforms 1124

K.l

Appendix L Understanding Complex Declarations 1125

Glossary 1129

Index 1145

t

I

Introduction to Computers

Welcome to computer science! You are about to explore a wonderful and

exciting world—a world that offers many challenging and exciting careers.
In this chapter, we introduce you to the concepts of computer science,

especially as they pertain to computer programming. You will study the con-

cept of a computer system and how it relates to computer hardware and soft-
ware. We will also present a short history of computer programming
languages so that you understand how they have evolved and how the C lan-
guage fits into the picture.

We will then describe how to write a program, lirst with a review ot the

tools and steps involved, and then with a review of a system development
methodology.

Objectives
To review basic computer systems concepts

To be able to understand the different computing environments and their
components
To review the history of computer languages
To be able to list and describe the classifications of computer languages

To understand the steps in the development of a computer program

To review the system development life cycle

1

2 Section 1.1 Computer Systems

1.1 Computer Systems
found everywhere. Computers have become

televisions. But what is a computer? A computer is a

: hardware and software. The com-

areToday computer systems
almost as common as L _

system made of two major components

puter hardware is the physical equipment. The software is the collection of

(instructions) that allow the hardware to do its job. Figure I- 1 rep-
programs
resents a computer system.

Computer
System

SoftwareHardware

FIGURE 1-1 A Computer System

Computer Hardware
The hardware component of the computer system consists of five parts:

input devices, central processing unit (CPU), primary storage, output
devices, and auxiliary storage devices (Figure 1 -2).

MonitorPrimary
Storage

CPUKeyboard

Input Devices

t
Printer

Output DevicesAuxiliary Storage Devices

FIGURE 1 - 2 Basic Hardware Components

I he input device is usually a keyboard where programs and data
entered into the computer. Examples of other input devices include a mouse,
a pen or stylus, a touch screen, or an audio input unit.

The central
instructions such

are

processing unit (CPU) is responsible for executing
as arithmetic calculations, comparisons among data, and

3Chapter 1 Introduction to Computers

movement of data inside the system. Today’s computers may have one, tyvo,
or more CPUs. Primary storage, also known as main memory, is a place
where the programs and data are stored temporarily during processing. The

data in primary storage are erased when we turn off a personal computer or

when we log off from a time-sharing computer.
The output device is usually a monitor or a printer to show output. If the

output is shown on the monitor, we say we have a soft copy. If it is printed
the printer, we say we have a hard copy.

Auxiliary storage, also known as secondary storage, is used for both

input and output. It is the place where the programs and data are stored per-
manently. When we turn off the computer, our programs and data remain in

the secondary storage, ready for the next time we need them.

on

Computer Software
Computer software is divided into two broad categories: system software and
application software. This is true regardless of the hardware system architec-
ture. System software manages the computer resources. It provides the inter-
face between the hardware and the users hut does nothing to directly serve

the users’ needs. Application software, on the other hand, is directly responsi-
ble for helping users solve their problems. Figure 1 -3 shows this breakdown
of computer software.

Software

System
Software

Application
Software

System
Support

System
Development

General
Purpose

Application
SpecificOperating

Systems

FIGURE 1 -3 Types of Software

System Software
System software consists of programs that manage the hardware resources

of a computer and perform required information processing tasks. These pro-
grams are divided into three classes: the operating system, system support,
and system development.

The operating system provides services such as a user interface, file and
database access, and interfaces to communication systems such as Internet
protocols. The primary purpose of this software is to keep the system operat -

ing in an efficient manner while allowing the users access to the system.

System support software provides system utilities and other operating
services. Examples of system utilities are sort programs and disk format

Section 1.1 Computer Systems4

programs. Operating services consist of programs that provide perlormance

statistics for the operational staff and security monitors to protect the system

and data.
The last system software category, system development software,

includes the language translators that convert programs into machine lan-

guage for execution, debugging tools to ensure that the programs are error-

free, and computer-assisted software engineering (CASE) systems that are

beyond the scope of this hook.

Application Software
Application software is broken into two classes: general-purpose software

and application-specific software. General-purpose software is purchased

from a software developer and can he used lor more than one application.
Examples of general-purpose software include word processors, database

management systems, and computer-aided design systems. I hey are labeled

general purpose because they can solve a variety of user computing problems.

Application-specific software can he used only for its intended purpose.
A general ledger system used by accountants and a material requirements

planning system used by a manufacturing organization are examples of
application-specific software. They can he used only for the task for which
they were designed; they cannot he used for other generalized tasks.

The relationship between system and application software is seen in
Figure 1 -4. In this figure, each circle represents an interface point. The inner
core is the hardware. The user is represented by the outer layer. To work with
the system, the typical user uses some form of application software. The
application software in turn interacts with the operating system, which is a
part of the system software layer. The system software provides the direct
interaction with the hardware. Note the opening at the bottom of the fig

who interacts directly with the operating
ure.

This is the path followed hv the
system when necessary.

user

User

Software
W

FIGURE 1 -4 Relationship Between System and Application Software

5Chapter 1 Introduction toComputers

If users cannot buy software that supports their needs, then a custom-
developed application must be built . In today’s computing environment, one

of the tools used to develop software is the C language that we will he study-

ing in this text .

1.2 Computing Environments
In the early days of computers, there was only one environment: the main-
frame computer hidden in a central computing department. With the advent
of minicomputers and personal computers, the environment changed , result-
ing in computers on virtually every desktop. In this section we describe sev-
eral different environments.

Personal Computing Environment
In 1971, Marcian E. Hoff, working for Intel, combined the basic elements of
the central processing unit into the microprocessor. This first computer on a
chip was the Intel 4004 and was the grandparent many times removed of
Intel’s current system.

If we are using a personal computer, all of the computer hardware com-
ponents are tied together in our personal computer (or PC 1 for short). In
this situation, we have the whole computer for ourself; we can do whatever
we want. A typical personal computer is shown in Figure 1 -5.

Monitor

Hard Drive
(Internal)

DVD ^ CD

Keyboard Mouse

FIGURE 1 -5 Personal Computing Environment

Time-Sharing Environment
Employees in large companies often work in what is know n as a time-sharing
environment. In the time-sharing environment, many users are connected to

computers. These computers may be minicomputers or central
are often nonprogrammable, although

one or more
mainframes. The terminals they use
today we see more and more microcomputers being used to simulate termi-
nals. Also, in the time-sharing environment, the output devices (such as

printers) and auxiliary storage devices (such as disks) are shared by all ol the

1 . PC is now generally accepted to mean any hardware using one of Microsoft’s Windows operating

systems, as opposed to Apple’s Macintosh. We use it in the original, generic sense meaning any per-
sonal computer.

6 Section 1.2 Computing Environments

which a minicomputer is shared by many stu-
A typical college lab in

dents is shown in Figure 1 -6.users.

Central Computer
Central Storage

Shared Printers

FIGURE 1 -6 Time-sharing Environment

In the time-sharing environment, all computing must he done hy the cen-
tral computer. In other words, the central computer has many duties: It must

control the shared resources; it must manage the shared data and printing;

and it must do the computing. All of this work tends to keep the computer

busy. In fact , it is sometimes so busy that the user becomes frustrated hy the
computers slow responses.

Client/Server Environment
A client/server computing environment splits the computing function
between a central computer and users’ computers. The users are given per-
sonal computers or workstations so that some of the computation responsi-
bility can he moved Irom the central computer and assigned to the
workstations. In the client/server environment , the users’ microcomputers or
workstations are called the client. The central computer, which may be a
powerful microcomputer, minicomputer, or central mainframe system, is
known as the server. Because the work is now shared between the
computers and the central computer, response time and monitor display are
aster and the users are more productive. Figure 1-7 shows a tvpical client/

server environment.

users

7Chapter 1 Introduction to Computers

Server

Shared Printers
Central Storage

Clients

FIGURE 1-7 The Client/Server Environment

Distributed Computing
A distributed computing environment provides a seamless integration of
computing I unctions between different servers and clients. The Internet pro-
vides connectivity to different servers throughout the world. For example,
eBay uses several computers to provide its auction service. This environment
provides a reliable, scalable, and highly available network. Figure 1 -8 shows a
distributed computing system.

Server

Internet

Clients
(browsers)Server

FIGURE 1 -8 Distributed Computing

1.3 Computer Languages
To write a program for a computer, we must use a computer language. Over
the years computer languages have evolved from machine languages to natural
languages. A summary of computer languages is seen in Figure 1 -9.

8 Section 1.3 Computer longuoges

1950s1940s

FIGURE 1-9 Computer Language Evolution

Machine Languages
In the earliest days of computers, the only programming languages available

were machine languages. Each computer has its own machine language,

which is made of streams of Os and fs. Program 1-1 shows an example of a

machine language. This program multiplies two numbers and prints the

results.

PROGRAM 1-1 The Multiplication Program in Machine Language

00000000 00000100 0000000000000000
0 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

1 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

l i ioini ooooooio union oooooooooooiom
1 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
l i ioini ooooooio union ooooooooooiooioo
0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1
1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1
ooooono IOIOOOIO union oooooooooonoooi
l i ioini ooooooio union oooooooooonoioo

0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

The instructions in machine language must he in streams of O s and I s
because the internal circuits of a computer are made of switches, transistors,
and other electronic devices that can be in one ol two states: off or on. 1 he
off state is represented by 0; the state is represented by 1.on

The only language understood by computer hardware is machine language.

9Chapter 1 Introduction to Computers

Symbolic Languages
It became obvious that few programs would be written if programmers contin-
ued to work in machine language. In the early 1950s, Admiral Grace Itopper, a
mathematician and naval officer, developed the concept of a special computer
program that would convert programs into machine language. Ihese early
programming languages simply mirrored the machine languages using
symbols, or mnemonics, to represent the various machine language instructions.
Because they used symbols, these languages were known as symbolic
languages. Program 1 -2 shows the multiplication program in a symbolic
language.2

PROGRAM 1 -2 The Multiplication Program in Symbolic Language
main,~m<r2>
#12,sp
C$MAIN_ARGS
$CHAR STRING CON

1 entry
subl2
jsb
movab

2
3
4
5
6 pushal

pushal
calls
pushal
pushal
calls
mull3
pusha
calls
clrl
ret

-8(fp)
(r2)
#2,SCANF

-12(fp)
3(r2)
#2,SCANF

-8(fp),-12(fp)
6(r2)
#2,PRINTF

7
8
9

10
11
12
13
14
15 rO
16

Because a computer does not understand symbolic language, it must be
translated to the machine language. A special program called an assembler
translates symbolic code into machine language. Because symbolic languages
had to he assembled into machine language, they soon became known as
assembly languages. This name is still used today for symbolic languages
that closely represent the machine language of their computer.

Symbolic language uses symbols, or mnemonics, to represent the various
machine language instructions.

2. The symbolic language format is label , operators, and operands. There are no labels in this example,
so the left column is empty.

10 Section 1.3 Computer Languages

High-Level Languages
Although symbolic languages greatly improved programming efficiency, they
still required programmers to concentrate on the hardware that they were
using. Working with symbolic languages was also very tedious because each
machine instruction had to be individually coded. The desire to improve pro-

grammer efficiency and to change the focus from the computer to the prob-
lem being solved led to the development ol high-level languages.

High-level languages are portable to many different computers, allowing
the application problem at hand rather

are designed to
relieve the programmer from the details of the assembly language. High-level
languages share one thing with symbolic languages, however: I hey must be
converted to machine language. The process of converting them is known as
compilation.

I he first widely used high-level language, FORTRAN/ was created by
John Backus and an IBM team in 1957; it is still widely used today in scien-
tific and engineering applications. Following soon after FORTRAN
COBOL.4 Admiral Hopper was again a key figure in the development of the
COBOL business language.

C , with its standard libraries, is considered a high-level language used for
application code. Program 1 -3 shows the multipli-

cation program as it would appear in the C language.

The Multiplication Program in C

the programmer to concentrate on
than the intricacies of the computer. High-level languages

was

system software and new

PROGRAM 1-3
/* This1 program reads two integers from the keyboard

and prints their product.
Written by:
Date:

2
3
4
5 * /
6 #include <stdio.h>
7
8 int main (void)
9 {

10 // Local Definitions
int numberl;
int number2;
int result;

11
12
13
14
15 // Statements

continued
3. FORTRAN is an acronym for FORmula TRANslation.4. COBOL is an acronym for COmmon Business-Oririentcd Language.

Chapter 1 Introduction to Computers 11

PROGRAM 1 -3 The Multiplication Program in C (continued)

scanf
scanf

16 ("%d", &number1);
("%d", &number2);

result = numberl * number2;
printf ("%d", result);
return 0;
// main

17
18
19
2 0
21 >

1.4 Creating and Running Programs
As we learned in the previous section, computer hardware understands a pro-
gram only it it is coded in its machine language. In this section, we explain
the procedure for turning a program written in C into machine language. The
process is presented in a straightforward, linear fashion, but you should rec-
ognize that these steps are repeated many times during development to cor-
rect errors and make improvements to the code.

It is the job of the programmer to write and test the program. There are
lour steps in this process: (I) writing and editing the program, (2) compiling
the program, (3) linking the program with the required library modules, and
(4) executing the program. These steps are seen in Figure 1- 10.

/tv ainclude <stdio.h>
int main (void)Programmer

Text Editor {

} // main Source

00110 100
10101 010

Compiler
01001 011
10110 100is Object

/00110 100101010io\
0011001101001001

Linker
\piooi 0111011010oj ExecutableLibrary h" '

Loader

Results

FIGURE 1 -10 Building a C Program

12 Section 1.4 Creating and Running Programs

Writing and Editing Programs

our system, we could use it to write letters, create reports, or write programs.
The main difference between text processing and program writing is that pro-

of code, while most text processing is clone withgrams are written using lines
characters and lines.

Our text editor could be a generalized word processor, but it is more
often a special editor included with the compiler. Some of the features you

should look for in your editor are search commands to locate and replace
statements, copy and paste commands to copy or move statements I mm one

part of a program to another, and formatting commands that allow you to set

tabs to align statements.
After we complete a program, we save our file to disk. I his file will be

input to the compiler; it is known as a source file.

Compiling Programs
The code in a source file stored on the disk must he translated into machine
language. This is the job of the compiler. The C compiler is actually tw o sep-
arate programs: the preprocessor and the translator.

The preprocessor reads the source code and prepares it for the transla-
tor. While preparing the code, it scans for special instructions known as
preprocessor commands. These commands tell the preprocessor to look for
special code libraries, make substitutions in the code, and in other ways pre-
pare the code for translation into machine language. The result of prepro-
cessing is called the translation unit .

After the preprocessor has prepared the code for compilation, the trans-
lator does the actual work of converting the program into machine language.
I he translator reads the translation unit and writes the resulting object
module to a file that can then be combined with other precompiled units toform the final program. An object module is the code in machine language.Even though the output of the compiler is machine language code, it is not
yet ready to run; that is, it is not yet executable because it does not have therequired C and other functions included.

Linking Programs
fomTof th SeVatT’ 3 C P?8uam iS maJe UP °f man>’ Unctions. We writeomc of these functions, and they are a part of our source program However
WL° ," T""•."T1' f processes ând m.them..icailibra^ functions, that exist elsewhere and must be attached toThe linker assembles all of these functiofinal executable

our program.
ns, ours and the system s, into ourprogram.

Chapter 1 Introduction to Computers 13

Executing Programs
Once our program has been linked, it is ready for execution. To execute a pro-
gram, we use an operating system command, such as run, to load the pro-
gram into primary memory and execute it . Getting the program into memory
is the function of an operating system program known as the loader. It
locates the executable program and reads it into memory. When everything is
loaded, the program takes control and it begins execution. In todays inte-
grated development environments, these steps are combined under one
mouse click or pull-down window.

In a typical program execution, the program reads data lor processing,
either from the user or from a file. After the program processes the data, it
prepares the output. Data output can he to the user’s monitor or to a file.
When the program has finished its job, it tells the operating system, which
then removes the program from memory.

1.5 System Development
We’ve now seen the steps that are necessary to build a program. In this sec-
tion , we discuss how we go about developing a program. I his critical process
determines the overall quality and success of our program. II we carefully
design each program using good structured development techniques, our pro-
grams will be efficient, error-free,"* and easy to maintain.

System Development Life Cycle
Today’s large-scale, modern programming projects are built using a series of
interrelated phases commonly referred to as the system development life
cycle. Although the exact number and names of the phases differ depend-
ing on the environment, there is general agreement as to the steps that
must he followed . Whatever the methodology, however, today’s software
engineering concepts require a rigorous and systematic approach to soft-
ware development.6

One very popular development life cycle is the waterfall model. Depend-
ing on the company and the type of software being developed, this model
consists of between five and seven phases. Figure 1 - 1 I is one possible varia-
tion on the model.

5. Many computer scientists believe that all programs contain at least one hug—an undetected error—
that is just waiting to cause problems, given the right set of circumstances. Programs have run for
years without problems only to fail when an unusual situation occurs. Perhaps the most famous bug
was the one known as Y2K because it caused programs to fail on January 1.20(H).

6. For a discussion of various models, see Software Engineering: A Practitioner 's Approach, 5th. ed. by
Roger S. Pressman, (New York. NY: McGraw-Hill, 2001).

/

14 Section 1.5 System Development

Systems
Requirements

Analysis

Design

Maintenance

FIGURE 1-11 Waterfall Model

The waterfall model starts with systems requirements. In this phase, the
systems analyst defines requirements that specif) what the proposed system
is to accomplish. The requirements are usually stated in terms that the user
understands. The analysis phase looks at different alternatives from a system’s
point of view, while the design phase determines how the system will be built.
In the design phase, the functions of the individual programs that will make
up the system are determined and the design of the liles and/or the databases
is completed. Finally, in the fourth phase, code, we write the programs. This
is the phase that is explained in this book. After the programs have been writ-
ten and tested to the programmer’s satisfaction, the project proceeds to sys-
tem test . All of the programs arc
works as a

tested together to make sure the system
whole. The final phase, maintenance, keeps the system working

once it has been put into production.
Although the implication of the waterfall approach is that the phases

(low in a continuous stream from the first to the last, this is not really the
case. Note the iteration as indicated by the backward-flowing
Figure 1 - 1 1. As each phase is developed, errors and omissions will often be
found in the previous work. When this happens, it is necessary to go back to
the previous phase to rework it lor consistency and to analyze the impactcaused hv the changes. Hopefully, this is a short rework. We are aware of atleast three major projects, however, that
when it

arrows in

in the code and test phases
was determined that they could not be implemented and had to becanceled. When this happens, millions of dollars andare lost.

were

years of development

Program Development
Program Development is a multistep process that requires that we under-stand the problem, develop a solution, write the program, and then test it.

Chapter 1 Introduction to Computers 15

When we are given the assignment to develop a program, we will be given a
program requirements statement and the design of any program interfaces.
We should also receive an overview of the complete project so that we will
understand how our part fits in to the whole. Our job is to determine how to
take the inputs we are given and convert them into the outputs that have
been specified. This is known as program design. To give us an idea of how
this process works, let s look at a simple problem: Calculate the square foot -
age of a house. Ilow do we go about doing this?

Understand the Problem
The first step in solving any problem is to understand it. We begin by reading
the requirements statement carefully. When we think that we fully under-
stand it, we review our understanding with the user and the systems analyst.
Often this involves asking questions to confirm our understanding.

For example, after reading our simple requirements statement, we should
ask several clarifying questions.

What is the definition of square footage?

How is the square footage going to be used?

for insurance purposes?
to paint the inside or outside of the house?

to carpet the whole house?

Is the garage included?

Are closets and hallways included?

Each of these potential uses requires a different measure. II we don’t
clarify the exact purpose—that is, if we make assumptions about how the out -
put is going to be used—we could supply the wrong answer.

As this example shows, even the simplest problem statements need clarifi-
cation. Imagine how many questions must be asked for a programmer to write
a program that will contain hundreds or thousands of detailed statements.

Develop the Solution
Once we fully understand the problem and have clarified any questions we
may have, we need to develop our solution. Three tools will help us in this
task: (1) structure charts, (2) pseudocode, and (3) flowcharts. Generally, we
will use only two of them—a structure chart and either pseudocode or a
flowchart.

The structure chart is used to design the whole program. Pseudocode
and flowcharts, on the other hand, are used to design the individual parts of
the program. These parts are known as modules in pseudocode or functions
in the C language.

16 Section 1.5 System Development

Structure Chart
a hierarchy chart, shows the functional

arc complex structures consistingA structure chart, also known as

flow through our program. Large programs
of many interrelated parts; thus, they must he carefully laid out . I his task is

similar to that of a design engineer who is responsible lor the operational

design of any complex item. The major difference between the design built by

a programmer and the design built by an engineer is that the programmers

product is software that exists only inside the computer, whereas the engi-
neer’s product is something that can be seen and touched.

The structure chart shows how we are going to break our program into

logical steps; each step will he a separate module. The structure chart shows

the interaction between all the parts (modules) of our program.

It is important to realize that the design, as represented by the structure

chart, is done before we write our program. In this respect, it is like the archi-
blueprint. We would not start to build a house without a detailed set of

plans. Yet one of the most common errors of both experienced and new pro-
grammers alike is to start coding a program before the design is complete and

fully documented.
This rush to start is due in part to programmers’ thinking they fully

understand the problem and also due to their excitement about solving
problem. In the first case, what they find is that they did not fully understand
the problem. By taking the time to design the program, they will raise more
questions that must be answered and therefore will gain a better understand-
ing ol the problem.

tect’s

a new

An old programming proverb: Restet the temptation to code.

The second reason programmers code before completing the design is
just human nature. Programming is a tremendously exciting task, lo
design begin to take shape, to see our program creation working lor the lirst
time, brings a form of personal satisfaction that is a natural high.

In the business world , when we complete a structure chart design , we
convene a review panel for a structured walk-through of our program.

Such a panel usually consists of a representative from the user community,
one or two peer programmers, the systems analyst, and possibly a representa
live from the testing organization. In the review, we will walk
through our structure chart to show how
our program. The team will then offer
improve our design.

The primary intent of the review is to increase quality and
earlier a mistake is detected, the

see our

will

our review team
we plan to solve the objectives of

constructive suggestions as to how to

save time. The
easier it is to fix it . If we can eliminate only

one or two problems with the structured walk-through, the time will he well
spent. Naturally, in a programming class, you will not be able to convene alull panel and conduct a formal walk-through. What you can do, how'ever, isreview your design with some of your classmates and with your professor.

1
Chapter 1 Introduction to Computers 1 7

Looking again at our problem to calculate the square footage of a house,
let’s assume the following answers to the questions raised in the previous
section.

1. The purpose of calculating the square footage is to install new floor cov-

ering.
2. Only the living space will be carpeted. The garage and closets will not he

considered.
3. The kitchen and bathrooms will he covered with linoleum; the rest ol the

house is to he carpeted.
With this understanding, we decide to write separate modules lor the

kitchen, bathroom(s), bedrooms, family room, and living room. We use sepa-
rate modules because the various rooms may require a dilferent quality ol lino-
leum and carpeting. The structure chart for our design is shown in Figure 1 - 12.

flooring
Cost

print
Report

get calculateUserlnfo

calc
Linoleum

calc
Carpeting

calc
LivingAreas

calc
Kitchen

calc
BathRooms

calc
BedRooms

calc
DineLiving

calc
FamilyRoom

FIGURE 1 -12 Structure Chart for Calculating Square Footage

W hether you use a flowchart or pseudocode to complete the design ol
your program will depend on your experience, the difficulty ol the process you

designing, and the culture and standards of the organization where you
working. We believe that new programmers should first learn program

design by flowcharting because a flowchart is a visual tool that is easier to

create than pseudocode. On the other hand, pseudocode is more common

among professional programmers.

are
are

18 Section 1.5 System Development

Pseudocode
Pseudocode is part English , part program logic. Its purpose is to describe, in

precise algorithmic detail, what the program being designed is to do. I his

requires defining the steps to accomplish the task in sufficient detail so that

they can he converted into a computer program

type of precise logic. The pseudocode for determining the linoleum for the

bathroom is shown in Algorithm 1-1.

Pseudocode excels at this

Pseudocode

English-like statements that follow a loosely defined syntax and are used to

convey the design of an algorithm.

Most of the statements in the pseudocode are easy to understand. A
what data are to he

prompt is simply a displayed message telling the user

entered. The uhile is a loop that repeats the three statements that follow it

and uses the number of bathrooms read in statement 2 to tell when to stop.

Looping is a programming concept that allows us to repeat a block of code.

We will study it in Chapter 6. In this case, it allows us to process the informa-

tion for one or more bathrooms.

ALGORITHM 1 -1 Pseudocode for Calculate Bathrooms

Algorithm Calculate BathRooms
1 prompt user and read linoleum price

2 prompt user and read number of bathrooms
3 set total bath area and baths processed to zero

4 while (baths processed < number of bathrooms)
1 prompt user and read bath length and width
2 total bath area =
3 total bath area + bath length * bath width
4 add 1 to baths processed

5 bath cost
6 return bath cost
end Algorithm Calculate BathRooms

- total bath area * linoleum price

Flowchart
A flowchart is a program design tool in which standard graphical symbols arc
used to represent the logical flow of data through a function. Appendix C
contains complete instructions lor creating flowcharts. If you are not f amiliar
with flowcharts, we suggest you read Appendix C

I In* flowchart in Figure 1 -13 shows the design for calculating the area
and cost for the bathrooms. A few points merit comment here. This flow-chart is basically the same as the pseudocode. We begin with prompts for the
Pnce °f the bnoleum and the number of bathrooms and read these two
pieces of data. (As a general rule, flowcharts do not explicitly show standard

now.

1

Chapter 1 Introduction to Computers 19

concepts such as prompts.) The loop reads the dimensions for each bath-
room. Finally,when we know the total area, we calculate the price and return

to calcLinoleum.

O
/ bathProc < \ no

^ \ numbath wf calcbathRooms

7 yes
READ

(linoPrice) /READ
(bathLngth,

bathWdth)

/READ
(numbath) bathArea

bathArea +
bathLngth * bathWdth

bathArea -*— zero
bathProc
bathProc + 1bathProc zero

o
»

linoCost ^
bathArea ‘ linoPrice

RETURN

FIGURE 1 -13 Flowchart for Calculate Bathrooms

Write the Program
Now it ’s time to write the program! But first, let ’s review the steps that
we’ve used.

1. Understand the problem.
2. Develop a solution.

a. Design the program—create the structure chart.
h. Design the algorithms lor the program using either flowcharting or

pseudocode or both.
3. Write the program.

When we write a program, we start with the top hox on the structure

chart and work our way to the bottom. This is known as top-down implemen-
tation. You will find that it is a very easy and natural way to write programs,
especially if you have done a solid job on your design.

For our first few programs, there will he only one module, representing
the top hox of the structure chart. The first programs are quite simple and do

20 Section 1.5 System Development

rlumter 4 however, we will begin to
not require subdivision. When. we g f . ^ ^ tjme we wi„
write functions an our struc urt

writing structured programs. In the
point out some more techn.| .

d de or flowcharts for the
meantime, concentrate on writing good pseudocode

main part of our programs.

Test the Program
After we’ve written our program, we must test it. Program testing can be a

tedious and time-consuming part of program development . As the pro-
our program. In largevery

ponsible for completely testing
often specialists known as test engineers who

whole—that is, for testing to make
we are resgrammer,

development projects, there
are responsible for testing the system

all the programs work together.
There are two types of testing: blackbox and whitebox. Blackbox testing is

and the user. Whitebox testing is the

are
as a

sure

done by the system test engineer
responsibility of the programmer.

Blackbox Jesting
Blackbox testing gets its name from the concept of testing the program with-

out knowing what is inside it—without knowing how it works. In other words,

the program is like a black box that we can’t see into.
Blackbox test plans are developed by looking only at the requirements

statement (this is only one reason why it is so important to have a good set ol
requirements). The test engineer uses these requirements and his or her
knowledge of systems development and the user working environment to cre-
ate a test plan that will then he used when the system is tested as a whole. We
should ask to see this test plan before we write our program. The test engi-
neer's plan will help us make sure we fully understand the requirements and
also help us create our own test plan.

Whitebox Jesting
Whereas blackbox testing assumes that the tester knows nothing about the
program, whitebox testing assumes that the tester knows everything about
the program. In this case, the program is like a glass house in which every-
thing is visible.

Whitebox testing is our responsibility. As the programmer, we know
exactly what is going on inside the program. We must make sure that every
instruction and even possible situation has been tested. That i
simple task!

fmnfiTTir Wil' hClP Uu g00d tCSt data’ but one thing we can do

st „ n T ,S gC‘” V °f Witi"S« P'ans. We should star, the

ask oursetf
dt'sign stage. As we build your structure chart,

and make a note of“th“m^^ WC "eed l° teSt f°r

hour later.

is not a

we won’t remember them an

Chapter 1 Introduction to Computers 21

When we are writing our flowcharts or pseudocode, we need to review
them with an eye toward test cases and make additional notes of the cases we
may need. Finally, while we are coding, we need to keep paper handy (or a
test document open in our word processor) to make notes about test cases
we need.

Except for the most simple program, one set of test data will not completely
validate a program.

When it is time to construct our test cases, we review our notes and orga-
nize them into logical sets. Except for very simple student programs, one set
of test data will never completely validate a program. For large-scale develop-
ment projects, 20, 30, or even more test cases may need to he run to validate
a program.

Finally, while we arc testing, we will think of more test cases. Again, write
them down and incorporate them into our test plan. After our program is fin-
ished and in production, we will need the test plan again when we make mod-
ifications to the program.

I low do we know when our program is completely tested? In reality, there
is no way to know lor sure. But there are a few things we can do to help the
odds. While some of these concepts will not be clear until you have read
other chapters, we include them here for completeness.

1 . Verify that every line of code has been executed at least once. Fortu-
nately, there are programming tools on the market today that will do this
for us.

2. Verify that every conditional statement in our program has executed both
the true and false branches, even if one of them is null . (See Chapter 5.)

3. For every condition that has a range, make sure the tests include the first
and last items in the range, as well as items below the first and above the
last—the most common mistakes in array range tests occur at the
extremes of the range. (See Chapter 8.)

4. If error conditions are being checked, make sure all error logic is tested.
I bis may require us to make temporary modifications to our program to
force the errors. (For instance, an input/output error usually cannot be
created—it must he simulated.)

22 Section 1.6 Software Engineering

1.6 Software Engineering
Software engineering is the establishment and use of sound engineering

methods and
*principles to obtain software that is reliable and that works on

real machines!7 This definition, from the first international conference

software engineering in .969, was proposed 30 years after the first computer

built. During that period, software was more of an art than a science. In

fact, one of the most authoritative treatments of programming desenbes it as

an art: The Art of Computer Programming. This three-volume senes, origi-

nally written by Donald E. Knuth in the late 1960s and early 1970s, is con-

sidered the most complete discussion of many computer science concepts.
Because the science and engineering base for building reliable software

did not yet exist, programs written in the 1950s and 1960s were a maze of

complexity known as “spaghetti code.” It was not until Edsger Dijkstra wrote

a letter to the editor of the Communications of the ACM (Association of Com-
puting Machinery)9 in 1968 that the concept of structured programming

began to emerge.
Dijkstra was working to develop algorithms that would mathematically

prove program accuracy. He proposed that any program could he \\ i ittcn w ith

only three constructs or types of instructions: (1) sequences, (2) the if...else

selection statement, and (3) the while loop. As we will see, language develop-
have added constructs, such as the for loop and the switch in C. These

additional statements are simply enhancements to Dijkstra s basic constructs

that make programming easier. Today, virtually all programming languages
offer structured programming capabilities.

Throughout this text we will he emphasizing the concepts of good soft-
ware engineering. Chief among them is the concept of structured program-
ming and a sound programming style. A section in each chapter will include a
discussion of these concepts with specific emphasis
material in the chapter.

The tools of programming design have also changed over the years. In the
first generation of programming, one primary tool was a block diagram. This
tool provided boxes, diamonds, and other flowchart symbols to represent dif-
ferent instructions in a program. Each instruction was contained in a sepa-
rate symbol. Ibis concept allowed programmers to write a program on paper
and check its logic flow before they entered it in the computer.

With the advance of symbolic programming, the block diagram gave way
to the flowchart. Although the block diagram and flowchart look similar, the
flowchart does not contain the detail of the block diagram. Many instructions
are implied by the descriptive names put into the boxes; for example, the read

on

was

ers

the application of theon

7. F. L Bauer, Technical University. Munich. Germany (1969).

1r~ 2 <Third Edi,ion'

9. Edsger W. Dijkstra, "Go To Slatemenl Considered Harmful " r
'

no. 3 (March 1968).
Harmful, Communications of the ACM. vol. 11 ,

1

Chapter 1 Introduction to Computers 23

statements in Figure 1 - 13 imply the prompt. Flowcharts have largely given
way to other techniques in program design, but they are still used today by
many programmers for working on a difficult logic problem.

Today’s programmers are most likely to use a high-level design tool such
as tight English or pseudocode. We will use pseudocode throughout the text

to describe many of the algorithms we will he developing.
Finally, the last several years have seen the automation of programming

through the use of computer-assisted software engineering (CASE) tools.
These tools make it possible to determine requirements, design software, and
develop and test software in an automated environment using programming
workstations. The discussion of the CASE environment is beyond the scope
of this text and is left for courses in systems engineering.

I

24 Section 1.8 Key Terms

1.7 Tips and Common Errors
. Become familiar with the text editor in your system so you will be able to

create and edit your programs efficiently. The time spent learning differ-
ent techniques and shortcuts in a text editor will save time in the future.

2. Also, become familiar with the compiler commands and keyboard short-
cuts. On most computers, a variety ol options are available to be used
with the compiler. Make yourself familiar with all ol these options.

3. Read the compiler’s error messages. Becoming familiar with the types ol
messages and their meanings will he a big help as you learn C.

4. Remember to save and compile your program each time you make
changes or corrections in your source file. When your program has been
saved, you won’t lose your changes if a program error causes the system
to fail during testing.

5. Run your program many times with different sets of data to be sure it
does what you want.

6. The most common programming error is not following the old proverb to
"resist the urge to code.” Make sure you understand the requirements
and take the time to design a solution before you start writing code.

1

error

1.8 Key Terms
application software
application-specific software
assembly language
auxiliary storage
blackbox testing
central processing unit (CPU)
client
client/server
compilation
compiler
computer language
computer system
distributed
executable program
flowchart
general-purpose software
hard copy
hardware
high-level language
input device
linker

operating system
output device
personal computer (PC)
preprocessor
preprocessor commands
primary storage
program development
pseudocode
secondary storage
server
soft copy
software
source file
structure chart
symbolic language
system development life cycle
system development software
system software
system support software
text editor
time-sharing environment

environment

Chapter 1 Introduction to Computers 25

translation unit
translator
waterfall model
whitebox testing

loader
machine language
main memory
object module

1.9 Summary
A computer system consists of hardware and software.
Computer hardware consists of a central processing unit (CPU), primary
memory, input devices, output devices, and auxiliary storage.
Software consists of two broad categories: system software and application
software.
The components of system software are the operating system, system sup-
port , and system development.
Application software is divided into general-purpose applications and
application-specific software.
Over the years, programming languages have evolved from machine lan-
guage, to symbolic language, and to high-level languages.
The C language is a high-level language.
The software used to write programs is known as a text editor.
The file created from a text editor is known as a source fde.

J The code in a source file must be translated into machine language using
the C compiler, which is made of two separate programs: the preprocessor
and the translator.
The file created from the compiler is known as an object module.

J An object module is linked to the standard functions necessary for running
the program by the linker.
A linked program is run using a loader.

The system development life cycle is a series of interrelated steps that pro-
vide a rigorous and systematic approach to software development.
To develop a program, a programmer must complete the iollowing steps:

a. Understand the problem.
b. Develop a solution using structure charts and either flowcharts or

pseudocode.
c. Write the program.
d. Test the program.
The development of a test plan starts with the design of the program and
continues through all steps in program development.
Blackbox testing consists primarily of testing based on user requirements.

26 Section 1.10 Practice Sets

with full
Whitebox testing, executed by the programmer, tests the program

knowledge of its operational weaknesses.
Testing is one of the most important parts of your programming task, 'lou

are responsible for whitebox testing; the systems analyst and user are

ponsible tor blackbox testing.
Software engineering is the application of sound engineering methods and
principles to the design and development of application programs.
res

1.10 Practice Sets

Review Questions
1. Computer software is divided into two broad categories: system software

and operational software.
a. True
b. False

2. The operating system provides services such as a user interface, file and
database access, and interfaces to communications systems.
a. True
b. False

3. The first step in system development is to create a source program.
a. True
b. False

4. The programmer design tool used to design the whole program is the
flowchart.
a. True
b. False

5. Blackbox testing gets its name from the
being tested without knowing how it works.
a. True
b. False

6. YY Inch of the following i
a. Hardware
b. Software
c. Both hardware and software
d. Pseudocode
e. System test

7. Which of the following is an example of application software?
a. Database r
b. Language translator

concept that the program is

component(s) ol a computer system?is a

management system

Chapter 1 Introduction to Computers 27

c. Operating system
d. Sort
e. Security monitor

8. Which of the following is not a computer language?

a. Assembly/symbolic language
b. Binary language
c. High-level languages
d. Machine language
e. Natural language

9. The computer language that most closely resembles machine language is

a. Assembly/symbolic
b.COBOL
c. FORTRAN
d. High-level

10. The tool used by a programmer to convert a source program to a machine
language object module is a

a. Compiler
I). Language translator
c. Linker
d. Preprocessor
e. Text editor

contains the programmer’s original program code.1 1. The
a. Application file
b. Executable file
c. Object file
d. Source file
e. Text file

12. The series of interrelated phases that is used to develop computer soft -
ware is known as

a. Program development
b. Software engineering
c. System development life cycle
d. System analysis
e. System design

is a program design tool that is a visual repre-
sentation of the logic in a function within a program.
a. Flowchart
b. Program map
c. Pseudocode
d. Structure chart
e. Waterfall model

13. The

28 Section 1.10 Practice Sets

, 4 The test that validates a program by ensuring that all of its statements have

'4'
Wen d" is, b,luiowing«,l, bow ibo^
a. Blackbox testing
b. Destructive testing
c. Nondestructive testing
d. System testing
e. Whitebox testing

Exercises
15. Describe the two major components ol a computer system.
16. Computer hardware is made up of five parts. List and describe them.

17. Describe the major differences between a time-sharing and a

server environment.

18. Describe the two major categories of software.
19. What is the purpose ol an operating system?

20. Identify' at least two types of system software that you will use when you
write programs.

21. Give at least one example of general-purpose and
appIication-specific software.

22. List the levels of computer languages discussed in the text .
23. What are the primary differences between symbolic and high-level languages?
24. What is the difference between a source program and an object module?
25. Describe the basic steps in the system development life cycle.
26. What documentation should a programmer receive to be able to write a

program?
27. List and explain the steps that a programmer follows in writing a program.
28. Describe the three tools that a programmer may use to develop

solution.

client/

example ofone

a program

29. What is meant by the old programming proverb, “Resist the temptation
to code”?

30. What is the difference between blackbox and whitebox testing?
31. What is soltware engineering?

Problems
32. Write pseudocode for calcLivingAreas, Figure 1-12, “Structure Chart forC alculating Square Footage.

as calling a friend, that you do
33. Create a flowchart for a routine task, such

regular basis.on a

34. Write pseudocode for the flowchart you created in Problem 33.

Introduction to the C Language
In Chapter 1 , we traced the evolution of computer languages Irom the
machine languages to high-level languages. As mentioned, C (the language
used exclusively in this hook) is a high-level language. Since you are going to

spend considerable time working with the language, you should have some
idea of its origins and evolution.

In this chapter we introduce the basics ol the C language. You will write
your first program, which is traditionally known in C as the ' Hello World ,” or
“Greeting" program. Along the way we will introduce you to the concepts ol
data types, constants, and variables. Finally, you will see two C library func-
tions that read and write data. Since this chapter is just an introduction to C,

most of these topics are covered only in sufficient detail to enable you to
write your first program. They will he fully developed in luture chapters.

Objectives
To understand the structure of a C-language program
To write your first C program
To introduce the include preprocessor command
To be able to create good identifiers for objects in a program

To be able to list, describe, and use the C basic data types

To be able to create and use variables and constants in a program

To understand input and output concepts as they apply to C programs

To be able to use simple input and output statements

To understand the software engineering role in documentation, data nam-
ing, and data hiding

29

p
30 Section 2.1 Bockgtound

2.1 Background
It is considered a high-level lan-

C is a structured programming language
guage because it allows the programmer to concentrate on the problem at

hand and not worry about the machine that the program wdl be using. VVhde

many languages claim to be machine independent, C is one of the closest to

achieving that goal. That is another reason why it is used by software develop-
whose applications have to run on many different hardware platforms.

ers
is derived from ALGOL, the first lan-C, like most modern languages,

block structure. ALGOL never gained wide acceptance in theguage to use a
United States, but it was widely used in Europe.

ALGOLs introduction in the early 1960s paved the way for the develop-
of structured programming concepts. Some ol the first work was done

by two computer scientists, Corrado Bohm and Guiseppe Jacopini, who pub-

lished a paper in 1966 that defined the concept of structured programming.
Another computer scientist, Edsger Dijkstra, popularized the concept. Mis
letter to the editors of the Communications of the ACM (Association of Com-
puting Machinery) brought the structured programming concept to the atten-
tion of the computer science community.

ment

Several obscure languages preceded the development ol C. In 1967,
Martin Richards developed a language he called Basic Combined Program-
ming Language, or BCPL. Ken Thompson followed in 1970 with a similar
language he simply called B. B was used to develop the first version of UNIX,
one of the popular network operating systems in use today. Finally, in 1972,
Dennis Ritchie developed C, which took many concepts from ALGOL,
BCPL. This path, along with several others, is shown in Figure 2- 1 .

ALGOL

BCPL ALGOL-68 Pascal

B ALGOL-W Modula-2

Traditional
C Modula-3

ANSI/ISOC99 C

FIGURE 2- 1 Taxonomy of the C Language

Chapter 2 Introduction to the C Language 31

What is known as traditional C is this 1972 version of the language, as
documented and popularized in a 1978 hook by Brian W. Kernighan and
Dennis Ritchie.1 In 1983, the American National Standards Institute (ANSI)
began the definition of a standard for C. It was approved in December 1989.
In 1990, the International Standards Organization (ISO) adopted the ANSI
standard. This version of C is known as C89.

In 1995, minor changes were made to the standard. I bis version is
known as C95. A much more significant update was made in 1999. I he
changes incorporated into the standard, now known as C99, are summarized
in the following list .

1 . Extensions to the character type to support non-English characters

2. A Boolean type

3. Extensions to the integer type

4. Inclusion of type definitions in the for statement.
5. Addition of imaginary and complex types

6. Incorporation of the C++ style line comment (//)

We use the Standard C in this hook.

2.2 (Programs
It s time to write your first C program! This section will take you through all
the basic parts of a C program so that you will be able to write it .

Structure of a C Program
Every C program is made of one or more preprocessor commands, a global dec-
laration section, and one or more functions. The global declaration section
comes at the beginning of the program. We will talk more about it later, hut
the basic idea of global declarations is that they are visible to all parts of the
program.

The work of the program is carried out by its functions, blocks of code
that accomplish a task within a program. One, and only one, of the functions
must be named main. The main function is the starting point tor the pro-
gram. .All functions in a program , including main , are divided into two sec-
tions: the declaration section and the statement section. The declaration
section is at the beginning of the function. It describes the data that you will

1 . Brian Kernighan and Dennis Ritchie, The C Programming Language, 2 nd cd. (Lnglewood
Cliffs, N.J .: Prentice Hall, 1989).

32 Section 2.2 C Programs

in a function are known as local decla-
are visible only to thebe using in the function. Declarations in.

rations (as opposed to global declarations) because they

function that contains them.
The statement section follows the declaration section. It contains the

instructions to the computer that cause it to do something, such as add two

numbers. In C, these instructions are written in the form of statements,

which gives us the name for the section.
Figure 2-2 shows the parts of a simple C program. We have explained

rything in this program but the preprocessor commands. They are special

the preprocessor that tell it how to prepare the program for

pilation. One of the most important of the preprocessor commands, and

that is used in virtually all programs, is include. I lie include command

need information from selected libraries known

eve
instructions to

com
one
tells the preprocessor that we
as header files. In today’s complex programming environments, it is almost

impossible to write even the smallest of programs w ithout at least one library

function. In your first program, you will use one include command to tell C

that you need the input/output library to write data to the monitor.

Preprocessor Directives

Global Declarations

int main (void)

Local Declarations

Statements
} // main

Other functions as required.

FIGURE 2-2 Structure of a C Program

Your First C Program
Your first C program will he very simple (see Figure 2-3). It will have only one
preprocessor command, no global declarations, and no local definitions. Its
purpose will he simply to print a greeting to the user. Therefore, its statement
section will have only two statements: one that prints a greeting and one that
stops the program.

Chapter 2 Introduction to the C Language 33

Preprocessor directive to
include standard input/output
functions in the program.^include <stdio.h>

int main (void)
{
printf("Hello World!\n");
return 0;

} // main

Hello World

FIGURE 2-3 The Greeting Program

Preprocessor Commands
The preprocessor commands come at the beginning of the program. All pre-
processor commands start with a pound sign (#); this is just one of the rules
of C known as its syntax. Preprocessor commands can start in any column,
but they traditionally start in column 1.

The preprocessor command tells the compiler to include the standard
input/output library file in the program. You need this library file to print a

message to the terminal. Printing is one ol the input/output processes identi-
fied in this library. The complete syntax for this command is shown below.

#include <stdio.h>

The syntax of this command must he exact. Since it is a preprocessor
command, it starts with the pound sign. There can he no space between the
pound sign and the keyword, include. Include means just what you would
think it does. It tells the preprocessor that you want the library file in the
pointed brackets (< >) included in your program. The name ol the header file
is stdio.h. Ibis is an abbreviation for "standard input /output header file."

mam
The executable part of your program begins with the function main, which is

identified hv the function header shown below. We explore the meaning ol
the function syntax in Chapter 4. For now, all you need to understand is that
int says that the function will return an integer value to the operating system,
that the function's name is main, and that it has no parameters (the parame-
ter list is void). Note that there is no punctuation alter the function header.

int main (void)

J

34 Section 2.2 C Programs

w,,hi„ .here ar. S“EL,
ihe

^
atlua^writingttfthTmonitor To invoke or vr.ru,v ,h» print function,

va» it. All function call »— ""n' p£,'„l,e,. tor
what you want dis-

one

you
this case printf , followed by a parameter
you, simple program, the “°“ u „ llle enll „f the
played, enclosed in two double quote marks t ••

tells the computer to advance to the next line in the output.
The last statement in your program, return 0 terminates the program

and returns control to the operating system. One last thing: The unction

with a close brace (}).

message

main starts with an open brace ({)and terminates

Comments
Although it is reasonable to expect that a good programmer should he able to

read code, sometimes the meaning of a section of code is not entirely clear.
This is especially true in C. Thus, it is helpful if the person who writes the

code places some comments in the code to help the reader. Such comments

merely internal program documentation. The compiler ignores these
comments when it translates the program into executable code. Io identify a

C uses two different formats: block comments and line comments.
are

comment ,

Block Comment
A block comment is used when the comment will span several lines. We call
this comment format block comment. It uses opening and closing comment
tokens. A token is one or more symbols understood by the compiler that help
it interpret code. Each comment token is made of two characters that, taken
together, form the token; there can be no space between them. The opening
token is /* and the closing token is */. Everything between the opening and
closing comment tokens is ignored by the compiler. The tokens can start in
any column, and they do not have to be on the same line. The only require-
ment is that the opening token must precede the closing token. Figure 2-4
shows two examples of block comments.

/* This is a block comment that
covers two lines. V

/ *
** It is a
** on

very common style to put the opening token

** programmers also like to put asterisks
of each line to clearly mark

at the beginning
the comment.

* /

FIGURE 2-4 Examples of Block Comments

Chapter 2 Introduction to the C Language 35

Line Comment
The second format, the line comment, uses two slashes (//) to identify a

comment. This format docs not require an end-of-comment token; the end of
the line automatically ends the comment. Programmers generally use this
format for short comments. The line-comment token can start anywhere on

the line. Figure 2-5 contains two examples ol line comments.

// This is a whole line comment

// This is a partial line commenta = 5;

FIGURE 2-5 Examples of Line Comments

Although they can appear anywhere, comments cannot be nested. In
other words, we cannot have comments inside comments. Once the compiler
sees an opening block-comment token, it ignores everything it sees until it

finds the closing token. Therefore, the opening token ot the nested comment

is not recognized, and the ending token that matches the first opening token
is left standing on its own. This error is shown in Figure 2-6.

^ Inner ^Comment not
v Allowed /

Closing
Token

/ * */ *//*

Left On
Its OwnIgnored

FIGURE 2-6 Nested Block Comments Are Invalid

The Greeting Program
Program 2- 1 shows the greeting program just as we would write it. We have
included some comments at the beginning that explain what the program is

going to do. Each program we write begins with documentation explaining
the purpose of the program. We have also shown comments to identily the
declaration and statement sections ol our program. Ihe numbers on the left
in Program 2- 1 and the other programs in the text are for discussion refer-
ence. T hey are not part of the program.

36 Section 2.3 Identifiers

PROGRAM 2-1 The Greeting Program
demonstrates. This program

of a simple C program./* The greeting program
of the components

Written by:

Date:

1
some2 name hereyour

date program3 written
4

*/5
#include <stdio.h>6

7
int main (void)8

9 {
// Local Declarations10

11
// statements12

13
printf("Hello World!\n");14

15
return 0;

} // main
16
17

2.3 Identifiers
One feature present in all computer languages is the identifier. Identifiers
allow us to name data and other objects in the program. Each identified
object in the computer is stored at a unique address. If we didn’t have identi-
fiers that we could use to symbolically represent data locations, we would
have to know and use object’s addresses. Instead , we simply give data identifi-
ers and let the compiler keep track of where they are physically located.

Different programming languages use different syntactical rules to form
identifiers. In C, the rules for identifiers are very simple. The only valid name
symbols are the capital letters A through Z, the lowercase letters a through z,
the digits 0 through 9, and the underscore. The first character of the identi-
fier cannot he a digit.

Typically, application programs do not use the underscore for the first
character either, because many of the identifiers in the C system libraries
start with an underscore. In this way, we make sure that our names do not
duplicate system names, which could become very confusing. The last rule is
that the create cannot he keywords. Keywords, also known asreserved words, include syntactical words, such as if and xvhile. For a list ofthe reserved words, see Appendix R .

name we

Good identifier
often use

are descriptive but short. To make them shortabbreviations.2 C allows names to he
names we

up to 63 characters long. II

2. One way to abbreviate an identifier is to
exam remove any vowels in the middle of the word. Forl >le * student could be abbreviated stdnt.

Chapter 2 Introduction to the C Language 37

the names are longer than 63 characters, then only the first 63 are used.
Table 2- 1 summarizes the rules for identifiers.

1. First character must be alphabetic character or underscore.
2. Must consist only of alphabetic characters, digits, or underscores.
3. First 63 characters of an identifier are significant.

4. Cannot duplicate a keyword.
TABLE 2-1 Rules for Identifiers

You might he curious as to why the underscore is included among the
possible characters that can be used for an identifier. It is there so that we
can separate different parts of an identifier. To make identifiers descriptive,
we often combine two or more words. When the names contain multiple
words, the underscore makes it easier to read the name.

An identifier must start with a letter or underscore: it may not have a space
or a hyphen.

Another way to separate the words in a name is to capitalize the first let-
ter in each word. The traditional method of separation in C uses the under-
score. A growing group of programmers, however, prefer to capitalize the first
letter of each word. Table 2-2 contains examples of valid and invalid names.

C is a case-sensitive language.

Two more comments about identifiers. Note that some of the identifiers
in Table 2-2 are capitalized. Typically, capitalized names are reserved lor pre-

processor-defined names. T he second comment is that C is case sensitive.
This means that even though two identifiers are spelled the same, if the case
of each corresponding letter doesn’t match, C thinks of them as different
names. Under this rule, num, Num, and NUM are three different identifiers.

Invalid NameValid Names

// $ is illegal

// First char digit

sum-salary // Contains hyphen

stdnt Nmbr // Contains spaces

// Keyword

$sum

2names

// Valid but poor stylea

student_name

_aSystemName

Bool // Boolean System id

// System Defined ValueINT MIN int

TABLE 2-2 Examples of Valid and Invalid Names

38 Section 2.4 Types

2.4 Types
can be applied on

A type defines a set of values and a set ol operations that

those values. For example, a light switch can he compared to a computer

set of two values, on and off. Only two operations can he
and turn off.type. It has a

applied to a light switch:

The C language has defined a set of types that

general categories: void , integral , floating-point, and derived, as shown in

Figure 2-7.

turn on he divided into fourcan

C Types

DerivedFloating-point
IntegralVoid

Imaginary ComplexRealCharacter IntegerBoolean

FIGURE 2-7 Data Types

In this chapter, we concentrate only on the first three types. The derived
type will be discussed in future chapters.

Void Type
The void type, designated by the keyword void, has no values and no opera-
tions, Although having no values and operations might seem unusual, the void
type is a very uselul data type. For example, it is used to designate that a func-
tion has no parameters as we saw in the main function. It can also he used to
define that a function has no return value as we see in Chapter 4. It can also
be used to define a pointer to generic data as we will see in Chapter 9.

Integral Type
The C language has three integral types: Boolean,
Integral types cannot contain a fraction

character, and integer,
part; they are whole numbers.

Boolean
With the release of C99, the C language incorporated a Boolean type.
Named after the French mathematician/philosopher George Boole, a Bool-ean type can represent only two values: true or false. Prior to C99, C usedintegers to represent the Boolean values: a
negative) was used to
For backward

nonzero number (positive or
zero was used to represent false,

can still he used to represent Boolean
represent true, and

compatibility, integers

Chapter 2 Introduction to the C Language 39

values; however, we recommend that new programs use the Boolean type.
The Boolean type, which is referred to by the keyword bool, is stored in mem-
ory as 0 (false) or 1 (true).
Character
The third type is character. Although we think of characters as the letters of
the alphabet, a computer has another definition. To a computer, a character
is any value that can be represented in the computer’s alphabet, or as it is bet -
ter known, its character set . The C standard provides two character types:
char and wchar t.

char

wcharj

FIGURE 2-8 Character Types

Most computers use the American Standard Code for Information Inter-
change (ASCII—pronounced “ask-key) alphabet. You do not need to memo-
rize this alphabet as you did when you learned your natural languages;
however, you will learn many of the special values by using them. The ASCII
code is included in Appendix A.

Most of the personal, mini-, and mainframe computers use 1 byte to
store the char data types. A byte is 8 bits. With 8 bits, there are 256 different
values in the char set . (Note in Appendix A that ASCII uses only hall of these
possible values.) Although the size of char is machine dependent and varies
from computer to computer, normally it is 1 byte, or 8 bits.

If you examine the ASCII code carefully, you will notice that there is a
pattern to its alphabet that corresponds to the English alphabet. The first
32 ASCII characters and the last ASCII character are control characters.
They are used to control physical devices, such as monitors and printers, and
in telecommunication systems. The rest are characters that we use to com-
pose words and sentences.

All the lowercase letters are grouped together, as are all the uppercase
letters and the digits. Many of the special characters, such as the shift char-
acters on the top row of the keyboard, are grouped together, but some are
found spread throughout the alphabet.

What makes the letter u different from the letter x? In English, it is the
visual formation of the graphic associated with the letter. In the computer, it
is the underlying value of the hit configuration for the letter. The letter a is
binary 0110 0001. The letter x is 0111 1000. The decimal values of these
two binary numbers are 97 and 120, respectively.

To support non-English languages and languages that don’t use the
Roman alphabet, the C99 standard created the wide character type

40 Section 2.4 Types

(u’charj). Without going in> to »« < > for two-byte chTrac-
national standards, one or our YP traditional characters found in

B„« h of those standard, character. The otfgi-
the basic Latin character set. Gen-

of an introductory

ters.
ASCII ; that is, all extensions occur
nal ASCII characters are now known as

erally speaking, the wide-character set
and is not covered in this text.

is beyond the scope

programming text

Integer

sizes of the integer data type: short int , int , long int , and long long m . A short

int can also be referred to as short , long int can be referred to as long , and

long long int can be referred to as long long. C defines these data types so

that they can be organized from the smallest to the largest, as shown in

Figure 2-9. The type also defines the size of the field in which data can be

stored. In C, this is true even though the size is machine dependent and var-
ies from computer to computer.

short int

int

long int

long long int

FIGURE 2-9 Integer Types

II we need to know the size ol any data type, C provides an operator,
sizeof , that will tell us the exact size in bytes. We will discuss this operator in
detail in C hapter 3. Although the size is machine dependent, C requires that
the following relationship always be true:

sizeof (short) < sizeof (int) £ sizeof (long) < sizeof (long long)

Each integer size can be a signed unsigned integer. If the integer is
S,gned’ tben one bit must be u^d for a signed (0 is plus, 1 is minus). The
unsigned integer can store a positive number that is twice as large as the signed
integer of the same size.* Table 2-3 contains typical values for the integer

hardware 08"''6’ aCtUal^ are dePende"‘ on the physical

or an

3. For a complete discussion, see Appendix D, “Numbering Systems.”

Chapter 2 Introduction to the C Language 41

Maximum ValueMinimum ValueType

short int 32,7672 -32,768

2,147,483,647-2,147,483,6484int

2,147,483,647long int 4 -2,147,483,648

long long int 9,223,372,036,854,775,8068 -9,223,372,036,854,775,807

TABLE 2-3 Typical Integer Sizes and Values for Signed Integers

To provide flexibility across different hardware platforms, C has a library,
limits.h, that contains size information about integers. For example, the mini-
mum integer value for the computer is defined as INT_MIN, and the maxi-
mum value is defined as INT_MAX. See Appendix E, " Integer and Float
Libraries" for a complete list of these named values.

Floating-Point Types
The C standard recognizes three floating-point types: real, imaginary, and
complex. Like the limits library for integer values, there is a standard library,
flout .h , for the floating-point values (see Appendix E. " Integer and Float
Libraries”). Unlike the integral type, real type values are always signed.

Real
The real type holds values that consist of an integral and a fractional part,
such as 43.32. The C language supports three different sizes of real types:

flout , double, and long double. As was the case for the integer type, real num-
bers are defined so that they can be organized from smallest to largest. I he
relationship among the real types is seen in Figure 2-10.

float

double

long double

FIGURE 2-10 Floating-point Types

Regardless of machine size, C requires that the following relationship
must he true:

sizeof (float) < sizeof (double) < sizeof (long double)

42 Section 2.5 Variables

Imaginary Type
number is used extensively in

number is a real number multi-imaginary type. An imaginaryC defines an :
mathematics and engineering.^_‘ a!j!^maginary tvpe, like the real type,
P' beyonhS,r«e”m (h.lm*m* •"*can
double imaginary.

Most C implementations do
functions to handle them are not pa
because the imaginary type is one -

: support the imaginary type yet and the
rt of the standard. We mention them here

of the components of the complex type.
not

Complex
C defines a complex type, which is implemented by most compilers. A com-
plex number is a combination of a real and an imaginary' number. 1 he com-
plex type, like the real type, can be of three different sizes: float complex
double complex, and long long complex. The size needs to be the same in both

the real and the imaginary' part. We provide
plex numbers at the end ot this chapter.

program examples that usetwo

com

Type Summary
A summary of the four standard data types is shown in I able 2-4.

a C ImplementationCategory

voidVoid Void

Integral boolBoolean
Character char, wcharj

short int, int, long int, long long intInteger
Floating-Point Real float, double, long double

float imaginary, double imaginary, long
double imaginary

Imaginary

Complex float complex, double complex, long double
complex

TABLE 2-4 Type Summary

2.5 Variables
Variables are named memory locations that havecharacter, which is inherited fr
that a variable may contain the

a type, such as integer or
their type. The type determines the values

operations that may he used with its values.
om

Chapter 2 Introduction to the C Language 43

Variable Declaration
Each variable in your program must be declared and defined. In C, a declara-
tion is used to name an object, such as a variable. Definitions are used to

create the object. With one exception, a variable is declared and defined at

the same time. The exception, which we will see later, declares them first and
then defines them at a later time. For variables, definition assumes that the
declaration has been done or is being done at the same time. W hile this dis-
tinction is somewhat of an oversimplification, it works in most situations. We
won’t worry' about the exception at this time.

When we create variables, the declaration gives them a symbolic name

and the definition reserves memory for them. Once defined, variables are

used to hold the data that are required by the program lor its operation. Gen-
erally speaking, where the variable is located in memory is not a program-
mer’s concern; it is a concern only of the compiler. From our perspective, all
we are concerned with is being able to access the data through their symbolic
names, their identifiers. The concept of variables in memory is illustrated in
Figure 2- 11.

Variable's. type „
Variable's
identifier

char code;
int i;
long long national debt;

float payRate;

double pi;

Program

FIGURE 2-11 Variables

A variable’s type can he any of the data types, such as character, integer,
or real. The one exception to this rule is the type void : a variable cannot be
type void .

To create a variable, we first specify the type, which automatically speci-
fies it size (precision), and then its identifier, as shown below in the definition
of a real variable named price ol type float.

float price;

Table 2-5 shows some examples of variable declarations and definitions.
As you study the variable identifiers, note the dillerent styles used to make
them readable. You should select a style and use it consistently. We prefer the
use of an uppercase letter to identify the beginning of each word after the
first one, although we do include examples using underscores.

44 Section 2.5̂ Variables

fact; / / Word separator: Capital

/ / word separator: underscore
/ / Word separator: Capital

bool
short maxltems;

long national_debt;long
float payRate;
double tax;
float complex voltage;

code, kind;
a, b;

/ / Poor style—see text
/ / Poor style—see textchar

int

Examples of Variable Declarations and DefinitionsTABLE 2-5
to be defined in one state-C allows multiple variables of the same type

ment The last two entries in Table 2-5 use this format. Even though many

professional programmers use it, we consider it to be poor programming style.
It is much easier to find and work with variables if they are defined on sepa-
rate lines. This makes the compiler work a little harder, but the resulting code
is no different. This is one situation in which ease of reading the program and

important than the convenience of codingprogrammer efficiency are
multiple declarations on the same line.

more

Variable Initialization
We can initialize a variable at the same time that we declare it hv including an
initializer. When present, the initializer establishes the first value that the
variable will contain. To initialize a variable when it is defined, the identifier
is followed by the assignment operator4 and then the initializer, which is the
value the variable is to have when the function starts. This simple initializa-
tion format is shown below.

int count = 0;

Every time the function containing count is entered, count is set to zero.
Now, what will be the result of the following initialization? Are both count
and sum initialized or is only sum initialized?

int count , sum = 0;

The answer is that the initializer applies only to the variable definedimmediately before it. Therefore, only sum is initialized! If you wanted bothvariables initialized, you would have to provide two initializers.
int count = 0 , sum = 0 ;

4. The assignment operator is the equal sign (=).

Chapter 2 Introduction to the C Language 45

Again, to avoid confusion and error, we prefer using only one variable
definition to a line. The preferred code in this case would he

int count = 0;
int sum = 0;

Figure 2- 12 repeats Figure 2-11, initializing the values in each of the
variables.

[B|code
14 i

char code = 'B‘ ;

= 14;

long long natl_debt = 1000000000000;

= 14.25;

= 3.1415926536;

int i
1000000000000 natl debt

14.25|payRatefloat payRate
3.1415926536 piPidouble

MemoryProgram

FIGURE 2-12 Variable Initialization

It is important to remember that with a few exceptions that we will see

later, variables are not initialized automatically. When variables are defined,
they usually contain garbage (meaningless values left over from a previous
use), so we need to initialize them or store data in them (using run-time
statements) before accessing their values. Many compilers display a warning
message when a variable is accessed before it is initialized.

When a variable is defined, it is not initialized. We must initialize any variable
requiring prescribed data when the function starts.

One final point about initializing variables when they are defined:
Although the practice is convenient and saves you a line of code, it also can

lead to errors. It is better, therefore, to initialize the variable with an assign-
ment statement at the proper place in the body ol the code. This may take
another statement, but the efficiency of the resulting program is exactly the
same, and you will make fewer errors in vour code.

EXAMPLE 2- 1 Print Sum
At this point you might like to see what a more complex program looks like.
As you read Program 2-2, note the blank lines to separate different groups ol
code. Ibis is a good technique for making programs more readable. You
should use blank lines in your programs the same way you use them to sepa-
rate the paragraphs in a report.

Ill

46 Section 2.5 Variables

Print Sum of Three NumbersPROGRAM 2-2
the sum of

at the keyboard.i calculates and prints

numbers input by the user/* This program
three -

1
2

Written by:3
Date:4

*/5
#include <stdio.h>6

7
int main (void)8

9 {
// Local Declarations

int a;
int b;
int c;
int sum;

10
11
12
13
14
15

// Statements
printf("\nWelcome. This program adds\n");

printf("three numbers. Enter three numbers\n");

printf("in the form: nnn
scanf("%d %d %d", &a, &b, &c);

16
17
18

nnn nnn <return>\n");19
20
21

// Numbers are now in a, b, and c. Add them,

sum = a + b + c;
22
23
24

printf("The total is: %d\n\n", sum);25
26

printf("Thank you. Have a good day.\n");
return 0;

} // main

27
28
29

Results:
Welcome. This program adds
three numbers. Enter three numbers
in the form: nnn nnn nnn <return>
11 22 33

The total is: 66

Thank you. Have a good day.

Program 2-2 Analysis Study the style of this program carefully. First, note how we start with a welcome

message.

Chapter 2 Introduction to the C Language 47

This program contains three different processes. First it reads three numbers. The
code to read the numbers includes the printed instructions and a read (scanf] statement.

The second process adds the three numbers. While this process consists of only a com-

ment and one statement, we separate it from the read process. This makes it easier for
the reader to follow the program. Finally, we print the result. Again, the print process is
separated from the calculate process by a blank line.

2.6 Constants
Constants are data values that cannot be changed during the execution of a

program. Like variables, constants have a type. In this section, we discuss
Boolean, character, integer, real, complex, and string constants.

Constant Representation
In this section, we show how we use symbols to represent constants. In the
next section, we show how we can code these constants in our program.

Boolean Constants
A Boolean data type can take only two values. Therefore, we expect that we

have only two symbols to represent a Boolean type. The values are true and
false. As we mentioned before, a Boolean value can have only one of the two

values: 0 (false) and 1 (true). We use the constant true or false in our program.
To do so, however, requires that we include the Boolean library; stdbool.h.

Character Constants
Character constants are enclosed between two single quotes (apostrophes).
In addition to the character, we can also use a backslash (\) before the char-

acter. The backslash is known as the escape character. It is used when the
character we need to represent does not have any graphic associated with it—
that is, when it cannot he printed or when it cannot he entered from the key-

hoard. The escape character says that what follows is not the normal charac-

ter hut something else. For example, ' \n' represents the newline character
(line feed). So, even though there may he multiple symbols in the character
constant, they always represent only one character.

A character constant is enclosed in single quotes.

Wide-character constants are coded by prefixing the constant with an L,

as shown in the following example.

L ' x

48 Section 2.6 Constants
from the character set

use the ASCII char-
comes

in the character constant
nufacturer. Most computers

lied, the ASCII alphabet. The ASC’II charac-
The character in .

supplied by the hardware
acter set, or as it is sometimes ca

ter set is shown in Appendix A.

C has named the critical character values so

symbolically. Note that these control characters use

lowed by a symbolic character. They are shown in Table 2-6.

ma

that we can refer to them
the escape character fob

Symbolic Name
ASCII Character

\ 0 *

null character
' \a

alert (bell) \b
backspace
horizontal tab
newline
vertical tab
form feed

\t
\ n
\v
\ f

\r

carriage return

single quote

double quote
backslash

V •
\ •• •

w

Symbolic Names for Control CharactersTABLE 2-6

Integer Constants
Although integers arc always stored in their binary form, they are simply
coded as we would use them in everyday life. Thus, the value 1 5 is simply
coded as 15.

II we code the number as a series ol digits, its type is signed integer, or
signc ong integer il the number is large. We can override this default by
specifying unsigned (u or u), and long (l or L) or long long (n or LL), after
the number I he codes may be combined and may be coded in any order.. ote that there is no way to specify a short int constant. When we omit the
sulhx on a hterai, lt defaults to int. While both upper- and lowercase codes
(esnechllv

r^C0"1men l*lal > ou always use uppercase to avoid confusion

able 2- / shows several examples of integer constantstypical lor a personal computer.
The default types are

Chapter 2 Introduction to the C Language 49

Value TypeRepresentation

+123 123 int

-378 -378

-32,271
76,542

12,789,845

int

long int

unsigned long int

long long int

-32271L

76542LU

12789845LL

TABLE 2-7 Examples of Integer Constants

Real Constants
The default form for real constants is double. If we want the resulting data
type to be flout or long double, we must use a code to specify the desired data
type.As you might anticipate, f and F are used for float and 1 and L are used
for long double. Again, do not use the lowercase / for long double; it is too eas-
ily confused with the number 1.

Table 2-8 shows several examples of real constants.

Value TypeRepresentation
double0.00.

double0.0.0
double2.0 2.0

double3.1416 3.1416

float-2.Of -2.0

long double3.1415926536L 3.1415926536

TABLE 2-8 Examples of Real Constants

Complex Constants
Although we do not discuss the imaginary constants, we need to talk about
complex constants that are widely used in engineering.

Complex constants are coded as two parts, the real part and the imagi-

nary part, separated by a plus sign. The real part is coded using the real lor-
mat rules. The imaginary part is coded as a real number times (*) the
imaginary constant (_Complex_l). If the complex library (complex.h) is

included, the imaginary constant can he abbreviated as I. Examples are

shown in Table 2-9.

50 Section 2.6 Constants

TypeValueRepresentation
double complex12.3 + 14.4 * H),/212.3 + 14.4 * I
float complex14 + 16 * H) 1/214F + 16F * I
long double
complex1.4736 + 4.56756 * H) 1/21.4736L+ 4.56756L * I

TABLE 2-9 Examples of Complex Constants

The default form for complex constants is double. II we want the result -
ing data type to be float or long double, we must use a code to specif \ the

arc used for float and 1desired data type. As you might anticipate, f and F

and L are used for long double. Again, do not use the lowercase / for long dou-
ble; it is too easily confused with the number 1.

The two components of a complex constant must be of the same precision,
that is, if the real part is type double, then the imaginary time must also be
type double.

Table 2-9 shows several examples of complex constants. Note that
the abbreviated form for the imaginary part.

we use

String Constants
A string constant is a sequence of zero or more characters enclosed in double
quotes. You used a string in your first program without
was a string! Look at Program 2- 1 to see if you can identify the string.

Listed in Figure 2-13 arc several strings, including the one from Program 2- 1.The first cxampl
sion. The second

knowing that iteven

empty string, is simply two double quotes i
example, a stringcontaining only the letter h, differs from acharacter constant in that it is enclosed in double quotes. When we studystrings, we will see that there is also a big difference in how h is stored inmemory as a character and as

wide characters.

e, an
in succes-

string. Ihe last example is a string that uses

it II

// A null string"h"
"Hello World\n"
"HOW ARE YOU"
"Good Morning!"
L"This string contains wide characters."

FIGURE 2- 1 3 Some Strings

Chapter 2 Introduction to the C Language 51

It is important to understand the difference between the null character
(see Table 2-6) and an empty string. The null character represents no value.
As a character, it is 8 zero hits. An empty string, on the other hand, is a string
containing nothing. Figure 2- 14 shows the difference between these two con-

stant types.

' \ 0 • Null character
Empty stringII ii

FIGURE 2-14 Null Characters and Null Strings

At this point, this is all you need to know about strings. We talk more

about them and how they are stored in the computer when we study strings
in Chapter I I.

Use single quotes for character constants. Use double quotes for string

constants.

Coding Constants
In this section we discuss three different ways we code constants in our pro-
grams: literal constants, defined constants, and memory constants.

Literal Constants
A literal is an unnamed constant used to specify data. Ii we know that the
data cannot he changed, then we can simply code the data value itsell in a

statement.
Literals are coded as part of a statement using the constant formats

described in the previous section. For example, the literal 5 is used in the fol-
lowing statement.

a = b + 5;

Defined Constants
Another way to designate a constant is to use the preprocessor command
define. Like all preprocessor commands, it is prefaced with the pound sign (#).
The define commands are usually placed at the beginning ol the program,
although they are legal anywhere. Placing them at the beginning ol the pro-

gram makes them easy to find and change. A typical define command
might he

#define SALES TAX RATE .0825

52 Section 2.6 Constants

In the preceding example, for instance, the sales tax ratt changes more
would like. By placing it and other similar constants at the

find and change them easily.often than we
beginning of the program, we can

As the preprocessor reformats the program for the language translator, it

replaces each defined name, SALES_ TAX_RATE in the previous example with
its value (.0825) wherever it is found in the source program. I his action is

just like the search-and-replace command found in a text editor. I he prepro-
does not evaluate the code in any way—it just blindly makes the sub-cessor

stitution. For a complete discussion of defined constants, see Appendix G,
"Preprocessor Commands.”

Memory Constants
The third wav to use a constant is with memory constants. Memory constants

C type qualifier, const , to indicate that the data cannot be changed. Itsuse a
format is:

const type identifier = value;

We have seen how to define a variable, which does nothing more than
give a type and size to a named object in memory. Now let us assume that we
want to fix the contents of this memory location so that they cannot he
changed. This is the same concept as a literal, only now we give it a name.
The following code creates a memory constant, cPi. To help us remember
that it is a constant, we preface the identifier name with c.

const float cPi = 3.14159;

Three points merit discussion: (1) The type qualifier comes first. (2) Thenthere must be an initializer. If we didn't have an initializer, then our namedwould he whatever happened to he in memory at cPi's locationprogram started. (3) Finally, since we have said that cPi is a con-stant, we cannot change it.
Program 2-3 demonstrates the three diff

constant.

PROGRAM 2-3 Memory Constants

constant
when our

erent ways to code pi as a

/ * This program demonstrates three ways to useconstants.
Written by:
Date:

/

^include <stdio.h>
define PI 3.1415926536

continued

Chapter 2 Introduction to the C Language 53

PROGRAM 2-3 Memory Constants (continued)

int main (void)9
10 {

// Local Declarations
const double cPi = PI;

1 1
1 2
1 3

// Statements
printf("Defined constant PI:

printf("Memory constant cPi:

printf("Literal constant:

return 0;
// main

1 4
%f\n",
%f\n",
%f\n",

PI) ?
cPI);
3 . 1 4 1 5 9 2 6 5 3 6) ;

1 5
1 6
1 7
1 8
1 9 >

Results:
Defined constant PI:

Memory constant cPi:
Literal constant:

3 . 1 4 1 5 9 3
3 . 1 4 1 5 9 3
3 . 1 4 1 5 9 3

2.7 Input/Output
Although our programs have implicitly shown how to print messages, we have
not formally discussed how we use C facilities to input and output data. We
devote two chapters, Chapters 7 and 13, to fully explain the C input/output

facilities and how to use them. In this section, we describe simple input and
output formatting.

Streams
In C, data is input to and output from a stream. A stream is a source ol or

destination for data. It is associated with a physical device, such as a termi-
nal , or with a file stored in auxiliary memory.

C uses two forms of streams: text and binary. A text stream consists of a

sequence of characters divided into lines with each line terminated hv a new-
line (\ n). A binary stream consists of a sequence ol data values such as inte-

ger, real, or complex using their memory representation. In this chapter, we

briefly discuss only text streams. A more detailed discussion ol text streams is

found in Chapter 7, “Text Input/Output,“ and a detailed discussion of binary'

streams is found in Chapter 13, "Binary Input/Output.

A terminal can be associated only with a text stream because a keyboard
only send a stream of characters into a program and a monitor can onlycan

display a sequence ol characters. A file, on the other hand can he associated
with a text or binary stream. We can store data in a file and later retrieve

sequence of data val-them as a sequence of characters (text stream) or as a

ues (binary streams).

54 Section 2.7 Input/Output

produce or consume text streams. In C , ^dard input and the monitor is known as standard output.

we

use

be associated only with a text stream.
;a monitor is a destination for a textA terminal keyboard and monitor can

A keyboard is a source for a text stream;

stream.
and the two physical devices asso-

Fioure 2-15 shows the concept of streams

dated with input and output text streams.

ProgramData Source

(Input Text Stream » Data

keyboard

DataOutput Text Stream -^
monitor

Data Destination

Stream Physical DevicesFIGURE 2-15

Formatting Input/Output
I he previous section discussed the terminal as a text stream source and desti-
nation. We can only receive text streams from a terminal (keyboard) and send
text streams to a terminal (monitor). However, these text streams often repre-
sent different data types, such as integer, real , and Boolean. The C language
provides two formatting functions: printj for output formatting and sccinf for
input formatting. The printf function converts data stored in the program
into a text stream for output to the monitor; the scan/ function converts the
text stream coming from the keyboard to data values and stores them in pro-gram variables. In other words, the printf and scanf functionsstream and text stream to data

are data to text
converters.

Output Formatting: printf
The output formatting function is print/. The print/ function takes adata values, converts them to a text stream ncinn f * • •
tained in a format control string, and sends he^ 8 mStmCtl°nS ,
standard output (monitor). For example1m T.a "8 f "T l°
““*“•-—-— /352SSix5!35

set of
con-

Chapter 2 Introduction to the C Language 55

and then is sent to the monitor. What we see on the monitor is these three
characters, not the integer 234. However, we interpret the three characters
together as an integer value. Figure 2- 16 shows the concept.

r IBtDEHH" prinlf (-) | 234234
IntegerText Stream

monitor

Data Destination Program

FIGURE 2-16 Output Formatting Concept

Basic Concept
The printf function uses an interesting design to convert data into text

streams. We describe how the text stream should he formatted using a format
control string containing zero or more conversion specifications. In addi-
tion to the conversion specifications, the control string may contain textual data
and control characters to be displayed.

Each data value to he formatted into the text stream is described as a sep-
arate conversion specification in the control string. The specifications describe
the data values’ type, size, and specific format information, such as how wide
the display width should he. The location of the conversion specification
within the format control string determines its position within the text stream.

The control string and data values are passed to the print function
(print/) as parameters, the control string as the first parameter and one

parameter for each value to be printed. In other words, we supply the follow-
ing information to the print function:

1 . The format control string including any textual data to be inserted into
the text stream.

2. A set of zero or more data values to he formatted.

Figure 2- 17 is a conceptional representation of the format control string
and two conversion specifications.

Figure 2- 17(a) shows the format string and the data values as parameters
for the print function. Within the control string we have specified quantity
(Qty:) and total (Tot:) as textual data and two conversion specifications (%d

and % f). The first specification requires an integer type value; the second
requires a real type value. We discuss the conversion specifications in detail
in the following section.

Figure 2- 17(h) shows the formatting operation and the resulting text

stream. The first data value is a literal integer; the second data value is the
contents of a variable named tot. Ibis part of Figure 2- 17 shows how the
print/ function expands the control stream and inserts the data values and
text characters.

56 Section 2.7 Input/Output

(a) Basic Concept

%d Tot:
Format Control String ,

printf (...) I 23 48.53
J Data ValuesText StrearnQ -̂n

48.53sumr~ r̂Tot7~
$%F~7r723 / sum);

Iprintf("Qty

i—,A
(b) Implementation

FIGURE 2-17 Output Stream Formatting Example

Format Control String Jext
The control string may also contain text to be printed, such as instructions to

the user, captions or other identifiers, and other text intended to make the

output more readable. In fact, as we have already seen, the format string may

contain nothing hut text, in which case the text will be printed exactly as

shown. We used this concept when we wrote the greeting program. In addi-
tion. we can also print control characters, such as tabs (\ t) , newlines (\ n),
and alerts (\a), by including them in the format string. Tabs are used to for-
mat the output into columns. Newlines terminate the current line and con-
tinue formatting on the next line. Alerts sound an audio signal to alert,
usually to alert the user to a condition that needs attention. These control
characters are seen in Table 2-6.

Conversion Specification
To insert data into the stream, we use a conversion specification that contains
a start token (%), a conversion code, and up to four optional modifiers as
shown in Figure 2-18. Only the field-specification token (%) and the
sion code arc required.

conver-

Minimum
Width% Flag Precision Size Code

FIGURE 2-18 Conversion Specification

Approximately 30 different
types. For now, however,

conversion codes are used to describe data
we are concerned with only three: character (c),

Chapter 2 Introduction to the C Language 57

integer (d) , and floating point (f). These codes with some examples are
shown in Table 2-10.

ExampleCodeType Size0

None %cchar c

%hdshort int h d

None

None
int %dd

%ldlong int

long long int

d

%lldd11

None %ffloat f

None %fdouble f

%Lfflong double L

a. Size is discussed in the next section.

TABLE 2- 10 Format Codes for Output

The size modifier is used to modify the type specified by the conversion
code. There are lour different sizes: h, 1 (el), 11 (el el) , and L.The h is used
with the integer codes to indicate a short integer value;'* the 1 is used to indi-
cate a long integer value; the 11 is used to indicate a long long integer value;
and the L is used with floating-point numbers to indicate a long double value.

A width modifier may be used to specify the minimum number of posi-
tions in the output. (If the data require using more space than we allow, then
print] overrides the width.) It is very useful to align output in columns, such
as when we need to print a column of numbers. II we don’t use a width mod-
ifier, each output value will take just enough room lor the data.

If a floating-point number is being printed , then we may specif) the num-
ber of decimal places to he printed with the precision modifier. The preci-
sion modifier has the format

. m

where m is the number of decimal digits. If no precision is specified , printf
prints six decimal positions. These six decimal positions are often more than
is necessary.

When both width and precision arc used, the width must he large enough
to contain the integral value of the number, the decimal point, and the num-
ber of digits in the decimal position. Thus, a conversion specification

5. The h code is a carry-over from assembler language where it meant hall word.

58 Section 2.7 Input/Output

value of 9999.99. Some examples of

shown below.of %7.2f is designed to print a maximum

width specifications and precision are

integer-2 print positions
// short
// integer-4 print positions

// long int-8 (not 81) positions

// float-7 print positions: nnnn.dd

// long double-10 positions: nnnnnn.ddd

% 2hd
% 4d
%81d
% 7.2f
%10.3Lf

is used for four print modifications: justification, pad-
. The first three are discussedThe flag modifier

ding, sign, and numeric conversion variants

here; the conversion variants are discussed in Chapter , .

Justification controls the placement of a

the specified width , justification can be left or right. If there is no flag and

the defined width is larger than required, the value is right justihed. The

default is right justification. To left justify a value, the flag is set to minus (-).
Padding defines the character that fills the unused space when the value is

smaller than the print width. It can be a space, the default, or zero. If there

flag defined for padding, the unused width is filled with spaces; if the flag is 0,

the unused width is filled with zeroes. Note that the zero flag is ignored if it is

used with left justification because adding zeros after a number changes its value.
The sign flag defines the use or absence of a sign in a numeric value. We

can specify one of three formats: default formatting, print signed values, or

prefix positive values with a leading space. Default formatting inserts a sign
only when the value is negative. Positive values are formatted without a sign.
When the flag is set to a plus (+), signs are printed lor both positive and neg-
ative values. If the llag is a space, then positive numbers are printed with a
leading space and negative numbers with a minus sign .

Table 2- 1 I documents three of the more common llag options.

value when it is shorter than

is no

Flag Type Flag Code Formatting

Justification None right justified
left justified

Padding None space padding
0 zero padding

Sign None positive value: no sign
negative value: -
positive value: +
negative value: -

None positive value: space
negative value: -

TABLE 2-11 Flag Formatting Options

Chapter 2 Introduction to the C Language 59

Output Examples
This section contains several output examples. We show the printf statement,

followed by what would be printed. Cover up the solution and try to predict
the results.
1. printf("%d%c%f", 23, 'z', 4.1);

23z4.100000

Note that because there are no spaces between the conversion speci-
fications, the data are formatted without spaces between the values.

2. printf("%d %c %f", 23, 'z * , 4.1);

23 z 4.100000

This is a repeat of Output Example 1 with spaces between the con-
version specifications.

3. int numl = 23;
char zee = 'z';
float num2 = 4.1;
printf("%d %c %f", numl, zee, num2);

23 z 4.100000

Again, the same example, this time using variables.
4. printf("%d\t%c\t%5.If\n", 23, 'Z', 14.2);

printf("%d\t%c\t%5.If\n", 107, 'A', 53.6);
printf("%d\t%c\t%5.1f\n", 1754, 'F', 122.0);
printf("%d\t%c\t%5.If\n", 3, 'P', 0.1);

23 Z 14.2
107 A 53.6
1754 F 122.0
3 0.1P

In addition to the conversion specifications, note the tab character
(\ t) between the first and second, and second and third conversion spec-

ifications. Since the data are to he printed in separate lines, each format
string ends with a newline (\n).

5. printf("The number%dis my favorite number.", 23);

The number23is my favorite number.

Since there are no spaces before and after the format code (%d), the
number 23 is run together with the text before and alter.

60 Section 2.7 Input/Output

number is %6d", 23);
6. printf("The

23The number is
A A A A A

A A A A A A
A A A A A A A

A A

H count spaces fully. .1—It you co J comes from the space after is and before

t tbf the
"

format »rinE. 11« «1» fou, contc from the width in the

conversion specification.

7. printf("The tax is %6 - 2f this year.", 233.12);

The tax is 233.12 this year.

In this example, the width is six and the precision two. Since the

number of digits printed totals five (three for the integral portion and two

for the decimal portion), and the decimal point takes one print position,
the full width is filled with data. The only spaces are the spaces before
and after the conversion code in the format string.

8. printf("The tax is %8.2f this year.", 233.12);

233.12 this year.The tax is
A AA A A A A A A A

9. printf("The tax is %08.2f this year.", 233.12);

The tax is 00233.12 this year.
A A

This example uses the zero (lag to print leading zeros. Note that the
width is eight positions. I hree of these positions are taken up by the pre-
cision oi two digits and the decimal point. This leaves live positions tor
the integral portion of the number. Since there
(233), printf inserts two leading zeros.

10. printf("\"%8c %d\"", 'h', 23);

only three digitsare

h 23"
A A A A A A A A A A A A A A A

In this example
quotes are used to identify the format
characters. To print them, therefore

print the data within quotes. Since
string, we can’t use them as print

. , . , . - > we must use the escape character
wi h the quote (\"), which tells printf that what follows is not the end ofthe string but a character to be printed, in this case, a quote mark.

printf (A null character\0ki 11c 'rXOkills the rest of the line\n")?

we want to

Chapter 2 Introduction to the C Language 61

printf ("\nThis is \'it\' in single quotes\n");
printf ("This is \"it\" in double quotes\n");
printf ("This is \\ the escape character itself\n");

...A new line
This is the bell character
A null character
This is 'it' in single quotes
This is "it" in double quotes
This is \ the escape character itself

These examples use some of the control character names found in
Table 2-6. Two of them give unexpected results. In Output Example I 1,
the return character (\r) repositions the output at the beginning of the
current line without advancing the line. Therefore, all data that were
placed in the output stream are erased.

The null character effectively kills the rest of the line. Had we not

put a newline character (\n) at the beginning of the next line, it would
have started immediately after character.

12. New example with multiple flags.
printf("|%-+8.2f||%0+8.2f||%-0+8.2f|", 1.2, 2.3, 3.4);

1 +1.20 | 1 +0002.30||+3.40
A A

This example uses multiple Hags. So that we can see the justification,
each value is enclosed in vertical bars. The first value is printed left justi-
fied with the positive flag set. The second example uses zero fill with a

space for the sign. Note that there is a leading space in the output. Ibis
represents the plus value. It is then followed hv the leading zeros. The last
example demonstrates that the zero fill is ignored when a numeric value
is printed with left justification.

Common Output Errors
Each of the following examples has at least one error. Try to find each one

before you look at the solutions. Your results may vary depending on your
compiler and hardware.
1. printf ("%d %d %d\n", 44, 55);

44 55 0

This example has three conversion specifications hut only two values.
2. printf ("%d %d\n", 44, 55, 66);

44 55

62 Section 2.7 Input/Output

with three values. In
This example has two conversion specifications

printf ignores the third value.

%d\n", x);

this case,

3. float x = 123.45;
printf("The data are:

The data are: 1079958732

in which the format specification (integer)
This is a very common error in

does not match the data type (real).

Input Formatting: scanf
The standard input formatting function in C is scanf (scan formatting). I his
function takes a text stream from the keyboard, extracts and formats data
from the stream according to a format control string, and then stores the data
in specified program variables. For example, the stream ot 5 characters 2 , 3 ,
'4', 7, and ‘2’ are extracted as the real 234.2. Figure 2-19 shows the concept.

Data Source

scanf(...) 234.2'2' '3' '4'

RealText StreamKeyboard

ProgramStandard Input

FIGURE 2-19 Formatting Text from an Input Stream

The scanf function is the reverse of the printf function.
1. A format control string describes the data to be extracted from the stream

and reformatted.
2. Rather than data values as in the printf lunction , scanf requires the

variable addresses were each piece of data are to be stored. Unlike the
printf function, the destination of the data items cannot be literal values,
they must store in the variables.

3. With the exception of the character specification, leading whites!are discarded.
jaces

n >n conversion specification characters in the format string must be
exac y matched by the next characters in the input stream.
Extra rha ! e car^ ul about extra characters in the control stream.Extra characters ,n the control string can be divided iwhitespace and whitespace. into two categories:non-

Chapter 2 Introduction to the C Language 63

a. Non-whitespace characters in the control string must exactly match
characters entered by the user and are discarded by the scanf alter
they are read. If they don’t match, then scanj goes into an error state
and the program must he manually terminated.

We recommend that you don’t use non-whitespace characters in
the format string, at least until you learn how to recover from errors in
Chapter 13. However, there are some uses for it . For example, il the
users want to enter dates with slashes, such as 5/10/06. the slashes
must either he read and discarded using the character format specifica-
tion (see the discussion of the assignment suppression flag in the later
section, “Conversion Specification ”) or coded as non-whitespace in the
format specification. We prefer the option to read and discard them,

h. Whitespace characters in the format string are matched by zero or
more whitespace characters in the input stream and discarded. There
are two exceptions to this rule: the character conversion code and the
scan set (see Chapter 1 1) do not discard whitespace. It is easy, how-
ever, to manually discard whitespace characters when we want to read
a character. We simply code a space before the conversion specifica-
tion or as a part of it as shown below. Either one works.

" %c" o r " % c"

Remember that whenever we read data from the keyboard, there is a
return character from a previous read. If we don’t flush the whitespace char-
acters when we read a character, therefore, we will get the whitespace from
the previous read. To read a character, we should always code at least one
whitespace character in the conversion specification; otherwise the
whitespace remaining in the input stream is read as the input character. For
example, to read three characters, we should code the following format
string. Note the spaces before each conversion specification.

s can f (" %c % c %d" , &c l , &c2 , &c3) ;

Figure 2-20 demonstrates the input format string concept with a control
string having two fields (%d and %f). The first one defines that a character
will he inserted here; the second defines that a real will be inserted there. We
w ill discuss these place holders, or format specifiers, later in the chapter.

Format Control String
Like the control string for print] , the control string for scanj is enclosed in a

set of quotation marks and contains one or more conversion specifications
that describe the data types and indicate any special formatting rules and/or
characters.

64 Section 2.7 Input/Output

(a) Basic Concept

" %c % f ^nFormat Control String r
B 18.231(" 'Text Stream

"^ » scanf(...)
Data Values

, &code, &price); |printf("%c %f"

Ll
L— Discarded —-

B18.23
price code

(b) Implementation

FIGURE 2-20 Input Stream Formatting Examp e

Conversion Specification
To format data from the input stream, we use a conversion specification
that contains a start token (%), a conversion code, and up to three optional
modifiers as shown in Figure 2-21. Only the field-specification token (%) and
the conversion code are required.

Maximum
WidthFlag Size

FIGURE 2-21 Conversion Specification

I here are only three differences between the conversion codes for input
loi matting and output lormatting. First, there is no precision in an input con-
\ ersion specification. It is an error to include a precision; if scanif finds a pre-
cision it stops processing and the input stream is in the error state.

There is only one f°r input lormatting, the assignment suppressionHag (*). More commonly associated with text files (see Chapter 7), the assign-
ment suppression flag tells scan/ that the next input field is to be read but notstored. It is discarded. The following scan/ statement reads an integer, a char-acter, and a floating-point number from the input stream. The character isread and discarded. The other fields are read, formatted, and stored. Notehere is no matching address parameter for the data to be discarded.

s c a n f (" %d % *c % f " , sx, Sy);

Chapter 2 Introduction to the C Language 65

The third difference is the width specification; with input formatting it is
a maximum, not a minimum, width. The width modifier specifies the maxi-
mum number of characters that are to be read for one format code. \\ hen a
width specification is included, therefore, scanf reads until the maximum
number of characters have been processed or until scan) finds a whitespace
character. If scanf finds a whitespace character before the maximum is
reached, it stops.

Input Parameters
For every' conversion specification there must he a matching variable in the
address list. The address list contains the address of the matching variable.
How do we specify' an address? It’s quite simple: Addresses are indicated by
prefixing the variable name with an ampersand (&). In C, the ampersand is
known as the address operator. Using the address operator, if the variable
name is price, then the address is & price. Forgetting the ampersand is one
of the most common errors for beginning C programmers, so you will have to
concentrate on it when you use the scanf function .

scanf requires variable addresses in the address list.

Remember that the first conversion specification matches the first vari-
able address, the second conversion specification matches the second variable
address, and so on. This correspondence is very' important . It is also very
important that the variable’s type match the conversion specification type.
The C compiler does not verify that they match. If they don’t, the input data
will not he properly formatted when they are stored in the variable.

Pnd of File and Errors
In addition to whitespace and width specifications, two other events stop the
scanf function. If the user signals that there is no more input by keying end
of file (EOF), then scanf terminates the input process. While there is no EOF
on the keyboard, it can be simulated in most systems. For example, Windows
uses the <ctrl + z > key combination to signal EOF. Unix and Apple Macin-
tosh use <ctrl + d > for EOF. The C user’s manual for your system should
specify the key sequence for EOF.

Second , if scanf encounters an invalid character when it is try ing to con-
vert the input to the stored data type, it stops. The most common error is

finding a nonnumeric character when it is trying to read a number. The valid
characters are leading plus or minus, digits, and one decimal point. Any other
combination, including any alphabetic characters, will cause an error.
Although it is possible to detect this error and ask the user to re-input the
data, we will not he able to cover the conventions for this logic until
Chapter 7. Until then, he very careful when you enter data into your program.

66 Section 2.7 Input/Output

Input Formatting Summary
Table 2-12 summarizes the rules for using scanf.

until:
1. The conversion operation processes

a. End of file is reached.
b. The maximum
c. A whitespace character is found after a digit in a numeric specification.
d. An error is detected.

2. There must be a conversion specification for each variable to be read.

3. There must be a variable address of the proper type for each conversion

specification.

4. Any character in the format string other than whitespace or a conver-

sion specification must be exactly matched by the user during input. If
the input stream does not match the character specified , an error is sig-
naled and scanf stops.

number of characters has been processed.

5. It is a fatal error to end the format string with a whitespace character.
Your program will not run correctly if you do.

sconf RulesTABLE 2-12

Input Examples
This section contains several examples. We list the data that will be input
first. T his allows you to cover up the function and try to formulate
scan! statement.

1 . 214 156 14 Z

your own

scanf ("%d%d%d%c" ,

Note that if there were a space between the 14 and the Z . it would
create an error because %c does not skip whitespace!To prevent this prob-
lem, put a space before the %c code as shown below. This will cause it to
skip leading whitespace.

& b, &c, &d) ;&a ,

scanf (" %d %d %d %c" , &a , & b, &c , &d) ;

2. 2314 15 2.14

scanf (" %d %d %f " ,

Note the whitespace between thespaces are not
include them.

& b , &c) ;

conversion specifications. T hese
input, but it is a good idea tonecessary with numeric i

Chapter 2 Introduction to the C Language 67

3. 14/26 25/66

scanf("%2d/%2d %2d/%2d",
&numl, &denl, &num2/ &den2);

Note the slashes (/) in the format string. Since they are not a part ol
the conversion specification, the user must enter them exactly as shown
or sccitif will stop reading.

4. 11-25-56

scanf ("%d-%d-%d", &a, &b, &c);

Again, we see some required user input, this time dashes between
the month, day, and year. While this is a common date format, it can

cause problems. A better solution would be to prompt the user separately
for the month, the day, and the year.

Common Input Errors
Each of the following examples has at least one error, fry to find it before you
look at the solution. Your results may vary depending on your compiler and
hardware.

1. int a = 0;
scanf ("%d",
printf("%d\n",

a) ;
a) ;

2 3 4 (Input)
(Output)0

This example has no address token on the variable (& a). II the pro-
gram runs at all, the data are read into an unidentified area in memory.
What is printed is the original contents of the variable, in this case 0.

2. float a = 2.1;
scanf
printf ("%5.2f",

("%5.2f", &a);
a);

7 4 . 3 5
2.10

(Input)
(Output)

This example has no precision in the input conversion specification.
When scanf finds a precision, it stops processing and returns to the func-
tion that called it. The input variable is unchanged.

3. int a;
int b;
scanf ("%d%d%d", &a , &b);
printf ("%d %d\n”, a , b);

(input)
(output)

This example has three conversion specifications but only two

addresses. Therefore, scanf reads the first two values and qu.ts because

5 10
5 10

third address if found.no

4. int a = 1
int b = 2
int c = 3
scanf &a t &b/ &c) i

b, c);
("%d%d",

printf ("%d %d\n", a ,

(input)
(output)

5 10 15
5 10 3

This example has only two conversion specifications, but it has three

addresses. Therefore, scanf reads the first two values and ignores the

third address. The value 15 is still in the input stream waiting to be read.

2.8 Programming Examples
In this section, we show some programming example to emphasize the ideas
and concepts we have discussed about input/output.

EXAMPLE 2-2 Print "Nothing!"
Program 2-4 is a very simple program that prints “Nothing!”

PROGRAM 2-4 A Program That Prints "Nothing!"
/* Prints the

Written by:
Date:

1 message "Nothing 1 ".
2
3

*/4
5 ftinclude <stdio.h>
6

int main (void)
{
// Statements

printf("This program prints\n\n\t\"Nothing!\) ;•• M

return 0;
} // main

continued

Chapter 2 Introduction to the C Language 69

PROGRAM 2-4 A Program That Prints "Nothing!" (continued)

Results:
This program prints

"Nothing!"

EXAMPLE 2-3 Print Boolean Constants
Program 2-5 demonstrates printing Boolean values. As the program shows,
however, while a Boolean literal contains either true or false, when it is
printed , it is printed as 0 or 1 . This is because there is no conversion code tor
Boolean. To print it , we must use the integer type, which prints its stored
value, 0 or 1.

PROGRAM 2-5 Demonstrate Printing Boolean Constants

/* Demonstrate printing Boolean constants.
Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <stdbool.h>

5
6
7

int main (void)8
9 {

// Local Declarations
bool x = true;
bool y = false;

1 0
1 1
1 2
13

// Statements
printf ("The Boolean values are: %d %d\n", x, y);
return 0;
// main

14
15
16
17 >

Results:
The Boolean values are: 1 0

EXAMPLE 2-4 Print Character Values
Program 2-6 demonstrates that all characters are stored in the computer as
integers. We define some character variables and initialize them with values,
and then we print them as integers. As you study the output, note that the
ASCII values of the characters are printed. The program also shows the value
of some nonprintable characters. All values can be verified by referring to

Appendix A.

Section 2.8 Programming Examples

PROGRAM 2-6 Print Value of Selected Characters
of selected characters,

/* Display the decimal value1
Written by:2
Date:3

*/4
#include <stdio.h>5

6
int main (void)7

8 <
// Local Declarations

char A
char a
char B
char b
char Zed
char zed
char zero
char eight
char NL
char HT
char VT
char SP
char BEL
char dblQuote
char backslash = • ;
char oneQuote = '\ ;

9
= ’A'
= - a'10

11
= 'B12
= * b *

= ' z ’
13
14
15 z'
16 = '0'
17 = '8';

= '\n'?
= '\t';
= ' \v ' ;

18 // newline
// horizontal tab
// vertical tab
// blank or space
// alert (bell)
// double quote
// backslash itself
// single quote itself

19
20
21
22 = '\a';
23 it •
24
25
26
27 // Statements
28 printf("ASCII for char 'A'

printf("ASCII for char 'a'
printf("ASCII for char
printf("ASCII for char *> •printf("ASCII for char 'Z'
printf("ASCII for char 'z1

printf("ASCII for char '0'
printf("ASCII for

is: %d\n",
is: %d\n",
is: %d\n",
is: %d\n",
is: %d\n",
is: %d\n",
is: %d\n",
is: %d\n",

Wn * is: %d\n",
Wt' is: %d\n",

is: %d\n",
' is: %d\n",

is: %d\n",
is: %d\n",
is: %d\n",
is: %d\n",

A)
29

a)
30 B B)31

b)32
Zed);
zed);
zero);
eight);
NL);
HT);
VT);
SP);
BEL);
dblQuote);
backslash);
oneQuote);

33
34
35 char '8

Printf("ASCII for char •
Printf("ASCII for char '
printf("ASCII for
Printf("ASCII for char
Printf("ASCII for char •
printf("ASCII for
printf("ASCII for
printf("ASCII for

36
37
38

char '\\v' i39
40

Wa'41
char '\
char •\\
char '\

n i

42
43

i

44

continued

Chapter 2 Introduction to the C Language 71

PROGRAM 2-6 Print Value of Selected Characters (continued)

return 0;

> // main
45
46

Results:
ASCII for character 'A'

ASCII for character 'a'

ASCII for character 'B'

ASCII for character 'b'

ASCII for character 'Z'

ASCII for character 'z'
ASCII for character '0'

ASCII for character '8'

ASCII for character '\n'

ASCII for character '\t'

ASCII for character '\v'
ASCII for character ' '

ASCII for character '\a'

ASCII for character

ASCII for character * \'

ASCII for character

is: 65
is: 97
is: 66
is: 98
is: 90
is: 122
is: 48
is: 56
is: 10
is: 9
is: 11
is: 32
is: 7
is: 34
is: 92
is: 39

H i

i i i

EXAMPLE 2-5 Define Constants
Let’s write a program that calculates the area and circumference ol a circle
using a preprocessor-defined constant for n. Although we haven’t shown you
how to make calculations in C, if you know algebra you will have no problem
reading the code in Program 2-7.

PROGRAM 2-7 Calculate a Circle's Area and Circumference
/* This program calculates the area and circumference

of a circle using PI as a defined constant.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>
#define PI 3.1416

6
7
8

int main (void)9
1 0 {

// Local Declarations
float circ;
float area;
float radius;

11
12
13
14

continues

72 Section 2.8 Programming Examples

and Circumference (continued)
Calculate a Circle's AreaPROGRAM 2-7
15

// statements
printf("\nPlease
scanf("%f" i &radius);

value of the radius: ") ;16 enter the
17
18
19

* radius;
* radius;= 2 * PI

= PI * radius
circ
area

2 0
2 1
2 2 %10.2f", radius);

: %10.2f" f circ);

%10.2f" / area);
printf("\nRadius is :

printf("\nCircumference is

printf("\nArea is :

23
24
25
26

return 0;
} // main

27
28

Results:
Please enter the value of the radius: 23

23.00
144.51
1661.91

Radius is :
Circumference is :
Area is :

EXAMPLE 2-6 Print a Report
You are assigned to a new project that is currently being designed. Io give the

idea of what a proposed report might look like, the projectcustomer an
leader has asked you to write a small program to print a sample. 1 he specifi-
cations for the report are shown in Figure 2-22, and the code is shown in
Program 2-8.

Part Numbers musTN
have leading zeros^Z

Part Number
0 3 1 2 3 5
0 0 0 3 2 1
0 2 8 7 6 4
0 0 3 2 3 2

Qty On Hand Qty On Order Price
$ 4 5 . 6 2
$1 2 2 . 0 0
$ 0 . 7 5
$ 1 0 . 9 1

22 86
5 5 21

0 2 4
12 0

End of Report
Decimal points

must be aligned.Leading zeros
suppressed.

FIGURE 2-22 Output Specifications for Inventory Report

Chapter 2 Introduction to the C Language 73

The report contains four fields: a part number, which must he printed
with leading zeros; the current quantity on hand; the current quantity on

order; and the price of the item, printed to two decimal points. All data
should he aligned in columns with captions indicating the type of data in

each column. The report should he closed with an “End of Report ' message.

PROGRAM 2-8 A Sample Inventory Report
/* This program will print four lines of inventory data

on an inventory report to give the user an idea of

what a new report will look like. Since this is not

a real report, no input is required. The data are

all specified as constants
Written by:
Date:

1
2
3
4
5
6
7

*/8
#include <stdio.h>9

10
int main (void)1 1

12 {
// Statements

// Print captions
printf("\tPart Number\tQty On Hand”);
printf("\tQty On Order\tPrice\n");

13
14
15
16
17

// Print data
printf("\t %06d\t\t%7d\t\t%7d\t\t $%7.2f\n",

31235, 22, 86, 45.62);
printf("\t %06d\t\t%7d\t\t%7d\t\t $%7.2f\n",

321, 55, 21, 122.);
printf("\t %06d\t\t%7d\t\t%7d\t\t $%7.2f\n",

28764, 0, 24, .75);
printf("\t %06d\t\t%7d\t\t%7d\t\t $%7.2f\n",

3232, 12, 0, 10.91);

18
19
2 0
2 1
2 2
23
24
25
26
27

// Print end message
printf("\n\tEnd of ReportAn");
return 0;
// main

28
29
30
31 >

Program 2-8 Analysis There are a few things about Program 2-8 that you should note. First, it is fully docu-

mented. Professional programmers often ignore documentation on "one-time-only"
programs, thinking they will throw them away, only to find that they end up using
them over and over. It only takes a few minutes to document a program, and it is
always time well spent. If nothing else, it helps clarify the program in your mind.

Next, look carefully at the formatting for the print statements. Spacing is controlled
by a combination of tabs and format code widths. The double spacing for the end of

/ 4 Section 2.8 Programming Examples

a newline command (\n) at the beginning of
is controlled by placingreport message

the message in Statement 29.. I ^nrlnrU with a return statement that informs the
»’-EEd ^ m !mo" pr°-

grams, is the sign of a good programmer.

Printing The Attributes of o Complex Number
A complex number is made of two components: a real part and an imaginary
part. In mathematics, it can be represented as a vector with two components.
The real part is the projection of the vector on the horizontal axis (x) and the
imaginary part is the projection of the vector on the vertical axis (\) . I n C, we

complex number and a predefined library function to print the real and
imaginary values. We can also find the length of the vector, which is the abso-
lute value of the complex number and the angle of the vector, which is the
argument of the vector. These four attributes arc shown in Figure 2-23.

EXAMPLE 2-7

use

^Argument
Imaginary

Real
y

FIGURE 2-23 Complex Number Attributes

As the figure shows, the absolute value of the complex a + b * I can be found
as (a+b)1/2. The argument can be found as arctan (b/a). The conjugate of a
complex number is another complex number defined as a - b * I.

Program 2-9 shows how we print the different attributes of a complexnumber using the predefined functions creal , cimag , cabs , and carg.
PROGRAM 2-9 Print Complex Number Attributes

/* Print attributes
Written by:
Date

1 of a complex number.2
3
4 */
5 #include <stdio.h>

#include <math.h>
#include <complex.h>

6
7
8
9 int main (void)

continued

Chapter 2 Introduction to the C Language 75

PROGRAM 2-9 Print Complex Number Attributes (continued)

10 {
// Local Declarations

double complex x = 4 + 4 * I;
double complex xc;

11
12
13
14

// Statements
xc = conj (x);
printf("%f %f %f %f\n", creal(x)

cabs(x),

15
16

cimag(x),
carg(x));

17
18
19

printf("%f %f %f %f\n" / creal(xc), cimag(xc),
cabs(xc), carg(xc));

20
21
22 return 0;

> // main23

Results:
4.000000 4.000000 5.656854 0.785398

4.000000 -4.000000 5.656854 -0.785398

EXAMPLE 2-8 Mathematics with Complex Numbers.
C allows us to add, subtract, multiply, and divide two complex numbers using
the same operators (+, -, *, f) that we use lor real numbers. Program 2- 10
demonstrates the arithmetic use of operators with complex numbers.

PROGRAM 2-10 Complex Number Arithmetic
/* Demonstrate complex number arithmetic.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <math.h>
#include <complex.h>

5
6
7
8

int main (void)9
10 {

// Local Declarations
double complex x = 3 + 4 * I;
double complex y = 3
double complex sum;
double complex dif;
double complex mul;
double complex div;

1 1
12

4 * 1;1 3
1 4
1 5
1 6
17

continitec

76 Section 2.8 Programming Examples

PROGRAM 2-10 Complex Number Arithmetic (continued)

18
// statements

sum = x + y;
dif = x - y;
mul = x * y;
div = x / y;

19
20
21
22
23
24

cimag(sum),
carg(sum));
cimag(dif),
carg(dif));
cimag(mul),
carg(mul));
cimag(div),
carg(div));

printf("%f %f %f %f\n", creal(sum),
cabs(sum),

printf(”%f %f %f %f\n", creal(dif),
cabs(dif),

printf("%f %f %f %f\n", creal(mul),
cabs(mul),

printf("%f %f %f %f\n”/ creal(div),
cabs(div),

25
26
27
28
29
30
31
32
33 return 0;

> // main34

Results:
6.000000 0.000000 6.000000 0.000000
0.000000 8.000000 8.000000 1.570796
25.000000 0.000000 25.000000 0.000000
-0.280000 0.960000 1.000000 1.854590

J

Chapter 2 Introduction to the C Language 77

2.9 Software Engineering
Although this chapter introduces only a few programming concepts, there is

still much to he said from a software engineering point ol view. We will dis-
cuss the concepts of program documentation, data naming, and data hiding.

Program Documentation
There are two levels of program documentation. The first is the general docu-
mentation at the start of the program. The second level is found within each

function.
General Documentation
Program 2- 1 1 shows what we recommend lor program documentation. Each

program should start with a general description of the program. Following the
general description is the name of the author and the date the program was

written. Following the date is the program's change history, which documents
the reason and authority for all changes. For a production program whose use

spans several years, the change history can become extensive.

PROGRAM 2-11 Sample of General Program Documentation

/* A sample of program documentation. Each program

starts with a general description of the program.

Often, this description can be taken from the

requirements specification given to the programmer.

Written by: original author

Date first released to production

1
2
3
4
5
6 Date:

Change History:
<date> Included in this documentation is a short

description of each change.

7
8
9

*/10

Module Documentation
Whenever necessary, we include a brief comment lor blocks of code. A block
of code is much like a paragraph in a report. It contains one thought—that is,

one sel of statements that accomplish a specific task. Blocks ol code in our

program are separated by blank program lines, just as we skip blank lines

between paragraphs in reports.
If the block of code is difficult, or if the logic is especially significant,

then we give the reader a short—one- or two-line—description ol the blocks

purpose and/or operation. We will provide many examples of this type ol doc-
umentation throughout the text.

Sometimes a textbook suggests that each variable in a program be docu-

mented. We disagree with this approach. First, the proper location tor vari-

able documentation is in a data dictionary. A data dictionary is a system

78 Section 2.9 Software Engineerii

document tool.W —,-"ante, «1—
's.iT,“r»“»*«"»•-p ""8 ,hc nsme eiimin“'ei ,ht

need for the comment.

Data Names
Another principle of good structured programming
data names. This mean, that the variable name itself should »«11* reader,
good idea about what data it e.ntain.and maybe even an idea about how the

data are used. , ,
Althouoh there are obvious advantages to keeping names short, the advan-

tage is quickly lost if the names become so cryptic that they are unintelligible.
We have seen programmers struggle for hours to find a bug, only to discover

that the problem was the wrong variable was used. The time saved keying

short, cryptic names is often lost ten- or a hundredfold in debugging time.
We have formulated several guidelines to help you construct good , intelli-

gent data names.
1. The name should match the terminology of the user as closely as possible.

Let’s suppose that you are writing a program to calculate the area of
a rectangle. Mathematicians often label the sides of a rectangle a and b}

but their real names are length and width. Therefore, your program
should call the sides of the rectangle length and width. These names
are commonly used by anyone describing a rectangle.

2. When necessary for readability, and to separate similar variables from
each other, combine terms to form a variable name.

Suppose that you are working on a project to compute a payroll.
I here are many different types of taxes. Each of the different taxes
should he clearly distinguished from the others by good data
Table 2-13 shows both good and bad names for this programming situa-
tion. Most of the poor names are either too abbreviated to be meaningful
(such as ftr) or are generic names (such as rate) that could apply to
many different pieces of data.

is the use of intelligent

names.

Good Names Poor Names
ficaTaxRate ficajax rate rate ftr frate fica
ficaWitholding
ficaWthldng

fica_witholding
fica_wthldng
ficaDIrMax

fwh ficaw wh
fcwthldng wthldng

ficaMax ax fmax
TABLE 2-13 Examples of Good and Poor Data Names

Chapter 2 Introduction to the C Language 79

Note the two different concepts for separating the words in a vari-
ables name demonstrated in Table 2-13. In the first example, we capital-
ized the first letter of each word. In the second example, we separated the
words with an underscore. Both are good techniques for making a com-

pound name readable. If you use capitalization, keep in mind that C is

case sensitive, so you must he careful to use the same cases for the name

each time you use it.
3. Do not create variable names that are different by only one or two letters,

especially if the differences are at the end of the word. Names that are

too similar create confusion. On the other hand , a naming pattern makes
it easier to recall the names. This is especially true when user terminol-
ogy is being used. Thus, we see that the good names in Table 2-13 all
start with fica.

4. Abbreviations, when used, should clearly indicate the word being
abbreviated.

Table 2-13 also contains several examples of good abbreviations.
Whenever possible, use abbreviations created by the users. They will

often have a glossary of abbreviations and acronyms that they use.
Short words are usually not abbreviated. II they are short in the first

place, they don’t need to be made shorter.
5. Avoid the use of generic names.

Generic names are programming or user jargon. For example, count

and sum are both generic names. They tell you their purpose but don’t

give you any clue as to the type ol data they are associated with. Better
names would be emplyCnt and ficaSum. Programmers are especially
fond of using generic names, but they tend to make the program confus-
ing. Several of the poor names in Table 2-13 arc generic.

6. Use memory constants or defined constants rather than literals lor values
that are hard to read or that might change from system to system.

Some constants are nearly impossible to read. We pointed out the
space earlier. If you need a space often, create a defined constant lor it.
Table 2-14 contains several examples of constants that are better when
coded as defined constants.

#define BANG ' !#define SPACE
#define QUOTE 'V#define DBL QTE m i

#define COLON#define COMMA

TABLE 2-14 Examples of Defined Constants

Data Hiding
In “Structure of a C Program” in Section 2.2, we discussed the concept of

global and local variables. We pointed out that anything placed before main

80 Section 2.9 Software Engineering

connection with this concept are data hiding and data encapsulate.
Both of these principles have as their objective protect,ng data from acct-
dental destruction by parts of your program that don requtre access to the

data. In other words, if a part of your program doesn t require data to do ,ts
job it shouldn't be able to see or modify the data Unt.l you learn to use

functions in Chapter 4, however, you will not be able to prov.de th.s data-
hiding capability.

Nevertheless, you should start your programming with good practices.
And since our ultimate objective is good structured programming, we now

formulate our first programming standard:

Programming Standard

No variables are to be placed in the global area of a program.
Any variables placed in the global area of your program—that is, before

an be used and changed by every part of your program. This is unde-main

sirable and is in direct conflict with the structured programming principles of
data hiding and data encapsulation.

Chapter 2 Introduction to the C Language 81

2.10 Tips and Common Programming Errors
1. Well-structured programs use global (defined) constants but do not use

global variables.
2. The function header for main should be complete. We recommend the

following format:

int main (void)

a. If you forget the parentheses after main , you will get a compile error.
b. If you put a semicolon after the parentheses, you will get a compile error.
c. If you misspell main you will not get a compile error, but you will get

an error when you try to link the program. All programs must have a
function named main.

3. If you forget to close the format string in the scanj or printj statement,
you will get a compile error.

4. Using an incorrect conversion code for the data type being read or writ -
ten is a run-time error. You can’t read an integer with afloat conversion
code.Your program will compile with this error, but it won't run correctly.

3. Not separating read and write parameters with commas is a compile error.
6. Forgetting the comma after the format string in a read or write statement

is a compile error.

7. Not terminating a block comment with a close token (* /) is a compile error.
8. Not including required libraries, such as stilio.h , at the beginning of your

program is an error. Your program may compile, but the linker cannot
find the required functions in the system library.

9. If you misspell the name of a function, you will get an error when you
link the program. For example, if you misspell scanj or printj , your pro-
gram will compile without errors, but you will get a linker error. Using
the wrong case is a form of spelling error. For example, each of the fol-
lowing function names are different:

printf, Printf, PRINTFscanf, Scanf, SCANF

10. Forgetting the address operator (&) on a scanf parameter is a logic (run-
time) error.

I 1. Do not use commas or other characters in the format string lor a scanf
statement. This will most likely lead to a run-time error when the user
does not enter matching commas or characters. For example, the comma
in the following statement will create a run-time problem if the user
doesn ’t enter it exactly as coded .

scanf ("%d, %d", &a, &b);

82 Section 2.12 Summary

read a whitespace character, put a space
in a scan/ statement.

13. Using an address operator
usually a run-time error.

the end of a format string in scunf .
trailing whitespace at

14. Do not put a
This is a fatal run-time error.

2.11 Key Terms
precision modifier
program
documentation
real type
reserved word
sign flag
size modifier
standard input
standard output
statement
standard types
statement section
stream
string
string constant
syntax
text stream
token
type
type qualifier
variable
width modifier

floating-point typeaddress list
format control string

address operator
ASCII
binary stream
block comment
Boolean

function
global declaration
section
header file
identifier
imaginary type
include
initializer
integral type
intelligent data name
justification
keyword
Latin character set
line comment
literal
logical data
memory constant
padding
parameter
parameter list

call
character constant
character set
comment
complex type
constant
conversion code
conversion
specification
data encapsulation
data hiding
declaration
definition
derived types
end of file (EOF)
escape character
flag modifier

2.12 Summary
J In 1972. Dennis Ritchie designed C at Bell Laboratories.

° l" '?!?’. the Ameritan National Standards Institute (ANSI) approved
ANSI C; in 1990, the ISO standard
fhe basic
Every C function i
statements.

was approved ,

component of a C program is the function.
is made of declarations, definitions, and one or more

J One and only one of the functions in a C program must be called main.

Chapter 2 Introduction to the C Language 83

To make a program more readable, use comments. A comment is a

sequence of characters ignored by the compiler. C uses two types of com-
ments: block and line. A block comment starts with the token / * and ends
with the token * /. A line comment starts with the / / token; the rest ol the
line is ignored.
Identifiers are used in a language to name objects.
C types include void , integral, floating point, and derived.
A void type is used when C needs to define a lack of data.
An integral type in C is f urther divided into Boolean, character, and integer.

A Boolean data type takes only two values: true and false. It is desig-
nated by the keyword bool .

A character data type uses values from the standard alphabet ol the lan-
guage, such as ASCII or Unicode. There are two character type sizes,
char and wjchar.
An integer data type is a number without a fraction. C uses lour dilfer-
ent integer sizes: short int, int , long int , and long long int .

The floating-point type is further divided into real, imaginary, and complex.
A real number is a number with a fraction. It has three sizes: float ,

double, and long double.
The imaginary type represents the imaginary part of a complex number.
It has three sizes, float imaginary, double imaginary , and long double

imaginary .
The complex type contains a real and an imaginary part. C uses three
complex sizes: float complex, double complex , and long double complex.

A constant is data whose value cannot be changed.

Constants can be coded in three different ways: as literals, as define com-
mands, and as memory constants.
Variables are named areas of memory used to hold data.

IJ Variables must be declared and defined before being used in C.

To input data through the keyboard and to output data through the moni-
tor, use the standard formatted input/output functions.

scanf is a standard input function for inputting formatted data through the
keyboard.

IJ printf is a standard output function for outputting formatted data to the

monitor.
As necessary, programs should contain comments that provide the reader

with in-line documentation lor blocks ol code.
Programs that use “intelligent" names are easier to read and understand.

2.13 Practice Sets

Review Questions
stdio.h , is to store a programs

of a header file, such as
1. The purpose

source code.
a. True
b. False

2. Any valid printable ASCII character

a. True
b. False

3. The C standard function that receives data from the keyboard is printf .

he used in an identifier.can

a. True
b. False

4. Which of the following statements about the structure of a C program

is false?
a. A C program starts with a global declaration section.
b. Declaration sections contain instructions to the computer.
c. Every program must have at least one function .

d. One and only one function may be named main.
e. Within each function there is a local declaration section.

5. Which of the following statements about block comments is false?

a. Comments are internal documentation for programmers.
b. Comments are used by the preprocessor to help format the program.
c. Comments begin with a /* token.
d. Comments cannot he nested.
e. Comments end with a * / token.

6. Which of the following identifiers is not valid?
a. _option
b. amount
c.sales_amount
d. salesAmount
e. $salesAmount

/ . W Inch ol the following is not a data type?
a. char
b. float
c. int
d. logical
e. void

Chapter 2 Introduction to the C Language 85

8. The code that establishes the original value for a variable is known as a(n):

a. assignment
b. constant
c. initializer
d. originator
e. value

9. Which of the following statements about a constant is true?

a. Character constants are coded using double quotes (")•

b. It is impossible to tell the computer that a constant should he a float
or a long double.

c. Like variables, constants have a type and may he named.
d. Only integer values can be used in a constant.
e. The value of a constant may be changed during a program s execution.

conversion specification is used to read or write10. The
a short integer.

a. %c
b. %d
c. % f
d. % hd
e. %lf

in the1 1. To print data left justified , you would use a
conversion specification.

a. flag
b. precision
c. size
d. width
e. width and precision

function reads data from the kevboard.12. The
a. displayf
b. printf
c. read
d. scanj
e. write

13. One of the most common errors for new programmers is forgetting to use
the address operator for variables in a scanf statement. What is the
address operator?

a. The address modifier (@) in the conversion specification
b. The ampersand (&)
c. The caret (*)
d. The percent (%)
e. The pound sign (#)

86 Section 2.13 Practice Sets

Exercises
14. Which of the following is not a

a.'C *

b.'bb '

in C?character constant

c. "C"
d. ' ?
e. in C?

15. Which of the following is not an integer constant

a. -320
b. +45
c. -31.80
d.1456
e. 2,456

16. Which of the following is not a floating-point constant

a.45.6
b. -14.05
c. ' a '

d. pi
e. 40

17. What is the type of each of the following constants?

a. 15
b. -14.24
c. ' b '
d."l"

in C?

e. "16”

18. Which of the following is not a valid identifier in C?
a. A3
I). 4A
c. if
d.IF
e. tax-rate

19. What is the type of each of the following constants?
a. "7"
b. 3
C. "3.14159"
d.'2'
e. 5.1

20. What is the type of each of the following constants?
a. "Hello"
I). 15L
C. 8.5L
d. 8 . 5f
e.'\a'

Chapter 2 Introduction to the C Language 87

21. Which of the following identifiers are valid and which are invalid?
Explain your answer.
a. num

b.num2
c. 2dNum
d. 2d_num
e.num#2

22. Which of the following identifiers are valid and which are invalid?
Explain your answer.
a. num-2
b. num 2

c. num 2

d. num2

e. num 2

23. What is output from the following program fragment? To show your out-
put. draw a grid of at least 8 lines with at least I 3 characters per line.

// Local Declarations
int
char w = 'Y';
float z = 5.1234;

x = 10;

// Statements
printf("\nFirst\nExample\n:");
printf("%5d\n, w is %c\n", x, w);
printf("\nz is %8.2f\n", z);

24. Find any errors in the following program.

// This program does nothing
int main
{
return 0;

>

23. Find any errors in the following program.

#include (stdio.h)
int main (void)
{

print ("Hello World");
return 0;

{

Section 2.13 Practice Sets

26. Find any errors in the following program.

include <stdio>

int main (void)
{

to learn correct');
printf('We
printf('C language here');

are

return 0;
} // main

27. Find any errors in the following program.

/* This is a program with some errors

in it to be corrected.
*/
int main (void)
{
// Local Declarations

integer
floating-point b;
character

a;

c;

// Statements
printf("The end of the program.");
return 0;

} // main

28. Find any errors in the following program.

/* This is another program with some
errors in it to be corrected.

*/
int main (void)
{
// Local Declarations

a int;
b float, double;
c, d char;

// Statements
printf("The end of the
return 0;

> // main

program.");

29. Find any errors in the following program.

/* This is the last 7
corrected in these

program to be
-1 exercises.*/

continued

Chapter 2 Introduction to the C Language 89

int main (void)

<
// Local Declarations

a int;
b : c : d char;
d ,

// Statements
printf("The end of the program.");
return 0;
> // main

f double float;e,

Problems
30. Code the variable declarations for each of the following:

a. a character variable named option

b. an integer variable, sum, initialized to 0

c. a floating-point variable, product, initialized to I

3 1. Code the variable declarations for each ol the following:

a. a short integer variable named code

b. a constant named salesTax initialized to .0825
c. a floating-point named sum of size double initialized to 0

32. Write a statement to print the following line. Assume the total value is
contained in a variable named cost.

The sales total is: $ 172.53
A A

33. Write a program that uses four print statements to print the pattern of
asterisks shown below.

* * * * * *
* * ****
** * * * *
* * ** * *

34. Write a program that uses four print statements to print the pattern of
asterisks shown below.

*
**
* * *
** * *

for the vowels in the alpha-defined constants
decimal digits (0, 2, 4, 6, 8). It
inp literal constants for the odd

that uses
35. Write a program

bet and memory constants
the following three lines using

for the even

then prints
digits.

i o uea
6 80 2 4

riables and initializes them to
that defines five integer va

and 10000. It then prints them
using the decimal conversion code (%d)

ion code (% f). Note the differences

single line sepa-36. Write a program on a
1 , 10, 100, 1000, , and on
rated by space characters
the next line with the float conversion

between the results. How do you explain them?

the user to enter a quantity and a cost. The
named quantity and a float named

statement to read the
37. Write a program that prompts

values are to be read into an integer

unitPrice. Define the variables, and use only one

values. .After reading the values, skip one line and print each value, with

an appropriate name, on a separate line.

that prompts the user to enter an integer and then
character, then as a decimal, and finally as a

run is shown below.
38. Write a program

prints the integer first
float. Use separate print statements. A sample

as a

The number as a character: K
The number as a decimal
The number as a float

: 75
: 0 . 0 0 0 0 0 0

Projects
39. Write a C program using printf statements to print the three f irst letters

of your first name in big blocks. This program does not read anything
from the keyboard. Each letter is formed using seven rows
umns using the letter itself. For example, the letter B is formed using 17
Bs, as shown below as part of the initials BEF.

and five col-

BBB EEEEE FFFFF
B B E
B B E
BBB EEE
B B E
B B E
BBB EEEEE F

F
F
FFF
F
F

l his is just an example. Your program must print the first three let-
ters ol your first name. Design your print/ statements carefully to create

Chapter 2 Introduction to the C Language 91

enough blank lines at the beginning and end to make your initials read-
able. Use comments in your program to enhance readability as shown in

this chapter.
40. Write a program that reads a character, an integer, and a floating-point

number. It then prints the character, first using a character format speci-
fication (%c) and then using an integer specification (%d). After printing
the character, it prints the integer and floating-point numbers on separate

lines. Be sure to provide complete instructions (prompts) lor the user.

41. Write a program that prompts the user to enter three numbers and then
prints them vertically (each on one line), first forward and then reversed
(the last one first), as shown in the following design.

Please enter three numbers: 15 35 72

Your numbers forward:
15
35
72

Your numbers reversed:
72
35
15

42. Write a program that reads 10 integers and prints the first and the last on

one line, the second and the ninth on the next line, the third and the sev-
enth on the next line, and so forth. Sample input and the results are

shown below.

Please enter 10 numbers:

10 31 2 73 24 65 6 87 18 9

Your numbers are:
10 9
31 18
2 87
73 6
24 65

43. Write a program that reads nine integers and prints them three in a line
separated by commas as shown below.

Input:
10 31 2 73 24 65 6 87 18

Output
10, 31,
73, 24, 65
6, 87, 18

2

Structure of a C Program

Two features set the C language apart from many other languages: expres-

sions and pointers. Both of these concepts lie at the very heart oi the lan-

guage, giving C its unique look and feel.
This chapter explores the first of these concepts: expressions. Expres-

sions are not new to you; you have used them in mathematics. However, C’s

use of expressions is unique to the C language.
Closely tied to the concept of expressions are operators, precedence and

associativity, and statements, all of which are discussed in this chapter. This
chapter also introduces a concept known as side effects and explains in detail
how it affects statements in C.

Objectives
To be able to list and describe the six expression categories

To understand the rules of precedence and associativity in evaluating
expressions
To understand the result of side effects in expression evaluation

To be able to predict the results when an expression is evaluated

To understand implicit and explicit type conversion

To understand and use the first four statement types: null, expression,
return, and compound

93

Section 3.1 Expressions

3.1 Expressions that reduces to a sin-
An expression is a sequenee ofoperands

^
and

^^
p

^ operator is a syntactical
gle value. Expressions can e operand is an object on which an

°PeA:̂ Lee;::ssion contains o'nly one operator. For example 2 + S is a

simple eTpLsI whose value is 7; similarly, -a , a s.mplc express,on. A

complex expression contains more that one operator. An example of a com-

plex expression is 2 + 5 * 7. To evaluate a complex express,on , we reduce . to

a series of simple expressions. In the previous example we first evaluate the

* 7 (35) and then the expression 2 + 3% gmng a result
simple expression 5
of 37.

Every language has operators whose actions are clearly specified in the

language syntax. The order in which the operators in a complex expression

are evaluated is determined by a set of priorities known as precedence; the

higher the precedence, the earlier the expression containing the operator is

evaluated. The table inside the front cover contains the precedence of each

operator. Looking at that table, we see that in the expression 2 + 5 *

plication has a higher priority than addition so the multiply expression
uated first. We discuss precedence in more detail in the next section.

precedence occur in a complex expression,
another attribute of an operator, its associativity, takes control. Associativity
is the parsing direction used to evaluate an expression. It can be either lelt-to-
right or right-to-left. When two operators with the same precedence occur in
an expression and their associativity is left-to-right, the left operator is evalu-
ated first. For example, in the expression 3 * 4 / 6, there are two operators,
multiplication and division, with the same precedence and left-to-right asso-
ciativity. Therefore, the multiplication is evaluated before the division. We
also discuss associativity in more detail in the next section.

7, multi-
is eval-

If two operators with the same

An expression always reduces to a single value.

We can divide simple expressions into six categories based on the number
ol operands, relative positions of the operand and operator, and the prece-
dence of operator. Figure 3- 1 shows the categories.

Expression
Categories

Primary Postfix Prefix Unary Binary Ternary

FIGURE 3-1 Expression Categories

Chapter 3 Structure of a C Program 95

Primary Expressions
The most elementary type of expression is a primary expression. A primary

expression consists of only one operand with no operator. In C, the operand
in the primary expression can he a name, a constant, or a parenthesized
expression. Although a primary expression has no operator, the null operator
in this expression has the precedence of 16 according to the table ol prece-
dence. In other words, a primary expression is evaluated first in a complex
expression.

Names
A name is any identifier for a variable, a function, or any other object in the

language. The following are examples of some names used as primary

expressions:

price calc SIZEINT MAXb!2

Literal Constants
The second type of primary expression is the literal constant. As discussed in

Chapter 2, a constant is a piece of data whose value can ’t change during the

execution of the program. The following are examples of literal constants

used as primary expressions:

"Welcome"5 123.98 A'

Parenthetical Expressions
The third type of primary expression is the parenthetical expression. Any
value enclosed in parentheses must be reducible to a single value and is

therefore a primary expression. I bis includes any of the complex expressions

when they are enclosed in parentheses. Thus, a complex expression can be
enclosed in parentheses to make it a primary expression. The following are

primary expressions:

b * 6)(a = 23(2 * 3 + 4)

Postfix Expressions
The postfix expression consists of one operand followed by one operator. Its

category is shown in Figure 3-2. There are several operators that create a

postfix expression as you can see in the precedence table. We discuss only

three of them here: function call , postfix increment, and postfix decrement.

96 Section 3.1 Expressions

OperatorOperand

FIGURE 3-2 Postfix Expressions

Function Coll
. In the hello world program, we

We have already
the printf function. Function calls are

postfix expressions. The function name is the operand and the operator is the
parentheses that follow the name. The parentheses may conta.n arguments

or be empty. When present, the arguments are part of the operator.

wrote a message on

Postfix Increment/Decrement
The postfix increment and postfix decrement are also postfix operators,

ally all programs require somewhere in their code that the \ « ilue 1 be added
to a variable. In early languages, this additive operation could only be repre-
sented as a binary expression. C provides the same functionality in two
expressions: postfix and prefix.

In the postfix increment, the variable is increased by 1 . Thus, a++ results
in the variable a being increased by 1. The effect is the same as a = a + 1.

Virtu-

(a++) has the same effect as (a = a + 1)

Although both the postfix increment (a++) and binary expression (a = a +
1) add 1 to the variable, there is a major difference. The value of the postfix
increment expression is determined before the variable is increased. For
instance, if the variable a contains 4 before the expression is evaluated, the
value of the expression a++ is 4. As a result of evaluating the expression and
its side effect, a contains 5. The value and side effect of the postfix increment

graphically shown in Figure 3-3.are

x = a

Q value of expression is a

x — a++

0 value of a is incremented by 1
a = a + l

FIGURE 3-3 Result of Postfix a + +

Chapter 3 Structure of aiCProgram 97

the postfix decrement (a —) also has a value and a side effect . As with
the increment, the value of the expression is the value of a before the decre-
ment; the side effect is the variable is decremented by I .

The operand in a postfix expression must be a variable.

Program 3-1 demonstrates the effect of the postfix increment expression.

PROGRAM 3- 1 Demonstrate Postfix Increment
/* Example of postfix increment.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
int main (void)

5
6
7 {

// Local Declarations
int a;

8
9

10
// Statements

a = 4;
printf("value of a
printf("value of a++
printf("new value of a:
return 0;
/ / main

1 1
1 2

: %2d\n", a);
: %2d\n",

%2d\n\n", a);

13
14 a++);
15
16
17 >

Results:
value of a
value of a++
new value of a: 5

4
4

Prefix Expressions
In prefix expressions, the operator comes before the operand as seen in
Figure 3-4.

(^OperatorJ^) Operand

Variable

FIGURE 3-4 Prefix Expression

98 Section 3.1 Expressions

subtracting 1 from a variable.

a variable.

decrement operators,
shorthand notations for adding or

The operand of a prefix expression must be

There is one major difference between the postfix and prefix operators,

however: with the prefix operators, the effect takes place k/ore the expres-
sion that contains the operator is evaluated. Note that this is he reverse of

the postfix operation. Figure 3-5 shows the operation graphically.

a + 1a =

Q value of a is increment by 1

X = ++a

Q value of expression is a after increment

FIGURE 3-5 Result of Prefix ++a

The effect of both the postfix and prefix increment is the same: The vari-
able is incremented by 1 . If we don 't need the value of the expression—that
is, if all we need is the effect of incrementing the value of a variable by I —then it makes no difference which one we use. You will find that programmers

the postfix increment and decrement more often, if for no other reason
than that the variable is shown first and is therefore easier to read.
use

(++a) has the same effect as (a = a + 1)

On the other hand, if we require both the value and the effect, thenapplication determines which one we need to use. When
expression to he the current value of the variable, we use the postfix oper-

"tor; when we nef the val“e to be the new value of the variable (after it hasbeen incremented or decremented), we use the prefix operator. Program 3-2d monstra es the prefix increment expression. Studv it carefully, andpare it to the results from Program 3-1 .

our
need the value ofwe

com-

PROGRAM 3-2 Demonstrate Prefix Increment
1 /* Example of

Written by:
prefix increment.2

continuei

Chapter 3 Structure of a C Program 99

PROGRAM 3-2 Demonstrate Prefix Increment (continued)

3 Date:

* /4
#include <stdio.h>
int main (void)

5
6
7 {

// Local Declarations
int a;

8
9

10
// Statements

a = 4;
printf("value of a
printf("value of ++a
printf("new value of a:
return 0;
// main

1 1
1 2

: %2d\n", a);
: %2d\n", ++a);

%2d\n", a);

13
14
15
16
17 >

Results:
value of a
value of ++a
new value of a: 5

4
5

Program 3-2 Analysis The only difference in the printouts between Program 3-1 and Program 3-2 is the use
of the increment operators. The first program uses the postfix increment; the second
uses the unary prefix increment. In both cases, we start with the same value for a and
it has the same value at the end. But the value of the expression itself is different. To
help remember the difference, use this rule: If the ++ is before the operand, the incre-
ment takes place before the expression is evaluated; if it is after the operand, the
increment takes place after the expression is evaluated.

If ++ is after the operand, as in a++, the increment takes place after the
expression is evaluated. If ++ is before the operand , as in ++a, the increment
takes place before the expression is evaluated.

Unary Expressions
A unary expression, like a prefix expression, consist ol one operator and one
operand. Also like the prefix expression, the operator comes before the oper-
and. Although prefix expressions and unary expressions look the same, they
belong to different expression categories because the prefix expression needs
a variable as the operand while the unary expression can have an expression
or a variable as the operand. Many of the unary expressions are also familiar
to you from mathematics and will require little explanation. In this chapter
we discuss the sizeof operator, the plus/minus operators, and the cast opera-
tor. The others will be discussed in later chapters. The format of the unary
expressions is demonstrated in Figure 3-6.

100 Section 3.1 Expressions

OperandOperator

FIGURE 3-6 Unary Expressions

The sixeof operator tells us the sfte, 1« byte,, of.typ« o,a prtmary expres-

s'“Specifying the «»«f *"°ki“d“rin*“'“‘"I' <T
”mIt po«.W..«..he- hardware.A simple example wrll rllus.rare .he

pdnt On some personal comparers,rhe sire of the m.eg.r type 2 by,.,On

'1.mainframe compoters, i, is 4 bytes. On the very large supercomputers,

16 bytes. If it is important to know the exact size (in

the sizeof operator with the integer type as
some
it can be as large as

bytes) of an integer, we can use

shown below.

sizeof (int)

It is also possible to find the size of a primary expression

examples.
. I lere are two

sizeof xsizeof -345.23

Unary Plus/Minus
The unary plus and unary minus operators are what we think ol as simply the

plus and minus signs. In C, however, they are actually operators. Because

they are operators, they can he used to compute the arithmetic value of

operand.
The plus operator does not change the value of the expression. II the

expression’s value is negative, it remains negative; if the expression’s value is
positive, it remains positive.

The minus operator changes the sign of a value algebraically—that is, to

change it from plus to minus or minus to plus. Note, however, that the value
ol the stored variable is unchanged. The operation of these operators is seen
in Table 3-1.

an

Expression Contents of a Before
ond After Expression

Expression
Value

+a 3 +3

-a 3 -3
continued

TABLE 3-1 Examples of Unary Plus And Minus Expressions

Chapter 3 Structure of a C Program J01

Contents of a Before
and After Expression

Expression Expression
Value

-5-5+a

+5-5-a

TABLE 3-1 Examples of Unary Plus And Minus Expressions (continued)

Cast Operator
The third unary operator we discuss in this chapter is cast. The cast operator

converts one expression type to another. For example, to convert an integer to

a real number, we would use the following unary expression.

(f l oa t) x

It is important to note that, as with all of the unary operators, only the

expression value is changed. T he integer variable, x, is unchanged. We dis-

cuss the cast operator in detail in “Explicit Type Conversion (Cast)” in

Section 3.5.

Binary Expressions
Binary expressions are formed by an operand-operator-operand combina-
tion. T hey are perhaps the most common expression category. Any two num-
bers added, subtracted, multiplied, or divided are usually formed in algebraic
notation, which is a binary expression. There are many binary expressions.
We cover the first two in this chapter. Figure 3-7 shows the format of a binary

expression.

I (^OperatoT^) IOperand Operand

FIGURE 3-7 Binary Expressions

Multiplicative Expressions
The first binary expression we study, multiplicative expressions, which take

its name from the first operator, include the multiply, divide, and modulus

operators. These operators have the highest priority (13) among the binary

operators and are therefore evaluated first among them.
The result of a multiply operator (*) is the product of the two operands.

The operands can he any arithmetic type (integral or floating-point). The type

of the residt depends on the conversion rule that we discuss later in the chapter.

// evaluates to 30
// evaluates to 410 * 3
// evaluates to 130true * 4

// evaluates to 44.6A ' * 2
* 222.3

o,, II
w'<««•*•'7';",I* j P‘" "r

'• H some examples of the division operator.
one or
quotient
the quotient. The following shows

/ / evaluates to 3
/ / evaluates to 0
/ / evaluates to 32
/ / evaluates to 11.15

1 0 / 3
true / 4
• A ' / 2
22.3 / 2

well known, hut you may not be familiar with the
commonly known as modulo. I his operator

Multiply and divide
modulus operator (%), more
divides the first operand by the second and returns the remainder rather than
the quotient. Both operands must be integral types and the operator
the remainder as an integer type. The following examples demonstrate the

are

returns

modulo operator.

/ / evaluates to 1
/ / evaluates to 1
/ / evaluates to 5
/ / Error: Modulo cannot be floating-point

10 % 3
true % 4
• A ' % 10
22.3 % 2

Because the division and modulus operators are related, they are olten
confused. Remember: The value of an expression with the division operator is
the quotient; the value of a modulus operator is the remainder. Study the
effect of these two operators in the following expressions:

3 / 5
3 % 5

/ / evaluates to 0
/ / evaluates to 3

Another important point to remember is, if the first integral operand is
smaller than the second integral operand, and the result of division is 0, the
result of the modulo operator is the first operand as shown below:

3 / 7
3 % 7 / / evaluates to 0

/ / evaluates to 3

Both operandsofthemoMo operator (7.) must be integral types.

Chapter 3 Structure of a C Program 103

Additive Expressions
In additive expressions, the second operand is added to or subtracted from

the first operand, depending on the operator used. I lie operands in an addi-

tive expression can be any arithmetic types (integral or floating-point). Addi-

tive operators have lower precedence (12) than multiplicative operators (13);

therefore, they are evaluated after multiplicative expressions. Two simple
examples are shown below:

// evaluates to 10
// evaluates to -43 + 7

3 - 7

EXAMPLE 3- 1 Binary Expressions
Now lets look at a short program that uses some of these expressions. Pro-

gram 3-3 contains several binary expressions.

PROGRAM 3-3 Binary Expressions
/* This program demonstrates binary expressions.

Written by:

Date:

1
2
3

*/4
#include <stdio.h>
int main (void)

5
6
7 {

// Local Declarations

int
int

8
a = 17;
b = 5;

float x = 17.67;
float y = 5.1;

9
10
11
12
13

// Statements

printf("Integral calculations\n");

printf("%d + %d %d\n", a, b, a + b);

printf("%d - %d = %d\n", a, b, a - b);

printf("%d * %d = %d\n", a, b, a * b);

printf("%d / %d %d\n" / a, b, a / b);

printf("%d %% %d = %d\n", a, b, a % b);

printf("\n");

14
15
16
17
18
19
2 0
2 1
2 2

printf("Floating-point calculations^");

printf("%f + %f = %f\n", x, y, x + yj;

printf("%f - %f = %f\n", x,

printf("%f * %f = %f\n", x,

printf("%f / %f = %f\n", x, y, x / y);

23
24

x - y) ;
x * y) ;

25 Y f

26 Y ,

27
cont inued

104 Section 3.1 Expressions

Binary Expressions (continuedJPROGRAM 3-3
return 0;
// main

28

>29

Results:
integral calculations
17 + 5 = 22

5 = 12
17 * 5 = 85

17 / 5 = 3
17 % 5 = 2

17

Floating-point calculations
17.670000 + 5.100000
17.670000 - 5.100000
17.670000 * 5.100000
17.670000 / 5.100000

= 22.770000
= 12.570000
= 90.116997
= 3.464706

Proqram 3-3 Analysis This simple program requires only three explanatory comments. (1) Note that
for a simple program we include all of the standard documentation comments. [2]

We do not recommend that you include calculations in print statements as we have
done in this program-it is not a good structured programming technique. We
include them in this program because we haven't yet shown you how to save the
results of a calculation. (3) Study the format string in statement 20. To print a percent
sign as text in the format string, we need to code two percent signs.

Assignment Expressions
The assignment expression evaluates the operand on the right side of the
operator (=) and places its value in the variable on the left . The assignment
expression has a value and a side effect.
• The value of the total expression is the value of the expression on the

right of the assignment operator (=).
• I he side effect places the expression value in the variable on the left of

the assignment operator.

even

The left operand in an assignment expression must be a single variable.
There are two forms of assignment-, simple and compound.

Simple Assignment
Simple assignment is found i
pie assignments are shown below!

in algebraic expressions. Three examples of sim-

a = 5 b = x + l i = i + 1

Chapter 3 Structure of a C Program 105

Of course, for the effect to take place, the left variable must be able to

receive it; that is, it must he a variable, not a constant. II the left operand
cannot receive a value and we assign one to it, we get a compile error.

Compound Assignment
A compound assignment is a shorthand notation for a simple assignment. It
requires that the left operand he repeated as a part of the right expression.
Five compound assignment operators are discussed in this chapter: *=, /=, %=,
+=, and

To evaluate a compound assignment expression, first change it to a sim-
ple assignment, as shown in Table 3-2. Then perform the operation to deter-
mine the value of the expression.

Equivalent Simple ExpressionCompound Expression
x = x * expressionx *= expression

x = x / expressionx / - expression

x = x % expressionx %= expression

x = x + expressionx += expression

x = x - expressionx -= expression

TABLE 3-2 Expansion of Compound Expressions

When a compound assignment is used with an expression, the expression
is evaluated first. Thus, the expression

x *= y + 3

is evaluated as

x * (y + 3)x

which, given the values x is 10 and y is 5. evaluates to 80.
Program 3-4 demonstrates the first three compound expressions.

PROGRAM 3-4 Demonstration of Compound Assignments

/* Demonstrate examples of compound assignments.
Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
int main (void)7

8 {

cont inued

106 Section 3.2 Precedence and Associativity

of Compound Assignments (continued)
PROGRAM 3-4 Demonstration

// Local Declarations
int x;
int y;

9
10
11
12

// statements
x = 10?
y = 5;

13
14
15
16

x, y) ;
*= y + 2);

%2d ",printf("x: %2d | y:

printf("|
printf("|x is now: %2d\n",

17
y + 2: %2d ", xx *=18

x);19
2 0

x = 10?
printf("x: %2d | y: %2d ",

printf(" | x /= y + 1: %2d ", x /= y + 1)?

printf("|x is now: %2d\n", x)?

21
x, y)?2 2

23
24
25

x = 10?
printf("x: %2d | y: %2d ",
printf(" | x %%= y - 3: %2d ", x %= y
printf(" | x is now: %2d\n", x)?

26
x, y) ;27

3) ;28
29
30

return 0;
} // main

31
32

Results:
x: 10 | y
x: 10 I y: 5
x: 10 | y

5 x is now: 70
x is now: 1

I x is now: 0

x *= y + 2: 70
| x /= y + 1: 1

5 |x %= y - 3: 0

Program 3-4 Analysis Note that we have used assignment statement in the printf statements to demon-
strate that an assignment expression has a value. As we said before, this is not good
programming style, but we use it here to match the format we used in Program 3-3.Do not hide calculations in print statements. Also, since we are changing the value ofx with each assignment, even though it is in a printf statement, we need to reset it to10 for each of the print series.

an

3.2 Precedence and Associativity
c P o3e x n e C l e s s i o e n d t0 °r d e r i n w h i c h d i f f-e n t o p e r a t o r s i n ao Z t Z r"' “-d U» d e t e r m i n e t h e
plex expression. Another wav of

P,rCCedence are evaluated in a corn-
how operators with the ,

a 'ng l^l s 's associativity determines
" S“’"e Precedence grouped together to form complex

Chapter 3 Structure of a C Program 107

expressions. Precedence is applied before associativity to determine the order
in which expressions are evaluated. Associativity is then applied, if necessary.

Precedence
The concept of precedence is well founded in mathematics. For example, in
algebra, multiplication and division are performed before addition and sub-
traction. C extends the concept to 16 levels, as shown in the Precedence
Iahle inside the front cover.

I he following is a simple example of precedence:

2 + 3 * 4

This expression is actually two binary expressions, with one addition and
one multiplication operator. Addition has a precedence ol 12. Multiplication
has a precedence of 13. This results in the multiplication being done first ,

followed by the addition, as shown below in the same expression with the
default parentheses added. The value of the complete expression is 14.

(2 + (3 * 4)) —> 1 4

As another example consider the following expression:

-b+ +

Two different operators are in this expression. Ihe first is the unary
the second is the postfix increment. The postfix increment has theminus

higher precedence (16), so it is evaluated first . Then the unary minus, with a
precedence of 15, is evaluated. To reflect the precedence, we have recoded
the expression using parentheses.

(- (b++))

Assuming that the value of b is 5 initially, the expression is evaluated to
-5. What is the value of b after the expression is completer It is 6 because the
operator has an effect that is separate from the value of the expression.

Program 3-5 demonstrates precedence by printing the same expres-
sion, once without parentheses and once with parentheses to change the
precedence. Because the parentheses create a primary expression that must
he evaluated before the binary multiply, the answer is diflerent.

PROGRAM 3-5 Precedence
1 /* Examine the effect of precedence on an expression.

Written by:2

continued

108 Section 3.2 Precedence and Associativity

Precedence (continued)

Date:
PROGRAM 3-5

3
*/4
#include <stdio.h>5

6
int main (void)7

8 {
// Local Declarations

int a = 10;
int b = 20;
int c = 30;

9
10
11
12
13

// Statements
printf ("a *

printf ("a * (b + c) is:

return 0;
> // main

14
a * b + c);is: %d\n",

%d\n", a * (b + c)) ;
b + c15

16
17
18

Results:
a * b + c is: 230
a * (b + c) is: 500

Associativity
Associativity can be left-to-right or right-to-left. Left-to-right associativity
evaluates the expression by starting on the left and moving to the right . Con-
versely, right-to-left associativity evaluates the expression by proceeding
Irom the right to the left. Remember, however, that associativity is used only
when the operators all have the same precedence.

Associativity is applied when we have
more than one operator of the

s. same precedence level >

in an expression.

Left-to-right Associativity
The following shows an example of left-to-right associativity. Herefour operators of the same precedence (* / % *).

3 * 8 / 4

we have

% 4 * 5

LL?V

Chapter 3 Structure of a C Program 109

Associativity determines how the subexpressions are grouped together.
All of these operators have the same precedence (13). Their associativity is
from left to right. So they are grouped as follows:

((((3 * 8) / 4) % 4) * 5)

The value of this expression is 10. A graphical representation of this
expression is shown in Figure 3-8.

/ 43 8 * 5% 4

FIGURE 3-8 Left-to-right Associativity

Right-to-left Associativity
Several operators have right-to-left associativity as shown in the precedence
table. For example, when more than one assignment operator occurs in an
assignment expression, the assignment operators must he interpreted from
right to left. This means that the rightmost expression will he evaluated first;
then its value will he assigned to the operand on the left of the assignment
operator and the next expression will he evaluated. Under these rules, the
expression

a += b *= c -= 5

is evaluated as

(a += (b *= (c -= 5)))

which is expanded to

(a = a + (b = b * (c = c - 5)))

If a has an initial value of 3, b has an initial value of 3, and c has an ini-
tial value of 8, these expressions become

(a = 3 + (b = (5 * (c = 8 - 5)))

which results in c being assigned a value of 3, b being assigned a value of 1 3,
and a being assigned a value of 18. The value of the complete expression is
also 18. A diagram of this expression is shown in Figure 3-9.

L

110 Section 3.3 Side Effects

c — 5b *=a +-

FIGURE 3-9 Right-to-left Associativity

A simple but common form of assignment is shown below. Suppose we

have several variables that all need to be initialized to zero. Rather than ini-
tializing each separately, we can use a complex statement to do it .

a = b = c = d = 0;

3.3 Side Effects
A side effect is an action that results from the evaluation of an expression.
For example, in an assignment, C first evaluates the expression on the right (,f
the assignment operator and then places the value in the left variable. Chang-
ing the value of the left variable is a side effect. Consider the following
expression:

x = 4 ;

This simple expression has three parts. First, on the right ol the assign-
ment operator is a primary expression that has the value 4 . Second, the whole
expression (x = 4) also has a value of 4. And third , as a side effect, x receives
the value 4.

Let's modify the expression slightly and see the same three parts.

x = x + 4 ;

initial value of 3, the value of the expression on
the right of the assignment operator has a value of 7. The whole expression
also has a value of 7. And as a side effect, x receives the value ol 7. Fo prove
these three steps to yourself, write and run the following code fragment:

i n t x =
printf ("Step 1—Value of
printf ("Step 2 —Value of
printf ("Step 3—Value of

Now, let’s consider the side effect in the postfix increment expression,
expression is typically coded as shown below.

Assuming that x has an

3;

x: %d\n" ,
x = x + 4: %d\ n" , x = x + 4) ;
x now: %d\n" ,

x) ;

x) ;

This

a++

Chapter 3 Structure of a C Program 111

As we saw earlier, the value of this expression is the value of a before the
expression is evaluated. As a side effect, however, the value of a is incre-
mented by 1 .

In C, six operators generate side effects: prefix increment and decrement,
postfix increment and decrement, assignment, and function call.

3.4 Evaluating Expressions
Now that we have introduced the concepts of precedence, associativity, and
side effects, let s work through some examples.

Expressions without Side Effects
EXAMPLE 3-2 Expression with no Side Effects

The first expression is shown below. It has no side effects, so the values of all
ol its variables are unchanged.

4 + b / 2 ba c

For this example, assume that the values of the variables are

3 4 5
ba c

Io evaluate an expression without side effects, follow the simple rules
shown below.

1 . Replace the variables by their values. I bis gives us the following expression:

3 * 4 + 4 / 2 5 * 4

2. Evaluate the highest precedence operators, and replace them with the
resulting value. In the above expression , the operators with the highest
precedence are the multiply and divide (13). We therefore evaluate them
first from the left and replace them with the resulting values. The expres-
sion is now

(3 * 4) + (4 / 2) (5 * 4) —> 1 2 + 2 - 2 0

3. Repeat step 2 until the result is a single value.
In this example, there is only one more precedence, binary addition and

subtraction. After they are evaluated , the final value is -6. Since this
expression had no side effects, all of the variables have the same values after
the expression has been evaluated that they had at the beginning.

112 Section 3.4 Evaluating Expressions

Expressions with Side Effects

EXAMPLE 3-3 Example with Side Effects
Now let's look at the rules for an expression that has side effects and paren-
thesized expressions. For this example, consider the expression

_ _
a * (3 + b) / 2 - C++ * b

Assume that the variables have the values used above, a is 3, b is 4, c is 5.
To evaluate this expression, use the following rules:

1. Calculate the value of the parenthesized expression (3 + b) first (prece-
dence 16). The expression now reads

—a * 7 / 2 - C++ * b

2. Evaluate the postfix expression (c++) next (precedence 16). Remember
that as a postfix expression, the value of C ++ is the same as the value of c;
the increment takes place after the evaluation. The expression is now

—a * 7 / 2 - 5 * b

3. Evaluate the prefix expression (—a) next (priority 1 3). Remember that as
a prefix expression, the value of —a is the value after the side effect,
which means that we first decrement a and then
value. The expression is now

use its decremented

2 * 7 / 2 - 5 * b

4. 1he multiply and division are now evaluatedlelt to right, as shown below.
using their associativity rule

1 4 / 2 - 5 * b -» 7 -
5' The lasl step is to evaluate the subtraction. The final13 as shown in the final example.

5 * 4 -> 7 - 2 0

expression value is

7 “ 20 -> -13
Alter the side effects, the variables have the values shown below.

2 a
b

6

Program 3-6 evaluates the tw0 expressions in this section.

Chapter 3 Structure of a C Program 113

PROGRAM 3-6 Evaluating Expressions
/* Evaluate two complex expressions.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
int main (void)

5
6
7 {

// Local Declarations
int a = 3;
int b = 4;
int c
int x;
int y;

8
9
10
11 5
12
13
14

// Statements
printf("Initial values of the variables: \n");
printf("a = %d\tb = %d\tc = %d\n\n"/ a, b, c);

15
16
17
18

x = a * 4 + b / 2 - c * b;
printf
("Value of a * 4 + b / 2

19
20

c * b: %d\n", x);2 1
22

y = —a * (3 + b) / 2 - C++ * b;
printf
("Value of --a * (3 + b) / 2 - C++ * b: %d\n", y);

printf("\nValues of the variables are now: \n");
printf("a = %d\tb = %d\tc = %d\n\n", a, b, c);

23
24
25
26
27
28

return 0;
} // main

29
30

Results:
Initial values of the variables:
a = 3 b = 4 c = 5

4 + b / 2 * b: -6Value of
Value of —a * (3 + b) / 2 - C++ * b: -13

a * c

Values of the variables are now:
a = 2 b = 4 c = 6

Warning
A warning is in order: In C, if an expression variable is modified more than

during its evaluation, the result is undefined. C has no specific rule toonce

114 Section 3.5 Type Conversion

give different expression results.

In

/ / C, if a
/ single variable \\

is modified more than \\

in an expression,

the resu l t i s unde f i ned.
once

W A R N I N G

3.5 Type Conversion
Up to this point,we have assumed that all of our expressions involved data of
the same type. But, what happens when we write an expression that involves
two different data types, such as multiplying an integer and a floating-point
number? To perform these evaluations, one of the types must be converted.

Implicit Type Conversion
When the types of the two operands in a binary expression are different, C
automatically converts one type to another. This is known as implicit type
conversion. I or implicit type conversion, C has several complicated rules
that we gradually introduce throughout the book. We mention some of the
simple conversions in this section.
Conversion Rank
Before we discuss how conversions are handled,we need to discuss the con-
cept ol conversion rank. In C, we can assign a rank to the integral andfloating-point arithmetic types. Figure 3-10 shows the ranks as we use themfor conversion in this chapter. While the 1 to 9 scale we use is conceptuallycorrect, the actual implementation is much more complexintevt I " u

Fi§Ure 3'10,3 l0US d°uble real »»s a higher rank than a longinteger and a short integer has a higher rank than a character.
Conversions in Assignment Expressions

Depending on t̂hed^fference^n the rank" t"' ^ tW°,he * —-— »*•-.'-K

Chapter 3 Structure of a C Program 115

occurs if the right expression has lower rank; demotion occurs il the right
expression has a higher rank.

Real
9. long double
8. double
7. floatInteger

6. long long
5. long
4. int
3. shortCharacter

2. charBoolean
1. bool

FIGURE 3-10 Conversion Rank

Promotion
There is normally no problem with promotion. The rank of the right expres-
sion is elevated to the rank of the left variable. The value of the expression is
the value of the right expression after the promotion. The following examples
demonstrate some simple promotions.

bool
char
int

b = true;
c = 'A';
i = 1234;

long double d = 3458.0004;
c = b; // value of c is SOH (ASCII 1)

// value of i is 65
// value of d is 1.0
// value of d is 1234.0

c;I

d = b;
d = i;

Demotion
Demotion may or may not create problems. If the size of the variable at the
left side can accommodate the value of the expression, there is no problem;

however, some of the results may surprise you.
Any integral or real value can be assigned to a Boolean type. II the value

of the expression on the right is zeroy false (0) is stored; if the result is not

zero, either positive or negative, true (1) is stored.
When an integer or a real is assigned to a variable ol type character, the

least significant byte of the number is converted to a character and stored.
When a real is stored in an integer, the fraction part is dropped. However, if
the integral part is larger than the maximum value that can he stored, the
results are invalid and unpredictable. Similarly, when we try to store a long
double in a variable of type flout , the results are valid if the value fits or

invalid if it is too large.

»

116 Section 3.5 Type Conversion

The following examples demonstrate demotion.

bool b = false;
char c =
short s = 78;

int j
int k = 65;

A' ;

= INT MAX;

// value of b is 1 (true)

// value of s is unpredictable

// demotion: value of c is
b = c;
s = j;
c = k + 1;

B

Conversion in Other Binary Expressions
Conversion has a different set of rules for the other binary expressions

rules are sometimes very complicated, but we can summarize them in three

steps, which cover most cases:

The operand with the higher rank is determined using the ranking in

Figure 3- 10.
2. The lower-ranked operand is promoted to the rank defined in step 1.

After the promotion, both expressions have the same rank.

3. The operation is performed with the expression value having the type of

the promoted rank.

I he lollowing examples demonstrate some common conversions.

. The

1 .

b = true;
c = 'A';
i = 3650;
s = 78;

long double d = 3458.0004;
b + c
i * s;
d * c;

bool
char
int
short

// b promoted; result is 'B' ('A' + 1)
// result is an int
// result is long double

Let’s look at a small program to see the effect of implicit conversions. In
Program 3-7 we add a character, an integer, and a float . We

integers and lloating-point values because all characters have
ASCII value that can be promoted.

PROGRAM 3-7 Implicit Type Conversion

add charac-can
ters to an

1|/* Demonstrate .
Written by:
Date:

automatic promotion of numeric types.
2
3
4 * /
5 #include <stdio.h>

continued

Chapter 3 Structure of a C Program 117

PROGRAM 3-7 Implicit Type Conversion (continued)

6 I #include <stdbool.h>
7

int main (void)8
9 {

// Local Declarations
bool b = true;
char c = 'A';
float d = 245.3;
int i = 3650;
short s = 78;

10
11
1 2
13
14
15
16

// Statements
printf("bool + char is char:
printf("int * short is int:
printf("float * char is float:

17
%c\n",
%d\n",
%f\n",

18 b + c);
i * s);
d * c);

19
20
21

// bool promoted to char
// char promoted to float

22 c = c + b;
d = d + c;
b = false;
b = -d;

23
24

// float demoted to bool25
26

printf("\nAfter execution...\n");
printf("char + true:
printf("float + char:
printf("bool = -float:

27
%c\n", c)
%f\n", d)
%f\n", b)

28
29
30
31

return 0;

> // main
32
33

Results:
bool + char is char:
int * short is int:
float * char is float: 15944.500000

B
284700

!
After execution...
char + true: B
float + char: 311.299988
bool = -float: 1

Program 3-7 Analysis Several points in this program require explanation. First, as we stated before, it is not
a good programming practice to code an expression in a print statement. We do it in
this program, however, to demonstrate the promotion or demotion of the expression.

The first print series displays the value of mixed type expressions. As you exam-
ine each result, note that the value printed is in the form of the higher ranked vari-
able. For example, in statement 18 the Boolean in the expression (b) is promoted to a

118 Section 3.5 Type Conversion

dded to the value of the character expression (c). The result is

then passed to the printf function where it is printed usingcharacter and then a
the character B, which is
the format specification %c. . t

The second print series displays the results of assignments. In the hrst

true (1) to the letter A. The result is B as you would expect. In the second assignment, we

add the letter B from the previous assignment to a real number. The new value of the real

number is almost 66 greater than the original value. The difference
numbers are not exact. Rather than storing 245.3, the value stored

te what happens when we assign a negative, real number to a boolean.

one, we add

occurs because real
was 245.299988.

Finally, no
The result is true.

Explicit Type Conversion (Cast)
Rather than let the compiler implicitly convert data, we can convert data
from one type to another ourself using explicit type conversion. Explicit

the unary cast operator, which has a precedence of 14.type conversion uses
To cast data from one type to another, we specify the new type in parentheses
before the value we want converted. For example, to convert an integer, a , to
afloat , we code the expression shown below.

(float) a

Note that in this operation, like any other unary operation, the value stored
in a is still of type int , hut the value of the expression is promoted to float .

One use of the cast is to ensure that the result of a divide is a real num-
ber. For example, il we calculated the average of a series of integer test scores
without a cast , the result would he an integer. To force a real result, we cast
the calculation as shown below.

average (float) totalScores / numScores ;

In this statement, there is an explicit conversion of totalScores to float ,and then an implicit conversion ol numScores so that it will match. I helesult ol the divide is then a lloating-point number to he assigned to average.But beware! \\ hat would he the result of the following expression when ais 3?

(f l o a t) (a / 1 0)

Are you surprised to find that the result is ().()? Since no conversions arerequired to divide integer 3 by integer 10, C simply divides with an integerresult, 0. 1 he integer 0 is then explicitly convertedTo get afloat result, to the lloating-point 0.0.
"c must cast one of the numbers as shown below.

(f l o a t) a / i o

Chapter 3 Structure of a C Program 119

One final thought about casts: Even when the compiler can correctly cast
for you, it is sometimes better to code the cast explicitly as a reminder that
the cast is taking place.

Program 3-8 demonstrates the use of explicit casts. In this program, we
divide several mixed types. While the results are nonsense, they demonstrate
the effect of casting.

PROGRAM 3-8 Explicit Casts
/* Demonstrate casting of numeric types.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
int main (void)7

8 {
// Local Declarations

char aChar
int
int
double fltNuml
double fltNum2
double fltNum3;

9
= ’ NO';

intNuml = 100;
intNum2 = 45;

= 100.0;
= 45.0;

10
11
12
13
14
15
16

// Statements
printf("aChar numeric :
printf("intNuml contains:
printf("intNum2 contains:
printf("fltNuml contains:
printf("fltNum2 contains:

17
%3d\n",
%3d\n",
%3d\n",
%6.2f\n",
%6.2f\n",

aChar);
intNuml);
intNum2);
fltNuml);
fltNum2);

18
19
20
21
22
23

fltNum3 = (double)(intNuml / intNum2);
printf

24
25

("\n(double)(intNuml / intNum2): %6.2f\n",
fltNum3);

26
27
28

fltNum3 = (double)intNuml / intNum2;
printf("(double) intNuml / intNum2 : %6.2f\n",

fltNum3);

29
30
31
32

aChar = (char)(fltNuml / fltNum2);
printf(" (char)(fltNuml / fltNum2): %3d\n",

33
aChar);34

35

continued

120 Section 3.6 Statements

Explicit Casts (continued)PROGRAM 3-8
return 0;

37 y // main
36

Results:
aChar numeric : 0

intNuml contains:
intNum2 contains: 45

fltNuml contains:
fltNum2 contains:

100

100.00
45.00

2 . 0 0
(double)(intNuml / intNum2)

(double) intNuml / intNum2

(char)(fltNuml / fltNum2)
2 . 2 2
2

Program 3-8 Analysis Study the casts carefully. The only difference between statements 24 and 29 is the
of parentheses around the calculation. In statement 24, both operands are integers so

the result of the division is integer, which is then cast to a double. In statement 29,
intNuml is cast to a double. The compiler automatically casts intNum2 to a double
before the division. The result is therefore a double. Finally, in statement 33, we cast
the result of the integer division into a character.

use

3.6 Statements
A statement causes an action to be performed by the program. It translates
directly into one or more executable computer instructions.

You may have noticed that we have used a semicolon at the end of the
statements in our programs. Most statements need a semicolon at the end;
some do not. When we discuss statements, we identify those that do.

Statement Type
C defines eleven types of statements, which are shown in Figure 3- 1 1. In this
chapter we will discuss the first four; the other types will be covered in the
future chapters.

Null Statement
The null statement is i15 Just a semicolon (the terminator) as shown below:

// null statement

Although they do not arise often, therewe must have a statement but
the null statement.

are syntactical situations where
no action is required. In these situations, weuse

Chapter 3 Structure of a C Program 121

Expression Statement
An expression is turned into a statement by placing a semicolon (;) after it .

// expression statementexpression;

Null

Expression

Return

Compound

Conditional

LabeledStatement

Switch

Iterative

Break

Continue

Goto

FIGURE 3- 1 1 Types of Statements

sees the semicolon, it completes any pending side effects and
discards the expression value before continuing with the next statement. An
expression without side effects does not cause an action. Its value exists and
it can be used , but unless a statement has a side effect, it does nothing.

Let us look at some expression statements. First , consider the expres-
sion statement

When C

a = 2;

The effect of the expression statement is to store the value, 2, in the vari-
able a. The value of the expression is 2. After the value has been stored, the
expression is terminated (because there is a semicolon), and the value is dis-
carded. C then continues with the next statement.

The next expression statement is a little more complex.

a = b = 3;

This statement actually has two expressions. II we put parentheses
around them, you will be able to see them clearly.

122 Section 3.6 Statements

a * (b = 3) ;

is terminated by the semicolon, its value, 3, is dis-
therefore, is that 3 has beena. Since the expression is

carded. The effect of the expression statement
stored in both a and b.

In Chapter 2 we examined the scanf and print/ functions. These state-
ments present interesting insights into the concepts of expressions and side
effects. Consider the following scan/ function call:

ioResult = scanf("%d", &x);

This statement has two side effects. The first is found in the scanf func-
tion. Reading an integer value from the keyboard and placing it into the vari-
able x (note the address operator before the variable) is a side eflect. I he
second side effect is storing the value returned by scanf which represents the
number of values that were converted correctly. In this case, the return value
could be EOF, 0, or 1 . Assuming that the user correctly keys the integer, the
value will he 1. The assignment operator stores the return value in ioResult.
I he expression then terminates, and the scant value is discarded.

In a similar fashion, printj has the effect of displaying data on the moni-
tor and returning a value, the number of characters displayed. This is seen in
the statement below.

numDisplayed = printf
("x contains %d, y contains %d\n", x, y) ;

As a general rule, however, the number of characters displayed is dis-carded without being stored. Therefore
ment as shown below. we normally code the above state-

print^"x contains %d, y contains %d\n", x , y) ;

value of ^ ^owin8 exPression statement. Assume that a has a
\ a luc of ^ helore the expression is evaluated .

a++;

In this postfix expression , the value of thvariable, a , before it i . . . , e expression is 5, the value of the
15 changed by the side effect. Upon completion of the

is discarded sntrtmumed l° The Vyluc of ^Although they are useless"^ fon^55'0"*T COmPlete -
I hey are useless because they hav °W^ 3re a so expression statements,

assigned to a variable. We IKH .I 1
S* C c^ect ancI the i r values are not

> °n t use them, hut it is important to know

expression statement,
which is still 5

a is
expression,

Chapter 3 Structure of a C Program 123

they are syntactically correct expression statements. C will evaluate them,

determine their value, and then discard the value. 1

b; 3;

Return Statement
A return statement terminates a function. All functions, including main ,

must have a return statement. When there is no return statement at the end of
the function, the system inserts one with a void return value.

return expression; // return statement

In addition, the return statement can return a value to the calling Iunc-
tion. For example, while we have not talked about it or used it, the scanj func-
tion returns the number of variables successfully read. In the case of main, it
returns a value to the operating system rather than to another function. In all
of our programs, main returns 0 to the operating system. A return value of
zero tells the operating system that the program executed successfully.

Compound Statements
A compound statement is a unit of code consisting of zero or more state-
ments. It is also known as a block. The compound statement allows a group
of statements to become one single entity. You used a compound statement in
your first program when you formed the body of the function main. All C
functions contain a compound statement known as the function body.

A compound statement consists ol an opening brace, an optional declara-
tion and definition section, and an optional statement section, followed by a
closing brace. Although both the declaration section and the statement sec-
tions are optional, one should be present. If neither is present, then we have
a null statement, which doesn’t make much sense. Figure 3- 12 shows the
makeup of a compound statement.

{
// Local Declarations

int x;
int y;
int z;

Opening
Brace

// Statements
x = 1;Closing

Brace 2 ;y

> // End Block

FIGURE 3-12 Compound Statement

1 . In an optimized compiler, the translator determines that there is no effect and generates no code.

. „ is that a compound statement does
One important point ° r

^ closing parentheses are simply delim-
not need a semicolon. The. open^amU gF

^^^iters lor the compoun s a
extra null statement after the

X— «- —„y c*,“ZI.compile error, although »-P g "*'» reaming me,sage.

The compound statement does not need a semicolon.

C requires that the declaration section be before any statements2 within
pound statement block. The code in the declaration section and state-a com

ment section cannot be intermixed.

The Role of the Semicolon
The semicolon plays an important role in the syntax of the C language. It is
used in two different auscultations.
• Every declaration in C is terminated by a semicolon.
• Most statements in C are terminated by a semicolon.

On the other hand, we must he careful not to use a semicolon when it is
not needed. A semicolon should not be used with a preprocessor directive
such as the include and define. In particular, a semicolon at the end of a
define statement can create a problem as discussed in the next section.

Statements and Defined Constants
When we use preprocessor-defined commands, we must be very careful to
make sure that we do not create an error. Remember that the defined con-
stant is an automatic substitution. This can cause subtle problems. One com-
mon mistake is to place a semicolon at the end of the definition. Since the
preprocessor uses a simple text replacement of the name with whatever
expression follows, the compiler will generate a compile error if it finds a

example-” ^ ^^^^ definition' This Prob|em is seen in the following

#define SALES TAX RATE 0.825;

salesTax = SALES_TAX_RATE *

After the substitution, the following erroneous code occurs because wecoded a semicolon after th

salesAmount;

e constant value:

salesTax = 0.0825; * salesAmount;
2. The one exception to this rule is in the for statement. which we study in Chapter 6.

Chapter 3 Structure of a C Program 125

This can be an extremely difficult compile error to figure out because we
see the original statement and not the erroneous substitution error. One of
the reasons programmers use uppercase for defined constant identifiers is to
provide an automatic warning to readers that they are not looking at the
real code.

3.7 Sample Programs
This section contains several programs that you should study for program-
ming technique and style.

EXAMPLE 3-4 Calculate Quotient and Remainder
Lets write a program that calculates and prints the quotient and remainder
of two integer numbers. The code is shown in Program 3-9.

PROGRAM 3-9 Calculate Quotient and Remainder
/* Calculate and print quotient and remainder of two

numbers.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>6

7
int main (void)8

9 {
// Local Declarations

int intNuml;
int intNum2;
int intCalc;

10
1 1
1 2
13
14

// Statements
printf("Enter two integral numbers: ");
scanf ("%d %d", sintNuml, &intNum2);

15
16
17
18

intCalc = intNuml / intNum2;
printf("%d / %d is %d", intNuml, intNum2, intCalc);

19
2 0
2 1

intCalc = intNuml % intNum2;
printf(" with a remainder of: %d\n", intCalc);

2 2
23
24

return 0;

> // main
25
26

continued
j\\

126 Section 3.7 Sample Programs

Calculate Quotient and Remainder (continued)
PROGRAM 3-9

Results:
Enter two
13 / 2 is 6 with a

integral numbers: 13 2
remainder of: 1

Using good programming style, the program begins with documentation about what
it does, who created it, and when it was created.

Program 3-9 has no global variable declarations, so after including the standard
input/output library, we start immediately with main. Following main is the opening
brace. The matching closing brace is found on line 26.

The most difficult part of this program is figuring out how to get the remainder. For-
tunately,C has a modulo operator (%) that does the job for us. The rest of the problem is
straightforward.

Program 3-9 Analysis

EXAMPLE 3-5 Print Right Digit
Another problem that requires the use of the modulo operator is to print a
digit contained in an integer. Program 3-10 prints the least significant (right-
most) digit of an integer.

PROGRAM 3-10 Print Right Digit of Integer
/* Print rightmost digit of an integer.

Written by:
Date:

1
2
3

*/4
linclude <stdio.h>5

6
int main (void)7

8 {
// Local Declarations

int intNum;
oneDigit;

9
10
11 int
12
13 // Statements

printf("Enter
scanf ("%d",

14 an integral number:
&intNum);15

16
17 oneDigit = intNum % 10;

printf("\nThe18 right digit is:
/ oneDigit);19

20 return 0;
} // main2 1

Results:

continued

Chapter 3 Structure of a C Program 127

PROGRAM 3-10 Print Right Digit of Integer (continued)

Enter an integral number: 185

The right digit is: 5

EXAMPLE 3-6 Calculate Average
Program 3-1 1 reads Four integers from the keyboard, calculates their average,

and then prints the numbers with their average and the deviation (not the
standard deviation, just the difference plus or minus) from the average.

PROGRAM 3-1 1 Calculate Average of Four Numbers
/* Calculate the average of four integers and print

the numbers and their deviation from the average.
Written by:
Date:

1
2
3
4

*/5
tinclude <stdio.h>
int main (void)

6
7
8 {

// Local Declarations
int numl;
int num2;
int num3;
int num4;
int sum;
float average;

9
10
1 1
12
13
14
15
16

// Statements
printf("\nEnter the first number : ");
scanf("%d", &numl);
printf("Enter the second number : ");
scanf("%d", &num2);
printf("Enter the third number : ");
scanf("%d", &num3);
printf("Enter the fourth number : ");
scanf("%d", &num4);

17
18
19
20
2 1
22
23
24
25
26

= numl + num2 + num3 + num4;
average = sum / 4.0;

27 sum
28
29 Iaverage is %6.2f ******** ",printf("\n * * ****30

average);31
printf("\n");32

continued

128 Section 3.7 Sample Programs

Calculate Average of Four Numbers (continued)
PROGRAM 3- 11

33 %6d — deviation: %8.2f",
printf("\nfirst number:

numl, numl - average);

"\nsecond number: %6d -
num2, num2 - average);

34
35 - deviation: %8.2f",

printf(36
37 %6d — deviation: %8.2f",

printf("\nthird number:

num3, num3 - average);38
39 - deviation: %8.2f",

printf("\nfourth number: %6d -
num4, num4 - average);

40
41
42

return 0;
} // main

43
44

Results:
Enter the first number: 23

Enter the second number: 12

Enter the third number: 45

Enter the fourth number: 23

average is 25.75 ** * * * * * **** * * * * *

first number:
second number:
third number:
fourth number:

23 — deviation:
12 — deviation:
45 — deviation:
23 — deviation:

-2.75
-13.75
19.25

-2.75

Proaram 3*11 Analysis Program 3-11 is a little more complex than the previous ones. At the beginning o^ main are several variable declarations, five integers, and a floating-point number
The first four are for the variables read from the keyboard, the fifth is for the sum,and
the floating-point number is for the average.

The statements section starts by reading the data. Each read is preceded by a dis-
play so the user will know what to do. The specific instructions about what to input are
known as user prompts You should always tell the user what input is expected from the
keyboard. After the user has keyed the data, the program continues by adding the

insum,and computing average. It then displays the results.Notice that the program displays the results in a format that allows the user to easilyverify that the program ran correctly. The program not only prints the average but also
repeats each input with its deviation from the average. Afterprogram concludes by returning to the operating system.

Look at the results carefully. Note how each series of numbers is aligned so thatthey can be easily read. Taking the time to align output is one of the things that distin-guishes a good programmer from an average programmer. Always pay attention tohow your program presents its results to the user. Paying attention to these little detailspays off in the long run.

numbers, placing the total

completing its work, the

Chapter 3 Structure of a C Program 129

EXAMPLE 3-7 Degrees to Radians
One way to measure an angle in a circle is in degrees. For example, the angle
formed by a clock at 3 o’clock is 90 . Another way to measure the angle is in
radians. One radian is equal to 57.2957793 degrees. In Program 3- 12 we ask
the user to input an angle in radians, and we convert it to degrees.

PROGRAM 3-12 Convert Radians to Degrees
/* This program prompts the user to enter an angle

measured in radians and converts it into degrees.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>6

7
#define DEGREE FACTOR 57.2957798

9
int main (void)10

11 {
// Local Declarations

double radians;
double degrees;

12
13
14
15

// Statements
printf("Enter the angle in radians: ");
scanf("%lf", &radians);

16
17
18
19

degrees = radians * DEGREE_FACTOR;2 0
2 1

printf("%6.3f radians is %6.3f degrees\n",
radians, degrees);

2 2
23
24 return 0;

// main25 }

Results:
Enter the angle in radians: 1.57080
1.571 radians is 90.000 degrees

Program 3- 1 2 Analysis In this short program we introduce the defined constant. Defined constants are an excel-
lent way to document factors in a program. We could have just as easily used a mem-
ory constant. Factors are usually placed at the beginning of the program where they
can easily be found and changed as necessary. Remember that the area before main is
global and that it should be used only for declarations and constants—not variables.

3. More precisely, a radian is (180 / n).

Calculate Sales TotalEXAMPLE 3-8
sale given the unit price, quantity, discount rate,

Program 3-13 calculates a

and sales tax rate.

PROGRAM 3-13 Calculate Sales Total
the unit price,

the total sale given
/* Calculates

quantity, discount, and tax rate.

Written by:

1
2
3

Date:4
*/5
tinclude <stdio.h>6

7
tdefine TAX_RATE 8.508

9
int main (void)10

11 {
// Local Declarations

int quantity;
12
13
14

float discountRate;
float discountAm;
float unitPrice;
float subTotal;
float subTaxable;
float taxAm;
float total;

15
16
17
18
19
20
21
22

// Statements
printf("\nEnter number of items sold:
scanf("%d", ^quantity);

23
24
25
26
27 printf("Enter the unit price:

scanf("%f", &unitPrice);
")?

28
29
30 printf("Enter the discount

scanf("%f", ^discountRate);
rate (per cent): ");

31
32
33 subTotal

discountAm
subTaxable

= quantity * unitPrice;
= subTotal * discountRate / 100.0;
= subTotal

34
35 - discountAm;
36 taxAm = subTaxable *

total =
TAX_RATE / 100.00 ;

37 subTaxable + taxAm;
38
39 printf("\nQuantity sold: %6d\n", quantity);

continued

Chapter 3 Structure of a C Program 131

PROGRAM 3- 1 3 Calculate Sales Total (continued)

printf("Unit Price of items: %9.2f\n", unitPrice);
printf("

40
\n") ;41

42
%9.2f\n", subTotal);
-%9.2f\n"/ discountAm);
%9.2f\n" / subTaxable);

+%9.2f\n" / taxAm);
%9.2f\n", total);

43 printf("Subtotal :
printf("Discount:
printf("Discounted total:
printf("Sales tax:
printf("Total sale:

44
45
46
47
48
49 return 0;

> // main50

Results:
Enter number of items sold:
Enter the unit price:
Enter the discount rate (per cent): 7

34
12.89

Quantity sold:
Unit Price of items:

34
12.89

Subtotal :
Discount:
Discounted total:
Sales tax:
Total sale:

438.26
30.68

407.58
34.64
442.23

+

Program 3-1 3 Analysis Look at the results of this program carefully. Do you see any problems? Just because a
program runs doesn't mean that it is running correctly. In this case, the total is incor-
rect (407.58 + 34.64 is not equal to 442.23). The problem is created by the floating-
point arithmetic and rounding errors. If we wanted absolute accuracy, we would have
to do the arithmetic in integer (cents) and then divide by 100 to print the report.

Calculate Student Score
Program 3- 14 calculates the average score for a student. The class has (our
quizzes (30%), two midterms (40%), and a final (30%). The maximum score
for all quizzes and exams is 100 points.

EXAMPLE 3-9

Calculate Student ScorePROGRAM 3-14
/* Calculate a student's average score for a course

with 4 quizzes, 2 midterms, and a final. The quizzes
are weighted 30%, the midterms 40%, & the final 30%.

Written by:

1
2
3
4

cont inued

132 Section 3.7 Sample Programs

Calculate Student Score (continued)

Date:
PROGRAM 3-14

5
6 */

#include <stdio.h>7
8 30

tdefine QUIZ_WEIGHT
#define MIDTERM_WEIGHT 40

#define FINAL_WEIGHT
#define QUIZ_MAX
#define MIDTERM_MAX
#define FINAL_MAX

9
10 30
11 400.00

200.00
100.00

12
13
14
15

int main (void)16
17 {

// Local Declarations
quizl;
quiz2;
quiz3;
quiz4;
totalQuiz;
midterml;
midterm2;
totalMidterm;
final;

18
int19
int20
int21
int22
int23
int24
int25
int26
int27

28
29 float

float
float
float

quizPercent;
midtermPercent;
finalPercent;
totalPercent;

30
31
32
33

//34 Statements
printf("===
printf("Enter the score for the first
scanf("%d", &quizl);
printf("Enter the
scanf("%d", &quiz2);
printf("Enter the
scanf("%d", &quiz3);
printf("Enter the r
scanf("%d", &quiz4);

printf("=========
printf("Enter the
scanf("%d", , '

printf("Enter the

35 === QUIZZES === =\n");
36 ")?quiz:
37
38 score for the second quiz: ");
39
40 score for the third quiz:
41
42 score for the fourth quiz: ");
43
44
45 **= MIDTERM ==== ======\n") ;

score for the first midterm: ")/

46
47 5<midterml);
48 score for the second midterm: ");

continued

Chapter 3 Structure of a C Program 133

PROGRAM 3-1 4 Calculate Student Score (continued)

scanf("%d", &midterm2);49
50

======\n");printf("=====
printf("Enter the score for the final: ");
scanf("%d", &final);
printf("\n");

51 === FINAL ===
52
53
54
55

totalQuiz = quizl + quiz2 + quiz3 + quiz4;
totalMidterm = midterml + midterm2;

56
57
58

quizPercent =
(float)totalQuiz * QUIZ_WEIGHT / QUIZ_MAX;

midtermPercent =
(float)totalMidterm * MIDTERM_WEIGHT / MIDTERM_MAX;

finalPercent =
(float)final * FINAL WEIGHT / FINAL_MAX;

59
60
61
62
63
64
65
66 totalPercent

quizPercent + midtermPercent + finalPercent;67
68

printf("First Quiz %4d\n",
printf("Second Quiz %4d\n",
printf("Third Quiz %4d\n",
printf("Fourth Quiz %4d\n",
printf("Quiz Total %4d\n\n", totalQuiz);

quizl);
quiz2);
quiz3);
quiz4);

69
70
71
72
73
74

printf("First Midterm
printf("Second Midterm %4d\n",
printf("Total Midterms %4d\n\n", totalMidterm);

%4d\n", midterml);
midterm2);

75
76
77
78

%4d\n\n", final);printf("Final79
80

printf("Quiz
printf("Midterm %6.1f%%\n"
printf("Final
printf("
printf("Total

%6.1f%%\n" , quizPercent);
, midtermPercent);

%6.1f%%\n" , finalPercent);
\n");

%6.1f%%\n" , totalPercent);

81
82
83
84
85
86

return 0;
} // main

87
88

Results:

Enter the score for the first quiz: 98

continued

134 Section 3.7 Sample Programs

Calculate Student Score (continued)
PROGRAM 3-14 89

the second quiz:

the score for the third quiz: 78

for the fourth quiz. 79
the score forEnter

Enter
Enter the score

= MIDTERM
the first midterm: 90

the second midterm:the score for

the score for

========= FINAL =:

the score for

Enter
Enter

100

the final: 92
Enter

98First Quiz
Second Quiz
Third Quiz
Fourth Quiz
Quiz Total

89
78
79
344

First Midterm 90

Second Midterm 100

Total Midterms 190

92Final

25.8%
38.0%
27.6%

Quiz
Midterm
Final

91.4%Total

Program 3-1 4 Analysis This rather long program contains several points to consider. First, note how the pro-
gram starts with a series of defined constants. Putting the definitions of constant val-
ues at the beginning of the program does two things: (1) It gives them names that we

can use in the program, and (2) it makes them easy to change.
Now study the statements. Notice how they are grouped? By putting a blank line

between a group of related statements, we separate them, much as we would separate
paragraphs in a report. This makes it easy for the user to follow the prog

Finally, study the input and output. Notice that the
with clear instructions. We

ram.
user was prompted for all input

divided the input with headings. The output is also
divided, making it easy to read. It would be even easier to read if we aligned all the
amounts, but the techniques for doing so will not be introduced until Chapter 7.

even

Chapter 3 Structure of a C Program 135

3.8 Software Engineering
In this section we discuss three concepts that, although technically not
engineering principles, are important to writing clear and understandable
programs.

KISS
Keep It Simple and Short (KISS4) is an old programming principle. Unfortu-
nately, many programmers tend to forget it, especially the simple part. They
seem to feel that just because they are working on a complex problem, the
solution must be complex, too. That is simply not true. Good programmers
solve the problem in the simplest possible way; they do not contribute to a
complex situation by writing obscure and complex code.

A trivial example will make the point. If you were writing a program that
reads floating-point numbers from the keyboard, you would not program it so
that the user had to enter the integral portion of the number first and then
the fractional part. Although this would work, it is unnecessarily complex,
even though it might be a fun way to solve the problem.

Unfortunately, C provides many operators and expression rules that make
it easy for a programmer to write obscure and difficult to follow code. Your
job as a programmer is to make sure that your code is always easy to read.
Your code should be unambiguous: It should not he written so that it is easy
to misread it.

Another old structured programming principle is that a function should
not be larger than one page of code. Now, for online programming in a work-
station environment, a function should be no longer than one screen—about
20 lines of code. By breaking a problem down into small, easily understood
parts, we simplify it. Then we reassemble the simple components into a sim-
ple solution to a complex problem.

3\ocke of code should be no longer than one screen.

One element of the C language that tends to complicate programs, espe-
cially for new programmers, is side effects. We explained in Section 3.4,

“Evaluating Expressions,” that side effects can lead to confusing and different
results depending on the code. You need to fully understand the effects when
you write C code. If you are unsure of the effects, then simplify your logic
until you are sure.

Parentheses
One programming technique to simplify code is to use parentheses, even
when unnecessary'. While this may lead to a few extra keystrokes, it can save
hours of debugging time created by a misunderstanding ol the precedence

4. KISS originally had a different, rather insulting, meaning. We prefer this interpretation.

and associativity rules. Whenever a statement contains multiple expressions

parentheses to ensure that the compiler will interpret it as you intended.use

Computers do what you tell them to do, not what you Intended to tell them
to do. Make sure your code Is as clear and simple as possible.

User Communication
You should always make sure you communicate with your user from the very
first statement in your program to the very last. As mentioned previously, we
recommend that you start your program with a message that identifies the
program and end with a display that says the program is done.

When you give your user instructions, make sure that they are clear and
understandable. In Program 3-13, we used three statements to give the user
complete and detailed instructions on what we wanted entered. We could
have simply said

"Enter data"

but that would have been vague and subject to interpretation. How would the
user know what specific data were required? For each input in Program 3-13,
we told the users exactly what data we needed in terms that they understand.
If you don’t tell users exactly what data to input, they may do anything they
feel like, which is usually not what you wanted or expected.

One common mistake made by new programmers is to forget to tell the
anything. What do you think would be the user’s response to

screen and a computer that is

user
Program 3-15 when confronted with a blank
doing nothing?

PROGRAM 3-15 Program That Will Confuse the User
1 linclude <stdio.h>
2 int main(void)
3 {
4 int i;

int j;5
6 int sum;
7
8 scant("%d%d",

sum = i + j;
printf("The
return 0;

> // main

Si, S j) ;9
10

SUm of %d & is %d\n", i11 i, j, sum);
12

We now i
addition of one

rewTite the program with clear uprint statement, the user know
user communication. With the
s exactly what is to be done.

Chapter 3 Structure of a C Program J37

PROGRAM 3-16 Program That Will Not Confuse the User

#include <stdio.h>
int main (void)

1
2
3 {

int i;
int j;
int sum;

4
5
6
7

printf("Enter two integers and key <return>\n");
scant("%d%d", &i, &j);
sum = i + j;
printf("The sum of %d & %d is %d\n"/ i, j, sum);
return 0;
// main

8
9
10
11
1 2
13 >

Results:
Enter two integers and key <return>
4 5
The sum of 4 & 5 is 9

We will return to these three concepts from time to time when we intro-
duce new structures that tend to be confusing or misunderstood.

3.9 Tips and Common Errors
side effects. They are one of the main sources of1. Be aware of expression

confusion and logical errors in a program.
2. Use decrement/increment operators wisely. Understand the difference

between postfix and prefix decrement/increment operators before
using them.

3. Add parentheses whenever you feel they will help to make an expression
clearer.

4. It is a compile error to use a variable that has not been defined.
5. It is a compile error to forget the semicolon at the end of an expression

statement.
6. It is a compile error to code a variable declaration or definition once you

have started the statement section. To help yourself remember this rule,
use comments to separate these two sections within a function.

7. It is most likely a compile error to terminate a defined constant (#define)
with a semicolon. This is an especially difficult error to decipher because
you will not see it in your code—you see the code you wrote, not the code
that the preprocessor substituted.

8. It is a compile error when the operand on the left of the assignment oper-
ator is not a variable. For example, a + 3 is not a variable and cannot
receive the value of b * c.

(a + 3) = b * c;

9. It is a compile error to use the increment or decrement operators withany expression other than a variable identifier. For example, the followingcode is an error:

(a + 3) ++

a compile error to use the modulusthan integers.
11. It is a logic error to use i

12. It is a logic error to modifvappears more than

10. It is
operator (%) with anything other

a variable before it has been assigned a value.
>' a variable iln an expression when the variableonce.

3.10 Key Terms
additive expression
assignment expression
associativity

left -to-right associativitymultiplicative expression
name

Chapter 3 Structure of a C Program 139

binary expression
block
cast
complex expression
compound statement
conversion rank
demotion
explicit type conversion
expression
expression statement
implicit type conversion
KISS

operand
operator
postfix expression
precedence
primary expression
promotion
right-to-left associativity
side effect
simple expression
unary expression
user prompts

3.11 Summary
An expression is a sequence of operators and operands that reduces to a
single value.
An operator is a language-specific token that requires an action to
be taken.
An operand is the recipient of the action.
C has six kinds ol expressions: primary, postfix, prefix, unary, binary, and
ternary.

The most elementary type of expression is a primary expression. A primary
expression is an expression made up of only one operand. It can he a
name, a constant, or a parenthesized expression.
A postfix expression is an expression made up of an operand followed by an
operator. You studied function call and postfix increment/decrement
expressions in this chapter.
A unary expression is an expression made up of an operator followed by an
operand. You studied six in this chapter: prefix increment/decrement,
sizeofy plus/minus, and cast expressions.
A binary expression is an expression made up of two operands with an
operator between them. You studied multiplicative, additive, and assign-
ment expressions in this chapter.
Precedence is a concept that determines the order in which different oper-
ators in a complex expression act on their operands.
Associativity defines the order of evaluation when operators have the same
precedence.
The side effect of an expression is one ol the unique phenomena in C. An
expression can have a side effect in addition to a value.

140 Section 3.12 Practice Sets

must follow the rules of precedence andweTo evaluate an expression,
associativity.
A statement causes an action to be performed by the program.

Although C has eleven different types of statements, you studied only four-
types in this chapter:

1. A null statement is just a semicolon.
2. An expression statement is an expression converted to a statement bv

keeping the side effect and discarding the value.
3. A return statement terminates a function.
4. A compound statement is a combination of statements enclosed in two

braces.
KISS means "Keep It Simple and Short ."

One of the important recommendations in software engineering is the use
of parentheses when they can help clarify your code.

J Another recommendation in software engineering is to communicate
clearly with the user.

3.12 Practice Sets

Review Questions
I. A unary expression consists of only one operand w ith no operator.

a. True
b. False

2. The left operand in an assignment
a. True
b. False

expression must be a single variable.

3. Associativity is used to determine which of several differentis evaluated first.
a. True
b. False

4. Side effect i
a. True
b. False

5. An expression
a. True
b. False

expressions

action that results from the evaluation of an expression.

statement is terminated with a period.

Chapter 3 Structure of a C Program 141

is a sequence of operands and operators that6. A(n)
reduces to a single value.
a. expression
b. category
c. formula
d. function
e. value

7. Which of the following is a unary expression?
a.i + j
b. +a
c. C++
d. scanf (...)
e. x *= 5

expression evaluates the operand on the right
side of the operator and places its value in the variable on the left side of
the operator.
a. additive
b. assignment
c. multiplicative
d. postfix
e. primary

8. The

is used to determine the order in which different
operators in a complex expression are evaluated.
a. associativity
b. evaluation
c. category
d. precedence
e. side effect

9.

is an action that results from the evaluation of an10.
expression.
a. associativity
b. evaluation
c. category
d. precedence
e. side effect

1 1. Which of the following statements about mixed expressions is false?

a. A cast cannot be used to change an assigned value.
b. An explicit cast can be used to change the expression type.
c. An explicit cast on a variable changes its type in memory.
d. An implicit cast is generated by the compiler automatically when

necessary.
e. Constant casting is done by the compiler automatically.

142 Section 3.12 Practice Sets

nts about compound statements is false?
12. Which of the following stateme

is also known as a block.

losed in a set of braces.a. A compound statement is _
b. A compound statement is enc

pound statement must be terminated by a semicolon.
compound statement isc. A com

d. The declaration and definition section in a

optional.
e. The statement section in a compound statement is optional.

