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Abstract. Present paper investigates a new approach for the MHD boundary layer flow of an incompressible upper-

convected Maxwell fluid over a permeable horizontal moving plate influenced by non-uniform heat source/sink 

parameter. We have reduced the governing PDE's into a kind of nonlinear ODE's using similarity transformations. These 

ODE’s are solved with appropriate boundary conditions by efficient shooting with Runge-Kutta method.  The obtained 

values are tabulated and compared with the earlier published papers.  
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INTRODUCTION 

The boundary layer flow over the permeable moving plate has broad range of applications in polymer processing 

units and metal processing units. For example, the manufacture of artificial sheets and foils involves the extrusion of 

molten polymers through a slit with the extrudate collected by a wind-up roll.Nevertheless, there be a situation that 

the artificial sheet is stretched without heat transfer, the artificial sheetsare elongated in certain directions for the 

improvement of its mechanical properties.Flow through a continuous moving plate has been studied by Sakiadis[1]. 

In the drawing of artificial sheets, the velocity is proportional and boundary layer thickness increases with the 

distance from the slit has studied by Crane[2]. Later, in the view on broad range of application over heat and mass 

transfer, several authors. [3-6] have investigated the flow under various parameters. It is also noted that,the few 

studies explain the flow ofUCM fluids. [7-11].  
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Figure 1. Schematic of porous stretching sheet. 

 

The theory of permeability over a stretching sheet (schematic is shown in fig.1)is an important area that has 

paying a special attention of researchers due to its wide range of applications in various disciplines like civil 

engineering, mechanical engineering, petroleum engineering, food industry, and biomedical sciences. With the 

motivation of these industrial applications, the main purpose of the investigations is to estimate the flow of UCM 

fluid over permeable moving plate in occurrence of non-uniform heat source/sink. The projected fluid model is more 

general, the consideration of various combined effectmake the study quite versatile. The proposed BVP’s are solved 

numerically using MATLAB bvp4c package. A proportional study between the existing with the available literature 

are tabulated, discussed and shown with the aid of graphs. 

 

PROBLEM FORMULATION  

 
We have considered the flow of UCM fluid flow over the porous moving plate at  𝑦 = 0, the governing PDEs of 

the flow problem are given by 
𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
= 0         (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝛽 (𝑢2 𝜕2𝑢

𝜕𝑥2 + 𝑣2 𝜕2𝑢

𝜕𝑦2 + 2𝑢𝑣
𝜕2𝑢

𝜕𝑥𝜕𝑦
) = 𝑣

𝜕2𝑢

𝜕𝑦2 −
𝜎𝐵2

0

𝜌
(𝑢 + 𝜆𝑣

𝜕𝑢

𝜕𝑦
) (2) 

Where   u & v represents horizontal and vertical velocities,𝛽- relaxation time, B0-magneticfield strength, 𝜈-the 

kinematic  viscosity,𝜌 - density of the fluid and 𝜎-electrical  conductivity. Assuming that stretching of the sheet is 

linear, the corresponding boundary conditions take the form as, 

 𝑢 = 𝑎𝑥, 𝑣 = 𝑉𝑠𝑎𝑡𝑦 = 0      (3) 

 𝑢 → ∞  as   𝑦 → ∞     (4) 

Here‘a’  is constant, negative values of𝑉𝑠represents suction velocity, and positive values of𝑉𝑠represents 

injection or blowing velocity. Let us introduce similarity variable  𝜂 and stream function  𝜓  as 

𝜂 = 𝑦√
𝑎

𝑣
, 𝜓 = 𝑥√𝑣𝑎 f(𝜂)    (5) 

Then the continuity Eqn.(1) satisfies  the  𝜓  defined as𝑢 =  
𝜕𝜓

𝜕𝑦
&𝑣 =

𝜕𝜓

𝜕𝑥
&   Eqn.(2)  becomes 

 𝑓 ′′′ − 𝑀2𝑓 ′ + 𝐾(2𝑓𝑓 ′𝑓 ′′ − 𝑓2𝑓 ′′′) − 𝑓 ′
2

+ (1 + 𝑀2𝐾)𝑓𝑓 ′′ = 0   (6) 