Exercises
13. Which of the following expressions are not postfix expressions?

a. x++
b. — x
c. scanf (...)

d. x * y
e. ++x

14. Which of the following are not unary expressions?

a. + + x
b. — x
c. sizeof (x)
d. +5
e. x = 4

15. Which of the following is not a binary expression?
a. 3 * 5
b. x += 6
c. y = 5 + 2
d. z - 2
e. y % z

16. Which ol the following is not a valid assignment expression?
a. x = 23
b. 4 = x
c. y % = 5
d. x = 8 = 3
e. x = r = 5

17. It originally x - 4, what is the value of x after the evaluation of the fol-lowing expression?
a. x = 2

x += 4
C. X +=

x *= 2
e. x /= x +2

b.
x +3

d.

Chapter 3 Structure of a C Program J43

18. If originally x = 3 and y = 5, what is the value of x and y after each of
the following expressions?
a. x++ + y
b. ++x
c. x++ + y++
d. ++x + 2
e. x — y —

19. What is the value of each of the following expressions?
6 * 2a. 2 4

b. -15 * 2 + 3
c. 72 / 5
d. 72 % 5
e. 5 * 2 / 6 + 1 5 % 4

20. What is the value ol each of the following expressions?
a. 6 . 2 + 5 . 1 * 3 . 2
b. 2 . 0 + 3 . 0 / 1 . 2
c. 4 . 0 * (3 . 0 + 2 . 0 / 6 . 0)
d. 6 . 0 / (2 . 0 + 4 . 0 * 1 . 2)
e. 2 . 7 + 3 . 2 5 . 3 * 1 . 1

21. Given the following definitions, which of the following statements are
valid assignments?
#define NUM10 10
int x;
int y = 15;
a. x = 5;
b. y = 5;
C. X

d. x = 50 =
e. x = x + 1;
f. y = 1 + NUM10 ;
g- 5 = y;

22. II originally x = 2 , y = 3, and z = 2, what is the value of each of the
following expressions?
a. x++ + y++
b. ++x -
c. — x + y+ +
d. x — + x —
e. x + y— -

23. If originally x = 2 , y = 3, and z = 1, what is the value of each of the
following expressions?

Y = 50;
y ;

--z

- y—
X + X+ + y

a. x + 2 / 6 + y
b. y - 3 * z + 2
c. z (x + z) % 2 + 4

144 Section 3.12 Practice Sets

d. x - 2 * (3 + z) + y

e.y++ + z—
24. I fx = 2945,

a. x % 10
b. x / 10
c.(x / 10) % 10

d. x / 100
e.(x / 100) % 10

25. What is the output from the following code fragment?

+ x++

what is the value of each of the following expressions?

int a;
int b;
a = b = 50;
printf ("%4d %4d", a, b);
a = a * 2;
b = b / 2;
printf ("%4d %4d", a, b);

Problems
26. Given the following pseudocode, write a program that executes it. Use

floating-point types for all values.

Algorithm Problem26
1 read x
2 read y
3 compute p = x * y
4 compute s = x + y
5 total = s2 + p * (s - x) * (p + y)
6 print total
End Problem26

27. Write a program that reads two integers from the keyboard, multipliesthem, and then prints the two numbers and their product.
28. Write a program that extracts and prints the rightmost digit of the inte-gral portion of a float.
29' rSa7pZoanmofhaSrCtS^̂ ^SeC°nd ri8htmost di&il of the

30. Write
from

a program that calculates thea user-ciirsrti. i / n . area ant* Perimeter of a rectanglesupplied (scanf) length and width.
31. We are all familiar with the fart tW i

minutes, and seconds Annthr " anges afe measured in dc8rees’
is the angle formed by two radii

0i 3n8‘C 'S 3 rad'an' A radian
of their circle. One radian cquals^Vŝ Q ^ l° radiUS

‘ / **^5779 degrees. Write a program
M

Chapter 3 Structure of a C Program 145

that converts degrees into radians. Provide good user prompts. Include
the following test data in your run:

90° is 1.57080 radians

32. I he formula lor converting centigrade temperatures to Fahrenheit is:

180.0F = 32 + C x
100.0

Write a program that asks the user to enter a temperature reading in
centigrade and then prints the equivalent Fahrenheit value. Be sure to
include at least one negative centigrade number in your test cases.

33. Write a program that changes a temperature reading from Fahrenheit to
Celsius using the following formula:

Celsius = (100.0 / 180.0) * (Fahrenheit - 32)

Your program should prompt the user to enter a Fahrenheit tempera-
ture. It then calculates the equivalent Celsius temperature and displays
the results as shown below.

Enter the temperature in Fahrenheit: 98.6
Fahrenheit temperature is:
Celsius temperature is:

98.6
37.0

34. \\ rite the C code lor each of the following formulas. Assume that all vari-
ables are defined as double.
a.

2
w r • r< H I VKinEn = -y-

b.

b + cres = 2be

35. Write the C code to calculate and print the next two numbers in each of
the following series. You may use only one variable in each problem.
a. 0, 5, 10, 15, 20, 25, ?, ?
b. 0, 2, 4, 6, 8, 10, ?, ?
c. 1, 2, 4, 8, 1 6, 3 2, ?, ?

146 Section 3.12 Practice Sets

Projects
36. Write a program that converts and prin's a user-supplied —re..,,,

inches into

a. foot (12 inches)
b. yard (36 inches)
c. centimeter (2.54/inch)

d. meter (39.37 inches)

37 A Fibonacci number is a member of a set in which each number is the
’

sum of the previous two numbers. (The Fibonacci senes describes a form
of a spiral.) The series begins

1 3 , 2 1 , ...0 , 1 , 1 , 2 , 3 , 5 , 8 ,

Write a program that calculates and prints the next three numbers in
the Fibonacci series. You are to use only three variables, fibl, fib2.
and fib3.

38. Write a program that prompts a user for an integer value in the range 0 to
32,767 and then prints the individual digits of the numbers on a line
with three spaces between the digits. The first line is to start with the
leftmost digit and print all five digits; the second line is to start with the
second digit from the left and print four digits, and so forth. For example,
if the user enters 1234, your program should print

0 1 2 3 4
1 2 3 4
2 3 4
3 4
4

39. Write a program to create a customers bill lor a company. The companysells only five different products: TV, VCR, Remote Controller, CD
TaPc_Recorder- The unit prices are $400.00, $220, $35.20,.00, and $150.00, respectively. The program must read the quantityeac P,ece oi equipment purchased from the keyboard. It then calcu-

sales lax^°^^^subtotal» and the total cost after an 8.25%

of each if * ^ U SCt ‘ntcgers representing the quantitiesiris:i s?,tr“w^** in;
u.iheZ2r“ p,om|>, ,h'answers. in boldface show the user's

Chapter 3 Structure of a C Program 14 7

How Many TVs Were Sold? 3
How Many VCRs Were Sold? 5
How Many Remote Controllers Were Sold? 1
How Many CDs Were Sold? 2
How Many Tape Recorders Were Sold? 4

The format for the output is shown in Figure 3-13.

QTY DESCRIPTION UNIT PRICE TOTAL PRICE

400.00
2 2 0 . 0 0
35.20

300.00
150.00

X X T V X X X X . X X
X X X X.X X
X X X X .X X
X X X X.X X
X X X X . X X

X X VCR
X X REMOTE CTRLR

CD PLAYER
TAPE RECORDER

X X
X X

SUBTOTAL X X X X X.X X
X X X X.X X

X X X X X. X X
TAX
TOTAL

FIGURE 3-13 Output Format for Project 39

Use either defined constants or memory constants for the unit prices
and the tax rate. Use integer variables to store the quantities for each
item. Use floating-point variables to store the total price for each item,
the bill subtotal, the tax amount, and the total amount of the bill. Run
your program twice with the following data:

SET 1 -> 2 1 4 1 2

SET 2 3 0 2 021

« •

Functions
In Chapter 2, we introduced data types. In the preceding chapters, we used
only the three non-derived types, void, integral, and floating-point. Although
these types are very usef ul, they can solve only a limited number of problems.
There are six derived types in C, as shown in Figure 4- 1.

In this chapter we introduce the first derived type, the function type. The
function type is derived from its return type. The return type can be any type
except an array, which we introduce in Chapter 8, or a function type.

Derived
Types

i iiFunction
Type

Array
Type

Pointer
Type

Structure
Type

Union
Type

Enumerated
Type

Chapter 8 Chapter 9 Chapter 12 Chapter12 Chapter 12

FIGURE 4-1 Derived Types

Objectives
To design and implement programs with more than one function
To be able to design multi- function programs using structure charts
To understand the purpose of the function declaration, call, and definition
To understand the four basic function designs
To understand how two functions communicate through parameters
To understand the differences between global and local scope
To understand the software engineering principles of functional cohesion
and top-down development

149

150 Section 4.1 Designing Structured Programs

4.1 Designing Structured Programs
far have been very simple. They solved

cTuldTe underswodwithout too much effort. As we consider
will discover that it is not possible to
without somehow reducing them to

The programs
problems that
larger and larger programs, however, you

understand all aspects of such programs
more elementary parts.

Breaking a complex problem into smaller parts is a common practice. For
example, suppose that for your vacation this year you dec.de to dnve .n a cir-
cular route that will allow you to visit as many nat.onal parks as poss.ble in

two weeks Your requirements for this problem are very s.mple: Visit as many
parks as possible in two weeks. But how will you do it? You might first gather

some data about national parks and then calculate the distance between each
of them to figure out the travel time. Next, you would estimate how much
time it would take to visit each park. Finally, you would put all your data
together to plan your itinerary. Then you would make your motel and camp
reservations and any other arrangements that had to be in place in advance.

The planning for large programs is similar, f irst , you must understand
the problem as a whole; then you must break it into simpler, understandable
parts. We call each of these parts of a program a module and the process of
subdividing a problem into manageable parts top-down design.

The principles of top-down design and structured programming dictate
that a program should be divided into a main module and its related modules.
Each module should also be divided into submodules according to software
engineering principles that we discuss in Section 4.8, “Software Engineer-
ing. The division of modules proceeds until the module consists only of ele-
mentary' processes that are intrinsically understood and cannot be further
subdivided. This process is known as factoring.

In top-down design, a program is divided into a main module and its related
modules. Each module is in turn divided into submodules until the resulting
modules are intrinsic; that is, until they are implicitly understood without
further division.

m^rf °Wn deSign iS USUally donc usin8 a visual representation of the
between "T” \ StrUfUre c*lart’ ^e structure chart shows the relation
structured , “S Submodules- Th« rules for reading and creating

we only nee/aV"̂ S° f°Ve;ed ln "Software Engineering," but at this point,
left-right. ReferrinoTp6 FlrSt’ the structure charl is read top-down,
Main Module represents ^^^^ Mai" Motlule' 1,1 this caSC'represents our entire set of code to solve the problem.

Chapter 4 Functions 151

Main
Module

Module 1 Module 3Module 2

Module 1a Module 1b Module 1c Module 2a Module 3a Module 3b

FIGURE 4-2 Structure Chart

Moving down and left, we then read Module 1. On the same level with
Module 1 are Module 2 and Module 3. The main module consists of three
submodules. At this point, however, we are dealing only with Module 1. We
now note that Module 1 is further subdivided into three modules, Module la,
Module lb, and Module lc. To write the code for Module 1, therefore, we
will need to write code lor its three submodules. What does this concept say
about writing the code for the Main Module?

Now lor some more terminology. The Main Module is known as a calling
module because it has submodules. Each of the submodules is known as a
called module. But, because Modules 1, 2, and 3 also have submodules, they
are also calling modules; they are both called and calling modules.

Communication between modules in a structure chart is allowed only
through a calling module. If Module 1 needs to send data to Module 2, the
data must be passed through the calling module, Main Module. No commu-
nication can take place directly between modules that do not have a calling-
called relationship.

With this understanding, how can Module la send data to Module 3b? It
first sends the data to Module 1, which in turn sends it to the Main Module,
which passes it to Module 3, and then on to Module 3b. Although this
sounds complex, it is easily done.

The technique used to pass data to a function is known as parameter
passing. The parameters are contained in a list that is a definition of the data
passed to the function by the caller. The list serves as the formal declaration
of the data types and names.

4.2 Functions in C
In C, the idea of top-down design is done using functions. A C program is
made of one or more functions, one and only one of which must he named
main. The execution of the program always starts and ends with main, but it

152 Section 4.2 Functions in C

to do special tasks. Figure 4-3 shows a C program
call other functions

structure chart.
can

is made of one or more functions, one and only one of which

Zd main. The execution of the program always starts with main,

call other functions to do some part of the job.
In C, a program
must be ca
but it can1

A function in C (including main) is an independent module that will be
called to do a specific task. A called function receives control from a calling
function. When the called function completes its task, it returns control to

the calling function. It may or may not return a value to the caller. The function
main is called bv the operating system; main in turn calls other functions.
When main is complete, control returns to the operating system.

^nair^j
Functions called by main

FunctionFunction|B Function
32

Function! I FunctionI
e l l f

FunctionIFunctionI Function Function
b da c

Function called
by Function 2

Functions called
by Function 3Functions called by Function 1

FIGURE 4-3 Structure Chart for a C Program

In general , the purpose of a function is to receive zero or more pieces of
data, operate on them, and return at most one piece of data.1 At the same
time a function can have a side effect. A function side effect is an action that
results in a change in the state of the program. If a side effect occurs, it
occurs while the function is executing and before the function returns. The

f I0* tdn 'n'° 'e fcceP*‘n8^ata from outside the program, sending data

in the
monitor or a ^e > or changing the value of a variablen the Call,n8 f“"- The function concept is shown in Figure 4-4.

1 - In Chapter 12 discuss how towe turn multiple data values using a structure.

Chapter 4 Functions 153

Zero or more data
values can be passed.

H 1

<b ••• <b b
t t t t

Side Effects
J-

CD

t
At most one data value

or structure can be returned.

FIGURE 4-4 Function Concept

Several advantages are associated with the use of functions in C or any
other language. The major advantages are:

1. As already described, problems can be factored into understandable and
manageable steps.

2. Functions provide a way to reuse code that is required in more than one
place in a program.Assume, for instance, that a program requires that we
compute the average ol a scries of numbers in five different parts of the
program. Each time the data arc different. We could write the code to
compute the average five times,but this would take a lot of effort. Also, if
we needed to change the calculation, we would have to find all five places
that use it to change each of them. It is much easier to write the code
once as a Iunction and then call it whenever we need to compute the
average.

A function in C can have a return value, a side effect, or both. The side
effect occurs before the value is returned. The function’s value is the
value in the expression of the return statement. A function can be called
for its value, its side effect, or both.

3. This advantage to using functions is closely tied to reusing code. Like
many languages, C comes with a rich and valuable library. For example,
there is a math library, math.hy that contains almost any mathematical or
statistical function that we will ever need. T hese C libraries provide stan-
dard functions that make our work as a programmer much easier. We can
also create personal and project libraries that make developing systems
easier. Appendix F, “Function Libraries,” documents many of the func-
tions included with the C language.

154 Section 4.2 Functions in C

„.„t data. This is a rather complex idea that4. We use functions to pro

^ ^ jata Local data consist of dataters around the conceP , are available only to the function anddescribed in a function.
when the function is not running,1» »«'""“ /SS.function, the. cannot bethe data are not accessible. Uata in o

changed by a function outside of its scope.
i J „4 cpveral functions, such as scan/ and printf , in ourWe have already *veral fun

^^by ^ ^ cprogram.. »' jil>B rating our own functions. ISeWrSTJaSl- let* M at Program 4-1, which demo,,
strates how we write and call a function.

cen-

on
seen or

PROGRAM 4-1 Sample Program with Subfunction
/* This program demonstrates function calls by calling

a small function to multiply two numbers .
Written by:
Date:

1
2
3
4
5 * /
6 iinclude <stdio.h >
7
8 / / Function Declarations

int multiply (int numl , int num2) ;

int main (void)

9
10
11
12 {
13 / / Local Declarations

int multiplier;
int multiplicand;
int product;

14
15
16
17
18 / / Statements
19 printf ("Enter two integers: "scanf ("%d%d",) ;20

^multiplier , Multiplicand) ;21
22 product = multiply (multiplier ,23 multiplicand) ;
24 printf ("Product of %d & %d i25

_
is %d\n" ,

multiplicand,
multiplier,26 return 0;

F / / main
product) ;

27
28
29 /* ===.

Multipies two
======== multiply ====

returns
values to be

30
numbers31 andPre numl &

Post
product .num2 are

returned
32«

multipliedProduct

continued

Chapter 4 Functions 155

PROGRAM 4-1 Sample Program with Subfunction (continued)

33 */
34 int multiply (int numl, int num2)
35 {
36 // Statements

return (numl * num2);
> // multiply

37
38

Results:
Enter two integers: 17 21
Product of 17 & 21 is 357

4.3 User-Defined Functions
Like every other object in C, functions must be both declared and defined.
I he Function declaration, which needs to be done before the function call, gives
the whole picture ol the Function that needs to be defined later. I he declaration
mentions the name ol the function, the return type, and the type and order of
formal parameters. In other words, the declaration uses only the header of the
function definition ended in a semicolon. The function definition, which is
traditionally coded alter the function that makes the call, contains the code
needed to complete the task.

A function name is used three times: for declaration, in a call, and for definition.

Figure 4-5 shows the interrelationships among these function compo-
nents. As you study Figure 4-5, note that the function name is used three
times: when the function is declared, when it is called, and when it is
defined.

// Function Declaratiol
void greeting (void);
int main (void)

void greeting (void)

printf("Hello World!");
return;

} // greeting
{ \ ,// Statements

greeting();
return 0;

} // main

/ / call i* pHello World

Side Effect

FIGURE 4-5 Declaring, Calling, and Defining Functions

156 Section 4.3 User-Defined Functions

Basic Function Designs
We classify the basic function designs by their return values and their para*,

lists Functions either return a value or they don t. Funct.ons that don',
value are known as void functions. Some funct.ons have parameters

and parameter lists results in four
, void functions with param-

eter
return a
and some don’t. Combining return types

basic designs: void functions with no parameters
eters functions that return a value but have no parameters, and funct.ons

that return a value and have parameters. We discuss these four designs in the
sections that follow.

void Functions without Parameters
A void function can be written with no parameters. The greeting Iunction
in Figure 4-5 receives nothing and returns nothing. It has only a side effect,
displaying the message, and is called only lor that side effect.

The call still requires parentheses, however, even when no parameters
present. When we make a call to a function with no parameters, it is

tempting to leave the parentheses off the call. Although this is valid syn-
tax, it is not what we intended. Without the parentheses, it is not a func-
tion call.

Because a void function does not have a value, it can be used only as a
statement; it cannot he used in an expression. Examine the call to the
greeting function in Figure 4-5. This call stands alone as a statement.
Including this call in an expression, as shown below, would he

are

an error.

result = greeting!); // Error. Void function

void Functions with Parameters
Now let s call a function that has parameters but still returns void . The func-r pr;*-nt0ne> as seen in Figure 4-6, receives an integer parameter. Sincethis funet.on returns nothing to the calling function, main, its return type is

s uit 11 c greeting function discussed previously, this function muste coded as a stand-alone call because it does not return a value; it cannot be
re lms noSP|art "T LreXpreSSi0n' Note- however’ that while printone

the monitor eS’ “ * '3^effect: The parameter value is printed to

and theynaUIUodfnFigUrC^ ^ the "a °f the variable in main (a)
to he the same. On

understand ^^^be the same if that makeS il

called multiple times ^ print0ne to demonstrate that a function can be

easier to

Chapter 4 Functions 15 /

// Function Declarations^void printOne (int x);
int main (void)

a
5

{
// Local Declarations

int a = 5;
// Statements

printOne (a);
return 0;
// main

// call

>

void printOne (int x) n5{
printf("%d\n", x);
return;

> // printOne

x

Side Effect

FIGURE 4-6 void Function with Parameters

PROGRAM 4-2 void Function with a Parameter
/* This program demonstrates that one function can be

called multiple times.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>6

7
// Function Declarations
void printOne (int x);

8
9
10

int main (void)1 1
12 {

// Local Declarations
int a;

13
14
15

// Statements
a = 5;
printOne (a);

16
// First call17

18
19
20 a = 33;

printOne (a); // Second call21

continued

J\ m

158 Section 4.3 User-Defined Functions

Parameter (continued)
PROGRAM 4-2 void Function with a

22 operating system.
// Done. Return to

return 0;
// main

23
24
25 >
26 = printOne/* =:27

integer value.

x contains number to be printed

Post value in x printed

Print one28
Pre29

30

* /31
void printOne (int x)32

33 {
34 // Statements

printf("%d\n", x);
return;

37 > // printOne

35
36

Results:
5
33

Non-void Functions without Porameters
Some functions return a value but don’t have any parameters. The most com-
mon use for this design reads data from the keyboard or a file and returns the
data to the calling program. We show this design in Figure 4-7. Note that the
called lunction contains all of the code to read the data. In this simple exam-
ple, only a prompt and a read are required. Later we introduce concepts that
require much more code.

// Function Declaration P\
int getQuantity (void);
int main (void)

// Local Declarations
int amt;

int getQuantity (void)

// Local Declarations
int qty;

// Statements
printf("Enter Quantity")?
scanf ("%d",
return qty;

} // getQuantity

// Statements
amt = getQuantity ();
return 0;

} // main
&qty);

FIGURE 4-7 Non-void Function without Parameters
t .

Chapter 4 Functions 159

Non-void Functions with Parameters
Figure 4-8 contains a function that passes parameters and returns a value—in
this case, the square of the parameter. Note how the returned value is placed
in the variable, b. This is not done by the call; it is a result of expression eval-
uation. Since the call is a postfix expression, it has a value—whatever is
returned from the Function. After the function has been executed and the
value returned, the value on the right side of the assignment expression is the
returned value, which is then assigned to b. Thus, again we see the power of
expressions in the C language. Note that the function, sqr, has no side effect .

In main, the function call is evaluated first because it is a postfix expression,

which has a higher precedence than the assignment expression. To evaluate it,
the function call is executed. Its value is the value returned by the called func-
tion. The expression value is then used in the binary expression (assignment).
The side effect of the binary expression stores the returned value in the variable.

// Function Declaration
int sqr (int x);
int main (void)

Returned
stored here

{
// Local Declarations

int a;
int b;

// Statements
scant("%d", &a);
b = sqr (a);
printf("%d squared: %d\n",
return 0;

} // main

ba

a , b) ;

int sqr (int x)
{
// Statements

return (x * x);
> // sqr

FIGURE 4-8 Calling a Function That Returns a Value

In Chapter 3 we saw that an expression becomes an expression statement
when it is terminated by a semicolon. The function call , which is a postfix
expression and is terminated by a semicolon, is an expression statement.
Functions that do not return a value (void functions) can only be used in an
expression statement as shown below.

// See Figure 4-6printOne();

Functions that return a value can be used either in an expression state-
ment or as an expression. When it is used as an expression statement, the

160 Section 4.3 User-Defined Functions

expression, as in Figure 4-8,

return value is discarded. When it is used
its value is the value returned from the function. The following example dem-
onstrates calling sqr as an expression statement and as an expression. Note
that the expression statement is useless because neither the function call

the statement has a side effect.

as an

nor

/ / Expression Statement. No side effect
value is stored in bsqr (a) ;

b = sqr (a) ; / / Return

In large programs, main is written with only function calls, lo demon-
how this would be done with our simple example, we combine

square and print functions into Program 4-3.
ourstrate

PROGRAM 4-3 Read a Number and Square It

/* This program reads a number and prints its square.
Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
// Function Declarations
int getNum (void);

(int x);
void printOne (int x);

7
8

int sqr9
10
11

int main (void)12
13 {

// Local Declarations
int a;
int b;

14
15
16
17

/ /18 Statements
// Get number and square it
a = getNum ();

19
20
2 1
2 2 // Square the number just read

b = sqr (a);23
24
25 // Now print it

printone(b);26
27
28 return 0;

} // main29
30
31 /* ===: === getNum ===i

continued

Chapter 4 Functions 161

PROGRAM 4-3 Read a Number and Square It (continued)

Read number from keyboard and return it.
nothing
number read and returned

32
33 Pre

Post34
*/35
int getNum (void)36

37 {
// Local Declarations

int numln;
38
39
40

// Statements
printf("Enter a number to be squared:
scanf ("%d", &numln);
return numln;
// getNum

41
42
43
44
45 >
46
47

Return the square of the parameter.
x contains number to be squared
squared value returned

48
49 Pre

Post50
*/51
int sqr (int x)52

53 {
// Statements

return (x * x);
} // sqr

54
55
56
57

===== printOne
Print one integer value.

x contains number to be printed
value in x printed

58 ====
59
60 Pre

Post61 '

*/62
void printOne (int x)63

64 {
// Statements

printf("The value is: %d\n", x);
return;

> // printOne

65
66
67
68

Results:
Enter a number to be squared: 81
The value is: 6561

Program 4-3 Analysis Our simple program has grown to four functions, including main. This is an example
of decomposition, the process of breaking a complex problem into simple parts.
While our example is not really complex, it still demonstrates the concept.

J

S',!*,p^'o.*.metetolJ 9"«“”*<"*•“’P"'i
Function Definition
Now that we have seen examples of the basic function formats, let’s look at

functions in more detail. We begin with the function dehmt.on.

The function definition contains the code for a function. It is made up of
two parts: the function header and the function body, which is a compound

statement. Remember that a compound statement must have opening and
closing braces, and it has declaration and statement sections. The function
definition format is shown in Figure 4-9.

Function Header
return type functionname (formal parameter list)

{
/ / Local Declarations

/ / Statements

} / / function_name

Function Body

FIGURE 4-9 Function Definition

Function Header
A function header consists of three parts: the return type, the functionname, and the formal parameter list. A semicolon is not used at the end of
the function definition header.

With the implementation of the C99 standard , the return type became a
Ivpe istJmen‘ ^WKen nothinS is to be returned, the return

Function Body

ments.Thebodvsl^ l0Cal dctlaralions and the function state-
by the function. A f t e r S p C C‘f y the variables neede<!
ing with a return statement are cod^d'TJ' WCU°n statements. terminal-
be written without a return stateml f '^ (wction retu type is void , it can
ments should be explicitly I > i ? ’ , ®u s e we believe that default state-
every function, even void fimrc

C C*arity> we strongIy recommend that
>ons, have a return statement.

Chapter 4 Functions 163

Figure 4-10 shows two functions, first and second. The function
first lias been declared to return an integer value. Its return statement
therefore contains the expression x + 2. When the return statement is exe-
cuted, the expression is evaluated and the resulting value is returned. The
function second returns nothing; its return type is void. It therefore needs no
return statement—the end of the function acts as a void return. Again, we
strongly recommend that you include a return statement even for void func-
tions. In this case, the return statement has no expression; it is just com-
pleted with a semicolon.

Function return type
should be explicitly
\ defined ^

int first (...) void second (...)

return statement
should be used even if
^ nothing is returned ^

{ {

return (x + 2); return;

} // first // second}

FIGURE 4-10 Function Return Statements

Formal Parameter List
In the definition ol a function, the parameters are contained in the formal
parameter list. This list defines and declares the variables that will contain
the data received by the function. The parameter list is always required. If the
Function has no parameters—that is, if it does not receive any data from the
calling function—then the fact that the parameter list is empty is declared
with the keyword void.

In C each variable must he defined and declared fully with multiple
parameters separated by commas. To make the parameter list easier to read
when there are multiple lines, we align the parameter types and their names
with tabs. Attention to these little details makes the code much easier to read
and understand.

In Figure 4- 1 1, the variables x and y are formal parameters that receive
data from the calling Functions parameters. Since they are value parame-
ters, copies of the values being passed are stored in the called Function’s
memory area. If the Function changes either of these values, only the copies
will be changed. The original values in the calling Function remain
unchanged.

Two values received
from calling function

parameter variables(int x,int y)
double average

{ y
double sum;
sum - x + y;
return (sum / 2);

local variable
sum 1

} // average
One value returned
to calling function

FIGURE 4-11 Function Local Variables

Local Variables
A local variable is a variable that is defined inside a function and used with-

out having any role in the communication between functions. Figure 4-11

shows an example of a function with both formal parameters and a local vari-
able, sum.

Formal and Actual Parameters

Formal parameters are variables that are declared in the header of the func-
tion definition.
Actual parameters are the expressions in the calling statement.
Formal and actual parameters must match exactly in type, order, and num-
ber. Their names, however,do not need to match.

Function Declaration
Function declarations consist only ol a function header; they contain no
code. Like I unction definition headers, function declaration headers consist
of three parts: the return type, the function name, and the formal parameter
list. Unlike the header lor the function definition, function declarations
terminated with a semicolon.

are

I he return type and the parameter list are required entries. If the pro*

gram has no parameters, we code void in the parentheses. If the program has
multiple parameters, we separate each type-identifier set with

I he C standard does not require identifier
ration's formal parameters. This does
tion declaration, however. In fact,
improved if names are used. One
do not need to he the

commas.
names for the function decla-

not prevent our using names in a lunc*

readability and understandahility are
point to note, however, is that the names

same in the function declaration and the function

Chapter 4 Functions 165

definition; on the other hand, if the types are not the same, we get a compile
error. The compiler checks the types in the function statements with the
types in the call to ensure that they are the same or at least compatihle. Ihe

to include the identifiers in the function declaration is docu-
major reason
mentation; therefore, their names should be meaningful. Don’t use generic

identifiers such as a or x.
Declarations are placed in the global declaration section before main.

Grouping all function declarations at the beginning of the program makes
them available whenever they are needed. Function declarations also provide
an excellent quick reference for functions used in the program, making them
excellent documentation.

Figure 4- 12 demonstrates several of these concepts. The function decla-

ration tells the program that a function named multiply, which accepts two

integers and returns one integer, will he called. That is all the compiler needs;

it does not need to know anything else to evaluate the call.

// Function Declaration
int multiply (int multiplier, int multiplicand);

int main (void)
{

int product;

product = multiply (6, 7);

7
42

return 0;
} // main

5int multiply l int x, int y)|^{ X 6
y 7return x * y;

} // multiply

Function Definition

FIGURE 4-12 Parts of a Function Call

Figure 4- 12 also demonstrates that the formal parameter names in the

declaration do not need to be the same as the actual parameter names. In this

the names in the function declarations are much more meaningful and
case
therefore should have been used in the function definition.

The Function Call
A function call is a postfix expression with precedence 16. The operand in a

function call is the function name; the operator is the parentheses set, (...),
which contains the actual parameters. The actual parameters identify the

166 Section 4.3 User-Defined Functions

be sent to the called function. They match the function's
d order in the parameter list. If the program has

commas.
values that are to

and he fifth shows the function multiply (a , b , as Us own first parameter.
The last example sums it all up: Any expression that reduces to a smgle value
can be passed as a parameter.

mu

multiply (a, 7)

multiply (a + 6, 7)

multiply ()

multiply (6, 7)
multiply (6,b)

multiply (multiply (a, b), 7)

expression ; expression

FIGURE 4-13 Examples of Function Calls

Functions can be classified by the presence or absence of a return value.
Functions that cannot return a value have a return type of void. Since these
types of functions do not have a value, they can be used only as a stand-alone
statement; that is, they cannot be included as part of an expression. All other
functions return a value and be used either as part of an expression or as
a stand-alone statement, in which case the value is simply discarded.

can

Function Examples
This section contains four examples of programs in which functions callfunctions. Look for the points they demonstrate.

EXAMPLE 4- 1 Print Least Significant Digit
Program 4-4 prints the least significant (rightmost) digit offrom the keyboard. any integer read

PROGRAM 4- 4 Print Least Significant Digit
/* This1 program prints the firstread from the keyboard

Written by:
Date:

digits of an integer2
3
4
5 */
6 tinclude <stdio . h>7

continued

Chapter 4 Functions 167

PROGRAM 4-4 Print Least Significant Digit (continued)

// Function Declarations
int firstDigit (int num);

8
9
10

int main (void)11
12 {

// Local Declarations
int number;
int digit;

13
14
15
16

// Statements
printf("Enter an integer: ");
scanf ("%d", &number);

17
18
19
20

digit = firstDigit (number);
printf("\nLeast significant digit is: %d\n", digit);

21
22
23

return 0;

> // main
24
25
26

==== firstDigit ====27
This function extracts the least significant digit

of an integer.
Pre

28
29

num contains an integer

Post Returns least significant digit.
30
31

*/32
int firstDigit (int num)33

34 {
// Statements

return (num % 10);

} // firstDigit

35
36
37

Results:
Enter an integer: 27

Least significant digit is: 7

Program 4-4 Analysis This extremely simple program demonstrates how to call a function from main. Note

that even though firstDigit is used only in main, its function declaration is at the
when firstDigit was executed, it returned 7,global level. In the sample run,

which was then put into digit and printed.

EXAMPLE 4-2 Add Two Digits
Lets write a function that extracts and adds the two least significant digits of

any integer number. The design is shown in figure 4- 14. It consists of four

168 Section 4.3 User-Defined Functions

functions, mam. addTwoDigits,firstDigit
,and secondDigit. The func-

uble understanding the structure charts.)
tro

main

addTwo
Digits

secondDigit

FIGURE 4-14 Design for Add Two Digits

The code is shown in Program 4-5.

PROGRAM 4-5 Add Two Digits
extracts and adds the two least

significant digits of an integer.

Written by:

/* This program1
2
3

Date:4
*/5
#include <stdio.h>6

7
// Function Declarations
int addTwoDigits (int num);
int firstDigit (int num);
int secondDigit (int num);

8
9
10

11
12

int main (void)13
14 {

// Local Declarations
int number;
int sum;

15
16
17
18

// Statements
printf("Enter an integer: ");
scanf ("%d", ^number);

19
20
21
22
23 addTwoDigits(number);

printf ("\nSum of last
sum =

24 two digits is: %d", sum);

continued

Chapter 4 Functions 169

PROGRAM 4-5 Add Two Digits (continued)

25
26 return 0;

} // main27
28

/* == addTwoDigits =========
Adds the first two digits of an integer,

num contains an integer

29
30
31 Pre

Post returns sum of least significant digits32
*/33
int addTwoDigits (int number)34

35 {
// Local Declarations

int result;
36
37
38

// Statements
result = firstDigit(number) + secondDigit(number);
return result;

> // addTwoDigits

39
40
41
42
43

===== firstDigit ====
Extract the least significant digit of an integer,

num contains an integer
Returns least significant digit.

44
45
46 Pre

Post47
*/48
int firstDigit (int num)49

50 {
// Statements

return (num % 10);
} // firstDigit

51
52
53
54

Extract second least significant (10s) digit
num is an integer
Returns digit in 10s position

/* =====55
56
57 Pre

Post58
*/59
int secondDigit (int num)60

61 {
// Local Declarations

int result;
62
63
64

// Statements
result = (num / 10) % 10;
return result;

} // secondDigit

65
66
67
68

continuec

Add Two Digits (continued)PROGRAM 4-5
Results:
Run 1

Enter an integer: 23
of last two digits is: 5

Sum

Run 2
integer: 8Enter an

Sum of last two digits is: 8

turd question asked by students when they first read this program is, "Why not

put firstDigit and secondDigit as in-line code in addTwoDigits?" This
to be an obvious way to code the problem. And aHer all, each or the

Program 4-5 Analysis A no

may seem
called functions is only one statement.

The answer is that, although each function is only one statement, it does a job that
can be used in other places. One of the principles of structured programming is that
processes should appear in a program in only one place. For example, we have used
the same code for firstDigit that we used in the first program. If a function is to be
reusable in this way, it must do only one thing. The short answer, then, is that it is better
structured programming. It is the nature of the task to be performed, not the amount of
code, that determines if a function should be used.

An interesting point to note is the way these two different digits were calculated. To
get the least significant digit, we took the 1Os modulus of the number. But to get the sec-
ond digit, we had to divide by 10. Can you figure out how to sum the digits in a three-
digit number? We will give you a chance to do this in the problems at the end of the
chapter.

Note that we tested the program with two different numbers, one containing only
one digit. It is often necessary to run the program with more than one test case. Another
test case that should be run is a negative number. What do you think would happen?
As a programmer, not only should you run several tests but you should predict the
results before you run the program.

EXAMPLE 4-3 Format Long Integer
Program 4-6 reads a long integer and prints it withthree digits, such as 123,456. The number is printed with leading zeros (sec

100 000
C Cati°n %03d in Statement 40) in ease the value is less than

a comma after the first

PROGRAM 4-6 Print Six Digits with Co
1 I / * This

mma
program reads long integers from the keyboardand prints them with

123,456 with r
Written by:
Date:

2
leading zeros in the form

a comma between 3rd
3

& 4 th digit .4
5

continued

Chapter 4 Functions 171

PROGRAM 4-6 Print Six Digits with Comma (continued)

*/6
#include <stdio.h>
// Function Declarations
void printWithComma (long num);

7
8
9
10

int main (void)11
12 {

// Local Declarations
long number;

13
14
15

// Statements
printf("\nEnter a number with up to 6 digits: ");
scant ("%ld", &number);
printWithComma (number);

16
17
18
19
20
21 return 0;

> // main22
23

/* =============== printWithComma ================
This function divides num into two three-digit
numbers and prints them with a comma inserted,

num is a six digit number
num has been printed with a comma inserted

24
25
26
27 Pre

Post28
*/29
void printWithComma (long num)30

31 {
// Local Declarations

int thousands;
int hundreds;

32
33
34
35

// Statements
thousands = num / 1000;
hundreds = num % 1000;

36
37
38
39

printf("\nThe number you entered is \t%03d,%03dM ,
thousands, hundreds);

40
41
42 return;

} // printWithComma43

Results:
Run 1

Enter a number with up to 6 digits: 123456

The number you entered is 123,456

continuec

Print Six Digits with Comma (continued!)
PROGRAM 4-6

Run 2
to 6 digits: 12

number with upEnter a

0 0 0 , 0 1 2entered isThe number you

. ~ • L _ „ cimnlp nroaram that has the makings of a very useful func-Prnnrnm 4-6 Anolvsis Once aaain, we nave a simple p 9 . ,
S'L t S? s i"c e ,his

9
[°g;c wiN be^over and over again, it must be in its own fund,on Note, however that more work ,s

needed to print numbers less than 100,000 correctly. However, we have not yet unre-
duced the tools to do the complete job. , ,

Again, we have used two test cases to show that more work must be done. An even
bigger problem occurs if we try to format a small negative number. Can you see what
the problem is? If not, code the problem and run it to see. We will explain how to han-
die these problems in Chapter 5.

as commas

EXAMPLE 4-4 Print Tuition for Strange College
Our next example calculates and prints the annual tuition for a student
enrolled in Strange College. In this college, students can take* an unlimited
number of units each term. Each term, the students are charged S10 per unit
plus a $10 registration fee. To discourage them from overloading, the college
charges $50 extra for each 12 units, or fraction thereof, a student takes after
the first 12 units. For example, if a student takes 13 units, the tuition is $190
($10 for registration, plus 13 times $10 for units, plus a $50 penalty for the
one extra unit). II a student takes 25 units, the tuition is $360 ($10 for regis-
tration, plus 25 times $10 for units, plus $100 for two penalty fees). The
design lor this problem is shown in Figure 4-15.

Strange
College Fees

calculateFee

termFee termFee termFee

FIGURE 4-15 Design for Strange College fees

The code for Strange College is shown in Program 4-7.
\\l

Chapter 4 Functions 173

PROGRAM 4-7 Strange College Fees
/* This program prints the tuition at Strange College.

Strange charges $10 for registration, plus $10 per
unit and a penalty of $50 for each 12 units, or
fraction of 12, over 12.

Written by:
Date:

1
2
3
4
5
6

*/7
#include <stdio.h>8

9
#define REG_FEE
#define UNIT_FEE 10
#define EXCESS FEE 50

10 10
1 1
12
13

// Function Declarations
int calculateFee (int firstTerm, int secondTerm,

int thirdTerm);
(int units);

14
15
16

int termFee17
18

int main (void)19
20 {

// Local Declarations
int firstTerm;
int secondTerm;
int thirdTerm;
int totalFee;

2 1
22
23
24
25
26

// Statements
printf("Enter units for first term: ");
scanf ("%d", &firstTerm);

27
28
29
30

printf("Enter units for second term: ");
scanf ("%d", &secondTerm);

31
32
33

printf("Enter units for third term:

scanf ("%d", &thirdTerm);
34
35
36

totalFee = calculateFee
(firstTerm, secondTerm, thirdTerm);

printf("\nThe total tuition is : %8d\n", totalFee);

37
38
39
40

return 0;

> // main
41
42
43

continual

174 Section 4.3 User-Defined Functions

Strange College Fees (continued)
PROGRAM 4-7

== calculateFee
total fees for the year.

of units to be taken each term.
the annual fees.

=========
Calculate the

pre The number

44
45
46

Post Returns47
*/48 , int secondTerm,
int calculateFee (int firstTerm

int thirdTerm)
49
50
51 {

// Local Declarations
int fee;

52
53
54

// Statements
fee = termFee

55
(firstTerm)

+ termFee (secondTerm)
+ termFee (thirdTerm);

56
57
58

return fee;
} // calculateFee

59
60
61

=== termFee ===============
Calculate the tuition for one term

units contains units for the term

Post The fee is calculated and returned

/* ===62
63
64 Pre
65

*/66
int termFee (int units)67

68 {
// Local Declarations

int totalFees;
69
70
71

// Statements
totalFees = REG FEE

72
73
74 + ((units - 1)/12 * EXCESS_FEE)

+ (units * UNIT_FEE);75
76 return (totalFees);

} // termFee77

Results:
Enter units for first term:
Enter units for
Enter units for third

10
second term: 20

term: 30

The total tuition iis : 780

Program 4-7 Analysis The most interesting aspect of Prnnm AT L
times in one function Let's look |

S ^°W We ca^ termFee three different
• look at how ,t works. The key statement folioc ws.

Chapter 4 Functions 175

fee = termFee (firstTerm)
+ termFee (secondTerm)
+ termFee (thirdTerm);

A function call is a postfix expression. Therefore, it evaluates from the left. To eval-
uate the expression (three function calls) on the right of the assignment operator, we first
evaluate the first expression, the call to termFee with the number of units for the first
term. When termFee completes the first time, the return value (110) replaces the call.
At this point, we have the expression shown below.

110 + termFee (secondTerm) + termFee (thirdTerm)

When termFee is executed a second time, its return value (260) becomes the
value of the second expression and we have

110 + 260 + termFee (thirdTerm)

After the third call to termFee, the expression on the right of the assignment oper-
ator is ready for evaluation. Its value is 780, which is assigned to fee.

At least two more tests are needed to completely evaluate this program. We would
run it with all three terms having 0 units and then do another test of 11, 12, and
1 3 units.

4.4 Inter-Function Communication
Although the calling and called function are two separate entities, they need
to communicate to exchange data. The data flow between the calling and
called functions can he divided into three strategies: a downward flow Irom
the calling to the called function, an upward flow Irom the called to the call-
ing function, and a bi -directional flow in both directions. Figure 4- 16 shows
the flow of data in these cases.

Calling FunctionCalling Function Calling Function

:
Called FunctionCalled Function Called Function

c. Bi-directionb. Upwarda. Downward

FIGURE 4-16 Data Flow Strategies

176 Section 4.4 Inter-Function Communication

Basic Concept
first discuss the general concept befor discuss how they are donee we

Let us
in C.

Downward Flow

^“o^rivsinThe^

opposite direction. In this strategy, copies of
the data items are passed from the calling function to the called I unction.

The called function may change the values passed, but the original values in

the calling function remain untouched. An example of this type of communi-
cation is passing data to a print function.

the calling function sends data to the called

Upward Flow
when the called function sends data hack toUpward communication occurs

the called function without receiving any data from it . A good example of this
of communication is when the called function reads data from the key-type

board that needs to be passed hack to the called function.

Bi-directional Flow
Bi-directional communication occurs when the calling function sends data
down to the called function. During or at the end of its processing, the called
function then sends data up to the calling function. For example, the calling
function may send data to the called function, which it manipulates and
sends up to the calling function.

C Implementation
Now let us examine how these three types of communication are imple-
mented in C. In the discussion that follows, it is important to remember that
the flow refers to the data. The data flow's down to the called function. The
data flows from the called function hack to the calling function.

Most programming languages have three strategies for inter-function
communication: pass by value, pass by reference, and return. The C lan-
guage, unfortunately, uses only the first and last strategies; there ireference in C. pass byis no

communirat ° ^3SS ^ Va,ue and return achieve three types of
communications between a calling and a called function.

Downward Communication

e rct (dved from the calling function. TheJLV v

Chapter 4 Functions 177

calling function sends a copy of each value to the called function; no data
(lows upward.

Figure 4- 1 7 demonstrates downward communication. Two data items are

passed from main to the downFun function. One data value is a literal, the
other is the value of a variable.

int main (void) void downFun (int x, int y)
{ {

int a;
return;
// downFundownFun (a, 15); >

// main}

FIGURE 4- 1 7 Downward Communication in C

Downward communication is one-way communication. I he calling
function can send data to the called function, hut the called function cannot

send any data to the calling function. Figure 4- 18 demonstrates one-way
communication.

// Function Declaration
void downFun (int x, int y);
int main (void)
{
// Local Definitions

int a = 5;
// Statements C

downFun (a, 15);,

printf("%d\n" , a
return 0;
// main

5 15a
prints 5 TI
); II

One-way
communication}

Itwvoid downFun (int x, int y)
{ X X 20 15y
// Statements

x = x + y;
return;
// downFun

Only a copy
}

FIGURE 4- 1 8 Downward Communication

Upward Communication
C provides only one upward direction flow, the return statement. \\ hile it
works well, only one data item can he returned. The only way that a called
function can pass multiple data items up to the calling function is to access

178 Section 4.4 Inter-Function Communication-F '» 1st
not allow us o .

variab|e in the calling function by its identifier.
solve the problem.words, we cannot access a

I herefore, we needf0 h(frallingfanction t0 Pass thc address of thc variable
to the called function. Given the variable's address, the called function
then put the data in the calling function. 1 he calling function needs to

declare a data variable to receive the data. The called function needs to
variable to store the address that it receives from the calling

The solution is
can

declare a
function.

In C, a variable that can store data is different from the variable that can
store an address. So the called function needs a special type of variable, an
address variable, or as it is called in C, a pointer variable, that points to the
variable in the called function.

The calling function needs to pass the address of a variable to receive thc
data from the called function. This action is a pass-by-value mechanism
although what is passed is not data, it is an address.

To get the address of a variable, we use the address operator (&). If the
of the variable in the calling function is x, we extract its address usingname

the address operator (& x) and pass it as a parameter in the function call. Thc
following example passes the addresses of a and b to a function named upFun.

upFun (& a , & b) ;

I he called function needs to declare that the parameter is to receive an
address; in other words, it needs to create an address variable. To declare
address variable, we use an asterisk (*) after the type. In other words, il x in
the calling I unction is ol type int , we need to declare and define a variable in
the called function of type int*. Ihis is done in the header of the called
function. For example, to define our upFun function ,
function header.

an

the followingwe use

void upFun (int* ax , int* ay)

I ^JJ
aster‘sk signifies that the variables ax and ay are not data variables

5u MTRESS variables holding the address of int variables. Note that theasterisk as used ,n the declaration belongs to the type not the variables (axand ay).

address parameter ^ function > we need l(> use the variable's

indirect access- rh • ^ t*lrou^ an address variable is known as

*asterisk is known as the inrli
change the data * For this reason, the

use an asterisk. This time tT ?pe?ltor- To change the data, we again
address variable’s name F

le astt*ns^ is put immediately in front ol the
function to 23, we would ^ l° C^ange tFe variable in the calling

u use the following statement.

Chapter 4 Functions 179

*ax = 23;

It is important to remember that these two uses of the asterisk, declaring
an address variable and indirectly accessing the data, play completely differ-
ent roles. The first asterisk, in the declaration, belongs to the type; the second
asterisk is an expression that indirectly accesses the variable in the called pro-
gram as shown in Figure 4- 19.

tvint main (void) void upFun (int* ax, int* ay)
{ {

int a;
int b;

*ax = 23;
*ay = 8;
return;

} // upFunupFun (&a, &b);

// main>

FIGURE 4-19 Upward Communication in C

We need to emphasize that when only one data item needs to he
returned, we use the standard return statement. Only use upward communi-
cation when multiple items need to be returned. Figure 4-20 demonstrates
the techniques for upward communication.

// Function Declaration
void upFun (int* ax, int* ay
int main (void)

Type includes{
// Local Declarations

int a;
int b;

// Statements
upFun (&a, &b);
printf("%d %d\n", a, b);
return
// main

823Address
operators. ba

Dereference0 ;
Prints 23 andjjT}

void upFun (int* ax, int* ay)
{
// Statements

*ax = 23;

jay = 8;—L
__̂

>eturn;

ax ay

Address
(pointer)

FIGURE 4-20 Upward Communication

ed to use the s symbol in front of the data variable when we call the

mbol after the data type when we declare the
1. Wene

function.
2. We need to use the * sy

address variable , ,

3. We need to use the * in front of the variable when we store data indirectly.

Bi-direction Communication
The strategy described for the upward direction
allow the communication in both directions. The only difference is that tin
indirect reference must be used in both sides of the assignment statement
The variable in the called function first is accessed for retrieving using tk
address variable in the right-hand side. The same parameter is accessed agar
to store a value in the left-hand side. We demonstrate bi-directional accessii
Figure 4-21.

easily be augmented !can

4int main (void) void biFun (int* ax , int* ay)
{ {

int a;
int b;

*ax = *ax + 2 ;
*ay = *ay / *ax;
return;

} / / biFunbiFun (& a , & b) ;

} / / main

FIGURE 4-21 Bi-directional Communication in C

Figure 4-22 demonstrates bi-directional communication flow.

Communication Summary
Let’s summarize the rules for inter-function communication. Like man
aspects ol learning a language, they must be memorized.

1. Rules lor downward communication
a. Use values in the functi
h. Use ,

data values.
call to pass data ,

appropriate data types in the functi
ion

parameter list to receive tkion

the loeon to access

Chapter 4 Functions 181

2. Rules for upward and bi-directional communication

a. Use &variableName in the function call to pass a reference to the
variable.

b. Use type* in the function parameter list to receive the variables
address.

c. Use *parameterName in the function to reference the original variable.

// Function Declaration
void biFun (int* ax, int* ay);

int main (void)
{
// Local Definitions

int a = 2;
int b = 6;

// Statements

& 4 £ 2
ba

biFun (&a, &b);

return 0;
} // main

Dereferences^)

kvoid biFun (int* ax, int* ay)
{ ax ay

*ax = *ax + 2;
*ay = *ay / *ax;
return;

} // biFun

FIGURE 4-22 Bi-directional Communication

Communication Examples
In this section we write some short programs to demonstrate function com-
munication.

EXAMPLE 4-5 Exchange Function
Let s look at a program that uses the indirection operator to dereference data.
One common process that occurs often in programming is exchanging two

pieces of data. Let ’s write a function that, given two integer variables,
exchanges them. Since two variables are being changed, we cannot use the
return statement. Instead we pass addresses to make the changes.

j

182 Section 4.4 Inter-Function Communication
two variables: We

First make sure you understand how to exchange
F.rst, make

^^ as shown below.

/ / This won ' t work

/ / Result is y in both

can-

not simply assign va

x = y;
y - x;

If you carefully trace these two statements, you will see that the original

in both variables. Therefore, to exchange variables, we
variable to hold the first value while the exchangevalue of y ends up

need to create a temporary
is being made. The correct logic is shown below.

/ / value of y saved
/ / x now in y
/ / original y now in x

hold = y;
= x ;y
= hold;x

The exchange function and its data flow are shown in Figure 4-23. First,
examine the function declarations in Figure 4-23 carefully. Note the asterisk
in the declaration of numl and num2. The asterisk is used with the type decla-
ration to specify that the type is an address—in this case, the address of an
integer. Now, look at the call statement in main.Since we will change the val-
ues of a and b in main, we need to pass their addresses. The address operators
(&) tell the compiler that we want their addresses passed, not their values.

// Function Declarations
void exchange (int* numl, int* num2);
int main (void)

Note that the type
includes an asterisk.

{
// Local Definitions

int a;
int b;

// Statements
ba

exchange (&a, &b);
Dereferences

return 0;
} // main

Address
operators

void exchange (int* numl, int* num2)

// Local Definitions
int hold;

// Statements
hold
*numl
*num2 =
return;

} // exchange

K numl num2

numl and num2
are addresses

= *numl;
= *num2;

hold;

Note the indirection)
operator is used for

dereferencing.

FIGURE 4-23 Exchange Functiont*

V

Chapter 4 Functions 183

Now, look at the statements in exchange. First, we copy numl’s value
to hold. Since hold is a local variable, it is treated the same as any local
variable—no special operators are required. However, numl contains the
address of the data we want, not the data itself. To get the value it is referring
to, we must dereference it . This is done with the indirection operator, the
asterisk (*). The statement is shown below.

hold = *numl;

In the same manner, we can now dereference num2 and copy it to numl

and then complete the exchange hy copying hold to num2.These statements
are seen below'.

*numl = *num2;
*num2 = hold;

Note that with the exception of hold, all of the data movement is done in
the calling program’s area. This is the power of the indirection operator.

Here is another simple example, one that uses both pass-by-value and
pass-by-address parameters. We need to write a function that , given two
numbers, calculates both the quotient and the remainder. Since we can ’t
return two values, we will pass the addresses where we want the quotient and
remainder stored. This problem is shown in Figure 4-24.

tv// Function Declarations b quot rema
void divide (int divnd, int divsr,

int* quot, int* rem); K][Z
int main (void)
{
// Local Declarations

int a;
int b;
int quot;
int rem;

// Statements

divide (a, b, ", &rem);

return 0;
// main}

void divide (int divnd, int divsr
int* quot, int* rem)

// Statements 14
{ divnd quot rem
*quot = divnd / divsr;
*rem = divnd % divsr;
return;
// divide>

jFIGURE 4-24 Calculate Quotient and Remainder

184 Section 4.4 Inter-Function Communication

Note that the first two parameters are pass by
minedlV1^cause their types are just inf there are no asterisks

addresses. The last two parameters are addresses.
references to them in the function must

Let’s exa
value. You can tell this
indicating that they
Their types are int *; therefore, any

the indirection operator.
Now look at the call in main

using their identifiers. They are primary expressions

tents of the variable. On the other hand, quot and rem are passed as

addresses by using the address operator. In this case, the value of the primary
d by the address operator and the identifier is the address of

address value rather than a data value.

are

use are simply passed by
whose value is the

. Note that a and b
con-

expression create
the variable. Therefore, we pass an

As the programmer, it is our job to know what needs to be passed, a value
or an address, when we write a call. Similarly, when we use the parameters in

the called program, we must remember to use the indirection operator when
we have an address.

Let’s use divide in a program that reads two integers, divides them, and
then prints the quotient and the remainder. The design for this program is

shown in Figure 4-25.

Quotient
Remainder

getData divide print

FIGURE 4-25 Quotient and Remainder Design

The code is shown in Program 4-8.

PROGRAM 4-8 Quotient and Remainder
1 /* This program reads two integers and then prints the

quotient and remainder of the
by the second.

2 first number divided
3
4 Written by:

Date:5
6 */
7 ^include <stdio.h>
8
9 / / Function Declarations

void divide10 (int dividend,
int*

int divisor ,
quotient , int* remainder) ;

11

c-
continue

S - ^

Chapter 4 Functions 185

PROGRAM 4-8 Quotient and Remainder (continued)

void getData (int* dividend, int* divisor);
void print

12
(int quotient, int remainder);13

14
int main (void)15

16 {
// Local Declarations
int dividend;
int divisor;
int quot;
int rem;

17
18
19
20
21
22

// Statements
getData (÷nd, &divisor);
divide (dividend, divisor, ", &rem);
print (quot, rem);

23
24
25
26
27
28 return 0;

} // main29
30

/*31 ================== getData ==================
This function reads two numbers into variables
specified in the parameter list.

Nothing.
Data read and placed in calling function.

32
33
34 Pre

Post35
*/36
void getData (int* dividend, int* divisor)37

38 {
// Statements

printf("Enter two integers and return: ");
scanf ("%d%d", dividend, divisor);
return;

> // getData

39
40
41
42
43
44

This function divides two integers and places the

quotient/remainder in calling program variables

dividend & divisor contain integer values

quotient & remainder calc'd

/* ===45
46
47
48 Pre

Post49
*/50
void divide (int dividend, int divisor,

int* quotient, int* remainder)
51
52
53 {

// Statements
quotient = dividend / divisor;

54
55

jcontinued

186 Section 4.5 Standard Functions

nd Remainder (continued)
PROGRAM 4-8 Quotient a

= dividend % divisor;
remainder
return;
// divide

56
57

}58
59 === print =========

the quotient and the remainder/ * -60
This function prints

quot contains the quotient
the remainder

61
Pre62

rem contains
Post Quotient

63
and remainder printed

64
*/65
void print (int quot, int rem)

66
67 {
68 // Statements

printf ("Quotient
printf ("Remainder: %3d\n"

return;
72 > // print

: %3d\n", quot);
, rem);

69
70
71

Program 4-8 Analysis First, look at the design of this program. Note how main contains only calls to sub-

functions. It does no work itself; like a good manager, it delegates all work to lower
levels in the program. This is how you should design your programs.

Study the getData function carefully. First note that the parameters identify the
variables as addresses. Verify that they contain an asterisk as a part of their type. Now
look at the scanf statement carefully. What is missing? There are no address operators
for the variables! We don't need the address operators because the parameters are
already addresses. We have used the address operator (&) up to this example to tell the
compiler that we want the address of the variable, not its contents. Since the parame-
ters were passed as addresses (see Statement 24), we don't need the address operator.

Now study the way we use quotient and remainder in divide. We pass
them as addresses by using the address operator. Since we are passing addresses, we
can change their values in main. In the function definition, the formal parameters show
these two parameters to be addresses to integers by showing the type as int * (see
Statement 52). To change the value back in main,we use the indirection operator when
we assign the results of the divide and modulo operations.

4.5 Standard Functions
C pro\ idts a rich collection of standard functions whose definitions have

ecn written and arc reads to be used in our programs. To use these func-
tions. we must include their function declarations. The function declarations
or these Junctions are grouped together and collected in several header files.

°r
' "•he function declaration, f. ^

Chapter 4 Functions 18/

Figure 4-26 shows how two of the C standard functions that we have
used several times are brought into our program. The include statement
causes the library header file for standard input and output (stdio.h) to be
copied into our program. It contains the declarations for print/ and scunf .
Then, when the program is linked, the object code for these functions is com-
bined with our code to build the complete program.

^include <stdio.h> t=̂ r- MGenerated from
stdio header file

int scanf(...);
int printf(...);

int main (void)int main (void)
{{ ...

scant(...); scant (...);
Our program

printf (...); printf(...);

return 0;
} // main

return 0;
} // main

int scant(...)
{

return
} // scant

... f

Definitions
added by linker

int printf(...)
{

return
} // printf

... ,

FIGURE 4-26 Library Functions and the Linker

Math Functions
Many important library functions are available for mathematical calculations.
Most of the function declarations for these functions are in either the math
header file (math.h) or standard library (stdlib.h). In general, the integer
functions are found in stdlib.h.

Absolute Volue Functions
The functions described in this section return the absolute value of a num-
ber. An absolute value is the positive rendering of the value regardless ol its

sign. There are three integer functions and three real functions.
The integer functions are absf labs, and Hubs. For abs the parameter must

he an int and it returns an int . For labs the parameter must be a long int , and
it returns a long int . For Hubs the parameter must be a long long int , and it

returns a long long int .

// stdlib.h
// stdlib.h
// stdlib.h

number);(intabsint number);labs (longlong
long number);

long 11abs (longlong

jw.=:«ss£Kites;
double version is named fabsl.

// math.h
// math.h
// math.h

number);
number);

fabs (double
fabsf (float
fabsl (long double number);

double
float
long double

EXAMPLE 4-6 Absolute Numbers

returns 3
returns 3.4

abs (3)
fabs (-3.4)

Complex Number Functions
The functions for manipulating complex numbers are collected in the complexJi
header file. Some of the complex number functions are shown below.

// absolutecabs (double complex
cabsf (float complex

number);
number);

double
float
long double cabsl (long double complex number);
double carg (double complex

cargf (float complex
number);
number);

long double cabsl (long double complex number);
float // argument

double
float

creal (double complex // realnumber);
number);

long double creall (long double complex number);

crealf (float complex

double
float

cimag (double complex number); // imaginary
cimagf (float complex number);

long double cimagl (long double complex number);

Ceiling Functions
A ceiling is the smallest integral value greater than or equal to a numher. For
e\am|) e, t e cei ing o(3.0000001 is 4. If we consider all numbers as a con-muous range from minus infinity to plus infinity (Figure 4-27), this functionmoves the number right to an integral value.

t-
u

Chapter 4 Functions 189

ceil (+1.1)
. is +2.C)

ceil (-1.9)
. is -1.(K

. -2.0 -1.0 1.0 2.00 +

FIGURE 4-27 Ceiling Function

Although the ceiling functions determine an integral value, the return

type is defined as a real value that corresponds to the argument. The ceiling
function declarations are

double
float

ceil (double
ceilf (float

long double ceill (long double number);

number);
number);

EXAMPLE 4-7 Ceiling Function

ceil (-1.9)
ceil (1.1)

returns -1.0
returns 2.0

Floor Functions
A floor is the largest integral value that is equal to or less than a number (see

Figure 4-28). For example, the floor of 3.99999 is 3.0. Again, looking at num-

bers as a continuum, this function moves the number left to an integral value.

floor (-1.1)
^ is -2.0^

floor (+1.9). is +1.0^

1.0 2.0. -2.0 -1.0 0 +

FIGURE 4-28 Floor Function

The floor function declarations are

floor (double
floorf (float

long double floorl (long double number);

number);
number);

double
float

190 Section 4.5 Standard Functions

EXAMPLE 4-8 Floor Function

-2.0floor (-1.1) returns
floor (1.9) returns 1 . 0

Truncate Functions
The truncate functions return the integral in the d.rect.on of 0. They are the
same as floor function for positive numbers and the same as ceiling function
for negative numbers. Their function declarations are

number);
number);

trunc (double
truncf (float

double truncl (long double number);

double
float
long

EXAMPLE 4-9 Truncate Function

trunc (-1.1) returns -1.0
trunc (1.9) returns 1.0

Round Functions
The round functions return the nearest integral value. Their function declara-
tions are

double
float

round (double
roundf (float

number);
number);

long double roundl (long double number);

In addition to the real round functions, C provides two sets that return a long
int or a long long int . Note that there is not a round function that
int .1heir function declarations are

returns an

long int
long int
long int

lround (double number);
lroundf (float number);
lroundl (long double number);long long int llround (double

long long int llroundf (float
long long int llroundl (long double

number);
number);
number);

EXAMPLE 4-10 Round Function

round (-1.1)
round (1.9)
round (-1.5)

returns -1.0
returns 2.0
returns -2.0

Chapter 4 Functions 191

Power Function
The power (pow) function returns the value of the x raised to the power y

that is, xy. An error occurs if the base (x) is negative and the exponent (y) is
not an integer, or if the base is zero and the exponent is not positive. The
power function declarations are

double
float

pow (double
powf (float

long double powlf (long double nl, long double n2);

nl, double
nl, float

n2);
n2);

EXAMPLE 4-11 Power Function

pow (3.0, 4.0)
pow (3.4, 2.3)

returns 81.0
returns 16.687893

Square Root Function
The square root functions return the non-negative square root of a number.
An error occurs if the number is negative. The square root function declara-

tions are

double
float

sqrt (double
sqrtf (float

long double sqrtlf (long double nl);

nl);
nl);

EXAMPLE 4-12 Square Root Function

sqrt (25) returns 5.0

Random Numbers
A random number is a number selected from a set in which all members have
the same probability of being selected. Random numbers are useful in many
areas of computer science. Two examples are application testing and gaming.

Random Number Generation
Because of their usefulness, most languages provide functions to generate

random numbers. Each time the function is called, it generates another num-
ber. The function that generates random numbers uses a formula that has
been mathematically designed to ensure that each number in the set in fact
has the same probability of being selected; in other words, to ensure that
each number is truly random. As a part of the formula, the function uses the
previous random number. 1he design is shown in Figure 4-29.

192 Section 4.5 Stondord Functions

Next
NumberRandom Number

FunctionPrevious
Number

FIGURE 4-29 Random Number Generation

derstand the basic design of a random number generator,

a logical question is “How is the first random number generated?" The
answer is from a seed. In C, we can use the default seed provrded by the sys-

(1) or we can specify our own seed.
Because C uses only one algorithm to generate random numbers, the

series it produces is a pseudorandom number series. Only by using differ-
ent seeds can we generate different random series. Calling the random
function several times generates a series of random numbers as shown in
Figure 4-30.

Now that we un

tem

First
^ Number

Random Number
FunctionSeed

Second
^ Number

Random Number
^ Function

FIGURE 4-30 Generating a Random Number Series

We can create the same series or a different seri
each time we — _ series of random numbers

program. Some programs require that the series be the
program runs; others require that the series be different

control the type of series by our choice of seeds.

run our
same each time the
each time. We

Random Numbers in C
c provides two functions to build a random number series, seed random^ and rand°m^Th-e functions are found in stdlib.h.
Seed Random Number Function
Hie seed random function
Its I unction declarati

n, (srand), creates the starting seed for a number series•on is

void srand (unsigned int seed);

Chapter 4 Functions 193

EXAMPLE 4-13 Generate the same series in each run
To generate the same number series in each run, we can either omit srand or
we can provide a constant seed random, preferably a prime number, such
as 997.

srand (997);

EXAMPLE 4-14 Generate a different series in each run
To generate different series in each run, we use the time of day as the seed.
The C call for the time, which requires the time.h library, is used in the fol -
lowing example.

srand(time (NULL));

Whichever series we need, srand shoidd be called only once lor each ran-
dom number series, usually only once in a program.

srand must be called only once for each random number series.

Random Number Function
The random number function, (rand) returns a pseudorandom integer
between0and RAND_MAX, which is defined in the standard library as the larg-
est number that rand can generate. The C standard requires that it be at least
32,767. Each call generates the next number in a random number series. The
random number function declaration is

int rand (void);

EXAMPLE 4- 15 Program to create a different series in each run
Program 4-9 is a simple program that prints three random numbers. Because
we seed the random number generator with the time of day, each program
execution generates a different series. We have run it twice to demonstrate
that the random numbers are different.

PROGRAM 4-9 Creating Temporal Random Numbers
/* Demonstrate the use of the time function to generate

a temporal random number series.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>6

continuec

194 Section 4.5 Standard Functions

| Random Numbers (continued)
PROGRAM 4-9 Creating Tempora

tinclude <stdlib.h>

include <time.h>
7
8
9

int main (void)10
{11
/ / statements

srand (time (NULL)) ;
12 // Seed temporally
13
14

printf (" %d \ n " , rand ()) ;

printf (" %d \ n" , rand ()) ;

printfr %d \ n" , rand ()) ;

15
16
17
18

return 0 ;
} / / main

19
20

Results:
First Run

9641
16041
6350

Second Run
31390
31457
21438

EXAMPLE 4-16 Program to create the some series
Program 4-10 is a simple program that prints three random numbers.
Because we seed the random number generator with a constant, each pro-
gram execution generates the same series. We would have also generated the
same series if we didn't use srand . We have
the random numbers are the

run it twice to demonstrate that
same.

PROGRAM 4-10 Creating Pseudorandom Numbers
l /* Demonstrate the

generate a pseudorandom number
Written by:
Date:

use of the srand function to
series .2

3
4
5 */
6 # include <stdio.h>

include <stdlib.h>
tinclude <time. h >

7
8
9

c-
continue*

\\

Chapter 4 Functions 195

PROGRAM 4-10 Creating Pseudorandom Numbers (continued)

int main (void)10
1 1 {

// Statements
srand(997);

12
13
14

printf("%d\n",
printf("%d\n",
printf("%d\n",

15 rand());
rand());
rand());

16
17
18
19 return 0;

} // main2 0

Results:
First Run

10575
22303
4276

Second Run
10575
22303
4276

Using Random Numbers
The numbers returned by the random number generator are in a large range.
The C standard specifies that it must he at least 0 to 32,767. W hen we need
a random number in a different range, we must map the standard range into

the required range. Two common ranges are a real-number series, usually 0.0
to 1.0,2 and an integral range, such as 0 to 25 or 1 1 to 20.

! !!']

Generating Random Integrals
To generate a random integral in a range x to y, we must first scale the num-
ber and then, if x is greater than 0, shift the number within the range. We
scale the number using the modulus operator. For example, to produce a ran-
dom number in the range 0...50, w'e simply scale the random number as

shown below. Note that the scaling factor must be one greater than the high-
est random number needed.

rand () % 51

Modulus works well when our range starts at 0. But what il we need a

different range? In that case, we must shift the result. For example, suppose

2. Note that 0.0 is included in the range but 1.0 is not. The maximum number is 0.99999999.

196 Section 4.5 Standard Functions

L.r between 3 and 7 (Figure 4-31). If we call randwe want a random nu
^ bc 0 through 7. To convert to theand then use modu'“ determine our modulus factor by subtracting the start-correct range we

divjsor (g) and then adding the starting point

« number.Th»., f«- -I*." 3 8'
makes the modulus di\isor 5.

oh RAND

Scaling

RAND MAX*4
Shifting

7 RAND_MAX

FIGURE 4-31 Random Number Scaling for 3-7

Generalizing the algorithm, we get

rand () % range + minimum

where range is (maximum - minimum) + 1, minimum is the minimum num-ber and maximum is the maximum number in the desired range. For example,to create a random number in the range 10-20, we would use the followingexpression:

range = (20 - 10) + 1;
randNo = / / 11rand() % range + 10;

Program 4-11 generates a random number
Generating Random Numbers in the Range 10 to 20I i '

series in the range 10 to 20.
PROGRAM 4- 11

l /* Generate a random series in the range 10 to 20.2 Written by:
Date:3

4 */
5 iinclude

^include
#include

<stdio.h>
<stdlib.h>
<time.h>

6
7
8
9 int main (void)

continued
i i i

Chapter 4 Functions 197

PROGRAM 4-11 Generating Random Numbers in the Range 10 to 20 (continued)

10 {
// Local Declarations
int range;

11
12
13

// Statements
srand(time(NULL));
range = (20 - 10) + 1;

14
15
16
17

printf("%d",
printf(" %d”,
printf(" %d\n", rand() % range + 10);

18 rand() % range + 10);
rand() % range + 10);19

20
21
22 return 0;

> // main23

Results:
10 11 16

Generating a Real Random Number Series
To generate a real random number series between 0.0 and 1.0 we divide the
number returned by the random number generator by the maximum random
number(RAND_MAX),which is found in stdlib.h, and then store it in a real num-
ber type. Program Program 4-12 demonstrates the generation of a real ran-
dom number series in the range ol 0 to 1.

PROGRAM 4-12 Generating Random Real Numbers
/* Generate a real random series in the range 0 to 1.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

5
6
7
8

int main (void)9
10 {

// Local Declarations
float x;

1 1
12
13

// Statements
srand(time(NULL));

14
15
1 6

continues

198 Section 4.6 Scope

g Random Real Numbers (continued)

/ RAND_MAX ;

/ RAND_MAX ;

/ RAND_MAX ;

PROGRAM 4-12 Generatin
x = (float) rand ()

printf ("%f " r x) ;

x = (float) rand ()

p r in t f (" %f" i x) '
x = (float) rand ()

p r in t f (" % f \n" » x) ?

17
18
19
20
2 1
2 2
23

r e t u rn 0;

25 } / / ma in
24

Results:
0 .782006 0 .264260 0 .348460

To scale a random real number into a range other than 0.0 to 1.0 (exclu-
sive), we first generate the random number as we did in Program 4-12. Then

scale it to the new range. For example, to generate random real num-
bers in the range 100.0 to 300.0 (exclusive), we multiply the random number
by the range (200.0) and then add the minimum (100.0). Using the results
from Program 4-12, our random real numbers would be 256.4012, 152.852,
and 169.692.

we re-

4.6 Scope
Scope determines the region of the program in which a defined object is
visible—that is, the part of the program in which we can use the object’s
name. Scope pertains to any object that can be declared, such as a variable or
a function declaration. It does not pertain directly to precompiler directives,
such as define statements; they have separate rules. Scope is a source pro-
gram concept: It has no direct bearing on the run-time program.

To discuss the concept of scope, we need to review two concepts. First, a
block is zero or more statements enclosed i
functions body is enclosed in a set of braces; thus, a body is also a block. A
block has a declarations section and a statement section. This concept gives
us the ability to nest blocks within the body of a function and allows each
block to be an independent group of statements with its own isolated defini-
tions. Second, the global
are outside functions. Figure 4-32 i
cept of global area and blocks.

set of braces. Recall that ain a

of our program consists of all statements thatarea
graphical representation of the con-is a

An object's scope extends from its declarativariable is in scope if it is visible to theare in scope from their
- ion until the end o f its block. A

statement being examined. Variables
point of declaration until the end of their block.

V|ik. i V

Chapter 4 Functions 199

/* This is a sample to demonstrate scope. The techniques

used in this program should never be used in practice.
*/
#include <stdio.h>
int fun (int a, int b); Global area

i

int main (void)
{

iint a;
int b;
float y;

main s area

// Beginning of nested block
float a = y / 2;
float y;
float z;

{

Nested block
area

z = a * b;

} // End of nested block

// End of main}

int fun (int i, int j)
{

int a;
int y;

fun's area

} // fun

FIGURE 4-32 Scope for Global and Block Areas

i

Global Scope
The global scope is easily defined. Any object defined in the global area of a

program is visible from its definition until the end of the program. Referring
to Figure 4-32, the function declaration for fun is a global definition. It is vis-
ible everywhere in the program.

Local Scope
Variables defined within a block have local scope. They exist only from the
point of their declaration until the end ol the block (usually a function) in

which they are declared. Outside the block they are invisible.
In Figure 4-32, we see two blocks in main. The first block is all of main.

Since the second block is nested within main , all definitions in main are visible

J

200 Section 4.7 Programming Example — IncrementalDeveJopmerU

, M L local variables with an identical name are defined. In the

these circumstances, the integer \ aridutc

ion until the declaration of the floating-point variable a m the nested block.

At that point, main’s a can no longer be referenced m the nested block. Any

statement in the block that references a will get the float version. Once we

reach the end of the nested block, the float a is no longer in scope and the

integer a becomes visible again.

Variables are in scope from declaration

inner ara-

until the end of their block.

We have also defined a new variable y. Note, however, that before we

defined the local y, we used main s y to set the initial value for a. Although
this is flagrant disregard for structured programming principles and should
never be used in practice, it demonstrates that a variable is in scope until it is

redefined. Immediately after using y, we defined the local version, so main's

version of y is no longer available. Since the variable b is not redeclared in

the block, it is in scope throughout the entire block.

It is poor programming style to reuse identifiers within the same scope.

Although mains variables are visible inside the nested block, the reverse
is not true. The variables defined in the block, a, y, and z, exist only for the
duration of the block and are no longer visible after the end of the block.

Within the function fun, which is coded after main, only its variables
and any global objects are visible. Thus, we are free to use any names we
want. In Figure 4-32, we chose to use the names a and y even though they
had been used in main.This is an acceptable practice; there is nothing wrong
with it.

4.7 Programming Example — Incremental Development
In Section 4 8, “Software Engineering." we discuss a concept known as “Top-

n eve opment. Top-down development, a concept inherent to modu-
m uTdmmln8'

L °WS US t0 deve'°P programs incrementally. By writing

malt ,88,08 Ca, T‘i0n Separatd* we are able to solve the program in

” b,,ta T'r *»*P,“e“ «•*-•To demonstrate the conce*vve begin the development of a calculator
chapters we add functionality.
then calls aTttrtu.dttt “‘"t!” ’T* tW° numbers- The Pr°gram
sum of the two numbers.

numbers. It concludes by displaying the

program in this section. In later

The design is shown in Figure 4-33 1,(mam), and three subfunctions consists ol a calculator function
’ 9etData > add, and printRes.

Chapter 4 Functions 201

iCalculator

iIi printResgetData add

FIGURE 4-33 Calculator Program Design

First Increment: main and getData
When we develop programs incrementally, we begin by writingan abbreviated
main function and one subfunction. Our first program also contains the nec-
essary include statements and any global declarations that are required. It is

shown in Program 4-13. Note that the program includes documentarx com-

ments as we understand them at this point in the development.

PROGRAM 4-1 3 Calculator Program — First Increment

/* This program adds two integers read from the

keyboard and prints the results.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>6

7
// Function Declarations
void getData (int* a, int* b);

8
9

10
int main (void)11

12 {
// Local Declarations

int a;
int b;

13
14
15
16

// Statements
getData (&a, &b);

17
18
19

a = %d; b = %d\n", a, b);printf("**main:20
2 1

return 0;
// main

2 2
23 >
24

===== getData ====
This function reads two integers from the keyboard.

25 =====
26

cont inued

-First Increment (continued)
PROGRAM 4-13 Calculator Program

and b are addresses
addresses

parameters a
Pre27 read into parameter
Post Data28

* /29
void getData (int* a, mt* *>)30
{31 two integer numbers: ") ;

printf("Please enter

scant("%d %d", a, b);
32
33
34 = %d; b = % d \ n " , *a , *b) ;

printf("**getData: a

return;
} // getData

35
36
37

Results:
Please enter two integer numbers: 8 13

**getData: a = 8; b = 13

**main: a = 8; b = 13

when writing even the sim-Program 4-13 Analysis It is very rare that we don't make some syntactical
plest programs. By compiling the program in its simplest state, we are able to easily
correct minor errors. We have also verified that the communication between functions
is valid; that is, we verify that the variable types match the parameter types and that
the data are being properly passed down and back up.

In this first incremental program, we pass the addresses of the two input variables
to the get data function. It then reads and prints the input to verify that the data are cor-
rectly read. When we are back in main, we again print the input data to verify that it
was properly passed up to main. Because we were careful to align the print formatting,
we can easily check that the values are the same.

errors

One point to note in the program is that we prefix temporary print statements with
two asterisks. This allows us to tell the difference between permanent output and debug-
ging output. As we move to the next increment, we remove the temporary statements
from the debugged functions.

Second Increment: add
Once the first compile has been run and verified, we are ready to write the
next function. While it is sometimes better to work in a different order, nor-
ma \ \\ e se ect the next function in the program flow as shown in the struc-

art, in t is case the add function. This incremental version of the
program is seen in Program 4-14.

PROGRAM 4-14 Calculator Program-Second Increment
1 /* This
2

and prints the results .
tinnedcon

Chapter 4 Functions 203

PROGRAM 4-14 Calculator Program — Second Increment (continued)

Written by:
Date:

3
4

*/5
#include <stdio.h>6

7
// Function Declarations

(int* a, int* b);
(int a, int b);

8
void getData
int add

9
10
11

int main (void)12
1 3 {

// Local Declarations
int a;
int b;
int sum;

1 4
1 5
1 6
1 7
1 8

// Statements
getData (&a, &b);

1 9
20
21

(a, b);
printf("**main: %d + %d = %d\n", a, b, sum);

return 0;
// main

22 sum = add
2 3
2 4
2 5 >
2 6

===== getData ====2 7
This function reads two integers from the keyboard.

Parameters a and b are addresses
2 8
2 9 Pre

Post Data read into parameter addresses3 0
*/3 1
void getData (int* a, int* b)3 2

3 3 {
printf("Please enter two integer numbers: ");

scanf("%d %d", a, b);
return;
// getData

3 4
3 5
3 6
3 7 }
3 8

=== add ===/* ====
This function adds two numbers and returns the sum.

a and b contain values to be added

3 9
4 0

Pre
Post Returns a + b

4 1
4 2

*/4 3
int add (int a, int b)4 4

4 5 {
// Local Definitions4 6

continuec

204 Section 47 Programming Example^lncrei^̂
Second Increment (continued)

PROGRAM 4-14 Calculator Program-
int sum;47

48
// Statements49

= a + b;50 sum
%d + %d = %d\n" , a , b , sum) ;

printf("**add:51
52

return sum;53
> // add54

Results:
Please enter two integer numbers: 8 13

8 + 13 = 21**add:
**main: 8 + 13 = 21

Program 4-14 Analysis Once again, we include print statements to verify that the add function received the
correct data and properly returned it to main.

Final Increment: Print Results
The third and final increment includes the print results function. We do not
need any debugging statements, however, because the print results function
prints everything as a part of its requirements. The final program is shown in
Program 4-15.

PROGRAM 4-15 Calculator Program-Final Increment
/* This program adds two integers read

from the keyboard and prints the results.
Written by:
Date:

1
2
3
4
5 */
6 #include <stdio.h>
7
8 // Function Declarations

void getData (int* a,
int add

9 int* b);
a, int b);
a' int b, int sum);

10 (int
void printRes (int11

12
13 int main (void)
14 {
15 // Local Declarations

continue

Chapter 4 Functions 205

PROGRAM 4- 1 5 Calculator Program — Final Increment (continued)

int sum = 0;18
19

// Statements
getData (&a, &b);

20
21
22
23 sum = add (a, b);
24

printRes (a, b, sum);
return 0;
// main

25
26
27 >
28
29 /*

This function reads two integers from the keyboard.
Parameters a and b

Post Returns a + b

30
31 Pre
32

*/33
void getData (int* a, int* b)34

35 {
printf("Please enter two integer numbers: ");

scanf(''%d %d", a, b);
return;
// getData

36
37
38
39 >
40

This function adds two integers and returns the sum.
Parameters a and b

Post Returns a + b

41
1

42
43 Pre
44

*/45
int add (int a, int b)46

47 {
// Local Definitions

int sum;
48
49
50

// Statements
sum = a + b;
return sum;

> // a d d

51
52
53
54
55

Prints the calculated results.
a and b contain input; sum the results

Data printed

/*56
57
58 Pre

Post59
*/60

continnet

PROGRAM 4-15 Calculator Program—Final Increment (continued)

void printRes (int a, int b, int sum)61
62 {

printf("%4d + %4d = %4d\n"/ a, b, sum);63
64 return;

> // printRes65

Results:
Please enter two integer numbers: 8 13

8 + 13 = 21

Chapter 4 Functions 207

4.8 Software Engineering
In this section we discuss three different but related aspects of software engi-
neering design: the structure chart, functional cohesion, and top-down
development.

Structure Charts
The structure chart is the primary design tool for a program. Therefore, you
should create it before you start writing your program. An analogy will help
you understand the importance of designing before you start coding.

Assume that you have decided to build a house. You will spend a lot ol
time thinking about exactly what you want. How many rooms will it need? Do
you want a family room or a great room? Should the laundry he inside the
house or in the garage? To make sure everyone understands what you want,

you will prepare formal blueprints that describe everything in detail. Even if
you are building something small , like a dollhouse for a child or a toolshed
for your back yard, you will make some sketches or plans.

Figuring out what you want in your house is comparable to determining
the requirements for a large system. Drawing up a set of blueprints parallels
the structure chart in the design of a program. All require advance planning;
only the level of detail changes.

Professional programmers use the structure chart for another purpose.
In a project team environment, before programmers start writing a program,
they must have its design reviewed. This review process is called a structured
walk-through. The review' team consists of the systems analyst responsible for
the area of the project , a representative of the user community, a system test

engineer, and one or two programmers from the project.
The design walk-through serves three purposes: First , it ensures that you

understand how your program fits into the system by communicating your
design to the team. If the design has any omissions or communication errors,
the team should detect them now. If you invite programmers w ho must inter-
face with your program, you will also ensure that the interprogram communi-
cation linkages are correct.

Second, the walk-through validates your design. In creating your design ,

you will have considered several alternative approaches to writing your pro-
gram. The review team will expect to see and understand the different
designs you considered and hear why you chose the design you are proposing.
They will challenge aspects of the design and suggest approaches you may
not have considered. The result of the review will be the best possible design.

Finally, the walk-through gives the test engineer the opportunity to assess

your programs testability. Ibis in turn ensures that the final program will be
robust and as error-free as possible.

! ?]

208 Section 4.8 Software Engineering

Structure Chart Rules and Symbols
Figure 4-34 shows the various symbols that we use to write a structure chart.
Although we include all symbols here for completeness, we w.ll d.scuss only

fh two colored symbols. We discuss the other symbols m Chapters 5 and 6.

In addition to the symbols, we will discuss several rules that we follow i„
designing our structure

Function Symbol
Each rectangle in a structure ... ,
that we write. Functions found in the standard C libraries are not shown. The

name in the rectangle is the name we will give to the function when we write

the program. It should be meaningful. The software engineering principle
known as intelligent names states that the names used in a program should be
self -documenting; that is, they should convey their intended usage to the
reader. In general, we use intelligent names for both functions and for data
names within our program.

chart.

chart (see Figure 4-34) represents a function

(a) Function

(b) Common (c) conditional (d) loop
function

(e) conditional
loop

T +T

it t:
(f) exclusive or (g) data flow (h) flag

FIGURE 4-34 Structure Chart Symbols

ou that we have explained that all names should be descriptive, we

ture" cZriTU tbeCaUSe WC W3nt t0 concen*rate on the format of a struc-

tifv the vaHn
^ *

M
3 j)drt‘cu *ar Program. The names in Figure 4-35 iden-

tity the various modules for discussion.
Reading Structure Charts
(main) consisToflbeelbW^’ In FiSure 4'35> Programme
According to the left-right rule PrOC6SS’ and

first call in the program is to initialize-

will

k.

Chapter 4 Functions 209

Alter initialize is complete, the program calls process. When process is

complete, the program calls endOfJob. The functions on the same level of a

structure chart are called in order from the left to the right.

Program
Name

i

endOfJobinitialize process

CA B

A1 A2

FIGURE 4-35 Structure Chart Design

The concept of top-down is demonstrated by process. When process

is called, it calls A, B, and C in turn. Function B does not start running, how-
ever, until A is finished. While A is running, it calls A1 and A2 in turn. In
other words, all functions in a line from process to A2 must be called before
Function B can start.

No code is contained in a structure chart. A structure chart shows only
the function flow through the program. It is not a block diagram or a flow-
chart. As a map of our program, the structure chart shows only the logical
flow of the functions. Exactly how each function does its job is shown by
algorithm design (flowchart or pseudocode). A structure chart shows the big
picture; the details are left to algorithm design.

I

Structure charts show only function flow; they contain no code.

Often a program contains several calls to a common function (see

Figure 4-34b). These calls arc usually scattered throughout the program.
The structure chart shows the call wherever it logically occurs in the pro-
gram. To identify common structures, the lower right corner ol the rectangle
contains a cross-hatch or is shaded. If the common function is complex and
contains subfunctions, these subfunctions must he shown only once. An
indication that the incomplete references contain additional structure

should he shown. This is usually done with a line below the function rectan-
gle and a cut (~) symbol. This concept is shown in Figure 4-36, which uses a

common function, average, in two different places in the program. Note,

210 Section 4.8 Software Engineering

phically show a function connected to two calling
however, that we never gra
functions.

printaveragesunaveragefun
T

calculateGetData

FIGURE 4-36 Common Functions in a Structure Chart

It is not necessary to show data flows (Figure 4-34g) and flags (see Fig-
4-34h), both of which represent parameters, although it may be helpful

in certain circumstances. If they are shown, inputs are on the left of the ver-
tical line and outputs are on the right. When they are included, the name of
the data or flag should also be indicated.

The structure chart rules described in this section are summarized in
Table 4- 1.

ure

1. Each rectangle in a structure chart represents a function written by the
programmer. Standard C functions are not included.

2. The name in the rectangle is an intelligent name that communicates
the purpose of the function. It is the name that will be used in the cod-
ing of the function.

3. The function chart contains only function flow. No code is indicated.
4. Common functions are indicated by a cross-hatch or shading in the

lower right corner of the function rectangle.
•> . Common calls are shown in a structure wherever they will be found in

program, t ey contain subfunction calls, the complete structureneed be shown only -

6. Data flows and flags are optional. When used, they should be named.

flows andT^ HagU 3re Sh°Wn °n the left of the vertical ^°utPutnous and Hags are shown on the right.

once.

TABLE 4-1 Structure Chart Rules

Chapter 4 Functions 211

Functional Cohesion
One of the most difficult structured programming concepts for new program-
mers is knowing when and how to create a function.

Functional cohesion is a measure of how closely the processes in a
function are related. A function that does one and only one process is func-
tionally cohesive. A function that contains totally unrelated processes is coin-
cidentally cohesive. We provide a few rules here to help you write cohesive
functions. For a complete discussion of the topic, see Page-Jones. *

Before we discuss the rules, however, you should understand why the
concept is important. Following are the three primary reasons for using struc-
turally cohesive functions:

1. Correctness: By concentrating on only one thing as you write a function,
you will be less apt to make an error. It is much easier to get a simple task
right than a complex task.

2. Maintainability: Production programs can live for years. The better struc-
tured a program, the easier it is to change. When programs are not well
structured, making a change in one part of the program often leads to
errors in other parts.

3. Reusability: Some processes are so common that they are found in many
programs. Good programmers build libraries of these functions so that
they don’t have to reinvent the function each time it is needed. I his not

only leads to quicker program development hut also reduces debugging
time, since the library functions have already been debugged.

f

Only One Thing
Each function shoidd do only one thing. Furthermore, all of the statements

in the function should contribute only to that one thing. For example, assume

that we are writing a program that requires the statistical measures of average

and standard deviation. The two statistical measures are obviously related, il
for no other reason than they are both measures of the same series of num-
bers. But we would not calculate both measures in one function. That would
he calculating two things, and each function should do only one thing.

One way to determine if our function is doing more than one thing is to

count the number of objects that it handles. An object in this sense is anything
that exists separately from the other elements of the function. In the previous

pie, the average and the standard deviation are two different objects.
As another example, to compute the taxes for a payroll program in the

state of California, we would deal with FICA taxes, state disability insurance,
state unemployment taxes, state withholding taxes, and federal withholding
taxes. Each of these is a different object. Our design should group all ol these

exam

3. IVleilir Page-Jones, The Practical Guide to Structured Systems Design , 2nd ed., Chap. 6.
(Englewood Cliffs, N.J.: Prentice Hall, 1988).

i

212 Section 4.8 Softwore Engineering

, and it should call subfunctions
taxes together in a function to calculate taxes,

to calculate each individual tax. This design is seen in Figure 4-37.

1
calculate

Taxes

Federal
Witholding

State
WitholdingSUISDIFICA

FIGURE 4-37 Calculate Taxes Design

In One Place
The corollary rule is that the one thing a function does should be done in
only one place. If the code for a process is scattered in several different and
unrelated parts of the program, it is very difficult to change. T herefore, all the
processing for a task should be placed in one function and, il necessary, its
subfunctions. This is the reason we created the function calculateTaxes in
Figure 4-37.

An example of scattered code common among programmers is found in
printing reports. Suppose that we needed to write a program that, among
other things, prints a report that includes a heading, some data with a total,
and then an end-of-report message. A well-structured solution is seen in Fig-
ure 4-38. It is quite common, however, to find the statements for each of
these subtasks scattered in main and other parts of the program.

print
report

print print print
end-of-reportheading data

FIGURE 4-38 Design For Print Report

Testability

aoSependently. WrS? We should be able to test its funC"

Let us simnlv m|L ° ^ 3 tecbnitlue for this in the next section.
we"-s,77«|TO- *7/ a a"J
separately from the rest of the h be testedprogram toprogram.

Chapter 4 Functions 213

Top-Down Development
It we have designed our program using structured programming concepts and
a structure chart, we can then proceed to implement it in a top-down fashion.

Referring again to Figure 4-35, “Structure Chart Design,” a top-down
implementation starts with the code for main only, shown in the structure
chart as ProgramName. The code for the first compile and test is shown in

Program 4-16.

PROGRAM 4-16 Top-down Development Example
/* Sample of top-down development using stubs.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
// Function Declarations7

int initialize (void);
int process
int endOfJob

8
(void);
(void);

9
10
1 1

int main (void)12
1 3 {

// Statements
printf("Begin program \n\n");

1 4
1 5
1 6

initialize ();
process ();
endOfJob ();
return 0;
// main

1 7
1 8
19
20
21 >
22

initialize/*2 3
Stub for initialize.2 4

*/2 5
int initialize (void)2 6

2 7 {
// Statements
printf("In initialize: \n");
return 0;

} // initialize

Stub for process

2 8
2 9
3 0
3 1
3 2 === process ===
3 3
3 4 */

int process (void)3 5
continues

214 Section 4.8 Software Engineering

Development Example (continued)
PROGRAM 4-16 Top-down

{3 6
/ / statements
printf ("In process
return 0 ;

} / / process
/ * ==========

Stub for endOfJob

3 7
: \n") ;

3 8
3 9
4 0

===== endOfJob4 1
4 2

* /4 3
int endOfJob (void)4 4

4 5 {
// Statements
printf("In endOfJob: \n");

return 0 ;

> // endOfJob

4 6
4 7
4 8
4 9

Results:
Begin program
In initialize:
In process:
In endOfJob:

Program 4-16 Analysis Note that this program has only the first four boxes from the structure chart:
ProgramName (main), initialize, process, and endOfJob. For each of
main's subfunctions, all that is included is a stub. A stub is the skeleton of a function
that is called and immediately returns. Although it is a complete function, it does
nothing other than to establish and verify the linkage between the caller and itself. But
this is a very important part of testing and verifying a program. At this point the pro-
gram should be compiled, linked, and run. Chances are that you will find some minor
problems, such as missing semicolons or errors between the function declarations
and the function definitions. Before you continue with the program, you should
rect these problems.

The top-down development then continues with the coding of
initialize, process, or endOfJob. Normally, you develop the functions
e t to rig t, but it is not necessary to do so. To develop process, you again
,tu lts su unct'ons, A, B, and C,and then test the program. This top-down

pment COntinues u"til the complete program has been coded and

cor-

t

Chapter 4 Functions 215

4.9 Tips and Common Programming Errors
I. Several possible errors are related to passing parameters.

a. It is a compile error if the types in the function declaration and Iunc-
tion definition are incompatible. For example, the types in the follow-
ing statements are incompatible:

double divide (int dividend, int divisor);

double divide (float dividend, float divisor)
{

// divide>
h. It is a compile error to have a different number of actual parameters in

the function call than there are in the function declaration,
c. It is a logic error if you code the parameters in the wrong order. Iheir

meaning will be inconsistent in the called program. For example, in
the following statements, the types are the same but the meaning ol
the variables is reversed:

double divide (float dividend, float divisor);

double divide (float divisor, float dividend)

{

// divide>
2. It is a compile error to define local variables with the same identifiers as

formal parameters, as shown below.

double divide (float dividend, float divisor)
{

Local Declarations
float dividend;

/ /

// divide}

3. Using a void return with a function that expects a return value or using a

return value with a function that expects a void return is a compile error.
4. Each parameter’s type must he individually specified; you cannot use

multiple definitions like you can in variables. For example, the following
is a compile error because y does not have a type:

double fun (float x, y);

216 Section 4.11 Summary

5 Forgetting the*n»colon the end of.funeliondech,ration is a eotnpj,
err?'Similarly, n»g.semicolon «' <he end of the header .f„„cta
definition is a compile error.

6 It is most likely a logic error to call a function from within itself or one of
'

its called functions. (This is known as recursion, and .ts correct use is

covered in Chapter 6.)

7. It is a compile error to

another function.
8. It is a run-time error to

when the function has no parameters.

attempt to define a function within the body of

code a function call without the parentheses,

even

/ / Not a call
/ / A valid call

printHello;
printHello () ;

9. It is a compile error if the type of data in the return statement does not

match the function return type.
10. It is a logic error to call srand every time you call rand.

4.10 Key Terms
absolute value
actual parameters
bi-directional communication
called function
calling function
ceiling
data flow
decomposition
dereferencing
downward communication
flag
floor
formal parameter list
function body
function call
functional cohesion
function declaration

function definition
function header
indirection operator
local variables
parameter passing
pass by reference
pass by value
pseudorandom number series
random number series
return
scaling (with random numbers)
scope
random number seed
stub
testability
top-down design
upward communication

4.11 Summary
In structured programming, a program is divjded^ modu,csEach module is designed to d

Modules in C
0 a specific task,

are written as functions.

Chapter 4 Functions 217

Each C program must have one and only one function called main.
A function can return only one value.

A function can he called for its returned value or for its side effect.

The function call includes the function name and the values of the actual
parameters to provide the called function with the data it needs to perform
its job.
Each actual parameter of the function is an expression. The expression
must have a value that can he evaluated at the time the function is called.
A local variable is known only in a function definition. Ihe local variables
do not take part in communication between the calling and the called
functions.
The general format for a function definition is

return type function_name (parameter list)
{
// Local Declarations

// Statements
} // function_name

If a function returns no value, the return type must he declared as void.
If a function has no parameters, the parameter list must he declared void.

J The actual parameters passed to a function must match in number, type,
and order with the formal parameters in the function definition.
When a function is called , control is passed to the called function. The
calling function "rests" until the called Function finishes its job.
We highly recommend that every function have a return statement. A
return statement is required if the return type is anything other than void .

Control returns to the caller when the return statement is encountered.

A function declaration requires only the return type ol the function, the
function name, and the number, types, and order of the formal parame-
ters. Parameter identifiers may be added for documentation hut arc not

required.
The scope of a parameter is the block following the header.

A local variable is a variable declared inside a block. I he scope ol a local
variable is the block in which it is declared.
Structure charts are used to design a program.
Structure charts contain no code.
Functional cohesion is a measure of how closely the processes in a func-
tion are related.

IJ Programs should he written using a top-down implementation with stubs
for functions not yet coded.

i

218 Section 4.12 Practice Sets

4.12 Practice Sets

Review Questions
The principles of top-down design and structured programming dictate

'
that a program should be divided into a mam module and its related
modules.
a. True
b. False

2. The function
a. True
b. False

3. Function calls that return void may not be used as a part of an expression.
a. True
b. False

4. The address operator (s) is used to tell the compiler to store data at an
address.

1

definition contains the code for a function.

a. True
b. False

5. Variables defined within a block have global scope.
a. True
b. False

6. The process of dividing a program into functions—which in turn are
divided into functions until they consist of only elementary processing
that is intrinsically understood and cannot be further subdivided—is
known as

a. charting
b. flow charting
c. factoring
d. programming
e. structuring

/ . Which of the following statements about function declaration and defini-
tion is true?
a. The function call is found in the called function.b. The function declaration requires that the parameters be named.c. 1 he function definition is done with a function declaration.d. 1 he function definition

the function’s task.
e. The function definition header

contains executable statements that perform

concludes with a semicolon (;).

Chapter 4 Functions 219

8. Which of the following is not a part of a function header?

a. name
b. parameter list
c. return type
d. title

9. Which of the following statements about function parameters is true?

a. Empty parameter lists are declared with the keyword void.
b. If there is only one parameter, the function list parentheses are not

required.
c. In the definition of a function, the parameters are known as actual

parameters.
d. Parameters are separated by semicolons.
e. The parameters in a function definition are defined in the function’s

body (local declaration section).
10. Which of the following statements about local variables is false?

a. A local variable’s value may be returned through a return statement.
b. Local variables are defined inside a function.
c. Local variables cannot he referenced through their identifiers outside

the function.
d. Local variables may be initialized with an initializer.
e. Local variables’ names can he the same as the function’s para-

meter names.
1 1. To tell the compiler to store data at an address, use the

a. address operator (&)
b. array operator ([])
c. dereference operator (#)
d. indirection operator (*)
e. pointer operator (A)

12. The function that returns the absolute value of a long integer is

a. abs
b. dabs
c. fabs
d. labs
e. tabs

13. Which of the following statements will generate a random number in the
range 30-50?

a. rand (33)

b. (rand () % 20) + 1

c. (rand () % 21) + 20

d. (rand () % 21) + 30

e. (rand () % 51) + 1

220 Section 4.12 Practice Sets

about structure charts is false?
14. Which of the following statements

charts are a replacement for flowcharts.
the primary design tool for a program.

structured walk-through to validate the
a. Structure
b. Structure charts are
c. Structure charts are used in a

design.
d. Structure charts can
e. Structure charts should be created before you start writing a program

be used to assess the testability of a program.

Exercises
1 5. Find any errors in the following function definition:

void fun (int x, int y)

{
int z;

return z;
> // fun

16. Find any errors in the following function definition:

int fun (int x, y)
{

int z;

return z;
> // fun

17. Find any errors in the following function definition:

int fun (int x, int y)
{

int sun (int t)

{

return (t + 3);
}

return z;
} // fun

1S. Find any errors in the following function definition:

void fun (int, x)
{

1
tinueicon

Chapter 4 Functions 221

return;
> // fun

19. Find any errors in the following function declarations:
a. int sun (int x , y) ;
b. int sun (int x , int y)

c. void sun (void , void) ;
d. void sun (x int , y float) ;

20. Find any errors in the following function calls:

a. void fun () ;
b. fun (void) ;
c. void fun (int x , int y) ;
d. fun () ;

2 I . Evaluate the value of the following expressions:

a. fabs (9 . 5)

b. fabs (-2 . 4)

c. fabs (-3 . 4)

d. fabs (-7)

e. f abs (7)

22. Evaluate the value of the following expressions:

a. floor (9.5)
b. floor (-2 . 4)

c. floor (-3 . 4)

d. ceil (9.5)

e. ceil (-2 . 4)

f. ceil (-3 . 4)

23. Evaluate the value of the following expressions when x is 3.5, 3.45, 3.76,

3.234, and 3.4567:

a. floor (x * 10 + 0 . 5) / 10

b. floor (x * 100 + 0 . 5) / 100

c. floor (x * 1000 + 0 . 5) / 1000

24. Define the range of the random numbers generated by the following
expressions:
a. rand ()

b. rand () % 4
c. rand ()

d. rand () % 52
e. rand () % 2 + 1

f. rand () % 52 - 5

25. What would he printed from Program 4- 17 when run using 3 5 as data?

% 1 0

% 10 + 1

illJ

222 Section 4.12 Practice Sets

PROGRAM 4-17 Program for Exercise 25

#include <stdio.h>1
2

// Function Declarations
int strange (int x, int y);3

4
5

int main (void)6
7 {

// Local Declarations
int a;
int b;
int r;
int s;

8
9

10
11
1 2
13

// Statements
scant("%d %d", &a, &b);

r = strange (a, b);

s = strange (b, a);

printf("%d %d", r, s);

return 0;
> // main

14
15
16
17
18
19
20

=== strange =====21 //

int strange (int x, int y)22
23 {

// Statements
return (x - y);

> // strange

24
25
26

26. What would be printed Irom Program 4-18 when run using 3 5 4 6 as data?

Program for Exercise 26PROGRAM 4-18
#include <stdio.h>1

2
// Function Declarations
int strange (int x, int y);

3
4
5

int main (void)6
7 {

// Local Declarations
int
int b
int c;
int d;
int r;

8
9 a ;
10
11
12
13

continued

1
Chapter 4 Functions 223

PROGRAM 4-18 Program for Exercise 26 (continued)

int
int t;
int u;
int v;

14 s;
15
16
17

i18
// Statements

scanf("%d %d %d %d", &a, &b, &c, &d);
19
20
21
22 r = strange (a, b);

s = strange (r, c);
t = strange (strange (s, d), strange (4, 2));
u = strange (t + 3, s + 2);
v = strange (strange (strange (u, a), b), c);

23
24
25
26
27

printf("%d %d %d %d %d", r, s, t, u, v);
return 0;
// main

28
29
30 >

//31 strange
int strange (int x, int y)32

33 {
// Local Declarations

int t;
int z;

34
35
36
37

// Statements
t = x + y?
z = x * y;
return (t + z);
// strange

38
39
40
41
42 >

27. Draw the structure chart for Program 4- 19. What output does it produce?

PROGRAM 4-19 Program for Exercise 27

tinclude <stdio.h>1
2

// Function Declarations
int funA (int x);
void funB (int x);

3
4
5
6

int main (void)7
8 {

// Local Declarations
int a;

9
10

continuec

224 Section 4.12 Practice Sets

for Exercise 27 (continued)PROGRAM 4-19 Program
int b;
int c;

11
12
13

// Statements
a = 10;
funB (a);
b = 5;
c = funA (b);
funB(c);
printf("%3d %3d %3d'\ a, b, c);
return 0;

} // main

14
15
16
17
18
19
20
21
22
23

int funA (int x)24
25 {

// Statements
return x * x;

> // funA

26
27
28
29

void funB (int x)30
31 {

// Local Declarations
int y;

32
33
34

// Statements
y = x % 2;
x /= 2;
printf ("\n%3d %3d\n", x, y);
return;

> // funB

35
36
37
38
39
40

Problems
28. Write a Junction to print your name, as shown below. Write a call as it

would be coded in a calling function, such as wain.

***************i< i'1'i'i'i'i'i'i'i'i'i'+**
* *
* Your Name Here *
* *

Chapter 4 Functions 225

29. Write a program that generates a random number from the following set:

1 , 2 , 3 , 4 , 5 , 6

30. Write a program that generates a random number from the following set :

1 , 4 , 7 , 1 0 , 1 3 , 1 6

31. Explain what is meant by the statement “a function should do only
one thing."

32. Code and run Program 4- 16, “Top-down Development Example,” to

demonstrate how stubs work.

33. Write a function to convert inches into centimeters. (One inch is 2.54
centimeters.) Then write a program that prompts the user to input a

measure in inches, calls the conversion function, and prints out the mea-
surement in centimeters.

34. Write a program that reads three integers and then prints them in the
order read and reversed. Use four functions: main , one to read the data,
one to print them in the order read , and one to print them reversed.

35. Expand the calculator program, Program 4-15, to calculate the differ-
ence, product, quotient, and modulus of the numbers. Calculate the
quotient and modulus in one function.

36. Modify Program 4-5, “Add Two Digits," to add the least significant three
digits (hundreds, tens, and ones).

37. Write a function that receives a positive floating-point number and
rounds it to two decimal places. For example, 127.565031 rounds to

127.570000. Hint: To round, you must convert the floating-point num-
ber to an integer and then hack to a floating-point number. Print the
rounded numbers to six decimal places. lest the function with the fol-
lowing data:

1 2 3 . 4 5 6 7 8 9 1 2 3 . 4 9 9 9 9 9 1 2 3 . 5 0 0 0 0 1

38. Write a program that reads a floating-point number and prints the ceil-

ing, floor, and rounded value. Use the function in Problem 37 for the
average and test it with the same values as Problem 37.

39. Write a function to compute the perimeter and area of a right triangle
(Figure 4-39) when given the length of the two sides (a and b).

226 Section 4.12 Practice Sets

c
a

b

FIGURE 4-39 Problem 39

The following formulas may be helpful:

c2

area =

Projects
40. Prepare a payroll earnings statement For the sales Force

Company. All of Arctics employees are on a straight commission basis oi
12.5% of sales. Each month, they also receive a bonus that varies

of service. The

at the Arctic Ice

depending on the profit For the month and theii length
sales manager calculates the bonus separately and enters it with the
salesperson’s total sales for the month. Your program is also to calculate
the withholding taxes and retirement lor the month based on the lollow -
ing rates:

a. 25% Federal withholding
h. 10% State withholding
c. 8% Retirement plan

Use the test data in Table 4-2 to test the program.

Salesperson Sales Bonus

1 53,500 425
2 41,300 300
3 56,800 350
4 36,200 175

TABLE 4-2 Test Data For Project 40

41. \\ rite a program that, given a beginning balance in your savings account,
calculates the balance at the end of 1 year. The interest is 5.3% com-
pounded quarterly. Show the interest earned and balance at the end ofeach quarter. Present the data in tabular columns with appropriate head-
ings. Use separate functions to compute the interest and print the balance.

! T

Chapter 4 Functions 227

42. I he formula for converting centigrade temperatures to fahrenheit is

180.0
F = 32 + C100.0

Write a program that asks the user to enter a temperature reading
in centigrade and then prints the equivalent Fahrenheit value. It then
asks the user to enter a Fahrenheit value and prints out the equivalent
centigrade value. Run the program several times. Be sure to include at

least one negative temperature reading in your test cases. Provide sepa-

rate functions as needed by your design. One possible design is shown

in Figure 4-40. (Your main function should have only function calls.)

temperatures

liCelsius Fahrenheit

i i i i ii Celsius to
Fahrenheit

print
Fahrenheit

Fahrenheit
to Celsius

print
Celsiusget get

Celsius Fahrenheit

FIGURE 4-40 A Possible Design for Project 44

43. Write a program that uses standard functions. The program may he written

entirely in main and must follow the pseudocode shown in Algorithm 4- 1.
Give the output appropriate captions, and align the data.

ALGORITHM 4-1 Pseudocode for Project 43

1 Prompt the user to enter a number

2 Read number
3 Display number
4 Get a random number and scale to range 3...37

5 Display random number

6 Set product to number * random number

7 Display product
8 Display ceiling of random number

9 Display floor of product

10 Display number raised to power of random number

11 Display square root of random number

228 Section 4.12 Practice Sets

that creates customers’ bills for a carpet company
44. Write a C program

when the following information is given:

idth of the carpet in feet
a. the length and the
b. the carpet price per square
c. the percent of discount for each customer

The labor cost is fixed at $0.35 per square
a constant. The tax rate is 8.5% applied after the discount

^
Us also to be

defined as a constant. The input data consist of a set of three integers

representing the length and width of the room to be carpeted the per-
centage of the discount the owner gives to a customer, and a real number
representing the unit price of the carpet The program is to prompt the

shown below. (Colored numbers are typical

wi
foot

foot. It is to be defined as

for this input asuser
responses.)

30Length of room (feet)?
Width of room (feet)?
Customer discount (percent)? 9

Cost per square foot (xxx.xx)? 8.23

The output is shown below. Be careful to align the decimal points.
MEASUREMENT

18

XXX ft
XXX ft
XXX square ft

Length
Width
Area

CHARGES

DESCRIPTION COST/SQ.FT. CHARGE

Carpet
Labor

XXX.XX
0.35

$XXXX.XX
XXXX.XX

INSTALLED PRICE
Discount

$xxxx .xx
XXXX.XXxx%

SUBTOTAL
Tax
TOTAL

$xxxx.xx
XXXX.XX

$xxxx.xx

nChapter 4 Functions 229

I he program's design should use main and at least the six functions
described below:

a. Read data from the keyboard.This function is to use addresses to read
all data and place them in the calling function’s variables.

b. Calculate values. This function calls three subfunctions. Each func-

tion is to use addresses to store their results.
Calculate the installed price. This function calculates area, carpet
cost, labor cost, and installed price. The installed price is the cost

of the carpet and the cost of the labor.
Calculate the subtotal. This function calculates the discount and
subtotal.
Calculate the total price with discount and tax. This function calcu-

lates the tax and the total price.
c. Print the result. Use two subfunctions to print the results: one to print

the measurements, and one to print the charges.
lest your program with the test data shown in Table 4-3.

Length Width CostDiscountTest
$14.2013 12231

$ 8 . 0 08 02 35

$22 .2510113 14

TABLE 4-3 Test Data for Project 44

—

Selection —Making Decisions !

In Chapter Is “Software Engineering” section, we mentioned that Dijkstra
proposed that any program could he written with three constructs: sequence,
selection, and loop. The C language implementation of the first construct,
sequence, is covered in the previous chapters. In this chapter, we turn our

attention to the second construct, selection. Selection allows us to choose
between two or more alternatives: It allows us to make decisions.

What a dull world it would he if we didn’t have any choices. Vanilla ice
cream for everybody! Uniforms all around! And no debates or arguments to

keep things interesting. Fortunately, our world is filled with choices. And
since our programs must reflect the world in which they are designed to oper-

ate, they, too, are filled with choices and opportunities lor decision making.
Ilow are decisions made by a computer? In this chapter, you will find out.

One of the main points to keep in mind is that the decisions made by a com-
puter must be very simple, since everything in the computer ultimately
reduces to either true or false. If complex decisions are required, it is the pro-

grammer’s job to reduce them to a series of simple decisions that the com-
puter can handle.

Objectives
To understand how decisions are made in a computer

To understand the logical operators: and, or, and not

To understand how a C program evaluates a logical expression

To write programs using logical and comparative operators

To write programs that use two-way selection: if...else statements

To write programs that use multi -way selection: switch and else... if

To understand Cs classification of characters
To write programs that use Cs character functions
To be able to design a structure chart that specifies function selection

231

232 Section 5.1 Logical Data and Operators

5.1 Logical Data and Operators
A piece of data is called logical if it conveys the tdea of true or false. We need

logical data in real life as well as in programming. In real life, logical data

(true or false) are created in answer to a question that needs a yes-no answer.
For example, we ask if an item is on sale or not. We ask if a business is open or

not. The answer to these questions is a piece of data that is usually yes or no.

We can also ask questions such as "Is x greater than y? The answer is again
do not use yes or no, we use true or false.

yes or no. In computer science, we

Logical Data in C
Traditionally, C had no logical data type; C programmers used other data

types, such as hit, to represent logical data. If 3 data y’alue is zero, it is consid*

ered false. If it is nonzero, it is considered true. This concept of true and false
on a numeric scale is seen in Figure 5-1.

false

J truetrue

0

FIGURE 5- 1 True and False on the Arithmetic Scale

The C99 standard introduced the Boolean data type, _bool, which is
declared as an unsigned integer in the stdbool.h header file. Also defined in
the header files are the identifiers bool , true, and false. While the standard
still supports the traditional
that the Boolean type, bool , be used.

of integers for logical data, we recommenduse

Logical Operators
t has three logical operators for combining logical values and creating ...
logical values: not,and ,and or. A common way to show' logical relationships is in
trill

|

ta es' ^rutJ1 ta^es l*st *he values that each operand can assume and the
resulting value.The truth tables for logical operators are shown in Figure 5-2.

new

not Operator

denct T̂ ^ hT01̂ - A r
operator vvit^ precedence 15 in the Prece-

false value to tme ^' ' ^ 3 tme value to false and 3

Chapter 5 Selection —Making Decisions 233

not and or
y xllyx

false
true

false
false
true
true

false
true
false
true

false
true
true
true

false
true
false
true

false
false
false
true

false
false
true
true

true
false

i

FIGURE 5-2 Logical Operators Truth Table

and Operator
The and operator (& &) is a binary operator with a precedence of 5. Since and
is a binary operator, four distinct combinations of values in its operands are

possible. The result is true only when both operands are true; it is false in all
other cases.

or Operator
The or operator (| |) is a binary operator with a precedence of 4. Again, since

it is a binary operator, four distinct combinations of values in its operands are

possible. The result is false if both operands are false; it is true in all
other cases. 5j!

Evaluating Logical Expressions
Computer languages can use two methods to evaluate the binary' logical rela-
tionships. In the first method, the expression must be completely evaluated
before the result is determined. This means that the and expression must be
completely evaluated, even when the first operand is false and it is therefore
known that the result must be false . Likewise, in the or expression, the whole

expression must be evaluated even when the first operand is true and the
obvious result of the expression must be true .

The second method sets the resulting value as soon as it is known. It does
need to complete the evaluation. In other words, it operates in a short-not

circuit fashion and stops the evaluation when it knows for sure what the final
result will be. Under this method, if the first operand of a logical and expres-
sion is false, the second half of the expression is not evaluated because it is

apparent that the result must be false . Again, with the or expression, if the

first operand is true , there is no need to evaluate the second half ol the
the resulting value is set true immediately. C uses this short -expression, so

circuit method, which is graphically shown in Figure 5-3.

7

234 Section 5.1 Logical Data and Operators

true II (anything)

44 truefalse

Short-circuit Methods for and/ orFIGURE 5-3

method is more efficient, it can cause problems when the
side effects, which is poor programming practice.

i in which a programmer wants
and at the same time wants to

Although the C
second operand contains
Consider for example, the following expression
to find the value of the logical expression i_

the value of the second operand:increment

x & & y++

Everything works fine when the first operand is true. But if the first oper-
be evaluated and therefore willand is false, the second operand will

be incremented. It is the same with the following or example. If the
never

never
first operand is true, the second operand will never be incremented.

x || y++

Program 5- 1 demonstrates the use of logical data in expressions.

PROGRAM 5-1 Logical Expressions
1 I /* Demonstrate the results of logical operators.

Written by:
Date:

2
3

*/4
#include <stdio.h>
#include <stdbool.h>

5
6
7

int main (void)8
9 {

// Local Declarations
bool a = true;
bool b = true;
bool c = false;

10
11
12
13
14
15 // Statements

continued

Al

Chapter 5 Selection — Making Decisions 235

PROGRAM 5- 1 Logical Expressions (continued)

printf("
printf("
printf("
printf("
printf("
printf("
printf("NOT %2d AND NOT %2d: %2d\n", a, c, !a && !c);

printf("NOT %2d AND %2d: %2d\n", a, c, !a && c);

printf(" %2d AND NOT %2d: %2d\n", a, c, a &&

return 0;
} // main

16 %2d: %2d\n", a, b, a && b);
%2d: %2d\n", a, c, a && c);
%2d: %2d\n", c , a, c && a);
%2d: %2d\n", a, c , a

%2d: %2d\n", c , a , c
%2d: %2d\n", c, c, c

%2d AND
%2d AND
%2d AND
%2d OR
%2d OR
%2d OR

17
18
19 *
2 0
21
2 2
23
24 !c);

25
26

Results:
1 AND

1 AND
0 AND
1 OR
0 OR
0 OR

Is 1
0: 0
Is 0
0: 1
Is 1
0: 0

NOT 1 AND NOT 0: 0

NOT 1 AND 0: 0
1 AND NOT 0: 1

Program 5- 1 Analysis Each print statement in Program 5-1 contains a logical expression that evaluates
either to true or false. Make sure you understand why each of the expressions evalu-
ates as shown in the results. Note that even though the results are of type Boolean,
they must be printed as integer (%d). This is because while the expressions evaluate to

true or false, there is no conversion code for Boolean. Therefore, when we print them,
we must use the integer field specification.

Comparative Operators
In addition to logical operators, C provides six comparative operators. Com-

parative operators are divided into two categories, relational and equality.
They are all binary operators that accept two operands and compare them.
The result is a Boolean type—that is, the result is always true or false , fhe
operators are shown in Figure 5-4.

The relational operators—less than, less than or equal, greater than,

greater than or equal—have a higher priority (10) in the Precedence Table
(see inside front cover) than the equality and not equal operators (9). This

that relational operators are evaluated before the equality operatorsmeans
when they appear together in the same expression.

It is important to recognize that each operator is a complement ot another

operator in the group. But, surprisingly, the complement is not the one that
you might expect. Figure 5- 5 shows each operator and its complement.

t

236 Section 5.1 Logical Data and Operators

Precedence
Operator Meaning

Type
less than
less than or equal

<

<= 10
Relational greater than

greater than or equal

equal
not equal

>

>=
== 9Equality

FIGURE 5-4 Relational and Equality Operators

< 4
complement r >=

> 4
complement r

_ complement t \-

FIGURE 5-5 Comparative Operator Complements

II we want to simplify an expression involving the not and the less than
operator, we use the greater than or equal operator. This concept is impor-
tant lor simplifying expressions and coding expressions in good, clear
style. Table 5- 1 shows an
version.

example of each expression and its simplified

Original Expression Simplified Expression
! (X < y)

! (x > y)

! (x 1= y)

! (x <= y)

! (X >= y)

I(X == y)

TABLE 5- 1 Examples of Simplifying Operator Compl
Program 5-2 demonstrates the use of the

x >= y

x <= y

x == y

x > y

x < y

x 1= y

ements

comparative operators.

Chapter 5 Selection — Making Decisions 237

PROGRAM 5-2 Comparative Operators
/* Demonstrates the results of relational operators.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
int main (void)7

8 <
// Local Declarations

int a = 5;
int b = -3;

9
10
11
12

// Statements *13
%2d is %2d\n", a, b, a < b)

a == b)
a != b)
a > b)
a <= b)
a >= b)

printf(" %2d <

printf(" %2d == %2d is %2d\n”, a, b,
14
15

printf(" %2d != %2d is %2d\n", a, b,

printf(" %2d > %2d is %2d\n", a, b,

printf(" %2d <= %2d is %2d\n", a , b,

printf(" %2d >= %2d is %2d\n", a, b,

return 0;

> // main

16
17
18
19
2 0
21

Results:
5 < -3 is 0
5 == -3 is 0

5 != -3 is 1

5 > -3 is 1

5 <= -3 is 0

5 >= -3 is 1

Program 5-2 Analysis Program 5-2 follows the same patterns we saw in Program 5-1 . Once again, make
that you understand why each of the representations in the results evaluates tosure

true or false.

5.2 Two-Way Selection
The basic decision statement in the computer is the two-way selection. I he

decision is described to the computer as a conditional statement that can he

answered either true or false. II the answer is true , one or more action state-

ments are executed. IT the answer is false, then a different action or set ol

actions is executed. Regardless of which set of actions is executed, the program

continues with the next statement after the selection. The flowchart for two-

way decision logic is shown in Figure 5-6.

238 Section 5.2 Two-Way Selection

decisionX true
conditionJ

false

true actionfalse action

*

FIGURE 5-6 Two-way Decision Logic

if . . . else
C implements two-way selection with the if . . .else statement. An if . . . else state-
ment is a composite statement used to make a decision between two alterna-
tives. Figure 5-7 shows the logic flow for an if . .else statement. The expression
can be any C expression. After it has been evaluated, if its value is true ,

statement1 is executed: otherwise, statement2 is executed. It is impossible
for both statements to be executed in the same evaluation.

false
(zero)

true
(Izero) if (expression)expression

statement1

elsei istatement2 statementl
statement2

«#

(a) Logical Flow (b) Code

FIGURE 5-7 if...else Logic Flow

Ihere are some syntactical
statements. The,,points„sumZSdlS

Chapter 5 Selection — Making Decisions 239

1. t he expression must be enclosed in parentheses.
2. No semicolon (;) is needed for an if ...else statement; statement 1 and

statement 2 may have a semicolon as required by their types.

3. The expression can have a side effect.

4. Both the true and the false statements can he any statement (even
another if...else statement) or they can he a null statement.

5. Both statement 1 and statement 2 must he one and only one statement.
Remember, however, that multiple statements can he combined into a
compound statement through the use of braces.

6. We can swap the position of statement 1 and statement 2 if we use the
complement of the original expression.

TABLE 5-2 Syntactical Rules for if...else Statements

The first rule in Table 5-2—that the expression must he enclosed in

parentheses—is simple and needs no further discussion. The second rule is

also simple, hut it tends to cause more problems. We have therefore pro-
vided an example in Figure 5-8. In this example, each action is a single state-
ment that either adds or subtracts 1 from the variable a. Note that the
semicolons belong to the arithmetic statements, not the if...else statement.

The semicolons |
belong to the

expression statements,I
not to the

i f ... else statement

if (i — 3)

a ++ ;

else

a — ;

FIGURE 5-8 A Simple if...else Statement

The third rule in Table 5-2 requires more discussion. It is quite common

in C to code expressions that have side effects. For example, we often use

expressions that read data as a side effect. As an example, consider what hap-

pens when we are writing a series of numbers, and when we have written ten

numbers we want to go to a new line. A simple solution increments a line

count and tests the limit in the same statement. The code for this logic could
he written as shown in the following example.

240 Section 5.2 Two-Wayj>elecfion

if (++lineCnt > 10)

{
printf("\n");
lineCnt = 0;
} // end true

printf(...);

Rules 4 and 5 in Table 5-2 are closely related. The fact that any state-
ment can be used in an if ...else is straightforward, but often new C program-
mers will forget to use a compound statement for complex logic. The use of
compound statements is seen in Figure 5-9. The first example shows a com-
pound statement only for the true condition. The second example shows
compound statements for both conditions. Note that the compound state-
ments begin with an open brace and end with a close brace.

if (j != 5 && d == 2)if (j != 3)r'< {
j++;
d—;
printf("%d%d", j, d)
} // if

b++;
printf("%d\ b);
} // if Compound

statements
are treated as
one statement

else
elseprintf(" %d\ j); r<

D--;
d++;
printf(”%d%d", j, d)

i } // else

X-

FIGURE 5-9 Compound Statements in an if...else

I he sixth rule states that the true and false statements can he exchanged
hy complementing the expression. Recall from
operators on Comparative Operators in Section 5.1 that any expression can
he complemented. When we find that we need to complement an if . ..else
statement, all we have to do is to switch the true and false statements. An
example ol this operation is shown in Figure 5-10.

discussion of relationalour

Null else Statement
Although there are always two possible actions after a decision, sometimeswe d„ not care about both of them. In this ease, the else action is usually left
Hnwpv ‘lml’c’ assunu vve are processing numbers as they are being read.However for some reason, the logic requires thatgreater than zero. As we read a number,test is true, we include it in the

we process only numbers
test it lor greater than zero. II the

process. II it is false, we do nothing.
we

Chapter 5 Selection —Making Decisions 241

These two statements are the same
because the expressions are the

complements of each other!

i\
if (expression)

else else

(a) Original (b) Complemented

FIGURE 5-10 Complemented if...else Statements

If the else condition is not required—that is, if it is null—it can be omit-
ted. This omission can he shown as a null else statement (a null statement
consists of only a semicolon); more commonly, the else statement is simply
omitted entirely, as shown in Figure 5- 11.

N\ if (expression)if (expression)
{{

} // if} // if
else

/

FIGURE 5-11 A Null else Statement

De Morgans Rule
When we design the logical flow of a program, we often have a situation in which the
not operator is in front of a logical expression enclosed in the parentheses. Human

engineering studies tell us, however, that positive logic is easier to read and under-
stand than negative logic. In these cases, therefore, if we want to make the total
expression positive by removing the parentheses, we apply the not operator directly
to each operand. De Morgan's rule governs the complementing of operators in this
situation. This rule is defined as follows:

When we remove the parentheses in a logical expression preceded by the not opera-

tor, we must apply the not operator to each expression while changing the logical
operators — that is, changing and (& &) to or (| |) and changing or (| |) to and (& &).

continued

t

242 Section 5.2 Two-Way Selection

Consider the expression shown below.
i (x & & y)

, (x || y) -> i x & & i y

the result of the first forx^nd y U is important to recognize, however,
ETo^&fiol, the C rules of precedence can affect De Morgan's rule.

ix | | iy

It is possible to omit the false branch, but the true branch cannot be
be coded as a null statement; normally, however, we do notomitted. It can _

null in the true branch of an if...else statement. To eliminate it. we can
Rule 6 in Table 5-2, “Syntactical Rules for if...else Statements," which

allows us to complement the expression and swap the two statements. The
result is known as a complemented if ...else and is shown in Figure 5- 12.

use
use

if (!expression)if (lexpression)if (expression)
{{

else
} // if} // if{

** else
} // elseQ

Null
Statement

FIGURE 5-12 A Null i f Statement

Program 5-3 contains an example of a simple two-way selection. It dis-
plays the relationship between two numbers read from the keyboard.

PROGRAM 5-3 Two-way Selection
/* Two-way selection.

Written by:
Date:

1
2
3
4 */
5 tinclude <stdio.h>
6
7 int main (void)
8 {
9 // Local Declarations

i ; continued

Chapter 5 Selection — Making Decisions 243

PROGRAM 5-3 Two-way Selection (continued)

int a;
int b;

10
11
12
13 // Statements

printf("Please enter two integers: ");
scant ("%d%d", &a, &b);

14
15
16
17 if (a <= b)

printf("%d <= %d\n", a, b);18
19 else
2 0 printf("%d > %d\n", a, b);
2 1
22 return 0;

> // main23

Results:
Please enter two integers: 10 15

10 <= 15

Nested if Statements
As we stated previously, for the if ...else , the statements may be any statement,
including another if ...else. When an if. ..else is included within an if . .else , it

is known as a nested if statement. Figure 5- 13 shows a nested ij statement.
There is no limit to how many levels can be nested, but if there are more than
three, they can become difficult to read.

expression
1 if (expression 1)

if (expression 2)

statement 31 expression statement 1
2

else

statement 2

Jstatement 2| statement 1
else

statement 3

(b) Code(a) Logic flow

FIGURE 5-13 Nested if Statements

244 Section 5.2 Two-Way Selection

5-3. It uses a nested if state-modification of Program
less than, equal to, or greater than b.Program 5-4 is a

ment to determine if a is

PROGRAM 5-4 Nested if Statements
selection./* Nested if in two-way

Written by:

Date:

1
2
3

*/4
#include <stdio.h>5

6
int main (void)7

8 {
// Local Declarations

int a;
int b;

9
10
11
12

// Statements
printf("Please enter two integers:

scanf ("%d%d", &a, &b);

13
”)?14

15
16

if (a <= b)
if(a < b)

printf("%d < %d\n", a, b);

17
18
19

else20
printf("%d == %d\n", a, b);2 1

else22
printf("%d > %d\n", a, b);23

24
25 return 0;
26 I } // main

Results:
Please enter two integers: 10 10
10 == 10

Program 5-4 Analysis You should be able to follow this simple program with relative ease. However, it does
contain a subtle software engineering principle. Study the if statements (17 and 18)

^ , er6
j- ° We C['eC^ or 9rea,er than? The answer is that we default the

greater than condition to the outer else (see Statement 22). When coding a two-way
"t T'11 Y*^T probable co"di,i°" with nested selectionstatements, code the most probable first and the least probable ast

Dangling else Problem

Chapter 5 Selection — Making Decisions 245

is no matching else for every if . C’s solution to this problem is a simple
rule: Alxvuys pair an else to the most recent unpaired if in the current block .
I his rule may result in some if statement’s being left unpaired. Since such
an arbitrary rule often does not match our intent, we must take care to

ensure that the resulting code is what we intended. Take, for instance, the
example shown in Figure 5- 14. From the code alignment, we conclude
that the programmer intended the else statement to he paired with the first
if . However, the compiler will pair it with the second i/, as shown in the
flowchart.

else is always paired with the most recent unpaired if.

expression
1if (expression!)

if (expression2)
expression

2
statement 1

else
statement 2| statement 1

statement 2
Compiler pairs
this if and else'

T
(b) Logic Flow(a) Code

FIGURE 5- 14 Dangling else

Figure 5- 15 shows a solution to the dangling else problem, a compound
statement. In the compound statement, we simply enclose the true actions in

braces to make the second if a compound statement. Since the closing brace
completes the body ol the com
closed from further consideration and the else is automatically paired with
the correct if .

pound statement, the if statement is also

Simplifying if Statements
By now you should recognize that if ..else statements can become quite com-

plex. This discussion gives you some ideas on simplifying if statements.
Usually, the purpose of simplification is to provide more readable code.

246 Section 5.2 Two-Way Selection

Fhe block closes
.the if statementexpression

if (expression 1)1

if (expression 2)
statement 1

expression
2

> / / i fstatement 2
elsestatement 1

statement 2

T
(b) Code(a) Logic Flow

FIGURE 5-15 Dangling else Solution

Sometimes the control expression itsell can be simplified. For example,

the two statements in Table 5-3 are exactly the same. The simplified state-
ments, however, are much preferred by experienced C programmers. W hen
the simplified code becomes a natural way of thinking, you have begun to
internalize the C concepts; that is, you are beginning to think in C!

Original Statement Simplified Statement

if (a != 0)
statement

if (a)
statement

if (a == 0)
statement

if (!a)
statement

TABLE 5-3 Simplifying the Condition

Since the simplified statements in Table 5-3 are new, let’s look at them a
little more carefully. The expression a != 0 evaluates to either true or false. If
a is anything other than zero, then the expression is true and statements is
executed. However, any integer can he used to represent true or false. In this
ease, it a contains any value other than zero, it is true; otherwise, it is false.

et igure 1 .) Therefore, since we want to execute statement2 whenevera ,s not zero, and since anything other than zero is true, we code the expres-
() t at is, as a is true. Similarly, if we want to test for a equal toz-ero, we stmply complement the expression, making it !a.

Chapter 5 Selection — Making Decisions 247

Conditional Expressions
(provides a convenient alternative to the traditional if ..else for two-way
selection—the ternary' conditional expression has a precedence of 3 (see

inside front cover).
Ihe conditional expression has three operands and a two-token opera-

tor. Each operand is an expression. The first token, a question mark (?), sepa-
rates the first two expressions. The second token, a colon (:), separates the
last two expressions. This gives it the following format:

expression ? expression!: expression2

To evaluate this expression, C first evaluates the leftmost expression. If
the expression is true, then the value of the conditional expression is the
value of expression!. If the expression is false , then the value of the condi-
tional expression is the value of expression2.

Let s look at an example.

a == b ? C++ : d++;

In this expression, only one of the two side effects take place. II a is equal
to b, C++ is evaluated and one is added to c; expression2 is ignored. On the
other hand, if a is not equal to b, then d++ is evaluated and 1 is added to d;

expression!is ignored. If this sounds much like a simplified if ..else, its

because it is! Figure 5- 16 shows the flowchart for the expression, which
could easily he coded as an if...else.

a == b ? C++ : d++;

I

(b) Code(a) Logic Flow

FIGURE 5-16 Conditional Expression

The conditional expression, like any other expression, can he used in an

assignment expression. Suppose that we have a program that can write either
to a printer or to the system monitor. When we write to the monitor, we can

i

248 Section 5.2 Two-Way Selection

i tn « line. When we write to the printer, we can write
write ten number

fiieFlag is a variable that indicates either the,5 ,h, number, per line a, ,how„ bd,
STp«u.bTr.re nol necessary but make .he ,Women, more readable.)

M' ? 10 : 15);
numPerLine = (fiieFlag

One final note: Although we can
recommended. When the logic begins to get complex, remember the MSS
principle and use nested if statements.

Two-Way Selection Example
To demonstrate two-way selection, let's look at a program that calculates
income taxes. A brief explanation of progressive tax brackets may be helpful.
In a progressive bracket system, the higher the income, the higher the tax

rate. However, the higher rates are applied only to the income in the bracket
level. Thus, if you examine two incomes, they will both pay the same amount

of taxes at the lower rates. This concept of marginal tax rates is shown in

nest conditional expressions, it is not

Table 5-4.

Case 2: Total Income 18,000Case 1: Total Income 23,000

Income in Bracket Tax Rate Tax Income in Bracket Tax Rate Tax

2002%(1) 10,000

(2) 8,000

(1) 10,000

(2) 10,000

(3) 3,000

2% 200
4005% 500 5%

07% 210 (3) none 7%
Total Tax 600910 Total Tax

TABLE 5-4 Examples of Marginal Tax Rates
The design (or the program to calculate taxes is shown in the structure

chart in Figure 5-17. The design has only four functions besides main. The
notation lor bracketTax is somewhat unusual: In the final code, it is called
live times in one expression. Therefore, we show it as a nested set of calls.

I he design lor each ol the functions is shown in Figure 5- 18. The logic
tor calculating the tax information requires three major steps: (1) Calculate
the taxable income. Taxable income is total income adjusted for the number
° dcl^n'

,c,lts - , n °ur example, we subtract $1,000 for each dependent.. , a cu ate du taxes- The tax due calculation uses the progressive
fivebracket^ at thc be8inning of the section. Our example uses

Note that if more taxes were
due is a negative number, indicating a refund.

(3) Calculate the taxes due or to be refunded,withheld than are due, the taxes

Chapter 5 Selection — Making Decisions 249

calculate
tax

getData calcTaxes printlnfo

r
ij \ bracketTaxbracketTax bracketTax bracketTaxbracketTax

FIGURE 5-17 Design for Calculate Taxes

))() ((Start calcTaxesgetData

/ Read Total /
/ Income /

Calculate tax lor each bracket
(bracketTax)getData

/ R e a d // taxPaid J
Calc

Taxes
Add brackets

/ Read Num /
/ Dpndnts / taxDue = totTax - taxPaidPrintlnfo

TfT
))) (c(ReturnStop Return

)c bracketTax)(printlnfo

/ print all
~jj

/ data except t
/ dueTax /

income

startLimit

taxDue
>= tax = 0.0
o.o

/print Tax Due M
/ dueTax // print Refund /

/ -dueTax / tax =
(stopLimit - startLimit)
* rate / 100.0

tax =
(income - startLimit)
• rate / 100.0?c) ?Return ?

)(Return
expr:startLimit < income <= stopLimit

FIGURE 5-18 Design for Program 5-5

The code is seen in Program v5.

250 Section 5.2 Two-Way Selection

PROGRAM 5-5 Calculate Taxes
the refund for a family based

- formula.
deduct $1,000 from income,

from the following brackets:

taxable income
<= 10000

10001 - 20000
20001 - 30000
30001 - 50000
50001 and up

amount of tax or the refund.

the tax due orCalculate
on the

/*1
following imaginary

each dependent
2

1. For
2. Determine tax rate

3
4 tax rate

bracket5 2%
16 5%
27 7%38 10%49 15%510

Then print the11
12

Written by:

Date:
13
14

*/15
#include <stdio.h>16

17
#define LOWEST 0000000.00
#define HIGHEST 1000000.00

18
19
20

10000.00
20000.00
30000.00
50000.00

#define LIMIT1
#define LIMIT2
#define LIMIT3
#define LIMIT4

21
22
23
24
25

#define RATE1 02
#define RATE2 05
#define RATE3 07
#define RATE4 10
#define RATE5 15

26
27
28
29
30
31

#define DEDN PER DPNDNT 100032
33

// Function Declarations
void getData

34
35 (double* totallncome, double* taxPaid,

int*36 numOfDpndnts);
37
38 void calcTaxes (double totallncome,

double taxPaid,39
40 int numOfDpndnts,

double* taxablelncome,
double* totalTax,
double*

41
42
43 taxDue);44

i
continned

\ it

Chapter 5 Selection — Making Decisions 251

PROGRAM 5-5 Calculate Taxes (continued)

45 void printlnformation (double totallncome,

double taxPaid,
int numOfDpndnts,
double totalTax,
double paidTax,
double taxDue);

46
47
48
49
50
51
52 double bracketTax (double income,

double startLimit,

double stopLimit,

int rate);

53
54
55
56

int main (void)57
58 {

// Local Declarations
int numOfDpndnts;
double taxDue;
double taxPaid;
double totallncome;
double taxablelncome;
double totalTax;

59
60
61
62
63
64
65
66

// Statements
getData (&totalIncome, &taxPaid, &numOfDpndnts);
calcTaxes (totallncome, taxPaid, numOfDpndnts,

&taxableIncome, &totalTax, &taxDue);

printlnformation (totallncome, taxablelncome,

67
68
69
70
71

numOfDpndnts, totalTax,
taxPaid,

72
taxDue);73

return 0;

> // main
74
75
76

===== getData =====
This function reads tax data from the keyboard.

77
78

Pre Nothing
Post Reads totallncome, taxPaid, & numOfDpndnts

79
80

*/81
void getData (double* totallncome, double* taxPaid,

numOfDpndnts)
82

int*83
84 {

// Statements
printf("Enter your total income for last year: ");

scanf ("%lf", totallncome);

85
86
87
88

cont inued

252 Section 5.2 Two-Woy Selection

Calculate Taxes (continued)

printf("Enter
scanf taxPaid);

PROGRAM 5-5
total of payroll deductions " \ ••) r

89
90
91

the number of dependents . II V.•) /

printf("Enter
scanf ("%d", numOfDpndnts);

92
93

return;
} // getData

94
95
96

===== calcTaxes ===—/* ===
This

97
function calculates the taxes due.

Given-income, numOfDpndnts, & taxPaid98
Pre
Post Tax income, total tax, and tax due

99
100

calculated101
*/102
void calcTaxes (double totlnc,

double taxPaid,
int numOfDpndnts,
double* taxablelnc,
double* totTax,
double* taxDue)

103
104
105
106
107
108
109 {

// Statements
*taxablelnc = totlnc

110
1 1 1
112 (numOfDpndnts* DEDN PER DPNDNT);
113 *totTax
114 bracketTax(*taxablelnc, LOWEST, LIMIT1, RATE1)

+ bracketTax(*taxablelnc, LIMIT1, LIMIT2, RATE2)
+ bracketTax(*taxablelnc, LIMIT2, LIMIT3, RATE3)
+ bracketTax(*taxablelnc, LIMIT3, LIMIT4, RATE4)
+ bracketTax(*taxablelnc, LIMIT4, HIGHEST, RATE5);

115
116
117
118
119
120 *taxDue = *totTax - taxPaid;

return;
} // calcTaxes

121
122
123
124 /* - printlnformation =====
125 This function prints a table showing all information.
126 Pre The parameter list

Post Prints the table127
128 */
129 void printlnformation (double totallncome,

double income,
130
131 int numDpndnts,

double totalTax,
132

i continue

Chapter 5 Selection — Making Decisions 253

PROGRAM 5-5 Calculate Taxes (continued)

133 double paidTax,
double dueTax)134

135 {
// Statements

printf("\nTotal income
totallncome);

printf("Number of dependents
printf("Taxable income
printf("Total tax
printf("Tax already paid

136
137 :%10.2f\n".
138
139 :%7d\n", numDpndnts);

%10.2f\n", income);
%10.2f\n", totalTax);
%10.2f\n", paidTax);

140
141
142
143

if (dueTax >= 0.0)
printf("Tax due

144
:%10.2f\n", dueTax);145

146 else
:%10.2f\n", -dueTax);printf("Refund147

148 return;
> // printlnformation149

150

Calculates the tax for a particular bracket.
The taxablelncome

Returns the tax for a particular bracket

bracketTax ===151
152
153 Pre

Post154
*/155

double startLimit,
rate)

double bracketTax (double income,
double stopLimit, int

156
157
158 {

// Local Declarations
double tax;

159
160
161

// Statements
if (income <= startLimit)

tax = 0.0;

162
163
164

else165
if (income > startLimit && income <= stopLimit)

tax = (income - startLimit) * rate / 100.00;
166
167

else168
tax = (stopLimit - startLimit) * rate / 100.00;169

170
return tax;
// bracketTax

171
172 }

Results:
Enter your total income for last year:

Enter total of payroll deductions: 250
15000

continued

254 Section 5.3 Multiway Selection

Calculate Taxes (continued)PROGRAM 5-5
number of dependents: 2

Enter the
Total income: 15000.00
Number of dependents: 2

Taxable income: 13000.00
Total Tax: 350.00

already paid: 250.00Tax
Tax due: 100.00

Program 5-5 Analysis Note that Program 5-5 contains extensive interna documentat.on This documentation
includes a series of comments at the beginning of the program, the define statements

used to set some of the key values in the program, and the prototype statements.
Next examine the structure of the program; main contains no detail code; it simply

calls three functions to get the job done. Since two of the functions must pass data back
to main, they use the address (&) and indirection (*) operators. The call to getData in
Statement 68 uses the address operator to pass the address of the three variables that
need to be read from the keyboard. Then, Statements 82-83 in the getData header
statement use the asterisk to specify that the type is an address. Because the parameters

already addresses, the scanf statements do not need an address operator. You must
always consider what type of parameter you are using, data or address, and use the
correct operators for it. Do not automatically use the address operator with scanf.

Examine the code for calcTaxes. The function header (starting at Statement 103)
specifies that the first three formal parameters are passed as values and the last three
are passed by address. The last three are address parameters because they are calcu-
lated values that need to be passed back to main for later printing. Note that all refer-
ences to them in the function are prefaced with the indirection operator, which tells the
compiler that it must use the variables in main.

Note the use of the type double throughout the prog
version specifications in the format strings, you will note that they
f for output.

Finally, and the main point of this example, note how
bracketTax to calculate the tax. This function was designed so that it could calculate
the tax for any bracket. This is a much simpler design than writing complex code for
different brackets and demonstrates how keeping it simple and short (KISS) makes for
better programs.

are

ram. If you examine the con-
are If for input and

used the functionwe

5.3 Multiway Selection
In addition to two-way selection, . . programming languages provide
another selection concept known as multiway selection. Multiway selectionchooses among several alternatives. The decision logic for the multiway state-
ment is seen in Figure 5- 19.

• .i aS tuo different ways to implement multiway selection. The first is by

else if thr C .fatement* ^lc ot^er ls a programming technique known as the
an be ,S 3 rrent Style t0 nest V aments. The switch state-

expression. Manvf "Yi" ^ ^ selection condition reduces to an integral
of values the con1'Y ' °"CVCr' suc*1as"hen the selection is based on a range

' *, ,,not„teognJ, „„„,c

most

\ t.

Chapter 5 Selection —Making Decisions 255

multiway
expression

valuel value2 value3 value4

valuel
action

value2
action

value3
action

value4
action

FIGURE 5-19 switch Decision Logic

The switch Statement
Snitch is a composite statement used to make a decision between many
alternatives. Figure 5-20 shows the snitch statement syntax. l

ikswitch (expression)
{
case constant-1: statement

:
statement

case constant-2: statement

statement
case constant-n: statement

:
statement

: statementdefault
:
statement

} // end switch

FIGURE 5-20 switch Statement Syntax

Although the switch expression can use any expression that reduces to

integral value, the most common is a unary expression in the lorm of anan

I . Syntactically, the block in the switch statement is not needed if only one case is required. I lowever,

one choice is available.a simple if statement should lx* used il only

256 Section 5.3 Multiway Selection

arate case label is defined. Figure 5-20 also shows the format for the

label Associated with each possible case is zero or more statements. Every-
thing from a case label to the next case label is a sequence. The case label
simply provides an entry point to start executing the code.

The default label is a special form of the case label. It is executed when-
ever none of the other case values matches the value in the switch expression.
Note, however, that default is not required. If we do not provide a default, the
compiler will simply continue with the statement after the closing hrace in
the switch.

The switch statement is a puzzle that must he solved carefully to avoid
confusion. Think of the switch statement as a series of drawbridges, one for
each case and one for the default. As a result of the switch evaluation, one
and only one of the drawbridges will he closed, so that there will be a path for
the program to follow. (II none
ment is skipped and the program continues with the next statement after the
switch.) The switch flow is shown in Figure 5-2 I .

case

of the drawbridges is closed, then the state-

fenfeF)

^sej)
switch {

.case 2.

FIGURE 5-21 switch Flow

as- * --
case

7F
Chapter 5 Selection —Making Decisions 257

shortly, but let’s look at an example first. Program 5-6 demonstrates the
switch statement. Can you figure out what it prints?

PROGRAM 5-6 Demonstrate the switch Statement

//l Program fragment to demonstrate switch

switch (printFlag)2
3 {
4 printf("This is case l\n");case Is
5

6 printf("This is case 2\n");case 2:
7

default: printf("This is default\n");

> // switch
8
9

Program 5-6 has three different case labels. The first case identifies the
entry point to he used when printFlag is a 1 . The second case identifies the
entry point when printFlag is a 2.And finally; the default identifies the entry

point when printFlag is neither a 1 nor a 2. While default is not a required
condition in a switch statement , it should be included when all possible situa-

tions have not been covered by the case labels.
Have you figured out what is printed by Program 5-6? The answers are in

Figure 5-22. Three results are possible, depending on the value in printFlag.

If printFlag is a 1 , then all three print statements are executed. If printFlag
is a 2, then the first print statement is skipped and the last two are executed.
Finally, if printFlag is neither a 1 nor a 2, then only the statements defined

by the default are executed. This results in the first two print statements

being skipped and only the last one being executed.

l̂ This is defaultl̂ This is case 2
This is default

pTtisis case 1
This is case 2
This is default

(c) printFlag is not 1 or 2(b) printFlag is 2(a) printFlag is 1

FIGURE 5-22 switch Results

But what if we want to execute only one of the case-label sequences? To

do so, we must use break statements. The break statement causes the pro-

gram to jump out of the sn itch statement—that is, to go to the closing brace

and continue with the code that follows the switch. If we add a break as the

last statement in each case, we have Figure 5-23. Now, only one print state-
ment will be executed, regardless of the value of printFlag.

258 Section 5.3 Multiway Selection

switch (printFlag)
{
case 1:

printf
("This is case 1");

break;

printf
("This is case 2");

break;

printFlag

case 2:

default21
default:This is

default
This is
case 2

This is
case 1

printf
("This is default");

break;
} // switch

(b)Code(a) Logic Flow

PrhiTis defaultl̂ This is case 2pThis~

is case 1

FIGURE 5-23 A switch with break Statements

Two or more case labels can be associated with the same set of actions.
In Program 5-7, for example, we print a message depending on whether
printFlag is even or odd.

PROGRAM 5-7 Multivalued case Statements
/* Program fragment that demonstrates multiple

cases for one set of statements
1
2

*/3
4 switch (printFlag)
5 {
6 case 1:

case 3:7 printf("Good Day\n");
printf("Odds have it!\n");
break;

8
9
10 case 2:

case 4:11 printf("Good Day\n");
printf("Evens have it!\n");
break;
printf("Good Day,
printf("Bye!\n");
break;

12
13
14 default: I'm confused!\n");15
16
17 } // switch

t

! |[

Chapter 5 Selection — Making Decisions 259

As a matter of style, the last statement in the switch does not require a

break . We recommend, however, that you get in the habit of using it, especially
when the last statement is not the default . This good habit will eventually
save you hours of debugging time because you will not forget to add it when
you add a new case to the switch statement.

Table 5-5 summarizes some points you must remember about the switch
statement.

1. The control expression that follows the keyword switch must be an inte-
gral type.

2. Each case label is the keyword case followed by a constant expression.

3. No two case labels can have the same constant expression value.
4. But two case labels can be associated with the same set ol actions.
5. The default label is not required. If the value of the expression does not

match with any labeled constant expression, the control transfers out -
side of the switch statement. However, we recommend that all switch
statements have a default label.

6. The switch statement can include at most one default label. The default
label may be coded anywhere, but it is traditionally coded last.

TABLE 5-5 Summary of switch Statement Rules

switch Example
Program 5-8 converts a numeric score to a letter grade. The grading scale is

the rather typical ‘‘absolute scale,” in which 90% or more is an A, 80%—89% is

a B, 70%-79% is a C, and 60%—69% is a I). Anything below 60% is an F.

PROGRAM 5-8 Student Grading
/* This program reads a test score, calculates the letter

grade for the score, and prints the grade.
Written by:
Date:

1
2
3
4
5 */

#include <stdio.h>6
7

// Function Declarations

char scoreToGrade (int score);
8
9

10
int main (void)1 1

12 {
continued

260 Section 5.3 Multiway Selection

PROGRAM 5-8 Student Grading (continued)

// Local Declarations13
int score;14
char grade;15

16
// Statements

printf("Enter
scant ("%d", &score);

17
the test score (0-100): ");

18
19
20

grade = scoreToGrade (score);
printf("The grade is: %c\n",

21
grade);22

23
return 0;

} // main
24
25

==================== scoreToGrade ===================
This function calculates the letter grade for a score.

Pre the parameter score
Post returns the grade

/*26
27
28
29

*/30
char scoreToGrade (int score)31

32 {
// Local Declarations

char grade;
int temp;

33
34
35
36

// Statements
temp = score / 10;
switch (temp)

37
38
39
40 {
41 case 10:
42 case 9 : grade =

break;
case 8 : grade =

break;

A * ;
43
44 B';
45
46 case 7 : grade =

break;
* C';

47
48 case 6 : grade =

break;
grade =

D';
49
50 default:

} // switch
return grade;

} // scoreToGrade

F';
51
52
53

Results:
Enter the test
The grade is:

score (0-100): 89
3

i

\ U

n IT

Chapter 5 Selection — Making Decisions 261

Program 5-8 Analysis This example shows how we can use the integer division operator (/) to change a
range of numbers to individual points to be used by the switch statement. The problem
definition requires that if the score is between 80% and 89%, it must be changed to
letter grade ' B ' . This condition cannot be used in a switch statement. But if we divide
the score by 10 (integer division), the entire range (such as 80-89) can be changed
to one single number (8),which can be used as a constant in the case label.

Note how the break statement works. This is an important part of the logic for
switch statements. Without the break, we would have determined and assigned the
score,and then proceeded to assign all of the lower scores down to 'F ',with the result
that everyone would have failed. The break allows us to leave the body of the switch as
soon as we have completed the grade assignment.

One word of caution. If the user enters an invalid score, such as 110, this program
gives invalid results. We describe how to prevent this problem in Chapter 6.

The else-if
The switch statement only works when the constant expression in the case
labels are integral. What if we need to make a multiway decision on the basis
of a value that is not integral? The answer is the else-if . There is no such
C construct as the else-if. Rather, it is a style of coding that we use when we
need a multiway selection based on a value that is not integral.

Suppose we need a selection based on a range of values. We code the lirst ij
condition and its associated statements, and then we follow it with all other pos-
sible values using else-if.The last test in the series concludes with an else.This is
the default condition; that is, it is the condition that is to be executed il all other
statements are false. A sample of the else-if logic design is shown in Figure 5-24.

score
>= 90

grade = 'A'score

grade = 'B1

score
>= 60 C

| grade = 'D1jgrade = *F'

v
Y ?

FIGURE 5-24 The else-if Logic Design for Program 5-9

262 Section 5.3 Multiway Selection

said, it is really nothin
What is different about the else-if code. As

more than a style change. Rather than indenting each ./ statement, we code

the else-if on a single line and align it with the previous ./ I n tins way we sim-

ulate the same formatting that we see in the switch and its associated

label. This style format is shown below.

we g

case

if (score >= 90)
grade = 'A';

else if (score >= 80)
grade = 'B';

One important point about the else-if: Use it only when the same basic
expression is being evaluated. In Figure "> -24, the expressions <ue all based on

the variable score. If different variables were being evaluated, we would use
the normal nesting associated with the if ..else statement. Do not use the
else-if format with nested if statements.

The else-if is an artificial C construct that is only used when

1. The selection variable is not an integral,and
2. The same variable is being tested in the expressions.

else-if Example
Program 5-9 is the same as the switch example in Program 5-8 hut this time

the else-if to solve the problem. It shows how we can use multiway
selection and the else-if construct to change a numeric score to a letter grade.

Convert Score to Grade

we use

PROGRAM 5-9

/* This program reads a test score, calculates the letter
grade based on the absolute scale, and prints it.

Written by:
Date:

1
2
3
4

*/5
6 #include <stdio.h>
7

// Function Declarations
char scoreToGrade (int

8
9 score);

10
11 int main (void)
1 2 {
13 // Local Declarations

int14 score;
char grade;15

16
17 // Statements

continue
. uli

Chapter 5 Selection — Making Decisions 263

PROGRAM 5-9 Convert Score to Grade (continued)

printf("Enter the test score (0-100): ");
scant ("%d", &score);

18
19
2 0
21 grade = scoreToGrade (score);

printf("The grade is: %c\n" / grade);2 2
23
24 return 0;

> // main25
26

/ *27 =================== scoreToGrade =================
This function calculates letter grade for a score,

the parameter score
returns the grade

28
29 Pre

Post30
*/31
char scoreToGrade (int score)32

33 {
// Local Declarations

char grade;
34
35
36

// Statements
if (score >= 90)

grade = 'A';
else if (score >= 80)

grade = 'B';
else if (score >= 70)

grade =
else if (score >= 60)

grade = 'D';

37
38
39
40
41
42
43 C* ;
44
45

else46
grade = 'F';

return grade;
} // scoreToGrade

47
48
49

Results:
Enter the test score (0-100): 90

The grade is: A

Program 5-9 Analysis We used the else-if construct because our condition was not an integral; rather, it

tested several ranges of the same variable, score. Study the code carefully. Note

that, once the correct range is located, none of the following conditions will be tested.

For instance, if a score of 85 is entered, the test against 90% is false, so we execute

the else-if test for a score greater than 80%. Since this condition is true, we set grade
to ' B ' and skip all the remaining tests.

Also, note how the tests are ordered. In this case we first eliminate those scores

equal to or greater than 90%; then we
checking for greater than, we could not have coded it in the reverse, 60% first.

check 80%, 70%, and 60% in turn. Since we

were

264 Section 5.4 More Standard Functions

JSh LTaigeClueSn chSg^eS'Lthan
®

start wil the lowest Calue

5.4 More Standard Functions
One of the assets of the C language is its rich set of standard functions that make
programming much easier. In Chapter 4 we introduced some of these standard
functions. Now that we have studied selection, we can discuss two other libraries
of standard functions that are closely related to selection statements.

C99 has two parallel but separate header (lies toi manipulating charac-
The first, ctype.h, supports the ASCII character set . The second,

wctype.h , supports wide characters. While the wide-character library
(wctype.h) contains some functions not found in the ASCII character library
(ctype.h) j they follow a common naming format. For example, the ASCII
library contains a function, islower, to test for lowercase alphabetic charac-

The equivalent function in the wide-character library is isulower. There-
fore, if we know the name for one library; we know it for the other.

ters.

ters.

Standard Characters Functions
The character libraries are divided into two major groups: classifying func-
tions and converting functions. The prototypes of these functions are in the
ctype.h or wctype.h header files. Before looking at these functions, make sure
you understand the classification of characters that C uses. I bis breakdown
of classes is shown in Figure 5-25, which uses a tree to show how characters
are classified. You read the tree much like a structure chart , starting at the
top and following the branches to the bottom.

characters

%
control printable

space graphical

alphanumeric punctuation

alphabetic digit |

| upper lower

FIGURE 5-25 Classifications of the Character Type

ll
Chapter 5 Selection — Making Decisions 265

Characters are first broken down into control characters, such as car-
riage return and end of file, or into printable characters. This tells us that
control characters are not printable. The printable characters are either a

space or the rest of the printable characters, which are classified as graphical.
In turn, the graphical characters are broken down into alphanumeric and
punctuation characters. Alphanumeric means either an alphabetic character
or a digit. Finally, alphabetic characters are either upper- or lowercase.

Classifying Functions
Classifying functions examine a character and tell if it belongs to a given
classification as described previously. They all start with the prefix is and return

true if the actual parameter is in the specified class and false if it is not . The
prototypes of these functions are found in the ctype.h and cwtype.h files.

The general form of the prototype function is

int is... (int testChar)

where the function name starts with is or isw;2 for example, iscntrl,

w hich stands for "is a control character."
All of the classifying functions return true or false. If the character

matches the set being tested by the function, it returns true.; if it doesn ’t , it
returns false. For example, the isdigit function tests the character against the
decimal digits (0 through 9). If the character is a decimal digit , it returns
true; if the character is not a decimal digit , it returns false. fable 5-6 summa-
rizes each function with a brief explanation.

DescriptionFunction

Control characters

Printable character, that is character with an assigned graphic

Whitespace character: space character (32), horizontal tab (9),
line feed (10), vertical tab (11), form feed (12), and carriage
return (13)

Character with printable graphic; all printable characters except
space

Alphanumeric: any alphabetic or numeric character

Any graphic character that is not alphanumeric

Any alphabetic character, upper- or lowercase

iscntrl

isprint

isspace

isgraph

isalnum

ispunct

isalpha
continued

TABLE 5-6 Classifying Functions

2. For wide-character functions.

266 Section 5.4 More Standard Functions

Description
Function

Only uppercase alphabetic

Only lowercase alphabetic

Decimal digits (0...9)

Hexadecimal digits (0...9, A...F)

Octal digits (0...7)

isupper

islower
isdigit
isxdigit

isodigit

TABLE 5-6 Classifying Functions (continued)

Character Conversion Functions
Two converting functions are used to convert a character from one case to

another. These functions start with prefix to or tow (for wide characters) and
return an integer that is the value of the converted character. Their basic for-
mat is

int to... (int oldChar)

Table 5-7 summarizes each function with a brief explanation.

DescriptionFunction

Converts lower- to uppercase. If not lowercase, returns it
unchanged.
Converts upper- to lowercase. If not uppercase, returns it
unchanged.

toupper

tolower

TABLE 5-7 Conversion Functions

A Classification Program
Let s write a program that uses classification functions to examine a character
input from the keyboard. If you study Figure 5-25, carefully, you will note that
most characters fall into more than one classification. For instance, a digit is
printable, graphical, alphanumeric, and a digit.

Our program tests from the bottom up, so that only one classification will
be printed lor each character. For a digit, only the fact that it is a digit will he
prime . ecausi it is a relatively simple demonstration of the classificationfunctions, we wrote it using only main.The solution is shown in Program 5-10.

Chapter 5 Selection — Making Decisions 267

PROGRAM 5-10 Demonstrate Classification Functions

/* This program demonstrates the use of the character

classification functions found in the c-type library.
Given a character, it displays the highest

classification for the character.
Written by:
Date:

1
2
3
4
5
6

*/7
8

#include <stdio.h>
#include <ctype.h>

9
10
11

int main (void)12
1 3 {

// Local Declarations

char charln;
1 4
1 5
1 6

// Statements
printf("Enter a character to be examined: ");

scanf ("%c", &charln);

1 7
1 8
1 9
20

if (islower(charln))
printf("You entered a lowercase letter.Xn");

else if (isupper(charln))
printf("You entered an uppercase character.\n");

else if (isdigit(charln))
printf("You entered a digit.Xn");

else if (ispunct(charln))
printf("You entered a punctuation character.\n");

else if (isspace(charln))
printf("You entered a whitespace character.\n");

21
22
2 3
2 4
2 5
2 6
2 7
2 8
2 9
3 0

else3 1
printf("You entered a control character\n");

return 0;
// main

3 2
3 3
3 4 >

Results:
Enter a character to be examined: a

You entered a lowercase letter.

of the else- if in this program. While it may not appear so at first analy-
sis, this is actually a range analysis problem, which makes it suitable for multiway
selection.

Program 5-10 Analysis Note the use

268 Section 5.5 Incremental Development PartJl

Handling Major Errors
One of the better known computer acronyms is GIGO-garbage in, garbage

out. In writing programs, we must decide how to handle errors to prevent gar-

bage from corrupting the data. Sometimes, as we will see m Chapter 6, we

can recover from the error by having the user re-enter tt. Other times, there is

no way to recover.
When we can’t recover, C provides two functions that allow us to termi-
the functions: exit and abort. Both functions arc found in the standard

library (stdlib.h).
nate

exit
Whereas return terminates a function, exit terminates the program regardless
of where in the program it is executed. While we use it to terminate the pro-
gram because we detected an error, C considers it a normal termination. For
this reason, the termination is orderly; any pending Hie stream writes are first
completed and all streams are
shown below.

closed. The exit prototype statement is

void exit (int terminationStatus);

There is one parameter to the exit call, an integer value to he passed to
the operating system. While any integer is acceptable, it is usually a non-
zero, indicating that the program did not complete successfully. We demon-
strate the exit function in Program 5-12, “Menu-driven Calculator—Third
Increment."

abort
The abort Junction is used to terminate a program abnormally. It is consid-
ered a non-orderly termination because the output streams are not Hushed
and they are not closed. It is like drawing the "Go to Jail" card in Monopoly—you go directly to jail, you do not pass GO, and you do not collect $200.
\\ hen abort is called, the program immediately goes to the operating system.

I he abort function has no parameters. Its prototype statement is
shown below.

*

void abort (void);

5.5 Incremental Development Part II
Ihifplc emulator de;f °Pmt'nt^Jcalculator subfunctions. ^ dlScusslon by adding a menu and

Chapter 5 Selection — Making Decisions 269

Calculator Design
Although it is an elementary example, our calculator program illustrates two

concepts, hirst, it shows how we can communicate with a user through a
menu. Menu’s are a common design for programs that interact with users.
Second, it demonstrates incremental development through three levels in a
program. Figure 5-26 shows the design of the program.

i

calculator

I I printResultgetOption calcgetData

add sub mul dvd

FIGURE 5-26 Design for Menu-driven Calculator

Calculator Incremental Design
Good structured programming requires that each I unction do only one thing.
In this program, we are doing four different things: (1) We must ask the user

what function is desired. Then we need to (2) get the data tor the operation,

(3) make the calculation, and finally (4) print the result. These four processes
are seen as called functions in main. In its turn, calc calls one ot lour I unc-
tions to perform an arithmetic operation. Finally, the print result function
displays the result.

First Increment: main and Get Option
Program 5- 11 begins the development with the main function and the get

option function.

PROGRAM 5-11 Menu-driven Calculator — First Increment

.i

/* This program uses a menu to allow the user to add,

multiply, subtract, or divide two integers.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>
#include <stdlib.h>

6
7
8

// Function Declarations9
continued

270 Section 5.5 Incremental Development Part II _ ———

PROGRAM 5-11 Menu-driven Calculator-First Increment (continued)

(void);getOptionint10
11

int main (void)12
13 {

// Local Declarations
option;

14
int15

16
// Statements

option = getOption();
17
18
19

selected option %d\n , option);printf("**You20
21

return 0;
} // main

22
23
24

= getOption ====================
This function shows a menu and reads the user option

Nothing
returns the option

=====25
26

Pre
Post

27
28

*/29
int getOption (void)30

31 {
// Local Declarations

int option;
32
33
34

// Statements
printf ("\t**********************************"
printf("\n\t*
printf("\n\t*
printf("\n\t* 1. ADD
printf("\n\t* 2. SUBTRACT
printf("\n\t* 3. MULTIPLY
printf("\n\t* 4. DIVIDE
printf("\n\t*
printf("\n\t***************

35
36)
37 MENU * ••
38 *»

39 *'*)
40)*••
41 * ••
42)••
43)* ••
44 *******************"
45
46 piintf(M \n\nPlease type your choice "

printf("and key return: "
scanf ("%d",

);
47);
48 ^option);piintf("**You selected option %d\n",

return option;
> // getOption

49
option);50

51

Results:
**********************************111

A continuei

Chapter 5 Selection —Making Decisions 271

PROGRAM 5- 1 1 Menu-driven Calculator — First Increment (continued)

MENU *
* *

1. ADD
2. SUBTRACT
3. MULTIPLY
4. DIVIDE

* *
* * i

*
* *
* *
**** ** ** **** *** ***** ** ** * ** * * ** ** **

Please type your choice and key return: 3

**You selected option 3

**You selected option 3

Program 5- 1 1 Analysis We use the same approach that we used previously. In main we call the get option
function. Just before returning, we print the option and then we re-print it in main so

that we can easily verify the results.

We incorporate one new style. Because it can be difficult to find the debugging
statements in a large function, we do not indent them in the function. Rather we leave
them flush to the left margin so that they are easy to find and remove and we continue

the incremental development.

Second Increment: getData
Following the structure chart, we next write and debug get data. Because we

wrote and debugged the get data function in Chapter 4, we do not need to

include it here. We simply copy it into our new program.

Third Increment: Calculate
The third function is calculate(calc).This is the first example of a subfunc-
tion that calls other subfunctions: add, subtract, multiply, and divide. In this

write the complete function except for the subfunction calls.
The design for the calculate function requires a switch statement to

select the correct subfunction. In place of the actual calls, we return dummy
values: 1.0 for add, 2.0 for subtract, 3.0 for multiply, and 4.0 for divide. You

should recognize these as the option numbers. When testing a program, use

test data that is easy to remember and that can be easily verified. I he code is

shown in Program S - 12.

case, we

PROGRAM 5-12 Menu-driven Calculator —Third Increment

/* This program uses a menu to allow the user to add,

multiply, subtract, or divide two integers.
Written by:

Date:

1
2
3
4

*/5
cont inued

272 Section 5.5 Incremental Development ParjJL

PROGRAM 5-12 Menu-driven Calculator-Third Increment (continued)

#include <stdio.h>
#include <stdlib.h>

6
7
8

// Function Declarations
int getOption (void);
void getData
float calc

9
10

(int* numl, int* num2);

(int option, int numl, int num2);
11
12
13

int main (void)14
15 {

// Local Declarations
int option;
int numl;
int num2;
float result;

16
17
18
19
20
21

// Statements
option = getOption();
getData (&numl, &num2);
result = calc (option, numl, num2);

printf("**In main result is: %6.2f", result);

22
23
24
25
26
27
28 return 0;

> // main29
30

/*31 === getOption ===
32 This function shows a menu and reads the user option.

Pre33 Nothing
34 Post returns the option

*/35
int getOption (void)36

37 {
38 // Local Declarations

int option;39
40

// Statements
printf ("\t*************
printf("\n\t*
printf("\n\t*
printf("\n\t*
printf("\n\t*
printf(M\n\t*
printf(M\n\t*
printf("\n\t*

41
42 *********************.i)
43 MENU *»

44
)*»

45 1. ADD
2. SUBTRACT
3. MULTIPLY
4. DIVIDE

"46
)* "47

* ••)48
* <•)49
*»)

i ; continue
\i

Chapter 5 Selection — Making Decisions 273

PROGRAM 5-12 Menu-driven Calculator —Third Increment (continued)

printf ^ "\j}\-£**********************************" j •50
51

printf("\n\nPlease type your choice ");
printf("and key return: ");
scant ("%d", &option);
return option;
// getOption

52
53
54
55
56 >
57
58

This function reads two integers from the keyboard.
Parameters a and b are addresses

59
60 Pre

Post Data read into parameter addresses61
*/62
void getData (int* a, int* b)63

64 {
printf("Please enter two integer numbers: ");

scanf("%d %d", a, b);
return;
// getData

65
66
67
68 >
69

This function determines the type of operation

and calls a function to perform it.
option contains the operation
numl & num2 contains data

Post returns the results

/*70
71
72
73 Pre

74
75

*/76
float calc (int option, int numl, int num2)77

78 {
// Local Declarations
float result;

79
80
81

// Statements82
*In calc input is: %d %d %d\n",printf(

option, numl, num2);
•• *83

84
switch(option)85

86 {
// Add1.0;result

break;
result = 2.0;
break;
result = 3.0;
break;
if (num2 == 0.0)

case 1:87
88

// Subtractcase 2:89
90

// Multiplycase 3:91
92

// Dividecase 4:93
contmuec

274 Section 5.5 Incremental Development Part II

Third Increment (continued)
PROGRAM 5- 12 Menu-driven Calculator

{94 ")?"\n\a\aError:
"division by zero ***\n");

printf(
printf(
exit (100);

95
96
97

> // if98
else99

result = 4.0;
100

break;
/* Better structured programming would validate

option in getOption. However, we have not

yet learned the technique to code it there.

101
102
103
104

*/105
default: printf("\aOption not available\n");

exit (101);
06
07

> // switch
printf("**In calc result is:

return result;
return result;

> // calc

08
%6.2f\n", result);09

10
1 1 1
112

Results:

MENU
**
** 1. ADD

* 2. SUBTRACT
* 3. MULTIPLY
* 4. DIVIDE

*
*
*

* *

Please type your choice and key return: 1
Please enter two integer numbers: 13 8
**In calc input is: 1 13 8
**In calc result is:
**In main result is:

1.00
1.00

Program 5-12 Analysis Once again, note how we verify both the downward and upward communication.The calculate function displays the parameter values it receives and the result before it
returns. In main the value that returned is displayed.Before we can begin to write the subfunctions, however, we must run four moretests, one for subtract, one for multiply, and two for divide. To test divide, we must firsttest it with a zero divisor and then with a valid divisor.

was

i

Chapter 5 Selection — Making Decisions 275

Fourth Increment: Add
We wrote the code For the add function in Chapter 4 so we don’t need to write

and debug it again. We can simply copy it to our new program. (Because ot
the design change required to pass back a real number From divide, we must

change the add Function to return a flout rather than an int. This change is

minor, however, so we don’t show the incremental program For it here.

Fifth Increment: Subtract
At this point we have verified that the calculate parameters are passed cor-
rectly and the correct value is being returned. We are therefore ready to

develop and debug its subfunctions. Note that the debugging code is still in

place For the multiply and divide Functions. We do not remove it until the
subfunctions have been written and debugged.

On the other hand, we have removed the input parameter displays
because they have been debugged. The upward communication verification
display remains, however, until the calculate function is complete. The code
is shown in Program 5-13.

PROGRAM 5-13 Menu-driven Calculator — Fifth Increment

/* This program uses a menu to allow the user to add,

multiply, subtract, or divide two integers.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>
#include <stdlib.h>

6
7
8

// Function Declarations9
int getOption (void);
void getData
float calc
float add
float sub

10
int* num2);(int* numl,

(int option, int numl, int num2);
1 1
12

int num2);
int num2);

(int numl,

(int numl,
13
14
15

int main (void)16
17 {

// Local Declarations
int option;
int numl;
int num2;
float result;

18

19
2 0
21
2 2
23

continuec

276 Section 5.5 Incremental Development Part II

PROGRAM 5-13 Menu-driven Calculator-Fifth Increment (continued)

// Statements
option = getOption();

getData (&numl, &num2);
calc (option, numl, num2);

// Temporary code—to be removed

printf("**In main result is:

24
25
26

result =27
28

%6.2f\n", result);
29
30

return 0;
} // main

31
32
33

== getOption =====
This function shows a menu and reads the user option.

Nothing
returns the option

=======/* ===== ======34
35

Pre
Post

36
37

*/38
int getOption (void)39

40 {
// Local Declarations

int option;
41
42
43

// Statements
P3^"1ritf ("\•£******* **•A:************ * ***'*'*'* ,, J
printf("\n\t*
printf("\n\t*
printf("\n\t* 1. ADD
printf("\n\t* 2. SUBTRACT
printf("\n\t* 3. MULTIPLY
printf("\n\t* 4. DIVIDE
printf("\n\t*
printf("\n\t***********************************

44
45
46 MENU * ••)
47 * "
48 *»)
49 »

50 * •')
51 * "
52 *»)
53
54
55 printf("\n\nPlease type your choice ");

printf("and key return: ");
scanf ("%d\ Soption);
return option;

> // getOption

56
57
58
59
60
61 /* === = getData ====62 This function reads

Pre Parameters
ost Data read into parameter addresses

void getData (int*

two integers from the keyboard.
63 a and b are addresses64
65 */
66 a, int* b)67 {
68 printf("Please enter two integer numbers: "i.);

continued

Chapter 5 Selection —Making Decisions 277

PROGRAM 5-13 Menu-driven Calculator — Fifth Increment (continued)

68 scanf("%d %d", a, b);
return;

> // getData
69
70
71

/*72 ==================== calc ====================
This function determines the type of operation
and calls a function to perform it.

option contains the operation
numl & num2 contains data

Post returns the results

73
74
75 Pre
76
77

*/78
float calc (int option, int numl, int num2)79

80 {
// Local Declarations
float result;

81
82
83

// Statements
switch(option)

84
85
86 {

result = add (numl, num2);
break;
result = sub (numl, num2);
break;
result = 3.0;
break;
if (num2 == 0.0)

case 1:87
88

case 2:89
90

// Multiplycase 3:91
92

// Dividecase 4:93
94 {

printf("\n\a\aError: ");
printf("division by zero ***\n");
exit (100);

> // if

95
96
97
98

else99
result = 4.0;100

break;
/* Better structured programming would validate

option in getOption. However, we have not

yet learned the technique to code it there.

101
102
103
104

*/105
default: printf("\aOption not available\n");

exit (101);
106
107

} // switch

printf("**In calc result is:

return result;
// calc

108
%6.2f\n", result);109

110
1 1 1 >

Jcontinued

278 Section 5.5 Incrementol Development Port II

Menu-driven Calculator-Fifth Increment (continued)
PROGRAM 5- 13

1 1 2

adds two numbers and returns the sum.
a and b contain values to be added

Returns a + b

/* ===113
This function114

Pre
Post

115
116

*/117
float add (int a, int b)118

119 {
// Local Definitions

float sum;
120
121
122

// Statements
sum = a + b;
return sum;

> // add

123
124
125
126
127

This function subtracts two numbers
a and b contain values to be subtracted

Post Returns a + b

/* =====128
129
130 Pre
131

*/132
float sub (int a, int b)133

134 {
// Local Definitions

float dif;
135
136
137

// Statements
dif = a - b;

printf("**ln sub result is:
return dif;

} // sub

138
139
140 %6.2f\n", dif);
141
142

Results:
*************************̂ ^̂
* MENU *
* *
* 1. ADD
* 2. SUBTRACT
* 3. MULTIPLY
* 4. DIVIDE

*
*
*
*

*
*

Please type your choice and key return: 2
i continue*

-nn ft I

Chapter 5 Selection — Making Decisions 2 /9

PROGRAM 5-13 Menu-driven Calculator —Fifth Increment (continued)

Please enter two integer numbers: 13 8

**In sub result is:
**In calc result is:
**In main result is:

5.00
5.00
5.00 i

Program 5- 1 3 Analysis Note how we display the results up the program to main. This verifies that the upward
communication is correct. If there should be a problem, we will know exactly where it
occurred.

Remaining Increments
At this point, we have demonstrated the incremental development concepts for
programs using multiple levels of subprograms. To complete the program,
must write and debug the final three increments:

• Increment 6: multiply
• Increment 7: divide
• Increment 8: print results

We leave the completion of the program for you as a problem at the end
of the chapter.

we

280 Section 5.6 Software Engineering

5.6 Software Engineering

Dependent Statements
Several statements in the C language control other statements that follow
them The if. else is the first of these statements that we have seen. When-
ever one statement controls or influences statements that follow it, good

structured programming style indents the dependent statements to show
that the indented code is dependent on the controlling statement. The com-
piler does not need the indentation—it follows its syntactical rules regardless
of how a program is formatted-but good style makes for readable programs.

To illustrate the point, consider the two versions of the code for the func-
tion in Program 5-14. They both accomplish the same task. To make this

meaningful, cover up the right half of the program and
predict the results that will be produced when the ill-formed code
Then look at the well-structured code.

exercise even more
executes.

PROGRAM 5-14 Examples of Poor and Good Nesting Styles
Good StylePoor Style

int someFun (int a, int b) int someFun (int a, int b)1
{2 {

int x;int x;3
4

if (a < b)
x = a;
else

5 if (a < b)
x = a;6

7 else
8 b; x = b;

•5f ;
return x;

> // someFun

x
9 5f ;x X *=

10 return x;
> // someFun11

Assume that in this example, a has a value of 10 and b has a value of 20.
W hat value will he returned: First, look at Statement 6. The assignment of x
in this example is dependent on the i/ in Statement 5. Since Statement 6 is
not indented , however, it is difficult to see the dependency. Because the value
o a (10) is less than the value of b (20), x will he assigned the value 10.

Now examine Statement 9. It is indented and therefore appears to be
epen ent on t e else statement. But is it? The answer is no. It just looks that

way and is therefore misleading. Statement 9 will therefore execute regard-
expression in the if statement. This relationship is much more2See" ln 'f -tyW code on the right. The code on the right is

e l /0 ,W ,the rclationshiPs among the statements, and there-fore the chance of misreading the code is minimal.

L , ,

Chapter 5 Selection —Making Decisions 281

I he indentation rules are summarized in Table 5-8.

1. Indent statements that are dependent on previous statements. The
indentations are at least three spaces from the left end of the control-
ling statement.

2. Align else statements with their corresponding if statements. (See
Figure 5-1 3.)

3. Place the opening brace identifying a body of code on a separate line.
Indent the statements in the body of the code one space to the right of
the opening brace.

4. Align the closing brace identifying a body of code with the opening
brace, and place the closing brace on a separate line. Use a comment to

identify the block being terminated.
5. Align all code on the same level , which is dependent on the same con-

trol statement.
6. Further indent nested statements according to the above rules.

7. Surround operators with whitespace.

8. Code only one definition or statement on a single line.
9. Make your comments meaningful at the block level. Comments should

not simply parrot the code.

TABLE 5-8 Indentation Rules

Negative Logic
Negative logic refers to any expression that begins with not or that contains
multiple not expressions within. Like the proverbial double-negative in the
English language, interpreting negative logic can be difficult. We therefore
try to avoid it.

In the discussion of Figure 5-12 and in the section on simplifying the if
statement, one technique that we proposed was complementing a condi-
tional statement. This requires making a positive statement negative and a

negative statement positive. This can be done by following Rule 6 in Fable 5-2,

“Syntactical Rules for if .. .else Statements,” which states that the positions of
the statements in an if ..else can be swapped if the original control expression

plemented. The concept of complementing the if statement was shown
in Figure 5-10, “Complemented if ...else Statements.”

Remember, however, that simple code is the clearest code. T his concept

has been formulated into an acronym: KISS, which stands for “Keep It Sim-
ple and Short!” (see Chapter 3). Unfortunately, negative logic is not always

is com

282 Section 5.6 Software Engineering

; extremely confusing. We have

work for
"

hours trying to debug negative logic.

Avoid compound negative statements!

professionalseen
simple. In fact, it can get
programmers

When you complement an expression, make sure that the resulting state-
ment is readable. Complementing an expression can he more difficult than
simply making the condition negative. Examine the third statement in

Table 5-9 carefully. Note that the complement of the not (!) is uot -not (!|),
which in effect cancels the not. In general, you should avoid compound nega-
tive statements. In this case, therefore, the complemented statement is

greatly preferred.

Complemented StatementOriginal Statement

i f (x > 0)i f (x <= 0)

i f (x = = 5)i f (x ! = 5)

i f (x > 0 && f l a g)i f (! (x < = 0 | | ! f l a g))

TABLE 5-9 Complementing Expressions

Rules for Selection Statements
Tor selection statements, you need to consider three other rules, shown in
Table 5-10. Since these rules are sometimes conflicting, they are listed in
their order of importance.

1. Code positive statements whenever possible.
2. Code the normal/expected condition first .
.5. Code the most probable conditions first.

TABLE 5-10 Selection Rules

Human engineering studies have shown that people make fewer errors
^ i

en rca * n8 positive statements than when reading negative statements.
us is especially true when complex, compound Boolean statements are

involved. Therefore, the first rule in Table 5-10 is, whenever possible, code
your selection statements using positive conditions.
low P,!7Td FUle TCemS ‘he human expectations about what will fol -

confused if H f
to an''cipate things. They will therefore be less— * —

Chapter 5 Selection — Making Decisions 283

Finally, the third rule concerns the efficiency of the resulting program.
Coding the most probable conditions first is especially important in a multi-
way selection, such as the else-if . When you code the most probable test first,
then the program can skip the rest of the statements. Obviously, the more

statements skipped, the more efficient the resulting program.
As we mentioned previously, these rules often conflict with each other.

We have listed them in their order of importance from a human engineering
point of view. Unless there are overriding circumstances, you shoidd select
the higher option (Rule 1 before Rule 2 before Rule 3) in case of conflicts.
But remember the overriding principle: KISS—Keep It Simple and Short.

!

Selection in Structure Charts
We introduced the basic concepts of structure charts in Chapter 4. In ibis sec-
tion we extend the discussion to selection in structure charts. Figure 3-27
shows two symbols for a function that is called by a selection statement,
the condition and the exclusive or.

int select (...)

int dolt (...) {

{dolt select :

: if (...)

5 doA (~);if (...) I (+)
fun (...); else

I doA doB
fun doB (...);

:
} // dolt

// select}
CodeDesign CodeDesign

(b) exclusive or(a) conditional

FIGURE 5-27 Structure Chart Symbols for Selection

In Figure 5-27(a), the function dolt contains a conditional call to a sub-
function, fun. If the condition in the // statement is true, we call dolt. II it is

not true, we skip dolt. This situation is represented in a structure chart as a

small diamond on the vertical line between the two function blocks.
Figure 3-27(b) represents the selection between two different functions.

In this example, the function select chooses between doA and doB. One and
of them will be called each time the conditional statement is exe-only one

cuted. This is known as an exclusive or; one of the two alternatives is exe-
cuted to the exclusion of the other. The exclusive or is represented by a plus

sign between the processes.
Now consider the design found when a series of functions can be called

when a multiway selection contains calls to severalexclusively. This occurs

7

284 Section 5.6 Software Engineering

different functions. Figure 5-28 contains an example of a switch statement
that calls different functions based on color.

switch (color)

selectColoJ
j U

{
R': colorRed (...);

break;
: colorBlue (...);

break;
default : otherColor (...);
} // switch

case

+)(+ 'B'case

colorBlueI otherColorcolorRed

(b) Code(a) Design

FIGURE 5-28 Multiway Selection in a Structure Chart

The structure chart rules described in this section follow:

1. Conditional calls are indicated by a diamond above the called function
rectangle.

2. Exclusive or calls are indicated by a (+) between functions.

Chapter 5 Selection — Making Decisions 285

5.7 Tips and Common Programming Errors
1 . The complement of < is >=, and the complement of > is <=.
2. Dangling else statements are easily created and difficult to dehug. One

technique for avoiding dangling else statements is to use braces, even
when they are not needed.

3. The expression in the control expression in the if...else statement may
have a side effect, as shown below.

if (a++)

4. Encapsulate the statements inside braces if you have more than one

statement after ij or else in an if ..else statement.
3. Do not use the equal operator with a floating-point number, f loating-

point numbers are seldom exactly equal to a required value. When you
need to test for equality, such as a == b, use the expression shown below.

if (fabs (a - b) < .0000001)

6. Do not forget to use a break statement when the cases in a switch state-
ment are exclusive.

7. While not necessarily an error, it is poor programming practice to write a

switch statement without a clejault label. If the logic doesn’t require one,
code it with an error message to guard against unanticipated conditions.
This is shown below.

default: printf("Nalmpossible default\n");
exit (100);

8. The most common C error is using the assignment operator (=) in place
of the equal operator (==). One way to minimize this error is to get in the
habit of using the term “assignment operator" when reading the code.
For example, say "a is assigned b," not "a equals b."

9. It may be an error to place a semicolon after the if expression.

a. The semicolon terminates the if statement, and any statement that fol-
lows it is not part of the if

b. It is a compile error to code an else without a matching if . This error is

most likely created by a misplaced semicolon.

// if terminated hereif (a == b);
printf(...);

// No matching ifelse
printf(...);

286 Section 5.9 Summary

in the if expression.
It is a compile error to forget the parentheses

pile error to put a space between the lollowing relational oper-
<=. It is also a compile error to reverse them.

10.
11. It is a com

ators: ==, !=, >=
12. It is a compile error to

the value in a case label.
13. It is a compile error to use the same constant in two case labels.

The logical operators require two ampersands (& &) or two bars i |). It is

a logic error to code them with only one. (Single operators are bitwise
operators and are therefore valid code.)

1 5. It is generally a logic error to use side effects in the second operand in a

logical binary expression, as shown below, because the second operand
may not be evaluated.

variable rather than an integral constant asuse a

14.

(a++ & & — b)

5.8 Key Terms
exclusive or
logical operator
multiway selection
negative logic
nested if statement
null else statement
selection
selection in structure chart
simplifying if statements
switch
two-way selection

break statement
case
case-label
classifying function
comparative operator
complemented if ...else
conditional expression
converting function
dangling else
default label
De Morgan s rule
dependent statement

5.9 Summary
Data are called logical if they convey the idea of
C99 implements the logical type, bool. It also supports integer logical

d t ata item is nonzero, it is considered true ; if it is zero, it is
considered false.

three operators lor combining logical values to create new' values:
wot, and , or.

true or false.

Six comparative operators are used in C: <, <=
Selection in C is done usi

>, >=, ==, and !=.
using two statements: if ..else and switch.

IP!Chapter 5 Selection — Making Decisions 28 /

J I he if ...else construct is used for selection between two alternatives.
J You can swap the statements in the true and false branches if you use the

complement of an expression in an if...else statement.
II the false statement is not required in an if ...else , it is omitted and the
keyword else dropped .
If an else is dangling, it will he paired with the last unpaired if .

Multiway selection can be coded using either the suitch statement or an
else-if construct.
The switch statement is used to make a decision between many alterna-
tives when the different conditions can be expressed as integral values.
The else-if format is used to make multiple decisions when the item being
tested is not an integral and therefore a switch statement cannot be used.
A labeled statement is used for selection in a switch statement.
A default label is used as the last label in a switch statement, to be exe-
cuted when none of the case alternatives match the tested value.
Indenting the controlled statements in C is good style that enhances the
readability of a program.
Selection is used in a structure chart only when it involves a call to

another function.
The structure chart for selection shows the paths taken by the logic flow.
You cannot always tell by looking at the structure chart which selection
will be used (two-way or multiway).
a. A simple if is indicated by a diamond below the calling function,

h. An if...else and switch arc indicated by the exclusive or (+).

J ,

5.10 Practice Sets

Review Questions
1. Logical data are data that can be interpreted as true or false.

a. True
b. False

2. The expression in a selection statement can have no side effects.

a. True
b. False

3. Each labeled statement may identify one or more statements.

a. True
b. False

288 Section 5.10 Practice Sets

found in the standard library
4. The character classification functions are

(stdlib.h).
a. True
b. False

5. To ensure that a character is uppercase
is used.
a. True
b. False

, the toupper conversion function

logical operator is true only when both operands6. The
are true.
a. and (&&)
b. greater than (>)
c. less than (<)
d. or (||)
e. not (!)

7. Which of the following is not a comparative operator in C?

a. <
b. <=
c. =
d. >
e. >=

8. Two-way selection is implemented with the
a. case
b. else if
c. switch
d. the if . ..else and the switch
e. if . . .else

9. Which of the following is not a syntactical rule for the if...else statement?
a. Any expression can be used for the if expression.
b. Only one statement is allowed for the true and the false actions.
c. I he true and the false statements can he another if ...else statement.
d. 1 he expression must he enclosed in parentheses.
e. The selection expression cannot have a side effect.

10. \\ hich ol the following statements creates the “dangling else problem ?
a. a
b. a nested if statement without
c. a switch statement without a defaultd. an if statement without a true or a false statemente. any nested if statement

statement.

nested if statement without a false statement
a true statement

It

Chapter 5 Selection —Making Decisions 289

11. there are two different ways to implement a multiway selection in C.
They are

a. if ...else and switch
b. else-if and switch
c. if...else and else if
d. else-ij and case
e. switch and case

12. Which of the following statements about switch statements is lalse?

a. No two case labels can have the same value.
b. The switch control expression must be an integral type.
c. The case-labeled constant can be a constant or a variable.
d. Two case labels can he associated with the same statement series.
e. A sii’itch statement can have at most one default statement.

1 3. Which of the following statements about the else-if is false?

a. Each expression in the else-if must test the same variable.
b. The else-if is a coding style rather than a C construct.
c. The else- // requires integral values in its expression.
d. The else-if is used for multiway selections.
e. The last test in the else-if series concludes with a single else , which is

the default condition.
14. Which of the following is not a character classification in the C language?

a. ascii
b. control
c. digit
d. graphical
e. space

'

Exercises
1 5. Evaluate the following expressions to true or false. Show how you arrived

at your answer by first adding the default parentheses and then showing
the value of each expression as it would be evaluated by C, one expres-

sion to a line.
a. ! (3 + 3 >= 6)

b. 1 + 6 == 7 || 3 + 2 == 1

c. 1 > 5 | | 6 < 5 0 & & 2 < 5

d. 1 4 != 5 5 & & I (1 3 < 2 9) || 3 1 > 5 2

e. 6 < 7 > 5

290 Section 5.10 Practice Sets

16. If x = 0, y = 5, z = 5, what is the value of x, y, and z for each of the follow
ing code fragments? (Assume that x, y, and
each fragment.)

t h e i r o r i g ina l va lue s fo r/. are

a. i f (z != 0)
y = 295;

e l s e
x = 10;

b. i f (y + z > 10)
y = 99;
z = 8;

x = ++ z;
c. i f (x == 0)

{
x = x - 3;
z = z + 3;

}
e l s e

y = 99;

17. If x - 3, y - 0, and z —4, what is the value of the followimg expressions?
a. x & & y || z
b. x || y & & z
c. (x & & y) || z
d. (x || y) & & z
e. (x & & z) || y

18. Simplify the following expressions by removing the ! operator and theparentheses:
a. ! (x < y)
b. ! (x >= y)

(xc. y)==
* d. (x != y)

e. ! (l (x > y))

19. If x =-2, y = 5, z = 0, and t =ing expressions?
a. x +
b. x -
c. 3 *

--4, what is the value of each of the follow-
y < z + t
2 * y + y < z * 2 / 3
y / 4 % 5

z <
& & y

(y + 5) & & y
y >= z

20. 11 originally x = 4, y = 0, and zexecuting the following code?

i f (x 1= 0)
y = 3;

d. t | |
e. ! (4 + 5 * 4) & & (Z

_
2)

-» what is the value of x, y, and z after

continued

]r

Chapter 5 Selection — Making Decisions 291

else
z = 2;

21. II originally x = 4, y = 0, and z = 2, what is the value of x, y, and z alter
executing the following code? »

if (z == 2)
y = 1;

else
x = 3;

22. If originally x = 4, y = 0, and z = 2, what is the value of x, y, and z after
executing the following code?

if (x && y)
x = 3;

else
y = 2;

23. If originally x = 4, y = 0, and z = 2, what is the value of x, y, and z alter
executing the following code?

if (x||y z)
y = l;

else
z = 3;

24. If originally x = 0, y = 0, and z = 1, what is the value of x, y, and z after
executing the following code?

if (x)
if (y)

z = 3;
else

z = 2;

25. If originally x = 4, y = 0, and z = 2, what is the value of x, y, and z after

executing the following code?

if (z == 0||x && !y)
if (iz)

y = 1?
else

x = 2;

292 Section 5.10 Practice Sets

26. If originally x = 0, y = 0, and z = 1, what is the value of x, y, and z after
executing the following coder

if (x)
if (y)

if (z)
z = 3;

else
z = 2;

27. If originally x = 0, y = 0, and z = 1, what is the value of x, y, and z after
executing the following coder

if (z < x||y >= z && z == 1)
if (z && y)

y = 1 ?
else

x = 1;

28. If originally x = 0, y = 0, and z = 1, what is the value of x, y, and z after
executing the following code?

if (z = y)
{
y++;
z—;

>
else—x;

29. II originally x = 0, y = 0, and z = 1 , what is the value of x, y, and z after
executing the following code?

if (z = x < y)

x += 3;
y — 1 ?

{

>
else

x = y++;

3°. If originally x = 0, y = 0, and z = 1, what is the value of
executing the following code?

and z afterx, y,

switch (x)

continued

Chapter 5 Selection — Making Decisions 293

case 0 : x = 2
y = 3

case 1
default : y = 3

x = 1

4: x

n
>

31. II originally x = 2, y = 1, and z = 1 , what is the value of x, y, and z after
executing the following code?

switch (x)
{
case 0 : x = 2;

Y = 3;
case 1 : x = 4;

break;
default:

y = 3;
x = 1;

>
32. If originally x = 1 , y = 3, and z = 0, what is the value of x, y, and z after

executing the following coder

switch (x)
{
case 0 : x = 2

y = 3
break

4case 1 : x
break

default: y = 3
x = 1

}

33. Evaluate the value of the following expressions:

a. tolower ('C')
b. tolower ('?')
c. tolower ('c')
d. tolower ('5')

34. Evaluate the value of the following expressions:

a. toupper ('c •)

b. toupper ('C')
c. toupper ('?')

d. toupper ('7')

294 Section 5.10 Practice Sets

Programs
if statement that will assign the value 1 to the variable best if35. Write an i

the integer variable score is 90 or greater.
Repeat Problem 35 using a conditional expression.

37. Write the code to add 4 to an integer variable, num, if a float variable
amount, is greater than 5.4.

38. Print the value of the integer num if the variable flag is true.

36.

39. Write the code to print either zero or not zero based on the integer vari-
able num.

40. If the variable divisor is not zero, divide the variable dividend by
divisor, and store the result in quotient. II divisor is zero, assign it
to quotient. Then print all three variables. Assume that dividend and
divisor are integers and quotient is a double.

41. If the variable flag is true, read the integer variables a and b. Then cal-
culate and print the sum and average of both inputs.

42. Rewrite the following code using one ij statement:

if (aChar == •E *)
C++;

if (aChar == 'E')
printf ("Value is E\n");

43. Rewrite the following code fragment using one switch statement:

if (ch == 'E *||ch ==
countE++;

else if (ch == 'A'||ch == 'a 1)
countA++

else if (ch == '1'||Ch ==
countI++;

e ')

<4?
• i’)

else
print ("Error—Not A, E, o r I \a \ n") ;

44. Write a code fragment that tests the value of an integer numl. If the value
is 10, square numl. If it is 9, read a new' value into numl. If it is 2 or 3,
multiply numl by 99 and print out the result. Implement your code using
nested if statements, not a switch.

45. Rewrite Problem 44
46 'fhTtU C°de fragment for the flowchart shown in Figure 5-29. Assumethat the variables x and y are integers and z is a float-point number.

using a switch statement.

i.

Chapter 5 Selection — Making Decisions 295

i

yread x & yj
x > 0

y = x - 1

l z = xz = yz = 2 * x

ly = x + 1

z = z + 1

+9l
/ write // *' * 2 /

FIGURE 5-29 Flowchart for Problem 46

47. Write a function called smallest that, given three integers, returns the
smallest value.

48. Write a function called day_of_week that, given an integer between 0
and 6, prints the corresponding day of the week. Assume that the first day
of the week (0) is Sunday.

49. Write a function called month_of _year that, given an integer between 1

and 12, prints the corresponding month of the year.
50. Write a function called parkingCharge that, given the type of vehicle

(c for car, b for bus, t for truck) and the hours a vehicle spent in the
parking lot, returns the parking charge based on the rates shown below.

$2 per hour
$3 per hour
$4 per hour

car
bus
truck

5 1. Write a function to find the smallest of four integers.

Projects
52. Complete the incremental implementation of Program 5-13. f irst write

the code to implement the multiply function, then the divide function,

and finally the print results function. The print results function should

296 Section 5.10 Practice Sets

m’itch to determine which option was requested and then print the
results in the format shown below.use a

= resultnumber operator number

the function after the print results in Chapter 4, butYou may pattern
it will need extensive modification.

53. Write a program that determines a student’s grade. It reads three test
scores (between 0 and 100) and calls a function that calculates and

student’s grade based on the following rules:returns a

a. If the average score is 90% or more, the grade is A.

b. If the average score is 70% or
third score. If the third score is more than 90%, the grade is A; other-

and less than 90%, it checks themore

wise, the grade is B.
c. If the average score is 50% or more and less than "0%, it checks the

of the second and third scores. If the average of the two isaverage
greater than 70%, the grade is C; otherwise, it is D.

d. If the average score is less than 50 percent, then the grade is F.

The program’s main is to contain only call statements. At least three
subfunctions are required: one to read scores, one to determine the
grade, and one to print the results.

54. In Program 4-7, "Strange College Fees,” we wrote a program to calculate
college fees. Modify this program for Typical College. At Typical College,

the students pay a fee of $10 per unit for up to 12 units; once they have
paid for 12 units, they have no additional per-unit fee. The registration
fee remains $10 but is assessed only if courses are taken in the term.

55. Given a point, a line from the point forms an angle with the horizontal axis
to the right of the line. The line is said to terminate in one of four quad-
rants based on its angle (a) from the horizontal, as shown in Figure 5-30.

II I
Quadrants

0 < a < 90
90 < a < 180

III: 180 < a < 270
IV: 270 < a < 360

I

III IV

FIGURE 5-30 Quadrants for Project 55

Chapter 5 Selection — Making Decisions 297

Write a program that determines the quadrant, given a user-input
angle. Use a function to read and validate the angle. Note: If the angle is
exactly 0°, it is not in a quadrant hut lies on the positive X-axis; if it is
exactly 90°, it lies on the positive Y-axis; if it is exactly 180°, it lies on the
negative X-axis; and if it is exactly 270°, it lies on the negative Y-axis. Test
your program with the following data:

0°, 48.3°, 90°, 179.8°, 180°, 186°, 270°, 300°, and 360°

36. I low many values of the variable num must be used to completely test all
branches of the following code fragment?

if (num > 0)
if (value < 25)

{
value = 10 * num;
if (num < 12)

value = value / 10;
} // if value

else
value = 20 * num;

else
value = 30 * num;

57. Write a program that asks the user to enter the current date and a per-
son’s birth date in the form month, day, year. The program then calcu-
lates the person’s age in integral years. Use separate lunctions to enter

the dates (pass by address), calculate the person’s age, and print the
results. lest your program with the following dates: 1 1 /14/1957, 5/10/
1989, and 1/5/2000.

58. Write a C program to calculate the parking fare for customers who park
their cars in a parking lot when the following information is given:

a. A character showing the type of vehicle: C for car, B for bus,

T for truck.
b. An integer between 0 and 24 showing the hour the vehicle entered

the lot.
c. An integer between 0 and 60 showing the minute the vehicle entered

the lot.
d. An integer between 0 and 24 showing the hour the vehicle leit the lot.
e. An integer between 0 and 60 showing the minute the vehicle leit

the lot.
This is a public lot . To encourage people to park for a short period ot

time, the management uses two different rates for each type of vehicle,

as shown in fable 5-11.

298 Section 5.10 Practice Sets

Second RateFirst RateVehicle
$1.50/hr after 3 hr
$2.30/hr after 2 hr
$3.70/hr after first h

$0.OO/hr first 3 hr

$1.OO/hr first 2 hr

$2.OO/hr for first hr

CAR

TRUCK
rBUS

TABLE 5-11 Rates for Project 58

No vehicle is allowed to stay in the parking lot later than midnight;it
will be towed away.

The input data consist of a character and a set of four integers rep-
resenting the type of vehicle and the entering and leaving hours and
minutes. But these pieces of data must he input into the computer in a

user-friendly way. In other words, the computer must prompt the user to

enter each piece of data as shown below. (Color indicates typical data.)

Type of vehicle? C
Hour vehicle entered lot (0 - 24)? 14
Minute vehicle entered lot (0 - 60)? 23

Hour vehicle left lot
Minute vehicle left lot

(0 - 24)? 18
(0 - 60)? 8

The output format is shown below.
PARKING LOT CHARGE

Type of vehicle: Car or Bus or Truck
TIME-IN
TIME-OUT

XX : XX
XX : XX

PARKING TIME
ROUNDED TOTAL

XX:XX
XX

TOTAL CHARGE $XX.XX

in I /f
Pro8ram ,TU,st first calculate the actual time spent in the park-

ti ° .°r ,e^C Jc e' ^*lis means using modulo arithmetic to handle

shownV"

I* \ Y*11 ca*cu*ate ^is in many ways, one of which is

tZ “,h e P-H i n,l o,u* .h e y.

a. Compare the minute portion of the leaving and the entering time.
If the first one is smaller than the second,

Add 60 to the miminute portion of the leaving time.
ur portion of the leaving time.Subtract 1 from the ho

b. Subtract the hour portions.

Chapter 5 Selection — Making Decisions 299

c. Subtract the minute portions.
d. Since there are no fractional hour charges, the program must also

round the parking time up to the next hour before calculating the
charge. The program should use the switch statement to distinguish
between the different types of vehicles.

A well-structured program design is required. A typical solution will
use several functions besides main. Before you start programming, pre-
pare a structure chart. Run your program six times with the data shown
in Table 5-12.

Test Hour In Minute In Hour Out MinuteType
Out

221 C 1 2 40 14

8 402 8 20B
3 593 T 2 0

224 C 1 2 40 16

2020 145 B 8
1 2 02 06 T

TABLE 5-12 Test Data for Project 58

59. This program is a simple guessing game. The computer is to generate a

random number between 1 and 20. The user is given up to five tries to

guess the exact number. After each guess, you are to tell the user if the
guessed number is greater than , less than , or equal to the random num-
ber. If it is equal, no more guesses should he made. If the user hasn’t

guessed the number after five tries, display the number with a message

that the user should know it by now and terminate the game.

A possible successful dialog:

I am thinking of a number between 1 and 20.
Can you guess what it is?
Your guess is low. Try again:

Your guess is low. Try again:
Your guess is high. Try again: 16

1 0
15
17

Congratulations! You did it.

A possible unsuccessful dialog:

I am thinking of a number between 1 and 20.
Can you guess what it is? 10

continued

300 Section 5.10 Practice Sets

2 0is low. Try again:

is high. Try again: 10

is low. Try again:

Your guess
Your guess
Your guess
Your guess is high. Try again: 12

18

Sorry. The number was 15.
You
Better luck next time.

Your design For this program should include a separate function to
get the user’s guess, a function to print the unsuccessful message, one to
print the successful message, and one to print the sorry message.

60. Write a program that, given a person’s birth date (or any other date in the
Gregorian calendar), will display the day of the week the person was horn.

To determine the day of the week, you will first need to calculate the
day of the week for December 31 of the previous year. To calculate the
day for December 31. use

should have gotten it by now.

the following formula.>

y e a r - 1 + f y e a r - 1
1 0 0 4 0 0

y e a r - 1 % 7(y e a r - l) x 3 6 5 + 4

The formula determines the day based on the values as shown below.
Day 0: Sunday
Day 1: Monday
Day 2: Tuesday
Day 3: Wednesday
Day 4: Thursday
Day 5: Friday
Day 6: Saturday

Once you know the day for December 31, you simply calculate the
days in the year before the month in question. Use a switch statement to
make this calculation. (Hint: Use case 12 first , and then fall into case 11,
10. ..2.) If the desired month is 12, add the number of days for November
(30). If it is 11, add the number of days for October (31). If it is 3, add
the number of days for February (28).'lf it is 2, add the number of days
or January (31). If you do not use a break between the months, the

switch will add the days in each month before the current month.
o t is gure, add the day in the current month and then add the

resu t to t e day code for December 31. I his number modulothe day of the week.
There is one more refinement. If the current year is a leap year, and

Th f i|
tSlrt

r
3te 'S, a* ter February- you need to add 1 to the day code.I he following formula can be used to dete

seven is

rmine if the year is a leap year.
(l(year % 4) && (year 1 1 0 0)) I I 1 (y e a r % 4 0 0)»

i i t lx

1Chapter 5 Selection — Making Decisions 301

Your program should have a function to get data from the user,
another to calculate the day of the week, and a third to print the result.

To test your program, run it with the following dates:

a. February 28, 1900, and March 1 , 1900
h. February 28, 1955, and March 1, 1955
c. February 28, 1996, and March 1 , 1996
d. February 28, 2000, and March 1 , 2000
e. December 31, 1996
f. The first and last dates of the current week.

6 I . Write a program that calculates the change due a customer by denomina-
tion; that is, how many pennies, nickels, dimes, etc. are needed in

change. The input is to be the purchase price and the size of the hill ten-
dered by the customer ($100, $50, $20, $ 10, $5, SI).

62. Write a menu-driven program that allows a user to enter five numbers
and then choose between finding the smallest, largest, sum, or average.
The menu and all the choices are to be functions. Use a switch statement
to determine what action to take. Provide an error message il an invalid
choice is entered.

Run the program five times, once with each option and once w i t h an
invalid option. Each run is to use the following set ol data:

16, 21, 7, 54, 9

63. Write a program that tests a user-entered character and displays its clas-
sification according to the ASCII classifications shown in Figure 5-25,

“Classifications of the Character Type.” Write the program starting at the
top of the classification tree and display all classifications that the char-
acter belongs to. For instance, if the user enters a digit , you should dis-
play that it is printable, graphical, alphanumeric, and a digit .

64. Write a program to compute the real roots of a quadratic equation (ax +

bx + c = 0). The roots can he calculated using the following formulas:

iw

ip

Jb2 - 4ac - b - Jb2
- b + - 4ac

and \ 2 =x l 2a 2a

user to enter the constants (a. b. c). It
on the following rules:

Your program is to prompt the
is then to display the roots based

a. If both a and b are zero, there is no solution.
b. If a is zero, there is only one root (-c / b).
c. If the discriminate (b2 - 4ac) is negative, there are no real roots.
d. For all other combinations, there are two roots.

Test your program with the data in fable 5-13.

302 Section 5.10 Practice Sets

ba

8 53
7 8-6
9 -100
0 1 10

TABLE 5-13 Test Data for Project 64

4

Repetition

The real power of computers is in their ability to repeat an operation or a

series of operations many times. This repetition, called looping, is one of the
basic structured programming concepts. In this chapter, we discuss looping
and introduce different looping constructs. First we define the basic concepts
of loops, including a most important concept: how to stop a loop. We then
present the three different loop constructs and take you through the C imple-
mentation of these three constructs. In this discussion, we include some

basic loop applications. After discussing the basic loop constructs, we intro-
duce an implicit loop construct, recursion. We conclude with a discussion of

some of the software engineering implications of loops.

Objectives
To understand basic loop concepts:

pretest loops and post-test loops
loop initialization and updating
event and counter-controlled loops

To understand and be able to select the best loop construct for a given
problem.
To write programs that use the while, for, or do...while statements.

To understand the basic concepts and usage of recursion algorithms.

To understand and be able to determine the efficiency of an algorithm
through an analysis of its looping constructs.

303

304 Section 6.2 Pretest and Post-test Loops

Concept of a loop
The concent of a loop is shown in the flowchart segment in Figure 6-1. b
this flowchart, the action is repeated over and over again. It never stops.

Since the loop in Figure 6-1 never stops, it is the computer version of the
machine. The action (or actions) will be repeated forever.

6.1

perpetual motion
We definitely do not want this to happen. We want our loop to end when the
work is done. To make sure that it ends, we must have a condition that con-
trols the loop. In other words, we must design the loop so that before or after
each iteration, it checks to see if the task is done. II it is not done, the loop
repeats one more time) if the task is done, the loop terminates. I his test is
known as a loop control expression.

An action or a
series of actions

Concept of a LoopFIGURE 6-1

Pretest and Post-test Loops6.2
We have established that we need to test lor the end of a loop, hut where
should we check it—before or after each iteration? Programming languages
allow us to check the loop control expression either before or after each itera-
tion ol the loop. In other words, we can have either a pre- or a post-test ter-
minating condition. In a pretest loop, the condition is checked before we
start and at the beginning of each iteration. If the test condition is true, we
execute the code; if the test condition is false, we terminate the loop.

Pretest Loop
In each iteration, the control expression is tested first. If it is true, the loop
continues;otherwise, the loop is terminated.

Post-test Loop
In each iteration,the loop action(s) are executed. Then the control expression istested. If t is true,a new iteration is started; otherwise, the loop terminates.

In the post-test loop, we always execute the action at leastcontrol expression is then tested If tU . • . . fthe expression is true, the loop repeats; if
The loop» 1 once.

Chapter 6 Repetition 305

the expression is false, the loop terminates. The flowcharts in Figure 6-2 show
these two loop types.

V An action or
series of actions

true

An action or
series of actions —(Condition \

true\ M

\\ false

(a) Pretest Loop (b) Post-test Loop

FIGURE 6-2 Pretest and Post-test Loops

Consider an example of pretest and post-test looping. Imagine that you
are ready to start your daily exercises. Your exercise program requires you to

do as many push-ups as possible. You can check your limit using either a pre-
test or a post-test condition. In the pretest strategy, you first check to see

you have enough energy to start . In the post-test strategy, you do one push-up
and then you test to see if you have enough energy to do another one. Note
that in both cases the question is phrased so that if the answer is true you
continue the loop. The two strategies are shown in Figure 6-3.

if

I
Energy

? Do one
push-up

true I
/ Energy \=\ /

Do one
push-up

|false

(b) Post-test Loop(a) Pretest Loop

FIGURE 6-3 Two Different Strategies for Doing Exercises

As you can see, in the first strategy, you may not do any push-ups. If you

tired when you start and don't have the energy for at least one push-up,

done. In the second strategy, you must do at least one push-up. Inare
you are
other words, in a pretest loop, the action may he done zero, one, or more

306 Section 6.3 Initialization and Updating

times- in a post-test loop, the action is done one or more times. This major

difference between a pretest and a post-test loop, which you must clearly
understand, is shown in Figure 6-4.

[V
Body 1exit

/ Test \
_I_JIn a pretest loop, the body

may not be executed. true

false
In a post-test loop, the body

must be executed at least once.
exit

(b) Post-test(a) Pretest

FIGURE 6-4 Minimum Number of Iterations in Two Loops

6.3 Initialization and Updating
In addition to the loop control expression, two other processes, initialization
and updating, are associated with almost all loops.

Loop Initialization
Belore a loop can start, some preparation is usually required. We call this
preparation loop initialization. Initialization must be done before the first
execution of the loop body. It sets the stage lor the loop actions. Figure 6-5
shows the initialization as a process box before the loop.

Initialization may be explicit or implicit. Explicit initialization is much
more common. When the initialization is explicit, we include code to set the
beginning values ol key loop variables. Implicit initialization provides
direct initialization code; rather, it relies
the loop.

no
preexisting situation to controlon a

Loop Update
How can the condition that controls the loop be true for a while and then
change to falser I he answer is that something must happen inside the body

u oo|) to t tange the condition. Otherwise, we would have an infiniteoop. For example, in the loops shown in Figure 6-3, you gradually lose vour
chanaes' th “ 'T ^ y°U Cannot continue the push-ups. Thisizg2l r Jrfr The ,h». cu*
u “j| “T'ar'l"“"“ “P update. Updating is J„nt. in each deaden,;£;£iar ^^ . «**t

ail

7H!
Chapter 6 Repetition 307

tv 1

I IInitialization Initialization

*
/ \ false
(Test Y- iAction(s)

II true Updating

Action(s)

—(Test \s_7Updating

false

exitexit

(a) Pretest Loop (b) Post-test Loop

FIGURE 6-5 Loop Initialization and Updating

The concepts of initialization and updating can be applied to our previ-

ous push-up example. In this case, initialization is created by nutrition, an

implicit initialization. During each push-up, some of the initial energy is con-

sumed in the process and your energy is reduced, which updates your energy

level. This is shown in Figure 6-6.

tv k1

I ICreate
EnergyCreate

Energy

*
(y r

IDo One
Push-up

Energy
Reduced[true

r

IDo One
Push-up

1 EnerEnergy
Reduced

- gy
OK?true

false

exit
exit

(b) Post-test Loop(a) Pretest Loop

FIGURE 6-6 Initialization and Updating for Exercise

308 Section 6.4 Event- and Counter-Controlled Loops

6.4 Event- and Counter-Controlled Loops
be used in a loop limit test can be sum-AII the possible expressions that

marized into two general categories: event-controlled loops and counter-
can

controlled loops.

Event-Controlled Loops
In an event-controlled loop, an event changes the control expression from
true to false. For example, when reading data, reaching the end of the data
changes the expression from true to false. In event-controlled loops, the
updating process can be explicit or implicit. If it is explicit , such as finding a
specific piece of information, it is controlled by the loop. If it is implicit, such
as the temperature of a batch of chemicals reaching a certain point, it is con-
trolled by some external condition. The event-controlled loop is shown in
Figure 6-7.

Initialize
condition

Initialize
condition

false
Condition IAction(s)

true

IUpdate
conditionIAction(s)

Update
condition Condition

true

falseI!! exitexit

(a) Pretest Loop (b) Post-test Loop

FIGURE 6-7 Event-controlled Loop Concept

Counter-Controlled Loops

UP, or ,, WhiCh““”“controlled loop is shown in Figure 6-8.

we use a

counting down. The counter-

L

"

Chapter 6 Repetition 309

KI I
Set count Set count

to 0 toO

/— < count < n V- iAction(s)

I true

iincrement
countiAction(s)

iincrement
count count < n

true

false

exit exit

(a) Pretest Loop (b) Post-test Loop

FIGURE 6-8 Counter-controlled Loop Concept

Loop Comparison
The number of iterations of a loop is given as w. In a pretest loop, when we

come out of the loop, the limit test has been executed n + 1 times. In a

post-test loop, when we come out of the loop, the limit test has been executed
only n times. A summary of the two different loop concepts is shown in Table 6- 1.

Post-test LoopPretest Loop
Initialization: 1Initialization: 1

Number of tests:Number of tests: n + 1 n

Action executed:Action executed: nn

Updating executed:Updating executed: nn

10 Minimum iterations:Minimum iterations:

TABLE 6-1 Loop Comparisons

6.5 Loops in C
C has three loop statements: the while, the for, and the do...while. I he first two

pretest loops, and the do...while is a post-test loop. We can use all ol them

for event-controlled and counter-controlled loops. I he while and do...while are

most commonly used for event-controlled loops, and the for is usually used for

counter-controlled loops. These loop constructs are shown in Figure 6-9.

are

310 Section 6.5 Loops in C

do...whilefor

Post-test LoopPretest LoopPretest Loop

FIGURE 6-9 C Loop Constructs

Note that all three of these loop constructs continue when the limit con-
trol test is true anti terminate when it is false. This consistency of design
makes it easy to write the limit test in C. On the other hand, general algo-
rithms are usually written just the opposite because analysts tend to think
about what will terminate the loop rather than what will continue it . There-
fore, we must complement or otherwise modify the limit test when we write

program. This is one place where "De Morgan’s Rule,” discussed in
Chapter 5, is very handy.
our

The while Loop
The while loop is a pretest loop. It uses an expression to control the loop.
Because it is a pretest loop, it tests the expression before every iteration of the
loop. The basic syntax of the while statement is shown in Figure 6-10. No
semicolon is needed at the end of the while statement. When you see a semi-
colon, it actually belongs to the statement within the while statement.

Ii .false
expression while (expression)

true statement

statement

I
(a) Flowchart (b) Sample Code

FIGURE 6-10 The while Statement

sinole ^ *n Figure 6- 1 shows that the loop body isingle statement; that is, the body of the loo
is a

p must be one, and only one
t

L

TH
Chapter 6 Repetition 311

statement. II we want to include multiple statements in the body, we must put
them in a compound statement (block). This concept is shown in Figure 6- 11.

1\
while (expression)

{

Action

Action

Action

} // while

(b) C Language(a) Flowchart

FIGURE 6-11 Compound while Statement

Process-Control Loops
Perhaps the simplest loop is the loop that never ends. While it is virtually
never used in data processing, it is common in process-control loops such as

network servers, environmental systems, and manufacturing systems. A sim-

ple process-control system that might he used to control the temperature in a

building is shown in Program 6-1.

PROGRAM 6- 1 Process-control System Example
while (true)1

2 {
temp = getTemperature();
if (temp < 68)

turnOnHeater(); turnOffAirCond()

else if (temp > 78)
turnOnAirCond(); turnOffHeater()

3
4
5
6
7

else8
{9
turnOffHeater();
turnOffAirCond();
} // else

} // while true

10
1 1
12
13

312 Section 6.5 Loops in C

Program 6-1 Analysis The limit test in this s,mp|ejpjro^m^a|it^cons' ^ statement is alwaysL6: however, that this is not a good constrl,
f°r

would'be ^iê effectlir^Program 6-1 if the following while state-

ment were used?

while (0)

Because the limit condition is a constant false, the loop would never start. Obvi-
ously, this would be a logic error.

Print Loops
A common while loop is shown in Program 6-2. In this case we want to print
a series of numbers in descending order. To keep from running off the end of
the line, we have added a test to write a newline when ten numbers have
been written.

PROGRAM 6-2 A while Loop to Print Numbers
1 /* Simple while loop that prints numbers 10 per line.

Written by:
Date:

2
3

* /4
#include <stdio.h>5

6
7 int main (void)
8 {
9 // Local Declarations

int num;
int lineCount;

10
11
12
13 // Statements
14 printf ("Enter an integer between

scanf ("%d",
1 and 100: ");

// Initialization15 &num);
16
17 // Test number

if (num > 100)
num = 100;

18
19
2 0
2 1 lineCount =

while (num > 0)
0 ;

2 2
23 {
24 if (lineCount <

lineCount++;
10)

25

continued
i

1
Chapter 6 Repetition 313

PROGRAM 6-2 A while Loop to Print Numbers (continued)

26 else
27 {
28 printf("\n");

lineCount = 1;

> // else
printf("%4d", num—);
> // while

return 0;
// main

29
30
31 // num-- updates loop

32

33
34 >

Results:
Enter an integer between 1 and 100: 15

15 14 13 12 11 10 9 8 7 6

5 4 3 2 1

Program 6-2 Analysis Find the basic elements of a loop in this program. First, look for loop initialization,
then the limit test, and finally the update.

The initialization is done by asking the user to enter num in Statement 14 Note
how we make sure that the user enters a number that is not too large. If the number is
over 100, we simply set it to 100, which is the maximum we told the user to enter. The
limit test is in Statement 22. As long as num is greater than 0, we continue printing out

the number series. The update is hidden in Statement 31;after printing num, we sub-

tract 1 from it. Although this is a common C programmer trick, the program would
have been easier to read if we had put the update(num—) on the line after the print.
That way it would have been obvious.

File Loops
One of the most common loop applications in any language is reading data
until all the data have been processed—that is, until the end ol file is

reached. In C, the scan/ function returns the system constant EOF when it

detects an end-of-file.
Consider this application of the scanf feature: suppose we want to read

and process a list of numbers from the keyboard. We type all the numbers,
each one on a separate line. At the end, we can type end-of-file (<ctrl+d> in

UNIX or <ctrl+z> in DOS). This loop logic is shown in the next example.

ioResult = scanf ("%d", &a);
while (ioResult 1 = EOF)

{
// Action: Process data

ioResult = scanf ("%d", &a);
// while>

7

314 Section 6.5 Loops in C

codes a while loop like this. Lets simplify it . In the revised
have moved the scan/ to the conditional expression in

But no one
version of the loop, we
the while statement itself. We can do this because the initialization and the
update are identical. The initialization and updating are now both self-contained

of the while statement. This change is shown below.
parts

while ((ioResult = scanf ("%d", &a)) != EOF)

{
// Process data

> // while

But we can simplify this loop even further. Because the scanf function
returns a value, we can test for end-of-file in the while expression. We don 't
need the variable, ioResult, so we can simply use the function value and
discard it after it has been checked. The result is the standard C loop for
reading and processing data from a file shown in Program 6-3, which adds a
list of integers read from the keyboard and displays their sum.

PROGRAM 6-3 Adding a List of Numbers
/* Add a list of integers from the standard input unit

Written by:
Date:

1
2
3

*/4
iinclude <stdio.h>
int main (void)

5
6
7 {

// Local Declarations
int x;
int sum = 0;

8
9

10
11

// Statements
printf("Enter your numbers:
while (scanf("%d", &x) 1 = EOF)

sum +=
printf ("\nThe total
return
// main

1 2
13 <EOF> to stop.xn");
14
15 x;
16 is: %d\n", sum);
17 0 ;
18 }

Results:
Enter your numbers: <EOF> to stop.
15
2 2
3 Ad
The total is: 40

Chapter 6 Repetition
^

315

Program 6-3 Analysis Note that a compound statement (block) is not needed in the while loop, because the
addition can be done in one statement. Another important point is that the statement
to print the sum is outside the loop. Since the user can see the input values on the
screen, all we need to show is the sum.

The for Loop
I he for statement is a pretest loop that uses three expressions. The first expres-
sion contains any initialization statements, the second contains the limit-test
expression, and the third contains the updating expression. Figure 6-12 shows
a flowchart , and an expanded interpretation , for a sample for statement.

I
expri\

\ expr2 M
exprl

" \aisexpr2 V-| true

statement | true

statement

t expr3

f
(b) Expanded Flowchart(a) Flowchart

for (exprl; expr2; expr3)
statement

FIGURE 6-12 for Statement

Expression 1 is executed when the for starts. Expression 2 is the limit test

expression. As shown in the expanded flowchart, it is tested before every itera-

tion. Remember that since the/or is a pretest loop, the body is not executed if
the limit condition is false at the start of the loop.

Finally, Expression 3 is the update expression. It is executed at the end of
each loop. Note that the code in the for statement must be expressions. This

means that you cannot use statements, such as return , in the for statement

itself. Like the while statement, the for statement does not need a semicolon.
C allows the limit test in Expression 2 to he a variable. It also allows us to

change the value of the variable during the execution of the loop. We do not

recommend changing it in the loop, however. It is not a good structured pro-

gramming style and can lead to errors and perpetual loops.
The body of the for loop must he one, and only one, statement. II we

want to include more than one statement in the body, we must code them in

316 Section 6.5 Loops in C

nt with a compound statement is shownpound statement. A for stateme
in Figure 6-13.
a com

Ikfor (exprl;
expr2;
expr3)

exprl \fafse
ixpr3 expr2

{true

ActionAction

ActionAction

Action

} // for

exit
(b) C Language(a) Flowchart

FIGURE 6- 1 3 Compound for Statement

Unlike some languages, C allows the loop control expression to he con-
trolled inside the for statement itself. This means that the updating of the
limit condition can be done in the body of the for statement. In I act , Expres-
sion 3 can he null and the updating controlled entirely within the body of the
loop. This is not a recommended structured programming coding technique,
although it is required in some situations.

Although the for loop can be used anywhere a pretest loop is required, it
is most naturally used for counter-controlled loops (see “Counter-Controlled
Loops in Section 6.4). Its self-contained design makes it ideal for
count logic.

A for loop is used when a loop is to be executed a known number of times. We
can do the same thing with a while loop, but the for loop is easier to read and
more natural for counting loops.

1 et s compare the while and the for loops. Figure 6-14 shows a graphical
representation ol each side by side. Note that the/or loop contains the initial*./ation update code, and limit test in one statement. This makes for veryreadable code. All the control steps, initialization, end-of-loop test, andupdating are done in one place. This is a variation of the structured program-
ming concepts of encapsulation, in which all code for a process is placed inone module. Another way of looking at it is that a for loop communicates bet-ter and is more * 1compact.

k

U

Chapter 6 Repetition 317

initialize
for (initialize;

while (expression) expression;

update)
1

{ {

action action

action action

update
i > // for
L

// while

FIGURE 6-14 Comparing for and while Loops

Now let 's solve the same problem using both a while and a for loop. I he
code shown below contains a loop to read 20 numbers from the keyboard and
find their sum. This can he done both in a while loop and a for loop. But as

you can see, the for loop is more self-documenting.

= 1 ?
sum = 0;
while (i <= 20)

l
sum = 0;
for (i = 1; i <= 20; i++)

{{
scanf ("%d", &a);
sum += a;
} // for

scanf("%d", &a);
sum += a;
i ++;
} // while

C99 modified the/or syntax to allow the definition of loop variables to be
done in the for statement itself. This syntax is shown in the next example.
Note, however, that definitions of the for statement are local to the loop body;
they are not in scope when the loop terminates. If we need them after the

loop, they must be defined in the local declarations section.

Example: Print Number Series
To demonstrate the for loop, let’s write a program that asks the user for a

number and then prints the series of numbers starting at one and continuing

up to and including the user-entered number. The code is in Program 6-4.

PROGRAM 6-4 Example of a for Loop

/* Print number series from 1 to user-specified limit.
Written by:
Date:

1
2
3

cont inued

Example of a for Loop (continuedIPROGRAM 6-4

*/4
#include <stdio.h>
int main (void)

5
6
7 {

// Local Declarations
int limit;

8
9

10
// Statements

printf ("\nPlease enter the limit:

scant ("%d", &limit);
for (int i = 1;

printf("\t%d\n", i);
return 0;

} // main

1 1
12
13

i <= limit; i++)14
15
16
17

Results:
Please enter the limit: 3
1
2
3

Program 6-4 Analysis This simple program is the model for many looping functions. Let's look at three sim-
ple modifications to it. First, how would you print only odd numbers? This requires a
change only to the update in the for statement.

for (i = 1; i <= limit; i += 2)

Now let's change it to print the numbers backward. In this case, all the statements
in the for statement must be changed, but the rest of the program is still unchanged.

for (i = limit; i > 1; i—)
For the final example, let's print the numbers in two columns, the odd numbers inthe first column and the even numbers in the second column. We must modify theupdate statement in the for statement and also the print statement as shown below.

for (i - 1; i <= limit;
printf("\t%2d\t%2d\n", i, i + i);

i += 2)

We have used tabs and width specifications to align the output in columns. Notea e secon print va ue (i+ l) is an expression. It does not change the value ofi.There is no side effect, it is just a value.

Nested for Loops
Any statement, even another /or loop, can be included in the body of a for

ement. Ls.ng nested loops can create some interesting applications. Let’s

I \

Chapter 6 Repetition 319

look at a very simple one here. We will give other examples in Section 6.8
"Looping Applications,” later in the chapter.

Program 6-5 uses a nested loop to print a series of numbers on

multiple lines.

PROGRAM 6-5 A Simple Nested for Loop 11

/* Print numbers on a line.
Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
int main (void)7

8 {
// Statements

for (int i = 1; i <= 3; i++)
9

1 0
1 1 {

printf("Row %d: ”, i);
for (int j = 1; j<= 5; j++)

printf("%3d”, j);
printf("\n");

> // for i
return 0;
// main

1 2
13
14
15
16
17
18 }

Results:
Row 1:
Row 2:
Row 3:

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

The do. . .while Loop
The do. ..while statement is a post- test loop. Like the while and for loops, it

also uses an expression to control the loop, hut it tests this expression after
the execution of the body. The format of the do...while statement is shown in

Figure 6-15.
The body of the do...while loop must he one, and only one, statement. If
need to include multiple statements in the body, we must put them in a

pound statement. The second example in Figure 6-15 shows the logicwe
com
flow and code for a do...while statement that uses a compound statement.
Look carefully at the code block in the second example. Note that the do and

the while braces are aligned. Note also that the while expression follows the

brace on the same line. This is a good style because it makes it easy for the

reader to see the statement. Finally, note that the do...while is concluded

with a semicolon. This differs from the other looping constructs that we

have seen.

!

320 Section 6.5 Loops in C

Sample CodeFlowchart

do
statement

statement

expression
true

while (expression);
[false

tv
do

{Action

Action
Action

Action

JAction
T Action

expression
true' } while (expression);

false

FIGURE 6-15 do...while Statement

Lets look at a simple program that uses a loop to print five numbers. We
code two loops, first a while loop and then a do...while. Although one loop is
a pretest and the other is a post-test, both print the
seen in Program 6-6.

same series. The code is

PROGRAM 6-6 Two Simple Loops
/ * Demonstrate while and do...while loops.

Written by:
Date:

1
2
3
4 */

#include <stdio.h>5
6
7 int main (void)
8 <
9 // Local Declarations

int loopCount;10
11
12 // Statements

continued

Chapter 6 Repetition 321

PROGRAM 6-6 Two Simple Loops (continued)

13 loopCount = 5;
printf("while loop
while (loopCount > 0)

printf ("%3d", loopCount—);
printf("\n\n");

14 : ");
15
16
17
18
19 loopCount = 5;

printf("do...while loop:2 0 ");
do21

printf ("%3d", loopCount—);
while (loopCount > 0);
printf("\n");
return 0;
// main

22
23
24
25
26 >

Results
while loop 5 4 3 2 1

do...while loop: 5 4 3 2 1

Program 6-6 Analysis Because the do...while limit test isn't done until the end of the loop, we use it when we
know that the body of the loop must be done at least once. To demonstrate the impact
of the two loops, study the code in Figure 6-16. in the while loop, the message is not

printed, because the limit condition is tested first. In the do...while loop, even though
the limit test is false, the message is printed because the message is printed before the
limit test.

^Pretest^
nothing prints

dowhile (false)
{{
printf("Hello World");

} while (false);
printf("Hello World");

} // while

^Post-tesP'N
Hello... prints,

FIGURE 6-16 Pre- and Post-test Loops

use the do...while loop in data validation to
an application that requiresProgrammers commonly

make a program robust. For example, consider
that we read an integer between 10 and 20. We can use the do. ..while loop as

shown in the next example.

322 Section 6.5 Loops in C

do
{

number between 10 & 20: ");printf ("Enter a
scant ("%d", &a);
} while (a < 10||a > 20);

To demonstrate the do...while, let’s rewrite Program 6-3, “Adding a List
of Numbers.” The modified code is shown in Program 6-7.

PROGRAM 6-7 Adding a List with the do.. .while
/* Add a list of integers from the standard input unit

Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
int main (void)7

8 {
// Local Declarations

int x;
int sum = 0;
int testEOF;

9
10
1 1
12
13

// Statements
printf("Enter your numbers: <EOF> to stop.Vn");

14
15
16 do
17 {
18 testEOF = scanf("%d",

if (testEOF != EOF)
sum +=

} while (testEOF != EOF);
printf ("\nTotal:
return

} // main

&x);
19
20 x;
21
22 %d\n", sum);
23 0;
24

Results:
Run 1:

Enter your numbers:
10 15 20 25 Ad
Total: 70

<EOF> to stop.

Run 2:
Enter your numbers: <EOF> to stop.Ad
Total: 0

rn
Chapter 6 Repetition 323

Program 6-7 Analysis Since the do...while always executes the body of the loop at least
make some changes. Compare Program 6-3 and Program 6-7 carefully. Note that
the scanf is no longer in the loop limit test. Since the limit test is after the loop body,
the scanf must be moved to the beginning of the loop. The result of the input is saved
in a new variable, testEOF. Finally, before we can add the value we read to the
accumulator, we must ensure we are not at the end of the file. The add statement is
therefore guarded by an if statement. Although Program 6-7 is a little less efficient
than Program 6-3, it does the same job.

once, we had to

The Comma Expression
A comma expression is a complex expression made up of two expressions
separated by a comma. Although it can legally he used in many places, it is

most often used in for statements. The expressions are evaluated left to right.
The value and type of the expressions are the value and type of the right
expression; the left expression is included only for its side effect. The comma

operator has the lowest priority of all operators,priority 1.
The following statement is a modification of the for statement code

shown on page 317. It uses a comma expression to initialize the accumulator,
sum, and the index,i, in the loop. In this example, the value ol the comma

expression is discarded. This is a common use of the comma operator.

for (sum = 0, i 1; i <= 20; i++)
{
scanf("%d", &a);
sum += a;
} // for

Comma expressions can he nested. When they are nested, all expression
values other than the last are discarded. Figure 6-17 shows the format of a

nested comma expression.

, expressionexpression , expression

FIGURE 6-17 Nested Comma Expression

A final word of caution. Remember that the value of the expression is the

value of the rightmost expression. Although it is not recommended, if you use

expression for the second expression in a for loop, make sure that
a comma
the loop control is the last expression.

Lets use the comma expression to demonstrate the difference between

the while and the do. ..while. As shown in Table 6- 1, Loop Comparisons,"

324 Section 6.5 Loops in C

the number of limit tests that are made. Program 6-6the only difference is , ,
shows that the same job can be done by either loop. Program 6-8 uses both
loops to count from 1 to 10. It uses the comma expression to count the num-
ber of limit tests in each loop.

PROGRAM 6-8 Comparison of while and do...while
/* Demonstrate while and do...while loops.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
int main (void)7

8 {
// Local Declarations

int loopCount;
int testCount;

9
10
1 1
12

// Statements
loopCount = 1;

13
14
15 testCount = 0;

printf("while loop:
while (testCount++, loopCount <= 10)

16
17
18 printf("%3d", loopCount++);

printf("Loop Count:
printf("Number of tests:

19 %3d\n",
%3d\n",

loopCount);
testCount);20

21
22 loopCount = 1;

testCount = 0;
printf("\ndo...while loop:

23
24 ");
25 do
26 printf("%3d",

while (testCount++,
loopCount++);
loopCount <= 10);27

28
29 printf("\nLoop Count:

printf("Number of tests:
return 0;

> // main

%3d\n", loopCount);
%3d\n", testCount);

30
31
32

Results:
while loop:
Loop Count:
Number of tests:

12 3 4 5 6 7 8 9 10
11
11

do...while loop: 12 3 4 5 6 7 8 9 10.

continue>

A

Chapter 6 Repetition 325

PROGRAM 6-8 Comparison of while and do...while (continued)

Loop Count:
Number of tests:

11
10

Program 6-8 Analysis Look at Statements 17 and 27 carefully. They both contain comma expressions. This
technique of combining the counter and the limit test in one expression ensures that
the count will be accurate. Because the value of the whole comma expression is the
value of its last expression, however, the limit test must be coded last.

The results demonstrate that both loops count from one to ten. Since they are doing
exactly the same job, we expect that the loop bodies would also execute the same num-
ber of times. As predicted in Table 6- 1 the only difference is in the number of tests: the
while loop control expression was evaluated 11 times; the do...while control expres-
sion was evaluated only 10 times.

6.6 Loop Examples
This section contains several short examples of loop applications. Each pro-
gram demonstrates one or more programming concepts that you will find
helpful in solving other problems.

for Loops
Example: Compound Interest
One classic loop problem is calculating the value of an investment. We want

to know the value of an investment over time, given its initial value and
annual interest rate. Program 6-9 displays a compound interest table.

PROGRAM 6-9 Compound Interest

/* Print report showing value of investment.
Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
int main (void)7

8 {
// Local Declarations

double presVal;
double futureVal;
double rate;
int
int

9
10
11
12
13 years;

looper;14
continuec

326 Section 6.6 Loop Examples

Compound Interest (continued)PROGRAM 6-9

15
// statements16

value of investment:printf("Enter
scanf ("%lf", &presVal);

17
18

'•) ;rate of return (nn.n):printf("Enter
scanf ("%lf", &rate);
printf("Enter number of years:
scanf ("%d", &years);

19
20
21
22
23

ValueXn");
======\n");

printf("\nYear
printf("===*
for (futureVal = presVal, looper =

24
25

1 ?26
looper <= years;
looper++)

27
28

{29
futureVal = futureVal * (1 + rate/100.0);
printf("%3d%11.21f\n", looper, futureVal);

> // for
return 0;

34| > // main

30
31
32
33

Results:
Enter value of investment: 10000
Enter rate of return (nn.n): 7.2
Enter number of years: 5

ValueYear

1 10720.00
11491.84
12319.25
13206.24
14157.09

2
3
4
5

Program 6-9 Analysis This program uses a for loop to calculate the value of the investment at the end ofeach year. Each iteration adds the current year's interest to the investment and thenprints its current value.
Note how we prompted the user... far input, especially the decimal return rate.Things like percentage rates can be confusing to enter. Is 7.2% entered as 7.2 or .072?Make sure you give the user a sample of how the data should be entered.Now study the way created a caption for the reports, using equal signs tounderscore the captions and spaces with width specifications to align the values in columns. This rather simple technique makes the results quite readable

we

Chapter 6 Repetition 327

One final point. When defining multiple variables i
have the same type. Notice that

in one statement, they must all
we defined the for loop variables in the definition

sections. To define multiple variables in a for statement, they must all be the same
type because they are treated as a type list.

Example: Right Triangle I ' d

Lets write a program that will print a scries of numbers in the form of a right
triangle. We ask the user to enter a one-digit number. Each line, from the
first to the limit entered by the user, then prints a number series from one to

the current line number. For example, if a user enters 6, the program prints

1
12
123
1234
12345
123456

The flowchart and pseudocode for the loop are shown in Figure 6- 18.

k\1 1 set line to 1
2 loop (line not greater than limit)

1 set num to 1
2 loop (num not greater than line)

1 print num
2 increment num

3 end loop
4 advance line
5 increment line

3 end loop

/ line=l\false
»^ine++ line <= >\ limitI

| true

num <= M

falseium =

line
I true

j print r\un\J

I
j print "\n“ jf

(b) Pseudocode(a) Flowchart

FIGURE 6-18 Print Right Triangle Flowchart and Pseudocode

The completed program is shown in Program 6-10.

328 Section 6.6 Loop Examples

Print Right Triangle Using Nested forPROGRAM 6-10
number series from 1 to a user-specified limit/* Print a

in the form of a right triangle.1
2

Written by:
Date:

3
4

* /5
#include <stdio.h>6

7
int main (void)8

9 {
// Local Declarations

int limit;
10
11
12

// Statements
// Read limit
printf("\nPlease enter a number between 1 and 9: ");
scanf("%d", &limit);

13
14
15
16
17

for (int lineCtrl = 1; lineCtrl <= limit; lineCtrl++)18
19 {

for (int numCtrl = 1;
numCtrl <= lineCtrl;
numCtrl++)

printf("%ld", numCtrl);

2 0
21
22
23
24

printf("\n");
} // for lineCtrl

25
26
27 return 0;

> // main28

Results:
Please enter a number between 1 and 9: 6
1
12
123I
1234
12345
123456

Program 6-10 Analysis Program 6-10 demonstrates the concept of a loop within a loop. Note how we usefor loops to print the triangle. The first or outer for controls how many lines wewill print. The second or inner for writes the number series on one line. This use ofnested loops is a very important programming concept.Also note the name we used in the loops. Often programmers willcontrol for loops. We often do this ourselves. But notice how muchcode is when meaningful names are used. When

two

use i and j to
readable themore

we use lineCtrl rather than i in
u

Chapter 6 Repetition 329

the outer loop, we know that the for is controlling the number of lines we are printing.
Likewise, the name numCtrl clearly tells the reader that the for loop is controlling the
numbers.

EXAMPLE 6-1 Print Rectangle
Now lets write a program that prints the triangle pattern in the previous
example, but now filled out with asterisks to form a rectangle. For example, if
a user enters 6, Program 6- 1 1 prints the rectangle shown in the results.

PROGRAM 6-11 Print Number Series Using User-specified Limit

/* Print number series from 1 to a user-specified limit

in the form of a rectangle.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>6

7
int main (void)8

9 {
// Local Declarations

int limit;
10
11
12

//Statements
// Read limit
printf("Please enter a number between 1 and 9:

scanf("%d" / &limit);

13
14

**)?15
16
17

for (int row = 1; row <= limit; row++)18
19 {

for (int col = 1; col <= limit; col++)

if (row >= col)
printf("%d", col);

20
21
22

else23
printf(

printf("\n");
} // for row ...

return 0;
// main

»* ••)?24
25
26
27
28 >

Results:
Please enter a number between 1 and 9: 6

!*** *
22****
123***

continuer

330 Section 6.6 Loop Examples

Print Number Series Using User-specified Limit (continued)PROGRAM 6-11
1234**
12345*
123456

Program 6- 1 1 Analysis This program is an interesting variation of the previous program. Compare its inner
loop to the inner loop in Program 6-10. This is the only part of the program that is
different. The first thing you should note is that the limit test expression is different; it
always goes to the maximum number of print positions. Within the inner loop, we test
the column number (col) to determine how many digits we print on the line. If the
expression is true, we print a digit. If it is false, we print an asterisk.

Example: Print Month
As a final example of afor loop, lets print a calendar month. In Program 6- 12,
the function printMonth receives only the start day of the month—Sunday is
0, Monday is 1 ... Saturday is 6—and the number of days in the month. This
is all that the program needs to print any month of the year.

Print Calendar Month

!

PROGRAM 6-12
/* Test driver for function to print a calendar month.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
// Prototype Declarations
void printMonth (int startDay, int days);

int main (void)

7
8
9
10
1 1 {<4

// Statements
printMonth (2, 29);
return 0;

> // main

12
13 // Day 2 is Tuesday
14
15
16
17 /* === printMonth ============

month.
startDay is day of week relative

to Sunday (0)
days is number of

Post Calendar printed

void printMonth (int

18 Print one calendar
19 Pre
20
2 1

days in month2 2
23 */
24 startDay, int days)25 {

i conl iMMi!i

1w

Chapter 6 Repetition 331

PROGRAM 6-12 Print Calendar Month (continued)

// Local Declarations
int weekDay;

26
27
28

// Statements29
// print day header
printf("Sun Mon Tue Wed Thu Fri Sat\n");
printf("

30
31
32 \n");
33

// position first day
for (weekDay = 0; weekDay < startDay; weekDay++)

printf("

34
35
36 ")?
37

for (int dayCount = 1; dayCount <= days; dayCount++)38
39 {

if (weekDay > 6)40
41 {

printf("\n");
weekDay = 1;

> // if

42
43
44

else45
46 weekDay++;

printf("%3d ", dayCount);

} // for
printf("\n
return;

} // printMonth

47
48

\n");49
50
51

Results:
Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29

Program 6-12 Analysis This program is interesting for two reasons: first, it requires two for loops, one to posi-
tion the printing for the first day of the month and one to print the dates. Second, the

logic to control the days of the week is simple yet efficient. In an effort to eliminate
variable (weekDay), many programmers would use the modulo statement

shown below to determine the day of the week.
one

(dayCount + startDay) % 7

-j

332 Section 6.6 Loop Examples

Although this logic works,it is very inefficient. Using a separate variable to control
the days of the week requires simple addition, which is much more efficient. It also
avoids another poor programming style: using one variable to control two processes.

Although using one variable to control two processes may work initially, it often leads
to subtle bugs when the program is changed.

One final point. Examine the initialization in the two for loops. Do you see a differ-
ence? Because weekday is used in both loops, it cannot be declared local to the first
loop. We must declare it in the definition section.

Never use one variable to control two processes.

while LOOPS
This section contains two examples of while loops. The first prints the sum of
the digits in an integer entered from the keyboard. The second prints
her backwards.

a num-

Example: Print Sum of the Digits
Program 6-13 accepts an integer from the keyboard and then prints the
her of digits in the integer and the sum of the digits.

num-

PROGRAM 6-13 Print Sum of Digits
/* Print the number and

Written by:
Date:

1 sum of digits in an integer.
2
3

*/4
5 #include <stdio.h>
6
7 int main (void)
8

// Local Declarations
int number;
int count =
int sum

9I?
10
11 0 ;
12 = 0;
13
14 // Statements

printf("Enter
scanf ("%d",
printf("Your number is:

15 an integer: ") ?16 ^number);17
%d\n\n", number);18

19 while (number •* 0)
2 0 {
2 1 count++;

sum +=2 2 number % 10;23 number /= IQ;

continued

Chapter 6 Repetition 333

PROGRAM 6- 1 3 Print Sum of Digits (continued)

24 } // while
printf("The number of digits is:
printf("The sum of the digits is:
return 0;
// main

25 %3d\n", count);
%3d\n", sum);26

27
28 >

Results:
Enter an integer: 12345
Your number is: 12345

The number of digits is:
The sum of the digits is: 15

5

Program 6-13 Analysis This problem requires that we "peel" off one digit at a time and add it to the total of
the previous digits. We can solve this problem in a couple of ways, but by far the
most straightforward is to use the modulus operator (%) to extract the rightmost digit
and then to divide the number by ten to remove the right digit. For example, given the
number 123, we first extract the 3 by

123 % 10

and then eliminate it by dividing by 10 to give 1 2. Note that since both the dividend
and the divisor are integers, the result is an integer. We loop until there is only one digit
left, at which time any digit divided by ten will result in zero and the loop terminates.

Example: Print Number Backward
Now let’s look at an example of a loop that prints a number backward. We can

solve this problem in several ways. Perhaps the easiest is to simply use mod-
ulo division , as shown in Program 6- 14.

PROGRAM 6-14 Print Number Backward
/* Use a loop to print a number backward.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
int main (void)7

8 {
// Local Declarations

long num;
int digit;

9
10
11
12

continued

334 Section 6.6 Loop Examples

Print Number Backward (continued)

I I Statements
printf("Enter a
scant ("Id", &num);

PROGRAM 6-14

13
number and I'll print it backward: ");14

15
16

while (num > 0)17
{18
digit = num % 10;
printf("%d", digit);
num

> // while
printf("\nHave a good day.\n");
return 0;
// main

19
20

= num / 10;2 1
2 2
23
24
25 >

Results:
Enter a number and I'll print it backward: 12345678
87654321
Have a good day.

do . . . while LOOPS
This sections contains an example of a program that uses a do...while
loop. While it is a simple problem, it demonstrates a classic data-validation
technique.

EXAMPLE 6-2 Data Validation
Now we ll write a program that reads an integer consisting ol only zeros and
ones (a binary number) and converts it to its decimal equivalent. Provide a
function that ensures that the number entered is a binary number. The
design for this program is shown in Figure 6- 19.

convertTo
Decimal

binaryTo
Decimal

getNum

Validate
Binary

firstDigit powerTwo

FIGURE 6-19 Design for Binary to Decimal

ii
HU*

Chapter 6 Repetition 335

1 his design follows a classic program design: input—process—output. The
input function is getNum; the process function is binaryToDecimal; and the
output function is printResults. Study the design of binaryToDecimal.

Note that it uses a loop and calls firstDigit and powerTwo in turn within
the loop. How would you implement this loop? Think about it for a minute,
and then look at Statement 65 in Program 6-15 to see how we did it . II you

study
VI

are not sure of your binary arithmetic and binary
Appendix I), " Numbering Systems."

conversions,

PROGRAM 6- 1 5 Convert Binary to Decimal
/* Convert a binary number to a decimal number.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <stdbool.h>

5
6
7

// Function Declarations8
(void);long long getNum

long long binaryToDecimal (long long binary);
9
10

(long long num);
(long long num);
(long long binary);

long long powerTwo

long long firstDigit
validateBinary

1 1
12
13 bool
14

int main (void)15
16 {

// Local Declarations
long long binary;
long long decimal;

17
18
19
20

// Statements
binary
decimal

21
= getNum ();
= binaryToDecimal (binary);

printf("The binary number was: %lld", binary);

printf("\nThe decimal number is: %lld", decimal);

return 0;
// main

22
23
24
25
26
27 >
28

This function reads and validates a binary number
29
30

from the keyboard.
Pre
Post

31
nothing
a valid binary number is returned

32
33

*/34
continued

336 Section 6.6 Loop Examples

PROGRAM 6-15 Convert Binary to Decimal (continued)

35 long long getNum (void)

36 {
// Local Declarations

isValid;
37

bool
long long binary;

38
39
40

// Statements41
do42

43 {
printf("Enter a binary number (zeros and ones): ");
scant ("%lld", sbinary);
isValid = validateBinary (binary);
if (lisValid)

printf("\a\aNot binary. Zeros/ones only.\n\n");
> while (lisValid);

return binary;
> // getNum

44
45
46
47
48
49
50
51
52

/*
Change a binary number to a decimal number.
Pre binary is a number containing only 0 or 1
Post returns decimal number

53
54
55
56

*/57
58 long long binaryToDecimal (long long binary)
59 {

// Local Declarations
long long decimal;

60
61
62
63 // Statements

decimal = 0;
for (int i = 0; binary !=

64
65 0; i++)
66 {
67 decimal +=

binary /= 10;
} // for i

return decimal;
> // binaryToDecimal

firstDigit (binary) * powerTwo (i);
68
69
70
71
72
73 validateBinary ====Check the digits in a

Pre
Post

74
binary number for only 0 and 1

a number to be validated
75 binary is

returns true if valid;
76

false if not77 */

continued

Chapter 6 Repetition 337

PROGRAM 6-15 Convert Binary to Decimal (continued)

78 bool validateBinary (long long binary)
79 {

// Statements
while (binary != 0)

80
81
82 {

if (!(binary % 10 = = 0 || binary % 10 = = 1))

return false;
binary /= 10;

> // while
return true;
// validateBinary

83
84
85
86
87
88 >
89

/* ===90 ===== powerTwo ==========
This function raises 2 to the power num

num is exponent
Returns 2 to the power of num

91
92 Pre

Post93
*/94

95 long long powerTwo (long long num)

96 {
// Local Declarations

long long power = 1;
97
98
99

// Statements
for(int i = 1; i <= num; i++)

power *= 2;

100
101
102
103 return power;

> // powerTwo104
105

This function returns the right most digit of num

the integer num
the right digit of num returned

106
107
108 Pre

Post109
*/110
long long firstDigit (long long num)111

112 {
// Statements

return (num % 10);

> // firstDigit

113
114
115

Results:
Enter a binary number (zeros and ones): 10001

The binary number was: 10001

The decimal number is: 17

338 Section 6.7 Other Statements Related to Looping

Program 6-15 Analysis This program has several interesting aspects. First, note the data validation that we use
to ensure that the binary number that we read consists of nothing but zeros and ones.

We used this series of modulus and divide statements previously in Program 6-13 and

T̂hei^note how we enclosed the call to the validation function in a do. . .while that
allows us to keep reading input until the user gives us a binary number. Again, note
how we display an error message when the number is not valid. This is a standard data
validation technique.

Next, study the binaryToDecimal function that converts the binary number to
its decimal value. Note that when we extract a digit, it is either a zero or a one. We
then multiply the extracted digit by 2 raised to the digit position we are currently evalu-
ating, which gives us the binary value of that digit's position in the binary number. The
value is then added to the decimal number. Of course, if the digit is a zero, then the
product is zero and the value is unchanged. It is only when the digit is a one that we
add to the decimal number.

Finally, note that throughout this program we used long long for the binary and
decimal number. We did this because the decimal representation of a binary number

get very big very fast. On a personal computer, long might not be able to hold a
large binary number.
can

Other Statements Related to Looping6.7
Three other C statements are related to loops: break , continue, and goto. The
last statements, the goto, is not valid for structured programs and therefore is
not discussed in this text.

break
I he first statement is break . We previously saw the break statement when we
discussed snitch in Chapter S. In a loop, the break statement causes a loop
to terminate. It is the same as setting the loop’s limit test to false. If we are in
a series of nested loops, break terminates only the inner loop—the one we are
currently in. Figure 6-20 shows how break transfers control out of an inner
for loop and continues with the next statement in the while. Note that break
statement needs a semicolon.

I he bieak statement can he used in any of the loop statements—while,
for’ and do...while—and in the selection switch statement. However, good
structured programming limits its use to the switch statement. It should not
)e use in an\ of the looping statements. If you feel you must use break , reex-
amine your resign. You will usually find that you have not properly structuredyour logic. 1 1 1 J

u

Chapter 6 Repetition 339

while (condition)
{

The break statement takes\
us out of the inner loop
(the for loop). The while I

loop is still active. 1

for (•••i

{ S''
if (otherCondition)

break;—!
} // for

// more while processing

> 7/ while

FIGURE 6-20 break and Inner Loops

Program 6-16 shows two examples of poor loop situations and how to

restructure them so that the break is not needed. The for statement shows a
never-ending loop. As coded, there is no way to terminate the loop without
the break. Although the break works, better documentation and style puts the
limiting condition as the second expression in the for statement. After all,
that is the use of the limit expression in the first place.

PROGRAM 6-16 The for and while as Perpetual Loops
// A better loop style
for (; !condition ;)

// A bad loop style

for (; ?)
1
2

{3 {
4

} // forif (condition)
break;

} // for

5
6
7

while (x && Icondition)while (x)1
{2 {

3
if (Icondition)if (condition)

break;
4
5 ... ,

} // whileelse6
7

} // while8

Even if the break condition is in the middle of a block, it can he removed

to the limit condition, as shown in the while example in Program 6-16. Note

that in this case, we complement the condition, which then executes the else

logic when the limit condition has not been reached.

340 Section 6.7 Other Stotements Related to Looping

Sometimes the limit condition is so complex that it cannot easily be put

in the limit condition. In these cases, a flag is used. A flag is a logical variable
that tracks the presence or absence of an event. In this case, the flag ,s set to

indicate that the end of the loop has been reached. This is shown in the1 to
while example in Program 6-17.

PROGRAM 6-17 Using a break Flag
breakFlag = 0;
while (1breakFlag)

1
2
3 {
4

/ / Complex limit testif (x & & !y || z)
breakFlag = 1;

5
6

else7
8 ... i

> // while9

On the other hand, too many flags can make a function overly complex.
The use of break and flags needs to be tempered with simplicity and clarity of
logic. Finally, note that the flag is called breakFlag, which is a generic name.
You should choose a more descriptive name, such as accountFlag or
timeLimitFlag.

continue
I he continue statement does not terminate the loop but simply transfers to
the testing expression in while and do...while statements and transfers to the
updating expression in a for statement . These jumps are shown in Figure 6-21.
Although the transfer is to different positions in pretest and post-test loops,
both can be logically thought of as a jump to the end of the loops body.

while (expr) do for (exprl; expr2; expr3)
{ { {

continue; continue; continue;7} // while } while (expr); } // for

The continue StatementFIGURE 6-21

I ht use of the continue statement is also considered unstructured pro-grammmg. If you think that you need a continue, vour algorithm may not bewell structured. A little study will show how to eliminate it . Program 6-18
contains a common continue example found i textbooks. In thisin many

-T

Chapter 6 Repetition 341

I unction, the assignment is to read data and return the average of nonzero
numbers read. In other words, it skips zeros. Note how simply reversing the
conditional test eliminates the need for the continue.

PROGRAM 6- 18 continue Example
float readAverage (void)1 float readAverage (void)

2 { {

// Local Declarations
int count = 0;

3 // Local Declarations
int count = 0;4

5
int
float sum = 0;

6 int
float sum = 0;

n; n;
7
8

// Statements
while(scanf("%d",&n)

!= EOF)

9 // Statements
while(scanf("%d",&n)

!= EOF)
1 0
1 1
1 2 { {

if (n == 0)
continue;

sum += n;
count++;

> // while

if (n != 0)1 3
1 4 {

1 5 sum += n;
count++;

> // if

> // while
return (sum / count);

> // readAverage

1 6
1 7
1 8

return (sum / count);
} // readAverage

1 9
2 0

6.8 Looping Applications
In this section, we examine four common applications for loops: summation,

product, smallest or largest , and inquiries. Although the uses for loops are vir-
tually endless, these problems illustrate many common applications. Note
that a common design runs through all looping applications. With few excep-

tions, each loop contains initialization code, looping code, and disposition
code. Disposition code handles the result of the loop, often by printing it ,

other times by simply returning it to the calling function.

Summation
As you have seen, we can add two or three numbers very easily. But how can

add many numbers or a variable series of numbers? The solution is sim-

ple: use the add operator in a loop. The concept of summation is graphically

shown in Figure 6-22.

we

342 Section 6.8 Looping Applications

sum

(^conditionŷ

exit

ProductSummation

FIGURE 6-22 Summation and Product Loops

A sum function has three logical parts: (I) initialization of any necessary
working variables, such as the sum accumulator; (2) the loop, which includes
the summation code and any data validation code (for example, “only nonzero
numbers are to be considered ’); and (3) the disposition code to print or
return the result. Program 6- 19 is a loop function that reads a series of num-
bers from the keyboard and returns their sum. In each loop, we read the next
number and add it to the accumulator, sum. A similar application, counting,
is a special case of summation in which we add 1 to a counter instead of add-
ing the number we read to an accumulator.

PROGRAM 6-19 Sum to EOF Function
/* Read a series of numbers, terminated by EOF, and

return their sum to the calling
Pre nothing
Post data read and sum returned

1
2i* program.
3
4

*/5
6 int sumEOF (void)
7 {
8 // Local Declarations

int nmbr;
int sum;

9
10
11
12 // Statements

sum = 0;
printf ("Please

13
14 enter an integer: ") ?15
16 while (scanf("%d", &nmbr) != EOF)

tiki continue*

Chapter 6 Repetition 343

PROGRAM 6-19 Sum to EOF Function (continued)

1 7 {
1 8 sum += nmbr;

printf("Next integer <EOF> to stop:

> // while
return sum;
// sumEOF

1 9 ") ?
2 0
2 1
2 2 }

Powers
Just as we can add a series of numbers in a loop, we can perform any mathe-
matical operation. A product loop is useful for two common applications:

raising a number to a power and calculating the factorial of a number. I or

example, Program 6-20 shows a function to return xn. Notice that this func-
tion also includes initialization logic to validate the parameter list . If either of
the parameters is invalid, we return zero as an error indicator.

PROGRAM 6-20 Powers Function
/* Raise base to an integral power, exp. If the

exponent is zero, return 1.
base & exp are both positive integer values

return either (a) the result of raising the

base to the exp power
or (b) zero if the parameters are invalid

1
2
3 Pre

Post4
5
6

*/1
int powers (int base, int exp)8

9 (
// Local Declarations

int result = 1;
10
1 1
12

// Statements
if (base < 1 ||exp < 0)

// Error Condition
result = 0;

1 3
1 4
1 5
1 6

else1 7
(int i = 1; i <= exp; i++)

result *= base;
for1 8

1 9
return result;

} // powers
2 0
2 1

The summation and powers examples demonstrate a subtle point: initial-
ization must he based on the application; it is not the same for every problem.
For summation, the initialization sets the accumulator to 0. I or product -

must initialize it to 1 . II we use 0.based applications, such as powers, we
then the result is 0 because 0 multiplied by anything is 0.

344 Section 6.8 Looping Applications

To find the sum of a series, the result is initialized to 0; to find the product
of a series, the result is initialized to 1.

Smallest and Largest
We often encounter situations in which we must determine the smallest or
largest among a series of data. This is also a natural looping structure.

We can write a statement to find the smaller of two numbers. For example,

result = a < b ? a : b;

But how can we find the smallest of several numbers? We simply put the
statement inside a loop. Each iteration then tests the current smallest

to the next number. If this new number is smaller than the current smallest,
replace the smallest. In other words, we determine the smallest number

by looping through a series while remembering the smallest number the loop
has found. This concept is shown in Figure 6-23.

same

we

smallest —INT MAX

exit

smallest largest

FIGURE 6-23 Smallest and Largest Loops

Io find the smallest ol a series, the initialization sets the initial value
o smallest to the largest possible value for its type. In a C program, the
argest value lor an integer is given as INT_MAX. which is found in the
lmits i rarv (units.h) . The loop then proceeds to read a series of num-ers and tests each one against the previously stored smallest number,
bmce smallest starts with the maximum integer value, the first read
entirety ^CCOmcs smallest - Thereafter, the result dependsentirely on the data being read. The disposition simply returns thesmallest value found.

Program 6-21 is the C implementation of smallest.* u

Chapter 6 Repetition 345

PROGRAM 6- 21 Smallest to EOF Function
/* Read a series of numbers, terminated by EOF, and

pass the smallest to the calling program,

nothing
data read and smallest returned

1
2
3 Pre

Post4
*/5
int smallestEOF (void)6

7 {
// Local Declarations

int numln;
int smallest;

8
9
10
11

// Statements
smallest = INT MAX;

12
13 // requires <limits.h>

14
printf("Please enter an integer: ");15

16
while (scanf("%d", &numln) != EOF)17

18 {
if (numln < smallest)

smallest = numln;
printf("Enter next integer <E0F> to stop: ");

} // while
return smallest;
// smallestEOF

19
2 0
21
22
23
24 }

We can find the largest number by simply reversing the less than operator
in the expression, making it greater than. We would also need to set the vari-
able, renamed largest, to INT_MIN.

To find the largest, we need to initialize the result (a variable named
largest)variable to a very small number, such as INT_ MIN.

To find the smallest, we need to initialize the result (a variable named

smallest)to a very large number, such as INT_MAX.

Inquiries
An inquiry is simply a question asked of the computer program. In program-

ming, we often encounter one of two basic inquiry types: any and all. We use

the inquiry type any when we have a list of data and we want to know il at

least one of them meet a given criteria. The answer to the inquiry is yes if one

data meet the criteria. The answer is no if none of the data meet theor more
criteria.

(I

346 Section 6.8 Looping Applications

all when we have a list of data and we want to make sure thatWe use

each and every one of them meet some specified criteria. I he concept of an}

and all in an inquiry is shown in Figure 6-24.

result-*-fe/se|

false

texit

allany

FIGURE 6-24 any and all Inquiries

The any Inquiry
lo determine il one item in a series satisfies a requirement, we can test them
using or as shown in the next example.

(a == condition) || (b == condition) ;

II either or both ol the equal expressions are true, result is set to true.
Ibis works fine lor testing the first two items. To test the third item in the
series, however, we need to include the result ol the first two. This is easily
done with the next example.

result =

result - result || (c == condition) ;

Study this test carefully. If the previous tests were all false , then result
contains Juke "hen the statement is executed. If the equal expression is false,
tien resu t is assigned false -, however, if the equal expression is true, thenresult is assigned true. By placing this expression in a loop, we canthe tallies in the series. For example, to test a series to determine if any of thevalues are positive, we can use the following code.

test all ol

result = false;
while (s c a n f (" % d M , ^ number)

{
result = result

> / / while
number > 0 ;

111,

‘ TV

Chapter 6 Repetition 34 /

I his code produces an accurate answer to the inquiry. However, it can be
very inefficient especially ii the series is long. For example, suppose that the
first item tested is greater than 0. In this case, it is not necessary to test the
rest of the list; we already know the

Program 6-22 is an example of an any inquiry. It reads a series of num-
bers and checks to see if any of the numbers in the list are greater than zero.

I he function terminates and returns true as soon as a positive number
is read.

answer.

PROGRAM 6-22 anyPositive to EOF Function

/* Read number series to determine if any positive.
Pre nothing
Post return true if any number > zero

return false if all numbers <= zero

1
2
3
4

*/5
bool anyPositiveEOF (void)6

7 {
// Local Declarations

bool anyPositive = false;
int numln;

8
9

1 0
1 1

// Statements
printf("Determine if any number are positive\n");

printf("Enter first number: ");
while (scanf("%d", &numln) != EOF)

1 2
13
14
15
16 {

anyPositive = numln > 0;
if (anyPositive)

return true;
printf("Enter next number:

> // while
return false;

} // anyPositiveEOF

17
18
19
2 0
2 1
2 2
23

iable [bool] and is initialized to false.Program 6-22 Analysis Note that anyPositive is a logical var
Because we do not need to read the entire number series, we can use a simple test to

set anyPositive. If a positive number
prompt for the next number and loop back to the while expression.

To use the bool type, we must include the stdbool.h library in the program. This
a define macro to declare the bool type and equate it to the C Boolean

was entered, we return true. If not, we

library uses
type, _ £>oo/. It also defines true and false.

The all Inquiry
To determine if two items in a series satisfy a requirement, we can test them

using and as shown in the next example.

7

348 Section 6.8 Looping Applications

= condition) && (b — condition);result = (a -

If both of the equal expressions
them is false, the result is false. This works fine for testing the first two items.
To test the third item in the series, however, we need to include the result of
the first two. This is easily done with the next example.

true, result is set to true; if either ofare

result = result && (c — condition);

Study this test carefully. If the previous tests were all true , then
result contains true when the statement is executed. If the equal expres-
sion is also true , then result is assigned true ; however, if the equal
expression is false , then result is assigned false. By placing this expres-
sion in a loop, we can test all of the values in the series. For example, to
test a series to determine if all of the values are positive, we can use the
following code.

result = true;
while (scant("%d", Snumber)

{
result = result && number > 0;
} // while

Once again, for efficient processing we may not need to examine all of
the numbers in the series. As soon as a nonpositive number is found, we
know the result and can return false.

This function is seen in Program 6-23.
All Positive FunctionPROGRAM 6-23

/* Read number series, and determine if all are positive.
Pre
Post

1
2 nothing
3 return true if all numbers >

return false if any numbers <=
zero

4 zero
*/5

6 bool allPositiveEOF (void)
7 {
8 // Local Declarations

bool allPositive =
int numln;

9 true;
10
11
1 2 // Statements
13 printf("Determine if all numbers are positive\n");

printf(Enter first number: ");
while (allPositive

14
15 && (scanf("%d", &numln) != EOF))16 {

cont 'mucLi

UL

"T
Chapter 6 Repetition 349

PROGRAM 6-23 All Positive Function (continued)

17 allPositive = numln > 0;
if (!allPositive)

return false;
printf("Enter next number:

> // while
return true;

> // allPositiveEOF

18
19
2 0
2 1
2 2
23

Once again you should study how we initialize the Boolean (lags in these
two programs. To test for any item, we start with the flag false. If and when it
becomes true, the result has been determined. Similarly, to test for all items,
we initialize the Boolean flag to true. If and when it becomes false, the result
has been determined.

To answer an any inquiry, the result is initialized to false; to answer an all

inquiry, the result is initialized to true.

6.9 Recursion
In general , programmers use two approaches to writing repetitive algorithms.
One approach uses loops; the other uses recursion. Recursion is a repetitive
process in which a function calls itself. Some older languages do not support
recursion. One major language that does not is COBOL.

Iterative Definition
To study a simple example, consider the calculation of a factorial. The facto-
rial of a number is the product of the integral values from 1 to the number.
This definition is shown in Formula 6- 1.

][I if /2 = 0
if /2 > 0factorial (/2) = * (/2 -!) * (/? - 2) ... 3 * 2 * 1

FORMULA 6-1 Iterative Factorial Definition

This definition is iterative. A repetitive function is defined iteratively
whenever the definition involves only the parameter(s) and not the func-
tion itself. We can calculate the value of factorial (4) using Formula 6- 1 as

follows:

24factorial (4) = 4 * 3 * 2 * 1

350 Section 6.9 Recursion

Recursive Definition
A repetitive function is defined recursively whenever the function appears
within the definition itself. For example, the factorial function can be defined
recursively, as shown in Formula 6-2.

]if n = 0
if n > 0[Ifactorial (n) = * factorial (n - 1)

FORMULA 6-2 Recursive Factorial Definition

The decomposition of factorial (3) , using Formula 2, is shown in
Figure 6-25. Study this figure carefully, and note that the recursive solu -
tion for a problem involves a two-way journey: first we decompose the
problem from the top to the bottom, and then
tom to the top.

solve it f rom the bot-we

Factorial (3) = 3 * 2 = 6Factorial (3) = 3 * Factorial (2)

T
Factorial (2) = 2 * Factorial (1) Factorial (2) = 2 * 1 = 2

V
Factorial (1) = 1 * Factorial (0) Factorial (1) = 1 * 1 = 1

T
Factorial (0) = 1

FIGURE 6-25 Factorial (3) Recursively

Judging by the above example, the recursive calculation looks much
longer and more
method? We use

difficult. So why would we want to use the recursive
it because, although the recursive calculation looks more

difficult when using paper and pencil, it is often a much easier and more ele-
gant solution when we use computers. Additionally, it offers a conceptual
simplicity to the creator and the reader.

Iterative Solution
Let’s write a function to solve the factorial problem iteratively. This solutionusually involves using a loop, as shown in Program 6-24.I

Chapter 6 Repetition 351

PROGRAM 6-24 Iterative Factorial Function
/* Calculate the factorial of a number using a loop.

There is no test that the result fits in a long.
n is the number to be raised factorially
result is returned

1
2
3 Pre

Post4
*/5
long factorial (int n)6

7 {
// Local Declarations

long factN = 1;
8

9
10

// Statements
for (int i = 1; i <= n; i++)

factN = factN * i;
return factN;

> // factorial

1 1
12
13
14
15

Recursive Solution
I he recursive solution to factorial is shown in Program 6-25. I his program
does not need a loop; the concept itself involves repetition.

PROGRAM 6-25 Recursive Factorial
/* Calculate factorial of a number using recursion.1

There is no test that the result fits in a long.
n is the number being raised factorially

result is returned

2
3 Pre

Post4
*/5
long factorial (int n)6

7 {
// Statements

if (n == 0)
return 1;

8
9
10

else1 1
return (n * factorial (n - 1));

> // factorial
12
13

In the recursive version, we let the function factorial call itself, each
time with a different set of parameters. Figure 6-26 shows the recursive exe-
cution with the parameters for each individual call.

Designing Recursive Functions
All recursive functions have two elements: each call either solves one part ol

the problem or it reduces the size of the problem. In Program 6-25,

statement 10 solves a small piece of the problem—factorial (0) is I .

352 Section 6.9 Recursion

the other hand, reduces the size of the problem by recur-Statement 12, on
ively calling the factorial with n- 1. Once the solution to factorial (n - l)siveiy caning me laciunai win* r* * '

is known, Statement 12 provides part of the solution to the general problem

by returning a value to the calling function.
As we see in Statement 12, the general part of the solution is the

sive call: Statement 12 calls its own function to solve the problem. We also
see this in Figure 6-26. At each recursive call, the size of the problem is
reduced from the factorial of 3, to 2, 1, and finally to factorial 0.

The statement that “solves” the problem is known as the base case. Every
recursive function must have a base case. The rest ol the function is known as
the general case. In our factorial example, the base case is factorial (0) ;
the general case is n * factorial (n - 1) . The general case contains the
logic needed to reduce the size of the problem.

recur-

Every recursive call must either solve part of the problem or reduce the size
of the problem.

In the factorial problem, once the base case has been reached, the solu-
tion begins. The program has found one part of the answer and can return
that part to the next more general statement. Thus, in Program 6-25, after
the program has calculated that factorial (0) is 1 , then it returns value 1.
That leads to solving the next general case.

factorial (1) -> 1 * factorial (0) -> 1 * 1 -» 1

The program now returns the value of factorial (1) to the
era I case, factorial (2) , which we know to be

more gen-

factorial (2) —> 2 * factorial (1) -> 2 * 1 -> 2

As the program solves each general case in turn, the program can solve
the next higher general case, until it finally solves the most general case, the
original problem.

The following are rules for designing a recursive function:
1. First, determine the base case.
2. I hen, determine the general
3. Finally, combine the base case and general case into a function.

case.

In combining the base and general cases into a function, we must pay
careful attention to the logic. Each call must reduce the size of the problemand move ,t toward the base case. The base case, when reached, must termi-

te without a call to the recursive function; that is, it must execute a return.

Chapter 6 Repetition 353

tvint main (void)

<
int n = 3;
long f;

3
f = factorial(3);
printfl4"%d\n", f);
return 0;

> // ma.n
int factorial(int n)
{
// Statements
if (n == 0)

return 1;

6

else
return

(n*factorial(n-1);
2

} // fac

int factorial(int n)
{
// Statements

if (n == 0)
return 1;

2

else
1return

(n*factorial(n-1); *3k} // facti
int factorial(int

{
// Statements

if (n == 0)
return 1;

1

else
return

(n*factorial(n-1);
0

tlk} // fact'
int factorial(int

{
// Statements

if (n == 0)
return 1;

1

else
return

(n*factorial(n-1);
} // factorial

FIGURE 6-26 Calling a Recursive Function

354 Section 6.9 Recursion

Fibonacci Numbers
Another example of recursion is a function that generates Fibonacci num-
bers. Named after an Italian mathematician, Leonardo Fibonacci, who lived
in the early thirteenth century, Fibonacci numbers are a series in which each
number is the sum of the previous two numbers (Figure 6-27).

Fib(4)Fibn

0 Fibn-2Fibn-1

Fib n-20Fib n-3 Fibn-3 0 Fibn-4

Fib(1) [T] Fib(O)Fibn-3 [T| F'bn-4
01

(b) Fib(4)(a) Fib(n)

FIGURE 6-27 Fibonacci Numbers

I he first few numbers in the Fibonacci series are

0, 1, 1, 2 , 3, 5, 8, 13, 21, 34

lo start the series, however, we need to know the first two numbers. As
you can see from the above series, they are 0 and 1. Since
recursion, you should recognize these two numbers as the base

We can generalize the Fibonacci series as follows:

are discussingwe
cases.

Given:
Fibonacci0 = 0
Fibonaccij = 1

Then

Fibonacci = Fibonacci - i + Fibonaccin _
2

The generalization of Fibonacci is shown in Figure 6-27. Figure 6-27 (a)
shows the components of Fibonacci, using a general notation. Figure 6-27 (b)
shows the components as they would be called to generate the numbers in
the series.

Fo determine Fibonacci
the number. until we have4’ we can start at 0 and move up. . . U.C can slart ut * ihonacci4 and move down to zero.1he firsttechnique ,s used in the iterative solution; the second is used in the recursivesolution, which is shown in Program 6-26.

Chapter 6 Repetition 355

PROGRAM 6-26 Recursive Fibonacci
/* This program prints out a Fibonacci series.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
// Function Declaration

long fib (long num);
7
8
9

int main (void)10
11 {

// Local Declarations
int seriesSize;

12
13
14

// Statements
printf("This program prints a Fibonacci series.Xn");
printf("How many numbers do you want? ");
scanf ("%d", &seriesSize);
if (seriesSize < 2)

seriesSize = 2;

15
16
17
18
19
20
21

printf("First %d Fibonacci numbers: \n", seriesSize);
for (int looper = 0; looper < seriesSize; looper++)

22
23
24 {

if (looper % 5)
printf(", %81d", fib(looper));

25
26

else27
printf("\n%81d", fib(looper));28

29 >
printf("\n");
return 0;
// main

30
31
32 }
33

==== fib ===/ =====34
Calculates the nth Fibonacci number.

num identifies Fibonacci number
returns nth Fibonacci number

35
36 Pre

Post37
*/38
long fib (long num)39

40 {
// Statements

if (num == 0||num == 1)
// Base Case
return num;

41
42
43
44

continued

PROGRAM 6-26 Recursive Fibonacci (continued)

45
return (fib (num - 1) + fib (num - 2));

} // fib
46
47

Results:
This program prints a Fibonacci series.
How many numbers do you want? 30
First 30 Fibonacci numbers:

1. 2 ,0, 1 / 3
13, 21 ,8,5, 34

89, 144,
1597,

17711,
196418,

233,
2584,
28657,
317811,

55, 377
610,
6765,
75025,

987, 4181
46368

514229
10946,
121393,

Program 6-26 Analysis Compare fib in Program 6-26 with the solution in Figure 6-27. To determine the
fourth number in the series, we call fib with num set to 4. To determine the
requires that fib be called recursively eight times, as shown in Figure 6-27, whichwith the original call gives us a total of nine calls.

This sounds reasonable. Now,how many calls does it take to determine Fibonacci?The answer is 15 (Table 6-2). As you can see from Table 6-2, the number of calls g
up quickly as we increase the size of the Fibonacci number we are calculating.

answer

oes

Calls Calls
1 1 1 1 287
2 3 12 465
3 5 13 753
4 9 14 1,219
5 15 1,97315
6 25 21,891

242,785

20
7 41 25
8 67 2,692,57330
9 109 29,860,703

331,160,281
35

10 177 40
TABLE 6-2 Fibonacci Run Time

Table 6-2 leads us to the conclusion that a recursive solution to calculate Fibonaccinumbers is not realistic.

Chapter 6 Repetition 35 /

Limitations of Recursion
We have introduced only the briefest explanation of recursion in this section.
VVe have not attempted to demonstrate how recursion works. To understand
how it works, you will need to study data structures and concepts that are
beyond the scope of this text.

On the other hand, you do need to understand the two major limitations
ol recursion. F irst , recursive solutions may involve extensive overhead
because they use function calls. Second, each time you make a call, you use
up some ol your memory allocation. If the recursion is deep—that is, if the
program has a large number of recursive calls—then you may run out ol
memory. Both the factorial and Fibonacci numbers solutions are better devel-
oped iteratively.

Does this mean that iterative solutions are always better than recursive
functions? The answer is definitely no. Many algorithms are easier to imple-
ment recursively and are efficient. When you study data structures, you will
study many ol them. Unfortunately, most of those algorithms require data
structures beyond the scope of this text.

1

The Towers Of Hanoi
One classic recursion problem, the Towers of Hanoi, is relatively easy to fol-
low, is efficient, and uses no complex data structures. Let ’s look at it.

According to legend, the monks in a remote mountain monastery knew
how to predict when the world would end. They had a set ol three diamond
needles. Stacked on the first diamond needle were 64 gold disks of decreasing
size. The monks moved one disk to another needle each hour, subject to the
following rules:

1. Only one disk could he moved at a time.
2. A larger disk must never be stacked above a smaller one.
3. One and only one auxiliary needle could be used for the intermediate

storage of disks.

The legend said that when all 64 disks had been transferred to the desti-
nation needle, the stars would be extinguished and the world would end .
Today we know' that we need to have 264- 1 moves to do this task. Figure 6-28
shows the Towers of Hanoi with only three disks.

This problem is interesting for two reasons. First, the recursive solution
is much easier to code than the iterative solution would he. This is often the

with good recursive solutions. Second, its solution pattern differs from
have been discussing. As you study the Towers solu-

case
the simple examples we
tion , note that after each base case, we return to a decomposition of the gen-
eral case for several steps. In other words, the problem is divided into several
subproblems, each of which has a base case, moving one disk.

358 Section 6.9 Recursion

DestinationAuxiliarySource

FIGURE 6-28 Towers of Hanoi — Start Position

Recursive Solution For Towers Of Hanoi
must study the moves to sec if we can find a pat-To solve this problem

tern. We will use only three disks because we do not want the world to end!
First, imagine that we have only one disk to move. This very simple case
involves only one step as shown in Case 1 .

we

Move one disk from source to destination needle.Case 1:

Now imagine that we have to move two disks. First , the top disk is moved
to the auxiliary needle. Then the second disk is moved to the destination.
Finally, the first disk is moved to the top of the second disk on the destina-
tion. These three steps are shown in Case 2.

Case 2: Move one disk to auxiliary needle.
Move one disk to destination needle.
Move one disk from auxiliary to destination needle.

Figure 6-29 traces the steps for two disks.

A B C
Step 1

A B C
Step 3

FIGURE 6-29 Towers Solution for Two Disks

We are now ready to study the case for three disks. Its solution
Figure 6-30.

is seen in

Chapter 6 Repetition 359

Towers (3,A,C,B)

Towers (2,A,B,C) I Step 41 Towers (2,B,C,A)

Towers
(1.A.C.B)

Towers Towers
(1.C.B.A) (1.B.A.C)

Towers
(1.A.C.B)Step 6

Step 1 Step 3 Step 5 Step 7

n

n n n
A

A B C
Step 2

B CA
Step 3

Move one disk from source to destination.
Step 4

4CA B C
Step 5

B A 3A
Step 6 Step 7

FIGURE 6-30 Towers of Hanoi Solution for Three Disks

I he first three steps move the top two disks from the source to the auxil-
iary needle. (To see how to do this, refer to Case 2.) In Step 4. we move the
bottom disk to the destination. We now have one disk in place. This is an
example of Case 1 . It then takes three more steps to move the two disks on
the auxiliary needle to the destination. These steps are shown in Case 3.

Move two disks from source to auxiliary needle.
Move one disk from source to destination needle.
Move two disks from auxiliary to destination needle.

Case 3:

We are now ready to generalize the problem.

360 Section 6.9 Recursion

General Case
Base Case
General Case

Our solution requires a function with four parameters: the number of
disks to be moved, the source needle, the destination needle, and the auxil-
iary needle. Using pseudocode, the three moves in the generalization shown
above are then

1 disks from source to auxiliary needle.
1. Move n- .
2. Move one disk from source to destination needle.

1 disks from auxiliary to destination needle.
3. Move n-

1 Call Towers (n - 1, source, auxiliary, destination)

2 Move one disk from source to destination

3 Call Towers (n - 1, auxiliary, destination, source)

Study the third step carefully. After we complete the move of the first
disk, the remaining disks are on the auxiliary needle. We need to move them
from the auxiliary- needle to the destination. In this case, the original source

needle becomes the auxiliary needle. Remember that the positions of the
parameters in the called function are source, destination , auxiliary-. The call-
ing function must remember which of the three needles is the source and
which is the destination for each call.

We can now put these three calls together with the appropriate
print statements to show the moves. The complete function is shown in
Program 6-27.

Towers of HanoiPROGRAM 6-27
/* Move one disk from source to destination through

the use of recursion.
The tower consists of n disks—source,
destination, & auxiliary towers given

Post Steps for moves printed

1
2
3 Pre
4
5

*/6
void towers (int n,7 char source,

char dest, char auxiliary)8
9 {

// Local Declarations
static int step = 0;

10
11
1 2L // Statements

printf("Towers (%d, %c,

13
14 %c, %c)\n",

source, dest, auxiliary);15 n ,
16 if (n == 1)

printf("\t\t\t\tStep %3d:17 Move from %c to %c\n",
18 ++step, source, dest);
19 else

continue

Chapter 6 Repetition 361

PROGRAM 6-27 Towers of Hanoi (continued)

20 {
21 towers (n - 1, source, auxiliary, dest);

printf("\t\t\t\tStep %3d: Move from %c to %c\n”,
++step, source, dest);

towers (n - 1, auxiliary, dest, source);
> // if ... else

return;
// towers

22
23
24
25
26
27 >

The output from Program 6-27 is shown in Tabic 6-3.

Calls Output

Towers (3, A, C, B)

Towers (2, A, B, C)

Towers (1, A, C, B)

Step Is Move from A to C

Step 2: Move from A to B

Towers (1, C, B, A)

Step 3: Move from C to B

Step 4: Move from A to C

Towers (2, B, C, A)

Towers (1, B, A, C)

Step 5: Move from B to A

Step 6: Move from B to C

Towers (1, A, C, B)

Step 7: Move from A to C

TABLE 6-3 Tracing of Program 6-27, Towers of Hanoi

6.10 Programming Example — The Calculator Program
one more time. In Chapter 5, we gave

one of four options: add, subtract, multiply,
Lets look at our calculator program
users the capability ol selecting
or divide. However, if users needed to make two calculations, they had to run
the program twice. We now add a loop that allows users to make as many

362 Section 6.10 Programming Example — The Calculator Program

calculations as needed (Program 6-28). We include only two functions, main

and getOption, since, at this point, all of the others are the same.

PROGRAM 6-28 The Complete Calculator
/* This program adds, subtracts, multiplies, and divides

two integers.
Written by:

Date:

1
2
3
4

*/5
#include <stdio.h>
#include <stdlib.h>

6
7
8

// Function Declaration9
int getOption (void);
void getData
float calc

10
(int* a,
(int option,

int* b);
int numl, int num2);

11
12
13
14 float add (float numl, float num2);

float sub (float numl, float num2);
float mul (float numl, float num2);
float divn (float numl, float num2);

15
16
17
18
19 void printResult (float numl,

float result,
float num2,
int option);20

21
int main (void)22

23 {
// Local Declarations

int
int
float
float
float

24
25 done = 0;

option;
numl;
num2;
result;

26
27
28
29
30

// Statements
while (Idone)

31
32
33 {
34 option = getOption();

if (option = = 5)
done = 1;

35
36
37 else
38 {
39 do
40 {
41 printf("\n\nEnter two numbers:

i continued

Chapter 6 Repetition 363

PROGRAM 6-28 The Complete Calculator (continued)

42 scanf("%f %f", &numl, &num2);
if (option = = 4 && num2 == 0)43

44 {
45 printf("\a\n *** Error

printf("Second number cannot be 0\n");
> // if

> while (option = = 4 && num2 = = 0);

")?***
46
47
48
49
50 switch (option)
51 {
52 case Is result = add (numl, num2);

break;
case 2: result = sub (numl, num2);

break;
case 3: result = mul (numl, num2);

break;
case 4: result = divn (numl, num2);

> // switch

53
54
55
56
57
58
59
60
61 printResult (numl, num2, result, option);

> // else option != 5
} // while

printf("\nThank you for using Calculator.\n");
return 0;
// main

62
63
64
65
66 >
67

This function shows a menu and reads the user option,
nothing
returns a valid option

/*68
69
70 Pre

Post71
*/72
int getOption (void)73

74 {
// Local Declarations

int option;
75
76
77

// Statements78
do79

80 {
"\n*******************" ^ •printf("\n*

printf("\n*
printf("\n* 1. ADD
printf("\n* 2. SUBTRACT

81
••) ?MENU82

* ••);83
* »);84
*»);85

continued

364 Section 6.10 Programming Example — The Calculate Program

PROGRAM 6-28 The Complete Calculator (continued)

printf(”\n* 3. MULTIPLY
printf("\n* 4.
printf("\n*
printf("\n*
printf("\n*******************")?

printf("\n\n\nPlease type your choice ")?

printf("and press the return key :

scanf("%d", &option);

) ;* »

8 6
* ••);DIVIDE

5. QUIT
87

* ") ;
8 8 ») ;
89
90
91
92
93
94
95

if (option < 1||option > 5)

printf("Invalid option. Please re-enter.\n");
96
97
98

> while (option < 1||option > 5);
return option;

} // getOption

99
100
101

Program 6-28 Analysis As you look at the changes in this version of our program, first note the two loops in
main. The first loop (statement 32) continues the calculator until the user says it's time
to quit. The second loop (statement 39) gets and validates the numbers, making sure
that the user isn't trying to divide by zero. (Your computer will get very upset if you
divide by zero and will stop!)

We also modified our getOption function to add the quit option and to vali-
date the options. If the user makes a mistake, we correct it in getOption. Extending
the concept to a general principle, whenever we write a function to get data from a
user, the function should handle all data validation. This makes for much simpler code
in the rest of the program.

This simplification is also seen in the switch statement. Since we have validated the
no longer need to test for a valid divisor in the fourth

option. We also no longer need a default, since we know the options are valid.
The result is a simpler statement,much more in line with the KISS principle.

numbers before the switch, we
case

Chapter 6 Repetition 365

6.11 Software Engineering

Loops in Structure Charts
Now that you understand how to write loops, let ’s look at how they are shown

structure chart. The symbols are very simple. Loops go in circles, so
use two basic looping symbols.

in a
the symbol we use is a circle. Programmers
I he first is a simple loop. It is represented by Figure 6-3 1 (a). The other is the
conditional loop, shown in Figure 6-31 (b).

int select (...)int dolt (...)
{

selectdolt
while (expression)while (expression)

fun (...); (
if (condition)

doA (...);} // dolt
fun doA } // while

} // select

(a) loop (b) conditional loop

FIGURE 6-31 Structure Chart Symbols for Loops

When the function is called unconditionally, as in a while loop, the circle
flows around the line above the called function. On the other hand, il the call
is conditional, as in a function called in an if...else statement inside a loop,

then the circle includes a decision diamond on the line.
Figure 6-32 shows the basic structure for a function called process. The

circle is below the function that controls the loop. In this example, the loop-
ing statement is contained in process, and it calls three functions, A, B, and
C. The exact nature of the loop cannot be determined from the structure
chart. It could he any of the three basic looping constructs. To help you bet -
ter visualize the process, however, let's further assume that the loop is a while
loop that contains a scanf that reads until the end of file. Within the while
loop are three calls: the first to A, the second to B, and the third, condition-
ally, to C.

Determining Algorithm Efficiency
There is seldom a single algorithm for any problem. When comparing two dif-
ferent algorithms that solve the same problem, we often find that one algo-
rithm will be an order of magnitude more efficient than the other. In this

it only makes sense that programmers have some way to recognize andcase,
choose the more efficient algorithm.

ion 6.11 Software Engineering

1 while (...)
{

Process A (...) ;

B (...) ;

<> if ()
C (...) ;

} / / while
CBA

(b) Code(a) Design

FIGURE 6-32 Structure Chart for Process

Although computer scientists have studied algorithms and algorithm effi-
ciency extensively, the field has not been given an official name. Brassard and
Bratley coined the term algorithmiĉ , which they define as “the systematic
study of the fundamental techniques used to design and analyse efficient
algorithms. ” 2 We will use this term.

II a function is linear—that is, if it contains no loops—then its efficiency
is a function of the number of instructions it contains. In this case, the func-
tion’s efficiency depends on the speed of the computer and is generally not a
factor in its overall efficiency in a program. On the other hand, functions that
loop will vary widely in their efficiency. The study of algorithm efficiency is
therefore largely devoted to the study of loops.

As we study specific examples, we will develop a formula that describes
the algorithm’s efficiency. We will then generalize the algorithm so that the
efficiency can be stated as a function of the number of elements to he pro-
cessed. The general format is

/(n) = efficiency

Linear Loops
Let’s start with a simple loop. We want to know how many times the body of
the loop is repeated in the following code:

for (int i = 1; i <= 1000; i++)
{

BODY ;
} // for

2. Gilles Brassard and Paul Bratley, Algorithmic* theory amt Practice (Upper Saddle River. NJ Prenti
Hall . 1988), p. xiii.

Chapter 6 Repetition 367

The answer is 1000 times. But the answer is not always straightforward
as it is in the previous example. Consider the following loop. How many times
is the body repeated in this loop? I lore the answer is 500 times. Why?

for (int i = 1; i <= 1000; i += 2;)
{

BODY;
> // for

In both cases, the number of iterations is directly proportionate to the
limit test in thefor loop. If we were to plot either of these loops, we would get
a straight line. Thus, they are known as linear loops.

Since the efficiency is proportionate to the number of iterations, it is

f iu) = n

Logarithmic Loops
Now consider a loop in which the controlling variable is multiplied or divided
in each loop. How many times will the body of the loops he repeated in the
following program segments?

Multiply Loops Divide Loops

i = 1;
while (i < 1000)

i = 1000;
while (i >= 1)

{ {
BODY;
i *= 2;
} // while

BODY;
i /= 2;

} // while

To help us understand this problem, Table 6-4 analyzes the values ol i lor
each iteration.

DivideMultiply

Iteration Iterationi

100011 1
50022 2
25033 4

12544 8

cont inued
TABLE 6-4 Analysis of Multiply / Divide Loops

)8 Section 6.11 Software Engineering

DivideMultiply

Iteration iIteration
516 625
632 316
7647 15

81288 7

256 99 3

512 1010
(exit)(exit) 1024 0

TABLE 6-4 Analysis of Multiply / Divide Loops (continued)

As can be seen, the number of iterations is 10 in both cases. The reason
is that in each iteration the value of i doubles for the multiplication and is cut

in half for the division. Thus, the number of iterations is a function of the
multiplier or divisor; in this case, two. That is, the loop continues while the
condition shown below is true.

2Iterations < JQQQ

1000 / 2l,crafions>= 1
multiply
divide

Generalizing the analysis, we can say that the iterations in loops that
multiply or div ide are determined by the following formula:

/(//) = ceil (log2/i)

Nested Loops
When we analyze loops that contain loops, we must determine how many
iterations each loop completes. The total is then the product of the number
of iterations for the inner loop and the number of iterations in the outer loop.

Iterations = outer loop iterations * inner loop iterations

We now look at three nested loops: linear logarithmic, dependent qua-
dratic, and quadratic.

Chapter 6 Repetition 369

Linear Logarithmic
The inner loop in the following code is a loop that multiplies. (To see the
multiplication, look at the update expression in the inner for statement.)

for (int i = 1; i < 10; i ++)
for (int j = 1; j <= 10; j *= 2)

{
BODY;
> // for j

I he number of iterations in the inner loop is therefore

ceil (log210)

I lowever, since the inner loop is controlled by an outer loop, the above
formula must be multiplied by the number of times the outer loop executes,
which is 10. This gives us

10 (ceiV(log2l()))

which is generalized as

/('») = /i (ceil (log2/i))

Dependent Quadratic
Now consider the nested loop shown in the following example:

for (int i = 1; i < = 10; i ++)
for (int j = 1; j <= i; j ++)

{
BODY;

> // for j

The outer loop is the same as the previous loop. However, the inner loop
is executed only once in the first iteration, twice in the second iteration, three
times in the third iteration, and so forth. The number of iterations in the
body of the inner loop is mathematically stated as

1 + 2 + 3 + ... + 9 + 10 = 55

which is generalized to

(n + 1)
f(n) = n 2

370 Section 6.11 Software Engineering

Quadratic
In the final nested loop, each loop executes the same number of times, as
seen in the following example:

i ++)for (int i = 1; i <- 10
for (int j = 1; j <= 10; j ++)

{
BODY;

> // for j

The outer loop—that is, the loop at the first for statement—is executed
ten times. For each iteration, the inner loop is also executed ten times. The
answer, therefore, is 100, which is 10 * 10, the square of the loops. This for-
mula generalizes to

M = /i2

Big-0 Notation
With the speed of computers today, we are not concerned with an exact mea-
surement of an algorithm’s efficiency as much as we are with its general mag-
nitude. If the analysis of two algorithms shows that one executes 1 5 iterations
while the other executes 25 iterations, they are both so fast that we can’t see
the difference. On the other hand , il one iterates 15 times and the other
1500 times, we should he concerned.

We have shown that the number of statements executed in the function
for n elements ol data is a function of the number of elements, expressed as
/(»). While the equation derived for a function may be complex, usually, a
dominant factor in the equation determines the order of magnitude of the
result . I herefore, we don t need to determine the complete measure of effi-
ciency, only the factor that determines the magnitude. This factor is the big-
0, as in On-the-Order-Of, and expressed as O(w), that is, on-the-order-of n.

I his simplification ol efficiency is known as big-O analysis,

if an algorithm is quadratic, we would say its efficiency is
For example,

0(n2)

or on-the-order of w-squared.
I he big-O notation can be derived from/(w) using the following steps:

1 . In each term, set the coefficient of the term to 1 .
2. Keep the largest term in the function, and discard the others. Terms are

ranked from lowest to highest, as shown below.

log n n n1 /i3n log n nk 2"

- 1 '1
Chapter 6 Repetition 371

tor example, to calculate the big-0 notation For

f(„) = nielli = i„2 + ^
1
2n22

M

we first remove all coefficients. This gives us

/i 2 + n

which, alter removing the smaller Factors, gives us

/i2

which, in Big-O notation, is stated as

0(f(/i)) = 0(/i2)

Io consider another example, let’s look at the polynomial expression

k k - 1 2 I
f(/l) = 371 + 3y _ , /1 + — + 32/I + 3,/1 + 3n

We first eliminate all of the coefficients, as shown below.

f(/#) = nk + nk - 1 2
•• + /i + n + 1+ •

The largest term in this expression is the first one, so we can say that the
order of a polynomial expression is

0(f (/»)) = 0(„*)

Standard Measures of Efficiency
Computer scientists have defined seven categories oF algorithm efficiency. We
list them in Table 6-5 in order of decreasing efficiency. Any measure of effi-
ciency presumes that a sufficiently large sample is being considered. If we are

only dealing with ten elements and the time required is a fraction of a sec-
ond, there will he no meaningful difference between two algorithms. On the

other hand, as the number of elements processed grows, the difference
between algorithms can he staggering. In I able 6-5, n is 10,000.

Returning to the question ol why
ciency, consider the situation in which we can solve a problem in three ways:

one is linear, another is linear-logarithmic, and the third is quadratic. I he

should he concerned about effi-we

372 Section 6.1II Software Engineering

order of their efficiency for a problem containing 10,000 elements is shown
in Table 6-5, along with the other algorithmics. Obviously, we wouldn’t
to use the quadratic solution.

want

IterationsBig-0Efficiency

0(log n)logarithmic

linear

linear logarithmic

quadratic

polynomial

exponential

factorial

14

O(n) 10,000
140,000

10,0002
10,000fe

2 io,ooo

10,000!

0(n(log n)

Ofn2)

Q [nk)

0(cn)

O(nl)

TABLE 6-5 Measures of Efficiency

Looking at the problem from the other end , if we use a computer that
executes a million instructions per second and the loop contains ten instruc-
tions, then we spend .00001 second for each iteration of the loop. Table 6-5
also contains an estimate of the time to solve the problem given different
efficiencies.

Chapter 6 Repetition 373

6.12 Tips and Common Programming Errors
1. Be aware that the while and /or loop

never
a do...while.

2. Do not use equality and inequality for the control expression in loops;
limits that include less than or greater than. You may accidentally

create an infinite loop, as shown helow.

s are pretest loops. Their body may
he executed. If you want your loop to he executed at least once, use

if
use

i = 0;
while (i != 13)

{

i++; // sets i to 1, 3, 5, ..., 13

i++; // sets i to 2, 4, 6, 14... ,

> // while

3. It is a compile error to omit the semicolon after the expression in the
do...while statement.

4. It is most likely a logic error to place a semicolon after the expression in a
while or for statement. (Some compilers warn you when you do.)

5. It is a compile error to code a for statement with commas rather than
semicolons, as shown helow.

for (int i = 0, i < 10, i++)

6. It is a logic error to omit the update in the body of a while or do.. .while loop.
Without an update, either explicit or implicit, the loop never terminates.

7. It is a common logic error to miscode the limit test in for statements. I he
result is usually a loop that executes one extra time or terminates one
iteration short. For example, the following statement executes nine times,
not ten:

for (int i = 1; i < 10; i++)

8. It is generally a logic error to update the terminating variable in both the
for statement and in the body ol the loop, as follows.

for (int i = 0; i < 10; i++)
{

i += 1;
} // for

374 Section 6.14 Summary

function must have a base case. Therefore, it is most likely
if a recursive function does not have an if statement that prevents

the recursive call and allows the function to return. For example, the fol-
lowing code—based

an9. A recursive
error

Program 6-26—would never terminate.on

long fib (long num)
{
// Statements

return (fib (num - 1) + fib (num - 2));
// fib}

6.13 Key Terms
initialization
inquiry
limit-test expression
loop control expression
loop update
post- test loop
pretest loop
process-control loops
recursion
summation
while

all inquiry
any inquiry
base case
big-O analysis
body of loop
comma expression
comma operator
continue
counter-controlled loop
event-controlled loop
general case
infinite loop

6.14 Summary
The real power of computers is in their ability to repeat an operation ora
series of operations many times.

J lo control the loop, we need a condition to determine if more processing
is needed.

J In a pretest loop, in each iteration, we check the condition first. II it is
true, we iterate once more; otherwise, we exit the loop.

J In a post-test loop, in each iteration, we do the processing. Then we check
the condition. It it is true, we start a new iteration; otherwise, we exit
the loop.

J In a pretest loop, the processing is done zero or more times.
J In a post-test loop, the processing is done
J In a pretest loop, if the body is executed n times, the limit test is executed

n + 1 times.
one or more times.

1
Chapter 6 Repetition 375

J In a post-test loop, it the body is executed n times, the limit test is exe-
cuted n times.

J 1 he control expression in a loop must be explicitly or implicitly initialized.
IJ It you know exactly the number of times the body must he repeated, use a

counter-controlled loop; it an event must occur to terminate a loop, use an
event-controlled loop.
C has three loop statements: while, for, and do...while.
1 he while loop is a pretest loop. It can he used for a counter-controlled or
event-controlled loop, hut it is usually used only for event control.

I he for loop is a pretest loop. It can be used for both counter-controlled
and event-controlled loops, hut it is used mostly in the first case.
The loop variable in a for loop may be locally defined in the for statement .

The do...while loop is a post-test loop. It is usually used when the body
must be executed at least once.
VVe discussed two C statements that are related to looping, break and
continue.
The break statement is used to terminate a loop prematurely. We strongly
recommend that you use the break statement only within switch statements.
The continue statement is used to skip the rest of the statements in a loop
and start a new iteration without terminating the loop. VVe strongly recom-
mend that you never use the continue statement.
The best loop for data validation is the do....while loop.
Recursion is a repetitive process in which a I unction calls itself.
The statement that solves a recursive problem is known as the base case;
the rest of the function is known as the general case.

structure chart is indicated by a circle on the line connecting it

to the called functions. Only loops that call other functions are shown.A loop in a

6.15 Practice Sets

Review Questions
1. In a pretest loop, the limit test condition is tested first.

a. True
b. False

2. The action that causes the loop limit test to change from true to false is

the loop update.
a. True
b. False

376 Section 6.15 Practice Sets

3. The value of a comma expression is the value ol the first expression.
a. True
b. False

4. Recursion is a repetitive process
a. True
b. False

5. Which of the following statements about pretest loops is true?

a. If a pretest loop limit test is false, the loop executes one more time.
b. Pretest loop initialization is clone first in the loop body.
c. Pretest loops execute a minimum ol one time.
d. Pretest loops test the limit condition after each execution of the

loop body.
e. The update for a pretest loop must be a part of the loop body.

6. Which of the following statements about loop initialization is falser
a. Explicit initialization includes code to set the initial values of loop

variables.
b. Implicit initialization relies on preexisting values for loop variables.
c. Initialization code is explicitly required in all loops.
d. Initialization is preparation required for proper execution of a loop.
e. Initialization must he done before the first execution ol the loop.

7. Which of the following statements about loop updates is false?
a. A loop update changes key variable(s) in a loop, thus allowing the loop

to terminate.
b. Loop updates may be made before or after a loop iteration.
c. Loops may use explicit or implicit updates.
d. In a for loop, updates are generally found in the for statement itself .
e. I he number ol updates always equals the number of loop iterations.

8. Which of the following statements about counter-controlled loops is false?
a. Counter-controlled loops are generally pretest loops.
b. Counter-controlled loops generally increment or decrement a counter.
c. Counter-controlled loops require a limit test.
d. The number of times a loop iterates must be
e. I he update in a counter-controlled loop is generally explicit.

9. Which ol the C loops is a pretest loop?
a. do.. .while
b. for
c. while
d. both the do.. .while and the for
e. both the for and the while

10. \\ hich ol the lollowing statements about the while statement is true?
a. Multiple statements are allowed in a while loop.
b. I he limit test in a while loop is made before each iteration.

in which a function calls itself.

a constant.

r T

Chapter 6 Repetition 377

c. I he update in a while statement is contained in the while statement
expression itself.

d. The while statement is a post-test loop.
e. I he while statement must be terminated with a semicolon.

11. Which of the following statements about for and while statements
is false?

a. Both statements allow only one statement in the loop.
b. Both statements are pretest loops.
c. Both statements can he used for counter-controlled loops.
d. Both statements include initialization within the statement.
e. Both statements require an update statement.

12. Which of the following statements about the do...while loop is false?

a. A do...while loop executes one or more iterations.
b. Anv statement may he used as the action in a do. ..while.
c. The do...while is best suited for use as an event-controlled loop.
d. The do...while is the only loop that requires a semicolon.
e. The limit test in a do...while loop is executed at the beginning ot each

iteration.

41

standard measure of efficiency.13. Nested loops have a

a. exponential
h. linear
c. linear logarithmic
d. quadratic
e. linear logarithmic or quadratic

standard measure of efficiency is considered the14. The
most efficient.
a. exponential
b. linear
c. logarithmic
d. quadratic
e. polynomial

Exercises
13. What would he printed from each of the following program segments?

Compare and contrast your answers to parts a, b, and c.

a.

x = 12;
while (x > 7)

printf("%d\n", x);

3/8 Section 6.15 Practice Sets

b.

for (int x = 12; x > 7;)
printf("%d\n", x);

c.

x = 12;
do

printf("%d\n", x);
while (x > 7);

16. What would he printed from each of the following program segments?
Compare and contrast your answers to parts a, b, and c.
a.

x = 12;
while (x > 7)

{
printf("%d\n", x);
x--;

>
b.

for (int x = 12; x > 7; x—)
printf(" %d\n", x) ;

c.

x = 12;
do

{
printf("%d\n",
x—;
} while (x > 7);

17. What would be printed from each ol the following program segments?
Compare and contrast your answers to parts a and b.

x) ;

a.

x = 12;
while (x > 7)

{
printf("%d\n",
x -= 2;

x) ;

>

Chapter 6 Repetition 3/9

b.

for (int x = 12;
printf ("%d\n",

x > 7; x -= 2)
x) ;

18. What would be printed from each of the following program segments?
Compare and contrast your answers to parts a, b, and c.
a.

x = 12;
while (x < 7)

{
printf("%d\n", x);
x—;
} // while

b.

for (int x = 12; x < 7; x—)printf ("%d\n", x);

c.

12;x
do
{
printf("%d\n", x);
x—;
} while (x < 7);

19. Change the following while loops to for loops.
a.

x = 0;
while (x < 10)

{
printf("%d\n", x);
x++;
}

b.

scanf("%d", &x);
while (x != 9999)

{
printf("%d\n", x);
scanf("%d", &x);

>

380 Section 6.15 Practice Sets

20. Change the while loops in Exercise 19 to do...while loops.

2 1. Change the following for loops to while loops:

a.

for (int x = 1; x < 100; x++)
printf ("%d\n", x);

b.

for (; scanf("%d", &x) !- EOF;)
printf ("%d\n", x);

22. Change the/or loops in Exercise 21 to do...while loops.
23. Change the following do...while loops to while loops.

ia.

x = 0;
do

{
printf("%d\n", x);
x++;

> while (x < 100);

b.

do
{
res = scanf("%d", &x);

> while (res != EOF);

24. C hange the do...while loops in Exercise 23 to for loops.
25. A programmer writes the following/or loop to print the numbers 1 to 10.

would you correct it:W hat is the output? If the output is incorrect, how

for (num = 0;
printf("%d",

num < 10; num++)
num);

26. Another programmer writes the following lor loop to print the numbers 1
to 10. What is the output? It the output is incorrect, how would you cor-
rect it?

for (int num = 0; num < 10; num++)
{
numOut = num + 1;
printf("%d", numOut);

> // for

Chapter 6 Repetition 381

27. What will be printed from the following program segments?
a.

for (int x = 1; x <= 20; x++)
printf("%d\n", x);

b.
for (int x = 1; x <= 20; x++)

{
printf("%d\n", x);
x++;
} // for

28. What will he printed from the following program segments?

a.

for (int x = 20; x >= 10; x—)
printf("%d\n", x);

b.

for (int x = 20; x >= 1; x—){
printf("%d\n", x);
x— ;
} // for

29. What will he printed from the following program segments?

a.

for (int x = 1; x <= 20; x++)
{
for (int y = 1; y <= 5; y++)

printf("%d", x);
printf("\n");
} // for

b.
x >= 1; x—)for (int x = 20;

{
for (int y = x; y >= 1; y —)

printf("%3d", x);
printf("\n");
} // for

382 Section 6.15 Practice Sets

30. What will be printed from the following program segments?

a.

x <= 20; x++)for (int x = 1;
{
for (int y = 1; y < Y++)

printf(" ");
printf("%d\n", x);

> // for

b.

x >= 1; x—)for (int x = 20;
{
for (int y = x; y >=1; y—)

printf (" M);
printf ("%d\n", x);

> // for

31. You find the statement shown below in a program you are maintaining.

for (; ;)
{

> // for

a. Describe the implications behind the null expressions in the for
statement.

b. Since there is no limit condition , how can this statement he exited?
c. Is this good structured programming style? Explain your answer.

Problems
32. Write a program that uses a for loop to print a line of 60 asterisks.
33. Write a Jor loop that will produce each of following sequences:

a. 6, 8, 10, 12, ..., 66
b. 7, 9, 1 1, 13, ..., 67
c. 1 he sum ol the numbers between 1 and 1 5 inclusive
d. I he sum ot the odd numbers between 1 5 and 45 inclusive
e. The first 50 numbers in the series 1 , 4, 7, 10, ... (calculate the total

1 + 4 + 7 + 10 + ...)
34. \\ rite a program that prompts the user to enter an integer, n, and then n

floating-point numbers. As the numbers
late the average of the positive numbers.
Rewrite Problem 34 to average the negative numbers.

read , the program will calcu-are

35.

—
Chapter 6 Repetition 383

36. Write a program that asks the user to enter a list of integers. The pro-
gram is to determine the largest value entered and the number of times it
was entered, l or example, if the following series is entered

5 2 1 5 3 7 1 5 8 9 5 2 1 5 3 7

it would output the largest value is 15 and it was entered 3 times.
37. Write a program that creates the following pattern:

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7
1 2 3 4 5 6
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1

38. Write a function that creates the following pattern, given the height
(number of rows) and the width (asterisks per row):

************* ,

39. Write a function that creates the following pattern , given the height
(number of rows) and the width (print characters per line):

**
**
*
**

40. Write a function that creates the following pattern, given the height
(number of rows):

*

* ****

. Jd

384 Section 6.15 Practice Sets

that creates the following pattern, given the height41. Write a function
(number of rows):

function that creates the following pattern, given the height42. Write a
(number of rows):

*

*

43. Modify Program 6-3 to display the total as each number is entered. I he
format should he

Enter your numbers: <EOF> to stop.
5
Total: 5
17
Total: 22
8
Total: 30

44. Write a program that reads integer data from the standard input unit and
prints the minimum integer read, maximum integer read, and the average
of the list. Test vour program with the data shown below.

{24 7 31 -5 64 0 57 -23 7 63 31 15 7 -3 2 4 6}

45. In “ I he do...while Loop" in Section 6.5, we demonstrated the use of a
do...while to validate input. I he code fragment contains no message to
tell the user that an invalid number has been entered. Write a function
that reads only positive even numbers from the keyboard. If a negative or
odd number is entered, it should print an error message and ask the user
to enter another number. Each call to the function is to read only one

' l l

Chapter 6 Repetition 385

number. The valid number read is to be returned to the calling program.
II the user enters EOF, the function should return it. Then write a short
program to test the function using the data shown below. The valid num-
bers should he printed, either in a separate function or in main.

{ 2 1 8 -1 8 5 7 1 0 0 1 -1}

46. Write a function that reads integers from the keyboard. If any of the
numbers are negative, it returns a negative number. If all the numbers
are positive, it returns their average. (Hint: See Program 6-22.)

47. Program 6-19 uses a while loop to read a series of numbers from the key-
board. Since you will always have at least one number in this program,

rewrite it to use the do...while.
48. Program 6-21 uses INT_MAX from the limits.h library to initialize the

smallest variable. Another solution is to read the first number and put
its value in smallest, then go into the loop to read the rest of the num-
bers. Modify Program 6-21 to make this change.

49. Euler's number, e, is used as the base of natural logarithms. It can be
approximated using the following formula:

+Ie - l +I+I+I+I +I+I
1! 2! 3! 4! 5! 6!

1+ ••• +
(w - 1) n\

Write a program that approximates e using a loop that terminates when
the difference between two successive values of e differ by less than
0.0000001 .

50. The value of pi (7t) can be calculated by the following formula:

16lh+ h+ h+0 = ... +
limit2

Write a function that uses this formula to calculate pi. Then write a test

driver, and run it once to test your function with a limit of 5 terms and a

limit of 10 terms. Display the result of each test.

5 1. Write a program that reads an integer from the keyboard and then calls a

recursive function to print it out in reverse. For example, if the
enters 4762, it prints 2674.

52. Rewrite Program 6-26 using an iterative solution.

user

Projects
53. Statisticians use many different algorithms in addition to the arithmetic

average. Two other averages are the geometric and the harmonic mean.

386 Section 6.15 Practice Sets

of a set of n numbers, x\ > x2, xn - 1 » *„ isThe geometric mean
defined by the following formula:

n7xixx2 x -••* x n

The harmonic mean is defined by the following formula:

n
1I+!+ ... +
_

X , X 2 x*

Write a program that reads a series of numbers and calculates the aver-
age, geometric mean, and harmonic mean.

54. Write a C program that can create four different patterns of different
sizes. The size of each pattern is determined by the number of columns
or rows. For example, a pattern of size 5 has 5 columns and 5 rows. Each
pattern is made of character $ and a digit, which shows the size. The size
must he between 2 and 9. Table 6-6 shows the four patterns in size 5.

Pattern 2 Pattern 3 Pattern 4Pattern 1

5$$$$ $$$$5 $$$$$ $$$$$

$5$$$ $$$5$ $$$$5 5$$$$

$$5$$ $$5$$ 55$$$$$$55

$$$5$ $5$$$ 555$$$$555

$$$$5 5$$$$ 5555$$5555

TABLE 6-6 Patterns for Problem 54

Tour program displays a menu and asks the
si/e. But note that it must he robust; it must prompt the user to choose

option only between 1 and 5, and a pattern size only between 2 and 9.
You arc to print the menu and the user's response. The following example
shows all
responses are in color):

to choose a pattern anduser

an

responses, including potential errors (useruser menu

M E N U
1. Pattern One
2. Pattern Two
3. Pattern Three

continuedi

I

Chapter 6 Repetition 387

4. Pattern Four
5. Quit

Choose an Option (between 1 and 5): 11
Your Option is incorrect. Please try again.
Choose an Option (between 1 and 5): 3
Choose a Pattern Size (between 2 and 9): 12
Your Pattern size is incorrect. Try again.
Choose a Pattern Size (between 2 and 9): 4

I he program must consist of a main function and six other functions
called getOption, getSize, patternOne, patternTwo, patternThree.
and patternFour.

Run your program once with the options and sizes shown in Table 6-7.
Note that some options and sizes are missing because either the previous
option or the size is invalid.

Option

SET 1 1

3SET 2 2

SET 3 3 4

54SET 4

6SET 5

3 6SET 5
102SET 6
7SET 6

5SET 7

TABLE 6-7 Test Data for Problem 54

55. Write a C program to create a calendar for a year. The program reads the
from the keyboard. It then calculates which day ol the week (SUN,

MON, TUE, WED,T11U, FR1. SAT) is the first day of the year and prints
the calendar for that year. After printing the year, it should ask il the user

wants to continue. II the answer is yes, it will print the calendai lor
another year until the user is done.

The program prompts the
example.

vear

for the input, as shown in the nextuser

2 0 0 0Enter the year for your calendar :

i
W

388 Section 6.15 Practice Sets

The output is a calendar for the whole year (12 months). One month is
shown in the next example.

2 0 0 0JANUARY
SUN MON TUE WED THU FRI SAT

1
5 6 7 8

13 14 15
2 0 2 1 2 2

25 26 27 28 29

2 3 4
9 10 11 12

16 17 18 19
23 24
30 31

To print the correct calendar for the requested year, you must first find which
day of the week is the first day of the that year. This can he done with the fol-
lowing formula. (For a complete explanation, see Chapter 5, Project 61.)

(«»•' FF1]-Far1]*FSr]*‘)% 7

You also must calculate leap years. The formula for this calculation is
also found in Chapter 5, Project 61.

Run your program once with the following sets of data3:

SET Is 2005
SET 2:
SET 3: 2000
SET 4:

0

123

56. \\ rite a C program to help a prospective borrower calculate the monthly
payment for a loan. I he program also prints the amortization (payoff)
table to show the balance of the loan after each monthly payment.

1he program prompts the user for input, as shown in the following
example:

Amount of the loan (Principal)? 10000.00
Interest rate per year (per cent)? 12
Number of years? 10

I he program then creates an information
tion table. summary and amortiza*

3. The Julian calendar was changed to current (Gregorian) calendar in 1752. Although calendarse ore this date are valid Gregorian calendars, they do not represent the Julian calendar in use at
that time.

our

'HChapter 6 Repetition 389

Banks and financial institutions use different formulas to calculate
tlu* monthly payment of a loan. For the purpose of this assignment,
use a simple formula

we

NM = (NY * 12)
= (IY / 12) / 100
= (1 + IM)
= (P / (P - 1))

= (PR * IM * Q)

IM
NMP

Q
MP

where
NY: Scheduled number ol years to amortize the loan

Scheduled number of months lor the loan
Interest rate per year (as a percentage)
Interest rate/month (decimal)
Principal (the amount of the loan)
Fhe value of (1 + IM)NM

The value of P / (P- 1)
Monthly payment

NM:
IY:
IM:
PR:
P:
Q:
MP:

main must call three other functions: calculateMonthlyPayment ,
print lnformation, and printAmortizat ionTable. Of course, the
first function may also call other functions if necessary.

Because ol the approximation used in calculation, the value of the
new balance at the end of the last month may become nonzero. To pre-
vent this, the last payment must be adjusted. It may he less or greater
than the other months. It must be calculated by adding the principal paid
to the interest paid for that month . The new balance at the end of the
last month must be zero.

I he following example shows the concept. The program has been
run for a loan of $5000.00 at 11% interest rate for a period of 1 year. The
input was

Amount of the loan (Principal)?
Interest rate / year (per cent)? 11
Number of years? 1

5000.00

Run your program once with the test data shown in Table 6-8.

YearsInterestAmount
l121 0 , 0 0 0 . 0 0Set 1
2105, 0 0 0 . 0 0Set 2

1 , 0 0 0 . 0 0Set 3

TABLE 6-8 Test data for Problem 56

390 Section 6.15 Practice Sets

The output is shown in Table 6-9. Note: Your answer may look a little dif-
ferent (a few pennies) because ol different precision.

5 0 0 0 . 0 0The amount of the loan (principal):

1 1 . 0Interest rate/year (percent):

0 . 0 0 9 1 6 7Interest rate/month (decimal):

1Number of years:

1 2Number of months:

4 4 1 . 9 1Monthly payment:

Interest Principal
Paid

Monthly
Payment

New
B a l a n c e

Old
BalanceMonth Paid

3 9 6 . 0 84 5 . 8 3 4 6 0 3 . 9 24 4 1 . 9 15 0 0 0 . 0 01

4 2 . 2 0 3 9 9 . 7 1 4 2 0 4 . 2 14 4 1 . 9 14 6 0 3 . 9 22

3 8 . 5 4 4 0 3 . 3 7 3 8 0 0 . 8 44 2 0 4 . 2 1 4 4 1 . 9 13

4 3 8 0 0 . 8 4 4 4 1 . 9 1 3 4 . 8 4 4 0 7 . 0 7 3 3 9 3 . 7 7

5 3 3 9 3 . 7 7 4 4 1 . 9 1 3 1 . 1 1 4 1 0 . 8 0 2 9 8 2 . 9 7

6 2 9 8 2 . 9 7 4 4 1 . 9 1 2 7 . 3 4 2 5 6 8 . 4 04 1 4 . 5 7

7 2 5 6 8 . 4 0 4 4 1 . 9 1 2 1 5 0 . 0 32 3 . 5 4 4 1 8 . 3 7

8 2 1 5 0 . 0 3 4 4 1 . 9 1 1 7 2 7 . 8 31 9 . 7 1 4 2 2 . 2 0

9 1 7 2 7 . 8 3 4 4 1 . 9 1 1 3 0 1 . 7 61 5 . 8 4 4 2 6 . 0 7

10 1 3 0 1 . 7 6 4 4 1 . 9 1 8 7 1 . 7 81 1 . 9 3 4 2 9 . 9 8

1 1 8 7 1 . 7 8 4 4 1 . 9 1 4 3 7 . 8 67 . 9 9 4 3 3 . 9 2

1 2 4 3 7 . 8 6 4 4 1 . 8 7 0.004 . 0 1 4 3 7 . 8 6

T o t a l a m o u n t p a i d: 5 3 0 2 . 8 8

TABLE 6-9 Sample Output from Project 57

57. Write a program that reads a list ol integers from the keyboard and cre-
ates the following information:
a. 1 inds and prints the sum and the average of the integersb. Finds and prints the largest and the smallest integer
c. Prints a Boolean (true or false) if some of them are less than 20
d. Prints a Boolean (true or false) if all of them between 10 and 90are

rawI V '

Chapter 6 Repetition 391

I he input data consist of a list of integers with a sentinel. The program
must prompt the user
sentinel when the end of the list has been reached. The prompt should
look like the following:

to enter the integers, one by one, and enter the

Enter numbers with <return> (99999 to stop):

I he output should he formatted as shown below.

The number of integers is:
The sum of the integers is:
The average of the integers is:
The smallest integer is:
The largest integer is:
At least one number was < 20:

X X X

xxxx
X X X.X X

X X X

X X X

<true or false>
All numbers were (10 <= n >= 90): <true or false>\

58. The formula for converting centigrade temperatures to Fahrenheit is

180.0F = 32 + C x
100.0

Write a program that prints out conversion tables for Celsius to Fahren-
heit (0° to 100°) and Fahrenheit to Celsius (32° to 212°). Use separate
functions to convert Fahrenheit to Celsius and Celsius to Fahrenheit.
The output format for each table is to (it on a standard monitor display,
80 columns by 20 rows.

59. Rewrite “Towers of Hanoi” Program 6-27 using an iterative solution.

1I

Text Input/Oulput
A program is a data processor: It accepts input data, processes data, and cre-
ates output data. Handling input/output is a complex task, largely because of
the variety of devices and data formats. Data may come from many different
sources and may go to different destinations. For example, data may come
from such diverse sources as a keyboard, a file on the disk, a heating or air-
conditioning system, or a communication channel (network or Internet).
Data may also go to many destinations, such as a monitor or a file on the disk,
or to a communication channel. In this chapter, we concentrate on the key-
board and files as input entities and the monitor and files as output entities.

Objectives
To understand the basic properties and characteristics of external files
To understand the C implementation of file I/O using streams

To write programs that read and write text files using the formatting functions
To write programs that read and write text files using the C character I/O
functions
To write programs that handle simple I/O errors

To understand and implement basic data validation concepts

394 Section 7.1 Files

7.1 Files
A file is an external collection of related data treated as a unit.1he primary

of a file is to keep a record of data. Since the contents of primary
lost when the computer is shut down, we need files to store our

purpose
memory are
data in a more permanent form. Additionally, the collection ol data is often
too large to reside entirely in main memory at one time. Iherefore, we must
have the ability to read and write portions of the data while the rest remain in
the file.

A file is an external collection of related data treated as a unit.

Files are stored in auxiliary or secondary storage devices. The two most
common forms of secondary storage are disk (hard disk, CD, and DVD)
and tape.

When the computer reads, the data move Irom the external device to
memory; when it writes, the data move Irom memory to the external device.
This data movement often uses a special work area known as a buffer. A
buffer is a temporary' storage area that holds data while they are being trans-
ferred to or from memory. The primary purpose of a buffer is to synchronize
the physical devices with a program’s needs, especially on large storage
devices such as disk and tape. Because of the physical requirements of these
devices, more data can be input at one time than a program can use. The
buffer holds the extra data until the program or the user is ready for it. Con-
versely, the buffer collects data until there are enough to write efficiently.
I hese buffering activities are taken care of by software known as device driv-

methods provided by the supplier of the computer ' s operatingers or access
system.

As a file is being read, there eventually comes a point when all the data
have been input. At this point, the file is said to be at end of file. The end ol
file in an auxiliary device is detected automatically by the device and passed
to the program. It is the programmer s job to test for end of file. This test is
often done in a loop control statement.

File Name
Lui \ operating system uses a set ol rules for naming its files. When we want
to read or write auxiliary storage files, therefore, we must use the operating
systems rules when we name the files. We refer to the operating systems
name as the file name in this text.

File Information Table
A program that reads or write files needs to know several pieces of information,
such as the operating system’s name for the file, the position of the current

r

Chapter 7 Text Input/Output 395

character in the file, and so on. C has predefined a file structure1 to hold this
information. Ihe stdio.h header file defines the file structure; its identifier is
FILE. When we need a file in our program, we declare it using the FILE type.

7.2 Streams
Although the source and destination of data is a file or a physical device in C,
as we briefly discussed in Chapter 2, data
stream. A stream can be associated with a physical device, such as a terminal,
or with a file stored in auxiliary memory. Figure 7- 1 shows this idea.

input to and output from aare

Data Source Program

f Input Text Stream DataFile

|Output Text Stream +# Data
File

Monitor

Data Destination

FIGURE 7- 1 Streams

Text And Binary Streams
C uses two types of streams: text and binary. A text stream consists of a

of characters divided into lines with each line terminated by a new-sequence
line (\n). A binary stream consists of a sequence of data values such as inte-
ger, real, or complex using their memory representation. In this chapter,
discuss only text streams; binary streams are discussed in Chapter 13.

we

Stream-File Processing
A file exists as an independent entity with a name known to the operating sys-

tem. A stream is an entity created by the program. To
must associate the program’s stream

file in our pro-use a
with the operatingnamegram, we

system s file name.
In general, there are four steps to processing a

We then open the file, which associates the stream
file. We first create the

name with the filestream.

I . Technically, a structure (struct type). We discuss structures in Chapter 12.

396 Section 7.2 Streams

Once the file is opened, we read or write data; that is, we process the
we close the file.We describe the steps

name
file.When the processing is complete,
to make this association in this section.

Creating a Stream
We create a stream when we declare it. I he declaration uses the FILE type as
shown in the following example. The FILE type is a structure that contains
the information needed lor reading and writing a file.

FILE* spData;

In this example, spData is a pointer to the stream. Because of the impor-
tance of streams in a program, we provide a special notation to help us recog-
nize them. The sp in the name stands for stream-pointer. We then follow it
with a descriptive name for the data that flows through the stream. In this
case we used the generic name, data. In our examples, we use more descrip-
tive names.

Note that there is an asterisk after the file type(FILE). We saw this nota-
tion in Chapter 4. It indicates that spData is a pointer variable that contains
the address of the stream we are creating. It is an error to omit the asterisk.

Opening a File
Once the stream has been created, we are ready to associate the stream to a
file. I his is done, as we discuss in detail in the next section, through the stan-
dard open function. When the file is opened, the stream and the file are asso-
ciated with each other, and the FILE type is filled with the pertinent file
information. I he open function returns the address of the file type, which is
stored in the stream pointer variable, spData. The file open function creates
the stream, which we then refer to by its name.

Using the Stream Name
Alter we create the stream, we can use the stream pointer in all functions
that need to access the corresponding file lor input or output. For example, a
function can use the stream pointer to read from the file through the corre-
sponding stream.

Closing the Stream
When the file processing is complete, we close the file.Closing the file breaks
the association between the stream name and the file name. After the close,
the stream is no longer available and any attempt to use it results in an error,
lo close the association, we need to use a close function to release the file.

m
Chapter 7 Text Input/Output 397

System-Created Streams
YVc discussed that a terminal—that is, the keyboard or monitor—can be the
source or destination of a text stream. C provides standard streams to
municate with a terminal. I hese streams must be created and associated with
their terminal devices just like files. The difference is that C does it automat-
ically for us.

C declares and defines three stream pointers in the stdio.h header file.
I he first, stdin, points to the standard input stream; the second stdout, points
to the standard output stream; and the third, stderr , points to the standard
error stream. Note that these streams are created when the program starts

and we cannot declare them.

com-

Standard stream names have already been declared in the stdio.h header file
and cannot be declared again in our program.

The association between the three standard streams and the keyboard
and the monitor is also done automatically when the program starts. Ihere-
fore, we cannot open any of the standard streams in our code. Like file
streams, the standard streams must be closed at the end ol the program.
Ilowever, they are closed automatically when the program terminates.

There is no need to open and close the standard streams. It is done auto-
matically by the operating system.

Using Stream Names
C includes many standard functions to input data from the keyboard and out-
put data to the monitor automatically without the need lor explicitly using
these standard streams. For these functions, the stream that connects our

programs
not have to do anything more. Examples of such functions
print / , which we defined and used in C hapter 2.

to the terminal is automatically created by the system and we do
are scan) and

7.3 Standard Library Input/Output Functions
The stdio.h header file contains several different input/output function declara-
tions. They are grouped into eight different categories, as shown in I ig

The first three will be discussed in the following sections. Those shown in

shaded boxes will he discussed in Chapters 1 1 and 13.

ure 7-2.

398 Section 7.3 Standard Library Input/Output Functions

File
Open/Close

Formatted
Input/Output

Character
Input/Output

lLine
Input/Output

Categories of
I/O Functions Block

Input/Output

File
Positioning

System
File Operations

File
Status

FIGURE 7-2 Categories of Standard Input/Output Functions

File Open and Close
In this section we discuss the C functions to open and close streams.
File Open (fopen)
I he Junction that prepares a file lor processing is fopen. It does two things:
I irst, it makes the connection between the physical file and the file stream in
the program. Second, it creates a program file structure to store the informa-
tion needed to process the file.

lo open a file, we need to specify the physical filename and its mode,as
shown in the following statement.

fopen("filename”, "mode");

Let s examine this statement by starting on the right. The file mode is a
string that tells C how we intend to use the file: Are we going to read an exist-
ing file, write a new file, or append to a file? We discuss file modes later in
this section.

A filename is a string that supplies the name of the physical file as it is known to
t he external world. I or example, when we work in a Microsoft Windows system, the
file name consists ol a name,a dot (period),and a three-character file extension.

I he address of the file :
returned by fopen. The actual

structure that contains the file information is
contents of FILE are hidden from our view

uyl

V • r

Chapter 7 Text Input/Output 399

because we do not need to see them. All we need to know is that we can store
the address of the file structure and use it to read or write the file. A complete
open statement is shown below. Continuing with our temperatures example,

could open it for output (writing) with the following open statements. The
first is the basic format as it might he used for the current directory in UNIX
or Windows; the second is the Windows version to open a file for drive A.2

we

spData = fopen("MYFILE.DAT", V);
spData = fopen("A:WMYFILE.DAT", "w");

We see this open statement in the program in Figure 7-3. Some explana-
tion of the program segment in the figure is in order. You should first note
that the standard input/output library is called out at the beginning of the
program.

tfinclude <stdio.h>

Internal
ile Variable,int main (void)

FILE* spData;

spData = fopen("MYDATA.DAT", "W");

} // main External
File Name

FILE
~ L,

I |- Ĵ|spData

MYDATA. DAT
Physical File

C DataStream

FIGURE 7-3 File Open Results

Next , note the name we have used for the file address. I he sp stands for
“stream pointer”; we use it in all of our stream identifiers. To the stream

pointer abbreviation we add the name of the file. Because this is a generic

example, we use “Data.” This combination gives a readable name that is easy

to remember.
Our stream pointer variable, spData, is assigned the address of the file

structure when we open the file; the return value from the fopen function
contains the file structure address. Later in the program, when we need to

read or write the file, we use this pointer.

2. Note the two backslashes in the filename. Because the backslash is the escape character, to

«i*t one in the output, we must code two.

400 Section 7.3 Standard Library Input/Output Functions

File Modes
When we open a file, we explicitly define its mode. The mode shows how we
will use the file: for reading, for writing, or for appending, which means add-

data at the end of the current file. C has six different file modes. Themg new
first three, which we discuss here, are used to read, write, or append text files.

discuss the other modes, which allow both reading andIn Chapter 13 we
writing in the same file. The mode codes discussed in this chapter are shown
in Iable 7-1.3

MeaningMode

Open text file in read mode
•If file exists, the marker is positioned at beginning.
•If file doesn't exist, error returned.

r

Open text file in write mode
•If file exists, it is erased.
•If file doesn't exist, it is created.

w

Open text file in append mode
•If file exists, the marker is positioned at end.
•If file doesn't exist, it is created.

a

TABLE 7- 1 Text File Modes
Figure 7-4 describes the simple open modes.

Mode Mode Mode

Open
existing file for writing
vor create new file^

Open existing file
for reading

Open new file
for writing

EOF EOF EOF

File marker
positioned at

beginning of file
File marker ^

positioned at
beginning of file

File marker
positioned at

end of file

(a) Read Mode (b) Write Mode (c) Append Mode

FIGURE 7-4 File-Opening Modes

Read Mode
I he read mode (r) opens existing file lor reading. When a file is opened in

t M S mode, the file marker is positioned at the beginning of the file (the first
an

3. There are more modes. We discuss them in Chapter 13.

'^1Chapter 7 Text Input/Output 401

character). I he file marker is a logical element in the file structure that keeps
track of our current position in the file.

Hie file must already exist: If it does not, NULL is returned as an error.
Files opened for reading are shown in Figure 7-4a. If we try to write to a file
opened in the read mode, we get an error message.

Write Mode
I he write mode (w) opens a file for writing. If the file doesn’t exist, it is cre-
ated. II it already exists, it is opened and all its data are deleted; that is, it
assumes the status of an empty file. It is an error to try to read from a file
opened in write mode. A file opened for writing is shown in Figure 7-4b.

Append Mode
I he append mode (a) also opens an existing file for writing. Instead ol creat -
ing a new file, however, the writing starts after the last character; that is, new
data are added , or appended , at the end of the file.

If the file doesn’t exist , it is created and opened. In this case, the writing
will start at the beginning of the file; the result will he logically the same as
opening a new file for writing. Files opened in append mode are shown in
Figure 7-4c. If we try to read a file opened for write append, we get an error
message.

File Close [fclose)

When we no longer need a file, we should close it to free system resources,
such as buffer space.4 A file is closed using the close function, Jclose , as

shown in the following section.

#include <stdio.h>

int main (void)
{

Local Declarations
FILE* spTemp;

/ /

// Statements

"w") ;spTemp = fopen("MYDATA.DAT",

fclose(spTemps);

4. Some operating systems allow a file to be opened by only one application program at a time.
Closing the file also allows other application programs to have access to the hie.

i

402 Section 7.3 Standard Library Input/Output Functions

Open and Close Errors
What if the open or close fails? Open and close errors occur for a number of

. One of the most common errors occurs when the external filename
in the open function call does not match a name on the disk. W hen we create
a new file, the open fails if there isn’t enough room on the disk.

Always check to make sure that a stream has opened successfully. If it
has, then we have a valid address in the file variable. But if it failed for

the stream pointer variable contains NULL, which is a G-defined

reasons

any
con-reason,

stant for no address in stdio.h.
Similarly, we can test the return value from the close to make sure it suc-

ceeded. The /close function returns an integer that is zero if the close
ceeds and EOF if there is an error. EOF is defined in the standard input/output
header file. Traditionally, it is —1, but the standard defines it as any nonchar-
acter value. To ensure that the file opened or closed successfully, we use the
function as an expression in an if statement, as shown in Program 7- 1 .

suc-

PROGRAM 7- 1 Testing for Open and Close Errors
tinclude <stdio.h>
#include <stdlib.h>

1
2
3
4

int main (void)5
6 {

// Local Declarations
FILE* spTemps;

7
8
9

// Statements10
11
1 2
1 3 if ((spTemps = fopen("TEMPS.DAT", "r")) == NULL)
1 4 {
1 5 printf("\aERROR opening TEMPS.DAT\n");

exit (100);
> // if open

1 6
1 7
1 8
1 9
2 0 if (fclose(spTemps) == EOF)

printf("\aERROR closing TEMPS.DAT\n");
exit (102);

> // if close

21 {
2 2
2 3
2 4
2 5
2 6
2 7 // main>

vljChapter 7 Text Input/Output 403

Program 7- 1 Analysis The most common mistake in testing for a successful open is getting the parentheses
wrong, as shown below.

if (spTemps = fopen("TEMPS.DAT", "w") == NULL)

The above statement is syntactically correct (we do not get a compile error) but
invalid. You must test the address returned by fopen after it has been assigned to
spTemps. In the above statement, spTemps is assigned the logical value of the
expression

fopen("TEMPS.DAT", "w") == NULL

because the equal operator has a higher precedence than the assignment operator.
Study the open in Program 7-1 carefully, and make sure you understand the difference
between it and the incorrect version shown in the previous example.

The error testing for the close is much simpler; we can use a simple test for the error
code, EOF. Note that we have assigned a different return code to distinguish the open
failure from the close failure.

7.4 Formatting Input/Output Functions
In Chapter 2 we introduced two formatting input/output functions, scan/and
printif.The scan) function receives a text stream from the keyboard and con-
verts it to data values to be stored in variables. The printJ function receives

data values from the program and converts them into text stream to be dis-

played on the monitor.
These two functions can he used only with the keyboard and monitor.

The C library defines two more general functions, fscanf and fprintf , that can

be used with any text stream. Table 7-2 compares these four input/output

functions.

Terminal Input/Output

scanf ("control string", ...);
printf("control string", ...);

General Input/Output

"control string",
"control string",

fscanf (streamjpointer,
fprintf(stream_pointer,

TABLE 7-2 Formatting Functions

404 Section 7.4 Formatting Input/Output Functions

Stream Pointer
The first argument in the text input/output function, stream pointer, is the
pointer to the streams that has been declared and associated with a text file.
The following example demonstrates the use of an input stream.

FILE* spin;

"r ") ;spin = fopen("file name",

"format string", address list);fscanf(spin,

While we normally read data from the terminal keyboard using scanf , we
use fscanf we must specify that the streamcan also use fscanf.\\ hen we

pointer is std'm, as shown in the following example.

fscanf(stdin, "format string", address list);

The following example demonstrates the use of an output stream.

FILE* spOut;

spOut = fopen("file name", "w");

fprintf(spOut, "format string", address list);

Similarly, we can use fprintf to print to the terminal monitor by specifying
that the stream is stdout, as shown in the following example.
fprintf(stdout, "format string", value list);

Format Control Strings
Input and output functions for text files
data are to be lormatted when read or written. The format control string con-
sists ol three types ol data, which may be repeated: whitespace, text charac-
ters , and the most important ol the three, the conversion specification that
describes how the data are to be formatted as they are read or written.

format string to describe bowuse a

Whitespace
Format control string whitespace is handled differently for input and output.
In an input function, one or more whitespaces in the format string cause

moie whitespaces in the input stream to be read and discarded,
am sequence ol consecutive whitespace characters in the format string

characters, possibly ol

zero, one, or
Thus, ,

will match any sequence ol consecutive whitesjdifferent length, in the input stream.
nice

FI
Chapter 7 Text Input/Output 405

A whitespace character in an input format string causes leading whitespace
characters in the input to be discarded. A whitespace character in an output
format string is copied to the output stream.

W hitespace in an output function is simply copied to the output stream.
I hus, a space character is placed in the output stream for every space charac-
ter in the format string. Likewise, tabs in the format string are copied to the
output stream. I his is not a good idea, however, because we can t see tabs in
the format string. It is better to use the tab escape character (\t) so that we
can see the tabs.

Text
Any text character other than a whitespace in an input format string must

match exactly the next character of the input stream. If it does not match, a
conflict occurs that causes the operation to be terminated. The conflicting
input character remains in the input stream to be read by the next input oper-
ation on that stream. We therefore recommend that you do not use text char-
acters in an input format string.

Text characters in an output format string are copied to the output
stream. They are usually used to display messages to the user or to label data
being output.

Conversion Specificotion
The conversion specification consists of a percent character (%), optional for-
matting instructions, and a conversion code. With one exception, each con-
version specification must have a matching parameter in the parameter list
that follows the format string. The type in the conversion specification and
the type of the parameter must match.

The number, order, and type of the conversion specifications must match the

number, order, and type of the parameters in the list. Otherwise, the result

will be unpredictable and may terminate the input/output function.

Conversion specifications can have up to six elements, as shown in

Moure 7- 5. (Note that for input there are only five; precision is not allowed.)
The first element is a conversion specification token (. %). I he last element is

the conversion code. Both of these elements are required; the other ele-

ptional. Generally, the meaning and usage of each element is the
are noted in the followingments are o

same
discussion.

for both input and output. The exceptions

406 Section 7.4 Formatting Input/Output Functions

scanf/fscanf
conversion

code
maximum

width
size

* 4
h short
I long int
I double
L long doubleJ d. i, u, o, x,

c, s, p, n,
a. t. e, g, [

.Suppress

- left justify
+ sign (+ or -)

space if positive
0 zero padding
alternate

hh char
h short
I long int
L long double

d. i, u, o. x, X,
f, e. E, g. G, a. A,

c. s, p. n, %

TTT
conversion

code
minimum

width sizeprecisionflag%

printf/fprintf

FIGURE 7-5 Conversion Specifications

Conversion Codes
The conversion code specifies the type of data that are being formatted. For
input, it specifies the type of variable into which the formatted data arc
stored. For output, it specifies the type of data in the parameter associated
with the specification. It is our responsibility to ensure that the data are of the
right type. II they are not, strange formatting may result. Conversion codes
are discussed in detail in the input Formatting { scanf andfscanf)" and "Out-
put Formatting (printf and fprintf)" sections that follow.

Input Formatting (scanf and fscanf)
I he scanf and fscanf functions read text data and convert the data to the types
specified by a format string. I he only dilference between them is that scanf
reads data from the standard input unit (the keyboard by default) and fscanf
reads the input from a file specified by the first parameter. This file can be
standard input (stdin).

scanf reads from stdin; fscanf reads from a user-specified stream.

I he name scanf stands for “scan formatted”; the
“file scan formatted.” These functi

fscanf stands lorname
have the follow ing formats:ons

scanf ("format string",
fscanf(sp,

\\ here sp is the address of a stream defined as type FILE*,“format string” is
a string containing formatting instructions, and the address list specifies the

address list);
address list);"format string",

n >

Chapter 7 Text Input/Output 407

addresses where the data are to be stored alter they have been formatted. A
must separate the format string from the variable list. If more than one

vaiiable is present, then separate the variables from each other by
We must include a variable address in the address list for every

sion specification in the format string that requires data. If we do not, the
result is unpredictable and undefined.” This is a standard disclaimer that
means anything can happen. Ihe usual result is that the program doesn’t do
what we expect and often crashes.

comma
commas.

Conver-

ts

Input Data Formatting
I he conversion operation processes input characters until any of the follow -
ing occur:

1. End ol file is reached.
2. An inappropriate character is encountered.
3. Ihe number of characters read is equal to an explicitly specified

mum field width.
maxi-

Input Conversion Specification
In C hapter 2 we introduced some ol the conversion specifications. We dis-
cuss the rest here. Table 7-3 shows the type of the pointer argument, size,
and conversion codes for scanf family. Note that we have not shown a Hag
specification in the table, because there is only one flag, suppress (*), which
can be used with all input format codes.

Size Specifier CodeArgument Type

integral hh (char), h (short), none (int), I (long), II
(long long)

h (short), none (int), I (long). II (long long) dinteger
hh (char), h (short), none (int), I (long), II
(long long)

unsigned int

hh (unsigned char)character octal
h (short), none (int), I (long), II (long long)integer hexadecimal

f(float), I (double), L (long double)real none

(float), I (double), L (long double)

(float), I (double), L (long double)
real (scientific) none

real (scientific) 9none

(float), I (double), L (long double)real (hexadecimal) anone
cont inued

TABLE 7-3 Sizes and Conversion Code for scanf Family

408 Section 7.4 Formatting Input/Output Functions

Size Specifier CodeArgument Type

(char), I (wcharj)character none c

(char string), I (wcharj string)string none s

pointer P
int), hh (char), h (short), I (long), IIinteger (for count) none n

(long ong)

(char), I (wcharj) [set none

TABLE 7-3 Sizes and Conversion Code For sconf Family (continued)

Flag
There is only one (lag for input formatting, the assignment suppression Hag (*).
More commonly associated with text files, the assignment suppression flag
tells scanf that the next input field is to he read but not stored. It is discarded.
The following scanif statement reads an integer, a character, and a floating-
point number from the input stream. The character is read and discarded.
The other fields are read, formatted, and stored. Note that there is no match-
ing address parameter for the data to be discarded.
scanf ("%d %*c %f", & x , & y) ;

Width
Ihe width specifies the maximum width of the input (in characters). This
allows us to break out a code that may he stored in the input without spaces.
Consider what happens when we read a Social Security number from a file
anti the number has no formatting; it is just nine digits in a row, followed by a
space. We could read it into three variables, thus allowing
dashes in our

to format it withus
output, with the following format specifications:

scanf("%3d%2d%4d...", &ssnl, &ssn2, &ssn3, ...);

Note that the width is a maximum. If the amount of data is less than
required, the scan terminates. What determines the end of the data depends

the type of data, but generally whitespace will terminate most scans.on

Size
The si /.e specification is a modifier for the conversion code. Used in combi-
nation with the conversion code, it specifies the type of the associated vari-
able, lor example, a long double (Lf). The size codes, along with their
associated conversion codes, are explained in Table 7-3, "Sizes and Conversion
Code tor scan) Family.”

II
Chapter 7 Text Input/Output 409

Conversion Codes
\\ ith the exception of string and pointer, this section discusses the input con-
version codes. I he pointer conversion code is discussed in Chapter 9; the
string conversion code is discussed in Chapter 1 1.
Integer (d) I he decimal (d) format code accepts a value from the input stream
and formats it into the specified variables. It reads only decimal digits and an
optional plus or minus sign as the first character of the value.

Integer (i) The integer format code (i) allows the user to key a decimal, octal,
or hexadecimal number. Numbers starting with any digit other than zero are
read and stored as decimal values.Numbers starting with /ero are interpreted
as octal values and are converted to decimal and stored. Hexadecimal num-
bers must he prefixed with Ox or OX; the hexadecimal value is converted to

decimal and stored. We strongly recommend that the integer format code be
used only when non-decimal data is being entered—such as when program-
mers are entering technical data; in all other cases, the decimal format code
(d) should be used.

'4«

Octal and Hexadecimal (o, x) The octal (o) and hexadecimal (x) conversion codes
perform unsigned conversion. For octal, the only valid input digits are 0...7.
For hexadecimal input, the valid digits are 0...9, a...f, and A...F. If you are
not familiar with octal or hexadecimal numbers, sec Appendix I). "Numbering
Systems."
Scientific Notation (e, g , a) The C language uses three real format codes lor scien-

tific notation. In scientific notation, the significand and exponent are speci-
fied separately. The significand part is a floating-point number that contains
as many significant digits as possible. For example, if it contains six digits,
then the number is significant only to six digits; if it has twelve digits, then it
is significant to twelve digits. The larger the significance, the greater the pre-

cision. Therefore, long double may he more precise than double, which may
he more precise than float.

The exponent specifies the magnitude of the number. It may be either
positive or negative. If it is positive, then the number is the significand times

ten to the power of the exponent, which may be a very large number. If it is

negative, then the number is the significant times the reciprocal of the base
ten exponent, which may be a very small number. These forms are

shown below.

123e-03 -> 123*10-3123e03 123*103

in scientific notation:All of the following numbers are

2e20.1+el-1.0e-33e —d

410 Section 7.4 Formatting Input/Output Functions

For input, all conversion codes (f , e, g, a) accept all three scientific nota-
tions as well as algebraic notation.

Count (n) To verify the number of input characters, we use the n conversion
code. This code requires a matching variable address into which scanf places
the count of the characters input. In the following example, count is a short
integer that is to receive the number ot characters read:

s c a n f ("%d % 8 . 2f %d % h n " , & i , & x , & j , &c o u n t) ;

Input Side Effect and Value
When the scanf function is called, it can create a side effect and return a
value. The side effect is to read characters from a file and format them into
variables supplied in the parameter list. It continues until the end of the line
is reached or until there is a conflict between the format string and a charac-
ter read from the input stream. In either case, the scan returns the number of
successfully formatted values before termination. If the scan detects the end-
of-file before any conflict or assignment is performed, then the function
returns EOF. The difference between the side effect and the value is seen in
Figure 7-6.

Reads and converts a stream of characters from the
input file, and stores the converted values in the list
of variables found in the address list.

side effectscant
or

fscant

Returns the number of successful data conversions.
If end of file is reached before any data are
converted, it returns EOF.

value

FIGURE 7-6 Side Effect and Value of scanf and fscanf

I bis leads us to a common example of a value error. Suppose we want to
read two numbers with one scan statement. If we succeed, the scan function
returns a 2, indicating that both were read correctly. If the user makes a mis*

take with the first number, the scan function returns a 0. If there is a mistakewith the second entry, scanf returns a 1.This allows us to validate that at least
ding the secondthe correct amount and type of data were read. An errorpiece of data is shown in Figure 7-7.

rea

TTI

Chapter 7 Text Input/Output 411

Input stream
before > Should have

been a digit.
2 3 r ^nprintf("\nEnter price and amount: ");

result = scanf("%d%d", &a, &b);
Ui*

23 : ? D^scant aborted.
Value of a is 23! b resulta

FIGURE 7-7 Another Common Error

When we read data, we should verify that the data were read correctly.
This is easily done by checking the return value from the scan function.
Program 7-2 is a program fragment that shows how the two numbers in
Figure 7-7 could he checked.

PROGRAM 7-2 Checking sconf Results
\n *)#define FLUSH while (getchar() !=

#define ERR1 "\aPrice incorrect. Re-enter both fields\n"
1
2

#define ERR2 "\aAmount incorrect. Re-enter both fields\n"3
4

// Read price and amount5
do6

7 {
printf("\nEnter amount and price: ")?
ioResult = scanf("%d%f", &amount, &price);

8
9

10
if (ioResult != 2)11
{12
FLUSH;
if (ioResult == 1)

printf(ERR1);

13
14
15

else16
printf(ERR2);17

} // if

} while (ioResult 1 = 2);
18
19

Results:
Enter amount and price: ? 15.25

Amount incorrect. Re-enter both fields

Enter amount and price: 100 ?

Price incorrect. Re-enter both fields

amount and price: 100 15.25Enter

412 Section 7.4 Formatting Input/Output Functions

define statement, FLUSH, in this program segment.Program 7-2 Analysis We have introduced a new

#define FLUSH while (getchar () !- ’ \ n ')

Why is this statement necessary? Recall that when scant encounters an error, it
leaves the invalid data in the input stream. If we simply print the user messages and
then return to the scant statement, the invalid data are still there. We need to get rid of
them somehow! This is the purpose of the FLUSH statement. It reads all data from the
invalid input to the end of the line. For a complete discussion of the flush statement, see
"Testing for Valid User Input" in the software engineering section.

Also note how the error messages tell the user exactly what went wrong, rather
than giving a general "The numbers entered are incorrect" type of message. Whenever
possible, you should tell the user exactly what went wrong.

Two Common Input Format Mistakes
There are as many mistakes to be made as there are programmers program-
ming. Two are so common that they need to be emphasized.

Invalid Address
Fhe first common mistake is to use a data value rather than an address for
the input parameter. The scan function places the formatted input at the
address specified in the parameter list . When we pass data rather than an
address, C interprets the data as an address. This causes a part of memory to
be destroyed. II we are lucky, our program fails immediately. If we are
unlucky, it runs until the destroyed part of the program is needed and then
fails . This problem is shown in Figure 7-8.

printf("\nPlease enter number of dependents:
scanf ("%4d", a) ;

A missing address
operator will cause
vour program to fail.

FIGURE 7-8 Missing Address Operator in scanf

Data type Conflict
I he second common mistake is a conflict between the format string and the
input stream. This occurs, for example, when the format string calls for a
numciic \ alue and the input stream contains an alphabetic character. II any
conflict occurs between the format string and the input stream, the scanf
operation aborts. The character that caused the conflict stays in the input
stream, and the rest of the input stream (including the troublemaker)
remains waiting to be processed. The problem is that the input stream cannot

1nChapter 7 Text Input/Output 413

he filied again until it has been completely processed or flushed by the pro-
gram. Ihe next input operation will read from the unused stream instead of
reading from a new input stream. The result: Everything is a mess!

In figure 7-9, the user meant to enter the number 235 but instead
entered 23r. (I his is a common error. Note that the r is just below and to the
lei t of the 5 on
the number 23 but stops with the r and returns 1, indicating that one decimal
number was successfully formatted. The r remains in the input stream, wait-
ing lor the next scanf . The typical result of this error is a perpetual loop look-
ing for an integer value. Even it we detect and flush the error when the r is
read, we still have processed the wrong data (23, not 233) in the first read!

the keyboard.) When scanf reads the input stream, it interprets

Input stream
before scantl

Should have
. been a 5 ,

2 3 r \n
printf("\nPlease enter the price: ");
scanf("%d" , &a); Input stream

after scanf,
s scanf completed, x
V V a l u e o f a i s 2 3! v)

2 3 r \n

FIGURE 7-9 Data Type Conflict

Figure 7- 10 contains three more examples that show the operation of a

fscanf function. In the first example, the format string requests that two inte-
gers be read, and two are successfully read. The value returned by the scanf
function is 2. In the second example, two more numbers are requested, but
only one is available in the input stream. In this case, the value of the scanf
expression is 1. The third example shows the result ii all the data have been
read and the input file is at end of file.

Input
Streamn = 2

1234 752 -i" %d %d", &a, &b);n = fscanf (fp,

n = 1
1234 F -•" %d %d", &a, &b);n = fscanf (fp,

n = EOF
<EOF>" %d %d", &a, &b);n = fscanf (fp,

FIGURE 7-10 fscanf Examples

414 Section 7.4 Formatting Input/Output Functions

Input Examples
In this section, we present several examples of scanf loimatting. Some ol

some of the finer points of format-them are rarely used, hut they illustrate
ting. We suggest that you cover up the answer until you have tried to write
the statement yourself .

EXAMPLE 7-1 Write the scanf statement that will read three values—a real number, an inte-
ger, and a character— from the standard input file. I he input is

3.1416 31416 x

scanf("%f %d %c", &fNum, &iNum, &aChr);

EXAMPLE 7-2 Write the scanf statement that will read three values—a real number, an inte-
ger, and a character—from the standard input file. All data are on different
lines. The input is

3.1416

31416
X

scanf("%f %d %c", &fNum, &iNum, &aChr);

Note that this statement is the same as the first example. Since the new-
line is whitespace, it makes no difference if the data
lines, spaces, or tabs. However, the following code fails when it tries to read
the character!

separated by new-are

scanf("%f%d%c", &fNum, &iNum, &aChr);

Do you seeJ the mistake - Recall that the character conversion code (c)
does not skip whitespace. I herefore, it reads the return character from the
integei input. Io prevent this problem, code a space before the character for-
mat specification. The space discards all whitespace characters before it
reads the character.

EXAMPLE 7-3 Write the scanf statement that will read two fractions, such as 14/26 and 25/
66, 11 om tlu standard input unit and place the numerators and denominators
in integer variables.

scanf("%d/%d %d/%d", &nl, &dl, &n2, &d2);

11Chapter 7 Text Input/Output 415

EXAMPLE 7-4 \ \ rite the fscanf statement that will read a date, such as 5-10-1936, Format-
ted with dashes (-) into three different integer fields. The input is to he read
from a file opened as spData.

fscanf(spData, "%d-%d-%dM, &month, &day, &year);

Note that with this statement, an error results if the user enters 5/10/1997.

EXAMPLE 7-5 \\ rite the fscanf statement that will read three integers from a file opened as
spData and assign the number of successfully formatted variables to the
identifier result.

result = fscanf(spData, "%d %d %d", &i, &j, &k);

EXAMPLE 7-6 Given a file with four integers in each line, write a fscanf statement to read
only the first, second, and fourth integer from a line; that is, discard the third
element. Read the data from the file spData.

result = fscanf(spData, "%d%d%*d%d", &a, &b, &d);

EXAMPLE 7-7 Write the fscanf statement that will read three integers from a file opened as
spData and assign the number of successfully formatted variables to the
identifier result. Use a defined constant for the format string.

#define FORMAT 3D "%d %d %d"

result = fscanf(spData, F0RMAT_3D, &i, &j, &k);

Input Stream Concerns
There are two more points we need to discuss about scanf and how it handles
the input stream.

1. The input stream is buffered. The operating system does not pass the
data in the input stream until we press the return key. I bis means that
there is always a return character at the end of the stream.

2. The scanf function leaves the return character in the buffer by default. If

want the buffer to he empty, we must read the return character and
discard it. We read it using a character conversion specification with a

suppress flag. When the return character remains in the buffer, the next

scanf discards it for all conversion codes except character and scan set.
can force it to he discarded by placing a space at the

we

Alternatively, we
beginning of the format string or before a conversion specification.

416 Section 7.4 Formatting Input/Output Functions

3. The scanf function does not terminate until the 1 ormut sii ing is exhausted,
that is, until all specified operations are complete. W hitespace characters
in the format string cause whitespace characters in the buffer to be read
and discarded. When a whitespace character occurs at the end of the for-
mat string, scanf reads and discards the return character in the buffer
and then waits for more input. It cannot terminate until it finds a non-
whitespace character.

Lets look at some examples.

EXAMPLE 7-8 In this example, we have just one scanf call in our program that reads two
integers. In this case, the return character remains in the buffer, but it is not
a problem. When the program terminates, the operating system flushes all
buffers.

scanf ("%d %d", &a, &b);

EXAMPLE 7-9 In this example, we explicitly consume the return character by reading and
suppressing it.

scanf ("%d %d %*c", &a, &b);

EXAMPLE 7-10 In this example, we let the return key stay in the buffer and let the second
call discard it. Note that in this case, it does not matter if the next scanf fol-
lows immediately or after several lines of code. The first conversion specifica-
tion (%d) at the beginning ol the second scanf discards the return character
left hv the first scanf I he return character for the second input stream, how-
ever, remains in the buffer.

scanf ("%d %d", &a, &b);
scanf ("%d %d", &c, &d);

EXAMPLE 7- 1 1 When the first format specification in a scanf format string uses a character
oi edit set conversion code, any return character left in the buffer by a previ-

scanf operation must he manually consumed. This
because the leftover return character is read first as shown below.

be problematic(HIS can

// Does not work because %c
scanf ("%d %d", r
scanf ("%c %d" &aChr,

reads the left-over return
&numl, &num2);

&numl);

One solution would be to put a whitespace character at the beginning ol
t ic second scanf to discard the previous return character. The whitespacebefore tc in the second scanf discards the return character.

11 \ 1

Chapter 7 Text Input/Output 417

// Preferred Solution
scanf ("%d %d",
scanf (" %c %d",

&numl, &num2);
&aChr, &numl);

Another solution would be to discard the return character at the end ot
the previous format string. Note that as the number of scanf statements in a
program grow, the safer and preferred method is to discard the return charac-
ter at the beginning of the format string. In the following code, the character
conversion specification (% *c) consumes the newline character at the end of
the stream.

Alternate Solution:
scanf ("%d %d%*c", &numl, &num2);
scanf ("%c %d", &aChr, &numl);

EXAMPLE 7-1 2 The scanf function can hang our program. For example, in the following frag-
ment of code, we expect that the printf function be called after we entered
two integers. The program, however, hangs. The reason is that the whitespace
at the end of the control string tells scanf to discard any whitespace it sees in
the buffer. Therefore, scanf deletes our return character. But, to complete its

operation, scanf must find a return character. It does not matter how many
return keys we enter on the keyboard , scanj discards all ol them looking lor a

non-whitespace character.

// Note space at end of first format string,

scanf ("%d %d ", &a, &b);
printf("Data entered: %d %d\n" / a, b);
scanf ("%d %d", &c, &d);

Sample run:
10 20 <return>
<return>

We can force scanf to complete by entering any non-whitespace charac-
ter. Because scanj wants to format only two numbers, any character causes it

plete successfully. The following example demonstrates how we can

force scanj to complete.
to com

// Note space at end of first format string,

scanf ("%d %d ", &a, &b);
printf("Data entered:
scanf ("%d %d", &c, &d);

Sample run:
10 20<return>

x<return>
Data entered: 10 20

%d %d\n", a, b);

// scanf hangs here

// extra character to force end

418 Section 7.4 Formatting Input/Output Functions

Note, however, that the extra character we enter (x) remains in the buffer
and will be read next time scanf is executed. This extra character is undoubt-
edly not valid for the next read, which means that our program will produce
invalid results.

Discarding the return character is different from consuming it. Discarding
can be done by whitespaces in the control string;consuming can only be done
by reading the return character with a %c.

Output Formatting (printfand fprint!)
Two print formatted functions display output in human readable form under
the control of a format string that is very similar to the format string in scanf .
When necessary, internal formats are converted to character formats. In
other words, it is the opposite of the scan formatted functions.

These functions have the following format:

printf("format string", value list)

fprintf(sp, "format string", value list)

One of the first differences to note is that the value list is optional.
Whereas you always need a variable when you are reading, in many situa-
tions, such as user prompts, you display strings without a value list.

Three examples of printf output that might be found in a program arc
shown below. The first is a greeting message at the start of the program, the
second displays the result of a calculation, and the last i closing message.is a

printf ("\nWelcome to Calculator.\n");
printf ("\nThe answer is %6.2f\n",
printf ("Thank you for using Calculator");

The fprintf function works just like printf except that it specifies the file
in which the data will be displayed. The file can be the standard output (stdout)
or standard error (stderr) files. For example, to write the three previous lines

use the following code:

x) ;

to a report file, we

fprintf (spReport, "\nWelcome to Calculator.\n"
fprintf (spReport,

) ;
"\nThe answer is %6.2f\n", x);fprintf (spReport, "Thank you for using Calculator");

Print Conversion Specifications
In Chapter 2 we introduced some of the conversion codes. Table 7-4 showsthe flags, sizes, and conversion code for printf family.

' 1 1'

Chapter 7 Text Input/Output 419

Argument Type codeSize Specifier

integer -/ +, 0, space hh (char), h (short), none (int)
I (long), II (long long)

d, i

unsigned integer
1 v'l+, 0, space hh (char), h (short), none (int), u

I (long), II (long long)

integer (octal) hh (char), h (short), none (int),+, 0, #,
space

o
I (long), II (long long)

integer (hex) hh (char), h (short), none (int),-, +, 0, #,
space

x, X
I (long), II (long long)

real fnone (float), I (double),
L (long double)

+, 0, #,
space

real (scientific) none (float), I (double),
L (long double)

+, 0, #,
space

e, E

real (scientific) none (float), I (double),
L (long double)

+, 0, #,
space

g. G

real (hexadecimal) (float), I (double),
L (long double)

+, 0, #,
space

a, Anone

none (char), I (w-char)character c

none (char string), I (w-char
string)

string s

pointer P

none (int), h (short), I (long)integer (for count) n

%to print %

TABLE 7-4 Flags, Sizes, and Conversion Codes for printf Family

Flog
There are four output flags: justification, padding, sign, and alternate form.

Table 7-5 shows the output flag options.

FormattingFlag CodeFlag Type
right justifiedJustification none

left justified
cont inued

TABLE 7-5 Flag Formatting Options

420 Section 7.4 Formatting Input/Output Functions

Flag Code FormattingFlag Type
space paddingPadding none

zero padding0

positive value: no sign
negative value: -

Sign none

positive value: +
negative value: -
positive value: space
negative value: -

space

print alternative format
for real, hexadecimal,
and octal.

Alternate #

TABLE 7-5 Flag Formatting Options (continued)

Justification The justification flag controls the placement of a value when it is
shorter than the specified width. Justification can be left or right. If there is no
flag and the defined width is larger than required, the value is right justified. The
default is right justification. To left justify a value, the flag is set to minus (-).
Podding The padding flag defines the character that fills the unused space
when the value is smaller than the print width. It can he a space, the default,
or zero. If there is no
spaces; if the flag is 0, the unused width is filled with zeros. Note that the
zero flag is ignored if it is used with left justification because adding zeros
after a number changes its value.
Sign Flog I he sign flag defines the use or absence of a sign in a
We can specify one of three formats: default formatting, print signed values,
or prefix positive values with a leading space. Default formatting inserts a
sign only when the value is negative. Positive values
sign. \ \ hen the flag is set to a plus (+), signs
negative values. If the flag is a space, then positive numbers
a leading space and negative numbers with a minus sign.
Alternate Flag The alternate flag (#) is used with the real, engineering,mal, and octal conversion codes. The alternate flag is discussed with the
version codes to which it applies.

flag defined lor padding, the unused width is filled with

numeric value.

are formatted without a
are printed for both positive and

printed withare

hexadeci-
con-

Width
I he meaning of the width field is conceptually the same for input and output,
In.t in the opposite direction. For input, the width specifies the maximum

> p

Chapter 7 Text Input/Output 421

width. I or output specifications, the width provides the minimum output width.
However, if the data are wider than the specified width,C prints all the data.

Precision
Precision is specified as a period followed by an integer. Precision has mean-
ing only lor output fields, and it is an error to use it for input. Precision can
control the following:5

1. I he minimum number ol digits for integers. If the number has fewer sig-
nificant digits than the precision specified, leading zeros will be printed.

2. The number of digits after the decimal point in float.
3. The number of significant digits in g and G output.

Size
The size specification is a modifier for the conversion code. Used in combi-
nation with the conversion code, it specifies the type of the associated vari-
able, lor example, a long double (Lf). The size codes with their associated
conversion codes are explained in Table 7-4, “Flags, Sizes, and Conversion
Codes for printf Family.”

Conversion Codes
With the exception of string and pointer, this section discusses the input con-
version codes. I he pointer conversion code is discussed in Chapter 9; the
string conversion code is discussed in Chapter I 1 .
Integer (d and i) The value is formatted as a signed decimal number. Ihe integer
format code (i) is identical to the decimal code (d) for output.

Unsigned (u) The value is formatted as a unsigned decimal number.

Octal ond Hexadecimal (o, x, xj The value is formatted in either octal or hexadecimal,
as indicated by the conversion code. The alpha hexadecimal codes are printed
in lowercase if the x code is used and in uppercase for the X code. If you are
not familiar with octal or hexadecimal numbers, see Appendix I), “Numbering
Systems.”

When the alternative format flag is used, the hexadecimal values are pre-

fixed with ox or OX and octal numbers are printed with a zero prefix.

Real (f) The real format code (f) is discussed in Chapter 2. If the precision is

0, the decimal point is printed only if the alternate llag (//) is also present.
Scientific notation (e, E, g,G, a, AJ These codes are the same as described for the scanf .

The e and E codes format the number using (f), precision may be used
to control the number of digits after the decimal point. If no precision is

specified, six digits are used. II the precision is 0, no digits aie used altei the

introduce another use of precision.5. In Chapter I I, "Strings." we

422 Section 7.4 Formatting Input/Output Functions

decimal point and the decimal point itself is shown only when the alternate
form flag (#) is used.

The g and G codes are also scientific notation. However, the scientific
notation is used only when the exponent is less than -4 or greater than the
specified precision. Otherwise, the real formatting rules are used. When the
value is Formatted in scientific notation, the uppercase G iormats the number
with an uppercase E.

The a and A codes generate signed hexadecimal fractional representa-
tions with a decimal power-of-two exponent. The formatted result with A is
formatted as ±0Xh.hhhP+dd, where h represents hexadecimal digits and d
represents decimal digits.

Count (n) To verify the number of output characters, we use the n conversion
code. This code requires a matching variable into which printf places the
count of the characters output. Since the operation places the results in the
variable, its address must he used in the parameter list . In the following
example, count is a short integer that is to receive the number of characters
written (note the address operator):

printf("%d %8.2f %d %hn", i, j , &count) ;x ,

Pefcent (%) The percent sign as a conversion code is used to output a percent
sign , l or example, assume that grade contains a student’s score expressed as
a percentage. The following statement could then he used to print the grade
in the format 93.5%. Note that there is no output value for the percent con-
version code.

printf("%4.If%%", grade);

EXAMPLE 7-13 Demonstrate Scientific Formatting
I he code fragment shown below demonstrates the
ting. We print the same real number first in real number format (%f), then in
three scientific notations(%e, %G, and %A).

use of scientific iormat-

double x = 1234.5678;

printf("|%#.4f||%#.4e||%#.4G||%#.4A|", X ,
Results:
|1234.5678|

x , x , x) ;

1.2346e+03||1235.||0X1.34A4P+10|

I lie fourth output needs a little discussion. To verify that it is correct, we
must convert the hexadecimal number to decimal. Using the following calcu-
lation, we see that 1.34A4 is approximately equal to 1 234.56.

(1 x 16 + 3 x 16 1
+ 4 x 16 2

+ A x 16 3
+ 4 x 16 4) x 2 *°

F
Chapter 7 Text Input/Output 423

Output Side Effect and Value
I he side effect of the print functions is to write text data to the output file.
I he value it returns is the number of characters written. If an error occurs,
EOF, which is defined in the stdio.h header file, is returned. These concepts,
which are summarized in Figure 7-11, are similar to the side effects and value
discussed with scan functions.

Converted internal data, as required, to strings of
characters and writes the converted values to a file,
which may be the standard output or error file.

side effectprintf
and

fprintf

Returns the number of characters written to the
output file. In case of an error, it returns EOF.

value

FIGURE 7-11 Side Effect and Value of printf

Output Examples
In this section we present several examples of print formatting. Although
some of them are rarely used, they do illustrate some of the finer points of
formatting. The sample output is shown in hold characters. You may want to

cover up the answer until you have answered the question yourself.

EXAMPLE 7-14 Write the print statement that prints three columns of numbers. The first col-
umn contains a two-digit integer, the second column contains up
digits, and the third column contains a float with four integral numbers and
three decimal places.

to seven

15.010

1234.123
1015

123456778

printf("%2d %71d %8.3f", i, j, x);

EXAMPLE 7-15 Write the print statement that prints the tax due as stored in a float named x.

The output is

233.12The tax is:

printf("The tax is: %8.2f\n", x) ;

424 Section 7.4 Formatting Input/Output Functions

EXAMPLE 7-16 Modify the previous example to add the words ‘ dollars this year” after the
numeric value. The output will then be

The tax is 233.12 dollars this year.

printf("The tax is %8.2f dollars this year\n , x);

EXAMPLE 7-17 Write the print statement that prints three integer variables to a file opened
as spOut. Each write is to append a newline character (-») to the output.

100 200 300“*

fprintf(spOut, "%d %d %d\n", i, j, k);

EXAMPLE 7- 1 8 Write the print statement that prints three floating-point values. The first is a
float with two places of precision; the second is a double, printed in scientific
notation(G); and the third is long double, printed using scientific notation
(E).Each value prints on a separate line.

3.14
2 0 0
4.408946E+00

fprintf(spOut, "%.2f\n%G\n%E\n", i, j, k);

EXAMPLE 7- 1 9 Write the print statement that prints three integral values. The first is a short,
printed in octal: the second is an int, printed using lowercase hexadecimal
digits; and the third is a long , printed using uppercase hexadecimal digits.
End the line with a newline character.

25547 7e44 7864CB

fprintf(spOut, "%ho %x %lX\n", > j/ k);

EXAMPLE 7- 20 W rite the print statement that prints three real numbers in scientific notation
(e oi g) as shown below. Use the alternate format flag so that the value prints
with a decimal point even if it is zero.

3.1 7.893E-05 0 .

printf("%#5.2g %#9.4G %#5.0g\n", i, j/ k);

EXAMPLE 7- 21 Write the print statement that prints a decimal number in decimal, hexadeci-
mal, and octal format.

256 0X100 0 4 0 0

Chapter 7 Text Input/Output 425

printf("%5d %#5X %#5o\n", x , x , x) ;

File Sample Programs
In this section we
aspects of reading and writing files.

Read and Print File
Program 7-3 is a simple program that reads a file of integers and prints
them out.

develop four small programs that demonstrate various

PROGRAM 7-3 Read and Print Text File of Integers
/* Read a text file of integers, and print the contents.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <stdlib.h>

5
6
7

int main (void)8
9 {

// Local Declarations

FILE* spin;
int numln;

10
11
12
13

// Statements
spin = fopen("P07-03.DAT", "r");
if (spin != NULL)

14
15
16
17 {

printf("Could not open file\a\n");

exit (101);

> // if open fail

18
19
2 0
21

while ((fscanf(spin, "%d", &numln)) == 1)

printf("%d ", numln);
22
23
24

return 0;
} // main

25
26

Results:
1 2 3 4 5 6 7 8 9 1 0

we open the file in this small program. To make it easier to read the code,
plit the file open and the test for successful open into two statements. This does

not affect the program's efficiency and makes it much easier to code and read the
Program 7-3 Analysis Note how

we si

statements.

I

426 Section 7.4 Formatting Input/Output Functions

Now look at the read in the while loop. We loop as long as the fscanf succeeds, as
indicated by a return value of 1. When the end of file is reached, the while statement
will be false and the program terminates. There is one slight risk to this program: If a
read error is caused by a bad disk, we get the same results. In Chapter 1 3 we show
you how to detect this type of error.

Copy File
In Program 7-4, we copy a text file of integers to a new file.

PROGRAM 7-4 Copy Text File of Integers
/* Copy a text file of integers.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <stdlib.h>

5
6
7

int main (void)8
9 {

// Local Declarations
FILE* spin;
FILE* spOut;
int numln;
int closeResult;

10
11
1 2
13
14
15

// Statements
printf("Running file copy\n");
spin = fopen("P07-03.DAT",
if (!spin)

16
17
18 "r");
19
20 {
21 printf("Could not open input file\a\n");

exit (101);
> // if open fail

22
23
24
25 spOut = fopen("P07-04.DAT",

if (!spOut)
"w");

26
27 {
28 printf("Could not

exit (102);
> // if open fail

open output file\a\n");
29
30
31
32 while ((fscanf(spin, "%d",

fprintf(spOut, "%d\n",
&numln)) == 1)
numln);

33
34
35 closeResult = fclose(spOut);

continued

1nChapter 7 Text Input/Output 427

PROGRAM 7-4 Copy Text File of Integers (continued)

if (closeResult == EOF)36
37 {

printf("Could not close output file\a\n");
exit

38
39 (201) ;

} // if close fail40
41

printf("File copy complete\n");
return 0;
// main

42
43
44 }

Results:
Running file copy
File copy complete

Program 7*4 Analysis Because this program has no display output, we start with a message that says we
will copy a file, and we end with a message that says the copy succeeded. Users
need to know that the program ran. If we don't print these messages, users will not
know if the program ran. In fact, it is a good idea to print start and end messages
with every program. This is a common standard in large production systems.

Now study the format string in statement 33 carefully. Note that it requires a new-
line after the data have been written. It is important to use whitespace between the data
in the file or it will not be readable. To verify that the data are correctly written, the file
should be read and printed by Program 7-3 or a similar program.

Finally, note that we close the output file at the end of the program. While input
files don't need to be closed, you should always close output files and check to make
sure that they closed successfully. If the close fails, we print an error message. If it
doesn't, we print the successful copy message.

Append File
Now lets append some data to the end of a hie. After we wrote Program 7-5,

it without a file. Because append creates a file i (it doesn’t exist , the
first run created our file. Then we ran it a second time and verified that the

new data were appended to the original file.
we ran

PROGRAM 7-5 Append Data to File
/* Copy a text file of integers.

Written by:
Date:

1
2
3

* /4
#include <stdio.h>
#include <stdlib.h>

5
6
7

int main (void)8
9 {

continuec

428 Section 7.4 Formatting Input/Output Functions

PROGRAM 7-5 Append Data to File (continued)

// Local Declarations
FILE* spAppnd;
int numln;
int closeResult;

10
11
12
13
14

// Statements
printf("This program appends data to a file\n");
spAppnd = fopen("P07-05.DAT",
if (!spAppnd)

15
16

"a");17
18

{19
printf("Could not open input file\a\n");
exit (101);
} // if open fail

20
21
22
23

printf("Please enter first number:
while ((scanf("%d", &numln)) != EOF)

")?24
25
26 <

fprintf(spAppnd, "%d\n", numln);
printf("Enter next number or <EOF>: ");
} // while

27
28
29
30

closeResult = fclose(spAppnd);
if (closeResult == EOF)

31
32
33 {

printf("Could not close output file\a\n");
exit (201);
} // if close fail

34
35
36
37

printf("\nFile append complete\n");
return 0;
// main

38
39
40 >

Results:
This program appends data to a file
Please enter first number: 1
Enter next number or <EOF>: 2
Enter next number or <E0F>: 3
Enter next number or <EOF>:Ad
File append complete

Program 7 5 Analysis This program differs from Program 7-4 in two ways. First, this program has only onedisk file. While we could have read the data to be appended from a file, it is more
interesting and more flexible to get the data from the keyboard. The second change isthe read loop to get the data. Because we are reading fprovide prompts for the the keyboard, we need torom

user.

1HChapter 7 Text Input/Output 429

Student Grades
Programs 7 -3 to 7-5 were all written in main. As our last example, let ’s write a
program that reads and writes a student grades file to be turned in at the end
of the term. The code is shown in Program 7-6.

lrPROGRAM 7-6 Student Grades
/* Create a grades file for transmission to Registrar.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
// Function Declarations
int getStu

7
8 (FILE* spStu,

int* stuID, int* examl,
int* exam2, int* final);

int writeStu (FILE* spGrades,
int stuID, int avrg, char grade);

void calcGrade (int examl, int exam2, int final,
int* avrg, char* grade);

9
10
1 1
12
1 3
1 4
1 5

int main (void)1 6
1 7 {

// Local Declarations
FILE* spStu;
FILE* spGrades;

1 8
1 9
20
2 1

int stuID;
int examl;
int exam2;
int final;
int avrg;

22
2 3
2 4
2 5
2 6
2 7

char grade;2 8
2 9

// Statements
printf("Begin student grading\n");

if (!(spStu = fopen ("P07-06.DAT",
3 0
3 1

"r")))3 2
3 3 {

printf("\aError opening student file\n");

return 100;
} // if open input

if (!(spGrades = fopen ("P07-06Gr.DAT",

3 4
3 5
3 6
3 7

"w")))3 8
{3 9

continued

430 Section 7.4 Formatting Input/Output Functions

PROGRAM 7-6 Student Grades (continued)

printf("\aError opening grades file\n");
return 102;

> // if open output

40
41
42
43

while (getStu
(spStu, &stuID, &examl, &exam2, &final))

44
45
46 {

calcGrade (examl, 6X31112, final, &avrg, &grade);
writeStu (spGrades, stuID, avrg, grade);

> // while

47
48
49
50

fclose (spStu);
fclose (spGrades);

51
52
53

printf("End student grading\n");
return 0;
// main

54
55
56 >
57

/*58 =======================getStu======================-
Reads data from student file.

spStu is an open file.
stuID, examl, exam2, final pass by address
reads student ID and exam scores
if data read
if EOF or error—returns 0

59
60 Pre
61
62 Post
63 —returns 1
64

*/65
66 int getStu (FILE* spStu, int* stuID,

int* exam2, int* final)
int* examl,

67
68 {

// Local Declarations
int ioResult;

69
70
71

// Statements
ioResult = fscanf(spStu, "%d%d%d%d", stuID,

examl, exam2, final);

72
73
74
75 if (ioResult == EOF)

return 0;
else if (ioResult != 4)

76
77
78 {
79 printf("\aError reading data\n");

return 0;
} // if

80
81
82 else
83 return 1;

tinnedcon

nChapter 7 Text Input/Output 431

PROGRAM 7-6 Student Grades (continued)

84 } // getStu
85

/*86 ==================== calcGrade ===================
Determine student grade based on absolute scale.

examl, exam2, and final contain scores
avrg and grade are addresses of variables

Post Average and grade copied to addresses

87
88 Pre
89
90

*/91
void calcGrade (int examl, int

int* avrg, char* grade)
92 exam2, int final,
93
94 {

// Statements
*avrg = (examl + exam2 + final) / 3;
if (*avrg >= 90)

grade = 'A';
else if (*avrg >= 80)

grade = 'B';
else if (*avrg >= 70)

grade = 'C';
else if (*avrg >= 60)

grade = 'D';

95
96
97
98
99
100
101
102
103
104

else105
106 grade = 'F';

return;

> // calcGrade
107
108
109

== writeStu ====/* ====110
Writes student grade data to output file.

spGrades is an open file
stuID, avrg, and grade have values to write

Data written to file

1 1 1
1 1 2 Pre

113
114 Post

*/115
(FILE* spGrades, int stuID,

int avrg, char grade)
int writeStu116

117
118 {

// Statements
fprintf(spGrades,

119
"%04d %d %c\n",
stuID, avrg, grade);

120
121

return 0;
} // writeStu

122
123

Results:
Begin student grading

End student grading
cont i nnet

432 Section 7.5 Character Input/Output Functions

PROGRAM 7-6 Student Grades (continued)

Input
0090 90 90 90
0089 88 90 89
0081 80 82 81
0079 79 79 79
0070 70 70 70
0069 69 69 69
0060 60 60 60
0059 59 59 59

Output
0090 90 A \n
0089 89 B \ n
0081 81 B \ n
0079 79 C \n
0070 70 C \ n
0069 69 D \ n
0060 60 D \ n
0059 59 F \n

Program 7-6 Analysis This program has several points to study. Let's start at the top. We open and close the
files in main. Often, programmers write subfunctions for program initialization and
conclusion, but in this case we decided to write them in main. The processing loop
uses the return value from getStu to control the loop (see statement 44). if data are
read, then the return value is true (1); if there is an error or all data have been read,
the return value is false (0). This design results in a very simple while loop.

Within the loop are three calls: one to read the student data (in the while limit test),
one to calculate the grade, and one to write the grades file. Study the parameters care-
fully. We have used a combination of data values and addresses. Note especially the file
parameters. In the function headers, the file parameters are coded as FILE*,which you
should recognize as a file address. We do not use an address operator when we pass
the files, however, because they are already addresses. (See statements 44 and 48.)

Now study the results. The student ID is written as four digits with leading zeros
because it is really a code, not a number. Note how we created the test data to verify
that all of the boundaries in our multiway selection work correctly. To make it easy to
verify, we made the student ID the same as the average. Witb these clues to the
expected output, it only takes a quick review of the results to confirm that the program
ran successfully.

7.5 Character Input/Output Functions
Character input functions read one character at a time from a text stream.
Character output functions write one character at the time to a text
stream. These functions he divided into two general groups: input/outputcan

1Chapter 7 Text Input/Output 433

functions used exclusively with a terminal device and input/output func-
tions that can be used with both terminal devices and text files. They are
summarized in Figure 7-12.

Character
I/O

Terminal
Only

Any
Stream

Input Output Input Output Push Back

getchar putchar getc / fgetc putc / fputc ungetc

FIGURE 7- 1 2 Character Input/Output Functions

C provides two parallel sets of functions, one for characters and one for
wide-characters. They are virtually identical except for the type. Because
wide-characters are not commonly used and because their functions operate
identically, we limit our discussion to the character type. The wide-character
functions are listed in Appendix F.

Terminal Character I/O
C declares a set of character input/output functions that can only be used
with the standard streams: standard input (stdin), standard output (stdout).

Read a Character: getchor
The get character function (getchar) reads the next character from the stan-
dard input stream and returns its value. Only two input conditions stop it:

end of file or a read error. If the end of file condition results, or if an error is

detected , the functions return EOF. It is our responsibility to determine i l
condition other than end of file stopped the reading. The function dec-some

larat ion is shown below.

int getchar (void) ;

Note that the return type is an integer and not a character as you might

expect. The return type is an integer because EOF is defined as an integer

(i n t) in the standard definition stddef .h and other headei files. I here is

another reason for this: C guarantees that the EOF (lag is not a character.
This is true regardless of what character set it is using: ASCII , EBCDIC, or

the control characters in ASCII , you will find nonewhatever. If you examine

434 Section 7.5 Character Input/Output Functions

for end of file. Traditionally, EOF is defined as -1, but this is not prescribed
by ANSI/ISO. An individual implementation could therefore choose a differ-
ent value.

Write a Character: putchor
The put character function (putchar) writes

during the write operation, it returns EOF. This may sound
somewhat unusual, since EOF is normally thought of as an input file consider-
ation, but in this case it simply means that the character couldn’t be written.
The function declaration is shown below.

character to the monitor. Ifone

anv error occurs

int putchar (int out_char);
Again the type is integer. An interesting result occurs with this function:

When it succeeds, it returns the character it wrote as an integer!

Terminal and File Character I/O
The terminal character input/output functions are designed for convenience;
we don’t need to specify the stream. In this section, we describe a more
general set of functions that can be used with both the standard streams
and a file.

These functions require an argument that specifies the stream associated
with a terminal device or a file.

1. \\ hen used with a terminal device, the streams are declared and opened
by the system—the standard input stream (stdin) for the keyboard and
the standard output stream (stdout) for the monitor.

2. \ \ hen used with a file, we need to explicitly declare the stream. It is our
responsibility to open the stream and associate it with the file.

Read a Character: getc and fgetc
Ihe get functions read the next character from the file stream, which can be a user-
defined stream or stdin, and convert it to an integer. If the read detects an end of file,
the functions return EOF. EOF is also returned if any error occurs. We discuss howto
tell the difference in C hapter 13. Ihe prototype functions are shown below.

int
int

getc (FILE* spin);
fgetc (FILE* spin);

\ \ bile the getc and Jgetc functions operate basically the same, for techni-
cal reasons we recommend that only fgetc be used. An example of fgetc is
shown in the following section.
nextChar = fgetc (spMyFile);

1mChapter 7 Text Input/Output 435

Write a Character: putc and fputc
I lie put functions write a character to the file stream specified, which can he
a user-defined stream, stdout , or stclerr. For fputc , the first parameter is the
character to he written and the second parameter is the file. If the character
is successfully written, the functions return it. If any error occurs, they return
EOF. The prototype functions are shown below.

int putc (int oneChar, FILE* spOut);
int fputc (int oneChar, FILE* spOut);

Once again, we recommend that only fputc be used. An example is
shown below.

fputc (oneChar, spMyFile);

Note that we have discarded the return value. Although we may occa-
sionally find a use for it, it is almost universally discarded.

Push D Character Back: ungetc
rhe push hack functions insert one or more characters into a stream that has
been opened for input; that is, it writes to an input stream. When multiple
characters are pushed back, they are then read in reverse order; that is the
last character pushed is the first character read. While multiple characters
can be pushed hack, we cannot push back more characters than we read.
After a successful push back, when the stream is next read, the character
pushed back will he read .

If the operation succeeds, the functions return the character; il they do
not succeed, as with too many characters being pushed into the stream, they
return EOF.

The unget character functions require that the first parameter be a char-
acter and that the second parameter be an input stream. I he function decla-
rations are shown below.

int ungetc (int oneChar, FILE* spData);

The intent of these functions is to return one or more characters to the
bsequent read. This situation might occur when we areinput stream for a su

reading characters that prompt action , such as in a menu system, and the
d (see below). In these situations, it is cleaner to rein-wrong character is rea

the character into the input stream than to set a flag or otherwise pass

the character through several functions.
In the following example, we want to process any option that is a charac-

processed in another function. Therefore, il

sert

weter. Numeric options are
detect that an option is numeric, we put it back on the input stream and exit

the function.

'

436 Section 7.5 Character Input/Output Functions

option = fgetc (stdin);
if (isdigit(option))

ungetc (option, stdin);
else

{ - >

Character Input/Output Examples
This section contains examples of common text file applications.

Create Text File
Program 7-7 reads text from the keyboard and creates a text file. All data are
stored in text format with newlines only where input by the user.

i

PROGRAM 7-7 Create Text File
/* This program creates a text file.

Written by:
Date:

1
2
3 i

*/4
#include <stdio.h>
int main (void)

5
6

i7 {
// Local Declarations

FILE* spText;
int c;
int closeStatus;

8
9
10
1 1
12

//13 Statements
printf("This program copies input to a file.Xn");
printf("When you are through, enter <EOF>.\n\n");

14
15
16
17 if (!(spText = fopen("P07-07.DAT”,"w")))
18 {
19 printf("Error opening P07-07.DAT for writing");

return (1);
} // if open

20
21
22
23 while ((c = getchar()) != EOF)

fputc(c, spText);24
25
26 closeStatus =

if (closeStatus == EOF)
fclose(spText);

27
28 {

continued

iff
Chapter 7 Text Input/Output 437

PROGRAM 7-7 Create Text File (continued)

2 9 printf("Error closing file\a\n");
return 100;

> // if
30
31
32
33 printf("\n\nYour file is complete\n");

return 0;
// main

34
35 >

Results:
This program copies input to a file.
When you are through, enter <EOF>.

Now is the time for all good students
To come to the aid of their college.*d

Your file is complete

Program 7-7 Analysis This simple program is the beginning of a text editor. The biggest element missing is
word wrap. Word wrap prevents a word from being split between two lines on a page.

Study the program carefully and note that we used integer for the character type
(c) in statement 10. This is an important point whenever you are checking for end of
file, as we did in statement 23. Because EOF will not be correctly represented in a char-
acter, we must use integer. But, what about when we have a character? C automatically
casts the integer to a character wherever it is necessary.

Copy Text File
Program 7-8 will copy one text file to another text file. It is more generalized
than Program 7-4, "Copy Text File of Integers” because it will copy any file
data, not just integers.

PROGRAM 7-8 Copy Text File
/* This program copies one text file into another.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>

int main (void)
5
6
7 {

// Local Declarations
int c;
int closeStatus;
FILE* spl;
FILE* sp2;

8
9

10
11
12

continuec

438 Section 7.5 Character Input/Output Functions

PROGRAM 7-8 Copy Text File (continued)

13
// Statements

printf("Begin file copy\n");
14
15
16

"r")))if (!(sp1 = fopen ("P07-07.DAT",17
{18
printf("Error opening P07-07.DAT for reading");
return (1);

> // if open input
if (!(sp2 = fopen ("P07-08.DAT", "w")))

19
2 0
21
2 2
23 {

printf("Error opening P07-08.DAT for writing");
return (2);
} // if open output

24
25
26
27

while ((c = fgetc(spl)) 1 = EOF)
fputc(c, sp2);

28
29
30

fclose(spl);
closeStatus = fclose(sp2);
if (closeStatus == EOF)

31
32
33
34 {

printf("File close error.\a\n");
return 201;

> // if close error
printf("File successfully created\n");
return 0;

> // main

35
36
37
38
39
40

Program 7-8 Analysis This program contains two style points that need comments. First, we have used
generic names for the files, spl and sp2. Since this program simply copies and cre-
ates text files, we cannot give the files names that reflect their data. Better names
might be spin and spOut,but they are also generic.

Second, the program has two potential file open errors. We use different error
codes for those operating systems whose job control can distinguish between differentcompletion codes. We have also included the file names in the error messages so that
the user knows exactly which file had the problem.

Finally, a subtle point: Note that we have arranged the local declarations in orderof increasing complexity. First, we define the character and integer types: then we
define the files. It is good practice to group the definitions by type and in order of
increasing complexity.

Count Characters and Lines
I rogram / -9 counts the number of characters and lines in a program. Lines
arc designated by a newline. Also note that the program guards against a file
that ends without a newline for the last line.

1

Chapter 7 Text Input/Output 439

PROGRAM 7-9 Count Characters and Lines
/* This program counts characters and lines in a program.

Written by:
Date:

1
2
3

*/4 '1
#include <stdio.h>
int main (void)

5
6
7 {

// Local Declarations
int
int
int
int
FILE* spl;

8
9 curCh;

preCh;
countLn = 0;
countCh = 0;

10

11
12
13
14

// Statements
if (!(spl = fopen("P07-07.DAT", "r")))

15
16
17 {

printf("Error opening P07-07.DAT for reading");
return (1);

> // if open error

18
19
20
21

while ((curCh = fgetc(spl)) != EOF)22
23 {

if (curCh != '\n')
countCh++;

24
25

else26
27 countLn++;

preCh = curCh;
} // while

28
29
30

if (preCh != * \n')
countLn++;

31
32
33

printf("Number of characters: %d\n" / countCh);

printf("Number of lines
fclose(spl);

return 0;
// main

34
: %d\n" / countLn);35

36
37
38 >

Results:
Number of characters: 74

Number of lines: 2

Program 7-9 Analysis Program 7-9 is rather straightforward. The only real problem is in making sure that

the last line is counted even if there is no newline. We can check this at the end of the

440 Section 7.5 Character Input/Output Functions

file by making sure that the last character we read, stored in preCh, was a newline.
If it isn't, we add 1 to the line count.

Once again, we have used the integer type for our input character. Everything
works correctly, even statement 31, which compares the integer type(preCh) to a
character literal.

Count Words In File
Program 7-10 counts the number of words in a file. A word is defined as one

characters separated by one or more whitespace characters—that is,
by a space, a tab, or a newline.
or more

PROGRAM 7-10 Count Words
/* Count number of words in file. Words are separated by

whitespace characters: space, tab, and newline.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>6

7
#define WHT_SPC\

(cur ==
int main (void)

8
cur = = '\n'9 '\f)cur = =

10
1 1 {

//Local Declarations
int
int

12
13 cur;

countWd = 0;
char word = 'O';
FILE* spl;

14
15 // 0 out of word: I in word
16
17
18 // Statements

if (!(spl = fopen("P07-07.DAT",19 "r")))
20 {
21 printf("Error opening P07-07.DAT for reading");

return (1);
} // if file open

while ((cur = fgetc(spl)) != EOF)

22
23 error
24
25 {
26 if (WHT_SPC)

word = '27 O ’ ;
28 else
29 if (word = = •O')
30 {
31 countWd++;

word =32 i ’;

continual

I
' V

Chapter 7 Text Input/Output 441

PROGRAM 7-10 Count Words (continued)

33 > // else
> // while

printf("The number of words is: %d\n", countWd);
34
35
36
37 fclose(s p l) ;

return 0;
} // main

38
39

Results:
The number of words is: 15

Program 7-10 Analysis The selection logic for this problem is similar to the previous program. We must deter-

mine when we are in a word and when we are between words. We are between
words when we start the program and whenever we are at whitespace. To keep track
of where we are, we use a flag, word. When word contains the letterI, we are in a
word; when it contains the letter 0, we are out of a word. We increment the counter
only at the beginning of a word, when we set the word flag toI.