Where   𝑘 = 𝜆𝑎-Deborah number, magnetic field is 𝑀2 =
𝜎𝐵2

0

𝜌𝑎
and   R= 

Vs

√𝑣𝑎
- Suctionvelocity /Injection 

velocity. The corresponding BC’s are 

𝑓(𝜂) = 𝑅, 𝑓 ′(𝜂) = 1    𝑎𝑡𝜂 = 0       (7) 

𝑓 ′(𝜂) → 0   as          𝜂 → ∞     (8) 

The thermal boundary layer equation for the flow is as given below 

 𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝐶𝑝

𝜕2𝑦

𝜕𝑥2 +
𝜇

𝜌𝐶𝑝
(

𝜕𝑢

𝜕𝑦
)

2
+

𝑞′′′

𝜌𝐶𝑝
      (9) 

Sli

t 
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where T-temperature, Cpspecific heat,  at constant pressure, k- thermal conductivity and 𝑞′′′-non-uniform heat 

source/sink is expressed as  

* *( )
  q = [ ( ) ( )]w

w

ku x
A T T f B T T

x



 

   

 
Here space and temperature dependent heat transfer are respectively denoted by A* and B*. N egative values 

correspond to heat absorption and positive values corresponds to heat generation. The dimensionless temperature is 

defined as 
2

( ) ,     where =  ( ) ( )w

w

T T x
T T b PST Case

T T l
   





  
   

  

    (10) 

2

2

-
( ) , where     ( )

1
w

T T D x
g T T PHF Case

k l bx
b

l k b










 
    

  
 
 

     (11) 

The boundary conditions of thermal boundary layer equations depend upon the followingtwo cases namely,  

(i) Surface temperature is prescribed  (ii) Wall heat flux is prescribed  

 

(i) PST-Case: The surface temperature is specified as quadratic and is given by    
2

0,   0,    ( )      0.

 0,                     

w s

x
u Bx v T T x T T at y

l

u T T as y

 
      

 

  

      (12) 

Here characteristic length is l,  the dimensionless temperature variable  given by (10)satisfies by using  

(5), (9) and (12) as 
2 * *Pr 2 ( ),f f Ecf A f B             

       (13) 

Where Pr
pc

k


  is the Prandtl number, 

2 2

p s

a l
Ec

C T
 is the Eckert number, A* are space dependent and B* 

is the temperature dependent heat transfer.The corresponding BCs are 

( ) 1 at 0

( ) 0 as

  

  

 

 
          (14) 

(ii). PHF-Case : Here wall surface is considered as a quadratic power of x in the form 

 

2

,          0

0,           .

w

w

T x
u Bx k q b at y

y l

u T T as y

   
       

   

  

      (15) 

The equation (10) byusing (5), (9) and (15), gives 

 2 * *Pr  2      ( )f g g f Ecf g A f B g                 (16) 

With BC’s are  

  1 0. ( ) 0 .g at g as              (17) 

For local Nusselt number is in dimensionless form defined as  

0

Re  '(0)x

w y

x T
Nu x

T T y


 

 
    

  

    (18) 

Similarly, skin-friction coefficientor frictional drag is 

0

2

1
(0)

( ) Re

y

f

x

u

dy
C f

Bx







 
 
 

       (19) 

where 
2

Rex

Bx


   stands for local Reynolds number. 


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NUMERICAL SOLUTION 

 “We implement the suitable shooting system with Runge-Kutta4th order scheme to solve the BVPs.. The 

transformed ODE’s represented by equations (6) and (13) are transformed into following system.  