Note that the problem handles multiple whitespace characters by simply setting the
word flag to 0. Note also how we use a preprocessor define statement to define
whitespace. This has no effect on the efficiency of the program, but it makes it easier
to read.

442 Section 7.6 Software Engineering

7.6 Software Engineering

Testing Files
Testing files can be a very difficult task for two reasons. First, many errors

be created through normal testing. Among these types of errors
those created by bad physical media, such as disk and tapes. Often, disks and
tapes become unreadable. Good programs test for these types of errors, but
they are difficult to create.

Second, there are so many ways things can go wrong. The test plan there-
fore needs to ensure that all possibilities have been tested. Chief among them
is the case where a user enters a non-numeric character while trying to enter
a number. If we don’t provide for this situation, our program will not work
properly. In fact, in some situations, it will not work at all.

arccannot

Testing for Volid User Input
Consider the following code to read an integer value. If the user miskeys the
data, the program will go into an infinite loop.

printf("\nPlease enter Number of Units Sold: ");
while (scanf("%d", &unitsSold) != 1) \

// scanf returns 1 if number read correctly
printf("\nlnvalid number. Please re-enter.\n");

In this case, it looks as if the programmer has done everything correctly.
I he program checks for valid data being returned. A user prompt shows what
data should be entered; the program checks for valid data being read; and if
there were errors, provides the user with a good error message and repeats
the scanf. What is wrong?

I he problem lies in what scanj does when it finds an invalid first digit. If
the number is entirely wrong, it leaves the data pending in the input stream.
I his means that while the user sees the error message, the invalid data are
still in the input stream waiting lor a scan] that will properly read and process
them. Remember that scanf thinks that these “invalid data are the beginning
ol the next field. It is our job as a programmer to get rid of the “bad data.’ We

do this with a small piece of code that is commonly named FLUSH. Its
purpose is to read through the input stream looking for the end of a line.
\\ hen it finds the end ol the line, it terminates. Let 's first look at the code,
then we will look at

can

easy way to implement it.an

while (getchar() != '\n')

Examine this statement carefully. All it does is get a character and then
throw it away. I hat is, the character it reads is not saved. Now examine the
expression that is controlling the while. If getchar reads any character other

jl i t '

Chapter 7 Text Input/Output 443

than a newline, the statement is true. It it reads a newline, then the state-
ment is false. The while statement will therefore read the input stream and
throw away all characters until it sees a newline. When it finds the newline, it
will throw it away too, but at that point, the loop stops. In other words, it
flushes the input stream to a newline character. This is exactly what we want
to do when the user accidentally keys the wrong character when the program
expects a digit.

One more point. Note that we coded the null statement on its own line.
Ihis is to make it clear that we intended to code a null statement. It also
eliminates a warning message from the compiler—good compilers look for
common errors like unintended semicolons.

Now, what’s the easiest way to implement this handy statement? Well, we
could simply code it everywhere you need it, but chances are that we would
make some mistakes that would have to be found and debugged. A better
solution is to use the preprocessor define declarative and code the statement
only once, as shown below.

‘II'

#define FLUSH while (getchar() != '\n')

Note that there is no semicolon at the end of the define declarative. We
could have put one there, but it ’s better to put the semicolon after the FLUSH

in the program. Our error code can now be changed to handle this type of
error, as shown in Program 7- 11.

PROGRAM 7-11 Handling Errors— the Right Way

#define FLUSH while (getchar() != ’\n')1
2

printf("\nPlease enter Number of Units Sold: ");
while (scanf("%d", &unitsSold)!= 1)

3
4
5 {

// scanf returns 1 if number read corrrectly

FLUSH;
printf("\alnvalid number. Please re-enter: ");

} // while

6
7
8
9

Value Errors
In Chapter 6, we discussed some of the techniques for data validation. But
the subtleties of data validation can be quite complex. Consider another type

of human error, the partially correct input. In our program above,
assumed that the user entered invalid data for the first digit of the number.
What if the error occurs on the second or third digit r Then the scanf function
is happy, for the time being anyway, and returns a 1, indicating that it read

number successfully. How do we guard against this?

The best way is to echo the input to the user and ask for verification that

it is correct. Although this greatly slows down the input process, for critical

we

one

444 Section 7.6 Software Engineering

data it is necessary. The code for this situation is shown in Program 7-12.
Here we present it as a complete function.

PROGRAM 7-1 2 Handling Errors with Explanations
/* This function reads the units sold from the keyboard

and verifies the data with the user,
nothing
units Sold read, verified, and returned

1
2
3 Pre

Post4
*/5
int getUnitsSold (void)6

7 {
// Local Declarations

int unitsSold;
bool valid;

8
9

10
11

// Statements12
13 do
14 {

printf("\nPlease enter Number of Units Sold: ");
while (scanf("%d", &unitsSold) != 1)

15
16
17 {
18 FLUSH;

printf("\alnvalid number. Please re-enter: ");
> // while

printf("\nVerify Units Sold: %d: ", unitsSold);
printf("<Y> correct: <N> not correct: \n");
FLUSH;
if (toupper(getchar ()) = =

valid = true;

19
20
21
22
23
24 Y *)
25
26 else
27 {
28 FLUSH;

printf("\nYou responded 'no.' ");
printf("Please re-enter Units Sold\n");
valid = false;
> // if

29
30
31
32
33 > while (!valid);

return unitsSold;
} // getUnitsSold

34
35

Program 7- 1 2 Analysis This function merits some discussion. First, note the good user communicationthroughout the function. It begins with a complete prompt and provides clear error
messages whenever problems are detected.

We have implemented this logic with a do...while statement, which always loops
at least once, since we know that there will always be input. This is the standard loop
for validating user input. Within the loop are two different validation steps. The first

j
l ;n '

Chapter 7 Text Input/Output 445

tests for totally invalid input, the second asks the user to verify the input. If either test
indicates a problem, the input is flushed. Note that the user messages are different
depending on the circumstances.

The function cannot end unless the valid flag is true. The if statement in the loop
will set it true if the user replies positively. Otherwise, it is set false and the input is
flushed. This code again demonstrates two principles of good human engineering. The
if statement is coded in a positive manner, and the expected event, good input, is
checked first.

N

Many other things can go wrong when we are reading a file, but these two exam-
ples cover most of them.

Data Terminology
Computer specialists who deal with data use a set of specific terms to
describe their data. These terms deal with data that are stored in files. What
we call a variable in our program , they call a field or a data item. A field is
the smallest named unit of data in a file. If we were working with data about
the ten western states in the continental United States, we would have data
like Name, Capital, Number, Square Miles, Population, and Number of
Counties. The first two fields arc strings (delimited arrays of characters that
we study in Chapter 1 1) and the last four are integers.

These six fields grouped together make up a state record. A record is a
collection of related data, in this case state data, treated as a unit . Each
record has a key, one or more fields that uniquely identify the record. In our
state s record, the key could be the name. Names normally do not make good
keys, because they are not guaranteed to be unique. A better choice is the
state number, which represents the order in which the states entered the
union. This field is guaranteed to be unique.

With text files we cannot create a record. We must wait for binary files
and structures to do that. But we can simulate a record by grouping these
data on
The data for the ten western states are shown in Table / -6.

the same line, with each field separated from the next by whitespace.

No. Sq.Miles Population No.CapitalState
Counties

153,447,100

33,871,648

4,301,251

1,293,953

902,195

1,998,257

113,508

156,299

103,595

82,412

145,388

109,894

48PhoenixArizona
5831California

Colorado

Sacramento
6338Denver
4443Idaho Boise

Helena

Carson City

5641Montana
1636Nevada

continual

TABLE 7-6 Ten Western States (2000 Census)

Section 7.6 Software Engineering

Population No.Sq.MilesNo.CapitalState Counties

331,819,046

3,421,399

5,894,121

493,782

121,335

96,184

66,511

96,989

47Santa Fe

Salem
Olympia
Cheyenne

New Mexico

Oregon

Washington

Wyoming

3633
3942
2344

Ten Western States (2000 Census) (continued)TABLE 7-6
Data can be logically organized to provide more meaning. Although corn-

scientists normally store this type of data using binary files, there is no

it can’t be stored in a text file as well. We will return to the discussion
study strings in Chapter 1 1 and binary files in Chapter 13.

puter
reason
again w hen we

''I' ! l

Chapter 7 Text Input/Output 447

7.7 Tips and Common Programming Errors
1. Io print a percent sign, you need to use two tokens (% %).
2. After you have finished working with a file, you should close it.
3. IT you open a file lor writing, a new file will be created. This means that if

you already have an existing file with the same name, it could he deleted.
4. 11 you want to write at the end of an existing text file, open the file for

appending, not for writing.
5. C output is right justified when using printf and fprintf functions. If you

want your data to he left justified, use the left-justify flag (—) explicitly.
6. It is a compile error to misplace the file pointer in the parameter list. The

file pointer is coded last in all file functions except fscanf and fprintf , in
which it is coded first.

7. An error that may cause your program run to terminate is to use a format
code that does not match the variable type being read.

8. An error that will give invalid output is to use a format code that does not
match the variable being printed.

9. Several common errors are created when a file operation is included in a
selection statement. Three are shown below.
a. The following code does not properly test to make sure that the file

was opened correctly:

t j I

// logic error
// good code

if (sp = fopen() != NULL)
if ((sp = fopen()) != NULL)

h. The following code does not store the character read in ch. It stores

the logical result of the compare in ch.

// logic error
// good code

if (ch = getchar() != ’\n')
if ((ch = getchar()) != '\n')

e. In a similar way, the following code is invalid:

// logic error
while (ioResult = scanf(...) != EOF)

// good code
while ((ioResult = scanf(...)) != EOF)

d. It is a logic error to define ioResult in

acter because EOF (— 1) cannot he stored in a character.
the above statement as a char-

448 Section 7.9 Summary

logic error to code a whitespace character at the end of a scanf10. It is a
statement.

11. It is a run-time error to attempt to open a file that is already opened.
12. It is a run-time error to attempt to read a file opened in the write mode or

to write a file opened in the read mode.

7.8 Key Terms
key
leading zero padding
open function
precision
read mode
record
right justification
secondary storage device
signed
size
space (lag
standard error
standard file stream
text file
value error
write mode

alternate flag
append mode
auxiliary storage devices
binary file
buffer
character input
output functions
close function
data item
field
field width
file
file mode
file type
filename
hexadecimal conversion

7.9 Summary
A file is a collection of related data treated as a unit.
Data in a text file are stored as human-readable characters. The data in a
text file arc usually divided into lines separated by a newline character.
A stream is a sequence of elements in time.
A stream is associated with a file in C.

J I here are three standard file streams in C: standard input, standard out-
put, and standard error.
I he standard input is associated with the keyboard. The standard output
and the standard error are associated with the monitor.

-J I he standard file streams can he accessed respectively using stdin, stclout ,
and stderr. I hese are pointers (addresses) to tables (structures) containing
the information about the standard
To manipulate and access files, there
functions.

streams.
different types of input/outputare

ni l

Chapter 7 Text Input/Output 449

J I he open/close functions, /open and /close
association between external files and internal streams.

J A (Tie in C can be any of the three basic modes: reading, writing, and
appending.
When a file is opened in reading mode, the file marker is positioned at the
beginning of the existing file. The file is ready to be read.
When a file is opened for writing, the file marker is positioned at the
beginning of a newly created empty file, before the end-of-file character.
The file is ready to be written.
When a file is opened for appending, the marker is positioned at the end of
the existing file (or at the beginning of a newly created file), before the
end-of-file marker. The file is then ready to be written.
Formatted input/output functions allow us to read data from and write
data to files character by character while formatting them to the desired
data types such as char, int , and float . The functions scan / and /scan/ are
used for reading. The functions print/ and / print/ are used for w riting.

Character input/output functions allow' us to read or write files character
by character. The functions fgetcy getc , and getchar can be used for read-
ing. The functions fputcy putc, and pntchar can be used lor writing.
C99 added a set of wide character functions. They are fgetwc, getuc,

getwchar, fputwc, putuc, and putivchar.
When we are reading data from files, we should validate the data.

, are used to open and close the

7.10 Practice Sets

Review Questions
1 . User files are created using the FILE type.

a. True
b. False

2. If a file does not exist , the append mode returns

a. True
b. False

3. The conversion specification starts w ith
conversion code.
a. True
b. False

4. The space flag is used to left-justify output in the printf function.

a. True
b. False

an error.

asterisk (*) and ends with thean

450 Section 7.10 Practice Sets

5. One of the problems with testing files is that some errors, such as physi-
cally bad media, cannot be created so that they can be tested.
a. True
b. False

6. Which of the following is considered auxiliary storage?

a. disk
b. random access memory (RAM)
c. read only memory (ROM)
d. tape
e. both disk and tape

7. Which of the following is not a standard file stream?
a. stdin
b. stderr
c. stdfile
d. stdont

8. The C library that contains the prototype statements for file operations is
a. ftle.h
h. proto,h
c. stdfile.h
d. stdio.h
e. stdlib.h

9. II a file is opened in the r mode, C
a. opens the file for reading and sets the file marker at the beginning,

h. opens the file for reading and sets the file marker at the end.
c. opens the file lor writing and sets the file marker at the beginning.
d. opens the file lor writing and sets the file marker at the end .
e. returns a null file address indicating an error if the file exists.

10. II a file is not opened successfully, C
a. aborts the program.
b. continues processing with the next statement after the open.
c. changes the file mode to write and opens a new file.
d. displays a message and waits for
e. returns a file address.

an answer.

1 1. The specifies the type of data that are being format-
ted in formatted input/output.
a. conversion code
b. data code
c. field code
d. format code
e. pcode

rn
Chapter 7 Text Input/Output 451

12. I he two input functions that read text data and convert the data to the
types specified by a format string
a. frecid and readd . read and readf
h. fscanf and fprintfe. scanf and printf
c. fscanf and scanf

13. Which of the following statements about the formatted input function
(scanf) is false?

a. scanj implicitly casts data to match the conversion code and its corre-
sponding address parameter.

b. scanf reads data from the keyboard and formats it according to conver-
sion specifications.

c. scanf returns an integer containing the number of variables success-
fully formatted for EOF.

d. scanf stops formatting data when an inappropriate character lor the
type being formatted is encountered.

e. To function properly, scanj requires at least one address.

are

function reads the next character from the stan-14. The
dard input stream and returns its value.
a. fgetc
b. getc
c. getchar
d. readchar
e. ungetc

1 5. When scanf finds invalid data in the input stream, it

a. flushes the input to a newline.
b. prints an error
c. prints an error message and terminates the scanf function.

d. skips the data and formats the next conversion specification, if any.
e. terminates the scanf function and leaves the invalid character in the

input stream.

message and terminates the program.

Exercises
16. Given the following declaration:

int il ?
int i2 ;
float fl;
char cl ;
char c2 ;
char c3;

452 Section 7.10 Practice Sets

and the following line oi data

14 23 76 CD

what would be the value ol i l, i2, f 1, cl , c2, and c3 after the following
statement?

scanf("%d %d %f %c %c %c",
&il, &i2, &fl, &cl, &c2, &c3);

17. Given the following declaration:

int il;
int i2;
float fl;
char cl;
char c2;

and the following line of data

14.2 67 67.9

what would be the value ol i l, i2 , f l , cl , and c2 after the following
statement?

scanf("%d %c %c %i %f ",
&il, &cl, &c2, &i2, &f1);

18. Given the following declaration:

int il;
int i2;
int i3;
char cl;
char c2;
char c3;

and the following line of data:

cl45dl 23 34.7

what would be the value of i l , i2, i3, cl , c2 , and c3 after the following
statement?

scanf(”%c%c%d%c%d%d",
&cl, &c2, &il, &c3, &i2, &i3);

^1' If
Chapter 7 Text Input/Output 453

19. \\ hat would be printed Irom the following program segment?

int
int
int

11 = 123;
12 = -234;
13 = -7;

float fl = 23.5;
float f2 = 12.09;
float f3 = 98.34;
char cl = 65;
char c2 = '\n';
char c3 = 'E';

m

printf("%06d, %06d, %06d %c",
il, i2, i3, c2);

printf("%-6d, %%, \", \\t, %-06d", i2, il);
printf("%c %d ", cl, c2);
printf("%c %c %#x", cl + 32, c3 + 3, c2 + 5);

20. W hat output is produced Irom the following program? Include in your
answer the contents of any files created.

#include <stdio.h>
int main (void)
{
FILE* sp;
int
char ch;
sp = fopen("TEST.DAT", "w");
for (i = 2; i < 20; i += 2)

fprintf(sp, "%3d", i);
fclose(sp);
sp = fopen("TEST.DAT", "r");
while ((ch = fgetc(sp)) != EOF)

if (ch ==
fputc(

i;

)
, stdout);* •

else
fputc(ch, stdout);

return 0;
} // main

Problems
For the problems and projects in this chapter, you need to create a test file

editor. End each line with a newline character; do not write in
as a suitable subjectusing your text

paragraph format. We suggest the Gettysburg Address
for these files:

Four score and seven years ago our fathers brought forth on this continent

nation , conceived in liberty, and dedicated to the proposition that all
continued

a new

454 Section 7.10 Practice Sets

created equal. Now we are engaged in a great civil war, testing
whether that nation, or any nation so conceived and so dedicated, can long
endure. We are met on a great battlefield of that war. We have come to
dedicate a portion of that field as a final resting-place for those who here
gave their lives that that nation might live. It is altogether fitting and
proper that we should do this. But in a larger sense, we cannot dedicate,
we cannot consecrate, we cannot hallow, this ground . The brave men, liv-
ing and dead, who struggled here have consecrated it far above our poor
power to add or detract. The world will little note, nor long remember what
we say here, but it can never forget what they did here. It is for us the liv-
ing, rather to be dedicated here to the unfinished work which they who
fought here have thus far so nobly advanced. It is rather for us, to he here
dedicated to the great task remaining before us, that from these honored
dead we take increased devotion to that cause for which they gave the last
full measure of devotion; that we here highly resolve that these dead shall
not have died in vain; that this nation, under God, shall have a new birth of
freedom, and that government of the people, by the people, for the people,
shall not perish from the earth.

men are

21. Write a function that appends one file at the end ol the other.
22. Write a function that appends a file to itself.
23. Write a function that accepts a file of varying-length lines and changes it

to a formatted file with 60 characters in each line.
24. Write a function that calculates the average number of characters per

line in a file.
25. Write a function that deletes the last line of any file.
26. Write a I unction that deletes the blank lines in a file. A blank line is a line

with only one single character in it: newline.
27. Write a program that prints itself.
28. Write a program that copies one text file to another and inserts blank

lines between paragraphs in the new' file. Paragraphs
newline character.

29. W rite a program to copy only lines beginning with a user-specified
character.

identified by aare

30. Write a program to parse words onto separate lines; that is, locate and
write each word to its own line. Words are defined as one or more charac-
ters separated by whitespace.

31. W'hen scanf encounters an error, the invalid data
stream, sometimes making it impossible to continue. Write a function
that reads three pieces of numeric data. If an error is detected (return
value not EOF but less than 3), flush the
Engineering" for details

left in the inputare

data. (See "Softw'are
on how to write a flush statement.) Then test the

erroneous

Chapter 7 Text Input/Output 455

function by entering numeric data and alphabetic data in different
sequences.

32. W rite a program to insert a blank line after the seventh line in a file.
33. \ \ rite a program to delete the sixth line in a file. Do not change the sixth

line to a blank line; delete it completely.
34. Write a program to insert a blank line after each line in a file. In other

words, double-space the text.
35. Write a program to duplicate the fourth line in a file.
36. Write a program to copy a file, deleting the first two characters of each

line. (Do not replace the characters with blanks.)
37. Write a program to copy a file, inserting two space characters at the

beginning of each line. In other words, each line w ill he shifted two char-
acters to the right.

38. W rite a program that copies the 21st character of each line in a file to a
new file. All extracted characters are to be on the same line. If a line in
the input file has fewer than 21 characters, write the last character. If a
line is blank—that is, if it consists of only whitespace—then copy noth-
ing. At the end ol file, write a newline to the new file and close it.

39. W rite a program that writes the odd-numbers between 300 and 500 to a
text file.

40. Write a function that writes the multiples of num between lowLimit and
highLimit to a text file. Assume that lowLimit < highLimit and that
num is not equal to zero. Then write a test driver to validate your function.

41. Write a program to read a set of scores from a text file, count the scores
over 90, copy the scores over 90 to a new file, and print the number ol
scores over 90 to the monitor.

42. Modify Problem 41 to count and create a file for the ranges 0 to 30, 31 to

60, 61 to 90, and over 90. Print the statistics for each range at the end of
the program.

f

Projects
43. Write a program that will read a text file and count the number of alpha-

betic characters (isalpha), digits (isdigit), punctuation characters
(ispunct), and whitespace characters (isspace) in the file. At the end of
the file, the program is to display an appropriate report. (The classifying
functions are covered in Chapter 5.)

44. Write a text analyzer program that reads any text file. The program prints
that gives the user the options of counting lines, words, charac-

ters, or sentences (one or more words ending in a period), or all of the
above. Provide a separate function for each option. At the end of the
analysis, w rite an appropriate report.

a menu

456 Section 7.10 Practice Sets

45. Write a menu-driven text utility program. The program will have the fol-
lowing capabilities:

a. Copy a user-named hie to a new file.
b. Append a user-named file to another user-named file.
c. Change the hie format to be double-spaced.
d. Remove all blank lines (change a double-spaced file to single-spaced).
e. Display the contents of the file

words split between lines.
46. Using an editor, create an inventory file using the data shown in Table 7-7

(do not include the column captions, just the data).

series of 60 character lines withas a no

Reorder
Point

Quantity On Minimum
Order

PricePart No.
Hand

20 20231.230123
50 25342.340234

10505634.563456

10 545.67 74567

75 255678 6.78 75

TABLE 7-7 Inventory file data for Project 46

Write a program to read the inventory file and create an inventory report.
The report will contain the part number, price, quantity on hand, reorder
point, minimum order, and order amount. The order amount is calcu-
lated when the quantity on hand falls below the reorder point. It is calcu-
lated as the sum of the reorder point and the minimum order less the
quantity on hand. Provide a report heading, such as “ Inventory Report,”
captions for each column, and an "End of Report" message at the end of
the report. Print the part number with leading

47. Using an editor, create the employee file shown in Table 7-8.
zeros.

Employee No. Hours WorkedDepartment Pay Rate Exempt
0101 41 498 . 1 1 Y
0722 32 407.22 N
1273 23 395.43 Y
2584 14 456.74 N

TABLE 7-8 Employee File Data for Project 47

PS
Chapter 7 Text Input/Output 457

W rite a program to read the employee file and create a payroll register.
The register will contain the following data:

a. Employee number (print left-justified)
b. Department
c. Pay rate
d. Exempt
e. I lours worked
f. Base pay (pay rate * hours worked)

IT:

1

Arrays

In Chapter 4 we discussed the first derived data type, the function. In this
chapter we discuss the second derived type, the array. Figure 8- 1 recaps the
six derived types and the chapters in which they are covered.

Derived
Types

iiFunction
Type

Array
Type

Pointer
Type

Structure
Type

Union
Type

Enumerated
Type

Chapter 9 Chapter 12 Chapter 12 Chapter 12Chapter 4

FIGURE 8-1 Derived Types

Objectives
To understand the basic concepts and uses of arrays

To be able to define C arrays

To be able to pass arrays and array elements to functions
To understand the classical approaches to sorting arrays: selection, bubble,
and insertion sorting
To write programs that sort data using the three classical algorithms
To be able to analyze the efficiency of a sort algorithm
To understand the two classical search algorithms: sequential and binary

To write programs that search arrays

To be able to design test cases for sorting and searching algorithms

To be able to analyze the efficiency of searching algorithms

it459

460 Section 8.1 Concepts

8.1 Concepts
Imagine we have a problem that requires us to read, process, and print
10 integers. We must also keep the integers in memory for the duration of the
program. To begin , we can declare and define 10 variables, each with a differ-
ent name, as shown in Figure 8-2.

score5scoreO

score6score1

score7score2

score8score3

score9score4

FIGURE 8-2 Ten Variables

Having 10 different names, however, creates a problem: I low can we read
10 integers from the keyboard and store them? To read 10 integers from the
keyboard, we need 10 read statements, each to a different variable. Further-
more, once we have them in memory, how can we print them? To print them,

we need 10 write statements. The flowchart in Figure 8-3 shows a design for
reading, processing, and printing these 10 integers.

Although this approach may he acceptable for 10 variables, it is definitely
not acceptable lor 100 or 1,000 or 10,000. To process large amounts of data
we need a powerful data structure, the array. An
ments ol the same data type.

Since an array is a sequenced collection, we can refer to the elements in
the array as the first element, the second element, and so forth until we get to
the last element. Thus, when
array, the address of the first element is 0 as shown below.

array is a collection ol ele-

put the 10 integers of our .problem into anwe

scoreso

In a similar fashion, we refer to the second and the third
scores2 - Continuing the series, the last score would be scores^ We

geneialize this concept in the following fashion where the subscripts
indicate the ordinal number of the element counting from the beginning of
the array:

score as scores \
score as
can

scores0 / scoresj, scoresn-1

Inr
Chapter 8 Arrays 461

(START ^/ R e a d X
/ scoresO X / Print X

/ scoresO X
/ Read X
/ scores1 X / Print X

/ scores1 X
/ R e a d X
/ s c o r e s2 X

/ Print X
/ scores2 X

/ Read X
/ scores3 X

/ Print X
/ scores3 X

/ Read X
/ scores4 X

/ Print X
/ scores4 XProcess

10 scores

/ R e a d X
/ scores5g

/ Print //
/ scores5 X

/ Read
~i

/ scores6 X
/ Print /! scores6 g

/ Read ^/ scores7 X
/ Print

~t
/ scores7 X

/ Read // scoresS X
/ Print

~t
/ scores8 X

/ Read ^/ scores9 X
/ Print // scores9 X
(STOP ^

FIGURE 8-3 Process 10 variables

What we have seen is that the elements of the array are individually
addressed through their subscripts, a concept shown graphically in Figure 8-4.
The array as a whole has a name, scores, hut each member can he accessed
individually using its subscript.

The advantages of the array would he limited if we didn’t also have pro-

gramming constructs that would allow us to process the data more conve-
niently. Fortunately, there is a powerful set of programming constructs—
loops—that makes array processing easy.

We can use loops to read and write the elements in an array; to add, sub-

tract, multiply, and divide the elements; and
ing such as calculating averages, searching, or sorting. Now it does not

matter if there are I, 10, 100, 1,000, or 10,000 elements to he processed,
because loops make it easy to handle them all.

One question remains: How can we write an

it refers to the first element of an array and the next time it refers to another
element? The answer is really quite simple: We simply borrow from the sub-

script concept we have been using. Rather than using subscripts, howcvcr,
will place the subscript value in brackets. This format is known as indexing.
Using the index notation, we would refer to scoresg as

for more complex process-even

instruction so that one time

we

sco res [0]

462 Section 8.1 Concepts

scores[0]scores0

scores[1]scores1

scores[2]scores2

scores[3]scores3

scores[4]scores4

scores[5]scores5

scores[6]scores6

scores[7]scores7

scores[8]scores8

scores[9]scores9

scoresscores
(b) Index Format(a) Subscript Format

FIGURE 8-4 An Array of Scores

Following the convention, scores0 becomes scoresfO] anti scores,
becomes scores[9]. Using a typical reference, we now refer to our array using
the variable i .

s co re s [i]

I he flowchart showing the loop used to process our 10 scores using an
array is seen in Figure 8-5.

o ©Start

i = 0 / i = 0r i < 10
Process

10 scores
i++ i < 10

o/ Read
~k

/ scores [i] m / Write // scores [i]M

o Stop

FIGURE 8-5 Loop for 10 Scores

ui

n
Chapter 8 Arrays 463

8.2 Using Arrays in C
In this section, we first show how to declare and define arrays. Then we
present several typical applications using arrays including reading values into
arrays, accessing and exchanging elements in arrays, and printing arrays. Fig-
ure 8-6 shows a typical array, named scores, and its values.

Indexes

scores [0]

scores [1]

scores [2]

scores [3]

scores [4]

scores [5]

scores [6]

scores [7]

scores [8]

scores [9]

(Elements

45

56

34

83
rTJame of

16 \ t h e array

scores

FIGURE 8-6 The Scores Array

C provides for two different array types, fixed-length array and variable-

length array. In a fixed-length array, the size of the array is known when the
is written. In a variable-length array, inroduced in C99, the size olprogram

the array is not known until the program is run.

Declaration and Definition
An array must be declared and defined before it can he used. Array declara-

of the array, the type of eachlion and definition tell the compiler the
element, and the size or number of elements in the array. In a fixed-length
array, the size of the array is a constant and must have a value at compilation
time. The declaration format is shown in the lollowing example.

name

type arrayName [arraySize]

declarations: one forFigure 8-7 shows three different fixed-length
for characters, and one for floating-point numbers.

array

integers, one

r

464 Section 8.2 Using Arrays in C

int scores [10] ;
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

scorestype of each
. element .

char name [10] ;
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

namename of
the array

•••float gpa [4 0] ;
[37][38][39]0] [1] [2]

gpanumber of
elements

FIGURE 8-7 Declaring and Defining Arrays

The declaration format lor a variable-length array is the same as for a
fixed-length array except that the array size is a variable. When the program is
executed, the array size is determined and the array is defined. Once defined,
its size cannot be changed. Following standard C syntax rules, the array size
must he declared and initialized before it is used in the variable-length array
definition.

float salessAry [arySize];

Accessing Elements in Arrays
C uses an index to access individual elements in an array. The index must be
an integral value or an expression that evaluates to
simplest form for accessing an element is a numeric constant. For example,
given the scores array in Figure 8-6, we could access the first element as
shown in the next example:

integral value. Thean

scores[0]

expression, typically the value of a variable. To process all
the elements in scores, a loop similar to the following code is used:

f or (i = 0 ; i < 10 ; i++)
process (scores[i]);

V>u might he wondering how C knows where
located in memory. In scores, for example, theredoes it find just one? The answer is simple. The array’s name is a symbolic
reference lor the address to the first byte of the array Whenever we use the

Ihe index is an

an individual element is
are nine elements. How

T
7

Chapter 8 Arrays 465

array’s name, therefore, we are actually referring to the first byte of the array.
1 he index represents an offset from the beginning of the array to the element
being referenced. With these two pieces of data, C can calculate the address
ol any element in the array using the following simple formula:

element address = array address
+ (sizeof (element) * index)

1 or example, assume that scores is stored in memory at location
10,000. II scores is an integer of type int, the size of one element is the size
ol int.Assuming the size of an int is 4, the address of the element at index 3 is

element address = 10,000 + 4 * 3 = 10,012

Storing Values in Arrays
Declaration and definition only reserve space for the elements in the array.
No values are stored. II we want to store values in the array, we must either
initialize the elements, read values from the keyboard, or assign values to

each individual element.

Initialization
Just as with variables, initialization of the elements in a fixed-length array can

he done when it is defined. Variable-length arrays cannot be initialized when
they are defined.

For each element in the array, we provide a value. The only difference is

that the values must be enclosed in braces and, if there is more than one,
separated by commas. It is a compile error to specify more values than there
are elements in the array.

Figure 8-8 contains four examples of array initialization. The first exam-
ple (Figure 8-8(a)) is a simple array declaration of five integers and is typical
of the way array initialization is coded. When the array is completely initial-

ized, the programmer does not need to specify the size of the array. This case

is seen in Figure 8-8(b). It is a good idea, however, to define the size explicitly,
because it allows the compiler to do some

documentation.
checking for errors and is also good

If the number of values provided is fewer than the number of elements in

the array, the unassigned elements are filled with zeros. I bis case is seen in

this rule to easily initialize an array to allFigure 8-8(c). We can use
by supplying just the first zero value, as shown in the last example in

Figure 8-8(d).
zeros

be initialized when they are defined. Variable-
Only fixed-length arrays
length arrays must be initialized by inputting or assigning the values.can

466 Section 8.2 Using Arrays in C

(b) Initialization without Size
int numbers[] =(3,7,12,24,45);

(a) Basic Initialization
int numbers[5] =(3,7,12,24,45); 1 1 1

12124[45^
/ n

3 | 7 1 2 2 4 4 5 j 3 7

(d) Initialization to All Zeros(c) Partial Initialization
int numbers[5] =(3,7); int lotsOfNumbers [1000] = {0};

r-r—
3 1 7|0|0 0| 0 0 .

The rest are
filled with Os All filled with Os

FIGURE 8-8 Initializing Arrays

Inputting Values
Another way to fill the array is to read the values from the keyboard or a file.
I his method of inputting values can be done using a loop. When the array is
to be completely filled, the most appropriate loop is the for loop because the
number of elements is fixed and known.

for (i = 0; i < 10; i++)
scanf ("%d", &scores [i]);

Several concepts need to be studied in this simple statement. First, we
start the index,i, at 0. Since the array has 9 elements,
ues Irom index locations 0 through 8. 1 he limit test , therefore, is set at i< 9
which conveniently is the number of elements in the
though we are
necessary in the scanf call.

Finally, il all the elements might not be filled, then
event-controlled loops (while or do...while). Which loop
the application.

we must load the val-

array. Then, even
dealing with array elements, the address operator (&) is still

we use one of the
we use depends on

Assigning Values
We can assign values to individual elements using the assignment operator.
\n> ' alue that reduces to the proper type can he assigned to an individual
array element. A simple assignment statement for scores is seen below.

scores [4] = 23;

1
Chapter 8 Arrays 467

On the other hand, we cannot assign one array to another array,
they match fully in type and size. We have to copy arrays at the individual ele-
ment level. For example, to copy an
25 integers, we could use a loop,as shown below.

ifeven

array of 25 integers to a second array of

for (i = 0; i < 25; i++)
second[i] = first[i];

II the values ol an array follow a pattern, we can use a loop to assign val-
ues. For example, the following loop assigns a value that is twice the index
number to array scores:

for (i = 0; i < 10; i++)
scores [i] = i * 2;

For another example, the following code assigns the odd numbers 1

through I 7 to the elements of an array named value:

for (i = 0; i < 9; i++)
value [i] = (i * 2) + 1;

One array cannot be copied to another using assignment.

Exchanging Values
A common application is to exchange the contents of two elements. We see

this operation later in the chapter when we talk about sorting arrays. When
exchange variables, we swap the values of elements without knowing

what’s in them.
For example, imagine we want to swap numbers[3] and numbers [1] in

Figure 8-8. A common beginner’s mistake would be simply to assign each ele-
ment to the other, as shown below.

we

// Errornumbers [3] = numbers [1];
numbers [1] = numbers [3];

Although this code looks as if it will do the job, if we trace the code care-
fully, we find that it does only half the job. numbers!1] is moved to numbers[3],

but the second half isn’t done. The result is that both elements have the same

value. Figure 8-9 traces the steps.

468 Section 8.2 Using Arrays in C

[0] [1] [2] [3] [4]

4 5 1numbersf] 3 12 24

Before

1 i

[01 [11 [21 [31 [4]

I7 12 7 45numbers [3] = numbers[1]; 3

' 1

10] [1] [2] [3] [4]
7 45 |7 12numbers [1] = numbers [3] ; 3

After

FIGURE 8-9 Exchanging Scores— the Wrong Way

Figure 8-9 shows that the original value of numbers!3] is destroyed
before we can move it. The solution is to use a temporary variable to store the
value in numbers[3] before moving the data from numbers[1].

= numbers[3];
numbers [3] = numbers [1];
numbers [1] = temp;

temp

This technique is shown in Figure 8- 10.

IQ) IQ 12) [3] 14]
numbers!] ;[3 7 12 24 45|

Before

[0] [1] [2l [3] [4]
24 I 45Itemp = numbers [3] ; 3 7 12 24

temp

[01 [11 [2] [3] [4]
numbers !3] = numbers {1] ; 3 7 12 7 | 45| 24

temp

f
[0] 11] !2] !31 [4]

numbers !1] = temp ; 3 24 I 12 I 7 I 45
l

1 24
tempAfter

FIGURE 8-10 Exchanging Scores with Temporary Variable

\ : 'T i

Chapter 8 Arrays 469

Printing Values
Another common application is printing the contents of
ily done with a for loop, as shown below.

an array. This is eas-

for (i = 0; i < 9; i++)
printf ("%d ", scores [i]);

printf ("\n");

In this example, all the data are printed
completes, a final printf statement advances to the next line. But what if we
had 100 values to be printed? In that case, we couldn’t put them all on one

line. Given a relatively small number width, however, we could put 10 on a
line. We would then need 10 lines to print all the data. This rather common
situation is easily handled by adding a counter to track the number of ele-
ments we have printed on one line. This logic is shown in Program 8- 1 .

line. After the for loopon one

PROGRAM 8-1 Print Ten Numbers per Line
// a program fragment
#define MAX SIZE 25

1
2
3

// Local Declarations
int list [MAX SIZE];

4
5
6

// Statements7
8

numPrinted = 0;
for (int i = 0; i < MAX_SIZE; i++)

9
10
11 {

printf("%3d", list[i]);
if (numPrinted < 9)

numPrinted++;

1 2
13
14

else15
16 {

printf("W);
numPrinted = 0;

> // else

17
18
19

> // for2 0

Precedence of Array References
References to elements in arrays are postfix expressions. By looking at the

Precedence Table, we see that array references have a priority of 16, which is

very high. What is not apparent from the table, however, is that the opening
actually operators. They create a postfix expressionand closing brackets

from a primary expression. With a little thought, you should recognize that
are

4 /0 Section 8.2 Using Arrays in C

this is exactly as it must be: When we index an array element in an expres-
sion, the value must he determined immediately.

Referring to the original array in Figure 8-10, what will be the result of
the following code?

numbers[3] = numbers[4] + 15;

In this case, numbers[4] has a higher precedence (16) than the addition
operator (12), so it is evaluated first. The result is then

numbers[3] = 45 + 15;

After this statement has been executed, numbers[3] has been changed from
24 to 60.

Index Range Checking
The C language does not check the boundary of an array. It is our job as pro-
grammers to ensure that all references to indexed elements are valid and
within the range of the array. If we use an invalid index in an expression, we
get unpredictable results. (The results are unpredictable because we have no
way of knowing the value of the indexed reference.)

When we use an invalid index in an assignment, we destroy some unde-
termined portion of the program. Usually, but not always, the program con-
tinues to run and either produces unpredictable results or eventually aborts.

An example of a common out-of-range index is seen in the code to fill an
array from the keyboard. For this example, we have reproduced the code we
used to fill the scores array earlier, only this time we have made a common
mistake! Can you spot it?

for (i = 1; i <= 9; i++)
scanf ("%d", &scores [i]);

// Error

\ \ hen dealing with array processing, be very careful at the beginning and
end of the array. A careful examination of the previous code discloses that we
erroneously started at 1 instead of 0. So we fix it as shown below, only to find
that it still doesn’t work!

for (i = 0; i <= 9; i++)
scanf ("%d",

The moral of this example is to examine our logic. If
take, we may well have made two. Although we corrected the error lor initial-
ization (the beginning of the array), there is still
you can’t see it, check the original code in “Inputting Values.”

&scores [i]);

made one mis-we

the other end. Ifan error at

1' V'l .

' r -
Chapter 8 Arrays 471

Ihe result ol both versions of this error is that the data stored in memory
alter the scores array are erroneously destroyed. In the first version of the
error, the first element of the array was not initialized.

The problems created by unmanaged indexes
cult to solve, even

are among the most diffi-
with todays powerful programming workbenches. So we

want to plan our array logic carefully and fully test it.

EXAMPLE 8- 1 Print Array
Le ts write a program that uses arrays. Program 8-2 uses a for loop to initial-
ize each element in an array to the square of the index value and then prints
the arrav.j

PROGRAM 8-2 Squares Array
/* Initialize array with square of index and print it.

Written by:
Date:

1
2
3

*/4
tinclude <stdio.h>
#define ARY SIZE 5

5
6
7

int main (void)8
9 {

// Local Declarations
int sqrAry[ARY_SIZE];

10
1 1
12

// Statements
for (int i = 0; i < ARY_SIZE; i++)

sqrAry[i] = i * i;

13
14
15
16

printf("Element\tSquare\n");
printf("=======\t======\n");
for (int i = 0;

printf("%5d\t%4d\n", i, sqrAry[i]);

return 0;
// main

17
18

i < ARY SIZE; i++)19
2 0
21
2 2 >

Results:
Element Square

00
11
42
93
164

1

472 Section 8.2 Using Arrays in C

Example: Read and Print Reversed
As another example of an array program, let ’s read a series of numbers from
the keyboard and print them in reverse order; that is, il we read 12 3 4,

print them 4 3 2 1. With a little thought, it should be obvious that we
must read all of the numbers before we can begin printing them. This deli-
nitely sounds like a problem lor an array.

In Program 8-3, we read up to 50 integers and then print them reversed,
10 to a line.

we
want to

PROGRAM 8-3 Print Input Reversed
/* Read a number series and print it reversed.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
int main (void)7

8 {
// Local Declarations

int readNum;
int numbers[50];

9
10
1 1
12

// Statements
printf("You may enter up to 50 integers:\n");
printf("How many would you like to enter? ");
scanf ("%d", &readNum);

13
14
15
16
17

if (readNum > 50)
readNum = 50;

18
19
20

// Fill the array
printf("\nEnter your numbers: \n");
for (int i = 0; i < readNum; i++)

scanf("%d", &numbers[i]);

21
22
23
24
25
26 // Print the

printf("\nYour numbers reversed
for (int i = readNum - 1, numPrinted = 0;

i >= 0;

array
27 are: \n");
28
29
30 i~)
31 {
32 printf("%3d", numbers[i]);

if (numPrinted < 9)33

continued

TTTI
Chapter 8 Arrays 473

PROGRAM 8-3 Print Input Reversed (continued)

34 numPrinted++;
35 else
36 {
37 printf("\n");

numPrinted = 0;
> // else

V
38
39
40 > // for

return 0;
// main

41
42 >

Results:
You may enter up to 50 integers:
How many would you like to enter? 12

Enter your numbers:
1 2 3 4 5 6 7 8 9 10 11 12

Your numbers reversed are:
12 11 10 9 8 7 6 5 4 3
2 1

Program 8-3 Analysis First, note how we validate the number of integers to be read. If the user requests
more than 50, we simply set readNum to 50. This ensures that we will not run off the
end of the array.

This is an interesting loop because we start at the end and work to the front. While
many arrays are processed from the beginning, it is often necessary to process from the
end. You will see more in the sorting functions later in the chapter.

Finally, note that we incorporate the logic from Program 8-1 to print ten numbers
made Program 8- 1 a function, we could have reused the code ratherper line. Had we

than repeating it.

8.3 Inter-function Communication
To process arrays in a large program, we have to be able to pass them to func-

tions. We can pass arrays in two ways: pass individual elements or pass the
whole array. In this section we discuss first how to pass individual elements
and then how to pass the whole array.

Passing Individual Elements
As we saw in Chapter 4, we can pass individual elements by either passing

their data values or by passing their addresses.

474 Section 8.3 Inter-function Communication

Passing Data Values
We pass data values, that is individual array elements, just like we pass any
data value.

As long as the array element type matches the function parameter type, it
he passed. The called function cannot tell whether the value it receives

an expression. Figure 8- 1 1 demonstrates
can
comes from an array, a variable, or
how an array value and a variable value can he passed to the same function.

int ary(10];int a;

fun (ary[3]);fun (a);

void fun (int x)
{

process x
} // fun

FIGURE 8-11 Passing Array Elements

Note how only one element is passed by using the indexed expression,
ary [3] . Since the value of this expression is a single integer, it matches the
formal parameter type in fun. As far as fun is concerned , it doesn't know or
care that the value it is working with came from an array.

Passing Addresses
In C hapter 4, we saw that we can use two-way communication by passing an
address. We can pass the address ol an individual element in an array just like
we can pass the address of any variable.

To pass an array element’s address
element’s indexed reference. Thus, to pass the address of ary [3]
code shown in the following example.

, we prefix the address operator to the
we use the

&ary [3]

fussing an address of an array element requires two changes in the called
function. First , it must declare that it is receiving an address. Second, it must

the indirection operator (*) to refer to the elements value. These con-
cepts are shown in Figure 8-12. Note that when we pass an address, it is two-
way communication.

use

~ '1
Chopter 8 Arroys 475

int a; int ary[10];

fun (&a); fun (&ary[3]);
* t

void fun (int* x)
{

process x
} // fun

FIGURE 8- 1 2 Passing the Address of an Array Element

Passing the Whole Array
Here we see the first situation in which C does not pass values to a function.
Hie reason for this change is that a lot of memory' and time would he used in
passing large arrays every time we wanted to use one in a function. For exam-
ple, if an array containing 20,000 elements were passed by value to a func-
tion, another 20,000 elements would have to be allocated in the called
function and each element would have to be copied from one array to the
other. So, instead of passing the whole array, C passes the address of the array.

In C, the name of an array is a primary expression whose value is the
address of the first element in the array. Since indexed references are simply
calculated addresses, all we need to refer to any of the elements in the array
is the address of the array. Because the name of the array is in fact its
address, passing the array name, as opposed to a single element, allows the
called function to refer to the array back in the calling function. The design
for passing the whole array is shown in Figure 8-13.

int ary[size];int ary[10];

fun (ary);fun (ary); .
void fun (int fAry[*])void fun (int fAry[])
{{

process x
} // fun

process x
> // fun

Variable-size ArrayFixed-size Array

FIGURE 8-1 3 Passing the Whole Array

476 Section 8.3 Inter-function Communication

Fixed-length Arrays
To pass the whole array, we simply use the array name as the actual parame-
ter. In the called function, we declare that the corresponding formal parame-

We do not need to specify the number of elements in a fixed-ter is an cirra)
length array. Since the array is actually defined elsewhere, all that is impor-
tant is that the compiler knows it s an array.

The function declaration for an array can declare the array in two ways.
First, it can use an array declaration with an empty set of brackets in the
parameter list. Second, it can
prefer the array declaration over the pointer declaration because it is clearer.
Roth are shown in the following example, which declares arrays of integers.

specify that the array parameter is a pointer. We

// Function Declarations
void fun (int ary[], ...)/

*

void fun (int* ary, ...);
i

Variable-length Arrays
When the called function receives a variable-length array, we must declare
and define it as variable length. In a function declaration, we declare an array
as variable using an asterisk for the array size or by using a variable for the
array size. In the function definition, we must use the variable name, and fol-
lowing standard syntax rules, it must be defined before the array. The follow-
ing example demonstrates these points.

// Function Declaration
float calcArrayAvg (int size, float avgArray [*]);

// Function Definition
float calcArrayAvg (int size, float avgArray [size])
{

I
} // calcArrayAvg

Note, however, that the array passed to a function declaring a variable-
he either a fixed-length or variable-length array. As long aslength array can

the array types are correct and the correct size is specified, the passed array
can be processed.

In summary, we must observe the following rules to pass the whole array
to a function:

1 . I he function must be called passing only the name of the array.
2. In the function definition, the formal parameter must be an array type,

either fixed length or variable length.
T I he size ol a fixed-length array does not need to be specified.
4. I he size ol a variable-length array in the function prototype must be

asterisk or a variable.
an

Chapter 8 Arrays 477

S. I he size of a variable-length array in the function definition must be a
variable that is in the function’s scope, as a previously specified variable
parameter.

Passing an Array as a Constant
When a function receives an array and doesn’t change it, the array should be
received as a constant array. This prevents the function from accidentally
changing the array. To declare an array as a constant, we prefix its type with
the type qualifier const, as shown in the following function definition. Once
an array is declared constant, the complier will flag any statement that tries
to change it as an error.

double average (const int ary[], int size);

Function Communication Examples

EXAMPLE 8-2 Average Array Elements
We can use a function to calculate the average of the integers in an array. In
this case, we pass the name of the array to the function and it returns the
average as a real number. This concept is shown in Program 8-4.

PROGRAM 8-4 Calculate Array Average

/* Calculate the average of the number in an array.
Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
// Function Declaration
double average (int ary[]);

7
8
9

int main (void)10
1 1 {

// Local Declarations
double ave;
int

1 2
13

base[5] = {3, 1 , 2 , 4, 5> ;14
15

// Statement
ave = average(base);

printf("Average is:

return 0;
// main

16
17

%lf\n" / ave);18
19
2 0 >
2 1

=== average ===2 2
continued

478 Section 8.3 Inter-function Communication

PROGRAM 8-4 Calculate Array Average (continued)

Calculate and return average of values in array.
Pre Array contains values

Post Average calculated and returned

23
24
25

*/26
double average (int ary[])27

28 {
// Local Declarations

int sum = 0;
29
30
31

// Statement
for (int i = 0; i < 5; i++)

sum += ary[i];

32
33
34
35

return (sum / 5.0);
} // average

36
37

EXAMPLE 8-3 Average Elements in Variable-length Array
In this example, we average the elements in a variable-length array. However,

because a variable-length array cannot be initialized, we read the data from
the keyboard. Also, note that to keep the program as simple as possible, we
create the array in a block. This is necessary because the size of the array
must he known before it is declared .

PROGRAM 8-5 Average Elements in Variable-length Array
/* Calculate average of numbers in variable-length

array.
1
2
3 Written by:

Date:4
*/5
#include <stdio.h>6

7
// Function Declaration
double average (int size, int ary[*]);

8
9
10

int main (void)1 1
1 2 {

// Local Declarations
int

13
14 size;

double ave;15
16

// Statements
printf("How many numbers do you want to average? ")?

17
18

continued

1H
Chapter 8 Arrays 479

PROGRAM 8-5 Average Elements in Variable-length Array (continued)

19 scanf ("%d", &size);
20

// Create and fill variable-length array21
22 {

// Local Declaration
int ary[size];

23
24
25

// Fill array
for (int i = 0; i < size; i++)

26
27
28 {

printf("Enter number %2d: ", i + 1);
scanf ("%d", &ary[i]);

> // for
ave = average(size, ary);

> // Fill array block

29
30
31
32
33
34

printf("Average is: %lf", ave);
return 0;
// main

35
36
37 }
38

/* ====39
Calculate and return average of values in array.

Pre Array contains values
Post Average calculated and returned

40
41
42

*/43
double average (int size, int ary[size])44

45 {
// Local Declarations

int sum = 0;
double ave;

46
47
48
49

// Statement
for (int i = 0; i < size; i++)

sum += ary[i];

50
51
52
53

= (double)sum / size;

return ave;
// average

54 ave
55
56 >

Results
numbers do you want to average? 5How many

Enter number 1: 3
2: 6
3: 9

Enter number
Enter number

continued

480 Section 8.3 Inter-function Communication

PROGRAM 8-5 Average Elements in Variable-length Array (continued)

Enter number 4: 2

Enter number 5: 8

Average is: 5.600000

First, in main, we use a variable-lengthProgram 8-5 Analysis There are two points to study in this prog
array. This requires that the array size be known before the array is declared. We
accomplish this by using a block within main. The array size is declared in main's
local declarations; the array itself is declared in the block local declarations.

Second, note how the variable array is declared in the function definition. We can
do it by just declaring it as a variable array with an asterisk in the array brackets, or
we can put the variable size in the brackets. Using size is better documentation
because it declares our intent. When we use size, however, it must be declared
before the array, in this case as the first parameter.

ram.

EXAMPLE 8-4 Changing Values in an Array
The previous examples were one-way communication. In Program 8-6 we
demonstrate two-way communication by changing the values in the array. As
you study it, note that no special code is required when we want to change
the values in an array. Because the array s address is passed, we can simply
use index notation to change it.

PROGRAM 8-6 Change Values in an Array
/* Multiply each element in an array by 2.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
// Function Declaration
void multiply2 (int x[]);

5
6

f 7
8

int main (void)9
10 {

// Local Declarations
int base[5] = {3, 7,

1 1
12 2, 4, 5>;
13

// Statements
multiply2 (base);

14
15
16
17 printf("Array now contains: "

for (int i =
) ;

18 0; i < 5; i++)
base[i]);19 printf("%3d",

2 0 printf("\n");
return 0;21

continue

1n
Chapter 8 Arrays 481

PROGRAM 8-6 Change Values in an Array
} // main2 2

23
/*24 ==================== multiply2 =====

Multiply each element in array by 2.
Pre array contains data
Post each element doubled

25
26
27

* /28
void multiply2 (int ary[])29

30 {
// Statements

for (int i = 0; i < 5; i++)
ary[i]

31
32
33 2 ;*=
34 return;

> // multiply235

8.4 Array Applications
In this section we study two array applications: frequency arrays with their
graphical representations and random number permutations.

Frequency Arrays
Two common statistical applications that use arrays are frequency distribu-
tions and histograms. A frequency array shows the number of elements with
an identical value found in a series of numbers. For example, suppose we

have taken a sample of 100 values between 0 and 19. We want to know how

many of the values are 0, how many are 1 , how many are 2, and so forth up
through 19.

We can read these numbers into an array called numbers.Then we create

of 20 elements that will show the frequency of each number in thean array
series. This design is shown in figure 8-14.

With the data structure shown in Figure 8-14 in mind, how do we write

the application? Since we know that there arc exactly 100 elements, we can

for loop to examine each value in the array. But how can we relate the
use a
value in numbers to a location in the frequency."

One way to do it is to assign the value from the data array to an index and

then use the index to access the frequency array. This technique is

shown below'.

f = numbers[i];
frequency [f]++;

Since an index is an expression, however, we can simply use the value

from our data array to index us into the frequency array as shown in the next

482 Section 8.4 Army Applications

pie. The value of numbers [i] is determined first, and then that value isexam
used to index into frequency.

frequency [numbers [i]]++;

frequency [0]

frequency [1]

frequency [2]

numbers [0]

numbers [1]

numbers [2]

numbers [3]

numbers [4]

This value shows
how many Os are

in numbers -
frequency[18]

frequency[19]
requency

This value shows
how many 19s are
v. in numbers^

numbers[98]

numbers[99]

numbers

FIGURE 8-14 Frequency Array

The complete function is shown in Program 8-7 as makeFrequency.The
function first initializes the frequency array and then scans the data array to
count the number of occurrences of each value.

Histograms
A histogram is a pictorial representation of a frequency array. Instead of
printing the values of the elements to show the frequency of each number, we
print a histogram in the form of a bar chart. For example, Figure 8-15 is a his*

example, asterisks (* 'of the
togram lor a set of numbers in the range 0... 19. In this
are used to build the bar. Each asterisk represents
data value.

one occurrence

four 1s0 0
1 4 • * » •

seven 3s2 7
3 7

zero 19s18 2
19 0

• •

FIGURE 8-1 5 Frequency HistogramL

'• n
Chapter 8 Arrays 483

Let’s write a program that builds a frequency array for data values in the
range 0. ..19 and then prints their histogram. The data are read from a file. To
provide flexibility, the getData function may only partially fill the array. The
function that loads it also guards against too much data. The design for the
program is shown in Figure 8-16.

Frequency
Histogram

make
Histogram

make
FrequencygetData printData

FIGURE 8-16 Histogram Program Design

The code is shown in Program 8-7.

PROGRAM 8-7 Frequency and Histogram
/* Read data from a file into an array.

Build frequency array & print data in histogram.

Written by:
Data:

1
2
3
4

*/5
#include <stdio.h>
#include <stdlib.h>

6
7
8

#define MAX_ELMNTS 100
#define ANLYS RNG 20

9
10
1 1

// Function Declarations
int getData (int numbers[], int size, int range);

12
13
14

(int numbers[],
int size,

void printData15
int lineSize);
int size,

16
void makeFrequency (int numbers[],17

int frequency[], int range);
18

void makeHistogram (int frequencyf], int range);
19
20

int main (void)21
22 {

// Local Declarations
int size;

23
24

continued

484 Section 8.4 Array Applications

PROGRAM 8-7 Frequency and Histogram (continued)

[MAX_ELMNTS];
int frequency [ANLYS_RNG];
int nums25

26
27

// Statements
size = getData (nums, MAX_ELMNTS, ANLYS_RNG);
printData (nums, size, 10);

28
29
30
31

makeFrequency(nums, size, frequency, ANLYS_RNG);
makeHistogram(frequency, ANLYS_RNG);
return 0;
// main

32
33
34
35 >
36

Read data from file into array. The array
does not have to be completely filled,

data is an empty array
size is maximum elements in array
range is highest value allowed
array is filled. Return number of elements

37
38
39
40 Pre
41
42
43 Post

*/44
int getData (int data [], int size, int range)45

46 {
// Local Declarations

int dataln;
int loader = 0;
FILE* fpData;

47
48
49
50
51
52

53
// Statements

if (!(fpData = fopen ("P08-07.dat", "r")))
printf("Error opening file\a\a\n") , exit (100);

54
55
56
57
58 while (loader < size
59 && fscanf(fpData, "%d", &dataln) != EOF)

if (dataln >= 0 && dataln < range)
data[loader++] = dataln;

60
61
62 else
63 printf("\nData point %d invalid. Ignored. \n"

dataln);
f

64
65

// Test to66 see what stopped while
if (loader = = size)67

68 printf("\nToo much data. Process what read.Xn");

continue

I 1I t
Chapter 8 Arrays 485

PROGRAM 8-7 Frequency and Histogram (continued)

return loader;
70 } // getData
69

71
/*72 === printData =====

Prints the data as a two-dimensional array.
Pre

73
74 data: a filled array

size: number of elements in array
lineSize: number of elements printed/line
the data have been printed

75
76
77 Post

*/78
void printData (int data[], int size, int lineSize)79

80 {
// Local Declarations

int numPrinted = 0;
81
82
83

// Statements
printf("\n\n");
for (int i = 0; i < size; i++)

84
85
86
87 {

numPrinted++;
printf("%2d ", data[i]);
if (numPrinted >= lineSize)

88
89
90
91 {

printf("\n");
numPrinted = 0;
} // if

92
93
94

} // for
printf("\n\n");
return;

} // printData

95
96
97
98
99

================= makeFrequency ====
analyze the data in nums and build their frequency

distribution
Pre

/*100
101
102

nums: array of validated data to be analyzed

last: number of elements in array

frequency: array for accumulation,

range: maximum index/value for frequency

Frequency array has been built.

103
104
105
106

Post107
*/108

int last,

int frequency[], int range)
void makeFrequency (int nums[],109

110
111 {

// Statements112
continued

486 Section 8.4 Array Applications

PROGRAM 8-7 Frequency and Histogram (continued)

// First initialize the frequency array

for (int f = 0; f < range; f++)
frequency [f] = 0;

113
114
115
116

// Scan numbers and build frequency array
i < last; i++)

117
for (int i = 0;

frequency [nums [i]]++;
118
119
120 return;

// makeFrequency121 >
122

=== makeHistogram ==================
Print a histogram representing analyzed data.

freq contains times each value occurred
size represents elements in frequency array
histogram has been printed

123
124
125 Pre
126

Post127
*/128
void makeHistogram (int freq[], int range)129

130 {
// Statements

for (int i = 0; i < range; i++)
131
132
133 {

printf ("%2d %2d ", i, freq[i]);
for (int j = 1; j <= freq[i]; j++)

printf (
printf ("\n");

> // for i...
return;
// makeHistogram

134
135
136 M * H);
137
138
139
140 }

// ===141 === End of Program =====

Results:
Data point 20 invalid. Ignored.

Data point 25 invalid. Ignored.

1 2 3 4 5 6 7 8 7 1 0
2 1 2 1 3 1 3 1 5 1 6 1 7 1 8 1 7 7
3 4 6 8 1 0 2 4 6 8 1 0
4 3 5 7 1 3 7 7 1 1 1 3
5 1 0 1 1 1 2 1 3 1 6 1 8 1 1 1 2 7
6 1 2 2 3 3 3
7 7 8 7 6 5 4

4 4 4
1 2 2

8 1 1 1 1 1 3 1 3 1 3 1 7 1 7 7 7

continued

in
Chapter 8 Arrays 487

PROGRAM 8-7 Frequency and Histogram (continued)

13 17 17 15 15

0 0
1 4 ****
2 7 * * * * ***
3 7 ** * ****
4 8 *** * ****
5 4 ****
6 5 ** ***
7 12 * **** * * * * * * *

5 * ****8
9 0

10 4 * ** *
11 5 **** *
12 3 ** *
13 8 ** * *** * *
14 0
15 3 * **
16 2 **
17 8 ** * * * *
18 2 **
19 0

Program 8-7 Analysis Remember our discussion of what happens when an index gets out of range? What if
one of the numbers in our data is greater than 19? We would destroy some other
part of our program! To protect against this possibility, we test each data value to

make sure that it is within the indexing range of frequency. If it is not, we display
an error message and read the next number.

Similarly, we guard against too much data. If the file contains more than 100 valid
numbers, then we stop reading. After the read loop, we test to make sure we are pro-

cessing all of the data. If there were too many numbers, we print an error message.

Finally, note that we print the data to make it easy to verify the results.

Random Number Permutations
A random number permutation is a set of random numbers in which no num-
bers are repeated. For example, given a random number permutation of 10

numbers, the values from 0 to 9 would all be included with no duplicates.
We saw how to generate a set of random numbers in Chapter 4. To gen-

erate a permutation, we need to eliminate the duplicates. Borrowing from the

histogram concept in the previous section, we can solve the problem most

efficiently by using two arrays. The first array contains the random numbers.
The second array contains a logical value that indicates whether or not the

number represented by its index has been placed in the random number

array. Ibis design is shown in Figure 8- 1 / .

488 Section 8.4 Army Applications

haveRand[0]

haveRand[1]

haveRand[2]

haveRand[3]

haveRand[4]

haveRand[5]

haveRand[6]

haveRand[7]

haveRand[8]

haveRand[9]

0randNos[0]

randNos[1]

randNos[2]

randNos[3]

randNos[4]

randNos[5]

randNos[6]

randNos[7]

randNos[8]

randNos[9]

8
O means random

not generated

0

13

5
11

1 means random
v

^^generated0 (7

1
0

1

1

0
haveRandrandNos

After first five random numbers generated|

FIGURE 8-17 Design for random number permutations

As you study Figure 8-17, note that only the first five random numbers
have been placed in the permutation. For each random number in the ran-
dom number array, its corresponding location in the have-random array is set
to 1. Those locations representing numbers that have not yet been generated
are still set to 0. The implementation of the design is shown in Program 8-81.

PROGRAM 8-8 Generate a Permutation
/* Generate a random number permutation.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
tinclude <stdlib.h>

5
6
7

#define ARY SIZE 208
9

// Function Declarations
void bldPerm

10
1 1 (int randNos[]);

void printData (int data[], int size, int lineSize);1 2
13
14 int main (void)

continued

1 . I lie numbers generated by this program are a repeating series. To make them different with each
, we would use the srand function and set it to the time of day as explained in Chapter 4.run

1i v
Chapter 8 Arrays 489

PROGRAM 8-8 Generate a Permutation (continued)

15 {
// Local Declarations

int randNos [ARY SIZE];
16
17
18

// Statements
printf("Begin Random Permutation Generation\n");

19
20
21
22 bldPerm (randNos);

printData (randNos, ARY_SIZE, 10);23
24
25 return 0;

// main26 >
27

/* ===28
Generate a random number permutation in array.

randNos is array to receive permutations

randNos filled

29
30 Pre

Post31

*/32
void bldPerm (int randNos[])33

34 {
// Local Declarations

int oneRandNo;
int haveRand[ARY_SIZEJ = {0> ;

35
36
37
38

// Statements
for (int i = 0; i < ARY_SIZE; i++)

39
40
41 {

do42
43 {

oneRandNo = rand() % ARY_SIZE;
} while (haveRand[oneRandNo] == 1);

haveRand[oneRandNo] = 1;
randNos[i] = oneRandNo;
} // for

44
45
46
47
48
49 return;

} // bldPerm50
51

===== printData ===
Prints the data as a two-dimensional array,

data: a filled array

last: index to last element to be printed

lineSize: number of elements on a line

data printed

52
53
54 Pre

55
56

Post57
58 */

continued

490 Section 8.5 Sorting

PROGRAM 8-8 Generate a Permutation (continued)

void printData (int data[], int size, int lineSize)59
60 {

// Local Declarations
int numPrinted = 0;

61
62
63

// Statements
printf("\n");
for (int i = 0; i < size; i++)

64
65
6 6
67 {

numPrinted++;
printf("%2d ", data[i]);
if (numPrinted >= lineSize)

6 8
69
70

{71
printf("\n");
numPrinted = 0;

> // if

72
73
74

> // for
printf("\n");
return;

> // printData

75
76
77
78

Results:
Begin Random Permutation Generation

18 13 15 11 7 10 19 12 6 9
4 0 5 3 17 14 2 16 1 8

8.5 Sorting
One of the most common applications in computer science is sorting—the
process through which data arc arranged according to their values. We are
surrounded by data. II the data are not ordered, we would spend hours trying
to find a single piece of information. Imagine the difficulty of finding some-
one’s telephone number in a telephone book that is not ordered in name
sequence!

In this chapter we introduce three sorting algorithms: the selection sort,
bubble sort , and insertion sort. In each section we will first introduce the
basic concept, then use the idea in an example, and finally develop the code
for the algorithm.

One programming concept common to the sorting algorithms we discuss
in this section is the swapping of data between two elements in a list. You
might want to review our discussion in "Exchanging Values” in Section 8.2.

1mChapter 8 Arrays 491

Selection Sort
In the selection sort, the list is divided into two sublists, sorted and
unsorted, which are divided by imaginary wall. We find the smallest ele-
ment from the unsorted sublist and swap it with the element at the beginning
of the unsorted sublist. After each selection and swapping, the wall between
the two sublists

an

element ahead, increasing the number of sorted
elements and decreasing the number of unsorted ones. Each time we move
one element from the unsorted sublist to the sorted sublist, we say that we
have completed a sort pass. If we have a list of n elements, we need n - 1

passes to completely rearrange the data. The selection sort is graphically pre-
sented in Figure 8- 18.

moves one

Swap ym smallest (a[k]...a[n - 1])

0 n - 1
4

Sorted Unsorted

FIGURE 8-1 8 Selection Sort Concept

Figure 8- 19 traces a set of six integers as we sort them. It shows how the
wall between the sorted and unsorted sublists moves in each pass. As you

study the figure, you will see that the array is sorted after five passes, which is

one fewer than the number of elements in the array. This means that our sort

loop has one less iteration than the number of elements in the array.

3nBJ.
8 23 32 78 45 56 After pass 38 32 56 Original list23 78 45 c

4444 UnsortedSortedUnsorted anPLi
8 23 32 45 78 56 After pass 4

8 78 45 23 32 56 After pass 1
4 »4444 SortedUnsorted

8 23 32 45 56 78 After pass 5
8 23 45 78 32 56 After pass 2

4*4

^ ^ Unsorted
Sorted4

FIGURE 8-1 9 Selection Sort Example

492 Section 8.5 Sorting

The program design is a rather straightforward algorithm. Starting with
the first item in the list, it uses an inner loop to examine the unsorted items in
the list for the smallest element. In each pass, the smallest element is
“selected” and exchanged with the first unsorted element. The outer loop is
repeated until the list is completely sorted . The design is shown in Figure 8-20.

0(Selectior^ort^/ cur = 0 \
/ cur X
\++ cur < last M

/ walk = \

*/waik EHLL! \
\++ walk <= last m

smlst = cur
/|ist[walk] \
< list [smlst]o

0 smlst = walk

Exchange
cur & smlst Y

oReturn

FIGURE 8-20 Design for Selection Sort

I he code is shown in Program 8-9. We have highlighted the inner loop to
make it easy to follow the logic.

PROGRAM 8-9 Selection Sort

l ===== selectionSort ===================
Sorts by selecting smallest element in unsorted
portion of array and exchanging it with element at
the beginning of the unsorted list.

list must contain at least one item
last contains index to last element in list
list rearranged smallest to largest

2
3
4
5 Pre
6
7 Post

* /8
void selectionSort (int list[], int last)9

10 {
// Local Declarations

int smallest;
int tempData;

1 1
12
1 3
1 4

continuei

nl If T|i1
Chapter 8 Arrays 493

Selection Sort (continued)

// Statements
// Outer Loop
for (int current = 0; current < last; current++)

1 5
1 6
1 7
1 8 {
1 9 smallest = current;

// Inner Loop: One sort pass each loop

for (int walk = current + 1;
walk <= last;
walk++)

if (list[walk] < list[smallest])
smallest = walk;

// Smallest selected: exchange with current

= list[current];
= list[smallest];

20
21
2 2
2 3
2 4
2 5
2 6
2 7 tempData

list[current]
list[smallest] = tempData;

> // for current

2 8
2 9
3 0
3 1 return;

> // selectionSort3 2

Program 8-9 Analysis In this algorithm we see two elements that are common to all three sorts discussed in

this section. First, each algorithm makes use of an inner loop either to determine the
proper location of the next element or to identify and exchange two elements. Each
iteration of the inner loop is one sort pass.

Second, each time we need to move data, we must use a temporary storage area.

This technique is found in every sort algorithm except those that use two sorting areas.

In the selection sort, the temporary area is used to exchange the two elements.

Bubble Sort
In the bubble sort, the list is divided into two sublists, sorted and unsorted.

I he smallest element is bubbled from the unsorted sublist and moved to the

sorted sublist. After moving the smallest element to the sorted list, the wall

element ahead, increasing the number of sorted elements and
moves one
decreasing the number of unsorted ones. Each time an element moves from

the unsorted sublist to the sorted sublist, one sort pass is completed. Given a

list of n elements, the bubble sort requires up to n - 1 passes to sort the data.
The bubble concept is seen in Figure 8-21.

Figure 8-22 shows how the wall moves one element in each pass. Look-

ing at the first pass, we start with 56 and compare it to 32. Since 56 is not

less than 32, it is not moved and we step down one element. No exchanges

take place until we compare 45 to 8. Since 8 is less than 45, the two elements
was moved down, it is

exchanged and we step down I element. Because 8

compared to 78 and these two elements are exchanged.Finally,8 is com

pared to 23 and exchanged. This series of exchanges places 8 in the first loca-

tion and the wall is moved up one position.

are
now

494 Section 8.5 Sorting

Bubble up

UnsortedSorted

FIGURE 8-21 Bubble Sort Concept

Q23 78 45 8 32 56 Original list 23 45 78 56 After pass 3c
bu *— *Sorted UnsortedUnsorted

[jj 23 78 45 32 56 After pass 1 8 23 32 45 56 78 After pass 4— — — Sorted!
4 Sorted ^ **Unsorted

32 78 45 56 After pass 28

* Unsorted

FIGURE 8-22 Bubble Sort Example

Ihe bubble sort was originally written to “bubble up" the highest element
efficiency point ol view, it makes no difference whether

the high element is bubbled or the low element is bubbled. From a consis-
in the list. From an

tency point of view, however, it makes comparisons between the sorts easier il
all three of them work in the same manner. For that reason
to bubble the lowest key in each

, we have chosen
pass.

Like the selection sort, the bubble sort is quite simple. In each pass
through the data, controlled by the outer for loop, the lowest element is
bubbled to the beginning ol the unsorted segment of the array. The bubbling
process is done in the inner loop.

1 ach time it is executed, the inner for loop makes one pass through the
data. Whenever it finds two elements out ol sequence, it exchanges them. It
then continues with the next element.1bis process allows the smallest element
to be bubbled to the beginning of the array,while at the same time adjacent ele-
ments along the way are rearranged. The design is shown in Figure 8-23.

The bubble sort is shown in Program 8- 10.

1pi
Chapter 8 Arrays 495

0(Bubble Sort^
/ cur = 0 \
/ cur X
Vf+ cur < last M

/ walk = last \
wwalk X

V~“ walk > cur M

0
list[walk]

,< list [walk-1o
Exchange
cur & smlst(Return ^

?
0

FIGURE 8-23 Bubble Sort Design

PROGRAM 8-10 Bubble Sort
=== bubbleSort ===================:

Sort list using bubble sort. Adjacent elements are

compared and exchanged until list is ordered.
the list must contain at least one item

last contains index to last element in list

Post list rearranged in sequence low to high

1
2
3
4 Pre
5
6

*/7
void bubbleSort (int list [], int last)8

9 {
// Local Declarations

int temp;
10
11
12

// Statements
// Outer loop

for(int current = 0; current < last; current++)

13
14
15
16 {

// Inner loop: Bubble up one element each pass

for (int walker = last;
walker > current;
walker—)

if (list[walker] < list[walker - 1])

17
18
19
20
21

{22
continues

496 Section 8.5 Sorting

PROGRAM 8-10 Bubble Sort (continued)

= list[walker];
= list[walker - 1];

temp
list[walker]
list[walker - 1] = temp;

23
24
25

> // if

> // for current
return;
// bubbleSort

26
27
28
29 >

Program 8-10 Analysis If the data being sorted are already in sequence, the inner loop still goes through the
array element by element. One common modification is to stop the sort if there are

exchanges in the inner loop. This change requires the addition of a "sorted" flag.
We leave this modification to the practice sets at the end of the chapter.
no

Insertion Sort
The insertion sort algorithm is one of the most common sorting techniques
used by card players. As they pick up each card , they insert it into the proper
sequence in their hand.2

In the insertion sort, the list is divided into two parts: sorted and
unsorted. In each pass, the first element of the unsorted sublist is picked up
and transferred into the sorted sublist by inserting it at the appropriate place.
If we have a list of n elements, it will take at most n — 1 passes to sort the data
(Figure 8-24).

5:
0 5 k n - 1
* L - r 4

Sorted Unsorted

FIGURE 8-24 Insertion Sort Concept

Figure 8-2S traces the insertion sort through our list of six numbers,

l ach pass moves the wall as an element is removed from the unsorted sublist
and inserted into the sorted sublists.

2. As an aside, card sorting is an example of a sort that uses two pieces of data to sort: suit
and rank.

• n1

Chapter 8 Arrays 497

:

[~ 23 78 45 Original After
pass 38 32 56 32 56List

E

Unsorted Sorted

After
pass 1

After
I pass 48 | 23 32 45 7845 8 32 56

SortedUnsorted

3
23 45 After

pass 2 8 23 32 45 56 78 After
pass 58 32 56

3

Sorted Unsorted Sorted

FIGURE 8-25 Insertion Sort Example

The design of the insertion sort follows the same pattern we saw in both
the selection sort and the bubble sort; each iteration of the outer loop is a
sort pass. The inner loop inserts the first element from the unsorted list into
its proper position relative to the rest of the data in the sorted list. I he design
is shown in Figure 8-26.

oInsertion Sort

\ / walk = \V-I K cur ' 1\
t M \ walk >= 0 &&#

' M _JlocatedJ

cur = 1

cur <= last

located = false
temp <

list [walk]
list[walk + 1]
= temp temp = list(cur) list[walk + 1]

= list[walk]
located = trueo walk --

o I?
JReturn o

FIGURE 8-26 Insertion Sort Design

Program 8- 1 I shows the insertion soil.

498 Section 8.5 Sorting

PROGRAM 8-11 Insertion Sort

===== insertionSort ===
Sort list using Insertion Sort. The list is divided
into sorted and unsorted lists. With each pass, first
element in unsorted list is inserted into sorted list,

list must contain at least one element
last contains index to last element in list

Post list has been rearranged

:=======1
2
3
4

Pre5
6
7

* /8
void insertionSort (int list[], int last)9

10 {
// Statements
// Local Declarations

int walk;
int temp;
bool located;

1 1
12
1 3
1 4
1 5
1 6

// Statements
// Outer loop
for (int current = 1; current <= last; current+t)

1 7
1 8
1 9
2 0 {

// Inner loop: Select and move one element
located = false;
temp = list[current];
for (walk = current

if (temp < list[walk])

21
2 2
2 3

1; walk >= 0 && !located;)2 4
2 5
2 6 {
2 7 list[walk + 1] = list[walk];

walk—;
> // if

2 8
2 9
3 0 else
3 1 located = true;

list (walk + 1] = temp;
> // for

return;
// insertionSort

3 2
3 3
3 4
3 5 >

Program 811 Analysis Note how the exchange is worked in this sort. Before the inner loop starts, we put the
data from the current element into the hold area (temp). This is the first step in the
exchange. The loop then determines the correct position to place the element by start-
ing with the largest element in the sorted list and working toward the beginning. As it
searches, it spreads the sorted portion of the list by shifting each element one positionhigher in the list. When it locates the correct position, therefore, the data have
already been moved right one position and the current location is ''empty"; the sort
therefore simply places the saved element in its proper location, completing the
exchange.

1Chapter 8 Arrays 499

Testing Sorts
Now that we have written three sorts, howr do we test them? The answer is
that we write a simple test driver. The same test driver can he used for all three
sorts. The only changes necessary are
statement, and the function call (see highlighted statements). Program 8- 12
is set up to test the insertion sort.

in the include statement, the prototype

PROGRAM 8-1 2 Testing Sorts
/* Test driver for insertion sort.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <stdbool.h>
#include "P08-11.C"

5
6
7
8

Idefine MAX ARY SIZE 159
10

// Function Declarations

void insertionSort (int list[], int last);
11
12
13

int main (void)14
15 {

// Local Declarations
int ary[MAX_ARY_SIZE] = { 89, 72, 3, 15, 21,

57, 61, 44, 19, 98,
5, 77, 39, 59, 61 };

16
17
18
19

// Statements
printf("Unsorted: ");
for (int i = 0; i < MAX_ARY_SIZE; i++)

printf("%3d", ary[i]);

20
21
22
23
24

insertionSort (ary, MAX_ARY_SIZE - 1);25
26

printf("\nSorted : ");

for (int i = 0; i < MAX_ARY_SIZE; i++)

printf("%3d", ary[i]);

printf("\n");
return 0;

} // main

27
28
29
30
31
32

Results:
Unsorted:
Sorted :

5 77 39 59 613 15 21 57 61 44 19 9889 72
3 5 15 19 21 39 44 57 59 61 61 72 77 89 98

500 Section 8.5 Sorting

Sorts Compared
It is interesting to compare the three sorting algorithms. All three use two

ted loops. The outer loop is the
element toward the beginning of the array. The processing in the inner loop,
however, changes with each sort .

In the selection sort, the inner loop starts at the unsorted portion of the
and finds the smallest element in the unsorted area. Once located, it
the smallest element with the first unsorted element. It then moves the

in all three; it moves the wallsame onenes

array
swaps
wall and continues the sort. Note that all exchanges take place in the
unsorted portion of the array; the sorted elements are never touched.

While the selection sort starts at the beginning of the unsorted portion of
the array, the bubble sort starts at the end. Another difference between the
two is that the bubble sort may make multiple exchanges in each pass. While
bubbling its way to the beginning of the array, it exchanges all elements that
are out of sequence. Like the selection sort, once the wall is moved, the
sorted data is never touched.

The insertion sort takes a completely different approach. In each pass,
the first unsorted clement is inserted into the sorted portion of the array.
While it might appear that there are no exchanges in the insertion sort, there
are. As explained previously, the first unsorted element is moved to a hold
area. This is the first step in an exchange. Then, as it loops through the
unsorted portion of the array, elements are shifted higher. Each shift is the
equivalent of the second step in an exchange. Finally, when the correct loca-
tion is found, the third step ol the exchange moves the temporarily stored ele-
ment to its correct position.

I able 8- 1 summarizes the exchange and shift characteristics of these
three sorts.

Sort Exchanges Shifts
Selection Once for each pass

Several in each pass

Only partially in loop

Bubble

Insertion Zero or more in each pass

TABLE 8- 1 Sort Exchanges and Passes

Sort Conclusions
In this section, we have covered three classic sorts. With the exception of the
insertion sort , you generally will not find them implemented in production
systems. I he insertion sort is used as a subfunction in both Quicksort and

m
Chapter 8 Arrays 501

Singleton’s variation, Quickersort, which
purpose sorts.3

Historically, however, these three sorts
and faster sorting methods that you will study in a data structures course.

I he selection sort is the foundation of a sorting method called the heap sort;

the bubble sort is the foundation for Quicksort and Quickersort; and the
insertion sort is the foundation of a sorting method called Shell Sort.

considered the best general-are

the foundation of improvedare

8.6 Searching
Another common operation in computer science is searching, which is the
process used to find the location of a target among a list of objects. In the
case of an array, searching means that given a value, we want to find the loca-
tion (index) of the first element in the array that contains that value. The
search concept is shown in Figure 8-27.

Location wanted
(4)

a[0] a[1] a[2) a[3] a[4] a[5] a[6] a[7] a[8) a[9] a[10] a[11]

21 36 14 62 91 8 22 7 81 77 104

Target given
(6 2)

FIGURE 8-27 Search Concept

The algorithm used to search a list depends to a large extent on the struc-
ture of the list . Since our structure is currently limited to arrays, we will study
searches that work with arrays. As we study other structures, we will study
different search techniques.

There are two basic searches for arrays: the sequential search and the
be used to locate an item in anybinary search. The sequential search can

The binary search, on the other hand, requires the list to be sorted.arrav.

Sequential Search
The sequential search is used whenever the list is not ordered. Generally,

the technique only for small lists or lists that are not searched often. In
we

use

3. For a discussion of Quicksort, see Richard F. Gilberg and Behrou/ A. Forouzan, Data Structures:

A Pseudocode Approach With C. Pacific Grove, CA: Brooks/Cole, 1998.
I

502 Section 8.6 Searching

other cases we would first sort the list and then search it using the binary
search discussed later.

In the sequential search,we start searching for the target from the begin-
continue until we find the target or until we are surening of the list, and we

that it is not in the list. This gives us two possibilities; either we find it or we
reach the end of the list. Figure 8-28 traces the steps to find the value 62. We
first check the data at index 0. then 1, 2, and 3 before finding the 62 in the
fifth element (index 4).

location wanted'

index \
4

a(0] a[1] a[2] a[31 a[4] a[5] a[6] a[7] a(8] a[9] a[10) a[11]
4 l 21 36 14 62 91 8 22 7 81 77 10

Target given
^ < 621

1 62 != 4
index

afO] a[1) a[2] a[3] a[4] a[5] a[6] a(7] a[8) a[9] a[10] a|11]
4 | 21 ; 36 14 62 91 77 108 22 7 81

2 62 != 21
index

afO) a[l) a[2) a[3] a[4] a[5] a(6) a[7] a[8] a[9] a[10) a[11)
4 21 [36» 14 62 91 8 22 7 81 77 10

3 62!= 36
index

a[0] a[1] a[2j a[3] a[4] a[5) a[6] a[7] 3(8] a[9] a[10] a[11]
4 21 36 14 62 91 77 108 22 7 81

4
62 != 14

index
a[0] a[1] a[2] a[3T a[4] a[5] a[6] a[7] a|8) a[9 j a[10) a[11]

4 21 36 14 62 | 91 8 22 77 107 81

62 == 62

FIGURE 8-28 Locating Data in Unordered List

But what il the target is not in the list? Then we have to examine each cle-
ment until we reach the end ol the list. Figure 8-29 traces the search fora target
ol 2. W hen we detect the end ol the list, we know that the target does not exist.

Let s write the sequential search function. A search function needs to tell
the calling function two things: Did it find the data it
did. what is the index at which the data were found?

But a function can return only one value. For search functions, we use
the ietuin value to designate whether we found the target or not. To ‘‘return
the index location where the data were found, we will

I he search Junction requires four parameters: the listthe index to the last element in the list, the target, and the address where the
found element's index location will he stored. Althouglwithout passing the index to the last element, that would

looking lor? If itwas

call-by-address.
searching,

use
we are

could write it
the search

1 we
mean

1Chapter 8 Arrays 503

would have to know how many elements are in the list. To make the function
as flexible as possible, therefore, we pass the index of the last data value in
the array. I his is also a good structured design techniq
tion, we are now ready to create the design. It is shown in Figure 8-30.

ue. With this informa-

\

I Target

index A.
a[0] a(1) a(2] a[3] a[4) a[5] a[6] a[71 a[01 a[9] a(10) a[11]

4 21 36 14 62 91 8 22 7 81 77 10

1 72 1= 4
index

a[0Pa[1) a|2] a[3] a[4] a|5] a[6] a[7] a(8) a(9) a[10] a[11]

4 21] 36 14 62 91 0 22 7 81 77 10

5 72 != 21

index
a(0) a|i) a|2) a[3] a]^a[5) a[6] a {7) a[8] a[9) a|10] a[ll]

4 I 21 I 36 I 14 I 62 I 91 I 0 | 22 I 7 I 81 1 77 I 10

12 72 != 91

index
a(0] a(1] a[2] a[3! a(4] a[5 j a(h] n • r

22 7 81 774 21 36 14 62 91 8 10

Index off
end of listNote : Not all test points are shown

FIGURE 8-29 Unsuccessful Search in Unordered List

(SeqSearch ^
looker = 0

/ looker < last \/ && target != \
\ list[looker] M

looker++

*locn = looker
set found

J(Return

FIGURE 8-30 Sequential Search Design

The code is shown in Program 8- 13.

504 Section 8.6 Searching

PROGRAM 8-13 Sequential Search
==== seqSearch ===

Locate target in an unordered list of size elements,
list must contain at least one item
last is index to last element in list
target contains the data to be located
locn is address for located target index
Found: matching index stored in locn

return true (found)
Not Found: last stored in locn

1
2
3 Pre
4
5
6

Post7
8
9

return false (not found)10
*/11
bool seqSearch (int list[], int

int target, int* locn)
last,1 2

1 3
1 4 {

// Local Declarations
int looker;
bool found;

1 5
1 6
1 7
1 8

// Statements
looker = 0;
while (looker < last && target != list[looker])

looker++;

1 9
2 0
21
2 2
2 3
2 4 *locn = looker;

found = (target == list[looker]);
return found;

> // seqSearch

2 5
2 6
2 7

Program 8- 13 Analysis Program 8-13 is simple, but it does merit some discussion. First, why did we use a
while statement? Even though we know the limits of the array, it is still an event-
controlled loop. We search until we find what we are looking for or reach the end of
the list. Finding something is an event, so we use an event loop.

Next, note that there are two tests in the limit expression of the loop. We have
coded the test for the end of the array first. In this case, it doesn't make any difference
which test is first from an execution point of view, but in other search loops it might. You
should get in the habit of coding the limit test first because it doesn't
value and is therefore safer.

The call-by-address use for locn also merits discussion. Since we need to pass the
found location back to the variable in the calling program, we need to pass its address
to the function. A typical call to the search would look like the statement shown below.

indexeduse an

found = seqSearch (stuAry, lastStu, stuID, &locn);

Notice how succinct this function is. In fact, there are more lines of documentationthan there are lines of code. The entire search is contained in one while statement. With
this short code, you might be tempted to ask, "Why write the function at all? Why not

j\ \ ' l
Chapter 8 Arrays 505

just put the one line of code wherever it is needed?'' The answer lies in the structured
programming concepts that each function should do only one thing and in the concept
of reusability. By isolating the search process in its own function, we separate it from the
process that needs the search. This is better structured programming. This also makes
the code reusable in other parts of the program and portable to other programs that
need searching.

One final point: This function assumes that the list is not ordered. If the list were
ordered, we could improve the search slightly when the data we were looking for were
not in the list. We will leave this improvement for a problem at the end of the chapter.

S’!

Binary Search
The sequential search algorithm is very slow. If we have an array of 1 million
elements, we must do 1 million comparisons in the worst case. If the array is

not sorted, this is the only solution. But if the array is sorted, we can use a

more efficient algorithm called the binary search. Generally speaking, we

should use a binary search whenever the list starts to become large. The defi-
nition of large is vague. We suggest that you consider binary searches when-

ever the list contains more than 50 elements.
The binary search starts by testing the data in the element at the middle

of the array. This determines if the target is in the first half or the second half
of the list. If it is in the first half, we do not need to check the second half. If
it is in the second half, w'e don’t need to test the first half. In other words,
either way we eliminate half the list from further consideration. We repeat

this process until we find the target or satisfy ourselves that it is not in the list.
To find the middle of the list, we need three variables, one to identify the

beginning of the list, one to identify the middle of the list, and one to identify
the end of the list. We will analyze two cases: the target is in the list, and the
target is not in the list.

Target Found
Figure 8-51 shows how we find 22 in a sorted array. We descriptively call our

three indexes first, mid, and last. Given first as 0 and last as I I

calculate mid as follows:4
we

can

mid = (first + last) / 2;

Since the index mid is an integer, the result will be the integral value of
the quotient; that is, it truncates rather than rounds the calculation. Given

the data in Figure 8-3 I, mid becomes 5 as a result of the first calculation.

mid = (0 + 11) / 2 - 1 1 / 2 5

work if the number of elements in the array is greater than half
4. This formula does not

MAX INT. In that case, the correct formula is: mid = first + (last first) 2.

506 Section 8.6 Searching

first mid lastmm RT (JargetT22)

afOl a[1] a[2l a[3] a[4]
~ a[5] a[6] a[7] a[8] a[9] a[TO]a[11]

4 I 7 I 8 10 I 14 21 I 22 I 36 I 62 I 77 I 81 91

first mid last
rinrinrTr22 > 21

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10)a[11]
4 7 [8 10 | 14721 | 22 | 36 | 62 | 77 | 81 | 91

first mid last 22 < 62

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[;7] a[8] a[9] a[10]a[11]
4 7 8 10 14 21 22 36 62 77 81 91

first mid last 22 == 22CDCDCD
Function terminates

FIGURE 8-31 Binary Search Example

At index location 5, we discover that the target is greater than the list
value (22 > 21). We can therefore eliminate the array locations 0 through 5.
(Note that mid is automatically eliminated.) To
mid + 1 to first and repeat the search.

I he next loop calculates mid with the
mines that the midpoint is now 8.

search , we assignnarrow our

new value for first and deter-

mid = (6 + 1 1) / 2 = 1 7 / 2 = 8

Again we test the target to the value at mid, and this time we discover
that the target is less than the list value (22 < 62). This time we adjust the
ends ol the list by setting last to mid — 1 and recalculate mid. This elimi-
nates elements 8 through 1 1 from consideration. We have
index location 6, whose value matches our target. This stops the search^. Fig-
ure 8-31 traces the logic we have just described.

Target Not Found
\ more interesting case occurs when the target is not in the list. We must con-

oui search algorithm so that it stops when we have checked all possible
locations. I his is done in the binary search by testing for first and last
crossing; that is, we are done when first becomes greater than last. Thus,

arrived atnow

struct

l 5. To terminate the search, we set first to last + I . See Program 8-14.

’ ?
T

!

Chapter 8 Arrays 507

only two conditions terminate the binary search algorithm: Either the target is
(ound or first becomes larger than last. For example, imagine
lind I 1 in our binary search array. This situation is shown in Figure 8-32.

In this example, the loop continues to narrow the range as we saw in the
successful search, until we are examining the data at index locations 3 and 4.
These settings of first and last set the mid index to 3.

we want to

m i d = (3 + 4) / 2 = 7 / 2 3

I he test at index location 3 indicates that the target is greater than the
list value, so we set first to mid + 1 or 4. We now test the data at location 4
and discover that 1 1 < 1 4.

m i d = (4 + 4) / 2 = 8/ 2 = 4

At this point, we have discovered that the target should be between two
adjacent values; in other words, it is not in the list. We see this algorithmi-
cally because last is set to m i d - 1, which makes first greater than last ,

the signal that the value we are looking for is not in the list.

first mid last~
0

~11 5
~l 111

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10)a[11]

4 I 7 I 8 I 10 I 14 I 21 I 22 I 36 62 I 77 81 91

first mid last

^nnrinr 11 < 21

a[0] a[1] a[2] a[3] a[4) a[5] a[6) a[7] a[8] a[9] a[10)a[11]

4 I 7 I 8 I 10 I 14 I 21 22
'

36 I62 ' 77 81 T 91

first mid last

a[0] a[11 a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10]a[11]

8 I 10 14 I 21 I 22 I 36 I 62 I 77 | 81 | 914 7

first mid last
11 > 10 npnprjj

T
a[3) a[4] a[5] a[6] a[7] a[8] a[9] a[10]a[11]

to] 14[2?] 22 I 36 I 62 I 77 l 81] 91 || 4 | 7 | 8
first mid last

11 < 14 (2JCDCD
Function terminates

FIGURE 8*32 Unsuccessful Binary Search Example

'1

508 Section 8.6 Searching

Once we fully understand the logic,we can design the program. Figure 8-33
contains the design in the form of a flowchart.

oBinary

mid =
(first + last) / 2first = 0

last = end

first <= Iasi —

o target <
list [mid] first = mid + 1

o last = mid- 1first =

*locn = mid
set found ?

6(Return ^
FIGURE 8-33 Design for Binary Search

Program 8-14 contains the implementation of the binary search algo-
rithm we have been describing. It is constructed along the same design we
saw for the sequential search. The first three parameters describe the list and
the target we are looking lor, and the last parameter contains the address into
which we place the located index. One point worth noting: When we termi-
nate the loop with a not-found condition, the index returned is unpredict-
able—it may indicate the node greater than or less than the value in target.

PROGRAM 8-l 4 Binary Search
1 / * == === binarySearch ==== :====
2 Search an ordered list using Binary Search

Pre3 list must contain at least one element
4 end is index to the largest element in list

target is the value of element being sought
locn is address for located target index
Found: locn = index to target element

return 1 (found)
Not Found: locn = element below or above target

return 0 (not found)

5
6
7 Post
8
9

10

continuei

nFy
Chapter 8 Arrays 509

PROGRAM 8-14 Binary Search (continued)

* /1 1
1 2 bool binarySearch (int list[], int

int target, int* locn)
end,

1 3
1 4 {

// Local Declarations
int first;
int mid;
int last;

1 5
1 6
1 7
1 8
1 9

// Statements
first = 0;
last = end;
while (first <= last)

2 0
2 1
2 2
2 3
2 4
2 5 mid = (first + last) / 2;

if (target > list[mid])
// look in upper half

first = mid + 1;
else if (target < list[mid])

// look in lower half
last = mid - 1;

2 6
2 7
2 8
2 9
3 0
3 1
3 2 else

// found equal: force exit

first = last + 1;
} // end while

*locn = mid;
return target == list [mid];

} // binarySearch

3 3
3 4
3 5
3 6
3 7
3 8

87 Two-Dimensional Arrays
The arrays we have discussed so far are known as one-dimensional arrays

because the data are organized linearly in only one direction. Many appli-
cations require that data he stored in more than one dimension. One corn-

example is a table, which is an array that consists of rows and
mon
columns. Figure 8-34 shows a table, which is commonly called a two-
dimensional array.

Although a two-dimensional array is exactly what is shown by Figure 8-34,

C looks at it in a different way. It looks at the two-dimensional array as an

array of arrays. In other words, a two-dimensional array in C is an array of

-dimensional arrays. This concept is shown in Figure 8-35.
one

510 Section 8.7 Two-Dimensional Arrays

c
.2w>c^a) </>

it
il

Second Dimension
v (columns) >

FIGURE 8-34 Two-dimensional Array

i
WBBKm
table [0][0] table [0][1] table [0][2] table [0][3]

table [0]

J I I
table [1][0] table [1][1] table [1][2] table [1][3]

table [1]

table [2][0] table [2][1] table [2][2] table [2][3]
table [2]

I I [
table [3][0] table [3](1] table [3][2] table [3][3]

table [3]

table [4][0] table [4][1] table [4][2] table [4][3]
table [4]

table

FIGURE 8-35 Array Of Arrays

Declaration
Iwo-dimensional arrays, like one-dimensional arrays, must
before be ing used. Declaration tells the compiler the name of the array, the
t \ pe < >l each element, and the size of each dimension. Two-dimensional
arrays can

be declared

he either fixed length or variable length.

nm

Chapter 8 Arrays 511

As we saw with the one-dimensional array, the size of a fixed-length array
is a constant and must have a value at compilation time. For example, the
array shown in Figure 8-35 can he declared and defined as follows:

int table[5][4]; 1 *1

By convention, the first dimension specifies the number of rows in the
array. The second dimension specifies the number of columns in each row.

The rules for variable-length arrays follow the same concepts. To define a
variable-length array, we would use the following statement.

int table5x4 [rows][cols];

Remember, however, that the dimensions must be set before the declara-
tion or a compiler error occurs.

Initialization
As we noted before, the definition of a fixed-length array only reserves mem-
ory for the elements in the array. No values will he stored. If we don't initial-
ize the array, the contents are unpredictable. Generally speaking, fixed-length
arrays should be initialized.

Initialization of array elements can he done when the array is defined. As
previously noted, variable-length arrays may not he initialized when they are
defined. As with one-dimensional arrays, the values must he enclosed in braces.
This time, however, there is a set of data for each dimension in the array. So for
table, we will need 20 values. One way to initialize it is shown below.

int table[5][4] =
{ 0, 1, 2, 3, 10, 11, 12, 13, 20, 21,

22, 23, 30, 31, 32, 33, 40, 41, 42, 43};

We highly recommend, however, that nested braces he used to show the

exact nature of the array. For example, array table is better initialized as

shown below.

int table [5][4] =
{
{ 0, 1, 2, 3},
{10, 11, 12, 13},
{20, 21, 22, 23},
{30, 31, 32, 33},
{40, 41, 42, 43}

// table> ;

In this example, we define each row as a one-dimensional array of four

elements enclosed in braces. The array of five rows also has its set of braces.

512 Section 8.7 Two-Dimensional Arrays

Note that we use commas between the elements in the rows and also com-
mas between the rows.

When we discussed one-dimensional arrays, we said that if the array is
pletely initialized with supplied values, we do not need to specify the size

of the array. This concept carries forward to multidimensional arrays, except
be omitted. All others must he specified.

com

that only the first dimension can
The format is shown below.

int table [][4] =
{
{ 0 , 1 , 2 , 3 } ,
{10, 11, 12, 13},
{20, 21, 22, 23},
{30, 31, 32, 33},
{40, 41, 42, 43}

// table} }

To initialize the whole array to zeros, we need only specify the first value
as shown below.

int table [5][4] = {0};

Inputting Values
Another way to (ill up the values is to read them from the keyboard. For a
two-dimensional array, this usually requires nested for loops. If the array is an
n by m array, the first loop varies the row from zero to n — 1. The second loop
varies the column from zero to m - 1 . The code to fill the array in Figure 8-35
is shown below.

for (row = 0; row < 5; row++)
for (column = 0; column < 4; column++)

scanf ("%d", stable [row][column]);

W lien the program runs, we enter the 20 values for the elements and
they are stored in the appropriate locations.

Outputting Values
We can also print the value of the elements one by <

loops. Again, the first loop controls the printing of the
loop controls the printing ol the columns. To print the table in its table format,
a newline is printed at the end of each row. The code to print Figure 8-35 is
shown below.

one, using two nested
and the secondrows

for (row = 0; row < 5; row++)

continual

n\ 'TTl / l

Chapter 8 Arrays 513

for (column = 0; column < 4; column++)
printf("%8d", table [row][column]);

printf("\n");
> // for

Accessing Values
Individual elements can be initialized using the assignment operator.

table[2][0] = 23;
table[0][1] = table[3][2] + 15;

Let s assume that we want to initialize our 5 x 4 array as shown below.

0 0 0 1 0 2 03
10 1 1 1 2 13
2 0 2 1 2 2 23
30 31 32 33
40 41 42 43

One way to do this would be to code the values hv hand . However, it is
much more interesting to examine the pattern and then assign values to the
elements in the array using an algorithm. What pattern do you see? One is that
the value in each element increases by one from its predecessor in the row.
Another is that the first element in each row is the row index times 10. With
these two patterns, we should he able to w rite nested loops to fill the array. The
code to initialize the patterns for the array is shown in Program 8-15.

PROGRAM 8-15 Fill Two-dimensional Array

This function fills array such that each array element

contains a number that, when viewed as a two-digit
integer, the first digit is the row number and the

second digit is the column number,

table is array in memory

numRows is number of rows in array

Post array has been initialized

1
2
3
4
5
6 Pre
7
8

*/9
void fillArray (int table[][MAX_COLS], int numRows)10

1 1 {
// Statements

for (int row = 0;
1 2

row < numRows; row++)13
{14
table [row](0] = row * 10;15

continued

514 Section 8.7 Two-Dimensional Arrays

PROGRAM 8-15 Fill Two-dimensional Array [continued)

for (int col — 1; col < MAX_COLS; col++)
table [row][col] = table [row][col - 1] + i;

16
17

> // for
return;

} // fillArray

18
19
2 0

Memory Layout
As discussed earlier, the indexes in the definition of a two-dimensional array
represent rows and columns. This format maps to the way the data are laid
out in memory. If we were to consider memory as a row of bytes with the low-
est address on the left and the highest address on the right, then an array
would be placed in memory with the first element to the left and the last ele-
ment to the right. Similarly, if the array is a two-dimensional array, then the
first dimension is a row of elements that are stored to the leit. This is known
as “row-major" storage and is seen in Figure 8-36.

00 01 02 03 04
12 13 1410 11

User’s View

row 0 row 1
00 01 02 03 04 10 11 12 13 14

[0][0] 0][1] [0][2 0][3] 0][4] 1][0] 1][1] 1][2] 1][3] [1][4]

Memory View

FIGURE 8-36 Memory Layout

Memory Example: Map One Array to Another
lo Iurther examine how data arc laid out in memory, look at Program 8- 16,
which converts a two-dimensional array to a one-dimensional array.
Convert Table to One-dimensional Array

/* This program changes a two-dimensional array to the
corresponding one-dimensional

Written by:

PROGRAM 8- 16

1
2 array.
3

continuei

6. At least one \
data by columns.

language, FORIRAN, reverses the data values placement in memory. It stores

1m
Chapter 8 Arrays 515

PROGRAM 8-16 Convert Table to One-dimensional Array (continued)

Date:4
*/5
#include <stdio.h>
#define ROWS 2
tdefine COLS 5

6
7
8
9

int main (void)10
11 {

// Local Declarations
int table [ROWS] [COLS] =

1 2
13
14 {

15 {00, 01, 02, 03, 04},
{10, 11, 12, 13, 14}
}; // table

int line [ROWS * COLS];

16
17
18
19

// Statements
for (int row = 0; row < ROWS; row++)

for (int column = 0; column < COLS; column++)

line[row * COLS + column] = table[row][column];

2 0
21
2 2
23
24

for (int row = 0; row < ROWS * COLS; row++)
printf(" %02d ", line[row]);

25
26
27
28 return 0;

} // main29

Results:
00 01 02 03 04 10 11 12 13 14

Program 8-16 Analysis In Program 8-16 we use nested for loops to make the conversion. The first loop con-
trols the table rows, and the second loop controls the columns within each row. Since

know how many elements are in each row of the two-dimensional array, we can

map it to the one-dimensional array by simply multiplying the row index by the num-

ber of elements in each row. When we are in row zero, we multiply the number of
elements in one row (designed by the defined constant, COLS) by the row number (0)

and add the result to the column. This maps the elements in the two-dimensional array

to the beginning of the receiving array. When we are in row 1, we add the number of
elements in one row times the row (1) to the current column, which maps the elements
to the next set (in this case, 5...9) . To generalize, we add the product of the row and
the number of elements in a row to the column to determine the receiving location.

Study the technique we used to define the number of elements in the rows and col-
Note how they are used not only to define the arrays but also to control the loop

execution. Copy this program, and then run it with different row-column sizes to help
understand the differences. (You will need to change the initialization also. You might
want to consider initializing the values by assignments within for loops.)

we

umns.

516 Section 8.7 Two-Dimensional Arrays

Passing A Two-Dimensional Array
With two-dimensional arrays, we have three choices for passing parts of the
array to a function. (1) We can pass individual elements, as shown in “Passing
Individual Elements” in Section 8.3. (2) We can pass a row of the array. This
is similar to passing an array, as we saw in "Passing the Whole Array” in
Section 8.3. (3) Finally, we can pass the whole array.

Passing A Row
Passing a row of the array is rather interesting. We pass a whole row by
indexing the array name with only the row number. Referring to Figure 8-37,
we see that a row is four integers. When we pass the row, therefore, the
receiving function receives a one-dimensional array of four integers. The for
loop in print_square prints the square ol each ol the lour elements. After
printing all the values, the function advances to the next line on the console
and returns. The for loop in main calls print_square five times so that the
final result is a table of the values squared shown on the monitor.

k#def ine MAXROWS 5
#def ine MAXCOLS 4
/ / Funct ion Declara t ions
void pr in t square (in t []) ;
in t main (vo id)

table
0 1 2 3{

in t tab le (MAXROWS) (MAXCOLS) = 10 12 1311{
{ 0 , 1, 2 , 3 > ,
{ 10, 11, 12 , 13 } ,
{ 20 , 21, 22 , 23 } ,
{ 30 , 31, 32 , 33 },
{ 40 , 41, 42 , 43 >

}; / * tab le * /

f y 20 21

\ 30 31

40 41

22 23

32 33

4342r
for (in t row = 0 ; row < MAX ROWS

pr in t_square (t ab le [row]) ;
; row++)

address
of a rowre turn 0;

) / / main

kvoid pr in t_square (in t x (])
{ X

for (in t co l = 0; co l < MAXCOLS; co l++)
p r in t f (" % 6d ” , x [co l] * x [co l]) ;

pr in t f (" \ n") ;
re turn ;

} / / pr in t square

0 14 9
100 121 144 169
400 441 484 529
900 961 1024 1089

1600 1681 1764 1849

FIGURE 8-37 Passing a Row

' I '

Chapter 8 Arrays 517

Note that we have declared the array dimensions as defined constants.
I his allows us to symbolically refer to the limits of the array in both the array
definition and the Jor loops. Now, if we need to change the si/e
all that is necessary is to change the define declarations, and any array initial-
izers, and recompile the program.

We could code the print function array in Figure 8-37 as a variable-
length array of one dimension. Io do so, we would need to change the func-
tion definition and the calling statement to pass the array size as shown in the
following example.

of the array,

// Function call
print_square (MAX_COLS, table);

// Function definition
void print_square (int size, x[size])

> // print_square
Passing the Whole Array
When we pass a two-dimensional array to a function, we use the array name
as the actual parameter just as we did with one-dimensional arrays. The for-
mal parameter in the called function header, however, must indicate that the
array has two dimensions. Ibis is done hv including two sets of brackets, one
for each dimension, as shown below.

double average (int table[][MAX_COLS])
Note that again we do not need to specify the number of rows in a fixed-

length array. It is necessary, however, to specify the size of the second dimen-

sion. Thus, we specified the number of columns in the second dimension
(MAX_COLS). In summary, to pass two-dimensional arrays to functions:

1. The function must he called by passing only the array

2. In the function definition, the formal parameter is a two-dimensional array,
with the size of the second dimension required for a fixed-length array.

3. In the function definition for a variable-length array, the size of all
dimensions must be specified.

For example, we can use a function to calculate the average of the integers in

array. In this case, we pass the name of the array to the function as seen in

Figure 8-38.

name.

an

518 Section 8.7 Two-Dimensional Arrays

table#define MAX_ROWS 5
#define MAX_COLS 4
// Function Declarations
double average (int [][MAX_COLS]);
int main (void)

1 2 3
11 12 13
21 22 23

{
31 32 33double ave;

int table[MAXROWS][MAX__COLS] =
41 42 43{

{ 0, 1, 2, 3 },
{ 10, 11, 12, 13 },
{ 20, 21, 22, 23 },
{ 30, 31, 32, 33 },
{ 40, 41, 42, 43 >
}; // table

= average (table);ave

return 0;
} // main

Address
of table

double average (int x(](MAX_COLS])
{

double sum = 0;
for (int i = 0; i < MAXROWS; i++)

for (int j = 0; j < MAX_COLS; j++)
sum += x [i](j];

return (sum / (MAX ROWS *
} // average

X

MAXCOLS)); sum

FIGURE 8-38 Calculate Average of Integers in Array

EXAMPLE 8-5 Two-dimensional Array
Write a program that Fills the left-to-right diagonal of a square matrix (a two-
dimensional array with an equal number of rows and columns) with zeros,
the lower left triangle with -Is, and the upper right triangle with + ls. The
output ol the program, assuming a six-by-six matrix is shown in Figure 8-39.

FIGURE 8-39 Example of Filled Matrix

Chapter 8 Arrays 519

t he program code is shown in Program 8-17.

PROGRAM 8- 17 Fill Matrix

/* This program fills the diagonal of a matrix (square
array) with 0, the lower left triangle with -1, and

the upper right triangle with 1.
Written by:
Date:

1
2 si
3
4
5

*/6
#include <stdio.h>7

8
int main (void)9

10 {
// Local Declarations

int table [6](6];
11
12
13

// Statements
for (int row = 0; row < 6; row++)

for (int column = 0; column < 6; column++)

if (row == column)
table [row][column] = 0;

else if (row > column)
table [row][column] = -1;

14
15
16
17
18
19
20
21 else

table [row][column] = 1;22
23

for (int row = 0; row < 6; row++)24
25 {

for (int column = 0; column < 6; column++)

printf("%3d", table[row][column]);

printf("\n");
} // for row

return 0;
// main

26
27
28
29
30
31 }

Program 8- 1 7 Analysis This i rather simple pattern problem, similar to many we saw in Chapter 6. The
only difference is that now we are creating the pattern in array elements. Since there
are two dimensions, we need two loops to control the pattern. If the row equals the
column, we assign 0 to the element. If the row is greater than the column, then
in the lower half of the matrix, so we assign -1. And if the row is less than the col-

then we are in the upper half of the matrix and we assign +1.

is a

we are

umn,

8.8 Multidimensional Arrays
Multidimensional arrays can have three, four, or more dimensions. Figure 8-40

shows an array of three dimensions. Note the terminology used to describe

520 Section 8.8 Multidimensional Arrays

the array. The hrst dimension is called a plane, which consists of rows and
columns. Arrays of four or more dimensions can be created and used, but
they are difficult to draw.

o

Second Dimension) 2
s. (rows)

3
2

0

&&
0 1 2 3

/"Third Dimension"/
x^ fcolumns)

^^
FIGURE 8-40 A Three-dimensional Array (3 x 5 x 4)

.Although a three-dimensional array is exactly what is shown in Figure 8-40.
the C language looks at it in a different way. It takes the three-dimensional array
to be an array ol two-dimensional arrays. It considers the two-dimensional
array to he an array ol one-dimensional arrays. In other words, a three-
dimensional array in C is an array of arrays of arrays. This concept also holds
true lor arrays ol more than three dimensions. The C view of a three-
dimensional array is seen in Figure 8-41.

Declaring Multidimensional Arrays
Multidimensional arrays, like one-dimensional arrays, must he declared
before being used. Declaration tells the compiler the name of the array, the
type of each element, and the size of each dimension. The size of the fixed-
length array is a constant and must have a value at compilation time. The
three-dimensional array seen in Figure 8-41 can he declared as follows fo ra
fixed-length array.

int table[3][5][4];

Ihe definition for the same table as a
variables, one for the rows, one for the columns, and

variable-length array requires three
for the planes.

(»i\ cn these variables, it would be defined as shown in the following example.one

int table[planes][rows][cols];

'HJI
Chapter 8 Arrays 521

201 203200 202
table [2][0][0] table [2][0][1] table [2][0][2] table [2][0][3]

100 l 101
table [1][0][0] table [1][0][1] table [1][0][2] table [1][0][3]

103102
213
[2][1][3]

I 30 1 2
113table [0][0][0] table [0][0][1] table [0][0][2] table [0][0][3] 2231][1][3)

table [0][0] [2][2][3]

10 11 12 13
123table [0][1][0] table [0][1][1] table [0][1][2] table [0][1][3] 233[1][2][3]

table [01(1] [2](3][3]

21 22 2320 133table [0][2][0] table [0][2][1] table [0][2][2] table [0][2][3] 243[1][3][3]
table (0][2) [2][4][3]

table[2]31 32 3330 143table [0][3][0] table [0][3)[1] table [0][3][2] table [0][3][3]
MM3]

table [0][3]
table[1]

42 | 43
table [0][4][0] table [0][4][1] table [0)[4][2] table [0][4][3]

4140

table[0]table [0][4]

FIGURE 8-41 C View of Three-dimensional Array

Initialization
As we said before, declaration and definition only reserve space for the ele-
ments in the array. No values will he stored in the array. If we want

values, we must either initialize the elements, read values from the keyboard,
or assign values to each individual element. Following the rules we discussed
for one- and two-dimensional arrays, only fixed-length multidimensional

be initialized when they are defined.

to store

arrays can
Once more, initialization is simply an extension of the concept we saw

for initializing a two-dimensional array (see Initialization in Section 8. /).
For the three-dimensional array, we nest each plane in a set of brackets. For

each plane, we bracket the rows as we did for the two-dimensional array.
When we group the data by plane and row as we have done in the following

code, the reader will be able to visualize the array with ease. We have added

comments to make it even easier to read the values.

int tablet 3][5][4] -
{

// Plane 0{
continued

If

522 Section 8.9 Programming Example — Calculate Averages

// Row O
// Row 1
// Row 2
// Row 3
// Row 4

{0, 1, 2, 3},
{10, 11, 12, 13},
{20, 21, 22, 23},
{30, 31, 32, 33},
{40, 41, 42, 43}

> ,
// Plane 1
{100, 101, 102, 103},
{110, 111, 112, 113},
{120, 121, 122, 123},
{130, 131, 132, 133},
{140, 141, 142, 143}

{
// Row 0
// Row 1
// Row 2
// Row 3
// Row 4

> ,
// Plane 2
{200, 201, 202, 203},
{210, 211, 212, 213},
{220, 221, 222, 223},
{230, 231, 232, 233},
{240, 241, 242, 243}

{
// Row 0
// Row 1
// Row 2
// Row 3
// Row 4

>
}; // table

As we saw previously, the planes size, and only the plane’s size, does not
need to he specified when we use explicit initialization. The size of all dimen-
sions after the first must he explicitly stated.

Ot course, if we want to initialize all the elements to zero, we can simply
initialize only the first element to zero and let the compiler generate the code
to initialize the rest of the array.

int table [3][5][4] = {0};

8.9 Programming Example — Calculate Averages
In Chapters 4 and 5 we introduced the software engineering concept ot top-
down development and a programming concept known as incremental devel-
opment. In this chapter, we develop example that contains many of the
programming techniques found in array problems and implement it i
mentally. It contains three arrays: a two-dimensional array of integers and two
one-dimensional arrays of averages, one for rows and

When

an
mcre-

one for columns.
rk with a lurge program with many different data structures,

see how the*

to ^raw a picture of the arrays. We can then

the strutir TT^ t0 SO
,ve problem. A picture of

arra> structures and the.r relationships is shown in Figure 8-42

we
in this case three

Ti \

Chapter 8 Arrays 523

rowAve

columnAve

FIGURE 8-42 Data Structures For Calculate Row-Column Averages

The program begins by requesting the user provide data for a two-
dimensional array. Once the array has been filled, the program calculates the
average of each row and places it in a parallel array of row averages. It then
calculates the average lor each column and places it in an array of column
averages. Although we have represented the column-average array horizon-
tally and the row-average array vertically, they are both one-dimensional
arrays.

When all the calculations are complete, the program calls a I unction to

print the array with the row averages at the end of each row and the column
averages at the bottom of each column. The structure chart for the program
is seen in Figure 8-43.

calculate
Averages

print
Tables

column
Average

rowgetData Average

FIGURE 8-43 Calculate Row-Column Average Design

First Increment: main
In our previous examples, the hrst increment included main and its First sub-

function. Because our data are more complex, we limit it to just main in this

example. The First increment contains the global include statements

anticipate needing and the known data delinitions. In main we define our

local structures, including the three arrays. We then compile the program

we

524 Section 8.9 Programming Example — Calculate Averages

and correct any coding errors found by the compiler. Note that we don’t
no output at this stage. Program 8-18

run
the program because it produces
tains the code.

con-

PROGRAM 8-18 Calculate Row and Column Averages: main
/* Read values from keyboard into a two-dimensional

array. Create two one-dimensional arrays that
contain row and column averages.

Written by:
Date:

1
2
3
4
5

*/6
#include <stdio.h>7

8
#define MAX_ROWS 5
#define MAX COLS 6

9
10
1 1

int main (void)12
13 {

// Local Declarations
int table

14
15 [MAX ROWS][MAX COLS];
16

float rowAve17 [MAX_ROWS] = {0};
float columnAve [MAX_COLS] = {0};18

19
// Statements

return 0;
> // main

20
21
22

Second Increment: Get Data
I laving verified that mum is error free
point we add the necessary function declaration and a print loop in main to
display the table. I he code is shown in Program 8-19.

ready to write get data. At thiswe are>

PROGRAM 8- 1 9 Calculate Row and Column Averages: Get Data
/* Read values from keyboard into a two-dimensional

array. Create two one-dimensional arrays that
contain row and column

Written by:
Date:

1
2
3 averages.
4
5

*/6
#include <stdio.h>7

8
9 #define MAX ROWS 5

continue

ft]if

Chapter 8 Arrays 525

PROGRAM 8-19 Calculate Row and Column Averages: Get Data (continued)

#define MAX COLS 610
11

// Function Declaration
void getData

12
13 (int table[][MAX_COLS]);
14

int main (void)15
16 {

// Local Declarations
int table

17
18 [MAX_ROWS][MAX_COLS];
19
20 float rowAve [MAX_ROWS] = {0};

float columnAve (MAX COLS] = {0};21
22

// Statements
getData

23
(table);24

25
printf("\n**Tables built\n");
for (int i = 0; i < MAX_ROWS; i++)

26
27
28 {

for (int y = 0; y < MAX_COLS; y++)
printf("%4d", table[i](y]);

printf("\n")?
} // for i

29
30
31
32
33

return 0;
} // main

34
35
36

===== getData ==
Reads data and fills two-dimensional array.

table is empty array to be filled

array filled

/* ==37
38
39 Pre

Post40
*/41
void getData (int table[][MAX_COLS])42

43 {
// Statements

for (int row = 0; row < MAX_ROWS; row++)

for (int col = 0; col < MAX_COLS; col++)

44
45
46

{47
")?printf("\nEnter integer and <return>:

scanf("%d", &table[row][col]);

} // for col

48
49
50

return;
} // getData

51
52

==== End of Program ====53
continuec

526 Section 8.9 Programming Example — Calculate Averages

PROGRAM 8-19 Calculate Row and Column Averages: Get Data (continued)

Results:
**Tables built

1 0 1 2 1 4 1 6 1 8 2 0
2 2 2 4 2 6 2 8 3 0 2 3
2 5 2 7 2 9 3 1 3 3 3 5
3 9 4 1 4 3 4 5 4 7 4 9
5 1 5 3 5 5 5 7 5 9 6 1

Program 8- 1 9 Analysis After running the program we carefully examine the results to make sure that the
function worked correctly. Because we created our test data before we ran the pro-
gram, we knew what the results should be. A simple comparison of the test data and
the results verifies that the table was built correctly.

new

Third Increment: Calculate Row Averages
We are now ready to write the code lor the averages. We begin with the calcu-
lation for the rows. This requires nested for loops, the outer loop steps
through the rows and the inner loop steps through the columns within a row.
The code is shown in Program 8-20.

PROGRAM 8-20 Calculate Row and Column Averages: Row Averages
/* Read values from keyboard into a two-dimensional

array. Create two one-dimensional arrays that
contain row and column averages.

Written by:
Date:

1
2
3
4
5

*/6
#include <stdio.h>7

8
#define MAX_ROWS 5
#define MAX COLS 6

9
10
11

// Function Declaration
void getData
void rowAverage (int

1 2
13 (int table[][MAX_COLS]);

table[][MAX_COLS],
float rowAvrg []);

14
15
16

int main (void)17
18 {
19 // Local Declarations

int table2 0 [MAX_ROWS][MAX_COLS];
2 1
2 2 float rowAve [MAX_ROWS] = {0>;

continued

Chapter 8 Arrays 527

PROGRAM 8-20 Calculate Row and Column Averages: Row Averages (continued)

float columnAve [MAX_COLS] = {0};23
24

// Statements
getData
rowAverage (table, rowAve);

25
26 (table);
27
28

printf("\n**Tables built\n");
for (int i = 0; i < MAX_ROWS; i++)

29
30
31 {
32 for (int y = 0; y < MAX_COLS; y++)

printf(,,%4d", table(i][y]);
printf("\n");

> // for i
printf("W);

33
34
35
36
37

printf("**Row averages\n");
for (int i = 0; i < MAX_ROWS; i++)

printf("%6.If", rowAve[i]);
printf("\nM);

38
39
40
41
42

return 0;

> // main
43
44
45

/*46
Reads data and fills two-dimensional array.

table is empty array to be filled

array filled

47
48 Pre

Post49
*/50
void getData (int table[][MAX_COLS])51

52 {
// Statements

for (int row = 0; row < MAX_ROWS; row++)

for (int col = 0; col < MAX_COLS; col++)

53
54
55

{56
printf("\nEnter integer and <return>: ");

scanf("%d", &table[row][col]);

} // for col

57
58
59
60 return;

} // getData61
62

===== rowAverage =====/* =====
This function calculates the row averages for a table

table has been filled with values

63
64

Pre
Post

65
averages calculated and in average array

66
continuec

528 Section 8.9 Programming Example — Calculate Averages

PROGRAM 8-20 Calculate Row and Column Averages: Row Averages (continued)

*/67
table[][MAX_COLS],

float rowAvrg [])
void rowAverage (int6 8

69
70 {

// Statements
for (int row = 0; row < MAX_ROWS; row++)

71
72

{73
for (int col = 0; col < MAX_COLS; col++)

rowAvrg[row] += table [row][col];
rowAvrg [row] /=
} // for row

74
75

MAX COLS;76
77
78 return;

> // rowAverage
/ / =====

79
===== End of Program =====80

Results:
**Tables built

10 12 14 16 18 20
22 24 26 28 30 23
25 27 29 31 33 35
39 41 43 45 47 49
51 53 55 57 59 61

**Row averages
15.0 25.5 30.0 44.0 56.0

Fourth Increment: Calculate Column Averages
I he calculation ol the column averages is very similar to the calculation of
the row averages. We leave its incremental development for a problem at the
end of the chapter.

Fifth Increment: Print Tables
1 he final increment completes the program by printing the three tables. Note
that we present the results with the
the column averages at the bottom of the columns. This is a natural and logi-
cal presentation from a user’s perspective. The code for the fifth increment is
shown in Program 8-21. Note that the column totals will he displayed as zero
until the fourth increment is completed.

averages at the end ol the rows antirow

PROGRAM 8-21 Calculate Row and Column Averages: Print Tables
1 /* Read values from keyboard into a two-dimensional

array. Create two one-dimensional arrays that2

continue

'11 7

Chapter 8 Arrays 529

PROGRAM 8-21 Calculate Row and Column Averages: Print Tables (continued)

contain row and column averages.
Written by:
Date:

3
4
5

*/6
#include <stdio.h>7

8
#define MAX_ROWS 5
#define MAX COLS 6

9
10
1 1

// Function Declaration
void getData
void rowAverage

12
13 (int table[][MAX_COLS]);

(int table[][MAX_COLS],
float rowAvrg []);

void colAverage (int table[][MAX_COLS],
float colAvrg []);

void printTables (int table[][MAX_COLS],
float rowAvrg[],
float colAvrg[]);

14
15
16
17
18
19
20
2 1

int main (void)22
23 {

// Local Declarations
int table [MAX_ROWS][MAX_COLS];

24
25
26

float rowAve [MAX_ROWS] = {0};

float colAve [MAX_COLS] = {0> ;
27
28
29

// Statements
getData (table);
rowAverage (table, rowAve);

// colAverage (table, colAve);

30
31
32
33
34

printf("\n");
printTables (table, rowAve, colAve);

return 0;
// main

35
36
37
38 >
39

===== getData ====
Reads data and fills two-dimensional array.

table is empty array to be filled

array filled

40
41

Pre
Post

42
43

*/44
void getData (int tablet][MAX_COLS])45

46 {

continued

530 Section 8.9 Programming Example — Calculate Averages

PROGRAM 8-21 Calculate Row and Column Averages: Print Tables (continued)

47 // Statements
for (int row = 0; row < MAX_ROWS; row++)

for (int col = 0; col < MAX_COLS; col++)
48
49

{50
printf("\nEnter integer and <return>: ");
scanf("%d", stable[row][col]);

> // for col

51
52
53
54 return;

> // getData55
56

This function calculates the row averages for a table
table has been filled with values
averages calculated and in average array

= rowAverage ===57 :====
58
59 Pre

Post60
*/61
void rowAverage (int table[][MAX_COLS],

float rowAvrg [])
62
63
64 {

// Statements
for (int row = 0; row < MAX ROWS; row++)

65
66
67 {
68 for (int col = 0; col < MAX_COLS; col++)

rowAvrg[row] += table (row][col];
rowAvrg [row] /=
} // for row

69
70 MAX COLS;
71
72 return;

} // rowAverage73
74

/*75
Print data table, with row average at end of each
row and average of columns below each column,

each table filled with its data
tables printed

76
77
78 Pre

Post79
*/80

81 void printTables (int table[][MAX_COLS],
float rowAvrg[],
float colAvrg[])

82
83
84 {

// Statements
for (int row = 0;

85
86 row < MAX_ROWS; row++)
87 {
88 for (int col = 0; col < MAX_COLS; col++)

printf("%6d", table[row][col]);
I %6.2f\n",

89
90 printf(" rowAvrg [row]);

continue

Chapter 8 Arrays 531

PROGRAM 8-21 Calculate Row and Column Averages: Print Tables (continued)

} // for row91
92

printf("
printf("
for (int col = 0; col < MAX_COLS; col++)

printf("%6.2f", colAvrg[col]);

\n");93
94 ")?
95
96
97 return;

> // printTables
// ========

98
99 ===== End of Program =====

Results:
15.00
25.50
30.00
44.00
56.00

16 18 2010 12 14
2326 28 3022 24
3529 31 3325 27

47 4943 4539 41
615955 5751 53

0.00 0.00 0.00 0.00 0.00 0.00

532 Section 8.10 Software Engineering

8.10 Software Engineering
In this section, we discuss two basic concepts: testing and algorithm effi-
ciency. To be effective, testing must he clearly thought out. We provide
concepts for testing array algorithms by studying sorting and searching. We
then continue the algorithm efficiency discussion started in Chapter 6 by
studying sort and search algorithms as case studies.

some

:

Testing Sorts
As our programs become more complex, we need to spend
test data that will completely validate them. In this section, we examine some
techniques for testing sorts.

In general, we should conduct four tests: (1) sort a list of random values,
(2) sort a list that is already in sequence, (3) sort a list that is in reverse order,
(4) sort a nearly ordered list, such as one in which every tenth item is one
position out of sequence. Table 8-2 contains a summary of the tests that we
should conduct and some sample test data to show the points.

time creatingmore

Sample DataTest Case

Random data
Nearly ordered
Ordered — ascending
Ordered — descending

5 2 3 7 7 8 2 2 6 1 9 3 3 5 1 1 1 9 3 3 1

5 6 7 2 1 1 9 2 2 2 3 3 1 2 9 3 3 5 1 9 3

5 6 7 1 1 1 9 2 2 2 3 3 1 3 3 5 1 7 8 9 3

9 3 7 8 5 1 3 3 3 1 2 3 2 2 1 9 1 1 7 6 5

TABLE 8-2 Recommended Sort Test Cases

Testing Searches
When we test the sequential search, we need only four tests. Three deal with
finding an
middle. The last case
list; look for any value that is not in the middle of the list. Whenever testing
an array, always he sure that the test data access the first and last elements of
the array. Many array processing errors occur at these locations.

element in the table—find the first, last , and any element in the
deals with trying to find an element that is not in the

When testing an array search, always access the first and last elements.
I he binary search requires the lour tests discussed above, plus three

we should try to find a target lower than
the first element in the list and another target greater than the last element.
Finally, we should find two elements that are in adjacent array locations,
such as l i s t [0] a n d l i s t [l] . The reason for this test is that the binary
search includes logic that divides by two. An error could result in being able

more. Since it uses an ordered list ,

\ / \ ml

Chapter 8 Arrays 533

to find only even- or only odd-numbered elements. Testing for adjacent loca-
tions ensures that such an
Table 8-3.

error won’t happen. These test cases are seen in

BExpected Results Index Search

found target == list[0]

target == list[l]

target == list[n— 1]

target == listfi]

all0

found
found

binary only1
alln - 1

found all0 < i < n

not found

not found

not found

binary only
binary only

target < list[0]

target > list[n]

target != Iist[i]

0

n- 1
all0 < i < n

TABLE 8-3 Test cases for searches

Analyzing Sort Algorithms
VVe have developed three sort algorithms. We examine each of them in this
section.

Bubble Sort Analysis
The bubble sort essentially contains the block of code shown below. Note
that “exchange” in the code could be a function call or the three statements

shown in Program 8-10.

for(current = 0; current < last; current++)

for (walker = last; walker > current; walker--)
if (list[walker] < list[walker - 1])

exchange (walker, walker - 1);

I
To determine the relative efficiency, we need to analyze the two for state-

The first /or, the outer loop, examines each entry in the sort array. Itmcnts.
will therefore loop n — 1 times.

The inner loop starts at the end of the array and works its way toward the

current node as established by the outer loop. The first time it is called, it
forth until- 1 elements; the second time, n - 2 elements, and

it examines only one element. The average number of elements examined,

therefore, is determined as shown below.

so
examines n

(n- l) + (n - 2) + ... + 2 + 1 = n

534 Section 8.10 Software Engineering

This is the nested dependent loop. Simplifying the previous formula
we get

(41) '-!<"•->

Discarding the coefficient and selecting the larger factor, we see that the
dominant factor in the bubble sort is n2

t which in big-O notation would be
stated as 0(w2).

The efficiency of the bubble sort is 0(n2).

Selection Sort Analysis
Now' lets examine the efficiency of the selection sort shown in Program 8-9.
Again, its pivotal logic is essentially shown in the next example.

for (current = 0; current < last; current-*- -*-)
{
for (walker = current + 1; walker <= last; walker++)

if (list[walker] < list[smallest])
smallest = walker;

> // for current

This algorithm bears a strong resemblance to the bubble sort algorithm
we discussed previously. Its first loop looks at every element in the array from
the first element (current = 0) to the one just before the last. The inner loop
moves from the current element, as determined by walker, to the end of the
list. I his is similar to the bubble sort , except that it works from the lower por-
tion of the array toward the end. Using the same analysis, we see that it will
test n(n- 1) / 2 elements, which means that the selection sort is also 0(»r).

The efficiency of the selection sort is 0(n2).

Insertion Sort Analysis
I he last sort we covered was the insertion sort, Program 8- 1 1 . The nucleus of
its logic is shown as follows.

for (current - 1; current <= last; current++)
for (walker = current

walker >=
if (temp < list[walker])

1 ?
0 && !located;)

continued

1I l f
Chapter 8 Arrays 535

{
list[walker + 1] = list[walker];
walker—;
> // if

Does the pattern look familiar? It should. Again we have the same basic
nested for loop logic that we saw in the bubble sort and the selection sort .
I he outer loop is executed n times, and the inner loop is executed (n — 1) / 2
times, giving us 0(w2).

The efficiency of the insertion sort is 0(nz).

As we have demonstrated, all three of these sorts are 0(w2), which means
that they should be used only for small lists or lists that are nearly ordered.
You will eventually study sorts that are O(wlogn), which is much more effi-
cient for large lists.

Analyzing Search Algorithms
All of the sort algorithms involved nested loops. We now turn our attention to
two algorithms that have only one loop, the sequential search and the binary
search. Recall that a search is used when we need to find something in an
array or other list structure. The target is a value obtained from some external
source.

Sequential Search Analysis
The basic loop for the sequential search is shown below.

while (looker < last && target != list[looker])
looker++;

This is a classic example of a linear algorithm. In fact, in some ol the lit-
erature, this search is known as a linear search. Since the algorithm is linear,
its efficiency is O(n).

The efficiency of the sequential search is 0(n).

Binary Search Analysis
The binary search locates an item by repeatedly dividing the list in half. Its

loop is

while (first <= last)
{
mid = (first + last) / 2;

continued

536 Section 8.10 Software Engineering

if (target > list[mid])
first = mid + 1;

else if (target < list[mid])
last = mid 1;

else
first = last + 1;

> // while

This is obviously a loop that divides, and it is therefore a logarithmic
loop. This makes the efficiency O(logn), which you should recognize as one
of the more efficient of all the measures.

The efficiency of the binary search is O(logn).

Comparing the sequential search and binary search, we see that, disre-
garding the time required to order the list, the binary' search is obviously bet-
ter for a list of any significant size (see Table 8-4). We therefore recommend
the binary search for all but the smallest of lists—that is, lists with less than
50 elements.

Size Sequential
(Average)

Sequential
(Worst Case)

Binary

16 4 168

50 506 25

256 8 256128

1,000

10,000

100,000

1 ,000,000

1,00010 500

10,000

100,000

1,000,000

14 5,000

50,000

500,000

17

20

TABLE 8 *4 Comparison of binary and sequential searches
Ihe big-O concept is generally interested only in the largest factor. This

tends to significantly distort the efficiency of the sequential sort, in that it is
always the worst case. II the search is always successful, it turns out that
the efficiency of the sequential search is 1/2«. We include the average in
1 rogram 8-3 for comparison. (The average for the binary search is only
less than the maximum, so it is less interesting.)

one

m<

l

Chapter 8 Arrays 53 /

8.11 Tips and Common Programming Errors
1. In an array declared as array [n] , the index g
2. I hree things are needed to declare and define an array: its name, type,

and size.
3. I he elements of arrays are not initialized automatically. You must initial-

ize them if you want them to start with known values.
4. Id initialize all elements in an array to zero, all you need to do is initialize

the first element to zero.
5. To exchange the value of two elements in an array, you need a temporary

variable.
6. You cannot copy all elements of one array into another with an assign-

ment statement. You need to use a loop.
7. To pass the whole array to a function, you only use the name of the array

as an actual parameter.
8. The most common logic error associated with arrays is an invalid index.

An invalid index used with an assignment operator either causes the pro-
gram to fail immediately or destroys data or code in another part of the
program and causes it to fail later.

9. Invalid indexes are often created by invalid coding in a for statement. For
example, given an array of ten elements, the following/or statement logic
error results in an index value of ten being used. Although it loops 10
times, the indexes are 1 through 10, not zero through 9.

from 0 (not 1) to n — 1 .oes

‘ a

for (i = 1; i <= 10; i++)

10. .Another cause of invalid indexes is an uninitialized index. Make sure
your indexes are always properly initialized.

1 1. When initializing an array when it is defined, it is a compile error to pro-
vide more initializers than there are elements.

12. It is a compile error
statement, as shown below.

to leave out the index operators in an assignment

float costAry[20];
•••

costAry = quantity * price;

13. It is most likely a logic error to leave out the index operators i

statement , as shown in the following example. In this case, costAry is

the address of the array and the input will be placed in the first element

of the array. Even when this is the desired result , you should code it with

the index operators as shown.

scanjin a

538 Section 8.13 Summary

float costAry[20];
•••
scanf("%f", costAry);
scanf("%f", ScostAry[0]);

It is a compile error to omit the array size in the parameter declaration
for any array dimension other than the first.

J J

To pass a variable-size array to a function, you need either to include the
variable defining the array size or use an asterisk.

// Poor Style
// Clear code

14.

15.

8.12 Key Terms
passing a row
pass the whole array
pass individual elements
plane
reusable code
row
searching
selection sort
sequential search
sort pass
subscript
table
two-dimensional array
variable-length array

array
binary search
bubble sort
column
exchanging
fixed-length array
frequency array
histogram
index
invalid index
insertion sort
linear search
multidimensional array
one-dimensional array

8.13 Summary
A one-dimensional array is a fixed sequence of elements of the same type.
We use indexes in C to show the position of the elements in an array.

J An array must be declared and defined before being used. Declaration and
definition tell the compiler the name of the array, the type of each ele-
ment, and the size of the array.
Initialization of all elements of a fixed length
of the declaration and definition.

LI II a one-dimensional array is completely initialized when it is declared, it is
not necessary to specify the size, hut it is recommended.

a i i a y is partially initialized, the rest of the elements are set

be done at the timearray can

When an
to zero.

1iff
Chapter 8 Arrays 539

We can (ill the elements of
the keyboard or a file.
We can access the individual elements of
and the index.
We can read or write the values of an array using a loop.
An array reference is a postfix expression with the opening and closing
brackets as operators.
C does not do boundary checking on the elements of an array.
We can pass an individual element of an array to a function either by value
or by address.
We can also pass the whole array to a function. In this case, only the
address ol the array will he passed. When this happens, the function has
access to all elements in the array.
A irequency array is an array whose elements show the number of occur-
rences ol data values in another array.
A histogram is a pictorial representation of a frequency array.
A two-dimensional array is a representation of a table with rows and
columns.
We can pass either a single element, a row, or the whole two-dimensional
array to a function.
A multidimensional array is an extension of a two-dimensional array to

three, four, or more dimensions.
An array can be sorted using a sorting algorithm.
The selection sort divides the array into sorted and unsorted sublists. In
each pass, the algorithm chooses the smallest element from the unsorted
sublist and swaps it with the element at the beginning of the unsorted
sublist.
The bubble sort divides the array into sorted and unsorted sublists. In each
pass, the algorithm bubbles the smallest element from the unsorted list
into the sorted sublist.

array by using a loop to read the values froman

an array using the array name

ti

The insertion sort divides the array into sorted and unsorted suhlists. In

each pass, the algorithm inserts the first element from the unsorted list

into the appropriate place in the sorted sublist.
Searching is the process of finding the location of a target among a list of
objects.

and searchesjuential search starts at the beginning of the array

until it finds the data or hits the end of the list. The data may he ordered orThe set

unordered.

540 Section 8.14 Practice Sets

A binary search is a much faster searching algorithm. In the binary search,

each test removes half of the list from further analysis. The data must be
ordered.
To pass a whole variable-length array to a function, you need to also pass
its size.

8.14 Practice Sets

Review Questions
1. The type of all elements in an array must he the same.

a. True
b. False

2. Any expression that evaluates to an integral value may he used as an index.
a. True
h. False

3. When an array is defined, C automatically sets the value of its elements
to zero.
a. True
b. False

4. When an array is passed to a function, C passes the value for each clement.
a. True
h. False

5. Because ol its efficiency, the binary search is the best search for any
array, regardless of its size and order.
a. True
h. False

6. I he selection, insertion, and bubble sort are all O(n^) sorts.
a. True
b. False

7. A(n)
in an array.
a. constant
h. element
c. index
d. number
e. variable

is an integral value used to access an element

rr^Chapter 8 Arrays 541

8. Which of the following array initialization statements is valid?
a. int ary{ > = {1, 2, 3, 4>;
b.int ary[] = [1, 2, 3, 4];
c. int ary[] = {1, 2, 3, 4>;
d. int ary{4> = [1, 2, 3, 4]?
e. int ary[4] = [1, 2, 3, 4];

9. Which ol the lollowing statements assigns the value stored in x to the
first element on an array, ary?
a. ary
b. ary
c. ary
d. ary [0] = x;
e. ary[1] = x;

10. Which of the following statements concerning passing array elements
is true?
a. Arrays cannot be passed to functions, because their structure is too

complex.
b. It is not possible to pass just a row of a two-dimensional array to a

function.
c. Only the size of the first dimension is needed when a two-dimensional

array is declared in a parameter list .

d . When an array is passed to a function, it is always passed by reference
(only its address is passed).

e. When a two-dimensional array is passed to a function, the size ol the
second dimension must be passed as a value parameter.

I I . The process through which data are arranged according to their values is

known as

= x;
= *[0] ;
= x[1];

a. arranging
b. listing
c. parsing
d. searching
e. sorting

finds the smallest element from the12. The sort

unsorted sublist and swaps it with the element at the beginning of the
unsorted data.

a. bubble
b. exchange
c. insertion
d. quick
e. selection

542 Section 8.14 Practice Sets

search locates the target item by starting at the
beginning and moving toward the end of the list.
a. ascending
b. binary
c. bubble
d. selection
e. sequential

14. Which of the following statements about a sequential search is false?
a. Any array can be searched using the sequential search.
b. If the target is not found, every element in the list is tested.
c. The efficiency of the sequential search is O(n).
d. The list must be ordered.
e. The sequential search is generally recommended only for small lists.

15. Which of the following statements about two-dimensional arrays is true?
a. A two-dimensional array can he thought of as an array of one-

dimensional arrays.
b. Only the size ol the second dimension needs to be declared when the

array is used as a parameter.
c. I wo different types can be stored in a two-dimensional array.
d. I he first dimension is known as the column dimension.
e. \\ hen passed to a function, the size of the second dimension must be

passed as a value parameter.

13. The

Exercises
16. What would be printed by the following program?

#include <stdio.h>
int main (void)
{
// Local Declarations

int list [10] = {0};
// Statements

for (int i = 0; i < 5; i++)
list [2 * i + l] = i + 2;

for (int i = 0; i < 10;
printf("%d\n",

i++)
list [i]);

return 0;
} // main

17. What would be printed by the following program?

#include <stdio.h>
int main (void)
{

continued

V ' 11'iT,|ft1iTy 1

Chapter 8 Arrays 543

// Local Declarations
int list [10] = {2, 1, 2, 1, 1, 2, 3, 2, 1, 2 >;

// Statements
printf("%d\n", list [2]);
printf("%d\n", list [list [2]]);
printf("%d\n”, list [list [2] + list [3]]);
printf("%d\n", list [list [list [2]]]);
return 0;
// main

M fl ,

>
18. \\ hat would be printed by the following program?

#include <stdio.h>
int main (void)
{
// Local Declarations

int list [10] = { 2, 1, 2, 4, 1, 2, 0, 2 , 1, 2};
int line [10];

// Statements
for (int i = 0; i < 10; i ++)

line [i] = list [9 - i];
for (int i = 0; i < 10; i++)

printf("%d %d\n", list [i], line [i]);
return 0;
// main}

19. An array contains the elements shown below. The first two elements
have been sorted using a selection sort. What would be the value of
the elements in the array after three more passes of the selection sort

algorithm?

7 8 26 44 13 23 98 57

20. An array contains the elements shown below. The first two elements have
been sorted using a bubble sort. What would be the value of the elements
in the array after three more passes of the bubble sort algorithm? Use the
version of bubble sort that starts from the end and bubbles the smallest
element.

7 8 26 44 13 23 57 98

21. An array contains the elements shown below. The first two elements

have been sorted using an insertion sort. What would be the value of

the elements in the array after three more passes of the insertion sort

algorithm?

544 Section 8.14 Practice Sets

22. We have the following array:

4 7 3 2 1 3 2 5 6 9 2

After two passes of a sorting algorithm, the array has been rearranged as
shown below.

3 2 1 4 7 3 2 5 6 9 2

Which sorting algorithm is being used (selection, bubble, insertion)?
Defend vour answer.

j

23. We have the following array:

8 0 7 2 6 6 4 4 2 1 3 3

After two passes of a sorting algorithm, the array has been rearranged
as shown below.

2 1 3 3 8 0 7 2 6 6 4 4

Which sorting algorithm is being used (selection , bubble, insertion)?
Defend your answer.

24. We have the following array:

4 7 3 6 6 3 2 5 6 9 2

After two passes of a sorting algorithm, the array has been rearranged
as shown below.

3 4 7 6 6 3 2 5 6 9 2

\\ hich sorting algorithm is being used (selecti
Defend your answer.

25. An array contains the elements shown below. Using the binary search
algorithm , trace the steps followed to find 88. At each loop iteration,
including the last , show the contents of first, last, and mid.

, bubble, insertion)?on

8 1 3 1 7 2 6 4 4 5 6 8 8 9 7

26. An array contains the elements shown below. Using the binary search
algorithm, trace the steps followed to find 20. At each loop iteration,
inc hiding the last, show the contents of first, last , and mid.

8 1 3 1 7 2 6 4 4 5 6 8 8 9 7

1m
Chapter 8 Arrays 545

2 / . Both the selection and bubble sorts exchange elements. The insertion
sort does not. Explain how the insertion sort rearranges the data without
exchanges.

Problems
28. We have two arrays A and B, each of 10 integers. Write a function that

tests if every element of array A is equal to its corresponding element in
array B. In other words, the function must check if A[0] is equal to B[0],

A[1] is equal to B[1] , and so forth. The function is to return true if all
elements are equal and false if at least one element is not equal.

29. Write a function that reverses the elements of an array so that the last
element becomes the first, the second from the last becomes the second ,

and so forth. The function is to reverse the elements in place—that is,

without using another array. (It is permissible to use a variable to hold an
element temporarily.) Then write a test driver to test your function. Test
it twice, once with an even number of elements in the array and once
with an odd number of elements in the array.

30. The Pascal triangle can be used to compute the coefficients of the terms in

the expansion of (a + b)n. Write a function that creates a two-dimensional
matrix representing the Pascal triangle. In a Pascal triangle, each element is

the sum of the element directly above it and the element to the left ol the
element directly above it (if any). A Pascal triangle ol size 7 is shown below.

1
11

121
1331

14641
110 51051

16152 01561

row[0] and the first two ele-
up to the

set with a loop as shown in the following pseudocode:

In the above example, the first element ol
ments of row[l] are set to 1. Then each of the following rows

maximum size, are

Algorithm PascalTriangle

1 pascal[0][0] = 1

2 pascal[l][0] = 1

3 pascal[l][l] = 1

4 prevRow
5 currRow
6 loop (currRow <= size)

1 pascal[row][0] = 1

2 col = 1

= 1
= 2

continued

546 Section 8.14 Practice Sets

3 loop (col <= currRow)
1 pascal[row][col] =

pascal[row - l][col - 1]
+ pascal[row - l][col]

2 col = col + 1
4 end loop

7 end loop
end PascalTriangle

Your program must IK* able to create the triangle of any size.
31. An international standard book number (ISBN) is used to uniquely iden-

tify a book. It is made of 10 digits, as shown in Figure 8-44. Write a func-
tion that tests an ISBN to see if it is valid. For an ISBN number to be
valid, the weighted sum of the 10 digits must be evenly divisible by 11.
The tenth digit may hex, which indicates 10.

Check digitPublisher

0-07-881809-5

Country Book Number

FIGURE 8-44 ISBN for Problem 31

Fo determine the weighted sum, the value of each position is multi-
plied by its relative position, starting from the right, and the sum of the
products is determined. I he calculation of the weighted sum lor the
ISBN shown above is demonstrated in Table 8-5.

Code Weighted ValueWeight
0 10 0
0 9 0
7 8 56
8 7 56
8 486
1 5 5

continuedTABLE 8-5 Demonstration of ISBN Calculatiion

n, ;I '

Chapter 8 Arrays 547

Code Weighted ValueWeight
8 4 32

0 3 0

9 2 18

5 1 5

Weighted Sum 220

TABLE 8-5 Demonstration of ISBN Calculation (continued)

Since the weighted sum modulus 1 1 is 0, the ISBN number is valid.
Test your function with the above example, the ISBN number for this
text (see the copyright page), and 0-08-781809-5 (an invalid ISBN—the
third and fourth digits are reversed).

32. Another technique to validate the ISBN in Problem 3 1 is to calculate the
sum of the sums modulus 1 1. The sum of the sums is calculated by add-
ing each digit to the sum of the previous digits, as shown in Table 8-6.

Sum of SumsSum of DigitsCode
000
000
777
22158
45238
69241
101328
133320
174419
220465

TABLE 8-6 ISBN Calculation: Sum of Sums Method

Rewrite the function to use the sum-of-the-sums method.

33. Write a function that copies a one-dimensional array ol n elements into a
rows and columns

two-dimensional array ol k rows and j columns. Ihe

must he a valid factor of the number of elements in the one-dimensional

array; that is, k * j = n.

548 Section 8.14 Practice Sets

34. Write a program that creates an array of 100 random integers in the
range 1 to 200 (see Chapter 4 for a discussion of random numbers) and
then, using the sequential search, searches the array 100 times using
randomly generated targets in the same range. At the end of the program,
display the following statistics:

a. The number of searches completed.
b. The number of successful searches.
c. The percentage of successful searches.
d. The average number of tests per search.

To determine the average tests per search, you will need to count the
number of tests for each search. 1 lint: Use the comma operator to count
the compares.

35. Repeat Problem 34 using the binary search.
36. The sequential search assumes that a list is unordered. 11 it is used when

the list is in fact ordered, the search can he terminated with the target
not found whenever the target is less than the current element. Modify
Program 8-13 to incorporate this logic.

37. Repeat Problem 34 with the modified search you created in Problem 36.

38. I he binary search is a good algorithm to implement using recursion.
Rewrite the binary search function using recursion. Then repeat
Problem 35 using the recursive function.

39. Modify the bubble sort to stop as soon as the list is sorted. (See discus-
sion in the analysis of Program 8- 10.)

40. Modify the selection sort function to count the number of exchanges
needed to order an array ot 50 random numbers (see Chapter 4 for a dis-
cussion of random numbers). Display the array before and after the sort.
At the end of the program, display the total exchanges needed to sort
the array.

41. Repeat Problem 40 using the bubble sort .
42. Program 8- / builds a frequency array and its histogram. If there is an

invalid data point in the input, it is displayed and ignored. Modify' the
program to make the frequency array
range, and use the last element of the array as a count of numbers not in
the specified range.

43. Write a
with zeros,

element larger than the dataone

program that fills the right-to-left diagonal of a square matrix
the lower-right triangle with — Is, and the upper-left triangle

with + Is. The output ol the program, assuming a six-by-six matrix, is
shown in Figure 8-45.

Chapter 8 Arrays 549

FIGURE 8-45 Matrix for Problem 43

44. Given an array of 100 random numbers in the range 1 ...999, write a
function for each of the following processes. In building the array, il the
random number is evenly divided by 3 or 7, store it as a negative number.
a. Print the array ten values to a line. Make sure that the values are

aligned in rows.
b. Print the odd values, ten to a line.
c. Print the values at the odd numbered index locations, ten to a line.
d. Return a count of the number of even values.
e. Return the sum of all values in the array.
f. Return the location of the smallest value in the array.
g. Return the location of the largest value in the array.
h. Copy all positive values to a new array. Then use process "a" above to

print the new array.
i. Copy all negative values to a new array. Then use process “a” above to

print the new array.
45. Modify the sort of your choice to sort two parallel arrays. Parallel arrays

that contain related data. For example, one arrayare two or more arrays
might contain identification numbers, and a related array might contain
corresponding scores in a tournament. The sort will sort only the array
containing the identifiers; however, as each element in the sorted array is

moved, its corresponding element in the data array must also he moved.
After the arrays have been sorted, print out the data as shown below.

ScoreID
7 21
8 92
9 83

1 0 54

Write a test driver to test your sort. Use the following data—the first value
is an identifier and the second value is a score:{18, 90}, {237, 47},{35, 105},

{5,25}, {76, 739}, {103, 26},{189, 38}, {22, 110}, {156, 31}, {49, 245}.

550 Section 8.14 Practice Sets

Write the incremental implementation to calculate the column averages
for Section 8.9, “Programming Example—Calculate Averages.” Before
testing the column average increment, determine the averages so that

will be able to verify that the correct values were calculated.

46.

you

Projects
47. Write a C program that simulates a guessing game. Each turn, you

choose among nine possible guesses. As many as five guesses may be
made in a turn. For each turn, the program will generate a random num-
ber between 1 and 36. Each correct guess will be rewarded with points
based on how many of your current points you risked.

A game board divides the numbers into rows and columns, as shown
in Figure 8-46. This board provides the basis for your guesses.

02 0301

05 0604
LOW

08 0907

1 210 1 1

1513 14

1816 17
MEDIUM

19 2 120

22 2423

25 2726

28 3029
HIGH

3331 32

34 3635

RIGHTLEFT CENTER

FIGURE 8-46 The Guessing Game Board

You can guess whether the random number is even or odd. In this
case, you get I point for each point risked when you guess correctly. You

guess whether the number is low (1-12), medium (1 3-24), or high
(23-36) . In this case, you will get 2 points for each point risked. You can
can

TT
Chapter 8 Arrays 551

also guess left , center, or right, as shown in Figure 8-46. In this case, you
get 2 points lor each point risked when your guess is correct. Finally, you
can guess a specific number between 0 and 36. In ibis case you get
36 points for each point risked when your guess is correct.

Io make the game more interesting, each round allows up to five
guesses. None ol the five may he correct , or any number up to all five
may he correct. The program stops when the player quits or when the
player is out of points.

The program first asks the number of points the user wants to start
with , as shown below.

4

How many points would you like? 2000

The program then prints the guess menu and allows up to five
guesses, as shown in the following example.

Guesses Choices
0 Odd
E Even
L Low
M Med
H High
F Left
C Center
R Right
N Number

How many guesses would you like? 5
Guess 1
Enter your choice? L
Points at risk? 2 0

Guess 2 :
Enter your choice? H
Points at risk? 15

Guess 3 :
Enter your choice? N
Enter your number: 18
Points at risk? 2 0

Guess 4 :
Enter your choice? 0
Points at risk? 1 2 0

Guess 5 :
Enter your choice? L

Points at risk? 0

552 Section 8.14 Practice Sets

After all guesses have been made, the program generates the random
number and displays the following message:

My number is: 31

The program then prints the situation of the player:

Previous Points: 2000
Guess Type Number Amount Won/Loss

-2 0
+30
-2 0

+1 2 0
-1 0

2 01 L
152 H
2 0183 N

1 2 04 O
102 05 N

You won 100 points in this turn.
Your new balance is : 2100 points
Do you want to play again (Y or N) ? Y

Some special rules: The minimum amount risked on a guess is 0.
The maximum is the players current balance. You need to verify that at
no time are the points risked more than the players current balance. .Any
combinations of guesses are allowed on a round as long as the total does
not exceed the player’s balance.

Some hints: You must use at least four arrays, each of five elements.
1 he arrays hold the guess information for the kind of guess, chosen num-
ber (in case the player chooses a number), amount of the guess, and points
won or lost.

Run your program twice, first with 2000 points and then with 500 points.
I ry different situations. Each run is to exercise each guess at least twice.

48. Write a program to keep records and perform statistical analysis lor a
class ol students. The class may have up to 40 students. There are five
quizzes during the term. Each student is identified by a four-digit student
number.

The program will print the student
statistics lor each quiz. The output is in the same order as the input; no
sorting is needed. I he input will be read from a text file. The output from
the program should be similar to the following:

and calculate and print thescores

Student
1234
2134
3124

High Score
Low Score
Average

Quiz 5Quiz 1 Quiz 2 Quiz 4Quiz 3
8678 83 87 91

67 7977 8284
77 7189 8793

8678 89 93 91
67 7177 84 82

73.4 78.683.0 8 8 . 2 8 6 . 6

171
Chapter 8 Arrays 553

Use one- and two-dimensional arrays only. Test your program with
the quiz data in Table 8-7.

Student Quiz 1 Quiz 2 Quiz 3 Quiz 5Quiz 4

1234 52 7 100 78 34

2134 90 36 90 3077

3124 100 45 20 7090

4532 1 1 17 81 32 77

5678 20 12 45 3478

6134 34 80 55 78 45

7874 60 100 56 78 78

8026 70 10 78 5666

9893 34 9 77 78 20

1947 45 40 88 78 55

802877 55 50 99 78

773189 22 70 100 78

78 6089 50 914602
78 101 1 05405 1 1

207898 8906999

TABLE 8-7 Test Data for Project 48

49. Rework Project 48, creating statistics for each student. Print the stu-
dents’ high, low, and average scores to the right of Quiz 5. Provide appro-
priate column headings.

50. Program 8-7 builds a frequency array. In the discussion of the algorithm,

noted that a potential problem occurs if any of the data are invalid.
Write a program that uses the random number generator, rand, to

100 numbers between 1 and 22. The array is then to be passed
modified version of Program 8-7 that will count the number of val-
bctween 0 and 19. Add a 21st element in the array to count all num-

bers not in the valid range (0 to 19).
Print the input data in a 20 x 5 array—that is, 20 numbers in five

and then print the frequency diagram with a heading of the

we

generate
to a
ues

nu ni-rows—
hers as shown below.

2- 3- —4- ... -18- -19- Invalid— 0 1-

554 Section 8.14 Practice Sets

51. Modify the program you wrote in Project 50 to include a histogram print-
of the data. Its format should be similar to Figure 8-15.out

52. Using the data from Project 48, build a two-dimensional array of stu-
dents. Then write a search function that uses the sequential search to
find a student in the array and prints the students’ scores, average score,
and grade based on an absolute scale (90% is A, 80% is B, 70% is C, 60%
is D, less than 60% is F). After each printout, give the user the opportu-
nity to continue or stop.

53. Modify the program you wrote in Project 52 to sort the two-dimensional
of students. Then rewrite the search function to use a binaryarray

search.
54. Write a program that sorts a 50-element array using the selection sort.

the bubble sort, and the insertion sort. Each sort is to be executed twice.
a. For the first sort, (ill the array with random numbers between

1 and 1000.
b. For the second sort , (ill the array with a nearly ordered list. Create the

nearly ordered list by filling the array with sequential numbers and
then subtracting 5 from every 10th number in the array.

c. Each sort (selection, bubble, insertion) is to sort the same data. For
each sort , count the number of comparisons and moves necessary to
order this list.

d. After each sort execution, print the unsorted data followed by the sort
data in 5-by-10 matrixes (5 rows of 10 numbers each). After the sorted
data, print the number of comparisons and the number of moves
required to order the data. Provide appropriate headings for each
printout.

e. Io make sure your statistics are as accurate as possible, you must ana-
lyze each loop limit condition test and each selection statement in your
sort (unctions. The best way to count them is with a comma expres-
sion, as shown below. Use similar code for the selection statements.

while ((count++, a) && (count++, b))

(. Analyze the heuristics you generated, and write a few lines concerning
what you discovered about these sorts. Put your comments in a box
(asterisks) alter your program documentation at the beginning o! your
program.

55. \ \ iite a program to compute the arithmetic (average), median, and
mock- loi up to 50 test scores. I he data are contained in a text file. The
program w ill also print a histogram of the scores.

mean

I he piogram should start with a function to read the data file and (ill
the array. Note that there may he fewer than 50 scores. This will require
that the read (unction return the index for the last element in the array.

Iff
Chapter 8 Arrays 555

Io determine the average, write a function similar to Program 8-4.
To determine the median, you must first sort the array. The median is the
score in the middle ol the range. This can be determined by selecting the
score at last / 2 il last is an even index and by averaging the scores at
the floor and ceiling ol last / 2 if last is odd. The mode is the score that
occurs the most often. It can be determined as a byproduct of building
the histogram. After building the frequency array, use it to determine
which score occurred most often. (Note that two scores can occur the
same number of times.)

56. Write a menu-driven program that allows the user to fill an array of
50 integers with random numbers in the range 1 ...999, sort it , and then
search it to determine if a given random number was generated. The
menu is shown below.

MENU
Select one of the following options:
F. Fill array with a random number series
P. Print the array
S. Sort the array
Q. Query the array
Z. Terminate the program

Each time the fill option is executed , it will fill the array with a new
random number series.
You may use any of the sorts discussed in the text .

If the query locates the number, it will print a message that the num-
ber was located and the index location where it was found.
If the query does not locate the number, it will print a message that
the number was not in the list and then print the value and index loca-
tion of the largest number less than the target and the smallest value
greater than the requested number. Note that the first and last ele-
ments will not have both a smaller and larger value.

If the array has been sorted, the query will use a binary search. If it is

not sorted, it will use the sequential search.
To test the program

a. Fill (F) the array.
b. Print (P) the unsorted array.
c. Search (Q) the first, last , and a middle element.
d. Refill (F) the array.
e. Sort (S) the array.
f. Print (P) the sorted array.

Search (Q) the first , last , and a middle element.
h. Search (Q) for a number less than the first, greater than the last , andg-

not found in the middle ol the list .

1 1

Pointers
Every computer has addressable memory locations. In previous chapters, all
of our data manipulations, whether for inspection or alteration, used variable
names to locate the data. In other words, we assigned identifiers to data and
then manipulated their contents through the identifiers.

Pointers have many uses in C. Besides being a very efficient method of
accessing data, they provide efficient techniques for manipulating data in
arrays, they are used in functions as pass-bv-address parameters, and they are

the basis for dynamic allocations of memory.
As shown in Figure 9- 1, pointers are the third of the derived types.

r iDerived
Types

1 iStructure
Type

Union
Type

Enumerated
TypeFunction

Type
Array
Type

Pointer
Type

Chapter 12 Chapter12 Chapter 12Chapter 4 Chapter 8

FIGURE 9-1 Derived Types

Objectives
To understand the concept and use of pointers

To be able to declare, define, and initialize pointers

To write programs that access data through pointers

To use pointers as parameters and return types

To understand pointer compatibility, especially regarding pointers to pointers

To understand the role of quality in software engineering

558 Section 9.1 Introduction

9.1 Introduction
A pointer is a constant or variable that contains an address that can be used

data. Pointers are built on the basic concept of pointer constants.
To understand and use pointers, we must first understand this concept.to access

Pointer Constants
First, let’s compare character constants and pointer constants. We know that

have a character constant, such as any letter of the alphabet, that iswe can
drawn from a universe of all characters. In most computers, this universe is
ASCII. A character constant is a value and can be stored in a variable.
Although the character constant is unnamed, the variable has a name that is
declared in the program. This concept is shown in Figure 9-2.

’\n’
address

value
character
constants 145600’A’

aChar’G’
’X’

variable
.name.variable

’c’
’k’
’x’

FIGURE 9-2 Character Constants and Variables

In Figure 9-2 we have a character variable, aChar. At this point, aChar
contains the value 'G' that was drawn from the universe of character con-
stants. The variable aChar has an address as well as a name. The name is
created by the programmer; the address is the relative location of the variable
with respect to the program’s memory space. Assume, for example, that a
computer has only I megabyte ol memory (220 bvtes). Assume also that the
computer has chosen the memory location 145600 as the byte to store this
variable. Ibis gives us the picture we see in Figure 9-2.

l ike character constants, pointer constants cannot be changed. In Fig-
ure 9-4 we see that the address for our character variable, aChar, was drawn
from the set ol pointer constants for our computer.

Although the addresses within a computer cannot change, be aware that
the address ol the variable, aChar , can and will change from one run ol our
program to another. Ibis is because today’s modern operating systems
Put a program in memory wherever it is convenient when the program is
started. Ihus, w hile aChar is stored at memory location 145600 now, the
next time the program is run, it could be located at 876050. It should be

can

m
Chapter 9 Pointers 559

obvious, therefore, that
w hat they will be. It is still necessary to refer to them symbolically.

though addresses are constant , we cannot knoweven

000000
V variable

name
address

character
constants

145595
aChar'A'

-a•G 145600145600
X*

145603

pointer
constants'c'

k' 1048575
'x'

Memory

FIGURE 9-3 Pointer Constants

Pointer constants, drawn from the set of addresses for a computer, exist by
themselves. We cannot change them;we can only use them.

Pointer Values
I laving defined a pointer constant as an address in memory, we now turn our

attention to saving this address. If we have a pointer constant, we should be
able to save its value if we can somehow identify it. Not only is this possible,

but we have been doing it since we wrote our first scanf statement with an

address operator.
The address operator (&) extracts the address for a variable. The result is

a unary expression, which is also known as an address expression. The Prece-
dence Table (see inside front cover) lists the address operator in the unary

category, precedence IS.

An address expression, one of the expression types in the unary expression

category, consists of an ampersand (&) and a variable name.

The address operator format is seen below.

&variable name

Now let’s write a program that defines two character variables and prints

their addresses as pointers (conversion code % p). Depending on the operating

system, this program may print different numbers each time we run it , as

560 Section 9.1 Introduction

previously explained. The addresses would also be dillerent in different com-
puters. However, most of the time, the computer allocates two adjacent
memory locations because we defined the two variables one after the other. If
you are at your computer, take a moment to code and run the program in
Figure 9-4 to demonstrate the concept of address constants.

IV// Print character addesses
#include <stdio.h> * b I I142301142300

int main (void)
{
// Local Declarations

char a;
char b;

// Statements
printf ("%p\n %p\n", &a, &b);
return 0;
// main

KU2300
142301

>

FIGURE 9-4 Print Character Addresses

rhe situation changes slightly when we talk about integers. In most com-
puters, the int type occupy 4 bytes. This means that each int variable occu-
pies four memory locations. Which of these memory locations is used to find
the address of the variable? In most computers, the location of the first byte
is used as the memory address. For characters, there is only l byte, so its
location is the address. For integers, the address is the first byte. This is
shown in Figure 9-5.

I he same design applies to real and other data types. The address of a
variable is the address ol the first byte occupied by that variable.

A variable’s address is the first byte occupied by the variable.

variable
name integer

value
integer \

constants) j-123 a
-123 234560

145 234564b

145 integer
variables

addresses

FIGURE 9-5 Integer Constants and Variables

1m
Chapter 9 Pointers 561

Pointer Variables
If we have a pointer constant and a pointer value, then
variable. Ihus, we can store the address of a variable into another variable,

which is called a pointer variable. This concept is shown in Figure 9-6.
have a pointerwe can

address of.variable a
^

a -123 1234560

pointer
variable

&a stored
in variable.

p 234560 |

Physical representation Logical representation

FIGURE 9-6 Pointer Variable

We must distinguish between a variable and its value. Figure 9-6 details
the differences. In this figure we see a variable, a, with its value, — 123. The
variable a is found at location 234560 in memory. Although the variable’s

name and location are constant, the value may change as the program exe-
cutes. This figure also has a pointer variable,p. The pointer has a name and a

location, both of which are constant. Its value at this point is the memory
location 234560. This means that p is pointing to a. In Figure 9-6, the physi-
cal representation shows how the data and pointer variables exist in memory.
The logical representation shows the relationship between them without the
physical details.

We can go even further and store a variable’s address in two or more dif-
ferent pointer variables, as is shown in Figure 9-7. This figure has a variable,
a, and two pointers, p and q. The pointers each have a name and a location,

both of which are constant. Their value at this point is the memory location
234560. This means that both p and q are pointing to a. There is no limit to

the number of pointer variables that can point to a variable.

value of p
(address of a)

&a
^ -123p | 234560 |

234560

q 234560 |

FIGURE 9-7 Multiple Pointers to a Variable

562 Section 9.1 Introduction

A final thought: If we have a pointer variable, but we don’t want it t0
point anywhere, what is its value? C provides a special null pointer constant,
NULL, in the standard input/output stdio.h header file for this purpose.1

NULL is usually defined as a macro with a value of integer 0 or 0 cast to a
void pointer (void*).

A pointer that points to no variable contains the special null-pointer con-
stant, NULL.

Accessing Variables Through Pointers
Now that we have a variable and a pointer to the variable, how can we relate
the two; that is, how can we use the pointer? Once again C has provided
operator for us. Right below the address operator in the unary expressions
portion of the Precedence Table (see inside front cover), we find the indirec-
tion operator (*). When we dereference a pointer, we are using its value to
reference (address) another variable. The indirection operator is a unary
operator whose operand must he a pointer value. The result is an expression
that can he used to access the pointed variable lor the purpose of inspection
or alteration. To access the variable a through the pointer p, we simply code
*p. The indirection operator is shown below.

an

*p

Let 's assume that we need to add 1 to the variable a. We can do this with
any ol the following statements, assuming that the pointer, p, is properly ini-
tialized (p = & a).

a++; a = a + 1; *p = *p + 1; (*p) ++;

In the last example, (*p) ++, we need the parentheses. The postfix incre-
ment has a precedence ol 16 in the Precedence Table while indirection,
which is a unary operator, has a precedence of 1 5. The parentheses therefore
force the dereference to occur before the addition so that we add to the data
variable and not to the pointer. Without the parentheses, we would add to the
pointer first , which would change the address.

An indirect expression, one of the expression types in the unary expression
category, is coded with an asterisk (*) and an identifier.

f igure 9-8 expands the discussion. Let’s that the variable x is
pointed to by two pointers, p and q. Fhe expressions x, * p, *q all are expres-
sions tha t allow the variable to he either inspected or changed. When they are

assume

1 . Technically, NULL is found in the stddefh library. Traditionally, i y also be defined in stdio.h-it ma

1I - V 1

Chapter 9 Pointers 563

used in the right-hand side of the assignment operator, they
(copy or compare). When they are used in the left-hand side of the assign-
ment operator, they change the value of x.

only inspectcan

Before Statement After

P I ? I x = 4; 4 IP
q X q X

±) 7 ip x = x + 3; P
q qX X

7 i 8 I*p = 8;P P
q x xq

8 I i6 i+ *p;
fmultiply N,

Voperatory

P P
q x q X

16 I 256 \x = *p *q;P P
q qX X

FIGURE 9-8 Accessing Variables Through Pointers

The indirection and address operators are the inverse of each other, and
when combined in an expression, such as * & x, they cancel each other. To see

this, let’s break down the expression. These two unary operators are evaluated
from the right. T he first expression is therefore & x, the address of x, which as

we have seen, is a pointer value. The second expression, * (& x) , dereferences
the pointer constant, giving the variable (x) itself. Therefore, the operators

effectively cancel each other (Figure 9-9). Of course, we would never code
the expression * &a in a program; we use it in Figure 9-8 for illustration only.

JJ inverse
& •>

FIGURE 9-9 Address and Indirection Operators

Pointer Declaration and Definition
As shown in Figure 9- 10, we use the asterisk to declare pointer variables.
When we use the asterisk in this way, it is really not an operator but rather a

pilcr syntactical notation.
Figure 9- 1 1 shows how we declare different pointer variables. Their cor-

responding data variables are shown for comparison. Note that in each case

the pointer is declared to be of a given type. Thus, p is a pointer to characters,

while q is a pointer to integers, and r is a pointer to floating-point variables.

com

564 Section 9.1 Introduction

data declaration

1type identifier

pointer declaration

]D identifiertype

FIGURE 9-10 Pointer Variable Declaration

int* q;

char* pchar a; Z

GDint n;

float x; float* r;3.3

FIGURE 9- 1 1 Declaring Pointer Variables

EXAMPLE 9- 1 Print with a Pointer
Program 9-1 stores the address of a variable in a pointer and then prints the
data using the variable value and a pointer.

PROGRAM 9-1 Demonstrate Use of Pointers
/* Demonstrate pointer

Written by:
Date:

1 use
2
3

* /4
5 ffinclude <stdio.h>
6

int main (void)7
8 {

// Local Declarations
int a;
int* p;

9
10 14a
11 135760
12

p 13576013 // Statements
a = 14;
P = &a;

14
15
16
17 printf("%d %p\n", a / & a) ;

continue

Chapter 9 Pointerŝ 565

PROGRAM 9- 1 Demonstrate Use of Pointers (continued)

printf("%p %d %d\n",
*P f a) ;

1 8
1 9 P #

2 0
2 1 return 0;

> / / main2 2

Results:
1 4 0 0 1 3 5 7 6 0
0 0 1 3 5 7 6 0 1 4 1 4

Program 9-1 Analysis Program 9-1 requires a little explanation. First, we have defined an integer variable,
a, and a pointer to integer, p, to which we assign a's address. We then print twice.
The first print displays the contents of the variable a and its address (note the pointer
conversion code). The second print uses the pointer, p. It prints the pointer value con-
taining the address of a, followed by the contents of a, first referenced as a pointer
and then as a variable. This demonstrates two ways to access the data. We suggest
that you run this program for yourself. Of course, when you do, you will get a differ-
ent address. Also, some compilers display addresses as integers, and some use hexa-

decimal numbers.

Declaration versus Redirection
We have used the* asterisk operator in two different contexts: for declaration
and for redirection. When as asterisk is used for declaration, it is associated
with a type. For example, we define a pointer to an integer as

int* pa;
int* pb;

In this usage, the asterisk declares that the type of pa and pb is a pointer to

integer.
On the other hand, we also use the asterisk for redirection. When used

for redirection, the asterisk is an operator that redirects the operation from
the pointer variable to a data variable. For example, given two pointers to

integers, pa and pb, sum is computed as

!

sum = *pa + *pb;

The first expression, *pa, uses the pointer value stored in the pointer
variable, pa, to locate its value. The address in pa is not added; it is redirected
through the asterisk operator to the desired value. Likewise, the address in

the second expression, pb, is not added but used to locate the second expres-

sion’s value. Once both of the expressions have been evaluated, they can be

added and the resulting expression value stored in sum.

566 Section 9.1 Introduction

Initialization of Pointer Variables
As we discussed in the previous section, the C language does not initialize
variables. Thus, when we start our program, all of
have unknown garbage in them.

The same is true for pointers. When the program starts, uninitialized
pointers will have some
they will have an
tion. Most likely the value will not he valid for the computer you are using, or
if it is, will not be valid for the memory you have been allocated. If the
address does not exist , you will get an immediate run-time error. If it is a valid
address, you often, but unfortunately not always, get a run-time error. (It is
better to get the error when you use the invalid pointer than to have the pro-
gram produce garbage.)

One of the most common causes of errors in programming, by novices
and professionals alike, is uninitialized pointers. These errors can he very dif -
ficult to debug because the effect of the error is often delayed until later in
the program execution. Figure 9- 12 shows both an uninitialized variable and
an uninitialized pointer.

uninitialized variablesour

unknown memory address in them. More precisely,
unknown value that will be interpreted as a memory loea-

unknown
value

a ??? fcint a; ?

int* p; P ???

^ pointer to \
unknown location

FIGURE 9-12 Uninitialized Pointers

lo correct the problem shown in Figure 9- 12, we must always assign a
valid memory address to the pointer, as shown in the next example.

int
int* p = &a;
*p = 89;

a; // int variable-value unknown
// p has valid address
// a assigned value 89

As \\ c saw with variables, it is also possible to initialize pointers when
declared and defined. All that is needed is that the data variable bethey are

defined belore the pointer variable. For example, if we have an integer vari-
able, a, and a pointer to integer, p, then to set p to point to a at declaration
time, we can code it as shown in Figure 9-13.

I '1
Chapter 9 Pointers 56 /

int a; int* p;

declarationint* p = &a;

P = &a;

initialization

FIGURE 9- 1 3 Initializing Pointer Variables

Note that in Figure 9-13, the initialization involves two different steps.
First the variable is declared. Then the assignment statement to initialize the
variable is generated. Some style experts suggest that you should not use an

initializer in this way.2 Their argument is that it saves no code; that is, that
the initializer statement is required either as a part of the declaration and ini-

tialization or as a separately coded statement in the statement section of the
function. Putting the initialization in the declaration section tends to hide it

and make program maintenance more difficult. We tend to agree with them.
We can also set a pointer to NULL,either during definition or during exe-

cution. The following statement demonstrates how we could define a pointer
with an initial value of NULL.

int* p = NULL;

In most implementations, a null pointer contains address 0, which may

be a valid or invalid address depending on the operating system. II we deref -
erence the pointer p when it is NULL, we will most likely get a run-time error

because NULL is not a valid address. The type of error we get depends on the

system we are using.

EXAMPLE 9-2 Change Variables- Fun with Pointers
Now let’s write a program and have some fun with pointers. Our code is

shown in Program 9-2. Do not try to figure out why this program is doing
what it is doing; there is no reason. Rather, just try to trace the different vari-

ables and pointers as we change them.

PROGRAM 9-2 Fun with Pointers

/* Fun with pointers
Written by:

Date:

1
2
3

*/4
conl ini tec

Steve Oualline, C Elements of Style (Mountain View, Calif.: M&T Books, 1992).
2. For example, see

568 Section 9.1 Introduction

PROGRAM 9-2 Fun with Pointers (continued)

5 #include <stdio.h>
6

int main (void)7
8 {

// Local Declarations
int a;
int b;
int c;
int* p;
int* q;
int* r;

9
10

aQbGcQ
p O q O r Q

11
12
13
14
15
16

// Statements
a = 6;
b = 2 ;
p = &b;

17
a bJ^18

19 q Q r OP20
21

a[TJ b
22 q = p;

r = &c;23 P324

25 P = &a;
*q = 8;26

27

28 *r = *p;
29

30 *r = a + *q + *&c;
31
32 printf("%d %d %d \n",

ar b, c);
printf("%d %d %d",

33
34
35 *P' *q, *r);
36 return 0;

} // main37

Results:
6 8 20
6 8 20L

I

Chapter 9 Pointers 569

Program 9-2 Analysis When the program starts, all the variables and their pointers are uninitialized. The
iables have garbage values, and the pointers have invalid memory locations.

The first thing the program does, therefore, is to assign values to a and b,and to ini-
tialize all three pointers. After statement 23, both p and q point to b, and r points to c.

Statement 25 assigns the address of a to p. All three pointers now point to differ-
ent variables. Using the indirection operator,we dereference q (*q), and assign b the
value 8.

var

Statement 28 demonstrates that both operands can be dereferenced when it
assigns the contents of a (*p) to c (*r).

Finally, in statement 30, we use three different formats to sum the values in the vari-
ables, a variable name, a dereferenced pointer, and a dereferenced address operator.
Using the figures in the program, trace these statements carefully to assure yourself that
you understand how they work.

EXAMPLE 9-3 Add Two Numbers
This example shows how we can use pointers to add two numbers. It explores
the concept of using pointers to manipulate data. A graphic representation ol

the variables is shown in Figure 9- 14. The code is shown in Program 9-3.

ba

'

pb Prpa

FIGURE 9- 1 4 Add Two Numbers Using Pointers

l
PROGRAM 9-3 Add Two Numbers Using Pointers

/ This program adds two numbers using pointers to

demonstrate the concept of pointers.

Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>6

7
int main (void)8

9 {
// Local Declarations

int a;
int b;
int r;
int* pa = &a;

10
11
1 2
13
14

cont inual

570 Section 9.1 Introduction

PROGRAM 9-3 Add Two Numbers Using Pointers (continued)

int* pb = &b;
int* pr = &r;

15
16
17

// Statements
printf("Enter the first number : ");
scanf ("%d", pa);
printf("Enter the second number: ");

scanf ("%d", pb);
*pr = *pa + *pb;
printf("\n%d + %d is %d", *pa, *pb, *pr);
return 0;

} // main

18
19
2 0
21
2 2
23
24
25
26

Results:
Enter the first number : 15

Enter the second number: 51

15 + 51 is 66

Program 9-3 Analysis This program is rather straightforward except for
and 22 carefully. What is missing? When
Chapter 4, we mentioned that when input areas are passed by address, we don't use
the address operator in the sconf statement. This is because the pointer already con-
tains an address. It would be an error to use the address operator on the pointers in
this program.

one thing. Look at statements 20
we discussed pass-by address in

EXAMPLE 9-4 Pointer Flexibility
I b is example shows how we can use the same pointer to print the valued
different variables. T he variables and their pointer are shown in f igure 9- 15.

FIGURE 9-15 Demonstrate Pointer Flexibility

' \
Chapter 9 Pointers 571

The code is in Program 9-4.

PROGRAM 9-4 Using One Pointer for Many Variables
/* This program shows how the same pointer can point to

different data variables in different statements.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>6

7
int main (void)8

9 {
// Local Declarations

int a;
int b;
int c;
int* p;

10
1 1
12
13
14
15

// Statements
printf("Enter three numbers and key return:

scanf ("%d %d %d", &a, &b, &c);

P = &a;
printf("%3d\n", *p);
P = &b;
printf("%3d\n", *p);
p = &c;
printf("%3d\n", *p);
return 0;
// main

16
17
18
19
20
21
22
23
24
25
26 >

Results:
Enter three numbers and key return: 10 20 30

10
20
30

EXAMPLE 9-5 Multiple Pointers For One Variable
different pointers to print the value ofThis example shows how

the same variable. The variable and its pointers are shown in Figure 9-16.we can use

572 Section 9.1 Introduction

FIGURE 9-16 One Variable with Many Pointers

The code is shown in Program 9-5.
PROGRAM 9-5 Using A Variable with Many Pointers

/* This program shows how we can use different pointers
to point to the same data variable.

Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>6

7
int main (void)8

9 {
// Local Declarations

int
int* p = &a;
int* q = &a;
int* r = &a;

10
1 1 a;
12
13
14
15

// Statements
printf("Enter a number:
scanf ("%d",
printf("%d\n",
printf("%d\n",
printf("%d\n", *r);

16
17 ")?
18 & a) ;
19 *P);
20 *q) ;
21
22
23 return 0;

> // main24

Results:
Enter a number: 15
15
15
15

1nChapter 9 Pointers 573

9.2 Pointers for Inter-function Communication
One of the most useful applications of pointers is in functions. When
cussed functions in Chapter 4, we saw that C
downward communication. For upward communication, the only direct way
to send something back from a function is through the return value. We also
saw that we can use upward and bi-directional communication hv passing an
address and using it to refer back to data in the calling program. When we
pass an address, we are actually passing a pointer to a variable. In this sec-
tion, we fully develop the bi-directional communication. We use two exam-
ples to demonstrate how pointers can be used in functions.

we dis-
the pass-by-value foruses

Passing Addresses
Figures 9- 17 and 9- 18 demonstrate the use of pointers. In Figure 9-17, we
call the exchange function, passing it two variables whose values arc to be
exchanged. When we use downward communication , the data are exchanged
in the called function, hut nothing changes in the calling program.

Rather than passing data to the called function , we need to pass
addresses (pointers). Once we have a pointer to a variable, it doesn ’t make
any difference if it is local to the active function, defined in main , or even if it
is a global variable—we can change it! In other words, given a pointer to a
variable anywhere in our memory space, we can change the contents of the
variable.

Figure 9-18 shows the exchange using pointers. To create the pointers,
we use the address operator (&) in the call, as show n below. We are now pass-
ing the address of a and b rather than their values.

exchange (& a , & b) ;

To pass addresses, the formal parameters in the called function are
defined as a pointer to variables. This definition, w hich is shown below, com-
pletes the connection and allows us to indirectly reference the variables in

the calling program through the pointers.

void exchange (int* px , int* p y) ;

To assign a value to a, all that we need to use is the indirection operator

in exchange. Using the indirection operator allows us to access data in the

calling program.
We then call exchange using the address operator for the variables that

want to exchange. Note that exchange

px and py, and one local variable, temp. By dereferencing the parameters

make the exchange using the variables in main and the local variable, temp,

in exchange. The correct logic is shown in Figure 9-18.

the two formal parameters,useswe , we

574 Section 9.2 Pointers for Inter-function Communication

K// Function Declarations
void exchange (int x, int y); a b

5 I 7
int main (void) No Change{

int a = 5;
int b = 7;
exchange (a, b);
printf("%d %d\n\ a, b);
return 0;

} // main

lkvoid exchange (int x, int y) 5 l 7i
{ ii x yint temp; i

As Passed
temp = x;

7 i= y?
= temp;

x
I Xy y ireturn;

} // exchange When Exchanged

FIGURE 9-17 An Unworkable Exchange

tk// Function Declaration
void exchange (int*, int*); ba

X5
int main (void)
{

int a = 5;
int b = 7;

exchange (&a, &b);
printf("%d %d\n",
return 0;

} // main

a, b);

void exchange (int* px, int* py)\
{ ^ y

int temp;
x

temp = *px;
*px = *py;
*py = temp;
return;

} // exchange

temp

5

FIGURE 9-18 Exchange Using Pointers

'I111

Chapter 9 Pointers 575

In summary, when we need to send more than one value back from a
function, we use pointers. Using either upward or bi-directional communica-
tion. we can change any number of variables.

Every time we want a called function to have access to a variable in the calling
function, we pass the address of that variable to the called function and use
the indirection operator to access it.

Functions Returning Pointers
We have shown you many examples of functions using pointers, hut so far we

have shown none that return a pointer. Nothing prevents a function from
returning a pointer to the calling function. In fact, as you will see. it is quite
common for functions to return pointers.

As an example, let s write a rather trivial function to determine the smaller
of two numbers. In this case, we need a pointer to the smaller of two variables,
a and b. Since we are looking for a pointer, we pass two pointers to the func-
tion, which uses a conditional expression to determine which value is smaller.
Once we know the smaller value, we can return the address ol its location as a

pointer. The return value is then placed in the calling function 's pointer, p, so

that after the call it points to either a or b, based on their values. Both the
code and a diagram of the variables and pointers are seen in f igure 9-19.

// Prototype Declarations
int* smaller (int* pi, int* p2) ba

int main (void)

\

t

int a;
int b;
int* p;

X /
X /x

^
/

&a or &b|
scant ("%d %d", &a, &b);
p = smaller (&a, &b); P

int* smaller (int* px, int* py)

px py{
return (*px < *py ? px : py);

} // smaller

FIGURE 9-19 Functions Returning Pointers

When we return a pointer, it must point to data in the calling I unction or
local variable in

memory mava higher level function. It is an error to return a pointer to a

the called function, because when the function terminates its

be used by other parts of the program. Although a simple program might not

I!

576 Section 9.3 Pointers to Pointers

notice the error because the space was not reused, a large program would
either get the wrong answer or fail when the memory being referenced by the
pointer was changed.

It is a serious error to return a pointer to a local variable.

9.3 Pointers to Pointers
So far, all our pointers have been pointing directly to data. It is possible—and
with advanced data structures often necessary—to use pointers that point to
other pointers. For example, we can have a pointer pointing to a pointer to an
integer. This two-level indirection is seen in Figure 9-20. There is no limit as
to how many levels of indirection we can use but, practically, we seldom
more than two.

use

// Local Declarations
int a;
int* p;
int** q;

pointer t o ""
inter to integer

pointer to
integer

q P a
»1 287650 I234560J-

397870
*

234560 287650

// Statements
a = 58;
P = &a;
q = &P;
printf(" %3d",
printf(" %3d",
printf(" %3d",

a) ;
*P);

* *q) ;

FIGURE 9-20 Pointers to Pointers

I ach level of pointer indirection requires a separate indirection opera-
tot when it is dereferenced. In Figure 9-20, to refer to a using the pointer p,
we have to dereference it once, as shown below.

*P

lo refer to the variable a using the pointer q, we have to dereference it
twice to gi t to the integer a because there are two levels of indirection (point-
ers) involved. If we dereference it only once, we are referencing p, which is a

n
Chapter 9 Pointers 577

pointer to an integer. Another way to say this is that q is a pointer to a pointer
to an integer. The double dereference is shown below.

**q
M U

Figure 9-20 also shows how we use these concepts in a C code fragment.
All three references in the printf statements refer to the variable a. The first
print statement prints the value of the variable a directly; the second uses the
pointer p; the third uses the pointer q. The result is the value 58 printed
three times, as shown below.

5 8 5 8 5 8

EXAMPLE 9-6 Pointer-to-Pointer
The last example in this section shows how we can use different pointers with
pointers to pointers and pointers to pointers to pointers to read the value ot
the same variable. A graphic representation of the variables is shown in
Figure 9-2 1 . The code is shown in Program 9-6.

o—a— ar q p

FIGURE 9-21 Using Pointers to Pointers

PROGRAM 9-6 Using pointers to pointers

/* Show how pointers to pointers can be used by different

scanf functions to read data to the same variable.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>6

7
int main (void)8

9 {
// Local Declarations

int a;
int* p;
int** q;
int*** r;

10
1 1
12
1 3
1 4
1 5

// Statements
p = &a;

1 6
1 7

continuec

578 Section 9.4 Compatibility

PROGRAM 9-6 Using pointers to pointers (continued)

18 q = &p;
r = &q;19

20
printf("Enter a number: ");
scant ("%d", &a);
printf("The number is : %d\n", a);

21
// Using a22

23
24

printf("\nEnter a number: ");
scant ("%d", p);
printf("The number is : %d\n", a);

25
// Using p26

27
28

printf("\nEnter a number: ");
scant ("%d", *q);
printf("The number is : %d\n", a);

29

// Using q30
31
32

printf("\nEnter a number: ");
scant ("%d", **r);
printf("The number is : %d\n"/ a);

33

// Using r34
35
36
37 return 0;

} // main38

Results:
Enter a number: 1
The number is : 1

Enter a number: 2
The number is : 2

Enter a number: 3
The number is : 3

Enter a number: 4
The number is : 4

Program 9-6 Analysis In each successive read higher level of indirection. In the print statements,owever, we a ways use the integer variable, a, to prove that the reads were successful.
we use a

9.4 Compatibility
It is important to recognize that pointers have a type associated with them.
They are not just pointer types, hut rather are pointers to a specific type, sue
as character. Each pointer therefore takeswhich it refers in addition to its own attributes.

the attributes of the type toon

Chapter 9 Pointers 5 / 9

Pointer Size Compatibility
I he size of all pointers is the same. Every pointer variable holds the address
of one memory location in the computer. On the other hand, the size of the
variable that the pointer references can be different; it takes the attributes of
the type being referenced.This is demonstrated by Program 9-7, which prints
the size of each pointer and the size of the referenced object.

PROGRAM 9-7 Demonstrate Size of Pointers
/* Demonstrate size of pointers.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
int main (void)7

8 {
// Local Declarations

char c;
char* pc;
int sizeofc
int sizeofpc
int sizeofStarpc = sizeof(*pc);

9
10
11

= sizeof(c);
= sizeof(pc);

12
13
14
15

int a;
int* pa;
int sizeofa
int sizeofpa
int sizeofStarpa = sizeof(*pa);

16
17

= sizeof(a);
= sizeof(pa);

18
19
20
21

double x;
double* px;
int sizeofx
int sizeofpx
int sizeofStarpx = sizeof(*px);

22
23

= sizeof(x);
= sizeof(px);

24
25
26
27

// Statements
printf("sizeof(c): %3d

printf("sizeof(pc):
printf("sizeof(*pc):

28
", sizeofc);

%3d | ", sizeofpc);
%3d\n", sizeofStarpc);

29
30
31
32

printf("sizeof(a): %3d | ",

printf("sizeof(pa): %3d | ", sizeofpa);

printf("sizeof(*pa):

sizeofa);33
34

%3d\n", sizeofStarpa);35
36

contimiec

r 580 Section 9.4 Compatibility

PROGRAM 9-7 Demonstrate Size of Pointers (continued)

printf("sizeof(x): %3d|", sizeofx);
printf("sizeof(px): %3d|", sizeofpx);
printf("sizeof(*px): %3d\n", sizeofStarpx);

37
38
39
40

return 0;
} // main

41
42

Results:
sizeof(c):
sizeof(a):
sizeof(x):

4|sizeof(*pc): 1
4 | sizeof(*pa): 4
4 | sizeof(*px): 8

1 sizeof(pc):
4 sizeof(pa):
8|sizeof(px):

Program 9-7 Analysis What is this code telling us? First, note that the variables a, c, and x are never
assigned values. This means that the sizes are independent of whatever value may be
in a variable. In other words, the sizes are dependent on the type and not its values.

Now look at the size of the pointers. It is 4 in all cases, which is the size of
address in the computer on which this program was run. This makes sense: All com-

puters today have more than 65,535 bytes, which is the maximum address that could
be stored in 2 bytes.

But note what happens when we print the size of the type that the pointer is refer-
ring to: The size is the same as the data size! This means that in addition to the size of
the pointer, the system also knows the size of whatever the pointer is pointing to. To
confirm this, look at the size of the pointer, px, and what it is pointing to when deref-
erenced (*px).

an

Dereference Type Compatibility
I he second issue in compatibility is the dereference type. The dereference
type is the type ol the variable that the pointer is referencing. With one
exception (discussed later), it is invalid to assign a pointer of one type to a
pointer ol another type, even though the values in both cases are memory
addresses and would therefore seem to be fully compatible. Although the
addresses may he compatible because they are drawn from the same set, what
is not compatihle is the underlying data type ol the referenced object.

In C, we can’t use the assignment operator with pointers to different
types; il we try to, we get a compile error. A pointer to a char is only compati-
ble with a pointer to a char; and a pointer to an int is only compatible with a
pointer to an int . We cannot assign a pointer to a char to a pointer to an int.
l ets construct an example in which we have two variables: one int and one
char. We also define one pointer to char and one pointer to int as shown in
Figure 9-22.

Chapter 9 Pointers 581

Type: pointer to char 123450 \ 123450
pc c

234560 1 +* 58 | 234560Type: pointer to int

pa a

char c;
char* pc;

int a;
int* pa;

// Good and valid
// Good and valid

pc = &c;
pa = &a;

// Error: Different types
// Error: Different levels

pc = &a;
pa a;

FIGURE 9-22 Dereference Type Compatibility

The first pair of assignments are valid. In the first assignment, we store the
address of a character variable in a pointer to character variable. In the second
assignment, we store the address of an integer (int) variable in a pointer to an
integer (int) variable. We create an error in the third assignment because we
try to store the address of a character variable into a pointer variable whose
type is pointer to integer (int). We also get an error in the fourth assignment.

Pointer to Void
The exception to the reference type compatibility rule is the pointer to void.
As we discussed in Chapter 2, one of the types defined in C is void. Although
the void type defines the lack of any other type when used with functions, its

with pointers is different . A pointer to void is a generic type that is not
associated with a reference type; that is, it is not the address of a character,

integer, a real, or any other type. However, it is compatible for assignment
purposes only with all other pointer types. Thus, a pointer of any reference
type can be assigned to a pointer to void type and a pointer to void type can be
assigned to a pointer of any reference type. There is, however, one restriction;
since a void pointer has no o
cast
pointer to void type.

use

an

bject tvpe, it cannot be dereferenced unless it is
(see next section). The following shows how we can declare a variable of

void* pVoid;

A

582 Section 9.4 Compatibility

It is important to understand the difference between a null pointer and a
variable of type pointer to void. A null pointer is a pointer of any type that is
assigned the constant NULL.The reference type of the pointer will not change
with the null assignment. A variable of pointer to void is a pointer with no ref-

type that can store only the address of any variable. The following
examples show' the difference
erence

// Pointer to void type
// Null pointer of type int
// Null pointer of type char

void* pVoid;
int* pint = NULL;
char* pChar = NULL;

A void pointer cannot be dereferenced.

Casting Pointers
The problem of type incompatibility can be solved if we use casting. We
make an explicit assignment between incompatible pointer types by using a
cast , just as we can cast an int to a char. For example, if we decided that
needed to use the char pointer, pc in the previous example, to point to an int
(a) , we could cast it as shown below.

can

we

pc = (char*)&a;

But in this case, user beware! Unless we
have a great chance ol creating serious errors. In fact , with the exception

ol the void pointer, we should never cast a pointer. The following assignments
are all valid, but they are extremely dangerous and must be used with a very
carclully thought-out design.

cast all operations that use pc,

we

// Local Declarations
void* pVoid;
char* pChar;
int* pint;

// Statements
pVoid = pChar;
pint
pint

= pVoid;
= (int*) pChar;

Another use ol the cast is to provide a type for the void pointer. As noted
in the previous section, a void pointer cannot be dereferenced because it has

object type. \\ hen we cast it, however, we provide the type.no

Chapter 9 Pointers 583

Dereference Level Compatibility
Compatibility also includes dereference level compatibility. For example, a
pointer to int is not compatible with a pointer-to-pointer to int .The pointer to
int has a reference type ol int , while a pointer-to-pointer to int has a reference
type ol pointer to int. Figure 9-23 shows two pointers declared at different
levels. I he pointer pa is a pointer to int ; the pointer ppa is a pointer-to-
pointer to int .

* '1

h-H
ppa pa a

tvint // type int
// type int
// type pointer to int
// type pointer to pointer to int

a ;
int b;
int* pa;

ppa;int**

// Valid: same level
// Valid: same level
// Valid: same level

pa = &a;
ppa = &pa;
b = **pa;

// Invalid: different level
// Invalid: different level
// Invalid: different level

pa = a;
ppa = pa;
b = *ppa;

FIGURE 9-23 Dereference Level Compatibility

9.5 Lvalue and Rvalue
In C, an expression is either an lvalue or an rvalue. As you know, every expres-
sion has a value. But the value in an expression (after evaluation) can he used
in two different ways.

1 . An lvalue expression must he used whenever the object is receiving a
value; that is, it is being modified.

2. An rvalue expression can be used to supply a value for further use; that
is, to examine or copy its value.

But how do you know when an expression is an lvalue and when it is an
rvalue? Fortunately, only seven types of expressions are lvalue expressions.
They are shown in Table 9- 1 .

I^Hi"
584 Section 9.5 Lvalue and Rvalue

CommentsExpression Type0

Variable identifier
Array indexing
Expression must already be lvalue
Dereferenced expression

identifier
expression[...]
(expression)

*expression

1 .
2 .

3.

4.
Structure selection
Structure indirect selection

5. expression.name

6. expression->name

function call If function uses return by address7.
a Expression types 5, 6, and 7 have not yet been covered.

TABLE 9-1 lvalue Expressions

For example, the following are lvalue expressions:

a [5] = ... (a) = ... *p = ...a = ...
All expressions that are not lvalue expressions are rvalues. The following

show some rvalue expressions:

5 a + 2 a * 6 a [2] + 3 a++

Note that even if an expression is an lvalue, if it is used as part of a larger
expression in which the operators create only rvalue expressions, then the
whole expression is an rvalue. 1 or example, a [2] is an lvalue. But when it is
used in the expression a [2] + 3, the whole expression is an rvalue, not an
lvalue. Similarly, in the expression a++, the variable a is an lvalue while the
whole expression (a+ +) is an rvalue.

You may ask, “Why worry so much about lvalues and rvalues? The rea-
son is that some operators need an lvalue as their operand. If we use one of
these operators and use an rvalue in place of the operand, we will get a com-
pile error.

The right operand of an assignment operator must be an rvalue expression.
() n l \ six operators need an lvalue expression as an operand: address

operator, postfix increment, postfix decrement, prefix increment, prefix dec-
rement, and assignment. They are shown in Table 9-2 with examples
of each.

i l l

Chapter 9 Pointers 585

Type of Expression Examples
Address operator Ssco re

Postfix increment/decrement x++ y--
Prefix increment/decrement ++x -- y

Assignment (left operand) 1 Y += 3x

TABLE 9-2 Operators That Require lvalue Expressions
Table 9-3 contains several examples of invalid expressions that will create

syntax errors because an rvalue is used when an lvalue is needed.

Expression Problem

a + 2 is an rvalue and cannot be the left operand in an
assignment; it is a temporary value that does not have an
address; no place to store 6.

a + 2 = 6;

a + 2 is an rvalue, and the address operator needs an
lvalue; rvalues are temporary values and do not have
addresses.

& (a + 2) ;

Same as above (4 is an rvalue).&4;

Postfix and prefix operators require lvalues; (a + 2) is an
rvalue.

(a + 2) ++;
++ (a + 2) ;

Invalid rvalue ExpressionsTABLE 9-3

One Pinal thought: A variable name can assume the role of either an
how it is used in an expression. In the fol-Ivalue or an rvalue depending on

lowing expression, a is an lvalue because it is on the left of the assignment
and b is an rvalue because it is on the right of the assignment.

a = b

Pointer Examples
In this section we demonstrate two ways we can use pointers when calling
functions.

Convert Seconds to Hours
We begin with a simple function that converts time in seconds to hours, min-

and seconds. While the function is simple, it does require three address
the values. The code is shown in Program 9-8.

EXAMPLE 9-7

utes,
parameters to return

586 Section 9.5 Lvalue and Rvalue

PROGRAM 9-8 Convert Seconds to Hours, Minutes, and Seconds
/* =====

Given time in seconds, convert it to hours,
and seconds.

Pre

1 === secToHours

2 minutes,
3
4 time in seconds

addresses of hours, minutes, seconds
hours, minutes, seconds calculated

Return error indicator—1 success, 0 bad time

5
6 Post
7

*/8
int secToHours (long time,

int* hours, int* minutes, int*
9
10 seconds)
1 1 {

// Local Declarations
long localTime;

1 2
13
14

// Statements
localTime = time;
seconds = localTime % 60;
localTime = localTime / 60;

15
16
17
18
19
2 0 minutes = localTime % 60;
21
2 2 hours = localTime / 60;
23
24 if (*hours > 24)

return 0;25
26 else
27 return 1;

// secToHours28 }

Program 9-8 Analysis The first question you might ask when reading this simple function is "Why define a
local variable for the time?" In this short function, it really wasn't necessary. However,
a good programmer does not change a value parameter within the function,because
its original value may be needed later. We have seen times when "later" turned out to
be a maintenance change and hours were spent debugging the
wrong value was computed.

when theerror

ti
6 Varia^e3 w^en 3 va * ue parameter will be changed within a func-

n 50 that the original value will always be available for processing.

function do ^ y°u nee<^ to send back two values from a called
return for somp nth°SS ^ ^ through a pointer and return the other. Either use the
desiqn consistent—In °S 0 SfatUS °r ma^e return vo/c^ your

' 'V

Chapter 9 Pointers Jj87

When several values need to be sent back to the calling function,use address
parameters for all of them. Do not return one value and use address parame-
ters for the others.

EXAMPLE 9-8 Quadratic Equations
Let’s look at a typical program design that reads, processes, and prints data.
This is a processing cycle that is common to many, many programs. Figure 9-24
shows its structure chart.

program

getData printResultscompute

FIGURE 9-24 A Common Program Design

To demonstrate the universality of this design, let’s compute the real
roots for a quadratic equation. Recall that a quadratic equation has the form

a\
2 + b \ + c = 0

when you solve lor the roots in a qua-
dratic equation. First, it is an error if both a and b are 0: 1here is no solution.
Second, if a is 0 and b is not 0, there is only one root:

Four possible situations can occur

-cx
b

two, possibly equal, rootsThird, if b2 - 4ac is 0 or positive, there are

derived from the following equation:

- b ± Jb2 — 4ac
x = 2 a

Finally, if b2 - 4ac is negative, the roots are imaginary.
Figure 9-25 diagrams the interaction of the variables and pointers lor

Program 9-9. In this short program, we use pointers to pass data irom a read

588 Section 9.5 Lvalue and Rvalue

function, pass both values and pointers to a compute function, and finally
pass the values to a print function.

main
rootl root2 numRootsb ca

trSniJ
pa pb pc

getData

(a) Calling getData

main
rootl root2b numRootsca

#n
a b c pRootl pRoot2

quadratic

(b) Calling quadratic
main

b rootl root2 numRootsa c

LJ
a b c rootl root2 numRoots

printResults

(c) Calling printResults

FIGURE 9-25 Using Pointers as Parameters

PROGRAM 9-9 Quadratic Roots
/* Test driver for quadratic function.

Written by:
Date:

1
2
3

*/4
5 #include <stdio.h>

#include <math.h>6
7

// Function Declarations
void getData
int quadratic

8
9 (int*

(int
double* pRootl, double* pRoot2);

numRoots,

int* pb, int* pc);
int b, int

pa,
10 c,a,
1 1
1 2 void printResults (int

continued

Chapter 9 Pointers 589

PROGRAM 9-9 Quadratic Roots (continued)

13 int
double

int b, int c,
rootl, double root2);
a,

14
15

int main (void)16
17 {

// Local Declarations
int
int b;
int
int numRoots;
double rootl;
double root2;
char again = 'Y';

18
19 a;
20
21 c;
22
23
24
25
26

// Statements
printf("Solve quadratic equations.\n\n");
while (again == 'Y'|| again ==

27
28
29 Y *)
30 {
31 getData (&a, &b, &c);

numRoots = quadratic (a, b, c, &rootl, &root2);
printResults (numRoots, a, b, c, rootl, root2);

32
33
34

printf("\nDo you have another equation (Y/N): ");
scanf (" %c", &again);

> // while
printf("\nThank you.Xn");
return 0;
// main

35
36
37
38
39
40 }
41

/* ===: ===== getData ====42
Read coefficients for quadratic equation.

b, and c contains addresses

data read into addresses in main

43
44 Pre a,

45 Post
*/46

(int* pa, int* pb, int* pc)void getData47
48 {

// Statements
printf("Please enter coefficients a, b,

scanf ("%d%d%d", pa, pb, pc);

49
& c: ");50

51
52
53 return;

// getData54 >
55

==== quadratic =====j* ==========56
continued

jr
590 Section 9.5 Lvalue and Rvalue

PROGRAM 9-9 Quadratic Roots (continued)

Compute the roots for a quadratic equation.
b, & c are the coefficients

pRootl & pRoot2 are variable pointers
roots computed, stored in calling function
2 two roots,
1 one root,
0 imaginary roots

-1 not quadratic coefficients.

57
58 Pre a,
59
60 Post

Return61
62
63
64

*/65
int quadratic (int a, int b, int c,

double* pRootl, double* pRoot2)

66
67
68 {

// Local Declarations
int result;

69
70
71

double discriminant;
double root;

72
73
74

// Statements
if (a == 0 && b == 0)

result = -1;

75
76
77
78 else
79 if (a == 0)
80 {
81 *pRootl = -c / (double) b;

result = 1;
> // a == 0

82
83
84 else
85 {
86 discriminant = b * b

if (discriminant >= 0)
(4 * a * c);

87
88 {
89 root = sqrt(discriminant);
90 *pRootl = (

_
b + root) / (2 * a);

*pRoot2 = (-b - root) / (2 * a);
result

91
92 = 2;

> // if >= 093
94 else
95 result = 0;
96 > // else
97 return result;

// quadratic98 }
99
100 —=== printResults ====

continue

Chapter 9 Pointers 591

PROGRAM 9-9 Quadratic Roots (continued)

101 Prints the factors for the quadratic equation.
Pre102 numRoots contains 0, 1, 2

a, b, c contains original coefficients
rootl and root2 contains roots
roots have been printed

103
104 ; K

105 Post
*/106
void printResults (int

int
107 numRoots,

a, int b, int c,
double rootl, double root2)

108
109
110 {

// Statements
printf("Your equation: %dx**2 + %dx + %d\n",

a, b, c);
switch (numRoots)

111
112
113
114
115 {

printf("Roots are: %6.3f & %6.3f\n",
rootl, root2);

116 case 2:
117
118 break;

case 1: printf("Only one root: %6.3f\n",
rootl);

119
120

break;
printf("Roots are imaginary.\n");
break;

default: printf("Invalid coefficients^");
break;

121
122 case 0:
123
124
125

> // switch
return;

} // printResults

126
127

128
===== End of Program =====129

Results:
Solve quadratic equations.

Please enter the coefficients a, b, & c: 2 4 2

Your equation: 2x**2 + 4x + 2

-1.000 & -1.000Roots are:

Do you have another equation (Y/N): y

Please enter the coefficients a, b,

Your equation: 0x**2 + 4x + 2

Only one root:

& c: 0 4 2

-0.500
have another equation (Y/N): yDo you

Please enter the coefficients a, b, & c: 2 2 2

Your equation: 2x**2 + 2x + 2

continuec

592 Section 9.5 Lvalue and Rvalue

PROGRAM 9-9 Quadratic Roots (continued)

Roots are imaginary.

Do you have another equation (Y/N): y
Please enter the coefficients a, b, & c: 002
Your equation: 0x**2 + Ox + 2
Invalid coefficients

Do you have another equation (Y/N): y
Please enter coefficients a, b, & c: 1 -5 6
Your equation: lx**2 + -5x + 6

3.000 &Roots are: 2 . 0 0 0

Do you have another equation (Y/N): n

Thank you.

Program 9-9 Analysis This problem has many interesting points. The function main is a test driver — that is,code that will not be put into production. Therefore, we code much of the test logic in
rather than providing separate functions for it.

The scanf function used in getData does not have the usual address operator (&)
in front of variables a, b, and c. Why? Because they are already pointer values point-
ing to variables in main and therefore are already addresses.

The variables in these examples are either integers or pointers to integers. Parame-
ters that receive something from main are integers whose values will be filled when thecall is made. Those that send data back to main are pointers to integers that will befilled with the addresses of the corresponding variables
value will be changed, it must be passed
be passed as a

In quadratic, note the extensive testing to make sure that the coefficients arevalid. To ensure valid code, they are all necessary. Look at how we calculated the square
root of the discriminant separately (statement 89) . Since square root is a complex func-tion, it is more efficient to call it just once and save the value for later use. Note also thatthe function has only one return statement. This is proper structured code, though manyprofessional programmers would simply return at statements 77, 82, 92, and 95.Study our test data carefully. Note that this set of test data executes every line ofcode in the program. Designing test data that completely validates a function is not aneasy task. Ensuring that all code has been executed is even more difficult and tedious.One way to make sure that all code has been tested is to use your debugger to set abreak point at every statement and then clear them as the program executes. When allbreak points have been cleared, you know every instruction has been executed.Executing every line of code does not ensure that the function has no bugs, how-
ever. With large programs, it is virtually impossible to test every possible combinationof data. One of the advantages of structured programming is that by breaking the pro-
gram down into separate functions we can test it better.This program has a potential problem. Do you see it? Hint: What if the user entersinvalid data? There is no error checking in getData. If this were a production pro-
gram, it would contain code to check for errors. It would then return a status flag toindicate if getData was successful

mam

in main. As a general rule, if a
as a pointer. If it will not be changed, it should

value. This protects data from accidental destruction.

or not.

Chapter 9 Pointers 593

9.6 Software Engineering
In the previous chapters, software engineering has always been related to the
material in the chapter. This chapter is an exception. In this chapter, we dis-
cuss a general software engineering topic, quality, which
any topic, including pointers.

You will find no one who would even consider minimizing software qual-
ity, at least publicly. Everyone wants the best software available, and to listen
to the creators of systems on the market, their systems are all perfect. Yet, as
users of software, we

he applied tocan

often feel that quality software is a contradiction in
terms. We all have our favorite software products, but not one of them is
without a wart or two.

Since you are now moving into the world to be one of those software cre-
ators, you need to be aware of the basic concepts of software quality. In this
chapter, we discuss some of the attributes of a quality product and how you
go about achieving quality.

Quality Defined
Quality software is defined as

Software that satisfies the user’s explicit and implicit requirements, is well
documented, meets the operating standards of the organization, and runs
efficiently on the hardware for which it was developed.

Every one of these attributes of good software falls squarely on you , the sys-
tem designer and programmer. Note that we place on you the burden ol satis-
fying not only the users' explicit requirements, but also their implicit needs.
Often, users don't fully know what they need. When this happens, it is your
job to determine their implicit requirements, which arc hidden in the back-
ground. This is a formidable task indeed.

Of course, it is also your job to document the software. If you are lucky,
you will have a technical writer to help, and even if you do, the final product
is still your responsibility. And as an analyst and programmer, you are

expected to know the standards of your organization and to implement them
properly.

Finally, it is your program, so you are responsible for its efficiency. This
that you are expected to use appropriate and efficient algorithms. I bis

the focus of our discussions in Chapters 6 and 8 when we talked aboutmeans
was
analyzing algorithms and the big-O theory.

But quality software is not just a vague concept. If we want to attain it,
have to be able to measure it. Whenever possible, these measurements

should be quantitative; they should he numerically measurable. For example,
if an organization is serious about quality, it should he able to tell you the

number of errors (bugs) per thousand lines of code and the mean time

between failures lor every software system it maintains. I hese are

we

measur-
able statistics.

r~
594 Section 9.6 Software Engineering

On the other hand, some of the measurements may he qualitative,
ing that they cannot be numerically measured. Flexibility and testability

pies of qualitative software measurements. This does not mean that they
t be measured, but rather that they rely on someone’s judgment in assess-

ing the quality of a system.

mean-
are

exam
can

Quality Factors
Software quality can be divided into three broad measures: operability, main-
tainability, and transferability. These measures can be broken down as shown
in Figure 9-26.

Software
Quality

transferabilityoperability maintainability

• changeability
• correctability
• flexibility
• testability

• code reusability
• interoperability
• portability

• accuracy
• efficiency
• reliability
• security
• timeliness
• usability

FIGURE 9-26 Software Quality

Operability
Operability refers to the basic operation of a system. The first thing a user
notices about a system is its “look and feel.” This
online, interactive system, how easy and intuitive it is to use. Does it fit well
into the operating system it is running under? For example, if it is running in
a Windows environment, its pull-down and
same way the operating system’s
question , "How does it drive?”

means, especially for an

pop-up menus should work the
menus do. In short, operability answers the

But these factors are subjective; they are not measurable. So let’s look at
the factors that comprise operability. I hey are listed alphabetically.

Accuracy
A system that is not accurate is worse than no system at all. Most workerswould rather rely on intuition and experience than a system that they knowgives false and misleading information.

Am s\ stem that you develop, therefore, must be thoroughly tested, bothb\ you (whitebox) and by a systems test engineer and the user (blackbox). If
you get the opportunity, take a course on software testing.

Chapter 9 Pointers 595

Accuracy can be measured by such metrics as mean time between fail-
ures, number of bugs per thousand lines of code, and number of
requests for change.

Efficiency
Efficiency is, by and large, a subjective term. In some cases the user will
specify a performance standard, such as that a real- time response must be
received within 1 second, 95% of the time. This is certainly measurable.

user

Reliability
Reliability is really the sum of the other factors. If users count on the system
to get their job done and are confident in it , then it is most likely reliable. On
the other hand, some measures speak directly to a system’s reliability, most
notably, mean time between failures.

Security
The security of a system refers to how easy it is for unauthorized persons to
access the system’s data. Although this is a subjective area, there are check-
lists that assist in assessing the system’s security. For example, does the sys-
tem have and require passwords?

Timeliness
Does the system deliver its output in a timely fashion? For online systems,
does the response time satisfy the users’ requirements? For batch systems,
are the reports delivered in a timely fashion? It is also possible, il the system
has good auditability, to determine if the data in the system are timely; that is,
are data recorded within a reasonable time after the activity that creates them
takes place?

Usability
Usability is also highly subjective. The best measure of usability is to watch
the users and see if they are using the system. User interviews will often

1 problems with the usability of a system.revea

Maintainability
Maintainability refers to keeping a system running correctly and up to date.
Many systems require regular changes, not because they were poorly imple-
mented but because of changes in external factors. For example, the payroll
system for a company must be changed yearly, il not

changes in government laws and regulations.
often, to meetmore

Changeability
The ease of changing a system is a subjective factor. Experienced project

leaders, however, can estimate how long a requested change will take. If it

596 Section 9.6 Software Engineering

takes too long, it may well be because the system is difficult to change. This is
especially true of older systems.

Current software measurement tools estimate a program’s complexity
and structure. These tools should be used regularly, and if a program’s com-
plexity is high, we should consider rewriting the program. Programs that have
been changed many times may have often lost their structured focus and
become difficult to change. They also should be rewritten.

Correctability
One measure of correctability is mean time to recovery—how long it takes to
get a program back in operation when it fails. Although this is a reactive defi-
nition, there are currently no predictors of how long it will take to correct a
program before it fails.

Flexibility
Users are constantly requesting changes in systems. This qualitative attribute
attempts to measure how easy it is to make these changes. If a program
needs to be completely rewritten to effect a change, it is not flexible. Fortu-
nately, this factor became less of a problem with the advent of structured
programming.

Testability
You might think that testability is a highly subjective area, but a test engineer
has a checklist ol factors that can be used to assess a program’s testability.

Transferability
Transferability refers to the ability to
platform to another and to reuse code. In many situations, it is not an impor-
tant factor. On the other hand, il you are writing generalized software, it can
be critical.

move data and/or a system from one

Code Reusability
II (unctions are written so that they can be reused in different programs and
on different projects, then they
libraries of reusable functions that they
similar problem.

are highly reusable. Good programmers build
can use when they need to solve a

Interoperability
Interoperability addresses the capability of sending data to other systems. Intodays highly integrated systems, interoperability is a desirable attribute. In(act, it has become so important that operating systems now support the abil-
ity to move data between applications, such as between a word processor and
a spreadsheet.

Chapter 9 Pointers 597

Portability
Portability addresses the ability to move software from one hardware platform
to another; for example, from a Macintosh to a Windows environment or
Irom an IBM mainframe to a VAX environment.

The Quality Circle
The first and most important point to recognize is that quality must be
designed into a system. It can’t be added as an afterthought. It begins at
Step 1 , determining the user requirements, and continues throughout the life
of the system. Since quality is a continuous concept that, like a circle, never
ends, we refer to it as the quality circle.

I here are six steps to developing quality software: quality tools, technical
reviews, formal testing, change control, standards, and measurement and
reporting. These steps are shown in Figure 9-27.

FIGURE 9-27 The Quality Circle

While no one can deny that quality begins with the software engineers
: igned to the team, they need quality tools to develop a quality product.

Fortunately, today’s development tools are excellent. A whole suite of quality
tools known as computer-assisted software engineering (CASE) guides soft-

development through requirements, design, programming and testing,
use workstations that not only assist

assi

ware
and into production. Programmers can
in writing the program but also in testing and debugging. For example, some
CASE tools track tests through a program and then determine which state-

executed and which were not. Tools such as these are invaluablements were
for whitebox testing.

Another major step in quality software is the technical review. T hese
reviews should be conducted at every step in the development process includ-
ing requirements, design, programming, and testing. A typical program review

598 Section 9.6 Software Engineering

begins after the programmer has designed the data structures and structure
chart for a program. A design review hoard consisting of the systems analyst,
test engineer, user representative, and one or two peers is then convened.
Note that no one from management is allowed to attend a technical review.
During the review, the programmer explains the approach and discusses
interfaces to other programs while the reviewers ask questions and make
suggestions.

Quality also requires formal testing. Formal testing ensures that the pro-
grams work together as a system and meet the defined requirements. After
the programmer has completed unit testing, the program is turned over to
another software engineer for integration and system testing. On a small
project, this is most likely the systems analyst and/or the user. A large project
will have a separate testing team.

Large systems take months and sometimes years to develop. It is only
natural that, over extended periods of time, changes to the requirements and
design become necessary. To ensure quality, each change should he reviewed
and approved by a change control board. The impact of a change on each
program needs to be assessed and properly planned. Uncontrolled change
causes schedule and budget overruns and poor-quality products.

Finally, a good-quality environment measures all aspects of quality and
regularly reports the results. Without measurement, you cannot tell if quality
is good or bad, improving or deteriorating. At the same time, published stan-
dards provide the yardstick for many of the quality measurements.

Conclusion
In this short discussion, we have only introduced the concept of software qual-
ity. Consider these points as you design and program systems in the future. For
a more complete discussion of the subject
Roger Pressmans Software Engineering, A Practitioner’s App

recommend Chapter 12 in, we
Ji.3roac

3. Roger Pressman, Software Ertgi
N.Y., McGraw-Hill Rook Company, 2005).

'mg , A Practitioner's Approach. Sixth Edition (New York,tneeri

Chapter 9 Pointers 599

9.7 Tips and Common Programming Errors
1. Ihe address of a memory location is a pointer constant and cannot he

changed.
2. Only an address (pointer constant) can he stored iin a pointer variable.
3. Remember compatibility. Do not store the address of a data variable of

one
ol pointer to int can only store the address of an int variable, and a vari-
able ol pointer to char can only store the address of a char variable.

type into a pointer variable ol another type. In other words, a variable

4. Ihe value of a data variable cannot he assigned to a pointer variable. In
other words, the following code creates an error:

int* p;
int a;
P = a; // ERROR

5. You must not use a pointer variable before it is assigned the address of a
variable. In other words, the following lines create an error unless p is
assigned an address:

int* p;
// ERROR
// ERROR

*p;
*p = x;
x

6. A pointer variable cannot be used to refer to a nonexistent pointed vari-
able. For example, the following lines create a run-time error because p
exists, hut *p does not exist until it is assigned a value. .

int* p;
*p = ..

7. You cannot dereference a pointer variable of type void* .
8. Remember that the definition for a pointer variable allocates memory

only for the pointer variable, not for the variable to which it is pointing.
9. The address operator (&) must be used only with an lvalue.

10. A function that uses addresses as parameters needs a pointer to data as a

formal parameter; the actual parameter in the function call must be a

pointer value (address).
11. If you want a called function to change the value of a variable in the calling

function, you must pass the address of that variable to the called function.
12. When using multiple definitions in one statement—a practice we do not

recommend—the pointer token is recognized only with one variable.
Therefore, in the following definition, only the first variable is a pointer
to an integer; the rest are integers.

A

ir~n
600 Section 9.9 Summary

int* ptrA, ptrB, ptrC;

It is a compile error to initialize a pointer to a numeric constant.13.

int* ptr = 59;

Similarly, it is a compile error to assign an address to any variable other
than a pointer.

14.

/ / ERRORint x = &y;

It is a compile error to assign a pointer ol one type to a pointer of
another type without a cast. (Exception: II one pointer is a void pointer,
it is permitted.)

It is a common compile error to pass values when addresses are required
in actual parameters. Remember to use the address operator when pass-
ing identifiers to pointers in the called function.
It is a logic error to use a pointer before it has been initialized.
It is a logic error to dereference a pointer whose value is NULL.

15.

16.

17.
18.

9.8 Key Terms
indirection operator (*)
lvalue
pointer
pointer constant

pointer indirection
pointer variable
rvalue

9.9 Summary
Every computer has addressable memory locations.

J A pointer is a derived data type consisting of addresses available in the
computer.

J A pointer constant is an address that exists by itself . We cannot change it.
We can only use it.

J I he address operator (&) makes a pointer value f rom a pointer constant.To
get the address ol a variable, we simply use this operator in front ol the
variable name.

Ll I he address operator can only be used in front of an lvalue. The result is
an rvalue.
A pointer variable is a variable that can store an address.

Chapter 9 Pointerŝ 601

Ihe indirection operator (*) accesses a variable through a pointer contain-
ing its address.
I he indirection operator can only be used in front of a pointer value.
Pointer variables can be initialized just like data variables. The initializer
must be the address ol a previously defined variable or another pointer
variable.

J A pointer can be defined to point to other pointer variables (pointers to
pointers).
The value ol a pointer variable can be stored in another variable it they are
compatible—that is, if they are of the same type.
One ol the most useful applications of pointers is in functions.
II we want a called function to access a variable in the calling function, we
pass the address of that variable to the called function and use the indirec-
tion operator to access the variable.
\ \ hen we need to return more than one value from a function, we must
use pointers.
II a data item is not to be changed, it is passed to the called function by
value. II a data item is to be changed, its address is passed to let the called
function change its value.
A function can also return a pointer value.
In software engineering, quality factors refer to characteristics that a piece
of software must have to become quality software.
Quality factors are defined as operability, maintainability; and transferability.
One of the most important points about the quality of a piece of software
is that quality must he designed into the system. It cannot be added as an

afterthought. To design quality into a system, we can use a tool called the
quality circle.

9.10 Practice Sets

Review Questions
1. Pointer constants are drawn from the set of addresses for a computer.

a. True
b. False

2. Pointers are declared using the address operator as a token.
a. True
b. False

602 Section 9.10 Practice Sets

3. The value of a pointer type is always an address.
a. True
b. False

4. An rvalue expression can be used only to supply a value.
a. True
b. False

5. Which of the following statements about pointers is false?
a. Pointers are built on the standard type, address.
b. Pointers are machine addresses.
c. Pointers are derived data types.
d. Pointers can be defined variables.
e. Pointers can be constants.

operator is used with a pointer to dereference the6. The
address contained in the pointer.
a. address (&)
b. assignment (=)
c. indirection (*)
d. pointer (*)
e. selection (->)

7. Which of the following statements will not add 1 to a variable?
a. a++;
b. a +=
c. a = a + 1;
d. *p = *p + 1;
e. *p++;

8. \\ hich ol the following defines a pointer variable to an integer?

1;

a. int & ptr ;
b. int & & ptr ;
c. int*
d. int**
e. intA

Ptr;
ptr;
Ptr;

9. \\ hich ol the following defines and initializes a pointer to the address of x?
a. int* ptr = *x;
b. int* ptr = ;
c. int* ptr = & x;
d. int & ptr =
e. int & ptr = Ax ;

10. Pointers to pointers is a term used to describe
a. any pointer that points to a variable.
b. any two pointers that point to the same variable.
c. any two pointers that point to variables of the

*x;

same type.

Chapter 9 Pointers 603

d. pointers used as formal parameters in a function header.
e. pointers whose contents are the address of another pointer.

1 1. Given the following definitions,

int
int*
int** pp = &p;

x ;
P = &x;

which answer can access the value stored in x?
a. p
b. pp
c. & p
d. *pp
e. **pp

12. Given the definitions shown below,

int i;
float f;
int* pd;
float* pf;

which answer is not valid?
= 5;
= 5;
= &i;- & f ?
= pf ?

13. Which of the following statements about pointer compatibility is true?
a. Because all pointers are addresses, pointers to different types can be

assigned without a cast .
b. If pointers of different types are assigned, C uses an implicit cast .
c. When a pointer is cast, C automatically reformats the data to reflect

the correct type.
d. When a void pointer is dereferenced, it must he cast.

14. Which of the following operators does not require an lvalue as its operand?

a. address operator (& total)
b. assignment (x = ...)
c. indirection (*ptr)
d. postfix increment (x++)

e. prefix increment (++ x)

1 5. Which of the following is not an attribute of quality software?

a. Meets operating standards of organization.
b. Runs efficiently on

a. i
b. f
c. pd
d. pf
e. pd

anv hardware.

604 Section 9.10 Practice Sets

c. Satisfies the user’s explicit requirements.
d. Satisfies the user’s implicit requirements.
e. Well documented.

Exercises
16. Declare and define the following:

a. A pointer variable pi pointing to an integer
b. A pointer variable ppi pointing to a pointer to an integer
c. A pointer variable pf pointing to a float
d. A pointer variable ppc pointing to a pointer to a char

17. If a is declared as integer, which of the following statements is true and
which is false?
a. The expression * & a and a are the same.
b. The expression * & a and & *a are the same.

18. Given the following declarations:

int
double d;
int*
double* q;

x;

p;

\\ hich ol the following expressions are not allowed?
a. p = & x;
b. p = &d;
c. q = &x;
d. q = &d;
e. p = x;

19. Given the following declarations:

int a = 5;
int b
int* p = &a;
int* q = &b;

7;

\ \ hat is the value of each of the following expressions?
a. ++a
b. ++(*p)
c. --(*q)
d. -- b

20. What is the
a. int
b. int* p = 5;

(il any) in each of the following expressions?error
a = 5;

Chapter 9 Pointers 605

c. int
int* p = &a;

d. int
int** q = &a;

21. \\ hich ot the following program segments is valid? Describe each error in
the invalid statements.
a.int* p;

scant("%d", &p);
b. int* p;

scanf("%d", &*p);
c. int* p;

scant("%d",
d. int a;

int* p = &a;
scant("%d", p);

22. Which ol the following program segments has a logical error in it?
a. int** p;

int*
q = & P;

b.int**
int*
p = &q;

c. int** p;
int** q;
p = &q;

d. char c = 'A ’;
char** p;
char* q;
q = & c;
printf("%c", *p);

23. Given the following declaration:

a;

a ;

1'

*p);

q ?

p;
q ;

.

int*** p;

What is the type of each of the following expressions?

a. p
b. *p
c. **p
d.***p

24. If p is a name of a variable, which of the following expressions is an

lvalue and which one is an rvalue? Explain.
a. p
b. *p

606 Section 9.10 Practice Sets

c. & p
d, *p + 2

25. If p and q are pointer variable names and a i
lowing expressions are not syntactically correct, because they violate the
rules concerning lvalues and rvalues?

a. *p = *p + 2;

b. & p = &a [0] ;

c. q = & (p + 2) ;

d. a [5] = 5;

26. Write a function prototype statement for a function named calc that
returns void and contains a reference parameter to iwt, x, and a reference
parameter to a lotto double, y.

27. Write a function prototype statement for a function named spin that
returns a pointer to an integer and contains a reference parameter to an
int , x , and a pointer parameter to the address of a long double, py.

28. Assuming all variables are integers, and all pointers are typed appropri-
ately, show the final values of the variables in Figure 9-28 after the fol-
lowing assignments.

array, which of the foi-ls an

a p;
**p;s

t p;
b = **r ;
**q = b;

HJ-R—Q5

«a—a— 22 |

sQ a 32

• 61 |t

FIGURE 9-28 Exercise 28

29. Assuming all variables are integer, and all pointers are typed appropri-
ately, show the final values of the variables in Figure 9-29 alter the fol-
lowing assignments.

Chapter 9 Pointers 60/

t = **p;
= ***b q;

*t * c;
v = r;
w = *s;

**v
*u = *w
a

PQ—

E3— Q s
4 0a

b 5 r

[T>3 0 tc
1 y

20 I1 9 1 1 8

wVU
FIGURE 9-29 Exercise 29

30. In the following program, show the configuration of all the variables and
the output.

#include <stdio.h>
int main (void)
{
// Local Declarations

int a;
int* p;
int** q;

// Statements
a = 14;
p = &a;
q = &p;
printf("%d\n" , a);
printf("%d\n ", *p);
printf("%d\n ", **q) ;
printf("%p\t" , p);
printfC%pM , q) ;
return 0;

} // main

Problems
31. Write a function that converts a Julian date to a month and day. A Julian

date consists of a year and the day of the year relative to January 1. For

608 Section 9.10 Practice Sets

example, day 41 is February' 10. The month and day are to he stored in
integer variables whose addresses are passed as parameters. The function
is to handle leap years. (For a discussion of the calculation of a leap year,

Chapter 5, Project 60.) If there is an error in a parameter, such as a
day greater than 366, the function will return zero. Otherwise, it returns
a positive number.

32. Modify' Program 9-3 to include subtraction, multiplication, division,and
remainder.

33. Write a function that receives a floating-point number representing the
change from a purchase. The function will pass hack the breakdown of the
change in dollar hills, half-dollars, quarters, dimes, nickels, and pennies.

34. Write a function that receives a floating-point number and sends hack
the integer and fraction parts.

35. Write a function that receives two integers and passes back the greatest
common divisor and the least common multiplier. The calculation of the
greatest common divisor can he done using Euclid’s method of repetitively
dividing one number by the other and using the remainder (modulo).
When the remainder is zero, the greatest common divisor has been
found. For example, the greatest common divisor of 247 and 39 is 13, as
in Table 9-4.

see

numl num2 Remainder
247 39 13

39 (ged) 13 0

TABLE 9-4 Greatest Common Divisors

Once you know the greatest
multiplier (1cm) is determined as shown below.

divisor (ged), the least corn-common
mon

|cm _ (numl x num2)
ged

Projects
36. \ \ iite a program that creates the structure shown in Figure 9-30 and

then reads an integer into variable a and prints it using each pointer in
turn. Ihat is, the program must read an integer into variable a and print
it using p, q, r, s, t, u, and v.

37. Write a program that creates the structure shown in Figure 9-31. It then
re.ids data into a, b, and c using the pointers p, q, and r.

Chapter 9 Pointers 609

FIGURE 9-30 Structure for Project 36

P q

5)

a
a b c

FIGURE 9-31 Data Structure for Project 37

After the data have been read, the program reassigns the pointers so

that p points to c, q points to a, and r points to b. After making the reas-

signments, the program prints the variables using the pointers. For each
variable, print both its contents and its address.

38. Write a program that creates the structure shown in Figure 9-32 and
reads data into a and b using the pointers x and y.

FIGURE 9-32 Data Structure for Project 38

610 Section 9.10 Practice Sets

The program then multiplies the value of a by b and stores the result
in c using the pointers x, y, and z. finally, it prints all three variables
using the pointers x, y, and z.

39. Write an exploratory program to study pointers. In this program, prompt
the user to enter a character, an integer, a long integer, and a floating-
point number. The program then calls a print function that accepts a void
pointer as its only parameter and prints the address of the pointer fol-
lowed by the data, first as a character, then as an integer, a long integer,
and a floating-point number. Since void pointers have no
need to cast the pointer appropriately in each of your print statements.

A proposed output format is shown below’. It is the result of calling
the print function w ith a pointer to integer. You will most likely get differ-
ent results. Call the print function for each of the user inputs, each time
printing the results shown below. (1he first line may be printed before
calling the print function.)

type, you will

Printing int 123
Printing data at location: 01D70C44
Data as char
Data as int
Data as long
Data as float

123
8069185

0 . 0 0

Using the addresses that you printed, build a memory map of the
variables as they existed in your program. Then, by analyzing the results
of the printout, write a short explanation of what happened when your
program ran. To fully understand the results, you may have to refer to
your system documentation to determine the physical memory sizes of
the various types.

40. Assume an environment in which transactions and responses are being
sent across a network. When a transaction is sent, a time stamp is cre-
ated and attached to the transaction. When the response is received, the
time is noted. Using
write a function to determine the elapsed time in hours, minutes, and
seconds between the transaction submittal and its response. Assume that

transaction takes longer than 24 hours. Create a test driver to validate
your I unction. lest the function with at least five test cases, including
one that spans midnight and one that is longer than 24 hours.

integral time stamp, as shown in Program 9-8,an

no

Chapter 10
Pointer Applications

In this chapter we explore two basic uses of pointers: with arrays and in
dynamic memory.

We begin with the use of pointers in implementing arrays. This discus-
sion includes the important topic of pointer arithmetic, which allows us to

process data in an array by adding or subtracting from pointer addresses.
Following a discussion of passing arrays to functions, we discuss one of

the most powerful aspects of C, dynamic memory. We examine two different
approaches to dynamic memory, static allocation and dynamic allocation.

We conclude with two applications, sorting with pointers and ragged
arrays.

Objectives
To understand the relationship between arrays and pointers
To understand the design and concepts behind pointer arithmetic
To write programs using arrays and pointer arithmetic

J To better understand the design behind passing arrays to functions
To understand the C implementation of dynamic memory

To write programs using static and dynamic memory allocation
To understand and implement ragged arrays (arrays of pointers)

611

612 Section 10.1 Arrays and Pointers

10.1 Arrays and Pointers
The name of an array is a pointer constant to the first element. Because the
array’s name is a pointer constant, its value cannot be changed. Figure 10- 1
shows an array with the array name as a pointer constant.

a[0][
a[1] [
a[2] [
a[3] [
a[4] [

a

The name of an array is a
pointer constant to its first
V element v

a

FIGURE 10- 1 Pointers to Arrays

Since the array name is a pointer constant to the first element, the
address of the first element and the name of the array both represent the
same location in memory. We can, therefore, use the array name anywhere
we can use a pointer, as long as it is being used as an rvalue. Specifically, this
means that we can use it with the indirection operator. When we dereference
an array name, we are dereferencing the first element of the array; that is, we
are referring to array [01. However, when the array name is dereferenced, it
refers only to the first element , not the whole array.

same
- &3.[0]

a is a pointer only to the first element—not the whole array.
a

Prove this to yourself by writing a program with the code shown below.
1 he code prints the address of the first element of the array (& a [0]) and the
array name, which is a pointer constant. Note that
conversion code for a pointer (%p).

have used the formatwe

// Demonstrate that array name is pointer constant
int a [5];
printf("%p %p", &a[0], a);

We cannot tell you the values that this code will print , hut they will be
addresses in your computer. Furthermore, the first printed address (the first
element in the array) and the second printed address (the array pointer) will
be the same, proving our point.

The name of an array is a pointer constant; it cannot be used as an lvalue.

Chapter 10 Pointer Applications 613

A simple variation on this code is to print the value in the first element
ol the array using both a pointer and an index. This code is demonstrated in
1 igure 10-2. Note that the same value, 2, is printed in both cases, again prov-
ing our point that the array name is a pointer constant to the beginning ol
the array.

his element is called

^ a[0] or *a ^x ^include <stdio.h>
int main (void)
{
int a[5] = {2,4,6,8,22};
printf("%d %d", *a, a[0]);a[0] 2 a

a[1] 4
return 0;

} // maina[2] 6

2 2a[3] 8
a[4] 22

a

FIGURE 10-2 Dereference of Array Name

Let’s investigate another point. If the name oF an array is really a pointer,
let’s see il we can store this pointer in a pointer variable and use it in the
same way we use the name of the array. The program that demonstrates this
is shown in Figure 10-3.

#include <stdio.h>
int main (void)

2 2
{a[0]
int a[5] = {2, 4, 6, 8, 22)^int* p

printf("%d %d\n", a[0), *p);

a[1] a;
a[2]
a[3]

return 0;
} // maina[4]

FIGURE 10-3 Array Names as Pointers

Right after we define and initialize the array, we define a pointer and ini-
tialize it to point to the first element of the array by assigning the array name.
Note especially that the array name is unqualified; that is, there is no address
operator or index specification. We then print the first element in the array,
first using an index notation and then pointer notation.

Let’s look at another example that explores the close relationship
between an array and a pointer. We store the address of the second element

we can use two dilferent names toof the array in a pointer variable. Now

614 Section 10.2 Pointer Arithmetic and Arroys

each element. This does not mean that we have two arrays; rather. it
shows that a single array can be accessed through different pointers.
access

^include <stdio.h>
int main (void)
{
int a[5] = {2, 4, 6, 8, 22};
int* p;

P = &a[1];
printf("%d %d", a[0] , p[-1]);
printf("\n");
printf("%d %d", a [l) , p [0]) ;

a[0]
a[11
a[2]
a[3] This is p[0]
a[4]

a

} // main

FIGURE 10-4 Multiple Array Pointers

Figure 10-4 demonstrates the use of multiple names for an array to refer-
ence different locations at the same time. First, we have the array name. We
then create a pointer to integer and set it to the second element of the array
(a [1]). Now, even though it is a pointer, we can use it as an array name and
index it to point to different elements in the array. We demonstrate this by
printing the first two elements using first the array name and then the
pointer. Note especially that, when a pointer is not referencing the first ele-
ment ol an array, the index can he negative [-1] . This is shown in the refer-
ence to p[-1] .

To access an array, any pointer to the first element can be used instead of
the name of the array.

10.2 Pointer Arithmetic and Arrays
Besides indexing, programmers use another powerful method ol moving
through an array: pointer arithmetic. Pointer arithmetic offers a restricted
set ol arithmetic operators for manipulating the addresses in pointers. It is

an array from element toespecially powerful when we need to move through
element, such as when we searching an array sequentially.are

Pointers and One-Dimensional Arrays
II we have an array, a, then a is a constant pointing to the first element and
a + 1 is a constant pointing to the second element . Again, il we have a
pointer, p, pointing to the second element of an array (see Figure 10-4), then
P - 1 is a pointer to the previous (first) element and p + 1 is a pointer to the
next (third) element, furthermore,given a, a + 2 is the address two elements

Chapter 10 Pointer Applications 615

Irom a, and a + 3 is the address three elements from a. We can generalize the
notation as follows:

Given pointer,p,p ± n is a pointer to the value n elements away.

It does not matter how a and p are defined or initialized; as long as they
pointing to one of the elements of the array, we can add or subtract to get

the address ol the other elements of the array. This concept is portrayed in
Figure 10-5.

are

2 P “ 1a
a + 1 4 P
a + 2 6 P + 1

p + 2
p + 3

a + 3 8
a + 4 22 «*

a

FIGURE 10-5 Poinfer Arithmetic

But the meaning of adding or subtracting here is different from normal
arithmetic. When we add an integer n to a pointer value, we get a value that
corresponds to another index location, n elements away: In other words, n is
an offset from the original pointer. To determine the new value, C must know
the size of one element. The size of the element is determined by the type of
the pointer. I bis is one of the prime reasons that pointers of different types
cannot he assigned to each other.

If the offset is 1 , then C can simply add or subtract one element size from
the current pointer value. This may make the access more efficient than the
corresponding index notation. If it is more than 1 , then C must compute the
offset by multiplying the offset by the size of one array element and adding it
to the pointer value. This calculation is shown below.

address = pointer + (offset * size of element)

Depending on the hardware, the multiplication in this formula can make
it less efficient than simply adding 1 , and the efficiency advantage of pointer
arithmetic over indexing may be lost.

a + n

<

a + n * (sizeof (one element))

!

616 Section 10.2 Pointer Arithmetic and Arrays

We see the result of pointer arithmetic on different-sized elements in
Figure 10-6. For char, which is usually implemented as 1 byte, adding 1

to the next memory address (101). Assuming that integers
4 bytes, adding 1 to the array pointer b moves us 4 bytes in memory (104).
Finally, assuming the size of float is 6 bytes, adding 1 to array pointer c moves
us 6 bytes in memory (106). In other words, a + 1 means different things in
different situations.

moves us are

100b100a
a + 1
a + 2

101
102

104b + 1
memory

addresses
108b + 2

char a[3]; fV
int b[3];
float c[3];

FIGURE 10-6 Pointer Arithmetic and Different Types

We’ve seen how to get the address of an array element using a pointer
and an offset, now let’s sec how we can use that value. We have two choices:
First , we can assign it to another pointer. This is a rather elementary opera-
tion that uses the assignment operator as shown below.

p = aryName + 5;

Second, we can use it with the indirection operator to access or change the
value ol the element we are pointing to. This possibility is seen in Figure 10-7.

a [0 J or *(a + 0)
a [1] or *(a + 1)
a [2 l or *(a + 2)
a [3] or *(a + 3)
a [4] or *(a + 4)

a
a + 1
a + 2
a + 3
a + 4

FIGURE 10-7 Dereferencing Array Pointers

lor practice, lets use pointers to find the smallest number among
integers stored in an array. Figure 10-8 tracks the code as it works its way
through the array.

vm
Chapter 10 Pointer Applications 617

The following expressions are identical.
* (a + n) and a [n]

We start with the smallest pointer(pSm) set to the first element of the
array. T he functions job is to see if any of the remaining elements are smaller.
Since we know that the first element is not smaller than itself, we set the
working pointer (pWalk) to the second element. The working pointer
advances through the remaining elements, each time checking the element it
is currently addressing against the smallest to that point(pSm). If the current
element is smaller, its location is assigned to pSm.

Arithmetic Operations on Pointers
Arithmetic operations involving pointers are very limited. Addition can be
used when one operand is a pointer and the other is an integer. Subtraction
can he used only when both operands are pointers or when the first operand
is a pointer and the second operand is an index integer. We can also manipu -
late a pointer with the postfix and unary increment and decrement operators.
All of the following pointer arithmetic operations are valid:

p + 5 5 + p P - 5 pl - p2 p++ —p

When one pointer is subtracted from another, the result is an index rep-
resenting the number of elements between the two pointers. Note, however,
that the result is meaningful only if the two pointers are associated with the
same array structure.

The relational operators (such as less than and equal) are allowed only il
tvpe. Two pointer relational expres-both operands are pointers of the same

sions are shown below.

pi != P2pi >= p2

The most common comparison is a pointer and the N U L L constant, as

shown in Table 10- 1 .

Short FormLong Form

if (!ptr)

if (ptr)
if (ptr == NULL)

if (ptr != NULL)

TABLE 10- 1 Pointers and Relational Operators

618 Section 10.2 Pointer Arithmetic and Arrays

psm is smallest, pwaik is walkedIt tracks the
smallest value.

32
~~U Q PSm

J pWalk

^ pLast
After initialization

ary
It moves to

find smallest.
22

pSm

u ^ rjPWalk
22

-
20 FjPLast

After second iteration

3? PSm

Q̂pWalk
ary-ary

22

r* pLast20

After first iteration

32 pSm

TT-
22

nz m
22 /

PLast
After fourth iteration

ary-ary

pWalk pWalk

pLast20

After third iteration

pLast = ary + arySize - 1?
for (pSm = ary, pWalk = ary + 1;

pWalk <= pLast;
pWalk+t)

if (*pWalk < *pSm)
pSm = pWalk;

FIGURE 10-8 Find Smallest

f Using Pointer Arithmetic
In this section, we write two small programs that demonstrate moving
through arrays using pointers.
Printing an Array
Program 10- 1 prints an
and then subtracting 1 to print it backward.
Print Array with Pointers

array, first by adding I to advance through the array

PROGRAM 10- 1

/* Print an1 array forward by adding 1 to a pointer. Then
print it backward by subtracting

Written by;

2 one.
3

continue*

1 M

Chapter 10 Pointer Applications 619

PROGRAM 10-1 Print Array with Pointers (continued)

Date:4
*/5
#include <stdio.h>6

7
#define MAX SIZE 108

9
int main (void)10

11 {
// Local Declarations

int
12
13 ary[1 = {1/ 2, 3, 4, 5, 6, 7, 8, 9, 10};

int* pWalk;
int* pEnd;

14
15
16

// Statements
// Print array forward
printf("Array forward : ");
for (pWalk = ary, pEnd = ary + MAX_SIZE;

pWalk < pEnd;
pWalk++)

printf ("%3d", *pWalk);
printf ("\n");

17
18
19
20
21
22
23
24
25

// Print array backward
printf ("Array backward: ");
for (pWalk = pEnd - 1; pWalk >= ary; pWalk—)

printf ("%3d", *pWalk);
printf ("\n");

26
27
28
29
30
31
32 return 0;

} // main33

Results:
Array forward :

Array backward:
1 2 3 4 5 6 7 8 9 1 0

1 0 9 8 7 6 5 4 3 2 1

Program 10- 1 Analysis While this program is quite simple, it does demonstrate one efficiency point. Note
that before we printed the forward loop, we set pEnd. Many programmers would

the following test in the limit condition:use

pWalk < ary + MAX_SIZE

While this logic works, some compilers will calculate the end address in
obvious inefficiency. We recommend, therefore, that whenevereach loop, an

possible you calculate the end pointer in the loop initialization.

620 Section 10.2 Pointer Arithmetic and Arrays

Searching with Pointers
The logic in Program 10- 1 works well for the sequential search hut not for
the binary search.1 Recall that the binary search requires the calculation of
the index or the address of the entry in the middle of a table. When
the program using indexes, the calculation of the midpoint was done with the
statement shown below.

we wrote

mid = (first + last) / 2;

Since we cannot use addition with two pointers, this formula will
work. We need to come up with the pointer arithmetic equivalent. Another
formula determines the midpoint in an array by calculating the number of
elements from the beginning of the array. I bis method, known as the offset
method, is shown below.

not

mid = first + (last - first) / 2;

The offset calculation works with pointers also. The subtraction of the
first pointer from the last pointer will give us the number of elements in the
array. The offset from the beginning of the array is determined by dividing
the number of elements in the array by 2. We can then add the offset to the
pointer lor the beginning of the list to arrive at the midpoint. The pointer
code is shown below.

midPtr = firstPtr + (lastPtr - firstPtr) / 2;

The pointer implementation of the binary search is shown in Program 10-2.

PROGRAM 10-2 Pointers and the Binary Search
/* ======1 ======binary Search===

2 Search an ordered list using Binary Search
Pre3 list must contain at least one element

4 endPtr is pointer to largest element in list
target is value of element being sought
FOUND: locnPtr pointer to target element

return 1 (found)
!FOUND: locnPtr = element below or above target

return 0 (not found)

5
6 Post
7
8
9

*/10
int binarySearch (int list[], int*

int target, int** locnPtr)

1 1 endPtr,
1 2
13 {

continuei

. We discussed the binary search in Program 8-14 in Chapter 8.1

1̂!V'l

Chapter 10 Pointer Applications 621

PROGRAM 10-2 Pointers and the Binary Search (continued)

// Local Declarations
int* firstPtr;
int* midPtr;
int* lastPtr;

14
15
16
17
18

// Statements
firstPtr = list;
lastPtr = endPtr;
while (firstPtr <= lastPtr)

19
2 0
2 1
2 2
23 {
24 midPtr = firstPtr + (lastPtr - firstPtr) / 2;

if (target > *midPtr)
// look in upper half
firstPtr = midPtr + 1;

else if (target < *midPtr)
// look in lower half
lastPtr = midPtr

25
26
27
28
29
30 1 ?
31 else
32 // found equal: force exit

firstPtr = lastPtr + 1;
} // end while

*locnPtr = midPtr;
return (target == *midPtr);

> // binarySearch

33
34
35
36
37

Program 10-2 Analysis Although the code in this function is relatively simple, the coding for locnPtr merits
some discussion. In the calling function, locnPtr is a pointer to the found location.

To store the pointer in locnPtr, therefore, we need to pass a pointer to a pointer to

an integer (see statement 12). To create a pointer to pointer, the calling function must

pass the address of its location pointer.
In addition to demonstrating the subtraction of two pointers, we also see the use of

a relational operator with two pointers in statement 22.

Pointers and Two-Dimensional Arrays
The first thing to notice about two-dimensional arrays is that , just as in a one-
dimensional array, the name of the array is a pointer constant to the first ele-
ment of the array. In this case, however, the first element is another array!

Assume that we have a two-dimensional array of integers. When we derefer-
ence the array name, we don’t get one integer, we get an array of integers. In

other words, the dereference of the array name of a two-dimensional array is

a pointer to a one-dimensional array. Figure 10-9 contains a two-dimensional

array and a code fragment to print the array.
Each element in the figure is shown in both index and pointer notation.

Note that tablet 0] refers to an array of four integer values. The equivalent

622 Section 10.2 Pointer Arithmetic and Arrays

pointer notation is the dereference of the array name plus 0, * (table
which also refers to an array of four integers. + 0)

table [0] is identical to * (table + 0)

To demonstrate pointer manipulation with a two-dimensional array, let’s
print the table in Figure 10-9. To print the array requires nested for loops.
When dealing with multidimensional arrays, however, there is no simple
pointer notation. To refer to a row, we dereference the array pointer, which
gives us a pointer to a row. Given a pointer to a row, to refer to an individual ele-
ment , we dereference the row pointer. This double dereference is shown below.

* (* (t a b l e))

3] [table

table [0] or *(table + 0)

([table+1

table[1] or *(table + 1)

](table+2

table[2] or *(table + 2)

int table[3][4] ;

for (i = 0; i < 3; i++)
{
for (j = 0; j < 4; j++)

printf("%6d", *(*(table + i) + j));
printf("\n");
} // for i

Print Table

FIGURE 10-9 Pointers to Two-dimensional Arrays

lUit the previous expression refers only to the first element of the first. Io step through all the elements, we need to add two offsets, one for the
lor the element within the row. We use loop counters, i and j,

as the offsets. I b i s is the same logic we saw when we printed a two-dimen-
sional array using indexes. To print an element, we use the array name,
table, and adjust it w i t h the loop indexes. This gives us the relatively com-
plex expression shown below.

row
row and one

* (* (t a b l e + i) + j)
u

Chapter 10 Pointer Applications 623

I his pointer notation is equivalent to the index syntax, table[i] [j].
With multidimensional arrays, the pointer arithmetic has no efficiency advan-
tage over indexing. Because the pointer notation for multidimensional arrays
is so complex and there is no efficiency advantage, most programmers find it
easier to use the index notation.

We recommend index notation for two-dimensional arrays.

10.3 Passing an Array to a Function
Now that we have discovered that the name of an array is actually a pointer to
the first element, we can send the array name to a function for processing.
When we pass the array, we do not use the address operator. Remember, the
array name is a pointer constant, so the name is already the address of the
first element in the array. A typical call would look like the following:

dolt (aryName);

The called program can declare the array in one of two ways. I irst , it can
use the traditional array notation. This format has the advantage of telling the
user very clearly that we are dealing with an array rather than a single pointer.
This is an advantage from a structured programming and human engineering
point of view.

int dolt (int ary[])

We can also declare the array in the function header as a simple pointer.
The disadvantage to this format is that, while it is technically correct, it actu-
ally masks the data structure (array). For one-dimensional arrays, it is the
code of choice among professional programmers.

int dolt (int* arySalary)

name for theIf you choose to code this way, use a good descriptive
reader confusion. The function documentationparameter to minimize any

should also indicate clearly that an array is being passed.
Note, however, that when we pass a multidimensional array, we must use

the array syntax in the header declaration and definition. The compiler needs
to know

"
the size of the dimensions after the first to calculate the offset for

pointer arithmetic. Thus, to receive a three-dimensional array, we would use

the following declaration in the function’s header:

float dolt (int bigAry[][12][5])

7 '

624 Section 10.3 Possing an Array to a Function

To see how passing array pointers works, let’s write a program that calls
a function to multiply each element of a one-dimensional array by 2. The
program s variables are shown in Figure 10-10, and the code is shown in
Program 10-3.

main

multiply

5 |
pAry pWalk pLast size

FIGURE 10-10 Variables for Multiply Array Elements By 2

PROGRAM 10-3 Multiply Array Elements by 2
/* Read from keyboard & print integers multiplied by 2.

Written by:
Date:

1
2
3

*/4
5 ^include <stdio.h>

#define SIZE 56
7

//8 Function Declarations
void multiply (int* pAry, int size);9

10
int main (void)1 1

1 2 {
13 // Local Declarations

int ary [SIZE];
int* pLast;
int* pWalk;

14
15
16
17

// Statements
pLast = ary + SIZE
for (pWalk = ary; pWalk <=

18
19 i;
20

pLast; pWalk++)
21 {
22 printf("Please enter an integer: ");

continue

1
IIP

Chapter 10 Pointer Applications 625

PROGRAM 10-3 Multiply Array Elements by 2 (continued)

scanf ("%d", pWalk);
} // for

23
24
25
26 multiply (ary, SIZE);
27
28 printf ("Doubled value is: \n");

for (pWalk = ary; pWalk <= pLast; pWalk++)
printf (" %3d", *pWalk);

29
30
31
32 return 0;

> // main33
34
35

Multiply elements in an array by 2

array has been filled
size indicates number of elements in array

values in array doubled

36
37 Pre
38
39 Post

*/40
void multiply (int* pAry, int size)41

42 {
// Local Declarations

int* pWalk;
int* pLast;

43
44
45
46

// Statements
pLast = pAry + size - 1;
for (pWalk = pAry; pWalk <= pLast; pWalk++)

*pWalk = *pWalk * 2;

47
48
49
50
51 return;

} // multiply52
===== End of Program ====53

Results:
Please enter an integer: 1

Please enter an integer: 2

Please enter an integer: 3

Please enter an integer: 4

Please enter an integer: 5

Doubled value is:
2 4 6 8 10

, we have declared the array inProgram 10-3 Analysis This program contains several points of interest. First

the function declaration using the more common pointer notation, but we have given

it a name that indicates it is a pointer to an array (pAry).

626 Section 10.3 Passing an Array to a Function

In the multiply function,we use a separate pointer(pWalk) to walk through the list.
We could have used pAry, since it was not being used other than to identify the begin-
ning of the array. All too often, however, this type of "shortcut" saves a line or two ofcode only to create hours of debugging when the program is changed later. As wehave pointed out before, do not use formal parameters as variables unless their intent is
to change a value in the calling program. This rule is especially important when the
parameter is a pointer, as in this case.

Finally, note that we have passed the size of the array to the multiply function. We
still need to know how much data we need to process, and we use the size to calculate
the address of the last element in the list. As a variation on the limit test, however, wecould have passed a pointer to the last element of the array,&ary [SIZE - 1]. This
would save the calculation of pLast.From a style and efficiency point of view, neither
method has an advantage over the other. The structure and needs of other parts of the
program usually dictate which method is used.

Understanding Complicated Declarations
To help you read and understand complicated declarations, we have developed theright-left rule. Using this rule to interpret a declaration, you start with the identifier inthe center of a declaration and "read" the declaration by alternatively going rightand then left until all entities have been read. The basic concept is shown below.

t t t t t t
identifier

t
6 4 2 start here 1 3 5

Consider the simple declaration
int x;

This is read as "x is an integer.'̂

int ;X
T T T
2 0 1

Since there is nothing on
Now consider the example of a pointer declarati
"p is a pointer to integer."

int

the right, we simply go left.
This example is read asion.

;
T TT t

4 2 0 1 3

Note that we keep going right even when there is nothing there until all the entities onthe left have been exhausted. For a more complete discussion of complex declara-
tions, see Appendix L.

a The box () is just a place holder to show that there is no entry to be considered. Simplyignore it when you read each declaration.L_

Chapter 10 Pointer Applicationŝ 627

10.4 Memory Allocation Functions
C gives us two choices when we want to reserve memory locations for an
object: static allocation and dynamic allocation. Figure 10- 1 I shows the char-
acteristics of memory allocation.

Memory
Allocation

Static Dynamic

FIGURE 10- 11 Memory Allocation

Memory Usage
To understand how dynamic memory allocation works, we must study how
memory is used. Conceptually, memory is divided into program memory and
data memory. Program memory consists of the memory used for main and all
called functions.Data memory consists of permanent definitions, such as glo-
bal data and constants, local declarations, and dynamic data memory. Exactly
how C handles these different needs is a function of the operating system and
the compiler writer’s skills. We can, however, generalize the concepts.

Obviously, main must he in memory at all times. Beyond main, each
called function must he in memory only while it or any ol its called functions
are active. As a practical matter, most systems keep all functions in memory
while the program is running.

Although the program code for a function may he in memory at all
times, the local variables for the function are available only when it is active.
Furthermore, more than one version of the function can he active at a time.
(See the discussion of recursion in Chapter 6.) In this case, multiple copies
of the local variables arc allocated, although only one copy of the function is

present. The memory facility for these capabilities is known as the stack
memory.

In addition to the stack, a memory allocation known as the heap is avail-
able. Heap memory is unused memory allocated to the program and avail-
able to he assigned during its execution. It is the memory pool from which
memory is allocated when requested by the memory allocation functions.
Phis conceptual view of memory is shown in Figure 10- 12.

It is important to recognize that this is a conceptual view of memory.As

said before, implementation of memory is up to the software engineers who

design the system. For example, nothing prevents the stack and the heap from

sharing the same pool of memory. In fact, it would he a good design concept.

we

628 Section 10.4 Memory Allocation Functions

functionmain

Program Memory

stackheapglobal

Data Memory

Memory

FIGURE 10-12 A Conceptual View of Memory

Static Memory Allocation
Static memory allocation requires that the declaration and definition of
memory be fully specified in the source program. The number of bytes
reserved cannot he changed during run time. This is the technique we have
used to this point to define variables, arrays, pointers, and streams.

Dynamic Memory Allocation
Dynamic memory allocation uses predefined functions to allocate and
release memory (or data while the program is running. It effectively post-
pones the data definition, but not the data declaration, to run time.

We can refer to memory allocated in the heap only through a pointer.
lo use dynamic memory allocation, we use either standard data types or

derived types that we have previously declared. Unlike static memory alloca-
tion, dynamic memory allocation has no identifier associated with it; it has only
an address that must be used to access it. Io access data in dynamic memory;
therefore, we must us a pointer. Ihis concept is shown in Figure 10-13.
Memory Allocation Functions
lour memory management functions are used with dynamic memory. Three ol
them, malloc, calloc, and realloc, are used for memory allocation. The fourth,
free , is used to return memory when it is no longer needed. All the memory'
management functions are found in the standard library file (stdlib.h). Thecollection ol memory functions is shown in Figure 10- 14.

Chapter 10 Pointer Applications 629

ary// Local Declarations
int x;

// Local Declarations
int ary[3);x

Stack
(a) Static Memory Allocation

Stack

tv
// Local Declarations

int* x;
x = malloc(...);

// Local Declarations
int* ary;
ary = calloc(...);X

I

Stack
(b) Dynamic Memory Allocation

Stack

FIGURE 10-13 Accessing Dynamic Memory

Memory
Management

freereallocmalloc calloc

FIGURE 10-14 Memory Management Functions

Block Memory Allocation (malloc)
The malloc function allocates a block of memory that contains the number ol
bytes specified in its parameter. It returns a void pointer to the first byte ol
the allocated memory. The allocated memory is not initialized. We should
therefore assume that it will contain unknown values and initialize it as

required by our program.
The malloc function declaration is shown below.

void *malloc (size_t size);

The type, sizej ,

type is usually an unsigned integer, and by the standard it is guaranteed to be
large enough to hold the maximum address ol the computei.

is defined in several header files including stdio.h. The

630 Section 10.4 Memory Allocation Functions

To provide portability, the size specification in malloc's actual parameter
is generally computed using the sizeof operator. For example, if we want to
allocate an integer in the heap, we code the call as shown below.

pint = malloc (sizeof (int));

As mentioned above, malloc returns the address ol the first byte in the
allocated. However, if it is not successful , malloc returns amemory space

NULL pointer. An attempt to allocate memory from the heap when memory
is insufficient is known as overflow. It is up to the program to check for mem-
ory overflow. If it doesn’t, the program produces invalid results or aborts with

invalid address the first time the pointer is used.an
Exactly what action should he taken when memory overflow is encoun-

tered is application dependent. If memory might he released by another por-
tion of the program, the memory request can be held. Generally, however, the
programmer must terminate the program and allocate more memory' to
the heap.

Memory Allocation Casting
Prior to C99, it was necessary to cast the pointer returned from a memory allocation
function. While it is no longer necessary, it does no harm as long as the cast is cor-
rect. If you should be working with an earlier standard, the casting format is:

pointer = (type*) malloc(size)

The malloc function has one more potential error. If we call malloc with
a zero size, the results are unpredictable. It may return a NULL pointer, or it
may return some other implementation-dependent value. Never call malloc
with a zero size.

Figure 10- 1 5 shows a typical malloc call. In this example, we are allocat-
ing one integer object. II the memory is allocated successfully, ptr containsa
value. II it doesn 't , there is no memory and we exit the program with error
code 100.

if (I(pint = malloc(sizeof(int))))|\
// No memory available
exit (100) ;

// Memory available pint

Stack

FIGURE 10- 15 malloc

m

Chapter 10 Pointer Applications 631

Contiguous Memory Allocation (calloc)
I he second memory allocation function, calloc, is primarily used to allocate
memory lor arrays. It differs from mailoc only in that it sets memory to null
characters. I he calloc function declaration is shown below.

void *calloc (size_t element-count,
size_t element_size);

Ihe result is the same for both mailoc and calloc when overflow occurs
and when a zero size is given.

A sample calloc call is shown in Figure 10- 16. In this example, we allo-
cate memory for an array of 200 integers.

Ptr

P if (!(ptr = (int*)calloc (200, sizeof(int))))
// No memory available
exit (100) ;GE

// Memory available200 integers

FIGURE 10- 16 calloc

Reallocation Of Memory (realloc)
The realloc function can he highly inefficient and therefore should be used
advisedly. When given a pointer to a previously allocated block of memory,
realloc changes the size of the block by deleting or extending the memory at

the end of the block. If the memory cannot be extended because of other allo-
cations, realloc allocates a completely new block, copies the existing memory
allocation to the new allocation, and deletes the old allocation. The program-

that any other pointers to the data are correctly changed.mer must ensure
The operation of realloc is shown in Figure 10- 17.

void* realloc (void* ptr, size_t newSize);

Releasing Memory [free)
When memory locations allocated by mailoc, calloc, or i calloc arc no longer
needed, they should be freed using the predefined function free. It is an error

to free memory with a null pointer, a pointer to other than the first element of
allocated block, a pointer that is a different type than the pointer that

error to refer to memory alter it
an
allocated the memory; it is also a potential

r 632 Section 10.4 Memory Allocation Functions

has been released. The function declaration statement for free is
shown below.

void free (void* ptr);

Before

GL
ptr 1181551331121|64| 1 |90|3l[5 177

10 integers

ptr = realloc (ptr, 15 * sizeof(int));

new elements
.not initialized.

ptr
18155133|l 21 641 1 190|31| 5 771 ? ? ? ? | ? |

15 integers
After

FIGURE 10-17 realloc

Figure 10- 18 shows two examples. The first one releases a single element, allo-
cated with a malloc, hack to the heap. In the second example, the 200 elements
were allocated with calloc. When we free the pointer in this case, all 200 elements
arc returned to the heap. You should note two things in this figure. First, it is not
the pointers that are being released hut rather what they point to. Second, to
release an array of memory that was allocated by calloc , you need only release the
pointer once. It is an error to attempt to release each element individually.I

BEFORE AFTER

a-ptr ptr
free (p t r) ;

BEFORE
QH i i ITH~T

200 integers

AFTER
\wmm\ ... miptr ptr 200 integers

free (p t r) ;

FIGURE 10-18 Freeing Memory

Releasing memory does not change the value ithe address in the heap. It is a look error to
pointer. It still contains

the pointer after memory has
in a

use

' 1

Chapter 10 Pointer Applications 633

been released. The program may continue to run , but the data may be
destroyed it the memory area is allocated for another use. This logic error is
very difficult to trace. We suggest that immediately after you free memory you
also clear the pointer by setting it to NULL.

Using a pointer after its memory has been released is a common program-
ming error. Guard against it by clearing the pointer.

One final thought: You should free memory whenever it is no longer
needed. It is not necessary, however, to clear memory at the end of the program.
The operating system will release all memory when your program terminates.

The pointer used to free memory must be of the same type as the pointer
used to allocate the memory.

10.5 Array of Pointers
Another useful structure that uses arrays and pointers is an array of pointers.
This structure is especially helpful when the number of elements in the array
is variable.

To look at an example, Table 10-2 is a two-dimensional array in which
only one row (1) is full. The rest of the rows contain from one to four ele-
ments. This array is also known as a ragged array because the right elements
in each row may he empty, giving it an uneven (ragged) right border.

24121832
14194212161 113

22
141313

181 1

TABLE 10-2 A Ragged Table

If we use a two-dimensional array for storing these numbers, we are wast-
ing a lot of memory.The solution in this case is to create five one-dimensional
arrays that are joined through an array of pointers. One implementation of
this concept is seen in Figure 10-19 along with the statements needed to allo-
cate the arrays in the heap. Note that table is a pointer to a pointer to an

and must be declared as shown below, not as an array.integer

int** table

634 Section 10.6 Programming Applications

Program 10-6 in Section 10.6, "Programming Applications," demon-
strates the concept in a complete program. We will show other variations on
this data structure in the next Few chapters.

table [0]
table [1]
table [2]
table [3]
table [4]
table [5]

= (int**)calloc (rowNum + 1, sizeof(int*));
table[0] = (int*)calloc (4, sizeof(int));
table[l] = (int*)calloc (7, sizeof(int));
table(2] = (int*)calloc (1, sizeof(int));
table[3] = (int*)calloc (3, sizeof(int));
tablet4] = (int*)calloc (2, sizeof(int));
tablet5] = NULL;

table

FIGURE 10-19 A Ragged Array

10.6 Programming Applications
This section contains two applications. The first i
sort , this time using pointers. The second uses dynamic arrays.

is a rewrite of the selection

Selection Sort Revisited
Let’s revisit the selection sort
how to

we developed in Chapter 8. Now that we know
use pointers, we can improve it in several ways. First, and perhaps

most important, it is structured. I he structure chart is shown in Figure 10-20.
Note that main contains no detailed code. It simply calls the three Functions
tint will get the job done, first , getData reads data from the keyboard and
puts it into an array. I hen selectSort calls two functions to sort the data.
Finally, printData displays the result, l he complete algorithm is shown in
Program 10-4.

W
Chapter 10 Pointer Applications 635

Selection Sort
(pointers)

getData selectSort printData

smallest exchange

FIGURE 10-20 Selection Sort with Pointers — Structure Chart

PROGRAM 10-4 Selection Sort Revisited
/* Demonstrate pointers with Selection Sort

Written by:
Date written:

1
2
3

*/4
#include <stdio.h>
#define SIZE 25

5
6
7

// Function Declarations
int* getData (int* pAry,
void selectSort (int* pAry,

8
int arySize);
int* last);
int* last);
int* pLast);
int* smallest);

9
10

void printData (int* pAry,
int* smallest (int* pAry,

(int* current,

1 1
12

void exchange13
14

int main (void)15
16

// Local Declarations
int ary[SIZE];
int* pLast;

17
18
19
20

// Statements
pLast = getData (ary, SIZE);

selectSort (ary, pLast);

printData (ary, pLast);

21
22
23
24

continued

636 Section 10.6 Programming Applications

PROGRAM 10-4 Selection Sort Revisited (continued)

return 0;
> // main

2 5
2 6
2 7

==================== getData =====
Reads data from keyboard into array for sorting.

pAry is pointer to array to be filled
arySize is integer with maximum array size

Post array filled. Returns address of last element

/*2 8 =====
2 9
3 0 Pre
3 1
3 2

*/3 3
int* getData (int* pAry, int arySize)3 4

3 5 {
// Local Declarations

int ioResult;
int readCnt = 0;
int* pFill = pAry;

3 6
3 7
3 8
3 9
4 0

// Statements4 1
4 2 do
4 3 {
4 4 printf("Please enter number or <EOF>: ");

ioResult = scanf("%d", pFill);
if (ioResult == 1)

4 5
4 6
4 7 {
4 8 pFill++;

readCnt++;
> // if

> while (ioResult == 1 && readCnt < arySize);

4 9
5 0
5 1
5 2
5 3 printf("\n\n%d numbers read.", readCnt);

return (--pFill);
} I I getData

5 4
5 5
5 6

/* ====5 7 ==== selectSort === :========
5 8 Sorts by selecting smallest element in unsorted

portion of the array and exchanging it with element
at the beginning of the unsorted list.

Pre

5 9
6 0
6 1 array must contain at least one item

pLast is pointer to last element in array
array rearranged smallest to largest

6 2
6 3 Post
6 4 */
6 5 void selectSort (int* pAry, int* pLast)
66 {
6 7 // Local Declarations

continue

\

Chapter 10 Pointer Applications 63/

PROGRAM 10-4 Selection Sort Revisited (continued)

int* pWalker;
int* pSmallest;

68
69
70

// Statements
for (pWalker = pAry; pWalker < pLast; pWalker++)

71
72
73 {
74 pSmallest = smallest (pWalker, pLast);

exchange (pWalker, pSmallest);
> // for

75
76
77 return;

} // selectSort78
79

/*80 ==================== smallest ===
Find smallest element starting at current pointer.

pAry points to first unsorted element

smallest element identified and returned

81
82 Pre

Post83
*/84
int* smallest (int* pAry, int* pLast)85

86 {
// Local Declarations

int* pLooker;
int* pSmallest;

87
88
89
90

// Statements
for (pSmallest = pAry, pLooker = pAry + 1;

pLooker <= pLast;
pLooker-M-)

if (*pLooker < *pSmallest)
pSmallest = pLooker;

return pSmallest;
// smallest

91
92
93
94
95
96
97
98 >
99

==== exchange ===
Given pointers to two array elements, exchange them

pi & p2 are pointers to exchange values

exchange is completed

/* ===100
101
102 Pre

Post103
*/104
void exchange (int* pi, int* p2)105

106 {
// Local Declarations

int temp;
107
108
109

// Statements110
continued

638 Section 10.6 Programming Applications

PROGRAM 10-4 Selection Sort Revisited (continued)

111 temp = *pl;
*pl
*p2
return;

> // exchange

112 = *p2;
= temp;113

114
115
116

===== printData ==============
Given a pointer to an array, print the data.

pAry points to array to be filled
pLast identifies last element in the
data have been printed

117
118
119 Pre
120 array
121 Post

*/122
123 void printData (int* pAry, int* pLast)
124 {

// Local Declarations
int nmbrPrt;
int* pPrint;

125
126
127
128

// Statements129
130 printf("\n\nYour data sorted are: \n");

for (pPrint = pAry, nmbrPrt = 0;
pPrint <= pLast;

131
132
133 nmbrPrt++, pPrint++)

printf ("\n#%02d %4d",
printf("\n\nEnd of List ");
return;

> // PrintData
// =

134 nmbrPrt, *pPrint);
135
136
137
138 End of Program

Program 10-4 Analysis Here few points you should note as you study this program. Note that we have
used pointers and pointer arithmetic in all functions.

are a

The getData function fills the array. Since the pointer, pFill, is always oneahead of the read, when we reach the end of file, it is pointing to an empty element.Therefore, when we return it we subtract 1.

L Sf ^eCfS<?rt ^nc*'on advances through the array using a for statement. For
each iteration, it selects the smallest element in the unsorted portion of the array and
exchanges ,t with the first element in the unsorted portion of the array. Each loop, there-

hpfnrp .?m[nes °T Gr num^er unordered elements. We stop at the element just
element

ecous® smaHest always tests the first element and at least one±TotlXS -- *• 1- *
Finally, note the style used to code the for statement in both smallest and

separatetine ^ StaterTlen,s are more readable if you put each expression on a

T1JV

Chapter 10 Pointer Applications 639

Dynamic Array
Ihis program creates a dynamic table that can store a ragged array. The col-

and the width of the dynamic array are tailored to the needs of the user.
1 he program starts by asking the user for the number of rows that must he
stored. After allocating the row pointers (using culloc) y the program asks for
the number ol entries in each row. The table is then filled with data supplied
by the user from the keyboard. To demonstrate the applications that could be
used with this type of structure, we then determine the minimum, maximum,
and average ol each row oi data. The design is shown in Figure 10-2I.

umn

iDynamic
Arrays

i ibuild fill process
TableTable Table

i irow row row
Mimimum Maximum Average

jsmaller larger

FIGURE 10-21 Dynamic Array Structure Chart

The data structure is shown in Figure 10-22. The table pointer points to

the first pointer in an array of pointers. Each array pointer points to a second
array of integers, the first element of which is the number of elements in the
list. All arrays arc allocated out of the heap, giving us a structure that is lim-

ited only by the computer s memory.

12 3 453

table 78 616 21105

K 40 702 314

FIGURE 10-22 Ragged Array Structure

The complete set of programs to build and fill the table and some sample
applications are shown in Programs 10-5 through 10- 13. To compile these

programs, they need to he put in one source file or combined using include

statements.

640 Section 10.6 Programming Applications

PROGRAM 10-5 Dynamic Arrays: main

/* Demonstrate storing arrays in the heap. This program
builds and manipulates a variable number of ragged

It then calculates the minimum, maximum, and
of the numbers in the arrays.

1
2
3 arrays.

average
Written by:
Date:

4
5
6

*/7
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

8
9

10
11

// Function Declarations
int** buildTable
void fillTable
void processTable (int**
int smaller
int larger
int rowMinimum
int rowMaximum
float rowAverage

12

(void);
(int** table);

1 3
1 4

table);
first, int second);
first, int second);
rowPtr);
rowPtr);
rowPtr);

1 5
(int
(int
(int*
(int*
(int*

1 6
1 7
1 8
1 9
20
21

int main (void)22
2 3 {

// Local Declarations
int** table;

2 4
2 5
2 6

// Statements
table = buildTable();
fillTable (table);
processTable (table);
return 0;

> // main

2 7
2 8
2 9
3 0
3 1
3 2

Program 10-5 Analysis The main function in Prog 10-5 is a classic example of a well-designed program.
It contains only one variable: the pointer to the array. There are only three functionscalls in main: The first returns the address of the array; the other two use the array,and only the array. All detail processing is done in subfunctions.

ram

PROGRAM 10-6 Dynamic Arrays: buildTable
/*1 == buildTable ===============-=:=:==

Create backbone of the table by creating an array of
pointers, each pointing to an array of integers,

nothing

2
3
4L Pre

continue1

Chapter 10 Pointer Applications 641

PROGRAM 10-6 Dynamic Arrays: buildTable (continued)

Post returns pointer to the table5
*/6
int** buildTable (void)7

8 {
// Local Declarations

int rowNum;
int colNum;
int** table;
int row;

9
10
1 1
12
13
14

// Statements
printf("\nEnter the number of rows in the table: ");

scanf ("%d", &rowNum);
table = (int**) calloc(rowNum + 1, sizeof(int*));
for (row = 0; row < rowNum; row++)

15
16
17
18
19
20 {

printf("Enter number of integers in row %d: ",

row + 1);
scanf ("%d", &colNum);
table[row] = (int*Jcalloc(colNum + 1,

sizeof(int));

21
22
23
24
25
26 table[row] [0] = colNum;

> // for
table[row] = NULL;
return table;
// buildTable

27
28
29
30 }

Program 10-6 Analysis We begin Program 10-6 by asking the user how many rows of data must be entered.

Using the calloc function, we then allocate the memory for an array of pointers plus
extra pointer at the end. Each entry in the allocated table is used to point to an

array of integers, also stored in the heap.

PROGRAM 10-7 Dynamic Arrays: fillTable

one

fillTable ==============
This function fills the array rows with data,

array of pointers
array filled

/* ======1
2

Pre
Post

3
4

*/5
void fillTable (int** table)6

7 {
// Local Declarations

int row = 0;
8
9
10

continuec

r 642 Section 10.6 Programming Applications

PROGRAM 10-7 Dynamic Arrays: fillTable (continued)

// Statements
printf("\n ====
printf("\n Now we fill the table.\n");
printf("\n For each row enter the data");
printf("\n and press return: ");
printf("\n ====

1 1
==== •);12

1 3
1 4
1 5

======\n");1 6
1 7

while (table[row] != NULL)1 8
1 9 {

printf("\n row %d (%d integers)
row + 1, table[row][0]);

for (int column = 1;
column <= *table[row];
column++)

scanf("%d", table[row] + column);

20 > \
2 1
22
2 3
2 4
2 5
2 6 row++;

> // while
return;

> // fillTable

2 7
2 8
2 9

Program 10-7 Analysis Filling the rows, Program 10-7 requires a while statement to loop through the array
pointers and a for statement to enter the data. We use the while statement becausethe pointer array is designed with a null pointer at the end, and we use it to tell we
are at the end of the array. We use the for statement for filling the row because the
user has already told us how many elements are in each row.

PROGRAM 10-8 Dynamic Arrays: Process Table
/* =1 ===== processTable =====

2 Process the table to create the statistics.
Pre3 table

row statistics (min, max, and average)4 Post
*/5

6 void processTable (int** table)
7 <

// Local Declarations
int row = 0;
int rowMin;
int rowMax;
float rowAve;

8
9

10
1 1
1 2
1 3

// Statements
while (table[row] != NULL)

1 4
1 5
1 6 {L continue

Chapter 10 Pointer Applications 643

PROGRAM 10-8 Dynamic Arrays: Process Table (continued)

rowMin = rowMinimum (table[row]);
rowMax = rowMaximum (table[row]);
rowAve = rowAverage (tabletrow]);
printf("\nThe statistics for row %d ", row + 1);
printf("\nThe minimum: %5d",
printf("\nThe maximum: %5d",
printf("\nThe average: %8.2f ", rowAve);
row++;

> // while
return;
// processTable

17
18
19
20
21 rowMin);
22 rowMax);
23
24
25
26
27 >

Program 10-8 Analysis Processing the table in Program 10-8 calls three functions to show how you could use
a dynamic structure such as this. Obviously, many more applications could be used.

Remember the structure of this example. You will be able to use this structure in future
applications. Programs 10-9 through 10-13 continue the code for the functions.

PROGRAM 10-9 Dynamic Arrays: Find Row Minimum

==== rowMinimum =====
Determines the minimum of the data in a row.

given pointer to the row

returns the minimum for that row

1
2
3 Pre

Post4
*/5
int rowMinimum (int* rowPtr)6

7 {
8

// Local Declarations
int rowMin = INT MAX;

9
10
11

// Statements
for (int column = 1; column <= *rowPtr; column*-*-)

rowMin = smaller (rowMin, *(rowPtr + column));

return rowMin;
// rowMinimum

12
13
14
15
16 >

PROGRAM 10-10 Dynamic Arrays: Find Row Maximum

==== rowMaximum ===1
Calculates the maximum of the data in a row.

given pointer to the row

returns the maximum for that row

2
Pre
Post

3
4

*/5

continued

r 644 Section 10.6 Programming Applications

PROGRAM 10-10 Dynamic Arrays: Find Row Maximum (continued)

6 int rowMaximum (int* rowPtr)
7 {

// Local Declarations
int rowMax = INT MIN;

8
9
10

// Statements
for (int column = 1; column <= *rowPtr; column++)

rowMax = larger (rowMax, *(rowPtr + column));
return rowMax;

} // rowMaximum

11
12
13
14
15

PROGRAM 10-11 Dynamic Arrays: Find Row Average

=== rowAverage ====
This function calculates the average of data in a

1 ========
2

row.
Pre pointer to the row
Post returns the average for that row

3
4

*/5
float rowAverage (int* rowPtr)6

7 {
// Local Declarations

float total = 0;
float rowAve;

8
9
10
11

// Statements
for (int column = 1; column <= *rowPtr; column++)

total += (float)*(rowPtr + column);
rowAve = total / *rowPtr;
return rowAve;

} II rowAverage

12
13
14
15
16
17

PROGRAM 10-12 Dynamic Arrays: Find Smaller
1 ===== smaller ===
2 This function returns the smaller of two numbers.

Pre3 two numbers
returns the smaller4 Post

*/5
int6 smaller (int first, int second)

7 {
// Statements

return (first < second ? first :
> // smaller

8
9

second);
10

Chapter 10 Pointer Applicationŝ 645

PROGRAM 10-13 Dynamic Arrays: Find Larger
/*1 === larger =====

This function returns the larger of two numbers.
Pre

2
3 two numbers

Post returns the larger4
*/5
int larger (int first, int second)6

7 {
// Statements

return (first > second ? first : second);
// larger

8
9
10 >

646 Section 10.7 Software Engineering

10.7 Software Engineering
Pointer applications need careful design to ensure that they work correctly
and efficiently. The programmer not only must take great care in the program
design hut also must carefully consider the data structures that are inherent
with pointer applications. I he design of the data structures is beyond the
scope of this text, but we can discuss the design of the pointers.

Before we discuss specific aspects of pointer applications, a word of cau-
tion: Remember the KISS principle. The complexity of pointers grows rapidly
as you move from single references to double references to triple references.
Keep it short and simple!

Pointers and Function Calls
You should always pass by value when possible. It you have to use a pointer to
pass hack a value, however, whenever possible, pass a pointer to the ultimate
object to be referenced. When the pointer refers to the data variable, it is a
single dereference. Despite your best efforts, at times you will have to pass a
pointer to a pointer. When a function opens a file whose file pointer is in the
calling function, you must pass a pointer to the pointer to the file table. In
Figure 10- 16 we allocated a dynamic array of 200 integers. If the allocation is
performed in a subfunction, then it must receive a pointer to the pointer to
the array in memory so that it can store the address of the array.

Whenever possible, use value parameters.

Pointers and Arrays
\\ hen you combine pointers and arrays, the complexity again quickly
becomes difficult. This is especially true when the array is multidimensional.
\\ henever possible, therefore, rather than passing a multidimensional array,
pass just one row. 1 his reduces the complexity significantly, because the func-
tion is now dealing w ith a one-dimensional array. Not only are the references
easier to work with, but passing a row allows simple pointer arithmetic, which
is usually more efficient.

\\ hen you must work with a two-dimensional array, index rather than
pointer notation. Index notation is much simpler to work with, and there is
n° difference in efficiency, li you are not sure of this recommendation, con-
sider the following equivalent expressions. Which
in a strange program?

use

uld you rather findone wo

((ary + i) + j) a [i1 [j 1or

Array Index Commutativity
C ommutativity is a principle in mathematics that the results of an

evaluated. For
says

expression do not depend on the order in which the factors are

Chapter 10 Pointer Applications 647

example, a + b is identical to b + a. Pointer addition is commutative; subtrac-
tion is not. I luis, the following two expressions are identical.

a + i i + a

But we also know that a +iis identical to a [i]. Similarly, i + a would be
equivalent to i[a] . Therefore, using the principle of commutativity, we
see that

a[i] is identical to i[a]

A word ol caution. Commutavity works in C because of the pointer con-
cept and pointer arithmetic. Do not try this in another language.

Dynamic Memory: Theory versus Practice
Do not get carried away with dynamic memory. The programming complexity
of dynamically managing memory is very high. What you will often find,
therefore, is that memory is not fully reused. To test memory reusability in
your system, run Program 10- 14. Note: I bis may not be a problem with
today’s compilers. When we reran this program for this edition, the memory
was reused.

PROGRAM 10-14 Testing Memory Reuse

/* This program tests the reusability of dynamic memory.
Written by:
Date:

1
2
3

*/4
#include <stdio.h>
tinclude <stdlib.h>

5
6
7

int main (void)8
9 {

// Local Declarations
int looper;
int* ptr;

10
1 1
12
13

// Statements
for (looper = 0; looper < 5; looper++)

14
15

{16
ptr = malloc(16);
printf("Memory allocated at: %p\n", ptr);

17
18
19

cont inued

648 Section 10.7 Software Engineering

PROGRAM 10-14 Testing Memory Reuse (continued)

free (ptr);

> // for
2 0
21

return 0;
} // main

22
23

Results in Personal Computer:
Memory allocated at: 0x00e80238
Memory allocated at: 0x00e8024a
Memory allocated at: 0x00e8025c
Memory allocated at: 0x00e8026e
Memory allocated at: 0x00380280

Results in UNIX system:
Memory allocated at: 0x00300f70
Memory allocated at: 0x00300f70
Memory allocated at: 0x00300f70
Memory allocated at: 0x00300f70
Memory allocated at: 0x00300f70

Program 10-14 Analysis First look at the logic of this simple program. It loops five times, each time allocating
16 bytes and immediately freeing them. The program was run on two different sys-
tems, a personal computer and a UNIX network.

If the memory management is doing its job, the same 16 bytes would be allocated
each time. What we see, however, is that for the personal computer, each address is
different. It is also interesting to note that the difference between all the allocations
except the first was 18 bytes, not 16.

The larger UNIX network system is more sophisticated, and it appears to
dynamic memory efficiently.

reuse

Chapter 10 Pointer Applications 649

10.8 Tips and Common Programming Errors
1. If ary is an array, then

is the same as &ary[0]ary

2. II ary is the name of an array, then

ary[i] is the same as *(ary + i)

3. Remember that we usually pass the name of an array as a pointer value to
a function that needs to access the elements of the array.

4. Remember that

int* a[5]; int (*a)[5];is different from

5. Similar to array indexes, the most common pointer error is referencing a
nonexistent element in an array. This is especially easy to do with pointer
arithmetic.

6. It is a compile error to use pointer arithmetic with a pointer that does not

reference an array.
7. It is a logic error to subtract two pointers that are referencing dillerent

arrays.
8. It is a compile error to subtract a pointer from an index.
9. It is a compile error to attempt to modify the name of an array using

pointer arithmetic, such as

// Error: table is constant
// Error: table is constant

table++;
table = ... ,

10. The header file stdlib.h is required when using memory allocation functions.

11. It is a compile error to assign the return value from malloc or calloc to

anything other than a pointer.
12. It is a logic error to set a pointer to the heap to NULL before the memory

has been released.
13. It is a compile error to

modulo operators.
pointer arithmetic with multiply, divide, oruse

650 Section 10.10 Summary

10.9 Key Terms
pointer arithmetic
ragged array
right—left rule
stack memory
static memory allocation

array of pointers
dynamic array
dynamic memory allocation
offset
heap memory
overflow

10.10 Summary
Arrays and pointers have a close relationship. The name of an array is a
pointer constant to the first clement of the array.
The name of an array and the address of the first element in the array rep-
resent the same thing: an rvalue pointer.
The name of an array is a pointer only to the first element, not the
whole array.
A pointer variable to the first element of an array can be used anywhere
the name of the array is permitted , such as with an index.
In pointer arithmetic, if ptr is pointing to a specific element in an array,
ptr + n is the pointer value n elements away.

LI I he name of a two-dimensional array is a pointer to a one-dimensional
array—the first row.

-J In a multidimensional array, the following two expressions arc equivalent.

* (* (a + i) + j) a [i] [j]

J We can pass an array to a function in many ways. One way is to pass the
name of the array as a pointer.

J A ragged array—that is, an array of pointers—can be used to save space
when not all rows of the array are full.

I he memory in a computer can be divided into program memory and data
memory. Data memory can be partitioned into global

Q Static allocation ol memory requires that the declaration and definition of
memory be I ully specified at compilation time.

J Dynamic allocation of memory is done during run time through the use of
predefined functions.

heap, and stack.area,

J C has lour predefined memory allocation functions: malloc, calloc , realloc,
and free.

J lo read and interpret a complex declaration the right-left rule., we can use

T^|Chapter 10 Pointer Applications 651

10.11 Practice Sets

Review Questions
1. Given a pointer to an array element, ptr, ptr - 5 is a pointer to the

value 5 elements toward the beginning of the array.
a. True
b. False

2. Adding 1 to a pointer increases the address stored in it by 1 byte.
a. True
b. False

3. 1 he parameter declaration int* a can be used to declare an array of
integers passed to a function.
a. True
b. False

4. Dynamically allocated memory can only be referred to through pointers.
a. True
b. False

5. Which of the following statements about pointers and arrays is true?

a. The following expressions are identical when ary is an array: *ary

and &ary[0].
b. The following expressions are identical when ary is an array: *ary

and *ary[0].
c. The name of an array can be used with the indirection operator to ref -

erence data.
d. The name of the array is a pointer variable.
e. The only way to reference data in an array is with the index operator.

6. Which of the following statements about pointer arithmetic is true?

a. Any arithmetic operator can be used to change the value ol a pointer.
b. Given a pointer ptr, ptr + n is a pointer to the value u elements away.
c. Pointer arithmetic is a short-hand notation that changes the value that

a pointer is referencing.
d. Pointer arithmetic is valid only with pointers to arithmetic variables,

such as pointer to integer.
e. Pointer arithmetic is valid only with the name of the array.

7. Which of the following parameters is a two-dimensional array of integers?

a. int ary
b. int ary[][SIZE2]
c. int* ary
d. int* ary[][SIZE2]

e. int* ary[SIZE2]

652 SectionlO.il Practice Sets

8. Which of the following is not a C memory allocation function?
a. alloc()
b. calloc()
c. f ree()
d. malloc()
e. realloc()

9. Which of the following statements about memory allocation is true?
a. Allocated memory can he referred to only through pointers; it does not

have its own identifier.
b. calloc (change allocation) is used to change the allocation to memory

previously allocated through malloc.
c. malloc (memory allocation) is used to allocate blocks of memory for

arrays.
d. realloc (release allocation) is used to release memory when it is no

longer needed.
e. Underflow can occur only with calloc and malloc.

10. The function that returns memory to the heap is:

a. allocf)
b. callocf)
c. f ree()
d. mallocf)
e. realloc{)

1 1. Which ol the following statements about releasing memory allocation
is false?
a. It is an error to dereference a pointer to allocated memory after the

memory' has been released.
b. It is an error to free memory with a pointer to other than the first ele-

ment ol an allocated array.
c. Memory' should be freed as soon as it is no longer needed.
d. Only one call to free is necessary' to release an entire array allocated

with calloc.
e. lo ensure that it is released, allocated memory should be freed before

the program ends.
1 2. \\ hich ol the following statements about ragged arrays is false?

a. Ragged arrays are two-dimensional arrays in which the right elements
of a row may be empty.

b. Ragged arrays can I
dimensional arrays.

c. Ragged arrays can only be used with arrays of integers.
d. Ragged arrays implemented as an array of pointers save memory.
e. Ragged arrays implemented as an array of pointers can be created in

dynamic memory.

be implemented using an array of pointers to one-

HI
Chapter 10 Pointer Applications 653

Exercises
13. Rewrite each ot the following expressions by replacing the index operator

([. . .]) with the indirection operator (*).
a. tax [6]

b. score [7]

c. num [4]
d. prices [9]

14. Rewrite each ot the following expressions by replacing the indirection
operator (*) with the index operator ([. . .]). Each identifier refers to
an array.
a. * (tax + 4)

b. * (score + 2)

c. * (number + 0)

d. *prices

1 5. Imagine you have the following declarations:

int ary[10];
int* p = &ary[3];

Show how you can access the sixth element of ary using the pointer p.

16. Given the following declarations:

float ary[200];

Write the function declaration for a function named fun that can manip-
ulate a one-dimensional array of floating-point numbers, ary. Provide an

additional parameter, a pointer to the last element in the array. Code a

call to the function.
1 7. Show what would be printed from the following block:

{
int num[5] = { 3, 4, 6, 2, 1 >;
int* p = num;
int* q = num +2;
int* r = &num[1];
printf("\n%d %d", num[2], *(num + 2));

printf("\n%d %d", *p, *(P + 1));
printf("\n%d %d", *q, *(q + 1)),*

printf("\n%d %d", *r, *(r + 1));

} // Block

654 Section 10.11 Practice Sets

18. Show what would be printed from the following block.

// Function Declaration
void printOne
void printTwo
void printThree (int*);

(int*);
(int*);

{
// Local Declarations

int num [5] = {3 , 4 , 6 , 2 , 1};
// Statements

printOne
printTwo
printThree (&num [2]);
return 0;

> // Block
void printOne (int* x)

(num);
(num + 2);

{
printf("\n%d", x[2]);
return;

} // printOne
void printTwo (int* x)
{

printf("\n%d", x[2]);
return;

> // printTwo
void printThree (int* x)
{

printf("\n%d",
return;
// printThree

*x) ;

}

19. Given the following definition:

int table [4][5];

write the function declaration for a function named fun that can accept the
whole array using a pointer. Write the statement that calls this function.

20. Given the following definition:

int table [4][5];

w i i t e the function declaration (or a function named torture that
accepts one row of an array at a time.

21. Draw pic tures to show the memory configuration for each of the follow-
ing declarations.
a. int* x [5];
b.int (*x) (5);

\ \r

Chapter 10 Pointer Applications 655

22. Show what would be printed from the following block:

{
// Local Declarations

int x [2][3] =
{
{ 4 , 5 , 2 > ,
{ 7 , 6 , 9 }

>;
int (*p) [3] = &x [1];
int (*q) [3] =

// Statements
printf("\n%d %d %d",
printf("\n%d %d",

} // Block

x;

(*P)[0],(*p)[l],(*p)[2]);
*q[o], *q[i 1);

23. Show what would be printed from the following block:

{
// Local Declarations

int x [2][3] = {
{ 4 , 5 , 2 } ,
{ 7 , 6 , 9 }

> ;
// Statements

fun (x);
fun (x + 1);
return 0;

} // Block
void fun (int (*p)[3 J)
{

(*P)[0],(*p)[l]/(*p)[2]);printf("\n%d %d %d",
return;

>

24. Given the following definitions:

int num[26] = {23, 3, 5, 7, 4, -1, 6};

int* n = num;
int i = 2;
int j = 4;

show the value of the following expressions:

a. n
h.*n
c. *n + 1
d. * (n + 1)

e. *n + j
f. *&i if

656 SectionlO.il Practice Sets

25. Given the following definitions:

char a [2 0] = { ' z ' , ’ x ' , ' m * , ' s ' , ' e ' , ' h ' };
char* pa = a ;
int i = 2;
int j = 4 ;
int* pi = &i;

show the value of the following expressions:
a. * (pa + j)

b. * (pa + *pi)

26. Given the following definition:

int data [15] = { 5 , 2 , 3 , 4 , 1, 3 , 7 , 2 , 4 , 3 , 2 , 9 , 1 2 };

show the value of the following expressions:
a. data + 4
b. * (data + 4)
c. *data + 4
d. * (data + (*data + 2))

27. Given the following definitions:

int i = 2 ;
int j = 4 ;
int* pi = &i;
int* pj = & j ;

show the value ol the following expressions:
a. * & j
b. * & * & j
c. * & pi

& pj
e. & **& pi

28. Given the following definitions:

d. **

char a [2 0] = { ' z ' ,
i n t i = 2 ;
i n t

x ' , ' m ' , ' s * , ’ h ' };e * ,

j = 4;

write pointer expressions that evaluate to the same value as each of the
following:
a. a [0]
b. a [5]
c. The address ol the element just before a [0] .

mm'

Chapter 10 Pointer Applications 657

d. The address of the last element in a.
e. I he address of the element just after the last element in a.
f. The next element after a[3].
g. The next element after a [12] .
h. The next element after a [j].

29. Given the following definitions:

int num[10] = {23,3,5,7,4,-1,6,12,10,-23};
int i = 2;
int j = 4;

write index expressions that evaluate to the
following:

value as each oi thesame

a. *(num + 2)

b. *(num + i + j)
c. *(num + *(num + 1))

d. * (num + j)

e. *(num + i) + *(num + j)

30. Given the following definition:

int num[2000] = {23, 3, 5, 7, 4,

write two pointer expressions for the address ol num [0] .

31. Given the follow ing definitions:

int num[26] = {23, 3, 5, 7, 4, -1, 6> ;
int i
int j = 4;
int* n = num;

2 ;

write the equivalent expressions in index notation.
a. n
b. *n
c. *n + 1

d. * (n + 1)

e. * (n + j)

32. Given the following definitions:

int num[26] = {23, 3, 5,

int* pn;

check whether pn points beyond the end of num.write a test to

658 SeclionlO.il Practice Sets

33. Given the following function for mushem and the definitions shown below

int mushem (int*, int*);
int i = 2;
int j = 4;
int* pi = &i;
int* pj = &j;

indicate whether each of the following calls to mushem is valid:

a. i = mushem (2, 10);
b. j = mushem (&i, &j);
c. i = mushem (pi, &j);
d. j = mushem (i, j);
e. mushem (pi, pj);

34. What is the output from the following program?

#include <stdio.h>
int fun (int*, int, int*);
int main (void)
{
// Local Declarations

int a = 4;
int b = 17;
int c[5] = {9, 14, 3, 15, 6>;

// Statements
a = fun(&a, b,
printf("2. %d %d %d %d %d %d %d\n",

a, b, c[0], c[l], c[2], c(3], c[4]);

c);

return 0;
// main
int fun (int* px, int y,

>
int* pz)

{
// Local Declarations

int a = 5;
int* p;

// Statements
printf("1. %d %d %d\n",
for (p = pz; P < pz + 5. ++p)

*p = a + *p;
return (*px + *pz + y);

> // fun

*px, y, *pz);

35. \\ hat is the output Irom the following program?

#include <stdio.h>
int sun (int*, int, int*);

continued

Til
Chapter 10 Pointer Applications 659

int main (void)
{
// Local Declarations

int a = 4;
int b = 17;
int c[5) = {9, 14, 3, 15, 6> ;
int* pc =

// Statements
c;

a = sun(pc, a, &b);
printf("2. %d %d %d %d %d %d %d\n",

a, b, c[0], c[l], c[2], c[3], c[4]);
return 0;

} // main
int sun (int* px, int y, int* pz)
{
// Local Declarations

int i = 5;
int* p;

// Statements
printf("1. %d %d %d\n", *px,
for (p = px; p < px + 5; p++)

*p = y + *p;
*px = 2 * i;
return (*pz + *px + y);

> // sun

*pz);

Problems
36. We have two arrays, A and B,each containing 10 integers. Write a Function

that checks if every element of array A is equal to its corresponding element
in array B. In other words, the function must check if A[0] is equal to B[0] ,
A[1] is equal to B[1], and so on. The function must accept only two pointer
values and return a Boolean, true for equal and false for unequal.

37. Generalize the function in Problem 36 to include the number of ele-
ments to be compared as a parameter.

38. Write a function that reverses the elements of an array in place. In other
words, the last element must become the first, the second Irom last must

become the second, and so on. The function must accept only one

pointer value and return void.
39. The Pascal triangle can be used to compute the coefficients of the terms

in the expansion of (a + b) n. Write a function that creates a ragged array-
representing the Pascal triangle. In a Pascal triangle, each element is the

of the element directly above it and the element to the left of the ele-
ment directly above it (if any). A Pascal triangle of size 7 is shown in the
following.
sum

,
JjJjl

wr
660 SectionlO.il Practice Sets

1

11

121
1331

14641
5 1101051
15 620 11561

Your function must be able to create the triangle of any size. The func-
tion should accept an
return a pointer to the array it created.

40. Write a function that tests an International Standard Book Number
(ISBN) to see if it is valid. The ISBN is used to define a hook uniquely. It
is made of 10 digits, as shown below. For an ISBN to he valid, the
weighted sum of the 10 digits must be evenly divisible by 11. The 10th
digit may be X, which indicates 10. (If you are not familiar with the algo-
rithm for the weighted sum, it is explained in Chapter 8, Problem 31).
The ISBN format is shown in Figure 10-2.3.

*

integer representing the size of the triangle and

Check digitPublisher

0-07-881809- :

Country Book Numberi

;

FIGURE 10-23 Project 40 Structure

of the array) andI he function must accept a pointer value (the name
return a Boolean, true for valid and false for invalid.

41. W rite a Junction that copies a one-dimensional array of n elements into a
and k columns. The resulting array willtwo-dimensional array of j

he placed in the heap. The data will he inserted into the array in row
order; that is, the first k items will he placed in row 0, the second k items
in row 1 , and so lorth until all rows have been filled.

rows

If j and k are not factors of n—that is, if n * j * k—the function returns a
null pointer. Otherwise, it returns the pointer to the two-dimensional
array. I he input array and j, k , and n will he passed as parameters.i

i i r

1nChapter 10 Pointer Applications 661

42. C.iven the following definition:

int num[20];

and using only pointer notation, write a for loop to read integer values
from the keyboard to fill the array.

43. Given the following definition

char a[40];

and using only pointer notation, write a for loop to read characters from
the keyboard to fill the array.

44. Given the following declaration and definition:

char a[6] = {'z', 'x', 'm', 's', e ' , ' h ' };

and using only pointer notation, write a loop to rotate all values in a to
the right (toward the end) by one element.

43. Repeat Problem 44, with the rotation one element to the left.
46. Write a function named addem with two call-by-address integer parame-

ters. The function will add 2 to the first parameter and 5 to the second
parameter. Test the function by calling it with the values of I7 and 23. i

Projects
47. Write a program that reads integers from the keyboard and place them in

an array. The program then will sort the array into ascending and
descending order and print the sorted lists. The program must not
change the original array or create any other integer arrays.

The solution to this problem requires two pointer arrays as shown in
the example in Figure 10-24. The first pointer array is rearranged so that
it points to the data in ascending sequence. The second pointer array is
rearranged so that it points to the data in descending sequence.

14
26
14

->C—/ ^ 41

57
33
41#-

DescendingAscending

After SortingBefore Sorting

FIGURE 10-24 Sample Structure for Project 47

f-
662 SectionlO.il Practice Sets

Your output should be formatted with the three arrays printed as a

vertical list next to each other, as shown in Table 10-3.

Original DescendingAscending
26 5714
14 4126
57 3333
33 2641
41 1457

TABLE 10-3 Format for Project 47

48. Write a program that creates a two-dimensional array in the heap and
then analyzes it to determine the minimum, maximum, and average of
each column.

The data are to he read from a file. The first two elements are the
number of rows in the array and the number ol columns in each row. The
file data for a 1 2 x 8 array are shown below.

12 8

838 419758 113 627 10515 51

543212 86 749 225767 84 60

31189 183 137 566 966 495978

367 50554 31 524145 882 736

394 96102 851 56167 754 653

403628 188 85 143 165967 406
318562 834 353 920 962803444

422 894327 457 945 751479 983
990670 259 248 757 606629 306

738 134516 414 262 181116 825

343 20122 233 536 71760 979

336 99361 160 4755 729 644

arith-49. Rewrite the straight insertion sort from Chapter 8 using pointer
metic. The data to he sorted are to he read from a file. Ihe array is

Chapter 10 Pointer Applications 663

dynamically allocated in the heap after reading the file to determine the
number of elements. While reading the data to determine the size of
array you will require, print them 10 integers to a line. Use the test data
shown below.

838 758 113 515 51 627 10 419 212 86
749 767 84 60 225 543 89 183 137 566
966 978 495 311 367 54 31 145 882 736
524 505 394 102 851 67 754 653 561 96

628 188 85 143 967 406 165 403 562 834

353 920 444 803 962 318 422 327 457 945

479 983 751 894 670 259 248 757 629 306

606 990 738 516 414 262 116 825 181 134

343 22 233 536 760 979 71 201 336 61

The data will he sorted as they are read into the array. Do not fill the array
and then sort the data. After the array has been sorted , print the data
again using the same format you used for the unsorted data.

50. Write a program to answer inquiries about student data. Using a menu -
driven user interface, provide the capability to print out the scores, aver-
age, or grade lor a student. A fourth menu option is to provide all infor-
mation about a given student. All array functions are to receive the array
as a pointer and use pointer arithmetic.

The data in Table 10-4 will he stored in a two-dimensional array.

Student Quiz 2Quiz 1 Quiz 3 Quiz 4 Quiz 5

52 7 100 781234 34

45 40 88 78 551947

90 36 90 77 302134
9955 50 78 802877

20 90 70100 453124
70 100 78 77223189

81 3217 771 14532
91 7850 60894602

continued
TABLE 10-4 Student Data for Project 50

664 SectionlO.il Practice Sets

Quiz 3 Quiz 4Quiz 2Student Quiz 1 Quiz 5
01 1 781 15405 10

12 4520 785678 34
558034 786134 45
89980 786999 20

100 5660 787874 78
10 66708026 78 56
934 779893 78 20

TABLE 10-4 Student Data for Project 50 (continued)

51. Contract bridge is a popular card game played by millions of people
throughout the world. It began in the 1920s as a variation of an old
English card game, whist. In bridge, the entire deck is dealt to four play-
ers named North, South, East, and West. In tournament bridge, teams of
players (North-South versus East -West) compete with other players using
the same hands (sets of 13 cards). Today it is common for large tourna-
ments to use computer-generated hands. Write a program to shuffle and
deal the hands for one game.

To simulate the bridge deck, use an array of 52 integers initialized
from 1 to 52. To shuffle the deck, loop through the array, exchanging the
current card element with a random element (use the random number
generator discussed in Chapter 4). After the deck has been shuffled,
print the hands in four columns using the player’s position as a heading.
Use the following interpretation for the cards suits:

1 to 13 Clubs
14 to 26 Diamonds
27 to 39 Hearts
40 to 52 Spades

To determine the rank of the card, use its number (modulo 13) + l. The
interpretation of the rank follows: 1 is an ace, 2 through 10 have their
value, 1 1 is a jack, 12 is a queen, and 13 is a king.

the h in M p ^ * K^ 13 cards tIle *or North, the next 13 cards.n turn ’ ^Then use a Unction to sort each hand

'II

Chapter 11
Strings

II is impossible to write a well-structured and human-engineered program
without using strings. Although you probably weren’t aware of it, you have
been using strings ever since you wrote your first C program.

Some languages, such as Pascal, Ada, and C++ provide intrinsic string
types, hut C does not. In C, the programmer implements strings. Because
strings are so important, however, functions to manipulate them have been
defined in an ad hoc standard library.

In this chapter we first consider how strings are defined and stored, and
then we explore the standard string f unctions that are available in C.

Objectives
To understand design concepts for fixed-length and variable- length strings

To understand the design implementation for C-language delimited strings

To write programs that read, write, and manipulate strings

To write programs that use the string functions in the string library

IJ To write programs that use arrays of strings

To write programs that parse a string into separate variables

To understand the software engineering concepts of information hiding and
cohesion

665

666 Section 11.1 String Concepts

11.1 String Concepts
In general, a string is a series of characters treated as a unit. Computer sci-

has long recognized the importance of strings, but it has not adapted aence
standard for their implementation.We find, therefore, that a string created in
Pascal differs from a string created in C.

Virtually all string implementations treat a string as a variable-length
piece of data. Consider, for example, one of the most common of all strings, a. Names, by their very nature, vary in length. It makes no difference if

looking at the name of a person, a textbook, or an automobile.
Given that we have data that can vary in size, how do we accommodate

them in our programs? We can store them in fixed-length objects, or we can
store them in variable-length objects. Ibis breakdown ol strings is seen in
Figure 11- 1.

name
we are

string

ifixed
length

variable
length

length
controlled delimited

C Strings

FIGURE 11 - 1 String Taxonomy

Fixed-Length Strings
When implementing a fixed-length string format, the first decision is the
size ol the variable. If we make it too small, we can't store all the data. II we
make it too big, we waste memory.

Another problem associated with storing variable data in a fixed-length
data structure is how to tell the data from the nondata. A common solution is
to add nondata characters, such as spaces, at the end of the data. Of course,
this means i

be used as data.

I,

that the character selected to represent the nondata value cannot

Variable-Length Strings
A much preferred solution is to create a structure that can expand and con-
t r ac t t o accommodate the data. Thus, to store a person’s name that consists
ol only one letter, we would provide only enough storage lor one character.1

I. The shortest name that we are aware of is (). To accommodate the computers of credit card
and other companies,however,Mr. () was Forced to legally change his name to Oh.

Chapter 11 Strings 667

Io store a person’s name that consists of 30 characters, the structure would
he expanded to provide storage lor 30 characters.

Ihis flexibility does not come without a cost, however. There must he
some way to tell when we get to the end of the data. Two common techniques
are to use length-controlled strings and delimited strings.

Length-Controlled Strings
Length-controlled strings add a count that specifies the number ol charac-
ters in the string.Ihis count is then used by the string manipulation functions
to determine the actual length of the data.

Delimited Strings
Another technique used to identify the end of the string is the delimiter at

the ends of delimited strings. You are
delimiters, although you probably don’t recognize them as such. In English,
each sentence, which is a variable-length string, ends with a delimiter, the
period. Commas, semicolons, colons, and dashes are other common delimit-
ers found in English.

Ihe major disadvantage of the delimiter is that it eliminates one charac-

ter from being used for data. The most common delimiter is the ASCII null
character, which is the first character in the ASCII character sequence (\ 0).
This is the technique used by C.

Figure 1 1-2 shows length-controlled and delimited strings in memory.

already familiar with the concept of

length delimiter

B 0 O L E \09 C O N F U C I U S
Delimited stringLength-controlled string

FIGURE 11-2 String Formats

11.2 C Strings
A C string is a variable-length array of characters that is delimited by the null

character. Generally, string characters are selected only from the printable

character set. Nothing in C, however, prevents any character, other than the

null delimiter, from being used in a string. In fact, it is quite common to use

formatting characters, such as tabs, in strings.

C uses variable-length, delimited strings.

668 Section 11.2 C Strings

Storing Strings
In C, a string is stored in an array of characters. It is terminated by the null
character (' \ 0 •)• Figure 1 1-3 shows how a string is stored in memory. What
precedes the string and what follows it is not important. What is important is
that the string is stored in an array of characters that ends with a null delim-
iter. Because a string is stored in an array, the name of the string is a pointer
to the beginning of the string.

end of string
delimiter

ieginning of
string

H e I I o \0

FIGURE 11-3 Storing Strings

Figure 1 1 -4 shows the difference between a character stored in memory
and a one-character string stored in memory. The character requires only one
memory location. The one-character string requires two memory locations:
one for the data and one for the delimiter. The figure also shows how an
empty string is stored. Empty strings require only the end-of-string marker.

char 'H' string "H" (Empty String)

H H \0 \0

FIGURE 1 1 -4 Storing Strings and Characters
\

The String Delimiter
At this point, you may he wondering, “Why do
end of a string: I he answer is that a string is not a data type but a data struc-
ture. This means that its implementation is logical, not physical. The physical
structure is the array in which the string is stored. Since the string, by its def-
inition, is a variable-length structure
the data within the physical structure.

need a null character at thewe

need to identify the logical end of, we

Looking at it another way, if the data are not variable in length, then we
don ’t need the string data structure to store them. They easily stored in an
array, and the end of the data is always the last element in the array. But, if
the data length is variable, then we need some other way to determine the
end of the data.

are

I he null character is used end-of-string marker. It is the sentinel
used by the standard string functions. In other words, the null character at

as an

Chapter 11 Strings 669

the end lets us treat the string
defined object at the end that can be used as a sentinel. Figure 1 1 -5 shows
the difference between an

sequence of objects (characters) with aas a

array of characters and a string.

H e I I o \0 H e l l o

array—no
end of stringend-of-string

character

FIGURE 1 1 -5 Differences Between Strings and Character Arrays

Because strings are variable-length structures, we must provide enough
room for the maximum-length string we will have to store, plus one for the
delimiter. It is possible that the structure will not he filled, so we can have an
array with the null character in the middle. In this case, w'e treat the part of the
array from the beginning to the null character as the string and ignore the rest.
In other words, any part of an array of characters can he treated as a string as
long as the string ends in a null character. This is shown in Figure I I -6.

Part of the array,
but not part of the- string ^

D a y ?)char str[ll]; G o o d

FIGURE 11 -6 Strings in Arrays

String Literals
A string literal—or as it is also known , string constant—is a sequence of char-
acters enclosed in double quotes. For example, each of the following is a

string literal:

"C is a high-level language."
"Hello"
"abed"

used in a program, C automatically creates an

of characters, initializes it to a null-delimited string, and stores it ,
use the double quotes

When string literals are
array
remembering its address. It does all this because we

that immediately identify the data as a string value.

A string literal is enclosed in double quotes.

r i
I

670 Section 11.2 C Strings

Strings and Characters
When all we need to store is a single character, we have two options: We
store the data as a character literal or as a string literal. To store it as a char-
acter literal, we use single quote murks. To store it as a string literal,
double quote murks. Although the difference when we code the literal is only

most keyboards, the difference in

can

we use

a shift-key operation on
The character occupies a single memory location. Ihe data portion of the
string also occupies a single memory location, but there is an extra memory
location required for the delimiter.

memory is great.

The differences in the ways we manipulate the data are even greater. For
example, moving a character from one location to another requires only
assignment. Moving a string requires a function call. It is important, there-
fore, that you clearly understand the differences. Figure 1 1 -7 shows examples
of both character literals and string literals.

an

"a" nI Ia

an empty
stringa stringa character

Character Literals and String LiteralsFIGURE 11-7

Another important difference between a string and a character is how we
represent the absence of data. Technically, there is no such thing as an empty
character. Logically, we often specify that a space (' ') or a null character
(' \ 0 ') represents the absence of data. Since the character exists in all cases,
however, both of these concepts require that we program for the interpreta-
tion of no data.

tl A string, on the other hand, can he empty. That is, since it is a variable-
length structure, a string can exist with no data in it. A string that contains no
data consists ol only a delimiter. I his concept is specified in the definition of
a string and is programmed into all the string-handling functions. We can,
therefore, move or compare an empty string without knowing that we arc
dealing with no data. An example of a null string is also shown in Figure 11-7.

Referencing String Literals
\ stiing literal is stored in memory. Just like any object stored in memory, it

has an address. I bus, we can refer to a string literal by using pointers.
Fet s first examine addressing a string literal. I he literal, since it is an

anay ol characters, is itsell a pointer constant to the first element of the
stiing. Generally, when we use it, we are referring to the entire string. It is
possible, however, to refer to only one of the characters in the string, as
shown in Figure 1 1 -8.

1Tv
Chapter 11 Strings 671

"Hello"[0]
"Hello"! 1 l
"Hello"[2]
"Hello"! 3]
"Hello"! 4]
"Hello"! 5]

H -"Hello"
#include <stdio.h>
int main (void) e "FTei{

printf("%c\n", "Hello"(1);
return 0;

} // main
O

\0

FIGURE 1 1 -8 String Literal References

Declaring Strings
As we said, C has no string type. To declare a string, therefore, we must use one
of the other available structures. Since strings are a sequence of characters, it is

only natural that the structure used to store stringvariables is the character array.
In defining the array to store a string, we must provide enough room for

the data and the delimiter. The storage structure, therefore,must he one byte
larger than the maximum data si/e. A string declaration for an eight -character
string, including its delimiter, is shown below.

char s t r [9] ;

As we have seen, string declaration defines memory lor a string when it is

declared as an array in local memory (the stack). I lowever, we can also declare a

string as a pointer. When we declare the pointer, however, memory is allocated
only for the pointer; no memory is allocated for the string itself. In this case, we

must allocate memory for the string either dynamically or using a string literal.
Figure I 1-9 demonstrates two different ways to declare and define a

string. Let’s examine each carefully. In the first case (Figure 1 l-9a), memory

is allocated for future characters. The name of the string is a pointer con-

stant. We don’t need to worry about allocating memory because the declara-

tion is for an array and memory allocation is automatic. We can read data into

the string and change data in the string as necessary.

// Local Declarations

char str(9];
str

(a) String Declaration

// Local Declarations

char* pStr;
pStr Q >

(b) String Pointer Declaration

FIGURE 11-9 Defining Strings

6/2 Sectional .2 Strings

The second case (Figure 1 1 -9b) allocates memory for a pointer variable.
In this case, however, no memory is allocated for the string itself. Before we
can use the string in any way we need to allocate memory for it . Any attempt
to use the string before memory' is allocated is a logic error that may destroy
memory contents and cause our program to fail.

Memory for strings must be allocated before the string can be used.

Initializing Strings
We can initialize a string the same way that we initialize any storage structure
by assigning a value to it when it is defined. In this case, the value is a string
literal. For example, to assign "Good Day to a string, we would code

char str[9] = "Good Day";

Since a string is stored in an array of characters, we do not need to indi-
cate the size of the array if we initialize it w hen it is defined. For instance
could define a string to store the month January, as shown below.

we

char month[] = "January";

In this case, the compiler will create an array of 8 bytes and initialize it
with January and a null character. We must he careful, however, because
month is an array. II we now tried to store "December" in it, we would over-
run the array and destroy whatever came after the array. This example points
out one ol the dangers of strings: We must make them large enough to hold
the longest value we will place in the variable.

C provides two more ways to initialize strings. A common method is to
assign a string literal to a character pointer, as shown below. This creates a
string for the literal and then stores its address in the string pointer variable,
pStr. To clearly see the structure, refer to Figure 11-10.

char* pStr = "Good Day";

We can also initialize a string as an array of characters. This method is
not used too often because it is so tedious to code. Note that in this example,

must ensure that the null character is at the end of the string.we

char str[9] =
{’G','o','o', - d', ' f ' D ' j ' a ' j ' y ' , ' \ 0 ' };

I he structures created by these three examples are shown in Figure 11*10*i|

HI
Chapter 11 Strings 673

month J aTn uTa r y \0

"Good Day" — |G|o|o1d

str — !

Da y \0

BHHEMBBnEl

FIGURE 11-10 Initializing Strings

Strings and the Assignment Operator
Since the string is an array, the name of the string is a pointer constant. As a
pointer constant, it is an rvalue and therefore cannot be used as the left oper-
and of the assignment operator. This is one of the most common errors in
writing a C program; fortunately, it is a compile error, so it cannot affect our

program.

char strl[6] = "Hello";
char str2[6];
str2 = strl; // Compile error

Although we could write a loop to assign characters individually, there is

a better way. C provides a rich library of functions to manipulate strings,
including moving one string to another. We discuss this library in the section

“String Manipulation Functions."

Reading and Writing Strings
A string can be read and written. C provides several string functions tor input

and output. We discuss them in the following section , "String Input/Output
Functions."

11.3 String Input/Output Functions
we can read andC provides two basic ways to read and write strings. First,

write strings with the formatted input/output functions, scanf/fscanf and
printf /fprintf. Second, we can use a special set of string-only functions, get

string (gets/fgets) and put string (puts/fputs).2

2 . C provides a parallel set of read functions for wide characters. They function the same except

for the type.

:
674 Section 11.3 String Input/Output Functions

Formatted String Input/Output
In this section, we cover the string-related portions of the formatted input
and output functions.

Formatted String Input: sconf/ fsconf
We have already discussed the basic operations of the format input functions
(see Chapter 7). However, two conversion codes pertain uniquely to strings,
and we discuss them here.

The String Conversion Specification
We read strings using the read-formatted function (scan/). The conversion
code for a string is “s." The scanf functions then do all the work for us. First,
they skip any leading whitespace. Once they find a character, they read until
they find whitespace, putting each character in the array in order. When they
find a trailing whitespace character, they end the string with a null character.
The whitespace character is left in the input stream. Io delete the whitespace
from the input stream, we use a space in the format string before the next
conversion code or FLUSH the input stream, whichever is more appropriate.

The conversion specification strings can use only three options fields,
flag, maximum field si/e, and size.

The string conversion code(s) skips whitespace.

flag
Like all inputs, the only flag that can he used is the asterisk (*), which dis-
cards the data read.

Maximum Field Size
\\hen present, the maximum field size specifies the maximum number of
characters that can he read.

Size
II no si/e option is specified, we read normal characters. To read wide charac-
ters, we use size 1(ell).

Examples
For example, to read a string, such as month, from the keyboard, we could
simply write the statement shown below.

scanf (" % s", month) ;

An address operator is not required for month, since it is already a
pointer constant. In fact, it would be an error to use one. The only thing 've

1\

Chapter 11 Strings 675

need to worry about is to make sure that the array is large enough to store all
the data. If it isn’t, then
I herelore, we must make sure we don’t exceed the length of the data. Assum-
ing that month has been defined as

destroy whatever follows the array in memory.we

char month[10];

we can protect against the
the field specification. (Recall that the width specifics the
ol characters to be read.) The modified scanf statement is shown below.

user entering too much data by using a width in
maximum number

scanf("%9s", month);

Note that we set the maximum number of characters at nine while the
array size is ten. This is because scanf will read up to nine characters and
then insert the null character. Now, if the user accidentally enters more than
nine characters, the extra characters will he left in the input stream. But this
can cause a problem. Assuming that the data are being entered as a separate
line—that is, that there is only one piece of data on the line—we use the
preprocessor-defined statement, FLUSH—see Chapter 7, to eliminate any
extra characters that were entered. I bis function also flushes the newline
that is left in the input stream by scanf when the user correctly enters data.
The complete block of code to read a month is shown in Program 11- 1 .

PROGRAM 11 - 1 Reading Strings
// Read Month

#define FLUSH while (getchar() 1 =
char month[10];

1 {
\n ')2

3
4

printf("Please enter a month,

scanf("%9s", month);
FLUSH;
// Read Month

") ?5
6
7
8 >

The Scon Set Conversion Code (t J)

In addition to the string conversion code, we can also use a scan set conver-

sion code to read a string. The scan set conversion specification consists of

the open bracket ([), followed by the edit characters, and terminated hv the

close bracket (1). The characters in the scan set identify the valid characters,

known as the scan set. that arc to he allowed in the string. All characters

except the close bracket
Edited conversion reads the input stream as a string. Each character read

by scanfIfscanf is compared against the
in the scan set, it is placed in the string and the

character that does not match the scan set stops the read. The nonmatching

he included in the set.can

scan set. If the character just read is
scan continues. The first

6 /6 Section 11.3 String Input/Output Functions

character remains in the input stream for the next read operation. If the first
character read is not in the scan set, the scanf/fscanf terminates and
string is returned.

A major difference between the scan set and the string conversion codes
is that the scan set does not skip leading whitespace. Leading whitespace is
either put into the string being read when the scan set contains the
sponding whitespace character, or stops the conversion when it is not.

a null

corre-

The edit set does not skip whitespace.

In addition to reading a character that is not in the scan set, there
two other terminating conditions. First , the read will stop if an end-of-file is
detected. Second, the read will stop if a field width specification is included
and the maximum number of characters has been read .

For example, lets assume we have an application that requires we read a
string containing only digits, commas, periods, the minus sign, and a dollar
sign; in other words, we want to read a dollar value as a string. No other char-
acters are allowed. Let 's also assume that the maximum number of characters
in the resulting string is 10. The format string for this operation would be3

are

s c a n f (" % 1 0 [0 1 2 3 4 5 6 7 8 9 . s t r) ;

Sometimes it is easier to specify what is not to be included in the scan set
rather than what is valid, hor instance, suppose that we want to read a whole
line. We can do this by stating that all characters except the newline (\ n) are
valid. To specify invalid characters, we start the scan set with the caret (A)
symbol. I he caret is the negation symbol and in effect says that the following
characters are not allowed in the string. (If you know UNIX, this should
sound lamiliar.) Io read a line, we would code the scanf as shown below.

s c a n f (" % 8 1 [W n] " , l i n e) ;

In this example, scanf reads until it finds the newline and then stops.
Note that we have again set the width ol the data to prevent our string, line,
Irom being overrun. We would never use this code, however. As we see in the
next section, an intrinsic string function does it for us.

I or the last example, let ’s read a 1 5-character string that
character except the special characters
case, we again specify w hat is not valid. This conversion code is shown in the
following example.

have anycan
the top of the keyboard. In thison

s c a n f (" % 1 5 [/v ~ ! @ # $ % * & * () + j .. f s t r) ;

3. UNIX users note that the dash (-) does not have the
does in UNIX.

same meaning in the scan set that it

i

r̂ l
Chapter 11 Strings 677

Note that the caret can he included in the scan set , as long as it is not the
first character. Similarly, the closing bracket is treated as text as long as it is
the first character after the opening bracket. However, if it follows the nega-
tion symbol (A), then it ends the scan set. This means that the close bracket
cannot he used when the scan set is being negated. The following example
reads a string containing brackets and digits only.

scanf("%15[][0123456789]", str);

Always use a width in the field specification when reading strings.

Formatted String Output: printf/ fprintf
Formatted string output is provided in the print/ and / print/ f unctions. I hey
use the same string conversion codes that we used for string input.

C has four options of interest when we write strings using these print
functions: the left-justify flag, width, precision , and size. I he lelt-justify flag (-)

and the width are almost always used together.

Justification Flog
The justification flag (-) is used to left justify the output. It has meaning only
when a width is also specified, and then only if the length of the string is less
than the format width. Using the justification flag results in the output being
left justified, as shown below. If no flag is used, the justification is right.

printf("|%-30s|\n", "This is the string");
Output:
|This is the string

Minimum Width
The width sets the minimum size of the string in the output. If it is used with-

flag, the string is printed right justified as shown below.out a

"This is the string");printf("|%30s|\n",
Output:

This is the string|

Precision
Strings can get quite long. Because the width is

characters that can be printed, a long string

ified, which destroys column formatting. Therefore, C also uses the precision

option to set the maximum number of characters that will be written. In the

the minimum number of
easily exceed the width spec-can

678 Section 11.3 String Input/Output Functions

set the maximum characters to one less thanfollowing typical example
the width to ensure a space between the string and the next column.

we

printf("|%-15.14s|",
Output:
|12345678901234|

"12345678901234567890");

The maximum number of characters to be printed is specified by the preci-
sion in the format string of the field specification.

Size
If no size option is specified, we write normal characters. To write wide char-
acters, we use size 1 (ell).

String Input and Output Examples

EXAMPLE 11 - 1 Read Part of Line
When data are stored in secondary files, the data we need are often only a
part of a file. Program 11-2 demonstrates how to use the scan set to read part
of a line and discard the rest. In the following example, the input contains
numeric data, with each line containing two integers and a float. We are
interested only in the second integer; the rest of each line will be discarded.
As we wrote the program, it could contain any type or amount of data after
the second integer. It is important to note, however, that if there are not two
integers at the beginning of the line, the program fails.

PROGRAM 11-2 Demonstrate String Scan Set
/* Read only second integer.

Written by:
Date:

1
2
3

* /4
#include <stdio.h>
#include <stdlib.h>

5
6
7

int main (void)8
9 {

// Local Declarations
int amount;
FILE* spData;

10
1 1
1 2
13

// Statements
if (!(spData = fopen ("P11-03.TXT",

14
15 "r ")))

continued

Chapter 11 Strings 679

PROGRAM 1 1 -2 Demonstrate String Scan Set (continued)
16 {
17 printf("\aCould not open input file.Xn");

exit (100);
} // if

// Read and print only second integer
while (fscanf(spData,

" %*d%d%*p\n]", &amount) != EOF)
printf("Second integer: %4d\n", amount);

18
19
2 0
21
2 2
23
24
25 printf("End of program\n");

fclose (spData);
return 0;

> // main

26
27
28

Input:
123 456 7.89
987 654 3.21

Results:
Second integer: 456
Second integer: 654
End of program

Program 1 1 -2 Analysis As long as two numbers are at the beginning of each line, this program works just
fine. It skips the first number, reads the number into amount, and then discards the
rest of the line. Study the flags contained in the format string in statement 22 carefully.
It consists of only three field specifications. The first one reads and discards an integer.
The second one reads amount. The third one considers the rest of the line as a long
string; fscanf reads until it finds a newline. Because we are not interested in these data
for the first and third parts of the line, we used the suppress flag to discard them.

EXAMPLE 11-2 Delete Leading Whitespace from Line
A similar problem occurs when a file contains leading whitespace at the begin-
ning of a line. In Program 11-3,we first determine if there is a w hitespace char-
acter at the beginning of the line. If there is, we delete all leading spaces using
the scan set and then read the rest of the line. Its only limitation is that the non-
space portion of the line cannot he longer than 80 characters.

PROGRAM 11-3 Delete Leading Whitespace
/* Delete leading spaces at beginning of line.1

Written by:2
Date:3

*/4

cont inued

> 80 Section 11.3 String Input/Output Functions

PROGRAM 11-3 Delete Leading Whitespace (continued)

#include <stdio.h>
#include <ctype.h>

5
6
7

int main (void)8
9 { PRC

// Local Declarations
char line[80];

10
1 1
12

// Statements
printf("Enter data:

while ((fscanf(stdin, "%*[\t\v\f]%79[A\n]", line))
!= EOF)

13
");14

15
16

{17
printf("You entered: %s\n" / line);18

19
// Discard newline and set line to null string
fgetc (stdin);
*(line) = '\0';
printf("Enter data: ");
} // while

20
21
22
23
24
25

printf("\nThank you\n");
return 0;

28 I > // main

26
27

Results:
Enter data: No whitespace here.
You entered: No whitespace here.
Enter data: Only one whitespace character.
You entered: Only one whitespace character.
Enter data: Tabs and spaces here.
You entered: Tabs and spaces here.
Enter data: Next line is only one space.
You entered: Next line is only one space.
Enter data:
You entered:
Enter data: Ad
Thank you

EXAMPLE 11 -3 Read Student Names and Scores
be parsed into first and last

must skip the
Very often reading names requires that the
names

names
. Parsing names presents unique problems, hirst, we

whitespace between the parts of the name and the newline at the end or
line. I he string format code (s) stops when it reads a whitespace character.
Second, some names have special characters such dash in them.as a

rr

Chapter 11 Strings 681

In Program 1 1-4 we read a file of student
is read, it is printed. We read the first and last

names and scores. As each
names using the string

conversion code. We read the students score as an integer. As an alternative,
we could have used the scan-set conversion code, but it is simpler to use the
basic string code (remember KISS).

name

PROGRAM 1 1 -4 Read Student Names and Scores
/* Demonstrate reading names from a file.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

5
6
7
8

int main (void)9
10 {

// Local Declarations
char first[80|;
char last[80];
int score;
FILE* spStuScores;

1 1
1 2
13
14
15
16

// Statements
if (!(spStuScores = fopen ("PI1-04.TXT", "r")))

17
18
19 {

printf("\aCould not open student file.Nn");
exit (100);

> // if

20
21
22
23

// Read and print first name, last name, and score
while (fscanf(spStuScores, " %s %s %d",

first, last, &score) == 3)

printf("%s %s %3d\n", first, last, score);

24
25
26
27
28

printf("End of Student List\n");

fclose (spStuScores);
return 0;
// main

29
30
31
32 >

Results:
George Washington 95

Benedict Arnold 53

Mary Todd-Lincoln 91

End of Student List

682 Section 11.3 String Input/Output Functions

Program 1 1 -4 Analysis There is only one significant point to note in this program how we handle end of
data. As long as we read three pieces of data, we continue looping. When the last
data have been read, the scan returns 0 and the while statement becomes false.

String Input/Output
In addition to the formatted string functions, C has two sets of string func-
tions that read and write strings without reformatting any data. These func-
tions convert text-file lines to strings and strings to text-file lines. A line
consists of a string of characters terminated by a newline character.

C provides two parallel sets of functions, one for characters and one for
wide characters. They are virtually identical except for the type. Because wide
characters are not commonly used and because the functions operate identi-
cally, we limit our discussion to the character type. The wide-character func-
tions are listed in Appendix F.

Line to String
The gets and fgets functions take a line (terminated by a newline) from the
input stream and make a null-terminated string out of it. They are therefore
sometimes called line-to-string input functions.

The function declarations for get string are shown below.

char*
char*

gets (char*
fgets (char*

strPtr);
strPtr, int size, FILE* sp);

Figure 11-11 shows the concept. As you can see, gets and fgets do not
work the same. The gets function converts the return (newline character) to
the end-of-string character (\ 0), while fgets puts it in the string and appends
an end-of-string delimiter.

\n changed
to null

HelloNn
gets(...) H e I I o \0

Keyboard Memory

\n kept
and null added.

Hello\n
*He I I o \n \0fgets(...)

Memory

FIGURE 11 -11 gets and fgets Functions

"1
Chapter 11 Strings 683

The source o(data for the gets is standard input; the source of data lor
fgets can
the same pointer if the input is successful. If any input problems occur, such
as detecting end-of-fde before reading any data, they return NULL. If no data

read, the input area is unchanged. If an error occurs after some data
have been read, the contents of the read-in area cannot be determined. The
current string may or may not have a valid null character.

Note that since no size is specified in gets, it reads data until it finds a
newline or until the end-of-file. If a newline character is read, it is discarded
and replaced with a null character.

The fgets function requires two additional parameters: one specifying the
array size that is available to receive the data, and the other a stream. It can
be used with the keyboard by specifying the stdin. In addition to newline and
end of file, the reading will stop when size - 1 characters have been read.

Since no length checking is possible with gets, we recommend that you
never use it. Should a user enter too much data, you will destroy the data
after the string input area, and your program will not run correctly. Rather,
use fgetSy and specify the standard input file pointer (stdin) .

he a file or standard input. Both accept a string pointer and return

were
* ,

EXAMPLE 11-4 Demonstrate fgets Operation
Now- let us write a simple program that uses fgets. In Program 1 1 -5, we use

fgets to read a string and then print it.

PROGRAM 11-5 Demonstrate fgets Operation
/* Demonstrate the use of fgets in a program

Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
int main (void)7

8 {
// Local Declarations

char str(81];
9

10
1 1

// Statements
printf("Please enter a string: ");

fgets (str, sizeof (str), stdin);

printf("Here is your string:

return 0;
// main

1 2
13
14

\n\t%s", str);
15
16
17 >

Results:
Please enter a string: Now is the time for all students

continuec

684 Section 11.3 String Input/Output Functions

PROGRAM 11 -5 Demonstrate fgets Operation (continued)

Here is your string:
Now is the time for all students

String to Line
The puts/fputs functions take a null-terminated string from memory and write
it to a file or the keyboard. Thus, they are sometimes called string-to-line out-
put functions.

Figure 11-12 shows how these functions work. All change the string to a
line. The null character is replaced with a newline in puts; it is dropped in
fputs. Because puts is writing to the standard output unit, usually a display,
this is entirely logical. On the other hand, fputs is assumed to be writing toa
file where newlines are not necessarily required. It is the programmer’s
responsibility to make sure the newline is present at the appropriate place.

Note how the newline is handled in these functions. I hen compare their
use of the newline to the gets and /gets functions. While the output functions
treat the newline the opposite of the input functions, they are compatible. As
long as we are reading from a file and writing to a file, the newlines will be
handled automatically. Care must he taken, however, when we read from the
keyboard and write to a file.

The declarations for these functions are shown below.

int puts (const char* strPtr);
int fputs (const char* strPtr, FILE* sp);

The string pointed to by strPtr is written to the indicated file as
explained above. If the write is successful, it returns a non- negative integer; if
any transmission errors occur, it returns EOF. Note that the absence of a null
character to terminate the string is not an error; however, it will most likely
cause your program to fail.

r NULL is changed
v to newline yHello\nHello puts(...)

H e I I o \0
Memory

k. NULL is droppedHello fputs(...)

No newline
(unless in

string data)
H e I I o \0

Memory

FIGURE 11 -12 puts and fputs Operations

1
Chapter 11 Strings 685

Examples
I his section contains examples to demonstrate the use of these string functions.

EXAMPLE 11-5 I he following program demonstrates the use of / puts with stdout. It calls / puts
three times. The first time, we pass a pointer to the beginning of an array. The
third time, we pass a pointer that is at the middle of the array. If you were to

run this code, you would see that it does not matter where a string pointer
starts, fhe function starts at the address in the pointer and writes until it

finds a null character. Note that we had to include a newline put because

/ puts does not insert a newline. The output is shown in Program 1 1 -6.4

PROGRAM 1 1 -6 Demonstration of Put String

/* Demonstrate fput string
Written by:
Date:

1
2
3

* /4
#include <stdio.h>5

6
int main (void)7

8 {
// Local Definitions

char str[] = "Necessity Is the Mother of Invention.";

char* pStr = str;

9
10
1 1
1 2

// Statements
fputs(pStr, stdout);
fputs("\n", stdout);
fputs(pStr + 13, stdout);

return 0;
// main

13
14
15
16
17
18 >

Results:
Necessity Is the Mother of Invention

the Mother of Invention.

EXAMPLE 11 -6 Typewriter Program
Program 1 1 -7 plays the role of a line-at-a-time typewriter. In other words, it

accepts text, line by line, from the keyboard and writes it to a text file. The

program stops when it detects an end-of-file.

the American economist Thorstein Veblen.
4. The quote in Program I 1 -6 is attributed to

686 Section 11.3 String Input/Output Functions

PROGRAM 11 -7 Typewriter Program
/* This program creates a text file from the keyboard.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <stdlib.h>

5
6
7

int main (void)8
9 {

// Local Declarations
char str[100];
FILE* spOut;

10
11
1 2
13

// Statements
if (!(spOut = fopen ("PI1-07.TXT", "w")))

14
15
16 {

printf("\aCould not open output file.Xn");
exit (100);
} // if

while (fgets(str, sizeof (str), stdin))
fputs(str, spOut);

fclose (spOut);
return 0;

> // main

17
18
19
2 0
21
2 2
23
24

Program 1 1-7 Analysis Note that we are reading the keyboard [stdin] using /gets (see statement 20). This
requires that we specify the file name, even though we do not have to declare it or
open it. By using fgets we are able to ensure that the user will not overrun our string
variable area (str). But even if the user enters too much data, nothing is lost. The
data are left in the input stream buffer and are read in the next loop iteration.

This little program has two problems, one stylistic and one technical. The style prob-
lem is that it contains no instructions to the user, who must therefore guess what is to be
done. This leads directly to the second problem. Some systems have a problem if the

should end the program with an end-of- file but no return. Depending on the system,
the last line is lost or the system may just wait for an end-of-file at the beginning of the
line. This problem can be prevented by adding good

user

instructions and a prompt.user

EXAMPLE 11 -7 Print Selected Lines
Program 1 1 -8 reads text from the keyboard, line by line, and prints only the
lines that start with uppercase letters. In this case we will write to the stan-
dard output (stclout) file. This will allow us to direct the output to the printer
hv assigning standard output to a printer. If standard output is assigned to the
monitor, then the input and output will he interleaved, as shown in the
results. I he output lines are green.

I

1m
Chapter 11 Strings 687

PROGRAM 1 1 -8 Print Selected Sentences
/* Echo keyboard input that begins with capital letter.

Written by:
Date written:

1
2
3

*/4
#include <ctype.h>
#include <stdio.h>

5
6
7

int main (void)8
9 {

// Local Declarations
char strng[81];

10
1 1
12

// Statements
while (fgets (strng, sizeof(strng), stdin))

if (isupper(*strng))
fputs(strng, stdout);

13
14
15
16
17 return 0;

// main18 >
Results:
Now is the time
Now is the time
for all good students

to come to the aid
of their school.
Amen
Amen

Program 1 1 -8 Analysis In this program, we use the character function, isupper, to determine which lines we

want to write. The output lines are printed in color. Although we are guarding against

excessive input, we do not flush the line. If the user enters very long lines, they will be

obvious when the program runs.
if you use this program or any variation of it to write to your printer, you will need

to assign the printer to the standard output file. Refer to the documentation for your sys-
tem to determine how to do this.

EXAMPLE 11 -8 Print File Double Spaced

Program 1 1 -9 reads a single-spaced text Irom a file and prints the text double

spaced. In other words, it inserts a blank line after each line. In this program

direct the output to the standard output file, stdout , which is usually the

monitor. To get the output to a printer, you need to redirect the output or

assign stdout to the printer.
we

688 Section 11.4 Arrays of Strings

PROGRAM 11-9 Print File Double spaced
/* Write file double spaced.

Written by:
Date:

1
2
3

* /4
#include <stdio.h>
#include <stdlib.h>

5
6
7

int main (void)8
9 {

// Local Declarations
char strng[81];
FILE* textln;

10
1 1
12
13

// Statements
if (!(textln = fopen("PI1-07.TXT", "r")))

14
15
16 {

printf("\aCan't open textdata\n");
exit (100);
} // if

while (fgets(strng, sizeof(strng), textln))

17
18
19
2 0
2 1 {
2 2 fputs(strng, stdout);

putchar ('\n');
> // while

return 0;
// main

23
24
25
26 >

Program 1 1 -9 Analysis Because we are reading data from a text file, we use the fgets function. This function
guarantees that we will not overrun our input string variable. Note how we used the
sizeof operator to set the
adds a newline character at the end of the data being read
about adding one
write the blank line.

maximum number of characters to be read. Since fgets
, we don't need to worry

when we write. After writing the data string, we use a putchar to

11.4 Arrays of Strings
When we discussed arrays of pointers in Chapter 10
cept of a ragged array. Ragged arrays are very' common with strings. Consider,
for example, the need to store the days of the week in their textual format. We
could create a two-dimensional array of
(Wednesday requires nine characters), but this wastes space.

It is much easier and more efficient to create a ragged array using
array of string pointers. Each pointer points to a day of the week. In this way
each string is independent, but at the same time, they are grouped together

introduced the con-, we

days by ten charactersseven

1r r
Chapter 11 Strings 689

through the array. In other words, although each string is independent, we

can pass them as a group to a function by passing only the name ol the array
of pointers. Program 1 1- 10 demonstrates this structure.

PROGRAM 11-10 Print Days of the Week
/* Demonstrates an array of pointers to strings.

Written by:
Date written:

1
2
3

* /4
#include <stdio.h>5

6
int main (void)7

8 {
// Local Declarations

char* pDays(7];
char** pLast;

9
10
1 1
12

// Statements
pDays[0] = "Sunday";
pDays[l] = "Monday";
pDays[2] = "Tuesday";
pDays[3] = "Wednesday";
pDays[4] = "Thursday";
pDays[5] = "Friday";
pDays[6] = "Saturday";

13
14
15
16
17
18
19
2 0
21

printf("The days of the week\n");

pLast = pDays + 6;

for (char** pWalker = pDays;
pWalker <= pLast;
pWalker++)

printf("%s\n", *pWalker);

2 2
23
24
25
26
27

return 0;
} // main

28

29

Program 11-10 Analysis To print the days of the week, we use a for loop. Since pDays is a pointer constant,

also need a pointer variable to use pointer arithmetic. The pointer variable must

point to the strings through pDays,which means that it will be a pointer to a pointer,

as seen in statement 11.
A point of efficiency is the way we handled the limit test in the for loop. We could

have simply coded it as

we

pWalker <= pDays + 6

This would require, however, that the ending address be recalculated for each limit

(A good optimizing compiler should recognize that pDays is a pointer constant
test.

690 Section 11.5 String Manipulation Functions

and that the calculation needs to be done only once, but we can't be sure that such effi-
cient code would in fact be generated.) Therefore, we calculate the ending address just
once, before the while loop,and then we can be sure that the limit test will be efficient.

Study this code carefully. Note first that pWalker is a pointer to a pointer to a
character. Then notice how it is used in the for statement. It is initialized to the first ele-
ment in pDays, then it is incremented until it is no longer less than or equal to pLast.
Finally, note how it is used in the printf statement. The printf syntax requires that the
variable list contain the address of the string to be printed. But pWalker is a pointer to

address that in turn points to the string (a pointer to a pointer). Therefore, when we
dereference pWalker,we get the pointer to the string, which is what printf requires.
This example is diagrammed in Figure 11-13.

an

4pWalker S u n d a y \0

\\\'xX'v\ V
M| o n d a y \0

T|u | e | s | d | a | y \0

* W| e | d | n | e | s | d | a | y \0v T | h | u | r | s | d a y \0
\

pLast F r i | d a y \0
pDays

S | a | t | u | r | d | a | y |\0

FIGURE 1 1 -1 3 Pointers to Strings

11.5 String Manipulation Functions
Because a wstring is not a standard type, we cannot use it directly with most
C operators. For example, to
individual elements ol the sending string to the receiving string. We cannot
simply assign one string to another. II w4e were to write the move, we would
have to put it in a loop.

string to another, we must move themove one

C has provided a rich set ol string functions. Besides making it easier for
write programs, putting the string operations in functions provides the

opportunity to make them more efficient when the operation is supported by
hardware instructions. For example,computers often have a machine instruc-
tion that moves characters until a token, such
When this instruction is available, it allows a string to he moved in one
instruction rather than in a loop.

us to

null character, is reached.as a

In addition to the string character functions, C provides a parallel set ol
functions for wide characters. They are virtually identical except lor the type.
Because wide characters are not commonly used and because the functions
operate identically, we limit
character function

discussion to the character type. The wide-
listed in Appendix F. The traditional string functions

hu\ e a prefix ol str. Ihe basic format is shown in the following.

our
s are

nr
Chapter 11 Strings 691

int str... (parameters)

Ihe string character functions are found in the string library (string.h).

String Length
I he string length function, strlen, returns the length of a string, specified as

the number of characters in the string excluding the null character. If the
string is empty, it returns zero. The function declaration is shown below.

int strlen (const char* string);

EXAMPLE 11-9 String Length Demonstration
To demonstrate the use of string length, lets write a program that reads text

from the keyboard, line by line, and adds two blanks (spaces) at the beginning
of each line before writing it to a file. In other words, it shifts each line two

characters to the right. The code is shown in Program 1 1 - 1 1 .

PROGRAM 11 - 11 Add Left Margin
/* Typewriter program: adds two spaces to the left

margin and writes line to file

Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

6
7
8
9

int main (void)10
1 1 {

// Local Declarations
FILE* spOutFile;
char strng[81 J ;

1 2
13
14
15

// Statements
if (!(spOutFile = fopen("Pll-11.TXT", "w")))

16
17

{18
printf("\aCould not open output file.Xn");
exit (100);

> // if

19
2 0
2 1
2 2

while (fgets(strng, sizeof(strng), stdin))
23

{24
continued

692 Section 11.5 String Manipulation Functions

PROGRAM 1 1 -1 1 Add Left Margin (continued)

, spOutFile);fputc(
fputc(1 spOutFile);
fputs(strng, spOutFile);

25
26
27

\ n ')if (strng[strlen(strng) - 1] !=
fputs("\n", spOutFile);

28
29

> // while
fclose (spOutFile);
return 0;
// main

30
31
32
33 }

Program 1 1 -1 1 Analysis To ensure that the user doesn't overrun the input area, we use the fgets function to
read the keyboard. Some data may be left in the buffer, but we don't flush the buffer,
because we want to write them to the file on the next line.

Also, since fputs does not add a newline when it writes the file, we need to ensure
that there will be a new line at the end of each line. Therefore, in statement 28 we test
the last character of the input string and if it isn't a newline, we write one.

Because we want to add characters to the beginning of the line, we must use a
character operation. The function fputc writes one character to a designated file. To
insert two characters, therefore, we use it twice, and then use fputs to write the line
read by fgets.

String Copy
C has two string copy functions. The first, strepy, copies the contents of one
string to another. I he second, strnepy , also copies the contents of one string
to another, hut it sets a maximum number of characters that can be moved.
I herdore, strnepy, is a safer function.

Basic String Copy
I he string copy function, strepy, copies the contents of the from string,
including the null character, to the string. Its function declaration is
shown below.

char* strepy (char* toStr, const char* fromStr);

II fromStr is longer than toStr, the data in memory after toStr are
destroyed. It is our responsibility to ensure that the destination string array is
large enough to hold the sending string. This should not be a problem, since
we control the definition oi both string variables. The address of toStr is
returned, which allows string functions to he used as arguments inside other
string functions. We will demonstrate the
in the chapter.

Figure 11-14 shows two

of these returned pointers lateruse

pies ol string copy. In the first example, the
source string is shorter than the destination variable. The result is that, after
the stling has been copied, the contents of the last three bytes of si are
unchanged; si is a valid string, however.

exam

7
Chapter 11 Strings 693

D a| y \QG o o d
s1- before s2 - before

(a) strcpy(s1, s2) ;

|G|o|o|d| lD|a|y|\Q[G|o|o|dl |D|aly [\0
s1 - after s2 - after

Copying Strings

D|a l y |\Q|S h o r t \0 0 t h e r \0 G o o d
s1- before s2 - befores3- before

(b) strcpy(s1, s2) ;

G o o d D|a y \0Goo d| D|a y \0 e r \0
s2 - afters1 - after s3- after

Copying Long Strings

FIGURE 11 -14 String Copy

In the second example in Figure 1 1 - 14, the destination variable, si, is

only 6 bytes, which is too small to hold all the data being copied Irom s2

(8 bytes plus the delimiter). Furthermore, si is immediately followed by
another string, s3. Even though si is too small , the entire string from s2 is

copied, partially destroying the data in s3.Although si is a valid string, any

attempt to access the data in s3 will result in a string containing only ay.

If the source and destination strings overlap—that is, if they share corn-
locations, then the results of the copy are unpredictable. Inmon memory

Figure 11- 14, this would occur if we tried to execute the following statement:

// Invalid copy-overlapstrcpy((s2 + 2), s2);

String Copy — Length Controlled
can he con-Many of the problems associated with unequal string-array sizes

trolled with the string-number copy function, strncpy. I bis function contains
number of characters that can he

a parameter that specifies the
moved at a time, as shown in its function declaration below.

maximum

char* strncpy (char* toStr, const char* fromStr,
size);int

In this function, size specifies the maximum number of characters that

be moved. Actually, the operation is a little more complex. If the size of

the from string is equal to or greater than size, then size characters arecan

694 Section 11.5 String Manipulation Functions

moved. If the from string is smaller than size, the entire string is copied and
then null characters are inserted into the destination string until exactly size
characters have been copied. Thus, it is more correct to think of size as the
destination characters that must be filled.

If the sending string is longer than size, the copy stops after size bytes
have been copied. In this case, the destination variable may not be a valid
string; that is, it may not have a delimiter. The string number copy functions
do not insert a delimiter if the from string is longer than size. On the other
hand, the data following the destination variable will be intact, assuming the

properly specified. Figure 11- IS shows the operation of strncpjsize was
under these two conditions.

G o o d D a y \0
s2 - befores1- before

(a) strncpy(s1, s2, sizeof(s1)) ;

G|o|oldl |D|a|y|\0 \0 \0 \0 |G|o|o | d| |D|a| y \0
s2 - afters1 - after

Copying Strings

S|h|o| r 11|\0|O| 11hle| r|\o| |G|o|o|d Da y \0
s1- before s3- before s2 - before

(b) strncpy(s1, s2, sizeof (s1)) ;

G|o|o|d| |D 0|11h|e| r \0 |G|o|o|d| |D| a| y|\0
s1 - after s3- after s2 - after

Copying Long Strings

FIGURE 11 -15 String-number Copy

We recommend that you always use strncpy; do not
invalid strings, we also recommend that
the maximum and then automatically pi
tion. The code for this technique is shown below.

use strcpy.To prevent
fewer character thanyou move one

ace a null character in the last posi-

strncpy (si , s2 , s i z e o f (s l) -1) ;
* (s l + (sizeof (s i) - 1)) = ' \ o ' ;

Since the strncpy places null characters in all unfilled characters, we are
guaranteed that the last character in the string array is a null character. If it is
not, then the copy was short. By executing the above statements, we are assured
that si will be a valid string, even if it doesn’t have the desired contents.

A closing note: If size is zero or negative, nothing is copied. The destina-
tion string is unchanged.

1
Chapter 11 Strings 695

Always use stmcpyto copy one string to another.

EXAMPLE 11 -10 Build Name Array
Let’s write a small program that uses the strep)' function. Program 11- 12
builds an array of strings in dynamic memory using the calloc function (see
Chapter 10). It then fills the array from strings entered at the keyboard.
When the array is full, it displays the strings to show that they were entered
and stored correctly.

PROGRAM 11 -12 Build Name Array in Heap
/* Build a dynamic array of names.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

5
6
7
8

#define FLUSH while (getchar() != ’\n')9
10

int main (void)1 1
1 2 {

// Local Declarations
char input(81];
char** pNames;

13
14

// array of pointers to char15
16

int size;
int nameslndex;

17
18
19

// Statements
printf("How many names do you plan to input?

scanf ("%d", &size);
FLUSH;

20
21
22
23
24

// Allocate array in heap.
// One extra element added for loop control

= calloc (size + 1, sizeof (char*));

25
26

pNames
printf("Enter names:\n");

27
28
29

nameslndex = 0;

while (nameslndex < size

&& fgets(input, sizeof(input), stdin))

30
31
32

{33
continuei

696 Section 11.5 String Manipulation Functions

PROGRAM 11-12 Build Name Array in Heap (continued)

= (char*)*(pNames + nameslndex)
calloc (strlen(input) + 1, sizeof(char));

strcpy (*(pNames + nameslndex), input);

34
35
36

nameslndex++;
} // while

37
38
39

*(pNames + nameslndex) = NULL;
printf("\nYour names are: \n");
nameslndex = 0;
while (*(pNames + nameslndex))

40
41
42
43

{44
printf("%3d: %s",

nameslndex, *(pNames + nameslndex));
45
46

nameslndex++;

> // while
return 0;
// main

47
48
49
50 }

Results:
How many names do you plan to input? 3
Enter names:
Tom
Rico
Huang

Your names are:
0: Tom
1: Rico
2: Huang

Program 11 -12 Analysis This little 50-line program contains some rather difficult code. To understand it better,
let's look at the array structure, shown in Figure 11 -16.

fB >

pNames -*
*

Last pointei
.always null

(heap)

FIGURE 11-16 Structure for Names Array

T1
Chapter 11 Strings

^

697

The identifier, pNames, is a pointer to an array of pointers to a character that is
dynamically allocated from the heap. Then, as each name is read, space is allocated
from the heap, and its pointer is placed in the next location in the pNames array. The
only way to refer to the names is by dereferencing pNames. To access an individual
element,we use pNames and index it to get to an individual string pointer in the array.
This code is shown in statement 36. Since the first parameter in the string copy is a

pointer to a string, only one dereference is required.
To build the pointer array, we use a while loop with two limit tests: end-of- file and a

full array. Either condition will stop the loading of the array. To print the array, however,
we only need to test for a null pointer, since the pointer array is allocated with one extra
element. Using an extra element is a common programming technique that makes pro-
cessing arrays of pointers easier and more efficient.

String Compare
As with the string copy functions, C has two string compare functions.^ The
first, strcmp, compares two strings until unequal characters are found or until
the end of the strings is reached. The second, strncmp, compares until
unequal characters are found, a specified number of characters have been
tested, or until the end of a string is reached.

Roth functions return an integer to indicate the results of the compare.
Unfortunately, the results returned do not map well to the true-false logical
values that we see in the if...else statement (see Chapter 5), so you will need
to memorize a new set of rules:

1 . If the two strings are equal, the return value is zero. Two strings are con-

sidered equal if they are the same length and all characters in the same

relative positions are equal.
2. If the first parameter is less than the second parameter, the return value

is less than zero. A string, si, is less than another string, s2, if starting

from the first character, we can find a character in si that is less than the
character in s 2. Note that when the end of either string is reached, the
null character is compared with the corresponding character in the other
string.

3. If the first parameter is greater than the second parameter, the return

value is greater than zero. A string, si, is greater than string, s2, if start -
ing from the first character, we can find a character in s2 that is greater

than the corresponding character in si. Note that when the end of either

string is reached, the null character is compared with the corresponding
character in the other string.

Note that the not-equal values are specified as a range. If the first param-
can be any negative value.

eter is less than the second parameter, the value
Likewise, if the first parameter is greater than the second parameter, the

value can be any positive number. This differs from other situations, such as

EOF, where we can rely on one given value being returned.

S. Wide-character functions are available. Their function declarations arc found in Appendix l \

698 Section 11.5 String Manipulation Functions

The string compare operation is shown in Figure 1 1 -17.

strcmp
The function declaration for the string compare function is shown below.
int strcmp (const char* strl, const char* str2);

While the string compare functions return integer values, (<=l, o, >=i)
code a logical expression that returns true or false by using thewe can

pare function and relational operators. For example, to compare two strings
for equal, we must write the statement as shown below.

com-

if (strcmp(strl, str2) == 0)
// strings are equal

else
// strings are not equal

Stops at end
of string -

s1 |AlB|C| |C|O|M|P|A|N| Y|\0|
t t t t t t t t t t t t
U l t t H t U t t

s2 |A|B|C| |C|0|M|P|A|N Y \0

s1 equals s2

Stops at
not equal

Stops at
not equal

s1 | A|B|C| |ClO|M|P|AlNlYl\Q| s1 | A |B|C| 1 C|C>|R|P \0
t t t t t f t t t t t t= = <
M i l l I M I M I

s2 |A |B|Cl | I |N|C|\0 s2 A[B|C| TCTO|M|P|A N|Y|\O
R' > 'M' s1 greater s2 |'C‘ < T s1 less s2

strcmp (s1, s2)

FIGURE 11 -17 String Compares

I he I allowing statement tests whether the first string is less than the sec-
ond string.

if (strcmp (stringl, string2) < 0)
// stringl is less than string2

1

Chapter 11 Strings ^99

Io test for stringl greater than string2, use the following code:

if (strcmp (stringl , string2) > 0)
/ / stringl is greater than string2

We can also test for greater than or equal to with the following statement:

if (strcmp (stringl , string2) >= 0)
/ / stringl is greater than or equal to string2

strncmp
I he string number compare function, strncmp, tests two strings for a speci-
fied maximum number of characters (size). The function declarations are
shown below.

int strncmp (const char* strl , const char* str 2 ,
int size) ;

In this function, size specifies the maximum number of characters to be
compared in the first string. The strncmp compare logic is the same as seen in

strcmp, except for the length limit. Table 11 - 1 shows the results of comparing
two strings using the strncmp function for various sizes.

1 Results Returnsstringl string2
"ABC123""ABC123" equal

equal
stringl < string2

equal
stringl > string2

equal
equal

08
"ABC456""ABC123" 03
"ABC456""ABC123" < 04
"ABC""ABC123" 03
"ABC""ABC123" > 04
"ABC123" 0"ABC" 3
"123ABC" 0"ABC123" -1

TABLE 11 -1 Results for String Compare

String Concatenate
The string concatenate functions append
They return the address pointers to the destination string. The size of the des-
tination string array is assumed to he large enough to hold the resulting

string. If it isn’t, the data at the end of the string array are destroyed. As we
unpredictable if the strings overlap.

string to the end of another.one

with string copy, the results aresaw

700 Section 11.5 String Manipulation Functions

Basic String Concatenation
The function declaration lor string concatenation, strccit , is shown below.

char* streat (char* strl, const char * str2);

The function copies str 2 to the end of strl, beginning with strl's
delimiter. That is, the delimiter is replaced with the first character of str2.
The delimiter from str 2 is copied to the resulting siring to ensure that a
valid string results. The length of the resulting string is the sum of the length
of strl plus the length of str2. Figure 1 1 - 18a shows the operation.
Siring Concatenation — Length Controlled
The function declaration for length-controlled string concatenate function,
strncat, is shown below.

char* strncat (char * strl, const char* str2, int size) ;

ClOlN \C C A T E N A T I O N \0
s2 - befores1- before

(a) strcat(s1, s2) ;

C|Q|N|C| A |T|E|N| A |T| I IOTNI 'O |C| A |T | E|N | A |T | I |O|N|\0
s2 - afters1 - after

String Concatenate

C|Q|N \C C A T E N A T I O N \0
s1- before s2 - before

(b) strncat(s1 , s2, 3) ;

C|O|N|CTATT W C A T E N A T I O N S
s1 - after s2 - after

String N Concatenate

FIGURE 11 -18 String Concatenation

Figure 1 1-18b demonstrates the operation of the strncat function. If
the length ol string2 is less than size, then the call works the same as the
basic string concatenation described above. However, i! the length of
string2 is greater than size, then only the number of characters specified
b> size are copied, and a null character is appended at the end.

II the value ol size is zero or less than zero, then both strings are treated
as null, and no characters are moved. The variable string1 is unchanged.

IChapter 11 Strings /01

Character in String
Sometimes we need to find the location of a character in a string. Two string
I unctions search lor a character in a string. The first function is called string
character strchr; it searches lor the first occurrence of a character from the
beginning of the string. The second string
searches lor the first occurrence beginning at the
the front.

In either case, il the character is located, the function returns a pointer
to it. If the character is not in the string, the function returns a null pointer.
I he declarations lor these functions are shown below.

rear character called strrchr,
rear and working toward

char* strchr (const char* string, int ch);
char* strrchr (const char* string, int ch);

Note that, as often is the case in the library functions, the character in the
ASC 11 functions is typed as an integer. We don’t need to worry about this.

I he compiler will implicitly cast any character types to integer types before the
call, figure 1 1 -19 shows three examples of character-in-string calls.

si |C|O|N 1C1 A|T|E 1 N|A|T| I 1Q]N1\Q1

a*P1

p1 = strchr (s1, ’N’) ;

si C O N C A T E N A T I O N S

v P2P1

p2 = strrchr (s1, ’N’) ;

s1 |C|0|N|C|A|T|E|N|A|T| I |O|N|\0|

p3[^t p2[^tp1

p3 = strchr ((p1 + 1) , ’N’) ;

FIGURE 11-19 Character in String (Strchr)

In the first example, we locate the first N at the third position in the

string (si [2]). The pointer is then assigned to pi. In the second example,

locate the last N in the string at si [12]. In the third example, we want to

locate the second N. To do this, we need to start the search after the first N.

Since we saved the location of the first N, this is easily done with a pointer

and pointer arithmetic as shown.

we

702 Section 11.5 String Manipulation Functions

Search for a Substring
If we can locate a character in a string, we should be able to locate a string in
a string. We can, but only from the beginning of the string. There is no func-
tion to locate a substring starting at the rear. The function declaration for
strstr is shown below.

char* strstr (const char* string,
const char* sub string);

As indicated by the function declaration, this function also returns a
pointer to a character. This pointer identifies the beginning of the substring
in the string. If the substring does not exist, then they return a null pointer.
Figure 1 1-20 demonstrates the operation of string in string.

Desired
Substrinc

s1 q O N C A T E j N A T I O N \0

t j p1 = strstr (s1, "CAT") ;

FIGURE 11-20 String in String

Search for Character in Set
Very often, we need to locate one of a set of characters in a string. C provides
two string functions to do this. The first strspn, locates the first character that
does not match the string set. The second strcspn, locates the first character
that is in the set.

Basic String Span
Ihe basic string span function, strspn, searches the string, spanning charac-
ters that are in the set and stopping at the first character that is not in the set.
Ihey return the number ol characters that matched those in the set. If no
characters match those in the set, they return zero. The function declaration
is seen below.

int strspn(const char* str, const char* set);

An example of string span is shown in Figure 11-21. We use strspn to
determine the number of characters that match the characters in the string
set. In this example, len is set to five, since the first five characters match
the set.

Chapter 11 Strings 703

len 1 5 1 len = strspn (s1, "AEIOUCN");

s1 |C|Q|N|C|A|T|E|N|A|T| I |Q|N|\Q

len | 5 |

IcioNClAlTlE
len = strcspn (s1, "TEIBX");

N A T I O N S

FIGURE 11 -21 String Span

Complemented String Span
The second function, strcspn, is string complement span; its functions stop at

the first character that matches one of the characters in the set. It none of the
characters in the string match the set, they return the length ot the string.
Figure 11-21 also contains an example of strcspn. The function declarations
are shown below.

int strcspn(const char* str, const char* set);

String Span — Pointer
Very often, we need a pointer to a substring rather than its index location. C
provides a set of functions that return pointers. They operate just like the
string complement functions except that they return a pointer to the first
character that matches the set. The p in the function names stands for

pointer—brk is short for break. As with the complement spans, if no match-
ing characters are found, they return null.

Similar to strcspn, the strpbrk function returns a pointer to the first char-
acter found in the set. Its function declaration is shown below/’

char* strpbrk (const char* str, const char* set);

String Token
The string token function, strtoky is used to locate substrings, called tokens,

in a string. Its most common use is to parse a string into tokens, much

piler parses lines of code. Depending on how it is called, it either locates

the first or the next token in a string. Its function declaration statement is

as a

com

shown below.

char* strtok (char* str, const char* delimiters),

6. Traditional C has a function called strrpbrk that returns a pointer to the last character found

in the set. This function is not part of the ANSI/ISO C function library.

704 Section 11.5 String Manipulation Functions

The first parameter is the string that is being parsed; the second parame-
ter is a set of delimiters that will he used to parse the first string. If the first
parameter contains an address, then strtok starts at that address, which is
assumed to be the beginning of the string. It first skips over all leading delim-
iter characters. If all the characters in the string are delimiters, then it termi-
nates and returns a null pointer. When it finds a nondelimiter character, it
changes its search and skips
it searches until it finds a delimiter. When a delimiter is found, it is changed
to a null character (' \ 0 •), which turns the token just parsed into a string.

If the first parameter is not a string, strtok assumes that it has already
parsed part of the string and begins looking at the end of the previous string
token for the next delimiter. When a delimiter is located, it again changes the
delimiter to a null character, marking the end of the token, and returns a
pointer to the new token string.

Let’s look at a simple example of a string containing words separated by
spaces. We begin hv calling string token with the address of the f ull string. It
returns the address of the first character ol the first string that was just
parsed. The second execution of the string token function parses the second
string and returns its address, and so on until the complete string has been
parsed. I bis design is shown in Figure 1 1 -22.

all characters that are not in the set; that isover

pToken = strtok (strng, " ");

pToken Q—
strng |0[N|E|\O|T |W|Q| | T | H|R|ETEÎ O

pToken

strng j0[N|EnTIwlb| | TlH| R | E |Epl
(a) Before Parsing (b) After First Parsing

pToken = strtok (NULL, " "); pToken = strtok (NULL, " ");

pToken ££)
strng

pToken Q
strng |Q 1 N|E|\0|T|W|0|\0|T|H|R|E|E|\0' OlN E 0 Tlwlo! 0|T|H|R|E|EbQ

(c) After Second Parsing (d) After Last Parsing

FIGURE 1 1 -22 Parse a Simple String

String to Number
I he standard library (stcllib.lt) library provides several functions that convert
a string to a number. I he two most important are string to long and string to
double. A complete list is found at the end of this section.

String to Long
I he string-to-long function, strtol , converts a string to a long integer. It skips
leading whitespace characters and stops with the first numeric character,non-
7. To convert «i string to ;m unsigned long integer, use sIr loul .

’ 1'

Chapter 11 Strings 705

which is considered to be the start of a trailing string. The address of the
trailing string is stored in the second parameter, unless it is a null pointer. A
third parameter determines the base of the string number. The function dec-
laration is shown below.

long strtol (char* str, char** ptr, int base);

I he base is determined by the following rules:

1. The base may be 0 or 2...35.
2. The letters a . ..z or A...Z represent the values 10 . ..35. Only the numeric

and alphabetic characters less than the base are permitted in any string.

3. If the base is 0, the format is determined by the string as follows:

a. If the number begins Ox or OX. the number is a hexadecimal constant.
b. If the first digit is 0 and the second digit is not x or X, the number is an

octal constant.
c. If the first digit is a nonzero, the number is a decimal constant.

If the string does not begin with a valid number, zero is returned and the
trailing string pointer is set to the beginning of the string. Program 1 1 -13

demonstrates the use of strtol .

PROGRAM 11 -13 Demonstrate String to Long

/* Demonstrate string to long function.
Written by:
Date:

1
2
3

*/4
tinclude <stdio.h>
#include <stdlib.h>

5
6
7

int main (void)8
9 {

// Local Declarations
long num;
char* ptr;

10
1 1
1 2
13

// Statements
num
printf("%s %ld\n", ptr, num);

14
= strtol ("12345 Decimal constant: ", &ptr, 0);

15
16
17

= strtol ("11001 Binary constant : ", &ptr, 2);

printf("%s %ld\n", ptr, num);
18 num
19
2 0

= strtol ("13572 Octal constant : ", &ptr, 8);

printf("%s %ld\n", ptr, num);
2 1 num
2 2

continual

/06 Section 11.5 String Manipulation Functions

PROGRAM 1 1 - 1 3 Demonstrate String to Long (continued)

23
num = strtol (" 7AbC Hex constant
printf("%s %ld\n", ptr, num);

: % &ptr, 16);24
25
26

= strtol ("11001 Base 0-Decimal : " f *Ptr, 0);27 num
printf("%s %ld\n", ptr, num);28

29
num = strtol ("01101 Base 0-Octal
printf("%s %ld\n", ptr, num);

: ", &ptr, 0);30
31
32

num = strtol ("0x7AbC Base 0-Hex
printf("%s %ld\n", ptr, num);

33 : ", &ptr, 0);
34
35

num = strtol ("Invalid input
printf("%s %ld\n", ptr, num);

36 : ", &ptr, 0);
37
38
39 return 0;

> // main40

Results:
Decimal constant
Binary constant
Octal constant
Hex constant
Base 0-Decimal
Base 0-Octal
Base 0-Hex
Invalid input

12345
25
6010
31420
11001
577
31420
0

Program 11 -13 Analysis The first thing to note in this program is that the address of the character pointer mustbe passed to strtol. If this surprises you, go back and look at the strtol function decla-
ration statement again. Note that the declaration of ptr has two asterisks.Observe that the pointer is set to the first character after the last valid digit. In ourexample, this character was

j

always a space. If there were no characters after the lastdigit, the pointer would point to the string delimiter, resulting i null string.in a

String to Double
I he string-to-double functions—strtocl and wcstod—
to-long functions, except that they do not have a hase. The function declara-
tion is seen below.

similar to the string-are

double strtod (char* str, char** ptr);

I lie numeric string must he a floating-point in either decimal or scien-
t ' lic notation. Ihe valid numeric values in the string are the digits, the plus

Ij^’T

Chapter 11 Strings 707

and minus signs, and the letter
possible sequence ol digits and characters to convert the string to a number,
strtod sets the pointer to the address of the next character in the string. If no
characters are present, the pointer is set to the string delimiter. As with
string-to-Iong, if the number is invalid, zero is returned and the pointer is set
to the beginning of the string.

E in the exponent. After using the longeste or

Other Number Functions
Table 1 1 -2 lists the complete set of string-to-number functions.

Wide-character FunctionNumeric Format ASCII Function

double wcstod
wcstof

strtod

float strtof
wcstoldlong double strtold
wcstolstrtollong int

long long int

unsigned long int

unsigned long long int

wcstollstrtolI
wcstoulstrtoul
wcstoullstrtoull

TABLE 11 -2 String-to-Number Functions

String Examples
In this section, we discuss two functions that use string functions. The first

strtok to parse an algebraic expression. The second uses string input/uses
output functions and several string manipulation functions to compare

strings.

EXAMPLE 1 1 - 1 1 Parsing Tokens
Assume we want to parse a string containing a simple algebraic expression as

shown below.

sum = sum + 10;

Each token in this simple expression is separated by whitespace. Our

will identify each token and print it out . The step-by-step parsing is
program
shown in Figure 1 1-23. The code is shown in Program 11-14.

708 Section 11.5 String Manipulation Functions

S|U|M| |+| 11 |Q I ; |\0|strng |S|U|M| |=

Step 1 pToken = strtok (strng, "

strng |S|u|M|\0|= | |S|U|M| [+ | 1110 | ; |\0

(First Token)pToken

In loop pToken = strtok (NULL, " ;");|
strng |S|U|M|\0|=|\0|S|U|M| |+| 110 ; |\0

(Second Token)pToken

strng |S|U|M|\0|=|\0|S|U|M|^| -t | 1110 ; |\0

(Third Token)pToken

strng |S|U|M|\Q = |\0 S|U|M \Q + \0|110 | ; \0

(FourthToken)pToken

strng |S|U|M|\0|=|\Q S|U|M \Q + \0 0 \0 \0

pToken (Last Token)

FIGURE 11-23 Parsing with String Token

PROGRAM 11-14 Parsing a String with String Token
/* Parse a simple algebraic expression.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
tinclude <string.h>

5
6
7

int main (void)8
9 {

// Local Declarations
char

10
11 strng [16] = "sum = sum + 10;";

char* pToken;12
int13 tokenCount;

14
// Statements

tokenCount = 0;
pToken = strtok (strng, "

15
16
17

/) r
18

continnet

'II

Chapter 11 Stringŝ 709

PROGRAM 11-14 Parsing a String with String Token (continued)

while (pToken)19
2 0 {
2 1 tokenCount++;

printf("Token %2d contains %s\n",
tokenCount, pToken);

pToken = strtok (NULL, "

> // while

2 2
23
24
25
26
27 printf("\nEnd of tokens\n");

return 0;
// main

28
29 >

Results:
Token 1 contains sum
Token 2 contains =
Token 3 contains sum

Token 4 contains +
Token 5 contains 10

End of tokens

Program 11-14 Analysis Since the first call to strtok must contain the address of the string, it is coded before
the loop. If the string contains at least one token, the first call will return a valid
address and the while loop will print it and parse out the remaining tokens. Note that
the delimiter set includes the semicolon as well as the blank between tokens. The
semicolon serves as the last token in the string.

Compare Packed Strings
When working with strings, we often find that two strings are logically the

but physically different to the computer. For example, consider a pro-
gram that generates mailing labels. Often a name is put into a mailing list
with an extra space or other character that prevents it from being matched to

existing name. One way to eliminate such errors is to compare only the
letters of the names by removing everything except alphabetic characters.
Program 11-15 shows a function that compares two strings after packing the
data so that only letters are left.

same

an

PROGRAM 11 -15 Compare Packed String Function

/* This program packs and compares a string.
Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <string.h>

5
6

continuec

%
I

710 Section 11.5 String Manipulation Functions

PROGRAM 1 1 -1 5 Compare Packed String Function (continued)

7
#define ALPHA \
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

8
9
10

// Function Declarations
int strCmpPk (char* SI, char* S2);
void strPk

1 1
12

(char* si, char* s2);13
14

int main (void)15
16 {

// Local Declarations
int cmpResult;
char s i[8 0];
char s2[80];

17
18
19
20
21

// Statements
printf("Please enter first string:\n");
fgets (si, 80, stdin);
si[strlen(si)

22
23
24

1] = '\0';25
26

printf("Please enter second string:\n");
fgets (s2, 80, stdin);
s2[strlen(s2) - 1] =

27
28
29 \0';
30

31 cmpResult = strCmpPk (si, s2);
if (cmpResult < 0)

printf("stringl < string2\n");
else if (cmpResult > 0)

printf("stringl > string2\n");

32
33
34
35

li 36 else
37 printf("stringl == string2\n");
38
39 return 0;

} // main40
41
42 ===== strCmpPk =
43 Packs two strings and then compares them.

Pre44 si and s2 contain strings
returns result of strcmp of packed strings45 Post

*/46
47 int strCmpPk (char* si, char* s2)
48 {

// Local Declarations
char slln [80);

49
50

continue

n' \
Chapter 11 Strings 711

PROGRAM 11 -15 Compare Packed String Function (continued)

char slOut[81];
char s2In [80];
char s20ut[81];

51
52
53
54

// Statements
strncpy (slln, si, sizeof(slln)
strncpy (s2In, s2, sizeof(s2In)
strPk (slln, slOut);
strPk (s2In, s20ut);
return (strcmp (slOut, s20ut));

> // strCmpPk

55
56 i);
57 1);
58
59
60
61
62
63

Deletes all non-alpha characters from si and
copies to s2.

Pre si is a string
Post packed string in s2

si destroyed

:=====
64
65
66
67
68

*/69
void strPk (char* si, char* s2)70

71 {
// Local Declarations

int strSize;
72
73
74

// Statements

*s2 = '\01;
while (*sl !=

75
76

\0 *)77
78 {

// Find non-alpha character & replace

strSize = strspn(sl, ALPHA);
si[strSize] = ’\01 ;
strncat (s2, si, 79 - strlen(s2));

si += strSize + 1;

} // while
return;
// strPk

79
80
81
82
83
84
85
86 >

Results:
Please enter first string:

a b!c 234d

Please enter second string:

abed
stringl == string2

continuedc

712 Section 11.6 String/Dato Conversion

PROGRAM 11 -15 Compare Packed String Function (continued)

Please enter first string:

abed
Please enter second string:
aabb
stringl > string2

Program 1 1 -1 5 Analysis To test the string compare, we need to write a test driver. Since the test driver is throw-
away code, we have coded the test logic in main.

Statement 8 contains a C language construct that we have not used before: the
statement continuation. When a statement does not fit on a line, it can be continued by
putting an escape character (\) immediately before the end of the line. This is consistent
with the meaning of the escape character; in this case, it means escape the end of line
that follows; it is not really an end of line. This allows us to continue the define statement
on the next line.

Since we are passing addresses to strings, we need to be careful that we don't
destroy the original data. The first thing we do in strCmpPk, therefore, is to use
strnepy to copy the input string to a work area. Once we have protected the original
data, we pack the two strings to be compared and then use the stremp function to
determine if the reformatted data are equal.

The strPk function merits a little discussion. It uses a while loop to process the
input string. Each iteration of the loop scans the valid characters, as defined in ALPHA,
looking for invalid data. When strPk finds an invalid character —and there will
always be at least one, the input string delimiter — it (1) replaces that character with a
string delimiter, (2) concatenates the input string to the output string, and then
(3) adjusts the input string pointer to one past the last scanned character. This is neces-
sary to point it to the data beyond the string just copied.

But what if the pointer adjustment puts it beyond the end of the input data? In that
case, we will have a delimiter, because we used strnepy to copy the data from the orig-
inal input, and it pads the output string with delimiters. Therefore, the character after
the original string delimiter is another delimiter. Note that we made the output area one
character larger than the input
full string.

At least three test

to provide for this extra delimiter even with aareaI.
cases are required to test the program. We show two of them in

the result. In addition to an equal and greater-than result, you should conduct at least
one less-than test case.

11.6 String/Data Conversion
A common set ol applications format data by either converting a sequence o
characters into corresponding data types or vice versa,

are parsing and telecommunications.
C already has an extensive set of data

Two such application

conversion functions created to
scanj and print/. The C standard also includes two sets of memory formattin
functions, one for ASCII characters and
these same

one for wide characters, that use
formatting functions. Rather than reading and write Files, how

ever, they read and w'rite strings in memory.

1If
Chapter 11 Strings 713

String to Data Conversion
The string scan
though the data were coming from a file. Just like fscanf, it requires a for-
mat string to provide the formatting parameters for the data. All fscanj format
codes are valid lor the scan memory functions. Like fscanf , the scan memory
functions also return the number of variables successfully formatted. If they
reach the end of a string before all the format string conversion codes have
been used—that is, if they attempt to “read” beyond the end of string—they
return an end-of-file flag. The basic concept is shown in Figure 1 1 -24.

function is called sscanf. This function scans a string as

sscanf

variablesstring

ssconf OperationFIGURE 11 -24

The function declaration is shown below.

int sscanf (char* str, const char* frmt_str, ...);

The first parameter specifies the string holding the data to be scanned.
The ellipsis (...) indicates that a variable number of pointers identify the fields
into which the formatted data are to he placed.

Let’s demonstrate the use of sscanf with an example. Assume that we

have a string that contains a name terminated with a semicolon, a four-digit
student number, an exam score, and a character grade. Each field is sepa-
rated from the rest by at least one whitespace character. A data sample is

shown below.

Einstein, Albert; 1234 97 A

In this problem, we want to format the name and student number as
as a character. We therefore

strings, the score as an integer, and the grade
construct the following format string:

f
5

"%49[A ;] %*c %4s %d %*["ABCDF] %c"

Let’s examine each format code individually. First, we are expecting a

string of up to 49 characters terminated by a semicolon. Note that we use the

set with a terminating token of a semicolon. Following the scan set that

r

l
s

scan

14 Section 11.6 Stiing/Data Conversion

reads to a semicolon is a format code that reads and discards one character.
The asterisk is a flag indicating that the character is not to be stored. This
code is necessary because the terminating semicolon Imm the string remains
in the input string. We need to read and discard it.

The third format code is a simple four-character string. Any leading
whitespace is discarded with the string token (). Likewise, the third field,
the score, is converted to an integer format after the leading whitespace is
discarded.

Parsing the grade is a little more difficult. We can have one or more
whitespaces between the numeric grade and the alphabetic grade, but we
must dispose of them ourselves, because the character token (%c) does not

discard whitespace. Our solution is to use a scan set with the suppress (lag
(*) to discard all characters up to the grade. Again, we use the negation to set

the terminating character. Having discarded all the leading whitespace, we
can now format the grade with a character token.

Using our example above, we can code the sscanj call as shown below.

"%25[A ;]%*c%4s%d%*[AABCDF]%c",
&score, &grade);

sscanf(strln,
name, stuNo,

Note that this code has six format codes hut only four variables because
the second and fifth fields have their formatting suppressed.

sscanf is a one-to-many function.
It splits one string into many variables.

Data to String Conversion
The string print function, sprint/ , follows the rules ol J'print/. Rather than
sending the data to a file, however, it simply ‘‘writes” them to a string. When
all data have been formatted to the string, a terminating null character is
added to make the result a valid string. If an error is detected, sprintf returns
any negative value, traditionally EOF. If the formatting is successful, it returns
the number of characters formatted, not counting the terminating null char-
acter. The string print operation is shown in Figure 1 1 -25.

sprintf

string variables

FIGURE 11 -25 sprintf Operation

Chapter 11 Strings 715

Ihe junction declaration for formatting memory strings is shown below.
int sprintf char* out_string,

const char* format string, ...);
(

The first parameter is a pointer to a string that will contain the formatted
output. The format string is the same as printf and follows all of the same
rules. The ellipse (...) contains the fields that correspond to the format codes
in the format string.

It is our responsibility to ensure that the output string is large enough to
hold all the formatted data. If it is not large enough, sprint / destroys memory
contents after the output string variable. The wide-character function,
swprintf, on the other hand limits the output. The additional parameter,
max_out, specifies the maximum wide characters.

sprintf is a many-to-one function.
It joins many pieces of data into one string.

EXAMPLE 11-12 Demonstrate Memory Formatting
To demonstrate the memory formatting functions, we first format a string to
variables and print them. We then format them back to a string and print the
string. The data use the format described in "String to Data Conversion." Ihe
code is seen in Program 11-16.

PROGRAM 11 - 16 Demonstrate Memory Formatting
/* Demonstrate memory formatting.

Written by:
Date:

1
2
3

*/4

^include <stdio.h>5
6

int main (void)7
8 {

// Local Declarations9
char strng[80] = "Einstein, Albert; 1234 97 A";
char strngOut[80];
char name[50];
char id[5];
int

10
1 1
12
13
14 score;

char grade;15
16

// Statements
printf("String contains:

17
\"%s\"\n", strng);18

continues

/16 Section 11.6 String/Data Conversion

PROGRAM 1 1 -1 6 Demonstrate Memory Formatting (continued)

19
••%49[A ;] %*c %4s %d %c",

id, &score, &grade);
sscanf(strng,

name,
2 0
21
2 2

\n");
\"%s\"\n",
\"%s\"\n",
%d\n",
%c\n",

printf("Reformatted data:

printf(" Name:

printf(" id:
printf(" score:
printf(" grade:

23
name);
id);

score);
grade);

24
25
26
27
28

"%s %4s %3d %c",
score, grade);

sprintf(strngOut,
name, id,

printf("New string:
return 0;

29
30

\"%s\"\n", strngOut);31
32

} // main33

Results:
String contains:
Reformatted data:

Name:
id:
score:
grade:

New string:

"Einstein, Albert; 1234 97 A"

"Einstein, Albert"
"1234"
97 I
A

"Einstein, Albert 1234 97 A"

EXAMPLE 1 1 -1 3 Range of Internet Addresses
As a practical example, let’s write a program that, given two Internet
addresses, determines all of the addresses in their range. An Internet address
is a 4-byte Dotted Decimal Notation address in the form X.Y.Z.T. Each byte
can have a decimal value between 0 and 255.

Io determine the range, we multiply each portion of the address by 256
and add it to a counter. The second address is then subtracted from the first,
which gives the number of addresses in the range.

I his program could be used by system administrators when their organi-
zation is given a range of addresses. For example, if an organization is given
the range of address 193.78.64.0 to 193.78.66.255, the system administrator
needs to know how' many addresses are available for computers to be con-
nected to the Internet. Program 11-17 answers this question.

PROGRAM 1 1 -1 7 Determine Internet Addresses in a Range
/* Given two Internet addresses, determine the number

of unique addresses in their range.
1
2

continued

nr

Chapter 11 Strings 71 /

PROGRAM 11 -17 Determine Internet Addresses in a Range (continued)

Written by:
Date:

3
4

*/5
6 #include <stdio.h>

#include <stdlib.h>7
8

int main (void)9
10 {

// Local Declarations
unsigned int
unsigned int
unsigned long addl = 0;
unsigned long add2 = 0;
unsigned long range;

11
12 strt[4];

end[4];13
14
15
16
17
18 char addrl[15];

char addr2[15];19
20

// Statements
printf ("Enter first address: ");
fgets (addrl , sizeof (addrl) , stdin);

21
22
23
24

printf ("Enter second address: ");
fgets (addr2 , sizeof (addr2) , stdin);

25
26
27

sscanf (addrl , "%d %*c %d %*c %d %*c %d\n",
&strt[3], &strt(2], &strt[l], &strt(0]);

sscanf (addr2 , "%d %*c %d %*c %d %*c %d\n",
&end[3], &end[2], &end[l], &end[0]);

28
29
30
31
32

for (int i = 3 ; i >= 0 ; i—)33
34 {

addl = addl * 256 + strt[i];
add2 = add2 * 256 + end[i];

> // for
range = abs (addl - add2) + 1;

35
36
37
38
39

printf ("\nFirst Address: %s" / addrl);
printf ("Second Address %s" / addr2);
printf ("\nThe range: %ld\n", range);

40
41
42
43

return 0;
// main

44
45 }

continued

718 Section 11.7 A Progromming Example — Morse Code

PROGRAM 11 -17 Determine Internet Addresses in a Range (continued)

Results:
Enter first address:
Enter second address:

23.56.34.0
23.56.32.255

23.56.34.0First Address:
Second Address 23.56.32.255

The range: 258

11.7 A Programming Example — Morse Code
Morse code, patented by Samuel F. B. Morse in 1837, is the language that

used to send messages by telegraph from the middle of the nineteenthwas
century until the advent of the modern telephone and today’s computer-
controlled communications systems. In Morse code, each letter in the alpha-
bet is represented by a series of dots and dashes, as shown in Table 11-3.

TABLE 11 -3 Morse Code

Program 11 - 18 encodes (converts) a line of text to Morse code and
decodes (converts) Morse code to a line of text. We use a two-dimensional
array of pointers in which each row has two string pointers, one to a string
containing English characters and one to a string containing the corre-
sponding Morse code. Note that the pointers
memory, while the strings are stored in the heap. The array structure is
shown in Figure 1 1 -26.

stored in the programsare

T
Chapter 11 Strings / 19

Pointers to
characters

Pointers to
Morse code

A
[A \O # \0

A
rBW # \0

A
z \o # \0
A

$ | $ 1 # | \0\0

FIGURE 1 1 -26 Character to Morse Code Structure

Each column has 27 pointers. Each pointer in the first column points to
a string ol length one, which contains one English letter (uppercase). Each
pointer in the second column points to a string of varying size, a ragged array,
which contains the corresponding Morse code for the English letter.

The program is menu driven. The menu, which is shown in Figure 1 1 -27,
has three options: encode English to Morse code, decode Morse code to
English, and quit.

M E N U
E encode

D decode

Q quit

Enter option: press return key:

FIGURE 11-27 Morse Code Menu

The program begins by initializing the conversion table. It then displays
quits. Each loop either encodes a line ofthe menu and loops until the

English text or decodes a line of Morse code. The only allowable characters
the alphabetic characters and spaces. When Morse code is entered,

each coded character is terminated by a pound sign (#). Morse code space
is represented by two dollar signs ($ $). The complete design is shown in
Figure 1 1 -28.

user

are

720 Section 11.7 A Programming Example — Morse Code

Morse
code

(+)

print
Output/] getlnput decodeencodegetlnputmenu

convert convertA
FIGURE 11-28 Morse Code Program Design

If the encode or decode function detects an error—such as an invalid
character or an invalid Morse code sequence—it returns an error code, and
the calling program prints an error message.

The solution, as shown in Program 1 1 -18, uses three arrays. The first is
the encode/decode (encDec) array. As seen in Figure 1 1 -26, this is a two-
dimensional array of pointers to English and Morse code values. The second
array is an array of 81 characters to hold the input line. The third is an array
of 8 1 characters to hold the output line. To ensure that we do not overrun the
output line, we limit the input string to 16 characters when we are reading
English text. When appropriate, we provide some analysis to points in the
individual functions.

PROGRAM 11 -18 Morse Code: mam

/* Convert English to Morse or Morse to English.
Written by:
Date Written:

1
2
3

*/4
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
include <ctype.h>
#include <stdbool.h>

5
6
7
8
9
10
1 1 #define FLUSH while(getchar() 1 = '\n')

#define STR LEN 811 2
13

// Function Declarations
char menu
void getlnput

14
15 (void);

(char* inStr);16

continued

7 in

Chapter 11 Strings 721

PROGRAM 1 1 -1 8 Morse Code: main (continued)
17 void printOutput
18 bool encode

(char* inStr, char* outSt);
(char* (*encDec)[2],
char* inStr,
char* outStr);
(char* (*encDec)[2],
char* inStr,
char* outStr);
(char* (*encDec)[2],
char* si,
int

19
20
21 bool decode
22
23
24 int convert
25
26 col,

char* s2);27
28
29 int main (void)
30 {

// Local
char*

31 Declarations
encDec [27][2] =32

33 {
34 >,{ "A",
35 { "B”,

"C",36 {
37 -..#"

—.#"

{ "D",
"E",
"F",
"G",

> /

38 { >,
39 { > r

40 {
#" },
}r

. #" >,
>,

41 "H",
II T II
± 9

"J",
"K",

{
42 {
43 {
44 {
45 >,{ "L",

"M",
"N",

46 {
47 {

#”

.-.# M

"0",48 {
"P",49 {
"Q" f50 {
"R",
"S",
"T",
"U",
"V",
"W",
"X",
"Y",
"Z",

{51
{52
{53
{54

> #{55
>,

-.—#M > /

{56
{57
{58
{59

$$# M >,{60

continuec

722 Section 11.7 A Programming Example —Morse Code

PROGRAM 11 -18 Morse Code: main (continued)

}; // Encode / Decode array

char inStr
char outStr [STR_LEN];
char option;
bool done = false;

6 1
[STR_LEN];6 2

6 3
6 4
6 5
66

// Statements
while (!done)

6 7
68

{6 9
option = menu ();
switch (option)

7 0
7 1

{7 2
E' :
getlnput (inStr);
if (lencode (encDec, inStr, outStr))

7 3 case
7 4
7 5

{7 6
printf("Error! Try again");
break;
} // if

printOutput (inStr, outStr);
break;

case 'D' : getlnput (inStr);
if (idecode (encDec, inStr, outStr))

7 7
7 8
7 9
8 0
8 1
8 2
8 3
8 4 {

printf("Error! Try again");
break;
} // if

printOutput (inStr, outStr);
break;

8 5
86
8 7
88
8 9

i, 9 0 default :
9 1 done = true;

printf("\nEnd of Morse Code.Nn");
break;

9 2
9 3
9 4 } // switch

> // while
return 0;
// main

9 5
9 6
9 7 }

Program 1 H8 Anolysu

ODtions j . ^otew
|
orthy P°int is the default condition . We test for only two

be ou e w" 'f * is neither' ^ assume quit. We can do this

proaram th," 6^ ’menu Program 11 -191 At this point in the

default the third^ °Ptl°n Can one or,ly three values. We test for two and

T u

Chapter 11 Strings 723

PROGRAM 11 -19 Morse Code: Menu
l

Display menu of choices; return selected character,
nothing
returns validated option code

2
3 Pre

Post4
*/5

6 char menu (void)
7 {

// Local Declarations
char option;
bool validData;

8
9

10
11

// Statements
printf("\t\t\tM E N U \n");
printf("\t\tE) encode \n");
printf("\t\tD) decode \nM);
printf("\t\tQ) quit \n");

1 2
1 3
1 4
1 5
1 6
1 7
1 8 do
1 9 {

printf ("\nEnter option: press return key: ");
option = toupper (getchar());
FLUSH;
if (option == 'E' ||option == 'D' ||

option == 'Q')
validData = true;

20
21
2 2
2 3
2 4
2 5
2 6 else
2 7 {

validData = false;
printf("\aEnter only one option\n");
printf(" \tE, D, or Q\n ");

> // else

> while (!validData);
return option;

> // menu

2 8
2 9
3 0
3 1
3 2
3 3
3 4

function in Program 11-19 displays the options and reads the user's
choice. It then validates the choice and if invalid, displays an error message and asks
for the option again. Although it is always good design to validate the user input, it
must be validated in the correct place. Since menu is communicating with the user,

more point: As the option is read, it

Program 11-19 Analysis The menu

this is the logical place to do the validation. One
is converted to uppercase. Not only does this make the validation simpler, but it also
simplifies the switch statement in main. Whenever you have a single character code,
convert it to uppercase or lowercase for processing in the program.

The input string is read in Program 1 1 -20.

724 Section 11.7 A Programming Example —Morse Code

PROGRAM 11-20 Morse Code: Get Input
===== getlnput =====

Reads input string to be encoded or decoded.
inStr is a pointer to the input area
string read into input area

/* ===== =====1
2
3 Pre

Post4
*/5
void getlnput (char* inStr)6

7 {
// Statements

printf ("\nEnter line of text to be coded: \n");
fgets (inStr, STR_LEN, stdin);

8
9
10
1 1

// Eliminate newline in input string

*(inStr-1 + strlen(inStr)) = * \0';
12
13
14

if (isalpha(*inStr) && strlen(inStr) > 16)15

16 {
// Exceeds English input length
printf("\n***WARNING: Input length exceeded: ");
printf("Only 16 chars will be encoded.\a\a\n");
*(inStr + 16) = *\0';

> // if
return;

} // getlnput

17
18
19
20
2 1
22
23

Program 1 1 -20 Analysis Note that to prevent a runaway string in getlnput we use the fgets function and
specify the maximum number of characters in the string area. This function creates a
minor problem, however; it places the newline in the input string. We must therefore
overlay it with a null character.

The code to print the output of this program is shown in Program 11-21.

PROGRAM 11 -21 Morse Code: Print Output
i

1 ===== printOutput =====
2 Print the input and the transformed output

Pre3 inStr contains the input data
outStr contains the transformed string

Post output printed
4
5

*/6
void printOutput (char* inStr, char* outStr)7

8 {
// Statements

printf("\nThe information entered was: \n");
puts(inStr);
printf("\nThe transformed information is: \n");

9
10
1 1
12

tinnedcon

V
Chapter 11 Strings 725

PROGRAM 11 -21 Morse Code: Print Output (continued)

puts(outStr);
return;

15 > // printOutput

13
14

Program 11-22 transforms character data to Morse code.