𝑑𝑓0

𝑑𝜂
= 𝑓1 ,      

𝑑𝑓1

𝑑𝜂
= 𝑓2,

𝑑𝑓2

𝑑𝜂
=

(𝑓1)2 − (1 + 𝑀2𝐾)𝑓0𝑓2 + 𝑀2𝑓1 − 2𝐾𝑓0𝑓1𝑓2

1 − 𝐾(𝑓0)2
, 

𝑑𝜃0

𝑑𝜂
= 𝜃1 ,    

𝑑𝜃1

𝑑𝜂
= Pr[2𝑓1𝜃0 − 𝜃1𝑓0 − 𝐸𝑐(𝑓 ′′)2] + (𝐴∗𝑓 ′ + 𝐵∗𝜃)     (20) 

Subsequently the boundary conditions in (8) and (12) take the form, 

0 1 1

2 0 0

(0) 0, (0) 1,    ( ) 0,

(0) 0,     (0) 0, ( ) 0.

f f f

f  

   

   
        (21)        

Here 
0 0( ) and ( ),f f       aforementioned BVP is first transformed into an IVP by properly guessing the 

neglected slopes
2 1(0) and (0)f  . The resulting IVP’s are solved with the help of MATLAB bvp4c package. 

TABLE 1.  0f   with M = 0 for different values of 𝛽 

𝛽 Sadeghy, Hajibeygi and 

Taghavi [13] 

Hayat, Abbas and Sajid 

[14] 

Existing Results 

0.0 1.00000 1.90250 0.999961 

0.4 1.10084 2.19206 1.101849 

0.8 1.19872 2.50598 1.196690 

1.2 - 2.89841 1.285255 

1.6 - 3.42262 1.368640 

2.0 - 4.13099 1.447616 

 

TABLE 2.Ec and Mn in PST case (𝛽 = 0.1, 𝑃𝑟 = 3, 𝐴∗ = 𝐵∗ = 0.1) 

Ec Mn Aliakbar et. al [12] −𝜃′(0) Existing values  −𝜃′(0) 

0.0 0.0 2.47116  1.227048 

5.0 0.0 −1.38806 −0.718810 

10.0 0.0 −5.24982 −2.665281 

TABLE 3.  1 and  0 for different values of  Pr,Ec, A*, B* and  . 

Pr Ec A* B*    1   0  

1     0.000000 -1.149181 

5 0.2 0.1 0.1 0.1 -0.000001 -2.972451 

10     -0.000001 -4.244380 

 1    0.000000 -0.837850 

1 2 0.1 0.1 0.1 -0.000001 -0.448685 

 5    -0.000001 0.718812 

  -0.1   0.000000 -1.265851 

1 0.2 0.0 0.1 0.1 0.000000 -1.207516 

  0.1   0.000000 -1.149180 

   -0.1  0.000000 -1.252832 

1 0.2 0.1 0.0 0.1 0.000000 -1.203613 

   0.1  0.000000 -1.149180 

    0.0 -0.000000 -1.163280 

1 0.2 0.1 0.1 0.1 -0.000000 -1.149183 

    0.3 -0.000000 -1.121013 
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RESULTS AND DISCUSSION 

The obtained ODE’s represented by equations (6), (13) and (16) with the corresponding BC’s represented by (7), 

(8), (14) and (17) are evaluated with the help of Runge-Kutta fourth order and shooting system. Suitable conversion 

is taking up to convert the governing PDE’s into a system of non-linear ODE’s. The results are tabulated (Ref. Table 

1, 2 & 3) for different values of local skin-friction and local Nusselt number, compared with references [12,13,14] 

and discussed in brief.  

 

Figs 2 & 3 reveals that, for R = 0.3 and K = 1, increasing values of magnetic parameter M decreases the velocity 

profile of the fluid which causes decrease in the thickness of the boundary layer from the slit. This is due to the fact 

that the applied transverse magnetic field produces a drag in the form of Lorentz force in that way decreasing the 

magnitude of velocity profile.  

Figures 4 and 5 are the graphical representations of the velocity profiles 𝑓’(𝜂) and 𝑓(𝜂), respectively, for various 

values of the suction/injection parameter. Analyzing these figures shows 

that the general increase in the suction R >0 causes the progressive reduction in the velocity 𝑓’(𝜂) and the 

corresponding thinning in the boundary layer thickness, while the reverse is true for the injection. 

Figs. 6 & 7 represent that,   effects on f, it is observed that enhancing in the values of   which reduces 

horizontal and vertical velocities above the plate. Also, Figs. 8 & 9 represents for rising values in   predicts 

reducing in the total amount of heat transfer from the moving plate. That is, higher values in   reduces temperature 

of the fluid above the moving plate.  

Figs.10 & 11 represents that, for raise in the values of Pr is observed to reduce the thermal parameter. i.e., the 

thermal boundary layer becomes thinner for higher the Pr. Thus, raising value in the Pr parameter found the rate of 

thermal diffusion drops in both PST and PHF cases. For PST case the dimensionless wall temperature is 1 for all 

parameter values.  

Figs. 12  & 13 represent that, for enhancing in the values of Ec enhances the thermal parameter for both PST and 

PHF cases. The effect of viscous dissipation is to enhance the temperature in the fluid film. i.e., increasing values of 

Ec contributes in thickening of thermal boundary layer. 

Figs. 14 & 15 represent the thermal property effects for PST and PHF cases respectively for special values of 
*A . For positive values of 

*A , it generates the energy in the boundary region which is the  basis for enhancing the 

thermal parameter across PST and PHF cases. For negative values of
*A which absorb the thermal parameter across 

PST and PHF cases.  

Figs. 16 & 17 represent the thermal property effects for PST and PHF cases respectively for special values of
*B

. The result of *B is alike to that for
*A . The effect of sink parameter (A* < 0, B* < 0) reduces the temperature in the 

fluid as the effect of source parameter (A* > 0, B* > 0) enhances the temperature. Heat sink is preferred for 

effective cooling of the sheet. 

CONCLUSIONS 

In this paper, an analysis has been carried out on the effect with space and temperature dependent internal heat 

generation/absorption over a flat porous moving plate for the UCM fluid. We observe the following. 

Reduce in the velocity profile due to raise in the strength of magnetic field and raise in elastic parameter reduces 

velocity of fluid flow. These effects overall is to suppress the velocity field above the stretching sheet, which is the 

basis for enrichment of the thermal effects. 

Skin friction coefficient increases with M and K. 

An increase in  , there is a decline in velocity field. The effect of  on the UCM fluid over a 

permeablehorizontal moving plate is to suppress the velocity in the boundary region, which is the basis for 

enrichment of the thermal effects.  

An increase in Pr depicts in declining the thermal parameter across PST and PHF cases.  

Raise in the Ecwill be the basis for raise in the thermal parameter, which causes reduce in the rate of cooling.  

The effect of space and temperature dependent internal heat generation / absorption is to cause temperature for 

rising positive values and absorb temperature for falling negative values.  
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Figure 2.Horizontal variation of Mwhen porous parameter 𝐾 = 1 and 𝑅 = −0.3
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Figure 3.Vertical variation of M when porous parameter K=1 and 𝑅 = −0.3 
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Figure 4.Horizontal variation of K when Magnetic parameter M=1 and 𝑅 = −0.3 

 

 

 

 

Figure 5.Vertical variation of K when Magnetic parameter M=1
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Figure 6.Horizontal Variation of 
 

 

 

Figure7. Vertical variation of   
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Figure 8.“Variation of   for the PST case at Pr 1.0, 0.2, * * 0.1Ec A B     

 

 

Figure 9.Variation of   for the PHF case at Pr 1.0, 0.2, * * 0.1Ec A B     
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Figure 10.Variation of Pr  for the PST case at 0.1, 0.2, * * 0.1Ec A B      

 

Figure 11.Variation of Pr  for the PHF case at 0.1, 0.2, * * 0.1Ec A B    
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Figure 12.Variation of Ec  for the PST case at 0.1, Pr 1, * * 0.1A B      

 

Figure 13.Variation of Ec  for the PHF case at 0.1, Pr 1, * * 0.1A B    
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Figure 14. Variation of A* for the PST case at 0.1,Pr 1, 0.2, * 0.1Ec B      

 

 

Figure 15. Variation of A* for the PHF case at 0.1,Pr 1, 0.2, * 0.1Ec B      
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Figure 16.Variation of B* for the PST case at 0.1,Pr 1, 0.2, * 0.1Ec A    
 

 

 

Figure 17. Variation of B* for the PHF case at 0.1,Pr 1, 0.2, * 0.1Ec A      
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