PROGRAM 11-22 Morse Code: Encode to Morse

l
Transforms character data to Morse code

encDec is the conversion table

inStr contains data to be put into Morse

data have been encoded in outStr

2
3 Pre

4
5 Post

Return true if all valid characters;6
false if invalid character found7

*/8
bool encode (char* (*encDec)[2],9

char* inStr, char* outStr)10
11 {

// Local Declarations1 2
char si(2];13
char s2[6];14
int error = 0;15

16
// Statements17

outStr[0] = ’\0';18
while (*inStr != ’\0' && lerror)19

20 {
sl[0] = toupper(*inStr);21
si[1] = '\0 * ;22

= Iconvert (encDec, si, 0, s2);
23 error

strcat (outStr, s2);24
inStr++;25
} // while26

return (lerror);27
// encode28 }

Program 1 1 -22 Analysis Note how the encode/decode table is declared in the formal parameter list in state-

ment 9. It uses a complex type. To understand it, let's use right-left analysis (see

Chapter 10).

char * (* encDec) [2]

726 Section 11.7 A Programming Example — Morse Code

have encDec. Moving to the right, we find theReading this declaration, at 0
1, which is ignored. Moving left, at 2 we find a pointer. We therefore have encDec as
a pointer. Moving right to 3, we see that it is a pointer to an array of two. Moving to the
left to 4,we see that it is an array of pointers.

At this point, we see that encDec is a pointer to an array of two pointers. Now,
moving back to the right, we see that 5 is empty, so we go to the left and find char at 6.
The final type is therefore a pointer to an array of two pointers to char. Referring back
to Figure 11-26, we see that this is exactly what we have.

we

PI

The code to decode Morse code to English is shown in Program 11-23.

PROGRAM 11-23 Morse code: Decode to English
==== decode

Transforms Morse code data to character string
encDec is the conversion table
inStr contains data to transform to string
data encoded and placed in outStr

if all valid characters;
false if invalid character found

1
2
3 Pre
4
5 Post

Return true6
7

*/8
bool decode (char* (*encDec)[2],

char* inStr, char* outStr)
9
10
1 1 {

// Local Declarations
char si[6];
char s2[2];
bool error = false;
int

12
13
14
15

16 i;
17

// Statements
outStr[0] ='\0';
while (*inStr != '\0

18
19
2 0 && lerror)
21 {
2 2 for (i = 0; i < 5 && *inStr != i++, inStr++)

si[i] = *inStr; Pi-ogr23
24
25 sl[i]

si[++i] = •\0';
= *inStr;

26
27
28 error - !convert (encDec, si, 1, s2);

strcat (outStr, s2);
inStr++;

> // while
return (lerror);

> I I decode

29
30
31
32
3 3

r
Chapter 11 Strings 727

Program 11-24 converts characters to Morse code and Morse code to
characters.

PROGRAM 11-24 Morse Code: Convert Codes
l

Looks up code and converts to opposite format
encDec is a pointer decoding table
si is string being converted
s2 is output string
col is code: 0 for character to Morse

1 for Morse to character

2
3 Pre
4
5
6
7
8 Post converted output s2

*/9
int convert (char* (*encDec)[2],

char* si, int col, char* s2)
10
1 1
12 {

// Local Declarations
bool found = false;
int i;

13
14
15
16

// Statements
for (i = 0; i < 27 && !found; i++)

found = !strcmp(sl, encDec[i][col]);

17
18
19
2 0

if (found)
strcpy (s2, encDec [i - l][(col + 1) % 2]);

21
2 2

else23
*s2 = '\0 * ;24

25
return found;

} // convert
26
27

/ / === === End of Program =====28

rogram 1 1 -24 Analysis The convert function does the actual conversion. Note, however, how it is designed
to handle the conversion both from English to Morse and Morse to English. The only dif-
ference between the two conversions is which pointer we want to use. We pass the col-

to be used for the search as a parameter. Once we have located the correct string,
the formula shown below to pick up the matching string (see statement 22).

umn
we use

(col + 1) % 2

If we are searching on the English letters in column 0, then the modulus of the column
(0 + 1) is column 1, which contains the pointer to the matching Morse code string. Con-
versely, if we are searching Morse code using the pointers in column 1, then the modulus
of the column (1 + 1) is column 0, which contains the pointer to the English letter.

728 Section 11.8 Software Engineering

11.8 Software Engineering
In this section, weve formalized some ol the principles of good programming
that we’ve discussed throughout the text. Although you will find little in this
discussion of software engineering that relates directly to the subject of
strings, all of the string functions have been written using the principles dis-
cussed on the following pages.

Program Design Concepts
You will study many different analysis and design tools as you advance in
computer science. Since this text deals primarily with program analysis and
design, we will discuss the primary tool we have used throughout the text: the
structure chart.

The overriding premise of good design is that the program is modular;
that is, it is well structured. This is the sine qua non of good programming. A
program’s degree of good design can he measured by two principles: Its mod-
ules are independent—that is, their implementation is hidden from the
user—and they have a single purpose.

Information Hiding
Information hiding is the principle of program design in which the data
structure and functional implementation are screened from the user. Mod-
ules are independent when their communication is only through well-defined
parameters and their implementation is hidden from the user. The purpose of
the function should be defined in its inputs and outputs, and the user should
not need to know how it is implemented or how its data are structured. Press-
man states it well when he says:

Hiding implies that effective modularity can be achieved by
defining a set of independent modules that communicate
with one another only that information necessary to achieve
software function. ... Hiding defines and enforces access
constraints to both procedural detail within a module and
any local data structure used by the module.8

The concept of information hiding is the basis of the object-oriented
design and programming. When you study data structures, you will see
another technique used for information hiding, the abstract data type.

Cohesion
The most common
cesses into one

weakness of function design is combining related pro-
discussed the conceptprimitive function. In Chapter 4 we

8. Roger S. Pressman, Software Engineering: A Practitioner’s Approach , 2nd ed , McGraw-Hill
Series in Software Engineering and Technology (New York: McGraw-Hill, 1982), p. 228.

Chapter 11 Strings 729

that each module (function) should do only
structured programming is known as cohesion. Cohesion, first discussed by
Larry Constantine in the 1960s,9 is a measure of how closely the processes in
a function are related.

We are concerned with cohesion for three primary reasons. The first and
most important is accuracy.The more cohesive a function is, the simpler it is.
I he simpler it is, the easier it is to write, and the fewer errors it will have.

This is closely related to the second reason for high cohesion, maintainability.
II a function is easy to understand, it is easy to change. This means that we
will get the job done faster and with fewer

Finally, cohesive modules are more reusable. Reusability is also closely
related to the concepts of accuracy and ease of use. Existing functions have
stood the test of time and have been tempered in the heat of use. They are
more likely to be error free, and they certainly arc easier and faster to develop.

Cohesion is most applicable to the primitive functions in a program,
those that are at the bottom of the structure chart and less applicable to the
controlling functions that appear above the lowest level. This does not mean,

however, that cohesion can be ignored at the higher levels. To make the point
with an absurd example, you wouldn’t write a program to manage your check-
book and maintain your daily calendar. Even though both of these processes
are related to things you do, they are so unrelated that you wouldn’t put them
in the same program. The same concept applies in a program. For example, at
the lower levels of your program, you shouldn’t combine functions that read
data with functions that print a report.

The seven levels of cohesion are shown in Figure 1 1 -29.

thing. This principle olone

errors.

highRANGE OF COHESIONlow

bestgoodacceptableunacceptable

FIGURE 11-29 Types of Cohesion

Functional Cohesion
Functional modules that contain only one
cohesion. This is the highest level of cohesion and the level that we should
hold up as a model. Using the example of printing a report, the report func-
tion should call three lower-level functions, one to get the data, one to format

process demonstrate functional

9. E. N. Yourdon and L. L. Constantine, Structured Design (Upper Saddle River, N.J.: Prentice

Hall, 1978).

730 Section 11.8 Software Engineering

d print the report header, and one to format and print the data. This design
is shown in Figure 11-30. The print report heading function is optional
because it is called only when a page is lull.

Sequential Cohesion
A sequential module contains two or more related tasks that are closely tied
together, usually with the output of one flowing as input to the other. An

mple of sequential cohesion is shown in the calculations for a sale. The
design for this function might well he

1. Extend item prices
2. Sum items

3. Calculate sales tax

4. Calculate total

an

exa

print
report

o
I print report

heading printLinegetData

FIGURE 11-30 Example of Functional Cohesion

In this example, the first process multiplies the quantity purchased by the
price. I he extended prices are used by the process that calculates the sum of
the purchased items. This sum is then used to calculate the sales tax, which
is finally added to the sum to get the sale total. In each case, the output of
one process was used as the input of the next process.

Although it is quite common to find the detail code for these processes
combined into a single function, it does make the f unction more complex and
less reusable. On the other hand, reusability would he a concern if the same
or similar calculations were being made in different parts of one program.

Communicational Cohesion
Communicational cohesion combines processes that work on the same
data. It is natural to have communicational cohesion in the higher modules
in a program, but you should never find it at the primitive level. For example,
consider a function that reads an inventory file, prints the current status of
the parts, and then checks to see if any parts need to he ordered. The
pseudocode for this process is shown in Algorithm 11-1.

V

Chapter 11 Strings /31

ALGORITHM 11-1 Process Inventory Pseudocode
Algorithm Process Inventory
1 while not end of file

1 read a record
2 print report
3 check reorder point

2 end while
end Process Inventory

All three ol these processes use the same data. II they are calls to lower-
level iunctions, they are acceptable. If the detail code is found in the func-
tion, however, the design is unacceptable.

The first three levels of cohesion are all considered to be good structured
programming principles. Beyond this point, however, ease of understanding
and implementation, maintainability, and accuracy begin to drop off rapidly.
The next two levels should be used only at the higher levels of a structure
chart, and then only rarely.

Well-structured programe are highly cohesive and loosely coupled.

Procedural Cohesion
The fourth level of cohesion, procedural cohesion, combines unrelated pro-
cesses that arc linked hv a control flow. (This differs from sequential cohe-
sion, where data flows from one process to the next.) As an example, consider
the high-level logic main line of a program that builds and processes a list. A
procedural How could look like Algorithm 1 1-2.

ALGORITHM 11 -2 Process List Pseudocode
Algorithm Process List
1 open files
2 initialize work areas
3 create list
4 print menu
5 while not stop

1 get users response
2 if locate ...
3 if insert ...
4 if delete ...
5 print menu

6 end while
7 clean up
8 close files
end Process List

idion 11.8 Software Engineering

A much better approach would be to have only three function calls in
main, initialize, process, and end. Not only is this easier to understand, but it
also simplifies the communication.

Temporal Cohesion
The fifth level, temporal cohesion, is acceptable only over a limited range of

It combines unrelated processes that always occur together. Two
are initialization and end of job. They

processes.
temporally cohesive functions
acceptable because they are used only once in the program and because thcv

portable. Recognize, however, that they should still contain calls to
functionally cohesive primitive functions whenever practical.

are

are never

Logical and Coincidental Cohesion
The last two levels are seldom found in programs today. Logical cohesion
combines processes that are related only by the entity that controls them. A
function that conditionally opened different sets of files based on a flag
passed as a parameter would be logically cohesive. Finally, coincidental
cohesion combines processes that are unrelated. Coincidental cohesion
exists only in theory. We have never seen a productional program that con-
tained coincidental cohesion.

Summary
We have discussed two design concepts in this chapter: information hiding
and cohesion. Cohesion describes the relationship among processes within a
function. Keep functions as highly cohesive as possible. When designing a
program, pay attention to the levels of cohesion. It is much easier to design
high cohesion into a program than it is to program it in. For more information
about these concepts, refer to The Practical Guide to Structured Systems
Design by Meilir Page-Jones.10

10. Meilir Page-Jones. The Practical Guide to Structured Systems Design, Yourdon Press Com-
puting Series (Upper Saddle River, N.J .: Prentice-Hall, 1988).

1

Chapter 11 Strings 733

11.9 Tips and Common Programming Errors
1. Do not conluse characters and string constants: The character constant

is enclosed in single quotes, and the string constant is enclosed in double
quotes.

2. Remember to allocate memory space for the string delimiter when
declaring and defining an array of char to hold a string.

3. Strings are manipulated with string functions, not operators.
4. Ihe header hie string.h is required when using string functions.
5. Ihe standard string functions require a delimited string. You cannot use

them on an array of char that is not terminated with a delimiter.
6. Do not conluse string arrays and string pointers. In the following exam-

ple, the first definition is a string (array of characters), and the second is
a pointer to a character (string). Each is shown with a typical initializa-
tion statement.

char str[20];
strcpy (str, "Now is the time");
char* str;
str = "Now is the time";

7. Passing a character to a function when a string is required is another
common error. This is most likely to occur with the formatted input/
output functions, in which case, it is a logic error. Passing a character in
place of a string when a function header is declared is a compile error.

8. Using the address operator for a parameter in the scanJ function with a

string is a coding error. The following is an invalid call and will most

likely cause the program to fail:

// Coding Errorscanf("%s", &string);

9. It is a compile error to assign a string to a character, even when the char-
acter is a part of a string.

10. Using the assignment operator with strings instead of a function call i
compile error.

is a

char string [20];
string = "This is an error"; // Compile Error

I1. Since strings are built in an array structure, they may he accessed with
indexes and pointers. When accessing individual bytes, it is a logic error

beyond the end of the data structure (array).to access

II Summary

11.10 Key Terms
information hiding
length-controlled string
logical cohesion
procedural cohesion
sequential cohesion
temporal cohesion

cohesion
coincidental cohesion
communicational cohesion
delimited string
delimiter
scan set
fixed-length string

11.11 Summary
Strings can be fixed length or variable length.

A variable-length string can he controlled by a length or a delimiter.
The C language uses a null-terminated (delimited) variable-length string.
A string constant in C is a sequence of characters enclosed in double
quotes. A character constant is enclosed in single quotes.
When string constants are used in a program, C automatically creates an
array of characters, initializes it to a null-terminated string, and stores it,
remembering its address.
To store a string, we need an array of characters whose size is one more
than the length of the string.
There is a difference between an array of characters and a string. An array
of characters is a derived data type (built on the type character) and is an
intrinsic structure in C. A string is a data structure that uses the array as
its basic type. It requires a delimiter for all of its operations.
We can initialize a string:

With an initializer when we define it.
By using a string copy function
By reading characters into it.

A string identifier is a pointer constant to the first element in the string.
An array of strings is a very efficient way of storing strings of different sizes.

The sccmf and printf functions
the %s format.

he used to read and write strings usingcan

The scan set format, % [. . .] , can also be used in the sccinf function to

read a siring.
used for reading and writingThe functions gets , fgets, puts, and / puts

strings. I hey transform a line to a string or a string to a line.
are

m
Chapter 11 Strings /35

J The functions sscanf and sprintf are used for reading and writing strings
Irom memory—that is, memory-to-memory formatting.

J I he functions strcpy and strncpy are used to copy one string into another.—I I he functions strcmp and strncmp are used to compare two strings.
1 he function strlen is used to determine the length of a string.
The functions strcat and stmcat are used to concatenate one string to the
end of the other.
The functions strchr and strrchr are used to look for a character in a string.
The function strstr is used to look for a substring in a string.
The functions strspn and strcspn are used to locate the position of a set ol
characters in a string.
Information hiding is the principle of programming in which the data
structure and function’s implementation are screened from the user.

The cohesion principle dictates that each module must do only a single job.
The sine qua non of good programming is modularity.
Program design has seven layers of cohesion; only the first three (func-
tional. sequential, and communicational) should he used lor lower-level
functions. The last two (logical and coincidental) should never he used.

11.12 Practice Sets

Review Questions
1. The two basic techniques for storing variable-length data are fixed-length

strings and delimiters.
a. True
b. False

2. To initialize a string when it is defined, it is necessary to put the delimiter
character before the terminating double quote, as in "hello\ 0".

a. True
b. False

3. Both the gets and fgets functions change the newline to a delimiter.
a. True
b. False

4. The function that can be used to format several variables into one string

in memory is string token (strtok).
a. True
b. False

12 Practice Sets

is a series of characters treated as a unit.5. A(n)

a. array
b. character
c. field
d. record
e. string

6. The delimiter in a C string is

a. newline
b. defined by the programmer
c. a del character
d. a null character
e. not specified in ANSI C

7. Which of the following statements about string variables is false?

a. The assignment operator copies the value of one string variable to

another.
b. The array bracket operator is not needed if a string is defined as a

pointer to character.
c. The string name is a pointer.
d. When a string is initialized at definition time, C automatically inserts

the delimiter.
e. When a string is read with scarify it automatically inserts the delimiter.

8. Which of the following printf statements will not print a string? (Assume
that name is properly defined and formatted.)
a. printf (" %s", name) ;
b. printf (" % 30s" , name) ;
c. printf (" %-30s" , name) ;
d. printf (" % 30 [A \ 0] " , name) ;

9. The
device.
a. fgets
b. fputs
c. gets
d. getstr
e. puts

10. The

function reads a string from the standard input

siring manipulation function returns the num-
ber ol characters in the string excluding the null character.
a. strernp
I). strepy
c. strlen
d. strsize
e. strtok

1

Chapter 11 Strings 737

1 1. Which of the following statements determines if the contents of string1

are the same as the contents of string2? Assume that string1 and
string2 are properly defined and formatted strings.
a. if (stringl == string2)

b. if (strcmp (stringl , string2))

c. if (strcmp (stringl , string2) == 0)

d. if (strcmp (stringl , string2) < 0)

e. if (strcmp (stringl , string2) > 0)

string manipulation function adds a string to12. The
the end of another string.
a. stradd
b. strcat
c. strcmp
d. strepy
e. strtok

string manipulation function determines il a13. The
character is contained in a string.
a. strehr
b. strehar
c. strcmp
d. strepy
e. strtok

function is used to format a string into variables
14. The

in memorv.
*

a. scanf
b. sscanf
c. strfrmt
d. strscan
e. strtok

15. The best level of cohesion is

a. coincidental
b. communicational
c. procedural
d. sequential
e. functional

Exercises
16. Find the value of *x, *(x + l), a n d * (x + 4) for the following declaration:

"The life is beautiful";char* x =

Practice Sets

17. Find the value ot *y, * (y + l), and * (y + 4) lor the following program
segment:

char x [] = "Life is beautiful";

char* y = &x [3 J;

18. What is the error in the following program block?

{
char* x;
scanf("%s", x);

>

19. What would be printed from the following program block?

{
char si[50] = "xyzt";
char* s2
int
dif = strcmp (si, s2);
printf("\n%d", dif);

= "xyAt";
dif;

>

20. What would be printed from the following program block?

{
char si[50] = "xyzt";
char* s2 = "uabefgnpanm";
char* s3;
char* s4;
char* s5;
char* s6;
s3 = si;
s4 = s2;
strcat (si, s2);
s5 = strchr(si, 'y');
s6 = strrchr(s2, 'n');
printf ("\n%s",
printf ("\n%s",
printf ("\n%s",
printf ("\n%s",

s3);
s4);
s5);
s6);

>

21. W hat would be printed from the following program block?

{
char si[50] = "uabefgnpanm";
char* s2 = "ab";

continued

Chapter 11 Strings 739

char* s3 =
char* s4 =
char* s5 =
char* s6;
char* s7;
char* s8;
char* s9;
s6 = strstr (si, s2)
s7 = strstr (si, s3)
s8 = strstr (si, s4)
s9 = strstr (si, s5)
printf ("\n%s", s6)
printf ("\n%s", s7)
printf ("\n%s", s8)
printf ("\n%s", s9)

"pan";
"bef";
"panam";

>

22. \\ hat would be printed from the following program block?

{
char* si = "abefgnpanm";
char* s2 = "ab";
char* s3 = "pan";
char* s4 = "bef";
char* s5 = "panam";
int dl;
int d2;
int d3;
int d4;
dl = strspn (si, s2);
d2 = strspn (si, s3);
d3 = strcspn (si, s4);
d4 = strcspn (si, s5);
printf ("\n%d", dl);
printf ("\n%d", d2);
printf ("\n%d", d3);
printf ("\n%d", d4);
}

23. What would he printed from the following program block?

{
char* w = "BOOBOO";
printf ("%s\n", "DOO");
printf ("%s\n", "DICK" + 2);
printf ("%s\n", "DOOBOO" +3);
printf ("%c\n", w(4]);
printf ("%s\n", w+4);

continued

10 Section 11.12 Practice Sets

w++;
w++;
printf ("%s\n",w);
printf ("%c\n", *(w+l));

>

24. What would be printed from the following program block?

{
char* a[5] =

{"GOOD", "BAD", "UGLY", "WICKED", "NICE"};
printf ("%s\n",
printf ("%s\n", *(a + 2));
printf ("%c\n", *(a[2] + 2));
printf ("%s\n",
printf ("%s\n",
printf ("%s\n",
printf ("%c\n", *(a[3] +2));
printf ("%c\n", *(*(a+4)+3));

a[0]);

a[3]);
a[2]);
a[4]);

>

25. What would he printed from the following program block?

{
char c[] = "programming";
char* p;
int
for (p = &c[5]; p >= &c [0];

printf("%c", *p);
printf ("\n");
for (p = c+5, i=0; p >= c; p—,i++)

printf("%c", *(p - i));

i?
P—)

>

Problems
I - h,1. a ^unction t^iat accepts a string (a pointer to a character) and

the left
1 C 3St 1 araCttr ky moving the null character one position to

27’
deletes'the ^ l° “ ^
deleted |^UI?Cti°n that accePts a string (a pointer to a character) and
deletes all the trailing spaces at the end of the string.

29' Seŝ llThe 'leadl^spaceT15 “^8 (“ P°inter *° 3 and

1

Chapter 11 Strings /41

30. Write a (unction that returns the number of times the character is found
in a string. I he (unction has two parameters. The first parameter is a
pointer to a string. The second parameter is the character to he counted .

31. Write a function that inserts a string into another string at a specified
position. It returns a positive number if it is successful or zero if it has
any problems, such as an insertion location greater than the length of the
receiving string. The first parameter is the receiving string, the second
parameter is the string to be inserted , and the third parameter is the
insertion (index) position in the first string.

32. Write a function that, given a string, a width, and an empty string for
output, centers the string in the output area. The function is to return 1
il the formatting is successful and 0 if any errors, such as string length
greater than width , are found.

33. Write a (unction called newStrCpy that does the same job as strep} . The
declaration (or your function is to be the same as the library function.

34. Write a function called newStrCat that does the same job as strccit . The
declaration for your function is to be the same as the library' function.

35. Write a function called newStrCmp that does the same job as stremp. The
declaration for your function is to he the same as the library function.

36. A string is a palindrome if it can be read forward and backward with the
same meaning. Capitalization and spacing are ignored , l or example,
anna and go clog are palindromes. Write a function that accepts a string
and returns true if the string is a palindrome and false il it is not. Test
your function with the following two palindromes and at least one case
that is not a palindrome:

Madam, I’m Adam
Able was I ere I saw Elba

more than simply test for correctly
common punctuation. For example, a

one space. W rite a program that reads a

37. Todays spelling checkers do much
spelled words. They also verify
period must be followed by only
text file and removes any extra spaces after a period, comma, semicolon,
or colon. Write the corrected text to a new file.

Your program is to read the data using fgets and parse the strings

using strtok . Print your test data before and after they are run through
your program.

Practice Sets

Projects
38. Write a C program that converts a string representing a number in

Roman numeral form to decimal form. The symbols used in the Roman
numeral system and their equivalents are given below.

1I
5V

10X
50L

1 0 0C
500D

1 0 0 0M

For example, the following are Roman numbers: XII (12) CII (102); XL
(40). The rules for converting a Roman number to a decimal number are

as follows:
a. Set the value of the decimal number to zero.
b. Scan the string containing the Roman character from left to right. If

the character is not one of the symbols in the numeral symbol set, the
program must print an error message and terminate. Otherwise, con-
tinue with the following steps. (Note that there is no equivalent to

zero in the Roman numerals.)
If the next character is a null character (if the current character is

the last character), add the value of the current character to the

decimal value.
II the value of the current character is greater than or equal to the
value of the next character, add the value of the current character
to the decimal value.
II the value ol the current character is less than the next character,

subtract the value ol the current character from the decimal value.

Solve this project using parallel arrays. Do not solve it using a switch
statement.

39. Rework Project 38 to convert a decimal number to a Roman numeral.

» l ftC S'mu^ates the search-and-replace operation in a text

e i or. e program is to have only three function calls in main. The first
unction prompts the user to type a string of less than 80 characters. It
un prompts t e user to type the search substring of 10 or fewer charac-

ters. Finally, it prompts the
fewer characters.

to type the replace substring ot 10 oruser

string. Theoretically » h° °ttUrrtnLes are found. 't returns the original
y’ ' new stnng could be 800 characters long

Chapter 11 Strings 743

(80 identical characters replaced by 10 characters each). Your function
must he able to handle overflow by using the realloc function to extend
the new string when necessary. (Start with
ters and extend by 80 as necessary.) The search-and-replace function
returns the address ot the new string.

Alter the search-and-replace function returns, a print function prints
the resulting string as a series of 80 character lines. It performs word-
wrap. I hat is, a line can end only at a space. If there is no space in 80
characters, then print 79 characters and a hyphen, and continue on the
next line.

Write each called function using good structured programming tech -
niques. It is expected to call subfunctions as necessary.

Run the program at least three times:

a. First , run it with no substitutions in the original input.
b. Second, run it with two or more substitutions.
c. Finally, run it with substitutions that cause the output to be at least

three lines, one of which requires a hyphen.
41. Write a program that "speaks" pig-latin. Words in pig-latin are taken

from English. To form a word in pig-latin, the first letter of the English
word beginning with a consonant is removed and added at the end of the
word, adding the letters ay after the moved consonant. Words that begin
with a vowel are simply appended with ay.Thus, in pig-latin, pig-latin is
igpay-atinlay.

Your program will read a sentence at a time using fgets. It is to parse
the words into strings. As words are parsed, they are to be converted to
pig-latin and printed.

output string of 80 charac-an

42. Write a program that provides antonyms to common words. An antonym
is a word with the opposite meaning. For example, the antonym of happy
is sad .

The data structure is to he patterned after the Morse code problem
in Section 1 1.7. Given a word, the program is to look for the word on
both sides of the structure and , if found , report the antonym. If the word
is not found, the program is to display an appropriate message.

The program is to use an interactive user interface. The words are to

he read from a dictionary file. Use your dictionary to provide at least 30
antonyms, including at least one from each letter in the alphabet.

Test your program by finding the antonyms for the first word, last
word, and a word somewhere in the middle on both sides of the struc-

. Include in your test data at least three words that are not found ,
less than the first word on the left side, one in the middle some-

where, and one greater than the last word on the right side.
43. The Morse code program in this chapter is a public example of a crypto-

graphic system. We can apply the same techniques to encoding and
decoding any message. For example, we can substitute the letter Z for the

ture
one

744 Section 11.12 Practice Sets

letter A, the letter Y for the letter B , and so forth, to create the following
simple encoded message:

NZWZN, R ZN ZWZN
MADAM, I AM ADAM

Write a program that encodes and decodes messages using any user-
pnlied code. To make it more difficult to read, include spaces and the

punctuation characters in the code. The code is to be read from
su
common
a text file to build the encode/decode array. The user is then given a menu
of choices to encode, decode, or enter a new code from the keyboard.

Test your program with the following code and message and with the
plete alphabet entered in its encoded sequence so that it prints out

in alphabetical order:
com

ABCDEFGHIJKLMNOPQRSTUVWXYZ .,?!;
?Q.W,EMRNTBXYUV!ICO PZA;SDLFKGJH

Message

WNWLSVPLM, LN A

44. Write a program that parses a text file into words and counts the number
of occurrences of each word. Allow for up to 100 different words. .After
the list has been built, sort and print it .

45. Modify the program you wrote in Project 44 to eliminate common words
such as the, a, an, and , for, and of.You may add other common words to

the list.

Chapter 12
Enumerated,Structure,

and Union Types
We have already discussed three of the six derived types: functions in
Chapter 4, arrays in Chapter 8, and pointers in Chapter 9. In this chapter,
discuss the three remaining derived types: enumerated, structure, and union.
We also discuss a very useful construct, the type definition. The derived types
are shown in Figure 12- 1.

we

iDerived
Types

i i iFunction
Type

Array
Type

Pointer
Type

Structure
Type

Union
Type

Enumerated
Type

Chapter 4 Chapter 8 Chapter 9

FIGURE 12-1 Derived Types

Objectives
To introduce the structure, union, and enumerated types

To use the type definition statement in programs
To use enumerated types, including anonymous types, in programs
To create and use structures in programs

(J To be able to use unions in programs
To understand the software engineering concept of coupling and to be able
to evaluate coupling between functions.

746 Section 12.2 Enumerated Types

12.1 The Type Definition (typedef)
Before discussing these derived types, lets discuss a C declaration that
applies to all of them—the type definition.

A type definition, typedef , gives
then he used anywhere a type is permitted. The format for the

to a data type by creatinga name a new
type that can
type definition is shown in Figure 12-2.

We can use the type definition with any type. For example, we can rede
line int to INTEGER with the statement shown below, although we \voul<
never recommend this.

typedef int INTEGER;

Note that the typedef identifier is traditionally coded in uppercase. Thi
alerts the reader that there is something unusual about the type. We sawth
previously with defined constants in Chapter 2. Simple style standards sue
as this make it much easier to follow a program.

Any standard
or derived type

Traditionally
uppercase

IDENTIFIER;typedef type

keyword

FIGURE 12-2 Type-definition Format

One of the more common uses of the type definition is with complex d
Iarations. To demonstrate the concept, let’s see how we can declare a rat

simple construct, an array of pointers to strings (a ragged array). Withoi
type definition, we must define the array as shown below.

char* stringPtrAry[20];

We can simplify the declaration by using a type definition to creal

string type and then defining the array using the new type as shown belov

typedef char* STRING;
STRING stringPtrAry[20];

12.2 Enumerated Types
I he enumerated type is a user-defined type based
type. In an enumerated type, each integer value is given an identifier c

the standard inion

Chapter 12 Enumerated, Structure, and Union Types / 47

an enumeration constant. We can thus use the enumerated constants as
symbolic names, which makes our programs much more readable.

Recall from Chapter 2 that a type is a set of values and a set of operations
that can be applied on
l or example, the standard type int has an identifier (int), a set of values
(-oo. . . +°°), and a set ol operations (such as add and multiply). While the sys-
tem defines the names, values, and operations for standard types, we must
define them for types we create.

those values. Each type also has an identifier or name.

l

Declaring an Enumerated Type
Io declare an enumerated type, we must declare its identifier and its values.
Because it is derived from the integer type, its operations are the same as lor
integers. The syntax lor declaring an enumerated type is:s

s
h enum typeName {identifier list};

The keyword, enum, is followed by an identifier and a set ol enumeration con-
stants enclosed in a set of braces. The statement is terminated with a semico-
lon. The enumeration identifiers arc also known as an enumeration list.

Each enumeration identifier is assigned an integer value. If we do not
explicitly assign the values, the compiler assigns the first identifier the value
0, the second identifier the value 1 , the third identifier the value 2, and so on
until all of the identifiers have a value. For example, consider an enumerated
type for colors as defined in the next statement. Note that for enumeration
identifiers, we use uppercase alphabetic characters.

enum color {RED, BLUE, GREEN, WHITE};

The color type has four and only four possible values. The range ol the val-
ues is 0 . . 3, with the identifier red representing the value 0, blue the
value 1 , green the value 2, and white the value 3.

Once we have declared an enumerated type, we can create variables from
it just as we can create variables from the standard types. In fact, C allows
the enumerated constants, or variables that hold enumerated constants, to he
used anywhere that integers can he used. The following example defines
three variables for our color type.

ec-
ler

t a

e a
/.

enum color productColor;
enum color skyColor;
enum color flagColor;

1 . When the defined type directly translates into a standard type, as with the enumerated type,

the standard types may be automatically defined.
eger
died

8 Section 12.2 Enumerated Types

Operations on Enumerated Types
In this section we discuss storing values in enumerated types and manipulat-
ing them.

Assigning Values to Enumerated Types
After an enumerated variable lias been declared , we can store values in it.
Remember, however, that an enumerated variable can hold only declared val-

for the type. The following example defines a color variable and uses it in

several statements.
ues

enum color x;
enum color y;
enum color z;

x = BLUE;
y = WHITE;
z = PURPLE; // Error. There is no purple.

Similarly, once a variable has been defined and assigned a value, we can

store its value in another variable of the same type. Given the previous exam-

ple, the following statements are valid.

x = y;
z y ;

Comparing Enumerated Types
Enumerated types can be compared using the comparison operators. For

example, given two color variables, we can compare them for equal, greater

than, or less than. We can also compare them to enumeration identiliers.
I hese comparisons are shown in the following example.

if (colorl == color2)

if (colorl == BLUE)

Another natural use
Because enumerated types
in the case expressions. For example, consider
months of the year.

ol enumerated types is with the switch statement,

are derived from integer types, they may be used
enumerated type lor thean

enum months
{JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC};

enum months dateMonth;

T

Chapter 12 Enumerated, Structure, and Union Types / 49

(» iven the months type, we can use it in a switch statement as shown in
the next example.

switch (dateMonth)
{
case JAN: .

break;
case FEB: .

break;

> // switch

Other Operations on Enumerated Types
In general, any operation defined for integers can he used with enumerated
types. We can add, subtract, multiply, and divide enumerated types. We can
also pass them to standard and application functions.

Be aware, however, that the result may not be in the defined set , which
may cause the program to fail. C does not ensure that the values stored in an
enumerated variable are valid.

Enumeration Type Conversion
Enumerated types can he implicitly and explicitly cast. The compiler implic-
itly casts an enumerated type to an integer as required. However, when we
implicitly cast an integer to an enumerated type we get either a warning or an
error depending on the compiler. The following example demonstrates
implicit casts.

int
enum color y;
x = BLUE;
y = 2;

x;

// Valid, x contains 1
// Compiler warning

We can explicitly cast an integer to an enumerated type without problems.
To assign y the value blue in the previous example, we could use the
following code.

enum color y;
y = (enum color)2; // Valid, y contains blue

Initializing Enumerated Constants
While the compiler automatically assigns values to enumerated types starting
with 0, we can override it and assign our own values. For example, to set up

enumerated type for the months of the year, we could use the following
declaration.
an

750 Section 12.2 Enumeroted Types

enum months
{JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC};

enum months dateMonth;

While this declaration works, it could be confusing because JAN is
igned the value 0. FEB the value 1 , and so forth until DEC, which is 11. Toassi

make JAN start with 1 , we could use the following declaration.

1, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC};

enum months {JAN =

Note that we don’t have to assign initializers to every value. If we omit the
initializers, the compiler assigns the next value by adding 1. To initialize the
months, therefore, we simply assign the value for JAN. The rest will be auto-
matically assigned by the compiler.

C also allows us to assign duplicate values to identifiers. For example, we
could assign similar colors identical values as shown in the next example.

enum mycolor {RED, ROSE = 0, CRIMSON = 0, SCARLET = 0,
AQUA = 1, NAVY = 1 ,BLUE,

GREEN, JADE = 2, WHITE};

To emphasize the point, even though RED in Color (see page 747) has
the same value as RED in myColor, the two types are different and cannot be
used together unless one of them is cast.

Anonymous Enumeration: Constants
II we create an enumerated type without a name, it is an anonymous enumer-
ated type. Because the identifiers in enumerated types are constants, enumer-
ated types are a convenient way to declare constants. For example, to assign
names to common punctuation characters, we would use the following code.

enum {space = ', comma-',', colon = ':' . . . > ?

As another example, to declare the constants ON and OFF, we could use the
lollowing code. Anonymous enumeration cannot he used to declare a variable.

enum {OFF, ON};

I he identifier OFF is a constant with a value of 0; ON is a value ol 1. As an
aside, we coded OFF first because we wanted it to have a connotation ol false.
Similarly, ON has a connotation of true.

II you have cable TV,

the channels. Fo help us keep track of
you know that the cable supplier is always changer

favorite channels, therefore, we
»)

our

''

Chapter 12 Enumerated, Structure, and Union Types 751

wrote a program that prints out the cable television channels for our local
cable provider. Since the channels
names in an enumerated type makes it easy to change them and to follow the
code. The implementation is seen in Program 12-1.

changing continually, using theirare

PROGRAM 12-1 Print Cable TV Stations
/* Print selected TV stations for our cable TV system.

Written by:
Date:

1
2
3
4 */

#include <stdio.h>5
6

int main (void)7
8 {

// Local Declarations
enum TV {fox = 2, nbc = 4, cbs = 5,

abc = 11, hbo = 15, show = 17,
max = 31, espn = 39, cnn = 51};

9
10
11
1 2
13

// Statements
printf("Here are my favorite cable stations:\n");

printf(" ABC: \t%2d\n", abc);
printf(" CBS: \t%2d\n", cbs);
printf(" CNN: \t%2d\n", cnn);
printf(" ESPN:\t%2d\n", espn);
printf(" Fox: \t%2d\n", fox);
printf(" HBO: \t%2d\n", hbo);

printf(" Max:

printf(M NBC:

printf(" Show:\t%2d\nM , show);
printf("End of my favorite stations. \n");

return 0;
} // main

14
15
16
17
18
19
20
21

\t%2d\n", max);
\t%2d\n", nbc);

22
23
24
25
26
27

Results:
Here are my favorite cable stations:

ABC:
CBS:
CNN:
ESPN:
Fox:
HBO:
Max:
NBC:
Show:

End of my

1 1
5
51
39
2

15
31
4
17
favorite stations.

752 Section 12.3 Structure

Input/Output Operations
Because enumerated types are derived types, they cannot be read and written
using the formatted input/output functions. When we read an enumerated
type, we must read it as an integer. When we write it , it displays as an integer.
When necessary, C implicitly casts variables as described in "Enumeration
Type Conversion" earlier in the chapter.

The following example shows how we would read and write two months.

1, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC};

enum months {JAN =

enum months monthl;
enum months month2;

// Input 1 - 1 2
// Prints 1 - 1 2

scant ("%d %d", &monthl, &month2);
printf("%d %d", monthl, month2);

Don’t be confused about strings and enumerated types. "Jan" is a string
made of three characters;JAN as defined in the previous code example, is an
enumerated type (identifier) which has the integer value 1.

12.3 Structure
Today’s modern applications require complex data structures to support
them. For example, the structures needed to support the graphical user inter-
lace found in computer workstation windows obviously are very complex. So
complex, in fact, that they could not be built using the relatively primitive
data types we have seen so far. A much more powerful capability is needed.

I his is the role of the structure.
A structure is a collection of related elements, possibly of different types,

having a single name. For example, consider the file structure you have been
using ever since you wrote your first program that used files. The file table is
a type-defined structure, FILE.

Each element in a structure is called a field. A field is the smallest ele-
ment ol named data that has meaning. It has many of the characteristics of
the variables you have been using in your programs. It has a type, and it exists
in memory. It can he assigned values, which in turn can he accessed lor selec-
tion or manipulation. A field clillers Irom a variable primarily in that it is part
ol a structure.

We have studied another derived data type that
ol data, the array. I he difference between

hold multiple pieces
array and a structure is that all

can
an

Chapter 12 Enumerated, Structure, and Union Types 753

elements in an array must be of the same type, while the elements in a struc-
ture can be of the same or different types.

Figure 12-3 contains two examples of structures. T he first example,
fraction, has two fields, both of which are integers. The second example,
student, has three fields, made up of two different types.

numerator denominator

fraction
structure structure

gradePointsid name
student

FIGURE 12-3 Structure Examples

Another way to look at a structure is as a pattern or outline that can be
applied to data to extract individual parts. It allows us to refer to a collection
of data using a single name and, at the same time, to refer to the individual
components through their names. By collecting all the attributes of an object
in one structure, we simplify our programs and make them more readable.

One design caution, however. The data in a structure should all be
related to one object. In Figure 12-3, the integers in the fraction both belong
to the same fraction, and the data in the second example all relate to one stu-
dent. Do not combine unrelated data for programming expediency. That
would not be good structured programming.

Elements in a structure can be of the same or different types. However, all
elements in the structure should be logically related.

Structure Type Declaration
Like all data types, structures must be declared and defined. C has two ways

to declare a structure: tagged structures and type-defined structures.

Tagged Structure
The first way to define a structure is to use a tagged structure. A tagged

structure can be used to define variables, parameters, and return types. The

format is shown in Figure 12-4.

754 Section 12.3 Structure

struct STUDENTstruct TAG
{{
char id[10];
char name[26];
int gradePts;

> ; // STUDENT

field list

} ;

ExampleFormat

FIGURE 12-4 Tagged Structure Format

A tagged structure starts with the keyword struct. The second element in
the declaration is the tag. The tag is the identifier for the structure, and it
allows us to use it for other purposes, such as variables and parameters. If we
conclude the structure with a semicolon after the closing brace, no variables
are defined. In this case, the structure is simply a type template with no asso-
ciated storage.

Type Declaration with typedef
The more powerful way to declare a structure is to use a type definition,
typedef.The typedef format is shown in Figure 12-S.

typedef struct typedef struct
{ {

char id[10];
char name[26];
int gradePts;
} STUDENT;

field list

} TYPE;

Format Example

FIGURE 1 2-5 Structure Declaration with typedef

The type-defined structure differs from the tagged declaration in two
ways. I irst, the keyword, typedef, is added to the beginning of the definition.
Second, an identifier is required at the end of the block; the identifier is the
type definition name.

Variable Declaration
After a structure has been declared,
ally, we declare the type in the global area of a program to make it visible to all
functions. The variables, on the other hand
lions, either in the header

declare variables using it. Gener-vve can

usually declared in the tunc*, are
or in the local declarations section. Figure 12-6

demonstrates the declaration ot a structure type and variables that use it.

Chapter 12 Enumerated, Structure, and Union Types 755

// Global Type Declarations
struct STUDENT

// Global Type Declarations
typedef struct

{ {
char id[10];
char name[26];
int gradePts;

char id[10];
char name[26];
int gradePts;

> STUDENT;} ?

// Local Declarations
struct STUDENT aStudent;

// Local Declarations
STUDENT aStudent;

FIGURE 1 2-6 Structure Declaration Format and Example

Initialization
We can initialize a structure. The rules for structure initialization are similar
to the rules for array initialization. The initializers are enclosed in braces and
separated by commas. They must match their corresponding types in the
structure definition. Finally, when we use a nested structure (see "Nested
Structures" later in this section), the nested initializers must be enclosed in
their own set ol braces.

Figure 12-7 shows two examples of structure initialization. The first
example shows an initializer for each field. Note how they are mapped to the
structure in sequence. The second example demonstrates what happens
when not all fields are initialized. As we saw with arrays, when one or more

initializers are missing, the structure elements will be assigned null values,
for integers and floating-point numbers, and null (' \0 ') for characters

and strings.
zero

typedef struct
{
int x;
int y;
float t;
char u;
} SAMPLE;

SAMPLE sam2 = { 7. 3 } ;SAMPLE sam1 = { 2, 5, 3.2, 'A' } ; filled with
- nun 0°'l

3.2 i m \0 |0.0752 t ut yu XyX filled with
float zero

FIGURE 12-7 Initializing Structures

756 Section 12.3 Structure

Accessing Structures
Now that wc have discussed how to declare and initialize structures, it’s time
to see how we can use them in our programs. We will first describe how to

individual components of a structure and then examine the assign-
ment of whole structures. After looking at how pointers are used with struc-
tures, we conclude with a program that uses structures.
access

Referencing Individual Fields
Each field in a structure can he accessed and manipulated using expressions
and operators. Anything we can do with an individual variable can be clone
with a structure field. The only problem is to identify the individual fields
are interested in.

To refer to a field in a structure we need to refer to both the structure and
the field. C uses a hierarchical naming convention that first uses the struc-
ture variable-identifier and then the field identifier. The structure variable-
identifier is separated from the field identifier by a dot . The dot is the direct
selection operator, which is a postfix operator at precedence 16 in the prece-
dence table.

Using the structure student in “Type Declaration with typcdef," we
would refer to the individual components as shown below.

we

aStudent.id
aStudent.name
aStudent.gradePoints

Figure 12-8 contains another example using the structure SAMPLE,

defined in Figure 12-7. With this structure, we can use a selection expression
to evaluate the sam2 field, u, and if it is an A, add the two integer fields and
store the result in the first . I bis code is shown below.

if (sam2.u == 'A')
sam2.x += sam2.y;

FIGURE 1 2-8 Structure Direct Selection Operator

We can also read data into and write data from structure members just as
we can from individual variables. For pie, the value for the fields of tinexam

Chapter 12 Enumerated, Structure, and Union Types 757

sample structure can be read from the keyboard and placed in saml using the
following scanf statement. Note that the address operator is at the beginning
of the variable structure identifier.

scanf("%d %d %f %c",
&saml.x, &saml.y, &saml.t, &saml.u);

Precedence of Direct Selection Operator
As we saw in the previous section, the direct-selection operator (.) is a postfix
expression that has a priority of 16. Let's look at several examples to see how
it works.

hirst, let's look at examples in which all operators have a priority of 16. In
this case, the expressions are evaluated using left to right associativity as
shown in the following examples.

typedef struct
{
int total;
int ary[10];
} DATA;

DATA sales;
sales.total++;
fun(sales.total);
fun(sales.ary[3));

// interpreted as (sales.total)++
// sales.total passed to fun
// (sales.ary)[3] passed to fun

Now let's examine cases in which the direct selection operator is used
with an operator of lesser precedence. In these cases, the direct selection is
applied first.

// interpreted as ++(sales.total)
// &(sales.total) passed to fun

++sales.total;
fun(&sales.total);

EXAMPLE 12- 1 Multiply Fractions
As an example of a function that uses structures and direct selection, let's
look at a program that multiplies two fractions and prints the result. The
structure for this example was shown in Figure 12-3. The code is shown in

Program 12-2.

PROGRAM 1 2-2 Multiply Fractions
structures to simulate the/* This program uses

multiplication of fractions.
1
2

Written by:

Date:
3
4

*/5
continuei

58 Section 12.3 Structurer

PROGRAM 12-2 Multiply Fractions (continued)

6 iinclude <stdio.h>
7

// Global Declarations
typedef struct

8
9

{10
int numerator;
int denominator;

> FRACTION;

1 1
12
13
14

int main (void)15
16 {

// Local Declarations
FRACTION frl;
FRACTION fr2;
FRACTION res;

17
18
19
20
21

// Statements
printf("Key first fraction in the form of x/y: ");
scanf ("%d /%d", &frl.numerator, &frl.denominator);
printf("Key second fraction in the form of x/y: ");
scanf ("%d /%d", &fr2.numerator, &fr2.denominator);

22
23
24
25
26
27

* fr2.numerator;
res.denominator = fr1.denominator * fr2.denominator;

= frl.numerator28 res.numerator
29
30

printf("\nThe result of %d/%d * %d/%d is %d/%d",
frl.numerator, fr1.denominator,
fr2.numerator, fr2.denominator,
res.numerator, res.denominator);

31
32
33
34
35 return 0;

} // main36

Results:
Key first fraction in the form of x/y:
Key second fraction in the form of x/y:

2/6
7/4

The result of 2/6 * 7/4 is 14/24

Program 1 2-2 Analysis Although this i very simple program, several points are of interest.
we have coded the typedef in the global area

—' we have included statements here other than preprocessor
directives. Even though this program has no subfunction, it is customary to put

is a

before main. This is1. Note that
the first time that

~1
Chapter 12 Enumerated, Structure, and Union Types 759

the typed definition statements there so that they are in scope for the entire
compilation unit.

2. Note that the name of the typed definition is all UPPERCASE. This is another
C style tradition. It warns the reader that there is something special about this
type, in this case that it is a typed definition.

3. Now examine the scanf statements. Since we need a pointer for scanf, we must
the address operator as well as the direct selection operator. As you can see,
have not used the parentheses around the field name. The reason is that the

direct selection operator (.) h
(1 5). In other words, the expression

use
we

higher priority (16) than the address operatoras a

&frl.numerator

is interpreted by the compiler as

&(fr.numerator)

which is exactly what we need.

Operations on Structures
I he structure is an entity that can be treated as a whole. However, only one

operation, assignment is allowed on the structure itself. That is, a structure

can only he copied to another structure of the same type using the assign-

ment operator.
Rather than assign individual members when we want to copy one

structure to another, as we did earlier, we can simply assign one to the other.
Figure 12-9 copies saml to sam2

Before

MU[El 3-2 | A37
tt uuyX

samlsam2
saml; jsam2

3.2 im32 | [~Al 5252
tt uyXuyX

samlsam2
After

FIGURE 12-9 Copying a Structure

'60 Section 12.3 Structure

Slack Bytes
It is interesting to examine why we cannot compare two structures. Sometimes hard-

requires that certain data, such as integers and floating-point numbers, be
aligned on a word boundary in memory. When we group data in a structure, the
arrangement of the data may require that slack bytes be inserted to maintain these
boundary requirements. For example, consider the structure shown below. In thi.
structure we assume that a floating-point number is stored in a word that requires
6 bytes and must be on an address evenly divisible by 6, such as 24 or 30. We also
assume that integers are stored in 2-byte words that require an address evenly divisi-
ble by 2. The 25-byte string at the beginning of the structure forces 5 slack bytes
between the string and the float. Then the character after the float forces a slack byte
to align the integer at the end of the structure.

ware

s

Vord Boundary
Divisible by 6 .

Vord Boundary
Divisible by 2

; slack 1 float ch jslack ; int
24 25

"

29 30 35 36 37
’

38 39
string

0

Since these extra bytes are beyond the control of the program,we cannot guarantee
what their values will be. Therefore, if we were to compare two structures and their
first components were equal, the inserted slack bytes could cause an erroneous com-
pare result, either high or low, if they weren't equal. C prevents this problem by not
allowing selection statements with structures. Of course, if we really need to compare
structures, we can simply write a structure compare function of our own that would
compare the individual fields in the structure.

Pointer To Structures
Structures, like other types, can also be accessed through pointers. In fact,
this is one of the most common methods used to reference structures. For
example, le ts use our SAMPLE structure with pointers (Figure 12- 10).

(*ptr).u(*ptr) . x jtypedef struct sam1
{ V
int
int
float t;
char u;
} SAMPLE;

x;
t UXy;

(*ptr).t)(*ptr).y

uSAMPLE
SAMPLE* ptr;

ptr = fitsaml;

saml;
ptr

saml . x

Two Ways to Reference x

FIGURE 12-10 Pointers to Structures

Chapter 12 Enumerated, Structure, and Union Types 761

Ihe first thing we need to do is define a pointer for the structure as
shown below.

SAMPLE* ptr;

We now assign the address of saml to the pointer using the address oper-
ator (&) as we would with any other pointer.

ptr = &saml;

Now we can access the structure itself and all the members using the
pointer, ptr. I he structure itself can be accessed like any object using the
indirection operator (*).

*ptr // Refers to whole structure

Since the pointer contains the address ol the beginning of the structure,
no longer need to use the structure name with the direct selection opera-

tor. I he pointer takes its place. Phe reference to each of the sample

hers is shown below and in Figure 12- 10.

we
mem-

(*ptr).x (*ptr).y (*ptr).t (*ptr).u

Note the parentheses in the above expressions. They are absolutely
necessary', and to omit them is a very common mistake. The reason they are

needed is that the precedence priority of the direct selection operator (.)

is higher than the indirection operator (*). If we forget to put the paren-

theses, C applies the dot operator first and the asterisk operator next. In

other words,

*ptr.x is interpreted as *(ptr.x)

which is wrong. The expression * (p t r.x) means that we have a completely
different (and undefined) structure called ptr that contains a member, x,
which must be a pointer. Since this is not the case, you will get a compile
error. Figure 12- 11 shows how this error is interpreted.

The correct notation, (*p t r) .x, first resolves the primary expression

(*p t r) and then uses the pointer value to access the member, x.

Indirect Selection Operator
Fortunately, another operator— indirect selection—eliminates the problems

wi th pointers to structures. The indirect selection operator is at the same level

in the Precedence Table (see inside front cover) as the direct selection operator.

pointerName->fie1dName(*pointerName).fieldName

762 Section 12.3 Structure

ut

The Correct Reference

The Wrong Way to Reference the Component

FIGURE 12-11 Interpretation of Invalid Pointer Use

The token for the indirect selection operator is an arrow formed by the minus
sign and the greater than symbol (->). It is placed immediately after the pointer
identifier and before the member to he referenced. We use this operator to refer
to the members of our previously defined structure, saml, in Figure 12- 12.

typedef struct saml

u
int x;
int y;
float t;
char u;
} SAMPLE;

- L
ty

ptr

saml ptr -> xSAMPLE saml;
SAMPLE* ptr;

ptr = Srsaml;

. X

Indirect SelectionDirect Selection Indirection
Three Ways to Reference the Field x

FIGURE I2-12 Indirect Selection Operator

Example: Clock Structure
Program 12-3 simulates a digital clock that shows time. A structure is defined
to represent the three components of time: hour, minute, and second. Two
functions are used. Ihe first function, called increment, simulates the passage
of the time. T he second function, called show, shows the time at any moment.

PROGRAM 12-3 Clock Simulation with Pointers
1 /* This program uses a structure to simulate the time.

Written by:2

continue

Chapter 12 Enumerated, Structure, and Union Types 763

PROGRAM 1 2-3 Clock Simulation with Pointers (continued)

Date:3
*/4
#include <stdio.h>5

6
7 typedef struct
8 {
9 int hr;

int min;
int sec;

> CLOCK;

10
11
12
13

// Function Declaration
void increment (CLOCK* clock);

(CLOCK* clock);

14
15

void show16
17

int main (void)18
19 {

// Local Declaration
CLOCK clock = {14, 38, 56};

20
2 1
22

// Statements
for(int i = 0; i < 6; ++i)

23
24
25 {

increment (&clock);
show (&clock);
} // for

return 0;
} // main

26
27
28
29
30
31

increment =============
This function accepts a pointer to clock and

increments the time by one second,

previous clock setting

clock incremented by one second.

/* =====32 =====:

33
34
35 Pre

Post36
*/37
void increment (CLOCK* clock)38

39 {
// Statements
(clock->sec)++;
if (clock->sec = = 60)

40
41
42

{43
clock->sec = 0;
(clock->min)++;
if (clock->min = = 60)

44
45
46

continued

764 Section 12.3 Structure

PROGRAM 12-3 Clock Simulation with Pointers (continued)

{47
clock->min = 0;
(clock->hr)++;
if (clock->hr = = 24)

clock->hr = 0;

> // if 60 min

> // if 60 sec
return;
// increment

48
49
50
51
52
53
54
55 >
56

Show the current time in military form,
clock time

Post clock time displayed

57 :====
58
59 Pre
60

*/61
void show (CLOCK* clock)62

63 {
// Statements

printf("%02d:%02d:%02d\n" /

clock->hr, clock->min, clock->sec);

64
65
6 6
67 return;

} // show6 8

Results:
14:38:57
14:38:58
14:38:59
14:39:00
14:39:01
14:39:02

Complex Structures
As mentioned earlier, structures were designed to deal with complex problems.
I he limitations on structures are not on the structures themselves but on the
imagination ol the soitware engineers who solve the problems. Structures
within structures (nested structures), arrays within structures, and arrays ol
structures are all common. We deal with the first two here and arrays of struc-
tures in the next section.

Chapter 12 Enumerated, Structure, and Union Types 765

Nested Structures
We can have structures as members of a structure. When a structure includes
another structure, it is a nested structure. There is no limit to the number of
structures that can be nested, but we seldom go beyond three.

For example, we can have a structure called stamp that stores the date
and the time. The date is in turn a structure that stores the month, day, and
year. I he time is also a structure that stores the hour, minute, and second.
This structure design is shown in Figure 12-13.

stamp.date.month stamp.time.sec

stamp

month day hour min secyear

date time

stamp.date stamp.time

FIGURE 12-13 Nested Structure

There are two concerns with nested structures: declaring them and refer-
encing them.

Declaring Nested Structures
Although it is possible to declare a nested structure with one declaration, it is

not recommended. It is far simpler and much easier to follow the structure if
each structure is declared separately and then grouped in the high-level
structure.

When we declare the structures separately, the most important point
must remember is that nesting must be done from inside out—that is, from
the lowest level to the most inclusive level. In other words, we must declare
the innermost structure first, then the next level , working upward toward the

outer, most inclusive structure.
Consider the time stamp structure seen in Figure 12-13. The inner two

structures, date and time, must be declared before the outside structure,

stamp, is declared. We show the declaration of stamp and a variable that uses

it in the following example.

we

766 Section 12.3 Structure

// Type Declaration
typedef struct

{
int month;
int day;
int year;
> DATE;

typedef struct
{
int hour;
int min;
int sec;
> TIME;

typedef struct
{
DATE date;
TIME time;
> STAMP;

// Variable Declaration
STAMP stamp;

It is possible to nest the same structure type more than once in a dec-
laration. For example, consider a structure that contains start and end
times for a job. Using the STAMP structure, we create a new declaration as
shown below.

// Type Declaration
typedef struct

{

STAMP startTime;
STAMP endTime;
> JOB;

// Variable Declaration
JOB job;

Jtif^nL^7dWtr!a„felColZ7ructuZ se^ytZl
declared ’ T* flcxil),,lty > n working with them. For example, with DATE

to a fun c ' St'l>tlrate tyPe definition , it is possible to pass the date structure
to a funetton w.thout having to pass the rest of the stamp structure.

Referencing Nested Structures
lo access a nested structure,

? of r e f'r e n c” “*
include each level from the highest (stampwe

Chapter 12 Enumerated, Structure, and Union Types 767

stamp
stamp.date
stamp.date.month
stamp.date.day
stamp.date.year
stamp.time
stamp.time.hour
stamp.time.min
stamp.time.sec

job.startTime.time.hour
job.endTime.time.hour

Nested Structure Initialization
Initialization follows the rules mentioned for a simple structure. Each struc-
ture must he initialized completely before proceeding to the next member.
Each structure is enclosed in a set of braces. For example, to initialize stamp,
first we initialize date, then time, separated by a comma. To initialize date,
we provide values lor month, day, and year , each separated by commas. We
can then initialize the members of time. A definition and initialization for
stamp are shown below.

STAMP stamp = {{05, 10, 1936}, {23, 45, 00}};

Structures Containing Arrays

Structures can have one or more arrays as members. The arrays can be
accessed either through indexing or through pointers, as long as they are

properly qualified with the direct selection operator.

Defining Arrays for Structures

As with nested structures, an array may be included within the structure or

mav he declared separately and then included. If it is declared separately, the
declaration must be complete before it can be used in the structure. For

pie, consider the structure that contains the student name, three mid-
term scores, and the final exam score, as shown in Figure 12- 14.exam

Referencing Arrays in Structures
declared the structure, each element will have theRegardless of how

reference. First we refer to the structure, then to the array component.
When we refer to the array, we can use either index or pointer notation. Let

we
same

us look at each in turn.

768 Section 12.3 Structure

// Global Declarations
typedef struct student.midterm^]).name[student

{
char name[26];
int midterm[3];
int final;
} STUDENT ;

// Local Declarations
STUDENT student;

I I I 111-..
midtermname final
student.finalstudent

FIGURE 12-14 Arrays in Structures

I hc index applies only to elements within an array. Therefore, it must fol-
low the identifier of an array. Our student example has two arrays, one of
characters (a string) and the other of midterm scores. Each of these arrays
can be referenced with an index as shown below.

student
student.name
student.name[i]
student.midterm
student.midterm[j]
student.final

We have already seen how to refer to fields in a structure using the indi-
rect selection operator (->). When one structure contains an array, we can

pointer to refer directly to the array elements. For example, given a
pointer to integer, pScores, we could refer to the scores in student as
shown below.

use a

pScores
totalScores = *pScores + *(pScores + 1) + *(pScores + 2);

= student.midterm;

Array Initialization in Structures
I he initialization ol a structure containing an array is simply an extension of
the rules lor structure initialization to include the initialization of the array
Since the array is a separate member, its values must he included in a sepa-
rate set of braces. For example, the student structure
shown below.

be initialized ascan

STUDENT student = {"John Marcus", {92, 80, 70>, 87};

string and the midterm scores artNote that the name is initialized
simply enclosed in a set of braces.

as a

Chapter 12 Enumerated, Structure, and Union Types 769

Structure Containing Pointers
It should not be surprising that a structure
fact, we will see that pointers

use
wanted to use
integer month. We could add
element, but it would be much more memory efficient to
pointer it we had to store a lot of these structures. Given the months of the
year defined as strings, as shown below, we coidd then
correct month.

have pointers as members. Incan
are very common in structures.

The ol pointers can save
the alphabetic month in our stamp structure rather than an

memory. For example, suppose that we

array of nine characters to each structurean
4-byteuse a

a pointer to theuse

char jan[] = "January";
char feb[] = "February";

char dec[] = "December";

lo assign the month May to the structure, we would use the following
statement. Note that we are copying a pointer to a string, not the string
itself.

stamp.date.month = may;

The modified structure is shown in Figure 12- 15. The structure code for
the date structure is shown below. It is important to remember that declaring
a structure does not allocate memory for it. Even when the structure is

defined, however, there is still no memory provided for month until we allo-
cate it using malloc or calloc.

typedef struct
{
char* month;
int day;
int year;
} DATE;

rrrrrrrrrrrrrrrrrq
i i i i i i i i i i i i i i i • ' I
i t i i i i i i i i

stamp

hour minday secyearmonth
timedate

FIGURE 1 2-1 5 Pointers in Structures

Section 12.3 Structure

Array of Structures
In many situations, we need to create an array of structures. To name just
one example, we would use an array of students to work w ith a group of stu-
dents stored in a structure. By putting the data in an array, we can quickly
and easily work with the data, to calculate averages, lor instance.

Let’s create an array to handle the scores for up to 50 students in a class.
Figure 12-16 shows how such an array might look.

stuAry [0]

stuAry [1]

stuAry [2]

stuAry [49]

stuAry

FIGURE 12- 16 Array of Structures

Since a structure is a type, we can create the array just as we would cre-
ate an array of integers. The code is shown below.

STUDENT stuAry[50];

Study this array carefully. Note that it is an array that contains two other
arrays, name and midterm. 1 his is not a multidimensional array. To be a mul-
tidimensional array, each level must have the data type. In this case,

each type is different: the stuAry is STUDENT, while name is character, and
midterm is integer.

lo access the data lor one student, we refer only to the structure name
with an index or a pointer as shown below.

same

stuAry[i] *pStu

lor example, lets write a short segment of code to compute the average
loi the final exam. We use a for loop since wre know the number of students in
the array.

int
float
STUDENT* pStu;
STUDENT* pLastStu;

totScore = 0;
average;

continued

Chapter 12 Enumerated, Structure, and Union Types 77j

pLastStu = stuAry + 49;
for (pStu = stuAry; pStu <= pLastStu; pStu++)

totScore += pStu->final;
average = totScore / 50.0;

However, to access an individual element in one of the students arrays,
such as the second midterm for the filth student, we need to use an index or
pointer for each field as shown below.

stuAry[4].midterm[1]

Io access students’ midterms with pointers, we need one index or pointer
for the array. We also need a second index or pointer for the midterms. The
code to compute the average for each midterm is shown helow. We use a sep-

arate array, midTermAvrg, to store the average for the midterms. In this
example, we use indexes to access the midterms and pointers to access the
students.

midTermAvrg[3];
sum;

float
int
STUDENT* pStu;

STUDENT* pLastStu;
pLastStu
for (int i = 0; i < 3; i++)

= stuAry + 49;

{
sum = 0;
for (pStu = stuAry; pStu <= pLastStu; pStu++)

sum += pStu->midterm[i];
midTermAvrg[i] = sum / 50.0;

> // for i

The Precedence Table (see inside front cover) shows that the index oper-

the direct selection operator, and the indirect selection operator all have
ator,
the same precedence and that the associativity is from left to right. So we do

not need parentheses to total the scores for a midterm.

Insertion Sort Revisited
To demonstrate using structures in arrays, let’s sort an array of students. We

will use the student structure seen in Figure 12-14. Whenever we sort a

need to define the field that controls the sort. This control field
student structure, the key field is the name.structure, we

is usually called a key. In
Program 12-4 show's the code.

our

Ik
' i

772 Section 12.3 Structure

PROGRAM 12-4 Sort Array of Student Structures
/* This program sorts an array of student structures

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <string.h>
#include <stdbool.h>

5
6
7
8

#define NUM STU 59
10

// Global Type Declaration
typedef struct

11
12
13 {

char name[261;
int midterm[3];
int final;

> STUDENT;

14
15
16
17
18

// Function Declarations
void insertionSort (STUDENT list[], int last);

19
20
21

int main (void)22
23 {

// Local Declarations
STUDENT stuAry[NUM_STU] =

24
25
26 {
27 {"Charles, George",

{"Adams, Karin",
{"Nguyen, Tuan",
{"Oh, Bill",
{"Chavez, Maria",
} ; // stuAry

{85, 94, 79}, 93},
{75, 91, 89}, 89},
{87, 88, 89}, 90},
{78, 96, 88}, 91},
{83, 79, 93}, 91}

28
29
30
31
32
33

// Statements
printf("Unsorted data:\n");
for (STUDENT* pStuPtr = stuAry;

pStuPtr < stuAry + NUM_STU;
pStuPtr++)

printf("%-26s %4d %4d %4d %4d\n",
pStuPtr->name,
pStuPtr->midterm[0],
pStuPtr->midterm[1],
pStuPtr->midterm[2],
pStuPtr->final);

34
35
36
37
38
39
40
41
42
43
44

continue

Chapter 12 Enumerated, Structure, and Union Types 113

PROGRAM 12-4 Sort Array of Student Structures (continued)

printf("\n");45
46
47 insertionSort (stuAry, NUM_STU - 1);
48

printf("Sorted data:\n");
for (STUDENT* pStuPtr = stuAry;

pStuPtr < stuAry + NUM_STU;
pStuPtr++)

printf("%-26s %4d %4d %4d %4d\n",
pStuPtr->name,
pStuPtr->midterm[0],
pStuPtr->midterm[1],
pStuPtr->midterm[2],
pStuPtr->final);

49
50
51
52
53
54
55
56
57
58
59 return 0;

// main60 >
61

/* ================== insertionSort ==================
Sort list using Insertion Sort. The list is divided

into sorted and unsorted lists. With each pass, the

first element in unsorted list is inserted into

sorted list.
Pre

62
63
64
65
66

list must contain at least one element

last is index to last element in list

list has been rearranged.

67
68
69 Post

*/70
void insertionSort (STUDENT list[], int last)71

72 {
// Local Declarations

bool
73

located;
STUDENT temp;
STUDENT* pCurrent;

STUDENT* pWalker;
STUDENT* pLast;

74
75
76
77
78
79

// Statements
for (pCurrent = list + 1, pLast = list + last;

pCurrent <= pLast;
pCurrent++)

80
81
82
83

{84
false;

= *pCurrent;
located =
temp

85
86
87

for (pWalker = pCurrent - 1;88
continuec

74 Section 12.3 Structure

PROGRAM 12-4 Sort Array of Student Structures (continued)

pWalker >= list && !located;89
)90

if (strcmp(temp.name, pWalker->name) < 0)91
{92
*(pWalker + 1) = *pWalker;
pWalker—;

> // if

93
94
95

else96
located = true;

*(pWalker + 1) = temp;
> // for pCurrent

return;
> // insertionSort

97
98
99
100
101

===== End of Program =====/ / =========102

Results:
Unsorted data:
Charles, George
Adams, Karin
Nguyen, Tuan
Oh, Bill
Chavez, Maria

93799485
898975 91
908987 88
9196 8 878
91937983

Sorted data:
Adams, Karin
Charles, George
Chavez, Maria
Nguyen, Tuan
Oh, Bill

898975 91
937985 94
919383 79
90898887
918 878 96

Program 1 2 - 4 Analysis This program follows the insertion sort design we studied in Chapter 8 (Program 8-11).
There are only two significant changes: First, all the array handling is done with
pointers, and second, the compare logic was changed to use the strcmp function.

To test the sort, we wrote a small driver that uses an initialized array for its data. To
verify that the sort works, we printed the data before and after the sort process.

Structures and Functions
For structures to be fully useful, we must be able to pass them to function
and return them. A function
three ways:

the members ol a structure mcan access

1. Individual members can be passed to the function.
2. The whole structure can be passed and the function can

bers using pass by value.
access the mem-

Chapter 12 Enumerated, Structure, and Union Types 775

3. I he address of a structure or member can be passed, and the function
the members through indirection and indirect selectioncan access

operators.

Sending Individual Members
Sending individual members to a function is no different from what we have
done since Chapter 4. lo demonstrate the calling sequence, we will use a
simple example to multiply two fractions. The flow is shown in Figure 12- 17.

k fr1

numerator denominatorres.numerator =
multiply(frl.numerator, fr2.numerator)

res.denominator =
multiply(frl.denominator, fr2.denominator);

fr2

numerator denominator

res

numerator denominator

// =============== multiply =====
int multiply (int x, int y)
{

return x * y;

> // multiply
yX

FIGURE 12-17 Passing Structure Members to Functions

As you can sec from Figure 12- 17, the only difference is that we must

the direct selection operator to refer to the individual members for theuse
actual parameters. The called program doesn’t know if the two integers are

simple variables or structure members.

Sending The Whole Structure
The problem with the above solution is that the multiplication logic is split
between the calling and called programs. This is not considered good struc-
tured programming. A much better solution is to pass the entire structure and

let multiply complete its job in one call.
Passing a structure is really

ments. Since the structure is a type, we simply specify the type in the formal

of the called function. Similarly, the function can return a struc-
different from passing individual ele-no

parameters
ture. Again, all that is necessary is to specify the structure as the return type

in the called function.
The same pass-by-value rules apply, however; when we pass a structure to

a function, C will copy the values to the local structure just as it does for vari-
ables. This may lead to some inefficiencies when large structures are used.
We address this problem in the next section.

7/ 6 Section 12.3 Structure

Let us rework the multiply fractions program to pass structures. In this case,
have written the complete program. The design is shown in Figure 12-18,

and the code is shown in Program 12-5.
we

main

fr1 res
inumerator denominator numerator denominator

Ai

ifr2 —i
(returned)numerator denominator I

r
i(copied)multFr i
i

i

Ifrl resI
numerator denominator numerator denominator

fr2
numerator denominator

FIGURE 12- 18 Passing and returning structures

PROGRAM 1 2-5 Passing and Returning Structures
/* This program uses structures to multiply fractions.

Written by:
Date:

1
2
3

* /4
tinclude <stdio.h>5

6
// Global Declarations
typedef struct

7
8
9 {

10 int numerator;
int denominator;

> FRACTION;
1 1
12
13

// Function Declarations
FRACTION getFr
FRACTION multFr
void

14
15 (void);

(FRACTION frl, FRACTION fr2);
printFr (FRACTION frl, FRACTION fr2,

16
17
18 FRACTION result);
19
2 0 int main (void)
21 {

continued

Chapter 12 Enumerated, Structure, and Union Types 111

PROGRAM 1 2-5 Passing and Returning Structures (continued)

22 // Local Declarations
FRACTION frl;
FRACTION fr2;
FRACTION res;

23
24
25
26

// Statements
frl = getFr ();
fr2 = getFr ();
res = multFr (frl, fr2);
printFr (frl, fr2, res);
return 0;

> // main

27
28
29
30
31
32
33
34

/ * =====:35
Get two integers from the keyboard, make & return

a fraction to the main program,

nothing
returns a fraction

36
37
38 Pre

Post39
*/40
FRACTION getFr (void)41

42 {
// Local Declarations

FRACTION fr;
43
44
45

// Statements
printf("Write a fraction in the form of x/y: ");

scanf ("%d/%d", &fr.numerator, &fr.denominator);
return fr;

} // getFraction

46
47
48
49 I
50
51

Multiply two fractions and return the result,

frl and fr2 are fractions

returns the product

/* ==52
53

Pre
Post

54
55

*/56
FRACTION multFr (FRACTION frl, FRACTION fr2)57

58 {
// Local Declaration

FRACTION res;
59
60
61

// Statements
res.numerator
res.denominator = frl.denominator * fr2.denominator;

return res;

62
* fr2.numerator;= frl.numerator63

64
65

continued

n

778 Section 12.3 Structure

PROGRAM 12-5 Passing and Returning Structures (continued)

66 I } // multFr
67

===== printFr ===
Prints the value of the fields in three fractions.

two original fractions and the product
Post fractions printed

6 8
69
70 Pre
71

* /72
(FRACTION frl, FRACTION fr2,
FRACTION res)

void printFr73
74
75 {

// Statements
printf("\nThe result of %d/%d * %d/%d is %d/%d\n",

frl.numerator, frl.denominator,
fr2.numerator, fr2.denominator,
res.numerator, res.denominator);

76
77
78
79
80
81 return;

} // printFractions
/ / =====

82

===== End of Program =====83

Results:
Write a fraction in the form of x/y: 4/3
Write a fraction in the form of x/y: 6/7

The result of 4/3 * 6/7 is 24/21

Program 1 2-5 Analysis There are five points you should study in this prog

1. The fraction structure is declared in global memory before main. This makes it
visible to all the functions.

2. In getFr, the data are read by using the address operator and the direct selec-
tion operator. Since the direct selection operator (.) has a higher priority, they
can be coded without parentheses.

3. In getFr we pass back two values in the structure without using pointers. This is
another advantage of structures: We can return more than one piece of data
when we put the data in a structure.

4. The structure type is passed using the FRACTION type definition.
5. The references to the data in multFr and printFr must use

tion operator to get to the individual members.

ram.

the direct selec-

Passing Structures Through Pointers
As mentioned, passing structures is still pass by value. For the multiply
. lIons Pr°gr«jm, this is the correct way to write the program. It provides
ie necessary data protection and data encapsulation for good structured

f
Chapter 12 Enumerated, Structure, and Union Types 779

programming while at the same time being efficient (see “Software Engi-
neering" at the end of the chapter).

W hen the structure is very large, however, efficiency can suffer, espe-
cially with a heavily used function. I herefore, we often use pointers to pass
structures. It is also common to pass structures through pointers when the
structure is in dynamic memory. In these cases, all we have to pass is the
pointer.

We modify the multiply fractions program once more to pass the struc-
tures using pointers. The memory flow is shown in Figure 12- 19 and the cod-
ing in Program 12-6.

main multFr(&fr1, &fr2, &res)

fr1 res
numerator denominator numerator denominator

fr2
numerator denominator

void multFr (FRACTION *pFrl,
FRACTION *pFr2,
FRACTION *pRes) pFr2 pFr1 pRes

{

* pFr2->numerator;= pFrl->numeratorpRes->numerator
pRes->denominator = pFrl->denominator * pFr2->denominator;
return;

} // multFr

FIGURE 12- 19 Passing Structures Through Pointers

PROGRAM 12-6 Passing Structures through Pointers

/* This program uses structures to multiply fractions.

Written by:

Date:

1
2
3

*/4
#include <stdio.h>5

6
// Global Declarations
typedef struct

7
8

{9
int numerator;
int denominator;

} FRACTION;

10
11
1 2
13

continuec

780 Section 12.3 Structure

PROGRAM 12-6 Passing Structures through Pointers (continued)

// Function Declarations
(FRACTION* pFr);
(FRACTION* pFrl, FRACTION* pFr2,
FRACTION* pRes2);

void printFr (FRACTION* pFrl, FRACTION* pFr2,
FRACTION* pRes);

14
void getFr
void multFr

15
16
17
18
19
20

int main (void)21
22 {

// Local Declarations
FRACTION frl;

FRACTION fr2;
FRACTION res;

23
24

25
26
27

// Statements
getFr
getFr
multFr

28

(&frl);
(&fr2);
(&fr1, &fr2, &res);

printFr (&frl, &fr2, &res);
return 0;

34 I > // main

29
30
31
32
33

35
/*36

Get two integers from the keyboard, make & return a
fraction to the main program.

pFr is pointer to fraction structure
fraction stored at pFr.

37
38
39 Pre

Post40
*/41
void getFr (FRACTION* pFr)42

43 {
// Statements44

printf("Write a fraction in the form of x/y: ')?
scanf ("%d/%d", &pFr->numerator,

&(*pFr).denominator);

45
46
47
48 return;

> // getFr49
50
51 === multFr ======*===========—iply two fractions and return the result.

^r^ pRes are pointers to fractions
Post product stored at pRes

52
53 Pre
54

*/55
56 void multFr (FRACTION* pFrl, FRACTION* pFr2,

continued

Chapter 12 Enumerated, Structure, and Union Types _781

PROGRAM 1 2-6 Passing Structures through Pointers (continued)

FRACTION* pRes)57
58 {
59 // Statements

pRes->numerator
pFrl->numerator * pFr2->numerator;

pRes->denominator =
pFrl->denominator * pFr2->denominator;

60
61
62
63
64 return;

} // multFr65
6 6

/* =====67
Prints the value of the fields in three fractions.6 8

69 Pre pointers to two fractions and their product

Post fractions printed70
*/71
void printFr (FRACTION* pFrl, FRACTION* pFr2,

FRACTION* pRes)
72
73
74 {

// Statements
printf("\nThe result of %d/%d * %d/%d is %d/%d\n",

pFr1Enumerator, pFrl->denominator,
pFr2enumerator, pFr2->denominator,
pRes->numerator, pRes->denominator);

75
76
77
78
79
80 return;

} // printFr81
===== End of Program =====82

Program 12-6 Analysis In this version of the program, the structure is passed and returned as a pointer. Note

the syntactical notation for reading the data in the getFr function. We reproduce it

below for your convenience.

scanf("%d/%d", &pFr->numerator, &(*pFr).denominator);

Even though we are using pointers, we still need to pass scanf addresses. We

have used two different notations in this example. (This is not good coding style, but
it demonstrates both techniques in one statement.) In both cases, since we are read-

field within the structure, we need to pass the address of the individual field,
ing a
not the structure. In the first example, we use the indirect selection operator (->).
Since it has a higher precedence than the address operator (&), it can be coded with-

out parentheses.

In the second example, we use the direct selection operator (.). In this case we

need parentheses because the direct selection operator has a higher precedence (16)

than the indirection operator (*) and the address operator, both 15. However, since the

address and direct selection operator are at the same level, we need to use the paren-
theses only around the pointer dereference.

782 Section 12.4 Unions

12.4 Unions
The union is a construct that allows memory to he shared by different types
of data. This redefinition can be as simple as redeclaring an integer as four
characters or as complex as redeclaringan entire structure. For example,we know
that a short integer is 2 bytes and that each hvte is a character. Therefore,we could

number or as two characters.process a short integer as a
The union follows the same format syntax as the structure. In fact, with

the exception of the keywords struct and union, the formats are the same.
Figure 12-20 shows how we declare a union that can he used as either a
short integer or as two characters.

»
chAry[0]i chAry[1] 'ii i'A' B‘union shareData I I

i{
char chAry[2];
short num; ll 16706

num
ii} ; i i

Both num andchAry start at the same memory address. chAry[0]
occupies the same memory as the most significant byte of num.

FIGURE 12-20 Unions

Referencing Unions
identical to those for structures. To ref*

the direct selection (dot '
I he rules for referencing
erence individual fields within the

a union are
union, we use

operator. Each reference must he fully qualified from the beginning of the
structure to the element being referenced. This includes the name of the
union itself. When a union is being referenced through a pointer, the selec*

can be used. The following are both valid references tolion operator (arrow)
the union shown in Figure 12-20.

shareData.num
shareData.chAry[0]

Initializers
\\ bile C permits a union to be initialized, only the first type declared in UH
union can be initialized when the variable is defined. The other types can
only be initialized by assigning values or reading values into the union. When
initializing a union, we must enclose the values i
there is only one value.

Program 12-7 demonstrates unions in a program. It uses the structure in
Figure 12-20 to print a variable, first as a number and then as two characters.

ifset of braces, evenin a

Chapter 12 Enumerated, Structure, and Union Types 783

PROGRAM 1 2-7 Demonstrate Effect of Union

/* Demonstrate union of short int and two char.
Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
// Global Declarations

typedef union
7
8
9 {

10 short num;
char chAry[2];

> SH CH2;
11
12
13

int main (void)14
15 {

// Local Declarations
SH CH2 data;

16
17
18

// Statements
data.num = 16706;

19
2 0
2 1

printf("Short: %hd\n",

printf("Ch[0]: %c\n"/

printf("Ch(l]: %c\n",

data.num);
data.chAry[0]);
data.chAry[1]);

22
23
24
25

return 0;
} // main

26
27

Results:
Short: 16706
Ch[0]: A

Ch[1]: B

Program 1 2-7 Analysis To prove to yourself that 16706 creates the characters A and B, you will need to

|yze its bit pattern. Don't be surprised, however, if you get a different number on your
that you have a "little-endian" computer (see the box

ana-

computer. If you do, it
"Big and Little Endian," later in this section).

means

Unions and Structures
In a union, each piece of data starts at the same memory location and occu-

memory. Thus, when a union is shared by two

one piece of data can he in memory atpies at least a part of the
different data types, only

same

or more
one time.

Consider, for example, an address hook that contains both company and

individual names. When we store a company name, the name has only one

784 Section 12.4 Unions

field. On the other hand, when we store an individuals name, the name has
at least three parts—first name, middle initial , and last name. If we want to
have only one name field in our address hook, we need to use a union to store
the name. This design is shown in Figure 12-21. Note that in the figure, unis
the member name to access the union structure.

typedef struct
NAME{

char first[20];
char init;
char last[30];
} PERSON;

typedef struct

type un
company

{
personchar type;

union first init last
{
char company[40];
PERSON person;

} un;
> NAME;

FIGURE 12-21 A Name Union

Because two different types of data can he stored in the same union, we
need to know which type currently is stored. This is done with a type flag that
is created when the data are stored. If the name is in the company format, the
flag is C, and if it is in the person format it is a P.

\\ hen a union is defined, C reserves enough
data object in the construct. In Figure 12-21, the size of the company name
is 40 bytes and the size of the person name is 5 1 bytes. The size of the union
structure is therefore 52 bytes (the size of the person name plus the type!

are being stored. When a company name is

to store the largestroom

regardless of what type of data
stored, the last 1 1 bytes are present hut unused.

Program 12-8 demonstrates the use of a union in a structure by printing
each format.

PROGRAM 1 2-8 Demonstrate Unions in Structures
/* Demonstrate use of unions in structures.

Written by:
Date:

1
2
3

*/4
5 #include <stdio.h>

ffinclude <string.h>6
7

// Global Structures8

continue

Chapter 12 Enumerated, Structure, and Union Types 785

PROGRAM 1 2-8 Demonstrate Unions in Structures (continued)

9 typedef struct
10 {
1 1 char first[20];

char init;
char last[30];

> PERSON;

12
13
14
15
16 typedef struct
17 {
18 char type;

union

// C—company: P—person

19
20 {
2 1 char company!40];

PERSON person;22
23 > un;

> NAME;24
25

int main (void)26
27 {

// Local Declarations
NAME business = {'C',
NAME friend;
NAME names[2];

28
"ABC Company"};29

30
31
32

// Statements
friend.type = 'P';
strcpy (friend.un.person.first, "Martha");

strcpy (friend.un.person.last,"Washington");
friend.un.person.init = 'C';

33
34
35
36
37
38

names[0] = business;

names[1] = friend;
39
40

41
for (int i = 0; i < 2; i++)

switch (names[i].type)
42
43

{44
C': printf("Company: %s\n",

names(i].un.company);
case45

46
break;

'P': printf("Friend: %s %c %s\n",

names[i].un.person.first,
namesli].un.person.init,
namesIi].un.person.last);

47
case48

49
50
51

continued

786 Section 12.4 Unions

PROGRAM 12-8 Demonstrate Unions in Structures (continued)

break;
printf("Error in type\a\n");
break;

5 2
default:5 3

5 4
} // switch5 5

return 0;
> // main

5 6
5 7

Results:
Company: ABC Company
Friend: Martha C Washington

Program 1 2-8 Analysis We begin by creating two union structures, one for a business and one for a friend.
To initialize the business union, we used initializers (see below). To initialize the friend
union, we used string copy and assignment. Once the unions were created, we cop-
ied them to an array to demonstrate one common processing concept.

Unions are often processed with a switch statement that uses the type to determine
what data format is currently being processed. Note that it is the programmer's respon-
sibility to process the data correctly. If a business identifier is used while person data
are present, the program will run but garbage will be produced.

Once the correct union type has been determined, the rest of the processing is rou-
tine. We simply print the data in the union using the appropriate identifiers for its
tent. Note that we provide a default statement even though there is no possibility of an
error in this simple program.

con-

Big and Little Endian
Computer hardware can be physically designed to store the most significant bvt
number at either the left end or the number (big endian) or at the right end or the

eofa
number (little endian), as shown below.

short 16706

0100 0001 0100 0010data[0] data[0](A1) (B1)0100 0001 0100 0010
MS byte I LS byte0100 0010 0100 0001data(1] data(1](B) (•A1)

Big Endian

stores the most siqnificant k l °-^es' then a computer that uses big endian
the above exlT_"lt hat ft^Portio" of <16'000 in

the left. Note that datar nI
array- Tb,s IS sbown in the example on

dta t u1 is A and data[1] is 'B\

pie is seen on theTiqhMn the
6

L °St S,gn,bc
|
ant^e is stored on the right. This exam-

data [1] contains A- If ft°bovf **amPlef This time, data [0] contains 'B' and
then run Program 12-7and checkV̂ t iWslltT^ C°mpUter is b'9°r^

Little Endian

Chapter 12 Enumerated, Structure, and Union Types 787

Internet Addresses
As a final example of union processing, let’s consider how Internet addresses

lormatted and processed. We are most familiar with the Internet domain
names such as www.deanza.edu. These names are easy to remember and
use. I he real Internet Protocol (IP) address, however, is defined as dotted-
decimal notation, as shown below.

are

153.18.8.105

I he decimal-dot notation is used primarily by system administrators. To
conserve transmission time and facilitate processing, however, the IP address
must be converted to a 4-bvte integer for transmission down the internet.

Each portion of the IP address has a maximum value of 255. This means

that it can be stored in 1 byte. To store the address in an integer, we simply
convert each portion of the address to 1 byte and store it in the appropriate
portion of the integer. Thus, in our example, we convert 153 to its corre-
sponding (extended) ASCII character and store it in the first byte of the inte-
ger. Then we convert the 18 and store it in the second byte, 8 into the third
byte, and finally 105 into the fourth byte. To process the integer address as

both an integer and an array of four characters requires a union.
Given that the IP address is a string, we use the string token operator

and a loop for the conversion. The code is shown in Program 12-9.

PROGRAM 1 2-9 Convert IP Address to long

/ * Reformat IP string address to long integer.
Written by:

Date:

1
2
3

*/4
#include <stdio.h>
#include <string.h>

#include <stdlib.h>

5
6
7
8

// Global Structures
typedef union

9
10

{11
unsigned char chAddr[4];

unsigned long numAddr;

> IP_ADDR;
12
13
14
15

int main (void)16
17 {

// Local Declarations
IP ADDR addr;

parser;

18
19

char*2 0
continue*

Section 12.4 Unions

PROGRAM 12-9 Convert IP Address to long (continued)

21 char strAddr[16] = "153.18.8.105";
2 2
23 // Statements

// Convert first address24 segment
25 parser = strtok (strAddr,

addr.chAddr[3] =26 strtol (parser, (char**)NULL, 10) ;
27
28 for (int i = 2; i>=0; i—)
29 {
30 // Convert decimal dot positions 2,

parser = strtok (NULL,
addr.chAddr[i] =

3, 4
31
32
33 strtol (parser, (char**)NULL, 10);
34 > // for
35
36 // Now print results

printf ("IP decimal dot37 : %d.%d.%d.%d\n",
addr.chAddr[3], addr.chAddr[2],
addr.chAddr[1], addr.chAddr[0]);

printf ("IP binary : %lu\n",

38
39
40 addr.numAddr);
41 return 0;

// main42 }

Results:
IP decimal dot
IP binary address: 2568095849

: 153.18.8.105

jgram 1 2-9 Analysis Before you study thi
in Chanter 11 l

IS Pr°9ra . you may want to review the parsing concepts discussed

„•JsnT'r up
0

"‘
(see statements 25 and 3l*)" ^ ^^ the°ne that P°r5es the rest of the sfrm9

Within the loop, we parse the rest of th
store the address elements in
address. After the I
then

e string, convert it to a decimal value, and

^
? second, third, and fourth positions of the binary

oop, we print the converted address, first in its character formatandlong integer.

computers s t a t e m e n t W o r .̂w i^ little-endian computers. For big endian
at 1 and move up to 3 Th° ^^ °and the for in statement 28 would start

reversed.
6 10 exes 'n s^a^ements 38 and 39 would also need to be

as a
This

Chapter 12 Enumerated, Structure, and Union Types 789

12.5 Programming Application
In this section, we develop a program that simulates the operation of an ele-
vator. The elevator serves floors from zero (the basement) to the top floor.
I he elevator is very old and is not fully automatic. When people enter the ele-
vator, they enter their desired floor number. Several numbers can be
requested at a time. After all numbers have been entered, the passengers
close the door by pressing the close door button (the return key).

Each time the door closes, the elevator checks to see if any floors in the
current direction (up or down) need to be serviced . If they do, then it services
these floors first, starting with the closest one to the current floor. If no floors
in the current direction need service, it checks the opposite direction, again
servicing the one closest to the current floor.

Each time the elevator arrives at a floor, new passengers can get on and
request their floor. The new requests are added to the ones still pending, and
the elevator again evaluates which floor will be processed next.

The structure for this program is portrayed in Figure 12-22. The elevator
is represented as a structure with two fields: the current floor and a pointer to
an array ol buttons. The button values are IN. meaning the floor has been
requested, and OUT, meaning the floor has not been requested. After a floor
has been serviced , the button is reset.

loor buttons
(IN / O U T) ,

currentFloor

0 1 2 TOP_FLOORbuttons

FIGURE 1 2-22 Elevator Structure

The elevator design is shown two different ways. Figure 12-23 is a struc-
ture chart for the program.

Figure 12-24 is a state diagram for the elevator. A state diagram is a

design technique that is often used with realtime systems to show how a sys-
from one state to another. For an elevator, it can be in one of three

states: moving up, moving down, or stopped. Each of these states is repre-
sented by a circle in the diagram. To move from one state to another, a

change must occur in the elevator environment. For example, to change from

the stop state to the up state, a button must be pressed. This is reflected on

the line between stop and up as anyUp.

tern moves

790 Section 12.5 Programming Application

elevator

run terminateinitialize Elevator

move

I
anyDown
request

anyllp
request move

DownmoveUp

j jtimePass timePass

FIGURE 1 2-23 Elevator Structure Chart

anyllp lanyUp && anyDown anyDown

downup

lanyDown && anyllp

lanyUp &&
lanyDown

lanyDown
&& lanyUp

anyDown
&& lanyUpanyUp

stop

lanyUp && lanyDown

FIGURE 1 2-24 Elevator State Diagram

12-10.I he main function for the elevator program is seen in Program
It calls three other functions: initialize (Program 12- 11), run elevator
(Program 12- 12), and terminate (Program 12-17) . Of the three, run eleva-
tor is the function ol primary interest; it simulates the actual running 0

the elevator.

Chapter 12 Enumerated, Structure, and Union Types 791

PROGRAM 12- 10 Elevator: mam

/* This program simulates the operation of an elevator.
Written by:
Date:

1
2
3

*/4
tinclude <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <stdbool.h>

5
6
7
8
9

#define TOP_FLOOR 10
#define DELAY FACTOR 10000

10
11
12

// Global Type Declarations
typedef enum {OUT, IN} BUTTON_STATUS;
typedef enum {DOWN, STOP, UP} DIRECTION_STATUS;
typedef struct

13
14
15
16
17 {

int currentFloor;
BUTTON STATUS* buttons;

18
19
20 } ELEVATOR;
21

// Function Declarations
void initialize
void runElevator

void terminate
void move
bool anyUpRequest
bool anyDownRequest
void moveUp

void moveDown
void timePass

22
(ELEVATOR* elev);
(ELEVATOR* elev);
(ELEVATOR* elev);
(ELEVATOR* elev);
(ELEVATOR* elev);
(ELEVATOR* elev);
(ELEVATOR* elev);
(ELEVATOR* elev);
(int m);

23
24
25
26
27
28
29
30
31
32

int main (void)33
34 {

// Local Declarations
ELEVATOR elevator;

35
36
37

// Statements
initialize (^elevator);
runElevator (&elevator);

(&elevator);

38
39
40

terminate41
continued

792 Section 12.5 Programming Application

PROGRAM 12-10 Elevator: main (continued)

return 0;
> // main

42
43

Program 12-11 initializes the state of the elevator.

PROGRAM 12- 11 Elevator: Initialize
initialize ==

This function dynamically allocates memory locations
for buttons & initializes current floor to 1 to show
that the elevator is parked in the first floor,

nothing
elevator created, all buttons reset, and
parked at first floor (not basement)

/* =1
2
3
4
5 Pre

Post6
7

*/8

void initialize (ELEVATOR* elev)9
10 {

// Statements
elev->buttons = calloc(TOP_FLOOR + 1,

sizeof (BUTTON STATUS));

11
12
13
14

for (int i = 0; i <= TOP_FLOOR; i++)
elev->buttons [i] = OUT;

elev->currentFloor = 1;

15
16
17
18
19 return;

} // initialize20

Program 12-12 simulates the operation of the elevator.
PROGRAM 12-12 Elevator: Run Elevator

/* =====l ============= runElevator =========
Simulate the operation of the elevator.

elevator structure has been initialized

2
3 Pre

Post4 simulation is complete
*/5

6 void runElevator (ELEVATOR* elev)
7 {

// Local Declarations
char buffer (81];
int floor;
char* pStrln;

8
9
10
1 1
12

Chapter 12 Enumerated, Structure, and Union Types 793

PROGRAM 12-12 Elevator: Run Elevator (continued)

// Statements
printf("\n\nThis elevator goes from basement (0) ");
printf("to floor %d", TOP_FLOOR);
printf("\n\nType floors & press return to start");
printf("\nlf no new floors, press return key.");
printf("\nTo quit, key EOF");
printf("\n\nPlease enter floors: ");

13
14
15
16
17
18
19
20

while (fgets(buffer, 81, stdin))21
22 {
23 pStrln = buffer;

while (*pStr!n !=24 \n')
25 {

// Locate next floor digit & convert to int

while (*pStrIn ==
pStrIn++;

if (lisdigit (*pStr!n))

26
27)

28
29
30 {

printf("\alnvalid floor %c\n", *pStrIn);
pStrIn++;

> // if

31
32
33

else34
{35
sscanf (pStrln, "%d", &floor);
if (floor == elev->currentFloor)

printf("\n\aAlready on floor %d.",
elev->currentFloor);

36
37
38
39

else40
if (floor < 0 || floor > TOP_FLOOR)

printf("\n\a%d invalid floor",
floor);

41
42
43

else44
elev->buttons [floor] = IN;45

46
// Synchronize sscanf & *pStrIn

while (isdigit (*pStrIn))

pStrIn++;
> // else

} // while

47
48
49
50
51
52

move (elev);
printf("\n\nPlease enter floors:

} // while
return;
// runElevator

53
" > ?54

55
56

>57

794 Section 12.5 Programming Application

Program 1 2-12 Analysis The simulation is controlled by runElevator. The technique we use to prevent
invalid user input is interesting. After reading the input stream, we use a pointer to
parse the string after skipping whitespace. If the current character is a digit, we use
sscanf to format the digit(s) as an integer. If it is not a digit we print an error mes-
sage and skip it. (Of course, in a real elevator, it is impossible to get an invalid floor.)
Then, after converting the digit string to an integer, we synchronize the buffer and our
pointer with a small while loop.

As we parse the integers in the input stream, we "push" their corresponding but-
tons in our data structure. This code is shown at statement 45 in Program 12-12.

Program 12-13 moves the elevator to a requested floor.

PROGRAM 12-13 Elevator: Move
/*l =================== move ===================

Moves the elevator to a requested floor. It stops
the elevator after responding to one request,

given elevator
elevator has been moved—while it is
moving, the floors are called out

2
3
4 Pre

Post5
6

*/7
8 void move (ELEVATOR* elev)
9 {

// Local Declarations
static DIRECTION STATUS direction = STOP;

10
1 1
1 2
1 3 bool anyUp;

bool anyDown;1 4
1 5

/ /1 6 Statements
anyUp
anyDown

1 7 = anyUpRequest (elev);
= anyDownRequest (elev);1 8

1 9
2 0 if (direction == UP)
2 1 {
2 2 if (!anyUp && anyDown)

direction = DOWN;2 3
2 4 else
2 5 if (!anyUp && !anyDown)

direction = STOP;2 6
2 7 > // UP
2 8
2 9 else if (direction == DOWN)
3 0 {
3 1 if (lanyDown && anyUp)

direction = UP;3 2
3 3 else

continue

Chapter 12 Enumerated, Structure, and Union Types 795

PROGRAM 12-13 Elevator: Move (continued)

3 4 if (!anyDown && lanyUp)
direction = STOP;3 5

3 6 > // DOWN
3 7
3 8 else if (direction == STOP)
3 9 {
4 0 if (anyUp)

direction = UP;4 1
4 2 else
4 3 if (anyDown)

direction = DOWN;4 4
4 5 > // else if stop
4 6
4 7 if (direction == UP)

moveUp (elev);4 8
4 9 else
5 0 if (direction == DOWN)

moveDown (elev);5 1
5 2 else

printf("\n***** NO BUTTON PRESSED ***** ");5 3
5 4 return;

> I I move5 5

Program 1 2-13 Analysis The move function is one of the more interesting functions in the simulation. At any
given point in the operation, the elevator can be in one of three states: moving up,
moving down, or stopped. We use an enumerated type to track the state.

If the elevator is moving up, we continue up as long as there are requests for
higher floors. If there are none, we test for down requests. If there are any down
requests, we change the state to down and proceed. If there are no up requests and
no down requests, we change the state to stopped. This logic is seen in statements 21
through 47 of Program 12-13. Note the use of the blocks to ensure that the if and
else statements are properly paired.

Program 12- 14 simulates the elevator movement as it moves up and down.

PROGRAM 12-14 Elevator: Move Up and Move Down

== moveUp =====/ * ===
This function simulates the movement of the elevator

when it is going up.
given moving up elevator

up simulation is displayed on the screen

1
2
3

Pre
Post

4
5

*/6
void moveUp (ELEVATOR* elev)7

8 <
continued

796 Section 12.5 Programming Application

PROGRAM 12-14 Elevator: Move Up and Move Down (continued)

// Statements
printf ("\nThe door is being closed
printf ("\nWe are going up.");
(elev->currentFloor)++;
while (elev->buttons[elev->currentFloor] != IN)

9
10
11
12
13
14 {

printf("\n");
timePass (2);
printf("\nPassing floor %d", elev->currentFloor);
printf("\n ");
timePass (2);
(elev->currentFloor)++;
> // while

15
16
17
18
19
20
21
22

elev->buttons [elev->currentFloor] = OUT;
printf("\nThe door is being opened ...");
printf("\n");
printf("\n

23
24
25
26 FLOOR %d ***** ",

elev->currentFloor);
** *•

27
printf("\n");
timePass(4);
return;

> // moveUp

28
29
30
31
32

/*33 ==================== moveDown
This function simulates the movement of the elevator
when it is going down.

given moving down elevator
down simulation is displayed on the screen

34
35
36 Pre

Post37

*/38
39 void moveDown (ELEVATOR* elev)
40 {
41 // Statements

printf("\nThe door is being closed ...");
printf("\nWe are going down");
(elev->currentFloor)—;
while (elev->buttons [elev ->currentFloor] W

42
43

44
45
46 {
47 printf("\n");

timePass (2);
printf("\nPassing floor %d", elev->currentFloor
printf("\n");
timePass (2);
(elev->currentFloor)—;

48
49
50
51
52

contititw

Chapter 12 Enumerated, Structure, and Union Types 797

PROGRAM 12-14 Elevator: Move Up and Move Down (continued)

53 > // while
54 elev->buttons (elev->currentFloor] = OUT;

printf("\nThe door is being opened
printf("\n ");
printf("\n

55
56
57 FLOOR %d ***** ",

elev->currentFloor);

58
59 printf("\n”);

timePass (4);60
61
62 return;

} // moveDown63

Program 12-14 Analysis Both moveUp and moveDown operate similarly. They move past the current floor in
the correct direction and "call out" the floors as we pass them. A timing loop is
included to simulate the time it takes the elevator to reach the next floor.

Program 12- 15 contains two functions: anyUpRequest checks for floors
above the current position; anyDownRequest checks for floors below the cur-

rent position.

PROGRAM 12-15 Elevator: Any Up and Any Down Request

=== anyUpRequest ===================
This function checks to see if any request is for a

floor above the current floor,

given elevator

return true if button above current floor

pushed; return false otherwise

1
2
3
4 Pre

Post5
6

*/7
bool anyUpRequest (ELEVATOR* elev)8

9 {
// Local Declarations

bool isAny = false;
10
1 1
12

// Statements
for (int check = elev->currentFloor;

check <= TOP
_FLOOR && !isAny;

check++)
isAny = (elev->buttons[check] == IN);

return isAny;
} // anyUpRequest

13
14
15
16
17
18
19
20

===== anyDownRequest =================
This function checks to see if any request is for a21

22
continued

798 Section 12.5 Programming Application

PROGRAM 12-15 Elevator: Any Up and Any Down Request (continued)

floor below the current floor,
given elevator
return true if button below current floor
pushed; return false otherwise

2 3
2 4 Pre

Post2 5
2 6

*/2 7
2 8 bool anyDownRequest (ELEVATOR* elev)
2 9 {

// Local Declarations
bool isAny = false;

3 0
3 1
3 2

// Statements
for (int check = elev->currentFloor;

check >= 0;
check--)

isAny = isAny ||(elev->buttons[check] == IN);
return isAny;

> // anyDownRequest

3 3
3 4
3 5
3 6
3 7
3 8
3 9

Program 12-15 Analysis Compare the for loops in anyDownRequest and anyUpRequest. One is much
more efficient than the other. Do you see why? In anyUpRequest,we stop when we
find the first request for a floor above the current one. In anyDownRequest, we
check all floors below the current one, even if the first one has been requested. This
means we always examine all lower floors.

Note the logic to set isAny at statement 37 in Program 12-15. The current setting
is or ed with a button. If either are true, the result is true. Thus,
been requested, isAny will remain set regardless of the settings of the other buttons.
This is a common technique to analyze a series of logical values.

find a floor hasonce we

Program 12- 16 contains a loop to simulate time passing. We use a simple
for loop.

PROGRAM 12-16 Elevator: Time Pass
/ * =====1 ==== timePass ===

2 This function simulates the concept of passing time by
executing an empty for-loop.

Pre
Post

3
4 time to be passed (number of moments)

time has passed5
6 */
7 void timePass (int time)
8 {

// Statements
for (long i = 0; i < (time*

9
10 DELAY FACTOR); i++)
1 1

continueA

Chapter 12 Enumerated, Structure, and Union Types 799

PROGRAM 12-16 Elevator: Time Pass (continued)

12 return;
> // timePass13

Program 12-16 Analysis The factor in the timing loop depends on the speed of your computer. In this case, we
use 10,000. On a faster computer, you need to make the factor larger. On a slower
computer, you need to make it smaller.

Note how we code the null statement in the for loop. Putting the null statement on a
line by itself makes the function more readable. If the null statement were put at the end
of the for statement, it would be too easy to think that the next statement, the return in
this function, were part of the for loop.

I he termination code is shown in Program 12- 17.
PROGRAM 12-17 Elevator: Terminate

Release the memory occupied by buttons,

given elevator
elevator memory is released

==== terminate ===1
2
3 Pre

Post4
*/5
void terminate (ELEVATOR* elev)6

7 {
// Statements

free (elev->buttons);
return;

} // terminate

8
9
10
1 1

===== End of Program ====1 2

do not need to release memory when terminating a program, we

include the logic to do so for completeness.
Program 12-17 Analysis Although we

800 Section 12.6 Software Engineering

12.6 Software Engineering
In this section we discuss two important aspects of program design: function
coupling and data hiding.

Coupling
In Chapter 1 1 , we discussed a concept known as functional cohesion, a mea-
sure of how closely related the processes are within a function. A related
topic, coupling, is a measure of how tightly two functions are hound to each
other. The more tightly coupled they are, the less independent they are. Since
our objective is to make the modules as independent as possible, we want
them to he loosely coupled.

Loose coupling is desirable for several reasons:

1. Independent—that is, loosely coupled—functions are more likely to be
reusable.

2. Loosely coupled functions are less likely to create errors in related func-
tions; conversely, the tighter the coupling, the higher the probability that
an error in one function will generate an error in a related function.

3. Maintenance modifications—that is, modifications required to imple-
ment new user requirements—are easier and less apt to create errors
w ith loosely coupled functions.
In his book on designing structured systems, Page-Jones describes five

types of coupling. We review them here. For an in-depth discussion of the
concept, reler to Chapter S in Page-Jones s book, The Practical Guide to
Structured Systems Design.2

Data Coupling
Data coupling passes only the minimum required data from the calling func-
tion to the called function. All required data are passed as parameters, and no
extra data are passed. This is the best form of coupling and should be used
whenever possible.

When you write simple functions that work
pling naturally tend* k i . on,y one task’ the cou*

exchange in the sele f
33 couPPn8* C°ns,der, for example, the function

iniegd I. IIM- Fund exchange,»
nothing else. It moke, '7 ° tWO ln,egers that it will exchange and

through the paramo ° ^ erences to any data outside the function, except

highly reusable. ^ PO,ntcrs* ^bis function uses data coupling and is

on

Well-structured functions are highly cohesive and loosely coupled.

2. Meilir Page-Jones, The Practical Guide to Structured Systems Design , Yourdon Press Comp
ing Series (Upper Saddle River, N .J.: Prentice Hall, 1988).

Chapter 12 Enumerated, Structure, and Union Types 801

We could have fallen into the trap of passing extra parameters by passing
the function, the array, and the index locations of the two integers to be
exchanged. The function would have worked just as well, but the coupling
woidd not have been as loose. Now it requires an array of integers instead of
just integers, furthermore, we could have made the coupling even tighter
had we referred to the maximum size of the array using the precompiler dec-
laration S I Z E. At this point , it is highly questionable whether the function
could be used in another program .

Stamp Coupling
functions are stamp coupled if the parameters are composite objects such as
arrays or structures. Most ol the functions in the selection sort in Chapter 10
use
that

stamp coupling because they pass the array. (Although it could be argued
we are passing only a pointer to the array, the intent is to modify the

array. We are, therefore, passing the array for the purposes of this discussion.)
You should now be arguing, “But we have to pass the array!” Yes, that is

true. Stamp coupling is not bad and is often necessary. The danger with
stamp coupling is that often it is just too easy to send a structure when all the
data in the structure are not required. When extra data are sent, we begin to

open the door for errors and undesired side effects.
Consider the time stamp described in Figure 12-15. This structure con-

tains two nested structures, date and time. If we were to use these data, for
example, to print the date in a report heading, and passed the whole struc-
ture, we would send too much data! In addition, if we were to pass the struc-
ture by address rather than by value, we risk the possibility of an error in one

function accidentally changing the data in the structure and causing a second
error. The correct solution is to pass only the data that are needed and then
only by value when possible.

Stamp coupling should pass only the data needed.

A common practice to reduce the number of parameters required for a

function is to create a structure that contains all the data the function needs

and pass it. Page-Jones refers to this as bundling.* It is a common practice,

but it is not a good practice for three reasons.

1. Maintenance is made more difficult because it is more difficult to trace

data through a program.
2. Extra data can be passed. For example, a bundled structure is created for

a series of related functions, but not all of them use all the data. The

temptation is just too great to pass the structure even though only one or

two of the members are needed.
3. The semantics of the structure are often artificial, making the program

difficult to read and understand.more

3 Meilir Page-Jones, The Practical Guide to Structured Systems Design.

102 Section 12.6 Software Engineering

Don’t bundle unrelated data to reduce the number of parameters.

Control Coupling
Control coupling is the passing of flags that may be used to direct the logic
flow of a function. It closely resembles data coupling except that a flag is
being passed rather than data.

In C, flags are often returned from a function rather than being passed as
parameters, hut the intent and usage are the same. For example, consider the
return values from scanf. It returns either EOF, a definite flag, or the number
of values successfully read, which can also be used as a flag for success. An
example of a flag being passed in a function you might write is the user-
selected option in the menu function of an interactive program. This flag
directs the entire flow of the program. The option is a special type of flag
known as a data flag. It is data entered by the user and at the same time itisa
flag intended to direct the flow of the program.

Properly used, control coupling is a necessary and valid method of com-
municating between two functions. Like stamp coupling, however, it can be
misused. Properly used, it communicates status: The end of the file has been
reached. The search value was found.

Poor flag usage is usually an indication of poor program design, for exam-
ple, when a process is divided between two or more independent functions.
Flags used to communicate horizontally across several functions in the struc-
ture chart are often an indication of poor design. Action flags, as opposed to
status flags, that require the receiving function to perform some special pro-
cessing are also highly suspect. An example of an action flag is a flag that
directs a customer’s purchase not he approved rather than simply reporting that
the credit limit has been exceeded or that no payment was received last month.

Control coupling should be used only to pass status.

Global Coupling

ally mIre° funafonseSp8l0bil Var‘ab,es to communicate between two, orusu-

have said about i ?8c'J‘>nes ca,ls il common coupling. With all that we

aj Ms„„”Zr* floW not come as.sor,«
You should nev

J C°UP
|7^ tec^niclue* In fact, it should never be used,

big three. ° USt g°^ coupIing for several reasons. We cite only the

G
'
l0bal ĉommunTcttf “ imPossible to determine which mod-

made to a program therT̂ .CfC^ ot^er* When a change needs to be

impact of the change ru -0^** IS not Poss,ble to evaluate and isolate the

to suddenly fail. *S ° tCn causes functions that were not changed

““n""' ££££?,lz«z:;Zzsram' "

ules are

that

ChapterJ2 [numerated, Structure, and Union Types 803

3. Global coupling leads to multiple flag meanings. This problem is often
made worse by using generic flag names, such as f 1, f 2, f 21. (Find-
ing 21 flags in a single program is not an exaggeration. We know of one
assembly program that bad
used solely to indicate that another flag had been set but was now turned
off; in other words, a flag that returned the status of a flag!)

The danger here should he obvious. If a flag
communicate between two functions, it is highly probable that at
point this flag could he erroneously changed by a third f unction that used
it for another purpose.

flags. In fact, it had one flag that wasmore

can he used globally to
some

Avoid global coupling within a program.

Content Coupling
The last type of coupling is very difficult , hut not impossible, to use in C.
Content coupling occurs when one function refers directly to the data or
statements in another function. Obviously, this concept breaks all the tenets
of structured programming.

Never use content coupling.
Referring to the data in another function requires that the data be made

externally visible outside the function. This is impossible in C. The only thing
that comes even remotely close is global variables. Since we have stressed the
dangers of global variables before, we will simply state here that they should
not he used for communication within one compile unit.

Data Hiding
We have previously discussed the concept of global and local variables. In the

discussion, we pointed out that anything placed before main was said to be

in the global part of the program. With the exception of data that need to be

visible to functions in other compile units, no data need to be placed in this

section.
One of the principles of structured programming states that the internal

data structure should he hidden from the user’s view. The two terms you

ally hear are data hiding and data encapsulation. Both of these principles

have as their objective protecting data from accidental destruction by parts

of your program that don’t need access to the data. In other words, if a part

of your program doesn’t need data to do its job, it shouldn’t be able to see

the data.

usu

Programming Standard:

Vo not place any variables in the global area of a program.

804 Section 12.6 Software Engineering

Any variables placed in the global area of your program—that is, before
an be used and changed by every part of your program. This is inmam

direct conflict with the structured programming principles of data hiding and
data encapsulation.

Summary
We have described five different ways that two functions can communicate.
The first three are all valid and useful, although not without some dangers.
These communication techniques also provide data hiding. Data coupling is
universally accepted and provides the loosest communication between two
functions. Stamp and control coupling present some dangers that must be
recognized. When using stamp coupling, do not pass more data than
required. Keep control coupling narrow—that is, between only two functions.
You should always avoid the last two, global and content coupling. They do
not protect the data.

are

Chapter 12 Enumerated, Structure, and Union Types 805

12.7 Tips and Common Programming Errors
1. Don t forget the semicolon at the end of the declaration of structures and

unions. This is one ot the locations where you see a semicolon after a
closing brace (>) in C.

2. Because the direct selection operator has a higher precedence than the
indirection operator, parentheses are required to reference a member
with a pointer.

(*ptr).mem

3. The indirect selection operator (->) is one token. Do not put a space
between its symbols (between - and >).

4. Io access a member in an array structure, you need the index operator.
For example, the correct expression to access a member named mem in an
array of structure named ary is

ary[i].mem

5. The type name in a tvpedef comes after the closing brackets and before
the semicolon:

typedef struct
{
... r
... ,
} TYPE_NAME;

6. You cannot define a variable at the same time that you declare a type def-
inition. In other words, you are not allowed to do the following:

typedef struct
{
... ,
... ,

// ERROR} TYPE NAME variable_name;
7. You may not use the same structure name with a tag inside a structure.

The following declaration is not valid:

typedef struct TAG_NAME
{
... ,
... ,

I I ERRORstruct TAG_NAME field_name;
> ID;

Section 12.8 Key Terms

of its members at a time. You must always8. A union can store only
keep track of the available member. In other words, storing one datatype
in a union and accessing another data type is a logic error and may be a

one

serious run-time error.
9. Although structures can be assigned to each other, it is a compile error to

assign a structure of one type to a structure ol a different type.
10. It is a compile error to use a structure type with only its tag; that is, with-

out the keyword struct, as shown below.
struct stu

{

> ;
// Compile Error
// Correct Code

stu aStudent;
struct stu aStudent;

11. It is a compile error to compare two structures or unions, even if they arc
ol the same type.

12. It is a compile error to refer to a structure member without qualification,
such as id rather than student,id.

13. It is a compile error to omit a level of qualification when structures arc
nested. For example, in Figure 12- 13, it is an error to omit the time qual-
ifier in the following reference.

stamp.time.min

14. It is a compile error to forget the address operator with scanf when refer-
ring to a nonstring member. The pointer is the address ol the structure,
not the address of the member.

13. Referencing an identifier in a union when a different type is active is a
logic error and may cause the program to fail.

16. It is a compile error to initialize
type of the first member.

a union w ith data that do not match the

12.8 Key Terms
content coupling
control coupling
data coupling
enumeration constant
global coupling
nested structures

slack bytes
stamp coupling
structure
structure variable
tagged structure
union

Chapter 12 Enumerated, Structure, and Union Types 80 /

12.9 Summary
An enumerated type is built on the standard type, integer.
In an enumerated type, each identifier is given an integer value.
A structure is a collection of related elements, possibly of different types,
having a single name.
Each element in a structure is called a field.
One difference between an array and a structure is that all elements in an
array must he of the same type while the elements in a structure can be of
the same or different types.
We have discussed two different ways to declare and/or define a structure:
tagged structure and type-defined structure.
A structure can be initialized when it is defined. The rule for structure ini-
tialization is the same as for array initialization.
We can access the members of a structure using the direct selection
operator (.).
Structures can he accessed through a pointer. The best way to do this is to

use the indirect selection operator (->).
The following two expressions are the same if ptr is a pointer to a

structure:

LI

(*p) .x p->x

The information in a structure can he sent to a function using one of the
following methods:

1. Sending individual members

2. Sending the whole structure

3. Sending a pointer to the structure

A union is a construct that allows a portion of memory to he used by differ-
ent types of data.
In software engineering, coupling is the

hound to each other.

j

of how tightly two func-measure

lions are

Computer science has identified five types of coupling: data, stamp

trol, global, and content.
Functions in a well-structured program are loosely coupled.

use content coupling.

, con-

Avoid global coupling and never

Good program design can he measured by three principles: Modules must

he independent, modules must he loosely coupled, and each module must

do a single job.

808 Section 12.10 Practice Sets

12.10 Practice Sets

Review Questions
1 . Variables are created with a type definition (typedef) .

a. True
h. False

2. An integer value can he assigned to only one enumeration constant in an
enumerated type.
a. True
b. False

3. A structure variable is used to declare a type containing multiple fields.
a. True
b. False

4. The indirect selection operator is used with a pointer to access individual
fields in a structure.
a. True
b. False

3. The structured programming concept known as coupling describes how
data are passed to functions.
a. True
b. False

6. Which ot the following is not a derived type?
a. Arrays
h. Enumerated
c. Float
d. Pointers
e. Union

7. The
used anywhere a type is permitted.
a. array
h. record type
c. structure (struct)
d. type definition
e. both a structure and a type definition

S. The enumerated type (enum) is derived from the
a. character
b. boolean
c. floating-point
d. integer
e. structured

can he used to create a new type that can be

type.

Chapter 12 Enumerated, Structure, and Union Types 809

9. Which of the following statements about enumerated types is true?
a. Declaring an enumerated type automatically creates a variable.
b. Declaring an enumerated variable without a tag creates an enumer-

ated type.
c. Enumerated types cannot be used in a type definition.
d. Ihe enumerated values are automatically assigned constant values

unless otherwise directed.
e. I he identifiers in an enumerated type are enumeration variables.

is the smallest element of named data that has10. A(n)
meaning.
a. array
b. field
c. record type
d. structure (struct)
e. type

I 1. Which of the following statements about structures (struct) is true?

a. A structure without a tag can be used as a derived type.
b. Structures are derived types based on the integer standard type.
c. The fields in a structure must be of the same type.
d. C normally uses two different structure declarations: tagged and

type-defined.
structure creates a type that can be used later to12. The

define variables.
a. array
b. record-typed
c. tagged
d. type-defined
e. variable

1 3. Given a structure variable named stu. whose type is STU, which contains
a field named major, which of the following statements correctly refers
to major?
a. major
b. stu-major
c. stu.major
d. STU-major
e. STU.major

14. Given a pointer, ptr, to a structure stu containing a field name, which of

the following statements correctly references

a. ptr.name
b. ptr->name
c. ptr.stu.name
d. ptr->stu->name
e. ptr->stu.name

name?

Section 12.10 Practice Sets

_ is a construct that allows a portion of memory1 5. A(n)
to be shared by different types of data.
a. array
b. field
c. struct
d. union
e. variable

16. Determine which of the following statements are true and which are false:
a. A structure cannot have two Reids with the same name.
b. A structure cannot have two fields of the same type.
c. A structure must have at least one field.
d. A field in a structure can itself be a structure.

17. Determine which of the following statements are true and which are false:
a. A union can have another union as one of the fields.
b. A structure cannot have a union as one of its fields.
c. A structure cannot have an array as one of its elements.
d. W hen accessing the fields of a structure through a pointer p, the fol-

lowing two expressions are the same:

p->field_name(*p) . field_name

Exercises
18. Declare a tagged structure for a student record consisting of five fields:

student ID (integer), first name (a dynamically allocated string), last
name (a dynamically allocated string), total credits completed (integer),

and accumulated grade point average (floating-point). A graphic repre-
sentation of the structure is shown in Figure 12-25.

H [IJEIlllLiJi i
t i

id last totCrirst gpa

FIGURE 1 2-25 Data for Exercise 18

fields: part number Onteeert'̂ f°j30 inventory item consisting of six

string), reorder point (’ . ’ ^art c escnPt,on (a dynamically allocated

(integer), unit measmvm*Cger'» num,)er of items currently on hand
*' string, maximum size 8), and unit price

Chapter 12 Enumerated, Structure, and Union Types 811

(floating-point). A graphic representation of the structure is shown in
Figure 12-26.

fTTTTTlTt [T :
'
_

i
_

i
_

i.i
_

i_
l.i

_ L J_ . _ -i
partNo descr reOrder onHand unitMeas price

FIGURE 1 2-26 Data for Exercise 19

20. Declare an array of 12 elements. Each element is a structure with
three fields. The first field shows the month in numeric form (1 to 12).
rhe second field shows the name of the month (a dynamically allo-
cated string). The third field shows the number of days in the month.
Initialize the array. A graphic representation of the structure is shown
in Figure 12-27.

i i i i i I | i i
< i i i i i I i i
l
_

I
_

I _ l_ L

[0]
month alphaMonth days

7T Tir T 7 1
U-l- i- J

in month alphaMonth days

r i i 7 i
i i i i i i

L I

[in month alphaMonth days

FIGURE 1 2-27 Data for Exercise 20

21. Declare a calendar as an array of 366 elements. Each element of the array

is a structure having three fields. The first field is the name of the month

(a dynamically allocated string). The second field is the day in the month

(an integer). The third field is the description of activities for a particular

day (a dynamically allocated string). A graphic representation of the

structure is shown in Figure 12-28.

812 Section 12.10 Practice Sets

*: : : :;;.7TTi» • '• i
i• i_

l
_

l
_

L V
_

J
_ l

_
l

_
days activitymonth

LII i ' -i . i-«- m ' ' I
I ..

' - i
_

i
_ L V

i l l .I Ii
il : J.'.IJl I

l_ V I
_

iI l -J

days activitymonth

* i i
i «— j.i.i...• i i ii i

i i i « i i« « i • ...
i

_
l L

_
L

_
" J

_
l
_
t
_
J

daysmonth activity

FIGURE 1 2-28 Data for Exercise 21

22. Imagine we have declared the following structure:

typedef struct
{
char x;
char* y;
int z[20];

> FUN;

Determine which of the following definitions are valid and which are
invalid. II invalid , explain the error.
a. struct FUN fl;
I). struct FUN f5[23];
c. FUN f3;
d.FUN f4 [20];

23. Imagine we have the following declaration and definitions:

struct FUN
{
char x;
char* y;
int z [2 0] ;

> ;

struct FUN fnl;
struct FUN fn2;
struct FUN fn3 [10];
struct FUN fn4 [50];

Determine which of the following assignment statements are va^and which are invalid. If invalid, explain the error.

Chapter 12 Enumerated, Structure, and Union Types 813

a. fnl.x = 'b';
b. f n2 .y = 'b ' ;
c. fn3[4].z[5] = 234;
d. fn4[23] .y = "1234";
e. fn4[23] = fn3[5];

24. Imagine we have the following declaration:

typedef enum {ONE = 1, TWO = 2} CHOICE;
typedef union

{
char choicel;
int choice2;

> U TYPE;

typedef struct
{
float
CHOICE
U_TYPE
float
} S TYPE;

fixedBefore;
choice;
flexible;
fixedAfter;

Draw a schematic diagram forS_TYPE.
25. Using the declaration of S_TYPE (declared in Exercise 24), show what

will he printed from the following program segment. (Assume that the
S_TYPE declaration is global.)

#include <stdio.h>
int main (void)
{
S_TYPE s;
S TYPE* ps;

s.fixedBefore = 23.34;
s.choice = ONE;
s.flexible.choicel = 'B 1 ;
s.fixedAfter =
ps = &s;
printf ("\n%f", ps->fixedAfter);
printf ("\n%d", ps->flexible.choicel);
printf ("\n%f", s.fixedBefore);
return 0;
} // main

12.45;

Problems
26. Write a function called elapsedTime with two parameters, the start time

and the end time. Each parameter is a structure with three fields showing

814 Section 12.10 Practice Sets

the hours, minutes, and seconds of a specific time (see Figure 12-13).
The function is to return a time structure containing the time elapsed
between the two parameters. You must handle the situation when the
start time is in the previous day.

27. Write a function called increment that accepts a date structure with
three fields. The first field contains the month (a pointer to a string). The
second field is an integer showing the day in the month. The third field is
an integer showing the year. The function increments the date by I day
and returns the new date. II the date is the last day in the month, the
month field must also he changed. II the month is December, the value
of the year field must also he changed when the day is 3 1. A year is a leap
year if
a. It is evenly divisible by 4 but not by 100, or
b. It is evenly divisible by 400.

28. Write a function called futureDate. The function is to use two parame-
ters. The first parameter is a structure containing today s date (as defined
in Problem 27). I he second parameter is an integer showing the number
ol days after today. The function returns a structure showing the next
date, which may he in a future year.

29. Write a function called later that receives two date parameters, com-
pares the two dates, and returns true (1) if the first date is earlier than
the second date and false (0) if the first date is later. Each parameter isa
structure containing a date (as defined in Problem 27).

30. Write a function that accepts an integer representing money in dollars
(no fraction) and returns a structure with 6 fields. The fields represent,
respectively, the minimum number of $100, $30, $20, $10, $5, and
S I hills needed to total the money in the parameter.

31. \\ rite a function that compares two fraction structures (see Figure 12-3 ».
equal, it returns zero

parameter is less than the fraction in the second parameter, it returns a
negative number. Otherwise, it returns a positive number. Hint: Convert
the fraction to a floating-point number.

32. A point in a plane
I hereIore, we can represent a point in a plane by a structure having two
fields as shown below.

. If the fraction in the firstII the Iractions are

be represented by its two coordinates, x and y-can

typedef struct

int
int

> POINT;

W rite a function that accepts the structure representing a point and
returns an integer (1, 2, 3, or 4) that indicates in which quadrant the
point is located, as shown in Figure 12-29. Zero is positive.

{
x;
y;

Chapter 12 Enumerated, Structure, and Union Types 815

x y
I positive positive
II negative positive
III negative negative
IV positive negative

FIGURE 1 2-29 Quartile Coordinates for Problem 32

33. A straight line is an object connecting two points. Therefore, a line can
be represented by a nested structure having two structures of the type
POINT, as defined in Problem 32.

typedef struct
{
POINT beg;
POINT end;

> LINE;

Write a function that accepts two parameters of type POINT and
returns a structure of type LINE representing the line connecting the
two points.

34. Write a function that accepts a structure of type LINE (see Problem 33)

and returns an integer (1, 2, 3), where 1 means vertical, 2 means hori-
zontal, and 3 means oblique. A vertical line is a line whose x coordinates

the same. A horizontal line is a line whose y coordinates are the
An oblique line is a line that is not vertical or horizontal.

35. Write a function that shuffles a deck of cards. The deck of cards is repre-

sented by an array of 52 elements. Each element in the array is a struc-

ture for one card, as shown below.

are
same.

typedef struct
{

// Clubs, Diamonds, Hearts, Spades
// Ace, 2..9, Jack, Queen, King

char* suit;
int value;
} CARD;

typedef CARD DECK [52];

The function must use a random number (see Chapter 4) to ensure

that each shuffle results in a different card sequence. Hint: Generate a

random number in the range 0...51, and then exchange the current card

with the card in the random position.
36. Program 12-8 creates a union of company and person

program that reads names from the keyboard and places them into an

array of names. For each entry, prompt the user to enter a code that indi-
. After all names have

names. Write a

cates if the name is a company or person name

816 Section 12.10 Practice Sets

been entered, print the array. Your program is to contain separate Func-
tions lor reading names and printing the array.

37. Modify the program in Problem 36 to add a function to sort the r
after they have been entered. Person names arc to he sorted on last
name, first name, and initial.

names

Projects
38. Write a program to keep records and perform statistical analysis for a

class of students. For each student, we need a name of up to 20 charac-
ters, an ID for four digits, four quizzes, and one examination. The stu-

array of student structures. Provide for updent data will he stored in an
to 50 students.

The input is read from a text file. Each line in the file contains a stu-
dent’s name, four quiz scores, and one examination score in order. If a
quiz or examination was not taken, the score is zero. The students name,
the quiz, scores, and the examination score are all separated from each
other by one or more spaces. A new line ends the data for one student.
I he number ol lines in this file is the same as the number of students.

I he output consists of a listing of the students in the order they are
read from the File; no sorting is required. Print each student
line with an

on a separate
appropriate caption for each column. After the last student,

print the highest, lowest, and average score for each quiz and the exami-
nation. In determining the lowest score, do not consider zero scores. A
suggested report layout is shown in Table 12- 1 .

DATA

Name ID Quiz Quiz Quiz Quiz Exam
1 2 43

Student 1 1234 8923 2319 22
Student 2 4321 760 1823 21

Student n 1717 9121 1922 18

STATISTICS
Highest scores 9623 2525 23
Lowest scores 531817 15 1 2
Average scores 81.321.121.3 20.1 19.8

TABLE 12-1 Sample output for Project 38

Chapter 12 Enumerated, Structure, and Union Types 817

The data tor the project are shown in Table 12-2.

iName Quiz Quiz Quiz Quiz Exam
1 2 3 4

Julie Adams 1234 52 7 100 78 34

Harry Smith 2134 90 36 90 77 30

Tuan Nguyen 3124 100 45 20 90 70

Jorge Gonzales 4532 1 1 17 81 32 77

Amanda Trapp 5678 20 1 2 45 78 34

Lou Mason 6134 34 80 55 78 45

Sarah Black 7874 60 100 56 78 78

Bryan Devaux 8026 70 10 78 5666

209893 34 09 77 78Ling Wong

Bud Johnson 40 88 78 551947 45

Joe Giles 50 99 78 802877 55
80 100 78 77Jim Nelson 3189 82

6050 91 7889Paula Hung 4602
78 101 1 01 15405Ted Turner
78 2098 8906999Evelyn Gilley

TABLE 12-2 Data for Project 38

39. Rework Project 38 to report the average quiz score, total quizzes score,
and total score for each student. Then assign a grade based on an abso-
lute scale of 90% for A, 80% for B, 70% for C, and 60% for D. Any score

below 60% is an F. A total of 500 points are available. Print the student
data to the right of the input data. At the end of the report, print the

number of students who earned each grade, A to F.

40. Write a program that uses an array of student structures to answer

inquiries. Using a menu-driven user interface, provide inquiries that
report a students scores, average, or grade based on an absolute scale
(90% A. 80% B, etc.). A fourth menu option provides all data for a

requested student, and a fifth prints a list of student IDs and names. To

create the array, load the data from Project 38.

41. Using a sort of your choice, modify Project 40 to sort the data on stu-
dent ID.

Section 12.10 Practice Sets

42. A standard deck of playing cards consists of 52 cards as shown in
I’able 12-3. Create an array of 52 structures to match a new deck of
cards as shown in Table 12-3.

RankSuit

Clubs Ace...King
Ace...King
Ace...King
Ace...King

Diamonds
Hearts

Spades

TABLE 1 2-3 The Order of a New Deck of Playing Cards
Then simulate shuffling the deck using Algorithm 12-1.

ALGORITHM 12-1 Shuffle Deck of Cards
Algorithm shuffle
1 loop through each card in the deck

1 get a random number in range 0...51
2 Swap current card with card at random position

2 end loop
end shuffle

Alter the cards have been shuffled, print them.
43. \\ rite a function that calculates the area of one of the geometric figures

shown in Iable 12-4. I he function receives one parameter, a structure
that contains the type of figure and the size of the components needed
lor the calculation structured as a union.The format of the structure is

an enumerated type for the figure type.shown in Table 12-4. Use

Figure Type Components
Rectangle length width
Circle width

side3Triangle sidel side2

TABLE 12-4 Geometric Figure Components
Ihe formulas lor the figures are shown below.

RectanglcArea = length x width

Chapter 12 Enumerated, Structure, and Union Types 819

C i r c l e A r e a = r c r“

T r i a n g l e A r e a = J t (t - s i d e l) x t(t - s i d e 2) x t (t - s i d e3)

1w h e r e t = -(s i d e l + s i d e 2 + s i d e3)

Then write an interactive test driver that prompts the user for the
type of figure to be entered and the appropriate components. It then calls
the area function and prints the area before looping for the next input.
I lint: Use a switch statement to process the different codes.

44. Modify Program 12-5 to include functions to add, subtract, divide, and
compare fractions. Also change the print function to print the fraction in
its simplified format—that is, to reduce the numerator and denominator
by the largest common factor. Thus, the fraction

20
8

would be printed as

5
2

The compare function is to compare the functions algebraically.
Thus, if the following two fractions were compared, it would return equal:

20 , 5— and -8 2

Then modify main to include a loop that allows the user to enter two

fractions and an option to add, subtract, multiply, divide, or compare the

fractions.

Binary Input/Output
In Chapter 7, we discussed text input /output. We introduced text streams
and formatting text input and output. We also discussed some text input and
output facilities in Chapter 11.

In this chapter, we discuss binary input/output. We first show the differ-
ence between a text stream and a binary stream. We then discuss the C input
and output Iunctions, which are mainly designed to be used with binary
streams. We conclude with a discussion of converting text files to binary files
and binary files to text files.

Objectives
To understand the differences between text and binary files
To write programs that read, write, and/or append binary files
To be able to detect and take appropriate action when file errors occur

To be able to process files randomly
To be able to create text files from binary files and vice versa

To understand and be able to implement file merges

To understand and be able to implement the classic sequential file update

821

822 Section 13.1 Text versus Binary Streams

13.1 Text versus Binary Streams
In Chapter 7, we described inputting data from
a destination: text input/output and binary input/output. For text input/output,
we convert a data type to a sequence of characters. For binary input/output, we
transfer data without changing their memory representations.

We also discussed that some data sources and destinations are capable of
only reading and writing text . For example, a keyboard and a monitor can be a
destination for only text; a keyboard is not capable of handling binary input
and output. On the other hand, a file can be used to read or write any type of
data, both text and binary.

and outputting data toa source

Text and Binary Files
Although a file records data only in a binary format, we can distinguish
between a text file and a binary file.

Text Files
A text file is a file in which data are stored using only characters; a text file is
written using a text stream. Non-character data types are converted into a
sequence of characters before they are stored in the file. When data are input
from a text file, they are read as a sequence of characters and converted into
the correct internal formats before being stored in memory. We read and
write text files using the input/output functions that convert the characters to
data types as shown in Figure 13-1.

Converting
Function

DataCharacterDestination

Standard
Data Type

Converting
Function

Character DataSource

FIGURE 1 3- 1 Reading and Writing Text Files

(Chapter 7), character^Ch^m,1? ~°nsis* of threc categories: formatting

lunctions, such as scanf an,/ *" r r
String Chapter 1 D- The formatting

standard types or reforir
* t7rnitJ' reformat a series of input characters into

character input and out n Sj.dn d.r^ l^Pc data into characters for output.1he

output one character at a^i Unti.!°ns’ suc*1.as ge*char and putchar, input or

input and output strings of
functions’ such as&ets

Chapter 13 Binary Input/Output 823

Formatted input/output, character input/output, and string input/output
functions can be used only with text files.

Binary Files
A binary file is a collection of data stored in the internal format of the computer.
Unlike text files, the data do not need to he reformatted as they are read and writ-
ten; rather, the data are stored in the file in the same format that they are stored
in memory. Binary files are read and written using binary streams known as block
input/output lunctions. Figure 13-2 depicts the operation of block read and write
functions.

Block Write
FunctionDestination

Data

Block Read
FunctionSource

Data

FIGURE 1 3-2 Block Input and Output

Differences between Text and Binary Files
Let’s review the major differences between text files and binary files.

The major characteristics of text files are:

1. All data in a text file are human-readable graphic characters.
2. Each line of data ends with a newline character.
3. There may be a special character called end-of-file (EOF) marker at the

end of the file.
Binary files, on the other hand, store data in their internal computer for-
This means that an int in C is stored in its binary format, usually 4 bytes

character is stored in its character format, usually 1 byte; and so
mat
in a PC; a
forth. There are no lines in a binary file but there is an end-of-file marker.

The major characteristics of binary files are:

I Data are stored in the same format as they are stored in memory.

2. There are no lines or newline characters.

3. There may be an end-of-file marker.

13-3 shows how two data items are stored in a text file (whichFigure
8-bit ASCII code) and in a binary file.uses

824 Section 13.1 Text versus Binary Streams

char PA768short int

A867
00000011 100000000 1010000Q100110111 00110110 00111000 01000001

H*— A 768768 *-

Binary FileText File

FIGURE l3-3 Binary and Text Files

In the text file, the number 768 is stored as three numeric characters. The
character A is stored as one character. At the end, there is an end-of-Hle marker
that is not shown because its representation depends on the implementation.

In the binary file, the number 768 can be stored in 2 bytes, which
assumes that the short int type has a size of 2 bytes. The character A is stored
as I byte. At the end ol the file there is an end-of-file (EOF) marker, again
its format is implementation dependent.

Text files store data as a sequence of characters; binary files store data as
they are stored in primary memory.

State of a File
An opened file is either in a read state, a write state, or an error state. If we
want to read from a file, it must be in the read state. If we want to write toa
(ile, it must be in the write state. The
occurs when the file is opened or when it is read or written. II we try to read
from a (ile in the write state, an error occurs. Likewise, if we try to write toa
(ile in the read state, an error occurs. When a file is in an error state, we can-
not read from it or write to it.

state results when an errorerror

Io open a (ile in the read state, we specify the read mode in the open
statement. A file opened in the read state must already exist. II it doesntthen
the open fails.

A (ile can he opened in the write state using either the write or append
mode. In write mode, the writing starts at the beginning of the file. If the file
already exists, its data are lost. In append mode, the data are added at the end
ol the file. II the (ile exists, the writing begins after the existing data. If lhc
file does not exist, a new file is created.

In addition to read, write, and append, files can he opened in the updaU
mode. Updating allows a file to he both read and written. Even when the
is opened lor updating, however, it can still be in only one file state at a time

1°°Pen a file lor updating, we add a plus sign (+) to the basic mode. T e
initial state ol a file opened for updating is determined by the basic mode: r+
opens the file in the read state, while w-f and a+ open the file in the write
state. Iable 13- 1 lists the six file modes with their features.

Chapter 13 Binary Input/Output 825

Mode

Open State

Read Allowed
Write Allowed

Append Allowed
File Must Exist

Contents of Existing File Lost

read readwrite write write write

yes no no yes yes yes

no yes yes yes yes yes

no no yes no no yes

yes no no yes no no

no yes no no yes no

iTABLE 13- 1 File Modes
I he file states and their potential error conditions are shown in Figure 13-4.

Study this figure carefully. II a state is shaded gray, then that state is not avail-
able lor the indicated file mode. As shown in the read mode (r), only two
states arc possible, read and error. The file will stay in the read state as long
as we use only read functions. T hat is the meaning of the looping arrow in
the read-state circle. However, if we try to write when the file is in the read
state, the state changes to the error state. Once the file is in an error state,
any subsequent attempt to read it will result in an error.

writewriteread
positioning
, functionswrite

state
/ write—estate

read
state

write
state

read
state/*

write readread
/

error
state

error
state

error
state

read update mode (r+) write mode (w)read mode (r)

write writewriteread positioning M
Junctions.>— / write

state

positioning. functions write
state

read
state/*

read
state

/ write
—Istate

read
state/*

write readreadwrite
/

error
stateerror

state

append update mode (a+)append mode (a)write update mode (w+)

FIGURE 13-4 File States

826 Section 13.1 Text versus Binory Streams

Now look at the read update mode, r+. In this mode, the file can be in
either the read or the write state. To move from one to the other, we must use

f the positioning functions, which are discussed later. That is the mean-one o
ing of the arrows between the read state and write state. If we try to write
after a read without repositioning, the file will he in the error state. The error

be cleared by clearerr, which is discussed in the section "File Statuscan
Functions” later in the chapter.

Opening Binary Files
The basic open operation is unchanged lor binary files—only the mode
changes.The function declaration for /open is repeated here for convenience.

FILE* fopen (const char* filename, const char* mode);

Recall that the file name is the name used for the file by the operating
system. The name we use internally in our program is a file pointer whose
address is filled by the fopen return value. Here, we are most interested in the
mode, which is a string that contains a code defining how the file is to he
opened—for reading, writing, or both—and its format—text or binary. Text
files use just the basic modes discussed above. To indicate that a file is binary,
we add a binary indicator (b) to the mode. The six binary file modes are: read
binary (rb), write binary (wb), append binary (ab), read and update binary
(r + b) , write and update binary (w+b) , and append and update binary (a+bl.
I he following examples contain examples of open statements lor binary files.

// Read Binary
// Write with Update
// Append Binary

I iguu I 3-5 shows the basic file modes and the file state they create. The
marker (s) represents the end-of-file marker.

spReadBin = "myFile.bin",
spWriteUp = "myFile.bin",
spApndBin = "myFile.bin",

"rb");
"w+b");
"ab");

]0m a
FileFile File

MarkerMarker Marker

Append Mode (a, a+)Read Mode (r, r+) Write Mode (w, w+)

FIGURE 1 3-5 File-Opening Modes

Closing Binary Files
neededJust like text files, binary files must be closed when they are not

anymore. Closing destroys the file table and . Thethe logical file nameerases

Chapter 13 Binary Input/Output 827

close function was covered in Chapter 7. Its function declaration is repeated
here for your convenience.

int fclose (FILE* sp);

13.2 Standard Library Functions for Files
C has eight categories of standard file library functions (see Figure 13-6). We
have already discussed the first four in Chapter 7 and Chapter 11; open and
close, character input and output, formatted input and output, and line input
and output. We discuss the other lour categories, which are more related to
binary files, in this section.

File
Open/Close

Character
Input/Output

Formatted
Input/Output

Line
Input/Output

Categories of
I/O Functions

Block
Input/Output

File
Positioning

System
File Operations

File
Status

FIGURE 13-6 Types of Standard Input/Output Functions

Block Input/Output Functions
The C language uses the block input and output functions to read and write

data to binary files. As we discussed previously, when we read and write

binary files, the data are transferred just as they are found in memory. There

format conversions. This means that, with the exception of character
are no

828 Section 13.2 Standard Library Functions for Files

data, we cannot “see” the data in a binary file; it looks like hieroglyphics. If
you have ever accidentally opened a binary file in a text editor, you have seen
these strange results. The block read function is file read (/read). The block
write function is file write (fwrite).

File Read: fread
The function fread, whose declaration is shown below, reads a specified
her of bytes from a binary file and places them into memory at the specified
location.

num-

int fread (void* plnArea ,
int elementSize ,
int count ,
FILE* sp) ;

The first parameter, plnArea, is a pointer to the input area in memory.
Note that a generic (void) pointer is used. This allows any pointer type to lx?
passed to the function.

file read expects a pointer to the input area, which is usually a structure.
I his is because binary files are most often used to store structures.1 However,

C gives us the flexibility to read any type of data, from a character to a com-
plex structure or even a multidimensional array.

I he next two elements, elementSize and count, are multiplied to deter-
mine how much data are to he transferred. The size is normally specified using
the sizeof operator and the count is normally one when reading structures.

I he last parameter is the associated stream. Figure 13-7 is an example of
a file read that reads data into an array of integers. When fread is called. it
transfers the next three integers from the file to the array, inArea.

ED ED 0
T3 * 4 — 12 bytes before

read
after
read

- ^ _ _ T HIinArea
fread (inArea , sizeof (int) , 3, spData) ;

FIGURE 1 3-7 File Read Operation

l . r programming languages, structures stored in tiles are known as records.

Chapter 13 Binary lnput/Output_ 829

Ihe code to read the file is shown in Program 13- 1 .

PROGRAM 1 3- 1 Read File of Integers
// Read a file of integers, three integers at a time.1

2 {
3

// Local Declarations
FILE* spIntFile;
int itemsRead;
int intAry[3];

4
5
6
7
8

// Statements
spIntFile = fopen("int file.dat",

9
10 "rb");
1 1

while ((itemsRead = fread(intAry,
sizeof(int), 3, spIntFile))!= 0)

1 2
13
14 {

// process array15
16

} // while17
18

> // block19

File read returns the number of items read. In Figure 13-7, it will range
between 0 and 3 because we are reading three integers at a time. For exam-
ple, assume that when we try to read the file, only two integers are left to be
read. In this case, /read will return 2. If we return and try to read the file
againffread will then return 0.

Note that freiul does not return end of file—it returns the number of ele-
ments read. End of file is detected in the above situation when we called
fread with fewer than three integers left in the file. The question is, how can

tell that we are at the end of file? C provides another input/output func-

tion. feof } to test for end of file. We discuss this function in “File Status Func-

tions” later in this section.
Now let’s look at a more common use of fread: reading structures

have defined a structure that stores data about stu-

we

(records). Assume that
dents. Given the type of data that will he stored, we would expect the struc-
ture to contain some string data and other data, such as integers or real
numbers. One advantage of block input/output functions is that they can

transfer these data one structure (record) at a time. A second advantage is

that the data do not need to be formatted. Figure 13-8 shows the operation of

fread when a structure is being read.

we

830 Section 13.2 Standord Library Functions for Files

Before Read

irnminI[HDD rrmo
t

? before
readoneStudent

imrrnn

mn after
readoneStudent

After Read

FIGURE 1 3-8 Reading a Structure

The code shown in Program 13-2 reads the file.

PROGRAM 1 3-2 Read Student File
/* Reads one student's data from a file

spStuFile is opened for reading
stu data structure filled
ioResults returned

1
2 Pre

Post3
4

*/5
int readStudent (STU* oneStudent, FILE* spStuFile)6

7 {
// Local Declarations

int ioResults;
8
9
10

// Statements
ioResults = fread(oneStudent,

1 1
12
13 sizeof(STU), 1, spStuFile);
14 return ioResults;

} // readStudent15

Program 13-2 Analysis Different companies have different standards. One company with which we are
familiar has a standard that programs shall have only one read and one write state
ment for each file. The standard was created to make it easier to make changes to the
programs. Program 1 3-2 is a typical implementation of this standard. One difficulty
with this type of function, however, is that it is impossible to generalize the steps that
are to be taken for various input results, such as error handling and end of fib
Therefore, we pass the input/output result back to the calling function for analysis
and action.

Chapter 13 Binary Input/Output 83]

File Write: fwrite
I he function fwrite, whose declaration is shown below, writes a specified
number of items to a binary file.
int fwrite (void* pOutArea,

int
int
FILE* sp);

elementSize,
count,

1 he parameters for file write correspond exactly to the parameters for the
file read function.

..IP
/ / before

/ / write

E Al
t/

/ /
/ /

/ // /

4 * 3 ^ 1 2 bytes after
write

//- TToutArea

fwrite (outArea, sizeof (int), 3, spOut);

/
/

/

FIGURE 13-9 File Write Operation

Functionally, fivrite copies elementSize x count bytes from the address
specified by pOutArea to the file. It returns the number of items written. For

pie, if it writes three integers, it returns 3. We can use the return value,exam
therefore, to test the write operation. If the number of items written is fewer
than count, then an error has occurred. Depending on the device we are

working with, it may be possible to repeat the write, but generally the pro-
should be aborted when we get a write error. Figure 13-9 shows thegram

write operation that parallels the read in Figure 13-7.
Assuming that we are writing a file of student structures, Figure 13- 10

shows the write operation. Program 13-3 contains the code for the function

that w rites the data.

832 Section 13.2 Standard Library Functions for Files

Before Write

nurmn Aitznn
s

file
marker

aStudent

mn iirmn 11

file
markeraStudent

After Write

FIGURE 13-10 Writing a Structure

PROGRAM 1 3-3 Write Structured Data
/* Writes one student ’s record to a binary file.

aStudent has been filled
spOut is open for writing

Post aStudent written to spOut

1
2 Pre
3
4

*/5
6 void writeStudent (STU* aStudent, FILE* spOut)
7
8 {

// Local Declarations
int ioResult;

9
10
1 1

// Statements
ioResult = fwrite(aStudent,

1 2
13
14 sizeof(STU), 1, spOut);
15 if (ioResult != 1)
16 {
17 printf("\a Error writing student file \a\n");

exit (100);
> // if

return;
// writeStudent

18
19
2 0
21 }

Program 1 3-3 Analysis Contrast this write structured data function with the one that we wrote to read data
Although it is not possible to generalize on the action to be taken if data are not read.
It IS possible to do so with write errors. If the program cannot write data, it must be
aborted. Therefore, we put the error checking and action in the write function itself.

Chapter 13 Binary Input/Output 833

File Status Functions
C provides three functions to handle file status questions: test end of file
(feoj), test error (/error), and clear error (clearerr).2

Test End of File: feof
I he feof function is used to check ii the end of file has been reached. If the
file is at the end—that is, if all data have been read— the function returns
nonzero (true). If end of file has not been reached, zero (false) is returned.
The function declaration is shown below.

int feof (FILE* stream);

In general, two different techniques can be used to detect end of file.
Some languages have a look-ahead function. When look-ahead logic is being
used, the system transfers the current data to the program and then reads the
next data. Under this design, we can detect the end of file at the same time
that we read (transfer data back to our work area) the last data from the file.
The second technique, the one used by C, detects end of file when we
attempt to read and there is nothing left on the file. Even if all the data have
been read from the file, feof does not return true until we attempt to read
beyond the last data.

Test Error: ferror
Test error (/error) is used to check the error status of the file. Errors can be
created for many reasons, ranging from bad physical media (disk or tape) to

illogical operations, such as trying to read a file in the write state. The /error

function returns true (nonzero) if an error has occurred. It returns false
(zero) if no error has occurred . The function declaration is shown below.

int ferror (FILE* stream);

Note, however, that testing for an error does not reset the error condi-
tion. Once a file enters the error state (see Figure 13-4) it can only return to

a read or write state by calling clear error (see below).

Clear Error: clearerr
When an error occurs, the subsequent calls to ferror return nonzero, until the

status of the file is reset. The function clearerr is used for this purpose.
error
Its function declaration is shown in the next example.

void clearerr (FILE* stream);

2. Although the C99 Standard introduced the Boolean type, most standard functions continue

the traditional nonzero for true and zero for false return status.
to use

834 SectionJ 3L2 Standard Library Functions for Files

Note, however, that even though we have cleared the error, we have not
necessarily cured the problem. We may find that the next read
returns to the error state. or write

Positioning Functions
Positioning functions have two uses. First, for randomly processing data in
disk files (we cannot process tape files randomly), we need to position the File
to read the desired data. Second, we can use the positioning functions to
change a file’s state. Thus, il we have been writing a file, we can change to a
read state after we use one of the positioning functions. It is not necessary to
change states after positioning a file, but it is allowed.

We will discuss three file position functions: rewind, tell location, and
file seek.

Rewind File: rewind
I lie rewind function simply sets the file position indicator to the beginning of
the file (Figure 13-11). I he function declaration is shown below.
void rewind(FILE* stream);

A common use of the rewind function is to change a work file from a
write state to a read state. Often it is necessary to place data in a file tempo-
rarily lor later processing. When all the data have been written and we are
ready to begin reading, we rewind the file and simply start reading. Remem-
ber, however, that to read and write a file with only one open, we must open it
in update mode, in this case, w+ or w+b.

Before Rewind

mem EDD
file

marker

inj|nrmn
After Rewind

file
marker

FIGURE 13-11 Rewind File

I he same effect tan be accomplished by closing the output file and open
mg K aS inPut* However, the rewind is a faster operation.

Chapter 13 Binary Input/Output 835

Current Location: ftell
I he ftell function reports the current position of the file marker in the file,
relative to the beginning of the file. Recall that C considers files as streams of
data. It measures the position in the file by the number of bytes, relative to

zero
at the beginning of the fitey ftell returns zero. If the file position indicator is at

the second byte of the filey ftell returns I, representing the position 1 byte off-
set from the beginning of the file. The function declaration for ftell is
shown below.

from the beginning of the file. Thus, when the file position indicator is

long int ftell (FILE* stream);

Note that ftell returns a long integer. This is necessary because many files
have more than 32,767 bytes, which is the maximum integer value on many

computers. The operation of ftell is graphically shown in Figure 13-12.

Beginning
^ of File ^

mm
Current

Number of Bytes location (16)

FIGURE 13-12 Current Location (ftell) Operation

Another important factor to consider is that ftell returns the number of
bytes from the beginning of the file. This is true even when we read or write

structures. If we need to know the structure number relative to the first

structure, then we must calculate it. This can he done by dividing the ftell

return value by the size of the structure, as shown below.

= ftell (sp);numChar
numStruct = numChar / sizeof(STRUCTURE_TYPE);
In Figure 13-12, ftell returns 16. Since each structure is 4 bytes, the

result of the calculation shown above is 4, which means that there are four

before the current location.Another way to look at it is that the file
structures
is positioned at the fourth integer relative to zero.

U' ftell encounters an error, it returns -I. We know of only two conditions

that can cause an error. The first, using ftell with a device that cannot store

data, such as the keyboard, is a program logic or design error. The second
when the position is larger than can be represented in a long

error occurs

836 Section 13.2 Standard Library Functions (or Files

only with very large files, but files of moreinteger. Obviously, this could occur
than a million records are common in industry.

The primary purpose offtell is to provide a data address (offset) that
be used in a file seek. It is especially useful when we are dealing with text files
for which we cannot calculate the position of data.

can

Set Position: fseek
The fseek function positions the file location indicator to a specified byte
position in a file. It gets its name from the disk-positioning operation, seek.
Seek moves the access arm on a disk to a position in the file for reading or
writing. Since this is exactly the purpose of seek file, it is an appropriate
name. Its function declaration is shown below.

int fseek(FILE* stream, long offset, int wherefrom);

The first parameter is a pointer to an open file. Since the seek is used
with both reading and writing files, the file state can he either read or write.
The second parameter is a signed integer that specifies the number of bytes
the position indicator must move absolutely or relatively. To understand what
we mean by absolutely or relatively, we must first discuss the third parameter.
wherefrom.

C provides three named constants that can he used to specify the starting
point (wherefrom) of the seek. They are shown below.

tdefine SEEK_SET 0
tdefine SEEK_CUR 1
#define SEEK END 2

When wherefrom is SEEK_SET or 0, then the offset is measured abso-
lutely from the beginning of the file. This is the most common use of file
seek. Thus, to set the file indicator to byte 100 on a file, we would code the
following statement:

fseek (sp, 99L , SEEK_SET) ;

We can use zero in place of SEEK_SET. If you are puzzling over the sec
ond parameter in the above statement, remember that the file position is rel-
ative to zero and must be a long integer. Actually, the compiler is smart
enough to convert efficient if... an integer value to long integer, but it is more

specify the correct type, especially with literals.
< > U Cts °°k at wherefrom option, SEEK_CUR. If wherefrom

OI- displacement is calculated relatively from the cur-

i . P<JSILOIL ^ displacement is negative, the file’s position moves
ack toward the beginning of the file. If it is positive, it moves forward toward

VC e. It is an error to move beyond the beginning of the file* 1
move beyond the end of the file, the file is extended, but the conten

nc extended bytes are unknown. Whenever we extend the file, there is aM*

we

ts ofwe

Chapter 13 Binary Input/Output 837

the possibility of running out of space, which is an error. To position the file
marker to the next record in a structured file, we execute the following
statement:

fseek(sp, sizeof(STRUCTURE_TYPE), SEEK_CUR);
To position the student file described earlier at the structure indicated by

the integer variable stuLoc, we use the following statement:

fseek(stuFile, (stuLoc - 1)* sizeof(STU), SEEK_SET);
It is necessary to adjust the integer location, stuLoc, by subtracting 1 to

convert the ordinal structure number to a zero base. That is, if stuLoc
tains 55, indicating we want to read the 55th student in the file, we position
the file to the location of the 54th student relative to zero.

Finally, il wherefrom is SEEK_END or 2, the file location indicator is posi-
tioned relative to the end of the file. If the offset is negative, the file position
marker is moved backward toward the beginning of the file; if it is positive, it
extends the file. This technique can he used to write a new' record at the end
of the file. We simply position the file at the end with a SEEK_END and a dis-
placement of zero as shown below and then write the new record.

con-

fseek(stuFile, OL, SEEK END);

The seek function returns zero if the positioning is successful. It returns
nonzero if the positioning is not successful. Figure 13- 13 shows the effect of
fseek in different situations.

am *am
ED nan QID

fseek (sp, 4 * sizeof(STRUCTURE_TYPE), SEEK SET);

an urn A

"1
4 ** sizeof(STRUCTURE_TYPE), SEEKEND);fseek (sp,

ran CUED DOED *TED
fseek (sp, 2 * sizeof(STRUCTURE_TYPE), SEEK_CUR);

FIGURE 13-13 File Seek Operation

838 Section 13.2 Standard Library Functions for Files

The file seek is intended primarily for binary files. It does, however, have
limited functionality with text files. We can position a text file to the begin-
ning using /seek with a zero offset from the beginning of the file(SEEK SET).
However, rewind provides the same functionality and is more appropriate for
text files. To position a text file at the end, we can use fseek with a zero offset
and a wherefrom SEEK_END, as discussed earlier.

We cannot use file seek to position ourself in the middle of a text file
unless we have used ftell to record the location. The reasons for this have to
do with control codes, newlines, vertical tabs, and other nuisances of text
files. However, if we have saved a location using ftell and want to go hack to
that position, we can use fseek, as shown helow.

fseek(sp, ftell_location, SEEK_SET);
Note that since ftell returns a position relative to the beginning ol the

file, we must use SEEK_SET when we reposition the file.

EXAMPLE 13-1 Block Input/output: Append Files
Let’s look at a program that reads and writes binary files. Suppose, lor exam-
ple, that we had two copies of files with integer data. Perhaps one file repre-
sents data from one week and the other file represents data for a second
week. We want to combine both files into a single file. The most efficient way
to do this is to append the data from one file to the end of the other file. This
logic is shown in Program 13-4.

PROGRAM 1 3-4 Append Two Binary Files
/* This program appends two binary files of integers.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <stdlib.h>

5
6
7
8 int main (void)
9 {

// Local Declarations
FILE* spl;
FILE* sp2;
int data;
long dataCount;
char filelD[13];

1 0
1 1
1 2
13
14
15
16

cotitiIIM#

Chapter 13 Binary Input/Output 839

PROGRAM 13-4 Append Two Binary Files (continued)

// Statements
printf("This program appends two files.\n");
printf("Please enter file ID of the primary file: ");
scanf("%12s", filelD);
if (!(spl = fopen (filelD, "ab")))

printf("\aCan't open %s\n", filelD), exit (100);

17
18
19
2 0
21
2 2
23
24 if (!(dataCount = (ftell (spl))))

printf("\a%s has no data\n", filelD), exit (101);
dataCount /= sizeof(int);

25
26
27
28 printf("Please enter file ID of the second file: ");

scanf("%12s", filelD);
if (!(sp2 = fopen (filelD, "rb")))

printf("XaCan ’t open %s\n", filelD), exit (110);

29
30
31
32

while (fread (&data, sizeof(int), 1, sp2) == 1)33
34 {
35 fwrite (&data, sizeof(int), 1, spl);

dataCount++;
} // while

36
37
38

if (! feof(sp2))
printf("\aRead Error. No output.\n"), exit (120);

39
40
41

fclose (spl);
fclose (sp2);

42
43
44

printf("Append complete: %ld records in file\n",
dataCount);

45
46

return 0;
} // main

47
48

Program 13-4 Analysis First, note the way the files are opened in Program 13-4. Because it appends the data
from the second file to the end of the first file, the first file is opened in append mode
and the second file is opened in read mode. Both files are opened as binary.

Opening the first file in append mode presents a minor problem: The open is suc-
cessful even if the file doesn't exist. Recall that the append mode places the file marker
at the end of an existing file or, if there is no existing file, at the beginning of a new file.
To ensure that an existing file was opened successfully, therefore, we use the ftell func-

tion in statement 24. If an existing file was opened, dataCount will be nonzero.

Now look at the way the external file names are handled. Under the assumption

that this program will be used to append different files at different times, we asked the

840 Section 13.2 Standard Library Functions for Files

user to enter the file names. This technique provides maximum flexibility for generalized
programs.

Statement 22 contains one of the few valid uses of multiple statements
line — in this case, multiple expressions separated by the comma operator. Why is this
statement considered valid when we have so strongly emphasized one statement per
line? The answer is that we are handling an error situation that should never occur. In
good human engineering style, we want to deemphasize the error logic so that it
doesn't distract the reader. Therefore, we place the print error message and exit in
one expression.

The heart of the program is contained in statements 33 through 37. As long as
the read is successful, we keep going. When we reach the end of file, the read
returns zero and the loop terminates. We now have another problem, however. We
don't know if the read terminated at end of file or because of a read error. We there-
fore use the feof function to make sure we read to the end of the file.

The program concludes with a printed message that contains the number of
records on the appended file. Since we didn't read all the data on the first file, how-
ever, we must calculate the number of integers in it. To do this, we used the result of
the ftell that verified that the first file existed. Recall that ftell returns the number of
bytes to the current location in the file — in this case, the end of the file. To get the
number of integers, we simply divide by the size of one integer. (See statement 26.)
Then, each time we write, we add 1 to the record count. This gives us the number of
integers in the combined file.

on one

System File Operations
A few functions operate on the whole file instead of the contents. These
functions generally use operating system calls to perform operations such as
remove a file, rename a file, or create a temporary binary file.

Remove File: remove
1 he remove function removes or deletes the file using its external name. The
parameter is a pointer to the name of the file. Its function is shown below.

int remove (char* filename);

It returns zero it the deletion is successful. It returns nonzero if there is
an error, such as the file can’t be found. For example, if we want to delete a
file named filel .dat, we execute the following statement.

if (remove ("filel.dat"))
printf("Error, file cannot be deleted");

Any attempt to access a file after it has been removed will result in
an error.

Chapter 13 Binary Input/Qutput 841

Rename File: rename
\\hen we create a new version ol a file and want to keep the same name, we
need to rename the old version ol the file. Ihe rename function declaration is
shown below.
int rename (const char* oldFilename,

const char* newFilename);

Both the old name and the new
rename function returns zero il renaming is successful; it returns nonzero if
there is an error.

For example, in a DOS system, if we want to rename a student file and
designate it a backup, we could use the rename function as shown below.

name must he given as parameters. The

if (rename ("STUFILE.DAT", "STUFILE.BAK"))
printf("Error, the file cannot be renamed");

Create Temporary File: tmpfile
The tmpfile function creates a new temporary output file. Although we could
do the same thing with an fopen in the w+b mode, the difference is that the
file is available only while the program is running. It will be closed and erased
when the execution of the program is finished. It is a temporary file, not a

permanent one. Its function declaration is

FILE* tmpfile (void);

To create a temporary file, we first define a file pointer and then open it,
as shown below.

FILE* sp;

sp = tmpfile ();

Now we can write to the file as we would to any file. Because the file is

opened in the w+b mode, if we want to read from the file we must reposition
it using one of the repositioning functions such as rewind or fseek.

13.3 Converting File Type
A rather common but somewhat trivial problem is to convert a text file to a

binary file and vice versa. C has no standard functions for these tasks. We
to make the conversion. We describe the file conversion

must write a program
logic in this section.

12 Section 13.3 Converting File Type

Creating a Binary File from a Text File
To create a binary file, we usually start with data provided by the user. Since
the user is providing the data, it will be in human readable form—that is, in
text form. If only a small amount of initial data are required, they are often
read from a keyboard. With a lot of data, however, it is easier for the user to
enter the data with a text editor and then read the text file and create the
binary file.

When we read the text file, we can use either the fscanf function to con-
vert the data as they are being read, or the /gets and sscanf functions to read
the data a line at a time and then convert the data to the proper internal for-
mat. As the data are being converted , they are placed in a structure. At the
end of each line, the structure is written to the binary file. This process is
repeated until the text file has been completely converted to the binary struc-
ture. The structure chart for this program is shown in Figure 13-14.

createFile

write
BinaryFilegetData

FIGURE 13- 14 Create Binary File Structure Chart

Let ’s assume that we want to convert student data to a binary file. The
data consist of a student s name, ID, three exams, eight problems, and a final
grade. In the text file version, each field is separated by one or more
whitespace characters and each student’s data are stored on a separate line.
The create file program is shown in Program 13-5.

PROGRAM 13-5 Text to Binary Student File
/* Reads text file of student data & creates binary file‘

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>

5
6
7
8

// Type Declarations9

itittwcot

Chapter 13 Binary Input/Output 843

PROGRAM 1 3-5 Text to Binary Student File (continued)

10 typedef struct stuData
11 {
12 char name[26 J ;

char id[5];
int exams[3];
int problems[8];
char grade;

> STU DATA;

13
14
15
16
17
18

// Function Declarations
bool getData

19
20 textFile,

STU_DATA* aStudent);
void writeBinaryFile (STU_DATA* aStudent,

binFile);

(FILE*
2 1
22
23 FILE*
24

int main (void)25
26 {

// Local Declarations
char* textFilelD = "P13-stu.txt";
char* binFilelD = "P13-stu.bin";

27
28
29
30

STU DATA aStudent;31
32

FILE* textFile;
FILE* binFile;

33
34
35

// Statements
printf("\nBegin Student Binary File CreationXn ");

if (!(textFile = fopen(textFilelD, "r")))

36
37
38
39 {

printf("\nCannot open %s\n", textFilelD);

exit (100);

> // if textFile

if (!(binFile = fopen(binFilelD, "wb")))

40
41
42
43

{44
printf("\nCannot open %s\n", binFilelD);

exit (200);
} // if binFile

45
46
47
48

while (getData (textFile, &aStudent))

writeBinaryFile (&aStudent, binFile);
49
50
51

fclose(textFile);
fclose(binFile);

52
53

continued

844 Section 13.3 Converting Pile Type

PROGRAM 1 3-5 Text to Binary Student File (continued)

printf("\n\nFile creation complete\n");
return 0;
// main

54
55
56 >
57

===== getData =====58 ========
This function reads the text file.

textFile is opened for reading
data read and returned

59
60 Pre

Post61
*/62
bool getData (FILE* textFile, STU_DATA* aStu)63

64 {
// Local Declarations

char buffer[100];
65
66
67

// Statements
fgets(buffer, sizeof(buffer), textFile);
if (!feof(textFile))

68
69
70
71 {

sscanf(buffer, "%s %s %d%d%d%d%d%d%d%d%d%d%d Ic"
aStu->name, aStu->id,

&aStu->exams[0],
&aStu->exams(1],&aStu->exams[2],
&aStu->problems[0], &aStu->problems[1],
&aStu->problems[2], &aStu->problems[3],
&aStu->problems[4], &aStu->problems[5],
&aStu->problems[6], &aStu->problems[7],
&aStu->grade);

return true;
} / / if

return false;
} // getData

72
/

73
74
75
76
77
78
79
80
81

82
83
84
85

/*86 = writeBinaryFile =
87 Write student data to a binary file.

Pre binFile is opened as a binary output fUe88
89 aStudent is complete

Post Record written90
*/91

void writeBinaryFile (STU_DATA* aStudent,
FILE* binFile)

92
93
94 {

// Local Declarations
int amtWritten;

95
96
97

continue

Chapter 13 Binary Input/Output 845

PROGRAM 13-5 Text to Binary Student File (continued)

98 // Statements
amtWritten = fwrite (aStudent,99

100 sizeof(STU_DATA), 1, binFile);
101 if (amtWritten != 1)
102 {
103 printf("Can't write student file. ExitingXn");

exit (201);

> // if
return;

> // writeBinaryFile

104
105
106
107

Program 13-5 Analysis Note how we specified the external file names as strings. This makes it easy to
change the file names when necessary. It also allows us to identify the file by name if
the open fails.

The program starts and ends with a message that identifies what program is run-
ning and that it has successfully completed. This is a good programming technique and
a standard in many organizations.

The while loop is controlled by the results of the getData function call. To under-
stand how it works, therefore, first look at getData. When you need to read a lot of
text data, especially if it is coming from a file, the preferred technique is to use the get
string [fgets] function and then use the string scan (sscanf] function to convert it into
internal binary formats. The get string function reads text data until it finds a newline
character, an end of file, or the maximum number of characters has been read. It
returns the address of the input string, in this case buffer. When end of file is
detected, it returns a null pointer.

To make this function robust, we would break the sscanf into several calls, one for
the first two strings, one for the exams, one for the problems, and one for the grade at

the end. This would allow us to easily verify that the correct data were read by examin-
ing the returned value from sscanf.

Now that we understand that the getData function returns either an address or

NULL, we understand how the while statement in main works. It simply loops until an

end of file is detected-that is, until NULL is returned.

Creating a Text File from a Binary File
Programmers convert a binary file to a text file in two situations. The first is

when we need to display the data for people to read; we discuss this below.

The second is when it is necessary to export the data to another system,

which can't read the binary file. This occurs, for example, if the word sizes for

integers and floats are different on the two different hardware systems. As
long as all lines are formatted the same and they use the same character
alphabet, text files

An interesting problem is to create a report of the data in the binary file.

Obviously, we need to read the binary file and write the data as a text file, but

there is much more to it than that. First, the report needs a name, so each
have a title. The title should include the report date and a page

portable.are

page must
number. To make the report meaningful, each column should have a column

16 Section 13.3 Converting File Type

caption. Finally, the report should have an end of report message as the lastline of the report so that the user knows that all data have been reported.
Since we put a title on the top of each page, we need to know when a

page is full. This is generally done by counting the number of lines on a pageand when the count exceeds the maximum, skipping to the next page. Goodstructured programming requires that the heading logic he in a separatefunction. The design for printing the student data is shown in Figure 13-15.

printStudentsI

I write
ReportgetData

pageHeaders

FIGURE 13-15 Design for Print Student Data

We write the data to a file so that it can be sent to the printer when
want a hard copy. You should he aware of one final point before looking at the
program. In the print functions, we use a type modifier known as the s/«tic
storage class (see statements 97 and 128). We discuss the concept of storage
classes in Appendix K. l or now, you only need to know that static keeps the
contents ol a variable available between calls. The first time we call a function
with a static variable, the variable is initialized. After that, its value is retained
between calls. I his is a great C feature that reduces the need to pass parame-
ters just to retain a local variable. The program is shown in Program 13-6.

we

PROGRAM 1 3-6 Print Student Data
/* Reads a binary file of student data, and prints it.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <stdlib.h>

5
6
7
8 #define MAX_LINES_PER_PAGE 50

#define BUFFER_SIZE
#define FORM FEED

9
133

10 • \ f 1

1 1

cotiti,,,ie‘

Chapter 13 Binary Input/Output 847

PROGRAM 13-6 Print Student Data (continued)

1 2 // Type Declarations
typedef struct stuData13

14 {
15 char name[26];

char id[5];
int exams[3];
int problems!8];
char grade;

> STU DATA;

16
17
18
19
20
2 1

// Function Declarations
STU_DATA getData
void writeReport

22
23 (FILE* binFile);

(STU_DATA aStudent,
FILE* prtFile);

pageHeaders (FILE* prtFile);

24
25
26 void
27

int main (void)28
29 {

// Local Declarations
stuFileID[]
prtFilelD[]

STU DATA aStudent;
stuFile;
prtFile;

30
= "P13-stu.bin";
= "P13-stu.prt";

31 char
char32

33
34 FILE*

FILE*35
36

// Statements
printf("\nBegin Student Report CreationNn ");

37
38
39

if(!(stuFile = fopen(stuFilelD, "rb")))40
{41
printf("\nCannot open %s\n", stuFilelD);

exit (100);

> // if stuFile

if (!(prtFile = fopen(prtFilelD, "w")))

42
43
44
45
46

printf(M\nCannot open %s\n", prtFilelD);

exit (200);
} // if prtFile

47
48
49
50

aStudent = getData (stuFile);

while (!feof(stuFile))
51
52

<53
writeReport (aStudent, prtFile);

aStudent = getData (stuFile);
54
55

continued

848 Section 13.3 Converting File Type

PROGRAM 1 3-6 Print Student Data (continued)

} // while56
57

fprintf(prtFile,
fclose(stuFile);
fclose(prtFile);
printf("\n\nEnd Student Report Creation\n");
return 0;
// main

58 "\nEnd of Report\n");
59
60
61
62
63 >
64
65 /* ===== getData ================

This function reads the student binary file.
stuFile is opened for reading
one student record read and returned

66
67 Pre

Post68
69 */
70 STU_DATA getData (FILE* stuFile)
71 {

// Local Declarations
ioResult;
aStu;

72
73 int
74 STU DATA
75
76 // Statements

ioResult = fread(&aStu,77
78 sizeof(STU_DATA), 1, stuFile);
79 if (!ioResult)

if (!feof(stuFile))80
81 {
82 printf("\n\nError reading student file\n");

exit (100);
> // if !feof

83
84
85 return aStu;

> // getData86
87
88 /* ===== writeReport =====

report to a text file.
prtFile is opened
aStudent is complete
Report line written

89 Write student
Pre90

text output fileas a
91
92 Post
93 */
94 void writeReport (STU DATA aStu, FILE* prtFile)
95 {
96 // Local Declarations
97 static int lineCount = MAX LINES PER PAGE + 1?

char98 buffer[BUFFER_SIZE];
99

continued

Chapter 13 Binary Input/Output 849

PROGRAM 13-6 Print Student Data (continued)

100 // Statements
if (++lineCount > MAX_LINES_PER_PAGE)101

102 {
103 pageHeaders (prtFile);

lineCount = 1;
} // if

104
105
106
107 sprintf (buffer,

"%-25s %4s %4d%4d%4d%4d%4d%4d%4d%4d%4d%4d%4d %c\n",
aStu.name, aStu.id,
aStu.exams[0],
aStu.problems(0],
aStu.problems[1], aStu.problems[2],
aStu.problems(3], aStu.problems(4],

aStu.problems[5],
aStu.problems[6], aStu.problems[7],
aStu.grade);

fputs (buffer, prtFile);
return;

} // writeReport

108
109
110 aStu.exams(1], aStu.exams[2],
111
112
113

114
115
116
117

!118
119
120 ===== pageHeaders =================

Writes the page headers for the student report.
prtFile is opened as a text output file

Post Report headers and captions written

121
122 Pre

123
*/124
void pageHeaders (FILE* prtFile)125

126 {
// Local Declarations

static int pageNo = 0;
127
128
129

// Statements
pageNo++;
fprintf(prtFile, "%c", FORM_FEED);
fprintf(prtFile, "%-66s Page %4d\n",

"Student Report ", pageNo);

fprintf(prtFile, "%-25s %-6s %-10s %-27s Grade\n\n",

"Student Name", "ID", "Exams", "Problems");

130
131
132
133
134
135
136

return;
} // pageHeaders

137
138

===== End of Program ====139

Program 13-6 Analysis Even though this program is rather simple, you should note the following points:

First, we have declared the maximum number of lines per page and the print

buffer size as preprocessor-defined constants. This makes it easy to change them
should it be necessary. It also makes it easy to set the print logic so that it will print the

850 Section 13.4 File Progrom Examples

header the first time through the function. This leads us to the second point you should
note. The logic for pageHeaders will cause the first page to be blank. That is, we

page form feed before any data have been written. This is standard in produc-
tion programs, but you may want to change it so that the first page is not wasted. In this
case, you will have to call the pageHeaders function before you start the file reading
to write the first headings and move the form feed write to just before statement 103.

The file is read using look-ahead logic. At statement 51, we read the first record of
the file. This allows us to use the feof function to control the while loop. At the end of the
loop, we read the file again. Although this loop closely resembles a posttest loop, there
is one difference. If the file is empty, a post- test loop would fail. By reading the first
record from the file before the loop, we ensure that we can process any file condition
using the simplest possible logic.

Note the way we handle the report title and line captions in pageHeaders.
Many programmers simply try to code them in the format string. This works, but it takes
a lot of trial and error to get it right. Our technique simply adds the widths from the
data write and uses them for the widths in the caption prints. The program may still
need a little manual adjustment, but it is a much simpler approach.

Finally, note how we formatted the student output. We used sprintf to format a line
of output. There is no significant advantage to using the string format function rather
than the print function, but we wanted to demonstrate its use. After the data have been
formatted, we use fputs to write them. Note also the way we aligned the data for read-
ability. Since it takes several lines, we group the common data on lines by themselves.
This makes it much easier to read the code. We could have used for statements to print
the array data, but that would have been less efficient.

issue a

13.4 File Program Examples
I his section contains two common file applications. The first uses the file
positioning functions to randomly process the data in a file. The second
merges two files.

EXAMPLE 13-2 Random File Accessing
Program 1 3- 7 demonstrates the concept of randomly accessing data in a file*

We begin by creating a binary file of integers. Each integer is the square of
the data’s position in the file, relative to 1 . After the file has been created, we
print it in sequence, starting at the beginning of the file. We then print it in a
random sequence usingfseek and a random number generator.

PROGRAM 1 3-7 Random File Application
/* Shows application of some functions we have studied

in this chapter. The program first creates a binary
file of integers. It then prints the file, first
sequentially and then randomly using rand().

Written by:
Date:

1
2
3
4
5
6

continue

Chapter 13 Binary Input/Output 851

PROGRAM 1 3-7 Random File Application (continued)

* /7
8 #include <stdio.h>

#include <stdlib.h>9
10

// Function Declarations
void buildFile (FILE** sp);

11
12
13 void printFile (FILE* sp);

void randomPrint (FILE*14 s p) ;
15

int main (void)16
17 {

// Local Declarations
FILE* fpData;

18
19
20

// Statements
buildFile (&fpData);
printFile (fpData);
randomPrint (fpData);
return 0;

> // main

21
2 2
23
24
25
26

Program 1 3-7 Analysis The main function simply calls three functions in order. The first function receives a

pointer to the file pointer, which is the only variable declared in main. It is necessary
to use double dereferencing here because buildFile needs to pass back the file
pointer to main. The other two calls do not change the file pointer, they just use it.
Therefore, it can be passed to them by value.

EXAMPLE 13-3 Build Random File
Program 13-8 builds a binary file.

PROGRAM 13-8 Random File: Build File
===== buildFile =====1 =====

Creates a disk file that we can process randomly,

nothing

file has been built

2
Pre
Post

3
4

*/5
void buildFile (FILE** spData)6

7
// Local Declarations

int data;
8
9

10
// Statements1 1

continuec

852 Section 13.4 File Program Examples

PROGRAM 13-8 Random File: Build File (continued)

if (!(*spData = fopen("SAMPLE.DAT", "w+b")))12
13 {

printf("\aError opening file.\n");
exit (100);
} // if open

for (int i = 1; i <= 10; i++)

14
15
16

17
18 {

data = i * i;
fwrite(&data, sizeof(int), 1, *spData);
} // for

19
20
21
22 return;

> // buildFile23

Program 13-8 Analysis The buildFile function in Program 13-8 simply creates a file with ten records.
Each record consists of a single integer, which is the square of the ordinal record
number relative to 1 (not 0). The file is opened with write plus so that we can first
write to it and then later in the program read it. Note that all references to the file use
the dereference operator to update the file pointer, which exists in main.

EXAMPLE 13-4 Sequentially Print a Random File
Program 13-9 prints the file sequentially.

PROGRAM 1 3-9 Random File: Sequential Print
/* ===1 == printFile ====

Prints the file starting at the first record.
spData is an open file
file has been printed

:========
2
3 Pre

Post4
*/5

6 void printFile (FILE* spData)
7 {

// Local Declarations
int data;
int recNum;

8
9
10
1 1

// Statements
recNum = 0;
rewind(spData);
fread(&data , sizeof(int),
while (!feof(spData))

1 2
13
14
15 1, spData);
16
17 {
18 printf("Record %2d: %3d\n", recNum++, data);

fread(&data, sizeof(int), 1, spData);19

continue

Chapter 13 Binary Input/Output 853

PROGRAM 13-9 Random File: Sequential Print (continued)

2 0 > // while
return;

} // printFile
21
2 2

Results:
Record 0: 1
Record 1: 4
Record 2: 9
Record 3: 16
Record 4: 25
Record 5: 36
Record 6: 49
Record 7: 64
Record 8: 81
Record 9: 100

Program 1 3-9 Analysis The printFile function in Program 13-9 simply reads the file sequentially starting
at the beginning (Record 0). Study the while loop. Note that we have coded it with
the first read before the loop. We use this technique so that we can detect end of file
in the while statement. The while loop prints the current record and then reads the
next record. When all records have been processed, the read will detect end of file,
and the loop will terminate with all records processed.

EXAMPLE 13-5 Randomly Print Random File
Program 13-10 prints the file randomly.

PROGRAM 13-10 Random File: Random Print

===== randomPrint ===/ * =:1
This function randomly prints the file. Some data

may be printed twice, depending on the random

numbers generated.
spData is an open file

2
3
4

Pre
Post Ten records have been printed

5
6

*/7
void randomPrint (FILE* spData)8

9 {
// Local Declarations

int data;
int randomSeek;

10
1 1
12
13

// Statements14

continued

854 Section 13.4 File Program Examples

PROGRAM 13-10 Random File: Random Print (continued)

printf("\nFile contents in
for (int i = 0; i < 10; i++)

15 random sequence.\n");
16
17 {
18 randomSeek =

fseek(spData,
(rand() % 10);

19
20 sizeof(int) * randomSeek, SEEK_SET);

fread(&data, sizeof(int), 1, spData);
printf("Record %3d ==> %3d\n",

randomSeek, data);

21
22
23
24 } // for

return;
// randomPrint

25
26 >

Results:
File contents in random sequence.
Record
Record
Record
Record
Record 1 ==> 4
Record
Record 0 ==> 1
Record 9
Record
Record

8 ==> 81
8 ==> 81
3 ==> 16
5 ==> 36

7 ==> 64

=> 100
2 ==> 9
6 ==> 49

Program 13-10 Analysis The randomPrint functi

from zero to * TU^ *° mo<^u° ten' which gives us potential record numbers
record nndf

0106 IS corresP°nc^ s exactly with the file on disk, which occupies

shown in Pro
0 * ,̂e ^unc*‘on output created using our computer is

prmTs all oth"9"" A °L^**» starts bX Piling Record 8 twice and then

Program 1 3-9
S °*^ ^Qn Recorb Compare the output to the file print in

Merge Files
In “B,ock Input/Output Function.” • c .
cePl of combining two files hv .

Se,CtIon 13 2 > we discussed the con-

another wav to romKin A
' aPPenc"ng the data. In this section, we discuss

fife. ,hei“|, i, one ^ When w,merge

comnl '|C Wlj1 l^e ^ata ol*dered in key sequence. This
data from two

requires that we
I b i s

output flic.create a new

Chapter 13 Binary Input/Output 855

/ 28 / •/ «:
2T7

23 19
21 16

Merge
File 1

Merge
File 218 15

17 12
14 10

10 12 14 15 16 17 18 19 21 23 25 27 28 31

Output (Merged) File

FIGURE 13-16 File Merge Concept

The merge files pseudocode is shown in Algorithm 1 3- 1 . The design is rather
simple. We start by reading data from each merge file. We then (1) compare the
data in the two files, (2) write the smaller to the merge output file, (3) read the
next record from the file whose record was written, and (4) continue the loop.

ALGORITHM 13- 1 Pseudocode for Merging Two Files

Algorithm MergeTwoFiles
This program merges two files
1 input (Filel, Reel)
2 input (File2, Rec2)
3 HighSentinel - high-value
4 loop (not eof(Filel)) OR (not eof(File2))

1 if Reel.Key <=
1 output (File3, Reel)
2 input (Filel, Reel)
3 if eof(Filel)

1 Reel.Key = HighSentinel
4 end if

2 else
1 output (File3, Rec2)

2 input (File2, Rec2)

3 if eof(File2)
1 Rec2.Key = HighSentinel

4 end if

Rec2.Key then

continued

856 Section 13.4 File Program Examples

ALGORITHM 13-1 Pseudocode for Merging Two Files (continued)

3 end if
5 end loop
End MergeTwoFiles

The difficult part of the merge design is the end-of-file logic. One of themerge files will end first , hut we never know which one. To simplify the endof file processing, this design introduces a concept known as a sentinel. Asentinel is a guard ; in our merge algorithm, the sentinel guards the end offile. The sentinel has the property that its value is larger than any possiblekey. For the sentinel value, we use INT_MAX, which is found in the limits.!Iheader file. The code is seen in Program 13- 1 1 .

PROGRAM 13-11 Merge Two Files
/* This program merges two files

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

5
6
7
8

#define READ_MODE "rb”
#define WRITE MODE "wb"

9
10
11
12 int main (void)
13 {

//14 Local Declarations
FILE* spMl;
FILE* spM2;
FILE* spOut;

15
16
17
18
19 int recMl;

int recM2;
int sentinel
int mergeCnt

20
21 = INT_MAX;

= 0;22
23
24 char filelID[]

char file2ID[]
char fileOutID[] = "P13Mrg3.bin";

// Statements
printf("Begin File Merge:\n");
if (!(spMl = fopen (filellD, READMODE)))

= "P13Mrgl.bin";
25 = "P13Mrg2.bin";
26
27
28
29
30

timidcon

Chapter 13 Binary Input/Output 857

PROGRAM 1 3- 1 1 Merge Two Files (continued)
31 printf("\aError on %s\n", filellD), exit (100);
32
33 if (!(spM2 = fopen (file2ID, READ_MODE)))

printf("\aError on %s\n" r file2ID), exit (200);34
35

if (!(spOut = fopen (fileOutID, WRITE_MODE)))
printf("\aError on %s\n", fileOutID), exit (300);

36
37
38
39 fread (fcrecMl, sizeof(int), 1, spMl);

if (feof(spMl))
recMl = sentinel;

fread (&recM2, sizeof(int), 1, spM2);
if (feof(spM2))

recM2 = sentinel;

40
41
42
43
44
45

while (Ifeof(spMl)46 !feof(spM2))
47 {

if (recMl <= recM2)48
49 {

fwrite (&recMl, sizeof(int), 1, spOut);
mergeCnt++;
fread (&recMl, sizeof(int), 1, spMl);
if (feof(spMl))

recMl = sentinel;

50
51
52
53
54

> // if55
else56

{57
fwrite (&recM2, sizeof(int), 1, spOut);
mergeCnt++;
fread (&recM2, sizeof(int), 1, spM2);
if (feof(spM2))

recM2 = sentinel;

> // else

} // while
fclose (spMl);
fclose (spM2);
fclose (spOut);
printf("End File Merge. %d items merged.Nn",

mergeCnt);

58
59
60
61
62
63
64
65
66
67
68
69

return 0;
// main

70
71 >

Program 1 3-1 1 Analysis We have written this simple program without any subfunctions. Once again we have
used the multiple-statement error message format for the error message and exit after
each open statement.

858 Section 13.4 Pile Program Examples

Programs that involve the comparison of data from two files require that the firstrecord from both files be read before any comparisons can be made. This is sometimescalled "priming the files." The reads that prime the files are coded before the mainwhile loop. Since duplicate read statements are required in the loop, you might wonderwhy we didn't use a do...while. The reason is that the program would fail if both files
were empty. As we coded it, the program works if either or both merge files are empty.Study the logic at statements 54 and 62 carefully. These statements implement thesentinel concept. When a file reaches its end, we set the key in the record area for thefile to the sentinel value. This ensures that all the data on the other file will compare lowand be written to the output file.

The most difficult statement in this simple program is the while statement. We need
to keep looping as long as either of the files is not at the end of file. The most straight-forward code is as we coded it in statement 46. Another common way to code it isshown below.

(!(feof(spMl) && feof(spM2)))

Use De Morgan's (see Chapter 5) rule to prove to yourself that these two statements
are identical.

Chapter 13 Binary Input/Output J159

13.5 Software Engineering
Any file environment requires some means of keeping the file current. Data

not static; they are constantly changing, and these changes need to be
reflected in their files. I he function that keeps files current is known as
updating. Io complete our discussion of files, we discuss some of the soft-
ware

are

engineering design considerations for file updating. For this discussion,
we assume a student binary file similar to the ones we have discussed in the
chapter.

Update Files
I hree specific files arc associated with an update program. First is the perma-
nent data file, called the master file. The master file contains the most
rent computer data for an application.

I he second file is the transaction file. It contains changes to be applied
to the master file. I hree basic types of changes occur in all file updates; oth-
ers may also occur, depending on the application. Add transactions contain
data about new students to be added in the master file; delete transactions
identify students who will he deleted from the file; and change transactions
contain revisions to specific student records in the file.

To process any of these transactions, we need a key. A key is one or more
fields that uniquely identify the data in the file. For example, in the student
file, the key would he student ID. In an employee file, the key would be Social
Security number.

The third file needed in an update program is an error report file. An
update process is very rarely error free. When an error occurs, we need to

report it to the user. The error report contains a listing of all errors discovered
during the update process and is presented to the user for corrective action.

File updates are of two types: hatch and online. In a batch update,

changes are collected over time and then all changes are applied to the file at

. In an online update, the user is directly connected to the computer

and the changes are processed one at a time—often as the change occurs.

cur-

once

Sequential File Update
For our discussion, we will assume a hatch, sequential file environment. A

sequential file is a file that must he processed serially starting at the begin-
ning. It does not have any random processing capabilities. The sequential

master file has the additional attribute that it is ordered on the key.
A sequential file update actually has two copies of the master file, the old

master and the new master. This is because whenever a sequential file is

changed, it must be entirely re-created
one exam is changed.

Figure 13-17 contains an
In this chart, we see the four files we discussed above. We use the tape symbol

for the files because it is the classic symbol for sequential files. Sequential files

ven if only one student’s score on

environment chart for a sequential file update.

860 Section 13.5 Software Engineering

could just as easily be stored on a disk. Note that after the update programcompletes, the new master file is sent to off-line storage, where it is kept untilit is needed again. When the file is to he updated, the master file is retrievedfrom the off-line storage and used as the old master.
Generally, at least three copies of a master file are retained in off-line

storage, in case it becomes necessary to regenerate an unreadable file. This
retention cycle is known as the grandparent system because three genera-tions of the file are always available: the grandparent, the parent, andthe child.

transactions

\ Sequential File Update

old master

transaction record old master record

off-line
storageimjn

new master record

error
report

new master

FIGURE 13-17 Sequential File Update Environment

The Update Program Design
rithm in the r

SC'Cntlst named Barry Dwyer published an update algo-
runm in the Communtcalions of the ACM that

°me * C'“SiC-3 w' »» a.Pttd I*algorithm fo,our .Wo.,.,.
^ «.—.1..b.53ri-ri
S recIu , res that we match the keys on the transaction and

, take one of the following

elegant that it Haswas so

Since a sequential master file is ordered on a

master file and, assuming that there
three actions:

are no errors

1. II the transaction file key is less than the master file key, add the trans-
action to the new master.

3* Barfy Dwyer> “One More Time—How to Update a Master File,” Communications of the ACM -24, no. 1 (January 1981): 3-8.

Chapter 13 Binary Input/Output 861

2. If the transaction file key is equal to the master file key, either
a. C hange the contents of the master file data if the transaction is a

revise transaction, or
b. Remove the data from the master file if the transaction is a delete.

3. If the transaction file key is greater than the master file key, write the old
master file record to the new master file.
This updating process is shown in Figure 13-18. In the transaction file,

the transaction codes are A for add , D for delete, and R for revise. The process
begins by matching the keys for the first record on each file, in this case,

14 > 10

Thus, Rule 3 is used, and we write the master record to the new master
record. We then match 14 and 13, which results in 13 being written to the
new master. In the next match, we have

i

14 == 14

Thus, according to Rule 2a, we use the data in the transaction file to change
the data in the master file. However, we do not write the new master file at
this time. More transactions may match the master file, and we need to pro-
cess them, too.

'

\ A 31
21R 25

20A 23
16D 21 OldTransaction 14A 18 Master FileFile

13A 17
10R 14

New Master File

FIGURE 13-18 File Updating Example

862 Section 13.5 Software Engineering

After writing 16 to the new master, we have the following situation:

1 7 < 2 0

According to Rule 1, we must add 1 7 to the master file. We do this bycopying the transaction to the new master file, hut again, we don’t write it yet.This newly added record may have some revision transactions, and we need tobe able to process them. For example, this capability is needed when a newstudent registers and adds classes on the same day. The computer has to beable to add the new student and then process the class registrations in the
same hatch run. We write the new master for 1 7 when we read transaction 18.

The processing continues until
time we have the following situation:

new

read the delete transaction, at whichwe

2 1 == 2 1

and since the transaction is a delete, according to Rule 2b, we need to drop
2 1 from the new master file. To do this, we simply read the next master record
and transaction record without writing the new master. The processing con-
tinues in a similar fashion until all records both files have been processed.on

Update Errors
Two general classes of errors can occur in an update program. The user can
submit bad data, such as a grade that is not A, B, C, D, or F. For our discus-
sion, \ \ e v\ i assume that no data errors are present. Detecting data errors is
the subject of data validation and has been discussed.

I lie second class ol errors is file errors. File errors occur when the data
n lransiac't‘on arc n°t in synchronization with the data on the master
h,e- 1 hree different situations
on

can occur:

reject rhr * f
ansactIon matches a key on the master file, therefore, we

reject the transact,on as invalid and report it on the error report.
• A rev.se transaction's key does not match a record

on

case, we are trvin u
the master file. In

error and must be renf »° I
tJlat d<) not ex,st- This is also a file

3
1 led on the error report.

this^ase^we'are'trvin IT n°‘match a record on the master file.In

be reported
8 () e etc data that do not exist, and this must also

on

as an error.

Update Structure Chart
Ihe structure chart lor the sequential file update is shown in Figure 13 19*
In this structure chart, process contains the updating function.

Chapter 13 Binary Input/Output 863

Sequential
Update

Initialization Process End of Job

Not Sentinel

£
Read
Master

Write
NewMasterUpdate

Key Change

Read
TransactionAdd (+) Change (+) Delete

FIGURE 13-19 Update Structure Chart

Update Logic
Initialization is a function that opens the files and otherwise prepares
the environment for processing. Endof Job is a function that closes the files
and displays any end of job messages. The mainline processing is done in
Process.

Although it is beyond our scope to develop the complete set of update
functions, it is important that you at least understand the mainline logic
found in Process. Its pseudocode is shown in .Algorithm 13-2.

ALGORITHM 13-2 Pseudocode for File Update
Algorithm Sequential Update
1 read first record from transaction file

2 read first record from old master file

3 select next entity to be processed
4 loop current entity not sentinel

1 if current entity equals old master entity

1 copy
2 read old master file

2 end if
3 if current entity equals transaction entity

1 update new
4 end if
5 if current entity equals new master entity

1 write new master file

old master to new master work area

master work area

continued

864 Section 13.5 Software Engineering

ALGORITHM 13-2 Pseudocode for File Update

6 end if
7 select next entity to be processed

5 end loop
End Sequential Update

Let’s look at the update logic in a little more detail. The first three state-
ments contain initialization logic for Process. The driving force behind the
update logic is that in each while loop, we process all the data for one student
(entity). To determine which student we need to process next (statements 3
and 4.7), we determine the current entry by comparing the current transaction
key to the current master key. The current key is the smaller.

Before we can compare the keys, however, we must read the first record in
each (lie. This is known as "priming the files” and is seen in statements 1 and 2.

The loop statement in Algorithm 13-2 contains the driving logic for the
entire program. It is built on a very simple principle: As long as data are
present in either the transaction file or the master file, we continue to loop.
When a file has been completely read , we set its key to a sentinel value.
W hen both files are at their end , therefore, both of their keys will be senti-
nels. I hen, when we select the next student to be processed, it will be a sen-
tinel, which is the event that terminates the while loop.

1 hree major processing functions take place in the while loop. First
determine if the student on the old master file needs to be processed. If it
does, we move it to the new master output area and read the next student
f rom the old master file. The key on the old master can match the current key
in two situations: a change or delete transaction exists for the current stu-
dent. This logic is seen in statement 4.1.

1 he second major process handles transactions that match the current
student. It calls a function that determines the type of transaction being pro-
cessed (add, change, or delete) and handles it accordingly. If it is an add. it
moves the new student’s data to the new master area. If it is a change, it
updates the data in the new master area. And if it is a delete, it clears the key
in tlu* new master area so that the record will not be written. To handle mul-
tiple transactions in the update function, it reads the next transaction and
continues if its key matches the current student.

I he last major process writes the new master when appropriate. If die
current student matches the key in the new master file area, then the record

unless a delete transaction

we

needs to be written to the file. This will he the case
was processed.

Summary
tialIn this section we looked at a very important algorithm, the classic sequ

file update, and discussed its mainline logic flow.
The elegance of Dwyer’s algorithm, as seen in Algorithm 13-2, ics

determination of the current student and the separation of the up a e

Chapter 13 Binary Input/Output 865

into three distinct functions: read the old master, update the current student,
and write the new master. Study the concept of the current student carefully,
and make sure you understand how it controls the three major processes in
the loop. Then, with a little thought, you should be able to develop the other
(unctions in the update program.

Also note that Algorithm 13-2 contains only one read transaction func-
tion. Its function is to read a valid transaction. Therefore, it contains all of
the simple data validation logic to determine if the data are correct. It does
not perform any file errors; they are handled in the update function. If any
errors are found, the read transaction function writes the transaction to an
error report and reads the next transaction. When it returns to the calling
function, it has either read a valid transaction or has found the end of the file.

866 Section 13.6 Tips ond Common Programming Errors

13.6 Tips and Common Programming Errors
Refer to the “Tips and Common Programming Errors” section in Chapter 7.Many of those tips apply to binary files as well .

1 . EOF is type integer, and its value is normally -1 . Therefore, if you want to
test the value of a variable to EOF, use an integer variable, not a character.In most systems, a character variable cannot store a negative number(- 1 here) .

2. Remember to open a file before using it .

3. You can create a file for writing; but to read a file, it must exist.
4. When you open a file for writing using w mode, you must close it and

open it for reading (r mode) if you want to read from it . To avoid thisproblem, you can open it in w+ mode.

5. An open file can be in one of the three states: read, write, or error. If you
want to switch from read to write or from write to read, you must use one
of the file-positioning functions.

6. Do not open a file in w mode when you want to preserve the contents of
the file . Opening a file in w mode erases the contents of the file.

7 . Remember that in general you cannot print the contents ol a binary' file.
It must he converted to a text file first.

8. Unlike other input/output functions, the first parameter of the fread and
fwrite functions is a pointer to the input area, not a file pointer. The file
parameter is the last (fourth) parameter.

9 . The second parameter of the fread and fwrite functions is the size of the
element, and the third parameter is the count of elements.

10. The fread and fwrite functions return the number of elements read or
written, not the number of bytes read or written.

11. Remember that feof does not look ahead. It returns true only if
attempt is made to read the end of file.

12. I he second parameter in the fseek function is the number ol bytes,

the number of elements.
not

middle
pdrdmctcr m the fseek function is SEEK_END (2) , the

byte in the fil
C

\ f
S

- °U ‘ ^ norma,,y he a negative long integer to access a

, !V " Bl'-'f ““ it i.referring,oa hvtc „f,e,7h.end
14. lo add withelement at the end of the file, you use the fseek lunctionthe second parameter set to zero and the third parameter to the value o

SEEK END.

an

5* Remember that every time
matically advances the fil °̂U

.
USC fread or fwrite function, it auto*

the number of bvtes Pn. 1° *K)sltlon Indicator toward the end of the file
y equa' t0 the Slze of the element times the numberofelements read or written.

16. It is good practice to close all files before terminating a program.

Chapter 13 Binary Input/Output 86 /

17. It is a compile error to reter to a file with its external file name rather
than its file pointer.
It is a compile error to omit the file pointer when using a file function.
I his error most often occurs when using the file
mat functions, such as fprintf .
It is a logic error to refer to a file before it is opened.
It is a logic error to open a file for reading when it doesn’t exist. This is
usually an error in the external file name in the open statement.
It is a logic error to attempt to read from a file in the write state and vice
versa. This is true even when the file has been opened in the update mode.
Opening an output disk file will fail if the disk is full .
Opening an existing file in write mode deletes the file. If your input file
disappears, check your open modes.
It is a logic error to usefseek to place the file marker before the first byte
of a file.

18.
versions of the file for-

19.
20.

2 1 .

22.
23.

24.

13.7 Key Terms
online update
read state
seek file
sequential file
transaction file
update mode
write state

batch update
end of file
error report file
error state
kev
master file
merge

13.8 Summary
A file is a collection of related data stored in an auxiliary storage device.
A stored stream of Os and Is can he interpreted as either a text or a

binary file.
A text file is a file of characters.
A binary file is a collection of related data stored in the internal format of
the computer.

^ (ile is always in one of the following states: read, write, or error.

A binary file can be opened in one of the following modes: rb, r+b, wb,

w+b, ab, and a+b.

J The fread function reads the number of bytes specified by the product of
the element size and the number of elements.

868 Section 13.9 Practice Sets

The fwrite function writes the number of bytes specified by the product ofthe element size and the number of elements.
The feof function checks for end of file.
The/error function is used to check the error status of a file.
The clearerr function is used to clear an error.
The rewind function sets the file position indicator to the beginning ofthe file.
I he/tel/ function tells you the current position of the file position indicator.
Thefseek function positions the file position indicator to the beginning of
a specified byte.
The remove function removes or deletes a file from the disk.
The rename function renames a file on the disk.
The tmpfile function creates a new temporary file.
Io be kept current , master files must be updated.
The master file update requires four files: the old master, a new master, a
transaction file, and an error report file.

J 1he basic master file transactions are add, revise, and delete.

13.9 Practice Sets

Review Questions
1. A file can be read only if it is in the read state.

a. True
b. False

2. A file opened in the r+ b mode is a binary file opened in the read state and
update mode.
a. True
b. False

3. Binary files are read using the block input/output function fread.
a. True
b. False

4. Using fseek to position a file beyond thein an error state.
a. True
b. False

end of file places thecurrent

Chapter 13 Binary Input/Output 869

5. Io merge two files, you can use the merge function found in the standard
input/output library.
a. True
b. False

6. Which of the following statements about files is true?
a. All files must be opened before they can be used.
b. Binary files arc more portable than text files.
c. Binary files are slower than text files.
d. Files must be closed.
e. Text fdes contain data stored in the internal format of the computer.

7. Which of the following statements about files is false?
a. Because they are more flexible, binary files are more portable.
b. Binary' files contain data stored in the internal format of the computer.
c. Binary files usually contain records in the form of structured data.
d. Text files store only character data.
e. Some text file data need to be converted to internal storage formats for

processing.
8. The

during either a read or write operation.
a. error state
b. fail state
c. read state
d. update state
e. write state

9. If a file in the read state is written to, then the following occurs:

a. The file is placed in an error state regardless of the file mode.
b. The file is placed in an error state unless it was opened in the update

write mode (w+b).
c. The file state is automatically switched if the file is opened for updating.
d. The program is aborted regardless of how- the file was opened.
e. The program is aborted unless the file was opened for updating.

10. Which of the following file modes opens a file in the write state for
updating?
a. ab
b. a+b
c. rb
d. r+b
e. wb

1 1. Which of the following C functions is used to output data to a binary file?

a. fwrite
b. output

results when a failure occurs during an open or

0 Section 13.9 Practice Sets

c. write
d. writef
e. fprint/

12. Which of the following is a file status function?
a. feof
b. /report
c. /rewind
d. /seek
e. /tell

function may he used to position a file at the13. The
beginning.

a. /close
h . /eo/
c . /report
d. /seek
e. /tell

fields that uniquely identify the14. A is one or more
data in a file.

a. field
b. identifier
c. key
d. structure
e. transaction

1 3. \\ hich ol the following statements about sequential file updating is falser
a. Add, change, and delete transactions are used to update the file,

h. Sequential files are often updated in an online environment.
c . Sequential files contain structures (records) with a key to identif'the data.
d. 1 he file must he processed starting at the beginning.
e. The file must he entirely re-created when it is updated.

Exercises
16. 1 xplain the difference between the following pairs of modes:

rb and r+b
wb and w+b
ab and a+b

17. Find the error(s) in the following code. (Assume the PAY_REC lyPe
been properly declared.)

char*
char* str = "Payroll”;
PAY_REC payRec;
FILE* sp;
sp = fopen (str, m);
fread(payRec, sizeof(payRec), 1,

18. Given the following declarations and assuming that the file is open:

FILE* sp;
char s[20];

find any errors in each of the following statements:
a. fread(s,
b. fread(s, 20,
c. fread(s, 1, 20, sp);
d. fread(sp, 1, 20,
e. fread(sp, 20, 1, s);

19. Given the following declarations and assuming that the file is open:

20, sp);
1/ sp);

s);

FILE* sp;
char s[20];

find any errors in each of the following lines:

a. locn = ftell(sp);
b. locn = ftell(l, sp);
c. fseek(0, 20L, sp);
d. fseek(sp, 20L, 0);
e. fseek(sp, 20L, 1);

20. What would he printed from the following program? Draw a picture of
the file with the file marker to explain your answer.

#include <stdio.h>
int main (void)
{
long int pos;
FILE* sp;

"w+b");
E'; C++)

sp = fopen("SAMPLE.DAT",
for (char c = 'A';

fwrite(&c , sizeof(char), 1, sp);
c <=

pos = ftell (sp);
printf("The position of the file marker is :

pos);
%ld",

return 0;
} // main

872 Section 13.9 Practice Sets

21 . What would be printed from the following program? Draw a picture ofthe file with the file marker to explain your answer.

#include <stdio.h>
int main (void)
{
char c;
FILE* sp;

sp = fopen("SAMPLE.DAT", "w+b");
for (c = 'A' ; c <= 'E'; C++)

fwrite(&c, sizeof(char), 1, sp);
fseek(sp, 2, 0);
fread(&c, 1, 1, sp);
printf("\n\n%c", c);
return 0;
} // main

22. What would be printed from the following program? Draw a picture of
the file with the file marker to explain your answer.

#include <stdio.h>
int main (void)
{
char c;
FILE* sp;

sp = fopen("SAMPLE.DAT", Mw+b");
for (c = 'A'; c <= 'E'; C++)

fwrite(&c, sizeof (char), 1, sp);
rewind(sp);
fread(&c, 1,
printf(,,\n\n%c", c);
return 0;
} // main

1 / sp);

23. What would be printed from the following program? Draw a picture ot
the file with the file marker to explain your answer.

#include <stdio.h>
int main (void)
{
char c;
long int pos;
FILE* sp;

sp = fopen("SAMPLE.DAT", Mw+b");
for (c = 'A * ; c <= E'; C++)

fwrite(&c, sizeof(char), 1, sp);
continue

Chapter 13 Binary Input/Output 873

pos = ftell (sp);
pos—;
POS—;fseek(sp, pos, 0);
fread(&c, 1,
printf("\n\n%c", c);
return 0;

> // main

1 / sp);

24. What would be printed from the following program? Draw a picture of
the file with the file marker to explain your answer.

iinclude <stdio.h>
int main (void)
{
char c;
long int pos;
FILE* sp;

sp = fopen("SAMPLE.DAT", "w+b");
for (c = 'A'; c <= 'E'; C++)

fwrite(&c , sizeof(char), 1, sp);
pos = ftell(sp);
pos—;
pos—;
fseek(sp, -pos, 1);
fread(&c, 1, 1, sp);
printf("\n\n%c", c);
return 0;
} // main

25. What would be printed from the following program? Draw a picture of
the file with the file marker to explain your answer.

#include <stdio.h>
int main (void)
{

d;char
long int pos;
FILE* sp;

"w+b");
E'; C++)

sp = fopen("SAMPLE.DAT",
for (char c = 'A 1 ;

fwrite(&c , sizeof(char), 1, sp);
c <=

pos = ftell(sp);
pos—;
pos—;
fseek(sp, 2, 2);

continued

874 Section 13.9 Practice Sets

fseek(sp, 1, 1);
fread(&d, 1, 1, sp);
printf("\n\n%c", d);
return 0;
} // main

26. What would be printed from the following program? Draw a picture of
the file with the file marker to explain your answer.

#include <stdio.h>
int main (void)
{
long int pos;
FILE* sp;

sp = fopen("SAMPLE.DAT", "w+b");
for (int i = 1; i <= 5; i++)

fwrite(&i , sizeof(int), 1, sp);
pos = ftell(sp);
printf("The position of the file marker is : %ld"

pos);
return 0;
} // main

27. What would be printed from the following program? Draw a picture ot
the file with the file marker to explain your answer.

#include <stdio.h>
int main (void)
{
int i;
FILE* sp;

sp = fopen("SAMPLE.DAT", "w+b");
for (i = 1; i <= 5; i++)

fwrite(&i , sizeof(int), 1, sp);
0);

s p) ;

fseek(sp, sizeof (int) * 2,
fread(&i, sizeof (int), 1,

i);printf("%d\n",
return 0;

> // main

28. \\ hat would be printed from the following program? Draw a picture o!
the file with the file marker to explain your answer.

#include <stdio.h>
int main (void)
{

timidcon

Chapter 13 Binary Input/Output 875

int i;
FILE* sp;

sp = fopen ("SAMPLE.DAT", "w+b");
for (i = 1; i <= 5; i++)

fwrite(&i, sizeof(int), 1,
fseek(sp, -sizeof(int) * 2, 1);
fread(&i, sizeof(int), 1, sp);
printf("%d", i);
fclose (sp);
return 0;

> // main

s p) ;

29. What would be printed from the following program? Draw a picture of
the file with the file marker to explain your answer. Is the answer
strange? Why?

tinclude <stdio.h>
int main (void)
{
int i;
FILE* sp;

sp = fopen("SAMPLE.DAT", "w+b");
for (i = 1; i <= 5; i++)

fwrite(&i, sizeof(int), 1, sp);
fseek(sp, 7, 0);
fread(&i, sizeof(int), 1, sp);
printf("%d", i);
fclose (sp);
return 0;

> // main

30. What would be printed from the following program? Draw a picture of
the file with the file marker to explain your answer.

#include <stdio.h>
int main (void)
{

i;int
long int pos;
FILE* sp;

sp = fopen("SAMPLE.DAT", "w+b");
for (i = 1; i <= 5; i++)

fwrite(&i, sizeof(int), 1, sp);

pos = ftell(sp);
pos

_
= 2 * sizeof(int);

continued

8/6 Section 13.9 Practice Sets

fseek(sp, pos, 0);
fread(&i, sizeof(int), 1, sp);
printf("%d", i);
fclose (sp);
return 0;
} // main

Problems
31. Write a function that copies the contents of a binary file of integers toa

second file. The function must accept two file pointers and return
integer (zero representing a processing error and nonzero indicating suc-
cessful completion).

32. Write a function that prints a specified number of records from the
beginning of a file. The function is to accept two parameters. The first is
a pointer to a binary file of structure type STR. The second is an integer
that specifies the number of records to he printed (inclusive). The struc-
ture type is shown below:

an

typedef struct
{
int
float f;

> STR;

1?

II any errors occur, such as fewer records in the file than specified, it
should return zero. Otherwise, it returns

33. Write a lunction that compares two files and returns equal or not equal
based on the result of the comparison. The functions should receive file
pointers to two opened files and compare them byte by byte.

34. Write a function that returns the number of items in a binary file.
35. Write a function that prints the last integer in a binary file of integers.
36. Write a function that physically removes all items with a specified value

(d a t a) f r o m a binary file of structure STR. You may use a temporary file-
I IK file may contain more than one record with the delete value. The ke>
value removed is to be entered from the keyboard.

nonzero.

typedef struct
{
int
char c;

> STR;

data;

37. Write a function that appends one binary file at the end of anothe
the structure described in Problem 36.

Chapter 13 Binary Input/Output 877

38. Write a function that, given a binary file, copies the odd items (items 1,
3, 5, n) to a second binary file and the even items (items 2, 4, 6, n)

third binary file. After all items have been copied, print theto a
of both output files.

contents

39. Write a function that reads items from a binary file and copies them to a
dynamically allocated array. I he function must first find the size of the
hinarv file to allocate the array.

40. Write a function that takes a binary file ol long integers and appends
long integer at the end that is the sum of all integers in the original file.

a new

Projects
41. A company has two small warehouses. The list of the products in each

warehouse is kept in a text file(invFilel and InvFile2), with each line
representing information about one product. The manager w'ants to have
only one list showing information about all products in both warehouses.
Therefore, the two text files must he combined into one single text file
(OutFile).

Write a program that will copy information from the two text files
(InvFilel and InvFile2)to two binary files(BinFilel and BinFile2).
After creating the binary files, the program is to merge the two binary
files to produce a combined binary file. After the combined binary file has
been created, create a report file that can he printed. The report file is to

contain page headers with an appropriate title and page numbers. The
structure for the files is shown below.

typedef struct inv_rec
char partNo[5];
char partName[15];
int qtyOnHand;

> INV_REC;
42. A company keeps a list of parts that it purchases, with a line of informa-

tion for each part that gives the part’s unique code, name, and three

codes for three suppliers that supply that particular part. This list is kept
in a binary file and is sorted in ascending order according to the sup-
plier’s code.

The company also keeps a list of its suppliers, with a line of informa-
tion for each supplier, w hich gives the supplier’s unique code, name, and

address. This list is also kept in a binary file, w hich is sorted in ascending
order according to the supplier’s code.

Write a program that enables the user to enter a part’s unique code

and to receive a list of three suppliers. If the code is found, the program

prints the names and addresses of the three suppliers. If the code is not

found, it prints a message to tell the user that the code is not in the file.
After each inquiry, the program gives the user the option to quit.

{

78 Section 13.9 Practice Sets

Each record in the part file is made up of a part’s code, name, andthe codes for three suppliers. The part ’s code is an integer; the nameisastring with a maximum length of ten characters; and each suppliers code
integer. Note that not all parts have three suppliers. For parts withless than three suppliers, a special supplier code of 0000 is used to indi-cate no supplier.

Each record in the supplier file is made up of a supplier's code,
name, and address. The supplier’s code is an integer, the name is a stringwith a maximum length of ten characters, and the address has a maxi-
mum length of 20 characters.

The output is to he formatted with the first line showing the data forthe part and the following lines showing data for the suppliers, indented
one tab.

is an

Sample data for the files are shown in Tables 13-2 and 13-3. You will
first need to write a file conversion program to create the binary files. We
suggest that you create a text file version of each file with your text editor
and then read it to create the binary version.

Port Code Supplier 1 Supplier 2 Supplier 3Port Nome

50121000 Pen 50075010

0000Pencil

Paper

1001 50085006

50031002 50005001

50141003 Ball Pen

Folder
50095013

50021004 50075009

50051005 Pointer 50065012

00001006 Mouse 00005012

50071007 Monitor 50025000

TABLE 13-2 Project 42 Part File

Supplier Supplier AddressSupplier Name
Code

5000 John Marcus
Steve Chu
David White
Bryan Walljasper

2322 Glen Place
5001 1435 Main Ave.

2345 Steve Drive

780 Rose Mary Street

5002

5003
continuedTABLE 13-3 Project 42 Supplier File

Chapter 13 Binary Input/Output 879

Supplier Supplier Name Supplier Address
Code

5004 Andrew Tse

Joanne Brown

Lucy Nguyen

Fred West

Dennis Andrews
Leo Washington
Frankie South

Amanda Trapp

Dave Lightfoot
Danna Mayor

Robert Hurley

P. O. Box 7600

1411 Donnybrook Square

2345 Saint Mary Road
1 1 Duarte Rd.

5005

5006

5007

5008 14 California Ave.

5009 134234 San Rosa Place

12234 North Justin St.

1345 South Bush Circle
5010

5011

5012 222 George Territory Drive

1 1 George Bush Street

14 Republican Alley
5013

5014

TABLE 1 3-3 Project 42 Supplier File (continued)

To read a record on the Ides, you will need to determine its position
on the file. This is easily done by subtracting 1000 from the PartCode

for the part file and 5000 from the SupplierCode for the supplier file.
Then use /seek to position the file for reading.

43. Write a program that builds a histogram (see Chapter 8) using a ran-
domly accessed disk file. The program is to begin by creating a new file of
20 integers. Each integer will represent the accumulator for its relative
position; the first for the number 0, the second for the number 1, and so

forth until the last for the number 19. The program is to then use the ran-
dom number generator to create 100 random numbers in the range

0...19.As each random number is generated, it will be displayed in a 10 x 10

matrix (10 lines of 10 numbers each) and 1 added to its accumulator on

the disk using the fseeli function. After the random numbers have been
generated, the file is to be read sequentially and a histogram displayed.

44. Your stockbroker has an online inquiry system that allows you to check

the price of stocks using your personal computer. Simulate this system as

described below.
Each stock is assigned a unique integral number in the range

1000...5000. They are stored on the disk so that stock 1000 is stored in

location 0. stock 1001 in location 1, stock 2010 in location 1010, and so

forth. To calculate the disk address for a requested stock, your program

subtracts 1000 from the stock number and uses the result as the address

880 Section 13.9 Practice Sets

in the file. (This is actually a simplified version of a concept known as“hashing,” which you will learn when you study data structures.)
The data for each stock are described as follows:

structure
stock key
stock name
stock symbol
current price
YTD High
YTD Low
Price-Earning Ratio

(YTD: Year to Date)

short integer
string[21]
string!6]
floating-point number
floating-point number
floating-point number
short integer

Using data from your local newspaper, create a binary file of at least20 stocks. Then write a menu-driven system that allows the user to
request data on any individual stock.

In addition, provide a capability to get a report of up to 20 stocks atone time. When this option is requested, open a temporary work file, and
write the requested stocks to the file. After the last stock has beenentered, read the file (without closing it), and prepare the report.

Bilwise Operators •• to

\\ hile the preceding chapters contain the material required for a traditional
first course in programming, we have not discussed all the basic capabilities
of the C language. This chapter discusses the C bitwise operators.

I he C language is well suited to system programming because it contains
operators that can manipulate data at the bit level. For example, the Internet
requires that hits be manipulated to create addresses for subnets.

C has two categories of bitwise operators that operate on data at the bit
level: logical bitwise operators and shift bitwise operators. Before we discuss
these operators, however, we need to introduce exact-size integer types.

To demonstrate these concepts we develop three programs. The first dis-
cusses a checksum calculation and develops an example that could be used to
validate Internet transmissions. The second uses masks to determine the first
or the last address in a block of Internet addresses. The third demonstrates a
hit manipulation technique that can be used in polynomial calculations.

In Software Engineering, we present a case study to demonstrate an
approach to designing structure charts.

Objectives
IJ To be able to use the bitwise logical operators in programs

To be able to use the bitwise shift operators in programs

To understand how to create and use masks to manipulate bits

882 Section 14.2 Logical Bitwise Operators

14.1 Exact Size Integer Types
The integer types, such as int and long, discussed in Chapter 2, are machine
dependent. In one
computer it may he two bytes. While many bitwise applications work well on
machine-dependent integer types, other applications need to assure that the
size is fixed. For example, to manipulate an Internet address, we need to
define an unsigned integer of size 32 hits (4 bytes). Beginning with C99, C
allows us to define integer types of sizes 8, 16, 32, and 64 hits. They
defined in the stdint .h header file. Table 14- 1 documents these types. As you
will see, most of the time we use unsigned integers.

computer, the size of int may be four bytes; in another

arc

Type Description

8-bit signed integerint8 t

16-bit signed integerint!6 t
Signed

32-bit signed integerint32 t

64-bit signed integerint64 t

8-bit unsigned integeruint8 t

16-bit unsigned integeruint!6 t
Unsigned

32-bit unsigned integeruint32 t

64-bit unsigned integeruint64 t

TABLE 1 4- 1 Fixed-size Integer Types

14.2 Logical Bitwise Operators

operators are ^^^ di'ta 3S indivic,ual bits to be manipulated. Four

(I), bitwise exclusive or ^n'pUjate hits: bitwise “ nd (*), bitwise inclusiveof

binary operators th,. ’ ‘"T °"es comPlement (-)• The first three are

> perators, the one s complement is a unary operator.

Bitwise and Operator
The bitwise and (&—precedence 8) i
integral operands (charict • •

binary operator that requires two

between the two operand * ,nte8er)* It does a bit-by-bit comparison

both hits are I; it ,s n . e rcsi,b of the comparison is 1 only when

comparison.
e**wise. fable 14-2 shows the result of bit-by-bit

is a

I
Chapter 14 Bitwise Operators 883

First Operand Bit Second Operand Bit Result

0 0 0

0 1 0

1 0 0

1 1 1

TABLE 14-2 And Truth Table

Program 14- 1 demonstrates the bitwise and operator.

PROGRAM 14- 1 Simple Bitwise And Demonstration
/* Demonstrate bitwise AND operator

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <stdlib.h>
tinclude <stdint.h>

5
6
7
8

int main (void)9
10 {

// Local Declarations
uintl6_t numl = 0x0257;
uintl6_t num2 = 0xA463;
uintl6 t res;

11
12
13
14
15

// Statements
res

16
= numl & num2;17

18
printf ("Input and results in hexadecimal:\n");

printf ("numl:
printf ("num2:
printf ("result:

19
%#06X\n", numl);
%#06X\n", num2);
%#06X\n" / res);

20
21
22
23

return 0;
// main

24
25 >

Results:
Input
numl:
num2:
result: 0X0043

and results in hexadecimal:
0X0257
0XA463

884 Section 14.2 Logical Bitwise Operators

and operation is logically the intersection of the two values. We conify the result by manually calculating it using binary values.
Program 14-1 Analysis The result of an

veri

Bitwise Inclusive or Operator
The bitwise inclusive or (|—precedence 6) is a binary operator that requires
two integral operands (character or integer). It docs a bit-by-bit comparison
between the two operands. The result of the comparison is 0 if both operands
are 0; it is 1 otherwise. Table 14-3 shows the result of bit-by-bit comparison.

Second Bit ResultFirst Bit

0 0 0
0 1 1
1 0 1
1 11

TABLE 14-3 Inclusive Or Truth Table

Program 14-2 demonstrates the basic operation of the inclusive or.

PROGRAM 14-2 Simple Inclusive or Demonstration
/* Demonstrate the inclusive OR operator

Written by:
Date:

1
2
3

*/4
Jfinclude <stdio.h>
#include <stdlib.h>
#include <stdint.h>

5
6
7
8

int main (void)9
10 {

// Local Declarations
uintl6_t
uintl6_t
uintl6 t

1 1
12 numl = 0x0257;

num2 = 0xA463;
res;

13
14
15
16 // Statements

res = numl|num2;17
18 printf ("Input and results in hexadecimal:\n");

printf ("numl:
printf ("num2:
printf ("res:

19 %#06X\n", numl);
%#06X\n", num2);
%#06X\n", res);

2 0
21

coittin0

Chapter 14 Bitwise Operators 885

PROGRAM 14-2 Simple Inclusive or Demonstration (continued)

2 2
23 return 0;

} // main24

Results:
Input and results in hexadecimal:
numl: 0X0257
num2: 0XA463
res: 0XA677

Bitwise Exclusive or Operator
I he bitwise exclusive or (A —precedence 7) is a binary operator that requires
two integral operands. It does a bit-by-bit comparison between the two oper-
ands. I he result ol the comparison is 1 only if one of the operands is 1 and
the other is 0; it is 0 if both operands’ hits are 0 or 1—that is, if they are both
the same. Table 14-4 shows the result of bit-by-bit comparison.

Second Bit ResultFirst Bit

0 00

1 10

0 11
1 01

TABLE 14-4 Exclusive Or Truth Table

Program 14-4 demonstrates the basic operation of the bitwise exclusive or.

PROGRAM 14-3 Simple Exclusive or Demonstration

/* This program demonstrates the use of the exclusive1
or

Written by:

Date:
2
3

*/4
#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

5
6
7
8

int main (void)9
{10

continued

886 Section 14.2 Logical Bitwise Operators

PROGRAM 14-3 Simple Exclusive or Demonstration (continued)

// Local Declarations
uintl6_t numl = 0x0257;
uintl6_t num2 = 0xA463;
uint!6 t res;

1 1
12
13
14
15

// Statements
res = numl A num2;

16
17
18

// Print results in hexadecimal
printf ("Input and results in hexadecimal:\n");
printf ("numl: %#06X\n", numl);
printf ("num2:
printf ("res:

19
20
21

%#06X\n", num2);
%#06X\n", res);

22
23
24

return 0;

> // main
25
26

Results:
Input and results in hexadecimal:
numl: 0X0257
num2: 0XA463

0XA634res:

One's Complement Operator
ones complement (~ precedence IS) is a unary operator applied to an

. Ckr<l . % a ut 'c laratler ()r integer). It complements the hits in the operand;

. ,S’ rt rCVerse^ the bit va,ue* The result is 1 when the original bit is 0; it is 0
en t it origina hit is 1. fable 14-5 shows the result of the one’s complement.

ResultOriginal Bit

10

01

TABLE 14-5 Ones Complement Truth Table

Program 14-4 demonstrates the basic operation of the one’s complcmen

PROGRAM 14-4 One's Complement
1 I /* Demonstrate use of one's complement

Written by:2

continue

Chapter 14 Bitwise Operators 887

PROGRAM 14-4 Ones Complement (continued)

Date:3
4 */
5 #include <stdio.h>

#include <stdlib.h>
#include <stdint.h>

6
7
8
9 int main (void)
10 {

// Local Declarations
uintl6_t
uintl6 t

1 1
1 2 num = 0x0257;

res;13
14

// Statements
res = -num;

15
16
17

// Print results in hexadecimal
printf ("Input and results in hexadecimal:\n");
printf ("num: %#06X\n", num);
printf ("res: %#06X\n", res);

18
19
2 0
21
2 2
23 return 0;

> // main24

Results:
Input and results in hexadecimal:
num: 0X0257
res: 0XFDA8

Checksum
One bitwise manipulation application is the calculation of a checksum. A
checksum is a mathematical calculation used for error detection. For exam-

checksum to verify that the card number is valid.pie, credit cards use a
Another example involves the detection of a bad transmission through a com-
munication channel. When the data are sent, a checksum is calculated and
attached to the transmission. When the data are received, the checksum that
includes the sender’s checksum is recalculated. If the newly calculated

checksum is not zero, an error has occurred.
The traditional Internet checksum uses a 16-hit calculation. To calculate

the checksum, the following steps are used.
1. Set the checksum to 0.
2. Add 16-bit sections of data to the checksum using one’s complement

arithmetic. (See Appendix D.)
3. Complement the result.

888 Section 14.2 Logical Bitwise Operators

We complement the result at the end because a number (T) and its
plement (-T), when added always give -0 in one's complement.

Figure 14- 1 shows the calculation of a checksum for a small string.“ABCDEFGHI.” Note that because the number of characters is nine, weinclude the null character (\ 0) at the end of the string to make live 16-bit val-ues. The string is logically divided into groups of 16 hits (two characters),which are then added together using one’s complement.

com-

Carry from 4th column
Carry from 3rd column
Carry from 2nd column
Carry from 1st column
Hexadecimal A & B
Hexadecimal C & D
Hexadecimal E & F
Hexadecimal G & H
Hexadecimal I
Partial sum

1
1

1
1This column

should be added *to the partial sum 4

1 24
3 4 4
5 4 6

4 7 4 8
4 9 0 0

A5 1 4

Carry from last column1

Sum5 A 1 5

ChecksumA 5 E A

FIGURE l 4- 1 Checksum Calculation

Program 14-5 demonstrates the calculation of a checksum for the sender
site, lo properly weigh the first character, we multiply it by 256. To get the
one’s complement , we add the carry hits after the sum is calculated as shown
in Figure 14-1. Ibis is done using a loop. The loop extracts the higher (lett 1

16 hits and adds them to the lower (right) 16 hits.
PROGRAM 14-5 Demonstrate Checksum

/* Demonstrate the calculation of a checksum using
one’s

1

2 complement arithmetic.
Written by:
Date:

3
4
5 */
6 #include <stdio.h>

#include <string.h>
#include <stdint.h>

7
8
9

1 0 int main (void)
1 1 {

contint‘ei

Chapter 14 Bitwise Operators 889

PROGRAM 14-5 Demonstrate Checksum (continued)
1 2 // Local Declarations

uint32 t13 = 0x00000000;
uintl6_t checksum = 0x0000;
char*

sum
14
15 str

len;
= "ABCDEFGHI";

16 int
17

// Statements
len = strlen (str);
if (len % 2 == 1)

// Make the number of characters
len++;

18
19
2 0
2 1 even
2 2
23
24 for (int i = 0; i < len; i += 2)

sum = (sum + str[i] * 256 + str[i + 1]);25
26

// Add carries into lower 16 bits
while (sum » 16)

sum = (sum & Oxffff) + (sum » 16);

27
28
29
30

// Complement
checksum = -sum;

31
32
33
34 printf ("str:

printf ("checksum: %#06X\n", checksum);
%s\n", str);

35
36
37 return 0;

} // main38

Results:
str:
checksum: 0XA5EA

ABCDEFGHI

14.3 Shift Operators
The shift operators move bits to the right or the left. When applied to

unsigned numbers, these operators
used with signed numbers, however, the implementation is left to the discre-
tion of the software engineer who designs the compiler. It is often predicated

the hardware for which the compiler is being written. Therefore, they
be used with caution with signed numbers. Because the C standard

implementation independent. Whenare

on
must
leaves the implementation up to the compiler writer (there is no standard)

code that shifts signed negative numbers may not he portable to other platforms.

890 Section 14.3 Shift Operators

Bitwise Shift-Right Operator
The bitwise shift right (»—precedence 1 1) is a binary operator that requires
two integral operands (character or integer). The first operand is the value tohe shifted. The second operand specifies the number of hits to be shifted.

Shifting binary numbers is just like shifting decimal numbers. When bitsare shifted right , the hits at the rightmost end are deleted. What is shifted in
on the left, however, depends on the type and the implementation. If the type
is unsigned, then the standard calls for zero hits to be shifted in. If the type issigned, however, the implementation may either shift in zeros or copies of theleftmost hit. Since the implementation is the system programmers responsi-bility, any function that shifts signed negative values may not be portable.
The shift-right operation is diagrammed in Figure 14-2.

0 0 0 ... 1 1 0 0 0 1
/'"O or 1 bits"^Inserted on righi Rightmost bit

^ discarded .

... 1 1 1 0 0 1

FIGURE l 4- 2 Shift-right Operation

Program 14-6 demonstrates the shift-right operation, because C does
not provide any formatted conversion for binary numbers, we wrote a simple
lunction to print a 16-bit fixed integer variable binary number.as a

PROGRAM 1 4-6 Simple Shift-right Demonstration
/* Demonstrate the bitwise shift-right operator.

Written by:
Date:

1
2
3
4 */

#include <stdio.h>
tinclude <stdlib.h>
#include <stdint.h>

5
6
7
8

// Function Declaration
void binl6 (uint!6_t num, char* bitStr);

9
1 0
1 1

int main (void)1 2
13 {

// Local Definitions
uintl6_t num
uintl6_t res;

14
15 = 0x0040;
16

coiitinnei

Chapter 14 Bitwise Operators 891

PROGRAM 14-6 Simple Shift-right Demonstration (continued)

bitStr[17] = {0};17 char
18
19 // Statements

binl6 (num, bitStr);
printf("Original value:

bitStr, num);

20
21 %s (%#06x)\n",
22
23
24 num » 1;res =

binl6 (res, bitStr);
printf("Shifted 1 right: %s (%#06x)\n",

bitStr, res);

25
26
27
28
29 num » 2;

binl6 (res, bitStr);
printf("Shifted 2 right: %s (%#06x)\n",

bitStr, res);

res =
30
31
32
33
34 res = num » 4;

binl6 (res, bitStr);
printf("Shifted 4 right: %s (%#06x)\n",

bitStr, res);

35
36
37
38
39 return 0;

} // main40
41

==== binl6 ====/* =====
Convert fixed 16-bit integer to binary digit string.

num contains integral value to be converted

bitStr is pointer to variable for bit string

Post bit string stored in str

42
43
44 Pre
45
46

*/47
void binl6 (uintl6_t num, char* bitStr)48

49 {
// Statements

for (int i = 0; i < 16; i++)
bitStr[i] = (char)((num » 15 - i) &

0X0001) + 48;

50
51
52
53

return;
} // binl6

54
55

Results:
Original value:

Shifted 1 right: 0000000000100000 (0x0020)

Shifted 2 right: 0000000000010000 (0x0010)

Shifted 4 right: 0000000000000100 (0x0004)

0000000001000000 (0x0040)

892 Section 14.3 Shift Operators

Dividing by 2
Let’s start with something we know, decimal numbers.When we shift a deci-mal number one position to the right and insert a 0 on the left, we are ineffect dividing by 10. If we shift it two places, we are dividing by 100. If weshift it three places, we are dividing by 1000. But actually, we are dividingby
a power of 10—in our examples, 101, 102, and 103.

Applying the same principle to binary numbers, the right-shift operatordivides by a power of 2. If we shift a binary number two places to the right,
we are dividing by 4 (22). If we shift it three places, we are dividing by 8 (2}).Table 14-6 shows the division pattern used w i th bit shitting.

Divides by Shift Operator2shift value

1 2 » 1
2 4 »2
3 » 38

»44 1 6

2n » nn

TABLE 1 4-6 Divide by Shift

Bitwise Shift-Left Operator

rcmi.bltVy,Se Shlft JCft (<< precedence 1 1) is a binary operator that

th<* v |
S . °Perantk (character or integer). The first operand is

he shifted ° ^ S ** ^ seconc* 0Pe nd specifies the number of bits to

• i

' k'*lar> numbers is just like shifting decimal numbers. If
the 'Ti CCln.la number> and we shift it three places to the left, then

The h
S

L /** are ^ost anci diree zero digits are added on the right.
1hC bmary shlft operation is shown in Figure 14-3

havewe
an

0 0 0 ... 1 1 0 0 0 1

1 Zero insert
on right

Leftmost zero
vbit discarded.

L0 0 0 0 ... 1 0 0 0 1 0

FIGURE 14-3 Shift-left Operation

Chapter 14 Bitwise Operators 893

Program 14-7 demonstrates the basic operation of the shift-left operator.
Again, it uses the bin16 1unction, which we have now included as a library.

PROGRAM 14-7 Simple Shift-left Demonstration
/* Demonstrate the bitwise shift-left

Written by:
Date:

1 operator.
2
3

*/4
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

5
6
7
8
9 #include "binl6.c"
10

int main (void)1 1
1 2 {

// Local Definitions
uintl6 t num = 0x0031;

13
14

uintl6_t res;
char

15
16 bitStr[17] = {"0"};
17

// Statements
binl6 (num, bitStr);
printf("Original value: %s (%#06x)\n", bitStr, num);

18
19
20
2 1

res = num « 1;
binl6 (res, bitStr);
printf("Shifted 1 left: %s (%#06x)\n", bitStr, res);

22
23
24
25

num « 2;26 res =
binl6 (res, bitStr);
printf("Shifted 2 left: %s (%#06x)\n", bitStr, res);

27
28
29

res = num « 4;
binl6 (res, bitStr);
printf("Shifted 4 left: %s (%#06x)\n", bitStr, res);

30
31
32
33

return 0;
// main

34
35 >

Results:
Original value: 0000000000110001 (0x0031)

Shifted 1 left: 0000000001100010 (0x0062)

Shifted 2 left: 0000000011000100 (0x00c4)

Shifted 4 left: 0000001100010000 (0x0310)

894 Section 14.3 Shift Operators

Multiplying by 2
Shift left is the opposite of shift right ; multiply is the opposite of divide. It isreasonable to assume, therefore, that shifting left has the effect of multiplying
by a power of 2. If you examine the results of Program 14-7 closely, you will
note that is exactly what happens. When we shift a binary number two places
to the left , we are multiplying by 4 (22). If we shift it three places, we are mul-
tiplying by 8 (23). Table 14-7 shows the multiplication pattern used with bit
shifting.

Multiplies by Shift Operator2shift value

21 « 1
2 4 « 2
3 8 «3
4 16 «4

2nn « n

TABLE 14-7 Multiply by Shift

Rotation
In computer science, we often need to rotate bits. For example, in security
the creation of a hash digest of a message rotates and then scrambles bits to
create a hash digest of data.

Rotation requires that hits be taken off
the other end. When we rotate hits left
value and insert them
right end and insert them
of a 16-hit integer 4 bits to the right and then 4 bits to the left.

end of a value and moved toone
shift them off the left end of the

the right. When we rotate right , we shilt oil the
on the left. Figure 14-4 demonstrates the rotation

, we
on

Rotate Right 0101 0010 0011 0100
right

Original 0010 0011 0100 0101
left

Rotate Left 0011 0100 0101 0010

FIGURE 14-4 Right and Left Rotation

Note that the original number in hexadecimal is 0x2345. The r()tale
right number is 0x5234; the rotate left numbers is 0x3452.

Chapter 14 Bitwise Operators 895

Although there explicit operands for rotating left or right, the
rotations can be coded using two shifts and an or. For example, to rotate the
original 16-bit number in Figure 14-4, we use the following steps.

are no

Original:
Shift right 4 bits:
Shift left (16 - 4) bits:
or'd results:

0x2345
0x0234
0x5000
0x5234

I he rotate left operation is similar. Program 14-8 is a test driver for the
rotate left and right functions.

PROGRAM 14-8 Rotate Left and Right Test Driver
/* Test driver for rotate left and right.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <stdint.h>

5
6
7

// Function Declarations
uintl6_t rotatel6Left (uintl6_t num , int n);
uint!6_t rotatel6Right (uint!6_t num , int n);

8
9
10
1 1

int main (void)1 2
13 {

// Local Declaration
uintl6 t num

14
= 0X2345;15

16
// Statements

printf("Original:
printf("Rotated Left:

rotatel6Left (num, 4));
printf("Rotated Right: %#06X\n",

rotate16Right(num, 4));

17 i
%#06X\n", num);
%#06X\n",

18
19
20
2 1
22

} // main23
24

============ rotatel6Left ============
16 bit fixed size integer left n bits.

fixed size 16-bit integer

/* =25
Rotate26

Pre num is a

Post num rotated n bits left
27
28

*/29
uintl6 t rotatel6Left (uintl6

_t num , int n)30
{31

(num » 16 - n));« n)((numreturn32

896 Section 14.4 Masks

PROGRAM 14-8 Rotate Left and Right Test Driver (continued)

33 } // rotatel6Left
34
35 /* === === rotate16Right =====

Rotate 16 bit fixed size integer right n bits.
Pre num is a fixed size 16-bit integer
Post num rotated n bits right

36
37
38
39 */
40 uintl6_t rotatel6Right (uintl6 t , int n)num
41 {
42 return ((num » n)|(num « 16 -

} // rotatel6Right
n)) ?

43

Results:
Original:
Rotated Left:

0X2345
0X3452

Rotated Right: 0X5234

14.4 Masks
In many programs, bits used as binary (lags: 0 is off, and 1 is on. To set
and test the Hags, we use a bit mask. A mask is a variable or constant, usu-
ally stored in a byte or short integer, that contains a bit configuration used to
control the setting or testing of bits in a bitwise operation. The bits are num-
bered Irom the least significant bit (rightmost), starting at 0, as shown in
figure 14- 5.

are

Bit 15 Bit 7 BitO

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

FIGURE l4-5 Bit Mask in a 16-bit Integer

Creating Masks
Masks
•Is. For esaie o!"1"' L*,,r <V»niically. Sialic masks

oZm“IT m“k in <«•'«
shift, and, or. In thi

CTCalec^ us*ng the bit manipulation operators:

dynamic masks tb a ;
SCtl,<)n> We examine the basic techniques for creating

masks, that ,s.masks that may change as the program executes.

generally liter-
could code the constant

can are

Chapter 14 Bitwise Operators 897

One-Bit Masks
Given a byte flag in which hit 5 is an error flag, we need to create a mask to
test it. To test hit 5 , the mask must have hit 5 set to 1 and the rest of the bits
to 0. This is easily done, as shown below.

uint8_t mask;
mask = 0x01 « 5;

00000001 « 5 -> 00100000

We start with a constant binary 1. This places a one hit in the rightmost
position. We then shift the one bit to the left five positions. The result is
shown in the previous example.

An easier way to control the location of the hit flags is to name them.
This is easily done with a defined constant, as shown in the next example.

#define FLAG0
#define FLAG1

0
1

#define FLAG5 5

mask = 0x01 « FLAG5;

By using named flag positions, we free ourselves from remembering their
locations and at the same time make the code more readable. Of course, in
an application, we would use meaningful
not FLAG1.

such as OVERFLOW FLAG,names

Two-Bit Masks
Creating a mask with two flags requires that we set 2 hits on. The easiest way
to do this is to set two individual flags and then or them.

uint8 t mask;
mask (0x01 « FLAG5);= (0x01 « FLAG1)

The result of the above code would set the mask as show n below.

0 0 1 0 0 0 1 0

898 Section 14.4 Masks

Setting Bit Range Masks
To set ,

through 3.
a range of bits requires a loop. The following example sets bits 7

uint8__t mask = 0x00;

for (i = 3; i <= 6; i++)
mask = mask|0x01 « i;

// 01111000

Complement Masks
To create a mask that turns off pecific bit—that is, that complements it—
we must set the hit to 0 while setting the rest of the hits in the mask to I.

_ requires two statements. In the first statement, we set only the desired
hit on. In the second step, we complement the mask, changing all zero bits
to I and all one hits to 0. The code is shown below.

a s

This

mask = 0x01 << FLAG1;
mask = -mask;

Using Masks
Now that we’ve seen how to create masks with
at some examples that use them.

various bit flags set, let’s look

Turning Bits Off
One of the applications of the bitwise and operator is turning bits off—that
’ ,°rC,n® SC eCteLd h,ts to zero; For example, an Internet address uses the for-

i \ ' aSp" j f'e seen before. A mask in the form /n, often called prefix,.it I . 1 TI
m l

|

U ,uluor^ or subnet address to which a computer is

It
C

\ UJ)rC
|

,X ^c^nes lbe number of leftmost contiguous Is out of
32 7.S:A Prefix of /2° means that the leftmost 20 hits
most bits are Os. This is demonstrated

Is and the right-are
in the next example.

Computer address:
Mask:
Network address:

01111011010011100001100100001101
1 0 0 0 0 0 0 0 0 0 0 0 0
01111011010011100001000000000000

Program 14-9 determines
address. To be flexibl

a network address given a computer host
e, it asks the user to enter the size of the prefix.

PROGRAM 14-9 Determine Network Address
1 /* Given a host address and the size of the prefix,

determine its2 network address.
continue

Chapter 14 Bitwise Operators 899

PROGRAM 14-9 Determine Network Address (continued)

Written by:
Date:

3
4

*/5
6 #include <stdio.h>

#include <stdlib.h>
#include <stdint.h>

7
8
9

int main (void)10
1 1 {

// Local Declarations1 2
13 unsigned int comAddr[4];

unsigned int mask[4];
unsigned int netAddr(4];
uint32_t
uint32_t
uint32_t
int

14
15
16 comAd = 0

mask32 = 0
netAd = 0
prefix;

17
18
19
20

// Statements
printf ("Enter host address <x.y.z.t>:
scanf ("%d%*c%d%*c%d%*c%d",

2 1
22 ")7
23
24 &comAddr[3], &comAddr[2], &comAddr[l],

&comAddr(0]);
25

printf ("Enter prefix: ");
scanf ("%d", &prefix);

26
27
28

// Convert address to a 32-bit computer address

for (int i = 3; i >= 0; i—)comAd = comAd * 256 + comAddr[i];

29
30
31
32

// Create a 32-bit mask33
for (int i = 32 - prefix; i < 32; i++)

mask32 = mask32
34

(1 « i);35
36

// AND to get a 32-bit Network Address

netAd = comAd & mask32;
37
38
39

// Change mask into the form x.y.z.t
for (int i = 0;

40
i < 4; i++)41

{42
mask[i] = mask32 % 256;

mask32
43

= mask32 / 256;44
continued

900 Section 14.4 Masks

PROGRAM 14-9 Determine Network Address (continued)

} // for45
46

// Change IP address into the form x.y.z.t
for (int i = 0; i < 4; i++)

47
48

{49
netAddr[i] = netAd % 256;
netAd

> // for

50

= netAd / 256;51
52
53

// Print Addresses
printf ("\nAddresses:\n”);
printf ("Computer Address: ");
printf ("%d.%d.%d.%d\n",

comAddr[3], comAddr[2],
comAddr[1],comAddr[0]);

54
55
56
57
58

59
printf ("Mask:
printf ("%d.%d.%d.%d\n",

mask[3], mask[2], mask[l], mask[0]);

60
61
62
63

printf ("Net Address:
printf ("%d.%d.%d.%d\n",

netAddr[3], netAddr[2], netAddr[l],

64 ")?
65
66

netAddr[0]);
return 0;

} // main
67
68

Results:
Enter host address <x.y.z.t>: 123.45.78.12
Enter prefix: 18

Addresses:
Computer Address: 123.45.78.12
Mask:
Net Address:

255.255.192.0
123.45.64.0

Program 14-9 Analysis Several parts of this program need to be studied carefully. First,note that the varĴfor the network address is an array of four integers. In statement 23, we rea
address in dotted decimal format into the
H r . . a r r a y.

address Each comtv^Ta? CO,n!/erts components of the address into a
P nen o the address is considered one byte in the final address.

32-bit

Since each byte has a value of 256 (28) pute the address as follows:, we com

bytel0]+ byte [1]x 2561+ byte [2] x 2562 + byte[3]x 2563

Chapter 14 Bitwise Operators 901

Once we have the dotted-decimal address converted to a 32-bit address,
create a prefix mask by setting a 32-bit mask to /n leading 1 bits. This is done in the
for loop in statement 34.

Finally, the network address and mask are converted back to the dotted-decimal
format. Each byte is determined by taking modulo 256 of part of the network address.
To get the next byte in the address, we then divide by 256. This logic is seen in the for
loops in statement 41 and 48.

Turning Bits On
One common application of bit inclusive or is turning bits on—that is, forc-
ing selected bits in a field to one. Io force to one, all that we need to do is to
construct a mask with the desired one bit set on. This guarantees that the
result will have a one bit in that location.

A mask can be used to find the last address in a block of network
addresses. I he last address is used for limited broadcasts. If a computer wants
to send a message to all computers inside its network, it uses this address.

To find the last address, we or the complement of a prefixed mask with
any address in the block. Conversely, to find the first address in the network
block, we and the mask with any address. Program 14-10 determines the last
address in a network.

we must

PROGRAM 14-10 Determine Last Address in a Network
/* Determine the last address in a broadcast network.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
#include <math.h>
#include <stdint.h>

5
6
7
8

int main (void)9
10 {

// Local Declarations
unsigned int comAddr[4];
unsigned int mask[4];
unsigned int broadAddr[4];

1 1
1 2
13
14
15

= 0uint32_t comAd
uint32_t mask32 = 0

uint32 t broadAd = 0

16
17
18

prefix;int19
2 0

// Statements
printf ("Enter host address <x.y.z.t>:
scanf ("%d%*c%d%*c%d%*c%d",

2 1
2 2
23

continuec

J

902 Section 14.4 Masks

PROGRAM 14-10 Determine Last Address in a Network (continued)

&comAddr[3], &comAddr[2],
&comAddr[l], &comAddr[0]);

printf("Enter prefix: ");
scanf ("%d", &prefix);

24
25
26
27
28

// Convert address to 32-bit computer address
for (int i = 3; i >= 0; i—)comAd = comAd * 256 + comAddr[ij;

29
30
31
32

// Create 32-bit prefix mask
for (int i = 32-prefix; i < 32; i++)

mask32 = mask32|(0x0001 « i);

33
34
35
36

// And to get a 32-bit Network Address
broadAd = comAd|(~mask32);

37
38
39

// Change the mask into the form x.y.z.t
for (int i= 0; i < 4; i++)

40
41
42 {
43 mask[i]= mask32 % 256;

mask32 = mask32 / 256;
} // for

44
45
46

// Change the IP address to the form x.y.z.t
for (int i= 0; i < 4; i++)

47
48
49 {
50 broadAddr[i] = broadAd % 256;

= broadAd / 256;51 broadAd
} // for52

53
54 printf ("\nPrinting Addresses\n");

printf ("Computer Address:
printf ("%d.%d.%d.%d\n",

comAddr[3], comAddr[2],

55 ")?
56
57
58 comAddr[l], comAddr[0]);
59 printf ("Mask: ")?
60 printf ("%d.%d.%d.%d\n",

mask[3], mask[2], mask[l], mask[0]);61
62
63 printf ("Broadcast Address:

printf ("%d.%d.%d.%d\n",
broadAddr[3], broadAddr[2],
broadAddr[1], broadAddr[0]);

”)?
64
65
66
67 return 0;

Chapter 14 Bitwise Operators 903

PROGRAM 14-10 Determine Last Address in a Network (continued)
67 } // main

Results:
Enter host address <x.y.z.t>: 123.45.78.12
Enter prefix: 18

Printing Addresses
Computer Address:
Mask:
Last Address:

123.45.78.12
255.255.192.0
123.45.127.255

Program 14-10 Analysis Let's compare Program 14-9 and Program 14-10. In Program 14-9, we calculate the
first address in a block . In Program 14-10, we calculate the last address in a block. If
we subtract these addresses (in base 256) and add 1, we get the total addresses in
the block. Looking at the program results,we see that the first address is 123.45.64.0
(Program 14-9) and the last address is 123.45.127.255 (Program 14-10). The dif-
ference is

(127-64) * 256 + (255 - 0) + 1 = 16,384

We have 16,384 addresses in this block. We could have found this result using the
prefix (18).

232-prefix
_

232-18 = 214 = 16,384

Flipping Bits
One of the applications of bitwise exclusive or is Hipping bits—that is, forc-
ing Os to Is and Is to 0s, called force to change. The resulting hit is 1 when 1
bit is a 0 and the other is a 1 ; if both hits are 0 or both are 1 , the result is 0.
To force a bit to change: therefore, the forcing bit in the mask is set to 1; bits
that are to he unchanged are set to 0.

For example, assume that we want to change the 5 leftmost bits of a

number stored as an 8-hit integer. We create the mask with 5 one bits and 3

zero hits, as shown below. (Y indicates a changed hit.)

XXXXXXXX
1 1 1 1 1 0 0 0

number
mask

operator

YYYYYXXXresult

1

Dividing Polynomials
As a more advanced example of flipping bits, let’s examine how we can use

fixed-size integers to represent polynomials. Polynomials with coefficients of

904 Section 14.4 Masks

1 or 0 are used in computer science for error detection , encoding, and other
applications.

A fixed-size integer can represent a polynomial il we think of 0 and 1 as

coefficients of the polynomial. For example, the hit stream 01001001 can

represent a polynomial of degree 6 or x6 + + 1 . In this polynomial, the coel -
ficients of x", x\ x4, x2, and x 1 are 0 and the coefficients x6, x \ and x° are 1 .
This relationship is shown in Figure 14-6.

In general a hit stream of length n can represent a polynomial of length
n - 1 . So a data type of uintl 6_t can represent a polynomial of up to

degree 1 5.
A common polynomial operation is division. The division of one polyno-

mial by another is shown in Figure 14-7.

7 6 5 4 3 2 1 0Positions
0 1 0 0 1 0 0 1.. '

X 6 + X 3 + x°
Polynomial CoefficientsFIGURE 14-6

X 6 + X 3 + X 2 + 1 Quotient
Dividendx 3 + 1) x9 + X 2 + X + 15Divisor + x

x9 + x6

+ X 6 + X 5 + X 2 + X + 1
Term Hex

+ x6 3+ X
0x0227
0x0009
0x004D
0x0002

Dividend
Divisor
Quotient
Remainder

+ x 5 + x 3 + x 2 + x + 1

+ x25+ X

+ X3 + X + 1

+ X3 + 1

Remainderx

Polynomial DivisionFIGURE 14-7

Although the division of polynomials is similar to the division of numbers
learned in elementary school, there are two differences:

1 . Because we use only coefficients 0 and 1, if we have two terms of the
same exponent, the result is zero (1 + 1 = 0). In other words, polynomial
division uses modulo 2 arithmetic on the coefficients.

2. Subtraction and addition of the coefficients are actually the same (exclu-
sive or) because we are interested in only coefficients of 0 and 1.

we

"

\
Chapter 14 Bitwise Operators 905

Note that il we multiply the quotients by the divisor and add it with the
remainder, we get the dividend. However, if we get two identical coefficients
(such as x6), we cancel them because 1 + 1 = 0.

Program 1 4- 1 1 demonstrates polynomial division.

PROGRAM 14-11 Polynomial Division

/* Demonstrate polynomial division.
Written by:
Date:

1
2
3

*/4
include <stdio.h>

include <stdint.h>
5
6
7

/ / Function Declaration
int degree (uintl6_t) ;

8
9

10
int main (void)11

12 I {
/ / Local Declaration

uintl6 t dvdn = 0X0227;
= 0 X 0009;

= 0X0000;

13
14

uintl6_t dvsr
uintl6_t qtnt
uintl6_t rmdr;

uintl6 jt q;

int

15
16
17
18

dgre;19
20

/ / Statements
printf (" Dividend:

printf ("Divisor:

2 1 % # 06X \n" , dvdn) ;

%#06X\n", dvsr);2 2
23
24

>= 0)rmdr = dvdn;

while ((dgre
- degree (dvsr))

25 = degree (dvdn)
26

{27
= 1 « dgre;

rmdr = dvdn
qtnt
dvdn
// while

degree (q)) /q2 8 A (dvsr <<
29

= qtnt | q i

30 = rmdr ;
31

>32

printf ("Quotient
: %#06X\n", qtnt);

printf ("Remainder
: % #06X\n" / rmdr);

33
34
35

return 0 ;

/ / main
36

>37 sented byrepre
of polynomial38 continueddegree

/* Determine39 *.

T
906 Section 14.4 Masks

PROGRAM 14-11 Polynomial Division (continued)

a fixed-length 16-bit variable.
Pre poly represents a polynomial
Post degree returned

40
41
42

*/43
int degree (uintl6_t poly)44

45 {
// Local Declarations

uintl6_t mask = 0X0001;
uintl6_t temp;

pos= -1;
46
47
48

int49
50

// Statements
for (int i = 0; i <16; i++)

51
52
53 {

temp = poly » i;
if ((temp & mask) == 1)

pos
} // for

54
55
56 l?
57
58 return pos;

} // degree59

Results:
Dividend: 0X0227
Divisor: 0X0009
Quotient : 0X004D
Remainder: 0X0002

Program 14- 11 Analysis We use a function to determine the degree of the polynomial. In main we use a while
loop to simulate the division. The variable poly is the term in the quotient that is
obtained in each step. Note that the multiplication of a term such as xn by the division
is done by shifting the divisor n bits.

ppj
Chapter 14 Bitwise Operators 907

14.5 Software Engineering
In Chapter 12, we looked at what makes a good function. In this section, welook at how you design good programs.

Payroll Case Study
Io provide a discussion focus, we will use a payroll program. Although our
example is rather simple, it does contain all the elements involved in designing
a program. The description of the payroll program is shown in Figure 14-8.

Payroll Case Study

1. Requirements:
Given employees and their hours worked , compute net pay and

record all payroll data for subsequent processing, such as W2 state-
ments. Prepare paychecks and a payroll ledger.

Maintain data on a sequential payroll file.
2. Provide for the following nonstatutory deductions:

a. Health plan
b. United Way
c. Union dues

3. The payroll data are:

a. Employee number
b. Pay rate
c. Union member flag
d. United Way contribution
e. Exemptions

4. Maintain the following year-to-date totals:

a. Earnings
b. FICA taxes
c. SD1 taxes
d. Federal withholding
e. State withholding
f. Health plan fees
. United Way donations

h. Union dues
g

5. Algorithms:
a. Gross Pay = (^8^rs ^piCA Rate) if less than Max FICA
b. FICA Taxes = (G«* ' «>, Ratc) if ,ess than Max SDI
c. SDI Taxes = (Gross Pa } J> D _ jons •Exemption Rate))
d. Taxable Earnmgs = (GrossFay_t ^

* Rate * 1.5)

ts for Payroll Case Study
FIGURE 14-8 Requiremen

Section 14.5 Software Engineering

Payroll Case Study
e. Federal Taxes = (Taxable Earnings * Federal TaxRate)
f. State Taxes = (Taxable Earnings * State Fax Rate)
g. Net Pay = (Gross Pay — (FICA Taxes + SDI Taxes +

Federal Taxes + State Taxes + Health Fee +
United Way Donation + Union Dues))

FIGURE 14-8 Requirements for Payroll Case Study (continued)

Program Design Steps
As you know by now, a program is developed in seven steps:

1. Determine requirements.
2. Determine data structures.
3. Build structure charts.
4. Create test cases.
5. Write and unit test the programs.
6. Test system.
7. Implement system in production.

Our interest here is only in the third step: Build the structure charts. A
in order, however. The second and third steps arefew general comments are

olten reversed or done concurrently. Which one is done first is not of major
consequence, as long as they are done before the fourth step.

Many programmers think that test cases should be built after the pro-
gram is written. Good programmers know better. By creating test cases based

the requirements (Step 1) and your design (Steps 2 and 3), you will under-stand the problem better, ^ou will even find occasions when you change yourdesign based on what you learned creating test
I his does not mean that you will he done with creating test cases at

Step 4; you just start there. You will develop more test cases while you are
writing the program, and you will create still more as you conduct unit testing.

on

cases.

Structure Chart Design
A good program starts with a good design, as reflected in the structure chart.By now, you should have progressed to the point at which y
\ om programs before you start coding; that is, you are creating your structurechart first.

One tool to design the structure chart is known as transform analysis.
Transform analysis is a design technique that identifies the processes in a
program as input, process, and output and then organizes them around one

processes that convert inputs to outputs. These conversion processes

are designingou

or more

in

Chapter 14 Bitwise Operators 909

ait known as the central transforms. Having determined the first-cut design,
\°u repeat the process, decomposing the identified modules into subtasksusing transform analysis.

This is a good design technique whenever a program reads, processes,and writes data, which covers the majority ot programs. Although it is usuallyused in conjunction with another tool known as a data flow diagram, you canuse it independently.

Good programs start with a good structure chart design.
Recognize, however, that transform analysis is an approach to the design

of a program. It is not a cookbook that leads to the same results every time.
Different programmers using the same steps will arrive at different designs.

Programmers use six steps in designing a structure chart:

1. Determine program modules.
2. Classify modules.
3. Construct preliminary structure chart.
4. Decompose modules.
5. Complete structure chart.
6. Validate design.

Determine Modules
The first step in program design is to identify the processes that the program
will use This is usually done by reviewing the program specification and
identifying the tasks it needs to accomplish. A review of our payroll case iden-
tifies the following tasks. (The references are to the case study descnpt.on in

Figure 14-8.)
1. Read hours worked (1).
2. Compute pay (l) -
3. Maintain payroll master file (1).
4. Prepare paychecks (1).
5. Prepare payroll ledger (1).

deductions (2).
6. Calculate nonstatutory

7. Calculate year-to-date totals (4).

8. Calculate gross pay (S).

9. Calculate taxes (5).

Remember the rule ‘ha
w prepare output instead of prepare

ight be tempted to start wi
AnJ £ fact, you may well end up with

ychecks and prepare- PJ ' „Jines the preparation of all reports. But at
an intermediate module ma

mi

pa

910 Section 14.5 Software Engineering

this point, we want to keep different things separate as much as possible. On
the other hand, experience indicates that to have separate modules for calcu-
lating FICA taxes, SD1 taxes, federal taxes, and state taxes is unnecessary.

Classify Modules
In transform analysis, we look for the central transforms—that is, the mod-
ule(s) that turns inputs into outputs. To identify these transforms, we classify
each identified task, which now represents a module in the structure chart,
as afferent, efferent, or transform. A module is an afferent module if its pro-
cessing is directed toward the central transform. Another way of looking at
this concept is to say that the module is a gatherer of data. Efferent modules
direct data away from the central processing or toward the outputs of the pro-
gram. (Remember that input comes before output and a comes before e\
therefore, afferent is input and efferent is output .) A transform module is
balanced; that is, it has data flowing both in and out. The concepts of affer-
ent , efferent, and transform are shown in Figure 14-9.

t J JJJ
afferent efferent transform

FIGURE 14-9 Afferent, Efferent, and Transform Modules

I able 14-8 classifies each of the modules identified above as afferent
efferent, or transform.

Module Afferent Efferent Transform
Read hours worked
Compute pay

Maintain payroll master file
Prepare paychecks
Prepare payroll ledger
Calculate nonstatutory deductions
Calculate year-to-date totals
Calculate gross pay

Calculate taxes

/

/

/ /

/

/

/

/

/

/

TABLE 14-8 Classification of Payroll Modules

11
Chapter 14 Bitwise Operators 911

We have two comments about this classification. Note that "maintain payroll
fil \\r Cii1S C JSS^ C 3S 'nPut an^ output. This is because it is a master

C if^ J
1166 t0 rCaC^ 1110 ^Ct emP,oyee personnel and history data, and

will need to write the updated data after they have been calculated. There-
fore it is really two modules: one to read the master and one to write the master.

Second, there are many transform modules. This will result in a large fan
out, which is not desirable. Fan out is the number of submodules
1mm a module. We will need to reduce the fan out later.

Construct Structure Chart
At this point, you are ready to construct the first-cut structure chart. Transform
analysis structure charts are organized with inputs on the left, transforms in the
center, and outputs on the right. This organization is shown in Figure 14-10.

we

emanating

program

input outputprocess

FIGURE 1 4-1 0 Basic Structure Chart Organization

For the first-cut structure chart, place all afferent modules below the

input block, all transform modules below the process block, and all efferent
modules below the output block. In this process, analyzx each module to

determine if it needs to be called before or after the other processes at the

level. Those that need to be called first are placed on the left, and those
the right. The resulting structure

same
that need to he called last are placed
chart is shown in Figure 14-11.

on

program

outputprocessinput

write payroll
master

write
ledgerread hours]freadpayroilj

worked I^nasteij
write pay
checks

] calc
year to date)calccalc non-

stat dednscalccompute taxesgross paypay

FIGURE 1 4-1 1 First-cut Structure Chart

2 Section 14.5 Software Engineering

Up to this point, we have been almost algorithmic; that is, we have exer-
cised little judgment. We now need to analyze the preliminary structure chart
to see if it makes sense. This is done by asking a simple question, "What do
we mean by...?” For example, "What do we mean by compute pay?” The
answer is that we must take hours worked and multiply them by the pay rate,
also considering overtime and so forth. Or, to put it another way, we compute
gross pay. But this is already a module in the structure chart , so these two
modules are the same. We will therefore delete compute pay since it is a less
specific description than calculate gross pay.

Decompose Modules
To decompose modules, we look at the cohesion of each module. For exam-
ple, when we ask what we mean by calculate taxes, the answer is calculate
federal taxes and calculate state taxes. Since we are dealing with two different
entities (things), the cohesion of this module is communicational; it uses the
gross pay and payroll data to calculate the different taxes.

When we find that a module is doing more than one thing, or that it is
so complex that it is difficult to understand, then we need to consider break-
ing the module into submodules. This refinement of the modules was
named stepwise refinement by Niklaus Wirth, the creator of Pascal. 1 It
refines the processes in a module until each module is at its most basic,
primitive meaning.

Decomposition continues until the lowest levels in our structure chart
are all lunctionally cohesive and easily understood.

Complete Structure Chart
At this point we have the nucleus of the structure chart complete, and all we
have to do is add the finishing touches. These steps

1 . Identify any common processes with a cross-hatch in the lower right cor-
ner. In our payroll case, there are

almost mechanical.are

none.
2. Consider adding intermediate (middle-level) modules if necessary to

reduce fan out. I his step should not he done arbitrarily, however. II the
modules next to each other have a common entity, then they can be com-
bined. 11 they don’t, they should he left separate. For example, in the pay-
roll case, we have combined calculate nonstatutory deductions and
calculate taxes into one module called calculate deductions. We would
not combine calculate gross pay with calculate nonstatutory deductions,
and we would not combine calculate taxes with calculate year-to-date
deductions.

3. Verify that the names are descriptive and meaningful for their processes.
4. Add loops, conditional calls, and exclusive or designators.

I . Niklaus Wirth, Program Development by Stepwise Refinement," Communications of the
ACM , 14, no. 4 (April 1971).

”T1
Chapter 14 Bitwise Operators 913

i

5. Add input/output modules, if not already p
6. Add initialization and end of job modules.
/. Add error routines (if necessary).
8. Add data flows and flags as required.

The completed design for the payroll case study is shown in Figure 14-12.

resent.

payroll

for each
employeeinitialize end of job

iicalculateget emp outputdata pay

iread hoursI rea^ payroll
worked I master

write pay
checks

write
ledger

write payroll
master

calccalccalc
deductions year to dategross pay

report
errors

calccalc non-
stat dedns taxes

calccalc federal
taxes state taxes

FIGURE 14-12 Final Payroll Structure Chart

Validate the Design

your design once more by repeating all the design steps, espee.ally the func-

tional decomposition step.

: ‘
,K

Section 14.6 Tips and Common Programming Errors

14.6 Tips and Common Programming Errors
1 . We recommend that bitwise operators be used only with unsigned fixed-

size operands.
2. To use fixed-size integers, we need to include the stdint.h file header file.
3. The bitwise and operator is only one ampersand (&), not two.
4. The bitwise inclusive or operator is only one bar (|), not two.
3. There are two differences between the logical and operator (& &) and the

bitwise and operator (&).
a. The result of & & is a logical value (true or false). The result of & is

another number.
b. The evaluation of an expression that uses & & terminates if the first

operand is false. Expressions with the & operator are always completely
evaluated.

6. There are two differences between the logical or operator (||) and the
bitwise inclusive or operator (|).
a. The result of the || is a logical value (true or false).The result of | is

another number.
b. The evaluation of an expression that uses the || operator terminates if

the first operand is true. Expressions with the | operator are always
completely evaluated.

7. I here is a difference between the not operator (!) and the one’s comple-
ment operator (-). The result of ! is a logical value (true or false). The
result of - is another number.

8. I he bitwise and operator (&) turns off only the corresponding bits in a
data item that match Os in the mask.

9. I he bitwise or operator (|) turns
item that match Is in the mask.

10. I he bitwise exclusive or operator (*) flips only the corresponding bits in a
data item that match Is in the mask.

11. I he bitwise complement operator (-) flips all the hits in a variable.
12. Avoid using the shift operators with the signed number.
13. I he shift-left operator («) multiplr

simply by 2.
14. I he shift-right operator (>>) divides

simply by 2.
1 3. Rotating bits requires a combination of shift right and shift left operations.
16. The difference between bitwise exclusive or (*) and the one’s comple-

ment (-) is that the - operator flips all the hits; the A operator flips only
the specific hits in the mask.

1 / . To add n-bit numbers in one’s complement, we use modulo 2”- 1.

only the corresponding hits in a dataon

number by a power of 2 (2”), notles a

umber by a power of 2 (2”) , nota n

wn
i i

Chapter 14 Bitwise Operators 915

14.7 Key Terms
afferent module
bitwise and operation
bitwise exclusive or operation
bitwise inclusive or operation
bitwise operation
central transform
efferent module
fan out
flipping bits

turning bits on
turn bits off
mask
one’s complement
bitwise shift left operation
bitwise shift right operation
stepwise refinement
transform analysis
transform modules

14.8 Summary
J C is a proper language for system programming because it contains opera-

tors that can manipulate data at the bit level. These operators are called
bitwise operators.
I here are two categories of bitw ise operators: logical bitw ise operators and
shift bitwise operators.
I he bitwise and (&) is a binary operator applied to two operands of integral
value. It does a bit-by-bit comparison of the two operands. The result of
each comparison is 1 if both bits

J The bitwise and operator (&) is used to turn off masked bits in an operand.

The bitwise inclusive or (|) is a binary operator applied to two integral

operands. It does a bit -by-bit comparison of its two operands.The result of

each comparison is 0 if both bits are Os. It is 1 otherwise.

The bitwise inclusive or operator (|) is used to turn

operand.
The bitwise exclusive or (A) is a binary operator applied to two integral

operands. It docs a bit-by-bit comparison of its two operands.The result of

each comparison is 1 only if the two bits are different. If they are the same,

the result is 0.

The bitwise exclusive or operator (A) is used to flip masked bits in an

are Is. It is 0 otherwise.

on mask bits in an

operand.
The bitwise complement operator (-) is

from 1 to 0.
a unary operator. It changes the

value of each bit from 0 to 1 or

in the bitwise and , bitwise inclusive or, and bitwise
The second operand
exclusive or is often called a mask,

are binary operators used to shift data to the right
is an integer thatBitwise shift operators

or the left . The second operand in these operators

defines the number of hits to he shifted. ; •

•- i

916 Section 14.9 Practice Sets

The bitwise left-shift operator («) shifts the hits in the first operand to the
left as many hits as is defined by the second operand. This effectively mul-
tiplies a number by 2”, where n is the number of hits to be shifted.
The bitwise right-shift operator (») shifts the hits in the first operand to
the right as many hits as is defined by the second operand. This effectively
divides a number by 2”, where n is the number of bits to be shifted.
The C language has no operator to rotate hits in a data item. Rotation can
be accomplished by or ing a shift-left operation and a shift-right operation.

14.9 Practice Sets

Review Questions
1. Ihe result of bitwise and'ing of two hits is 1 if

a. both hits are Os.
b. both hits are Is.
c. hits are different

2. I he result of bitwise inclusive or’ing of two hits is 0 if
a. both bits are Os.
b. both hits are Is.
c. hits are different

3. The result of bitwise exclusive or ’ing of two hits is 1 if
a. both hits are Os.
b. both bits are 1 s.
c. hits are different

4. To change every bit in a variable from a 1 to a 0 or from a 0 to a 1, we
need to use the operator.
a. &

b. |
c. A

d. -
5. The operator can he used to turn masked hit on.

a. &

b. |
c. A

d. ~
6. The operator can he used to turn masked hit off.

a. &

b. |

Chapter 14 Bitwise Operators 917

c. A

d. -
7. The operator can be used to flip masked bit.

a. &

I,. |
c. A

d. ~

S. I he bitwise -
a power of 2.
a. &

operator is used to divide a data item by

b. |
c. A

d. »
e. «

9. In program design, a function that collects data that are directed toward
a central transform is classified as a (n)

a. afferent
b. efferent
c. input
d. output
e. transform

10. To find the first address in a block of address, we need to use the
operator with the network mask.

module.

a. &

b. |
c. A

d. »
e. «

i block of addresses, we need to use the

operator with the complement of network mask.I 1 . To find the last address in a

a. &

b. i
c.
d. »
e. «

Exercises
12. Show the value of each of the following binary

a. 11011001
b. 11111111
c. 1111000100011111
d. 0000000011100001

numbers in hexadecimal:

918 Section 14.9 Practice Sets

13. Show the value of each of the following hexadecimal numbers in binary:

a.0x37
I). OxAB
C. 0x0237
d.0xA234

14. Determine the result of the following operations (operands are in binary):
a. -11011001
b.-11111111
c. -11110001
d. -00000000

1 3. Determine the result of the following operations (operands are in binary):
a. 11111100 & 00111111
b. 11111111 & 10101010
c. 00000000 & 11111001
d. 10101010 & 11100001

16. Determine the result of the following operations (operands are in binary):
a. 11111100 | 00111111
b. 11111111|10101010
c. 00000000 j 11111001
d. 10101010 j 11100001

1 7. Determine the result of the follow ing operations (operands are in binary):
a. 11111100 A 00111111
b. 11111111 A 10101010
c. 00000000 A 11111001
d. 10101010 A 11100001

18. When numbers are represented in hexadecimal, we can simplify the
result ol one’s complement (~) operation. The result of complementing
each digit is 13 minus the value of that digit (3 = ~A). Using the above
short-cut rule, find the result of the follow ing operations:
a. -0x02Al
b.-0XF305
C. ~0xE2A8
d.-OxOFFA

19. When numbers are represented in hexadecimal, we can use some rules
that simplify the bitwise and (&) operation in three cases. If one of the
digits is 0, the result is 0 (0 = 5 & 0). If one of the digits is F, the result is
the other digit (3 = I - & 3). II two digits are the same, the result is one o!
them. (A = A & A). Using the above short-cut rules, find the result ol the
following operations:

a. 0xC201 & 0x02AF
b. 0xA240 & 0xF005

Chapter 14 Bitwise Operators 919

C. 0xE205 & 0xE2A0
d. 0 xA531 & OxOFFO

20. \\ hen numbers are represented in hexadecimal, we can use some rules
that simplify the bitwise inclusive or (|) operation in three cases. If one
of the digits is 0, the result is the other digit (5 = 5 0). If one of the dig-
its is F, the result is F (F = F | 3). It two digits are the same, the result is

ol them. (A = A |A). Using the above short-cut rules, find the result
of the following operations:

a. 0xC201 | 0x02AF
b. 0 xA240 | 0 xF005
C. 0 xE205 | 0 xE2A0
d. 0xA531 | OxOFFO

21. When numbers are represented in hexadecimal, we can use some rules
that simplify the bitwise exclusive or (A) operation in three cases. II one
of the digits is 0, the result is the other digit (5 = 5 0). II one of the dig-
its is F, the result is 15 minus the other digit (9 = F A 6). II two digits are
the same, the result is 0 (0 = A A A). Using the above short-cut rules, find
the result of the following operations:

a. 0 xC 201 A 0 x 02AF

b. 0 xA240 A 0xF005

c. 0 xE205 A 0 xE2 A0

d. 0 xA531 A OxOFFO

22. Find the value of the following expressions:

one

a. 0x13 « 2

b. 0x13 » 2

c. 0xl 3A 2 « 4

d. 0xB23E » 2
the most significant bit of

numbered from the right, start-
d hexadecimal form.

off the most significant bit of
numbered from the right, start-

2.3. Show the mask and the operator that turn

8-bit integer. (Remember, the hits

ing with 0.) Give the answer in binary

on
are

an an

24. Show the mask and the operator that
8-bit integer. (Remember, the hits

ing with 0.)

25. Find the mask that complements the values of the first and third bits of

8-bit integer. (Remember, the hits are numbered from the right, start-
hould be used?

turn
are

an

an
ing with zero.) What operator s

used with the & operator sets the second and
(Remember, the bits are numbered26. Find the mask that when

fourth bits of an 8-hit integer to zero.

from the right, starting with 0.)

920 Section 14.9 Practice Sets

27. Find the mask that when used with the | operator sets the second and
fourth hits of an 8-hit integer to 1 . (Remember, the hits are numbered
from the right , starting with 0.)

28. What is the result of the following expressions if a is an 8-hit unsigned
integer?
a. a & -a
b. a|-a
c. a A -a
d. a & OxFF
e. a & 0x00
f. a|OxFF
g. a|0x00
h. a A OxFF
i. a A 0x00

29. Show the binary and hexadecimal representation of following polynomial
using 16-hit unsigned integer: x1 *+ x6 + x3 + x + 1

30. Given two polynomials x4 + x3 + 1 and x6 + x3 + x + 1
a. Add them using modulo 2 arithmetic for coefficients.
b. Use 8-bit unsigned integers (in hexadecimal) to represent each poly-

nomial and apply addition using exclusive or operations.
c. Compare the result of part a and b.

31. Given two polynomials x5 + x2 + 1 and x6 + x4 + x2 + 1
a. Subtract the first polynomial from the second using modulo 2 arith-

metic lor coefficients.
b. Use 8-hit unsigned integers (in hexadecimal) to represent each poly-

nomial and apply subtraction using exclusive or operations.
c. Compare the result of parts a and b.

32. Given two polynomials x12 + x4 + x3 + 1 and x6 + x3 + x + 1
a. Divide the first polynomial by the second using modulo 2 arithmetic

for coefficients. Find the quotient and the remainder.
b. Use 16-bit unsigned integers (in hexadecimal) to represent each poly-

nomial and use Program 14- 11 to find the quotient and the remainder.
c. Compare the result of part a and b.

Problems
33. Write a function that sets a specified bit in a 16-bit unsigned integer to 1.

I he 1 unction is to have two parameters: The first parameter is the integer
to he manipulated and the second is the bit location, relative to the least
significant bit, that is to he turned
0 and turn on several hits in turn.

34. Rework Problem 33 to turn off (set to zero) the specified bit.
35. Rework Problem 33 to flip the specified bit.

Your test program should start withon.

71W

Chapter 14 Bitwise Operators 921

36. Write a functi that flips the hits in an 16-hit unsigned integer.
37. VY rite a function that accepts two polynomials (with 0 and 1 coefficient)in the form of two 16-hit unsigned integers and returns the result of add-ing the two in the form of a 16-hit unsigned integer. Use hexadecimalnotations. Can the same function be used for subtracting the two polyno-mials? If yes, does the order of two polynomials make a difference?
38. Write a function that returns the first (leftmost) hexadecimal digit from a32-bit unsigned integer.

on

39. Rework Problem 38 to return the last (rightmost) digit.
40. Write a function that complements the first (leftmost) hexadecimal digit

in a 32-bit unsigned integer. Note that the complement of a hexadecimaldigit is the 15 minus that digit.
41. Rework Problem 40 to complement the last (rightmost) digit.
42. Write a function that changes the first (leftmost) hexadecimal digit i

32-bit unsigned integer. The function is to have two parameters: The first
is the integer to be manipulated, the second the replacement digit.

43. Rework Problem 42 to change the last (rightmost) digit.

in a

Projects
44. Modify Program 14-5 for checksum calculation at the sender site to a

checksum checker at the receiver site. The program receives a message
of an arbitrary length and a 16-hit checksum calculated at the sender
site. It then calculates a new checksum out of both. If the new checksum
is 0, it prints a message that the data is valid; otherwise, it prints a

that the data is corrupted.
mes-

sage

a. First test your program with the string and checksum calculated in
checksum should be 0.Program 14- 5. The

b. Then change one of the characters in the string and test the program

again. The result should be non-zero.
c. Note that the checksum itself can be corrupted during the transmis-

one of the hexadecimal

new

sion. Also check your program by changing

digits of the checksum calculated at the sender site. The result should

be non-zero again.
45. There is one major problem with the traditional checksum calculation

If two 16-bit items are transposed in transmission,
catch this error. The reason is that the traditional

each data item equally. In other
discussed in the text
the checksum cannot
checksum is not weighted; it

words, the order of data item is

To catch transposition
algorithm. The Fletcher checksum
item according to its position. The algorithm

lecommunication systems) and r

treats
immaterial to the calculation.

J. Fletcher created a new checksum
devised to weigh each data

uses eight bits (known as
creates a 16-bit checksum.

errors,
was

octets in te

922 Section 14.9 Practice Sets

The calculation uses modulo 256 (2s), which means the intermediate
results are divided by 256 and the remainder is kept. The algorithm uses
two accumulators, a and b. The first is the sum ol the data; the second is a

. These two accumulators are then used to form the check-weighted sum
a being the first byte and b being the second byte. Figure 14- 13sum,

shows the logic diagram for the Fletcher checksum.
The following equations represent the calculations shown in the

flowchart.

// Calculations in modulo 256
a = dx + d2 + ••• + dn
b = ndx + (n - l)d2 + ••• + dn

If, for example, dj and d2 are swapped during the transmission, the
calculation of b at the receiver is different from the one done at the
sender. Write a function to calculate a Fletcher checksum. Test it with an
appropriate test driver.

Start

a = b = 0

>iMore Data

r
a = (a + d()

mod 256

b = (b + a)
mod 256

f
checksum =
b x 256 + a

B A

16-bit ChecksumReturn

FIGURE 14-13 Fletcher Checksum Design

46. I he Adler checksum, designed by Mark Adler, is a 32-bit checksum. It is
similar to the Fletcher checksum with three differences. First , calculation
is done on two bytes at a time to produce a 32-bit checksum. Second, a is
initialized to 1 instead of 0. Third, the modulus i prime number, 65,521,
which is the largest prime number less than 65,536 (232). It has been

is a

Chapter 14 Bitwise Operators 923

proved that a prime modulo has a better detecting
binations of data. Figure 14-14 shows
rithm in flowchart form.

capability in some com-
a simple, though inefficient, algo-

Start

a = 1
b = 0

/ v
-V More Data \—

T

a = (a + d,)
mod 65521

b = (b + a)
mod 65521

Achecksum =
b x 65536 + a

B B A

32-bit Checksum
Return

FIGURE 14-14 Adler Checksum Process

It can he proved that the accumulator B is the weighted sum of data

items. We have

// Calculations in modulo 65521

a = d2 + d2 + • •

b = nd2 + (n -
• + dn + 1

1)d2 + ... + d„ + n

to calculate an Adler checksum.
Write a program

47 In security, we need to create a digest of a file or a message to protect the

message from malicious changes during transmission. A sender can send

the message with the digest to a receiver. The receiver then uses the

same process and the key to create a new digest. If the received digest is

exactly the same as the sent digest, the message has not been changed

because the digests are one-to-one functions; probability that two mes-

sages create the same digest is extremely low. The secret key between the

sender and the receiver does not allow an intruder to create a phony

message and digest and pretend that is coming from the true sender. The

e
8

Pimirp 14-15 shows an extremely simplified version of a pro-
diagram in rigurc IT

that creates a digest. J Acess

Section 14.9 Practice Sets

Block
128-bit (16-character) block

1}1
32-bit32-bit32-bit32-bit

TflT
HI*Compress -+||«-
I\\1

16-bit 16-bit16-bit16-bit

^ r1 f!
64-bit

1 32-bit key64-bit key H H -Exclusive or A

\ Expand

64-bit

Swapping t£
64-bit

\
Compress

32-bit

Digest

FIGURE 14- 15 Simplified Digest Process

a. Each 16-character block is divided into four 32-bit integers.
b. Each 32-bit integer is compressed into a 16-bit integer. The compres-

sion removes the first and the last 8 hits.
c. I he four 16-bit blocks are combined to make a 64-bit block.
d. A 32-hit key is expanded into a 64-hit key by adding 16 I s at the

beginning and 16 Is at the end.
e. Ihe 64-bit key is exclusive or ed with the block from part c.
E I he resulting 64-bit is swapped from the middle. The right 32 hit goes

to the left and the right 32 bits goes to the right,
g. Ihe result is compressed to create a 32-bit digest by removing the first

and the last 16 bits.
Your program needs to
an expansions function, a swap function. The main function accepts a
16-character string and
and print a 32-bit digest.

main function, two compress functions,use a

32-bit key from the keyboard and createone

T1
Chapter 14 Bitwise Operators 925

4S. C ombine Programs 14-9 and 14-10 and make them interactive. The
program accepts an address in the form x.y.z.t , and
between 0 and 32 and creates the network address (first address), broad-
cast address (last address), the mask. The program also prints the total
number of addresses in the block. This can be done by first changing the
first and last address to a 32-bit integer and then finding the difference
plus 1.

49. Write a program that, given the first address in a block and the number
of addresses in the block, the program can find the last address and the
corresponding mask. Note that there is only one restriction to this prob-
lem: the first address must divide the number of addresses evenly. Your
program must check for this restriction.

new
integer prefixan

Aside from advanced C concepts and functions that we leave for yourfuture studies, we have covered the basics of the C language. In this chapter,we turn our attention to a concept that is pervasive throughout computer science: lists.
A list is a collection of related data. We can divide lists into two catego-ries: linear lists and non-linear lists. Linear lists are divided into general lists,stacks, and queues. Non-linear lists are divided into trees and graphs. Wedefine and discuss each of these lists briefly in this chapter. Figure 1 5- 1tains the breakdown of lists.

some

con-

Lists

Linear Non-Linear

) Stacks
~|General Queues Trees Graphs

FIGURE 15-1 Lists

Objectives
To introduce the basic concepts of linked lists
To introduce the basic concepts of stacks
To introduce the basic concepts of queues

To introduce the basic concepts of tree structures

To introduce the basic concepts of graph structures

927

-
928 Section 15.1 List Implementotions

15.1 List Implementations
The C language does not provide any list structures or implementations.
When we need them, we must provide the structures and functions for them.
Traditionally, two data types, arrays and pointers, are used for their imple-
mentation. The array implementation
mined during the compilation or while the program is running. The pointer
implementation uses

static structures that are deter-uses

dynamically allocated structures known as linked lists.

Array Implementation
In an array, the sequentiality of a list is maintained by the order structure of
elements in the array (indexes). Although searching an array for an individual
element can be very efficient, addition and deletion of elements are complex
and inefficient processes. For this reason arrays are seldom used, especially
when the list changes frequently. In addition, array implementations ol lists
can become excessively large, especially when there are several successors lor
each element.

Linked List Implementation
A linked list is an ordered collection of data in which each element contains
the location ol the next element or elements. In a linked list, each element con-
tains two parts: data and one or more links. The data part holds the application
data—the data to be processed. Links are used to chain the data together. They
contain pointers that identify the next element or elements in the list.

We can use a linked list to create linear and non-linear structures. In lin-
ear lists, each element has only zero or one successor. In non-linear lists,
each element can have zero, one, or more successors.

rhe major advantage of the linked list over the array is that data are eas-
ily inserted and deleted. It is not necessary to shift elements of a linked list to
make room for a new element or to delete an element. On the other hand,
because the elements are no longer physically sequenced, we are limited to
sequential searches:1 we cannot use a binary search. When we examine trees,
we discuss the binary search tree, which allows for easy updates and efficient
searches.

f igure 15-2(a) shows a linked list implementation of a linear list. The
link in each element, except the last , points to its unique successor; the link
in the last element contains a nidi pointer, indicating the end ol the list ,

figure 15-2(b) shows a linked list implementation of
ment in a non-linear list can have two or more links. I lere each element con-
tains two links, each to one successor. Figure 1 5-2(c) contains an example ol
an empty list , linear or non-linear. We define an empty list as a pointer with a
null value.

In this section , we

linear list . An ele-a non-

discuss only the basic concepts for linked lists.

1. Sequential and binary searches discussed in Chapter 8.are

HIChapter 15 Lists 929

data link data link
(a) Linear list

list data link data link

a1z \
link data link\list list

A (c) Empty listX
link data link

(b) Non-linear list
link data link

FIGURE 15-2 Linked Lists

Nodes
In linked list implementations, the elements in a list are called nodes. A node
is a structure that has two parts: the data and one or more links. Figure I 5-3
shows two different nodes: one for a linear list and the other for a non-
linear list.

The nodes in a linked list are called self-referential structures. In a self-
referential structure, each instance of the structure contains one or more

pointers to other instances of the same structural type. In Figure 15-3, the
colored boxes with arrows are the pointers that make the linked list a self-
referential structure.

(a) Node in a linear list

(b) Node in a non-linear list

FIGURE 15-3 Nodes

a node can be a single field, multiple fields

ture that contains several fields,but it always acts as a single field. Figure 15-4

hows three designs for a node of a linked hst.The upper-left node con,a,ns a

.,,,,number, and a link. The upper-right node is more common It
single ntld, an id and grade points (grdPts)—and a

***** "r,d"““,h”7« The field,are defined

|hei,«„'Jetlwhichi,,hen pu,In.n.he definition of » node „rucu„e.

, or a struc-
The data part in

'T?Tz

930 Section 15.2 General Linear Lists

Node with
Three Data

Fieldŝ .
' Node with
.One Data Field

grdPtsidnumber name

Structure
in a Node

name address phone

FIGURE 15-4 Linked List Node Structures

Pointers to Linked Lists
A linked list must always have a head pointer. Depending on how we use the
list, we may have several other pointers as well. For example, if we are going
to search a linear list , we will need an additional pointer to the location
where we found the data we were looking for. Furthermore, in many struc-
tures, programming is more efficient if there is a pointer to the last node in
the list as well as a head pointer.

15.2 General Linear Lists
A general linear list is a list in which operations, such as retrievals, inser-
tions, changes, and deletions, can be done anywhere in the list , that is, at
the beginning, in the middle, or at the end of the list. We use many differ-
ent types of general lists in our daily lives. We
dent lists, and lists of our favorite songs. When we process
we need to be able to search for a song, add a new song, or delete one we
gave away. I his chapter describes how we can maintain and process gen-
eral lists.

lo work with a linear list , we need some basic operations that manipulate
the nodes. For example, we need lunctions to insert a node at the beginning or
end ol the list, or anywhere in the middle ol the list. We also need a function
to delete a node from the list. Finally,
node in the list. Given these primitive functions
process any linear list .

use lists of employees, stu -
our song list ,

we need a function to find a requested
build functions thatwe can

Insert a Node
We use the following four steps to insert a node into a linear list:

I . Allocate memory for the new node.
2. Determine the insertion point—that is, the position within the list where

the new data are to be placed. Fo identify the insertion position, we need
to know only the nodes logical predecessor (pPre).new

M
MIS

Chapter 15 Lists 931

3. Point the new node to its successor.
4. Point the predecessor to the new node.

As seen in step 2 above, to insert a node into a list , we need to know thelocation ol the node that precedes the
in one

node (pPre). This pointer can be
o* two states: ll can contain the address of a node, or it can be null.

new

II the predecessor is null, then we are inserting to an empty list or at the
beginning ol the list. II it is not null , then we are inserting somewhere alter
the first node that is, in the middle ol the list—or at the end of the list. A
list and its pointers are shown in Figure I 5-5.

i I i il _ jH 181 +H 241 +H 39
data link data link data link

H 57 N•••
data linkpList

pPre Add t0 empty list or add at be9innin9 list

pPreQ* Add in middle of list or add at end of list

FIGURE 1 5-5 Pointer Combinations for Insert

We discuss each of these situations in turn.

Insert into Empty List
When the head of the list is null, then the list is empty. This situation is

15-6. All that is necessary to insert a node to an empty list is
new node and make sureshown in Figure

to point the list head pointer to the address ol the

link field is null. We could use a constant null to set the link field of

the null contained in the list head pointer. The rea-that its
the new node, but we use

for this will become apparent in the next section.
son

pNew->link = pList ;
= pNew ;pList

After Add

pNew [~— 3 9
Before Add

pNew I
pList

pPre |^|
FIGURE 15-6 Insert Node to Empty List __

pList

pPre ^
/1

mT^fy

932 Section 15.2 Generol Linear Lists

The* statements to insert a node into an empty list are shown below.

// set link to NULL
// point list to first node

pNew->link = pList;
pList = pNew;

Note the order of these two statements. We must first point the new node
to NULL, then we can change the head pointer. If we reverse these state-
ments, we end up with the new node pointing to itself, which would put our
program into a never-ending loop when we process the list.

Insert at Beginning
We insert a node at the beginning of the list whenever it must be placed
before the first node of the list. We determine that we are inserting at the
beginning of the list by testing the predecessor pointer(pPre). If it is null,
then there is no predecessor, so we are at the beginning of the list.

To insert a node at the beginning of the list, we simply point the new
node to the first node of the list and then set the head pointer (pList) to
point to the new first node. We know the address of the new node. I low can
we find the address of the first node currently in the list so we can point the
new node to it ? The answer is simple: The first node’s address is stored in the
head pointer(pList).

If you compare these two statements to the statements to insert into an
empty list, you will see that they are the same. This is because, logically,
inserting into an empty list is the same as inserting at the beginning of a list.
We can therefore use the same logic to cover both situations. Inserting at the
beginning of the list is shown in Figure 15-7.

pNew->link = pList ;
= pNew;pList

Before Add After Add
pNew 39

pLisl 75

pPre

pNew 39
“V J

124 75 - 124pList

ppre |^|FIGURE 15-7 Insert Node at Beginning

Insert in Middle
When we insert a node anywhere in the middle of the list, the predecessor
(pPre) is not null. Io insert a node between two nodes, we must point the
new node to its successor and then point the predecessor to the new node.
Again, the address of the
sors link field. Ihe statements to insert a node in the middle of the list are
shown in Figure 15-8.

node’s successor can be found in the predeces-new

Chapter 15 Lists 933

pNew->link = pPre->link;
oPre->link = pNew;

pNew\~
~*\ 96

~[

[75 | -) *fl24 -U-.
pNew £

"Tn n124

pPre pPre

Before Add After Add

FIGURE 1 5-8 Insert Node in Middle

Insert at End
When we insert at the end of the list, we only need to point the predecessor
to the new node. There is no successor to point to. It is necessary, however, to

set the new node's link field to NULL. The statements to insert a node at the
end of a list are shown below.

pNew->link
pPre->link

Rather than have special logic in the function for inserting at the end,

however we can take advantage of the existing linear list structure. We know

that the last node in the list has a link pointer of NULL . If we use this pointer

rather than a constant, then the code becomes exactly the same as the code

for inserting in the middle of the list. The revised code is shown in F.gure 15-9.
Compare it to the code in Figure 15-8.

= NULL;
= pNew;

pNew->link = pPre->link;
pPre->link = pNew;

134 XpNew £
J 75

+\M \ \pNew £
- J 124 ^

pPre
pPre After Add

Before Add

FIGURE 15-9 Insert Node at End

the data to be inserted (item). We m .

a node into

". J

934 Section 15.2 General Linear Lists

(malloc) and adjust the link pointers appropriately. Since we might insert a
node before the beginning of the list , we also need to he able to change the
contents of the head pointer. We ensure that the head pointer is always cor-
rect by returning it. The function declaration for insertNode is shown below.

NODE* insertNode (NODE* pList, NODE* pPre, DATA item);

The complete function is shown in Program 1 S- 1 .

PROGRAM 15- 1 Insert a Node

This function inserts a single node into a linear list.
pList is pointer to the list; may be null
pPre points to new node's predecessor
item contains data to be inserted

Post returns the head pointer

1
2
3 Pre
4
5
6

*/7
NODE* insertNode (NODE* pList, NODE* pPre, DATA item)8

9 {
// Local Declarations

NODE* pNew;
10
11
1 2

// Statements
if (!(pNew = (NODE*)malloc(sizeof(NODE))))

printf("\aMemory overflow in insert\n"),
exit (100);

1 3
1 4
1 5
1 6
1 7
1 8 pNew->data = item;

if (pPre == NULL)1 9
20 {

// Inserting before first node or to empty list
pNew->link = pList;
pList = pNew;

> // if pPre

21
22
2 3
2 4
2 5 else
2 6 {

// Inserting in middle or at end
pNew->link = pPre->link;
pPre->link = pNew;

> // else
return pList;
// insertNode

2 7
2 8
2 9
3 0
3 1
32 >

y
Chapter 15 Lists 935

Program 15- 1 Analysis We have discussed all the logic in this function except the memory allocation. Recall
that ma/'oc returns either on address in the heap or null when there is no more room
m the heap. Therefore, we need to test to see if memory is available.

When memo7 is exhausted, we have an overflow condition. The action taken
depends on the application being programmed; however, the general course of action
is to abort the program. We assume the general case in the algorithm; if null is returned
from malloc, we print a message to the user and exit the program.

With the idea in mind that all code needs to be tested, how can we test the over-
flow logic? We could use the brute-force method-insert data until the list overflows —
but that could take a long time. We tested it by inserting an array of 10,000 long dou-
ble variables to the data structure. On our system, we got an overflow on the fifth node
and the logic was tested.

The technique used to call insertNode is important, since it returns the head of
the list under all circumstances. The call should assign the return value to the list head
pointer. This ensures that when the head of the list changes, the change will be reflected
in the calling function. A typical call to insert data into a student list is coded below.
Note that the head pointer (stuList) is found both in the assignment and as an

actual parameter.

stuList = insertNode (stuList, pPre, stuData);

Delete a Node
When we delete a node we logically remove the node from the linear list by

changing various link pointers and then physically deleting it from the heap.
The delete situations parallel those for insert. We can delete the first node,

any node in the middle, or the end node of a list. As you will see below, these

three situations reduce to only two combinations: Delete the first node, and

delete any other node.
To logically delete a node, we must first locate the node itself (identified

bv pcur)and its predecessor (identified by pPre). We discuss local,on con-

cepts shortly. .After we locate the node that we want to delete, we can s,mpjy
change its predecessor’s link field to point to the deleted node s successor We

then recycle the node using/*. We need to be concerned, however, about

deleting the only node in a list. Deleting the only node results man empty

list so we must be careful that in this case the head po.nter ,s set to NULL.

Delete First Node

null, we

936 Section 15.2 Generol Linear Lists

pList = pCur->link;

; (Recycled) 124 I -(- •••pList [~~^| 75~T ^ppre^ pCur

pList- 124 —
pPre

After DeleteBefore Delete

FIGURE 15-10 Delete First Node

I he statements to delete the first node are shown below.

pList = pCur->link;
free(pCur);

If you examine this logic carefully, you will note that it also handles the
situation when we are deleting the only node in the list. If the first node is
the only node, then its link field is null. Since we move its link field (a null)
to the head pointer, the result is by definition an empty list .

General Delete Case
We call deleting any node other than the first a general case, since the same
logic handles deleting a node in the middle of the list and deleting a node at
the end of the list . For both of these cases, we simply point the predecessor
node, identified by pPre, to the
node being deleted is identified by the current node pointer, pCur. Its succes-
sor is therefore pCur->link.

Deleting the last node is handled automatically. When the node being
deleted is the last node of the list, its null pointer is moved to the predeces-
sor's link field , making the predecessor the
the pointers have been adjusted, the current node is recycled. The delete gen-
eral case statements are shown below.

of the node being deleted. I hesuccessor

logical end of the list . Afternew

pPre->link =
free (pCur);

pCur->link;

I he general case is shown in Figure 15-11.
Function to Delete a Node
I he complete logic to delete a node is shown in Program 15-2. It is given a
pointer to the head ol the list, the node to be deleted, and the delete nodes
predecessor. After deleting and recycling the node, it returns the pointer to
the beginning of the list.

Y lmn

Chapter 15 Lists 937

Before Delete
75 - - 96 - - 124

f pCur[JpPre

pPre->link = pCur->link ;

(Recycled)75 124

of pcuroTpPre

After Delete

FIGURE 15-11 Delete — General Case

PROGRAM 15-2 Delete a Node
====== deleteNode

This function deletes a single node from the link list.

pList is a pointer to the head of the list

pPre points to node before the delete node

pCur points to the node to be deleted

Post deletes and recycles pCur

returns the head pointer

j*1
2

Pre3
4
5
6
7

*/8
deleteNode (NODE* pList, NODE* pPre, NODE* pCur)

NODE*9
10 {

// Statements
if (pPre == NULL)

// Deleting first node

pList = pCur->link;

1 1
12
13
14

else15
// Deleting other nodes

>link = pCur->link;16
pPre-

free (pCur);

return pList;

// deleteNode

17
18
19

}20

. A' ssion The first and most important is that the
Program 15-2 Analysis Three points in this function men iscu' ^Unction is ca||ec|. It assumes that the

node to be deleted must be iden .
$ef |f they aren't, then the prog

fill&Lwill b.-ong.|l.b b.«,r *a,*,pro
ram

mo
placed the recycle

ed it to the end of thegram we
I

*. i

i

938 Section 15.2 General Linear Lists

function. When the same statements appear in both the true and false blocks of a selec-
tion statement, they should be moved out of the selection logic. This is the same concept
as factoring common expressions in algebra. The result is a program that is smaller
and easier to maintain.

Finally, we return the list. This is necessary because it is possible for the first node of
the list to be deleted, which results in a new node being the head of the list.

Locating Data in Linear Lists
When we insert and delete data in a linear list , we must first search the list .
To insert a node, we search to identify the logical predecessor of the new
node in its key sequence. To delete a node, we search to identify the location
of the node to he deleted and its logical predecessor.

Search Linear List
Both the insert and delete for lists require that we search the list . For inserts,
we need to know the predecessor to the node to be inserted; for deletes, we
need to know the predecessor to the node to he deleted. .Also, to locate a node
for processing, such as adding to a count or printing its contents, we need to
know its location. Although we could write separate search functions for all
three cases, the traditional solution is to write one search that satisfies all
requirements. This means that our search must return both the predecessor
and the current (found) locations.

Generally, lists are maintained in key sequence. A key is a Held within a
structure that identifies the data. Examples of keys would include student
number to identify data about students and part number to identify' data
about parts. In this text , we limit our
lists, that is, lists in which each key in the list is less than or greater than the
key that follows it .

Io search a list on a key, we need a key Held . For simple lists, the key and the
data can he the same Held. More complex structures require a separate key field.
A generic linked-list node and key structure are seen in the following example.

discussion of lists to key-sequenced

// Global Declarations
typedef int KEY TYPE; // Application Dependent

typedef struct
{
KEY_TYPE key;

// Other Data Fields
> DATA;

typedef struct nodeTag
{
DATA data;
struct nodeTag* link;
> NODE;

~^n
Chapter 15 Lists 939

Given a target key, the search attempts to locate the requested node in
t le linear list. If a node in the list matches the target value, the search
returns true; if no key matches, it returns false. The predecessor and
pointers are set according to the rules in Table 15- 1.

current

2Condition pPre Return

target < first node

target == first node

first < target < last
target == middle
node

target == last node

target > last node

NULL first node

first node

first node > target

equal node

0

NULL 1

largest node < target

node's predecessor

0

1

last's predecessor

last node

last node 1

0NULL

TABLE 1 5-1 Linear List Search Results

Each of these conditions is also shown in Figure 15-12.

pList

BKOB-*QBr "DrQI
ho oho pPre pCur

target == last
pPre pCur

target
pPre pCur

target middlefirst ====
Successful Searches (Return true)

pList
> pPre < pCur

RRElh ~ PHD!HQ
ao pPre pCur

target > last
pPre pCur

target > *pPre
target < *pCur

;^Tseareĥ (Return false)

pPre pCur

target < first

UnSUC

FIGURE 15-12 Search Results

940 Section 15.2 General Linear Lists

Since the list is in key sequence, we use a modified version of the
sequential search. Knuth2 calls this search “Sequential search in ordered
table.” We simply call it an ordered sequential search.

We start at the beginning and search the list sequentially until the target
value is no longer greater than the current node’s key. At this point, the target
value is either less than or equal to the current node’s key while the predeces-
sor is pointing to the node immediately before the current node. We now use
the current node pointer(pCur)to test for equality and set the return value to
true if the target value is equal to the list value or false if it is less (it cannot be
greater) and terminate the search. The eode lor this search is shown in
Program IS-3.

Search Linear ListPROGRAM 15-3

/* ==================== searchList ==================
Given key value, finds the location of a node

pList points to a head node
pPre points to variable to receive pred
pCur points to variable for current node
target is key being sought
pCur points to first node with >= key
-or- null if target > key of last node
pPre points to largest node < key
-or- null if target < key of first node
function returns true if found

false if not found

1
2
3 Pre
4

5
6
7 Post
8
9

1 0
1 1
1 2
13 * /
14 bool searchList (NODE* pList, NODE** pPre,

NODE** pCur, KEY TYPE target)15
16 {

// Local Declarations
bool found = false;

17
18
19

// Statements
*pPre = NULL;
*pCur = pList;

2 0
2 1
2 2
23

// start the search from beginning
while (*pCur != NULL && target > (*pCur)->data.key)

24
25
26 {
27 *pPre = *pCur;

*pCur = (*pCur)->link;28

continnet

2. Donald L. Knuth, / he Art of Computer Programming, Volume 3 Sort ing and Searching Second
Edition. (Boston, Mass.: Adilison-Wesley, 1979), Algorithm T, p. 398.

Chapter 15 Lists 941

PROGRAM 1 5-3 Search Linear List (continued)

} // while2 9
3 0
3 1 if (*pCur && target = = (*pCur)->data.key)

found = true;
return found;

} // searchList

3 2
3 3
3 4

Program 1 5-3 Analysis Examine the while statement at statement 25 carefully. Note that there are two tests.
The first test protects us from running off the end of the list; the second test stops the

find a nodeloop when we find the target or, if the target doesn't exist, when we
larger than the target. It is important to make the null list test first. If the function is at
the end of the list, then pCur is no longer valid. Testing the key first gives unpredict-
able results.

We can make the search slightly more efficient if we use a rear pointer. With
pointer, we can test the last node before the loop to make sure that the target isn't larger
than its key value. If the target is larger, we simply exit the search function after setting
the predecessor pointer to the last node and the current pointer to null. Once we know
that the target is not greater than the last node, the loop doesn't need to test for running
off the end of the list.

a rear

Traversing Linear Lists
Algorithms that traverse a list start at the first node and examine each node in

ion until the last node has been processed. Several different types of

list traversal logic. Some examples are printing the list , counting

in the list, totalling a numeric Held in the node, or cal-
application that requires process-

15- 13 is a graphic representation of

succession
functions use
the number of nodes
culating the average of a Held. In fact, any

ing the entire list uses a traversal. Figure 1

a linear list traversal.

~
39 -T* “* -•V’7

' IXLrJ ...
"

pList f /

-

pWalker

FIGURE 15-13 Linear List Traversal

The basic logic to traverse a linear list is found in the pseudocode shown

below. It incorporates two concepts. First, an event loop is used to guard

against overrunning the end of the list. Second, after processing the current

node, the loopingpointer is advanced to the next element.

i i ^

942 Section 15.2 General Linear Lists

Algorithm traverse list
1 set pointer to the first node in list
2 while (not end of the list)

1 process (current node)
2 set pointer to next node

3 end while
end traverse

Print Linear List
Program 15-4 uses the traversal logic to print a linear list.

PROGRAM 15-4 Print Linear List

/* Traverse and print a linear list.
pList is a valid linear list
List has been printed

1
2 Pre

Post3
*/4
void printList (NODE* pList)5

6 {
// Local Declarations

NODE* pWalker;
7
8
9

// Statements
pWalker = pList;
printf("List contains:\n");

10
11
12
13
14 while (pWalker)
15 {

printf("%3d ", pWalker->data.key);
pWalker = pWalker->link;

> // while
printf("\n");
return;

> // printList

16
17
18
19
20
2 1

Program 1 5-4 Analysis Study the while expression in statement 14 carefully. This is the most common form of
pointer evaluation for a linear list. C guarantees that the evaluation of a null pointer
is false, and all other pointer values evaluate to true. This expression is therefore
equivalent to

while (pWalker != NULL)

where pWalker is a pointer to current node.
The other important piece of code in the traversal is the loop update in statement 17.

pWalker = pWalker->link;

TO

Chapter 15 Lists 943

This statement advances us through the list. If we forget it, we are in a permanent
loop. Since pWalker points to the current node, we need to change it to advance to
the next node. This is done by simply assigning the link field to pWalker. When .
finally arrive at the end of the list, the link is null, which, when assigned to pWalker,
terminates the while loop.

we

Linear List Average
Let s write one more linear list traversal algorithm, one that averages the val-
ues in a linear list. To pass a linear list to a function, we only need to pass the
value of the head pointer. Look at Program 15-5. The actual data structure is

not shown, but the function assumes that data.key is an integer field.

PROGRAM 15-5 Average Linear List

/* This function averages the values in a linear list.
pList is a pointer to a linear list

list average is returned

1
2 Pre

Post3
* /4
double averageList (NODE* pList)5

6 {
// Local Declarations

NODE* pWalker;
int total;
int count;

7
8
9

10
11

// Statements
total
pWalker = pList;

while (pWalker)

1 2
= count = 0;1 3

1 4
1 5

{1 6
total += pWalker->data.key;
count++;
pWalker = pWalker

} // while
(double)total

1 7
1 8 ->link;1 9
2 0 / count;

return
// averageList

2 1
>2 2

i i

Sram 15-5 Analysis To traverse the list, we used the descriptive pointer, pWalker, that "walks" us through

the list. Although we could have used pList, we advise against ever using the list

pointer far any function logic. Keep it in its original state. Then, ,f you need to modify

the function, you will still know its starting point. This is a small paint, but it's the small

points that make a program easy to maintain.

Building a Linear List
te three low-level functions for a list—insert ,

rint the list and average. It’s timevve wro
In the previous sections
delete, and search—a;

ut them all together in a program.nd two applications |>

to p

n

944 Section 15.2 General Linear Lists

To build the list, we need to get the data, create the node, determine the
insertion position in the list, and then insert the new node. I he design is
shown in Figure 15- 14.

m list pointerlist pointer

buildList

£searchListgetData IinsertNode

Design for Inserting a Node in a ListFIGURE 15-14

Build List
Building a key-sequenced list uses the search function to determine the
insertion position. It uses the design shown in Figure 15- 14. The implemen-
tation is shown in Program 15-6.

PROGRAM 15-6 Build List

l ===== buildList
This program builds a key-sequenced linear list.

filelD is file that contains data for list
list built
returns pointer to head of list

====
2
3 Pre

Post4
5

*/6
NODE* buildList (char* filelD)7

8 {
// Local Declarations

data;
NODE* pList;
NODE* pPre;
NODE* pCur;
FILE* fpData;

9
10 DATA
1 1
12
13
14
15

// Statements
pList = NULL;

16
17
18
19 fpData = fopen(filelD, "r");

if (!fpData)2 0
2 1 {
22 printf("Error opening file %s\a\n", filelD);

contimiec

Chapter 15 Lists 945
PROGRAM 15-6 Build List (continued)

2 3 exit (210);
} // if2 4 open fail

2 5
2 6 while (getData (fpData, &data))

// Determine insert position
searchList (pList,
pList = i
} // while

return pList;
} // buildList

2 7 {
2 8
2 9 &pPre, &pCur, data.key);

msertNode(pList, pPre, data);
3 0
3 1
3 2
3 3

Program 15-6 Analysis Note that in statement 29, do not test for duplicate keys when search list returns. Ifwant to prevent duplicates, we would test the return value and print ansage rather than insert the data when a duplicate key is detected.

we
we error mes-

Remove a Node
I IK* design to remove a node is also simple. After reading the key to he deleted,

search Lor its location and its predecessor location and then call the delete
node function to do the physical deletion. The design is shown in Figure 15-15.
we

deleteKey

searchList
deleteNode

FIGURE 15-15 Design for Remove Node

The code is shown in Program 15- / .

PROGRAM 15-7 Delete Key
=== deleteKey ===
linear list,

list is a pointer
node has been deleted

-or- a warning message printed if not found

pointer to first node (pList)

/ * ================-1
Delete node from a2

to the head of the list
Pre
Post

3
4
5

returns6
*/7

946 Section 15.2 General Linear Lists

PROGRAM 15-7 Delete Key (continued)

8 NODE* deleteKey (NODE* pList)
9 {

// Local Declarations
int key;
NODE* pHead;
NODE* pCur;
NODE* pPre;

1 0
1 1
1 2
1 3
1 4
1 5

// Statements
printf("Enter key of node to be deleted: ");
scanf ("%d", &key);

1 6
1 7
1 8
1 9

if (!searchList(pList, &pPre, &pCur, key))
printf("%d is an invalid key\a\n", key);

2 0
2 1

else2 2
pHead = deleteNode (pList, pPre, pCur);2 3

2 4
return pHead;

> // deleteKey
2 5
2 6

Linear List Test Driver
Now we need to test our functions. To test them, we write a test driver that
builds a list , then prints it , inserts more data into it , computes its average,
and finally deletes data from it . The design of our test driver is shown in
Figure 15-16.

ItestLinkList

§
I I JbuildList printListprintList printList deleteKey

Io1 averageListinsertNodeJAsearchList

\ >1searchList insertNode deleteNodesearchList

FIGURE 15-16 Link List Test Driver

The code for the test driver is shown in Program 1 5-8.

Chapter 15 Lists 947

PROGRAM 1 5-8 Test Driver for Link List
/* Test driver for list

Written by:
Date:

1 functions.
2
3

*/4
5 #include <stdio.h>

#include <stdlib.h>
#include <stdbool.h>

6
7
8

// Global Declarations
typedef int KEY_TYPE;
typedef struct

9
10
1 1
12 {
1 3 KEY_TYPE key;

} DATA;
typedef struct nodeTag

1 4
1 5
1 6 {

data;
struct nodeTag* link;
} NODE;

1 7 DATA
1 8
1 9
20

// Function Declarations
NODE* insertNode (NODE* pList, NODE* pPre, DATA item);

NODE* deleteNode (NODE* List, NODE* pPre, NODE* pCur);

bool searchList (NODE* pList, NODE**
NODE** pCur,

void printList (NODE* pList);

NODE* buildList (char*

NODE* deleteKey (NODE* pList);

bool getData

21
22
2 3

pPre,2 4
KEY TYPE target);2 5

2 6
filelD);2 7

2 8
(FILE* fpData, DATA* pData);

2 9
3 0

averageList (NODE* pList),double3 1
3 2

int main (void)3 3
3 4 {

// Local Declarations
NODE* pList;
NODE* pPre;
NODE* pCur;

data;

3 5
3 6
3 7
3 8

DATA
double avrg;

3 9
4 0

more;char4 1
4 2

// Statements
printf("Begin list

4 3 test driver\n\n");
4 4 continued

'

948 Section 15.2 General Linear Lists

PROGRAM 15-8 Test Driver Lor Link List (continued)

45
// Build List
pList = buildList("PI5-LIST.DAT");
if (!pList)

46
47
48
49 {

printf("Error building chron file\a\n");
exit

> // if
printList (pList);

50
(100);51

52
53
54

printf("\nlnsert data tests.Xn");
printf("Enter key:
scanf ("%d", &data.key);

55
")?56

57
58 do
59 {

if (searchList (pList, &pPre, &pCur, data.key))
printf("Key already in list. Not inserted\n");

60
61

else62
pList = insertNode(pList, pPre, data);

printf("Enter key <-l> to stop: ");
scanf ("%d", &data.key);

> while (data.key != -1);
printList (pList);

63
64
65
66
67
68

avrg = averageList(pList);
printf("\nData average: %.lf\n", avrg);

69
70
71

printf("\nDelete data tests.Xn");72
73 do
74 {

pList = deleteKey (pList);
printf("Delete another <Y/N>: ");
scanf (" %c", &more);

> while (more == 'Y'||more == 'y');

75
76
77
78
79

printList (pList);
printf("\nTests complete.\n");
return 0;

> // main

80
81
82
83

Results:
Begin list test driver

List contains:

continued

r 'n
Chapter 15 Usts 949

PROGRAM 15-8 Test Driver for Link List (continued)

111 222 333 444 555 666 777

Insert data tests.
Enter key:
Enter key <-l> to stop: -1
List contains:
50 111 222 333 444 555 666 777

50

Data average: 394.8

Delete data tests.
Enter key of node to be deleted: 50

Delete another <Y/N>: n
List contains:
111 222 333 444 555 666 777

Tests complete.

Program 15-8 Analysis While the code is rather lengthy if you have studied each of the functions carefully

you will find this program straightforward. Of greater interest are the test cases

needed to completely validate the program. Note that for the inserts, we need to

insert at the end, at the beginning, and in the middle. Likewise, for the deletes, we

delete the last node, the first node, and one in the middle. We also need to try to

delete a node that doesn't exist.

15.3 Stacks restricted to
stack and then\ stack is a linear list in which all additions and deletions are

end, called the top. If you insert a data series into a ...

remove it, the order of the data is reversed. Data input as {5, 10, 15, 20} is

removed as {20, 15, 10, 5}. This reversing attribute is why stacks are known

as the last in-first out (LIFO) data structure.

We use many different types of stacks in our daily lives. We often talk of a

tack of dishes. Any situation in which you can only add or

stack. If you want to remove any object other
all objects above it. A graphic

one

stack of coins or a s

remove an object at the top is a

than the one at the top, you
representation of a stack is shown in Figure 15-17.

Although nothing prevents us from designing a data structure that allows

us to perform other operations, such as moving the item at the top of the

stack to the bottom, the result would not be a stack.

must first remove

in which all insertions

A stack is a last in-first out (LIFO) data structure

and deletions are restricted to one end,called the top.

950 Section 15.3 Stacks

Top

~Y~

Computer StackStack of BooksStack of Coins

FIGURE 15-17 Stack

Stack Structures
Several data structures can be used to implement a stack. We implement the
stack as a linked list .

Data Structure
To implement the linked list stack, we need two different structures, a head
node and a data node. T he head structure contains metadata—that is, data
about data—and a pointer to the top of the stack. The data structure contains
data and a link pointer to the next node in the stack. The conceptual and
physical implementations of the stack are shown in Figure 15-18.

Head
13-

Top count top

Data
nodes

(a) Conceptual (b) Physical

Conceptual and Physical Stack ImplementationsFIGURE 15-18

Stock Head
Generally, the head lor a stack requires only two attributes: a top pointer and
a count of the number of elements in the stack. These two elements are
placed in a structure. Other stack attributes
head structure is shown in Figure 15-19.

he placed here also. A basiccan

Chapter 15 lists 951

typedef struct
{

count top int count;
struct node* top;

} STACK;
Stack Head Structure

typedef struct node
{
int data;
struct node* link;

} STACKNODE;

data link
Stack Node Structure

FIGURE 15-19 Stack Data Structure

Stock Dota Node
I he rest of the data structure is a typical linked list data node. Although the
application determines the data that are stored in the stack, the stack data
node looks like any linked list node. For our example, we use numbers for
data. In addition to the data, the data node contains a link pointer to other
data nodes, making it a self-referential structure. In a self-referential struc-

ture, each instance of the structure contains a pointer to another instance of
the same structure. The stack data node is also shown in Figure 15- 19.

Stack Algorithms
The basic stack operations defined in this section should be sufficient to

solve basic stack problems. If an application requires additional stack opera-

tions, they can be easily added. For each operation we describe it and then
develop it. , . ,

Although the implementation of a stack depends somewhat on the imple-

mentation language, it is usually implemented with a stack head structure in

C. We use the design shown in Figure 15- 19.

Push Stack
we need to doelement into the stack. The first thing

^en we push data into attack is

lore »11«,..:* ^llack ,„1..,„d ,hen„.K.link

(pNew) is used to identify the

Push stack inserts an

simply assign
to the node cu
stack top pointer
push stack operation
data to be inserted into the stack.

and add 1 to

in which a new pointer

7

952 Section 15.3 Stacks

^ I 123 I K
data in <

_123pNew R
stack

pNew R
stack

_
data link

mn 3 757757
count opcount op data inkdata ink

r IWI K„ I 357 I K
data in < data ink

(b) After(a) Before

Push Stack ExampleFIGURE 15-20

To develop the insertion algorithm using a linked list, we need to analyze
three different stack conditions: (1) insertion into an empty stack, (2) inser-
tion into a stack with data, and (3) insertion into a stack when the available
memory is exhausted.

When we insert into a stack that contains data, the new node’s link
pointer is set to point to the node currently at the top, and the stacks top
pointer is set to point to the new node. When we insert into an empty stack,
the new node’s link pointer is set to null and the stack’s top pointer is set to
point to the new node. However, because the stack’s top pointer is null, we
can use it to set the new node’s link pointer to null. Thus the logic for insert-
ing into a stack with data and the logic for inserting into an empty stack are
identical. Figure 15-20 shows the before and after conditions when we push
data into a stack.

As we saw with the linear list , a push can cause an overflow condition. II
it does, the function simply returns a false condition. The code is shown in
Program 15-9.

PROGRAM 15-9 Push Stack
/ * ===1

Inserts node into linked list stack.
pStack is pointer to valid stack header
dataln inserted

2
3 Pre

Post
Return true if successful

false if overflow

4
5
6

*/7
8 bool push (STACK* pStack, int dataln)
9 {

// Local Declarations
STACK_NODE* pNew;
bool

10
11
12 success;

continues

nTT

Chapter 15 Lists 953
PROGRAM 15-9 Push Stack (continued)

1 3
1 4 / / Statements

pNew = (STACK_NODE*)malloc(sizeofif (IpNew)
success =

1 5
(STACK_NODE));1 6

1 7 false;
1 8 else
1 9 {
2 0 pNew->data

pNew->link
pStack->top = pNew;
pStack->count++;
success = true;
} // else

return success;
> // push

= dataln;
21 - pStack->top;22
2 3
2 4
2 5
2 6
2 7

Pop Stack
Pop stack sends the data in the node at the top of the stack hack to the call-
ing algorithm. It then adjusts the pointers to logically delete the node. After
the node has been logically deleted, it is physically deleted by recycling the
memory, that is returning it to dynamic memory. After the count is adjusted
by subtracting 1, the algorithm returns the status to the caller: if the pop
successful, it returns true; if the stack is empty when pop is called, it returns
false. The operations for pop stack arc traced in Figure 15-21.

was

Recycled
-

r “i

^
Hal E3
data link dItPtr Q

stack
dItPtr Q
stack

•-.I> data link

dT I 757 1 [3
data linkIDO count topdata linkcount top

r ran KIcHZ
data linkdata linl

(b) After(a) Before

FIGURE 15-21 Pop Stack Example

The pop stack code is shown in Program 15-10.

;
i

t

954 Section 15.3 Stacks

Pop StackPROGRAM 15-10

l == pop ==
Delete node from linked list stack.

pStackTop is pointer to valid stack
dataOut contains deleted data

2
3 Pre

Post
Return true if successful

false if underflow

4
5
6

*/7
bool pop (STACK* pStack, int* dataOut)8

9 {
// Local Declarations

STACK_NODE* pDlt;
bool

10
1 1
12 success;
13

// Statements
if (pStack->top)

14
// Test for Empty Stack15

16 {
17 = true;

*dataOut = pStack->top->data;
pDlt
pStack->top = (pStack->top)->link;
pStack->count—;
free (pDlt);
} // else

success
18

= pStack->top;19
2 0
21
2 2
23
24 else
25 success = false;

return success;
> // pop

26
27

Program 15-10 Analysis It is interesting to follow the logic when the last node is being deleted. In this case, the
result is an empty stack. No special logic is required; however, the empty stack is cre-
ated automatically because the last node has a null link pointer, which when moved
to top indicates that the stack is empty. A count of zero, which automatically occurs
when we decrement the count, is also an indication of an empty stack.

Stack Demonstration
lo demonstrate the push and pop stack algorithms, we write a program that
inserts random numbers into a stack. After the numbers are inserted, they are
popped and printed. When the stack is empty, the program terminates. I he
design for this program is shown in Figure 15-22.

I he node declarations, function declarations, and test driver are con-
tained in Program 15- 1 1 .

Chapter 15 Lists 955

Basic
Stack

insert
Data

push pop

FIGURE 15-22 Design for Basic Stack Program

PROGRAM 15-11 Simple Stack Application Program

/* This program is a test driver to demonstrate the

basic operation of the stack push and pop functions.

Written by:

Date:

1
2
3
4

*/5
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>

6
7
8
9

// Global Declarations
typedef struct node

10

1 1
{12

data;int
struct node* link;

} STACK_NODE;
1 3
1 4
1 5
1 6

typedef struct1 7
{1 8 count;

STACK_NODE* top;

} STACK;

int1 9
20
21
22 Declarations

(STACK* pStack);// Function
void insertData

2 3
2 4

(STACK* pStack);
void print r int dataln);2 5 (STACK* pList
bool push , int* dataOut);2 6 (STACK* pList
bool pop2 7

2 8
main (void)int2 9

956 Section 15.3 Stacks

Simple Stack Application Program (continuedIPROGRAM 15-11

30 {
// Local Declarations
STACK* pStack;

31
32
33

// Statements
printf("Beginning Simple Stack ProgramXn");

34
35
36

pStack = malloc(sizeof(STACK));
if (!pStack)

printf("Error allocating stack"), exit(100);

37
38
39
40

pStack->top
pStack->count = 0;
insertData (pStack);
print

= NULL;41
42
43

(pStack);44
45

printf("\nEnd Simple Stack ProgramXn");
return 0;
// main

46
47
48 }

Results:
Beginning Simple Stack Program
Creating numbers: 854 763 123 532 82 632 33 426 228 90
Stack contained:
End Simple Stack Program

90 228 426 33 632 82 532 123 763 854

Program 15-11 Analysis To verify that the program works correctly,
ated. This allows us to verify that the stack output was in fact correct. Note that this
simple program verifies the LIFO operation of a stack.

Insert Data
the insert data function loops while creating numbers and inserting them
into the stack. To create a random number,
erator and scale the return value to a three-digit range. This code is devel-
oped in Program 15- 12.

print the numbers as they are gener -we

the random number gen-vve use

PROGRAM 15-12 Insert Data

/* ==l = insertData ============
This program creates random numbers and
inserts them into a linked list stack.

Pre pStack is a pointer to first node
Post Stack has been created

2
3
4
5

*/6
void insertData (STACK* pStack)7

continuec

Chapter 15 Lists
PROGRAM 15-12 Insert Data (continued)

8 {
9 // Local

int
Declarations

numln;
bool success;

10
1 1
12
13 // Statements
14 printf("Creating numbers: "

for (int nodeCount =
);15

0; nodeCount < 10; nodeCount++)16 {
17 // Generate random number

numln
printf("%4d\
success =
if (!success)

18 = rand() % 999;
numln);19

20 push(pStack, numln);
21
22 {
23 printf(Error 101: Out of Memory\n");

exit (101);
} // if

24
25
26 } // for

printf("\n");
return;
// insertData

27
28
29 }

Print Stack
Once the stack has been built, we print it to verify the output. The print func-
tion calls the pop function until the stack is empty. The print code is found in
Program 15- 13.

PROGRAM 15-13 Print Stack

This function prints a singly linked stack.
pStack is pointer to valid stack

data in stack printed

/* ====1
2
3 Pre

Post4
5 */

void print (STACK* pStack)6
7 {

// Local Declarations
int printData;

8
9
10

// Statements
printf(
while (popfpStack, sprintData))

printf("%4d", printData);

1 1
"Stack contained: ");

12
13
14

continued

958 Section 15.4 Queues

PROGRAM 15-13 Print Stack (continued)

15 return;
} // print16

15.4 Queues
A queue is a linear list in which data can he inserted only at one end, called
the rear, and deleted from the other end, called the front. These restrictions

that the data are processed through the queue in the order in which
they are received. In other words, a queue is a first in—first out (FIFO)
structure.

A queue is the same as a line. In fact, if you were in England, you would
not get into a line, you would get into a queue. A line of people waiting lor
the bus at a bus station is a queue, a list of calls put on hold to be answered
by a telephone operator is a queue, and a list of waiting jobs to he processed
by a computer is a queue.

ensure

A queue is a linear list in which data can be inserted at one end, called the
rear, and deleted from the other end,called the front. It is a first in^first out
(FIFO) restricted data structure.

Figure 15-23 shows two representations of a queue: one a queue ol peo-
ple and the other a computer queue. Both people and data enter the queue at
the rear and progress through the queue until they arrive at the front. Once
they are at the front of the queue, they leave the queue and are served.

Banks'R'Us

lIKthi
(a) A queue (line) of peopleRemove

(dequeue)
Insert

(enqueue)

(b) A computer queue

FIGURE 15-23 Queue Concept

Queue Operations
There are two basic queue operations. Data can be inserted at the rear and
deleted from the front. Although there
queues, one significant structural difference is that the queue implementation

many similarities between stacks andare

H
Chapter 15 Lists 959

needs to keep track of the front and the
only needs to worry about one end: the top.

of the queue, whereas the stackrear

Enqueue
I he queue insert operation is known as enqueue. After the data have been
inserted into the queue, the new element becomes the rear. As we saw with
stacks, the only potential problem with enqueue is running out of room for
the data. If there is not enough room
queue is in an overflow state.

for another element in the queue, the

Enqueue inserts an element at the rear of the queue.

Figure 15-24 shows the enqueue operation.

Queue
OperationQueue

FIGURE 15-24 Enqueue

uequeue

The queue delete operation is known as dequeue. The data at the front of the

queue are returned to the user and removed from the queue. If there are no data

in the queue when a dequeue is attempted, the queue is in an underflow state.

t the front of the queue.
Dequeue deletes an element a

is shown in Figure 15-25.
The dequeue operation is

EH
data

757357
Dequeue rearfront

Queue After
123 rearfront Operation

Queue Before

FIGURE 15-25 Dequeue

960 Section 15.4 Queues

Queue Linked List Design
As with a stack, wc implement our queue using a linked list.

Data Structure
We need two different structures to implement the queue: a queue head struc-
ture and a data node structure. After it is created, the queue will have one head
node and zero or more data nodes,depending on its current state. Figure 15-26
shows the conceptual and physical implementations for our queue structure.

I 123 357 757

(a) Conceptual queue

front count rear
- HDc

H 757 DO123 -I 357 j
front rear

(b) Physical queue

Conceptual and Physical Queue ImplementationsFIGURE 15-26

Queue Head
I he queue requires two pointers and a count. These fields are stored in the
queue head structure. Other queue attributes, such as the maximum num-
ber of items that were ever present in the queue and the total number of
items that have been processed through the queue, can he stored in the head
node if such data are relevant to an application. The queue head structure is
shown in Figure 15-27.

typedef struct node
{
int
struct node* next;
} QUEUE_NODE;

data;data next

Node Structure
typedef struct

{
QUEUENODE* front;

count;
QUEUENODE* rear;
} QUEUE;

intfront count rear

Head Structure

FIGURE 15-27 Queue Data Structure

—

Chapter jj Lists 961

Queue Data Node The queue data node contains the user data and a link fieldpointing to the next node, if any.These nodes are stored in dynamic memoryand are inserted and deleted as requested by the using program. Its structureis also shown in Figure 15-27.

Queue Functions
I he two basic functions for a queue are enqueue and dequeue.

Enqueue
I he enqueue is a little more complex than inserting data into a stack. Todevelop the insertion algorithm, we need to analyze two different queue con-ditions: insertion into an empty queue and insertion into a queue with data.These operations are shown in Figure 15-28.

When we insert data into an empty queue, the queue’s front and
pointers must both be set to point to the new node. When we insert data into
a queue with data already in it, we must point both the link field in the last
node and the rear pointer to the new node. If the insert was successful
return a Boolean true; if there is no memory left for the new node, we return
a Boolean false. The code for enqueue is show n in Program 15-14.

rear

, we

front count rear front count rearQueue QueueH DO K y on y
rn%iB

newPtrnewPtr data nextdata next
AfterBefore

(a) Case 1: Insert into Null Queue

front count rear0 Queue
newPtr

front count rear
Queue ra?ED ^ newPtr

SB! data nextdata nextdata nextdata next
AfterBefore

(b) Case 2: Insert into Queue with Data

FIGURE 15-28 Enqueue Example

PROGRAM 15-14 Enqueue
=== enqueue ========
inserts data into a queue./ * ==1

This algorithm2
is validqueue

data have
Pre
Post

3
been inserted

4
continued

962 Section 15.4 Queues

Enqueue (continued)PROGRAM 1 5- 1 4
Return true if successful, false if overflow5

*/6
bool enqueue (QUEUE* queue, int dataln)7

8 {
// Local Declarations

QUEUE NODE* newPtr;
9

1 0
1 1

// Statements
if (!(newPtr = malloc(sizeof(QUEUE_NODE))))

return false;

1 2
1 3
1 4
1 5

newPtr->data = dataln;
newPtr->next = NULL;

1 6
1 7
1 8

if (queue->count == 0)
// Inserting into null queue
queue->front

1 9
2 0
2 1 = newPtr;

else2 2
2 3 queue->rear->next = newPtr;

(queue->count)++;
queue->rear = newPtr;
return true;
// enqueue

2 4
2 5
2 6
2 7 }

Program 15- 14 Analysis Because we must maintain both a front and a rear pointer, we need to check to see if
we are inserting into a null queue. If we are, we must set both pointers to the data just
inserted. If there are already data in the queue, we need to set the next field of the
node at the rear of the queue and the rear pointer to the new node. In this case the
front pointer is unchanged. Because the rear pointer is updated in either case, we
changed it after the if statement (see statement 25).

Dequeue
Although dequeue is also a little more complex than deleting data from a
stack , it starts out much the same. We must first ensure that the queue con-
tains data. If the queue is empty, we have underflow and we return false , indi-
cating that the dequeue was not successful.

Given that there are data to he dequeued, we pass the data back through
the parameter list and then set the front pointer to the next item in the
queue. If we have just dequeued the last item, the queue front pointer auto-
matically becomes a null pointer by assigning it the null pointer from the link
held of the last node. I lowever, if the queue is now empty, we must also set
the rear pointer to null . These cases are shown in Figure 15-29.

The dequeue implementation is shown in Program 15- 15.

Chapter 15 Lists 963

front count rear front count rearQueue y cm [p Queue E3 m E3—data next deleteLoc
Before After
(a) Case 1: Delete only item in queue

front count rear front count rearQueue Queue5 [XI Q B,E a
I

[J3Q -SKI r*T\[B—ii
data next data next data nextdeleteLoc

Before After

(b) Case 2: Delete item at front of queue

FIGURE 15-29 Dequeue Examples

PROGRAM 15- 15 Dequeue
= dequeue =====/* =1

This algorithm deletes a node from the queue.
queue is pointer to queue head structure

dataOut is pointer to data being deleted
front returned and

2
Pre3

4
Data pointer to queue
front element deleted and recycled.

if successful; false if underflow

Post5
6

Return true7
*/8
bool dequeue (QUEUE* queue, int* dataOut)

9
10 {

// Local Declarations
QUEUE_NODE* deleteLoc;

1 1
12
13

// Statements
if (!queue->count)

return false;

14
15
16
17

>front->data;
->front;*dataOut = queue-18

deleteLoc = queue
if (queue->count == 1)

Deleting only item in queue
>front = NULL;

19
20

//21 = queue-queue->rear22
else23 >front->next;>front = queue-

->count)~;
queue-

(queue
24
25 conti ttueil

964 Section 15.4 Queues

PROGRAM 15-15 Dequeue (continued)

free (deleteLoc);26
27
28 return true;

} // dequeue29

Queue Demonstration
To demonstrate a queue, we write a simple program that creates a queue of
colors and then prints them. The design closely parallels the design ol the
stack demonstration. The node declarations, Function declarations, and test
driver are contained in Program I 5-16.

PROGRAM 15-16 Simple Queue Demonstration
/* This program is a test driver to demonstrate the

basic operation of the enqueue and dequeue functions.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>

6
7
8
9
10

// Global Declarations
typedef struct node

1 1
12
13 {

int14 data;
struct node* next;

> QUEUE NODE;
15
16
17
18 typedef struct
19 {
20 QUEUE_NODE* front;

int21 count;
QUEUE_NODE* rear;
} QUEUE;

22
23
24

// Function Declarations25
void insertData (QUEUE* pQueue);
void print
bool enqueue
bool dequeue

26
27 (QUEUE* pQueue);

(QUEUE* pList, int dataln);
(QUEUE* pList, int* dataOut);

28
29
30

continues

i

Chapter 15 Lists 965
PROGRAM 15-16 Simple Queue Demonstration (continued)

31 int main (void)
32 {
33 // Local

QUEUE* pQueue;

// Statements
printf("Beginning Simple Queue

pQueue =
if (!pQueue)

printf("Error allocating

pQueue->front = NULL;
pQueue->count = 0;
pQueue->rear = NULL;

Declarations
34
35
36
37

Program\n");38
39 malloc(sizeof(QUEUE));40
41

queue"), exit(100);42
43
44
45
46
47 insertData (pQueue);

print48 (pQueue);
49
50 printf("\nEnd Simple Queue Program\n");

return 0;
// main

51
52 }

Results:
Beginning Simple Queue Program
Creating numbers: 854 763 123 532 82
Queue contained:
End Simple Queue Program

854 763 123 532 82

Insert Data
The insert data function creates a queue by inserting numbers into the
queue. The code is developed in Program 15-17.

PROGRAM 15-17 Insert Data
====== insertData =============
creates random number data and

/* =======1
This program
inserts them into a linked list queue.

pQueue is a pointer to first node

2
3

Pre
Post Queue created and filled

4
5

*/6
void insertData (QUEUE* pQueue)7

8 {
// Local Declarations9

continued

966 Section 15.4 Queues

PROGRAM 15-17 Insert Data (continued)

int numln;
bool success;

10
11
12

// Statements
printf("Creating numbers: ");
for (int nodeCount = 0; nodeCount < 5; nodeCount++)

13
14
15
16 {

// Generate random number

= rand() % 999;
printf("%4d", numln);
success = enqueue(pQueue, numln);
if (!success)

17
18 numln
19
20
21
22 {

printf("Error 101: Out of Memory\n");
exit (101);

> // if

23
24
25

} // for
printf("\n");
return;
// insertData

26
27
28
29 }

Print Queue
Once the queue has been built, we print it to verify' that the queue was built
correctly. The print function calls the dequeue function until all items have
been printed. I he print code is found in Program 15-18.

PROGRAM 15-18 Print Queue

/* ======1
This function prints a singly linked queue.

pQueue is pointer to valid queue
data in queue printed

2
3 Pre

Post4
*/5
void print (QUEUE* pQueue)6

7 {
// Local Declarations

int printData;
8
9
10

// Statements1 1
printf("Queue contained: ");
while (dequeue(pQueue, &printData))

printf("%4d", printData);

12
13
14
15 return;

> // print16

1

Chapter 15 Lists 967

15.5 Trees
I he study of trees in mathematics can be traced to Gustav Kirchhoff in themiddle nineteenth century and several years later to Arthur Cayley, who usedtrees to study the structure ol algebraic formulas. Cayley s work undoubtedlylaid the framework for Grace Hopper’s use of trees in 1951 to represent arith-metic expressions. Hopper’s work hears a strong resemblance to today’sbinary tree formats.3

Trees are used extensively in computer science to represent algebraicformulas; as an efficient method for searching large, dynamic lists; and lorsuch diverse applications as artificial intelligence
algorithms. systems and encoding

Basic Tree Concepts
A tree consists of a finite set of elements, called nodes, and a finite set of
directed lines, called branches, that connect the nodes. The number of
branches associated with a node is the degree of the node. When the branch
is directed toward the node, it is an indegree branch; when the branch is
directed away from the node, it is an outdegree branch. The sum of the inde-
gree and outdegree branches is the degree of the node.

A tree consists of a finite set of elements, called nodes, and a finite set of
directed lines, called branches, that connect the nodes.

II the tree is not empty, the first node is called the root. The indegree of
the root is, by definition, zero. With the exception of the root , all of the nodes
in a tree must have an indegree of exactly one; that is, they may have only one

predecessor. All nodes in the tree can have zero, one, or more branches leav-
ing them; that is, they may have an outdegree of zero, one, or more (zero or

successors). Figure 15-30 is a representation of a tree.more

FIGURE 15-30 Tree

3. Donald E. Knuth, op.cil., 405, 458.

968 Section 15.5 Trees

Terminology
In addition to root, many different terms are used to describe the attributes of
a tree. A leaf is any node with an outdegree of zero, that is, a node with no

. A node that is not a root or a leaf is known as an internal nodesuccessors
because it is found in the middle portion of a tree.

A node is a parent if it has successor nodes—that is, if it has an outdegree
. Conversely, a node with a predecessor is a child. A childgreater than zero

node has an indegree of one. Two or more nodes with the same parent are
siblings. Fortunately, we don’t have to worry about aunts, uncles, nieces, neph-
ews, and cousins. Although some literature uses the term grandparent , we do
not. We prefer the more general term ancestor. An ancestor is any node in the
path from the root to the node. A descendent is any node in the path below
the parent node; that is, all nodes in the paths from a given node to a leaf are
descendents of that node. Figure 15-31 shows the usage of these terms.

Several terms drawn from mathematics or created by computer scien-
tists are used to describe attributes of trees and their nodes. A path is a
sequence of nodes in which each node is adjacent to the next one. Every
node in the tree can he reached hv following a unique path starting from the
root. In Figure 13-31 the path from the root to the leafIis designated as
AFI. It includes two distinct branches, AF and FI.

Level 0 A Branch
AF

<i}Level 1 B F
Branch

FI
Level 2 C D G H

Root:
Parents: A, B, F
Children: B, E, F, C. D, G,H. I

A Siblings: {B,E,F}. {C,D}, {G.H.I}
Leaves:
Internal nodes: B,F

C.D. E.G.H.I

FIGURE 1 5-3 1 Tree Nomenclature

The level of a node is its distance from the root. Because the root has a
zero distance from itself, the root is at level 0. The children of the root are at
level 1, their children are at level 2, and
between levels and siblings in Figure 15-31. Siblings
level, hut all nodes in a level
level 2, C and D are siblings, as are G, H, and I. Flowever, D and G arc not sib-
lings because they have different parents.

Ihe height ol the tree is the level ol the leaf in the longest path from the
root plus 1. By definition the height of an empty tree is -1. Figure 15-31

forth. Note the relationshipso
are always at the same

are not necessarily siblings. For example, at

I

T!Chapter 15 Lists 969

contains nodes at three levels: 0, 1, and 2. Its heightdrawn upside down,
its height.

is 3. Because the tree issome texts reler to the depth of a tree rather than

The level of a node is its distance from the root. The height of a tree is thelevel of the leaf in the longest path from the root plus 1.

A tree may he divided into subtrees. A subtree is any connected structurebelow the root. The first node in a subtree is known as the root of the subtreeand is used to name the subtree. Subtrees can also be further subdivided into
subtrees. In Figure 15-32. BCD is a subtree, as arc E and FGHI. Note that by
this definition, a single node is a subtree. Thus, the subtree B can be divided
into two subtrees, C and D, and the subtree F contains the subtrees
and I. G, H

A
Subtree

B

B

Root of
Subtree I

G

FIGURE 1 5-32 Subtrees

The concept of subtrees leads us to a recursive definition of a tree: A tree

of nodes that either: (1) is empty or (2) has a designated node, called
subtrees, which areis a set

the root, from which hierarchically descend zero or more

also trees.

A tree is a set of nodes that either.

1. is empty, or
2. Has a designated node, called the root, from which hierarchically descend

zero or more subtrees, which are also trees

Binary Trees
have more than two subtrees;

can haveA binary tree is a tree in w'hich no node can

the maximum outdegree for a node is two. In other words, a node

zero, one, or two subtrees. These subtrees are designated as the left subtree

and the right subtree.

970 Section 15.5 Trees

Figure 15-33 contains a collection of eight binary trees, the (irst of
which is a null tree, that is, a tree with no nodes. As you study this figure,
note that symmetry is not a tree requirement.

CD

(c)(b)(a)

ALeft A LeftSubtree Subtree

CBCB

D E

(e) (f)
Right

Subtree
A A

Right
SubtreeB B

C C

(g) (h)

Collection of Binary TreesFIGURE 15- 33

Binary Tree Data Structure
A binary tree needs two separate data structures: one for the head and one for
the nodes. As with the linear list, the structure
that contains a count and a root pointer.

I he binary tree nodes contain the application data and two self-referential
pointers to the left and right subtrees. These data structures are shown in
Figure 1 5-34.

simple head structureuses a

Binary Tree Traversals
Given that a binary tree consists of a root, a left subtree, and a right subtree,
we can define six different traversal sequences. Computer scientists have
assigned three ol these sequences standard names in the literature; the other
three are unnamed but are easily derived. The first two standard traversals are
shown in Figure 15-35. Note that we only discuss the preorder and inorder
traversals in this text. I he others will be covered in your data structures class.

The traditional terminology lor the traversals uses a designation ol node
(\) lor the root, left (L) for the left subtree, and right (R) for the right

""

Chapter 15 Lists 971

subtree. Io demonstrate the different traversal sequences forwe use Figure 15-36. a binary tree,

BINJREE
count root

typedef struct
{
int count;
NODE* root;
} BIN_TREE;to tree

NODE typedef struct node
<left data right
int data;
struct node* left;
struct node* right;
} NODE;¥ ¥

to left
subtree

to right
subtree

FIGURE 1 5-34 Binary Tree Data Structure

21

1

Left Right
subtree subtree

Left Right
subtree subtree

(b) Inorder Traversal(a) Preorder Traversal

FIGURE 15-35 Binary Tree Traversals

FIGURE 15-36 Binary Tree for Traversals

Preorder Jroversal (NLP)

L p„. which means»„ The. fc 8««'b'f»" >h«

9/ 2 Section 15.5 Trees

In the preorder traversal, the root is processed first, before its subtrees.

Given the recursive characteristics of trees, it is only natural to implement
tree traversals recursively. First we process the root, then the left subtree, and
then the right subtree. The left subtree is in turn processed recursively, as is the
right subtree. The code for the preorder traversal is shown in Program 15-19.

Preorder Traversal of a Binary TreePROGRAM 15-19

/* Traverse a binary tree and print its data (integers)
root is entry node of a tree or subtree

Post each node has been printed

1
2 Pre
3

*/4
void preOrder (NODE* root)5

6 {
// Statements

if (root)
7
8
9 {

printf("%4d", root->data);
preOrder (root->left);
preOrder (root->right);
} // if

return;
// preOrder

10
1 1
1 2
13
14
15 >

Using the tree in figure 15-36 the processing sequence for a preorder
we process the root A. After

process the left subtree. To process the left subtree, we lirst
process its root, B, then its left subtree and right subtree in order. When B s
left and right subtrees have been processed in order, we are then ready to
process As right subtree, E. To process the subtree E
root and then the left subtree and the right subtree. Because there is no
left subtree, we continue immediately with the right subtree, which com-
pletes the tree.

Figure 15-37 shows another way to visualize the traversal of the tree.
Imagine that we are walking around the tree, starting
and keeping as close to the nodes as possible. In the preorder traversal we
process the node when we meet it for the first time (on the left of the node).
I his is shown as a black box on the leit ol the node. The path is shown as a
line following a route completely around the tree and back to the root.

figure 15-38 shows the recursive algorithmic traversal of the tree. The
first call processes the root of the tree, A. It then recursively calls itself to pro-
cess the root of the subtree B, as shown in Figure 15-38(b). The third call,
shown in Figure 15-38(c), processes node C, which is also subtree C. At this
point we call preorder with a null pointer, which results i
return to subtree C to process its right subtree. Because C s right subtree is

traversal processes this tree as follows: First
the root, we

first process the, we

the left ol the rooton

immediatein an

Chapter 15 Lists 973

also null, we return to node B so that we can process its right tree, D , inF igure 15-38(d). After processing node D, we make two more calls, one with
Ds null lelt pointer and one with its null right pointer. Because subtree B hasnow been completely processed, we return to the tree root and process itsright subtree, E, in Figure 15-38(e). After a call to Es null left subtree, we call
Es right subtree, F, in Figure 15-38(f).Although the tree is completely pro-
cessed at this point, we still have two more calls to make: one to F s null left
subtree and one to its null right subtree. We can now hack out of the tree,
returning First to E and then to A, which concludes the traversal ol the tree.

(b) “Walking” Order(a) Processing Order

FIGURE 15-37 Preorder Traversal-A B C D E F

(b) Process Tree B
(a) Process Tree A

(d) Process Tree D
(c) Process Tree C

(f) Process Tree F
(e) Process Tree E

| of Binary Tree
FIGURE 15-38 Algorithmic Traversa

T
9 / 4 Section 15.5 Trees

Inorder Traversal (LNR)
The inorder traversal processes the left subtree first , then the root, and finally
the right subtree. The meaning of the prefix in is that the root is processed in
between the subtrees. Once again we implement the algorithm recursively, as
shown in Program 15-20.

PROGRAM 15-20 Inorder Traversal of a Binary Tree

/* Traverse a binary tree and print its data (integers)
root is entry node of a tree or subtree

Post each node has been printed

1
2 Pre
3

*/4
void inOrder (NODE* root)5

6 {
// Statements

if (root)
7
8
9 {

inOrder (root->left);
printf("%4d", root->data);
inOrder (root->right);

> // if
return;
// inOrder

10
1 1
1 2
13
14
15 >

Because the left subtree must be processed first , we trace from the root
to the far-left leaf node before processing any nodes. After processing the far-
left subtree, C, we process its parent node, B. We are now ready to process the
right subtree, D. Processing D completes the processing of the roots left sub-
tree, and we are now ready to process the root, A, followed by its right sub-
tree. Because the right subtree, E, has no left child, we can process its root
immediately followed by its right subtree, F.The complete sequence for inor-
der processing is shown in Figure 15-39.

(a) Processing Order (b) “Walking” Order

FIGURE 1 5-39 Inorder Traversal —C B D A E F

Chapter 15 Lists 975

To walk around the tree in inorder sequence, we follow the same pathbut process each node when we meet it for the second time (the bottom ofthe node). This processing route is shown in Figure 15-39(b).
In the inorder traversal, the root is processed between its subtrees.

Binary Search Trees
In this section we define and discuss one of the most common binary trees, thebinary search trees. The binary search tree is constructed so that when the tree istraversed using an inordcr traversal, the data in ascending sequence.are

Definition
A binary search tree (BST) is a binary tree with the following properties:• All items in the left subtree are less than the root.
• All items in the right subtree are greater than or equal to the root.
• Each subtree is itself a binary search tree.

In a binary search tree, the left subtree contains key values less than the
root, and the right subtree contains key values greater than or equal to
the root.

Generally, the information represented by each node is a record rather
than a single data element. When the binary search tree definition is applied to
a record , the sequencing properties refer to the key of the record. Figure 15-40
reflects the properties of a binary' tree in which K is the key.

K

All > KAll < K

FIGURE 15-40 Binary Search Tree

Figure 15-41 contains five binary' search trees.
Now let’s look at some binary trees that do not have the properties ol a

binary search tree. Examine the binary trees in Figure 15-42. The first tree.
Figure 15-42(a), breaks the first rule: all items in the left subtree must be less

than the root. The key in the left subtree (22) is greater than the key in the

root (17). The second tree, Figure I 5-42(b), breaks the second rule: all .terns

in the right subtree must be greater than or equal to the root. The key m the

976 Section 15.5 Trees

right subtree (1 1) is less than the key in the root (1 7). Figure 1 5-42(c) breaks
the third rule: each subtree must be a binary search tree. In this tree the left
subtree key (6) is less than the root (17), and the right subtree key (19) is
greater than the root. However, the left subtree is not a valid binary search
tree because it breaks the first rule: its left subtree (11) is greater than the
root (6). Figure 15-42(d) also breaks one of the three rules. Do you see
which one? (H i n t : What is the largest key in the left subtree?)

Valid Binary Search TreesFIGURE 15-41

Invalid Binary Search TreesFIGURE 15-42

Insertion
The insert node function adds data to a BST. To insert data all we need to do
is follow the branches to an empty subtree and then insert the new node. In
other words, all inserts take place at a leaf or at a leaflike node—a node that
has at least one null subtree.

All BST insertions take place at a leaf or a leaflike node.

Figure 15-43 shows our binary search tree after we have inserted two
nodes. We first added node 19. To locate its insertion point, we searched the
tree through the path 23, 18, and 20 to a null left branch. After locating the
insertion point, we inserted the new node as the left subtree of 20. We then
added 38. This time we searched the tree through 23, 44, and 35 to a null
right subtree and inserted the new node.

T"1
Chapter IS Lists 977

(a) Before inserting 19 (b) After inserting 19

(c) Before inserting 38 (d) After inserting 38

FIGURE 15-43 BST Insertion

Insertions of both 19 and 38 were made at a leal node. If we inserted a
duplicate of the root, 23, it would become the left subtree of 35. Remember
that in a binary search tree, nodes with equal values are inserted in the right
subtree. The path for its insertion would therefore be 23, 44, and 35. In this
case the insertion takes place at a leaflike node. Although 35 has a right sub-
tree, its left subtree is null. We would therefore place the new node, 23, as

the left subtree of 35.
We are now ready to develop the insert algorithm. We can write an ele-

gant algorithm that inserts the data into the tree using recursion. If the tree

or subtree is empty, we simply insert the data at the root. II
determine which branch we need to follow and call recursively

we are not at an

empty tree, we
to determine w hether we are at a leaf yet. The code is shown in Program 15-21.
Note that as we saw with other dynamic structures, the BST insert can raise

an overflow error.

PROGRAM 15-21 Binary Tree Insert Function
== BST Insert =====/* ====

This
into a

Pre

1
to insert the new data

function uses recursion
leaf node in the BST tree.2

3
has called BST_Insert, whichApplication4

root and data pointerpasses
Data have

5
been insertedPost

Return pointer to[potentially]6 new root
7

continued

978 Section 15.5 Trees

PROGRAM 15-21 Binary Tree Insert Function (continued)

*/8
NODE* BST_Insert (BST_TREE* tree,

NODE* root,
9

int dataln)10
11 {

// Local Declarations
NODE* newPtr;

12
13
14

// Statements15

16
if (!root)17

18 {
// NULL tree — create new node
newPtr = malloc(sizeof (NODE));
if (!newPtr)

printf("Overflow in Insert\n"), exit (100);
newPtr->data = dataln;
newPtr->left = newPtr->right = NULL;
return newPtr;

> // if

19
2 0
21
2 2
23
24
25
26
27

// Locate null subtree for insertion
if (dataln < root->data)

root->left = BST_Insert(tree, root->left,
dataln);

28
29
30
31
32 else

// new data >= root data
root->right = BST_Insert(tree, root->right,

dataln);

33
34
35
36 return root;

} // BST Insert37

Program 1 5-21 Analysis This algorithm must be carefully studied to fully understand its logic. It begins with a
recursive search to locate the correct insertion point in a leaf node. A leaf node is
identified by a subtree pointer, either right or left, that is null. When
pointer, we create a new node and return its address so that it can be inserted into
the parent pointer (statement 25).

Because this is a recursive function, it must have a base case. Can you see it? The
base case occurs when we locate a leaf and return newPtr in statement 25. At this
point we begin to back out of the tree.

find a leafwe

Binary Tree Example
Let’s write a program that builds a binary search tree. We build the tree by ask-
ing the user to enter numbers. Once the tree is built, we print it in both preorder
and inordcr sequence to verily the insertions. To keep the program simple, we
will use integer data. The design is shown in Figure 15-44.

Chapter 15 Lists 979

iBST

]preOrder inOrder

iBST Insert

FIGURE 1 5-44 Binary Tree Program Design

The code is shown in Program 15-22.

PROGRAM 1 5-22 Binary Tree Example
/* Demonstrate the binary search tree insert and

traversals.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>
#include <stdlib.h>

6
7
8

// Global Declarations
typedef struct node

9
10

{11
data;

struct node* left;

struct node* right;

} NODE;

int12
1 3
1 4
1 5
1 6

typedef struct1 7
{1 8

count;
NODE* root;

} BST__TREE;
int1 9

20
21
22 Declarations

(NODE*
(NODE*
(BSTJTREE* tree,

NODE* root,

// Function
void preOrder

2 3 root);
root);2 4

void inOrder
BST Insert

2 5
int data);NODE*2 6

2 7
2 8

int main (void)

Local Declarations
2 9

{3 0
cont inuecII3 1

980 Section 15.5 Trees

PROGRAM 15-22 Binary Tree Example (continued)

int numln;
BST TREE tree;

32
33
34

// Statements
printf("Please enter a series of integers."

"\nEnter a negative number to stop\n");

35
36
37
38

tree.count = 0;
tree.root = NULL;

39
40

do41
42 {

printf("Enter a number: ");
scanf("%d", &numln);
if (numln > 0)

43
44
45
46 {

tree.root = BST_Insert
(&tree, tree.root, numln);

tree.count++;
> // if

} while (numln > 0);

47
48
49
50
51
52

printf("\nData in preOrder: ");
preOrder (tree.root);

53
54
55

printf("\n\nData in inOrder:
inOrder (tree.root);

56
57
58

printf("\n\nEnd of BST Demonstration^");
return 0;
// main

59
60
61 >

Results
Please enter a series of integers.
Enter a negative number to stop
Enter a number: 45
Enter a number: 54
Enter a number: 23
Enter a number: 32
Enter a number: 3
Enter a number: -1
Data in preOrder: 45 23 3 32 54

Data in inOrder: 3 23 32 45 54

End of BST Demonstration

Chapter 15 Lists 981

15.6 Graphs
A graph is a collection of nodes, called vertices, and a collection ofmerits, called lines, connecting pairs of vertices. In other words,sists of two sets, a set of vertices and a set of lines.

Graphs may be either directed or undirected. A directed graph, ordigraph for short, is a graph in which each line has a direction (arrow head)to its successor. The lines in a directed graph are known as arcs. In a directedgraph, the flow along the arcs between two verticescated direction.

seg-
a graph con-

can follow only the indi-An undirected graph is a graph in which there is no direc-tion (arrow head) on any of the lines, which are known as edges. Inundirected graph, the flow between two vertices can go in either direction.Figure 15-45 contains an example of both a directed graph (a) and an undi-rected graph (b).

an

(a) Directed Graph (b) Undirected Graph

FIGURE 15-45 Directed and Undirected Graphs

sequence of vertices in which each vertex is adjacent to the
In Figure 15-45, {A, B. C, E} is one path and {A, B, E, F) is

A path is a
next one.
another. Note that both directed and undirected graphs have paths. In an

undirected graph, you may travel in either direction.

Graphs may be directed or undirected. In a directed graph, each line, called an
has a direction indicating how it may be traversed.In an undirected graph,arc,

the line is known as an edge,and it may be traversed in either direction.

Two vertices in a graph are said to be adjacent vertices (or neighbors) if

path of length 1 connecting them. In Figure 15 45(a), B is adjacent
the other hand, D is adjacent to E. In

are not.
there is a
to A, whereas E is not adjacent to D; on

Figure I 5-45(b), E and D are adjacent, hut D and I

lied vertices, and line segments, called
A graph is a collection of nodes, ca
arcs or edges,that connect pairs of nodes.

I

982 Section 15.6 Graphs

A cycle is a path consisting of at least three vertices that starts and ends
with the same vertex. In Figure 15-45(b),B, C, D, E, B is a cycle. Note, how-

that the same vertices in Figure 15-45(a) do not constitute a cycle
follow only the direction ol the arc, whereas

ever.
because in a digraph a path can

undirected graph a path can move in either direction along the edge. Ain an
loop is a special case of a cycle in which a single arc begins and ends with the
same vertex. In a loop the end points of the line are the same. Figure 15 -46
contains a loop.

© fB
Cycle
(ABC) Loop

(D)<S>
FIGURE 15-46 Cycles and Loops

Two vertices are said to be connected if there is a path between them. A
graph is said to he connected if, ignoringdirection, there is a path from any ver-
tex to any other vertex. Furthermore, a directed graph is strongly connected
it there is a path from each vertex to every' other vertex in the digraph. A
directed graph is weakly connected if at least two vertices are not con-
nected. (A connected undirected graph would always he strongly connected,
so the concept is not normally used with undirected graphs.) A graph is a
disjoint graph ii it is not connected. Figure 15-47 contains a weakly con-
nected graph (a), a strongly connected graph (b), and a disjoint graph (c).

(a) Weakly Connected (c) Disjoint Graph(b) Strongly Connected

FIGURE 15-47 Connected and Disjoint Graphs

The degree of a vertex is the number of lines incident to it. In Figure 15-47(a)
the degree of vertex B is 3 and the degree of vertex E is 4. The outdegree of a
vertex in a digraph is the number of
the number of arcs entering the vertex. Again, in Figure 1 5-47(a) the inde-
gree of vertex B is 1 and its outdegree is 2; in Figure 1 5-47(b) the indegree of
vertex E is 3 and its outdegree is 1.

leaving the vertex; the indegree isarcs

F\

Chapter 15 Lists 983

One final point: a tree is a graph in which each vertex has only
cessor; however, a graph is not a tree. We will
graphs have one or more trees in them that

Graph Traversal
A complete discussion of graph algorithms is beyond the scope of this text. As
« m example of a graph algorithm, we discuss two graph traversals. The
remaining algorithms to maintain and traverse graphs are left for your data
structures course.

I here is always at least one application that requires that all vertices in a
given graph he visited; that is, there is at least one application that requires
that the graph be traversed. Because a vertex in a graph can have multiple
parents, the traversal of a graph presents some problems not found in the tra-
versal of linear lists and trees. Specifically, we must somehow ensure that
process the data in each vertex only once. However, because there are multi-
ple paths to a vertex, we may arrive at it from more than one direction
traverse the graph. The traditional solution to this problem is to include a vis-
ited flag at each vertex. Before the traversal we set the visited flag in each ver-
tex to off . Then, as we traverse the graph, we set the visited flag to on to

indicate that the data have been processed.
There are two standard graph traversals: depth first and breadth first.

Both use the visited flag.

Depth-first traversal
In the depth-first traversal, we process all of a vertexs dcscendents before

we move to an adjacent vertex. This concept is most easily seen when the

graph is a tree. In Figure 15-48 we show the tree preorder traversal-processing

of the standard depth-first traversals.

y one prede-
latcr in the chapter thatsee some

can he algorithmically determined.

we

as we

sequence, one

Depth-first Iraversal. A B E F C D G H I j

FIGURE 15-48 Depth-first Traversal of a Tree

In a similar manner, the depth-first traversal of a graph starts by process-
vertex of the graph.After processing the first vertex, we select any

to the first vertex and process it.As we process each vertex, we

until we reach a vertex with no adjacent entries.
. We then back out of the structure,

ing the first

vertex adjacent
select an adjacent vertex

imilar to reaching a leaf in a tree
This is s

w
984 Section 15.6 Grophs

processing adjacent vertices as we go. It should be obvious that this logic
requires a stack (or recursion) to complete the traversal.

are processed depends on bow
we are using a stack, however, the

The order in which the adjacent vertices
the graph is physically stored. Because
traversal processes adjacent vertices in descending, or last in —first out
(LI I - ()) , order.

In the depth-first traversal,all of a node’s descendents are processed before
moving to an adjacent node.

Let ’s trace a depth-first traversal through the graph in Figure 1 5-49. The
number in the box next to a vertex indicates the processing order. I he stacks
below the graph show the stack contents as we work our way down the graph
and then as we hack out.

Depth-first Traversal
A X H P E Y M J G

Y

UK E 0
00 00(G 0(M

(a) Graph
p Y
EH E M M JA GQ G G GX G G

2 31 4 5 6 7 8 9
(b) Stack Contents

FIGURE l5-49 Depth-first Traversal of a Graph

1 . We begin by pushing the first vertex, A, into the stack.
2. We then loop, pop the stack, and, after processing the vertex, push all ol

the adjacent vertices into the stack. To process X at step 2, therefore, we
pop \ Irom the stack, process it , and then push G and H into the stack,
giving the stack contents for step 3 as shown in Figure 1 5-49(h)—11 G.

3. When the stack is empty, the traversal is complete.

Breadth-first Jroversol
In the breadth-first traversal ol a graph, we process all adjacent vertices ol a
vertex before going to the next level. We saw the breadth-first traversal earlier
in the chapter. Looking at the tree in Figure 15-50
first traversal starts at level 0 and then processes all the vertices in level 1
before going on to process the vertices in level 2.

, we see that its breadth-

T1
Chapter 15 Lists 985

Breadth-first Traversal: A B C D E F G H I I

FIGURE 15-50 Breadth-first Traversal of a Tree

I he breadth-first traversal ol a graph follows the same concept. We begin
by picking a starting vertex (A); after processing it we process all of its adjacent
vertices (BCD). After we process all of the first vertex’s adjacent vertices, we
pick its first adjacent vertex (B) and process all of its vertices, then the second
adjacent vertex (C) and all of its vertices, and so forth until we are finished.

The breadth-first traversal uses a queue rather than a stack. As we pro-
cess each vertex, we place all of its adjacent vertices in the queue. Then, to

select the next vertex to he processed, we delete a vertex from the queue and

process it . Let’s trace this logic through the graph in Figure 15-51.

Breadth-first Traversal
A X G H P E M Y J

W Y

UK E

J0TM[D(G

(a) Graph
JY JM YEP EH PG H 98

3 4 5 6 7

(b) Queue contents21

FIGURE 15-51 Breadth-first Traversal of a Graph

1 We begin by enqueuing vertex A in the queue.

2. w. ,hen loop.
front of the queue. At

2 in Figure 15-51(b), we dequeue

C^0
H in,he,u“"We are

toJfcr step 3, in ”̂*“G'

is empty, the traversal is complete.

the vertex from the

3. When the queue is

tergal, all adjacent vertices are processed before pro-

In the breadth-first tra

cessing the descendents of a vertex. J

n 15.7 Software Engineering

15.7 Software Engineering
Because linear lists are useful structures, programmers use them in many
applications. Rather than rewrite their functions each time we need them, we
can write functions once and put them in a library. I hen when we need to
use a linear list , we simply include the library. The name given to a complete
set of functions built like this is abstract data type (ADT). To present the
concept, we need to define a few new terms.

Atomic and Composite Data
Atomic data are data that we choose to consider as a single, nondecompos-
ahle, entity. For example, the integer 4562 may he considered as a single inte-
ger value. Of course, you can decompose it into digits, hut the decomposed
digits do not have the same characteristics of the original integer; they arc
four one-digit integers in the range 0 to 9.

An atomic data type is a set of atomic data having identical properties.
These properties distinguish one atomic data type from another. Atomic data
types are defined by a set of values and a set of operations that act on the
values.

Atomic Data Type
1. A set of values.
2. A set of operations on the values.

For example, we can define the following atomic data types:

int
VALUES:
OPERATIONS:

-2, -1, 0 , 1 , 2
I , ++ , —

-oo,
* +t I

oo... , ... ,
%, , < / > , ...

float
VALUES:
OPERATIONS:

0.0 , ...-oo ,
* . + » I , < , > , ...

OO... ,

char
\0 ,
< , > , ...

VALUES:
OPERATIONS:

'A', 'B', \127' a 1 , * b \... , ... / ... ,

I he opposite ol atomic data is composite data. Composite data can he
broken into subfields that have meaning. As an example of a composite data
item, consider your telephone number. A telephone number actually has
three different parts. First is the area code. Then, what
your phone number is actually two different data items, a prefix consisting ol
three digits and the number within the prefix, consisting of four digits. Years
ago, these prefixes were names such as DAvenport and CYp

you consider to be

ress.

i,\

Chapter 15 Lists 987

Data Structure
A data structure is a collection of elements and the relationships
them. Data structures can be nested. That is
that consists of other data structures.

among
we can have a data structure

Data Structure

1. A combination of elements, each of which is either a data type or another
data structure.

2. A set of associations or relationships (structure) involving the combined
elements.

I or example, we can define the two structures array and struct , as shown
in Table 15-2.

structarray

A homogeneous combination of data
structures.

Position association.

A heterogeneous combination of
data structures.
No association.

TABLE 1 5-2 Two Structures

structures. In addi-
Most programming languages support several data

tion, modern programming languages allow7 programmers to create new data

structures that are not available in the language they are using. In C, this is

done with struct (see C hapter 12).

Abstract Data Type

data structures, file management, and systems analysts, your too s will
. , r / Aryn are another tool to add to your tool kit.

increase. Abstract data types (AD1 are anoi

The first computer programming languages had no ADT*. lo read hie,

wrote the code to read the file device. It did not take long to

<irp writing the same code over and over again. So

A P^rne,wrotehcod..o

read a file and placed Urn.1 1 standard inpat/oatpat

This concept "Jo ^ a„d.set of operations that can be

programmers

library is an
used to read and write data.

rned with how the task is done but

With an ADT, the user ADT consists of a set of

rather with what it can do. In other uor

Section 15.7 Software Engineering

prototype definitions that allow the programmer to use the functions while
hiding the implementation. This generalization of operations with unspeci-
fied implementations is known as abstraction. We abstract the essence of the
process and leave the implementation details hidden.

In the concept of abstraction

We know what a data type can do.
How it is done is hidden.

Consider the concept of a list. At least three data structures can support
a list. We can use an array, a linear list, or a file. If we place the list in an
abstract data type, the user should not he aware of the structure we use. As
long as data can be inserted and retrieved, it should make no difference how
we store the data. Figure 15-52 shows several structures that might be used
to hold a list.

OO-OO
A linked list

A tree A networkA matrix

FIGURE 15-52 Structures for Holding a List

An abstract data type is formally defined as a data declaration packaged
together with the operations that are allowed on the data type. In other
words, we encapsulate the data and the operations on data, and we hide their
implementation from the user.

Abstract Data Type
1. Declaration of data.
2. Declaration of operations.

The AD I definition implies two attributes for ADTs:
1. The structures are opaque. We can

are implemented.
2. The operations are opaque. We know what they d

they do it.
We cannot overstress the importance of hiding the implementation. For

example, the programmer should not have to know the data structure to use
the AD I . 1 his is a common fault in many implementations that keep the ADT

them without knowing how theyuse

don’t know' howo: we

Chapter 15 Lists 989

Irom being Lully portable to other applications. Fortunately, Cs rich librarycapability gives us the tools to fully implement any ADT.

A Model for an Abstract Data Type
1 be AD I model is shown in Figure 15-53. The model is represented by theblue area with an irregular outline. Inside are two different aspects of themodel: the data structure and the operational functions. Both are entirelycontained in the model and are not within the user’s scope. However, thedata structure is available to all the ADT’s operations as needed, and an oper-ation may call on other functions to accomplish its task. In other words, thedata structure and the functions are within scope of each other.

J Public
Functions

Private
Functions

Interface
IApplication

Program Data Structures (i i Nn==S=/ °=B
UnkedList

Q
Array

O
Record

Dynamic Memory

FIGURE 15-53 Abstract Data Type Model : .

Data flows in and out of the ADT through the operation headers repre-
sented by the rectangular "Interface” pathway. The interface is also the path-

linear list ADT would havefor the ADT functions. For instance, a
that we saw in this chapter, such as insert , remove, and search. In

j defined as prototype header declarations that are visi-
however, that only the ‘‘Public" functions are available

; the "Private" functions are totally contained with
within the ADT.

way
operations
C, these operations are
ble to the user. Note, .
to the application program;

the ADT and can only be used by other functions
1»

need to create a user header file.
its header file aTo use the ADT in our program, we

header file for a linear list ADT, we give

linklist.h. To include it in our programWhen we create a
name, such as L
preprocessor

, we would use a

directive such as:

include "linklist.h "
i It

.

peering

ADT Data Structure
When the list is controlled entirely by the program, it is often implemented
using simple structures such as those shown in this chapter. Since the ADT
must hide the implementation from the user, however, all data about the
structure must be maintained inside the ADT. But just encapsulating
the structure in the ADT is not sufficient. In addition , multiple versions
of the structure must he able to coexist. This means that we must hide the
implementation from the user while storing data about the structure in
the user’s program.

You have seen this concept before. When you create a file, you use the
predefined structure FILE. Defining a file in your program creates a file struc-
ture that becomes a part of your program. We can do the same thing with the
ADT. Each ADT must have a defined type that the users can define in their
programs. Just like the file type, the ADI type is a pointer to a structure that
contains attributes about the structure. When the ADT attribute structure is
created , it is stored in the heap. The only structural element in the user’s pro-
gram is a pointer to the structure.

This short description of ADTs just begins to introduce the topic. When
you take a data structure class, you may have the opportunity to create and
use some in your programs.

Chapter 15 lists 991

15.8 Tips and Common Programming Errors
1. I he link held in the last node of a linked list must have a null value.2. Memory must be allocated for a node before you add the nodelinked list. to a

3. Be sure to tree memory after you delete a node Irom a linked list.
•4. You must create pty linked list (by assigning NULL to the headerpointer) before using the functions introduced in this chapter.
5. Remember that a null link means there is no pointer; therefore, you can-not use it to dereference another node (or any other object). For example,the following code creates a run-time error because when the loop termi-nates, the value of pCur is NULL.

an em

while (pCur != NULL)
{

pCur = pCur->link;
printf("%d", pCur->data.member_name);
} // while

// ERROR

6. It is a logic error to allocate a node in the heap and not test for overflow.
7. It is a logic error to refer to a node after its memory has been released

with free.
8. It is a logic error to set the only pointer to a node to NULL before the

node has been freed. The node is irretrievably lost.
9. It is a logic error to delete a node from a linked list without verifying that

the node contains the target of the delete.
10. It is a logic error to fail to set the head pointer to the new node when a

node is added before the first node in a linked fist. The new node is irre-
trievably lost.

logic error to update the link field in the predecessor to a new node

before pointing the new node to its logical successor. This error results in

a never-ending loop next time the list is traversed.
logic error to fail to set the link field in the last node to NULL. This

the next traversal to run off the end of the list.

11. It is a

12. It is a
causes

13. It is a potential logic error to use the node pointer in a linked list search

before testing for a null pointer. In the following statement, the compares

need to be reversed to prevent an invalid memory access.

while((*pCur)->data.key < target

I = NULL)&& *pCur

15.10 Summary

15.9 Key Terms
last in—first out (LII ())
line
linear list
link
linked list

abstract data type (ADT)
ancestor
arc
atomic data
binary search tree (BST)
binary tree
breadth-first traversal

list
loop
metadata
node
nonlinear list
outdegree
parent
pop
push
queue
rear
root
se11 -referential structure
stack
strongly connected

child
chronological list
composite data
connected
cycle
data structure
degree
depth
depth-first traversal
dequeue
descendant
direct graph
edge
enqueue
first in—first out (FIFO)
front
graph
indegree
inorder traversal
key-sequence list

top
traversal
tree
underflow
vertex
weakly connected
weighted graph

15.10 Summary
U List can be divided into linear lists and non-linear lists.

Linear lists can be divided into general lists, stacks, and queues.
Non-linear lists can be divided into trees and graphs.

can be inserted anywhere, and there are no
restrictions on the operations that can be used to process the list.
Four common operations are associated with general linear lists: insertion,
deletion, retrieval, and traversal.
When we want to insert into a general linear list
four cases:
a. adding to the empty list
b. adding at the beginning

In a general linear list , data

must considerwe

THChapter 15 Lists 993

c. adding at the middle
d. adding at the end
When want to delete a node from a general linear list, we must con-sider two cases: delete the first node or delete any other node.

means going through the list, item by item,

we

Traversing a general linear list
and processing each item.

J A stack is a linear list in which all additionscalled the top. A stack is also called a LIFO list.
-I We discuss two basic operations for stack: push and pop.

Push stack adds
item becomes the top.
Pop stack removes the item at the top of the stack. After the top the
item, if any, becomes the top.
A queue is a linear list in which data can be inserted at one end called the
rear, and deleted from the other end, called the front.
We discussed only two main operations for queues in this chapter:
enqueue and dequeue.
The enqueue operation inserts an element at the rear of the queue.
The dequeue operation deletes the element at the front of the queue.
A tree consists of a finite set of elements called nodes and a finite set of
directed lines called branches that connect the nodes.

are restricted to one end,

an item to the top ol the stack. .After the push, the new-

next

A node in a tree can be a parent, a child, or both. Two or more nodes with
the same parents are called siblings.

J A binary tree is a tree in which no node can have more than two children.
J

the left subtree first, followed-J In a preorder traversal of a tree, we process
by the root and then the right subtree.

In the inorder traversal of a tree, we process the root first, followed by the
left subtree and then followed by the right subtree.
A binary search tree is a binary tree with the following properties:

a. All items in the left subtree are less than the root.
b. All items in the right subtree are greater than or equal to the

c. Each subtree is itself a binary search tree

collection of nodes, called vertices, and a collection of line
, connecting a pair of nodes.

root.

A graph is a
segments, called edges or arcs

ndirected. In a directed graph, or digraph,

undirected graph, there is no direction on
an arc.

Graphs may be directed or u

each line has a direction. In an
the lines. A line in a directed graph is called

There are two standard graph traversals: depth first and breadth first.

994 Section 15.11 Practice Set

15.11 Practice Set

Review Questions
1 . In a linked list implementation, each node must contain data and a link

field.
a. True
b. False

2. In a linked list implementation, there is a need lor a head pointer to iden-
tify the beginning of the list.
a. True
b. False

3. In a linked list implementation, the first step in adding a node to a list is
to allocate memory for the new node.
a. True
b. False

4. The C language provides a list structure.
a. True
b. False

3. In an array, the sequentiality of a list is maintained by
a. the order structure of elements
h. a pointer to the next element
c. either a or b
d. neither a nor b

6. is an ordered collection of data in which each ele-
ment contains the location of the next element or elements.
a. An array
b. A structure
c. A linked list
d. None of the above

7. A stack is a

a. first in-last out
b. last in-first out
c. first in—first out
d. last in-last out

8. A queue is a

a. first in—last out
b. last in-first out
c. first in-first out
d. last in—last out

structure.

structure.

Chapter 15 Lists 995

c>. A general linear list is a list in which operations, such as retrievals, inser-
tions, changes, and deletions, can he done
a. anywhere in the list
I). only at the beginning
c. only at the end
cl. only at the middle

10. A stack is a list in which operations, such as retrievals, insertions,
changes, and deletions, can be done
a. anywhere in the list
b. only at the top
c. only at the base (bottom)
d. only at the middle

1 1 . A queue is a list in which operations, such as retrievals, insertions,
changes, and deletions, can be done

a. only at the beginning
h. only at the end
c. only at the middle
d. none ol the above

is a last in-first out (LIFO) data structure in

which insertion and deletions are restricted to one end, called the top.

a. stack
b. queue
c. tree
d. binary tree

1 2. A

_ is a first in-first out (FIFO) data structure in

restricted to one end , called the rear, and deletions13. A
which insertions are

restricted to another end. called the front.
are

a. stack
b. queue
c. tree
d. binary tree

14. To add an element to a stack, we use the

a. pop
h. push
c. enqueue
d. dequeue

15. To delete an
operation.
a. pop
b. push
c. enqueue
d. dequeue

operation.

stack, we use the
element from a

996 Section 15.11 Practice Set

16. To add an clement to a queue, we use the
a. pop
b. push
c. enqueue
d. dequeue

17. To delete an element Irom a queue,
operation.
a. pop
b. push
c. enqueue
d. dequeue

18. Data that consist of a single, nondecomposable entity arc known as

operation.

we use the

a. atomic data
b. composite data
c. derived data
d. standard data
e. structured data

is a collection of elements and the relationship19. A(n)
among them.
a. abstract data type
b. array
c. data structure
d. standard type
e. type definition

Exercises
20. Imagine we have the general list shown in Figure 15-54. Show what hap-

pens if we apply the following statement to this general list:

pList = pList -> link;

pList

FIGURE 15-54 Figure for Exercise 20

What is the problem with using this kind of statement? Does it jus-
tify the need for two walking pointers(pPre and pCur) that we intro-
duced in the text?

"1
Chapter 15 Lists 997

2'• WC haVe the 8eneral list shown

W'.w'lh1’'Th ^“b'*bk >» P~ Sack
rcn Lcur ,) K

(pPre) and the location of the cur-rent (peur) node based on search criteria. A typical search design is

in Figure 15 -55. As discussed in

shown in Figure 15 -55.

FIGURE 15-55 Figure for Exercise 21

Ihe following code to set pPre and pCur contains
\ \ hat is it, and how should it he corrected? (Hint : What are the contents
of these pointers at the beginning of the search?)

a common error.

pCur = pCur->link;
pPre = pPre->link ;

22. Imagine we have a dummy node at the beginning of a general list. The
dummy node does not carry any data. It is not the first data node; it is an

pty node. Figure 15-56 shows a general list with a dummy node. Write

the code to delete the first node (the node after the dummy node) in the

general list.

em

aDummy

l ist

pCurpPre

FIGURE 15-56 Figure for Exercise 22

2,w*,ke

node simplify the operation on a general list. Ho

neral list with a dummy node. Write the
eral list.24 Figure 15-57 shows an empty ge

’
code to add a node to this empty gen

] Section 15.11 Practice Set

Dummy

pPre

FIGURE 15-57 Figure for Exercise 24

25. Write the statements to adcl a node in the middle of a general list with
the dummy node (see Exercise 22). Compare your answer with the
answer to Exercise 24. Arc they the same? What do you conclude? Does
the dummy node simplify the operation on a general list? I low?

26. Imagine we have the two general lists shown in Figure 15-58. What
would happen if we apply the following statement to these two lists?

listl = list2;

—
listl

H —
Iist2

FIGURE 1 5-58 Figure for Exercise 26

27. \\ hat would happen if we
in Exercise 26?

apply the following statements to the two lists

temp = listl;
while (temp->link 1 = NULL)

temp = temp->link;
temp->link = list2;

28. Imagine we have the general list shown in Figure 15-59. What would
happen if we apply the following statements to this list?

temp = list;
while (temp->link != NULL)

temp = temp->link;
temp->link = list;

Chapter 15 Lists 999

Dummy

list

FIGURE 1 5-59 Figure for Exercise 28

29. Imagine we have two empty stacks of integers, si and s2. Draw a picture
of each stack after the following operations:

Algorithm Exercise 29
1 pushStack (si, 3)
2 pushStack (si, 5)
3 pushStack (si, 7)
4 pushStack (si, 9)
5 pushStack (si, 11)
6 pushStack (si, 13)
7 loop not emptyStack (si)

1 popStack (si, x)
2 pushStack (s2, x)

8 end loop
End Exercise 33

30. Imagine you have a stack of integers, S, and a queue of integers, Q. Draw

a picture of S and Q after the following operations:

Algorithm Exercise 30

1 pushStack (S, 3)

2 pushStack (S, 12)

3 enqueue (Q , 5)

4 enqueue (Q , 8)

5 popStack (S, x)
6 pushStack (S, 2)

7 enqueue (Q / x)

8 dequeue (Q / y)

9 pushStack (S, x)

10 pushStack (S, y)

End Exercise 30
shown. What

executed? Theand queue Q2 are as
31. Imagine that the contents of queue Q1

, „f 03 after the following code is

>">» <« > »“r

i Exercise 31

createQueue
Algorithm
1 Q3 =
2 count continual

1000 Section 15.11 Practice Set

3 y = o
4 loop (not empty Q1 or not empty Q2)

1 dequeue (Ql, x)
1 if (count > y)

1 dequeue (Q2, y)
2 end if
3 if (y equal count)

1 enqueue (Q3, x)
4 end if
5 count = count + 1

5 end loop
End Exercise 31

Ql : 42 30 41 31 19 20 25 14 10 1112 15
Q2: 4 5 6 10 13

32. Draw all possible non-similar binary trees with three nodes (A, B, C).
33. Draw all possible binary search trees for the data elements 5, 9, and 12.
34. Create a binary search tree using the following data entered as a sequen-

tial set:

14, 23, 7, 10, 33, 56, 80, 66, 70

35. Create a binary search tree using the following data entered as a sequen-
tial set:

7, 10, 14, 23, 33, 56, 66, 70, 80

36. Insert 44 and 50 into the tree created in Exercise 34.
37. Insert 44 and 50 into the tree created in Exercise 35.

Problems
38. Write a program that reads a list of integers from the keyboard, creates a

general list from them, and prints the result.
39. Write a function that accepts a general list , traverses it , and returns the

key ol the node with the minimum key value.
40. Write a function that traverses a general list and deletes all nodes whose

keys are negative.
41. Write a function that traverses a general list and deletes all nodes that

are after a node with a negative key.
42. W rite a function that traverses a general list and deletes all nodes that

are before a node with a negative key.

Chapter 15 Lists 1001

43. Rewrite the function deleteNode (see Program 15-2) using a general listwith a dummy node.
44. Rewrite the function

with a dummy node.
45. Write a function that

searchList (see Program 15-3) using a general list

returns a pointer to the last node in a general list.
46. Write a function that appends two general lists together.
47. \\ rite a I unction that appends a general list to itself.
48. One of the applications of a stack is to backtrack—that is, to retrace its

steps. As an example, imagine we want to read a list of items, and each
time we read a negative number we must backtrack and print the five
numbers that come before the negative number and then discard the
negative number. Use a stack to solve this problem. Read the numbers
and push them into the stack (without printing them) until a negative
number is read. At this time, stop reading and pop five items from the
stack and print them. If there are fewer than five items in the stack, print
an error message and stop the program. After printing the five items,
resume reading data and placing them in the stack. When the end of the
file is detected, print a message and the items remaining in the stack.
Test your program with the following data:

1 2 3 4 5 -1 1 2 3 4 5 6 7 8 9 10 -2 11 12 -3 1 2 3 4 5

49. \\ rite a function called copyStack that copies the contents of one stack
into another. The algorithm passes two stacks, the source stack and the
destination stack. The order of the stacks must be identical. (Hint: Use a

temporary stack to preserve the order.)

50. Write a function, catStack, that concatenates the contents of one stack
on top of another.

5 I . Write a function to check whether the contents of two stacks

cal. Neither stack should be changed. You need to write a f
the contents of a stack to verify that your function works.

function called copyQueue that copies the contents of one queue

a stack.

; are identi-
funotion that

prints

52. Write a
to another.

53. Write a function called stackToQueue that creates a queue from

After the queue has been created, the top of the stack should be the front

of the queue and the base of the stack should be the rear of the queue. At

the end of the function, the stack should be empty.

queue of integers, write a function that calculates and prints the

nd the average of the integers in the queue without changing the54. Given a
sum a:,
contents of the queue.

Section 15.11 Practice Set

55. Given a queue of integers, write a function that deletes all negative inte-
gers without changing the order of the remaining elements in the queue.

56. Write a function that calculates and passes up to the calling function the
sum and average of the nodes in a tree.

57. Write a function that counts the number of leaves in a binary tree.
58. Write a function to find the smallest node in a binary search tree.

Projects
59. Write a program that reads a file and builds a key-sequenced general list.

After the list is built, display it on the monitor. You may use any appropri-
ate data structure, but it must have a key field and data. Two possibilities
are a list of your favorite CDs or your friends' telephone numbers.

60. Write a program to read a list of students from a file and create a general
list. Each entry in the general list is to have the student’s name, a pointer
to the next student, and a pointer to a general list of scores. You may have
up to four scores for each student.!be program initializes the student list
by reading the students’ names from the text file and creating null scores
lists. After building the student list, it loops through the list, prompting
the user to enter the scores for each student. The scores prompt is to
include the name of the student.

61. W rite a stack and queue test driver. A test driver is a program created to
test functions that are to be placed in a library. Its primary purpose is to
completely lest functions; therefore, it has no application use. The func-
tions to be tested are push stack, pop stack, enqueue, and dequeue. You
may include other stack and queue functions as required. All data should
be integers. You need two stacks and two queues in the program, as
described below.
a. Input stack: used to store all user input
b. Input queue: used to store all user input
c. Output stack: used to store data deleted from input queue
d. Output queue: used to store data deleted from input stack

Use a menu-driven user interface that prompts the user to select
either insert or delete. If an insert is requested, the system should prompt
the user for the integer to be inserted. The data are then inserted into the
input stack and input queue. II a delete is requested, the data are deleted
Irom both structures: the data popped from the input stack are enqueued
in the output queue, and the data dequeued from the input queue are
pushed into the output stack.

Processing continues until the input structures are empty. At this
point print the contents ol the output stack while deleting all of its data.
Label this output “Output Stack,” then print all of the data in the output

TT1
Chapter 15 Lists 1003

queue while deleting all of its data. Label this output "Output Queue.”
Your output should he formatted as shown below.

Output Stack: 18 9 13 7 5 1
Output Queue: 7 13 9 18 5 1

Test your program with the following operations:

13 input 8
14 delete
15 delete
16 delete

9 input 6
10 delete
11 input 7
12 delete

5 delete
6 input 0
7 input 5
8 delete

1 input 1
2 input 2
3 delete
4 input 3

In addition to the computer output from your test, write a

report (less than one page) describing what structural concepts

demonstrated by your output.

short
were

L

Character Sets
Computers use numbers. They store characters by assigning a number toeach one. The C language was originally designed using the American Stan-dard Code for Information Interchange (ASCII), which was the standard ofthe time. Based on the Latin alphabet, ASCII uses 128 characters (valuedhorn 0 to 1 2 /) stored as / -hit numbers. This is enough to handle the lower
and uppercase letters, digits, most common punctuation characters, and
control characters. Later, an attempt was made to extend the ASCII character
set to 8 hits. The new code, which was called Extended ASCII,

internationally standardized.
To overcome the limitations inherent in ASCII and Extended ASCII, the

International Standard Organization (ISO) and the Unicode Consortium (a
consortium of manufacturers of multilingual software) created a universal
encoding system to provide a comprehensive character set. The Unicode con-
sortium created Unicode. ISO created the Universal Character Set (UCS),
designated ISO 10646 standard.

The main UCS set, sometimes referred to as UCS-4, is a four-bvte code.
A subset of UCS-4, called UCS-2, is a two-byte code that is compatible with
UCS-4; it contains the first 32,364 values in UCS-4.

Unicode was originally a two-byte character set. The early versions of
Unicode were only compatible with UCS-2. Unicode version 3 is a four-byte
code and is fully compatible with UCS-4. The compatibility of Unicode with
UCS-4 makes Unicode compatible with ASCII and Extended ASCII.

The ASCII set, which is now called Basic Latin, is included in UCS-4
and Unicode with the upper 25 bits set to zero. The Extended ASCII, which

called Latin-1, is also included w ith 24 upper bits set to zero. Figure A-1

shows the compatibility between the different systems.

some

was never

is now

1006 Section A. 1 Unicode

Extended ASCII

ASCIIDefining Planes

8 bits8 bits8 bits8 bits

UCS-2
*

UCS-4 and Unicode

FIGURE A-l USC and Unicode Compatibility

A.l Unicode
The prevalent code today is Unicode. Each character or symbol in this code
is defined by a 32-hit number. The code can define up to 2 ^ 2 (4,294,967,296)
characters or symbols. The presentation uses hexadecimal digits in the lol-
Iowing format:

u-xxxxxxxx

where each X is a hexadecimal digit . Therefore, the numbering goes from
U-00000000 to U-FFFFFFFF.

Planes
Unicode divides the whole space code into planes. The most significant 16
hits define the plane, which means we can have 65,536 planes. For plane 0,
the most significant 16 hits arc Os (0x0000); in plane 1 , the hits are 0x0001;
in plane 2, they are 0x0002; and so on until in the plane 65,536, they are
OxFFFF.

Each plane can define up to 65,536 character or symbols. Figure A-2
shows the structure of Unicode spaces and its planes.

Basic Multilingual Plane (BMP)
Basic Multilingual Plane, Plane 0, is designed to he
previous 16-hit Unicode version and UCS-2. The most significant 16 hits in
this plane are all zeros. The codes are normally shown as U+XXXX with the
understanding that XXXX defines only the least significant 16 hits. This plane
mostly defines character sets in different languages with the exception of
some codes used for control or other special characters. Table A- l shows the
main classification of codes in Plane 0.

patible with thecom

Appendix A Character Sets 1007

Reserved Reserved

o IL UJ Q- o ° oO o oo o o
Plane 0000: Basic Multilingual Plane (BMP)Plane 0001: Supplementary Multilingual Plane (SMP)Plane 0002: Supplementary Ideographic Plane (SIP)Plane 000E:Supplementary Special Plane (SSP)Plane 000F:Private Use Plane (PUP)
Plane 0010:Private Use Plane (PUP)

U-u. 2 °o ou.

FIGURE A-2 Unicode Planes

Range Description
A-Zone (Alphabetical Characters and Symbols)
U+0000 to U+00FF Basic Latin and Latin- 1

U+0100 to U+01FF Latin Extended
IPA Extension, and Space Modifier LettersU+0200 to U+02FF

Combining Diacritical Marks, GreekU+0300 to U+03FF

CyrillicU+0400 to U+04FF

Armenian, HebrewU+0500 to U+05FF

ArabicU+0600 to U+06FF

ReservedU+0700 to U+08FF

Devanagari, BengaliU+0900 to U+09FF

Gurmukhi, GujaratiU+0A00 to U+OAFF
Oriya, TamilU+0B00 to U+OBFF
Telugu, Kannda
Malayalam

U+0C00 to U+OCFF

U+0D00 to U+ODFF
continued

TABLE A- 1 Unicode BMP

1008 Section A.l Unicode

DescriptionRange

Thai, LaoU+OEOO to U+OEFF

ReservedU+OFOO to U+OFFF

GeorgianU+ lOOO to U+lOFF

Hangul JamoU+l100 to U+l IFF

ReservedU+l200 to U+1DFF

Latin extended additionalU+1 E00 to U+ lEFF

Greek extendedU+lFOO to U+1 FFF

Punctuation, sub/superscripts, currency, marksU+2000 to U+20FF

Letter-like symbols, number forms, arrowsU+2100 to U+21FF

Mathematical operationsU+2200 to U+22FF

Miscellaneous technical symbolsU+2300 to U+23FF

Control pictures, OCR, and enclosed alphanumericU+2400 to U+24FF

Box drawing, block drawing, and geometric shapesU+2500 to U+25FF

Miscellaneous symbolsU+2600 to U+26FF

Dingbats and Braille patternsU+2700 to U+27FF

ReservedU+2800 to U+2FFF

CJK symbols and punctuation, Hiragana, KatakanaU+3000 to U+30FF

Bopomofo, Hangul Jamo, CJK MiscellaneousU+3100 to U+31FF

U+3200 to U+32FF Enclosed CJK letters and months
U+3300 to U+33FF CJK compatibility
U+3400 to U+4DFF Hangul

1-Zone (Ideographic Characters)

U+4E00 to U+9FFF CJK Unified Ideographic
O-Zone (Open)

U+A000 to U+DFFF Reserved
R-Zone (Restricted Use)

U+E000 to U+F8FF Private Use
continued

TABLE A-l Unicode BMP (continued)

Appendix A Character Sets 1009

Range Description
U+F900 to U+FAFF CJK Compatibility Ideographs
U+FBOO to U+FBFF Arabic Presentation Form-A
U+FCOO to U+FDFF Arabic Presentation Form-B

Half marks, small formsU+FEOO to U+FEFF

Half-width and full-width formsU+FFOO to U+FFFF

TABLE A-l Unicode BMP (continued)

Supplementary Multilingual Plane (SMP)

Supplementary Multilingual Plane, Plane 1, is designed to provide
code for those multilingual characters that are not included in the BMP plane.

more

Supplementary Ideographic Plane (SIP)

Supplementary Ideographic Plane, Plane 2, is designed to preside code for
any symbol that primarily denotes an idea (or meaning)ideographic symbols

in contrast to a sound (or pronunciation).

Supplementary Special Plane (SSP)

Supplementary Special Plane, Plane 14 (OxOOOE)

found in the Basic Latin or Basic Latin- 1 codes.
is used for special char-

acters not

Private Use Planes (PUP)

Private Use Planes. Planes 15 (OxOOOF) and 16 (OxOOlO)

private use.

reserved forarc

A.2 ASCII
The American Standard Code f

code f()r , 28 symbols. Today,

bit code, that was designed £code. It occupies the first 128 codes
ASCII or Basic Latm, is part o Tabk' A-2 contains the decimal,
in Unicode (U-00000000 to U’0

wjth an English interpretation

when converted to an integer.

seven-
> if

1010 Section A.2 ASCII

InterpretationSymbolDecimal Hex

Null valuenull000

Start of headingSOH011

Start of textSTX022
End of textETX3 03

End of transmissionEOT044

EnquiryENQ055

AcknowledgmentACK066

Ring bell07 BEL7

BackspaceBS8 08

Horizontal tab09 HT9

Line feed0A LF10

Vertical tab0B VT1 1

Form feed12 0C FF

13 0D CR Carriage return

Shift out0E SO14

Shift in15 OF SI

Data link escape16 10 DLE

17 1 1 DC 1 Device control 1

18 12 DC2 Device control 2
19 13 DC3 Device control 3
20 14 DC4 Device control 4
2 1 15 NAK Negative acknowledgment
22 16 SYN Synchronous idle
23 17 End of transmission blockETB

24 18 CAN Cancel
25 19 EM End of medium
26 1 A SUB Substitute

continued
TABLE A-2 ASCII Codes

n
Appendix A Charocfer Sets 1011

Decimal Symbolx Interpretation
27 IB ESC Escape
28 1C FS File separator

Group separator29 ID GS
30 IE RS Record separator
31 IF US Unit separator
32 20 SP Space
33 21

34 22 Double quote

35 23 #

36 $24

37 25 %

38 26 &
Apostrophe39 27

2840

2941

2A42

2B43 +

Comma2C44
Minus2D45

2E46

/2F47
03048

3149
23250
33351
43452
53553 continued

TABLE A-2 ASCII Codes (continued!

’I

1012 Section A.2 ASCII

InterpretationSymbolDecimal Hex

63654

73755

83856

93957

Colon3A58
Semicolon3B59

3C60 <

3D61

3E62 >

23F63
@4064

41 A65

42 B66

43 C67

D68 44

45 E69

46 F70
G71 47

72 48 H

73 49

74 4A J
75 4B K

76 4C L
77 4D M
78 4E N
79 4F O

80 50 P
continued

TABLE A-2 ASCII Codes (continued)

Appendix A Character Sets 1013

Decimal Hex Symbol Interpretation
81 51 Q
82 52 R
83 53 S
84 54 T
85 55 U
86 56 V
87 57 W
88 58 X
89 59 Y
90 5A Z
91 5B [Open bracket
92 \ Backslash5C

Close bracket93]5D

94 Caret5E A

Underscore95 5F

Grave accent6096

6197 a

b6298

6399 c

d64TOO

65101 e

f66102

67 9103
h68104

69105
6A106

k6B107 continued

TABLE A-2 ASCII Codes (continued)

'1

1014 Section A.2 ASCII

Symbol InterpretationDecimal Hex

I108 6C

109 6D m

1 1 0 6E n

6F1 1 1 o

112 70 P
113 71 q

72114 r

73115 s

116 74 t

117 75 u

118 76 v

119 77 w

120 78 x

1 2 1 79 y

122 7A z

123 7B { Open brace
124 7C Bar

125 7D } Close brace
126 7E Tilde
127 7F DEL Delete

TABLE A-2 ASCII Codes (continued)

Some Properties of ASCII
ASCII has some interesting properties that we need to briefly mention here:

1. Ihe lirst code (0), is the null character, which represents the absence ol
any character.

2. Ihe lirst 32 codes, 0 to 3 I, and the last code, 255, are control characters.
They can he checked with the iscontrol function.

3. Ihe space character, which is a printable character, is at position 32.

nAppendix A Character Sets 1015

4. The uppercase letters start from 65 (A). The lowercase letters start from
T (a). When numerically compared, uppercase letters are smaller thanlowercase ones. This means that when we sort a list based on ASCII val-the uppercase letters show before the lowercase letters.

5. I he uppercase and lowercase letters differ by only one bit in the seven-
hit code. For example, character A is 1000001 (0x41) and character a is
1 100001 (0x61). The difference is hit 6, which is 0 in uppercase letters
and 1 in lowercase letters. II we know the code lor one case, we can find
easily the code for the other by adding or subtracting 32 in decimal, 0x20
in hexadecimal, or Hipping the sixth hit.

6. I he uppercase letters are not immediately followed by lowercase letters.
I here are some punctuation characters in between.

7. Digits (0 to 9) begin at 48 (0x30). This means that if we want to change a
numeric character to its face value as an integer, we need to subtract 48
from it.

ues

A.3 Universal Encoding in C
The C language allows the use of the UCS-2 and UCS-4 codes in character
constants, string constants, and identifiers. C uses two formats, one with four
hexadecimal digits for UCS-2 and another with 8 hexadecimal digits for

shown below. Note that the two formats are compatible; \U000OHK«HUCS-4 as
is the same asWmw.

// For UCS-2
// For UCS-4\unnnn

\Unnnnnnnn

hical character using the uni-
Program A- l shows how we can print a grap

versal encoding in C.

PROGRAM A-1 Example of Universal Encoding
of universal encoding

/* Show the use
Written by:

Date:

1
2
3

*/4
<stdio.h>#include5 i|

6
int main (void)7
{8
// Declarations

char chi =
char ch2 =

9
\u 0 0A2 ' ;

\ U0 0 0 0 0 0A3 ' ;1 0
tinned1 1 con

71

1016 Section A.3 Universal Encoding in C

PROGRAM A-l Example of Universal Encoding (continued)

12
// Statements

printf ("Character chi: %c\n", chi);
printf ("Character ch2: %c\n"/ ch2);

13
14
15
16
17 return 0;

> // main18

Result:
Character chi: C
Character ch2: £

r
Keywords

rhe C language contains 37 keywords, also known as reserved words, that
cannot be used as identifiers for functions, variables, or named constants.
They are shown in Table B-l.

short
signed
sizeof

externauto

floatBool
forbreak

staticgotocase

char
_Complex
const

continue

structif
switchJmaginary

inline typedef
union

unsigned
void
volatile
while

int

longdefault
register

restrict
do

double
returnelse

enum

TABLE B-l C Keywords

1018 Section

In addition to these keywords, we recommend that the macros and C++
keywords in Table B-2 also be treated as keywords.

and compl
complex
imaginary

or

and_eq

bitand

OR EQ

struct

bitor not xor_eq

bool not_eq

TABLE B-2 C Macros and C++ Keywords

H

A flowchart is a tool to show the logic flow of a program. Although it is gener-ally considered a computer programming tool, it has been used forother purposes. Progra
many

mmers use flowcharts to design a complete program or
just part of a program. Depending on the programming language, the parts
can be called such things as procedures (Pascal), functions (C),
graphs (COBOL). We will use the general term algorithm to indicate
of a program that needs design.

ITie primary purpose of a flow chart is to show the design of an algorithm.
I he flowchart also frees the programmer from the syntax and details of a pro-

gramming language w hile allow ing him or her to concentrate on the details of
the problem to be solved.

A flowchart gives a pictorial representation of an algorithm—in contrast
to another programming design tool, pseudocode, which provides a textual
design solution. Both tools have their advantages, but a flowchart has the pic-
torial power that other tools lack. A new student of computer science must

learn how to think about an algorithm before writing it . A flowchart is a tool

or para-
any part

for this pictorial thinking.

Cl Auxiliary Symbols
A flowchart is a combination of symbols. Some symbols enhance the read-
ability or functionality of the flowchart; they do not directly show instruc-

tions
'

or commands. They show the start and stop points. the order and

sequence of actions, and how one part of a flowchart is connected to

another. These auxiliary symbols are shown in Figure C- l .

1020 Section C.l Auxiliary Symbols

APPLICATIONNAMESYMBOL

Shows the beginning or
ending of an algorithm)(Terminal

Shows the action order
in an algorithmFlow Line

Q Shows connecting points
in an algorithmConnector

FIGURE C-l Auxiliary Symbols

An oval shows the beginning or ending of an algorithm. When it is used
to show the beginning of an algorithm, we write the word START inside the
oval. When it is used to show the ending of an algorithm, we write the word
STOP or RETURN in the oval.

One of the first rules of structured programming is that each algorithm
should have only one entry point and one exit point. Thus, a good structured
flowchart should have one and only one START and one and only one STOP.
Ovals should he aligned to show clearly the flow of the actions in an algo-
rithm. For example, a flowchart for a program that does nothing is shown in
Figure C-2. This program starts and stops without doing anything.

()START

(STOP }
FIGURE C-2 Use of the Start-Stop Symbols

Flow Lines
Flow lines show the order or sequence of actions in a program. They connect
symbols. Usually a symbol has some entering and some exiting lines. Ihe
S FAR I oval has only one exiting line. The STOP oval has only one entering
line. We have already shown the use of flow lines in Figure C-2. We will show
other flows in the examples that follow'.

Appendix C Flowchorfing 1021

Connectors
Wc use only one connector symbol,
nectivity. It is used in two situations.

1• When we reach the end of a column or page, but our chartshcd_ In this case, at the bottom of the flow we use a connector to show
. at . .

0VV cont,nues at the t0P the next column or page. This condi-tion is shown in Figure C-3(a).

a circle with a number in it, to show con-

is not fin-

(START) o.
.

(STOP)

(a) Simple Flow Connectors (b) Insert Flow Connectors

FIGURE C-3 Use of Connectors

2. When we need to show logic details that do not fit in the flow. This is
much like an inset in a map used to magnify a part of the map. In a

flowchart, it magnifies part of the logic flow. In this case, we use two

sets ol connectors. Ihe first set connects the main flow to the entry

point in the magnified flow; the second set connects the end of the mag-

nified flow to the return point in the main flow. This condition is shown
in Figure C-3(b).
In either case, the number in the connector can be a simple serial num-

be a combination of a page and number inher for an on-page flow, or it can

the form page.number for an off -page flow.

C.2 Primary Symbols
to show the instructions or actions

needeXtc^soLe^hcproblt^pre^e'nted^n the algorithm. With these symbols,

"Ipossible to represent all three structured programmmg constructs:

decision, and repetition.sequence

1022 Section C.2 Primary Symbols

Sequence
Sequence statements simply represent a series of actions that must continue
in a linear order. Although the actions represented in the sequence symbol
may be very complex, such as an input or output operation, the logic flow
must enter the symbol at the top and flow out at the bottom. Sequence sym-
bols do not allow any decisions or flow changes within the symbol.

Flowcharts use four sequence symbols: assignment, input/output, mod-
ule call, and compound statement. They are shown in Figure C-4.

Module CallAssignment Statement

7 Compound StatementInput/Output Statement/

FIGURE C-4 Sequence Symbols

Null Statement
It is worth noting that do nothing is a valid statement. It is commonly referred
to as a null statement. The null statement is considered a sequence state-
ment, since it cannot change the flow direction of a program. There is no
symbol lor a nidi statement. It is simply a flow line. Figure C-2 is an example
of a null statement.

Assignment Statement
The assignment statement is shown using a rectangle. Within the assignment
symbol, the assignment operator is shown as a left-pointing arrow. At the
right side of the arrow is an expression whose value must be stored in the
variable at the left side. Figure C-5 shows an assignment statement.

variable expression

FIGURE C-5 The Assignment Statement

Appendix C Flowcharting 1023
Input/Output Statement
A parallelogram shows any input or output, such as reading from a keyboardor writing on the system console. For example, an algorithm that reads thevalue of two variables from the keyboard and thenin reverse order is shown in Figure C-6.

writes their values on thescreen

(START ^j READ (A) j
l READ (B) J
j WRITE (B) j
j WRITE (A) j

l
STOP

FIGURE C-6 Read and Write Statements

Module-Call Statement
Ihe symbol used for a module call is a rectangle with two vertical bars
inside.1he flowchart for the called module must be somewhere else. In other
words, each time you see a module call statement, look for another flowchart
with the module name.

In C programs, the module-call symbol is used primarily for void func-
tions. Functions that return values are shown as assignments or other expres-
sions in a sequence symbol.

To show how a module call is used in a program, let 's design the flow-

chart for a program that calculates and prints the average of three numbers.
This example has two noteworthy points: First, the flowchart for the called

module (AVRG) does not begin with START. Rather, it shows the name of the
module and the parameter list. Also, the exit oval contains REIURN, indicat-

ing that it is not the end of the program but, rather, a return from a called

module. The resulting flowchart is shown in Figure C - / .

1024 Section C.2 Primory Symbols

(AVRG (rslt, x, y, z))c START

7 sum —
x + y + zREAD (a)

i rsltREAD (b) sum / 3

IREAD (c) RETURN

AVRG (ave, a, b, c)

/WRITE (ave)

I
STOP

FIGURE C-7 Module Call Example

Compound Statement
Although flowcharts have no actual symbol to show a compound statement,
we encapsulate all statements that make a compound statement in a broken-
line rectangle. In a C program, compound statements represent a block ol
code, code that is enclosed in braces. In a flowchart, we use a dashed rectan-
gle to enclose a compound statement.An example of this is shown in Figure C-9.

Selection Statements
Unlike the sequence statements, conditional statements can cause the flow
of the program to change. They allow the execution of selected statements
and the skipping ol other statements. Structured programming has two selec-
tion statements: two-way and multiway selection.

Two-Way Selection
I lie two-way symbol is the diamond. When it is used to represent an if...else
statement, the true condition logic is shown as the right leg of the logic flow,
and the false condition, if present, is shown on the left leg of the logic flow. With
the if ...else , there must always be two logic flows, although often one of them

Appendix C Flowcharting 1025

is null. (Remember that the null statement is represented by a flow line; thereis no symbol lor null.) Finally, the statement ends with a connector where thetrue and false flows join. In this case, the connector has nothing in it.
Although you will often see decisions drawn with the flow from the bot-tom of the diamond, this is not good style. Even w hen one of the flows is null,it still must flow from the left or right sides of the diamond.
I igure C-8 shows the use ol the decision symbol in the if...else state-ment . As we pointed out, a decision always has two branches. On eachbranch, we are allowed to have one and only one statement. Of course, thestatement in each branch can be a null or a compound statement. But only

one statement is allowed in each branch; not less, not more. Also remember
that the w hole figure is only one statement, not two or three; it is one if...else
statement.

true action
(one statement)

false action
(one statement)

T
FIGURE C-8 i f ... else Statement

Let’s design an algorithm that reads an integer. If the integer’s value is

greater than 10, it subtracts 10 and writes the original number and the result.
If the value is less than 10, it does nothing.The flowchart for this program is

seen in Figure C-9.

Multiway Selection
The second application of the selection symbol used with structured pro-

gramming is multiway selection. Cs implementation of multiway selection is

the switch statement. Actually, the multiway selection statement is nothing

shorthand notation for the if...else statement. If a language does

the same logic is implemented using nestedmore than a
not have a switch statement

the else-if construct.if...else statements or

1026 Section C.2 Primary Symbols

START

/READ (aNum)

\aNum > 10y

N/ IR
newNum —

aNum - 10

/WRITE (newNum)

STOP

FIGURE C-9 Example: Read and Subtract 10

Figure C- 10 shows the use o! the switch statement. As you can see, we
can have as many branches as we need. On each branch, we are allowed to
have one, and only one, statement. Of course, the statement in each branch
can he a null or a compound statement. But remember that only one state-
ment in each branch is allowed; not less, not more. Also remember that the
whole Figure is only one statement, not two or three; it is one switch state-
ment. (II these rules sound familiar, remember that the switch statement is
nothing but a shorthand form of if ...else, so the rules are the same for both.

Let ’s design an algorithm for a program that reads
senting a letter grade and prints the corresponding grade point average
(GPA). Figure C- l 1 shows this design.

character repre-one

Looping Statements
C has three looping statements: for, while, and do...while.

for Statement
I he for statement is a counter-controlled loop. It is actually a complex state-
ment that has three parts, any of which can he null: (1) the loop initialization,
which normally sets the loop counter; (2) the limit test; and (3) the end-of-
loop action statements, which usually increment a counter. Since the for
statement is a pretest loop, the loop might not be executed. If the terminating
condition is true at the start, the body of the for statement is skipped.

I

T1
Appendix C Flowcharting 102/

expression

Pom n

p Actionn Action o Actionm Action

?
FIGURE C-10 Multiway Selection Statement

(START)

1READ (grade)

grade

jc \D

^-2^oj gpa^^^j9Pa^"
BA 0.0

4 0 gpa 3.0lgpagpa

WRITE (gpa)

STOP

for Calculate Grade Point Average
FIGURE C-11 Example: Design

As is the case in
J 0n - "e nuH or a compound statement. F.gure C-12

contain one anloop can
structs, this one
shows the for construct.

statement can

1028 Section C.2 Primary Symbols

/ Ini t ia l izat ionp
(Update \-
\ Condition M

T

Body
(One Statement)

\
FIGURE C-12 for Statement

The for loop uses three actions: initialization, test , and update. However,
only two of these actions are required in each iteration flow. In the first flow,
when we enter the loop, only initialization and loop are used. This flow is
shown in Figure C- 13(a). In all iterations except the first , only update and
test are used. Figure C-13(h) shows these flows.

1
Initialization Initialization

Update Update
TestV -̂ estV -̂

T T
Iteration

(a) Initial flow
Exit From Iteration ExitIteration

(b) 2 ... n flow

FIGURE C-l3 for Statement Flow

Let 's design an algorithm that will read 20 numbers and print their sum.
Since the number of times is known in advance, for is an excellent choice lor
the looping construct. I be design for this program is shown in Figure C- l 4.

while Statement
The second looping construct is the while statement. The major difference
between the for and while loops is that the while loop is not a counting loop.
Both are
never be executed.

We use the same basic symbol for the while loop, but since there is only a
limit test, the internal divisions are not necessary. Figure C- l 5 shows the
basic format of the while statement.

pretest loops; therefore, like the for, the body of the while loop may

Appendix C Flowcharting 1029

START

sum — o

READ (num)i — 0\ Fi++
i < 20

sum <4—sum + numT

o Note that t h e "'
body of the loop is a

compound statement

7WRITE (sum)

l
(STOP)

FIGURE C-14 Design to Read 20 Numbers

condition ^—
T

Body
(One Statement)

(

FIGURE C-15 while Statement Format

Let's design another program that reads numbers from the keyboard and
prints their total. This time, we don’t know how many numbers we may be
reading. All we know is that all the numbers are positive. We can therefore
signal the end of the numbers by having the user key-1.

Since we don’t know how many times we will loop,
construct; the while is well designed for this type of logic. The program flow is

seen in Figure C-16. Note that in this design, the first number is read before

the loop. This is know n as priming the loop and is common in pretest loops.

need a differentwe

) Section C.2 Primary Symbols

(START

osum

/ \ F
num > 0 M—

U
sum
sum + num

/
/READ (num

/WRITE (sunn^f
I

(STOP)

FIGURE C- l 6 Program Flow to while Read and Total

c/o...w/7/Ve Statement
The third application of the loop symbol is the do...while statement.

Because of the inherent differences between the for and while loops and
do. ..while loop, it must he used differently in a flowchart. There are two
major differences between the while and the do...while:

1. Awhile loop is a pretest loop. The do...while loop is a post-test loop.
2. I he body of a while loop may never he executed. The body of a do...while

loop is executed at least once.
Figure C- l 7 shows the use of the do...while statement. Note that in this

statement
Let’s design an

rithm , the number must be between 1 and 5. To make the program robust, we
do...while loop that forces the user to enter a valid number. This is a

common technique lor validating user input. Note that as in previous looping
constructs, the do...while loop
enclose the prompt and read in a composite symbol. The algorithm is shown
in Figure C- l 8.

the condition is tested at the end of the loop.
algorithm that reads and processes a number. In this algo-

use a

can have only one statement. Therefore, we

'"1
Appendix C Flowcharting 1031

Body
(One Statement)

, rTA—(condition \

I7
FIGURE C-l7 do...while Statement

(START

/ WRITE // ('Enter number")i

j READ (num)J
I

(num < 1)
or

(num > 5)
T

process (num)
(not shown)

T
(STOP

FIGURE C- 1 8 Example: Algorithm for Input Validation with do. . .while

Numbering Systems
Today the whole world
mathematicians

the decimal number system developed by Arabianin the eighth century. We acknowledge their contribution tonumbers when we refer to our decimal system as Arabic numerals. But deci-mal numbers were not always commonly used. The first to use a decimalnumbering system were the ancient Egyptians. The Babylonians improved onthe Egyptian system by making the positions in the numbering systems mean-ing!ul. But the Babylonians also used a sexagesimal (base 60) numbering sys-
tem. Whereas our decimal system has 10 values in its graphic representations,
a sexagesimal system has 60. We still see remnants of the Babylonians’ sexage-
simal system in time, which is based on 60 minutes to an hour, and in the
division of circles, which contain 360 deg

uses

rees.

D.1 Computer Numbering System
C omputer science uses several numbering systems. The computer itself uses
binary (base 2). A binary system has only two values for each number posi-
tion, 0 and 1. Programmers use a shorthand notation to represent binary
numbers, hexadecimal (base 16). And of course, programmers also use the
decimal system (base 10). Occasionally, we also encounter applications that

base 256. Since all these systems are used in C, we need torequire we use
have a basic understanding of each to fully understand the language.

All of the numbering systems examined here are positional, meaning that
the position of a symbol in relation to other symbols determines its value.
Each symbol in a number has a position. In integrals and the integral portion
of real numbers, the position starts from 0 and goes to n - 1, where n is the
number of symbols in the integral part. In the fraction part of real numbers,
the position starts from-I and goes to -w, where m is the number of symbols
in the fraction part. Each position is assigned a weight ; the weights vary

according to the numbering system.

1033

1034 Section D. l Computer Numbering System

Decimal Numbers (Base 10)
We all readily understand the decimal numbers (base 10). In fact, we have
used it so much that it is intuitive. All of our terms for indicating countable
quantities are based on it, and , in fact, when we speak of other numbering
systems, we tend to refer to their quantities by their decimal equivalents.

The word decimal is derived from the Latin stem deci , meaning ten. The
decimal system uses 10 symbols to represent quantitative values: 0, 1, 2, 3, 4.
5, 6, 7, 8, and 9.

Decimal numbers use 10 symbols: 0,1, 2, 3, 4, 5, 6, 7,3, and 9.

For example, in Figure l)- l , the decimal number 14782.721 has eight
digits in positions —3 to 4.

Decimal Number: 14782.721

1 4 7 8 2 7 2 1 Digits
Positions4 3 2 1 0 -1 -2 -3

FIGURE D-l The Decimal Number 14782.721

Weights
In the decimal system, each weight is 10 raised to the power of its position.
The weight of the symbol at position -1 is 10~! (1/10) while the weight of the
symbol at position 0 is 10° (1) and the weight of the symbol at position 1 is

so on.101 (10); and

Binary Numbers (Base 2)
The binary number system (base 2) provides the basis for all computer oper-
ations. The binary system uses two symbols, 0 and 1. The word binary derives
from the Latin stem bi , meaning two.

Dinary numbers use two symbols: 0 and 1.

Weights
In the binary system, each weight equals 2 raised to the power of its position.
The weight of the symbol at position -1 is 2~ l (1/2); the weight of the symbol at
position 0 is 2° (1); the weight ot the symbol at position 1 is 2 * (2); and so on.

Appendix D Numbering Systems 1035
Binory-to-Decimal Conversion
To convert a binary number to decimaldigit by its weight and add all of thewe can

we use the weights. We multiply eachweighted results. Figure D-2 shows hconvert binary 1001110.101 to its decimal equivalent 78. 625.
ow

Binary Number:1001110.101
1 oj . [~r o 1

3 2 1 0 -1 -22 2 2 2 2 2
0 0.5 0.0 0.125

1
rt6 5 42 2 2

64 0 0
23 Weights

Weighted Results
8 4 2

+ +
78 0.625

Decimal Number: 78.625

FIGURE D-2 Binary-to-Decimal Conversiion

Decimal-to-Binary Conversion
I wo simple operations, divide and multiply, give us a convenient way to con-
vert a decimal number to its binary equivalent as shown in Figure D-3. To
convert the integral part
remainder, which must be 0 or 1 . The first remainder becomes the least sig-
nificant binary digit. Now, we divide the quotient of that division by 2 and
write down the new remainder in the second position. We repeat this process
until the quotient becomes zero.

divide the number by 2 and write down thewe

Decimal: 78.625
MultiplyDivide >

19H39H 78 M 0-625H 0-25 H 0 50 H 0000 H 1 H 2 H 4 9

F T T T T T T T T l
1011 1 o1 0 0 1

Binary: 1001110.101

FIGURE D-3 Decimal-fo-Binary Conversion

To convert the fractional part, we need to multiply the fractional part by

two. The integral in the product is either a 0 or a 1; it becomes the binary

digit. We then multiply the fractional part of the product by two to get the

next binary digit and continue until the product is zero. For example, to con-
vert 0.625 to binary, we multiply it by 2, resulting in 1.25. We take the inte-

the fraction part (0.25) to the next step. In the next
gral part 1 , and move

5

1036 Section D.l Computer Numbering System

multiply the 0.25 by two, we get 0.5. The integral part is 0,
we move to the next step.

step, after we
which we keep. The fractional part is 0.50, which
However, we need to limit the process because the product may never
become zero. If the resulting fraction becomes 0.0, we stop because more
binary digits does not contribute to the precision of the number. 11 the prod-
uct does not become zero, we need to make a decision as to how many digits

need at the righthand side of the binary number and stop when we
have them.
we

Hexadecimal Numbers (Base 16)
Another system used in this text is hexadecimal numbers (base 16). The
word hexadecimal is derived from the Greek word hexadec, meaning 16. The
hexadecimal number system is convenient for formatting a large binary num-
ber in a shorter form. It uses 16 symbols, 0, 1 , ..., 9, A, B, C, I), E, and F. The
hexadecimal system uses the same first 10 symbols as the decimal system, hut
instead of using 10, 11, 12, 13, 14, and 15, it uses A, B, C, I). E, and F. This
prevents any confusion between two adjacent symbols. Note that the hexa-
decimal symbols A to F can be either upper- or lowercase.

9, A, 3, C, 0, E, and F.Hexadecimal numbers use 16 symbols:0, 1»•••»

Weights
In the hexadecimal system, each weight equals 16 raised to the power ol its
position. The weight of the symbol at position 0 is 16° (1); the weight ol the
symbol at position 1 is 161 (16); and so on.

Hexadecimal-to-Decimal Conversion
Io convert a hexadecimal number to decimal, we use the weights. We multi-
ply each digit by its weight and add all of the weighted results. Figure D-4
shows how hexadecimal 3A73.A0C is transformed to its decimal equivalent
14963.628.

Hexadecimal Number: 3A73.A0C

3 A 7 3 A 0 C

163 1i 161 16°
12,288 2,560 112 3

16
1

16
2

16 3

0.625 0.0 0.003

Weights

Weighted Results
+

14,963 0.628

Decimal Number: 14,963.628

FIGURE D-4 Hexadecimal-to-Decimal Conversion

Appendix 0 Numbering Systems 1037

Decimal-to-Hexadecimal Conversion
We use the same process we used for changing decimal to binary to transform
a decimal number to hexadecimal. The only difference is that we divide thenumber by 16 instead of 2 to get the integral part and we multiply the
her hv 16 to get the fractional part. Figure D-5 shows how 14963.628 in dec-
imal is converted to hexadecimal 3A73.AOC. Note that we stop after three
digits in the fractional part.

num-

Decimal: 14963.628
Divide Multiply

4 >
0 3 58 935 —14963 0.628 0.048 0.768 — 0.288

V T T T X X 1
c. A 033 A 7

Hexadecimal: 3A73.A0C

FIGURE D-5 Decimal-to-Hexadecimal Conversion

Base 256
Another numbering system that is used in computer science is base 256. We

this base normally in two situations: when we need to make a
dealing with Internetencounter

number from individual bytes and when we are

addresses.
In the first application, we normally have individual bytes where each byte

contains an unsigned number between 0 to 255. We need to consider several

of these bytes as a number. FigureI)-6 shows the situation with four bytes.

A 32-bit Unsigned Integer

Byte 0Byte 1Byte 2Byte 3

0 0 0 5
_ o 1 0
3 2

7 X 2563 + 14 x 2562 + 22 X 256' + 130 x 256°
Value of integer:

FIGURE D-6 Byte Conversion
; •

Another application is in Internet addresses. Internet addresses in ver-

base 256 to represent an address in dotted-decimal notation.

, 131.32.7.8, we are using a base-256 number,

umbers, a dot is used. For example, the address
sion 4 use
When we define an address as

To distinguish between the n

1038 Section D.l Computer Numbering System

131.32.7.8 is made of four numbers 8, 7, 32, and 131 at positions 0, 1, 2, 3,
respectively, as shown in Figure D-7.

131 • 32 • 7 • 8

2 1 03

Value of address as an integer: 131 x 2563 + 32 x 2562 + 7 x 2561 + 8 x 256°
FIGURE D-7 Internet Dotted-Decimal Notation

Weights
In base 256, each weight equals 256 raised to the power of its position. The
weight of the symbol 1 at position 0 is 256° (1); the weight of the symbol at
position I is 2561 (256); and so on.

Base 256-to-Decimal Conversion
To convert a base 256 number to its decimal equivalent, we follow the same
process we discussed for converting base 2 or base 16 to decimal; the
weights, however, are 256" where n is the position. Note, however, that in
this case, we are normally dealing with an integral number.
Decimal-to-Base 256 Conversion
Fo convert a decimal number to base 256, we follow the same method we dis-
cussed for converting decimal to base 2 or base 16, but we divide the number
by 256 and keep the remainder.

A Comparison
Iable D-l shows how the three systems represent the decimal numbers 0
through 1 5. As you can see, decimal 1 3 is equivalent to binary 1 101, which is
equivalent to hexadecimal D.

Decimal Binary Hexadecimal
0 0 0
1 1 1
2 10 2

continued
TABLE D-l Comparison of Decimal, Binary, and Hexadecimal Systems

1. In base 256, each symbol can be one to three digits.

I

Appendix D Numbering Systems 1039

Decimal Binary Hexadecimal
3 1 1 3
4 100 4
5 101 5
6 110 6

7 1 1 1 7

8 1000 8

1001 99

A101010
B10111 1
C110012
D110113
E111014
Fm i15

Comparison of Decimal, Binary, and Hexadecimal Systems (continuedITABLE D- 1

Other Conversions

ethods lor common conversions.some easy m

Binary-to-Hexadecimal Conversion
To change.non.be,ta Sk
from the right by fours. Then we c

^ ^ D.8) we convert binary
mal equivalent using Table

1010001110 to hexadecimal.

TOTTOQ oJI 11 QJ Binafy

E82
Hexadecimal

Rinnrv-to-Hexadecimal ConversionFIGURE D-8 5

1040 Section D.2 Storing Integers

Hexadecimal-to-Binary Conversion
To change a hexadecimal number to binary, we convert each hexadecimal
digit to its equivalent binary number using t able I)- 1 and concatenating the
results. In Figure l)-9 convert hexadecimal 28E to binary.we

Hexadecimal
E82

1 0 1 0 0 0 1 1 1 0
Binary

FIGURE D-9 Hexadecimal-to-Binary Conversion

Base 256-to-Binary Conversion
to convert a base 256 number to binary, we first need to convert the num-
ber in each position to an 8-bit binary group and then concatenate the
groups.

Binory-to-Base 256 Conversion
to convert from binary to base 256, we need to divide the binary number into
groups of 8 bits, convert each group to decimal, and then insert separators
(dots) between the decimal numbers.

D.2 Storing Integers
We have discussed bow integers and real numbers
bases. Although base 16 and base 256 are used in computer science, data are
stored in the computer in binary. Numbers must be changed to base 2 to be
stored in the computer. All of our discussions so far have ignored the sign of
the number. In computer science, we use both positive and negative num-
bers. We need some way to store the sign. In this section,
bow integers are stored in a computer; in the next section
numbers are stored.

presented in differentare

we concentrate on
, we show bow real

Unsigned Integers
Storing unsigned integers is a straightforward process. The number is
changed to the corresponding binary form, and the binary representation is
stored, lor example, an unsigned integer can be stored as a number from 0 to
1 5 in a 4-bit integer, as shown in Figure D- 10.

fa

inAppendix D Numbering Systems 1041

o 7 8 15

(oooo) (oin) (10OP) QTTT)

FIGURE D-10 Unsigned Integers Format

Addition of unsigned integers is very straightforward as long as there is
no overflow (see the section on overflow). Subtraction of unsigned integers
must he done with caution. If the result is negative, the number is not an
unsigned number anymore. Normally computers promote the result to a
signed integer in this case.

Signed Integers
Storing signed integers is different from storing unsigned integers because

consider both positive and negative numbers. Four methods
designed to store signed integers in a computer: sign and magnitude, one’s

plement, two s complement , and Excess system.

Sign and Magnitude
In sign and magnitude, we divide the available range between the positive

and negative numbers. The lower part of the range occupies the positive

numbers; the upper part occupies the negative numbers. To do so, we con-

sider the leftmost bit to represent the sign of the number and the rest of the

be the absolute value, the magnitude of the number. Let us see how a

both hold the positive and negative numbers. Figure D- l 1

itive and negative numbers.

arewe must

com

bit to
4-bit integer can
shows the partition of the range between positive

Complement..L -
Complement -7

+7 -0
+0

10000111foooo)

FIGURE D- 11 Signed Integer Format

Properties
Let us summarize

1. The leftmost bit contains the sign

negative.
2. There are two zeros

i/.e the sign and magnitude properties:

of the number; 0 for positive, 1 for

thod: +0 (0000) and -0 (1000) .
in this me

1042 Section 0.2 Storing Integers

3. To change the sign of a number, we need to flip only the first hit. We can-
not use the complement operator (~) we
this operator will flip all hits, not just the leftmost hit.

4. Addition and subtraction are very inefficient operations. We need to do
the following:
a. Separate the sign from the magnitude.
b. Compare two magnitudes to see if we need to add or subtract the

magnitude.
c. We have eight cases in total, four for addition and four for subtraction.
d. Insert the sign of the result after the absolute value of the result is

determined.

learned in Chapter 14 because

Applications
Properties 2, 3, and 4 make this method unsuitable for a general-purpose
computer in which we need to perform mathematical operations. The sign
and magnitude method, however, is used in computer science when we do
not need mathematical operations. One of these areas is storing analog and
digital signals.

One's Complement
One’s complement is similar to sign and magnitude; however, the partition
of the range between the positive and negative numbers is different. The
numbers are arranged symmetrically. A positive and a negative number are
symmetric with respect to the middle of the range. Figure I)- 12 shows how
the positive and negative numbers are distributed.

Complements

+0 +3 +7 -7 -3 -0

/ \
(0000) (0011) (0111) (1000) (1100) CmD

FIGURE D-l 2 One's Complement Format

Properties
Let us summarize the one’s complement properties:

1. The leftmost hit contains the sign; 0 for positive, I for negative.
2. There are two zeros in this method: +0 (()()()()) and -0 (1111).
3. To flip the sign of a number, we flip each individual hit. We use the com-

plement operator (~) we learned in Chapter 14 to find -A from A as
shown in Figure D-l3.

11>ndix D Numbefingjysfems 1043

-3 -(0 0 1 1)

- (1 1 0 0)
1 1 0 0

-(-3)
0 0 1 1

FIGURE D- 1 3 Flipping Signs in One's Complement

The figure also shows that if we complement -A, we get back A. Incomplement, we also can find the complement of A as-A = (2” -1)-A.For example, -3 is stored as 15 -3 or 12, when n is 4 (number of hits inthe integer).
4. If we

ones

add A + (-A) we get -0 (all hits are Is). WeChapter 14 when we used checksum. this property insaw

Addition and subtraction are very simple operations. To add (A + B), wejust add the numbers hit by hit. To subtract A - B, we just add A and thecomplement of B. In other words, A - B = A + (- B). The only thing weneed to consider about adding or subtracting is to add the carry produced
at the last column to the result. Figure D-14 shows how numbers
complemented, added, and subtracted.

are

Add

1 1 1 1 1
0 0 1 1

+ 1 1 0 1
(+3) 0 0 1 1

+ 0 0 1 0
(+3)

+ (+2) + (-2)
(+5) (+D 0 0 0 00 1 0 1

>- 1
0 0 0 1

Subtract (add first with the complement of the second)

11 1
110 0

+ 0 0 1 0
(-3)0 0 1 1

+ 10 11
(+3)

-(-2)-(+4)
1 1 1 0HD1 1 1 0(-1)

FIGURE D-14 Add and Subfracf One's Complement

Applications
Early general-purpose computers, such as VAX, used one’s complement. The

modern general-purpose computer does not use this method for arithmetic cal-

culation because of the second property (existence of two 0s) and the need lor

keeping track of the carry from the last column. However, ones complement

1044 Section D.2 Storing Integers

arithmetic has its own place in computer science. We saw the use of it in the
checksum calculation in Chapter 14. We simulated the use of ones comple-
ment with unsigned numbers. To simulate adding the carry from the last col-

to the partial result, we used modulo 2n — 1 in our calculations.

Two's Complement
Like one’s complement, two’s complement also shares the range between
positive and negative numbers. However, the partition of the range between
the positive and negative numbers is different. The symmetry is an offset. For
example, the fourth number from the beginning of the range is the comple-
ment of the third number from the end. This is done for two purposes: to
eliminate the negative 0 and to avoid adding the carry from the last column to
the partial result. Figure D- 15 shows how the positive and negative numbers
are distributed.

umn

Complements

+7 -80 +3 -3 -1

/ \
(0111) (1000) (1101) (1111)(0000) (0011)

FIGURE D-15 Two's Complement Format

Note that the 0 in the positive range, which means that the negative
range can accommodate one more number. In the figure, the first half of the
range accommodates 0 to 7; the second half accommodates -1 to -8.

Properties
Let us summarize the two’s complement properties:

1. The leftmost bit contains the sign of the number; 0 for positive, I for
negative.

2. Ihere is only one zero in this method: 0 (()()()()).
3. fo change the sign of a number, we need two operations. First we need to

flip each individual bit, then we need to add 1 to the previous result as
shown in Figure D-16.

-3 ~ (0 0 1 1) + 1 1 1 0 1

-(-3) ~ (1 1 0 0) + 1 0 0 1 1

FIGURE D-16 Complementing Two's Complement

Appendix D Numbering Systems 1045
The figure also show
complement, we also canwhere ft is the number of hits16 —3 or 13.

4. If we add A + (-A)
3. Addition and subtraction are simpler. To add (A + B), we just add thenumbers hit hv hit. To subtract (A -B),we just add A with the comple-ment ol B. We do not have to worry about the earn from the last column;drop it. Figure D-17 shows this feature.

s ^at if we comp!ement -A, we get hack A. In two’sfind the complement of A as -A = (2") - A,in the integer. For example,-3 is stored as

we get 0.

we

Subtract (add first with the complement of the second)
1 1 1 1

(+3) 0 0 1 1

+ 1 1 0 0
(-3) 1 1 0 1

+ 0 0 1 0- (+4) - (-2)
(-1) 1 1 1 1 H) 1 1 1 1

FIGURE D- 17 Adding and Subtracting Two's Complement

Applications
One single zero and the simplicity of adding and subtracting have made two’s
complement arithmetic the best candidate for modern computers. C uses the
hardware instruction set of the computers it runs on, which almost univer-
sally uses two’s complement arithmetic.

Modern computers use two’s complement to store signed integers.

Storing and Retrieving Two's Complement
As we said before, computers today use twos complement numbers lor han-
dling mathematical problems. However, we may wonder how an input Iunc-

tion, such as scanf } converts a signed decimal integer to twos complement,

and an output function, such as printf , converts a twos complement number
to a signed decimal integer.Figure D-18 shows two high-level algorithms that

be used by these functions.can

1046 Section D.2 Storing Integers

(Retrieve Integer^(^Store Integer j

Convert the absolute
value to n-bit binary 01n: size of

integer in bits
leftmost. bit ? .

negative lositive Sign is negativesign?

Complement
the number

Complement
the number Sign is positive

Increment the
number by 1

Increment the
number by 1

*
Change the n-bit
binary to decimal

and add sign
Store the number

T T
jReturn Return

/

Storing and Retrieving Two's ComplementFIGURE D- l 8

EXAMPLE D- l Let s follow the storing algorithm to see how +76 is stored in a 16-hit integer.
I he absolute value of the number (76) is changed to a 16-bit binary number.
The sign is positive, so the number is stored in the memory.
Decimal number:
Convert absolute value:
Store value:

+7 6
0000000001001100
0000000001001100

EXAMPLE D-2 Let ’s follow the storing algorithm to see how -76 is stored in a 16-bit integer.
I he absolute value ol the number (76) is changed to a 16-bit binary number.
Ihe sign is negative, so we need to complement the number and add 1 to it as
shown below.
Decimal number:
Convert absolute value:
Complement:
Add
Store value:

-7 6
0000000001001100
1111111110110011
1111111110110100
1111111110110100

1:

*

Appendix D Numbering Systems 1047
EXAMPLE D-3 Let’s Follow the i

ger is retrieved. The
retrieving algorithm to see how

j process is shown below.
a stored value in a 16-bit inte-

Retrieved value:
Complement:
Add 1:
Convert to decimal: 21
Add sign:

1111111111101011
0000000000010100
0000000000010101

1(sign

-21

The retrieved binary value is negative, so the sign is stored to be added atthe end. I he number is complemented and 1 is added. The result is con-verted to decimal and the sign is added.

Excess
I here are applications that require more numeric comparisons than arith-metic operations. In these cases we can use a simple strategy named Excessby the IEEE, to store positive and negative integers. We just add a fixed value(called the bias value) to the negative number to make them non-negative(zero or positive) when we store the numbers. We subtract the same bias

value when we retrieve the number. For example, in our hypothetical 4-bit
integer, we can store numbers From -7 to 8 as shown in Figure D-19. In other
words, we store both positive and negative numbers in an unsigned Format.

-7 0 1 8

(0111) (1000)(oooo)

FIGURE D-l9 Excess Format

When two numbers are stored using the Excess method, we can easily
the value; we do not have to worry about the sign of thecompare them on

numbers. When adding two numbers in the Excess system, the bias value is

added twice; therefore, the bias value must he subtracted when we store the

result. When subtracting two numbers, the bias value is cancelled during the
subtraction; therefore, it must be added hack when we store the result.

Overflow
Wc need to discuss a very important issue, overflow. Overflow can be the

source of much confusion for a programmer. Sometimes when we print a

number, we get a surprising result. Often the reason is that an overflow has

occurred. Overflow occurs because integers are stored on a limited size word

in the computer. For example, if the size of the integer is only 4 bits, we can

1048 Section D.2 Storing Integers

either store an unsigned integer between 0 and 15 or a signed integer
between -8 and +7 (using two’s complement). Any number beyond this range
overflows the possible values. Most of the time, the system does not issue an
error or warning, it just drops the extra bit or hits that do not lit in the allo-
cated space. This creates an invalid result , which may be positive or negative.
Then when we print the results, we get a surprising number.

Overflow is better understood if we show the range of the integers that
can he stored in a number in a circle. Figure D-20 shows the range lor two
methods that are used in todays computers, unsigned integer and two’s
complement.

-1 015 0
-2 +114 1

+2-313 2

3 -4 +312
Unsigned

integer
Two's

complement
11 4 -5 +4

10 5 -6 +5

+69 6 -7
8 7 -8 +7

FIGURE D-20 Range of Integer Values

I he circle for the unsigned integer shows that 15 + 1 is 0. The circle lor
two’s complement shows that 7 + 1 is -8. If we increment an unsigned value
holding the maximum possible number, we get 0. If we increment an integer
value holding the maximum possible value, we get the minimum possible
value. We cannot test this concept with 4-bit integers, but we can prove it
with the actual size of the integer in any computer as shown in Program D- l .

PROGRAM D-l Demonstrate Overflow
/* Demonstrate circular nature of unsigned and two’s

complement integer numbers.
Written by:
Date:

1
2
3
4

* /5
#include <stdio.h>
#include <limits.h>

6
7
8

int main (void)9
10 {

continued

PROGRAM D-] Demonstrate Overfl (continued)ow
1 1 // Local Definitions1 2 unsigned short x = USHRT

^
MAX;13 short y = SHRT__MAX;1 4

15 // Statements
1 6 printf("Maximum unsigned short value:1 7 X+ +; %u\n",
1 8 printf("Maximum unsigned short value1 9 + 1: %u\n",
2 0 printf("Maximum short value:2 1 %d\n\y++;
2 2 printf("Maximum short value + l j2 3 %d\n",
2 4 return 0;
2 5 } // main

Results:
Maximum unsigned value:
Maximum unsigned value
Maximum short value:
Maximum short value + 1 :

65535
+ 1 : 0

32767
-32768

D.3 Storing Real Numbers
We arc familiar with scientific notation to represent a real number. In this
notation, we can show a real number such as -314.625 as -3.14625 x 10+2.We also know that a real number is made of three pieces of information: the
s*Mn (-), the precision (3.14625), and the power often (+2). Note that we do
not have to show the multiplication operator or the base of the power (10)
because they are understood by the rules of scientific notation.

Computers use the scientific notation concepts to store a real number. II
we write all information in binary system, 314.625 is represented as shown
below with the power also in binary (4).

100-10011.10101010 x 2

Normalization
We have one problem to solve before
puter: the position of the binary point (the point that separates the integral
part from the fractional part). We can store only binary digits, not a point.
I he solution is normalization. We normalize the number so that the point is

always at a fixed position. Tradition and the standard state that the number
should have only one binary digit to the left of the point. For non-zero values,

store this number in the com-we can

i

1050 Section D.3 Storing Real Numbers

the digit is a 1. To normalize the number, therefore, we shift the point to the
left or to the right based on its original position. Shifting binary numbers
requires multiplying or dividing the number by two lor each shift. In other
words, if we move the point to the left, we need to add the number of digits
shifted to power; if we move the point to the right, we need to subtract the
number of digits shifted from the power. The normalized version of the previ-
ous number is shown below. Note that we moved the point four positions to
the right , and we added 4 to the power, making it 8 (the power is represented
in binary).

x 21000-1.001110101010

After normalization, we are left with only the sign , the precision, and the
power to store; we do not have to store the integral part ol the precision or
the binary point.

Fortunately, C99 provides us with help to find how real numbers are
stored in the computer. We can use the %A or %a conversion code to print
the real number in a format that represents these values. Program D-2 dis-
plays a positive and a negative real number. Note that the values are the same
except for the sign.

PROGRAM D-2 Demonstrate Storage of Real Numbers
/* Demonstrate the storage of real numbers.

Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
int main (void)7

8 {
// Local Declaration

float x = -314.625;
float y = +314.625;

9
10
1 1
1 2

// Statements
printf ("-314.625: %A\n",
printf ("+314.625: %A\n",
return 0;

} // main

13
1 4 x) ;
1 5 y) ;
16
1 7

Results:

-314.625: -0X1.3AA0000000000P+8
+314.625: 0X1.3AA0000000000P+8

The results show the sign, the mantissa (3AA0000000000 in hexadeci-
mal), and the power (8).

Appendix D Numbering Systems 1051
Sign, Exponent, and Mantissa
Real numbers contain three
nent, and parts, which referred to as the sign (s)say that the original number (N) is

aremantissa (m). We expo-can

N = (-l) x l .m x 2e

Sign
The Sign of the number is stored using one bit (0 for plus and I for minus).
Exponent
The exponent (power of 2) defines the power. Note that thenegative or positive. Excess is the method used to store the

Mantissa

power can he
exponent.

I he mantissa is the binary number to the right of the binary point. It definesthe precision of the number. The mantissa is stored as an unsigned integer.

IEEE Standards
I he Institute of Electrical and Electronics Engineers (IEEE) has defined twostandards to store numbers in memory (single precision and double preci-sion). These formats are shown in Figure D-21. Note that the number inside

the boxes is the number of bits for each field.

Excess 127

23
Sign Exponent Mantissa

Single Precision

Excess 1023

I I r
1 11 52

MantissaSign Exponent

Double Precision

FIGURE D-21 IEEE Standards for Floating-Point Representation

Storing and Retrieving Algorithm
Let’s look at the algorithms for storing and retrieving real numbers
algorithms, shown in Figure D-22, give us an insight into how the input and

output functions such as scan/and print/ store or retrieve real numbers.

. These

ion D.3 Storing Real Numbers

(^Retrieve RealJ)Store Real

positivenegative 01 leftmostsign? bit?

SS01s s

**

Convert absolute
value to binary

Convert power to
decimal

Add 1.0 to mantissaNormalize and Calc
mantissa (m) & power and

denormalize

Convert previous
result

to decimal (D)
Convert the power

to Excess (e)

Concatenate
s e m
and store

Concatenate
S D

and present

T I
Return Return

V

FIGURE D-22 IEEE Algorithms

EXAMPLE D-4 We show how the real number 123.8125 is stored in the computer using the
storing algorithm in Figure D-22 and IEEE for single precision.

1. The sign is positive; s = 0.
2. T he absolute value in binary is 1111011.1101
3. We normalize it to 1.1110111 101. I he value ol in in IEEE single preci-

sion (23 hits) is m = 1 I 101 1 I 1010000000000000 and the power is 6.
4. The value of e in IEEE single precision is 6 +127 or 10000101.
5. When we concatenate s, e, and m, we have the value shown below:

0 10000101 11101111010000000000000

EXAMPLE D-5 We show how to find the decimal value of the following 32-hit real number
stored using IEEE single precision.

1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TAppendix D Numbering Systems 1053

We use the retrieve algorithm in Figure D-22.
1 . The leftmost bit is 1 ; S =
2. The value of next 8 bits is 130. We subtract 127 from it to get 3.
.3. We add 1 and the binary point to m and shift the binary point 3 digits to

the right to get 1000.11 (ignoring the trailing zeros).
4. We convert the above number to decimal to get I) = 8.75.
5. We concatenate S and D to get -8.75.

\

\

Integer andFloat Ubraries
rhis appendix documents two of the more important C libraries. Note that the
values shown here are
ware. Libraries contain unformatted numbers (no commas), often expressed
in hexadecimal. We use decimally formatted numbers for readability.

representative only and change from hardware to hard-

E.l limits.h
Table E- l contains hardware-specific values for the integer types.

Minimum ValueIdentifier Meaning
8bits in a charCHAR BIT

-127short char minimum

short char maximum

unsigned char maximum

char minimum

SCHAR MIN
127

SCHAR MAX
255

UCHAR MAX
See SCHAR.MIN

See SCHAR.MAX
CHAR MIN

char maximum

short int minimum

short int maximum

unsigned short maximum

int minimum

CHAR MAX
-32,767

32,767

65,535

-32,767

32,767

SHRT_MIN

SHRT.MAX

USHRT_MAX

INT_MIN

INT MAX int maximum continued

TABLE E-1 Partial Contents of Limits Library

1056 Section E.2 float.h

Minimum ValueIdentifier Meaning

unsigned int maximum 65,535UINT.MAX

-2,147,483,647

2,147,483,647

4,294,967,295

long minimum

long maximum

unsigned long maximum

LONG MIN

LONG MAX

ULONG.MAX

long long int minimum

long long int maximum

unsigned long long maximum

-(263 - 1)

263 - 1

264 - 1

LLONG MIN

LLONG MAX

ULLONG_MAX

TABLE E-l Partial Contents of Limits Library (continued)

E.2 f l oa t . h
Table E-2 contains hardware-specific values for the floating-point types.

Identifier Minimum ValueMeaning

digits of precisionFLT DIG 6

DBL DIG 10
LDBL DIG 10

decimal digits needed to repre-
sent floating-point value

DECIMAL DIG 10

size of mantissaFLT_MANT_DIG none

DBL MANT DIG none

LDBL MANT DIG none
FLT MIN EXP smallest integer for negative

exponent (float radix)
none

DBL_MIN EXP none
LDBL_MIN EXP none
FLT_MIN_10_EXP smallest integer for negative

exponent (base 10)
-37

DBL_MIN 10 EXP -37
LDBL_MIN 10 EXP -37

coni i lined
TABLE E-2 Partial Contents of Limits Library

fl
Appendix E Into and float Iihtnrins 1057

Identifier Meaning Minimum Value
FLT MAX EXP largest integer for positive expo-

nent (float radix)
37

DBL_MAX EXP 37
LDBL MAX EXP 37

largest integer for positive expo-
nent (base 10)

FLT MAX 10 EXP 37
DBL MAX 10 EXP 37
LDBL_MAX_10_EXP 37

largest possible floating-point
number

FLT MAX 1037
1037DBL MAX

1037LDBL MAX

io-37smallest possible floating-point
number

FLT MIN

io-37DBL MIN

io-37LDBL MIN

TABLE E-2 Partial Contents of Limits Library Icontinuedl

i

L. *

Function libraries
In this appendix we list most of the standard functions found in the C language.
We have grouped them by library so that related functions are grouped
together. We have also listed them alphabetically in Section F.l for y
venience. Note that not all functions are covered in the text and there
functions in the libraries that are not covered in this appendix.

our con-
are

F.l Function Index
Function Page Library Function Page Library Function Page Library

ceill mathatanl 1063Exit math10631068 sfdlib
dearerr stdio1066abort mathatan2 10631068 sfdlib
dock 1069 timeatan2f mathabs 10631067 sfdlib

math1063atan2l math1063 cosmath1063acos

cosf math1063sfdlib1068aosf atexitmath1063
mathcosl 10631068 sfdlibatofacosl math1063
mathcosh 10631068 sfdlibatoiasctime 1069 time
mathcoshf 10631068 sfdlibatolmath1063asm
mathcoshI 1063sfdlibatoll 1068asinf math1063

1069 timedimesfdlib1068callocasinl math1063
difftime 1069 timemath1063ceil1063 mathatan

sfdlib1067divmath1063ceilfmathatanf 1063
continues

105

1 Function Index

Function Page Library Function Page Library Function Page Library
scaleblnfatanl math 1065 math10631063 ctypeisupper

scaleblnlisxdigit

iswalnum

atan2 math 1065 math10631063 ctype

scanfatan2f stdiomath 10661063 1063 wctype_t

atan2l iswalpha

iswcntrl

math 1063 1065 math1063 wctypej sin

sinfatexit 1068 stdlib 1063 1065 mathwctypej

atof iswdigit

iswgraph

iswlower

sinl1068 stdlib 1063 math1065wctypej

sinh

sinhf

sinhl

snprintf

sprintf

swprintf

atoi 1068 stdlib 1063 math1065wctypej

atol 1068 stdlib 1063 math1065wctypej

atoll iswprint

iswpunct

1068 stdlib 1063 math1065wctypej

calloc 1068 stdlib 1063 stdio1066wctypej

ceil math1063 1063 stdio1066iswspace wctypej

ceilf math1063 1063 stdio1066iswupper wctypej

ceill iswxdigitmath1063 1063 sqrt math1065wctypej

stdlibclearerr labs sqrtfstdio1066 1067 math1065

clock llabs sqrtl1069 stdlibtime 1067 math1065

Idexp

Idexpf

Idexpl

srandmath1063 math1064cos stdlib1067

cosf sscanfmath1063 1064 math stdio1066
cosl math swscanf1063 1064 math stdio1066
cosh Idivmath1063 1067 stdlib strcat 1069 string

coshf lldivmath strchr1063 stdlib1067 1069 string

coshl lintmath1063 1064 math strcmp 1069 string

lintfctime 1069 time 1064 math strcpy 1069 string

difftime lintl1069 time 1064 math strcspn

strftime

1069 string
div Irint1067 stdlib 1064 math 1069 time

exit Irintfstdlib1068 strlen1064 math 1069 string
Exit Irintl1068 stdlib 1064 math strncat 1069 string

llrint1063 mathexp 1064 math strncmp 1069 string
expf llrintf1064 math 1064 math strncpy

strpbrk
1069 string

expl llrintl1064 math 1064 math 1069 string

continued

Appendix F Funcfion libraries 1061

Function Page Library Function Page Library Function Page Library
expml localtime1064 math 1069 strrchrtime 1069 string
expm1 f

expm11

log1064 math 1064 math strspn 1069 string
logf1064 math 1064 math strstr 1069 string

exp2 logl1064 math strtod1064 math 1068 stdlib
exp2f log21064 math strtof1064 math 1068 stdlib
exp2l log2f1064 math strtok1064 math 1069 string

fabs log2lmath1064 strtol1064 math 1068 stdlib

fabsf log10 strtold1064 math math1064 1068 stdlib

fabsl logl Of strtollmath1064 math1064 stdlib1068

fclose logl01 strtoulstdio math stdlib1066 1064 1068

feof Iround stdlibmath 1068stdio system1066 1064

Iroundfferror mathmath 1065tan1064stdio1066

tanf mathIroundl 1065fgetc math1064stdio1066

tanl mathllround 1065mathfgetwc 1064stdio1066
tanh math1065llroundf mathfgets 1064stdio1067
tanhf math1065llroundl math1064fgetws stdio1067
tanhl math1065stdlibmalloc 1068floor math1064

1069 timetimememchr 1068 stringfloorf math1064
stdiotmpfile 10671068 stringfloorl math memcmp1064
stdio1067tmpnam1068 stringfmod math memcpy1064
math1065trunc1068 stringfmodf memmovemath1064
mathtruncf 10651069 timemktimemathfmodl 1064
mathtrund 1065mathmodf 1064stdiofopen

freopen

fprintf

fputc

fputwc

fputs

fputws

1066
1063tolower ctypemath1065modffstdio1066
1063 ctypetouppermath1065modflstdio1066
1063 ctypetowlowermath1065nearbyint

nearbyintf
nearbyintl

stdio1066 1063 ctypetowuppermath1065stdio1066 stdio1066ungetcmath1065stdio1067 1066 stdioungetwcmath1065powstdio1067 continued

1062 Section F.2 Type Library

Function Page Library Function Page Library Function Page Library
powffread wcharmath wcscat 10691065stdio1067

wcschrpowlfree wchar1069math1068 stdlib 1065

wcsrchrprintffrexp wcharstdio 10691066math1064

frexpf

frexpl

wcharstdio 1069math 1066putc1064 wcscmp

wcharstdio 1069math 10661064 putwc

putchar

putwchar

wcscpy

fscanf stdio wchar1069stdio 10661066 wcscspn

wcslenfwscanf stdio 1069stdio 10661066 string

fseek stdio wcharstdio wcsncat 1069puts 10671067

randftell stdlib wcharstdio 106910671067 wcsncmp

reallocfwprintf

fwrite

stdlib wcharstdio 1068 10691066 wcsncpy

wcspbrkremainder wcharstdio math1067 1065 1069

remainderf wcharstdio math1066 1065 1069getc

getchar

wcsspn

remainderlstdio math wchar1066 1065 wcsstr 1069

wcstokstdio wchargetwc 1066 math1065 1069remquo

remquof

remquol

getwchar wprintf

wscanf

stdio1066 math stdio1065 1066

stdiogets 1067 math1065 stdio1066

gmtime 1069 stdio1067time remove

ilogb math1064

F.2 Type Library
Ihe following functions are found in ctype.lt .

isalnum
isalpha
isascii
iscntrl
isdigit
isgraph
islower
isprint

isalnum
isalpha
isascii
iscntrl
isdigit
isgraph
islower
isprint

int (int a_char);
(int a_char);
(int a_char)
(int a_char);
(int a_char);
(int a_char);
(int a_char);
(int a_char);

int
.1int

int
int
int
int
int

1. Not standard C. Traditional extension included in most implementations.

n
Appendix F Function Libraries 1063

ispunct
isspace
isnpper
isxdigit
tolower
toupper

int (int a_char);
(int a_char);
(int a_char);
(int a_char);
(int a_char);
(int a_char);

ispunct
isspace
isupper
isxdigit
tolower
toupper

int
int
int
int
int

I he following functions are found in wctype.h .

iswalnum
iswalpha
iswcntrl
iswdigit
iswgraph
iswlower
iswprint
iswpunct
iswspace
iswupper
iswxdigit
towlower
towupper

int iswalnum
iswalpha
iswcntrl
iswdigit
iswgraph
iswlower
iswprint
iswpunct
iswspace
iswupper
iswxdigit
towlower
towupper

(wint_t a_char)
(wint_t a_char)
(wint_t a_char)
(wint_t a_char)
(wint_t a_char)
(wint_t a_char)
(wint_t a_char)
(wint_t a_char)
(wint_t a_char)
(wint_t a_char)
(wint_t a_char)
(wint_t a_char)
(wint_t a_char)

int
int
int
int
int
int
int
int
int
int
int
int

F.3 Math Library
The following functions are found in math.h.

(double number);
(float number);
(long double number);

(double number);
(float number);
(long double number);

(double number);
(float number);
(long double number);

(double numberI . double number2);

(float numberl , float Humbert);

(long double number1 , long double number2);

(double number);
(float number);
(long double number);

(double number);

(float number);
(long double number);

(double number);

(float number);
(long double number);

(double number);

double
float
long double
double
float
long double
double
float
long double
double
float
long double
double
float
long double
double

acos
acosf
acosl
asin
asinf
asinl
atan
atanf
atanl
atan2
atan2f
atan2l

acos
acosf
acosl
asin
asinf
asinl
atan
atanf
atanl
atan2
atan2f
atan2l
ceil
ceilf
ceil I

i

ceil
ceilf
ceill
coscos coslfloat

long double
cosf
cosl
cosh
coshf
cosh!
exp

cosl
cosh
coshf
cosbl

double
float
long double
double exp

1064 Section F.3 Math Library

(float number);
(long double number);
(double number);
(float number);
(long double number);
(double number);
(float number);
(long double number);
(double number);
(float number);
(long double number);
(double number);
(float number);
(long double number);
(double number 1 , double number2);
(float number 1 , float number2);
(long double numberl , long double number2);
(double number, int* exponent);
(float number, int* exponent);
(long double number, int * exponent);
(double number);
(float number);
(long double number);
(double number, int power) ;
(float number, int power);
(long double number, int power);
(double number);
(float number);
(long double number);
(double number);
(float number);
(long double number);
(double number);
(float number);
(long double number);
(double number);
(float number);
(long double number);
(double number);
(float number);
(long double number);
(double number);
(float number);
(long double number);
(double number);
(float number);
(long double number);
(double number);
(float number);
(long double number);
(double number, double* integral);

expfexpf
expl
expm 1
expm 11
expm 11
exp2
exp2f
exp2l

float
long double
double
float
long double
double
float
long double
double
float
long double
double
float
long double
double
float
long double
double
float
long double
double
float
long double
double
float
long double
double
float
long double
long
long
long
long long
long long
long long
double
float
long double
double
float
long double
double
float
long double
long

lroundf long
lroundl long
llround long long
I lroundf long long
llroundl long long
modi' double

expl
expm 1
expm 11
expm 11
exp2
exp2f
exp21
fabsfabs
fabsffabsf

fabsl
floor
floorf
floorl
fmod
fmodf
fmod I
frexp
frexpf
frexp1
ilogb
ilogbf
ilogbl
Idexp
ldexpf
Idexpl

fabsl
floor
floorf
floorl
fmod
fmodf
fmodl
frexp
frexpf
frexp1
ilogb
ilogbf
ilogbl
Idexp
ldexpf
Idexpl

lint lint
lintf
I inti
lrint
Irintf
Irintl
llrint
I Irintf
llrintl

lintf
lintl
lrint
Irintf
Irintl
llrint
llrintf
llrintl

log log
logf logf
logl logl
log2 log2
log2f log2f

log2 l
log10
loglOf
log101
I round
lroundf
lroundl
llround
I lroundf
llroundl
modi’

log2l
log10
loglOf
log101
1 round

Appendix F Function Libraries 1065

modff float modff (float number, float 4 integral);
(long double number, long double4 integral);

nearbyint (double number);
nearbyint (float number);
nearbyintl (long double number);

(double base, double power);
(float base, float power);
(long double base, long double power);

remainder (double numberl , double number2);
remainderf (float numberl . float number2);
remainder! (long double numberl , long double number2);

(double numberl. double quotient);
(float numberl , float quotient);
(long double numberl , long double quotient);
(double number);

mod11
nearbyint double
nearbyintf float
nearbyintl long double
pow
povvf float
powl long double
remainder double
remainderf float
remainderl long double
remquo double
remquof float
remquol long double
rint double
rintf float
rintl
round
roundf
round!
scalebn
scalebnf
scalebnl long double
scalebln double
scalcblnf float
scaleblnl long double

double
float
long double
double

sinhf float
long double
double
float
long double
double
float
long double
double
float
long double
double
float
long double

long double mod11

double pow
powf
powl

remquo
remquof
remquol
rint

rintf
rintl
round
roundf
roundl
scalebn
scalebnf
scalebnl
scalebln
scalebnIf
scalebnll

(float number);
(long double number);
(double number);
(float number);
(long double number);
(double number, int factor);
(float number, int factor);
(long double number, int factor);
(double number, long factor);
(float number, long factor);
(long double number, long factor);
(double number);
(float number);
(long double number);
(double number);
(float number);
(long double number);
(double number);
(float number);
(long double number);
(double number);
(float number);
(long double number);
(double number);
(float number);
(long double number);

(double number);

(float number);
(long double number);

long double
double
float
long double
double
float

sinsin

sinfsinf
sinl
sinil

sinl
sinh
sinhf
sinhlsinhl
sqrtsqrt
sqrtfsqrtf

sqrt I sqrt I
tantan
tanftanf

tan I
tanh
tanhf
tanhl
trunc
truncf
truncI

tanl
tanh
tanhl
tanh I
trunc
truncf
truncl

F.4 Standard I/O Library
library’ (stdio. h) by the type of

have divided the system input/output

data being read or written.We

Section F.4 Standard I/O Library

General I/O
General input/output contains functions that apply to all files.

clearerr (FILE* sp);
fclose
feof
terror
fopen
frcopen

clearerr void
fclose int
feof
terror ini
fopen
freopen

(FILE* sp);
(FILE* sp);
(FILE* sp);
(const char* extn_name, const char* filc_mode);
(const char* extn_name, const char* file_mode, FILE* stream);

int

FILE*
FILE*

Formatted I/O
Convert text data to/from internal memory formats.
fprintf int fprintf
fscanf int fscanf
printf int printf
scant int scanf
snprintf int
sprintf int
sscanf int

(FILE* fileOut, const char* format_string, ...) ;
(FILE* fileln, const char* format_string, ...);
(const char* format_string, ...);
(const char* format_string, ...);

snprintf (char* to_loc, sizc_t n, const char* format_string, ...);
sprintf (char* to_Ioc, const char* format_string, ...);
sscanf (const char* from_loc, const char * format_string, ...);

I he following wide-character functions also require the wchar.h library tile.
fwprintf int fwprintf (FILE* fileOut, const wchar_t * format_string, ...);
fwscanf int fuscanf (FILE* fileln, const vvchar_t* format_string, ...);
svvprintf int swprintf (vvchar_t * to_loc, const wchar_t* format_string, ...);
swscanf int swscanf (const wchar _t* from_Ioc, const char* format_string, ...);
wprintf int wprintf (const wchar_t* format_string, ...);
vvscanf int wscanf (const wchar_t* format_string, ...);

Character I/O
Read and write one character at a time.

fgetc
fputc
getc
getchar
putc
putchar
ungetc

fgetc
fputc
getc
getchar
putc
putchar
ungetc

(FILE* sp);
(int char_out, FILE* sp);
(FILE* sp);
(void);
(int char_out, FILE* sp);
(int char_out);
(int char_out, FILE* sp);

int
int
int
int
int
int
int

I he following wide-character functions also require the wchar.h library file.
fgetwc
fputwc
getwc
getwchar
putwc
putwchar
ungewtc

Igetwc
fputwc
getwc
getwchar
putwc
putwchar
ungetwc

wint_t
wint_t
wint_t
wint_t
wint_t
wint_t
wint t

(FILE* sp);
(wchar_t char_out, FILE* sp);
(FILE* sp);
(void);
(wchar_t char_out, FILE* sp) ;
(wchar_t char_out);
(int char_out, FILE* sp);

Appendix F Function Libraries 1067

File I/O
These functions work with binary files.

size_t fread (void* in_area, size_t size, size_t count, FILE* sp);fseek (FILE* sp, long offset, int fromJoe);long ftell (FILE* sp);
fwrite (const void* out_data, size_t size, size_t count, FILE* sp) -rewind (FILE* sp);

(read
(seek int
ftell
(write size_t
rewind void

String I/O
Read and write strings.
fgets char4

fputs int
gets char4

puts int

(gets
fputs
gets
puts

(char4 string, int size, FILE4 sp);
(const char 4 string, FILE4 sp);
(char4 string);
(const char 4 string);

I he following wide-character functions also require the wchar.h library file.
fgetws wchar_t 4 fgetws (wchar_t4 string, int size, FILE4 sp);
fputws wchar_t 4 fputws (const wchar_t 4 string, FILE4 sp);

System File Control
System commands that create and delete files on the disk.

(const char* file_name);
(const char* old_name, const char* new_name);

int remove
rename
tmpfilc
tmpnam

remove
rename
tmpfilc
tmpnam

int
(void);FILE*

char* (char* file_name);

F.5 Standard Library
The following functions are found in stdlih.h.

'

Math Functions
found in stdlih.h.

(int number);
(int numerator, int divisor) ;

(long number);
(long number);
(long numerator, long divisor);

(long long numerator, long long divisor);

(void);
(unsigned seed);

The following math functions are

absahs int
divdiv_t

long
long long
ldiv_t

div
labslabs
llabsllabs
IdivIdiv
lldiv
rand
srand

lldiv_tlldiv
rand
srand

int
void

F.6 String Library

Memory Functions
The Following are memory allocation Functions.

(size_t num_elements, size_t element_size);
(void*);
(size_t nilm_bytes);
(void* stge_ptr, size_t elemcnt_size);

calloc
free
malloc
realloc

void*
void
v o i d
void*

calloc
Free
malloc
realloc

Program Control
The Following Functions control the program flow.

(void);
(void (*) function_name (void));
(int exit_code);
(int exit_code);

abort
atexit
exit

Exit

abort
atexit
exit

Exit

void
mt
void
void

System Communication
The Following Function communicates with the operating system.

(const char* system_command);system int system

Conversion Functions
I he Following functions convert data From one type to another.

atof
atoi
atol
atoll

atof
atoi
atol
atoll
strtod
strtof
strtol
strtold
strtoll
strtoul
strtoull

double' (const char* string);
(const char* string);
(const char* string);
(const char* string);
strtod(const char* str, char** next_str);
(const char* str. char** ncxt_str);
(const char* str, char** next_str, int base);
(const char* str, char** next_str);
(const char* str, char** next_str, int base);
(const char* str, char** next_str, int base);
(const char* str, char** next_str, int base);

int

long
long long
double
float
long
long double
long long
unsigned long
unsigned long long

strtof
strtol
strtold
strtoll
strtoul
strtoull

F.6 String Library
I he following Functions are Found in string.h.

Memory Functions
The Following Functions manipulate block data in memory.
memchr void* memchr
mememp int
memepy void*
memmove void*

(const void 1 mem, int a_char, size_t bytes);
(const void * mem I , const void* mem2, size

_
t bytes);

(void* to_mem, const void * Fr_mem, size_t bytes);
(void* to_mem, const void* fr_mem, size_t bytes);

mememp
memepy
memmove

AppendixP Function Libraries 1069

String Functions
I IK* Following functions manipulate strings.

char 4

char 4

strcat
strchr
strcmp
strcpy
strlen
strncat
strncmp
strncpy
strpbrk
strcspn
strrchr
strspn
strstr
strtok

(char 4 to_str, const char4 fr_str);
(const char 4 str. int a_char);
(const char 4 str 1 , const char4 str2);
(char to_str, const char4 fr_str);
(const char 4 str);
(char to_str. const char4 fr_str, size_t bytes);
(const char 4 strl , const char4 str2, size_t bytes);
(char4 to_str, const char 4 fr_str, size_t bytes);
(const char 4 strl , const char4 str2);
(const char4 strl , const char4 str2);
(const char 4 str, int a_char);
(const char 4 strl . const char4 str2);
(const char4 strl , const char4 str2);
(char 4 strl , const char 4 str2);

strcat
strchr
strcmp
strcpy
strlen
strncat
strncmp
strncpy
strpbrk
strcspn
strrchr
wstrspn
strstr
strtok

int
char 4

size_t
char 4

int
char 4

char4

size_t
char4

size_t
char 4

char 4

I he following functions manipulate wide-character strings. They require the
ivcluir.h library.

\vchar_ t 4

\vchar_t 4

(wchar_t4 to_str, const wchar_t 4 fr_str);
(const \vchar_t 4 str. vvcharj a_char);
(const \vchar_t 4 strl , const wcharj4 str2);
(vvchar_t4 to_str. const vvchar_t4 fr_str);
(const \vchar_t4 strl , const wchar_t 4 str2);
(const wchar_t 4 str);
(\vchar_t4 to_str, const \vchar_t 4 fr_str, size_t bytes);
(const \vchar_t4 strl , const wchar_t4 str2, size_t bytes);

(\vchar_t 4 to_str, const \vchar_t 4 fr_str, size_t bytes);

(const wcharj4 strl , const wchar_t4 str2);

(const wcharj4 str, wcharj a_char);
(const wcharj4 strl , const wcharj4 str2);
(const wcharj4 strl , const wcharj4 str2);

(wcharj4 strl , const wcharj4 str2);

wcscat
wcschr
vvcscmp
vvcscpy
vvcscspn
vvcslcn
vvcsncat
wcsncmp
wcsncpy
wcspbrk
wcsrchr
wcsspn
wcsstr
vvcstok

wcscat
wcschr
vvcscmp
vvcscpy
vvcscspn
vvcslcn
strncat
wstrncmp
wcsncpy
wcspbrk
wcsrchr
wcsspn
wcsstr
vvcstok

int
wcharj4

sizej
sizej
wcharj4

int
wcharj4

wcharj4

wcharj4

sizej
wcharj4

wcharj4

rF.7 Time Library
The following functions are found in time.h.

(void);clock
difftime
mktime
time
asctime
ctime
gmtime
localtime
strl time

clockj
double
timej
timej

char 4

char4

struct tm 4

struct tm 4

sizej

clock
difftime
mktime
time
asctime
ctime
gmtime
localtime
strftime

timej time_end);(timej: time_start ,

(struct tm 4 caljime);

(timej4 numjime);

(const struct tm 4 caljime);
(const timej4 numjime),

(const timej4 numjime);

(const timej4 numjime);

(char4 str, sizej maxsize, const char4 format,

const struct tm 4 timeptr);

I

Preprocessor Commands
fhe C piler is made of two functional parts: a preprocessor and a transla-preprocessor uses programmer-supplied commands to prepare theprogram for compilation. The translator converts the C statementsinto machine code that it places i

com
tor. The
source

_ object module. Depending on the com-piler design , the preprocessor and translator can work together, or the prepro-cessor can create a separate version of the source program, which is then
read by the translator. This is the design shown in Figure G- l .

in an

Compilation

h H*>• TranslatorPreprocessor

Source
Program

Object
Module

Translation
Unit

FIGURE G-l Compiler Components

The preprocessor can he thought ol as a smart editor. Like a smart editor,
it inserts, includes, excludes, and replaces text based on commands supplied
by the programmer. In this case, however, the commands are made a perma-
nent part of the source program.

All preprocessor commands start with a pound sign (#). Some of the
traditional compilers require the pound sign to be in the first column. ANSI/

ISO C specifies that it can be anywhere on the line. Preprocessor commands
can be placed anywhere in the source program. To distinguish a preprocessor
command and a program command, the preprocessor commands are often

called commands.

1071

1072 Section G.2 Macro Definition

In this appendix, we first discuss three major tasks of a preprocessor: file
inclusion, macro definition, and conditional compilation. We then briefly dis-

less common commands such as line, error, and pragma.cuss

G.l File Inclusion
The first and most common job of a preprocessor is file inclusion, the copy-
ing of one or more files into programs. The files are usually header files that
contain function and data declarations for the program, hut they can contain
any valid C statement.

The preprocessor command is Hinclude, and it has two different formats.
The first format is used to direct the preprocessor to include header files from the
system library. In this format, the name of the header file is enclosed in
pointed brackets. The second format makes the preprocessor look for the
header files in the user-defined directory. In this format, the name of the file
pathname is enclosed in double quotes. The two formats are shown below:

#include <filename.h>
#include "filepath.h"

Figure G-2 shows the situation of the source file before and after the pre-
processor as included the header files.

User Directory

• ilel.h i
System Library

; stdio.h :

tv tk#i.nclude <stdio.h>
#include "filel.h"
int main (void) int main (void)
{ {

} // main } // main

Before After

FIGURE G-2 File Inclusion

G.2 Macro Definition
The second preprocessor task is expanding macro definition. A macro defini-
tion command associates a name with a sequence of tokens. The name is

Appendix G Preprocessor Commands 1073

called the macro name and the tokens are referred to as the macro body. A
macro definition has the following f.orm:

#define name body

The body is the text that is used to specify how the name is replaced in
the program before it is translated. Before we discuss different applications of
the macro definition, let us clarify two important issues:

1. Macros must be coded on a single line. If the macro is too long to fit on a

line, we must use a continuation token. The continuation token is a

backslash (\) followed immediately by a newline. If any whitespace is

present between the backslash and the newline, then the backslash is not

a continuation token, and the code will most likely generate an error. An

example of a macro continuation is shown below:

#define PREND \
printf ("Normal end of program PA5-01./n");

2. We need to be careful in coding the macro body. Whenever a macro call

(name of the macro in the program) is encountered, the preprocessor

replaces the call with the macro body. If the body is not created carefully,

it may create an error or undesired result. l or example, the following

macro definition:

#define ANS = 0

creates a compile error when it is used as shown below:

num = ANS;

After preprocessing, the result would he

// We needed num - 0;

num =- 0;

which is not what we wanted.

Coding Defined Constants
The simplest application of a

rivmter 2 this is one of the ways we

Spl'e of.define con,n,end for con—define a constant. As we

The following shows

definition. The name is SIZE

saw in

macro is to
define a constant

an

1074 Section G.2 Macro Definition

and the body is 9. Whenever in the program SIZE is encountered, it is replaced
with 9.

#define SIZE 9

Figure G-3 shows how we use constant definitions. As the figure shows,
the replacement can happen anywhere in the code, including the declaration
section.

#define ROWS 5
#define COLS 4
int main (void) int main (void)

} // main
int ary[5][4];

{
int ary[ROWS][COLS];

} // main} // main

AfterBefore

FIGURE G-3 Macro Definition to Define Constants

I he body of the macro definition can be any constant value including
integer, real, character, or string. However, character constants must be
enclosed in single quotes and string constants in double quotes.

A macro definition can simulate a constant definition.

Macros That Simulate Functions
I he preprocessor’s macro facility is very powerful. It can even be used to
simulate functions. In this section we discuss using macros in place ol func-
tions, first lor functions with no parameters and then for functions with
parameters.

Macros to Simulate Functions without Parameters
When we simulate a function with a macro, the macro definition replaces the
function definition. The macro name serves as the header and the macro
body serves as the function body. The name of the macro is used in the pro-
gram to replace the function call . Figure G-4 shows how we can write a func-
tion to flush the standard input buffer.

Appendix G Preprocessor Commands 1075

void flush (void);
int main (void) void flush (void){ {

while (getchar () 1 = ' \ n ') ;
return;

} / / flush

flush () ;

} / / main

main flush

FIGURE G-4 A Function for Flushing the Standard Input Buffer

\\ hile functions are called when the program is executed, macro defini-
tions are inserted into the code during the preprocessing. The preprocessor
replaces the macro name in the program with the macro body. The macro
definition is simpler than the function, however, because we do not have to
write the function declaration, the function header, or the return statement.
It is also more efficient because the overhead associated with a function call
is not required; the substituted code simply becomes statements in the pro-
gram. Figure G-5 shows how we can use a macro
function in Figure G-4.

definition to simulate the

#define FLUSH \
while (getchar () i =

int main (void)
\ n ')

int main (void)
{{

\n ') ;while (getchar () !=FLUSH ;

} / / main} / / main
AfterBefore

Macro to Simulate a Function Call Without ParametersFIGURE G-5

Macros to Simulate Functions with Parameters
simulate a simple function with parame-

is done in two steps,We can also use macro definitions to

ters. In this case, however, the replacement of the macro is

as shown in Figure G-6.

1076 Section G.2 Macro Definition

#define \
PRODUCT(x, y) x *

int main (void) int main (void) int main (void)
{{{

p = 4 * 5;p = x * y;p = PRODUCT (4, 5);

} // main} // main} // main

After Step 2After Step 1Before

FIGURE G-6 A Macro to Simulate a Function Call with Parameters

1. The body of the macro replaces the macro call with the same actual
parameters used in the macro definition.

2. The actual parameters are replaced with formal parameters.
One of the advantages of using macros instead of function is type inde-

pendence. We can define a PRODUCT macro that multiplies any two pairs of
data type. We do not have to write separate macros, one for each pair.

We need to give two warnings:

1 . To include parameters in the macro, the opening parenthesis must he
placed immediately at the end of the macro name; that is, there can he
no whitespace between the macro name and the opening parenthesis ol
the parameter list . It there is a space, then the opening parenthesis is
considered part of the token body and the macro is assumed to he simple.

2. It is a strong recommendation that the formal parameters, in the body of
macro he placed inside parentheses. The reason is that macro uses text
replacement. It replaces the actual parameters with formal parameters.
Let us look at the same example, hut this time we pass a + 1 and b +2
instead of 4 and 5:

Alter the first and second step, we have:

p = x *
p = a + 1 * b + 2 ;

y;
// We need (a +1) * (b+2)

I he solution would he to include the formal parameters inside
parentheses. In other words, make the parentheses part ol body code.
Now we have the following:

#define PRODUCT(x, y) (x) * (y)

Appendix G Preprocessor Commends 1077

Alter the first and second step, we have the correct result:

P = (x) * (y) ;
p = (a + 1) * (b + 2) ;

/ / After first step
/ / After second step

EXAMPLE G- l Macros can replace many simple functions. One good example is the func-
tion we wrote in Chapter 14 to rotate a number n hits. This function can be
written as a macro as shown below. Note the use of backslash to continue the
definition on the next line.

define ROTATE_LEFT (x , n) \
(((x) « (n)) | ((x) » (32 - x)))

EXAMPLE G-2 We often need to use a power of 2 in a program. To calculate 2\ we can easily
use the shift operator in a macro as shown below:

tdefine POWER 2 (x) 1 « (x)

EXAMPLE G-3 The parameter list in the macro definition can he empty. For example, most C

implementations use a macro to define the getchar function from the getc

function.

tdefine getchar () getc (stdin)

Nested Macros
. c handles nested macros by simply rescanning a

It is possible to nest macros
line after macro expansion.Therefore, if an expansion results in a new state-

ment with a macro, the second macro will be properly expanded. For exam-
shown below.pie, consider the macros

* (b)
tdefine PRODUCT(a, b)(a)

tdefine SQUARE(a) PRODUCT (a , a)

The expansion of

x = SQUARE (5) ;

results in the following expansion:

x = PRODUCT(5, 5);

1078 Section G.2 Macro Definition

which after rescanning becomes

x = (5) * (5);

Undefining Macros
Once defined, a macro command cannot be redefined. Any attempt to rede-
fine it will result in a compilation error. Ilowever, it is possible to redefine a
macro by first undefining it, using the ttundef command and defining it again
as shown below:

#define SIZE 10

#undef SIZE
#define SIZE 20

Predefined Macros
The C language provides several predefined macros, fable G-l lists some of
them. Note that these macros cannot be undefined using the undej command.

Command Meaning
Provides a string constant in the form "Mmm dd yyyy"
containing the date of translation.
Provides a string constant containing the name of the
source file.

Provides an integer constant containing the current statement
number in the source file.

Provides a string constant in the form "hh:mm:ss" containing
the time of the translation.

Provides an integer constant with value 1 if and only if the
compiler confirms with ISO implementation.

DATE

FILE

LINE

TIME

STDC

TABLE G-l Predefined Macros

Program G- l demonstrates these macros.
PROGRAM G-l Demonstrate Pre-Defined Macros

/* Show the use of pre-defined macros
Written by:
Date:

1
2
3

continuec

Appendix G Preprocessor Commands 1079

PROGRAM G- 1 Demonstrate Pre-Defined Macros (continued)

* /4
#include <stdio.h>5

6
int main (void)7

8 {
// Statements

printf ("line %d\n",
printf ("file %s\n", FILE)

printf ("date %s\n",
printf ("time %s\n",
printf ("ISO compliance %d\n",
printf ("line %d\n", LINE);

9
10 LINE)

1 1
12 DATE)

TIME)13
14 STDC);

15
16

return 0;
} // main

17
18

Results:
line 10

file ApG-Ol.c
date May 23 2005

time 20:36:28

ISO compliance 1

line 15

Note that we use the _ _LINE_ _ macros two times to show that it prints

the current line number.

Operators Related to Macros
C provides several operators that

We briefly discuss them here.
directly or indirectly related to macros.

are

String Converting Operator (#)

t he string converting operator (#) is a macro operation that converts a formal

parameter into a string surrounded by quotes. For example, the following

macro prints the name of a variable followed by its value. It can he a very

helpful macro when debugging a program.

#define PRINT_VAL(a) printf (#a

, as shown in

» contains: %d\n", (a))

in the following example
When called in a program

PRINT VAL (amt);

1080 Section G .3 Conditional Compilation

the preprocessor expands the macro to

printf ("amt" "contains: %d\n" / amt);

Recall that the preprocessor automatically concatenates two string literals
into one string. After the automatic concatenation, the statement becomes

printf ("amt contains: %d\n", amt);

Merge Operator (##)
Occasionally, it may he necessary to write macros that generate new tokens.
With the merge command operator, two tokens are combined. For example,
imagine we want to create Al, B3, and Z8 in our program. This can be done
easily with the following macro definition:

#define FORM(T, N) T##N

Now ii we use the following code:

int
float FORM (B, 3) = 1.1;
char FORM (Z, 8) = 'A';

FORM (A, 1) = 1;

we get

int
float B3 = 1.1;
char Z8 = 'A';

Al = 1;

The defined Operator
The defined operator can
Section G.3); it cannot he used in macros. The value of defined (macro-name)

is 0 il the name is not defined and 1 if it is defined. For example, after

he used only in a conditional compilation (see

#define PI 3.14

the value of defined (P I) is 1 and the value of!defined (P I) i s 0.

G.3 Conditional Compilation
Ihe third use of the preprocessor commands is conditional compilation.
C onditional compilation allows us to control the compilation process by
including or excluding statements.

1Appendix G Preprocessor Commands 1081

Two-Way Commands
I he two-way command tells the preprocessor to select between two choices.This is similar to selection, which we studied in Chapter 5. The idea is shownin Figure G-7.

#if expression

Code to be included if
“expression" is true.

#else

Code to be included if
“expression" is false.

#endif

FIGURE G-7 Two-Way Command

I he expression is a constant value that evaluates to zero or non-zero. If the
value is non-zero, it is interpreted as true and the code after #if is included. If
it is zero, it is interpreted as false and the code after #else is executed.

I here are two differences between this format and the one used in

Chapter 5. First, the expression does not to have to be included in parenthe-

although it helps readability when we use parentheses. Second, the codes

not he included in a compound statement (braces). The commandsses,

can
#else and #endif serve as delimiters.

The # if part or the else part can be empty. However,
normally used as shown in Figure G-8.

in these cases, the

alternative formats are

#if expression
code for non-zero
expression

#if expression
code for non-zero
expression

#endif#else
#endif

a. else Section Empty

#if Expression
code for zero
expression

#if expression
#else

code for zero
expression #endif

#endif
b. // Section Empty

FIGURE G-8 Alternative Commands

1082 Section G.3 Conditional Compilation

EXAMPLE G-4 Let us see how a conditional command can help us in program development.
Imagine we need to include a very large file in our program. However, we
want to test the syntax of our program gradually, first without the included
file and then with it. One way we can do this is to include the file in our pro-
gram using conditional commands as shown below:

#if 0
#include "large.h"

#endif

When we are ready to test the syntax for the entire program, we change
the condition to true.

#if 1
#include "large.h"

#endif

As we see in a later example, there are easier and better ways to do this.

EXAMPLE G-5 Imagine we need to include three files in our program: filel.h, file2.h,
file3.h. These files contain generalized code that are used in projects.
Each file must therefore be able to stand alone. When combined, the result
may he multiple inclusion of common macros. If the macros are duplicated,
we get a compilation error because the preprocessor does not allow duplica-
tion of macros.

To prevent this error we have a project standard: whenever we need to
define a macro, we define it in a conditional command using the defined
operator we discussed in “The defined Operator” in Section G.2. So.
instead of

#define GO 0

we use

#if Idefined (GO)
#define GO 0

endif

conditionalNow we are safe. Even if all three files have used the
definitions, only the first one
the preprocessor. When the first definition is encountered , GO is not defined,
so the expression is true and it becomes defined. In the second and third files,
(> () is already defined, so the conditional compilation expressions are false,
and the define command is bypassed.

same
appears in the program; the rest are skipped by

Appendix 6 Preprocessor Commonds 1083

To be safe,always use macro definitions in a conditional command.

Two Abbreviations
You may have guessed that the previous commands are used often i
liles. The C language provides two additional macro commands as shown in
Figure G-9.

in source

#if defined name #ifdef name

>#if !defined name #ifndef name

FIGURE G-9 Two Abbreviations

EXAMPLE G-6 When we decompose a large project into different programs, it is common to

library hie that contains all of the application data types and struc-

Each program in the project then includes the library file, ensuring

that everyone has exactly the same data names and descriptions.

This design creates a problem, however, when multiple files are compiled

together. Each file has the same library included for the data, which results in

compile errors with the duplicate names. The solution is to enclose the data

library file in a defined command as shown in the next example.

create a
tures.

#ifndef PROG_LIB
#define PROG_LIB
#include "proj_lib.h"

#endif

cuted only if a constant named pROG_LIBhas^ y
jf jt has been— „ and Mcase, we

defined, the statements are
the library from being included more than once.

^ usp tQ shovv the
Note that the name ^t0 use the uppercase version of

include command is used. A good strategy

the filename, without the “.h" suffix, as a defined name.

file Inclusion In a conditional
inclusions, always use

To prevent duplicate
command.

1084 Section G.3 Conditional Compilation

In most implementations, system header files such as stdio.h use the
above strategy to prevent multiple inclusions of that file in a source program.
For example, an implementation may use

ifndef STDIO
define STDIO
Rest of the code

endif

EXAMPLE G-7 Another application of conditional compilation is found in debugging. Most
GUI coinpliers have a debugger that can be used by the programmer. If
there is not such a debugger, however, we can insert printj statements to
check the value of the program during testing. If we just include them as part
of the code, however, when the program is ready for production we must
remove them. Later, when we need to change the program, we must re-insert
them as needed.

A simpler solution is to insert them conditionally. We enclose the
print/ statement inside the #if . . .#endif commands to print the debug state-

ments only when we run in the “debug" mode. For example, the following
program prints the value of x only when DEBUG is true . After testing is
done, we can just set the define command to false and the debug state-

ments are not included in the code . This debug concept is demonstrated in
Program G -2 .

PROGRAM G-2 Demonstrate Conditional Debugging
/* Use of conditional compilation for debugging

Written by:
Date:

1
2
3
4 */

// Macro to print integer values
#define PRINT_VAL(a) \

printf ("At line %d—",
printf (#a " contains: %d\n", (a))

5
6
7) ; \LINE
8
9

#define DEBUG 110
1 1

#include <stdio.h>1 2
1 3

int main (void)1 4
1 5 {

// Declarations
int x;

// Statements

1 6
1 7
1 8

continue*

Appendix G Preprocessor Commands 1085

PROGRAM G-2 Demonstrate Conditional Debugging (continued)
19 | x = 1023;
20
21 #if DEBUG

PRINT_VAL (x);2 2
23 #endif
24
25 // Later in program

for (int i = 0; i < 2; i++)26
27 {
28 x = x *

PRINT_VAL (i); PRINT_VAL(x);
> // for

return 0;
} // main

x; // Square x
29
30
31
32

Result during testing:
At line 22—x contains: 1023

At line 29—i contains: 0

At line 29—x contains: 1046529

At line 29—i contains: 1

At line 29—x contains: 6287361

Program G-2 Analysis Study this proqram carefully; you will find it useful when you write production pro-
two of the tech-

grams. First, study the macro definition in lines 6-8. This
niques we discussed earlier in the chapter. We begin by displaying the source file

line number so that we know where we are within the program. Because we have

multiple debugging displays, we need to uniquely identify each one. Then we use the

string conversion operator (see Section G.2) to display the variable identifier and its

macro uses

contents.
In the body of the program we display the values of the variables x andi. In the

debugging of a large program, we would use more displays to track the execution of

the program.

Multi-Way Commands
also be multi-way; selecting one of the choices

5 that multi-way selection is possible
the ttelif

Conditional commands can

among several. We saw in Chapter 5

with the use of else-if construct. In the preprocessor,
G-IO shows the format of multi-way

we use
selection in the

command. Figure
preprocessor.

For example, when we write a software application that must run

tiple locations, we need to define unique code for each location. Each instal-

lation needs unique report headings and perhaps other unique code.One way

at mul-

to do this is shown in Program G-3.

G.3 Conditional Compilation

#if expression!

Code to be included if
"expression!” is true.

#elif expression2

Code to be included if
"expression2" is true.

#else

Code to be included if
both expressions are false.

#endif

FIGURE G-10 Multi-Way Commands

ROGRAM G-3 Conditional Multi-Way Selection
#define Denver 0
#define Phoenix 0
#define SanJose 1
#define Seattle 0

1
2
3
4
5

#if (Denver)
#include "Denver.h"

#elif (Phoenix)
#include "Phoenix.h"

#elif (SanJose)
#include "SanJose.h"

6
7
8
9
10
1 1

#else12
tinclude "Seattle.h"13

14 #endif

m G- 3 Analysis First, we create a unique header file for each installation. Then, using conditional
commands, we select which include file to use based on defined flags for each site. In
this example, we have selected San Jose, so only its code is included in the program.

Summary of Conditional Commands
Iable G-2 shows the summary of commands used in this section.

Appendix G Preprocessor Commands 1087

Command Meaning

#if expression When expression is true, the code that follows is included
for compilation.

Terminates the conditional command.
Specifies alternate code in two-way decision.

Specifies alternate code in multi-way decision.

Abbreviation for #if defined name.
Abbreviation for #if /defined name.

#endif
#else
#elif
#ifdef name

#ifndef name

TABLE G-2 Conditional Compilation Commands

G.4 Other Commands
The preprocessor uses some other commands that we briefly discuss here.

Line Command
used in two formats, can set the line number

The line command, which is

and the filename lor a program. For example,

#line 100

.... nc >.of ,K.r*--;»c^ —3
“The secondIZ«*« “d

the program. For example,

ii

#line 100 "MyProgram.c"

for the program that can

sW..he next line number » 100»d ““
be checked by the predebned macro _ —

G-4 demonstrates the concept.
Program

1088 Section G.4 Other Commands

PROGRAM G-4 Demonstrate Line Command
/* Demonstrate the use of line command

Written by:
Date:

1
2
3

* /4
#line 100 "myprogram.c"
#include <stdio.h>

5
6
7

int main (void)8
9 {
10

// Statements
printf ("line %d\n",
printf ("file %s\n",
printf ("line %d\n",
return 0;

> // main

1 1
LINE)
FILE)
LINE)

12
13
14
15
16

Results:
line 106
file myprogram.c
line 108

Error Command
Ihe error command is of the form

terror message

It is used to print the message detected by the preprocessor. For example,
Program G-5 demonstrates code that verifies that a program needs to define

or neither of them and prints an appropriate mes-
sage when an error is detected. Note that you may get a slightly different
message format depending on your compiler.

PROGRAM G-5 Demonstrate Error Command

both TRUE and FALSE

/* Show the use of error command
Written by:
Date:

1
2
3

*/4
#define TRUE 15

6
#if defined (TRUE) && Idefined (FALSE)

terror You need to defined FALSE too.
7
8

continual

Appendix G Preprocessor Commends 1089

PROGRAM G-5 Demonstrate Error Command (continued)
9 #elif defined (FALSE) & & Idefined (TRUE)

TRUE too.1 0 terror You need to defined
1 1 tendif
12

t include <stdio. h>
int main (void)

13
14
15 {

/ / Statements
printf ("Just a test \ n") ;
return 0 ;

> / / main

16
17
18
19

Results:
Error
ApG-04 .c line 8

: preprocessor terror command
terror You need to defined FALSE too.

When this program is compiled, we get

terror You need to defined FALSE too.

Pragma Command
The pragma command

tpragma tokens

the compiler to perform implementation-defined actions. We do not dis-

t his command in detail because it is used only in advanced environments.

Null Command

causes
cuss

It is interesting to mention that C language allows a null command. A com-
mand of the type

t

null command and does not generate a compilation error.
is considered a

Command-Line Arguments
In all the programs we have written, main has been coded with
ters. But main is a function, and

no parame-
as a function, it may have parameters. Whenmain has parameters, they are known as command-line arguments.

Command-line arguments are parameters to main when the program
starts. I hey allow the user to specify additional information when the pro-
gram is invoked. For instance, if you write a program to append two files,
rather than specif) the names of the files as constants in the code, the user
could supply them when the program starts. Thus, a UNIX user in the Korn
Shell might execute the program with the command line shown below.

$appendFiles filel file2

H.1 Defining Command-Line Arguments
As the programmer, you design the parameter lists for functions you write.
W hen vou use system functions, such as rand, you follow the parameter
design set up by the language specification. Command-line arguments
l i t t l e like both. As the programmer, you have control over the names of the
parameters, but their type and format are predefined for the language.

I he function main can he defined either with no argument {void) or with
two arguments: one an integer and the other an array of pointers to char
(strings) that represent user-determined values to be passed to main. The

number of elements in the array is stored in the first argument. The pointers

stored in the array. The two different formats are shown

are a

to the user values are
in Figure H- l .

1091

1092 Section H.l Defining Command-Line Arguments

int main (int argc,
char *argv[])

int main (void)

{{
// Local Declarations// Local Declarations

// Statements// Statements

} // main// main}

With command-line argumentsWithout command-line arguments

FIGURE H-1 Arguments to main

Although the names of the arguments are your choice, traditionally
they are called urge (argument count) and argv (argument vector). I his
data structure design, with six string pointers in the vector, is shown in
Figure H-2.

program
name

\0

\0&

—

— \0
6

* \0hdargc
\0*-

& \0
ml
argv

FIGURE H-2 orge and argv format

Ihe first argument defines the number of elements in the array identified
in the second argument. The value for this argument is not entered using the
keyboard; the system determines it from the arguments the user types.

The value of argc is determined from the user-typed values for arg^s.

Appendix H Command-Line Arguments 1093

H.2 Using Command-Line Arguments
The urge array has several elements. The first element points to the nameof the program (its filename). It is provided automatically by the program.
The last element contains NULL and may he used to identify the end of the
list. The rest of the elements contain pointers to the user-entered string
values.

To fu l l y demonstrate how command-line arguments work, let’s write a
small nonsense program. It does nothing hut exercise the command-line
arguments. The code is shown in Program H- l .

PROGRAM H- 1 Display Command-Line Arguments
/* Demonstrate the use of command-line arguments.

Written by:
Date:

1
2
3

* /4
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

5
6
7
8

int main (int arge, char* argv[])9
1 0 {

// Statements
printf ("The number of arguments:

printf ("The name of the program :

i < arge; i++)

printf ("User Value No

11
: %d\n", arge);
: %s\n", argv[0]);

1 2
1 3
1 4

for (int i = 1;1 5 i, argv[i]);. %d: %s\n",1 6
1 7

return 0;

} // main
1 8
1 9

Now that we’ve written the program, let’s run it with several different

it with no user arguments. Even when the user
is still supplied by the system. (For

line environment.)
. First , let’s runarguments

doesn’t supply values, the program name is

all of these runs, we assume a Windows-run

C:>cmdline
number of arguments: 1

of the programThe
The name : CMDLINE

the run command.
For the second run, let's add hello to

1094 Section H.2 Using Command-Line Arguments

C:>cmdline hello
The number of arguments: 2
The name of the program: CMDLINE
User Value No. 1: hello

To make the exercise more interesting, let’s run the program with a

phrase on the command line.
C:>cmdline Now is the time
The number of arguments: 5
The name of the program: CMDLINE
User Value No. 1: Now
User Value No. 2: is
User Value No. 3: the
User Value No. 4: time

But what if our intent is to read a phrase? C looks at the user values as

strings. This means that the spaces between the words separate each word
into a different element. If we want an element to contain more than one
word, we enclose it in quotes just like a string in code.

C:>cmdline "To err is human" Pope
The number of arguments: 3
The name of the program: CMDLINE
User Value No. 1: To err is human
User Value No. 2: Pope

The user elements cannot he numbers. If you enter a number, it is taken
as a string. I lowever, the string can he converted to a number using a stan-
dard function such as strtocl.

Pointers to voidand to Functions
In this appendix we discuss pointer to void and pointer to function.

1.1 Pointer to void
Because C is strongly typed, operations such as assign and compare must use

one exception is thecompatible types or be cast to compatible types. The
pointer to void , which can be assigned without a cast. In other words, a

pointer to void is a generic pointer that can he used to represent any data type

during compilation or run time. Figure 1-1 shows the idea of a pointer to void.
pointer to void is not a null pointer; it is pointing to a generic dataNote that a

type (void).

FIGURE 1- 1 Pointer to void

the pointer to void concept. It
number, and a voidEXAMPLE 1- 1 Let us write a simple program to demonstrate

a floating-point
contains three variables: an integer,

in the program the pointer
int value. Figure 1-2 shows

he set to thecan
pointer. At different times in

address of the integer value or ol the floating-po

the situation.
int either an inte-

nd that we can use to pr.
Program 1- 1 uses a pointer to i

real number.ger or a

1096 Section 1.1 Pointer to void

K
void* Pr-
int i;
float f;

P
P = &i;

P = &f; *
P

FIGURE 1-2 Pointers for Program 1- 1

PROGRAM 1-1 Demonstrate Pointer to void
/* Demonstrate pointer to void.

Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>6

7
int main (void)8

9 {
// Local Declarations

void* p;
int

10
11

i = 7;
float f = 23.5;

12
13
14

// Statements
p = &i;
printf ("i contains: %d\n", *((int*)p));

15
16
17
18
19 P = &f;

printf ("f contains: %f\n", *((float*)p));
return 0;
// main

2 0
21
2 2 >

Results:
i contains 7
f contains 23.500000

Program 1- 1 Analysis The program is trivial, but it demonstrates the point. The pointer p is declared as a
void pointer, but it can accept the address of an integer or floating-point number.
However, we must remember a very important point about pointers to void: a pointer

ApgendjxLPointers to Void and to functions 1097

to void cannot be dereferenced unless it is cast. In other words, we cannot use *pwithout casting. That is why we need to cast the pointer in the print function beforewe use it for printing.

A pointer to void cannot be dereferenced unlees it is cast.

1.2 Pointer to Function
I unctions in a program occupy memory. The name of the function is a
pointer constant to its first byte of memory. For example, imagine that
have tour functions stored in memory: main, fun, pun, and sun. This rela-
tionship is shown graphically in Figure 1-3. The name of each function is a
pointer to its code in memory'.

we

main
code for:

int main (void)
fun —

pun —
code for:

void fun (void)

code for:
f2 int pun (int, int)

sun — code for:
f3 double sun (float)

pointer to
function variables

Memory

FIGURE 1-3 Functions in Memory

Defining Pointers to Functions
Just as with all other pointer types, we can define pointers to function vari-
ables and store the address of fun. pun, and sun in them. To declare a

to function, we code it as if it were a prototype definition, with the

. This format is shown in Figure 1-4. The
the function return

pointer
function pointer in parentheses

• without them C interpretsparentheses are important
type as a pointer.

Using Pointers to Functions
Now that you’ve seen how to create and use pointers to functions, lets write a

generic function that returns the larger of any two pieces of data. The func-

tion uses two pointers to void as described in the previous section. While our

function needs to determine which of the two values represented by the void

pointers is larger, it cannot directly compare them because it doesnt know

what type casts to use with the void pointers. Only the application program

knows the data types.

1098 Section 1.2 Pointer to Function

f1 is a pointer to a
function with no parameters
s. that returns void ^

// Local Declarations
void
int
double (*f3) (float);

(*fl) (void);
(f2) (int, int);

// Statements

fl = fun;
pun;
sun;

f2
f3

FIGURE I-4 Pointers to Functions

The solution is to write simple compare functions for each program that
uses our generic function. Then, when we call the generic compare function,
we use a pointer to function to pass it the specific compare function that it
must use.

EXAMPLE I-2 We place our generic function, which we call larger, in a header file so
that it can be easily used. The program interfaces and pointers are shown in
Figure I- 5. The code is shown in Program 1-2.

PROGRAM 1-2 Larger Compare Function

I* Generic function to determine the larger of two
values referenced as void pointers.

dataPtrl and dataPtr2 are pointers to values
of an unknown type.

ptrToCmpFun is address of a function that
knows the data types

Post data compared and larger value returned

1
2
3 Pre
4
5
6
7

* /8
void* larger (void* dataPtrl,

int (*ptrToCmpFun)(void*, void*))
9 void* dataPtr2,
10
1 1 {

if ((*ptrToCmpFun) (dataPtrl, dataPtr2) > 0)
return dataPtrl;

12
13
14 else
15 return dataPtr2;

} // larger16

Appendix I Pointers to Void and to Functions 1099

main larger

X X 1

lrg] 8 |i 7 j 8

T | dataPtrl
I
I i

-1il —i
t dataPtr2compare I

I acompare
ptrl ptrl

FIGURE 1-5 Larger Compare Function

Program 1-3 contains an example of how to use our generic compare pro-
gram and pass it a specific compare function.

PROGRAM 1-3 Compare Two Integers
/* Demonstrate generic compare functions and pointer to

function.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>
tinclude "Apl-05.h"

6
// Header file

7
8

(void* ptrl, void* ptr2);int compare9
10

int main (void)1 1
12 {

// Local Declarations
int i = 7;
int j = 8;
int lrg;

13
14
15
16
17

// statements
= (*(int*) larger (&i/ ^'is: %d\n"

18 j, compare));
/ lrg);lrg19

printf("Larger value is
20

return 0;

} // main
21
22 continued

ion 1.2 Pointer to Function

PROGRAM 1-3 Compare Two Integers (continued)

23
/*24

Integer specific compare function.

ptr1 and ptr2 are pointers to integer values
25
26 Pre

Post returns +1 if ptrl >= ptr227
returns -1 if ptrl < ptr228

*/29
int compare (void* ptrl, void* ptr2)30

31 {
if (*(int*)ptrl >= *(int*)ptr2)

return 1;
32
33

else34
return -1;

// compare
35
36 >

Results:
Larger value is: 8

EXAMPLE 1-3 Now, let’s write a program that compares two real (float) numbers. We can use

our larger function, but we need to write a new compare function. We repeat
Program 1-3, changing only the compare function and the data-specific state-
ments in main.The result is shown in Program 1-4.

PROGRAM 1-4 Compare Two Floating-Point Values
/* Demonstrate generic compare functions and pointer to

function.
Written by:
Date:

1
2
3
4

*/5
#include <stdio.h>
#include "Apl-02.c"

6
// Header file7

8
int compare (void* ptrl, void* ptr2);9

10
int main (void)1 1

12 {
// Local Declarations

float i = 73.4;
float j = 81.7;
float lrg;

13
14
15
16
17

// Statements
lrg = (*(float*) larger (&i, &j, compare));

18
19

continuec

Appendix I PointerstoVoidondjo Functions 1101

PROGRAM 1-4 Compare Two Floating-Point Values (continued)
printf("Larger value is: %.if\n",
return 0;
// main

20 I rg) ;
21
22 }
2 3

/* =====2 4 ==== compare
Float specific compare function.

Pre ptrl and ptr2 are pointers to float values
Post returns +1 if ptrl >= ptr2

returns -1 if ptrl < ptr2

===== ============
2 5
2 6
2 7
2 8

*/2 9
int compare (void* ptrl, void* ptr2)3 0

3 1 {
if (*(float*)ptrl >=

return 1;
3 2 *(float*)ptr2)
3 3

else3 4
3 5 return -1;

} // compare3 6

Results:
Larger value is: 81.7

Appendix J
Storage Classes and

Type Qualifiers

attributes of data types, storage classes and
of objects. Type qualifiersIn this appendix, we discuss two

type qualifiers. Storage classes specify the scope

specify processing limitations on objects.

J . l Storage Classes
We define the storage class of an object using one of four specifiers: auto,

register , static , and extent. Before we can discuss the storage class specifiers,

t describe the environment in which they are used.
however, we mus

Object Storage Attributes
Storage class specifiers control three

show n in Figure J- l : its scope, extent, '
attributes of an object’s storage as

and linkage.

Object
Attrilbutes

Linkage
Extent

Scope

—internal
— external— automatic

— static
U- block
I— file

AttributesFIGURE J-l Object Storage
1103

1104 Section J.l Storage Closses

Scope
Scope defines the visibility of an object; it defines where an object can be refer-
enced. In C, an object can have four levels of scope: block, file, function, and
function-prototype. In this text, we do not discuss the function and function
prototype scopes.

Block (Local) Scope
The body of a function is a block and a compound statement in a loop is a
nested block within its function block. When the scope of an object is block,
it is visible only in the block in which it is defined. An object with a block
scope is sometimes referred to as a local object.

The scope of an object declared anywhere in a block has block scope. F or

example, a variable declared in the formal parameter list ol a Function has
block scope. A variable declared in the initialization section ol a for loop also
has block scope, but only within the for statement.

File (Global) Scope
File scope includes the entire source file lor a program, including any files
included in it. An object with file scope has visibility through the whole
source file in which it is declared. However, objects within block scope are
excluded from file scope unless specifically declared to have file scope; in
other words, by default block scope bides objects from file scope. File scope
generally includes all declarations outside a function and all function headers.
An object with file scope is sometimes referred to as a global object.

Extent
The extent of an object defines the duration for which the computer allocates
memory lor it. In C, an object can have automatic, static extent, or dynamic
extent. The extent ol an object is also known as its storage duration.

Automatic Fxtent
An object with an automatic extent is created each time its declaration is
encountered and is destroyed each time its block is exited. For example, a
variable declared in the body ol a loop is created and destroyed in each itera-
tion. Note however, that declarations in a function are not destroyed until the
function is complete; when the function calls a function, they are out ol
scope but not destroyed.

Static Fxtent
A variable with a static extent is created when the program is loaded for exe-
cution and is destroyed when the execution stops. This is true no matter bow
many times the declaration is encountered during the execution.

Appendix J Storage Classes ondjype Qualifiers 1105

Dynamic Extent
Dynamic extent is created by the program through the malloc and
library functions. We do not discuss static memory in this text.

its related

Linkage
A large application program may be broken into several modules, with each
module potentially written by a different programmer. Each module i
rate source file with its
the program is link edited.

is a sepa-
own objects. Different modules may be related when

We can define two types of linkage: internal and external. As we discuss
later, the linkage characteristic differs from scope characteristic, although
they look the same at the first glance.

Internal Linkage
An object with an internal linkage is declared and \isible only in one module.
Other modules cannot refer to this object.

External Linkage
An object with an external linkage is declared in one module but is visible in

all other modules that declare it with a special keyword, extern, as we discuss

shortly.

Storage Class Specifiers
We have defined three storage classes—scope, extent, and linkage—with

potentially eight different combinations (2 x 2 x 2). If we want to use a speci-
fier lor each combination, we need a total of eight different specifiers. How-

ever, there are only four storage class specifiers, as shown in Figure J-2:

. Three factors have contributed to this
register, static , and externunto,

reduced set.

Storage Class
Specifiers

externstaticregisterauto
Has two uses.

FIGURE J-2 Storage Class Specifiers

1106 Section J.l Storage Classes

1. The scope is not defined, it is understood. The place where an object is
declared defines the scope.

2. Not all combinations are logically possible.
3. One specifier, static, is used for two different purposes. The scope shows

what it defines.
In the rest of the section, we discuss these specifiers only when applied

to variables. The application of these specifiers to other objects, such as func-
tions, is similar.

Auto Variables
A variable with an auto specification has the following storage characteristic:

Linkage: internalScope: block Extent: automatic

In other words, the variable must be declared in a block. Each time the
declaration is encountered, it is re-created. It is visible only in the source file
in which it is declared. Most of the variables we have declared so lar are auto
storage class. T his type of specifier is so prevalent that C allows us to omit the
specifier.

Initialization
An auto variable can be initialized where it is defined or left uninitialized. II
initialized , it receives the same initialization value each time it is created. II it
is not initialized, its value will he undefined every time it is horn. When the
auto variable is not initialized, its value is unpredictable. Program J - l shows
the use ol the auto variables.

PROGRAM J-l Demonstration of outo Variables
/* Show the use of auto variables

Written by:
Date:

1
2
3

*/4
#include <stdio.h>5

6
int main (void)7

8 {
// Statements

for (int i = 1; i <= 3; i++)
9

10
1 1 {

int x = 1;
x++;
printf ("Value of x in iteration %d is: %d\n",

if x);

1 2
13
14
15

continues

Appendix J Sloioge Classes and Type Qualifiers I]07

PROGRAM J-l Demonstration of auto Variables (continued)
16 } // for

return 0;
> // main

17
18

Result:
Value of x in iteration 1 is: 2
Value of x in iteration 2 is: 2
Value of x in iteration 3 is: 2

Both i and x are auto variables. The declaration of i is encountered only
{ for loop initialization), but the declaration of x is encountered three

times. Each time the program encounters the declaration for x, it is initial-
ized to 1 again.

once

The keyword auto does not have to be explicitly coded. Each time a variable of
block scope with no specifier is encountered, it defaults to auto.

Register Variables
A register storage class is the same as the auto class with only one difference.
I he declaration includes a recommendation to the compiler to use a central
processing unit (CPU) register for the variable instead of a memory loca-
tion. Ibis is done for efficiency. The time required to access a CPU register is
significantly less than the time required to
compiler, however, may ignore the recommendation. Registers are scarce

and the compiler often needs all of them for the program to run

memory location. Theaccess a

resources,

efficiently.
There is one

able address is L

address operator
implicit conversions, such as might occur
mode arithmetic.

- restriction on the use of a register variable; a register vari-
not available to the user. This means that we can’t use the

and the indirection operator with a register. It also disallows
when using a register with mixed

Static Variables with Block Scope
I he specifier static has different usages depending on its scope

used with a variable that is declared in a block, static defines the extent of the

variable. In other words, the variable has the following characteristic:

. When it is

Linkage: internal

A static variable in this context can be referred to only in the block it is

defined. The extent , however, is static; the computer allocates storage for this

variable only once. 7 he linkage is internal, which means that it is not visible

Extent: staticScope: block

1108 Section J.l Storage Classes

in other modules. Note that the specifier static must he explicitly coded in
this case; it cannot he omitted.

Initialization
Astatic variable can be initialized where it is defined , or it can be left unini-
tialized. If initialized , it is initialized only once. If it is not initialized , its value
will be initialized to zero. Note however, that it is initialized only once in the
execution of the program.

In a static variable with block scope, static defines the extent of the variable.

Program J-2 shows the use of static variable in the block scope.

PROGRAM J-2 Static Variables in Block Scope
/* Show the use of static variable with block scope

Written by:
Date:

1
2
3

* /4
#include <stdio.h>5

6
int main (void)7

8 {
// Statements

for (int i = 1; i <= 3; i++)
9

10
1 1 {

static int x = 1;
x++;
printf ("Value of x in iteration %d is: %d\n", i, x);

> // for
return 0;
// main

12
1 3
1 4
1 5
1 6

>
Result:
Value of x in iteration 1 is: 2
Value of x in iteration 2 is: 3
Value of x in iteration 3 is: 4

Note that the variable i is an auto variable. The variable x, however, is a
static variable. Il is only initialized once although the declaration is encoun-
tered three times. If we do not initialize x, it is initialized to 0 because a static
value needs an initialization value.
Static Variable with File Scope
When the static specifier is used with a variable that has file scope (global
scope) and we want to keep its linkage internal, it is defined with the specifier

1Appendix J Storage Gosses and Type Qualifiers 1109

static. Note that the extent is still static. In other words, we have the following characteristic:

Scope: file Extent: static Linkage: internal

Program J-3 shows the use ol the static variable with file scope.

PROGRAM J-3 Static Variables with File Scope
/* Show the use of static variable with file

Written by:
Date:

1 scope
2
3

*/4
tinclude <stdio.h>5

6
// Function Declaration
void fun (void);

7
8
9

static int x = 1;10
11

int main (void)1 2
13 {

// Statements
for (int i = 1; i <= 3; i++)

x++;
printf ("Value of x in main is:

f u n();
printf ("Value of x in main is: %d\n"/ x);

14
15
16

%d\n", x);17
18
19
20

return 0;
// main

21
22 }
23

fun -/*24
and print global variable.

has been definedIncrement
Pre
Post x

25
Global variable x

incremented and printed
26
27

*/28
void fun (void)29

30 {
// Statements

x++;
printf ("Value of x

return;
// fun

31
32 %d\n", x);in fun is:
33
34

>35

Result:

1110 Section J.l Storage Glosses

PROGRAM J-3 Static Variables with File Scope (continued)

Value of x in main is: 4
Value of x in fun is:
Value of x in main is: 5

5

The declaration of a static variable with file scope must be in the global
of the file (outside any function). If there is another declaration with the

identifier in the global area, we get an error message. On the other
hand, if the identifier is used with another declaration inside a function, the
new variable is an auto variable or static variable with block scope. In other
words, in this case, we are defining a new variable that overrides the global
variable making it not in the current scope.

area
same

External Variables
External variables are used with separate compilations. It is common, on
large projects, to decompose the project into many source files. The decom-
posed source files are compiled separately and linked together to form
one unit.

A variable declared with a storage class of extern has a file scope; the
extent is static, but the linkage is external.

Scope: file Linkage:externalExtent: static

An extern variable must be declared in all source files that reference it,
but it can be defined only in one of them. External variables are generally
declared at the global level. The keyword extern is optional.

I bis design can create a problem: if three source files use the extern
specifier for a variable, which one is the defining file and which are simply
declaring the variable? The rules differ depending on whether the variable is
initialized or not.

1 . II it is not initialized, then the first declaration seen by the linkage editor
is considered the definition and all other declarations reference it.
Figure J-3 contains an example of
programs.

2. If an initializer is used with a global definition, it is the defining declaration.

It is an error il two external variables are initialized. It is also an error to
use the same identifier lor external variables with incompatible types.

external reference used in threean

Appendix J Storage Classes and Type Qualifiers 111]

No ion i f extern /^exterr?% KIk‘‘extern” ;e / /,ired# #i
int a;
int main (void)

extern int a;
int funl (void)

extern int a;
int fun2 (void){ { {

} // main } // funl } // fun2

(a) Definition File (b) Reference Filel (c) Reference File2

FIGURE J-3 Defining and Declaring External References

We recommend that each external definition used in a project be placed
in a common definitions source file. These definitions should not use the
key word extern and should have an explicit initializer. Each source file that

use the keywordneeds to relerence an externally defined variable should
extern and must not use an initializer.

The keyword extern must be explicitly used in source files that use an external
variable.It is omitted in the source file that defines and initializes the variable.

Summary
We have summarized what we discussed about storage classes in Table J- 1-

KeywordLinkageExtentClass Scope
internal auto or noneblock automaticauto

internal registerautomaticblockregister
internal staticstaticblockstatic (extent)
internal staticstaticfilestatic (linkage)
external extern or nonestaticfileextern

TABLE J- 1 Summary of Storage Classes

J.2 Type Qualifiers
jualiKer (Figure j-4) adds three special attributes to types: coast.

The type <
volatile, and restrict .

1112 Section J.2 Type Qualifiers

Type
Qualifiers

restrictvolatileconst

FIGURE J-4 Type Qualifiers

When a storage class, such as static, and a type qualifier are both needed,
the storage class comes before the type qualifier.

Constants
The keyword for the constant type qualifier is const . A constant object is a
read-only object; that is, it can only be used as an rvalue. A constant object
must be initialized when it is declared because it cannot be changed later. A
simple constant is shown below.

const double PI = 3.1415926;

// InvalidPI = 3.142 ;

In addition to the simple types, arrays, structures, and unions can also be
defined as constant. In these cases, all their component elements are con-
stants. For example, in the string constant shown below, none of the individ-
ual elements can be changed.

const char str[] = "Hello";

Pointers and Constants
Pointers can also be defined as constants. Depending
however, three different variations

1. The pointer itself is constant.
2. I he object being pointed to is constant.
3. Both the pointer and its object are constants.

Cose I: Pointer Constant
When the keyword const is associated with the identifier, that is, it is placed
after the type and before the identifier, the pointer itself is a constant. This
means that its contents cannot be changed after initialized. In other words,
the pointer can only point to the object that it
ization; it cannot point to another object. In this case, it is an error to use the
pointer as an lvalue.

how they are coded,on
can occur.

pointing to during initial-was

Appendix J Storage Classes ond ly Quolrfiers 1113

int a;
int b;
int* const ptr = &a;
ptr = &b; / / Error: ptr is constant

Case II: Object Is Constant
When the keyword const is associated with the type, that is, it is placed beforethe type, then the object being referenced is a constant, but the pointer itselfis not. So, while we can change the value in the pointer (address), we cannotdereference the operator as an lvalue. In other words, we cannot change thevalue of the variable through this pointer. Consider the following definitions:

int a = 5;
const int* ptr= &a;
*ptr = 2 1; / / Error: pointing to constant

Cose III: Both Pointer and Object Are Constant
lo indicate that both the pointer and the object that it points to
use the keyword const twice.

are constant,

int a = 5;
int b = 3;
const int* const p = &a;
*p = 5;
constant
P * & b;

/ / Invalid: object of p is a

/ / Invalid: p is a constant

Volatile
I he volatile qualifier tells the computer that an object value may be changed
by entities other than this program. Normally, objects used in a program
belong only to the C compiler. When the compiler owns an object, it can
store and handle it in any way necessary to optimize the program. As
example, a C compiler may think that it is more efficient to remove an object
from HAM memory and put it in a register.

However, sometimes objects must be shared between your program and
some other facilities outside the C program, for example, some input/output

routines. To tell the compiler that the object is shared, we declare it as type

telling the compiler that this object may be refer-

an

volatile. In this case, we are
enced or changed by other entities.

The following shows how an integer pointer to an integer can beor a

declared volatile.

volatile int x;
volatile int* ptr;

1114 Section J.2 Type Qualifiers

Restricted
The restrict qualifier, which is used only with pointers, indicates that the
pointer is only the initial way to access the dereferenced data. It provides

help to the compiler for optimization. Let us look at the following pro-
gram segment:
more

int*
int
ptr = &a;

ptr;
a = 0;

*ptr += 4;

*ptr += 5;

Here, the compiler cannot replace two statements *ptr += 4 and * ptr
+=5 by one statement *ptr += 9 because it does not know il the variable a
can be accessed directly or through other pointers.

Now, let us look at the same program fragment using the restrict qualifier:

restrict int* ptr;
int
ptr = &a;

a = 0;

*ptr += 4;

*ptr += 5;

I lere, the compiler can replace the two statements by one statement 1 ptr
+= 9, because it is sure that variable a cannot be accessed through any other
resources.

As an application ot the restrict qualifier, let us look at two functions in
the C library that is used to copy bytes from one location to another:

void* memepy void* restrict destination,
const void* restrict source, size t n);

(

void* memmove (void* destination,
const void* source, size t n);

The memory copy function requires that the source and destination area
not overlap; the memory move function does not. The restrict qualifier in the
first function guarantees that there is no overlap between the source and des-
tination area. The second function does not; the user must be sure that there
is no overlap.

Appendix K
Program Development

In C hapter 2, we briefly discussed how a source file is changed to an execut-able hie. In Appendix G we discussed the role of the preprocessor in this pro-cess. In this appendix, we show, with more details, how a program, simple orcomplex, is developed from one single source file, a source file and several
user header flies, or several source files, into one single executable program.

In the first section, we discuss the process of development, which i
to all platforms. In the second section, we discuss how the process is

coded in some common platforms.
is com-

mon

K.l Process
hirst , let us discuss the process, which creates a single executable program
from one or more source files. Although we use four different exhaustive
cases, the source program that we have chosen is a simple one. It is a simple
program that calculates

Y = 2X

where X is entered as input and ^ is printed as output. In the first
use just the main function. In the second, we use a function to do the calcu-
lation. In the third, we include the function as the header file. In the fourth,

files to show the idea of separate compilations.

case, we

we use two separate source

First Case: A Simple File
The first case, as shown in Figure K- l , is trivial and seldom seen outside an

academic environment. Nevertheless, it illustrates severa points.

1115

1116 Section K.l Process

Library Object Files
I N
printfscanf

i^include <stdio.h>
int main (void’

main

KLinkerCompiler scant<
printf

// main>
Executable FileUser's Object FileSource File

FIGURE K-l Compilation and Linking of a Single Source File

We have only one source file that contains only one function, main. The
source file is first compiled to create an object file, the binary encoding ol
the main function. The linker adds two library functions, scanf and printf , to

the user’s object file to create an executable file. The compiler instructs the
linker to do so when it encounters the function calls for these two functions.
Ihe scan) and printj functions have already been compiled and stored as
object library modules in the standard library stdio.h. No compilation is
needed lor these two functions. Note that the linker can only link (add
together) object files. The executable file contains the binary code lor these
three functions.

Program K- l shows this situation. We have written only one main func-
tion to calculate the power of two of any unsigned integer.

PROGRAM K -l Our Simple Application Program
/* Demonstrate a simple compilation

Written by:
Date:

1
2
3

*/4
#include <stdio.h>
int main (void)

5
6
7 {

// Local Declarations
unsigned int num;
unsigned int res;

8
9
10
11

// Statements12
printf ("Enter the power:
scanf

13
14 ("%u", &num);

res = 1 « num;
printf ("%u\n", res);

15
16

continue

\
Appendix K Program Development 1117

PROGRAM K-1 Our Simple Application Program (continued)
17 return 0;

} // main18

Results:
Enter the power: 14
16384

Second Case: Two Functions
In the second case> we stil1 have one source file, but two functions: main and
power2. I he system flow is shown in Figure K-2.

Library Object Files
33

scanf IprintfI

5F^include <stdio.h>
int main (void]
{

main

} // main power2mainK hCompiler Linkerunsigned power2 (...) scanf
{

power2 printf
} // power2

Executable FileUser's Object FileSource File

FIGURE K-2 Compilation and Linking of Source File Including a Function

We still have one user’s object file and two library module files, but the
binary code for two functions: main and

con-user’s object file now contains
power2. The linker still links only three object files. The executable Hie

tains the code for four functions.
Program K-2 contains the modified source program with two functions.

PROGRAM K -2 Source Code for main and power2

Demonstrate compilation with two functions.

Written by:

Date:

/*1
2
3

*/4
#include <stdio.h>5

6
// Function Declaration
unsigned int power2 (unsigned int exp);7

8
9

int main (void)10 continued

1118 Section K.l Process

PROGRAM K-2 Source Code for main and pov/er2 (continued)

11 {
// Local Declarations

unsigned int num;
unsigned int res;

12
13
14
15

// Statements16
printf ("Enter the power: ");
scant

17
("%u", &num);

res = power2 (num);
printf ("%u\n", res);
return 0;
// main

18
19
2 0
21
2 2 }

23
unsigned int power2 (unsigned int exp)24

25 {
// Statements

return (1 << exp);
} // power2

26
27
28

Results:
Enter the power: 14
16384

Third Case: Two Source Files
The third case is very common in writing structured programs, as you will see
in your data structures course. In this trivial situation, we can have one users
source file and one user's header file. The two, however, are associated with
each other through the include directive in the source file. Figure K-3 shows
the system How.

Library Object FilesSource File

^include <stdio.h>
Pinclude "power2.h"
int main (void]

printf

(

\ main
} // main

power2main Hhunsigned power2 (... J Compiler Linker scanf{

power2 printf] // power2

Executable FileHeader File User’s Object File

FIGURE K-3 Compilation and Linking of a Source File and a Header File

1\
Appendix K Program Development 1119

Still there is one compilation. However, as we saw in Appendix G, the
preprocessor needs to act on the include directive and include the
header file in the source file before translation. The rest of the process is the
same as the second case. One of the advantages of this case is that the
header file is an independent file that can be reused with any other program.
All we need to do to use it is to include its header file. Because the resulting
program is identical to the previous version , its results are also the same.
Program K-3 shows the source file for main.

users

PROGRAM K-3 Source Code for main Only
/* Demonstrate compilation with two source files.

Written by:
Date:

1
2
3

*/4
tinclude <stdio.h>
#include "power2.h"

5
6
7

int main (void)8
9 {

// Local Declarations
unsigned int num;
unsigned int res;

// Statements
printf ("Enter the power: ”);

scanf
res = power2 (num);

printf ("%u\n", res);

return 0;

} // main

10
1 1
1 2
1 3
1 4

("%u", &num);1 5
1 6
1 7
1 8
1 9

, h file.
Program K-4 contains the totally independent Power 2

PROGRAM K-4 Source File for power2
the power2 function.

file for
/* This is the source

Written by:

Date:

1
2
3

*/4 int exp)
power2 (unsignedunsigned int5

{6
/ / statements

return
// power2

7
(1 « exp) ;

8

>9

1120 Section K.l Process

Case 4: Separate Compilation of Function
This case is more challenging. Not only do we want to make the functions

also want to compile them separately. Used primarily withindependent, hut we
generalized software and large projects, it is known as separate compilations.

When a large project is designed, it is decomposed into modules that can

be developed and tested separately. It is much easier to write and debug a

small module than a large one.
and debugged, the object files can he linked together to form one executable
program. Figure K-4 shows the (low for separate compilations.

After each test file has been separately tested

Source File
Library Object Files

b.#include <stdio.h>
#include "power2.h"

int main (void! printfscanfCompiler main
< zr} // main main

I powers

j-̂ lpowerfj Linker |-̂unsigned power2 (... scanf
< Compiler

printf
} // power2

Executable FileUser's Object FileHeader File

FIGURE K -4 Compilation and Linking of Two Independent Source Files

Although the resulting executable file has the same four binary-coded
modules, the process is different. Each source file is compiled separately and
two independent object files are made from them. The object files are only
related when they are linked together. Once again, because the code is the

the output is identical.
Program K-5 contains the source file for main.

same

PROGRAM K-5 Separate Compilations — main

/* Demonstrate the separate compilations—main
Written by:
Date:

1
2
3

*/4
ffinclude <stdio.h>
int main (void)

5
6
7 {

// Local Declarations
unsigned int num;
unsigned int res;

8
9

10
11

// Statements12

continue*

Appendix K Progrom Development 1121
PROGRAM K-5 Separate Compilations — main (continued)

1 3 printf ("Enter
scant
res =

the power: ");
&num);

1 4 ("%u",
power2 (num);

printf ("%u\n",
return 0;

> // main

1 5
1 6 res);
1 7
1 8

Program k-6 contains the source file for power2.
PROGRAM K-6 Separate Compilations — power2

1 /* Demonstrate the
Written by:
Date:

separate compilations-power22
3
4 */
5 unsigned int power2 (unsigned int exp)

{
// Statements

return (1 « exp);
> // power2

6
7
8
9

K.2 Coding
Now that we have discussed the process, let 's look at how we code the differ-
ent steps in the process.

UNIX
UNIX, and its derivative Linux, are popular operating systems. They contain
several tools with many options. In this appendix, we briefly describe the
basic options and explain how to compile and link UNIX programs.

File Types
UNIX uses different extensions to distinguish between different file types

files, object files, and executable files, as shown in Figure K-5.source

myprogrammyprogram.omyprogram.c

Executable FileObject FileSource File

FIGURE K-5 File types in UNIX

onK.2 Coding

In Figure K-5, the source file is myprogram.c, the object file is
myprogram.o and the executable lilt* is myprogram. In other words,a source
file has the extension “.c”, an object file has the extension ‘.o ', and an exe-

cutable file lias no extension.

In UNIX,a source file in Standard C has the extension .c,an object file has the
extension .o, and an executable file has no extension.

Command and Options
UNIX uses only one command, c99, to compile or link different files. The
command is used with different options to define compilation only, linking
only, or compilation and linking. Figure K-6 shows the general format of the
command.

Executable Source or Object FilesC99 OptionPrompt File

$ or % or ... -c or -o

FIGURE K -6 Compilation and Linking Format in UNIX for C99

Note that the UNIX prompt depends on the shell being running. It can
he $ or % or any other customized prompt. The command c99 invokes the C
compiler with the C99 standard implementation (other versions are usually
available lor backward compatibility). The option can he either -c for compil-
ing only, or -o lor either linking or compiling and linking. The -o option indi-
cates that we need an executable module. The intent of the -o option is
conveyed through the parameters:

1 . II we want to compile only, we define only source files; the executable file
name is not used.

2. II we want to link only, we define only the object files; the source files are
not used.

Examples
Let’s look at some examples.

EXAMPLE K-l Compile, Link, and Execute: We need to compile and link to create an executable file
Irom a source file named myprogram.c. The following code shows the com-
mands. In the first line, we create an executable file named myprogram; in
the second line we run that program. After these two lines of commands
have been executed, we have two files in our directory: myprogram.c and
myprogram.

Appendix K Program Development]]23

$ c99
$ myprogram

o myprogram myprogram.c

EXAMPLE K-2 Compile Jwo Source Files: We need only to compile two files called first ,second.c. When the compiler completes, andfour files in our directory: first ,c,
second.o.

c and
assuming no errors, we have

first.o (object file), second.c, and

$ c99 -c first .c second .c
Of course, we could

file separately.
use two commands instead of one and compile each

EXAMPLE K-3 Create Fxecutoble File: We need only to create an executable file from the first.ofile (linking all library' files to it). After the linker executes, we have a execut-able new file in our directory, first.

$ c99 -o first first.o

EXAMPLE K-4 Create executable from Jwo Object Files: We need to link two object files, first.o and
second.o, together to create an executable file firstSecond. The following
shows the command.

$ c99 -o firstSecond first.o second .o

separately compile the sourceEXAMPLE K-5 Separate Compilation: In separate compilations, we
files myprogram.c and power2 .c and link them to create an executable file
mybigprogram. We then run the executable file.

$ c99 -c myprogram.c
$ c99 -c power2.c
$ c99 -o mybigprogram myprogram.o power2.o

$ mybigprogram

MPLE K -6 Compile and execute Short Cut: Sometimes, programmers use a short cut that does not

the executable file. If we do not define the name of the executable file,

. For example, the following command
file named temporary.c.

save
the system creates a file called a .out
shows how we can compile, link, and run a source

$ c99 temporary.c
$ a.out

1124 Section K.2 Coding

Note that because the name of the file is system defined, it remains in

the system until we created another executable file, which the system needs
to call a .out. This method is used only for temporary testing and is not rec-
ommended when we need to keep the executable file.

Other Platforms
In general, every hardware platform comes with its own application develop-
ment environment. In addition, there are numerous compilers and develop-
ment support tools available. To find the documentation (or your local
support environment , ask your support staff or check with the help system
installed with your compiler.

Appendix L
Understanding Complex

Dedarations
I he declarations have become increasingly more complicated throughout
this text. Sometimes the declarations are difficult to interpret, even for some-

experienced in the C language.
To help you read and understand complicated declarations, we provide a

rule that we call the right-left rule. Using this rule to interpret a declaration,
you start with the identifier in the center of a declaration and read the decla-

one

ration by alternatively going right and then left until you have read all enti-
ties. Figure L- 1 is a representation of the basic concept.

] 0
t t t

[
t t t t

identifier

1 3 5start here6 4 2

FIGURE L-1 Right-Left Rule Concept

We will begin with some simple examples and proceed to the
complicated.

1. Consider the simple declaration

more

int x

Section

”iThis is read as "x is # an integer.

#int x
TT T
1o2

Since there is nothing on the right, we simply go leit.
2. Now consider the example of a pointer declaration. This example is read

as “p is # a pointer # to integer.”

##int P
TTTT T
31024

Note that we keep going right even when there is nothing there until all
the entities on the left have been exhausted.

.3. In the next example, we have an equal number ol entities
and the left.

the righton

int table [4]
T tT
o l2

This declaration is read as “table is an array of 4 integers.”
4. Regardless of how many dimensions are in an array, it is considered as

one element in the rule. Therefore, given the following declaration ol a

multidimensional array:

int table f 41 T 5 1
T T T
2 0 1

it is read as “table is a [4][5] array of integers.”

5. Ihe next example is quite difficult and is often misread. In this declara-
tion, we have an array of pointers to integers. The structure is seen in
Figure L-2a.

int * aryOfPtrs [5] #
T T
4 2

T T T
o 1 3

It is read as “aryOfPtrs is an array of 5 pointers to # integer.”

I. The pound sign (#) is just a placeholder to show that there is no entity to he considered. It is

ignored when read.

Appendix L Understanding Complex Declarations 112/

ptrToAry

aryOfPtrs

(a) An array of pointers (b) A pointer to an array

FIGURE L-2 Array of Pointers Versus Pointer to Array

change the previous example to a pointer to an6. By using parentheses, we
array of live integers. In this case, the pointer is to the whole array, not

just one element in it . (See Figure L-2b.)

int (*ptrToAry #) [5]
T T T t T

1 34 2 0

This declaration is read "ptrToAry is i a pointer to an array of 5 integers.
simple

7 . This example deals with function declarations. Here

prototype for a function that returns an integer.
, we see a

int dolt (...)
T T T
2 0 1

i function returning an integer.’

function returning a pointer to an integer.This declaration is read as “dolt is a

8. The final example shows a L

* dolt (int) #

T t T
1 3

int
T T
4 2 0

function returning a pointer to * an integer.

This example is read "dolt is a

I!

GIOSSOP
application software: computer software devel-
oped to support a specific user requirement. Con-
trast with system software.
application-specific software: any application
software that can be used for only one purpose, sue
as an accounting system.

directed line in a graph; contrast with edge.
uenced collection of elements of the

A

absolute value: the magnitude of a number regard -
less of its sign . In C: abs.
abstract data type (ADT): a data declaration and
a set of operators that are allowed on the data, encap-
sulated as a type. arc: a
accuracy: the quality factor that addresses the cor-
rectness of a system. array: a seq

actual parameter: the parameter in the function Stime ^ala l^e'

calling statement that contains the values to be passed array of pointers: an array of addresses, often us

to the function. Contrast with formal parameter. to represent a sparse array.

additive expression: in C, the binary addition and ascending sequence: a list order in which eac

subtraction expressions. element in the list has a key greater than or equal

address list: in C: function parameter list that con- its predecessors. Contrast with descending sequel

sists ol variable addresses. ASCII: the American Standard Code for Informat
Interchange.An encoding scheme that defines con

characters and graphic characters for the first 128

ues in a byte. Ihe first 128 characters in Unicode.

assembler: system software that converts a soui

executable object code; traditionally
. See ;

address operator: in C: the ampersand (&) .

afferent module: a module whose processing is
directed toward the central transform; that is, a mod-
ule that gathers data to be transmitted toward the
central processing functions ol a module.
algorithm: the logical steps necessary to solve a
problem in a computer; a function or a part of a
function .

program into
associated with assembly language program
compiler.

I . . .
assembly language: a programming language ii

B r* Y,m S: lc rm crealecJ by Brassard and which there is a one-for-one correspondence

1 N 1 ,at re'ers the study of techniques used to between the computers machine language and t

taU c‘* hcient algorithms.
symbolic instruction set of the language.

r
i natc Hag: the data formatting flag used with assignment expression: an expression contain

c V.C n8lnccr*ng> hexadecimal, and octal conversion the assignment operator (*) that results in the

C ''e a t i n g that an alternative presentation of the expression being placed into the left open

n°U'd be used.
. . . , ,. .. > . ,

associativity: the parsingdirection used toeval

an expression when all operators have an equal •

ity. See left-to-right and right-to-left associativity.

also precedence.
ANSI/ISO C: the standard for the C language
adopted by the American National Standards
Institute.
append mode: in file processing, the mode that
adds to the end ol a file.

data that cannot be meaningf
atomic data:
subdivided.

1130 Glossary

bitwise operator: any of the set of operators that
operate on individual hits.atomic data type: a set of atomic data having iden-

tical properties that distinguish one type Irom
another. Contrast with derived type.
(into: the default storage class for a local variable.
auxiliary storage: any storage device outside main
memory; permanent data storage; external storage.

blackbox testing: testing based on the system
requirements rather than a knowledge ol the

Contrast with whitebox testing .program.
block: in C, a group of statements enclosed in
braces {...}.
block comment: a comment that can span one or

lines. Contrast with line comment .B
more
block scope: see scope.
body ol’ loop: the code executed during each itera -
tion of a loop.
Boolean: a variable or expression that can assume
only the values true or false.

braces: the { and > symbols.
breadth-first traversal: a graph traversal in which
nodes adjacent to the current node (siblings) are pro-
cessed before their descendents. Contrast with
depth-first traversed .
break: a C statement that causes a switch or loop

base case: in recursion , the event that does not
involve a recursive call and therefore ends the recur-
sion.
batch update: an update process in which transac-
tions are gathered over time for processing as a unit.
Contrast with online update.
bi-directional communication: communication
between a calling and called function in which data
flows in both direction, that is, from the calling func-
tion to the called function and then from the called
function to the calling function.
big-O analysis: the analysis of an algorithm that
measures efficiency using big-O notation rather than
mathematical precision .

big-O notation: a measure of the efficiency ol an
algorithm in which only the dominant factor is
considered.
binary: a numbering system with base 2. Its digits
are 0 1 .

binary expression: any expression containing one
operator and two operands.
binary file: a collection of data stored in the inter-
nal format ol the computer. Contrast with text file.
binary search: a search algorithm in which the
search value is located by repeatedly dividing the list
in half.
binary search tree: A binary tree in which: (1) the
keys in the left subtree are all less than the root
key. (2) the keys in the right subtree are greater than
or equal to the root key, and (3) the subtrees are all
binary search trees.
binary stream: a stream in which data is repre-
sented as it is stored in the memory of a computer.
binary tree: a tree in which no node can have more
than two children.
bit: acronym for Binary digIT. The basic storage unit
in a computer with the capability of storing only the
values 0 or 1 .

statement to terminate.
bubble sort: a sort algorithm in which each pass
through the data moves (bubbles) the lowest element
to the beginning of the unsorted portion of the list .

buffer: (1) hardware, usually memory, used to syn-
chronize the transfer of data to and from main mem-
ory. (2) memory used to hold data that have been
read before they are processed, or data that are wait-
ing to he written .
buffered input/output: input or output that are
temporarily stored in intermediate memory while
being read or written.
buffered stream: C term for buffered input/output.
bug: a colloquial term used for any error in a piece
ol software.
byte: a unit of storage, 8 bits.

C

C standard library: any of the libraries that con-
tain predefined algorithms delivered with the system,
such as standard library, (stdlib . h) and standard
input and output (stdio . h).

called function: in a function call , the function to
which control is passed.

Glossory])31
calling function: in a function call, the functionthat invokes the call.
cast: a C
expression.

cohesion: the attribute of a module that describeshow closely the processes within a modulerelated to each other.
coincidental cohesion: the cohesion level inwhich totally unrelated processes are combined intoa module.
column: in a two-dimensional table, the dimensionrepresenting vertical columns in the array. Contrastwith row.

operator that changes the type of an are

ceiling: the smallest integral value that is largerthan a floating-point value.
central processing unit (CPU): the part of a
computer that contains the control components—that is, the part that interprets instructions. In a per-sonal computer, a microchip containing a controlunit and an arithmetic-logical unit.
central transform: the modules ol a program thattake input and convert it to output. See also afferentmodule and efferent module.

comma expression: the last (lowest precedence)
expression in C; used to combine multiple expres-sions into one expression statement.
comma operator: in C, the operator that connectsmultiple statements in one expression.

changeability: the quality factor that addresses the command-line argument: in C, a parameter spec-vvith which changes can be accurately made to a ‘Red on the run-time execute statement and passed
to the program for its use.

ease
program.
character: a member of the set of values thatused to represent data or control operations.See Unicode.

comment: in a C program, a note to the program
reader that is ignored by the compiler.
coniniunicational cohesion: the processes in a
module are related only in that they share the
same data.

are

character constant: a constant that definescharacter enclosed in two single quotes
character set: the set of values in a computer’salphabet. See Unicode.

one

compilation: the process used to convert a source
program into machine language.
compiler: system software that converts a source
program into executable object code; traditionally
associated with high-level languages. See also assembler.

child: a node in a tree or a graph that has apredecessor.
chronological list: a list that is organized by time;that is, in which the data are stored in the order inwhich they were received. See also FIFO and LIFO.

complement: in a set of values with two symmetric
sections, the operation that gives the counterpart of
the current value, that is, the value in the other sec-
tion. For example, the complement of a number is a
number with the same value and the sign reversed.
I he complement of a binary digit is the other binary

digit.The complement of a logical value (true or false)
is the other value.

plex type: a data type consisting ol a real and
imaginary type and representing a complex num-

ber in mathematics.
composite data: data that are built on other data
structures; that is, data that can be broken down into

discrete atomic elements.

classifying function: a standard C characterfunction that classifies a character according to U scharacter taxonomy, such as printable or“alphanumeric.”
t'lear box testing: see u hitebox testing.
client: in a client/server network, the computer that
provides the basic application computing; the
puter residing in the user’s physical area.
client/server: a computer system design in which
two separate computers control the processing o t e
application, one providing the basic application com
puting (the client) and the other providing auxi ,ar>services, such as database access (the server .

com
ancom-

compound statement: a sequence of statements
enclosed in braces. See also block.

computer hardware: the set of computer compo-
nents, consisting of at least an input device, an out-

put device, a monitor, and a central processing unit .

close function: the function that concludes the
writing of a file by writing any pending data to u
and then making it unavailable lor processing.

1132 Glossary

coupling: a measure of the interdependence
between two separate functions. See also: content

fling , control coupling , data coupling , global
coupling , and stamp coupling .

CPU: see central processing unit.

computer language: any ot the syntactical lan-
guages used to write programs for computers, such
as machine language, assembly language, C ,
COBOL, and FORTRAN .
computer software: the set of programs, consist-
ing of system and application programs, that provide
instructions for the computer.
computer system: the set of computer hardware
and software that make it possible to use a computer.
conditional expression: in C, shorthand lorm of a
two-way selection.
connected graph: a graph is connected if, when
direction is suppressed, there is a path from any ver-
tex to any other vertex.
const : a storage class that designates that a fields
contents cannot he changed during the execution of
the program.
constant: a data value that cannot change during
the execution of the program. Contrast with variable.
content coupling: the direct reference to the data
in one module by statements in another module. 1 he
lowest lorm of coupling and one to be avoided .

continue: in C, a statement that causes the remain-
ing code in a loop iteration to be skipped.
control character: a nonprintable character value
whose 1 unction is to perform some operation, such as
form-feed, or that is used to indicate status, such as
the start of a transmission.
control coupling: communication between I unc-
tions in which flags arc set by one module to control
the actions of another.
conversion code: in formatted input and output,
the code in the format specification that identifies
the data type.
conversion specification: the specification that
defines how data are to be represented in an input or
output operation .

converting function: a C character function that
converts lowercase alphabetic characters to uppercase,
or vice versa.
correctability: the quality factor that addresses the
ease with which errors in a module can he fixed.
counter-controlled loop: a looping technique in
which the number of iterations is controlled by a
count; in C, the for statement. Contrast with
event -controlled loop.

cou

D

dangling else: a code sequence in which there is
no else statement for one of the if statements in a
nested if
data: the part of a structure that stores application
information.
data coupling: communication between modules
in which only the required data are passed. Consid -
ered the best form of coupling.
data encapsulation: the software engineering con-

cept in which data are hidden from an application
program’s access.
data flow': in a structure chart, an indicator identi-
fying data input to or output from a module.
data hiding: the principle ol structured program-
ming in which data are available to a function only il
it needs them to complete its processing; data not
needed are "hidden’ from view. See also encapsida-
tion and scope.
data name: an identifier given to data in a program.
data structure: the syntactical representation ol
data organized to show the relationship among the
individual elements.
data type: a named set of values and operations
defined to manipulate them, such as character and
integer.
data validation: the process of verifying and vali-
dating data read from an external source.
declaration: in C, the association of a name w ith
an object, such as a type, variable, structure, or func-
tion. See also definition.
declaration section: the portion of a block in
which variables and constants may be defined . The
first section in a block. See also statement section.
default: in C, the entry point to the code that is to
be executed il none of the case values match the
switch expression .
define: in C, a preprocessor command that names
and provides the code for a macro.

Glossary 1133

definition: in C, the process that reserves memory
for a named object, such as a variable or constant.
See also declaration.
degree: the number ol lines incident to a node in
a graph.
delimited string: a string terminated by a nondata
character, such as the null character in C.
delimiter: the character or token that identifies the
end of a structure.
De Morgan’s rule: a rule used to complement a
logical expression.
demotion: an implicit type conversion in which the
rank of an expression is temporarily reduced to
match other elements ol the expression.
dependent statement: a program statement, such
as the true action in an ij statement , whose execution
is controlled by another statement.
depth-first traversal: a traversal in which all ol a
node’s descendents are processed before any adjacent
nodes (siblings). Contrast with breadth-first traversal .
dequeue: delete an element from a queue.
dereference: access of a data variable through a
pointer containing its address.
dereference operator: in C, the asterisk (*). Used
to indicate that a pointer’s contents (an address) are
to be used to access another piece ol data.
derived type: a composite data type constructed
from other types (array, structure, union, pointer, and
enumerated type). Contrast with atomic type.
descendant: any node in a path from the current
node to a leaf.
descending sequence: a list order in which each
element in a list has a key less than or equal to its
predecessor.
directed graph: a graph in which direction is indi-
cated on the lines (arcs).

an auxiliary storage medium used to store data
and programs required for a computer.
disk drive: the auxiliary storage hardware device
used to read and write a disk.
diskette: a removable flexible disk, enclosed in a
protective flexible or rigid cover, used to store data
lor a personal computer.
distributed environment: an environment that
provides a seamless integration ol computing I U I K -

tions between different

do...while loop: a sentinel-controlled,loop in C.

double: the C type lor double-precision floatingpoint type.

downward communication: data flow from thecalling function toward the called function.
auxiliary storage device that can write andread data, such as the internal hard disk, a floppy

disk, or a tape unit.

dynamic allocation: allocation of memory for stor-
ing data during the execution of a program. Contrast
with static memory allocation.
dynamic array: an array that has been allocated in
the heap during the execution of the program.
dynamic memory: memory whose use can change
during the execution of the program (The heap).

post-test

drive: an

E

edit set: a list of characters used to validate charac-
ters during the formatted reading of a string.

efferent module: a module whose processing is
directed away from the central transform; that is, a
module that predominately disposes of data by report-
ing or writing to a file.

efficiency: the quality factor that addresses the
optimum use of computer hardware or responsive-
ness to a user.
edge: a line in an undirected graph. Contrast
with arc.
else-if: a style (as opposed to syntax) convention
used to implement a multiway selection fora nonin-

tegral expression. Each expression in the series must

evaluate the same variable.

empty list: a
contains no

encapsulation: the software engineering design

concept in which data and their operations are bun-

dled together and maintained separately from the

application using them.
end of file: the condition that occurs when a read

operation attempts to read after it has processed the

last piece of data.

disk: .. list that has been allocated but that
data. Also known as a null list.

and clients.servers

1134 Glossary

extern: the storage class that specifies that an object
has static extent and that its name is exportable to
the linker.

enumeration constant: the identifier associated
with a value in an enumeration declaration.
enqueue: insert an element into a queue.
EOF: end of file. In C, a flag set to indicate that a
file is at the end.
error report file: in a file update process, a report
of errors detected during the update.
error state: one of three states that an open file
may assume. An error state occurs when a program
issues an impossible command , such as a read com-
mand while the file is in a write state, or when a
physical device failure occurs. See also read state,
write state.
error stream: in C, the standard file used to display
errors, often assigned to a printer (stderr).
escape character: in C, the backslash (\) charac-
ter used to identify a special interpretation lor the
character that follows it .

escape sequence: any group ol keystrokes or char-
acters used to identify a control character. In C , the
backslash (\) used to indicate that the character that
follows represents a control character.
event-controlled loop: a loop whose termination
is predicated upon the occurrence ol a specified
event. Contrast with counter-controlled loop.
exchanging values: the logic used to exchange the
values in two variables.
exclusive or: a binary' logical operation in which the
result is true only when one of the operands is true
and the other is false.
executable file: a file that contains program code in
its executable form; the result ol linking the source
code object module with any required library modules.
explicit type conversion: the conversion of a
value from one type to another through the cast oper-
ator. Contrast w ith implicit type conversion.

exponential efficiency: a category of program/
module efficiency in which the run time is a function
of the power of the number of elements being
processed.

expression: a sequence of operators and operands
that reduces to a single value.
expression statement: an expression terminated
by a semicolon.
expression type: one of six expression attributes
that broadly describes an expression s format:
primary, postfix, prefix , unar)>} binary, and ternary.

F

factorial efficiency: a measure of the efficiency of
a module in which the run time is proportionate to
the number of elements factorial.
false: the Boolean value used to indicate that an
expression is not true.
fan out: an attribute of a module that describes the
number of submodules it calls.
field: the smallest named unit of data that has
meaning in describing information. A field may be
either a variable or a constant.
field specification: a subcomponent of the format
string used to describe the formatting of data, in the
formatted input and output functions.
field width: in a field specification, the specifica-
tion of the maximum input width or minimum out -
put width lor formatted data.
FIFO: first in-first out .
file: a named collection ol data stored on an auxil-
iary storage device. Compare with list .
file mode: a designation of a file’s input and/or out-
put capability; files may be opened for reading, writ -
ing, appending, or updating.
file state: the operating condition of a file: read
state, write, or error state.
file table: in C, the predefined standard structure,
FILE, used to store the attributes of a file.
filename: the operating system name ol a file on an
auxiliary' storage device.
first in-first out: a data structure processing
sequence in which data are processed in the order
that they are received; a queue.
fixed -length array: an array in which the num-
ber of elements are predetermined during the
declaration/definition.
fixed-length string: a string whose size is constant
regardless of the number of characters stored in it .
Hag: an indicator used in a program to designate the
presence or absence of a condition; switch .
flag modifier: the input/output format specification
that suppresses input or modifies output formatting.

Glossary 1135
flexibility: the quality factor that addresses the easewith which a program can he changed to meet

function declaration
describes a functions
parameters.
function definition: in C, thefunction declaration.
function header: in a function definition, that partof the function that supplies the return type, func-tion identifier, and formal parameters. Contrastwith Junction body.
functional cohesion: a module in which all of theprocessing is related to a single task. The highestlevel of cohesi

: in C, statement that
return type, name, and formal

user
requirements.
flipping hits: changing a bit from a 0 to 1
floating-point number: a number that containsboth an integral and a fraction.

or a 1 to 0. implementation of a

floor: the largest integral number smaller thafloating-point value.
flowchart:

n a

a program design tool in which standardgraphical symbols are used to represent the logicalflow of data through a function.

for loop: a counter-controlled, pretest loop in C.
force to change: the bit manipuation concept used
to force selected hits to change from 0 to I or from 1
to 0.

on.

G

general case: all the code in a recursive function
that is not a base case.

force to one: the bit manipulation concept used toforce selected bits to 1 .

force to zero: the bit manipulation concept used toforce selected hits
general-purpose software: software, such as a
spreadsheet, that can be used in multiple
applications.
global coupling: communication between differ-
ent modules that uses data accessible to all modules
in a program. Considered to be a very poor communi-
cations technique for intraprogram communication.

to zero.
formal parameter: the parameter declarationfunction prototype used to describe the type ol data
to be processed by the function. Contrast with
actual parameter.

m a

formal parameter list: the declaration of|
ters in a function header.

wra mo- global declaration section: the declaration and/or

fornnt . definition of a variable or function outside the

fun t
C°|n r° s*r’n8: ln a formatted input/output boundaries of any function—that is, before main or

i ' ii . i u siting that is used for formatting data. between function definitions. Contrast with local
formatted input/output: in C, any of the standard
library functions that can reformat data to and from
ext "bile they are being read or written.

frequency array: an array that contains the num-
H 1 o occur rences ol a value or of a range of values.
^ee also histogram.

declaration.

global variable: a variable defined in the global
declaration section of a program—that is, defined
outside a function block.

graph: a non-linear list in which each element can
have zero, one, or more predecessors and zero, one,

or more successors.front: when used to refer to a list, a pointer or index
that identifies the first element.
function: Ha named block of code that performs a
process within a program; an executable unit o c ' . i copv: any computer outpu

m;crofiche.consisting of a header, function name, and a hot \,
or ot|ier readable mediums suethat is designed to perform a task within the program.

Q)ntrast with soft copyfunction body: the part ol a 1 unction that contains , j are; any ol the physical coml
printer,

the local definitions and statements; all of a funct.on hajrdwar^ (he keyboard or a Prexcept the header declaration. Contrast with , ration: that part of a function (iaStlSSTw.. *- — *function call: an expression that invok es t u exccu
pararneter declarations,tion of a function.

Glossary

infinite loop: a loop that does not terminate.
information hiding: a structured programming
concept in which the data structure and the imple-
mentation of its operations are not known hy the user.

initialization: the process of assigning values to a
variable at the beginning of a program or a function.
initializer: in C, any value assigned to a constant or
variable when it is defined.

inorder traversal: a binary tree traversal in which
the root is processed after the left subtree and before
the right subtree. Contrast with preorder and
postorder traversal .

input device: a device that provides data to he read
by a program.

input stream: in C, the How of data from a hie to
the program.

inquiry: a request lor information from a program.

inquiry all: an algorithm that determines if all data
items in a list meet some criteria.
inquiry any: an algorithm that determines il any
data item in a list meet some criteria.
insertion sort: a sort algorithm in which the first
element from the unsorted portion of the list is
inserted into its proper position relative to the data in
the sorted portion of the list .

integer: an integral number; a number without a
fractional part.
integral type: a data type that can store only whole
numbers.

intelligent data name: a software engineering
principle that requires the identifier to convey the
meaning or use of an object .

interoperability: the quality factor that addresses the
ability of one system to exchange data with another.
iteration: a single execution of the statements in
a loop.

ider file: in C, a file consisting ot prototype
ements and other declarations and placed in a
ary' for shared use.
id pointer: a pointer that identifies the first cle-
at of a list.
ip: see heap memory.
ip memory: a pool ot memory that can he used
lynamically allocate space for data while the pro-
111 is running.

tadecimal: a numbering svstem with base 16. Its
its are 0 1 2 3 4 5 6 7 8 9 A B C D E F.
;h-level language: a (portable) programming
guage designed to allow the programmer to con-
ltrate on the application rather than the structure
1 particular computer or operating system.
itogram: <1 graphical representation of a fre-
ency distribution. See also frequency array.

I
jntifier: the name of an object . In C, identifiers
a consist only of digits, letters, and the underscore.
.. else: a decision statement in C.
laginary type: the data type in C that can repre-
nt and imaginary number in mathematics.
iplicit type conversion: the automatic conversion
data from one type to another when required within
2 program. Contrast with explicit type conversion.
elude: in C , a preprocessor command that speci-
es a library file to be inserted into the program.
degree: in a tree or graph, the number ol lines
itering a node.
dentation: a coding style in which statements
•pendent on a previous statement, such as / / or
Wile, are coded in an indented block to show their
lationship to the controlling statement.
idex: the address of an element within an array.
IQ also subscript .
idex range checking: a feature available in some
impilers that inserts code to ensure that all index
ferences are within the array.
idexing: a process used to identify one element in
l array.
idirect pointer: a pointer that locates the address
data through one or more other pointers; pointer to

ainter.

J

justification: an output formatting parameter that
controls the placement of a value when it is shorter
than the specified output width.

Glossary 1137

K linear loop: a loop whose execution is a function of
the number of elements being processed. See also
linear efficiency.
line comment: a comment that spans only to the
end of the current line. Contrast with block comment .
linear search: see sequential search.
link: in a list structure, the field that identifies the
next element in the list .

key: one or more fields that are used to identify a
record (structure).
keyboard: an input device used for text or control
data , that consists of alphanumeric keys and
function keys.

key-sequence list: a list in which the data items
arc ordered based on the value of a key.

keywords: see resen'ed words.
KISS: in this text: Keep It Short and Simple.

linked list: a linear list structure in which the
ordering of the elements is determined by link fields.
linked list traversal: processing in which every
element of a linked list is processed in order.
linker: the program creation process in which an
object module is joined with precompiled functions
to form an executable program.

list: an ordered set of data contained in main mem-
on'. Compare with file.
list traversal: any logic that visits and processes all
the data in a list .
literal: an unnamed constant coded in an expression.

L

last in-first out: a data structure processing
sequence in which data are processed in the reverse
order that are received; a stack.
Latin character set: theextended ASCII character
set in Unicode.
leading zero Hag: the flag in the format string of a
print statement indicating that numeric data are to
he printed with leading zeros.
leading zero padding: adding extra zeros at the
beginning of a data item.

loader: the operating system function that fetches
utable program into memory for running.

local declaration: a variable or type declaration
that is only visible to the block in which it is con-

left justification: the orientation ol variable-length tained. Contrast with global declaration.
data in an output format such that trailing null values variaye; a variable defined with a block.

inserted and the first data character is at the left , , rr

e„d or ,1,0 p,„„ Com, , wilh
left-to-right associativity: the evaluation ol an tionatc to the log of the number ol elements being
expression that parses from the left to the right. Con- processeJ.
trast with right-to-left associativity.

length-controlled string: a variable-length string
lunction in which the data are identified by a stiuc -

tural component containing the length ol the data.
lexicographical: a textual data order based on the
dictionarv.

an exec

are

logarithmic loop: a loop whose efficiency is a

function ol the log of the number of elements being

processed. See also logarithmic efficienc)’.

logical cohesion: a design attribute that describes
a module in which the processing within the mod-

ule is related only by the general type ol processing

being done. Considered unacceptable design in
LIFO: last in-first out.
limit test expression: in a loop, the expression that
determines if the loop will continue or stop. Sec a so

terniinating condit ion.
linear efficiency: a measure
module in which the run time is proportionate to the

number of elements being processed.

linear list: a list structure in which each element,
except the last , has a unique successor.

structured programming,

logical data: data whose values can be only true or

false. See Boolean.
: a C operator (& &, ||,!) used in

logical operator:
a logical expression.

loop: the construct used to repeat one or more

statements in a program. The while, for, and do...
in C.

of the efficiency of a

while statements

1 Glossary

nested if statement: an // statement coded as
either the true or false statement within another i f.
nested loop: a loop contained within another loop.
nested structure: a structure that contains other
structures.
node: in a data structure, an element that contains
both data and structural elements used to process
the list .
nonlinear list: a list in which each element can
have more than one successor.
null else: the absence of a false statement in an i f
statement.

p control expression: the expression in a loop
ement that is used to determine if the body of the
3 is to he executed.
p update: the code within a loop statement or
ly that changes the environment such that the
p will eventually terminate.
lue: an expression that allows the contents oi a
iahle to he modified .

M

ichine language: the instructions native to the
Ural processor of a computer and that are execut -
e without assembly or compilation.
tin memory: see memory.
isk: a variable or constant that contains a bit con-
uration used to control the setting ol hits in a bit-
se operation .
aster file: a permanent file that contains the most
rrent data regarding an application.
emory: the main memory ol a computer consist-
ed random access memory' (HAM) and read-only
emory' (ROM); used to store data and program
structions.
emory constant: a C type defined using the type
lalilier const .
erge: to combine two or more sequential files into
le sequential file based on a common key and
ructure format .
letadata: data about a list or other data structure
ored within the data structure itself.
lonitor: the visual display unit of a computer sys-
* m. usually a video display device.
lultidimensional array: an array whose elements
jnsist of one or more arrays.
uiltiplicative expression: an expression that con-
uns a multiply, divide, or modulus operator.
lultiway selection: a selection statement that is
apable of evaluating more than two alternatives. In
> , the switch statement. Contrast with two-way
ilection.

0

object module: the output of a compilation con-
sisting of machine language instructions.

octal: a numbering system with a base of 8. The
octal digits are 0 I 2 3 4 5 6 7.
offset: in pointer arithmetic, a computed value that
is used to determine another index location within
an array.
one-dimensional array: an array with only one
level of indexing.
one’s complement: the bitwise operator that
reverses the value of the hits in a variable.
online update: an update process in which trans-
actions are entered and processed by a user who has
direct access to the system. Contrast with hatch
update.
open function: the function that locates and pre-
pares a file for processing.
operability: the quality factor that addresses the
ease with which a system can be used.
operand: an object in a statement on which an
operation is performed. Contrast with operator.

operating system: the software that controls the
computing environment and provides an interlace to
the user.
operator: the syntactical token representing an
action on data (the operand). Contrast with operand.

ordered list: a list in which the elements are
arranged so that the key values are placed in ascend-
ing or descending sequence.
outdegree: the number of lines leaving a node in a
tree or a graph.

N

latural language: any spoken language.
legative logic: an expression that begins with the
legation operator (!).

Glossary 1139
output device: a device that can be written but
not read.

output stream: in C, the flow of data fre
gram to the file.
overflow: the condition that results when
attempt is made to insert data into a structure andthere is no room.

portability: the quality factor that addresses theease with which a system can he moved to otherhardware environments.>m a pro-
postfix decrement: in C, the operator (such as a--)that subtracts 1 from a variable after its value hasbeen used in an expression.
postfix expression: an expression in which the
operator follows the operand.

an

postfix increment: in C, the operator (such asa++) that adds I to a variable after its value has been
P

padding: extra zeros or spaces added to the left orright ol a data item.
parameter: a value passed to a function.
parameter list: a list of values passed to a function.(Note: 1 he values may be data or addresses.)
parent: a tree or graph node with an outdegree
greater than 0; that is, with successor.
pass by address: in C, the technique used when a
pointer is passed to a function as a parameter.
pass by reference: a parameter passing technique
in which the called function refers to a passed
parameter using an alias name.
personal computer (PC): a computer designed
lor individual
plane: the third dimension in a multidimensional
array.
pointer: a constant or variable that contains an
address that can be used to access data.
pointer arithmetic: addition or subtraction in
which a pointers contents (an address) are changed
by a multiple of the size ol the data to which it is
pointing.
pointer constant: a pointer whose contents cannot
be changed.
pointer indirection: the use of a pointer to
access data.

used in an expression.
post-test loop: a loop in which the terminating
condition is tested only after the execution of the
loop statements. Contrast with pretest loop.
precedence: the priority assigned to an operator or
group of operators that determines the order in
which operators will he evaluated in an expression.
See also associativity.
precision: in the format string of a print function,
the maximum number of integral digits, the number
ol significant digits or fractional digits in a floating-
point number, or the maximum number of characters
in a string.
precision modifier: the print format string modi-
fier that specifies the number of decimal places to be
printed in a floating-point value.
prefix decrement: in C. the operator (such as —a)
that subtracts one from a variable before its value is
used in an expression. Also known as unary decrement.

use.

prefix expression: an expression in which the oper-
ator precedes the operand.

prefix increment: in C, the operator (such as ++a)

that adds I to a variable before its value is used '

expression. Also known as unary increment.

preprocessor: the first phase ol a C compilation in
which the source statements are prepared for compi-
lation and any necessary libraries are loaded.

directives: commands to the C

in an

preprocessor
precompiler,

pretest loop: a loop in which the terminating con-
. tested before the execution of the loop state-

. Contrast with post -test loop.

primary expression: an expression consisting of
only a single operator; the highest priority expression.

: the volatile (RAM) memory ol a

pointer to function: a pointer that identifies the
entry' point to a function. It is used to pass a func-
tion’s address as a parameter.
pop: the stack delete operation.

dition is
ments

polyonymic efficiency: a measure ol the effi-
ciency of a module in which the run time is propor
donate to the number of elements raised to the
highest factor i

primary storage
computer.polynomial.m < i

40 Glossary

quadratic loop: a loop that consists of two or more
loops, each of which have a linear efficiency, result-
ing in a loop with quadratic efficiency.
quality: see software quality.

intable character: a character value that is asso-
rted with a print graphic.
•inter: an output device that displays the output
i paper.
rocedural cohesion: a module design in which
ie processing within the module is related by con-
ol flows. Considered acceptable design only at the
gher levels of a program.
rocess-control loops: a continuous loop used to
rntrol operating equipment , such as a building air
Dnditioning/heating system.
rocessing unit: see central processing unit.
rogram development: the system development
ctivity in which requirement specifications are con-
erted into executable programs.
•rogram file: a file that contains an executable
•rogram.

> rogram testing: the process that validates a pro-
gram’s operation and verifies that it meets its design
equirements.

>rototype declaration: the function header that
Jeclares the return type, function name, and parame-
er number and types without defining the function
tself .

program documentation: comments placed
A ithin a program to help the reader understand the
purpose of the program or a portion ol its
implementation.

promotion: an implicit type conversion in which
the rank of an expression is temporarily increased to
match other elements of the expression.

prototype statement: in C , the declaration of a
function that provides the return type and formal
parameter types.

pseudocode: English-like statements that follow a
loosely defined syntax and are used to convey the
design of an algorithm or function.

push: the stack insert operation.

query: see inquiry.
linear list in which data can he insertedqueue: a

only at one end, called the rear, and deleted from the
other end. called the front .

R

ragged array: a two-dimensional array in which the
number of elements in the rows is not equal.

random number: a number selected from a set in
which all members have the same probability of
being selected.

random number seed: the initial number passed
to a random-number generator.
read mode: the attribute of a file that indicates that
it is opened for input only.
read state: one of three states that an open file may
assume. The state of a file during which only input
operations may be performed. See also error state,
write state.
real time: processing in which updating takes place
at the time the event occurs.
real type: a data type representing a number with a
fraction.
rear: when used to refer to a list ; a pointer that
identifies the last element.
record: see structure.
recursion: a function design in which the function
calls itself.
register: the storage class that requests that, if pos-
sible, a variable be allocated to a CPU register.

reliability: the quality factor that addresses the
confidence or trust in a system s total operation.
reserved words: the set of words in C that have a
predetermined interpretation and cannot be used in
the definition ol an object .

return: the C statement that causes execution of a
function to terminate and control to be resumed by
the calling function or the operating system.

Q

quadratic ef ficiency: a measure of the efficiency
of a module in which the run time is proportionate to
the number of elements squared. Quadratic effi-
ciency is one of the polyonymic factors.

1
Glossary 1141

reusability: the quality factor that addresses th
with which software can be used in other programs.
reusable code: code that can be used by more than
one process.
rewind: the C function used to position the file
marker at the beginning of an open file.
right-to-left associativity: the evaluation of
expression that parses from the right to the left. Con-
trast with left-to-righl associativity.
right justification: the orientation of variable length
data in an output format such that leading null values
are inserted and the last data character is at the right
end of the print area. Contrast with left justification.
right—left rule: a method of reading complex dec-
larations or definitions that starts with the identifier
and alternately reads right and left until the declara-
tion has been fullv read.

selected and placed at the end of the sorted portionof the list.
selection statement: a statement that choosesbetween two or more alternatives. In C, the if ...else
or switch statements.
self-referential structure: a structure that
tains a pointer to itself .
sentinel: a flag that guards the end of a list or a file.
The sentinel is usually the maximum value for a key
field and cannot he a valid data value.
separate compilation: a capability within a pro-
gramming language that allows parts of a program to
be compiled independently and later assembled into
an executable unit.

e ease

con-
an

sequential cohesion: a module design in which
the processing within the module flows such that the
data from one process are used in the next process.
sequential file: a file structure in which data must
be processed serially from the first entry in the file.
sequential search: a search technique used with a
linear list in which the searching begins at the first
element and continues until the value of an element
equal to the value being sought is located, or until
the end of the list is reached.

in a two-dimensional array, elements along arow:
horizontal axis. Contrast with column.

root: the first node of a tree; the node with no
predecessor.
rvalue: an expression attribute indicating that the
expression can be used only to supply a value for
another expression.

serial search: any search technique that starts at the
beginning of the list and continues toward the end.

server: in a client/server system, the centralized
computer that provides auxiliary services.

s
scanset: the set of allowed or disallowed characters
when reading a string.
scope: an attribute of a variable that defines
whether it is visible to or hidden from statements in a
program. See also temporal authority.
search: the process that examines a list to locate
one or more elements containing a designated value
known as a search argument.
secondary storage: see aiexilian storage.
security: the quality factor that addresses the
or difficulty with which an unauthorized user can
access data.
seed: the variable used in a random number genera
tor to calculate the next number in the series. In ,
the seed is set by the library function sranii.
seek file: in the processing of a disk file, the action

the index marker to a new position in the
file; in C, the fseek function,

selection sort: the sort algorithm in which the
smallest value in the unsorted portion of a list >s

short: the C type for short integer.

short integer: an integer format used for small
numbers, generally less than 32,768.

side effect: a change in a variable that results from
the evaluation of an expression; any input/output

performed by a called function.

sign flag: the flag value (+) in the conversion code
of a print format string that indicates that positive
numbers must be printed with a plus sign.

modifier indicating that a numeric
ive. Contrast with

ease
signed: a type
value may be either positive or negative

unsigned
indicator (h,1, L) in the conversion code of

that modifies integer and float types.

data formatting token that modi-
siz.e: an
a format string

Jze modifier: the
lies the conversion code.that
slnck bytes: inaccessible memory locations added
between fields in a structure to force a hardware

ired boundary alignment.

moves

requi

/

1142 Glossary

statement: a syntactical construct in C that repre-
sents one operation in a function.

statement section: the section in a program where
the executable statements are written.

static : a storage class that designates (a) that a local
field must maintain its contents throughout the exe-
cution of a program (contrast with auto), or (b) that a
global variable’s name must not be exported to the
linker (contrast with extern).
static memory: memory whose use (e.g., lor a vari-
able) does not change during the running ol a
program.
static memory allocation: memory whose loca-
tion is determined by the compiler and therefore pre-
set before run time. Contrast with dynamic mentor)'
allocation.
stderr: see standard error stream.

stdin: see standard input stream.
stdout : see standard output stream.
stepwise refinement: a design methodology in
which a system or program is developed from the top
down; starting with the most inclusive, each module
is decomposed and refined until the meaning of a
component is intrinsically understood.
storage class: an attribute of a field that deter-
mines its spatial and temporal usage. See also auto,
extern , register, static.
stream: in C, the flow of data between a file and the
program; a sequence of bytes in time.
string: in C, a variable-length sequence of charac-
ters delimited by a null character.
string constant: a constant comprised of a
sequence characters enclosed in double quotes.
strongly connected graph: a graph in which eacf
there is a path from every node to every other node;
contrast with weakly connected graph.
structure: a named collection of fields grouped
together lor processing; see record .
structure chart: a design and documentation tool
that represents a program as a hierarchical flow ol
functions.
structure variable: in C, a structure definition tha
cannot be used as a type.

stub: a temporary and incomplete function used tc
test function interfaces during program developmen

soft copy: computer output written to a nonperma-
nent display such as a monitor. Contrast with
hard copy.
software: the application and system programs nec-
essary' for computer hardware to accomplish a task
including their documentation and any required
procedures.
software quality: an attribute ol software that
measures the user’s total satisfaction with a system.
sort: the process that orders a list or file.
sort pass: one sort loop during which all elements
are tested.
source file: the file that contains program state-
ments written hv a programmer before they are con-
verted into machine language; the input file to an
assembler or compiler.
space flag: the flag value in the conversion code of
a print format string indicating that positive numbers
must be printed with a leading space.
sparse array: a two-dimensional array in which the
rows are only partially filled.
spatial authority: an attribute ol a field that deter-
mines which functions within a program can refer to
it or change its contents.
square brackets: the [and] symbols.
stack: a restricted linear list in which data be
inserted and deleted at only one end, called the top.
stack memory: in C, the memory management
facility that is used to store local variables while they
are active.
stamp coupling: the communication technique
between modules in which data are passed as a
structure; often results in unrequired data being
passed .

standard error stream: the text file automatically
opened by C lor display of error messages (stderr).
standard input stream: the text file automatically
opened by C for input to a program (stdin).
standard library: any of a collection of libraries
containing functions required by the C standard pro-
vided by an implementation of the C language.
standard output stream: the text file automati-
cally opened by C for output from a program (stdout).
standard type: one of the intrinsic C types that arc
considered atomic; that is, that cannot he broken
down (void , char, ini , float).L

Glossary 1143
subscript: an ordinal number that indicates the
position of an element within an array. See also index.

ternary expression: in C, an expression that con-tains three operands (the conditional expression isthe only ternary expression
testability: an attribute of software that measuresthe ease with which the soltvvare can he tested as anoperational system.
testing: see program testing , blackbox testing, orwhitebox testing.
text editor: software used to create and change textlilcs, such as a word processor or a source programeditor.

summation: an algorithm that adds a list of
data items. in C).
suffix: a modifier to
cates its type when used in an expression,

switch: see flag .
switch statement: the C implementation of themultiway selection.
symbolic language: a computer language, onelevel removed from machine language, that has a
mnemonic identifier lor each machine instructionand has the capability of symbolic data
syntax: the grammatical rules of a language. In C,the set of keywords and formatting rules that must befollowed when writing a program.
system development life cycle: a model of the
steps required to develop software that begins withthe need for the software and concludes with its
implementation.

a numeric constant that indi-

text file: a file in which all data are stored ascharacters. Contrast with binar)' file.
timeliness: an attribute of software that
responsiveness of a system to a user’s time
requirements.
time-sharing environment: an operating system
concept in which more than one user has access to a
computer at the same time.
token: in C, a syntactical construct that represents
an operation or a flag, such as the assignment
token (=).
top: in a stack, the next element to be removed.
top-down design: a program design concept in
which a design progresses through a decomposition
of the f unctions beginning with the top of the struc-
ture chart and working toward the lowest modules.
See also stepwise refinement.
transaction file: a file containing relatively tran-
sient data that is used to change the contents of a
master file.

names.
measures

system development software: any computer toolused to develop software, such as but not limited to
compilers, debuggers, and documentation tools.
system software: any software whose primary pur-
pose is to support the operation of the computing
environment. Contrast w ith application software.
system support software: software used for
application processing, such as system utilities.

non-

T
transform analysis: an analytical process that cre-
ates a program design by classifying modules as
input , process, or output.
transform module: the function in a program that
takes input from the afferent modules and prepares it

for processing by the efferent modules.
translation unit: in C, a temporarycompilation file

le used to store modified source code.

translator: a generic term for any of the language
. See alsoassembler and compiler.

in which each ele-

tagged structure: a C structure in which the struc-
ture is given an identifier that can he used to dec are
variables of the structure type.
tape storage: an auxiliary storage medium that
stores data as a sequential file on a magnetic recorc
ing surface.
temporal authority: an attribute of a field that
determines when a field is alive and active during tl
execution of a program.
temporal cohesion: a module design in which pro-
cesses are combined because they all neet to c pro
cessed in the same time sequence.
terminating condition: in a loop, the condition
that stops a loop. See also limit test expression.

conversion programs
traversal: an algorithmic process
ment in a structure is processed once and only once.

boolean value used to indicate that

t

an
true: a
expression is true.t .

1144 Glossary

variable: a memory storage object whose value can
be changed during the execution ol a program. C
trast with constant .
variable-length array: an array in which the num-
ber of elements can be changed during the run time.
Contrast with fixed -length array.
variable structure: a data structure in which two
or more types of data may occupy the same positions
within the structure. In C, a union.
visibility: the temporal authority for a field that des-
ignates where in the program it can be accessed or
changed; see scope.
vertex: a node in a graph.
void : the absence ol data.
void functions: functions whose return value
is void .
void pointer: a generic pointer type that can hold
the address of any data type or structure.
volatile : an attribute of a variable that indicates that
it may be accessed or changed by functions beyond
the control of the compiler.

two-dimensional array: an array in which each ele-
ment contains one array. See also multidimensional
array.
two-way selection: a selection statement that is
capable of evaluating only two alternatives. In C, the
if . . .else statement. Contrast with multiway selection.
type: a set of values and a set of operations that can
be applied on these values.
type qualifier: a modifier used in the definition ol
an object.

on-

U

unary expression: an expression that consists of
one operator and one operand.

in C, the operator that complementsunarv minus:
*

the value of an expression.
unbuffered input/output: input or output that is
transmitted directly to or from memory without the
use of a buffer.
underflow: an event that occurs when an attempt is
made to delete data from a data structure and it
is empty.
Unicode: The internation character set used to
define valid characters in computer science. Each
character is represented using a 32-bit unsigned
number.
union: C term for variable structure.
unsigned: a type modifier indicating that a numeric
value may be only positive. Contrast with signed .

update: (1) in array processing, the process that
changes the contents of an element; (2) in file pro-
cessing, a mode that allows a file to be both read and
written.
update mode: a file process mode that specifies
that the file will be both read and written.
upward communication: data flow from the
called function to the calling function.
user-defined function: any function written by the
programmer, as opposed to a standard library f unction.
user prompts: monitor messages to a user that
request the user input one or more values.

W

waterfall model: a system development life cycle
in which each phase of development , such as
requirement development and design, is completed
before the next phase starts.
weakly connected graph: a graph in which there
is at least one node with no path to any other node:
contrast with strongly connected graph .

weighted graph: a graph whose lines are weighted .

while loop: a sentinel-controlled, pretest loop in C.
whitebox testing: program testing in which the
internal design of the program is considered; clear
hox testing . Contrast with blackbox testing.
whitespace: in C, the space, vertical and horizontal
tabs, newline, and form-feed characters.
width modifier: in a format string, a conversion
code modifier that specifies the input maximum or
output minimum size.
write mode: the attribute of a file indicating that it
is opened for output only.
w rite state: one of three states that an open file can
assume. A file in the write state can only be used lor
output. See also error state , read state.

V

L value error: an input value that does not satisfy
specified criteria.

American Standard Code for Informa- assignment expression 104
lion Interchange. See ASCII

analysis 14
ancestor 968
and 233
ANSI C 31
append tile 42
application software 4
arc 981

Symbols compound 105
simple 104

assignment suppression flag 63
64, 408

associativity 94, 106
Icft -to-right 108
right-to-left 108, 109

atan2f 1063
atan2l 1063
atanf 1063
atanl 1063
atexit 1068
atol 1068
atoi 1068
atol 1068
atomic

data 986
type 986

auto 1106
automatic extent 1104
auxiliary storage 394

device 3
auxiliary symbol 1019

^define 51
/ continuation 712
<ctype.h> 264, 265
<limits.h> 41, 344. 385, 856
<math.h> 153, 18 /

<$tdbool.h> 34“

<stddef.h> 433, 562
<stdin.h> 882
<stdio.h> 33, 187, 397, 402, 423,

562, 629
<stdlib.h> 187, 268, 628, 649, 704
<string.h> 691, 733
<time.h> 193
A caret 676_ underscore 37_bool 232

Exit 1068

1092argc
argv 1092
array 460

column 511. 514, 520
constant 477
declaration 463
fixed-length 463
frequency 481
histogram 482
in structures 767
index 464
index as offset 465
initialization 465
memory layout 514

^multi-dimensional 519
of pointers 633
of structures 770
passing 476, 517, 623
passing row 516

^passing values 474
plane 520
pointer 612
printing 469
ragged 639
range checking

511, 514. 520

A
a_char 1062, 1063
abort 268, 1068
abs 187, 1067
abstract data type 728, 986, 987, 988
abstraction 988
actual parameter 165
add 103
additive expression 103
address operator 559
adjacent vertices 981
Adler, Mark 922
afferent 910
ALGOL 30
algorithm efficiency 365
algorithmics 366

big-0 notation 370
exponential efficiency 372
factorial efficiency 372
linear efficiency 372
linear logarithmic efficiency 372
logarithmic efficiency 372
polyonymic efficiency 372
quadratic efficiency 372

alphabet—ASCII 39, 48

B
B Language 30
base 2 1034
base 10 1034
base 16 1036
base 256 1037

to binary 1040
weight and value

base case 352
basic latin 1005
Basic Multilingual Plane
batch update 859
BCPL 30

^big endian 786
big-0 notation
binary

block i/o 8-3
file 823

binary expression
addit'Ve l (!3

R82bitwise and

1038
470

1006row
size 463
string 688
subscript 460

dimensional 509
variable-length 463

array of pointers 633
ASCII 39, 48, 1005

character code table 1009
extended 1005

asctime 1069
assembler language

370two

101

f
1156 Index

vertex 981
void 38
void function

with parameters 156
without parameters

void pointer 581
volatile 1113

782union
imluh /er 82
referencing members / 8

_
structure "83
switch statement 786

universal character set 1005
UNIX 30, 1091, 1121

Korn Shell 1091
unsigned 40

type qualifier 1111
const 52, 477
const pointer 1112
restrict 1114
volatile 1113

typedef 746, 754
identifier style "46

156

w
1040storage

unsigned integers
update

errors 862
program design 860
structure chart 862

updating 859
user prompt 128

u waterfall model 13
wcscat 1069
wcschr 1069

1069

1040

UCS See Universal Character Set

unary
minus 100
plus 100

unary expression
not 232
one’s complement 886
prefix decrement
prefix increment 98
sizeof 100

underflow
queue

undirected graph 981
ungetc 435, 1066
ungetwc 1066
Unicode 1005. 1006

Basic Multilingual Plane 1006
Private Use Planes 1009
Supplementary Ideographic

Plane 1009
Supplementary Multilingual

Plane 1009
Supplementary Special Plane

wcscmp
wcscpy 1069

1069wcscspn
wcslen 1069
wcsncat 1069

1069wcsncmp
98 1069V wcsncpy

vvcspbrk
wcsrchr 1069

1069

1069
variable 42

declaration 43
definition 43
initializer 44
local 164
pointer 561
string 671

variable length string 666
variable-length array 463

declaration 464
function call 476
function prototype 476
initialization 465
two-dimensional 517

wcsspn
wcsstr 1069
wcstod 706
wcstok 1069

kly connected graph 982

959, 962

wea
while loop 310
whitebox testing 20, 594
whitespace

format string 404
width 57, 408, 420, 677
Wirth , Niklaus 912
write state 824
wscanl 10661009

a

!•

3 SJCD 00358 198N
s

s ,

1Argument Type
integral

Size Specifier Code
hh (char), h (short), none (int), 1 (long). 11 (long long)

h (short), none (int), 1 (long). 11 (long long)

hh (char), h (short), none (int), 1 (long), 11 (long long)

l
integer d
unsigned int u
character octal hh (unsigned char) o
integer hexadecimal h (short), none (int), 1 (long), 11 (long long)

none (float). 1 (long double), L (double)

none (float), 1 (long double), L (double)

none (float), 1 (long double), L (double)

none (float), 1 (long double), L (double)

x
real f
real (scientific) e
real (scientific) g
real (hexadecimal) a
character none (char), 1 (wchar_t) c
string none (char string), 1 (wchar_t string) s
pointer P
integer (for count) none (int), hh (char), h (short), 1 (long), 11 (long long n
set none (char), 1 (wchar_t) [

Sizes, and Conversion Code for scanf Family

Argument TVpe codeSize SpecifierFlag
d, ihh (char), h (short), none (int),

1 (long), 11 (long long)
integer -, +, 0, space

unsigned integer hh (char), h (short), none (int),
I (long), 11 (long long)

-, +, 0, space u

integer (octal) hh (char), h (short), none (int),
1 (long), 11 (long long)

hh (char), h (short), none (int),
1 (long), 11 (long long)

none (float), 1 (long double),
L (double)

none (float), 1 (long double),
L (double)

-, +, 0, #, space o

x, Xinteger (hex) -, +, 0, #. space

freal -, +, 0, #, space

e, Ereal (scientific) -, +, 0, #, space

g. Gnone (float), 1 (long double),
L (double)

none (float), 1 (long double),
L (double)

real (scientific) -, +, 0, #. space

a, Areal (hexadecimal) -, +, 0, #. space

none (char), 1 (w-char) ccharacter
none (char string), 1 (w-char string)string

Ppointer
none (int), h (short), 1 (long) ninteger (for count)

%to print %

Flags, Sizes, and Conversion Codes for print/ Family

Hi

Behrouz A. Forouzan & Richard F. Gilberg

This third edition of Computer Science: A Structured Programming Approach Using C

offers introductory students a fully updated, comprehensive survey of computer science
theory and the C programming language. Now in full color, Forouzan and Gilberg

continue to use a highly visual approach to explain fundamental programming concepts.
Changes to the new edition include full compliance with the C99 standard, expanded
sections on inter-function communication and the basic data structures, and a thoroughly

revised Chapter 3.

RELATED TITLE

F E A T U R E S

o Updated to comply with the C99 standard,

including discussions of complex
arithmetic and Unicode.

o Features a new full-color page design that
enhances figures and presents programs
as they might be shown in the compiler.

o Offers a groundbreaking visual approach,
including a wide variety of figures, tables,
and programs.

DATA STRUCTURES
Uses a large number of examples,
ranging from code snippets to complete
implementations requiring several
functions, providing the student with a
range of techniques to study and practice.

Contains extensive end-of-chapter
pedagogy, including a summary,
keywords, tips, and a robust problem
set featuring review questions,
exercises, problems, and projects.

o

o Data Structures:
A Pseudocode
Approach with C
Second Edition
Richard F. Gilberg &
Behrouz A. Forouzan
0-534-39080-3

A B O U T T H E A U T H O R S

Behrouz A. Forouzan has more than 32 years of electronics and computer science experience
in industry and academia. His industry experience includes designing electronic systems. After
leaving industry, he joined De Anza College as a professor of computer science. In addition to
this text, he has authored and co-authored nine other textbooks, including Data Structures: A

Pseudocode Approach with C and Foundations of Computer Science.

Richard F. Gilberg has more than 40 years of computer science experience in industry and
academia. His industry experience includes the development of large application systems,

database administration, and system testing. After leaving industry, he joined De Anza College
as a professor of computer science. In addition to this text, he has also co-authored several
others, including Data Structures: A Pseudocode Approach with C.

;V COURSE TECHNOLOGY
C E N G A G E Learning'

F o r your lifelong learning solutions, visit course.cengage.com
Purchase any of our products at your local college store or at our
preferred online store www.ichapters.com

ISBN-13: 176-0-534-41135-1ISBN-10: 0-534-41135-4
30 DO >

=1 7fl 53 13E1

	Table Of Contents
	Chapter 1: Introduction to Computers
	1.1 Computer Systems
	1.2 Computing Environments
	1.3 Computer Languages
	1.4 Creating and Running Programs
	1.5 System Development
	1.6 Software Engineering
	1.7 Tips and Common Errors
	1.8 Key Terms
	1.9 Summary
	1.10 Practice Sets

	Chapter 2: Introduction to the C Language
	2.1 Background
	2.2 C Programs
	2.3 Identifiers
	2.4 Types
	2.5 Variables
	2.6 Constants
	2.7 Input/Output
	2.8 Programming Examples
	2.9 Software Engineering
	2.10 Tips and Common Programming Errors
	2.11 Key Terms
	2.12 Summary
	2.13 Practice Sets

	Chapter 3: Structure of a C Program
	3.1 Expressions
	3.2 Precedence and Associativity
	3.3 Side Effects
	3.4 Evaluating Expressions
	3.5 Type Conversion
	3.6 Statements
	3.7 Sample Programs
	3.8 Software Engineering
	3.9 Tpes and Common Errors
	3.10 Key Terms
	3.11 Summary
	3.12 Practice Sets

	Chapter 4: Functions
	4.1 Designing Structured Programs
	4.2 Functions in C
	4.3 User-Defined Functions
	4.4 Inter-Function Communication
	4.5 Standard Functions
	4.6 Scope
	4.7 Programming Example - Incremental Development
	4.8 Software Engineering
	4.9 Tips and Common Programming Errors
	4.10 Key Terms
	4.11 Summary
	4.12 Practice Sets

	Chapter 5: Selection - Making Decisions
	5.1 Logical Data and Operators
	5.2 Two-Way Selection
	5.3 Multiway Selection
	5.4 More Standard Functions
	5.5 Incremental Development Part II
	5.6 Software Engineering
	5.7 Tips and Common Programming Errors
	5.8 Key Terms
	5.9 Summary
	5.10 Practice Sets

	Chapter 6: Repetition
	6.1 Concept of a loop
	6.2 Pretest and Post-test Loops
	6.3 Initialization and Updating
	6.4 Event- and Counter-Controlled Loops
	6.5 Loops in C
	6.6 Loop Examples
	6.7 Other Statements Related to Looping
	6.8 Looping Applications
	6.9 Recursion
	6.10 Programming Example - The Calculator Program
	6.11 Software Engineering
	6.12 Tips and Common Programming Errors
	6.13 Key Terms
	6.14 Summary
	6.15 Practice Sets

	Chapter 7: Text Input/Output
	7.1 Files
	7.2 Streams
	7.3 Standard Library Input/Output Functions
	7.4 Formatting Input/Output Functions
	7.5 Character Input/Output Functions
	7.6 Software Engineering
	7.7 Tips and Common Programming Errors
	7.8 Key Terms
	7.9 Summary
	7.10 Practice Sets

	Chapter 8: Arrays
	8.1 Concepts
	8.2 Using Arrays in C
	8.3 Inter-function Communication
	8.4 Array Applications
	8.5 Sorting
	8.6 Searching
	8.7 Two-Dimensional Arrays
	8.8 Multidimensional Arrays
	8.9 Programming Example - Calculate Averages
	8.10 Software Engineering
	Untitled
	8.11 Tips and Commong Programming Errors
	8.12 Key Terms
	8.13 Summary
	8.14 Practice Sets

	Chapter 9: Pointers
	9.1 Introduction
	9.2 Pointers for Inter-Function Communication
	9.3 Pointers to Pointers
	9.4 Compatibility
	9.5 Lvalue and Rvalue
	9.6 Software Engineering
	9.7 Tips and Common Programming Errors
	9.8 Key Terms
	9.9 Summary
	9.10 Practice Sets

	Chapter 10: Pointer Applications
	10.1 Arrays and Pointers
	10.2 Pointer Arithmetic and Arrays
	10.3 Passing an Array to a Function
	10.4 Memory Allocation Functions
	10.5 Arrays of Pointers
	10.6 Programming Applications
	10.7 Software Engineering
	10.8 Tips and Commong Programming Errors
	10.9 Key Terms
	10.10 Summary
	10.11 Practice Sets

	Chapter 11: Strings
	11.1 String Concepts
	11.2 C Strings
	11.3 String Input/Output Functions
	11.4 Arrays of Strings
	11.5 String Manipulation Functions
	11.6 String/Data Conversion
	11.7 A Programming Example - Morse Code
	11.8 Software Engineering
	11.9 Tips and Common Programming Errors
	11.10 Key Terms
	11.11 Summary
	11.12 Practice Sets

	Chapter 12: Enumerated, Structure, and Union Types
	12.1 The Type Definitions (typedef)
	12.2 Enumerated Types
	12.3 Structure
	12.4 Unions
	12.5 Programming Application
	12.6 Software Engineering
	12.7 Tips and Common Programming Errors
	12.8 Key Terms
	12.9 Summary
	12.10 Practice Sets

	Chapter 13: Binary Input/Output
	13.1 Text versus Binary Streams
	13.2 Standard Library Functions for Files
	13.3 Converting File Type
	13.4 File Program Examples
	13.5 Software Engineering
	13.6 Tips and Common Programming Errors
	13.7 Key Terms
	13.8 Summary
	13.9 Practice Sets

	Chapter 14: Bitwise Operators
	14.1 Exact Size Integer Types
	14.2 Logical Bitwise Operators
	14.3 Shift Operators
	14.4 Masks
	14.5 Software Engineering
	14.6 Tips and Common Programming Errors
	14.7 Key Terms
	14.8 Summary
	14.9 Practice Sets

	Chapter 15: Lists
	15.1 List Implementations
	15.2 General Linear Lists
	15.3 Stacks
	15.4 Queues
	15.5 Trees
	15.6 Graphs
	15.7 Software Engineering
	15.8 Tips and Commong Programming Errors
	15.9 Key Terms
	15.10 Summary
	15.11 Practice Set

	Appendix A: Character Sets
	A.1 Unicode
	A.2 ACII
	A.3 Universal Encoding in C

	Appendix B: Keywords
	Appendix C: Flowcharting
	C.1 Auxilary Symbols
	C.2 Primary Symbols

	Appendix D: Numbering Systems
	D.1 Computer Numbering System
	D.2 Storing Integers
	D.3 Storing Real Numbers

	Appendix E: Integer and Float Libraries
	E.1 limits.h
	E.2 float.h

	Appendix F: Function Libraries
	F.1 Function Index
	F.2 Type Library
	F.3 Math Library
	F.4 Standard I/O Library
	F.5 Standard Library
	F.6 String Library
	F.7 Time Library

	Appendix G: Preprocessor Commands
	G.1 File Inclusion
	G.2 Macro Definition
	G.3 Conditional Compilation
	G.4 Other Commands

	Appendix H: Command-Line Arguments
	H.1 Defining Command-Line Arguments
	H.2 Using Command-Line Arguments

	Appendix I: Pointers to void and to Functions
	I.1 Pointer to void
	I.2 Pointer to Function

	Appendix J: Storage Classes and Type Qualifiers
	J.1 Storage Classes
	J.2 Type Qualifiers

	Appendix K: Program Development
	K.1 Process
	K.2 Coding

	Appendix L: Understanding Complex Declarations
	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Index
	Inside Back Cover
	Back Cover

